fix typo in previous commit
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef CANNOT_STEP_HW_WATCHPOINTS
201 #define CANNOT_STEP_HW_WATCHPOINTS 0
202 #else
203 #undef CANNOT_STEP_HW_WATCHPOINTS
204 #define CANNOT_STEP_HW_WATCHPOINTS 1
205 #endif
206
207 /* Tables of how to react to signals; the user sets them. */
208
209 static unsigned char *signal_stop;
210 static unsigned char *signal_print;
211 static unsigned char *signal_program;
212
213 #define SET_SIGS(nsigs,sigs,flags) \
214 do { \
215 int signum = (nsigs); \
216 while (signum-- > 0) \
217 if ((sigs)[signum]) \
218 (flags)[signum] = 1; \
219 } while (0)
220
221 #define UNSET_SIGS(nsigs,sigs,flags) \
222 do { \
223 int signum = (nsigs); \
224 while (signum-- > 0) \
225 if ((sigs)[signum]) \
226 (flags)[signum] = 0; \
227 } while (0)
228
229 /* Value to pass to target_resume() to cause all threads to resume */
230
231 #define RESUME_ALL (pid_to_ptid (-1))
232
233 /* Command list pointer for the "stop" placeholder. */
234
235 static struct cmd_list_element *stop_command;
236
237 /* Nonzero if breakpoints are now inserted in the inferior. */
238
239 static int breakpoints_inserted;
240
241 /* Function inferior was in as of last step command. */
242
243 static struct symbol *step_start_function;
244
245 /* Nonzero if we are expecting a trace trap and should proceed from it. */
246
247 static int trap_expected;
248
249 /* Nonzero if we want to give control to the user when we're notified
250 of shared library events by the dynamic linker. */
251 static int stop_on_solib_events;
252 static void
253 show_stop_on_solib_events (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
257 value);
258 }
259
260 /* Nonzero means expecting a trace trap
261 and should stop the inferior and return silently when it happens. */
262
263 int stop_after_trap;
264
265 /* Nonzero means expecting a trap and caller will handle it themselves.
266 It is used after attach, due to attaching to a process;
267 when running in the shell before the child program has been exec'd;
268 and when running some kinds of remote stuff (FIXME?). */
269
270 enum stop_kind stop_soon;
271
272 /* Nonzero if proceed is being used for a "finish" command or a similar
273 situation when stop_registers should be saved. */
274
275 int proceed_to_finish;
276
277 /* Save register contents here when about to pop a stack dummy frame,
278 if-and-only-if proceed_to_finish is set.
279 Thus this contains the return value from the called function (assuming
280 values are returned in a register). */
281
282 struct regcache *stop_registers;
283
284 /* Nonzero after stop if current stack frame should be printed. */
285
286 static int stop_print_frame;
287
288 static struct breakpoint *step_resume_breakpoint = NULL;
289
290 /* This is a cached copy of the pid/waitstatus of the last event
291 returned by target_wait()/deprecated_target_wait_hook(). This
292 information is returned by get_last_target_status(). */
293 static ptid_t target_last_wait_ptid;
294 static struct target_waitstatus target_last_waitstatus;
295
296 /* This is used to remember when a fork, vfork or exec event
297 was caught by a catchpoint, and thus the event is to be
298 followed at the next resume of the inferior, and not
299 immediately. */
300 static struct
301 {
302 enum target_waitkind kind;
303 struct
304 {
305 int parent_pid;
306 int child_pid;
307 }
308 fork_event;
309 char *execd_pathname;
310 }
311 pending_follow;
312
313 static const char follow_fork_mode_child[] = "child";
314 static const char follow_fork_mode_parent[] = "parent";
315
316 static const char *follow_fork_mode_kind_names[] = {
317 follow_fork_mode_child,
318 follow_fork_mode_parent,
319 NULL
320 };
321
322 static const char *follow_fork_mode_string = follow_fork_mode_parent;
323 static void
324 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("\
328 Debugger response to a program call of fork or vfork is \"%s\".\n"),
329 value);
330 }
331 \f
332
333 static int
334 follow_fork (void)
335 {
336 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
337
338 return target_follow_fork (follow_child);
339 }
340
341 void
342 follow_inferior_reset_breakpoints (void)
343 {
344 /* Was there a step_resume breakpoint? (There was if the user
345 did a "next" at the fork() call.) If so, explicitly reset its
346 thread number.
347
348 step_resumes are a form of bp that are made to be per-thread.
349 Since we created the step_resume bp when the parent process
350 was being debugged, and now are switching to the child process,
351 from the breakpoint package's viewpoint, that's a switch of
352 "threads". We must update the bp's notion of which thread
353 it is for, or it'll be ignored when it triggers. */
354
355 if (step_resume_breakpoint)
356 breakpoint_re_set_thread (step_resume_breakpoint);
357
358 /* Reinsert all breakpoints in the child. The user may have set
359 breakpoints after catching the fork, in which case those
360 were never set in the child, but only in the parent. This makes
361 sure the inserted breakpoints match the breakpoint list. */
362
363 breakpoint_re_set ();
364 insert_breakpoints ();
365 }
366
367 /* EXECD_PATHNAME is assumed to be non-NULL. */
368
369 static void
370 follow_exec (int pid, char *execd_pathname)
371 {
372 int saved_pid = pid;
373 struct target_ops *tgt;
374
375 if (!may_follow_exec)
376 return;
377
378 /* This is an exec event that we actually wish to pay attention to.
379 Refresh our symbol table to the newly exec'd program, remove any
380 momentary bp's, etc.
381
382 If there are breakpoints, they aren't really inserted now,
383 since the exec() transformed our inferior into a fresh set
384 of instructions.
385
386 We want to preserve symbolic breakpoints on the list, since
387 we have hopes that they can be reset after the new a.out's
388 symbol table is read.
389
390 However, any "raw" breakpoints must be removed from the list
391 (e.g., the solib bp's), since their address is probably invalid
392 now.
393
394 And, we DON'T want to call delete_breakpoints() here, since
395 that may write the bp's "shadow contents" (the instruction
396 value that was overwritten witha TRAP instruction). Since
397 we now have a new a.out, those shadow contents aren't valid. */
398 update_breakpoints_after_exec ();
399
400 /* If there was one, it's gone now. We cannot truly step-to-next
401 statement through an exec(). */
402 step_resume_breakpoint = NULL;
403 step_range_start = 0;
404 step_range_end = 0;
405
406 /* What is this a.out's name? */
407 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
408
409 /* We've followed the inferior through an exec. Therefore, the
410 inferior has essentially been killed & reborn. */
411
412 /* First collect the run target in effect. */
413 tgt = find_run_target ();
414 /* If we can't find one, things are in a very strange state... */
415 if (tgt == NULL)
416 error (_("Could find run target to save before following exec"));
417
418 gdb_flush (gdb_stdout);
419 target_mourn_inferior ();
420 inferior_ptid = pid_to_ptid (saved_pid);
421 /* Because mourn_inferior resets inferior_ptid. */
422 push_target (tgt);
423
424 /* That a.out is now the one to use. */
425 exec_file_attach (execd_pathname, 0);
426
427 /* And also is where symbols can be found. */
428 symbol_file_add_main (execd_pathname, 0);
429
430 /* Reset the shared library package. This ensures that we get
431 a shlib event when the child reaches "_start", at which point
432 the dld will have had a chance to initialize the child. */
433 #if defined(SOLIB_RESTART)
434 SOLIB_RESTART ();
435 #endif
436 #ifdef SOLIB_CREATE_INFERIOR_HOOK
437 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
438 #else
439 solib_create_inferior_hook ();
440 #endif
441
442 /* Reinsert all breakpoints. (Those which were symbolic have
443 been reset to the proper address in the new a.out, thanks
444 to symbol_file_command...) */
445 insert_breakpoints ();
446
447 /* The next resume of this inferior should bring it to the shlib
448 startup breakpoints. (If the user had also set bp's on
449 "main" from the old (parent) process, then they'll auto-
450 matically get reset there in the new process.) */
451 }
452
453 /* Non-zero if we just simulating a single-step. This is needed
454 because we cannot remove the breakpoints in the inferior process
455 until after the `wait' in `wait_for_inferior'. */
456 static int singlestep_breakpoints_inserted_p = 0;
457
458 /* The thread we inserted single-step breakpoints for. */
459 static ptid_t singlestep_ptid;
460
461 /* PC when we started this single-step. */
462 static CORE_ADDR singlestep_pc;
463
464 /* If another thread hit the singlestep breakpoint, we save the original
465 thread here so that we can resume single-stepping it later. */
466 static ptid_t saved_singlestep_ptid;
467 static int stepping_past_singlestep_breakpoint;
468 \f
469
470 /* Things to clean up if we QUIT out of resume (). */
471 static void
472 resume_cleanups (void *ignore)
473 {
474 normal_stop ();
475 }
476
477 static const char schedlock_off[] = "off";
478 static const char schedlock_on[] = "on";
479 static const char schedlock_step[] = "step";
480 static const char *scheduler_enums[] = {
481 schedlock_off,
482 schedlock_on,
483 schedlock_step,
484 NULL
485 };
486 static const char *scheduler_mode = schedlock_off;
487 static void
488 show_scheduler_mode (struct ui_file *file, int from_tty,
489 struct cmd_list_element *c, const char *value)
490 {
491 fprintf_filtered (file, _("\
492 Mode for locking scheduler during execution is \"%s\".\n"),
493 value);
494 }
495
496 static void
497 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
498 {
499 if (!target_can_lock_scheduler)
500 {
501 scheduler_mode = schedlock_off;
502 error (_("Target '%s' cannot support this command."), target_shortname);
503 }
504 }
505
506
507 /* Resume the inferior, but allow a QUIT. This is useful if the user
508 wants to interrupt some lengthy single-stepping operation
509 (for child processes, the SIGINT goes to the inferior, and so
510 we get a SIGINT random_signal, but for remote debugging and perhaps
511 other targets, that's not true).
512
513 STEP nonzero if we should step (zero to continue instead).
514 SIG is the signal to give the inferior (zero for none). */
515 void
516 resume (int step, enum target_signal sig)
517 {
518 int should_resume = 1;
519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
520 QUIT;
521
522 if (debug_infrun)
523 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
524 step, sig);
525
526 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
527
528
529 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
530 over an instruction that causes a page fault without triggering
531 a hardware watchpoint. The kernel properly notices that it shouldn't
532 stop, because the hardware watchpoint is not triggered, but it forgets
533 the step request and continues the program normally.
534 Work around the problem by removing hardware watchpoints if a step is
535 requested, GDB will check for a hardware watchpoint trigger after the
536 step anyway. */
537 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
538 remove_hw_watchpoints ();
539
540
541 /* Normally, by the time we reach `resume', the breakpoints are either
542 removed or inserted, as appropriate. The exception is if we're sitting
543 at a permanent breakpoint; we need to step over it, but permanent
544 breakpoints can't be removed. So we have to test for it here. */
545 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
546 SKIP_PERMANENT_BREAKPOINT ();
547
548 if (SOFTWARE_SINGLE_STEP_P () && step)
549 {
550 /* Do it the hard way, w/temp breakpoints */
551 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
552 /* ...and don't ask hardware to do it. */
553 step = 0;
554 /* and do not pull these breakpoints until after a `wait' in
555 `wait_for_inferior' */
556 singlestep_breakpoints_inserted_p = 1;
557 singlestep_ptid = inferior_ptid;
558 singlestep_pc = read_pc ();
559 }
560
561 /* If there were any forks/vforks/execs that were caught and are
562 now to be followed, then do so. */
563 switch (pending_follow.kind)
564 {
565 case TARGET_WAITKIND_FORKED:
566 case TARGET_WAITKIND_VFORKED:
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 if (follow_fork ())
569 should_resume = 0;
570 break;
571
572 case TARGET_WAITKIND_EXECD:
573 /* follow_exec is called as soon as the exec event is seen. */
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 break;
576
577 default:
578 break;
579 }
580
581 /* Install inferior's terminal modes. */
582 target_terminal_inferior ();
583
584 if (should_resume)
585 {
586 ptid_t resume_ptid;
587
588 resume_ptid = RESUME_ALL; /* Default */
589
590 if ((step || singlestep_breakpoints_inserted_p)
591 && (stepping_past_singlestep_breakpoint
592 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
593 {
594 /* Stepping past a breakpoint without inserting breakpoints.
595 Make sure only the current thread gets to step, so that
596 other threads don't sneak past breakpoints while they are
597 not inserted. */
598
599 resume_ptid = inferior_ptid;
600 }
601
602 if ((scheduler_mode == schedlock_on)
603 || (scheduler_mode == schedlock_step
604 && (step || singlestep_breakpoints_inserted_p)))
605 {
606 /* User-settable 'scheduler' mode requires solo thread resume. */
607 resume_ptid = inferior_ptid;
608 }
609
610 if (CANNOT_STEP_BREAKPOINT)
611 {
612 /* Most targets can step a breakpoint instruction, thus
613 executing it normally. But if this one cannot, just
614 continue and we will hit it anyway. */
615 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
616 step = 0;
617 }
618 target_resume (resume_ptid, step, sig);
619 }
620
621 discard_cleanups (old_cleanups);
622 }
623 \f
624
625 /* Clear out all variables saying what to do when inferior is continued.
626 First do this, then set the ones you want, then call `proceed'. */
627
628 void
629 clear_proceed_status (void)
630 {
631 trap_expected = 0;
632 step_range_start = 0;
633 step_range_end = 0;
634 step_frame_id = null_frame_id;
635 step_over_calls = STEP_OVER_UNDEBUGGABLE;
636 stop_after_trap = 0;
637 stop_soon = NO_STOP_QUIETLY;
638 proceed_to_finish = 0;
639 breakpoint_proceeded = 1; /* We're about to proceed... */
640
641 /* Discard any remaining commands or status from previous stop. */
642 bpstat_clear (&stop_bpstat);
643 }
644
645 /* This should be suitable for any targets that support threads. */
646
647 static int
648 prepare_to_proceed (void)
649 {
650 ptid_t wait_ptid;
651 struct target_waitstatus wait_status;
652
653 /* Get the last target status returned by target_wait(). */
654 get_last_target_status (&wait_ptid, &wait_status);
655
656 /* Make sure we were stopped either at a breakpoint, or because
657 of a Ctrl-C. */
658 if (wait_status.kind != TARGET_WAITKIND_STOPPED
659 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
660 && wait_status.value.sig != TARGET_SIGNAL_INT))
661 {
662 return 0;
663 }
664
665 if (!ptid_equal (wait_ptid, minus_one_ptid)
666 && !ptid_equal (inferior_ptid, wait_ptid))
667 {
668 /* Switched over from WAIT_PID. */
669 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
670
671 if (wait_pc != read_pc ())
672 {
673 /* Switch back to WAIT_PID thread. */
674 inferior_ptid = wait_ptid;
675
676 /* FIXME: This stuff came from switch_to_thread() in
677 thread.c (which should probably be a public function). */
678 reinit_frame_cache ();
679 registers_changed ();
680 stop_pc = wait_pc;
681 }
682
683 /* We return 1 to indicate that there is a breakpoint here,
684 so we need to step over it before continuing to avoid
685 hitting it straight away. */
686 if (breakpoint_here_p (wait_pc))
687 return 1;
688 }
689
690 return 0;
691
692 }
693
694 /* Record the pc of the program the last time it stopped. This is
695 just used internally by wait_for_inferior, but need to be preserved
696 over calls to it and cleared when the inferior is started. */
697 static CORE_ADDR prev_pc;
698
699 /* Basic routine for continuing the program in various fashions.
700
701 ADDR is the address to resume at, or -1 for resume where stopped.
702 SIGGNAL is the signal to give it, or 0 for none,
703 or -1 for act according to how it stopped.
704 STEP is nonzero if should trap after one instruction.
705 -1 means return after that and print nothing.
706 You should probably set various step_... variables
707 before calling here, if you are stepping.
708
709 You should call clear_proceed_status before calling proceed. */
710
711 void
712 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
713 {
714 int oneproc = 0;
715
716 if (step > 0)
717 step_start_function = find_pc_function (read_pc ());
718 if (step < 0)
719 stop_after_trap = 1;
720
721 if (addr == (CORE_ADDR) -1)
722 {
723 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
724 /* There is a breakpoint at the address we will resume at,
725 step one instruction before inserting breakpoints so that
726 we do not stop right away (and report a second hit at this
727 breakpoint). */
728 oneproc = 1;
729 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
730 && gdbarch_single_step_through_delay (current_gdbarch,
731 get_current_frame ()))
732 /* We stepped onto an instruction that needs to be stepped
733 again before re-inserting the breakpoint, do so. */
734 oneproc = 1;
735 }
736 else
737 {
738 write_pc (addr);
739 }
740
741 if (debug_infrun)
742 fprintf_unfiltered (gdb_stdlog,
743 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
744 paddr_nz (addr), siggnal, step);
745
746 /* In a multi-threaded task we may select another thread
747 and then continue or step.
748
749 But if the old thread was stopped at a breakpoint, it
750 will immediately cause another breakpoint stop without
751 any execution (i.e. it will report a breakpoint hit
752 incorrectly). So we must step over it first.
753
754 prepare_to_proceed checks the current thread against the thread
755 that reported the most recent event. If a step-over is required
756 it returns TRUE and sets the current thread to the old thread. */
757 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
758 oneproc = 1;
759
760 if (oneproc)
761 /* We will get a trace trap after one instruction.
762 Continue it automatically and insert breakpoints then. */
763 trap_expected = 1;
764 else
765 {
766 insert_breakpoints ();
767 /* If we get here there was no call to error() in
768 insert breakpoints -- so they were inserted. */
769 breakpoints_inserted = 1;
770 }
771
772 if (siggnal != TARGET_SIGNAL_DEFAULT)
773 stop_signal = siggnal;
774 /* If this signal should not be seen by program,
775 give it zero. Used for debugging signals. */
776 else if (!signal_program[stop_signal])
777 stop_signal = TARGET_SIGNAL_0;
778
779 annotate_starting ();
780
781 /* Make sure that output from GDB appears before output from the
782 inferior. */
783 gdb_flush (gdb_stdout);
784
785 /* Refresh prev_pc value just prior to resuming. This used to be
786 done in stop_stepping, however, setting prev_pc there did not handle
787 scenarios such as inferior function calls or returning from
788 a function via the return command. In those cases, the prev_pc
789 value was not set properly for subsequent commands. The prev_pc value
790 is used to initialize the starting line number in the ecs. With an
791 invalid value, the gdb next command ends up stopping at the position
792 represented by the next line table entry past our start position.
793 On platforms that generate one line table entry per line, this
794 is not a problem. However, on the ia64, the compiler generates
795 extraneous line table entries that do not increase the line number.
796 When we issue the gdb next command on the ia64 after an inferior call
797 or a return command, we often end up a few instructions forward, still
798 within the original line we started.
799
800 An attempt was made to have init_execution_control_state () refresh
801 the prev_pc value before calculating the line number. This approach
802 did not work because on platforms that use ptrace, the pc register
803 cannot be read unless the inferior is stopped. At that point, we
804 are not guaranteed the inferior is stopped and so the read_pc ()
805 call can fail. Setting the prev_pc value here ensures the value is
806 updated correctly when the inferior is stopped. */
807 prev_pc = read_pc ();
808
809 /* Resume inferior. */
810 resume (oneproc || step || bpstat_should_step (), stop_signal);
811
812 /* Wait for it to stop (if not standalone)
813 and in any case decode why it stopped, and act accordingly. */
814 /* Do this only if we are not using the event loop, or if the target
815 does not support asynchronous execution. */
816 if (!target_can_async_p ())
817 {
818 wait_for_inferior ();
819 normal_stop ();
820 }
821 }
822 \f
823
824 /* Start remote-debugging of a machine over a serial link. */
825
826 void
827 start_remote (int from_tty)
828 {
829 init_thread_list ();
830 init_wait_for_inferior ();
831 stop_soon = STOP_QUIETLY;
832 trap_expected = 0;
833
834 /* Always go on waiting for the target, regardless of the mode. */
835 /* FIXME: cagney/1999-09-23: At present it isn't possible to
836 indicate to wait_for_inferior that a target should timeout if
837 nothing is returned (instead of just blocking). Because of this,
838 targets expecting an immediate response need to, internally, set
839 things up so that the target_wait() is forced to eventually
840 timeout. */
841 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
842 differentiate to its caller what the state of the target is after
843 the initial open has been performed. Here we're assuming that
844 the target has stopped. It should be possible to eventually have
845 target_open() return to the caller an indication that the target
846 is currently running and GDB state should be set to the same as
847 for an async run. */
848 wait_for_inferior ();
849
850 /* Now that the inferior has stopped, do any bookkeeping like
851 loading shared libraries. We want to do this before normal_stop,
852 so that the displayed frame is up to date. */
853 post_create_inferior (&current_target, from_tty);
854
855 normal_stop ();
856 }
857
858 /* Initialize static vars when a new inferior begins. */
859
860 void
861 init_wait_for_inferior (void)
862 {
863 /* These are meaningless until the first time through wait_for_inferior. */
864 prev_pc = 0;
865
866 breakpoints_inserted = 0;
867 breakpoint_init_inferior (inf_starting);
868
869 /* Don't confuse first call to proceed(). */
870 stop_signal = TARGET_SIGNAL_0;
871
872 /* The first resume is not following a fork/vfork/exec. */
873 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
874
875 clear_proceed_status ();
876
877 stepping_past_singlestep_breakpoint = 0;
878 }
879 \f
880 /* This enum encodes possible reasons for doing a target_wait, so that
881 wfi can call target_wait in one place. (Ultimately the call will be
882 moved out of the infinite loop entirely.) */
883
884 enum infwait_states
885 {
886 infwait_normal_state,
887 infwait_thread_hop_state,
888 infwait_nonstep_watch_state
889 };
890
891 /* Why did the inferior stop? Used to print the appropriate messages
892 to the interface from within handle_inferior_event(). */
893 enum inferior_stop_reason
894 {
895 /* Step, next, nexti, stepi finished. */
896 END_STEPPING_RANGE,
897 /* Inferior terminated by signal. */
898 SIGNAL_EXITED,
899 /* Inferior exited. */
900 EXITED,
901 /* Inferior received signal, and user asked to be notified. */
902 SIGNAL_RECEIVED
903 };
904
905 /* This structure contains what used to be local variables in
906 wait_for_inferior. Probably many of them can return to being
907 locals in handle_inferior_event. */
908
909 struct execution_control_state
910 {
911 struct target_waitstatus ws;
912 struct target_waitstatus *wp;
913 int another_trap;
914 int random_signal;
915 CORE_ADDR stop_func_start;
916 CORE_ADDR stop_func_end;
917 char *stop_func_name;
918 struct symtab_and_line sal;
919 int current_line;
920 struct symtab *current_symtab;
921 int handling_longjmp; /* FIXME */
922 ptid_t ptid;
923 ptid_t saved_inferior_ptid;
924 int step_after_step_resume_breakpoint;
925 int stepping_through_solib_after_catch;
926 bpstat stepping_through_solib_catchpoints;
927 int new_thread_event;
928 struct target_waitstatus tmpstatus;
929 enum infwait_states infwait_state;
930 ptid_t waiton_ptid;
931 int wait_some_more;
932 };
933
934 void init_execution_control_state (struct execution_control_state *ecs);
935
936 void handle_inferior_event (struct execution_control_state *ecs);
937
938 static void step_into_function (struct execution_control_state *ecs);
939 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
940 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
941 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
942 struct frame_id sr_id);
943 static void stop_stepping (struct execution_control_state *ecs);
944 static void prepare_to_wait (struct execution_control_state *ecs);
945 static void keep_going (struct execution_control_state *ecs);
946 static void print_stop_reason (enum inferior_stop_reason stop_reason,
947 int stop_info);
948
949 /* Wait for control to return from inferior to debugger.
950 If inferior gets a signal, we may decide to start it up again
951 instead of returning. That is why there is a loop in this function.
952 When this function actually returns it means the inferior
953 should be left stopped and GDB should read more commands. */
954
955 void
956 wait_for_inferior (void)
957 {
958 struct cleanup *old_cleanups;
959 struct execution_control_state ecss;
960 struct execution_control_state *ecs;
961
962 if (debug_infrun)
963 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
964
965 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
966 &step_resume_breakpoint);
967
968 /* wfi still stays in a loop, so it's OK just to take the address of
969 a local to get the ecs pointer. */
970 ecs = &ecss;
971
972 /* Fill in with reasonable starting values. */
973 init_execution_control_state (ecs);
974
975 /* We'll update this if & when we switch to a new thread. */
976 previous_inferior_ptid = inferior_ptid;
977
978 overlay_cache_invalid = 1;
979
980 /* We have to invalidate the registers BEFORE calling target_wait
981 because they can be loaded from the target while in target_wait.
982 This makes remote debugging a bit more efficient for those
983 targets that provide critical registers as part of their normal
984 status mechanism. */
985
986 registers_changed ();
987
988 while (1)
989 {
990 if (deprecated_target_wait_hook)
991 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
992 else
993 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
994
995 /* Now figure out what to do with the result of the result. */
996 handle_inferior_event (ecs);
997
998 if (!ecs->wait_some_more)
999 break;
1000 }
1001 do_cleanups (old_cleanups);
1002 }
1003
1004 /* Asynchronous version of wait_for_inferior. It is called by the
1005 event loop whenever a change of state is detected on the file
1006 descriptor corresponding to the target. It can be called more than
1007 once to complete a single execution command. In such cases we need
1008 to keep the state in a global variable ASYNC_ECSS. If it is the
1009 last time that this function is called for a single execution
1010 command, then report to the user that the inferior has stopped, and
1011 do the necessary cleanups. */
1012
1013 struct execution_control_state async_ecss;
1014 struct execution_control_state *async_ecs;
1015
1016 void
1017 fetch_inferior_event (void *client_data)
1018 {
1019 static struct cleanup *old_cleanups;
1020
1021 async_ecs = &async_ecss;
1022
1023 if (!async_ecs->wait_some_more)
1024 {
1025 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1026 &step_resume_breakpoint);
1027
1028 /* Fill in with reasonable starting values. */
1029 init_execution_control_state (async_ecs);
1030
1031 /* We'll update this if & when we switch to a new thread. */
1032 previous_inferior_ptid = inferior_ptid;
1033
1034 overlay_cache_invalid = 1;
1035
1036 /* We have to invalidate the registers BEFORE calling target_wait
1037 because they can be loaded from the target while in target_wait.
1038 This makes remote debugging a bit more efficient for those
1039 targets that provide critical registers as part of their normal
1040 status mechanism. */
1041
1042 registers_changed ();
1043 }
1044
1045 if (deprecated_target_wait_hook)
1046 async_ecs->ptid =
1047 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1048 else
1049 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1050
1051 /* Now figure out what to do with the result of the result. */
1052 handle_inferior_event (async_ecs);
1053
1054 if (!async_ecs->wait_some_more)
1055 {
1056 /* Do only the cleanups that have been added by this
1057 function. Let the continuations for the commands do the rest,
1058 if there are any. */
1059 do_exec_cleanups (old_cleanups);
1060 normal_stop ();
1061 if (step_multi && stop_step)
1062 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1063 else
1064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1065 }
1066 }
1067
1068 /* Prepare an execution control state for looping through a
1069 wait_for_inferior-type loop. */
1070
1071 void
1072 init_execution_control_state (struct execution_control_state *ecs)
1073 {
1074 ecs->another_trap = 0;
1075 ecs->random_signal = 0;
1076 ecs->step_after_step_resume_breakpoint = 0;
1077 ecs->handling_longjmp = 0; /* FIXME */
1078 ecs->stepping_through_solib_after_catch = 0;
1079 ecs->stepping_through_solib_catchpoints = NULL;
1080 ecs->sal = find_pc_line (prev_pc, 0);
1081 ecs->current_line = ecs->sal.line;
1082 ecs->current_symtab = ecs->sal.symtab;
1083 ecs->infwait_state = infwait_normal_state;
1084 ecs->waiton_ptid = pid_to_ptid (-1);
1085 ecs->wp = &(ecs->ws);
1086 }
1087
1088 /* Return the cached copy of the last pid/waitstatus returned by
1089 target_wait()/deprecated_target_wait_hook(). The data is actually
1090 cached by handle_inferior_event(), which gets called immediately
1091 after target_wait()/deprecated_target_wait_hook(). */
1092
1093 void
1094 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1095 {
1096 *ptidp = target_last_wait_ptid;
1097 *status = target_last_waitstatus;
1098 }
1099
1100 void
1101 nullify_last_target_wait_ptid (void)
1102 {
1103 target_last_wait_ptid = minus_one_ptid;
1104 }
1105
1106 /* Switch thread contexts, maintaining "infrun state". */
1107
1108 static void
1109 context_switch (struct execution_control_state *ecs)
1110 {
1111 /* Caution: it may happen that the new thread (or the old one!)
1112 is not in the thread list. In this case we must not attempt
1113 to "switch context", or we run the risk that our context may
1114 be lost. This may happen as a result of the target module
1115 mishandling thread creation. */
1116
1117 if (debug_infrun)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1120 target_pid_to_str (inferior_ptid));
1121 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1122 target_pid_to_str (ecs->ptid));
1123 }
1124
1125 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1126 { /* Perform infrun state context switch: */
1127 /* Save infrun state for the old thread. */
1128 save_infrun_state (inferior_ptid, prev_pc,
1129 trap_expected, step_resume_breakpoint,
1130 step_range_start,
1131 step_range_end, &step_frame_id,
1132 ecs->handling_longjmp, ecs->another_trap,
1133 ecs->stepping_through_solib_after_catch,
1134 ecs->stepping_through_solib_catchpoints,
1135 ecs->current_line, ecs->current_symtab);
1136
1137 /* Load infrun state for the new thread. */
1138 load_infrun_state (ecs->ptid, &prev_pc,
1139 &trap_expected, &step_resume_breakpoint,
1140 &step_range_start,
1141 &step_range_end, &step_frame_id,
1142 &ecs->handling_longjmp, &ecs->another_trap,
1143 &ecs->stepping_through_solib_after_catch,
1144 &ecs->stepping_through_solib_catchpoints,
1145 &ecs->current_line, &ecs->current_symtab);
1146 }
1147 inferior_ptid = ecs->ptid;
1148 reinit_frame_cache ();
1149 }
1150
1151 static void
1152 adjust_pc_after_break (struct execution_control_state *ecs)
1153 {
1154 CORE_ADDR breakpoint_pc;
1155
1156 /* If this target does not decrement the PC after breakpoints, then
1157 we have nothing to do. */
1158 if (DECR_PC_AFTER_BREAK == 0)
1159 return;
1160
1161 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1162 we aren't, just return.
1163
1164 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1165 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1166 by software breakpoints should be handled through the normal breakpoint
1167 layer.
1168
1169 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1170 different signals (SIGILL or SIGEMT for instance), but it is less
1171 clear where the PC is pointing afterwards. It may not match
1172 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1173 these signals at breakpoints (the code has been in GDB since at least
1174 1992) so I can not guess how to handle them here.
1175
1176 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1177 would have the PC after hitting a watchpoint affected by
1178 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1179 in GDB history, and it seems unlikely to be correct, so
1180 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1181
1182 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1183 return;
1184
1185 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1186 return;
1187
1188 /* Find the location where (if we've hit a breakpoint) the
1189 breakpoint would be. */
1190 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1191
1192 if (SOFTWARE_SINGLE_STEP_P ())
1193 {
1194 /* When using software single-step, a SIGTRAP can only indicate
1195 an inserted breakpoint. This actually makes things
1196 easier. */
1197 if (singlestep_breakpoints_inserted_p)
1198 /* When software single stepping, the instruction at [prev_pc]
1199 is never a breakpoint, but the instruction following
1200 [prev_pc] (in program execution order) always is. Assume
1201 that following instruction was reached and hence a software
1202 breakpoint was hit. */
1203 write_pc_pid (breakpoint_pc, ecs->ptid);
1204 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1205 /* The inferior was free running (i.e., no single-step
1206 breakpoints inserted) and it hit a software breakpoint. */
1207 write_pc_pid (breakpoint_pc, ecs->ptid);
1208 }
1209 else
1210 {
1211 /* When using hardware single-step, a SIGTRAP is reported for
1212 both a completed single-step and a software breakpoint. Need
1213 to differentiate between the two as the latter needs
1214 adjusting but the former does not.
1215
1216 When the thread to be examined does not match the current thread
1217 context we can't use currently_stepping, so assume no
1218 single-stepping in this case. */
1219 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1220 {
1221 if (prev_pc == breakpoint_pc
1222 && software_breakpoint_inserted_here_p (breakpoint_pc))
1223 /* Hardware single-stepped a software breakpoint (as
1224 occures when the inferior is resumed with PC pointing
1225 at not-yet-hit software breakpoint). Since the
1226 breakpoint really is executed, the inferior needs to be
1227 backed up to the breakpoint address. */
1228 write_pc_pid (breakpoint_pc, ecs->ptid);
1229 }
1230 else
1231 {
1232 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1233 /* The inferior was free running (i.e., no hardware
1234 single-step and no possibility of a false SIGTRAP) and
1235 hit a software breakpoint. */
1236 write_pc_pid (breakpoint_pc, ecs->ptid);
1237 }
1238 }
1239 }
1240
1241 /* Given an execution control state that has been freshly filled in
1242 by an event from the inferior, figure out what it means and take
1243 appropriate action. */
1244
1245 int stepped_after_stopped_by_watchpoint;
1246
1247 void
1248 handle_inferior_event (struct execution_control_state *ecs)
1249 {
1250 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1251 that the variable stepped_after_stopped_by_watchpoint isn't used,
1252 then you're wrong! See remote.c:remote_stopped_data_address. */
1253
1254 int sw_single_step_trap_p = 0;
1255 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1256
1257 /* Cache the last pid/waitstatus. */
1258 target_last_wait_ptid = ecs->ptid;
1259 target_last_waitstatus = *ecs->wp;
1260
1261 adjust_pc_after_break (ecs);
1262
1263 switch (ecs->infwait_state)
1264 {
1265 case infwait_thread_hop_state:
1266 if (debug_infrun)
1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1268 /* Cancel the waiton_ptid. */
1269 ecs->waiton_ptid = pid_to_ptid (-1);
1270 break;
1271
1272 case infwait_normal_state:
1273 if (debug_infrun)
1274 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1275 stepped_after_stopped_by_watchpoint = 0;
1276 break;
1277
1278 case infwait_nonstep_watch_state:
1279 if (debug_infrun)
1280 fprintf_unfiltered (gdb_stdlog,
1281 "infrun: infwait_nonstep_watch_state\n");
1282 insert_breakpoints ();
1283
1284 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1285 handle things like signals arriving and other things happening
1286 in combination correctly? */
1287 stepped_after_stopped_by_watchpoint = 1;
1288 break;
1289
1290 default:
1291 internal_error (__FILE__, __LINE__, _("bad switch"));
1292 }
1293 ecs->infwait_state = infwait_normal_state;
1294
1295 reinit_frame_cache ();
1296
1297 /* If it's a new process, add it to the thread database */
1298
1299 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1300 && !ptid_equal (ecs->ptid, minus_one_ptid)
1301 && !in_thread_list (ecs->ptid));
1302
1303 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1304 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1305 {
1306 add_thread (ecs->ptid);
1307
1308 ui_out_text (uiout, "[New ");
1309 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1310 ui_out_text (uiout, "]\n");
1311 }
1312
1313 switch (ecs->ws.kind)
1314 {
1315 case TARGET_WAITKIND_LOADED:
1316 if (debug_infrun)
1317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1318 /* Ignore gracefully during startup of the inferior, as it
1319 might be the shell which has just loaded some objects,
1320 otherwise add the symbols for the newly loaded objects. */
1321 #ifdef SOLIB_ADD
1322 if (stop_soon == NO_STOP_QUIETLY)
1323 {
1324 /* Remove breakpoints, SOLIB_ADD might adjust
1325 breakpoint addresses via breakpoint_re_set. */
1326 if (breakpoints_inserted)
1327 remove_breakpoints ();
1328
1329 /* Check for any newly added shared libraries if we're
1330 supposed to be adding them automatically. Switch
1331 terminal for any messages produced by
1332 breakpoint_re_set. */
1333 target_terminal_ours_for_output ();
1334 /* NOTE: cagney/2003-11-25: Make certain that the target
1335 stack's section table is kept up-to-date. Architectures,
1336 (e.g., PPC64), use the section table to perform
1337 operations such as address => section name and hence
1338 require the table to contain all sections (including
1339 those found in shared libraries). */
1340 /* NOTE: cagney/2003-11-25: Pass current_target and not
1341 exec_ops to SOLIB_ADD. This is because current GDB is
1342 only tooled to propagate section_table changes out from
1343 the "current_target" (see target_resize_to_sections), and
1344 not up from the exec stratum. This, of course, isn't
1345 right. "infrun.c" should only interact with the
1346 exec/process stratum, instead relying on the target stack
1347 to propagate relevant changes (stop, section table
1348 changed, ...) up to other layers. */
1349 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1350 target_terminal_inferior ();
1351
1352 /* Reinsert breakpoints and continue. */
1353 if (breakpoints_inserted)
1354 insert_breakpoints ();
1355 }
1356 #endif
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
1360
1361 case TARGET_WAITKIND_SPURIOUS:
1362 if (debug_infrun)
1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1364 resume (0, TARGET_SIGNAL_0);
1365 prepare_to_wait (ecs);
1366 return;
1367
1368 case TARGET_WAITKIND_EXITED:
1369 if (debug_infrun)
1370 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1371 target_terminal_ours (); /* Must do this before mourn anyway */
1372 print_stop_reason (EXITED, ecs->ws.value.integer);
1373
1374 /* Record the exit code in the convenience variable $_exitcode, so
1375 that the user can inspect this again later. */
1376 set_internalvar (lookup_internalvar ("_exitcode"),
1377 value_from_longest (builtin_type_int,
1378 (LONGEST) ecs->ws.value.integer));
1379 gdb_flush (gdb_stdout);
1380 target_mourn_inferior ();
1381 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1382 stop_print_frame = 0;
1383 stop_stepping (ecs);
1384 return;
1385
1386 case TARGET_WAITKIND_SIGNALLED:
1387 if (debug_infrun)
1388 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1389 stop_print_frame = 0;
1390 stop_signal = ecs->ws.value.sig;
1391 target_terminal_ours (); /* Must do this before mourn anyway */
1392
1393 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1394 reach here unless the inferior is dead. However, for years
1395 target_kill() was called here, which hints that fatal signals aren't
1396 really fatal on some systems. If that's true, then some changes
1397 may be needed. */
1398 target_mourn_inferior ();
1399
1400 print_stop_reason (SIGNAL_EXITED, stop_signal);
1401 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1402 stop_stepping (ecs);
1403 return;
1404
1405 /* The following are the only cases in which we keep going;
1406 the above cases end in a continue or goto. */
1407 case TARGET_WAITKIND_FORKED:
1408 case TARGET_WAITKIND_VFORKED:
1409 if (debug_infrun)
1410 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1411 stop_signal = TARGET_SIGNAL_TRAP;
1412 pending_follow.kind = ecs->ws.kind;
1413
1414 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1415 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1416
1417 if (!ptid_equal (ecs->ptid, inferior_ptid))
1418 {
1419 context_switch (ecs);
1420 reinit_frame_cache ();
1421 }
1422
1423 stop_pc = read_pc ();
1424
1425 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1426
1427 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1428
1429 /* If no catchpoint triggered for this, then keep going. */
1430 if (ecs->random_signal)
1431 {
1432 stop_signal = TARGET_SIGNAL_0;
1433 keep_going (ecs);
1434 return;
1435 }
1436 goto process_event_stop_test;
1437
1438 case TARGET_WAITKIND_EXECD:
1439 if (debug_infrun)
1440 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1441 stop_signal = TARGET_SIGNAL_TRAP;
1442
1443 /* NOTE drow/2002-12-05: This code should be pushed down into the
1444 target_wait function. Until then following vfork on HP/UX 10.20
1445 is probably broken by this. Of course, it's broken anyway. */
1446 /* Is this a target which reports multiple exec events per actual
1447 call to exec()? (HP-UX using ptrace does, for example.) If so,
1448 ignore all but the last one. Just resume the exec'r, and wait
1449 for the next exec event. */
1450 if (inferior_ignoring_leading_exec_events)
1451 {
1452 inferior_ignoring_leading_exec_events--;
1453 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1454 prepare_to_wait (ecs);
1455 return;
1456 }
1457 inferior_ignoring_leading_exec_events =
1458 target_reported_exec_events_per_exec_call () - 1;
1459
1460 pending_follow.execd_pathname =
1461 savestring (ecs->ws.value.execd_pathname,
1462 strlen (ecs->ws.value.execd_pathname));
1463
1464 /* This causes the eventpoints and symbol table to be reset. Must
1465 do this now, before trying to determine whether to stop. */
1466 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1467 xfree (pending_follow.execd_pathname);
1468
1469 stop_pc = read_pc_pid (ecs->ptid);
1470 ecs->saved_inferior_ptid = inferior_ptid;
1471 inferior_ptid = ecs->ptid;
1472
1473 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1474
1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1476 inferior_ptid = ecs->saved_inferior_ptid;
1477
1478 if (!ptid_equal (ecs->ptid, inferior_ptid))
1479 {
1480 context_switch (ecs);
1481 reinit_frame_cache ();
1482 }
1483
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
1491 goto process_event_stop_test;
1492
1493 /* Be careful not to try to gather much state about a thread
1494 that's in a syscall. It's frequently a losing proposition. */
1495 case TARGET_WAITKIND_SYSCALL_ENTRY:
1496 if (debug_infrun)
1497 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1498 resume (0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
1501
1502 /* Before examining the threads further, step this thread to
1503 get it entirely out of the syscall. (We get notice of the
1504 event when the thread is just on the verge of exiting a
1505 syscall. Stepping one instruction seems to get it back
1506 into user code.) */
1507 case TARGET_WAITKIND_SYSCALL_RETURN:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1510 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1511 prepare_to_wait (ecs);
1512 return;
1513
1514 case TARGET_WAITKIND_STOPPED:
1515 if (debug_infrun)
1516 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1517 stop_signal = ecs->ws.value.sig;
1518 break;
1519
1520 /* We had an event in the inferior, but we are not interested
1521 in handling it at this level. The lower layers have already
1522 done what needs to be done, if anything.
1523
1524 One of the possible circumstances for this is when the
1525 inferior produces output for the console. The inferior has
1526 not stopped, and we are ignoring the event. Another possible
1527 circumstance is any event which the lower level knows will be
1528 reported multiple times without an intervening resume. */
1529 case TARGET_WAITKIND_IGNORE:
1530 if (debug_infrun)
1531 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1532 prepare_to_wait (ecs);
1533 return;
1534 }
1535
1536 /* We may want to consider not doing a resume here in order to give
1537 the user a chance to play with the new thread. It might be good
1538 to make that a user-settable option. */
1539
1540 /* At this point, all threads are stopped (happens automatically in
1541 either the OS or the native code). Therefore we need to continue
1542 all threads in order to make progress. */
1543 if (ecs->new_thread_event)
1544 {
1545 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1546 prepare_to_wait (ecs);
1547 return;
1548 }
1549
1550 stop_pc = read_pc_pid (ecs->ptid);
1551
1552 if (debug_infrun)
1553 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1554
1555 if (stepping_past_singlestep_breakpoint)
1556 {
1557 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1558 && singlestep_breakpoints_inserted_p);
1559 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1560 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1561
1562 stepping_past_singlestep_breakpoint = 0;
1563
1564 /* We've either finished single-stepping past the single-step
1565 breakpoint, or stopped for some other reason. It would be nice if
1566 we could tell, but we can't reliably. */
1567 if (stop_signal == TARGET_SIGNAL_TRAP)
1568 {
1569 if (debug_infrun)
1570 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1571 /* Pull the single step breakpoints out of the target. */
1572 SOFTWARE_SINGLE_STEP (0, 0);
1573 singlestep_breakpoints_inserted_p = 0;
1574
1575 ecs->random_signal = 0;
1576
1577 ecs->ptid = saved_singlestep_ptid;
1578 context_switch (ecs);
1579 if (deprecated_context_hook)
1580 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1581
1582 resume (1, TARGET_SIGNAL_0);
1583 prepare_to_wait (ecs);
1584 return;
1585 }
1586 }
1587
1588 stepping_past_singlestep_breakpoint = 0;
1589
1590 /* See if a thread hit a thread-specific breakpoint that was meant for
1591 another thread. If so, then step that thread past the breakpoint,
1592 and continue it. */
1593
1594 if (stop_signal == TARGET_SIGNAL_TRAP)
1595 {
1596 int thread_hop_needed = 0;
1597
1598 /* Check if a regular breakpoint has been hit before checking
1599 for a potential single step breakpoint. Otherwise, GDB will
1600 not see this breakpoint hit when stepping onto breakpoints. */
1601 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1602 {
1603 ecs->random_signal = 0;
1604 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1605 thread_hop_needed = 1;
1606 }
1607 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1608 {
1609 /* We have not context switched yet, so this should be true
1610 no matter which thread hit the singlestep breakpoint. */
1611 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1612 if (debug_infrun)
1613 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1614 "trap for %s\n",
1615 target_pid_to_str (ecs->ptid));
1616
1617 ecs->random_signal = 0;
1618 /* The call to in_thread_list is necessary because PTIDs sometimes
1619 change when we go from single-threaded to multi-threaded. If
1620 the singlestep_ptid is still in the list, assume that it is
1621 really different from ecs->ptid. */
1622 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1623 && in_thread_list (singlestep_ptid))
1624 {
1625 /* If the PC of the thread we were trying to single-step
1626 has changed, discard this event (which we were going
1627 to ignore anyway), and pretend we saw that thread
1628 trap. This prevents us continuously moving the
1629 single-step breakpoint forward, one instruction at a
1630 time. If the PC has changed, then the thread we were
1631 trying to single-step has trapped or been signalled,
1632 but the event has not been reported to GDB yet.
1633
1634 There might be some cases where this loses signal
1635 information, if a signal has arrived at exactly the
1636 same time that the PC changed, but this is the best
1637 we can do with the information available. Perhaps we
1638 should arrange to report all events for all threads
1639 when they stop, or to re-poll the remote looking for
1640 this particular thread (i.e. temporarily enable
1641 schedlock). */
1642 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1643 {
1644 if (debug_infrun)
1645 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1646 " but expected thread advanced also\n");
1647
1648 /* The current context still belongs to
1649 singlestep_ptid. Don't swap here, since that's
1650 the context we want to use. Just fudge our
1651 state and continue. */
1652 ecs->ptid = singlestep_ptid;
1653 stop_pc = read_pc_pid (ecs->ptid);
1654 }
1655 else
1656 {
1657 if (debug_infrun)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "infrun: unexpected thread\n");
1660
1661 thread_hop_needed = 1;
1662 stepping_past_singlestep_breakpoint = 1;
1663 saved_singlestep_ptid = singlestep_ptid;
1664 }
1665 }
1666 }
1667
1668 if (thread_hop_needed)
1669 {
1670 int remove_status;
1671
1672 if (debug_infrun)
1673 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1674
1675 /* Saw a breakpoint, but it was hit by the wrong thread.
1676 Just continue. */
1677
1678 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1679 {
1680 /* Pull the single step breakpoints out of the target. */
1681 SOFTWARE_SINGLE_STEP (0, 0);
1682 singlestep_breakpoints_inserted_p = 0;
1683 }
1684
1685 remove_status = remove_breakpoints ();
1686 /* Did we fail to remove breakpoints? If so, try
1687 to set the PC past the bp. (There's at least
1688 one situation in which we can fail to remove
1689 the bp's: On HP-UX's that use ttrace, we can't
1690 change the address space of a vforking child
1691 process until the child exits (well, okay, not
1692 then either :-) or execs. */
1693 if (remove_status != 0)
1694 {
1695 /* FIXME! This is obviously non-portable! */
1696 write_pc_pid (stop_pc + 4, ecs->ptid);
1697 /* We need to restart all the threads now,
1698 * unles we're running in scheduler-locked mode.
1699 * Use currently_stepping to determine whether to
1700 * step or continue.
1701 */
1702 /* FIXME MVS: is there any reason not to call resume()? */
1703 if (scheduler_mode == schedlock_on)
1704 target_resume (ecs->ptid,
1705 currently_stepping (ecs), TARGET_SIGNAL_0);
1706 else
1707 target_resume (RESUME_ALL,
1708 currently_stepping (ecs), TARGET_SIGNAL_0);
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712 else
1713 { /* Single step */
1714 breakpoints_inserted = 0;
1715 if (!ptid_equal (inferior_ptid, ecs->ptid))
1716 context_switch (ecs);
1717 ecs->waiton_ptid = ecs->ptid;
1718 ecs->wp = &(ecs->ws);
1719 ecs->another_trap = 1;
1720
1721 ecs->infwait_state = infwait_thread_hop_state;
1722 keep_going (ecs);
1723 registers_changed ();
1724 return;
1725 }
1726 }
1727 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1728 {
1729 sw_single_step_trap_p = 1;
1730 ecs->random_signal = 0;
1731 }
1732 }
1733 else
1734 ecs->random_signal = 1;
1735
1736 /* See if something interesting happened to the non-current thread. If
1737 so, then switch to that thread. */
1738 if (!ptid_equal (ecs->ptid, inferior_ptid))
1739 {
1740 if (debug_infrun)
1741 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1742
1743 context_switch (ecs);
1744
1745 if (deprecated_context_hook)
1746 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1747 }
1748
1749 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1750 {
1751 /* Pull the single step breakpoints out of the target. */
1752 SOFTWARE_SINGLE_STEP (0, 0);
1753 singlestep_breakpoints_inserted_p = 0;
1754 }
1755
1756 /* It may not be necessary to disable the watchpoint to stop over
1757 it. For example, the PA can (with some kernel cooperation)
1758 single step over a watchpoint without disabling the watchpoint. */
1759 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1760 {
1761 if (debug_infrun)
1762 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1763 resume (1, 0);
1764 prepare_to_wait (ecs);
1765 return;
1766 }
1767
1768 /* It is far more common to need to disable a watchpoint to step
1769 the inferior over it. FIXME. What else might a debug
1770 register or page protection watchpoint scheme need here? */
1771 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1772 {
1773 /* At this point, we are stopped at an instruction which has
1774 attempted to write to a piece of memory under control of
1775 a watchpoint. The instruction hasn't actually executed
1776 yet. If we were to evaluate the watchpoint expression
1777 now, we would get the old value, and therefore no change
1778 would seem to have occurred.
1779
1780 In order to make watchpoints work `right', we really need
1781 to complete the memory write, and then evaluate the
1782 watchpoint expression. The following code does that by
1783 removing the watchpoint (actually, all watchpoints and
1784 breakpoints), single-stepping the target, re-inserting
1785 watchpoints, and then falling through to let normal
1786 single-step processing handle proceed. Since this
1787 includes evaluating watchpoints, things will come to a
1788 stop in the correct manner. */
1789
1790 if (debug_infrun)
1791 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1792 remove_breakpoints ();
1793 registers_changed ();
1794 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1795
1796 ecs->waiton_ptid = ecs->ptid;
1797 ecs->wp = &(ecs->ws);
1798 ecs->infwait_state = infwait_nonstep_watch_state;
1799 prepare_to_wait (ecs);
1800 return;
1801 }
1802
1803 /* It may be possible to simply continue after a watchpoint. */
1804 if (HAVE_CONTINUABLE_WATCHPOINT)
1805 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1806
1807 ecs->stop_func_start = 0;
1808 ecs->stop_func_end = 0;
1809 ecs->stop_func_name = 0;
1810 /* Don't care about return value; stop_func_start and stop_func_name
1811 will both be 0 if it doesn't work. */
1812 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1813 &ecs->stop_func_start, &ecs->stop_func_end);
1814 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1815 ecs->another_trap = 0;
1816 bpstat_clear (&stop_bpstat);
1817 stop_step = 0;
1818 stop_stack_dummy = 0;
1819 stop_print_frame = 1;
1820 ecs->random_signal = 0;
1821 stopped_by_random_signal = 0;
1822
1823 if (stop_signal == TARGET_SIGNAL_TRAP
1824 && trap_expected
1825 && gdbarch_single_step_through_delay_p (current_gdbarch)
1826 && currently_stepping (ecs))
1827 {
1828 /* We're trying to step of a breakpoint. Turns out that we're
1829 also on an instruction that needs to be stepped multiple
1830 times before it's been fully executing. E.g., architectures
1831 with a delay slot. It needs to be stepped twice, once for
1832 the instruction and once for the delay slot. */
1833 int step_through_delay
1834 = gdbarch_single_step_through_delay (current_gdbarch,
1835 get_current_frame ());
1836 if (debug_infrun && step_through_delay)
1837 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1838 if (step_range_end == 0 && step_through_delay)
1839 {
1840 /* The user issued a continue when stopped at a breakpoint.
1841 Set up for another trap and get out of here. */
1842 ecs->another_trap = 1;
1843 keep_going (ecs);
1844 return;
1845 }
1846 else if (step_through_delay)
1847 {
1848 /* The user issued a step when stopped at a breakpoint.
1849 Maybe we should stop, maybe we should not - the delay
1850 slot *might* correspond to a line of source. In any
1851 case, don't decide that here, just set ecs->another_trap,
1852 making sure we single-step again before breakpoints are
1853 re-inserted. */
1854 ecs->another_trap = 1;
1855 }
1856 }
1857
1858 /* Look at the cause of the stop, and decide what to do.
1859 The alternatives are:
1860 1) break; to really stop and return to the debugger,
1861 2) drop through to start up again
1862 (set ecs->another_trap to 1 to single step once)
1863 3) set ecs->random_signal to 1, and the decision between 1 and 2
1864 will be made according to the signal handling tables. */
1865
1866 /* First, distinguish signals caused by the debugger from signals
1867 that have to do with the program's own actions. Note that
1868 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1869 on the operating system version. Here we detect when a SIGILL or
1870 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1871 something similar for SIGSEGV, since a SIGSEGV will be generated
1872 when we're trying to execute a breakpoint instruction on a
1873 non-executable stack. This happens for call dummy breakpoints
1874 for architectures like SPARC that place call dummies on the
1875 stack. */
1876
1877 if (stop_signal == TARGET_SIGNAL_TRAP
1878 || (breakpoints_inserted
1879 && (stop_signal == TARGET_SIGNAL_ILL
1880 || stop_signal == TARGET_SIGNAL_SEGV
1881 || stop_signal == TARGET_SIGNAL_EMT))
1882 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1883 {
1884 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1885 {
1886 if (debug_infrun)
1887 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1888 stop_print_frame = 0;
1889 stop_stepping (ecs);
1890 return;
1891 }
1892
1893 /* This is originated from start_remote(), start_inferior() and
1894 shared libraries hook functions. */
1895 if (stop_soon == STOP_QUIETLY)
1896 {
1897 if (debug_infrun)
1898 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1899 stop_stepping (ecs);
1900 return;
1901 }
1902
1903 /* This originates from attach_command(). We need to overwrite
1904 the stop_signal here, because some kernels don't ignore a
1905 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1906 See more comments in inferior.h. */
1907 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1908 {
1909 stop_stepping (ecs);
1910 if (stop_signal == TARGET_SIGNAL_STOP)
1911 stop_signal = TARGET_SIGNAL_0;
1912 return;
1913 }
1914
1915 /* Don't even think about breakpoints if just proceeded over a
1916 breakpoint. */
1917 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1918 {
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1921 bpstat_clear (&stop_bpstat);
1922 }
1923 else
1924 {
1925 /* See if there is a breakpoint at the current PC. */
1926 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1927 stopped_by_watchpoint);
1928
1929 /* Following in case break condition called a
1930 function. */
1931 stop_print_frame = 1;
1932 }
1933
1934 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1935 at one stage in the past included checks for an inferior
1936 function call's call dummy's return breakpoint. The original
1937 comment, that went with the test, read:
1938
1939 ``End of a stack dummy. Some systems (e.g. Sony news) give
1940 another signal besides SIGTRAP, so check here as well as
1941 above.''
1942
1943 If someone ever tries to get get call dummys on a
1944 non-executable stack to work (where the target would stop
1945 with something like a SIGSEGV), then those tests might need
1946 to be re-instated. Given, however, that the tests were only
1947 enabled when momentary breakpoints were not being used, I
1948 suspect that it won't be the case.
1949
1950 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1951 be necessary for call dummies on a non-executable stack on
1952 SPARC. */
1953
1954 if (stop_signal == TARGET_SIGNAL_TRAP)
1955 ecs->random_signal
1956 = !(bpstat_explains_signal (stop_bpstat)
1957 || trap_expected
1958 || (step_range_end && step_resume_breakpoint == NULL));
1959 else
1960 {
1961 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1962 if (!ecs->random_signal)
1963 stop_signal = TARGET_SIGNAL_TRAP;
1964 }
1965 }
1966
1967 /* When we reach this point, we've pretty much decided
1968 that the reason for stopping must've been a random
1969 (unexpected) signal. */
1970
1971 else
1972 ecs->random_signal = 1;
1973
1974 process_event_stop_test:
1975 /* For the program's own signals, act according to
1976 the signal handling tables. */
1977
1978 if (ecs->random_signal)
1979 {
1980 /* Signal not for debugging purposes. */
1981 int printed = 0;
1982
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1985
1986 stopped_by_random_signal = 1;
1987
1988 if (signal_print[stop_signal])
1989 {
1990 printed = 1;
1991 target_terminal_ours_for_output ();
1992 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1993 }
1994 if (signal_stop[stop_signal])
1995 {
1996 stop_stepping (ecs);
1997 return;
1998 }
1999 /* If not going to stop, give terminal back
2000 if we took it away. */
2001 else if (printed)
2002 target_terminal_inferior ();
2003
2004 /* Clear the signal if it should not be passed. */
2005 if (signal_program[stop_signal] == 0)
2006 stop_signal = TARGET_SIGNAL_0;
2007
2008 if (prev_pc == read_pc ()
2009 && !breakpoints_inserted
2010 && breakpoint_here_p (read_pc ())
2011 && step_resume_breakpoint == NULL)
2012 {
2013 /* We were just starting a new sequence, attempting to
2014 single-step off of a breakpoint and expecting a SIGTRAP.
2015 Intead this signal arrives. This signal will take us out
2016 of the stepping range so GDB needs to remember to, when
2017 the signal handler returns, resume stepping off that
2018 breakpoint. */
2019 /* To simplify things, "continue" is forced to use the same
2020 code paths as single-step - set a breakpoint at the
2021 signal return address and then, once hit, step off that
2022 breakpoint. */
2023 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2024 ecs->step_after_step_resume_breakpoint = 1;
2025 keep_going (ecs);
2026 return;
2027 }
2028
2029 if (step_range_end != 0
2030 && stop_signal != TARGET_SIGNAL_0
2031 && stop_pc >= step_range_start && stop_pc < step_range_end
2032 && frame_id_eq (get_frame_id (get_current_frame ()),
2033 step_frame_id)
2034 && step_resume_breakpoint == NULL)
2035 {
2036 /* The inferior is about to take a signal that will take it
2037 out of the single step range. Set a breakpoint at the
2038 current PC (which is presumably where the signal handler
2039 will eventually return) and then allow the inferior to
2040 run free.
2041
2042 Note that this is only needed for a signal delivered
2043 while in the single-step range. Nested signals aren't a
2044 problem as they eventually all return. */
2045 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2046 keep_going (ecs);
2047 return;
2048 }
2049
2050 /* Note: step_resume_breakpoint may be non-NULL. This occures
2051 when either there's a nested signal, or when there's a
2052 pending signal enabled just as the signal handler returns
2053 (leaving the inferior at the step-resume-breakpoint without
2054 actually executing it). Either way continue until the
2055 breakpoint is really hit. */
2056 keep_going (ecs);
2057 return;
2058 }
2059
2060 /* Handle cases caused by hitting a breakpoint. */
2061 {
2062 CORE_ADDR jmp_buf_pc;
2063 struct bpstat_what what;
2064
2065 what = bpstat_what (stop_bpstat);
2066
2067 if (what.call_dummy)
2068 {
2069 stop_stack_dummy = 1;
2070 }
2071
2072 switch (what.main_action)
2073 {
2074 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2075 /* If we hit the breakpoint at longjmp, disable it for the
2076 duration of this command. Then, install a temporary
2077 breakpoint at the target of the jmp_buf. */
2078 if (debug_infrun)
2079 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2080 disable_longjmp_breakpoint ();
2081 remove_breakpoints ();
2082 breakpoints_inserted = 0;
2083 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2084 {
2085 keep_going (ecs);
2086 return;
2087 }
2088
2089 /* Need to blow away step-resume breakpoint, as it
2090 interferes with us */
2091 if (step_resume_breakpoint != NULL)
2092 {
2093 delete_step_resume_breakpoint (&step_resume_breakpoint);
2094 }
2095
2096 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2097 ecs->handling_longjmp = 1; /* FIXME */
2098 keep_going (ecs);
2099 return;
2100
2101 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2102 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2105 remove_breakpoints ();
2106 breakpoints_inserted = 0;
2107 disable_longjmp_breakpoint ();
2108 ecs->handling_longjmp = 0; /* FIXME */
2109 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2110 break;
2111 /* else fallthrough */
2112
2113 case BPSTAT_WHAT_SINGLE:
2114 if (debug_infrun)
2115 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2116 if (breakpoints_inserted)
2117 remove_breakpoints ();
2118 breakpoints_inserted = 0;
2119 ecs->another_trap = 1;
2120 /* Still need to check other stuff, at least the case
2121 where we are stepping and step out of the right range. */
2122 break;
2123
2124 case BPSTAT_WHAT_STOP_NOISY:
2125 if (debug_infrun)
2126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2127 stop_print_frame = 1;
2128
2129 /* We are about to nuke the step_resume_breakpointt via the
2130 cleanup chain, so no need to worry about it here. */
2131
2132 stop_stepping (ecs);
2133 return;
2134
2135 case BPSTAT_WHAT_STOP_SILENT:
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2138 stop_print_frame = 0;
2139
2140 /* We are about to nuke the step_resume_breakpoin via the
2141 cleanup chain, so no need to worry about it here. */
2142
2143 stop_stepping (ecs);
2144 return;
2145
2146 case BPSTAT_WHAT_STEP_RESUME:
2147 /* This proably demands a more elegant solution, but, yeah
2148 right...
2149
2150 This function's use of the simple variable
2151 step_resume_breakpoint doesn't seem to accomodate
2152 simultaneously active step-resume bp's, although the
2153 breakpoint list certainly can.
2154
2155 If we reach here and step_resume_breakpoint is already
2156 NULL, then apparently we have multiple active
2157 step-resume bp's. We'll just delete the breakpoint we
2158 stopped at, and carry on.
2159
2160 Correction: what the code currently does is delete a
2161 step-resume bp, but it makes no effort to ensure that
2162 the one deleted is the one currently stopped at. MVS */
2163
2164 if (debug_infrun)
2165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2166
2167 if (step_resume_breakpoint == NULL)
2168 {
2169 step_resume_breakpoint =
2170 bpstat_find_step_resume_breakpoint (stop_bpstat);
2171 }
2172 delete_step_resume_breakpoint (&step_resume_breakpoint);
2173 if (ecs->step_after_step_resume_breakpoint)
2174 {
2175 /* Back when the step-resume breakpoint was inserted, we
2176 were trying to single-step off a breakpoint. Go back
2177 to doing that. */
2178 ecs->step_after_step_resume_breakpoint = 0;
2179 remove_breakpoints ();
2180 breakpoints_inserted = 0;
2181 ecs->another_trap = 1;
2182 keep_going (ecs);
2183 return;
2184 }
2185 break;
2186
2187 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2188 if (debug_infrun)
2189 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2190 /* If were waiting for a trap, hitting the step_resume_break
2191 doesn't count as getting it. */
2192 if (trap_expected)
2193 ecs->another_trap = 1;
2194 break;
2195
2196 case BPSTAT_WHAT_CHECK_SHLIBS:
2197 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2198 {
2199 if (debug_infrun)
2200 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2201 /* Remove breakpoints, we eventually want to step over the
2202 shlib event breakpoint, and SOLIB_ADD might adjust
2203 breakpoint addresses via breakpoint_re_set. */
2204 if (breakpoints_inserted)
2205 remove_breakpoints ();
2206 breakpoints_inserted = 0;
2207
2208 /* Check for any newly added shared libraries if we're
2209 supposed to be adding them automatically. Switch
2210 terminal for any messages produced by
2211 breakpoint_re_set. */
2212 target_terminal_ours_for_output ();
2213 /* NOTE: cagney/2003-11-25: Make certain that the target
2214 stack's section table is kept up-to-date. Architectures,
2215 (e.g., PPC64), use the section table to perform
2216 operations such as address => section name and hence
2217 require the table to contain all sections (including
2218 those found in shared libraries). */
2219 /* NOTE: cagney/2003-11-25: Pass current_target and not
2220 exec_ops to SOLIB_ADD. This is because current GDB is
2221 only tooled to propagate section_table changes out from
2222 the "current_target" (see target_resize_to_sections), and
2223 not up from the exec stratum. This, of course, isn't
2224 right. "infrun.c" should only interact with the
2225 exec/process stratum, instead relying on the target stack
2226 to propagate relevant changes (stop, section table
2227 changed, ...) up to other layers. */
2228 #ifdef SOLIB_ADD
2229 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2230 #else
2231 solib_add (NULL, 0, &current_target, auto_solib_add);
2232 #endif
2233 target_terminal_inferior ();
2234
2235 /* Try to reenable shared library breakpoints, additional
2236 code segments in shared libraries might be mapped in now. */
2237 re_enable_breakpoints_in_shlibs ();
2238
2239 /* If requested, stop when the dynamic linker notifies
2240 gdb of events. This allows the user to get control
2241 and place breakpoints in initializer routines for
2242 dynamically loaded objects (among other things). */
2243 if (stop_on_solib_events || stop_stack_dummy)
2244 {
2245 stop_stepping (ecs);
2246 return;
2247 }
2248
2249 /* If we stopped due to an explicit catchpoint, then the
2250 (see above) call to SOLIB_ADD pulled in any symbols
2251 from a newly-loaded library, if appropriate.
2252
2253 We do want the inferior to stop, but not where it is
2254 now, which is in the dynamic linker callback. Rather,
2255 we would like it stop in the user's program, just after
2256 the call that caused this catchpoint to trigger. That
2257 gives the user a more useful vantage from which to
2258 examine their program's state. */
2259 else if (what.main_action
2260 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2261 {
2262 /* ??rehrauer: If I could figure out how to get the
2263 right return PC from here, we could just set a temp
2264 breakpoint and resume. I'm not sure we can without
2265 cracking open the dld's shared libraries and sniffing
2266 their unwind tables and text/data ranges, and that's
2267 not a terribly portable notion.
2268
2269 Until that time, we must step the inferior out of the
2270 dld callback, and also out of the dld itself (and any
2271 code or stubs in libdld.sl, such as "shl_load" and
2272 friends) until we reach non-dld code. At that point,
2273 we can stop stepping. */
2274 bpstat_get_triggered_catchpoints (stop_bpstat,
2275 &ecs->
2276 stepping_through_solib_catchpoints);
2277 ecs->stepping_through_solib_after_catch = 1;
2278
2279 /* Be sure to lift all breakpoints, so the inferior does
2280 actually step past this point... */
2281 ecs->another_trap = 1;
2282 break;
2283 }
2284 else
2285 {
2286 /* We want to step over this breakpoint, then keep going. */
2287 ecs->another_trap = 1;
2288 break;
2289 }
2290 }
2291 break;
2292
2293 case BPSTAT_WHAT_LAST:
2294 /* Not a real code, but listed here to shut up gcc -Wall. */
2295
2296 case BPSTAT_WHAT_KEEP_CHECKING:
2297 break;
2298 }
2299 }
2300
2301 /* We come here if we hit a breakpoint but should not
2302 stop for it. Possibly we also were stepping
2303 and should stop for that. So fall through and
2304 test for stepping. But, if not stepping,
2305 do not stop. */
2306
2307 /* Are we stepping to get the inferior out of the dynamic linker's
2308 hook (and possibly the dld itself) after catching a shlib
2309 event? */
2310 if (ecs->stepping_through_solib_after_catch)
2311 {
2312 #if defined(SOLIB_ADD)
2313 /* Have we reached our destination? If not, keep going. */
2314 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2315 {
2316 if (debug_infrun)
2317 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2318 ecs->another_trap = 1;
2319 keep_going (ecs);
2320 return;
2321 }
2322 #endif
2323 if (debug_infrun)
2324 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2325 /* Else, stop and report the catchpoint(s) whose triggering
2326 caused us to begin stepping. */
2327 ecs->stepping_through_solib_after_catch = 0;
2328 bpstat_clear (&stop_bpstat);
2329 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2330 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2331 stop_print_frame = 1;
2332 stop_stepping (ecs);
2333 return;
2334 }
2335
2336 if (step_resume_breakpoint)
2337 {
2338 if (debug_infrun)
2339 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2340
2341 /* Having a step-resume breakpoint overrides anything
2342 else having to do with stepping commands until
2343 that breakpoint is reached. */
2344 keep_going (ecs);
2345 return;
2346 }
2347
2348 if (step_range_end == 0)
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2352 /* Likewise if we aren't even stepping. */
2353 keep_going (ecs);
2354 return;
2355 }
2356
2357 /* If stepping through a line, keep going if still within it.
2358
2359 Note that step_range_end is the address of the first instruction
2360 beyond the step range, and NOT the address of the last instruction
2361 within it! */
2362 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2363 {
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2366 paddr_nz (step_range_start),
2367 paddr_nz (step_range_end));
2368 keep_going (ecs);
2369 return;
2370 }
2371
2372 /* We stepped out of the stepping range. */
2373
2374 /* If we are stepping at the source level and entered the runtime
2375 loader dynamic symbol resolution code, we keep on single stepping
2376 until we exit the run time loader code and reach the callee's
2377 address. */
2378 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2379 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2380 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2381 #else
2382 && in_solib_dynsym_resolve_code (stop_pc)
2383 #endif
2384 )
2385 {
2386 CORE_ADDR pc_after_resolver =
2387 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2388
2389 if (debug_infrun)
2390 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2391
2392 if (pc_after_resolver)
2393 {
2394 /* Set up a step-resume breakpoint at the address
2395 indicated by SKIP_SOLIB_RESOLVER. */
2396 struct symtab_and_line sr_sal;
2397 init_sal (&sr_sal);
2398 sr_sal.pc = pc_after_resolver;
2399
2400 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2401 }
2402
2403 keep_going (ecs);
2404 return;
2405 }
2406
2407 if (step_range_end != 1
2408 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2409 || step_over_calls == STEP_OVER_ALL)
2410 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2411 {
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2414 /* The inferior, while doing a "step" or "next", has ended up in
2415 a signal trampoline (either by a signal being delivered or by
2416 the signal handler returning). Just single-step until the
2417 inferior leaves the trampoline (either by calling the handler
2418 or returning). */
2419 keep_going (ecs);
2420 return;
2421 }
2422
2423 /* Check for subroutine calls. The check for the current frame
2424 equalling the step ID is not necessary - the check of the
2425 previous frame's ID is sufficient - but it is a common case and
2426 cheaper than checking the previous frame's ID.
2427
2428 NOTE: frame_id_eq will never report two invalid frame IDs as
2429 being equal, so to get into this block, both the current and
2430 previous frame must have valid frame IDs. */
2431 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2432 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2433 {
2434 CORE_ADDR real_stop_pc;
2435
2436 if (debug_infrun)
2437 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2438
2439 if ((step_over_calls == STEP_OVER_NONE)
2440 || ((step_range_end == 1)
2441 && in_prologue (prev_pc, ecs->stop_func_start)))
2442 {
2443 /* I presume that step_over_calls is only 0 when we're
2444 supposed to be stepping at the assembly language level
2445 ("stepi"). Just stop. */
2446 /* Also, maybe we just did a "nexti" inside a prolog, so we
2447 thought it was a subroutine call but it was not. Stop as
2448 well. FENN */
2449 stop_step = 1;
2450 print_stop_reason (END_STEPPING_RANGE, 0);
2451 stop_stepping (ecs);
2452 return;
2453 }
2454
2455 if (step_over_calls == STEP_OVER_ALL)
2456 {
2457 /* We're doing a "next", set a breakpoint at callee's return
2458 address (the address at which the caller will
2459 resume). */
2460 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2461 keep_going (ecs);
2462 return;
2463 }
2464
2465 /* If we are in a function call trampoline (a stub between the
2466 calling routine and the real function), locate the real
2467 function. That's what tells us (a) whether we want to step
2468 into it at all, and (b) what prologue we want to run to the
2469 end of, if we do step into it. */
2470 real_stop_pc = skip_language_trampoline (stop_pc);
2471 if (real_stop_pc == 0)
2472 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2473 if (real_stop_pc != 0)
2474 ecs->stop_func_start = real_stop_pc;
2475
2476 if (
2477 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2478 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2479 #else
2480 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2481 #endif
2482 )
2483 {
2484 struct symtab_and_line sr_sal;
2485 init_sal (&sr_sal);
2486 sr_sal.pc = ecs->stop_func_start;
2487
2488 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2489 keep_going (ecs);
2490 return;
2491 }
2492
2493 /* If we have line number information for the function we are
2494 thinking of stepping into, step into it.
2495
2496 If there are several symtabs at that PC (e.g. with include
2497 files), just want to know whether *any* of them have line
2498 numbers. find_pc_line handles this. */
2499 {
2500 struct symtab_and_line tmp_sal;
2501
2502 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2503 if (tmp_sal.line != 0)
2504 {
2505 step_into_function (ecs);
2506 return;
2507 }
2508 }
2509
2510 /* If we have no line number and the step-stop-if-no-debug is
2511 set, we stop the step so that the user has a chance to switch
2512 in assembly mode. */
2513 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2514 {
2515 stop_step = 1;
2516 print_stop_reason (END_STEPPING_RANGE, 0);
2517 stop_stepping (ecs);
2518 return;
2519 }
2520
2521 /* Set a breakpoint at callee's return address (the address at
2522 which the caller will resume). */
2523 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2524 keep_going (ecs);
2525 return;
2526 }
2527
2528 /* If we're in the return path from a shared library trampoline,
2529 we want to proceed through the trampoline when stepping. */
2530 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2531 {
2532 /* Determine where this trampoline returns. */
2533 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2534
2535 if (debug_infrun)
2536 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2537
2538 /* Only proceed through if we know where it's going. */
2539 if (real_stop_pc)
2540 {
2541 /* And put the step-breakpoint there and go until there. */
2542 struct symtab_and_line sr_sal;
2543
2544 init_sal (&sr_sal); /* initialize to zeroes */
2545 sr_sal.pc = real_stop_pc;
2546 sr_sal.section = find_pc_overlay (sr_sal.pc);
2547
2548 /* Do not specify what the fp should be when we stop since
2549 on some machines the prologue is where the new fp value
2550 is established. */
2551 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2552
2553 /* Restart without fiddling with the step ranges or
2554 other state. */
2555 keep_going (ecs);
2556 return;
2557 }
2558 }
2559
2560 ecs->sal = find_pc_line (stop_pc, 0);
2561
2562 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2563 the trampoline processing logic, however, there are some trampolines
2564 that have no names, so we should do trampoline handling first. */
2565 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2566 && ecs->stop_func_name == NULL
2567 && ecs->sal.line == 0)
2568 {
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2571
2572 /* The inferior just stepped into, or returned to, an
2573 undebuggable function (where there is no debugging information
2574 and no line number corresponding to the address where the
2575 inferior stopped). Since we want to skip this kind of code,
2576 we keep going until the inferior returns from this
2577 function - unless the user has asked us not to (via
2578 set step-mode) or we no longer know how to get back
2579 to the call site. */
2580 if (step_stop_if_no_debug
2581 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2582 {
2583 /* If we have no line number and the step-stop-if-no-debug
2584 is set, we stop the step so that the user has a chance to
2585 switch in assembly mode. */
2586 stop_step = 1;
2587 print_stop_reason (END_STEPPING_RANGE, 0);
2588 stop_stepping (ecs);
2589 return;
2590 }
2591 else
2592 {
2593 /* Set a breakpoint at callee's return address (the address
2594 at which the caller will resume). */
2595 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2596 keep_going (ecs);
2597 return;
2598 }
2599 }
2600
2601 if (step_range_end == 1)
2602 {
2603 /* It is stepi or nexti. We always want to stop stepping after
2604 one instruction. */
2605 if (debug_infrun)
2606 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2607 stop_step = 1;
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2610 return;
2611 }
2612
2613 if (ecs->sal.line == 0)
2614 {
2615 /* We have no line number information. That means to stop
2616 stepping (does this always happen right after one instruction,
2617 when we do "s" in a function with no line numbers,
2618 or can this happen as a result of a return or longjmp?). */
2619 if (debug_infrun)
2620 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2621 stop_step = 1;
2622 print_stop_reason (END_STEPPING_RANGE, 0);
2623 stop_stepping (ecs);
2624 return;
2625 }
2626
2627 if ((stop_pc == ecs->sal.pc)
2628 && (ecs->current_line != ecs->sal.line
2629 || ecs->current_symtab != ecs->sal.symtab))
2630 {
2631 /* We are at the start of a different line. So stop. Note that
2632 we don't stop if we step into the middle of a different line.
2633 That is said to make things like for (;;) statements work
2634 better. */
2635 if (debug_infrun)
2636 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2637 stop_step = 1;
2638 print_stop_reason (END_STEPPING_RANGE, 0);
2639 stop_stepping (ecs);
2640 return;
2641 }
2642
2643 /* We aren't done stepping.
2644
2645 Optimize by setting the stepping range to the line.
2646 (We might not be in the original line, but if we entered a
2647 new line in mid-statement, we continue stepping. This makes
2648 things like for(;;) statements work better.) */
2649
2650 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2651 {
2652 /* If this is the last line of the function, don't keep stepping
2653 (it would probably step us out of the function).
2654 This is particularly necessary for a one-line function,
2655 in which after skipping the prologue we better stop even though
2656 we will be in mid-line. */
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2659 stop_step = 1;
2660 print_stop_reason (END_STEPPING_RANGE, 0);
2661 stop_stepping (ecs);
2662 return;
2663 }
2664 step_range_start = ecs->sal.pc;
2665 step_range_end = ecs->sal.end;
2666 step_frame_id = get_frame_id (get_current_frame ());
2667 ecs->current_line = ecs->sal.line;
2668 ecs->current_symtab = ecs->sal.symtab;
2669
2670 /* In the case where we just stepped out of a function into the
2671 middle of a line of the caller, continue stepping, but
2672 step_frame_id must be modified to current frame */
2673 #if 0
2674 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2675 generous. It will trigger on things like a step into a frameless
2676 stackless leaf function. I think the logic should instead look
2677 at the unwound frame ID has that should give a more robust
2678 indication of what happened. */
2679 if (step - ID == current - ID)
2680 still stepping in same function;
2681 else if (step - ID == unwind (current - ID))
2682 stepped into a function;
2683 else
2684 stepped out of a function;
2685 /* Of course this assumes that the frame ID unwind code is robust
2686 and we're willing to introduce frame unwind logic into this
2687 function. Fortunately, those days are nearly upon us. */
2688 #endif
2689 {
2690 struct frame_id current_frame = get_frame_id (get_current_frame ());
2691 if (!(frame_id_inner (current_frame, step_frame_id)))
2692 step_frame_id = current_frame;
2693 }
2694
2695 if (debug_infrun)
2696 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2697 keep_going (ecs);
2698 }
2699
2700 /* Are we in the middle of stepping? */
2701
2702 static int
2703 currently_stepping (struct execution_control_state *ecs)
2704 {
2705 return ((!ecs->handling_longjmp
2706 && ((step_range_end && step_resume_breakpoint == NULL)
2707 || trap_expected))
2708 || ecs->stepping_through_solib_after_catch
2709 || bpstat_should_step ());
2710 }
2711
2712 /* Subroutine call with source code we should not step over. Do step
2713 to the first line of code in it. */
2714
2715 static void
2716 step_into_function (struct execution_control_state *ecs)
2717 {
2718 struct symtab *s;
2719 struct symtab_and_line sr_sal;
2720
2721 s = find_pc_symtab (stop_pc);
2722 if (s && s->language != language_asm)
2723 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2724
2725 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2726 /* Use the step_resume_break to step until the end of the prologue,
2727 even if that involves jumps (as it seems to on the vax under
2728 4.2). */
2729 /* If the prologue ends in the middle of a source line, continue to
2730 the end of that source line (if it is still within the function).
2731 Otherwise, just go to end of prologue. */
2732 if (ecs->sal.end
2733 && ecs->sal.pc != ecs->stop_func_start
2734 && ecs->sal.end < ecs->stop_func_end)
2735 ecs->stop_func_start = ecs->sal.end;
2736
2737 /* Architectures which require breakpoint adjustment might not be able
2738 to place a breakpoint at the computed address. If so, the test
2739 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2740 ecs->stop_func_start to an address at which a breakpoint may be
2741 legitimately placed.
2742
2743 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2744 made, GDB will enter an infinite loop when stepping through
2745 optimized code consisting of VLIW instructions which contain
2746 subinstructions corresponding to different source lines. On
2747 FR-V, it's not permitted to place a breakpoint on any but the
2748 first subinstruction of a VLIW instruction. When a breakpoint is
2749 set, GDB will adjust the breakpoint address to the beginning of
2750 the VLIW instruction. Thus, we need to make the corresponding
2751 adjustment here when computing the stop address. */
2752
2753 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2754 {
2755 ecs->stop_func_start
2756 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2757 ecs->stop_func_start);
2758 }
2759
2760 if (ecs->stop_func_start == stop_pc)
2761 {
2762 /* We are already there: stop now. */
2763 stop_step = 1;
2764 print_stop_reason (END_STEPPING_RANGE, 0);
2765 stop_stepping (ecs);
2766 return;
2767 }
2768 else
2769 {
2770 /* Put the step-breakpoint there and go until there. */
2771 init_sal (&sr_sal); /* initialize to zeroes */
2772 sr_sal.pc = ecs->stop_func_start;
2773 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2774
2775 /* Do not specify what the fp should be when we stop since on
2776 some machines the prologue is where the new fp value is
2777 established. */
2778 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2779
2780 /* And make sure stepping stops right away then. */
2781 step_range_end = step_range_start;
2782 }
2783 keep_going (ecs);
2784 }
2785
2786 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2787 This is used to both functions and to skip over code. */
2788
2789 static void
2790 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2791 struct frame_id sr_id)
2792 {
2793 /* There should never be more than one step-resume breakpoint per
2794 thread, so we should never be setting a new
2795 step_resume_breakpoint when one is already active. */
2796 gdb_assert (step_resume_breakpoint == NULL);
2797 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2798 bp_step_resume);
2799 if (breakpoints_inserted)
2800 insert_breakpoints ();
2801 }
2802
2803 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2804 to skip a potential signal handler.
2805
2806 This is called with the interrupted function's frame. The signal
2807 handler, when it returns, will resume the interrupted function at
2808 RETURN_FRAME.pc. */
2809
2810 static void
2811 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2812 {
2813 struct symtab_and_line sr_sal;
2814
2815 init_sal (&sr_sal); /* initialize to zeros */
2816
2817 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2818 sr_sal.section = find_pc_overlay (sr_sal.pc);
2819
2820 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2821 }
2822
2823 /* Similar to insert_step_resume_breakpoint_at_frame, except
2824 but a breakpoint at the previous frame's PC. This is used to
2825 skip a function after stepping into it (for "next" or if the called
2826 function has no debugging information).
2827
2828 The current function has almost always been reached by single
2829 stepping a call or return instruction. NEXT_FRAME belongs to the
2830 current function, and the breakpoint will be set at the caller's
2831 resume address.
2832
2833 This is a separate function rather than reusing
2834 insert_step_resume_breakpoint_at_frame in order to avoid
2835 get_prev_frame, which may stop prematurely (see the implementation
2836 of frame_unwind_id for an example). */
2837
2838 static void
2839 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2840 {
2841 struct symtab_and_line sr_sal;
2842
2843 /* We shouldn't have gotten here if we don't know where the call site
2844 is. */
2845 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2846
2847 init_sal (&sr_sal); /* initialize to zeros */
2848
2849 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2850 sr_sal.section = find_pc_overlay (sr_sal.pc);
2851
2852 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2853 }
2854
2855 static void
2856 stop_stepping (struct execution_control_state *ecs)
2857 {
2858 if (debug_infrun)
2859 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2860
2861 /* Let callers know we don't want to wait for the inferior anymore. */
2862 ecs->wait_some_more = 0;
2863 }
2864
2865 /* This function handles various cases where we need to continue
2866 waiting for the inferior. */
2867 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2868
2869 static void
2870 keep_going (struct execution_control_state *ecs)
2871 {
2872 /* Save the pc before execution, to compare with pc after stop. */
2873 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2874
2875 /* If we did not do break;, it means we should keep running the
2876 inferior and not return to debugger. */
2877
2878 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2879 {
2880 /* We took a signal (which we are supposed to pass through to
2881 the inferior, else we'd have done a break above) and we
2882 haven't yet gotten our trap. Simply continue. */
2883 resume (currently_stepping (ecs), stop_signal);
2884 }
2885 else
2886 {
2887 /* Either the trap was not expected, but we are continuing
2888 anyway (the user asked that this signal be passed to the
2889 child)
2890 -- or --
2891 The signal was SIGTRAP, e.g. it was our signal, but we
2892 decided we should resume from it.
2893
2894 We're going to run this baby now! */
2895
2896 if (!breakpoints_inserted && !ecs->another_trap)
2897 {
2898 /* Stop stepping when inserting breakpoints
2899 has failed. */
2900 if (insert_breakpoints () != 0)
2901 {
2902 stop_stepping (ecs);
2903 return;
2904 }
2905 breakpoints_inserted = 1;
2906 }
2907
2908 trap_expected = ecs->another_trap;
2909
2910 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2911 specifies that such a signal should be delivered to the
2912 target program).
2913
2914 Typically, this would occure when a user is debugging a
2915 target monitor on a simulator: the target monitor sets a
2916 breakpoint; the simulator encounters this break-point and
2917 halts the simulation handing control to GDB; GDB, noteing
2918 that the break-point isn't valid, returns control back to the
2919 simulator; the simulator then delivers the hardware
2920 equivalent of a SIGNAL_TRAP to the program being debugged. */
2921
2922 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2923 stop_signal = TARGET_SIGNAL_0;
2924
2925
2926 resume (currently_stepping (ecs), stop_signal);
2927 }
2928
2929 prepare_to_wait (ecs);
2930 }
2931
2932 /* This function normally comes after a resume, before
2933 handle_inferior_event exits. It takes care of any last bits of
2934 housekeeping, and sets the all-important wait_some_more flag. */
2935
2936 static void
2937 prepare_to_wait (struct execution_control_state *ecs)
2938 {
2939 if (debug_infrun)
2940 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2941 if (ecs->infwait_state == infwait_normal_state)
2942 {
2943 overlay_cache_invalid = 1;
2944
2945 /* We have to invalidate the registers BEFORE calling
2946 target_wait because they can be loaded from the target while
2947 in target_wait. This makes remote debugging a bit more
2948 efficient for those targets that provide critical registers
2949 as part of their normal status mechanism. */
2950
2951 registers_changed ();
2952 ecs->waiton_ptid = pid_to_ptid (-1);
2953 ecs->wp = &(ecs->ws);
2954 }
2955 /* This is the old end of the while loop. Let everybody know we
2956 want to wait for the inferior some more and get called again
2957 soon. */
2958 ecs->wait_some_more = 1;
2959 }
2960
2961 /* Print why the inferior has stopped. We always print something when
2962 the inferior exits, or receives a signal. The rest of the cases are
2963 dealt with later on in normal_stop() and print_it_typical(). Ideally
2964 there should be a call to this function from handle_inferior_event()
2965 each time stop_stepping() is called.*/
2966 static void
2967 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2968 {
2969 switch (stop_reason)
2970 {
2971 case END_STEPPING_RANGE:
2972 /* We are done with a step/next/si/ni command. */
2973 /* For now print nothing. */
2974 /* Print a message only if not in the middle of doing a "step n"
2975 operation for n > 1 */
2976 if (!step_multi || !stop_step)
2977 if (ui_out_is_mi_like_p (uiout))
2978 ui_out_field_string
2979 (uiout, "reason",
2980 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2981 break;
2982 case SIGNAL_EXITED:
2983 /* The inferior was terminated by a signal. */
2984 annotate_signalled ();
2985 if (ui_out_is_mi_like_p (uiout))
2986 ui_out_field_string
2987 (uiout, "reason",
2988 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2989 ui_out_text (uiout, "\nProgram terminated with signal ");
2990 annotate_signal_name ();
2991 ui_out_field_string (uiout, "signal-name",
2992 target_signal_to_name (stop_info));
2993 annotate_signal_name_end ();
2994 ui_out_text (uiout, ", ");
2995 annotate_signal_string ();
2996 ui_out_field_string (uiout, "signal-meaning",
2997 target_signal_to_string (stop_info));
2998 annotate_signal_string_end ();
2999 ui_out_text (uiout, ".\n");
3000 ui_out_text (uiout, "The program no longer exists.\n");
3001 break;
3002 case EXITED:
3003 /* The inferior program is finished. */
3004 annotate_exited (stop_info);
3005 if (stop_info)
3006 {
3007 if (ui_out_is_mi_like_p (uiout))
3008 ui_out_field_string (uiout, "reason",
3009 async_reason_lookup (EXEC_ASYNC_EXITED));
3010 ui_out_text (uiout, "\nProgram exited with code ");
3011 ui_out_field_fmt (uiout, "exit-code", "0%o",
3012 (unsigned int) stop_info);
3013 ui_out_text (uiout, ".\n");
3014 }
3015 else
3016 {
3017 if (ui_out_is_mi_like_p (uiout))
3018 ui_out_field_string
3019 (uiout, "reason",
3020 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3021 ui_out_text (uiout, "\nProgram exited normally.\n");
3022 }
3023 /* Support the --return-child-result option. */
3024 return_child_result_value = stop_info;
3025 break;
3026 case SIGNAL_RECEIVED:
3027 /* Signal received. The signal table tells us to print about
3028 it. */
3029 annotate_signal ();
3030 ui_out_text (uiout, "\nProgram received signal ");
3031 annotate_signal_name ();
3032 if (ui_out_is_mi_like_p (uiout))
3033 ui_out_field_string
3034 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3035 ui_out_field_string (uiout, "signal-name",
3036 target_signal_to_name (stop_info));
3037 annotate_signal_name_end ();
3038 ui_out_text (uiout, ", ");
3039 annotate_signal_string ();
3040 ui_out_field_string (uiout, "signal-meaning",
3041 target_signal_to_string (stop_info));
3042 annotate_signal_string_end ();
3043 ui_out_text (uiout, ".\n");
3044 break;
3045 default:
3046 internal_error (__FILE__, __LINE__,
3047 _("print_stop_reason: unrecognized enum value"));
3048 break;
3049 }
3050 }
3051 \f
3052
3053 /* Here to return control to GDB when the inferior stops for real.
3054 Print appropriate messages, remove breakpoints, give terminal our modes.
3055
3056 STOP_PRINT_FRAME nonzero means print the executing frame
3057 (pc, function, args, file, line number and line text).
3058 BREAKPOINTS_FAILED nonzero means stop was due to error
3059 attempting to insert breakpoints. */
3060
3061 void
3062 normal_stop (void)
3063 {
3064 struct target_waitstatus last;
3065 ptid_t last_ptid;
3066
3067 get_last_target_status (&last_ptid, &last);
3068
3069 /* As with the notification of thread events, we want to delay
3070 notifying the user that we've switched thread context until
3071 the inferior actually stops.
3072
3073 There's no point in saying anything if the inferior has exited.
3074 Note that SIGNALLED here means "exited with a signal", not
3075 "received a signal". */
3076 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3077 && target_has_execution
3078 && last.kind != TARGET_WAITKIND_SIGNALLED
3079 && last.kind != TARGET_WAITKIND_EXITED)
3080 {
3081 target_terminal_ours_for_output ();
3082 printf_filtered (_("[Switching to %s]\n"),
3083 target_pid_or_tid_to_str (inferior_ptid));
3084 previous_inferior_ptid = inferior_ptid;
3085 }
3086
3087 /* NOTE drow/2004-01-17: Is this still necessary? */
3088 /* Make sure that the current_frame's pc is correct. This
3089 is a correction for setting up the frame info before doing
3090 DECR_PC_AFTER_BREAK */
3091 if (target_has_execution)
3092 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3093 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3094 frame code to check for this and sort out any resultant mess.
3095 DECR_PC_AFTER_BREAK needs to just go away. */
3096 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3097
3098 if (target_has_execution && breakpoints_inserted)
3099 {
3100 if (remove_breakpoints ())
3101 {
3102 target_terminal_ours_for_output ();
3103 printf_filtered (_("\
3104 Cannot remove breakpoints because program is no longer writable.\n\
3105 It might be running in another process.\n\
3106 Further execution is probably impossible.\n"));
3107 }
3108 }
3109 breakpoints_inserted = 0;
3110
3111 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3112 Delete any breakpoint that is to be deleted at the next stop. */
3113
3114 breakpoint_auto_delete (stop_bpstat);
3115
3116 /* If an auto-display called a function and that got a signal,
3117 delete that auto-display to avoid an infinite recursion. */
3118
3119 if (stopped_by_random_signal)
3120 disable_current_display ();
3121
3122 /* Don't print a message if in the middle of doing a "step n"
3123 operation for n > 1 */
3124 if (step_multi && stop_step)
3125 goto done;
3126
3127 target_terminal_ours ();
3128
3129 /* Set the current source location. This will also happen if we
3130 display the frame below, but the current SAL will be incorrect
3131 during a user hook-stop function. */
3132 if (target_has_stack && !stop_stack_dummy)
3133 set_current_sal_from_frame (get_current_frame (), 1);
3134
3135 /* Look up the hook_stop and run it (CLI internally handles problem
3136 of stop_command's pre-hook not existing). */
3137 if (stop_command)
3138 catch_errors (hook_stop_stub, stop_command,
3139 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3140
3141 if (!target_has_stack)
3142 {
3143
3144 goto done;
3145 }
3146
3147 /* Select innermost stack frame - i.e., current frame is frame 0,
3148 and current location is based on that.
3149 Don't do this on return from a stack dummy routine,
3150 or if the program has exited. */
3151
3152 if (!stop_stack_dummy)
3153 {
3154 select_frame (get_current_frame ());
3155
3156 /* Print current location without a level number, if
3157 we have changed functions or hit a breakpoint.
3158 Print source line if we have one.
3159 bpstat_print() contains the logic deciding in detail
3160 what to print, based on the event(s) that just occurred. */
3161
3162 if (stop_print_frame)
3163 {
3164 int bpstat_ret;
3165 int source_flag;
3166 int do_frame_printing = 1;
3167
3168 bpstat_ret = bpstat_print (stop_bpstat);
3169 switch (bpstat_ret)
3170 {
3171 case PRINT_UNKNOWN:
3172 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3173 (or should) carry around the function and does (or
3174 should) use that when doing a frame comparison. */
3175 if (stop_step
3176 && frame_id_eq (step_frame_id,
3177 get_frame_id (get_current_frame ()))
3178 && step_start_function == find_pc_function (stop_pc))
3179 source_flag = SRC_LINE; /* finished step, just print source line */
3180 else
3181 source_flag = SRC_AND_LOC; /* print location and source line */
3182 break;
3183 case PRINT_SRC_AND_LOC:
3184 source_flag = SRC_AND_LOC; /* print location and source line */
3185 break;
3186 case PRINT_SRC_ONLY:
3187 source_flag = SRC_LINE;
3188 break;
3189 case PRINT_NOTHING:
3190 source_flag = SRC_LINE; /* something bogus */
3191 do_frame_printing = 0;
3192 break;
3193 default:
3194 internal_error (__FILE__, __LINE__, _("Unknown value."));
3195 }
3196
3197 if (ui_out_is_mi_like_p (uiout))
3198 ui_out_field_int (uiout, "thread-id",
3199 pid_to_thread_id (inferior_ptid));
3200 /* The behavior of this routine with respect to the source
3201 flag is:
3202 SRC_LINE: Print only source line
3203 LOCATION: Print only location
3204 SRC_AND_LOC: Print location and source line */
3205 if (do_frame_printing)
3206 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3207
3208 /* Display the auto-display expressions. */
3209 do_displays ();
3210 }
3211 }
3212
3213 /* Save the function value return registers, if we care.
3214 We might be about to restore their previous contents. */
3215 if (proceed_to_finish)
3216 /* NB: The copy goes through to the target picking up the value of
3217 all the registers. */
3218 regcache_cpy (stop_registers, current_regcache);
3219
3220 if (stop_stack_dummy)
3221 {
3222 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3223 ends with a setting of the current frame, so we can use that
3224 next. */
3225 frame_pop (get_current_frame ());
3226 /* Set stop_pc to what it was before we called the function.
3227 Can't rely on restore_inferior_status because that only gets
3228 called if we don't stop in the called function. */
3229 stop_pc = read_pc ();
3230 select_frame (get_current_frame ());
3231 }
3232
3233 done:
3234 annotate_stopped ();
3235 observer_notify_normal_stop (stop_bpstat);
3236 }
3237
3238 static int
3239 hook_stop_stub (void *cmd)
3240 {
3241 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3242 return (0);
3243 }
3244 \f
3245 int
3246 signal_stop_state (int signo)
3247 {
3248 return signal_stop[signo];
3249 }
3250
3251 int
3252 signal_print_state (int signo)
3253 {
3254 return signal_print[signo];
3255 }
3256
3257 int
3258 signal_pass_state (int signo)
3259 {
3260 return signal_program[signo];
3261 }
3262
3263 int
3264 signal_stop_update (int signo, int state)
3265 {
3266 int ret = signal_stop[signo];
3267 signal_stop[signo] = state;
3268 return ret;
3269 }
3270
3271 int
3272 signal_print_update (int signo, int state)
3273 {
3274 int ret = signal_print[signo];
3275 signal_print[signo] = state;
3276 return ret;
3277 }
3278
3279 int
3280 signal_pass_update (int signo, int state)
3281 {
3282 int ret = signal_program[signo];
3283 signal_program[signo] = state;
3284 return ret;
3285 }
3286
3287 static void
3288 sig_print_header (void)
3289 {
3290 printf_filtered (_("\
3291 Signal Stop\tPrint\tPass to program\tDescription\n"));
3292 }
3293
3294 static void
3295 sig_print_info (enum target_signal oursig)
3296 {
3297 char *name = target_signal_to_name (oursig);
3298 int name_padding = 13 - strlen (name);
3299
3300 if (name_padding <= 0)
3301 name_padding = 0;
3302
3303 printf_filtered ("%s", name);
3304 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3305 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3306 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3307 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3308 printf_filtered ("%s\n", target_signal_to_string (oursig));
3309 }
3310
3311 /* Specify how various signals in the inferior should be handled. */
3312
3313 static void
3314 handle_command (char *args, int from_tty)
3315 {
3316 char **argv;
3317 int digits, wordlen;
3318 int sigfirst, signum, siglast;
3319 enum target_signal oursig;
3320 int allsigs;
3321 int nsigs;
3322 unsigned char *sigs;
3323 struct cleanup *old_chain;
3324
3325 if (args == NULL)
3326 {
3327 error_no_arg (_("signal to handle"));
3328 }
3329
3330 /* Allocate and zero an array of flags for which signals to handle. */
3331
3332 nsigs = (int) TARGET_SIGNAL_LAST;
3333 sigs = (unsigned char *) alloca (nsigs);
3334 memset (sigs, 0, nsigs);
3335
3336 /* Break the command line up into args. */
3337
3338 argv = buildargv (args);
3339 if (argv == NULL)
3340 {
3341 nomem (0);
3342 }
3343 old_chain = make_cleanup_freeargv (argv);
3344
3345 /* Walk through the args, looking for signal oursigs, signal names, and
3346 actions. Signal numbers and signal names may be interspersed with
3347 actions, with the actions being performed for all signals cumulatively
3348 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3349
3350 while (*argv != NULL)
3351 {
3352 wordlen = strlen (*argv);
3353 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3354 {;
3355 }
3356 allsigs = 0;
3357 sigfirst = siglast = -1;
3358
3359 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3360 {
3361 /* Apply action to all signals except those used by the
3362 debugger. Silently skip those. */
3363 allsigs = 1;
3364 sigfirst = 0;
3365 siglast = nsigs - 1;
3366 }
3367 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3368 {
3369 SET_SIGS (nsigs, sigs, signal_stop);
3370 SET_SIGS (nsigs, sigs, signal_print);
3371 }
3372 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3373 {
3374 UNSET_SIGS (nsigs, sigs, signal_program);
3375 }
3376 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3377 {
3378 SET_SIGS (nsigs, sigs, signal_print);
3379 }
3380 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3381 {
3382 SET_SIGS (nsigs, sigs, signal_program);
3383 }
3384 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3385 {
3386 UNSET_SIGS (nsigs, sigs, signal_stop);
3387 }
3388 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3389 {
3390 SET_SIGS (nsigs, sigs, signal_program);
3391 }
3392 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3393 {
3394 UNSET_SIGS (nsigs, sigs, signal_print);
3395 UNSET_SIGS (nsigs, sigs, signal_stop);
3396 }
3397 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3398 {
3399 UNSET_SIGS (nsigs, sigs, signal_program);
3400 }
3401 else if (digits > 0)
3402 {
3403 /* It is numeric. The numeric signal refers to our own
3404 internal signal numbering from target.h, not to host/target
3405 signal number. This is a feature; users really should be
3406 using symbolic names anyway, and the common ones like
3407 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3408
3409 sigfirst = siglast = (int)
3410 target_signal_from_command (atoi (*argv));
3411 if ((*argv)[digits] == '-')
3412 {
3413 siglast = (int)
3414 target_signal_from_command (atoi ((*argv) + digits + 1));
3415 }
3416 if (sigfirst > siglast)
3417 {
3418 /* Bet he didn't figure we'd think of this case... */
3419 signum = sigfirst;
3420 sigfirst = siglast;
3421 siglast = signum;
3422 }
3423 }
3424 else
3425 {
3426 oursig = target_signal_from_name (*argv);
3427 if (oursig != TARGET_SIGNAL_UNKNOWN)
3428 {
3429 sigfirst = siglast = (int) oursig;
3430 }
3431 else
3432 {
3433 /* Not a number and not a recognized flag word => complain. */
3434 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3435 }
3436 }
3437
3438 /* If any signal numbers or symbol names were found, set flags for
3439 which signals to apply actions to. */
3440
3441 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3442 {
3443 switch ((enum target_signal) signum)
3444 {
3445 case TARGET_SIGNAL_TRAP:
3446 case TARGET_SIGNAL_INT:
3447 if (!allsigs && !sigs[signum])
3448 {
3449 if (query ("%s is used by the debugger.\n\
3450 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3451 {
3452 sigs[signum] = 1;
3453 }
3454 else
3455 {
3456 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3457 gdb_flush (gdb_stdout);
3458 }
3459 }
3460 break;
3461 case TARGET_SIGNAL_0:
3462 case TARGET_SIGNAL_DEFAULT:
3463 case TARGET_SIGNAL_UNKNOWN:
3464 /* Make sure that "all" doesn't print these. */
3465 break;
3466 default:
3467 sigs[signum] = 1;
3468 break;
3469 }
3470 }
3471
3472 argv++;
3473 }
3474
3475 target_notice_signals (inferior_ptid);
3476
3477 if (from_tty)
3478 {
3479 /* Show the results. */
3480 sig_print_header ();
3481 for (signum = 0; signum < nsigs; signum++)
3482 {
3483 if (sigs[signum])
3484 {
3485 sig_print_info (signum);
3486 }
3487 }
3488 }
3489
3490 do_cleanups (old_chain);
3491 }
3492
3493 static void
3494 xdb_handle_command (char *args, int from_tty)
3495 {
3496 char **argv;
3497 struct cleanup *old_chain;
3498
3499 /* Break the command line up into args. */
3500
3501 argv = buildargv (args);
3502 if (argv == NULL)
3503 {
3504 nomem (0);
3505 }
3506 old_chain = make_cleanup_freeargv (argv);
3507 if (argv[1] != (char *) NULL)
3508 {
3509 char *argBuf;
3510 int bufLen;
3511
3512 bufLen = strlen (argv[0]) + 20;
3513 argBuf = (char *) xmalloc (bufLen);
3514 if (argBuf)
3515 {
3516 int validFlag = 1;
3517 enum target_signal oursig;
3518
3519 oursig = target_signal_from_name (argv[0]);
3520 memset (argBuf, 0, bufLen);
3521 if (strcmp (argv[1], "Q") == 0)
3522 sprintf (argBuf, "%s %s", argv[0], "noprint");
3523 else
3524 {
3525 if (strcmp (argv[1], "s") == 0)
3526 {
3527 if (!signal_stop[oursig])
3528 sprintf (argBuf, "%s %s", argv[0], "stop");
3529 else
3530 sprintf (argBuf, "%s %s", argv[0], "nostop");
3531 }
3532 else if (strcmp (argv[1], "i") == 0)
3533 {
3534 if (!signal_program[oursig])
3535 sprintf (argBuf, "%s %s", argv[0], "pass");
3536 else
3537 sprintf (argBuf, "%s %s", argv[0], "nopass");
3538 }
3539 else if (strcmp (argv[1], "r") == 0)
3540 {
3541 if (!signal_print[oursig])
3542 sprintf (argBuf, "%s %s", argv[0], "print");
3543 else
3544 sprintf (argBuf, "%s %s", argv[0], "noprint");
3545 }
3546 else
3547 validFlag = 0;
3548 }
3549 if (validFlag)
3550 handle_command (argBuf, from_tty);
3551 else
3552 printf_filtered (_("Invalid signal handling flag.\n"));
3553 if (argBuf)
3554 xfree (argBuf);
3555 }
3556 }
3557 do_cleanups (old_chain);
3558 }
3559
3560 /* Print current contents of the tables set by the handle command.
3561 It is possible we should just be printing signals actually used
3562 by the current target (but for things to work right when switching
3563 targets, all signals should be in the signal tables). */
3564
3565 static void
3566 signals_info (char *signum_exp, int from_tty)
3567 {
3568 enum target_signal oursig;
3569 sig_print_header ();
3570
3571 if (signum_exp)
3572 {
3573 /* First see if this is a symbol name. */
3574 oursig = target_signal_from_name (signum_exp);
3575 if (oursig == TARGET_SIGNAL_UNKNOWN)
3576 {
3577 /* No, try numeric. */
3578 oursig =
3579 target_signal_from_command (parse_and_eval_long (signum_exp));
3580 }
3581 sig_print_info (oursig);
3582 return;
3583 }
3584
3585 printf_filtered ("\n");
3586 /* These ugly casts brought to you by the native VAX compiler. */
3587 for (oursig = TARGET_SIGNAL_FIRST;
3588 (int) oursig < (int) TARGET_SIGNAL_LAST;
3589 oursig = (enum target_signal) ((int) oursig + 1))
3590 {
3591 QUIT;
3592
3593 if (oursig != TARGET_SIGNAL_UNKNOWN
3594 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3595 sig_print_info (oursig);
3596 }
3597
3598 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3599 }
3600 \f
3601 struct inferior_status
3602 {
3603 enum target_signal stop_signal;
3604 CORE_ADDR stop_pc;
3605 bpstat stop_bpstat;
3606 int stop_step;
3607 int stop_stack_dummy;
3608 int stopped_by_random_signal;
3609 int trap_expected;
3610 CORE_ADDR step_range_start;
3611 CORE_ADDR step_range_end;
3612 struct frame_id step_frame_id;
3613 enum step_over_calls_kind step_over_calls;
3614 CORE_ADDR step_resume_break_address;
3615 int stop_after_trap;
3616 int stop_soon;
3617 struct regcache *stop_registers;
3618
3619 /* These are here because if call_function_by_hand has written some
3620 registers and then decides to call error(), we better not have changed
3621 any registers. */
3622 struct regcache *registers;
3623
3624 /* A frame unique identifier. */
3625 struct frame_id selected_frame_id;
3626
3627 int breakpoint_proceeded;
3628 int restore_stack_info;
3629 int proceed_to_finish;
3630 };
3631
3632 void
3633 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3634 LONGEST val)
3635 {
3636 int size = register_size (current_gdbarch, regno);
3637 void *buf = alloca (size);
3638 store_signed_integer (buf, size, val);
3639 regcache_raw_write (inf_status->registers, regno, buf);
3640 }
3641
3642 /* Save all of the information associated with the inferior<==>gdb
3643 connection. INF_STATUS is a pointer to a "struct inferior_status"
3644 (defined in inferior.h). */
3645
3646 struct inferior_status *
3647 save_inferior_status (int restore_stack_info)
3648 {
3649 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3650
3651 inf_status->stop_signal = stop_signal;
3652 inf_status->stop_pc = stop_pc;
3653 inf_status->stop_step = stop_step;
3654 inf_status->stop_stack_dummy = stop_stack_dummy;
3655 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3656 inf_status->trap_expected = trap_expected;
3657 inf_status->step_range_start = step_range_start;
3658 inf_status->step_range_end = step_range_end;
3659 inf_status->step_frame_id = step_frame_id;
3660 inf_status->step_over_calls = step_over_calls;
3661 inf_status->stop_after_trap = stop_after_trap;
3662 inf_status->stop_soon = stop_soon;
3663 /* Save original bpstat chain here; replace it with copy of chain.
3664 If caller's caller is walking the chain, they'll be happier if we
3665 hand them back the original chain when restore_inferior_status is
3666 called. */
3667 inf_status->stop_bpstat = stop_bpstat;
3668 stop_bpstat = bpstat_copy (stop_bpstat);
3669 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3670 inf_status->restore_stack_info = restore_stack_info;
3671 inf_status->proceed_to_finish = proceed_to_finish;
3672
3673 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3674
3675 inf_status->registers = regcache_dup (current_regcache);
3676
3677 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3678 return inf_status;
3679 }
3680
3681 static int
3682 restore_selected_frame (void *args)
3683 {
3684 struct frame_id *fid = (struct frame_id *) args;
3685 struct frame_info *frame;
3686
3687 frame = frame_find_by_id (*fid);
3688
3689 /* If inf_status->selected_frame_id is NULL, there was no previously
3690 selected frame. */
3691 if (frame == NULL)
3692 {
3693 warning (_("Unable to restore previously selected frame."));
3694 return 0;
3695 }
3696
3697 select_frame (frame);
3698
3699 return (1);
3700 }
3701
3702 void
3703 restore_inferior_status (struct inferior_status *inf_status)
3704 {
3705 stop_signal = inf_status->stop_signal;
3706 stop_pc = inf_status->stop_pc;
3707 stop_step = inf_status->stop_step;
3708 stop_stack_dummy = inf_status->stop_stack_dummy;
3709 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3710 trap_expected = inf_status->trap_expected;
3711 step_range_start = inf_status->step_range_start;
3712 step_range_end = inf_status->step_range_end;
3713 step_frame_id = inf_status->step_frame_id;
3714 step_over_calls = inf_status->step_over_calls;
3715 stop_after_trap = inf_status->stop_after_trap;
3716 stop_soon = inf_status->stop_soon;
3717 bpstat_clear (&stop_bpstat);
3718 stop_bpstat = inf_status->stop_bpstat;
3719 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3720 proceed_to_finish = inf_status->proceed_to_finish;
3721
3722 /* FIXME: Is the restore of stop_registers always needed. */
3723 regcache_xfree (stop_registers);
3724 stop_registers = inf_status->stop_registers;
3725
3726 /* The inferior can be gone if the user types "print exit(0)"
3727 (and perhaps other times). */
3728 if (target_has_execution)
3729 /* NB: The register write goes through to the target. */
3730 regcache_cpy (current_regcache, inf_status->registers);
3731 regcache_xfree (inf_status->registers);
3732
3733 /* FIXME: If we are being called after stopping in a function which
3734 is called from gdb, we should not be trying to restore the
3735 selected frame; it just prints a spurious error message (The
3736 message is useful, however, in detecting bugs in gdb (like if gdb
3737 clobbers the stack)). In fact, should we be restoring the
3738 inferior status at all in that case? . */
3739
3740 if (target_has_stack && inf_status->restore_stack_info)
3741 {
3742 /* The point of catch_errors is that if the stack is clobbered,
3743 walking the stack might encounter a garbage pointer and
3744 error() trying to dereference it. */
3745 if (catch_errors
3746 (restore_selected_frame, &inf_status->selected_frame_id,
3747 "Unable to restore previously selected frame:\n",
3748 RETURN_MASK_ERROR) == 0)
3749 /* Error in restoring the selected frame. Select the innermost
3750 frame. */
3751 select_frame (get_current_frame ());
3752
3753 }
3754
3755 xfree (inf_status);
3756 }
3757
3758 static void
3759 do_restore_inferior_status_cleanup (void *sts)
3760 {
3761 restore_inferior_status (sts);
3762 }
3763
3764 struct cleanup *
3765 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3766 {
3767 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3768 }
3769
3770 void
3771 discard_inferior_status (struct inferior_status *inf_status)
3772 {
3773 /* See save_inferior_status for info on stop_bpstat. */
3774 bpstat_clear (&inf_status->stop_bpstat);
3775 regcache_xfree (inf_status->registers);
3776 regcache_xfree (inf_status->stop_registers);
3777 xfree (inf_status);
3778 }
3779
3780 int
3781 inferior_has_forked (int pid, int *child_pid)
3782 {
3783 struct target_waitstatus last;
3784 ptid_t last_ptid;
3785
3786 get_last_target_status (&last_ptid, &last);
3787
3788 if (last.kind != TARGET_WAITKIND_FORKED)
3789 return 0;
3790
3791 if (ptid_get_pid (last_ptid) != pid)
3792 return 0;
3793
3794 *child_pid = last.value.related_pid;
3795 return 1;
3796 }
3797
3798 int
3799 inferior_has_vforked (int pid, int *child_pid)
3800 {
3801 struct target_waitstatus last;
3802 ptid_t last_ptid;
3803
3804 get_last_target_status (&last_ptid, &last);
3805
3806 if (last.kind != TARGET_WAITKIND_VFORKED)
3807 return 0;
3808
3809 if (ptid_get_pid (last_ptid) != pid)
3810 return 0;
3811
3812 *child_pid = last.value.related_pid;
3813 return 1;
3814 }
3815
3816 int
3817 inferior_has_execd (int pid, char **execd_pathname)
3818 {
3819 struct target_waitstatus last;
3820 ptid_t last_ptid;
3821
3822 get_last_target_status (&last_ptid, &last);
3823
3824 if (last.kind != TARGET_WAITKIND_EXECD)
3825 return 0;
3826
3827 if (ptid_get_pid (last_ptid) != pid)
3828 return 0;
3829
3830 *execd_pathname = xstrdup (last.value.execd_pathname);
3831 return 1;
3832 }
3833
3834 /* Oft used ptids */
3835 ptid_t null_ptid;
3836 ptid_t minus_one_ptid;
3837
3838 /* Create a ptid given the necessary PID, LWP, and TID components. */
3839
3840 ptid_t
3841 ptid_build (int pid, long lwp, long tid)
3842 {
3843 ptid_t ptid;
3844
3845 ptid.pid = pid;
3846 ptid.lwp = lwp;
3847 ptid.tid = tid;
3848 return ptid;
3849 }
3850
3851 /* Create a ptid from just a pid. */
3852
3853 ptid_t
3854 pid_to_ptid (int pid)
3855 {
3856 return ptid_build (pid, 0, 0);
3857 }
3858
3859 /* Fetch the pid (process id) component from a ptid. */
3860
3861 int
3862 ptid_get_pid (ptid_t ptid)
3863 {
3864 return ptid.pid;
3865 }
3866
3867 /* Fetch the lwp (lightweight process) component from a ptid. */
3868
3869 long
3870 ptid_get_lwp (ptid_t ptid)
3871 {
3872 return ptid.lwp;
3873 }
3874
3875 /* Fetch the tid (thread id) component from a ptid. */
3876
3877 long
3878 ptid_get_tid (ptid_t ptid)
3879 {
3880 return ptid.tid;
3881 }
3882
3883 /* ptid_equal() is used to test equality of two ptids. */
3884
3885 int
3886 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3887 {
3888 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3889 && ptid1.tid == ptid2.tid);
3890 }
3891
3892 /* restore_inferior_ptid() will be used by the cleanup machinery
3893 to restore the inferior_ptid value saved in a call to
3894 save_inferior_ptid(). */
3895
3896 static void
3897 restore_inferior_ptid (void *arg)
3898 {
3899 ptid_t *saved_ptid_ptr = arg;
3900 inferior_ptid = *saved_ptid_ptr;
3901 xfree (arg);
3902 }
3903
3904 /* Save the value of inferior_ptid so that it may be restored by a
3905 later call to do_cleanups(). Returns the struct cleanup pointer
3906 needed for later doing the cleanup. */
3907
3908 struct cleanup *
3909 save_inferior_ptid (void)
3910 {
3911 ptid_t *saved_ptid_ptr;
3912
3913 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3914 *saved_ptid_ptr = inferior_ptid;
3915 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3916 }
3917 \f
3918
3919 static void
3920 build_infrun (void)
3921 {
3922 stop_registers = regcache_xmalloc (current_gdbarch);
3923 }
3924
3925 void
3926 _initialize_infrun (void)
3927 {
3928 int i;
3929 int numsigs;
3930 struct cmd_list_element *c;
3931
3932 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3933 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3934
3935 add_info ("signals", signals_info, _("\
3936 What debugger does when program gets various signals.\n\
3937 Specify a signal as argument to print info on that signal only."));
3938 add_info_alias ("handle", "signals", 0);
3939
3940 add_com ("handle", class_run, handle_command, _("\
3941 Specify how to handle a signal.\n\
3942 Args are signals and actions to apply to those signals.\n\
3943 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3944 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3945 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3946 The special arg \"all\" is recognized to mean all signals except those\n\
3947 used by the debugger, typically SIGTRAP and SIGINT.\n\
3948 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3949 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3950 Stop means reenter debugger if this signal happens (implies print).\n\
3951 Print means print a message if this signal happens.\n\
3952 Pass means let program see this signal; otherwise program doesn't know.\n\
3953 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3954 Pass and Stop may be combined."));
3955 if (xdb_commands)
3956 {
3957 add_com ("lz", class_info, signals_info, _("\
3958 What debugger does when program gets various signals.\n\
3959 Specify a signal as argument to print info on that signal only."));
3960 add_com ("z", class_run, xdb_handle_command, _("\
3961 Specify how to handle a signal.\n\
3962 Args are signals and actions to apply to those signals.\n\
3963 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3964 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3965 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3966 The special arg \"all\" is recognized to mean all signals except those\n\
3967 used by the debugger, typically SIGTRAP and SIGINT.\n\
3968 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3969 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3970 nopass), \"Q\" (noprint)\n\
3971 Stop means reenter debugger if this signal happens (implies print).\n\
3972 Print means print a message if this signal happens.\n\
3973 Pass means let program see this signal; otherwise program doesn't know.\n\
3974 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3975 Pass and Stop may be combined."));
3976 }
3977
3978 if (!dbx_commands)
3979 stop_command = add_cmd ("stop", class_obscure,
3980 not_just_help_class_command, _("\
3981 There is no `stop' command, but you can set a hook on `stop'.\n\
3982 This allows you to set a list of commands to be run each time execution\n\
3983 of the program stops."), &cmdlist);
3984
3985 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3986 Set inferior debugging."), _("\
3987 Show inferior debugging."), _("\
3988 When non-zero, inferior specific debugging is enabled."),
3989 NULL,
3990 show_debug_infrun,
3991 &setdebuglist, &showdebuglist);
3992
3993 numsigs = (int) TARGET_SIGNAL_LAST;
3994 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3995 signal_print = (unsigned char *)
3996 xmalloc (sizeof (signal_print[0]) * numsigs);
3997 signal_program = (unsigned char *)
3998 xmalloc (sizeof (signal_program[0]) * numsigs);
3999 for (i = 0; i < numsigs; i++)
4000 {
4001 signal_stop[i] = 1;
4002 signal_print[i] = 1;
4003 signal_program[i] = 1;
4004 }
4005
4006 /* Signals caused by debugger's own actions
4007 should not be given to the program afterwards. */
4008 signal_program[TARGET_SIGNAL_TRAP] = 0;
4009 signal_program[TARGET_SIGNAL_INT] = 0;
4010
4011 /* Signals that are not errors should not normally enter the debugger. */
4012 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4013 signal_print[TARGET_SIGNAL_ALRM] = 0;
4014 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4015 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4016 signal_stop[TARGET_SIGNAL_PROF] = 0;
4017 signal_print[TARGET_SIGNAL_PROF] = 0;
4018 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4019 signal_print[TARGET_SIGNAL_CHLD] = 0;
4020 signal_stop[TARGET_SIGNAL_IO] = 0;
4021 signal_print[TARGET_SIGNAL_IO] = 0;
4022 signal_stop[TARGET_SIGNAL_POLL] = 0;
4023 signal_print[TARGET_SIGNAL_POLL] = 0;
4024 signal_stop[TARGET_SIGNAL_URG] = 0;
4025 signal_print[TARGET_SIGNAL_URG] = 0;
4026 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4027 signal_print[TARGET_SIGNAL_WINCH] = 0;
4028
4029 /* These signals are used internally by user-level thread
4030 implementations. (See signal(5) on Solaris.) Like the above
4031 signals, a healthy program receives and handles them as part of
4032 its normal operation. */
4033 signal_stop[TARGET_SIGNAL_LWP] = 0;
4034 signal_print[TARGET_SIGNAL_LWP] = 0;
4035 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4036 signal_print[TARGET_SIGNAL_WAITING] = 0;
4037 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4038 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4039
4040 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4041 &stop_on_solib_events, _("\
4042 Set stopping for shared library events."), _("\
4043 Show stopping for shared library events."), _("\
4044 If nonzero, gdb will give control to the user when the dynamic linker\n\
4045 notifies gdb of shared library events. The most common event of interest\n\
4046 to the user would be loading/unloading of a new library."),
4047 NULL,
4048 show_stop_on_solib_events,
4049 &setlist, &showlist);
4050
4051 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4052 follow_fork_mode_kind_names,
4053 &follow_fork_mode_string, _("\
4054 Set debugger response to a program call of fork or vfork."), _("\
4055 Show debugger response to a program call of fork or vfork."), _("\
4056 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4057 parent - the original process is debugged after a fork\n\
4058 child - the new process is debugged after a fork\n\
4059 The unfollowed process will continue to run.\n\
4060 By default, the debugger will follow the parent process."),
4061 NULL,
4062 show_follow_fork_mode_string,
4063 &setlist, &showlist);
4064
4065 add_setshow_enum_cmd ("scheduler-locking", class_run,
4066 scheduler_enums, &scheduler_mode, _("\
4067 Set mode for locking scheduler during execution."), _("\
4068 Show mode for locking scheduler during execution."), _("\
4069 off == no locking (threads may preempt at any time)\n\
4070 on == full locking (no thread except the current thread may run)\n\
4071 step == scheduler locked during every single-step operation.\n\
4072 In this mode, no other thread may run during a step command.\n\
4073 Other threads may run while stepping over a function call ('next')."),
4074 set_schedlock_func, /* traps on target vector */
4075 show_scheduler_mode,
4076 &setlist, &showlist);
4077
4078 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4079 Set mode of the step operation."), _("\
4080 Show mode of the step operation."), _("\
4081 When set, doing a step over a function without debug line information\n\
4082 will stop at the first instruction of that function. Otherwise, the\n\
4083 function is skipped and the step command stops at a different source line."),
4084 NULL,
4085 show_step_stop_if_no_debug,
4086 &setlist, &showlist);
4087
4088 /* ptid initializations */
4089 null_ptid = ptid_build (0, 0, 0);
4090 minus_one_ptid = ptid_build (-1, 0, 0);
4091 inferior_ptid = null_ptid;
4092 target_last_wait_ptid = minus_one_ptid;
4093 }
This page took 0.199963 seconds and 4 git commands to generate.