tui: Simplify tui_alloc_content
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66
67 /* Prototypes for local functions */
68
69 static void signals_info (char *, int);
70
71 static void handle_command (char *, int);
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void resume_cleanups (void *);
78
79 static int hook_stop_stub (void *);
80
81 static int restore_selected_frame (void *);
82
83 static int follow_fork (void);
84
85 static int follow_fork_inferior (int follow_child, int detach_fork);
86
87 static void follow_inferior_reset_breakpoints (void);
88
89 static void set_schedlock_func (char *args, int from_tty,
90 struct cmd_list_element *c);
91
92 static int currently_stepping (struct thread_info *tp);
93
94 void _initialize_infrun (void);
95
96 void nullify_last_target_wait_ptid (void);
97
98 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
99
100 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
102 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
104 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
106 /* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108 static struct async_event_handler *infrun_async_inferior_event_token;
109
110 /* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112 static int infrun_is_async = -1;
113
114 /* See infrun.h. */
115
116 void
117 infrun_async (int enable)
118 {
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133 }
134
135 /* See infrun.h. */
136
137 void
138 mark_infrun_async_event_handler (void)
139 {
140 mark_async_event_handler (infrun_async_inferior_event_token);
141 }
142
143 /* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146 int step_stop_if_no_debug = 0;
147 static void
148 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152 }
153
154 /* In asynchronous mode, but simulating synchronous execution. */
155
156 int sync_execution = 0;
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static int detach_fork = 1;
170
171 int debug_displaced = 0;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 int disable_randomization = 1;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 int non_stop = 0;
220 static int non_stop_1 = 0;
221
222 static void
223 set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 int observer_mode = 0;
249 static int observer_mode_1 = 0;
250
251 static void
252 set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char *signal_stop;
322 static unsigned char *signal_print;
323 static unsigned char *signal_program;
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329 static unsigned char *signal_catch;
330
331 /* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334 static unsigned char *signal_pass;
335
336 #define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344 #define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355 void
356 update_signals_program_target (void)
357 {
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359 }
360
361 /* Value to pass to target_resume() to cause all threads to resume. */
362
363 #define RESUME_ALL minus_one_ptid
364
365 /* Command list pointer for the "stop" placeholder. */
366
367 static struct cmd_list_element *stop_command;
368
369 /* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371 int stop_on_solib_events;
372
373 /* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376 static void
377 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the pid/waitstatus of the last event
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
397 static ptid_t target_last_wait_ptid;
398 static struct target_waitstatus target_last_waitstatus;
399
400 static void context_switch (ptid_t ptid);
401
402 void init_thread_stepping_state (struct thread_info *tss);
403
404 static const char follow_fork_mode_child[] = "child";
405 static const char follow_fork_mode_parent[] = "parent";
406
407 static const char *const follow_fork_mode_kind_names[] = {
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
411 };
412
413 static const char *follow_fork_mode_string = follow_fork_mode_parent;
414 static void
415 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417 {
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
421 value);
422 }
423 \f
424
425 /* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431 static int
432 follow_fork_inferior (int follow_child, int detach_fork)
433 {
434 int has_vforked;
435 ptid_t parent_ptid, child_ptid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && (!target_is_async_p () || sync_execution)
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453 Can not resume the parent process over vfork in the foreground while\n\
454 holding the child stopped. Try \"set detach-on-fork\" or \
455 \"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 struct cleanup *old_chain;
466
467 /* Before detaching from the child, remove all breakpoints
468 from it. If we forked, then this has already been taken
469 care of by infrun.c. If we vforked however, any
470 breakpoint inserted in the parent is visible in the
471 child, even those added while stopped in a vfork
472 catchpoint. This will remove the breakpoints from the
473 parent also, but they'll be reinserted below. */
474 if (has_vforked)
475 {
476 /* Keep breakpoints list in sync. */
477 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
478 }
479
480 if (info_verbose || debug_infrun)
481 {
482 /* Ensure that we have a process ptid. */
483 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
484
485 target_terminal_ours_for_output ();
486 fprintf_filtered (gdb_stdlog,
487 _("Detaching after %s from child %s.\n"),
488 has_vforked ? "vfork" : "fork",
489 target_pid_to_str (process_ptid));
490 }
491 }
492 else
493 {
494 struct inferior *parent_inf, *child_inf;
495 struct cleanup *old_chain;
496
497 /* Add process to GDB's tables. */
498 child_inf = add_inferior (ptid_get_pid (child_ptid));
499
500 parent_inf = current_inferior ();
501 child_inf->attach_flag = parent_inf->attach_flag;
502 copy_terminal_info (child_inf, parent_inf);
503 child_inf->gdbarch = parent_inf->gdbarch;
504 copy_inferior_target_desc_info (child_inf, parent_inf);
505
506 old_chain = save_inferior_ptid ();
507 save_current_program_space ();
508
509 inferior_ptid = child_ptid;
510 add_thread (inferior_ptid);
511 child_inf->symfile_flags = SYMFILE_NO_READ;
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 /* The parent will be frozen until the child is done
521 with the shared region. Keep track of the
522 parent. */
523 child_inf->vfork_parent = parent_inf;
524 child_inf->pending_detach = 0;
525 parent_inf->vfork_child = child_inf;
526 parent_inf->pending_detach = 0;
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = add_program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* Let the shared library layer (e.g., solib-svr4) learn
537 about this new process, relocate the cloned exec, pull
538 in shared libraries, and install the solib event
539 breakpoint. If a "cloned-VM" event was propagated
540 better throughout the core, this wouldn't be
541 required. */
542 solib_create_inferior_hook (0);
543 }
544
545 do_cleanups (old_chain);
546 }
547
548 if (has_vforked)
549 {
550 struct inferior *parent_inf;
551
552 parent_inf = current_inferior ();
553
554 /* If we detached from the child, then we have to be careful
555 to not insert breakpoints in the parent until the child
556 is done with the shared memory region. However, if we're
557 staying attached to the child, then we can and should
558 insert breakpoints, so that we can debug it. A
559 subsequent child exec or exit is enough to know when does
560 the child stops using the parent's address space. */
561 parent_inf->waiting_for_vfork_done = detach_fork;
562 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
563 }
564 }
565 else
566 {
567 /* Follow the child. */
568 struct inferior *parent_inf, *child_inf;
569 struct program_space *parent_pspace;
570
571 if (info_verbose || debug_infrun)
572 {
573 target_terminal_ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
575 _("Attaching after %s %s to child %s.\n"),
576 target_pid_to_str (parent_ptid),
577 has_vforked ? "vfork" : "fork",
578 target_pid_to_str (child_ptid));
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
584 child_inf = add_inferior (ptid_get_pid (child_ptid));
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 /* If we're vforking, we want to hold on to the parent until the
595 child exits or execs. At child exec or exit time we can
596 remove the old breakpoints from the parent and detach or
597 resume debugging it. Otherwise, detach the parent now; we'll
598 want to reuse it's program/address spaces, but we can't set
599 them to the child before removing breakpoints from the
600 parent, otherwise, the breakpoints module could decide to
601 remove breakpoints from the wrong process (since they'd be
602 assigned to the same address space). */
603
604 if (has_vforked)
605 {
606 gdb_assert (child_inf->vfork_parent == NULL);
607 gdb_assert (parent_inf->vfork_child == NULL);
608 child_inf->vfork_parent = parent_inf;
609 child_inf->pending_detach = 0;
610 parent_inf->vfork_child = child_inf;
611 parent_inf->pending_detach = detach_fork;
612 parent_inf->waiting_for_vfork_done = 0;
613 }
614 else if (detach_fork)
615 {
616 if (info_verbose || debug_infrun)
617 {
618 /* Ensure that we have a process ptid. */
619 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
620
621 target_terminal_ours_for_output ();
622 fprintf_filtered (gdb_stdlog,
623 _("Detaching after fork from "
624 "child %s.\n"),
625 target_pid_to_str (process_ptid));
626 }
627
628 target_detach (NULL, 0);
629 }
630
631 /* Note that the detach above makes PARENT_INF dangling. */
632
633 /* Add the child thread to the appropriate lists, and switch to
634 this new thread, before cloning the program space, and
635 informing the solib layer about this new process. */
636
637 inferior_ptid = child_ptid;
638 add_thread (inferior_ptid);
639
640 /* If this is a vfork child, then the address-space is shared
641 with the parent. If we detached from the parent, then we can
642 reuse the parent's program/address spaces. */
643 if (has_vforked || detach_fork)
644 {
645 child_inf->pspace = parent_pspace;
646 child_inf->aspace = child_inf->pspace->aspace;
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = add_program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667 }
668
669 /* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
673 static int
674 follow_fork (void)
675 {
676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
685 struct breakpoint *exception_resume_breakpoint = NULL;
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
689 struct interp *command_interp = NULL;
690
691 if (!non_stop)
692 {
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (!ptid_equal (wait_ptid, minus_one_ptid)
708 && !ptid_equal (inferior_ptid, wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 switch_to_thread (wait_ptid);
715 should_resume = 0;
716 }
717 }
718
719 tp = inferior_thread ();
720
721 /* If there were any forks/vforks that were caught and are now to be
722 followed, then do so now. */
723 switch (tp->pending_follow.kind)
724 {
725 case TARGET_WAITKIND_FORKED:
726 case TARGET_WAITKIND_VFORKED:
727 {
728 ptid_t parent, child;
729
730 /* If the user did a next/step, etc, over a fork call,
731 preserve the stepping state in the fork child. */
732 if (follow_child && should_resume)
733 {
734 step_resume_breakpoint = clone_momentary_breakpoint
735 (tp->control.step_resume_breakpoint);
736 step_range_start = tp->control.step_range_start;
737 step_range_end = tp->control.step_range_end;
738 step_frame_id = tp->control.step_frame_id;
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
741 command_interp = tp->control.command_interp;
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
752 delete_exception_resume_breakpoint (tp);
753 tp->control.command_interp = NULL;
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.value.related_pid;
758
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
774 tp = find_thread_ptid (parent);
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
782 /* If we followed the child, switch to it... */
783 if (follow_child)
784 {
785 switch_to_thread (child);
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
799 tp->control.command_interp = command_interp;
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
809 warning (_("Not resuming: switched threads "
810 "before following fork child."));
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
816 else
817 switch_to_thread (parent);
818 }
819 }
820 break;
821 case TARGET_WAITKIND_SPURIOUS:
822 /* Nothing to follow. */
823 break;
824 default:
825 internal_error (__FILE__, __LINE__,
826 "Unexpected pending_follow.kind %d\n",
827 tp->pending_follow.kind);
828 break;
829 }
830
831 return should_resume;
832 }
833
834 static void
835 follow_inferior_reset_breakpoints (void)
836 {
837 struct thread_info *tp = inferior_thread ();
838
839 /* Was there a step_resume breakpoint? (There was if the user
840 did a "next" at the fork() call.) If so, explicitly reset its
841 thread number. Cloned step_resume breakpoints are disabled on
842 creation, so enable it here now that it is associated with the
843 correct thread.
844
845 step_resumes are a form of bp that are made to be per-thread.
846 Since we created the step_resume bp when the parent process
847 was being debugged, and now are switching to the child process,
848 from the breakpoint package's viewpoint, that's a switch of
849 "threads". We must update the bp's notion of which thread
850 it is for, or it'll be ignored when it triggers. */
851
852 if (tp->control.step_resume_breakpoint)
853 {
854 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
855 tp->control.step_resume_breakpoint->loc->enabled = 1;
856 }
857
858 /* Treat exception_resume breakpoints like step_resume breakpoints. */
859 if (tp->control.exception_resume_breakpoint)
860 {
861 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
862 tp->control.exception_resume_breakpoint->loc->enabled = 1;
863 }
864
865 /* Reinsert all breakpoints in the child. The user may have set
866 breakpoints after catching the fork, in which case those
867 were never set in the child, but only in the parent. This makes
868 sure the inserted breakpoints match the breakpoint list. */
869
870 breakpoint_re_set ();
871 insert_breakpoints ();
872 }
873
874 /* The child has exited or execed: resume threads of the parent the
875 user wanted to be executing. */
876
877 static int
878 proceed_after_vfork_done (struct thread_info *thread,
879 void *arg)
880 {
881 int pid = * (int *) arg;
882
883 if (ptid_get_pid (thread->ptid) == pid
884 && is_running (thread->ptid)
885 && !is_executing (thread->ptid)
886 && !thread->stop_requested
887 && thread->suspend.stop_signal == GDB_SIGNAL_0)
888 {
889 if (debug_infrun)
890 fprintf_unfiltered (gdb_stdlog,
891 "infrun: resuming vfork parent thread %s\n",
892 target_pid_to_str (thread->ptid));
893
894 switch_to_thread (thread->ptid);
895 clear_proceed_status (0);
896 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
897 }
898
899 return 0;
900 }
901
902 /* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905 static void
906 handle_vfork_child_exec_or_exit (int exec)
907 {
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct cleanup *old_chain;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
925 /* follow-fork child, detach-on-fork on. */
926
927 inf->vfork_parent->pending_detach = 0;
928
929 if (!exec)
930 {
931 /* If we're handling a child exit, then inferior_ptid
932 points at the inferior's pid, not to a thread. */
933 old_chain = save_inferior_ptid ();
934 save_current_program_space ();
935 save_current_inferior ();
936 }
937 else
938 old_chain = save_current_space_and_thread ();
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
963 target_terminal_ours_for_output ();
964
965 if (exec)
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986
987 do_cleanups (old_chain);
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = add_program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct cleanup *old_chain;
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid, so that clone_program_space doesn't want
1018 to read the selected frame of a dead process. */
1019 old_chain = save_inferior_ptid ();
1020 inferior_ptid = null_ptid;
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = add_program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
1030 inf->symfile_flags = SYMFILE_NO_READ;
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 /* Put back inferior_ptid. We'll continue mourning this
1036 inferior. */
1037 do_cleanups (old_chain);
1038
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
1052 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1053
1054 if (debug_infrun)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1060
1061 do_cleanups (old_chain);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXECD_PATHNAME is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, char *execd_pathname)
1089 {
1090 struct thread_info *th, *tmp;
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid_get_pid (ptid);
1093 ptid_t process_ptid;
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 ALL_THREADS_SAFE (th, tmp)
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = pid_to_ptid (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid),
1163 execd_pathname);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 gdb_flush (gdb_stdout);
1169
1170 breakpoint_init_inferior (inf_execd);
1171
1172 if (*gdb_sysroot != '\0')
1173 {
1174 char *name = exec_file_find (execd_pathname, NULL);
1175
1176 execd_pathname = (char *) alloca (strlen (name) + 1);
1177 strcpy (execd_pathname, name);
1178 xfree (name);
1179 }
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, execd_pathname);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* That a.out is now the one to use. */
1221 exec_file_attach (execd_pathname, 0);
1222
1223 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1224 (Position Independent Executable) main symbol file will get applied by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1226 the breakpoints with the zero displacement. */
1227
1228 symbol_file_add (execd_pathname,
1229 (inf->symfile_flags
1230 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1231 NULL, 0);
1232
1233 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1234 set_initial_language ();
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1258 matically get reset there in the new process.). */
1259 }
1260
1261 /* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268 struct thread_info *step_over_queue_head;
1269
1270 /* Bit flags indicating what the thread needs to step over. */
1271
1272 enum step_over_what
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 struct address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297 };
1298
1299 /* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323 static struct step_over_info step_over_info;
1324
1325 /* Record the address of the breakpoint/instruction we're currently
1326 stepping over. */
1327
1328 static void
1329 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 }
1336
1337 /* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340 static void
1341 clear_step_over_info (void)
1342 {
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfuly single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 - gdbarch_displaced_step_free_closure provides cleanup.
1431
1432 The gdbarch_displaced_step_copy_insn and
1433 gdbarch_displaced_step_fixup functions must be written so that
1434 copying an instruction with gdbarch_displaced_step_copy_insn,
1435 single-stepping across the copied instruction, and then applying
1436 gdbarch_displaced_insn_fixup should have the same effects on the
1437 thread's memory and registers as stepping the instruction in place
1438 would have. Exactly which responsibilities fall to the copy and
1439 which fall to the fixup is up to the author of those functions.
1440
1441 See the comments in gdbarch.sh for details.
1442
1443 Note that displaced stepping and software single-step cannot
1444 currently be used in combination, although with some care I think
1445 they could be made to. Software single-step works by placing
1446 breakpoints on all possible subsequent instructions; if the
1447 displaced instruction is a PC-relative jump, those breakpoints
1448 could fall in very strange places --- on pages that aren't
1449 executable, or at addresses that are not proper instruction
1450 boundaries. (We do generally let other threads run while we wait
1451 to hit the software single-step breakpoint, and they might
1452 encounter such a corrupted instruction.) One way to work around
1453 this would be to have gdbarch_displaced_step_copy_insn fully
1454 simulate the effect of PC-relative instructions (and return NULL)
1455 on architectures that use software single-stepping.
1456
1457 In non-stop mode, we can have independent and simultaneous step
1458 requests, so more than one thread may need to simultaneously step
1459 over a breakpoint. The current implementation assumes there is
1460 only one scratch space per process. In this case, we have to
1461 serialize access to the scratch space. If thread A wants to step
1462 over a breakpoint, but we are currently waiting for some other
1463 thread to complete a displaced step, we leave thread A stopped and
1464 place it in the displaced_step_request_queue. Whenever a displaced
1465 step finishes, we pick the next thread in the queue and start a new
1466 displaced step operation on it. See displaced_step_prepare and
1467 displaced_step_fixup for details. */
1468
1469 /* Per-inferior displaced stepping state. */
1470 struct displaced_step_inferior_state
1471 {
1472 /* Pointer to next in linked list. */
1473 struct displaced_step_inferior_state *next;
1474
1475 /* The process this displaced step state refers to. */
1476 int pid;
1477
1478 /* True if preparing a displaced step ever failed. If so, we won't
1479 try displaced stepping for this inferior again. */
1480 int failed_before;
1481
1482 /* If this is not null_ptid, this is the thread carrying out a
1483 displaced single-step in process PID. This thread's state will
1484 require fixing up once it has completed its step. */
1485 ptid_t step_ptid;
1486
1487 /* The architecture the thread had when we stepped it. */
1488 struct gdbarch *step_gdbarch;
1489
1490 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1491 for post-step cleanup. */
1492 struct displaced_step_closure *step_closure;
1493
1494 /* The address of the original instruction, and the copy we
1495 made. */
1496 CORE_ADDR step_original, step_copy;
1497
1498 /* Saved contents of copy area. */
1499 gdb_byte *step_saved_copy;
1500 };
1501
1502 /* The list of states of processes involved in displaced stepping
1503 presently. */
1504 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1505
1506 /* Get the displaced stepping state of process PID. */
1507
1508 static struct displaced_step_inferior_state *
1509 get_displaced_stepping_state (int pid)
1510 {
1511 struct displaced_step_inferior_state *state;
1512
1513 for (state = displaced_step_inferior_states;
1514 state != NULL;
1515 state = state->next)
1516 if (state->pid == pid)
1517 return state;
1518
1519 return NULL;
1520 }
1521
1522 /* Returns true if any inferior has a thread doing a displaced
1523 step. */
1524
1525 static int
1526 displaced_step_in_progress_any_inferior (void)
1527 {
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (!ptid_equal (state->step_ptid, null_ptid))
1534 return 1;
1535
1536 return 0;
1537 }
1538
1539 /* Return true if process PID has a thread doing a displaced step. */
1540
1541 static int
1542 displaced_step_in_progress (int pid)
1543 {
1544 struct displaced_step_inferior_state *displaced;
1545
1546 displaced = get_displaced_stepping_state (pid);
1547 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1548 return 1;
1549
1550 return 0;
1551 }
1552
1553 /* Add a new displaced stepping state for process PID to the displaced
1554 stepping state list, or return a pointer to an already existing
1555 entry, if it already exists. Never returns NULL. */
1556
1557 static struct displaced_step_inferior_state *
1558 add_displaced_stepping_state (int pid)
1559 {
1560 struct displaced_step_inferior_state *state;
1561
1562 for (state = displaced_step_inferior_states;
1563 state != NULL;
1564 state = state->next)
1565 if (state->pid == pid)
1566 return state;
1567
1568 state = XCNEW (struct displaced_step_inferior_state);
1569 state->pid = pid;
1570 state->next = displaced_step_inferior_states;
1571 displaced_step_inferior_states = state;
1572
1573 return state;
1574 }
1575
1576 /* If inferior is in displaced stepping, and ADDR equals to starting address
1577 of copy area, return corresponding displaced_step_closure. Otherwise,
1578 return NULL. */
1579
1580 struct displaced_step_closure*
1581 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1582 {
1583 struct displaced_step_inferior_state *displaced
1584 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1585
1586 /* If checking the mode of displaced instruction in copy area. */
1587 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1588 && (displaced->step_copy == addr))
1589 return displaced->step_closure;
1590
1591 return NULL;
1592 }
1593
1594 /* Remove the displaced stepping state of process PID. */
1595
1596 static void
1597 remove_displaced_stepping_state (int pid)
1598 {
1599 struct displaced_step_inferior_state *it, **prev_next_p;
1600
1601 gdb_assert (pid != 0);
1602
1603 it = displaced_step_inferior_states;
1604 prev_next_p = &displaced_step_inferior_states;
1605 while (it)
1606 {
1607 if (it->pid == pid)
1608 {
1609 *prev_next_p = it->next;
1610 xfree (it);
1611 return;
1612 }
1613
1614 prev_next_p = &it->next;
1615 it = *prev_next_p;
1616 }
1617 }
1618
1619 static void
1620 infrun_inferior_exit (struct inferior *inf)
1621 {
1622 remove_displaced_stepping_state (inf->pid);
1623 }
1624
1625 /* If ON, and the architecture supports it, GDB will use displaced
1626 stepping to step over breakpoints. If OFF, or if the architecture
1627 doesn't support it, GDB will instead use the traditional
1628 hold-and-step approach. If AUTO (which is the default), GDB will
1629 decide which technique to use to step over breakpoints depending on
1630 which of all-stop or non-stop mode is active --- displaced stepping
1631 in non-stop mode; hold-and-step in all-stop mode. */
1632
1633 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1634
1635 static void
1636 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c,
1638 const char *value)
1639 {
1640 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1641 fprintf_filtered (file,
1642 _("Debugger's willingness to use displaced stepping "
1643 "to step over breakpoints is %s (currently %s).\n"),
1644 value, target_is_non_stop_p () ? "on" : "off");
1645 else
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s.\n"), value);
1649 }
1650
1651 /* Return non-zero if displaced stepping can/should be used to step
1652 over breakpoints of thread TP. */
1653
1654 static int
1655 use_displaced_stepping (struct thread_info *tp)
1656 {
1657 struct regcache *regcache = get_thread_regcache (tp->ptid);
1658 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1659 struct displaced_step_inferior_state *displaced_state;
1660
1661 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1662
1663 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1664 && target_is_non_stop_p ())
1665 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1666 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1667 && find_record_target () == NULL
1668 && (displaced_state == NULL
1669 || !displaced_state->failed_before));
1670 }
1671
1672 /* Clean out any stray displaced stepping state. */
1673 static void
1674 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1675 {
1676 /* Indicate that there is no cleanup pending. */
1677 displaced->step_ptid = null_ptid;
1678
1679 if (displaced->step_closure)
1680 {
1681 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1682 displaced->step_closure);
1683 displaced->step_closure = NULL;
1684 }
1685 }
1686
1687 static void
1688 displaced_step_clear_cleanup (void *arg)
1689 {
1690 struct displaced_step_inferior_state *state
1691 = (struct displaced_step_inferior_state *) arg;
1692
1693 displaced_step_clear (state);
1694 }
1695
1696 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1697 void
1698 displaced_step_dump_bytes (struct ui_file *file,
1699 const gdb_byte *buf,
1700 size_t len)
1701 {
1702 int i;
1703
1704 for (i = 0; i < len; i++)
1705 fprintf_unfiltered (file, "%02x ", buf[i]);
1706 fputs_unfiltered ("\n", file);
1707 }
1708
1709 /* Prepare to single-step, using displaced stepping.
1710
1711 Note that we cannot use displaced stepping when we have a signal to
1712 deliver. If we have a signal to deliver and an instruction to step
1713 over, then after the step, there will be no indication from the
1714 target whether the thread entered a signal handler or ignored the
1715 signal and stepped over the instruction successfully --- both cases
1716 result in a simple SIGTRAP. In the first case we mustn't do a
1717 fixup, and in the second case we must --- but we can't tell which.
1718 Comments in the code for 'random signals' in handle_inferior_event
1719 explain how we handle this case instead.
1720
1721 Returns 1 if preparing was successful -- this thread is going to be
1722 stepped now; 0 if displaced stepping this thread got queued; or -1
1723 if this instruction can't be displaced stepped. */
1724
1725 static int
1726 displaced_step_prepare_throw (ptid_t ptid)
1727 {
1728 struct cleanup *old_cleanups, *ignore_cleanups;
1729 struct thread_info *tp = find_thread_ptid (ptid);
1730 struct regcache *regcache = get_thread_regcache (ptid);
1731 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1732 CORE_ADDR original, copy;
1733 ULONGEST len;
1734 struct displaced_step_closure *closure;
1735 struct displaced_step_inferior_state *displaced;
1736 int status;
1737
1738 /* We should never reach this function if the architecture does not
1739 support displaced stepping. */
1740 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1741
1742 /* Nor if the thread isn't meant to step over a breakpoint. */
1743 gdb_assert (tp->control.trap_expected);
1744
1745 /* Disable range stepping while executing in the scratch pad. We
1746 want a single-step even if executing the displaced instruction in
1747 the scratch buffer lands within the stepping range (e.g., a
1748 jump/branch). */
1749 tp->control.may_range_step = 0;
1750
1751 /* We have to displaced step one thread at a time, as we only have
1752 access to a single scratch space per inferior. */
1753
1754 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1755
1756 if (!ptid_equal (displaced->step_ptid, null_ptid))
1757 {
1758 /* Already waiting for a displaced step to finish. Defer this
1759 request and place in queue. */
1760
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "displaced: deferring step of %s\n",
1764 target_pid_to_str (ptid));
1765
1766 thread_step_over_chain_enqueue (tp);
1767 return 0;
1768 }
1769 else
1770 {
1771 if (debug_displaced)
1772 fprintf_unfiltered (gdb_stdlog,
1773 "displaced: stepping %s now\n",
1774 target_pid_to_str (ptid));
1775 }
1776
1777 displaced_step_clear (displaced);
1778
1779 old_cleanups = save_inferior_ptid ();
1780 inferior_ptid = ptid;
1781
1782 original = regcache_read_pc (regcache);
1783
1784 copy = gdbarch_displaced_step_location (gdbarch);
1785 len = gdbarch_max_insn_length (gdbarch);
1786
1787 /* Save the original contents of the copy area. */
1788 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1789 ignore_cleanups = make_cleanup (free_current_contents,
1790 &displaced->step_saved_copy);
1791 status = target_read_memory (copy, displaced->step_saved_copy, len);
1792 if (status != 0)
1793 throw_error (MEMORY_ERROR,
1794 _("Error accessing memory address %s (%s) for "
1795 "displaced-stepping scratch space."),
1796 paddress (gdbarch, copy), safe_strerror (status));
1797 if (debug_displaced)
1798 {
1799 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1800 paddress (gdbarch, copy));
1801 displaced_step_dump_bytes (gdb_stdlog,
1802 displaced->step_saved_copy,
1803 len);
1804 };
1805
1806 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1807 original, copy, regcache);
1808 if (closure == NULL)
1809 {
1810 /* The architecture doesn't know how or want to displaced step
1811 this instruction or instruction sequence. Fallback to
1812 stepping over the breakpoint in-line. */
1813 do_cleanups (old_cleanups);
1814 return -1;
1815 }
1816
1817 /* Save the information we need to fix things up if the step
1818 succeeds. */
1819 displaced->step_ptid = ptid;
1820 displaced->step_gdbarch = gdbarch;
1821 displaced->step_closure = closure;
1822 displaced->step_original = original;
1823 displaced->step_copy = copy;
1824
1825 make_cleanup (displaced_step_clear_cleanup, displaced);
1826
1827 /* Resume execution at the copy. */
1828 regcache_write_pc (regcache, copy);
1829
1830 discard_cleanups (ignore_cleanups);
1831
1832 do_cleanups (old_cleanups);
1833
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1836 paddress (gdbarch, copy));
1837
1838 return 1;
1839 }
1840
1841 /* Wrapper for displaced_step_prepare_throw that disabled further
1842 attempts at displaced stepping if we get a memory error. */
1843
1844 static int
1845 displaced_step_prepare (ptid_t ptid)
1846 {
1847 int prepared = -1;
1848
1849 TRY
1850 {
1851 prepared = displaced_step_prepare_throw (ptid);
1852 }
1853 CATCH (ex, RETURN_MASK_ERROR)
1854 {
1855 struct displaced_step_inferior_state *displaced_state;
1856
1857 if (ex.error != MEMORY_ERROR)
1858 throw_exception (ex);
1859
1860 if (debug_infrun)
1861 {
1862 fprintf_unfiltered (gdb_stdlog,
1863 "infrun: disabling displaced stepping: %s\n",
1864 ex.message);
1865 }
1866
1867 /* Be verbose if "set displaced-stepping" is "on", silent if
1868 "auto". */
1869 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1870 {
1871 warning (_("disabling displaced stepping: %s"),
1872 ex.message);
1873 }
1874
1875 /* Disable further displaced stepping attempts. */
1876 displaced_state
1877 = get_displaced_stepping_state (ptid_get_pid (ptid));
1878 displaced_state->failed_before = 1;
1879 }
1880 END_CATCH
1881
1882 return prepared;
1883 }
1884
1885 static void
1886 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1887 const gdb_byte *myaddr, int len)
1888 {
1889 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1890
1891 inferior_ptid = ptid;
1892 write_memory (memaddr, myaddr, len);
1893 do_cleanups (ptid_cleanup);
1894 }
1895
1896 /* Restore the contents of the copy area for thread PTID. */
1897
1898 static void
1899 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1900 ptid_t ptid)
1901 {
1902 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1903
1904 write_memory_ptid (ptid, displaced->step_copy,
1905 displaced->step_saved_copy, len);
1906 if (debug_displaced)
1907 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1908 target_pid_to_str (ptid),
1909 paddress (displaced->step_gdbarch,
1910 displaced->step_copy));
1911 }
1912
1913 /* If we displaced stepped an instruction successfully, adjust
1914 registers and memory to yield the same effect the instruction would
1915 have had if we had executed it at its original address, and return
1916 1. If the instruction didn't complete, relocate the PC and return
1917 -1. If the thread wasn't displaced stepping, return 0. */
1918
1919 static int
1920 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1921 {
1922 struct cleanup *old_cleanups;
1923 struct displaced_step_inferior_state *displaced
1924 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1925 int ret;
1926
1927 /* Was any thread of this process doing a displaced step? */
1928 if (displaced == NULL)
1929 return 0;
1930
1931 /* Was this event for the pid we displaced? */
1932 if (ptid_equal (displaced->step_ptid, null_ptid)
1933 || ! ptid_equal (displaced->step_ptid, event_ptid))
1934 return 0;
1935
1936 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1937
1938 displaced_step_restore (displaced, displaced->step_ptid);
1939
1940 /* Fixup may need to read memory/registers. Switch to the thread
1941 that we're fixing up. Also, target_stopped_by_watchpoint checks
1942 the current thread. */
1943 switch_to_thread (event_ptid);
1944
1945 /* Did the instruction complete successfully? */
1946 if (signal == GDB_SIGNAL_TRAP
1947 && !(target_stopped_by_watchpoint ()
1948 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1949 || target_have_steppable_watchpoint)))
1950 {
1951 /* Fix up the resulting state. */
1952 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1953 displaced->step_closure,
1954 displaced->step_original,
1955 displaced->step_copy,
1956 get_thread_regcache (displaced->step_ptid));
1957 ret = 1;
1958 }
1959 else
1960 {
1961 /* Since the instruction didn't complete, all we can do is
1962 relocate the PC. */
1963 struct regcache *regcache = get_thread_regcache (event_ptid);
1964 CORE_ADDR pc = regcache_read_pc (regcache);
1965
1966 pc = displaced->step_original + (pc - displaced->step_copy);
1967 regcache_write_pc (regcache, pc);
1968 ret = -1;
1969 }
1970
1971 do_cleanups (old_cleanups);
1972
1973 displaced->step_ptid = null_ptid;
1974
1975 return ret;
1976 }
1977
1978 /* Data to be passed around while handling an event. This data is
1979 discarded between events. */
1980 struct execution_control_state
1981 {
1982 ptid_t ptid;
1983 /* The thread that got the event, if this was a thread event; NULL
1984 otherwise. */
1985 struct thread_info *event_thread;
1986
1987 struct target_waitstatus ws;
1988 int stop_func_filled_in;
1989 CORE_ADDR stop_func_start;
1990 CORE_ADDR stop_func_end;
1991 const char *stop_func_name;
1992 int wait_some_more;
1993
1994 /* True if the event thread hit the single-step breakpoint of
1995 another thread. Thus the event doesn't cause a stop, the thread
1996 needs to be single-stepped past the single-step breakpoint before
1997 we can switch back to the original stepping thread. */
1998 int hit_singlestep_breakpoint;
1999 };
2000
2001 /* Clear ECS and set it to point at TP. */
2002
2003 static void
2004 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2005 {
2006 memset (ecs, 0, sizeof (*ecs));
2007 ecs->event_thread = tp;
2008 ecs->ptid = tp->ptid;
2009 }
2010
2011 static void keep_going_pass_signal (struct execution_control_state *ecs);
2012 static void prepare_to_wait (struct execution_control_state *ecs);
2013 static int keep_going_stepped_thread (struct thread_info *tp);
2014 static int thread_still_needs_step_over (struct thread_info *tp);
2015 static void stop_all_threads (void);
2016
2017 /* Are there any pending step-over requests? If so, run all we can
2018 now and return true. Otherwise, return false. */
2019
2020 static int
2021 start_step_over (void)
2022 {
2023 struct thread_info *tp, *next;
2024
2025 /* Don't start a new step-over if we already have an in-line
2026 step-over operation ongoing. */
2027 if (step_over_info_valid_p ())
2028 return 0;
2029
2030 for (tp = step_over_queue_head; tp != NULL; tp = next)
2031 {
2032 struct execution_control_state ecss;
2033 struct execution_control_state *ecs = &ecss;
2034 enum step_over_what step_what;
2035 int must_be_in_line;
2036
2037 next = thread_step_over_chain_next (tp);
2038
2039 /* If this inferior already has a displaced step in process,
2040 don't start a new one. */
2041 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2042 continue;
2043
2044 step_what = thread_still_needs_step_over (tp);
2045 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2046 || ((step_what & STEP_OVER_BREAKPOINT)
2047 && !use_displaced_stepping (tp)));
2048
2049 /* We currently stop all threads of all processes to step-over
2050 in-line. If we need to start a new in-line step-over, let
2051 any pending displaced steps finish first. */
2052 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2053 return 0;
2054
2055 thread_step_over_chain_remove (tp);
2056
2057 if (step_over_queue_head == NULL)
2058 {
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: step-over queue now empty\n");
2062 }
2063
2064 if (tp->control.trap_expected
2065 || tp->resumed
2066 || tp->executing)
2067 {
2068 internal_error (__FILE__, __LINE__,
2069 "[%s] has inconsistent state: "
2070 "trap_expected=%d, resumed=%d, executing=%d\n",
2071 target_pid_to_str (tp->ptid),
2072 tp->control.trap_expected,
2073 tp->resumed,
2074 tp->executing);
2075 }
2076
2077 if (debug_infrun)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "infrun: resuming [%s] for step-over\n",
2080 target_pid_to_str (tp->ptid));
2081
2082 /* keep_going_pass_signal skips the step-over if the breakpoint
2083 is no longer inserted. In all-stop, we want to keep looking
2084 for a thread that needs a step-over instead of resuming TP,
2085 because we wouldn't be able to resume anything else until the
2086 target stops again. In non-stop, the resume always resumes
2087 only TP, so it's OK to let the thread resume freely. */
2088 if (!target_is_non_stop_p () && !step_what)
2089 continue;
2090
2091 switch_to_thread (tp->ptid);
2092 reset_ecs (ecs, tp);
2093 keep_going_pass_signal (ecs);
2094
2095 if (!ecs->wait_some_more)
2096 error (_("Command aborted."));
2097
2098 gdb_assert (tp->resumed);
2099
2100 /* If we started a new in-line step-over, we're done. */
2101 if (step_over_info_valid_p ())
2102 {
2103 gdb_assert (tp->control.trap_expected);
2104 return 1;
2105 }
2106
2107 if (!target_is_non_stop_p ())
2108 {
2109 /* On all-stop, shouldn't have resumed unless we needed a
2110 step over. */
2111 gdb_assert (tp->control.trap_expected
2112 || tp->step_after_step_resume_breakpoint);
2113
2114 /* With remote targets (at least), in all-stop, we can't
2115 issue any further remote commands until the program stops
2116 again. */
2117 return 1;
2118 }
2119
2120 /* Either the thread no longer needed a step-over, or a new
2121 displaced stepping sequence started. Even in the latter
2122 case, continue looking. Maybe we can also start another
2123 displaced step on a thread of other process. */
2124 }
2125
2126 return 0;
2127 }
2128
2129 /* Update global variables holding ptids to hold NEW_PTID if they were
2130 holding OLD_PTID. */
2131 static void
2132 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2133 {
2134 struct displaced_step_request *it;
2135 struct displaced_step_inferior_state *displaced;
2136
2137 if (ptid_equal (inferior_ptid, old_ptid))
2138 inferior_ptid = new_ptid;
2139
2140 for (displaced = displaced_step_inferior_states;
2141 displaced;
2142 displaced = displaced->next)
2143 {
2144 if (ptid_equal (displaced->step_ptid, old_ptid))
2145 displaced->step_ptid = new_ptid;
2146 }
2147 }
2148
2149 \f
2150 /* Resuming. */
2151
2152 /* Things to clean up if we QUIT out of resume (). */
2153 static void
2154 resume_cleanups (void *ignore)
2155 {
2156 if (!ptid_equal (inferior_ptid, null_ptid))
2157 delete_single_step_breakpoints (inferior_thread ());
2158
2159 normal_stop ();
2160 }
2161
2162 static const char schedlock_off[] = "off";
2163 static const char schedlock_on[] = "on";
2164 static const char schedlock_step[] = "step";
2165 static const char schedlock_replay[] = "replay";
2166 static const char *const scheduler_enums[] = {
2167 schedlock_off,
2168 schedlock_on,
2169 schedlock_step,
2170 schedlock_replay,
2171 NULL
2172 };
2173 static const char *scheduler_mode = schedlock_replay;
2174 static void
2175 show_scheduler_mode (struct ui_file *file, int from_tty,
2176 struct cmd_list_element *c, const char *value)
2177 {
2178 fprintf_filtered (file,
2179 _("Mode for locking scheduler "
2180 "during execution is \"%s\".\n"),
2181 value);
2182 }
2183
2184 static void
2185 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2186 {
2187 if (!target_can_lock_scheduler)
2188 {
2189 scheduler_mode = schedlock_off;
2190 error (_("Target '%s' cannot support this command."), target_shortname);
2191 }
2192 }
2193
2194 /* True if execution commands resume all threads of all processes by
2195 default; otherwise, resume only threads of the current inferior
2196 process. */
2197 int sched_multi = 0;
2198
2199 /* Try to setup for software single stepping over the specified location.
2200 Return 1 if target_resume() should use hardware single step.
2201
2202 GDBARCH the current gdbarch.
2203 PC the location to step over. */
2204
2205 static int
2206 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2207 {
2208 int hw_step = 1;
2209
2210 if (execution_direction == EXEC_FORWARD
2211 && gdbarch_software_single_step_p (gdbarch)
2212 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2213 {
2214 hw_step = 0;
2215 }
2216 return hw_step;
2217 }
2218
2219 /* See infrun.h. */
2220
2221 ptid_t
2222 user_visible_resume_ptid (int step)
2223 {
2224 ptid_t resume_ptid;
2225
2226 if (non_stop)
2227 {
2228 /* With non-stop mode on, threads are always handled
2229 individually. */
2230 resume_ptid = inferior_ptid;
2231 }
2232 else if ((scheduler_mode == schedlock_on)
2233 || (scheduler_mode == schedlock_step && step))
2234 {
2235 /* User-settable 'scheduler' mode requires solo thread
2236 resume. */
2237 resume_ptid = inferior_ptid;
2238 }
2239 else if ((scheduler_mode == schedlock_replay)
2240 && target_record_will_replay (minus_one_ptid, execution_direction))
2241 {
2242 /* User-settable 'scheduler' mode requires solo thread resume in replay
2243 mode. */
2244 resume_ptid = inferior_ptid;
2245 }
2246 else if (!sched_multi && target_supports_multi_process ())
2247 {
2248 /* Resume all threads of the current process (and none of other
2249 processes). */
2250 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2251 }
2252 else
2253 {
2254 /* Resume all threads of all processes. */
2255 resume_ptid = RESUME_ALL;
2256 }
2257
2258 return resume_ptid;
2259 }
2260
2261 /* Return a ptid representing the set of threads that we will resume,
2262 in the perspective of the target, assuming run control handling
2263 does not require leaving some threads stopped (e.g., stepping past
2264 breakpoint). USER_STEP indicates whether we're about to start the
2265 target for a stepping command. */
2266
2267 static ptid_t
2268 internal_resume_ptid (int user_step)
2269 {
2270 /* In non-stop, we always control threads individually. Note that
2271 the target may always work in non-stop mode even with "set
2272 non-stop off", in which case user_visible_resume_ptid could
2273 return a wildcard ptid. */
2274 if (target_is_non_stop_p ())
2275 return inferior_ptid;
2276 else
2277 return user_visible_resume_ptid (user_step);
2278 }
2279
2280 /* Wrapper for target_resume, that handles infrun-specific
2281 bookkeeping. */
2282
2283 static void
2284 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2285 {
2286 struct thread_info *tp = inferior_thread ();
2287
2288 /* Install inferior's terminal modes. */
2289 target_terminal_inferior ();
2290
2291 /* Avoid confusing the next resume, if the next stop/resume
2292 happens to apply to another thread. */
2293 tp->suspend.stop_signal = GDB_SIGNAL_0;
2294
2295 /* Advise target which signals may be handled silently.
2296
2297 If we have removed breakpoints because we are stepping over one
2298 in-line (in any thread), we need to receive all signals to avoid
2299 accidentally skipping a breakpoint during execution of a signal
2300 handler.
2301
2302 Likewise if we're displaced stepping, otherwise a trap for a
2303 breakpoint in a signal handler might be confused with the
2304 displaced step finishing. We don't make the displaced_step_fixup
2305 step distinguish the cases instead, because:
2306
2307 - a backtrace while stopped in the signal handler would show the
2308 scratch pad as frame older than the signal handler, instead of
2309 the real mainline code.
2310
2311 - when the thread is later resumed, the signal handler would
2312 return to the scratch pad area, which would no longer be
2313 valid. */
2314 if (step_over_info_valid_p ()
2315 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2316 target_pass_signals (0, NULL);
2317 else
2318 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2319
2320 target_resume (resume_ptid, step, sig);
2321 }
2322
2323 /* Resume the inferior, but allow a QUIT. This is useful if the user
2324 wants to interrupt some lengthy single-stepping operation
2325 (for child processes, the SIGINT goes to the inferior, and so
2326 we get a SIGINT random_signal, but for remote debugging and perhaps
2327 other targets, that's not true).
2328
2329 SIG is the signal to give the inferior (zero for none). */
2330 void
2331 resume (enum gdb_signal sig)
2332 {
2333 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2334 struct regcache *regcache = get_current_regcache ();
2335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2336 struct thread_info *tp = inferior_thread ();
2337 CORE_ADDR pc = regcache_read_pc (regcache);
2338 struct address_space *aspace = get_regcache_aspace (regcache);
2339 ptid_t resume_ptid;
2340 /* This represents the user's step vs continue request. When
2341 deciding whether "set scheduler-locking step" applies, it's the
2342 user's intention that counts. */
2343 const int user_step = tp->control.stepping_command;
2344 /* This represents what we'll actually request the target to do.
2345 This can decay from a step to a continue, if e.g., we need to
2346 implement single-stepping with breakpoints (software
2347 single-step). */
2348 int step;
2349
2350 gdb_assert (!thread_is_in_step_over_chain (tp));
2351
2352 QUIT;
2353
2354 if (tp->suspend.waitstatus_pending_p)
2355 {
2356 if (debug_infrun)
2357 {
2358 char *statstr;
2359
2360 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2361 fprintf_unfiltered (gdb_stdlog,
2362 "infrun: resume: thread %s has pending wait status %s "
2363 "(currently_stepping=%d).\n",
2364 target_pid_to_str (tp->ptid), statstr,
2365 currently_stepping (tp));
2366 xfree (statstr);
2367 }
2368
2369 tp->resumed = 1;
2370
2371 /* FIXME: What should we do if we are supposed to resume this
2372 thread with a signal? Maybe we should maintain a queue of
2373 pending signals to deliver. */
2374 if (sig != GDB_SIGNAL_0)
2375 {
2376 warning (_("Couldn't deliver signal %s to %s."),
2377 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2378 }
2379
2380 tp->suspend.stop_signal = GDB_SIGNAL_0;
2381 discard_cleanups (old_cleanups);
2382
2383 if (target_can_async_p ())
2384 target_async (1);
2385 return;
2386 }
2387
2388 tp->stepped_breakpoint = 0;
2389
2390 /* Depends on stepped_breakpoint. */
2391 step = currently_stepping (tp);
2392
2393 if (current_inferior ()->waiting_for_vfork_done)
2394 {
2395 /* Don't try to single-step a vfork parent that is waiting for
2396 the child to get out of the shared memory region (by exec'ing
2397 or exiting). This is particularly important on software
2398 single-step archs, as the child process would trip on the
2399 software single step breakpoint inserted for the parent
2400 process. Since the parent will not actually execute any
2401 instruction until the child is out of the shared region (such
2402 are vfork's semantics), it is safe to simply continue it.
2403 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2404 the parent, and tell it to `keep_going', which automatically
2405 re-sets it stepping. */
2406 if (debug_infrun)
2407 fprintf_unfiltered (gdb_stdlog,
2408 "infrun: resume : clear step\n");
2409 step = 0;
2410 }
2411
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "infrun: resume (step=%d, signal=%s), "
2415 "trap_expected=%d, current thread [%s] at %s\n",
2416 step, gdb_signal_to_symbol_string (sig),
2417 tp->control.trap_expected,
2418 target_pid_to_str (inferior_ptid),
2419 paddress (gdbarch, pc));
2420
2421 /* Normally, by the time we reach `resume', the breakpoints are either
2422 removed or inserted, as appropriate. The exception is if we're sitting
2423 at a permanent breakpoint; we need to step over it, but permanent
2424 breakpoints can't be removed. So we have to test for it here. */
2425 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2426 {
2427 if (sig != GDB_SIGNAL_0)
2428 {
2429 /* We have a signal to pass to the inferior. The resume
2430 may, or may not take us to the signal handler. If this
2431 is a step, we'll need to stop in the signal handler, if
2432 there's one, (if the target supports stepping into
2433 handlers), or in the next mainline instruction, if
2434 there's no handler. If this is a continue, we need to be
2435 sure to run the handler with all breakpoints inserted.
2436 In all cases, set a breakpoint at the current address
2437 (where the handler returns to), and once that breakpoint
2438 is hit, resume skipping the permanent breakpoint. If
2439 that breakpoint isn't hit, then we've stepped into the
2440 signal handler (or hit some other event). We'll delete
2441 the step-resume breakpoint then. */
2442
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "infrun: resume: skipping permanent breakpoint, "
2446 "deliver signal first\n");
2447
2448 clear_step_over_info ();
2449 tp->control.trap_expected = 0;
2450
2451 if (tp->control.step_resume_breakpoint == NULL)
2452 {
2453 /* Set a "high-priority" step-resume, as we don't want
2454 user breakpoints at PC to trigger (again) when this
2455 hits. */
2456 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2457 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2458
2459 tp->step_after_step_resume_breakpoint = step;
2460 }
2461
2462 insert_breakpoints ();
2463 }
2464 else
2465 {
2466 /* There's no signal to pass, we can go ahead and skip the
2467 permanent breakpoint manually. */
2468 if (debug_infrun)
2469 fprintf_unfiltered (gdb_stdlog,
2470 "infrun: resume: skipping permanent breakpoint\n");
2471 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2472 /* Update pc to reflect the new address from which we will
2473 execute instructions. */
2474 pc = regcache_read_pc (regcache);
2475
2476 if (step)
2477 {
2478 /* We've already advanced the PC, so the stepping part
2479 is done. Now we need to arrange for a trap to be
2480 reported to handle_inferior_event. Set a breakpoint
2481 at the current PC, and run to it. Don't update
2482 prev_pc, because if we end in
2483 switch_back_to_stepped_thread, we want the "expected
2484 thread advanced also" branch to be taken. IOW, we
2485 don't want this thread to step further from PC
2486 (overstep). */
2487 gdb_assert (!step_over_info_valid_p ());
2488 insert_single_step_breakpoint (gdbarch, aspace, pc);
2489 insert_breakpoints ();
2490
2491 resume_ptid = internal_resume_ptid (user_step);
2492 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2493 discard_cleanups (old_cleanups);
2494 tp->resumed = 1;
2495 return;
2496 }
2497 }
2498 }
2499
2500 /* If we have a breakpoint to step over, make sure to do a single
2501 step only. Same if we have software watchpoints. */
2502 if (tp->control.trap_expected || bpstat_should_step ())
2503 tp->control.may_range_step = 0;
2504
2505 /* If enabled, step over breakpoints by executing a copy of the
2506 instruction at a different address.
2507
2508 We can't use displaced stepping when we have a signal to deliver;
2509 the comments for displaced_step_prepare explain why. The
2510 comments in the handle_inferior event for dealing with 'random
2511 signals' explain what we do instead.
2512
2513 We can't use displaced stepping when we are waiting for vfork_done
2514 event, displaced stepping breaks the vfork child similarly as single
2515 step software breakpoint. */
2516 if (tp->control.trap_expected
2517 && use_displaced_stepping (tp)
2518 && !step_over_info_valid_p ()
2519 && sig == GDB_SIGNAL_0
2520 && !current_inferior ()->waiting_for_vfork_done)
2521 {
2522 int prepared = displaced_step_prepare (inferior_ptid);
2523
2524 if (prepared == 0)
2525 {
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "Got placed in step-over queue\n");
2529
2530 tp->control.trap_expected = 0;
2531 discard_cleanups (old_cleanups);
2532 return;
2533 }
2534 else if (prepared < 0)
2535 {
2536 /* Fallback to stepping over the breakpoint in-line. */
2537
2538 if (target_is_non_stop_p ())
2539 stop_all_threads ();
2540
2541 set_step_over_info (get_regcache_aspace (regcache),
2542 regcache_read_pc (regcache), 0);
2543
2544 step = maybe_software_singlestep (gdbarch, pc);
2545
2546 insert_breakpoints ();
2547 }
2548 else if (prepared > 0)
2549 {
2550 struct displaced_step_inferior_state *displaced;
2551
2552 /* Update pc to reflect the new address from which we will
2553 execute instructions due to displaced stepping. */
2554 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2555
2556 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2557 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2558 displaced->step_closure);
2559 }
2560 }
2561
2562 /* Do we need to do it the hard way, w/temp breakpoints? */
2563 else if (step)
2564 step = maybe_software_singlestep (gdbarch, pc);
2565
2566 /* Currently, our software single-step implementation leads to different
2567 results than hardware single-stepping in one situation: when stepping
2568 into delivering a signal which has an associated signal handler,
2569 hardware single-step will stop at the first instruction of the handler,
2570 while software single-step will simply skip execution of the handler.
2571
2572 For now, this difference in behavior is accepted since there is no
2573 easy way to actually implement single-stepping into a signal handler
2574 without kernel support.
2575
2576 However, there is one scenario where this difference leads to follow-on
2577 problems: if we're stepping off a breakpoint by removing all breakpoints
2578 and then single-stepping. In this case, the software single-step
2579 behavior means that even if there is a *breakpoint* in the signal
2580 handler, GDB still would not stop.
2581
2582 Fortunately, we can at least fix this particular issue. We detect
2583 here the case where we are about to deliver a signal while software
2584 single-stepping with breakpoints removed. In this situation, we
2585 revert the decisions to remove all breakpoints and insert single-
2586 step breakpoints, and instead we install a step-resume breakpoint
2587 at the current address, deliver the signal without stepping, and
2588 once we arrive back at the step-resume breakpoint, actually step
2589 over the breakpoint we originally wanted to step over. */
2590 if (thread_has_single_step_breakpoints_set (tp)
2591 && sig != GDB_SIGNAL_0
2592 && step_over_info_valid_p ())
2593 {
2594 /* If we have nested signals or a pending signal is delivered
2595 immediately after a handler returns, might might already have
2596 a step-resume breakpoint set on the earlier handler. We cannot
2597 set another step-resume breakpoint; just continue on until the
2598 original breakpoint is hit. */
2599 if (tp->control.step_resume_breakpoint == NULL)
2600 {
2601 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2602 tp->step_after_step_resume_breakpoint = 1;
2603 }
2604
2605 delete_single_step_breakpoints (tp);
2606
2607 clear_step_over_info ();
2608 tp->control.trap_expected = 0;
2609
2610 insert_breakpoints ();
2611 }
2612
2613 /* If STEP is set, it's a request to use hardware stepping
2614 facilities. But in that case, we should never
2615 use singlestep breakpoint. */
2616 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2617
2618 /* Decide the set of threads to ask the target to resume. */
2619 if ((step || thread_has_single_step_breakpoints_set (tp))
2620 && tp->control.trap_expected)
2621 {
2622 /* We're allowing a thread to run past a breakpoint it has
2623 hit, by single-stepping the thread with the breakpoint
2624 removed. In which case, we need to single-step only this
2625 thread, and keep others stopped, as they can miss this
2626 breakpoint if allowed to run. */
2627 resume_ptid = inferior_ptid;
2628 }
2629 else
2630 resume_ptid = internal_resume_ptid (user_step);
2631
2632 if (execution_direction != EXEC_REVERSE
2633 && step && breakpoint_inserted_here_p (aspace, pc))
2634 {
2635 /* There are two cases where we currently need to step a
2636 breakpoint instruction when we have a signal to deliver:
2637
2638 - See handle_signal_stop where we handle random signals that
2639 could take out us out of the stepping range. Normally, in
2640 that case we end up continuing (instead of stepping) over the
2641 signal handler with a breakpoint at PC, but there are cases
2642 where we should _always_ single-step, even if we have a
2643 step-resume breakpoint, like when a software watchpoint is
2644 set. Assuming single-stepping and delivering a signal at the
2645 same time would takes us to the signal handler, then we could
2646 have removed the breakpoint at PC to step over it. However,
2647 some hardware step targets (like e.g., Mac OS) can't step
2648 into signal handlers, and for those, we need to leave the
2649 breakpoint at PC inserted, as otherwise if the handler
2650 recurses and executes PC again, it'll miss the breakpoint.
2651 So we leave the breakpoint inserted anyway, but we need to
2652 record that we tried to step a breakpoint instruction, so
2653 that adjust_pc_after_break doesn't end up confused.
2654
2655 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2656 in one thread after another thread that was stepping had been
2657 momentarily paused for a step-over. When we re-resume the
2658 stepping thread, it may be resumed from that address with a
2659 breakpoint that hasn't trapped yet. Seen with
2660 gdb.threads/non-stop-fair-events.exp, on targets that don't
2661 do displaced stepping. */
2662
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "infrun: resume: [%s] stepped breakpoint\n",
2666 target_pid_to_str (tp->ptid));
2667
2668 tp->stepped_breakpoint = 1;
2669
2670 /* Most targets can step a breakpoint instruction, thus
2671 executing it normally. But if this one cannot, just
2672 continue and we will hit it anyway. */
2673 if (gdbarch_cannot_step_breakpoint (gdbarch))
2674 step = 0;
2675 }
2676
2677 if (debug_displaced
2678 && tp->control.trap_expected
2679 && use_displaced_stepping (tp)
2680 && !step_over_info_valid_p ())
2681 {
2682 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2683 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2684 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2685 gdb_byte buf[4];
2686
2687 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2688 paddress (resume_gdbarch, actual_pc));
2689 read_memory (actual_pc, buf, sizeof (buf));
2690 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2691 }
2692
2693 if (tp->control.may_range_step)
2694 {
2695 /* If we're resuming a thread with the PC out of the step
2696 range, then we're doing some nested/finer run control
2697 operation, like stepping the thread out of the dynamic
2698 linker or the displaced stepping scratch pad. We
2699 shouldn't have allowed a range step then. */
2700 gdb_assert (pc_in_thread_step_range (pc, tp));
2701 }
2702
2703 do_target_resume (resume_ptid, step, sig);
2704 tp->resumed = 1;
2705 discard_cleanups (old_cleanups);
2706 }
2707 \f
2708 /* Proceeding. */
2709
2710 /* See infrun.h. */
2711
2712 /* Counter that tracks number of user visible stops. This can be used
2713 to tell whether a command has proceeded the inferior past the
2714 current location. This allows e.g., inferior function calls in
2715 breakpoint commands to not interrupt the command list. When the
2716 call finishes successfully, the inferior is standing at the same
2717 breakpoint as if nothing happened (and so we don't call
2718 normal_stop). */
2719 static ULONGEST current_stop_id;
2720
2721 /* See infrun.h. */
2722
2723 ULONGEST
2724 get_stop_id (void)
2725 {
2726 return current_stop_id;
2727 }
2728
2729 /* Called when we report a user visible stop. */
2730
2731 static void
2732 new_stop_id (void)
2733 {
2734 current_stop_id++;
2735 }
2736
2737 /* Clear out all variables saying what to do when inferior is continued.
2738 First do this, then set the ones you want, then call `proceed'. */
2739
2740 static void
2741 clear_proceed_status_thread (struct thread_info *tp)
2742 {
2743 if (debug_infrun)
2744 fprintf_unfiltered (gdb_stdlog,
2745 "infrun: clear_proceed_status_thread (%s)\n",
2746 target_pid_to_str (tp->ptid));
2747
2748 /* If we're starting a new sequence, then the previous finished
2749 single-step is no longer relevant. */
2750 if (tp->suspend.waitstatus_pending_p)
2751 {
2752 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2753 {
2754 if (debug_infrun)
2755 fprintf_unfiltered (gdb_stdlog,
2756 "infrun: clear_proceed_status: pending "
2757 "event of %s was a finished step. "
2758 "Discarding.\n",
2759 target_pid_to_str (tp->ptid));
2760
2761 tp->suspend.waitstatus_pending_p = 0;
2762 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2763 }
2764 else if (debug_infrun)
2765 {
2766 char *statstr;
2767
2768 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2769 fprintf_unfiltered (gdb_stdlog,
2770 "infrun: clear_proceed_status_thread: thread %s "
2771 "has pending wait status %s "
2772 "(currently_stepping=%d).\n",
2773 target_pid_to_str (tp->ptid), statstr,
2774 currently_stepping (tp));
2775 xfree (statstr);
2776 }
2777 }
2778
2779 /* If this signal should not be seen by program, give it zero.
2780 Used for debugging signals. */
2781 if (!signal_pass_state (tp->suspend.stop_signal))
2782 tp->suspend.stop_signal = GDB_SIGNAL_0;
2783
2784 thread_fsm_delete (tp->thread_fsm);
2785 tp->thread_fsm = NULL;
2786
2787 tp->control.trap_expected = 0;
2788 tp->control.step_range_start = 0;
2789 tp->control.step_range_end = 0;
2790 tp->control.may_range_step = 0;
2791 tp->control.step_frame_id = null_frame_id;
2792 tp->control.step_stack_frame_id = null_frame_id;
2793 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2794 tp->control.step_start_function = NULL;
2795 tp->stop_requested = 0;
2796
2797 tp->control.stop_step = 0;
2798
2799 tp->control.proceed_to_finish = 0;
2800
2801 tp->control.command_interp = NULL;
2802 tp->control.stepping_command = 0;
2803
2804 /* Discard any remaining commands or status from previous stop. */
2805 bpstat_clear (&tp->control.stop_bpstat);
2806 }
2807
2808 void
2809 clear_proceed_status (int step)
2810 {
2811 /* With scheduler-locking replay, stop replaying other threads if we're
2812 not replaying the user-visible resume ptid.
2813
2814 This is a convenience feature to not require the user to explicitly
2815 stop replaying the other threads. We're assuming that the user's
2816 intent is to resume tracing the recorded process. */
2817 if (!non_stop && scheduler_mode == schedlock_replay
2818 && target_record_is_replaying (minus_one_ptid)
2819 && !target_record_will_replay (user_visible_resume_ptid (step),
2820 execution_direction))
2821 target_record_stop_replaying ();
2822
2823 if (!non_stop)
2824 {
2825 struct thread_info *tp;
2826 ptid_t resume_ptid;
2827
2828 resume_ptid = user_visible_resume_ptid (step);
2829
2830 /* In all-stop mode, delete the per-thread status of all threads
2831 we're about to resume, implicitly and explicitly. */
2832 ALL_NON_EXITED_THREADS (tp)
2833 {
2834 if (!ptid_match (tp->ptid, resume_ptid))
2835 continue;
2836 clear_proceed_status_thread (tp);
2837 }
2838 }
2839
2840 if (!ptid_equal (inferior_ptid, null_ptid))
2841 {
2842 struct inferior *inferior;
2843
2844 if (non_stop)
2845 {
2846 /* If in non-stop mode, only delete the per-thread status of
2847 the current thread. */
2848 clear_proceed_status_thread (inferior_thread ());
2849 }
2850
2851 inferior = current_inferior ();
2852 inferior->control.stop_soon = NO_STOP_QUIETLY;
2853 }
2854
2855 observer_notify_about_to_proceed ();
2856 }
2857
2858 /* Returns true if TP is still stopped at a breakpoint that needs
2859 stepping-over in order to make progress. If the breakpoint is gone
2860 meanwhile, we can skip the whole step-over dance. */
2861
2862 static int
2863 thread_still_needs_step_over_bp (struct thread_info *tp)
2864 {
2865 if (tp->stepping_over_breakpoint)
2866 {
2867 struct regcache *regcache = get_thread_regcache (tp->ptid);
2868
2869 if (breakpoint_here_p (get_regcache_aspace (regcache),
2870 regcache_read_pc (regcache))
2871 == ordinary_breakpoint_here)
2872 return 1;
2873
2874 tp->stepping_over_breakpoint = 0;
2875 }
2876
2877 return 0;
2878 }
2879
2880 /* Check whether thread TP still needs to start a step-over in order
2881 to make progress when resumed. Returns an bitwise or of enum
2882 step_over_what bits, indicating what needs to be stepped over. */
2883
2884 static int
2885 thread_still_needs_step_over (struct thread_info *tp)
2886 {
2887 struct inferior *inf = find_inferior_ptid (tp->ptid);
2888 int what = 0;
2889
2890 if (thread_still_needs_step_over_bp (tp))
2891 what |= STEP_OVER_BREAKPOINT;
2892
2893 if (tp->stepping_over_watchpoint
2894 && !target_have_steppable_watchpoint)
2895 what |= STEP_OVER_WATCHPOINT;
2896
2897 return what;
2898 }
2899
2900 /* Returns true if scheduler locking applies. STEP indicates whether
2901 we're about to do a step/next-like command to a thread. */
2902
2903 static int
2904 schedlock_applies (struct thread_info *tp)
2905 {
2906 return (scheduler_mode == schedlock_on
2907 || (scheduler_mode == schedlock_step
2908 && tp->control.stepping_command)
2909 || (scheduler_mode == schedlock_replay
2910 && target_record_will_replay (minus_one_ptid,
2911 execution_direction)));
2912 }
2913
2914 /* Basic routine for continuing the program in various fashions.
2915
2916 ADDR is the address to resume at, or -1 for resume where stopped.
2917 SIGGNAL is the signal to give it, or 0 for none,
2918 or -1 for act according to how it stopped.
2919 STEP is nonzero if should trap after one instruction.
2920 -1 means return after that and print nothing.
2921 You should probably set various step_... variables
2922 before calling here, if you are stepping.
2923
2924 You should call clear_proceed_status before calling proceed. */
2925
2926 void
2927 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2928 {
2929 struct regcache *regcache;
2930 struct gdbarch *gdbarch;
2931 struct thread_info *tp;
2932 CORE_ADDR pc;
2933 struct address_space *aspace;
2934 ptid_t resume_ptid;
2935 struct execution_control_state ecss;
2936 struct execution_control_state *ecs = &ecss;
2937 struct cleanup *old_chain;
2938 int started;
2939
2940 /* If we're stopped at a fork/vfork, follow the branch set by the
2941 "set follow-fork-mode" command; otherwise, we'll just proceed
2942 resuming the current thread. */
2943 if (!follow_fork ())
2944 {
2945 /* The target for some reason decided not to resume. */
2946 normal_stop ();
2947 if (target_can_async_p ())
2948 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2949 return;
2950 }
2951
2952 /* We'll update this if & when we switch to a new thread. */
2953 previous_inferior_ptid = inferior_ptid;
2954
2955 regcache = get_current_regcache ();
2956 gdbarch = get_regcache_arch (regcache);
2957 aspace = get_regcache_aspace (regcache);
2958 pc = regcache_read_pc (regcache);
2959 tp = inferior_thread ();
2960
2961 /* Fill in with reasonable starting values. */
2962 init_thread_stepping_state (tp);
2963
2964 gdb_assert (!thread_is_in_step_over_chain (tp));
2965
2966 if (addr == (CORE_ADDR) -1)
2967 {
2968 if (pc == stop_pc
2969 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2970 && execution_direction != EXEC_REVERSE)
2971 /* There is a breakpoint at the address we will resume at,
2972 step one instruction before inserting breakpoints so that
2973 we do not stop right away (and report a second hit at this
2974 breakpoint).
2975
2976 Note, we don't do this in reverse, because we won't
2977 actually be executing the breakpoint insn anyway.
2978 We'll be (un-)executing the previous instruction. */
2979 tp->stepping_over_breakpoint = 1;
2980 else if (gdbarch_single_step_through_delay_p (gdbarch)
2981 && gdbarch_single_step_through_delay (gdbarch,
2982 get_current_frame ()))
2983 /* We stepped onto an instruction that needs to be stepped
2984 again before re-inserting the breakpoint, do so. */
2985 tp->stepping_over_breakpoint = 1;
2986 }
2987 else
2988 {
2989 regcache_write_pc (regcache, addr);
2990 }
2991
2992 if (siggnal != GDB_SIGNAL_DEFAULT)
2993 tp->suspend.stop_signal = siggnal;
2994
2995 /* Record the interpreter that issued the execution command that
2996 caused this thread to resume. If the top level interpreter is
2997 MI/async, and the execution command was a CLI command
2998 (next/step/etc.), we'll want to print stop event output to the MI
2999 console channel (the stepped-to line, etc.), as if the user
3000 entered the execution command on a real GDB console. */
3001 tp->control.command_interp = command_interp ();
3002
3003 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3004
3005 /* If an exception is thrown from this point on, make sure to
3006 propagate GDB's knowledge of the executing state to the
3007 frontend/user running state. */
3008 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3009
3010 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3011 threads (e.g., we might need to set threads stepping over
3012 breakpoints first), from the user/frontend's point of view, all
3013 threads in RESUME_PTID are now running. Unless we're calling an
3014 inferior function, as in that case we pretend the inferior
3015 doesn't run at all. */
3016 if (!tp->control.in_infcall)
3017 set_running (resume_ptid, 1);
3018
3019 if (debug_infrun)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "infrun: proceed (addr=%s, signal=%s)\n",
3022 paddress (gdbarch, addr),
3023 gdb_signal_to_symbol_string (siggnal));
3024
3025 annotate_starting ();
3026
3027 /* Make sure that output from GDB appears before output from the
3028 inferior. */
3029 gdb_flush (gdb_stdout);
3030
3031 /* In a multi-threaded task we may select another thread and
3032 then continue or step.
3033
3034 But if a thread that we're resuming had stopped at a breakpoint,
3035 it will immediately cause another breakpoint stop without any
3036 execution (i.e. it will report a breakpoint hit incorrectly). So
3037 we must step over it first.
3038
3039 Look for threads other than the current (TP) that reported a
3040 breakpoint hit and haven't been resumed yet since. */
3041
3042 /* If scheduler locking applies, we can avoid iterating over all
3043 threads. */
3044 if (!non_stop && !schedlock_applies (tp))
3045 {
3046 struct thread_info *current = tp;
3047
3048 ALL_NON_EXITED_THREADS (tp)
3049 {
3050 /* Ignore the current thread here. It's handled
3051 afterwards. */
3052 if (tp == current)
3053 continue;
3054
3055 /* Ignore threads of processes we're not resuming. */
3056 if (!ptid_match (tp->ptid, resume_ptid))
3057 continue;
3058
3059 if (!thread_still_needs_step_over (tp))
3060 continue;
3061
3062 gdb_assert (!thread_is_in_step_over_chain (tp));
3063
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "infrun: need to step-over [%s] first\n",
3067 target_pid_to_str (tp->ptid));
3068
3069 thread_step_over_chain_enqueue (tp);
3070 }
3071
3072 tp = current;
3073 }
3074
3075 /* Enqueue the current thread last, so that we move all other
3076 threads over their breakpoints first. */
3077 if (tp->stepping_over_breakpoint)
3078 thread_step_over_chain_enqueue (tp);
3079
3080 /* If the thread isn't started, we'll still need to set its prev_pc,
3081 so that switch_back_to_stepped_thread knows the thread hasn't
3082 advanced. Must do this before resuming any thread, as in
3083 all-stop/remote, once we resume we can't send any other packet
3084 until the target stops again. */
3085 tp->prev_pc = regcache_read_pc (regcache);
3086
3087 started = start_step_over ();
3088
3089 if (step_over_info_valid_p ())
3090 {
3091 /* Either this thread started a new in-line step over, or some
3092 other thread was already doing one. In either case, don't
3093 resume anything else until the step-over is finished. */
3094 }
3095 else if (started && !target_is_non_stop_p ())
3096 {
3097 /* A new displaced stepping sequence was started. In all-stop,
3098 we can't talk to the target anymore until it next stops. */
3099 }
3100 else if (!non_stop && target_is_non_stop_p ())
3101 {
3102 /* In all-stop, but the target is always in non-stop mode.
3103 Start all other threads that are implicitly resumed too. */
3104 ALL_NON_EXITED_THREADS (tp)
3105 {
3106 /* Ignore threads of processes we're not resuming. */
3107 if (!ptid_match (tp->ptid, resume_ptid))
3108 continue;
3109
3110 if (tp->resumed)
3111 {
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: proceed: [%s] resumed\n",
3115 target_pid_to_str (tp->ptid));
3116 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3117 continue;
3118 }
3119
3120 if (thread_is_in_step_over_chain (tp))
3121 {
3122 if (debug_infrun)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "infrun: proceed: [%s] needs step-over\n",
3125 target_pid_to_str (tp->ptid));
3126 continue;
3127 }
3128
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: proceed: resuming %s\n",
3132 target_pid_to_str (tp->ptid));
3133
3134 reset_ecs (ecs, tp);
3135 switch_to_thread (tp->ptid);
3136 keep_going_pass_signal (ecs);
3137 if (!ecs->wait_some_more)
3138 error (_("Command aborted."));
3139 }
3140 }
3141 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3142 {
3143 /* The thread wasn't started, and isn't queued, run it now. */
3144 reset_ecs (ecs, tp);
3145 switch_to_thread (tp->ptid);
3146 keep_going_pass_signal (ecs);
3147 if (!ecs->wait_some_more)
3148 error (_("Command aborted."));
3149 }
3150
3151 discard_cleanups (old_chain);
3152
3153 /* Tell the event loop to wait for it to stop. If the target
3154 supports asynchronous execution, it'll do this from within
3155 target_resume. */
3156 if (!target_can_async_p ())
3157 mark_async_event_handler (infrun_async_inferior_event_token);
3158 }
3159 \f
3160
3161 /* Start remote-debugging of a machine over a serial link. */
3162
3163 void
3164 start_remote (int from_tty)
3165 {
3166 struct inferior *inferior;
3167
3168 inferior = current_inferior ();
3169 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3170
3171 /* Always go on waiting for the target, regardless of the mode. */
3172 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3173 indicate to wait_for_inferior that a target should timeout if
3174 nothing is returned (instead of just blocking). Because of this,
3175 targets expecting an immediate response need to, internally, set
3176 things up so that the target_wait() is forced to eventually
3177 timeout. */
3178 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3179 differentiate to its caller what the state of the target is after
3180 the initial open has been performed. Here we're assuming that
3181 the target has stopped. It should be possible to eventually have
3182 target_open() return to the caller an indication that the target
3183 is currently running and GDB state should be set to the same as
3184 for an async run. */
3185 wait_for_inferior ();
3186
3187 /* Now that the inferior has stopped, do any bookkeeping like
3188 loading shared libraries. We want to do this before normal_stop,
3189 so that the displayed frame is up to date. */
3190 post_create_inferior (&current_target, from_tty);
3191
3192 normal_stop ();
3193 }
3194
3195 /* Initialize static vars when a new inferior begins. */
3196
3197 void
3198 init_wait_for_inferior (void)
3199 {
3200 /* These are meaningless until the first time through wait_for_inferior. */
3201
3202 breakpoint_init_inferior (inf_starting);
3203
3204 clear_proceed_status (0);
3205
3206 target_last_wait_ptid = minus_one_ptid;
3207
3208 previous_inferior_ptid = inferior_ptid;
3209
3210 /* Discard any skipped inlined frames. */
3211 clear_inline_frame_state (minus_one_ptid);
3212 }
3213
3214 \f
3215
3216 static void handle_inferior_event (struct execution_control_state *ecs);
3217
3218 static void handle_step_into_function (struct gdbarch *gdbarch,
3219 struct execution_control_state *ecs);
3220 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3221 struct execution_control_state *ecs);
3222 static void handle_signal_stop (struct execution_control_state *ecs);
3223 static void check_exception_resume (struct execution_control_state *,
3224 struct frame_info *);
3225
3226 static void end_stepping_range (struct execution_control_state *ecs);
3227 static void stop_waiting (struct execution_control_state *ecs);
3228 static void keep_going (struct execution_control_state *ecs);
3229 static void process_event_stop_test (struct execution_control_state *ecs);
3230 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3231
3232 /* Callback for iterate over threads. If the thread is stopped, but
3233 the user/frontend doesn't know about that yet, go through
3234 normal_stop, as if the thread had just stopped now. ARG points at
3235 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3236 ptid_is_pid(PTID) is true, applies to all threads of the process
3237 pointed at by PTID. Otherwise, apply only to the thread pointed by
3238 PTID. */
3239
3240 static int
3241 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3242 {
3243 ptid_t ptid = * (ptid_t *) arg;
3244
3245 if ((ptid_equal (info->ptid, ptid)
3246 || ptid_equal (minus_one_ptid, ptid)
3247 || (ptid_is_pid (ptid)
3248 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3249 && is_running (info->ptid)
3250 && !is_executing (info->ptid))
3251 {
3252 struct cleanup *old_chain;
3253 struct execution_control_state ecss;
3254 struct execution_control_state *ecs = &ecss;
3255
3256 memset (ecs, 0, sizeof (*ecs));
3257
3258 old_chain = make_cleanup_restore_current_thread ();
3259
3260 overlay_cache_invalid = 1;
3261 /* Flush target cache before starting to handle each event.
3262 Target was running and cache could be stale. This is just a
3263 heuristic. Running threads may modify target memory, but we
3264 don't get any event. */
3265 target_dcache_invalidate ();
3266
3267 /* Go through handle_inferior_event/normal_stop, so we always
3268 have consistent output as if the stop event had been
3269 reported. */
3270 ecs->ptid = info->ptid;
3271 ecs->event_thread = info;
3272 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3273 ecs->ws.value.sig = GDB_SIGNAL_0;
3274
3275 handle_inferior_event (ecs);
3276
3277 if (!ecs->wait_some_more)
3278 {
3279 /* Cancel any running execution command. */
3280 thread_cancel_execution_command (info);
3281
3282 normal_stop ();
3283 }
3284
3285 do_cleanups (old_chain);
3286 }
3287
3288 return 0;
3289 }
3290
3291 /* This function is attached as a "thread_stop_requested" observer.
3292 Cleanup local state that assumed the PTID was to be resumed, and
3293 report the stop to the frontend. */
3294
3295 static void
3296 infrun_thread_stop_requested (ptid_t ptid)
3297 {
3298 struct thread_info *tp;
3299
3300 /* PTID was requested to stop. Remove matching threads from the
3301 step-over queue, so we don't try to resume them
3302 automatically. */
3303 ALL_NON_EXITED_THREADS (tp)
3304 if (ptid_match (tp->ptid, ptid))
3305 {
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308 }
3309
3310 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3311 }
3312
3313 static void
3314 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3315 {
3316 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3317 nullify_last_target_wait_ptid ();
3318 }
3319
3320 /* Delete the step resume, single-step and longjmp/exception resume
3321 breakpoints of TP. */
3322
3323 static void
3324 delete_thread_infrun_breakpoints (struct thread_info *tp)
3325 {
3326 delete_step_resume_breakpoint (tp);
3327 delete_exception_resume_breakpoint (tp);
3328 delete_single_step_breakpoints (tp);
3329 }
3330
3331 /* If the target still has execution, call FUNC for each thread that
3332 just stopped. In all-stop, that's all the non-exited threads; in
3333 non-stop, that's the current thread, only. */
3334
3335 typedef void (*for_each_just_stopped_thread_callback_func)
3336 (struct thread_info *tp);
3337
3338 static void
3339 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3340 {
3341 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3342 return;
3343
3344 if (target_is_non_stop_p ())
3345 {
3346 /* If in non-stop mode, only the current thread stopped. */
3347 func (inferior_thread ());
3348 }
3349 else
3350 {
3351 struct thread_info *tp;
3352
3353 /* In all-stop mode, all threads have stopped. */
3354 ALL_NON_EXITED_THREADS (tp)
3355 {
3356 func (tp);
3357 }
3358 }
3359 }
3360
3361 /* Delete the step resume and longjmp/exception resume breakpoints of
3362 the threads that just stopped. */
3363
3364 static void
3365 delete_just_stopped_threads_infrun_breakpoints (void)
3366 {
3367 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3368 }
3369
3370 /* Delete the single-step breakpoints of the threads that just
3371 stopped. */
3372
3373 static void
3374 delete_just_stopped_threads_single_step_breakpoints (void)
3375 {
3376 for_each_just_stopped_thread (delete_single_step_breakpoints);
3377 }
3378
3379 /* A cleanup wrapper. */
3380
3381 static void
3382 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3383 {
3384 delete_just_stopped_threads_infrun_breakpoints ();
3385 }
3386
3387 /* See infrun.h. */
3388
3389 void
3390 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3391 const struct target_waitstatus *ws)
3392 {
3393 char *status_string = target_waitstatus_to_string (ws);
3394 struct ui_file *tmp_stream = mem_fileopen ();
3395 char *text;
3396
3397 /* The text is split over several lines because it was getting too long.
3398 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3399 output as a unit; we want only one timestamp printed if debug_timestamp
3400 is set. */
3401
3402 fprintf_unfiltered (tmp_stream,
3403 "infrun: target_wait (%d.%ld.%ld",
3404 ptid_get_pid (waiton_ptid),
3405 ptid_get_lwp (waiton_ptid),
3406 ptid_get_tid (waiton_ptid));
3407 if (ptid_get_pid (waiton_ptid) != -1)
3408 fprintf_unfiltered (tmp_stream,
3409 " [%s]", target_pid_to_str (waiton_ptid));
3410 fprintf_unfiltered (tmp_stream, ", status) =\n");
3411 fprintf_unfiltered (tmp_stream,
3412 "infrun: %d.%ld.%ld [%s],\n",
3413 ptid_get_pid (result_ptid),
3414 ptid_get_lwp (result_ptid),
3415 ptid_get_tid (result_ptid),
3416 target_pid_to_str (result_ptid));
3417 fprintf_unfiltered (tmp_stream,
3418 "infrun: %s\n",
3419 status_string);
3420
3421 text = ui_file_xstrdup (tmp_stream, NULL);
3422
3423 /* This uses %s in part to handle %'s in the text, but also to avoid
3424 a gcc error: the format attribute requires a string literal. */
3425 fprintf_unfiltered (gdb_stdlog, "%s", text);
3426
3427 xfree (status_string);
3428 xfree (text);
3429 ui_file_delete (tmp_stream);
3430 }
3431
3432 /* Select a thread at random, out of those which are resumed and have
3433 had events. */
3434
3435 static struct thread_info *
3436 random_pending_event_thread (ptid_t waiton_ptid)
3437 {
3438 struct thread_info *event_tp;
3439 int num_events = 0;
3440 int random_selector;
3441
3442 /* First see how many events we have. Count only resumed threads
3443 that have an event pending. */
3444 ALL_NON_EXITED_THREADS (event_tp)
3445 if (ptid_match (event_tp->ptid, waiton_ptid)
3446 && event_tp->resumed
3447 && event_tp->suspend.waitstatus_pending_p)
3448 num_events++;
3449
3450 if (num_events == 0)
3451 return NULL;
3452
3453 /* Now randomly pick a thread out of those that have had events. */
3454 random_selector = (int)
3455 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3456
3457 if (debug_infrun && num_events > 1)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "infrun: Found %d events, selecting #%d\n",
3460 num_events, random_selector);
3461
3462 /* Select the Nth thread that has had an event. */
3463 ALL_NON_EXITED_THREADS (event_tp)
3464 if (ptid_match (event_tp->ptid, waiton_ptid)
3465 && event_tp->resumed
3466 && event_tp->suspend.waitstatus_pending_p)
3467 if (random_selector-- == 0)
3468 break;
3469
3470 return event_tp;
3471 }
3472
3473 /* Wrapper for target_wait that first checks whether threads have
3474 pending statuses to report before actually asking the target for
3475 more events. */
3476
3477 static ptid_t
3478 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3479 {
3480 ptid_t event_ptid;
3481 struct thread_info *tp;
3482
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
3485 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3486 {
3487 tp = random_pending_event_thread (ptid);
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
3494 target_pid_to_str (ptid));
3495
3496 /* We have a specific thread to check. */
3497 tp = find_thread_ptid (ptid);
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
3507 struct regcache *regcache = get_thread_regcache (tp->ptid);
3508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
3519 target_pid_to_str (tp->ptid),
3520 paddress (gdbarch, tp->prev_pc),
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
3524 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
3529 target_pid_to_str (tp->ptid),
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
3540 target_pid_to_str (tp->ptid));
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
3551 char *statstr;
3552
3553 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
3556 statstr,
3557 target_pid_to_str (tp->ptid));
3558 xfree (statstr);
3559 }
3560
3561 /* Now that we've selected our final event LWP, un-adjust its PC
3562 if it was a software breakpoint (and the target doesn't
3563 always adjust the PC itself). */
3564 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3565 && !target_supports_stopped_by_sw_breakpoint ())
3566 {
3567 struct regcache *regcache;
3568 struct gdbarch *gdbarch;
3569 int decr_pc;
3570
3571 regcache = get_thread_regcache (tp->ptid);
3572 gdbarch = get_regcache_arch (regcache);
3573
3574 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3575 if (decr_pc != 0)
3576 {
3577 CORE_ADDR pc;
3578
3579 pc = regcache_read_pc (regcache);
3580 regcache_write_pc (regcache, pc + decr_pc);
3581 }
3582 }
3583
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 *status = tp->suspend.waitstatus;
3586 tp->suspend.waitstatus_pending_p = 0;
3587
3588 /* Wake up the event loop again, until all pending events are
3589 processed. */
3590 if (target_is_async_p ())
3591 mark_async_event_handler (infrun_async_inferior_event_token);
3592 return tp->ptid;
3593 }
3594
3595 /* But if we don't find one, we'll have to wait. */
3596
3597 if (deprecated_target_wait_hook)
3598 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3599 else
3600 event_ptid = target_wait (ptid, status, options);
3601
3602 return event_ptid;
3603 }
3604
3605 /* Prepare and stabilize the inferior for detaching it. E.g.,
3606 detaching while a thread is displaced stepping is a recipe for
3607 crashing it, as nothing would readjust the PC out of the scratch
3608 pad. */
3609
3610 void
3611 prepare_for_detach (void)
3612 {
3613 struct inferior *inf = current_inferior ();
3614 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3615 struct cleanup *old_chain_1;
3616 struct displaced_step_inferior_state *displaced;
3617
3618 displaced = get_displaced_stepping_state (inf->pid);
3619
3620 /* Is any thread of this process displaced stepping? If not,
3621 there's nothing else to do. */
3622 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3623 return;
3624
3625 if (debug_infrun)
3626 fprintf_unfiltered (gdb_stdlog,
3627 "displaced-stepping in-process while detaching");
3628
3629 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3630 inf->detaching = 1;
3631
3632 while (!ptid_equal (displaced->step_ptid, null_ptid))
3633 {
3634 struct cleanup *old_chain_2;
3635 struct execution_control_state ecss;
3636 struct execution_control_state *ecs;
3637
3638 ecs = &ecss;
3639 memset (ecs, 0, sizeof (*ecs));
3640
3641 overlay_cache_invalid = 1;
3642 /* Flush target cache before starting to handle each event.
3643 Target was running and cache could be stale. This is just a
3644 heuristic. Running threads may modify target memory, but we
3645 don't get any event. */
3646 target_dcache_invalidate ();
3647
3648 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3649
3650 if (debug_infrun)
3651 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3652
3653 /* If an error happens while handling the event, propagate GDB's
3654 knowledge of the executing state to the frontend/user running
3655 state. */
3656 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3657 &minus_one_ptid);
3658
3659 /* Now figure out what to do with the result of the result. */
3660 handle_inferior_event (ecs);
3661
3662 /* No error, don't finish the state yet. */
3663 discard_cleanups (old_chain_2);
3664
3665 /* Breakpoints and watchpoints are not installed on the target
3666 at this point, and signals are passed directly to the
3667 inferior, so this must mean the process is gone. */
3668 if (!ecs->wait_some_more)
3669 {
3670 discard_cleanups (old_chain_1);
3671 error (_("Program exited while detaching"));
3672 }
3673 }
3674
3675 discard_cleanups (old_chain_1);
3676 }
3677
3678 /* Wait for control to return from inferior to debugger.
3679
3680 If inferior gets a signal, we may decide to start it up again
3681 instead of returning. That is why there is a loop in this function.
3682 When this function actually returns it means the inferior
3683 should be left stopped and GDB should read more commands. */
3684
3685 void
3686 wait_for_inferior (void)
3687 {
3688 struct cleanup *old_cleanups;
3689 struct cleanup *thread_state_chain;
3690
3691 if (debug_infrun)
3692 fprintf_unfiltered
3693 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3694
3695 old_cleanups
3696 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3697 NULL);
3698
3699 /* If an error happens while handling the event, propagate GDB's
3700 knowledge of the executing state to the frontend/user running
3701 state. */
3702 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3703
3704 while (1)
3705 {
3706 struct execution_control_state ecss;
3707 struct execution_control_state *ecs = &ecss;
3708 ptid_t waiton_ptid = minus_one_ptid;
3709
3710 memset (ecs, 0, sizeof (*ecs));
3711
3712 overlay_cache_invalid = 1;
3713
3714 /* Flush target cache before starting to handle each event.
3715 Target was running and cache could be stale. This is just a
3716 heuristic. Running threads may modify target memory, but we
3717 don't get any event. */
3718 target_dcache_invalidate ();
3719
3720 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3721
3722 if (debug_infrun)
3723 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3724
3725 /* Now figure out what to do with the result of the result. */
3726 handle_inferior_event (ecs);
3727
3728 if (!ecs->wait_some_more)
3729 break;
3730 }
3731
3732 /* No error, don't finish the state yet. */
3733 discard_cleanups (thread_state_chain);
3734
3735 do_cleanups (old_cleanups);
3736 }
3737
3738 /* Cleanup that reinstalls the readline callback handler, if the
3739 target is running in the background. If while handling the target
3740 event something triggered a secondary prompt, like e.g., a
3741 pagination prompt, we'll have removed the callback handler (see
3742 gdb_readline_wrapper_line). Need to do this as we go back to the
3743 event loop, ready to process further input. Note this has no
3744 effect if the handler hasn't actually been removed, because calling
3745 rl_callback_handler_install resets the line buffer, thus losing
3746 input. */
3747
3748 static void
3749 reinstall_readline_callback_handler_cleanup (void *arg)
3750 {
3751 if (!interpreter_async)
3752 {
3753 /* We're not going back to the top level event loop yet. Don't
3754 install the readline callback, as it'd prep the terminal,
3755 readline-style (raw, noecho) (e.g., --batch). We'll install
3756 it the next time the prompt is displayed, when we're ready
3757 for input. */
3758 return;
3759 }
3760
3761 if (async_command_editing_p && !sync_execution)
3762 gdb_rl_callback_handler_reinstall ();
3763 }
3764
3765 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3766 that's just the event thread. In all-stop, that's all threads. */
3767
3768 static void
3769 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3770 {
3771 struct thread_info *thr = ecs->event_thread;
3772
3773 if (thr != NULL && thr->thread_fsm != NULL)
3774 thread_fsm_clean_up (thr->thread_fsm);
3775
3776 if (!non_stop)
3777 {
3778 ALL_NON_EXITED_THREADS (thr)
3779 {
3780 if (thr->thread_fsm == NULL)
3781 continue;
3782 if (thr == ecs->event_thread)
3783 continue;
3784
3785 switch_to_thread (thr->ptid);
3786 thread_fsm_clean_up (thr->thread_fsm);
3787 }
3788
3789 if (ecs->event_thread != NULL)
3790 switch_to_thread (ecs->event_thread->ptid);
3791 }
3792 }
3793
3794 /* A cleanup that restores the execution direction to the value saved
3795 in *ARG. */
3796
3797 static void
3798 restore_execution_direction (void *arg)
3799 {
3800 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3801
3802 execution_direction = *save_exec_dir;
3803 }
3804
3805 /* Asynchronous version of wait_for_inferior. It is called by the
3806 event loop whenever a change of state is detected on the file
3807 descriptor corresponding to the target. It can be called more than
3808 once to complete a single execution command. In such cases we need
3809 to keep the state in a global variable ECSS. If it is the last time
3810 that this function is called for a single execution command, then
3811 report to the user that the inferior has stopped, and do the
3812 necessary cleanups. */
3813
3814 void
3815 fetch_inferior_event (void *client_data)
3816 {
3817 struct execution_control_state ecss;
3818 struct execution_control_state *ecs = &ecss;
3819 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3820 struct cleanup *ts_old_chain;
3821 int was_sync = sync_execution;
3822 enum exec_direction_kind save_exec_dir = execution_direction;
3823 int cmd_done = 0;
3824 ptid_t waiton_ptid = minus_one_ptid;
3825
3826 memset (ecs, 0, sizeof (*ecs));
3827
3828 /* End up with readline processing input, if necessary. */
3829 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3830
3831 /* We're handling a live event, so make sure we're doing live
3832 debugging. If we're looking at traceframes while the target is
3833 running, we're going to need to get back to that mode after
3834 handling the event. */
3835 if (non_stop)
3836 {
3837 make_cleanup_restore_current_traceframe ();
3838 set_current_traceframe (-1);
3839 }
3840
3841 if (non_stop)
3842 /* In non-stop mode, the user/frontend should not notice a thread
3843 switch due to internal events. Make sure we reverse to the
3844 user selected thread and frame after handling the event and
3845 running any breakpoint commands. */
3846 make_cleanup_restore_current_thread ();
3847
3848 overlay_cache_invalid = 1;
3849 /* Flush target cache before starting to handle each event. Target
3850 was running and cache could be stale. This is just a heuristic.
3851 Running threads may modify target memory, but we don't get any
3852 event. */
3853 target_dcache_invalidate ();
3854
3855 make_cleanup (restore_execution_direction, &save_exec_dir);
3856 execution_direction = target_execution_direction ();
3857
3858 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3859 target_can_async_p () ? TARGET_WNOHANG : 0);
3860
3861 if (debug_infrun)
3862 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3863
3864 /* If an error happens while handling the event, propagate GDB's
3865 knowledge of the executing state to the frontend/user running
3866 state. */
3867 if (!target_is_non_stop_p ())
3868 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3869 else
3870 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3871
3872 /* Get executed before make_cleanup_restore_current_thread above to apply
3873 still for the thread which has thrown the exception. */
3874 make_bpstat_clear_actions_cleanup ();
3875
3876 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3877
3878 /* Now figure out what to do with the result of the result. */
3879 handle_inferior_event (ecs);
3880
3881 if (!ecs->wait_some_more)
3882 {
3883 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3884 int should_stop = 1;
3885 struct thread_info *thr = ecs->event_thread;
3886 int should_notify_stop = 1;
3887
3888 delete_just_stopped_threads_infrun_breakpoints ();
3889
3890 if (thr != NULL)
3891 {
3892 struct thread_fsm *thread_fsm = thr->thread_fsm;
3893
3894 if (thread_fsm != NULL)
3895 should_stop = thread_fsm_should_stop (thread_fsm);
3896 }
3897
3898 if (!should_stop)
3899 {
3900 keep_going (ecs);
3901 }
3902 else
3903 {
3904 clean_up_just_stopped_threads_fsms (ecs);
3905
3906 if (thr != NULL && thr->thread_fsm != NULL)
3907 {
3908 should_notify_stop
3909 = thread_fsm_should_notify_stop (thr->thread_fsm);
3910 }
3911
3912 if (should_notify_stop)
3913 {
3914 int proceeded = 0;
3915
3916 /* We may not find an inferior if this was a process exit. */
3917 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3918 proceeded = normal_stop ();
3919
3920 if (!proceeded)
3921 {
3922 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3923 cmd_done = 1;
3924 }
3925 }
3926 }
3927 }
3928
3929 /* No error, don't finish the thread states yet. */
3930 discard_cleanups (ts_old_chain);
3931
3932 /* Revert thread and frame. */
3933 do_cleanups (old_chain);
3934
3935 /* If the inferior was in sync execution mode, and now isn't,
3936 restore the prompt (a synchronous execution command has finished,
3937 and we're ready for input). */
3938 if (interpreter_async && was_sync && !sync_execution)
3939 observer_notify_sync_execution_done ();
3940
3941 if (cmd_done
3942 && !was_sync
3943 && exec_done_display_p
3944 && (ptid_equal (inferior_ptid, null_ptid)
3945 || !is_running (inferior_ptid)))
3946 printf_unfiltered (_("completed.\n"));
3947 }
3948
3949 /* Record the frame and location we're currently stepping through. */
3950 void
3951 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3952 {
3953 struct thread_info *tp = inferior_thread ();
3954
3955 tp->control.step_frame_id = get_frame_id (frame);
3956 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3957
3958 tp->current_symtab = sal.symtab;
3959 tp->current_line = sal.line;
3960 }
3961
3962 /* Clear context switchable stepping state. */
3963
3964 void
3965 init_thread_stepping_state (struct thread_info *tss)
3966 {
3967 tss->stepped_breakpoint = 0;
3968 tss->stepping_over_breakpoint = 0;
3969 tss->stepping_over_watchpoint = 0;
3970 tss->step_after_step_resume_breakpoint = 0;
3971 }
3972
3973 /* Set the cached copy of the last ptid/waitstatus. */
3974
3975 static void
3976 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3977 {
3978 target_last_wait_ptid = ptid;
3979 target_last_waitstatus = status;
3980 }
3981
3982 /* Return the cached copy of the last pid/waitstatus returned by
3983 target_wait()/deprecated_target_wait_hook(). The data is actually
3984 cached by handle_inferior_event(), which gets called immediately
3985 after target_wait()/deprecated_target_wait_hook(). */
3986
3987 void
3988 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3989 {
3990 *ptidp = target_last_wait_ptid;
3991 *status = target_last_waitstatus;
3992 }
3993
3994 void
3995 nullify_last_target_wait_ptid (void)
3996 {
3997 target_last_wait_ptid = minus_one_ptid;
3998 }
3999
4000 /* Switch thread contexts. */
4001
4002 static void
4003 context_switch (ptid_t ptid)
4004 {
4005 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4006 {
4007 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4008 target_pid_to_str (inferior_ptid));
4009 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4010 target_pid_to_str (ptid));
4011 }
4012
4013 switch_to_thread (ptid);
4014 }
4015
4016 /* If the target can't tell whether we've hit breakpoints
4017 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4018 check whether that could have been caused by a breakpoint. If so,
4019 adjust the PC, per gdbarch_decr_pc_after_break. */
4020
4021 static void
4022 adjust_pc_after_break (struct thread_info *thread,
4023 struct target_waitstatus *ws)
4024 {
4025 struct regcache *regcache;
4026 struct gdbarch *gdbarch;
4027 struct address_space *aspace;
4028 CORE_ADDR breakpoint_pc, decr_pc;
4029
4030 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4031 we aren't, just return.
4032
4033 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4034 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4035 implemented by software breakpoints should be handled through the normal
4036 breakpoint layer.
4037
4038 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4039 different signals (SIGILL or SIGEMT for instance), but it is less
4040 clear where the PC is pointing afterwards. It may not match
4041 gdbarch_decr_pc_after_break. I don't know any specific target that
4042 generates these signals at breakpoints (the code has been in GDB since at
4043 least 1992) so I can not guess how to handle them here.
4044
4045 In earlier versions of GDB, a target with
4046 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4047 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4048 target with both of these set in GDB history, and it seems unlikely to be
4049 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4050
4051 if (ws->kind != TARGET_WAITKIND_STOPPED)
4052 return;
4053
4054 if (ws->value.sig != GDB_SIGNAL_TRAP)
4055 return;
4056
4057 /* In reverse execution, when a breakpoint is hit, the instruction
4058 under it has already been de-executed. The reported PC always
4059 points at the breakpoint address, so adjusting it further would
4060 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4061 architecture:
4062
4063 B1 0x08000000 : INSN1
4064 B2 0x08000001 : INSN2
4065 0x08000002 : INSN3
4066 PC -> 0x08000003 : INSN4
4067
4068 Say you're stopped at 0x08000003 as above. Reverse continuing
4069 from that point should hit B2 as below. Reading the PC when the
4070 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4071 been de-executed already.
4072
4073 B1 0x08000000 : INSN1
4074 B2 PC -> 0x08000001 : INSN2
4075 0x08000002 : INSN3
4076 0x08000003 : INSN4
4077
4078 We can't apply the same logic as for forward execution, because
4079 we would wrongly adjust the PC to 0x08000000, since there's a
4080 breakpoint at PC - 1. We'd then report a hit on B1, although
4081 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4082 behaviour. */
4083 if (execution_direction == EXEC_REVERSE)
4084 return;
4085
4086 /* If the target can tell whether the thread hit a SW breakpoint,
4087 trust it. Targets that can tell also adjust the PC
4088 themselves. */
4089 if (target_supports_stopped_by_sw_breakpoint ())
4090 return;
4091
4092 /* Note that relying on whether a breakpoint is planted in memory to
4093 determine this can fail. E.g,. the breakpoint could have been
4094 removed since. Or the thread could have been told to step an
4095 instruction the size of a breakpoint instruction, and only
4096 _after_ was a breakpoint inserted at its address. */
4097
4098 /* If this target does not decrement the PC after breakpoints, then
4099 we have nothing to do. */
4100 regcache = get_thread_regcache (thread->ptid);
4101 gdbarch = get_regcache_arch (regcache);
4102
4103 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4104 if (decr_pc == 0)
4105 return;
4106
4107 aspace = get_regcache_aspace (regcache);
4108
4109 /* Find the location where (if we've hit a breakpoint) the
4110 breakpoint would be. */
4111 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4112
4113 /* If the target can't tell whether a software breakpoint triggered,
4114 fallback to figuring it out based on breakpoints we think were
4115 inserted in the target, and on whether the thread was stepped or
4116 continued. */
4117
4118 /* Check whether there actually is a software breakpoint inserted at
4119 that location.
4120
4121 If in non-stop mode, a race condition is possible where we've
4122 removed a breakpoint, but stop events for that breakpoint were
4123 already queued and arrive later. To suppress those spurious
4124 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4125 and retire them after a number of stop events are reported. Note
4126 this is an heuristic and can thus get confused. The real fix is
4127 to get the "stopped by SW BP and needs adjustment" info out of
4128 the target/kernel (and thus never reach here; see above). */
4129 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4130 || (target_is_non_stop_p ()
4131 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4132 {
4133 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4134
4135 if (record_full_is_used ())
4136 record_full_gdb_operation_disable_set ();
4137
4138 /* When using hardware single-step, a SIGTRAP is reported for both
4139 a completed single-step and a software breakpoint. Need to
4140 differentiate between the two, as the latter needs adjusting
4141 but the former does not.
4142
4143 The SIGTRAP can be due to a completed hardware single-step only if
4144 - we didn't insert software single-step breakpoints
4145 - this thread is currently being stepped
4146
4147 If any of these events did not occur, we must have stopped due
4148 to hitting a software breakpoint, and have to back up to the
4149 breakpoint address.
4150
4151 As a special case, we could have hardware single-stepped a
4152 software breakpoint. In this case (prev_pc == breakpoint_pc),
4153 we also need to back up to the breakpoint address. */
4154
4155 if (thread_has_single_step_breakpoints_set (thread)
4156 || !currently_stepping (thread)
4157 || (thread->stepped_breakpoint
4158 && thread->prev_pc == breakpoint_pc))
4159 regcache_write_pc (regcache, breakpoint_pc);
4160
4161 do_cleanups (old_cleanups);
4162 }
4163 }
4164
4165 static int
4166 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4167 {
4168 for (frame = get_prev_frame (frame);
4169 frame != NULL;
4170 frame = get_prev_frame (frame))
4171 {
4172 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4173 return 1;
4174 if (get_frame_type (frame) != INLINE_FRAME)
4175 break;
4176 }
4177
4178 return 0;
4179 }
4180
4181 /* Auxiliary function that handles syscall entry/return events.
4182 It returns 1 if the inferior should keep going (and GDB
4183 should ignore the event), or 0 if the event deserves to be
4184 processed. */
4185
4186 static int
4187 handle_syscall_event (struct execution_control_state *ecs)
4188 {
4189 struct regcache *regcache;
4190 int syscall_number;
4191
4192 if (!ptid_equal (ecs->ptid, inferior_ptid))
4193 context_switch (ecs->ptid);
4194
4195 regcache = get_thread_regcache (ecs->ptid);
4196 syscall_number = ecs->ws.value.syscall_number;
4197 stop_pc = regcache_read_pc (regcache);
4198
4199 if (catch_syscall_enabled () > 0
4200 && catching_syscall_number (syscall_number) > 0)
4201 {
4202 if (debug_infrun)
4203 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4204 syscall_number);
4205
4206 ecs->event_thread->control.stop_bpstat
4207 = bpstat_stop_status (get_regcache_aspace (regcache),
4208 stop_pc, ecs->ptid, &ecs->ws);
4209
4210 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4211 {
4212 /* Catchpoint hit. */
4213 return 0;
4214 }
4215 }
4216
4217 /* If no catchpoint triggered for this, then keep going. */
4218 keep_going (ecs);
4219 return 1;
4220 }
4221
4222 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4223
4224 static void
4225 fill_in_stop_func (struct gdbarch *gdbarch,
4226 struct execution_control_state *ecs)
4227 {
4228 if (!ecs->stop_func_filled_in)
4229 {
4230 /* Don't care about return value; stop_func_start and stop_func_name
4231 will both be 0 if it doesn't work. */
4232 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4233 &ecs->stop_func_start, &ecs->stop_func_end);
4234 ecs->stop_func_start
4235 += gdbarch_deprecated_function_start_offset (gdbarch);
4236
4237 if (gdbarch_skip_entrypoint_p (gdbarch))
4238 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4239 ecs->stop_func_start);
4240
4241 ecs->stop_func_filled_in = 1;
4242 }
4243 }
4244
4245
4246 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4247
4248 static enum stop_kind
4249 get_inferior_stop_soon (ptid_t ptid)
4250 {
4251 struct inferior *inf = find_inferior_ptid (ptid);
4252
4253 gdb_assert (inf != NULL);
4254 return inf->control.stop_soon;
4255 }
4256
4257 /* Wait for one event. Store the resulting waitstatus in WS, and
4258 return the event ptid. */
4259
4260 static ptid_t
4261 wait_one (struct target_waitstatus *ws)
4262 {
4263 ptid_t event_ptid;
4264 ptid_t wait_ptid = minus_one_ptid;
4265
4266 overlay_cache_invalid = 1;
4267
4268 /* Flush target cache before starting to handle each event.
4269 Target was running and cache could be stale. This is just a
4270 heuristic. Running threads may modify target memory, but we
4271 don't get any event. */
4272 target_dcache_invalidate ();
4273
4274 if (deprecated_target_wait_hook)
4275 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4276 else
4277 event_ptid = target_wait (wait_ptid, ws, 0);
4278
4279 if (debug_infrun)
4280 print_target_wait_results (wait_ptid, event_ptid, ws);
4281
4282 return event_ptid;
4283 }
4284
4285 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4286 instead of the current thread. */
4287 #define THREAD_STOPPED_BY(REASON) \
4288 static int \
4289 thread_stopped_by_ ## REASON (ptid_t ptid) \
4290 { \
4291 struct cleanup *old_chain; \
4292 int res; \
4293 \
4294 old_chain = save_inferior_ptid (); \
4295 inferior_ptid = ptid; \
4296 \
4297 res = target_stopped_by_ ## REASON (); \
4298 \
4299 do_cleanups (old_chain); \
4300 \
4301 return res; \
4302 }
4303
4304 /* Generate thread_stopped_by_watchpoint. */
4305 THREAD_STOPPED_BY (watchpoint)
4306 /* Generate thread_stopped_by_sw_breakpoint. */
4307 THREAD_STOPPED_BY (sw_breakpoint)
4308 /* Generate thread_stopped_by_hw_breakpoint. */
4309 THREAD_STOPPED_BY (hw_breakpoint)
4310
4311 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4312
4313 static void
4314 switch_to_thread_cleanup (void *ptid_p)
4315 {
4316 ptid_t ptid = *(ptid_t *) ptid_p;
4317
4318 switch_to_thread (ptid);
4319 }
4320
4321 /* Save the thread's event and stop reason to process it later. */
4322
4323 static void
4324 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4325 {
4326 struct regcache *regcache;
4327 struct address_space *aspace;
4328
4329 if (debug_infrun)
4330 {
4331 char *statstr;
4332
4333 statstr = target_waitstatus_to_string (ws);
4334 fprintf_unfiltered (gdb_stdlog,
4335 "infrun: saving status %s for %d.%ld.%ld\n",
4336 statstr,
4337 ptid_get_pid (tp->ptid),
4338 ptid_get_lwp (tp->ptid),
4339 ptid_get_tid (tp->ptid));
4340 xfree (statstr);
4341 }
4342
4343 /* Record for later. */
4344 tp->suspend.waitstatus = *ws;
4345 tp->suspend.waitstatus_pending_p = 1;
4346
4347 regcache = get_thread_regcache (tp->ptid);
4348 aspace = get_regcache_aspace (regcache);
4349
4350 if (ws->kind == TARGET_WAITKIND_STOPPED
4351 && ws->value.sig == GDB_SIGNAL_TRAP)
4352 {
4353 CORE_ADDR pc = regcache_read_pc (regcache);
4354
4355 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4356
4357 if (thread_stopped_by_watchpoint (tp->ptid))
4358 {
4359 tp->suspend.stop_reason
4360 = TARGET_STOPPED_BY_WATCHPOINT;
4361 }
4362 else if (target_supports_stopped_by_sw_breakpoint ()
4363 && thread_stopped_by_sw_breakpoint (tp->ptid))
4364 {
4365 tp->suspend.stop_reason
4366 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4367 }
4368 else if (target_supports_stopped_by_hw_breakpoint ()
4369 && thread_stopped_by_hw_breakpoint (tp->ptid))
4370 {
4371 tp->suspend.stop_reason
4372 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4373 }
4374 else if (!target_supports_stopped_by_hw_breakpoint ()
4375 && hardware_breakpoint_inserted_here_p (aspace,
4376 pc))
4377 {
4378 tp->suspend.stop_reason
4379 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4380 }
4381 else if (!target_supports_stopped_by_sw_breakpoint ()
4382 && software_breakpoint_inserted_here_p (aspace,
4383 pc))
4384 {
4385 tp->suspend.stop_reason
4386 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4387 }
4388 else if (!thread_has_single_step_breakpoints_set (tp)
4389 && currently_stepping (tp))
4390 {
4391 tp->suspend.stop_reason
4392 = TARGET_STOPPED_BY_SINGLE_STEP;
4393 }
4394 }
4395 }
4396
4397 /* Stop all threads. */
4398
4399 static void
4400 stop_all_threads (void)
4401 {
4402 /* We may need multiple passes to discover all threads. */
4403 int pass;
4404 int iterations = 0;
4405 ptid_t entry_ptid;
4406 struct cleanup *old_chain;
4407
4408 gdb_assert (target_is_non_stop_p ());
4409
4410 if (debug_infrun)
4411 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4412
4413 entry_ptid = inferior_ptid;
4414 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4415
4416 /* Request threads to stop, and then wait for the stops. Because
4417 threads we already know about can spawn more threads while we're
4418 trying to stop them, and we only learn about new threads when we
4419 update the thread list, do this in a loop, and keep iterating
4420 until two passes find no threads that need to be stopped. */
4421 for (pass = 0; pass < 2; pass++, iterations++)
4422 {
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: stop_all_threads, pass=%d, "
4426 "iterations=%d\n", pass, iterations);
4427 while (1)
4428 {
4429 ptid_t event_ptid;
4430 struct target_waitstatus ws;
4431 int need_wait = 0;
4432 struct thread_info *t;
4433
4434 update_thread_list ();
4435
4436 /* Go through all threads looking for threads that we need
4437 to tell the target to stop. */
4438 ALL_NON_EXITED_THREADS (t)
4439 {
4440 if (t->executing)
4441 {
4442 /* If already stopping, don't request a stop again.
4443 We just haven't seen the notification yet. */
4444 if (!t->stop_requested)
4445 {
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: %s executing, "
4449 "need stop\n",
4450 target_pid_to_str (t->ptid));
4451 target_stop (t->ptid);
4452 t->stop_requested = 1;
4453 }
4454 else
4455 {
4456 if (debug_infrun)
4457 fprintf_unfiltered (gdb_stdlog,
4458 "infrun: %s executing, "
4459 "already stopping\n",
4460 target_pid_to_str (t->ptid));
4461 }
4462
4463 if (t->stop_requested)
4464 need_wait = 1;
4465 }
4466 else
4467 {
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: %s not executing\n",
4471 target_pid_to_str (t->ptid));
4472
4473 /* The thread may be not executing, but still be
4474 resumed with a pending status to process. */
4475 t->resumed = 0;
4476 }
4477 }
4478
4479 if (!need_wait)
4480 break;
4481
4482 /* If we find new threads on the second iteration, restart
4483 over. We want to see two iterations in a row with all
4484 threads stopped. */
4485 if (pass > 0)
4486 pass = -1;
4487
4488 event_ptid = wait_one (&ws);
4489 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4490 {
4491 /* All resumed threads exited. */
4492 }
4493 else if (ws.kind == TARGET_WAITKIND_EXITED
4494 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4495 {
4496 if (debug_infrun)
4497 {
4498 ptid_t ptid = pid_to_ptid (ws.value.integer);
4499
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: %s exited while "
4502 "stopping threads\n",
4503 target_pid_to_str (ptid));
4504 }
4505 }
4506 else
4507 {
4508 t = find_thread_ptid (event_ptid);
4509 if (t == NULL)
4510 t = add_thread (event_ptid);
4511
4512 t->stop_requested = 0;
4513 t->executing = 0;
4514 t->resumed = 0;
4515 t->control.may_range_step = 0;
4516
4517 if (ws.kind == TARGET_WAITKIND_STOPPED
4518 && ws.value.sig == GDB_SIGNAL_0)
4519 {
4520 /* We caught the event that we intended to catch, so
4521 there's no event pending. */
4522 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4523 t->suspend.waitstatus_pending_p = 0;
4524
4525 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4526 {
4527 /* Add it back to the step-over queue. */
4528 if (debug_infrun)
4529 {
4530 fprintf_unfiltered (gdb_stdlog,
4531 "infrun: displaced-step of %s "
4532 "canceled: adding back to the "
4533 "step-over queue\n",
4534 target_pid_to_str (t->ptid));
4535 }
4536 t->control.trap_expected = 0;
4537 thread_step_over_chain_enqueue (t);
4538 }
4539 }
4540 else
4541 {
4542 enum gdb_signal sig;
4543 struct regcache *regcache;
4544 struct address_space *aspace;
4545
4546 if (debug_infrun)
4547 {
4548 char *statstr;
4549
4550 statstr = target_waitstatus_to_string (&ws);
4551 fprintf_unfiltered (gdb_stdlog,
4552 "infrun: target_wait %s, saving "
4553 "status for %d.%ld.%ld\n",
4554 statstr,
4555 ptid_get_pid (t->ptid),
4556 ptid_get_lwp (t->ptid),
4557 ptid_get_tid (t->ptid));
4558 xfree (statstr);
4559 }
4560
4561 /* Record for later. */
4562 save_waitstatus (t, &ws);
4563
4564 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4565 ? ws.value.sig : GDB_SIGNAL_0);
4566
4567 if (displaced_step_fixup (t->ptid, sig) < 0)
4568 {
4569 /* Add it back to the step-over queue. */
4570 t->control.trap_expected = 0;
4571 thread_step_over_chain_enqueue (t);
4572 }
4573
4574 regcache = get_thread_regcache (t->ptid);
4575 t->suspend.stop_pc = regcache_read_pc (regcache);
4576
4577 if (debug_infrun)
4578 {
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: saved stop_pc=%s for %s "
4581 "(currently_stepping=%d)\n",
4582 paddress (target_gdbarch (),
4583 t->suspend.stop_pc),
4584 target_pid_to_str (t->ptid),
4585 currently_stepping (t));
4586 }
4587 }
4588 }
4589 }
4590 }
4591
4592 do_cleanups (old_chain);
4593
4594 if (debug_infrun)
4595 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4596 }
4597
4598 /* Given an execution control state that has been freshly filled in by
4599 an event from the inferior, figure out what it means and take
4600 appropriate action.
4601
4602 The alternatives are:
4603
4604 1) stop_waiting and return; to really stop and return to the
4605 debugger.
4606
4607 2) keep_going and return; to wait for the next event (set
4608 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4609 once). */
4610
4611 static void
4612 handle_inferior_event_1 (struct execution_control_state *ecs)
4613 {
4614 enum stop_kind stop_soon;
4615
4616 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4617 {
4618 /* We had an event in the inferior, but we are not interested in
4619 handling it at this level. The lower layers have already
4620 done what needs to be done, if anything.
4621
4622 One of the possible circumstances for this is when the
4623 inferior produces output for the console. The inferior has
4624 not stopped, and we are ignoring the event. Another possible
4625 circumstance is any event which the lower level knows will be
4626 reported multiple times without an intervening resume. */
4627 if (debug_infrun)
4628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4634 && target_can_async_p () && !sync_execution)
4635 {
4636 /* There were no unwaited-for children left in the target, but,
4637 we're not synchronously waiting for events either. Just
4638 ignore. Otherwise, if we were running a synchronous
4639 execution command, we need to cancel it and give the user
4640 back the terminal. */
4641 if (debug_infrun)
4642 fprintf_unfiltered (gdb_stdlog,
4643 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4644 prepare_to_wait (ecs);
4645 return;
4646 }
4647
4648 /* Cache the last pid/waitstatus. */
4649 set_last_target_status (ecs->ptid, ecs->ws);
4650
4651 /* Always clear state belonging to the previous time we stopped. */
4652 stop_stack_dummy = STOP_NONE;
4653
4654 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4655 {
4656 /* No unwaited-for children left. IOW, all resumed children
4657 have exited. */
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4660
4661 stop_print_frame = 0;
4662 stop_waiting (ecs);
4663 return;
4664 }
4665
4666 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4667 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4668 {
4669 ecs->event_thread = find_thread_ptid (ecs->ptid);
4670 /* If it's a new thread, add it to the thread database. */
4671 if (ecs->event_thread == NULL)
4672 ecs->event_thread = add_thread (ecs->ptid);
4673
4674 /* Disable range stepping. If the next step request could use a
4675 range, this will be end up re-enabled then. */
4676 ecs->event_thread->control.may_range_step = 0;
4677 }
4678
4679 /* Dependent on valid ECS->EVENT_THREAD. */
4680 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4681
4682 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4683 reinit_frame_cache ();
4684
4685 breakpoint_retire_moribund ();
4686
4687 /* First, distinguish signals caused by the debugger from signals
4688 that have to do with the program's own actions. Note that
4689 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4690 on the operating system version. Here we detect when a SIGILL or
4691 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4692 something similar for SIGSEGV, since a SIGSEGV will be generated
4693 when we're trying to execute a breakpoint instruction on a
4694 non-executable stack. This happens for call dummy breakpoints
4695 for architectures like SPARC that place call dummies on the
4696 stack. */
4697 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4698 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4699 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4700 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4701 {
4702 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4703
4704 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4705 regcache_read_pc (regcache)))
4706 {
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog,
4709 "infrun: Treating signal as SIGTRAP\n");
4710 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4711 }
4712 }
4713
4714 /* Mark the non-executing threads accordingly. In all-stop, all
4715 threads of all processes are stopped when we get any event
4716 reported. In non-stop mode, only the event thread stops. */
4717 {
4718 ptid_t mark_ptid;
4719
4720 if (!target_is_non_stop_p ())
4721 mark_ptid = minus_one_ptid;
4722 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4723 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4724 {
4725 /* If we're handling a process exit in non-stop mode, even
4726 though threads haven't been deleted yet, one would think
4727 that there is nothing to do, as threads of the dead process
4728 will be soon deleted, and threads of any other process were
4729 left running. However, on some targets, threads survive a
4730 process exit event. E.g., for the "checkpoint" command,
4731 when the current checkpoint/fork exits, linux-fork.c
4732 automatically switches to another fork from within
4733 target_mourn_inferior, by associating the same
4734 inferior/thread to another fork. We haven't mourned yet at
4735 this point, but we must mark any threads left in the
4736 process as not-executing so that finish_thread_state marks
4737 them stopped (in the user's perspective) if/when we present
4738 the stop to the user. */
4739 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4740 }
4741 else
4742 mark_ptid = ecs->ptid;
4743
4744 set_executing (mark_ptid, 0);
4745
4746 /* Likewise the resumed flag. */
4747 set_resumed (mark_ptid, 0);
4748 }
4749
4750 switch (ecs->ws.kind)
4751 {
4752 case TARGET_WAITKIND_LOADED:
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4755 if (!ptid_equal (ecs->ptid, inferior_ptid))
4756 context_switch (ecs->ptid);
4757 /* Ignore gracefully during startup of the inferior, as it might
4758 be the shell which has just loaded some objects, otherwise
4759 add the symbols for the newly loaded objects. Also ignore at
4760 the beginning of an attach or remote session; we will query
4761 the full list of libraries once the connection is
4762 established. */
4763
4764 stop_soon = get_inferior_stop_soon (ecs->ptid);
4765 if (stop_soon == NO_STOP_QUIETLY)
4766 {
4767 struct regcache *regcache;
4768
4769 regcache = get_thread_regcache (ecs->ptid);
4770
4771 handle_solib_event ();
4772
4773 ecs->event_thread->control.stop_bpstat
4774 = bpstat_stop_status (get_regcache_aspace (regcache),
4775 stop_pc, ecs->ptid, &ecs->ws);
4776
4777 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4778 {
4779 /* A catchpoint triggered. */
4780 process_event_stop_test (ecs);
4781 return;
4782 }
4783
4784 /* If requested, stop when the dynamic linker notifies
4785 gdb of events. This allows the user to get control
4786 and place breakpoints in initializer routines for
4787 dynamically loaded objects (among other things). */
4788 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4789 if (stop_on_solib_events)
4790 {
4791 /* Make sure we print "Stopped due to solib-event" in
4792 normal_stop. */
4793 stop_print_frame = 1;
4794
4795 stop_waiting (ecs);
4796 return;
4797 }
4798 }
4799
4800 /* If we are skipping through a shell, or through shared library
4801 loading that we aren't interested in, resume the program. If
4802 we're running the program normally, also resume. */
4803 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4804 {
4805 /* Loading of shared libraries might have changed breakpoint
4806 addresses. Make sure new breakpoints are inserted. */
4807 if (stop_soon == NO_STOP_QUIETLY)
4808 insert_breakpoints ();
4809 resume (GDB_SIGNAL_0);
4810 prepare_to_wait (ecs);
4811 return;
4812 }
4813
4814 /* But stop if we're attaching or setting up a remote
4815 connection. */
4816 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4817 || stop_soon == STOP_QUIETLY_REMOTE)
4818 {
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4821 stop_waiting (ecs);
4822 return;
4823 }
4824
4825 internal_error (__FILE__, __LINE__,
4826 _("unhandled stop_soon: %d"), (int) stop_soon);
4827
4828 case TARGET_WAITKIND_SPURIOUS:
4829 if (debug_infrun)
4830 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4831 if (!ptid_equal (ecs->ptid, inferior_ptid))
4832 context_switch (ecs->ptid);
4833 resume (GDB_SIGNAL_0);
4834 prepare_to_wait (ecs);
4835 return;
4836
4837 case TARGET_WAITKIND_EXITED:
4838 case TARGET_WAITKIND_SIGNALLED:
4839 if (debug_infrun)
4840 {
4841 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4842 fprintf_unfiltered (gdb_stdlog,
4843 "infrun: TARGET_WAITKIND_EXITED\n");
4844 else
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4847 }
4848
4849 inferior_ptid = ecs->ptid;
4850 set_current_inferior (find_inferior_ptid (ecs->ptid));
4851 set_current_program_space (current_inferior ()->pspace);
4852 handle_vfork_child_exec_or_exit (0);
4853 target_terminal_ours (); /* Must do this before mourn anyway. */
4854
4855 /* Clearing any previous state of convenience variables. */
4856 clear_exit_convenience_vars ();
4857
4858 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4859 {
4860 /* Record the exit code in the convenience variable $_exitcode, so
4861 that the user can inspect this again later. */
4862 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4863 (LONGEST) ecs->ws.value.integer);
4864
4865 /* Also record this in the inferior itself. */
4866 current_inferior ()->has_exit_code = 1;
4867 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4868
4869 /* Support the --return-child-result option. */
4870 return_child_result_value = ecs->ws.value.integer;
4871
4872 observer_notify_exited (ecs->ws.value.integer);
4873 }
4874 else
4875 {
4876 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4877 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4878
4879 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4880 {
4881 /* Set the value of the internal variable $_exitsignal,
4882 which holds the signal uncaught by the inferior. */
4883 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4884 gdbarch_gdb_signal_to_target (gdbarch,
4885 ecs->ws.value.sig));
4886 }
4887 else
4888 {
4889 /* We don't have access to the target's method used for
4890 converting between signal numbers (GDB's internal
4891 representation <-> target's representation).
4892 Therefore, we cannot do a good job at displaying this
4893 information to the user. It's better to just warn
4894 her about it (if infrun debugging is enabled), and
4895 give up. */
4896 if (debug_infrun)
4897 fprintf_filtered (gdb_stdlog, _("\
4898 Cannot fill $_exitsignal with the correct signal number.\n"));
4899 }
4900
4901 observer_notify_signal_exited (ecs->ws.value.sig);
4902 }
4903
4904 gdb_flush (gdb_stdout);
4905 target_mourn_inferior ();
4906 stop_print_frame = 0;
4907 stop_waiting (ecs);
4908 return;
4909
4910 /* The following are the only cases in which we keep going;
4911 the above cases end in a continue or goto. */
4912 case TARGET_WAITKIND_FORKED:
4913 case TARGET_WAITKIND_VFORKED:
4914 if (debug_infrun)
4915 {
4916 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4917 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4918 else
4919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4920 }
4921
4922 /* Check whether the inferior is displaced stepping. */
4923 {
4924 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4926 struct displaced_step_inferior_state *displaced
4927 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4928
4929 /* If checking displaced stepping is supported, and thread
4930 ecs->ptid is displaced stepping. */
4931 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4932 {
4933 struct inferior *parent_inf
4934 = find_inferior_ptid (ecs->ptid);
4935 struct regcache *child_regcache;
4936 CORE_ADDR parent_pc;
4937
4938 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4939 indicating that the displaced stepping of syscall instruction
4940 has been done. Perform cleanup for parent process here. Note
4941 that this operation also cleans up the child process for vfork,
4942 because their pages are shared. */
4943 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4944 /* Start a new step-over in another thread if there's one
4945 that needs it. */
4946 start_step_over ();
4947
4948 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4949 {
4950 /* Restore scratch pad for child process. */
4951 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4952 }
4953
4954 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4955 the child's PC is also within the scratchpad. Set the child's PC
4956 to the parent's PC value, which has already been fixed up.
4957 FIXME: we use the parent's aspace here, although we're touching
4958 the child, because the child hasn't been added to the inferior
4959 list yet at this point. */
4960
4961 child_regcache
4962 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4963 gdbarch,
4964 parent_inf->aspace);
4965 /* Read PC value of parent process. */
4966 parent_pc = regcache_read_pc (regcache);
4967
4968 if (debug_displaced)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "displaced: write child pc from %s to %s\n",
4971 paddress (gdbarch,
4972 regcache_read_pc (child_regcache)),
4973 paddress (gdbarch, parent_pc));
4974
4975 regcache_write_pc (child_regcache, parent_pc);
4976 }
4977 }
4978
4979 if (!ptid_equal (ecs->ptid, inferior_ptid))
4980 context_switch (ecs->ptid);
4981
4982 /* Immediately detach breakpoints from the child before there's
4983 any chance of letting the user delete breakpoints from the
4984 breakpoint lists. If we don't do this early, it's easy to
4985 leave left over traps in the child, vis: "break foo; catch
4986 fork; c; <fork>; del; c; <child calls foo>". We only follow
4987 the fork on the last `continue', and by that time the
4988 breakpoint at "foo" is long gone from the breakpoint table.
4989 If we vforked, then we don't need to unpatch here, since both
4990 parent and child are sharing the same memory pages; we'll
4991 need to unpatch at follow/detach time instead to be certain
4992 that new breakpoints added between catchpoint hit time and
4993 vfork follow are detached. */
4994 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4995 {
4996 /* This won't actually modify the breakpoint list, but will
4997 physically remove the breakpoints from the child. */
4998 detach_breakpoints (ecs->ws.value.related_pid);
4999 }
5000
5001 delete_just_stopped_threads_single_step_breakpoints ();
5002
5003 /* In case the event is caught by a catchpoint, remember that
5004 the event is to be followed at the next resume of the thread,
5005 and not immediately. */
5006 ecs->event_thread->pending_follow = ecs->ws;
5007
5008 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5009
5010 ecs->event_thread->control.stop_bpstat
5011 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5012 stop_pc, ecs->ptid, &ecs->ws);
5013
5014 /* If no catchpoint triggered for this, then keep going. Note
5015 that we're interested in knowing the bpstat actually causes a
5016 stop, not just if it may explain the signal. Software
5017 watchpoints, for example, always appear in the bpstat. */
5018 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5019 {
5020 ptid_t parent;
5021 ptid_t child;
5022 int should_resume;
5023 int follow_child
5024 = (follow_fork_mode_string == follow_fork_mode_child);
5025
5026 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5027
5028 should_resume = follow_fork ();
5029
5030 parent = ecs->ptid;
5031 child = ecs->ws.value.related_pid;
5032
5033 /* In non-stop mode, also resume the other branch. */
5034 if (!detach_fork && (non_stop
5035 || (sched_multi && target_is_non_stop_p ())))
5036 {
5037 if (follow_child)
5038 switch_to_thread (parent);
5039 else
5040 switch_to_thread (child);
5041
5042 ecs->event_thread = inferior_thread ();
5043 ecs->ptid = inferior_ptid;
5044 keep_going (ecs);
5045 }
5046
5047 if (follow_child)
5048 switch_to_thread (child);
5049 else
5050 switch_to_thread (parent);
5051
5052 ecs->event_thread = inferior_thread ();
5053 ecs->ptid = inferior_ptid;
5054
5055 if (should_resume)
5056 keep_going (ecs);
5057 else
5058 stop_waiting (ecs);
5059 return;
5060 }
5061 process_event_stop_test (ecs);
5062 return;
5063
5064 case TARGET_WAITKIND_VFORK_DONE:
5065 /* Done with the shared memory region. Re-insert breakpoints in
5066 the parent, and keep going. */
5067
5068 if (debug_infrun)
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5071
5072 if (!ptid_equal (ecs->ptid, inferior_ptid))
5073 context_switch (ecs->ptid);
5074
5075 current_inferior ()->waiting_for_vfork_done = 0;
5076 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5077 /* This also takes care of reinserting breakpoints in the
5078 previously locked inferior. */
5079 keep_going (ecs);
5080 return;
5081
5082 case TARGET_WAITKIND_EXECD:
5083 if (debug_infrun)
5084 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5085
5086 if (!ptid_equal (ecs->ptid, inferior_ptid))
5087 context_switch (ecs->ptid);
5088
5089 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5090
5091 /* Do whatever is necessary to the parent branch of the vfork. */
5092 handle_vfork_child_exec_or_exit (1);
5093
5094 /* This causes the eventpoints and symbol table to be reset.
5095 Must do this now, before trying to determine whether to
5096 stop. */
5097 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5098
5099 /* In follow_exec we may have deleted the original thread and
5100 created a new one. Make sure that the event thread is the
5101 execd thread for that case (this is a nop otherwise). */
5102 ecs->event_thread = inferior_thread ();
5103
5104 ecs->event_thread->control.stop_bpstat
5105 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5106 stop_pc, ecs->ptid, &ecs->ws);
5107
5108 /* Note that this may be referenced from inside
5109 bpstat_stop_status above, through inferior_has_execd. */
5110 xfree (ecs->ws.value.execd_pathname);
5111 ecs->ws.value.execd_pathname = NULL;
5112
5113 /* If no catchpoint triggered for this, then keep going. */
5114 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5115 {
5116 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5117 keep_going (ecs);
5118 return;
5119 }
5120 process_event_stop_test (ecs);
5121 return;
5122
5123 /* Be careful not to try to gather much state about a thread
5124 that's in a syscall. It's frequently a losing proposition. */
5125 case TARGET_WAITKIND_SYSCALL_ENTRY:
5126 if (debug_infrun)
5127 fprintf_unfiltered (gdb_stdlog,
5128 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5129 /* Getting the current syscall number. */
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
5133
5134 /* Before examining the threads further, step this thread to
5135 get it entirely out of the syscall. (We get notice of the
5136 event when the thread is just on the verge of exiting a
5137 syscall. Stepping one instruction seems to get it back
5138 into user code.) */
5139 case TARGET_WAITKIND_SYSCALL_RETURN:
5140 if (debug_infrun)
5141 fprintf_unfiltered (gdb_stdlog,
5142 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5143 if (handle_syscall_event (ecs) == 0)
5144 process_event_stop_test (ecs);
5145 return;
5146
5147 case TARGET_WAITKIND_STOPPED:
5148 if (debug_infrun)
5149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5150 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5151 handle_signal_stop (ecs);
5152 return;
5153
5154 case TARGET_WAITKIND_NO_HISTORY:
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5157 /* Reverse execution: target ran out of history info. */
5158
5159 /* Switch to the stopped thread. */
5160 if (!ptid_equal (ecs->ptid, inferior_ptid))
5161 context_switch (ecs->ptid);
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5164
5165 delete_just_stopped_threads_single_step_breakpoints ();
5166 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5167 observer_notify_no_history ();
5168 stop_waiting (ecs);
5169 return;
5170 }
5171 }
5172
5173 /* A wrapper around handle_inferior_event_1, which also makes sure
5174 that all temporary struct value objects that were created during
5175 the handling of the event get deleted at the end. */
5176
5177 static void
5178 handle_inferior_event (struct execution_control_state *ecs)
5179 {
5180 struct value *mark = value_mark ();
5181
5182 handle_inferior_event_1 (ecs);
5183 /* Purge all temporary values created during the event handling,
5184 as it could be a long time before we return to the command level
5185 where such values would otherwise be purged. */
5186 value_free_to_mark (mark);
5187 }
5188
5189 /* Restart threads back to what they were trying to do back when we
5190 paused them for an in-line step-over. The EVENT_THREAD thread is
5191 ignored. */
5192
5193 static void
5194 restart_threads (struct thread_info *event_thread)
5195 {
5196 struct thread_info *tp;
5197 struct thread_info *step_over = NULL;
5198
5199 /* In case the instruction just stepped spawned a new thread. */
5200 update_thread_list ();
5201
5202 ALL_NON_EXITED_THREADS (tp)
5203 {
5204 if (tp == event_thread)
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: restart threads: "
5209 "[%s] is event thread\n",
5210 target_pid_to_str (tp->ptid));
5211 continue;
5212 }
5213
5214 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5215 {
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog,
5218 "infrun: restart threads: "
5219 "[%s] not meant to be running\n",
5220 target_pid_to_str (tp->ptid));
5221 continue;
5222 }
5223
5224 if (tp->resumed)
5225 {
5226 if (debug_infrun)
5227 fprintf_unfiltered (gdb_stdlog,
5228 "infrun: restart threads: [%s] resumed\n",
5229 target_pid_to_str (tp->ptid));
5230 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5231 continue;
5232 }
5233
5234 if (thread_is_in_step_over_chain (tp))
5235 {
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: restart threads: "
5239 "[%s] needs step-over\n",
5240 target_pid_to_str (tp->ptid));
5241 gdb_assert (!tp->resumed);
5242 continue;
5243 }
5244
5245
5246 if (tp->suspend.waitstatus_pending_p)
5247 {
5248 if (debug_infrun)
5249 fprintf_unfiltered (gdb_stdlog,
5250 "infrun: restart threads: "
5251 "[%s] has pending status\n",
5252 target_pid_to_str (tp->ptid));
5253 tp->resumed = 1;
5254 continue;
5255 }
5256
5257 /* If some thread needs to start a step-over at this point, it
5258 should still be in the step-over queue, and thus skipped
5259 above. */
5260 if (thread_still_needs_step_over (tp))
5261 {
5262 internal_error (__FILE__, __LINE__,
5263 "thread [%s] needs a step-over, but not in "
5264 "step-over queue\n",
5265 target_pid_to_str (tp->ptid));
5266 }
5267
5268 if (currently_stepping (tp))
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: [%s] was stepping\n",
5273 target_pid_to_str (tp->ptid));
5274 keep_going_stepped_thread (tp);
5275 }
5276 else
5277 {
5278 struct execution_control_state ecss;
5279 struct execution_control_state *ecs = &ecss;
5280
5281 if (debug_infrun)
5282 fprintf_unfiltered (gdb_stdlog,
5283 "infrun: restart threads: [%s] continuing\n",
5284 target_pid_to_str (tp->ptid));
5285 reset_ecs (ecs, tp);
5286 switch_to_thread (tp->ptid);
5287 keep_going_pass_signal (ecs);
5288 }
5289 }
5290 }
5291
5292 /* Callback for iterate_over_threads. Find a resumed thread that has
5293 a pending waitstatus. */
5294
5295 static int
5296 resumed_thread_with_pending_status (struct thread_info *tp,
5297 void *arg)
5298 {
5299 return (tp->resumed
5300 && tp->suspend.waitstatus_pending_p);
5301 }
5302
5303 /* Called when we get an event that may finish an in-line or
5304 out-of-line (displaced stepping) step-over started previously.
5305 Return true if the event is processed and we should go back to the
5306 event loop; false if the caller should continue processing the
5307 event. */
5308
5309 static int
5310 finish_step_over (struct execution_control_state *ecs)
5311 {
5312 int had_step_over_info;
5313
5314 displaced_step_fixup (ecs->ptid,
5315 ecs->event_thread->suspend.stop_signal);
5316
5317 had_step_over_info = step_over_info_valid_p ();
5318
5319 if (had_step_over_info)
5320 {
5321 /* If we're stepping over a breakpoint with all threads locked,
5322 then only the thread that was stepped should be reporting
5323 back an event. */
5324 gdb_assert (ecs->event_thread->control.trap_expected);
5325
5326 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5327 clear_step_over_info ();
5328 }
5329
5330 if (!target_is_non_stop_p ())
5331 return 0;
5332
5333 /* Start a new step-over in another thread if there's one that
5334 needs it. */
5335 start_step_over ();
5336
5337 /* If we were stepping over a breakpoint before, and haven't started
5338 a new in-line step-over sequence, then restart all other threads
5339 (except the event thread). We can't do this in all-stop, as then
5340 e.g., we wouldn't be able to issue any other remote packet until
5341 these other threads stop. */
5342 if (had_step_over_info && !step_over_info_valid_p ())
5343 {
5344 struct thread_info *pending;
5345
5346 /* If we only have threads with pending statuses, the restart
5347 below won't restart any thread and so nothing re-inserts the
5348 breakpoint we just stepped over. But we need it inserted
5349 when we later process the pending events, otherwise if
5350 another thread has a pending event for this breakpoint too,
5351 we'd discard its event (because the breakpoint that
5352 originally caused the event was no longer inserted). */
5353 context_switch (ecs->ptid);
5354 insert_breakpoints ();
5355
5356 restart_threads (ecs->event_thread);
5357
5358 /* If we have events pending, go through handle_inferior_event
5359 again, picking up a pending event at random. This avoids
5360 thread starvation. */
5361
5362 /* But not if we just stepped over a watchpoint in order to let
5363 the instruction execute so we can evaluate its expression.
5364 The set of watchpoints that triggered is recorded in the
5365 breakpoint objects themselves (see bp->watchpoint_triggered).
5366 If we processed another event first, that other event could
5367 clobber this info. */
5368 if (ecs->event_thread->stepping_over_watchpoint)
5369 return 0;
5370
5371 pending = iterate_over_threads (resumed_thread_with_pending_status,
5372 NULL);
5373 if (pending != NULL)
5374 {
5375 struct thread_info *tp = ecs->event_thread;
5376 struct regcache *regcache;
5377
5378 if (debug_infrun)
5379 {
5380 fprintf_unfiltered (gdb_stdlog,
5381 "infrun: found resumed threads with "
5382 "pending events, saving status\n");
5383 }
5384
5385 gdb_assert (pending != tp);
5386
5387 /* Record the event thread's event for later. */
5388 save_waitstatus (tp, &ecs->ws);
5389 /* This was cleared early, by handle_inferior_event. Set it
5390 so this pending event is considered by
5391 do_target_wait. */
5392 tp->resumed = 1;
5393
5394 gdb_assert (!tp->executing);
5395
5396 regcache = get_thread_regcache (tp->ptid);
5397 tp->suspend.stop_pc = regcache_read_pc (regcache);
5398
5399 if (debug_infrun)
5400 {
5401 fprintf_unfiltered (gdb_stdlog,
5402 "infrun: saved stop_pc=%s for %s "
5403 "(currently_stepping=%d)\n",
5404 paddress (target_gdbarch (),
5405 tp->suspend.stop_pc),
5406 target_pid_to_str (tp->ptid),
5407 currently_stepping (tp));
5408 }
5409
5410 /* This in-line step-over finished; clear this so we won't
5411 start a new one. This is what handle_signal_stop would
5412 do, if we returned false. */
5413 tp->stepping_over_breakpoint = 0;
5414
5415 /* Wake up the event loop again. */
5416 mark_async_event_handler (infrun_async_inferior_event_token);
5417
5418 prepare_to_wait (ecs);
5419 return 1;
5420 }
5421 }
5422
5423 return 0;
5424 }
5425
5426 /* Come here when the program has stopped with a signal. */
5427
5428 static void
5429 handle_signal_stop (struct execution_control_state *ecs)
5430 {
5431 struct frame_info *frame;
5432 struct gdbarch *gdbarch;
5433 int stopped_by_watchpoint;
5434 enum stop_kind stop_soon;
5435 int random_signal;
5436
5437 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5438
5439 /* Do we need to clean up the state of a thread that has
5440 completed a displaced single-step? (Doing so usually affects
5441 the PC, so do it here, before we set stop_pc.) */
5442 if (finish_step_over (ecs))
5443 return;
5444
5445 /* If we either finished a single-step or hit a breakpoint, but
5446 the user wanted this thread to be stopped, pretend we got a
5447 SIG0 (generic unsignaled stop). */
5448 if (ecs->event_thread->stop_requested
5449 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5450 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5451
5452 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5453
5454 if (debug_infrun)
5455 {
5456 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5457 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5458 struct cleanup *old_chain = save_inferior_ptid ();
5459
5460 inferior_ptid = ecs->ptid;
5461
5462 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5463 paddress (gdbarch, stop_pc));
5464 if (target_stopped_by_watchpoint ())
5465 {
5466 CORE_ADDR addr;
5467
5468 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5469
5470 if (target_stopped_data_address (&current_target, &addr))
5471 fprintf_unfiltered (gdb_stdlog,
5472 "infrun: stopped data address = %s\n",
5473 paddress (gdbarch, addr));
5474 else
5475 fprintf_unfiltered (gdb_stdlog,
5476 "infrun: (no data address available)\n");
5477 }
5478
5479 do_cleanups (old_chain);
5480 }
5481
5482 /* This is originated from start_remote(), start_inferior() and
5483 shared libraries hook functions. */
5484 stop_soon = get_inferior_stop_soon (ecs->ptid);
5485 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5486 {
5487 if (!ptid_equal (ecs->ptid, inferior_ptid))
5488 context_switch (ecs->ptid);
5489 if (debug_infrun)
5490 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5491 stop_print_frame = 1;
5492 stop_waiting (ecs);
5493 return;
5494 }
5495
5496 /* This originates from attach_command(). We need to overwrite
5497 the stop_signal here, because some kernels don't ignore a
5498 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5499 See more comments in inferior.h. On the other hand, if we
5500 get a non-SIGSTOP, report it to the user - assume the backend
5501 will handle the SIGSTOP if it should show up later.
5502
5503 Also consider that the attach is complete when we see a
5504 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5505 target extended-remote report it instead of a SIGSTOP
5506 (e.g. gdbserver). We already rely on SIGTRAP being our
5507 signal, so this is no exception.
5508
5509 Also consider that the attach is complete when we see a
5510 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5511 the target to stop all threads of the inferior, in case the
5512 low level attach operation doesn't stop them implicitly. If
5513 they weren't stopped implicitly, then the stub will report a
5514 GDB_SIGNAL_0, meaning: stopped for no particular reason
5515 other than GDB's request. */
5516 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5517 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5518 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5519 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5520 {
5521 stop_print_frame = 1;
5522 stop_waiting (ecs);
5523 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5524 return;
5525 }
5526
5527 /* See if something interesting happened to the non-current thread. If
5528 so, then switch to that thread. */
5529 if (!ptid_equal (ecs->ptid, inferior_ptid))
5530 {
5531 if (debug_infrun)
5532 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5533
5534 context_switch (ecs->ptid);
5535
5536 if (deprecated_context_hook)
5537 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5538 }
5539
5540 /* At this point, get hold of the now-current thread's frame. */
5541 frame = get_current_frame ();
5542 gdbarch = get_frame_arch (frame);
5543
5544 /* Pull the single step breakpoints out of the target. */
5545 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5546 {
5547 struct regcache *regcache;
5548 struct address_space *aspace;
5549 CORE_ADDR pc;
5550
5551 regcache = get_thread_regcache (ecs->ptid);
5552 aspace = get_regcache_aspace (regcache);
5553 pc = regcache_read_pc (regcache);
5554
5555 /* However, before doing so, if this single-step breakpoint was
5556 actually for another thread, set this thread up for moving
5557 past it. */
5558 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5559 aspace, pc))
5560 {
5561 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5562 {
5563 if (debug_infrun)
5564 {
5565 fprintf_unfiltered (gdb_stdlog,
5566 "infrun: [%s] hit another thread's "
5567 "single-step breakpoint\n",
5568 target_pid_to_str (ecs->ptid));
5569 }
5570 ecs->hit_singlestep_breakpoint = 1;
5571 }
5572 }
5573 else
5574 {
5575 if (debug_infrun)
5576 {
5577 fprintf_unfiltered (gdb_stdlog,
5578 "infrun: [%s] hit its "
5579 "single-step breakpoint\n",
5580 target_pid_to_str (ecs->ptid));
5581 }
5582 }
5583 }
5584 delete_just_stopped_threads_single_step_breakpoints ();
5585
5586 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5587 && ecs->event_thread->control.trap_expected
5588 && ecs->event_thread->stepping_over_watchpoint)
5589 stopped_by_watchpoint = 0;
5590 else
5591 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5592
5593 /* If necessary, step over this watchpoint. We'll be back to display
5594 it in a moment. */
5595 if (stopped_by_watchpoint
5596 && (target_have_steppable_watchpoint
5597 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5598 {
5599 /* At this point, we are stopped at an instruction which has
5600 attempted to write to a piece of memory under control of
5601 a watchpoint. The instruction hasn't actually executed
5602 yet. If we were to evaluate the watchpoint expression
5603 now, we would get the old value, and therefore no change
5604 would seem to have occurred.
5605
5606 In order to make watchpoints work `right', we really need
5607 to complete the memory write, and then evaluate the
5608 watchpoint expression. We do this by single-stepping the
5609 target.
5610
5611 It may not be necessary to disable the watchpoint to step over
5612 it. For example, the PA can (with some kernel cooperation)
5613 single step over a watchpoint without disabling the watchpoint.
5614
5615 It is far more common to need to disable a watchpoint to step
5616 the inferior over it. If we have non-steppable watchpoints,
5617 we must disable the current watchpoint; it's simplest to
5618 disable all watchpoints.
5619
5620 Any breakpoint at PC must also be stepped over -- if there's
5621 one, it will have already triggered before the watchpoint
5622 triggered, and we either already reported it to the user, or
5623 it didn't cause a stop and we called keep_going. In either
5624 case, if there was a breakpoint at PC, we must be trying to
5625 step past it. */
5626 ecs->event_thread->stepping_over_watchpoint = 1;
5627 keep_going (ecs);
5628 return;
5629 }
5630
5631 ecs->event_thread->stepping_over_breakpoint = 0;
5632 ecs->event_thread->stepping_over_watchpoint = 0;
5633 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5634 ecs->event_thread->control.stop_step = 0;
5635 stop_print_frame = 1;
5636 stopped_by_random_signal = 0;
5637
5638 /* Hide inlined functions starting here, unless we just performed stepi or
5639 nexti. After stepi and nexti, always show the innermost frame (not any
5640 inline function call sites). */
5641 if (ecs->event_thread->control.step_range_end != 1)
5642 {
5643 struct address_space *aspace =
5644 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5645
5646 /* skip_inline_frames is expensive, so we avoid it if we can
5647 determine that the address is one where functions cannot have
5648 been inlined. This improves performance with inferiors that
5649 load a lot of shared libraries, because the solib event
5650 breakpoint is defined as the address of a function (i.e. not
5651 inline). Note that we have to check the previous PC as well
5652 as the current one to catch cases when we have just
5653 single-stepped off a breakpoint prior to reinstating it.
5654 Note that we're assuming that the code we single-step to is
5655 not inline, but that's not definitive: there's nothing
5656 preventing the event breakpoint function from containing
5657 inlined code, and the single-step ending up there. If the
5658 user had set a breakpoint on that inlined code, the missing
5659 skip_inline_frames call would break things. Fortunately
5660 that's an extremely unlikely scenario. */
5661 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5662 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5663 && ecs->event_thread->control.trap_expected
5664 && pc_at_non_inline_function (aspace,
5665 ecs->event_thread->prev_pc,
5666 &ecs->ws)))
5667 {
5668 skip_inline_frames (ecs->ptid);
5669
5670 /* Re-fetch current thread's frame in case that invalidated
5671 the frame cache. */
5672 frame = get_current_frame ();
5673 gdbarch = get_frame_arch (frame);
5674 }
5675 }
5676
5677 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5678 && ecs->event_thread->control.trap_expected
5679 && gdbarch_single_step_through_delay_p (gdbarch)
5680 && currently_stepping (ecs->event_thread))
5681 {
5682 /* We're trying to step off a breakpoint. Turns out that we're
5683 also on an instruction that needs to be stepped multiple
5684 times before it's been fully executing. E.g., architectures
5685 with a delay slot. It needs to be stepped twice, once for
5686 the instruction and once for the delay slot. */
5687 int step_through_delay
5688 = gdbarch_single_step_through_delay (gdbarch, frame);
5689
5690 if (debug_infrun && step_through_delay)
5691 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5692 if (ecs->event_thread->control.step_range_end == 0
5693 && step_through_delay)
5694 {
5695 /* The user issued a continue when stopped at a breakpoint.
5696 Set up for another trap and get out of here. */
5697 ecs->event_thread->stepping_over_breakpoint = 1;
5698 keep_going (ecs);
5699 return;
5700 }
5701 else if (step_through_delay)
5702 {
5703 /* The user issued a step when stopped at a breakpoint.
5704 Maybe we should stop, maybe we should not - the delay
5705 slot *might* correspond to a line of source. In any
5706 case, don't decide that here, just set
5707 ecs->stepping_over_breakpoint, making sure we
5708 single-step again before breakpoints are re-inserted. */
5709 ecs->event_thread->stepping_over_breakpoint = 1;
5710 }
5711 }
5712
5713 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5714 handles this event. */
5715 ecs->event_thread->control.stop_bpstat
5716 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5717 stop_pc, ecs->ptid, &ecs->ws);
5718
5719 /* Following in case break condition called a
5720 function. */
5721 stop_print_frame = 1;
5722
5723 /* This is where we handle "moribund" watchpoints. Unlike
5724 software breakpoints traps, hardware watchpoint traps are
5725 always distinguishable from random traps. If no high-level
5726 watchpoint is associated with the reported stop data address
5727 anymore, then the bpstat does not explain the signal ---
5728 simply make sure to ignore it if `stopped_by_watchpoint' is
5729 set. */
5730
5731 if (debug_infrun
5732 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5733 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5734 GDB_SIGNAL_TRAP)
5735 && stopped_by_watchpoint)
5736 fprintf_unfiltered (gdb_stdlog,
5737 "infrun: no user watchpoint explains "
5738 "watchpoint SIGTRAP, ignoring\n");
5739
5740 /* NOTE: cagney/2003-03-29: These checks for a random signal
5741 at one stage in the past included checks for an inferior
5742 function call's call dummy's return breakpoint. The original
5743 comment, that went with the test, read:
5744
5745 ``End of a stack dummy. Some systems (e.g. Sony news) give
5746 another signal besides SIGTRAP, so check here as well as
5747 above.''
5748
5749 If someone ever tries to get call dummys on a
5750 non-executable stack to work (where the target would stop
5751 with something like a SIGSEGV), then those tests might need
5752 to be re-instated. Given, however, that the tests were only
5753 enabled when momentary breakpoints were not being used, I
5754 suspect that it won't be the case.
5755
5756 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5757 be necessary for call dummies on a non-executable stack on
5758 SPARC. */
5759
5760 /* See if the breakpoints module can explain the signal. */
5761 random_signal
5762 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5763 ecs->event_thread->suspend.stop_signal);
5764
5765 /* Maybe this was a trap for a software breakpoint that has since
5766 been removed. */
5767 if (random_signal && target_stopped_by_sw_breakpoint ())
5768 {
5769 if (program_breakpoint_here_p (gdbarch, stop_pc))
5770 {
5771 struct regcache *regcache;
5772 int decr_pc;
5773
5774 /* Re-adjust PC to what the program would see if GDB was not
5775 debugging it. */
5776 regcache = get_thread_regcache (ecs->event_thread->ptid);
5777 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5778 if (decr_pc != 0)
5779 {
5780 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5781
5782 if (record_full_is_used ())
5783 record_full_gdb_operation_disable_set ();
5784
5785 regcache_write_pc (regcache, stop_pc + decr_pc);
5786
5787 do_cleanups (old_cleanups);
5788 }
5789 }
5790 else
5791 {
5792 /* A delayed software breakpoint event. Ignore the trap. */
5793 if (debug_infrun)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: delayed software breakpoint "
5796 "trap, ignoring\n");
5797 random_signal = 0;
5798 }
5799 }
5800
5801 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5802 has since been removed. */
5803 if (random_signal && target_stopped_by_hw_breakpoint ())
5804 {
5805 /* A delayed hardware breakpoint event. Ignore the trap. */
5806 if (debug_infrun)
5807 fprintf_unfiltered (gdb_stdlog,
5808 "infrun: delayed hardware breakpoint/watchpoint "
5809 "trap, ignoring\n");
5810 random_signal = 0;
5811 }
5812
5813 /* If not, perhaps stepping/nexting can. */
5814 if (random_signal)
5815 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && currently_stepping (ecs->event_thread));
5817
5818 /* Perhaps the thread hit a single-step breakpoint of _another_
5819 thread. Single-step breakpoints are transparent to the
5820 breakpoints module. */
5821 if (random_signal)
5822 random_signal = !ecs->hit_singlestep_breakpoint;
5823
5824 /* No? Perhaps we got a moribund watchpoint. */
5825 if (random_signal)
5826 random_signal = !stopped_by_watchpoint;
5827
5828 /* For the program's own signals, act according to
5829 the signal handling tables. */
5830
5831 if (random_signal)
5832 {
5833 /* Signal not for debugging purposes. */
5834 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5835 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5836
5837 if (debug_infrun)
5838 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5839 gdb_signal_to_symbol_string (stop_signal));
5840
5841 stopped_by_random_signal = 1;
5842
5843 /* Always stop on signals if we're either just gaining control
5844 of the program, or the user explicitly requested this thread
5845 to remain stopped. */
5846 if (stop_soon != NO_STOP_QUIETLY
5847 || ecs->event_thread->stop_requested
5848 || (!inf->detaching
5849 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5850 {
5851 stop_waiting (ecs);
5852 return;
5853 }
5854
5855 /* Notify observers the signal has "handle print" set. Note we
5856 returned early above if stopping; normal_stop handles the
5857 printing in that case. */
5858 if (signal_print[ecs->event_thread->suspend.stop_signal])
5859 {
5860 /* The signal table tells us to print about this signal. */
5861 target_terminal_ours_for_output ();
5862 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5863 target_terminal_inferior ();
5864 }
5865
5866 /* Clear the signal if it should not be passed. */
5867 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5868 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5869
5870 if (ecs->event_thread->prev_pc == stop_pc
5871 && ecs->event_thread->control.trap_expected
5872 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5873 {
5874 int was_in_line;
5875
5876 /* We were just starting a new sequence, attempting to
5877 single-step off of a breakpoint and expecting a SIGTRAP.
5878 Instead this signal arrives. This signal will take us out
5879 of the stepping range so GDB needs to remember to, when
5880 the signal handler returns, resume stepping off that
5881 breakpoint. */
5882 /* To simplify things, "continue" is forced to use the same
5883 code paths as single-step - set a breakpoint at the
5884 signal return address and then, once hit, step off that
5885 breakpoint. */
5886 if (debug_infrun)
5887 fprintf_unfiltered (gdb_stdlog,
5888 "infrun: signal arrived while stepping over "
5889 "breakpoint\n");
5890
5891 was_in_line = step_over_info_valid_p ();
5892 clear_step_over_info ();
5893 insert_hp_step_resume_breakpoint_at_frame (frame);
5894 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5895 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5896 ecs->event_thread->control.trap_expected = 0;
5897
5898 if (target_is_non_stop_p ())
5899 {
5900 /* Either "set non-stop" is "on", or the target is
5901 always in non-stop mode. In this case, we have a bit
5902 more work to do. Resume the current thread, and if
5903 we had paused all threads, restart them while the
5904 signal handler runs. */
5905 keep_going (ecs);
5906
5907 if (was_in_line)
5908 {
5909 restart_threads (ecs->event_thread);
5910 }
5911 else if (debug_infrun)
5912 {
5913 fprintf_unfiltered (gdb_stdlog,
5914 "infrun: no need to restart threads\n");
5915 }
5916 return;
5917 }
5918
5919 /* If we were nexting/stepping some other thread, switch to
5920 it, so that we don't continue it, losing control. */
5921 if (!switch_back_to_stepped_thread (ecs))
5922 keep_going (ecs);
5923 return;
5924 }
5925
5926 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5927 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5928 || ecs->event_thread->control.step_range_end == 1)
5929 && frame_id_eq (get_stack_frame_id (frame),
5930 ecs->event_thread->control.step_stack_frame_id)
5931 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5932 {
5933 /* The inferior is about to take a signal that will take it
5934 out of the single step range. Set a breakpoint at the
5935 current PC (which is presumably where the signal handler
5936 will eventually return) and then allow the inferior to
5937 run free.
5938
5939 Note that this is only needed for a signal delivered
5940 while in the single-step range. Nested signals aren't a
5941 problem as they eventually all return. */
5942 if (debug_infrun)
5943 fprintf_unfiltered (gdb_stdlog,
5944 "infrun: signal may take us out of "
5945 "single-step range\n");
5946
5947 clear_step_over_info ();
5948 insert_hp_step_resume_breakpoint_at_frame (frame);
5949 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5950 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5951 ecs->event_thread->control.trap_expected = 0;
5952 keep_going (ecs);
5953 return;
5954 }
5955
5956 /* Note: step_resume_breakpoint may be non-NULL. This occures
5957 when either there's a nested signal, or when there's a
5958 pending signal enabled just as the signal handler returns
5959 (leaving the inferior at the step-resume-breakpoint without
5960 actually executing it). Either way continue until the
5961 breakpoint is really hit. */
5962
5963 if (!switch_back_to_stepped_thread (ecs))
5964 {
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: random signal, keep going\n");
5968
5969 keep_going (ecs);
5970 }
5971 return;
5972 }
5973
5974 process_event_stop_test (ecs);
5975 }
5976
5977 /* Come here when we've got some debug event / signal we can explain
5978 (IOW, not a random signal), and test whether it should cause a
5979 stop, or whether we should resume the inferior (transparently).
5980 E.g., could be a breakpoint whose condition evaluates false; we
5981 could be still stepping within the line; etc. */
5982
5983 static void
5984 process_event_stop_test (struct execution_control_state *ecs)
5985 {
5986 struct symtab_and_line stop_pc_sal;
5987 struct frame_info *frame;
5988 struct gdbarch *gdbarch;
5989 CORE_ADDR jmp_buf_pc;
5990 struct bpstat_what what;
5991
5992 /* Handle cases caused by hitting a breakpoint. */
5993
5994 frame = get_current_frame ();
5995 gdbarch = get_frame_arch (frame);
5996
5997 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5998
5999 if (what.call_dummy)
6000 {
6001 stop_stack_dummy = what.call_dummy;
6002 }
6003
6004 /* A few breakpoint types have callbacks associated (e.g.,
6005 bp_jit_event). Run them now. */
6006 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6007
6008 /* If we hit an internal event that triggers symbol changes, the
6009 current frame will be invalidated within bpstat_what (e.g., if we
6010 hit an internal solib event). Re-fetch it. */
6011 frame = get_current_frame ();
6012 gdbarch = get_frame_arch (frame);
6013
6014 switch (what.main_action)
6015 {
6016 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6017 /* If we hit the breakpoint at longjmp while stepping, we
6018 install a momentary breakpoint at the target of the
6019 jmp_buf. */
6020
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6024
6025 ecs->event_thread->stepping_over_breakpoint = 1;
6026
6027 if (what.is_longjmp)
6028 {
6029 struct value *arg_value;
6030
6031 /* If we set the longjmp breakpoint via a SystemTap probe,
6032 then use it to extract the arguments. The destination PC
6033 is the third argument to the probe. */
6034 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6035 if (arg_value)
6036 {
6037 jmp_buf_pc = value_as_address (arg_value);
6038 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6039 }
6040 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6041 || !gdbarch_get_longjmp_target (gdbarch,
6042 frame, &jmp_buf_pc))
6043 {
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6047 "(!gdbarch_get_longjmp_target)\n");
6048 keep_going (ecs);
6049 return;
6050 }
6051
6052 /* Insert a breakpoint at resume address. */
6053 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6054 }
6055 else
6056 check_exception_resume (ecs, frame);
6057 keep_going (ecs);
6058 return;
6059
6060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6061 {
6062 struct frame_info *init_frame;
6063
6064 /* There are several cases to consider.
6065
6066 1. The initiating frame no longer exists. In this case we
6067 must stop, because the exception or longjmp has gone too
6068 far.
6069
6070 2. The initiating frame exists, and is the same as the
6071 current frame. We stop, because the exception or longjmp
6072 has been caught.
6073
6074 3. The initiating frame exists and is different from the
6075 current frame. This means the exception or longjmp has
6076 been caught beneath the initiating frame, so keep going.
6077
6078 4. longjmp breakpoint has been placed just to protect
6079 against stale dummy frames and user is not interested in
6080 stopping around longjmps. */
6081
6082 if (debug_infrun)
6083 fprintf_unfiltered (gdb_stdlog,
6084 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6085
6086 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6087 != NULL);
6088 delete_exception_resume_breakpoint (ecs->event_thread);
6089
6090 if (what.is_longjmp)
6091 {
6092 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6093
6094 if (!frame_id_p (ecs->event_thread->initiating_frame))
6095 {
6096 /* Case 4. */
6097 keep_going (ecs);
6098 return;
6099 }
6100 }
6101
6102 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6103
6104 if (init_frame)
6105 {
6106 struct frame_id current_id
6107 = get_frame_id (get_current_frame ());
6108 if (frame_id_eq (current_id,
6109 ecs->event_thread->initiating_frame))
6110 {
6111 /* Case 2. Fall through. */
6112 }
6113 else
6114 {
6115 /* Case 3. */
6116 keep_going (ecs);
6117 return;
6118 }
6119 }
6120
6121 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6122 exists. */
6123 delete_step_resume_breakpoint (ecs->event_thread);
6124
6125 end_stepping_range (ecs);
6126 }
6127 return;
6128
6129 case BPSTAT_WHAT_SINGLE:
6130 if (debug_infrun)
6131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133 /* Still need to check other stuff, at least the case where we
6134 are stepping and step out of the right range. */
6135 break;
6136
6137 case BPSTAT_WHAT_STEP_RESUME:
6138 if (debug_infrun)
6139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6140
6141 delete_step_resume_breakpoint (ecs->event_thread);
6142 if (ecs->event_thread->control.proceed_to_finish
6143 && execution_direction == EXEC_REVERSE)
6144 {
6145 struct thread_info *tp = ecs->event_thread;
6146
6147 /* We are finishing a function in reverse, and just hit the
6148 step-resume breakpoint at the start address of the
6149 function, and we're almost there -- just need to back up
6150 by one more single-step, which should take us back to the
6151 function call. */
6152 tp->control.step_range_start = tp->control.step_range_end = 1;
6153 keep_going (ecs);
6154 return;
6155 }
6156 fill_in_stop_func (gdbarch, ecs);
6157 if (stop_pc == ecs->stop_func_start
6158 && execution_direction == EXEC_REVERSE)
6159 {
6160 /* We are stepping over a function call in reverse, and just
6161 hit the step-resume breakpoint at the start address of
6162 the function. Go back to single-stepping, which should
6163 take us back to the function call. */
6164 ecs->event_thread->stepping_over_breakpoint = 1;
6165 keep_going (ecs);
6166 return;
6167 }
6168 break;
6169
6170 case BPSTAT_WHAT_STOP_NOISY:
6171 if (debug_infrun)
6172 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6173 stop_print_frame = 1;
6174
6175 /* Assume the thread stopped for a breapoint. We'll still check
6176 whether a/the breakpoint is there when the thread is next
6177 resumed. */
6178 ecs->event_thread->stepping_over_breakpoint = 1;
6179
6180 stop_waiting (ecs);
6181 return;
6182
6183 case BPSTAT_WHAT_STOP_SILENT:
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6186 stop_print_frame = 0;
6187
6188 /* Assume the thread stopped for a breapoint. We'll still check
6189 whether a/the breakpoint is there when the thread is next
6190 resumed. */
6191 ecs->event_thread->stepping_over_breakpoint = 1;
6192 stop_waiting (ecs);
6193 return;
6194
6195 case BPSTAT_WHAT_HP_STEP_RESUME:
6196 if (debug_infrun)
6197 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6198
6199 delete_step_resume_breakpoint (ecs->event_thread);
6200 if (ecs->event_thread->step_after_step_resume_breakpoint)
6201 {
6202 /* Back when the step-resume breakpoint was inserted, we
6203 were trying to single-step off a breakpoint. Go back to
6204 doing that. */
6205 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6206 ecs->event_thread->stepping_over_breakpoint = 1;
6207 keep_going (ecs);
6208 return;
6209 }
6210 break;
6211
6212 case BPSTAT_WHAT_KEEP_CHECKING:
6213 break;
6214 }
6215
6216 /* If we stepped a permanent breakpoint and we had a high priority
6217 step-resume breakpoint for the address we stepped, but we didn't
6218 hit it, then we must have stepped into the signal handler. The
6219 step-resume was only necessary to catch the case of _not_
6220 stepping into the handler, so delete it, and fall through to
6221 checking whether the step finished. */
6222 if (ecs->event_thread->stepped_breakpoint)
6223 {
6224 struct breakpoint *sr_bp
6225 = ecs->event_thread->control.step_resume_breakpoint;
6226
6227 if (sr_bp != NULL
6228 && sr_bp->loc->permanent
6229 && sr_bp->type == bp_hp_step_resume
6230 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6231 {
6232 if (debug_infrun)
6233 fprintf_unfiltered (gdb_stdlog,
6234 "infrun: stepped permanent breakpoint, stopped in "
6235 "handler\n");
6236 delete_step_resume_breakpoint (ecs->event_thread);
6237 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6238 }
6239 }
6240
6241 /* We come here if we hit a breakpoint but should not stop for it.
6242 Possibly we also were stepping and should stop for that. So fall
6243 through and test for stepping. But, if not stepping, do not
6244 stop. */
6245
6246 /* In all-stop mode, if we're currently stepping but have stopped in
6247 some other thread, we need to switch back to the stepped thread. */
6248 if (switch_back_to_stepped_thread (ecs))
6249 return;
6250
6251 if (ecs->event_thread->control.step_resume_breakpoint)
6252 {
6253 if (debug_infrun)
6254 fprintf_unfiltered (gdb_stdlog,
6255 "infrun: step-resume breakpoint is inserted\n");
6256
6257 /* Having a step-resume breakpoint overrides anything
6258 else having to do with stepping commands until
6259 that breakpoint is reached. */
6260 keep_going (ecs);
6261 return;
6262 }
6263
6264 if (ecs->event_thread->control.step_range_end == 0)
6265 {
6266 if (debug_infrun)
6267 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6268 /* Likewise if we aren't even stepping. */
6269 keep_going (ecs);
6270 return;
6271 }
6272
6273 /* Re-fetch current thread's frame in case the code above caused
6274 the frame cache to be re-initialized, making our FRAME variable
6275 a dangling pointer. */
6276 frame = get_current_frame ();
6277 gdbarch = get_frame_arch (frame);
6278 fill_in_stop_func (gdbarch, ecs);
6279
6280 /* If stepping through a line, keep going if still within it.
6281
6282 Note that step_range_end is the address of the first instruction
6283 beyond the step range, and NOT the address of the last instruction
6284 within it!
6285
6286 Note also that during reverse execution, we may be stepping
6287 through a function epilogue and therefore must detect when
6288 the current-frame changes in the middle of a line. */
6289
6290 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6291 && (execution_direction != EXEC_REVERSE
6292 || frame_id_eq (get_frame_id (frame),
6293 ecs->event_thread->control.step_frame_id)))
6294 {
6295 if (debug_infrun)
6296 fprintf_unfiltered
6297 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6298 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6299 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6300
6301 /* Tentatively re-enable range stepping; `resume' disables it if
6302 necessary (e.g., if we're stepping over a breakpoint or we
6303 have software watchpoints). */
6304 ecs->event_thread->control.may_range_step = 1;
6305
6306 /* When stepping backward, stop at beginning of line range
6307 (unless it's the function entry point, in which case
6308 keep going back to the call point). */
6309 if (stop_pc == ecs->event_thread->control.step_range_start
6310 && stop_pc != ecs->stop_func_start
6311 && execution_direction == EXEC_REVERSE)
6312 end_stepping_range (ecs);
6313 else
6314 keep_going (ecs);
6315
6316 return;
6317 }
6318
6319 /* We stepped out of the stepping range. */
6320
6321 /* If we are stepping at the source level and entered the runtime
6322 loader dynamic symbol resolution code...
6323
6324 EXEC_FORWARD: we keep on single stepping until we exit the run
6325 time loader code and reach the callee's address.
6326
6327 EXEC_REVERSE: we've already executed the callee (backward), and
6328 the runtime loader code is handled just like any other
6329 undebuggable function call. Now we need only keep stepping
6330 backward through the trampoline code, and that's handled further
6331 down, so there is nothing for us to do here. */
6332
6333 if (execution_direction != EXEC_REVERSE
6334 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6335 && in_solib_dynsym_resolve_code (stop_pc))
6336 {
6337 CORE_ADDR pc_after_resolver =
6338 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6339
6340 if (debug_infrun)
6341 fprintf_unfiltered (gdb_stdlog,
6342 "infrun: stepped into dynsym resolve code\n");
6343
6344 if (pc_after_resolver)
6345 {
6346 /* Set up a step-resume breakpoint at the address
6347 indicated by SKIP_SOLIB_RESOLVER. */
6348 struct symtab_and_line sr_sal;
6349
6350 init_sal (&sr_sal);
6351 sr_sal.pc = pc_after_resolver;
6352 sr_sal.pspace = get_frame_program_space (frame);
6353
6354 insert_step_resume_breakpoint_at_sal (gdbarch,
6355 sr_sal, null_frame_id);
6356 }
6357
6358 keep_going (ecs);
6359 return;
6360 }
6361
6362 if (ecs->event_thread->control.step_range_end != 1
6363 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6364 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6365 && get_frame_type (frame) == SIGTRAMP_FRAME)
6366 {
6367 if (debug_infrun)
6368 fprintf_unfiltered (gdb_stdlog,
6369 "infrun: stepped into signal trampoline\n");
6370 /* The inferior, while doing a "step" or "next", has ended up in
6371 a signal trampoline (either by a signal being delivered or by
6372 the signal handler returning). Just single-step until the
6373 inferior leaves the trampoline (either by calling the handler
6374 or returning). */
6375 keep_going (ecs);
6376 return;
6377 }
6378
6379 /* If we're in the return path from a shared library trampoline,
6380 we want to proceed through the trampoline when stepping. */
6381 /* macro/2012-04-25: This needs to come before the subroutine
6382 call check below as on some targets return trampolines look
6383 like subroutine calls (MIPS16 return thunks). */
6384 if (gdbarch_in_solib_return_trampoline (gdbarch,
6385 stop_pc, ecs->stop_func_name)
6386 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6387 {
6388 /* Determine where this trampoline returns. */
6389 CORE_ADDR real_stop_pc;
6390
6391 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6392
6393 if (debug_infrun)
6394 fprintf_unfiltered (gdb_stdlog,
6395 "infrun: stepped into solib return tramp\n");
6396
6397 /* Only proceed through if we know where it's going. */
6398 if (real_stop_pc)
6399 {
6400 /* And put the step-breakpoint there and go until there. */
6401 struct symtab_and_line sr_sal;
6402
6403 init_sal (&sr_sal); /* initialize to zeroes */
6404 sr_sal.pc = real_stop_pc;
6405 sr_sal.section = find_pc_overlay (sr_sal.pc);
6406 sr_sal.pspace = get_frame_program_space (frame);
6407
6408 /* Do not specify what the fp should be when we stop since
6409 on some machines the prologue is where the new fp value
6410 is established. */
6411 insert_step_resume_breakpoint_at_sal (gdbarch,
6412 sr_sal, null_frame_id);
6413
6414 /* Restart without fiddling with the step ranges or
6415 other state. */
6416 keep_going (ecs);
6417 return;
6418 }
6419 }
6420
6421 /* Check for subroutine calls. The check for the current frame
6422 equalling the step ID is not necessary - the check of the
6423 previous frame's ID is sufficient - but it is a common case and
6424 cheaper than checking the previous frame's ID.
6425
6426 NOTE: frame_id_eq will never report two invalid frame IDs as
6427 being equal, so to get into this block, both the current and
6428 previous frame must have valid frame IDs. */
6429 /* The outer_frame_id check is a heuristic to detect stepping
6430 through startup code. If we step over an instruction which
6431 sets the stack pointer from an invalid value to a valid value,
6432 we may detect that as a subroutine call from the mythical
6433 "outermost" function. This could be fixed by marking
6434 outermost frames as !stack_p,code_p,special_p. Then the
6435 initial outermost frame, before sp was valid, would
6436 have code_addr == &_start. See the comment in frame_id_eq
6437 for more. */
6438 if (!frame_id_eq (get_stack_frame_id (frame),
6439 ecs->event_thread->control.step_stack_frame_id)
6440 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6441 ecs->event_thread->control.step_stack_frame_id)
6442 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6443 outer_frame_id)
6444 || (ecs->event_thread->control.step_start_function
6445 != find_pc_function (stop_pc)))))
6446 {
6447 CORE_ADDR real_stop_pc;
6448
6449 if (debug_infrun)
6450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6451
6452 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6453 {
6454 /* I presume that step_over_calls is only 0 when we're
6455 supposed to be stepping at the assembly language level
6456 ("stepi"). Just stop. */
6457 /* And this works the same backward as frontward. MVS */
6458 end_stepping_range (ecs);
6459 return;
6460 }
6461
6462 /* Reverse stepping through solib trampolines. */
6463
6464 if (execution_direction == EXEC_REVERSE
6465 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6466 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6467 || (ecs->stop_func_start == 0
6468 && in_solib_dynsym_resolve_code (stop_pc))))
6469 {
6470 /* Any solib trampoline code can be handled in reverse
6471 by simply continuing to single-step. We have already
6472 executed the solib function (backwards), and a few
6473 steps will take us back through the trampoline to the
6474 caller. */
6475 keep_going (ecs);
6476 return;
6477 }
6478
6479 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6480 {
6481 /* We're doing a "next".
6482
6483 Normal (forward) execution: set a breakpoint at the
6484 callee's return address (the address at which the caller
6485 will resume).
6486
6487 Reverse (backward) execution. set the step-resume
6488 breakpoint at the start of the function that we just
6489 stepped into (backwards), and continue to there. When we
6490 get there, we'll need to single-step back to the caller. */
6491
6492 if (execution_direction == EXEC_REVERSE)
6493 {
6494 /* If we're already at the start of the function, we've either
6495 just stepped backward into a single instruction function,
6496 or stepped back out of a signal handler to the first instruction
6497 of the function. Just keep going, which will single-step back
6498 to the caller. */
6499 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6500 {
6501 struct symtab_and_line sr_sal;
6502
6503 /* Normal function call return (static or dynamic). */
6504 init_sal (&sr_sal);
6505 sr_sal.pc = ecs->stop_func_start;
6506 sr_sal.pspace = get_frame_program_space (frame);
6507 insert_step_resume_breakpoint_at_sal (gdbarch,
6508 sr_sal, null_frame_id);
6509 }
6510 }
6511 else
6512 insert_step_resume_breakpoint_at_caller (frame);
6513
6514 keep_going (ecs);
6515 return;
6516 }
6517
6518 /* If we are in a function call trampoline (a stub between the
6519 calling routine and the real function), locate the real
6520 function. That's what tells us (a) whether we want to step
6521 into it at all, and (b) what prologue we want to run to the
6522 end of, if we do step into it. */
6523 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6524 if (real_stop_pc == 0)
6525 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6526 if (real_stop_pc != 0)
6527 ecs->stop_func_start = real_stop_pc;
6528
6529 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6530 {
6531 struct symtab_and_line sr_sal;
6532
6533 init_sal (&sr_sal);
6534 sr_sal.pc = ecs->stop_func_start;
6535 sr_sal.pspace = get_frame_program_space (frame);
6536
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
6539 keep_going (ecs);
6540 return;
6541 }
6542
6543 /* If we have line number information for the function we are
6544 thinking of stepping into and the function isn't on the skip
6545 list, step into it.
6546
6547 If there are several symtabs at that PC (e.g. with include
6548 files), just want to know whether *any* of them have line
6549 numbers. find_pc_line handles this. */
6550 {
6551 struct symtab_and_line tmp_sal;
6552
6553 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6554 if (tmp_sal.line != 0
6555 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6556 &tmp_sal))
6557 {
6558 if (execution_direction == EXEC_REVERSE)
6559 handle_step_into_function_backward (gdbarch, ecs);
6560 else
6561 handle_step_into_function (gdbarch, ecs);
6562 return;
6563 }
6564 }
6565
6566 /* If we have no line number and the step-stop-if-no-debug is
6567 set, we stop the step so that the user has a chance to switch
6568 in assembly mode. */
6569 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6570 && step_stop_if_no_debug)
6571 {
6572 end_stepping_range (ecs);
6573 return;
6574 }
6575
6576 if (execution_direction == EXEC_REVERSE)
6577 {
6578 /* If we're already at the start of the function, we've either just
6579 stepped backward into a single instruction function without line
6580 number info, or stepped back out of a signal handler to the first
6581 instruction of the function without line number info. Just keep
6582 going, which will single-step back to the caller. */
6583 if (ecs->stop_func_start != stop_pc)
6584 {
6585 /* Set a breakpoint at callee's start address.
6586 From there we can step once and be back in the caller. */
6587 struct symtab_and_line sr_sal;
6588
6589 init_sal (&sr_sal);
6590 sr_sal.pc = ecs->stop_func_start;
6591 sr_sal.pspace = get_frame_program_space (frame);
6592 insert_step_resume_breakpoint_at_sal (gdbarch,
6593 sr_sal, null_frame_id);
6594 }
6595 }
6596 else
6597 /* Set a breakpoint at callee's return address (the address
6598 at which the caller will resume). */
6599 insert_step_resume_breakpoint_at_caller (frame);
6600
6601 keep_going (ecs);
6602 return;
6603 }
6604
6605 /* Reverse stepping through solib trampolines. */
6606
6607 if (execution_direction == EXEC_REVERSE
6608 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6609 {
6610 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6611 || (ecs->stop_func_start == 0
6612 && in_solib_dynsym_resolve_code (stop_pc)))
6613 {
6614 /* Any solib trampoline code can be handled in reverse
6615 by simply continuing to single-step. We have already
6616 executed the solib function (backwards), and a few
6617 steps will take us back through the trampoline to the
6618 caller. */
6619 keep_going (ecs);
6620 return;
6621 }
6622 else if (in_solib_dynsym_resolve_code (stop_pc))
6623 {
6624 /* Stepped backward into the solib dynsym resolver.
6625 Set a breakpoint at its start and continue, then
6626 one more step will take us out. */
6627 struct symtab_and_line sr_sal;
6628
6629 init_sal (&sr_sal);
6630 sr_sal.pc = ecs->stop_func_start;
6631 sr_sal.pspace = get_frame_program_space (frame);
6632 insert_step_resume_breakpoint_at_sal (gdbarch,
6633 sr_sal, null_frame_id);
6634 keep_going (ecs);
6635 return;
6636 }
6637 }
6638
6639 stop_pc_sal = find_pc_line (stop_pc, 0);
6640
6641 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6642 the trampoline processing logic, however, there are some trampolines
6643 that have no names, so we should do trampoline handling first. */
6644 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6645 && ecs->stop_func_name == NULL
6646 && stop_pc_sal.line == 0)
6647 {
6648 if (debug_infrun)
6649 fprintf_unfiltered (gdb_stdlog,
6650 "infrun: stepped into undebuggable function\n");
6651
6652 /* The inferior just stepped into, or returned to, an
6653 undebuggable function (where there is no debugging information
6654 and no line number corresponding to the address where the
6655 inferior stopped). Since we want to skip this kind of code,
6656 we keep going until the inferior returns from this
6657 function - unless the user has asked us not to (via
6658 set step-mode) or we no longer know how to get back
6659 to the call site. */
6660 if (step_stop_if_no_debug
6661 || !frame_id_p (frame_unwind_caller_id (frame)))
6662 {
6663 /* If we have no line number and the step-stop-if-no-debug
6664 is set, we stop the step so that the user has a chance to
6665 switch in assembly mode. */
6666 end_stepping_range (ecs);
6667 return;
6668 }
6669 else
6670 {
6671 /* Set a breakpoint at callee's return address (the address
6672 at which the caller will resume). */
6673 insert_step_resume_breakpoint_at_caller (frame);
6674 keep_going (ecs);
6675 return;
6676 }
6677 }
6678
6679 if (ecs->event_thread->control.step_range_end == 1)
6680 {
6681 /* It is stepi or nexti. We always want to stop stepping after
6682 one instruction. */
6683 if (debug_infrun)
6684 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6685 end_stepping_range (ecs);
6686 return;
6687 }
6688
6689 if (stop_pc_sal.line == 0)
6690 {
6691 /* We have no line number information. That means to stop
6692 stepping (does this always happen right after one instruction,
6693 when we do "s" in a function with no line numbers,
6694 or can this happen as a result of a return or longjmp?). */
6695 if (debug_infrun)
6696 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6697 end_stepping_range (ecs);
6698 return;
6699 }
6700
6701 /* Look for "calls" to inlined functions, part one. If the inline
6702 frame machinery detected some skipped call sites, we have entered
6703 a new inline function. */
6704
6705 if (frame_id_eq (get_frame_id (get_current_frame ()),
6706 ecs->event_thread->control.step_frame_id)
6707 && inline_skipped_frames (ecs->ptid))
6708 {
6709 struct symtab_and_line call_sal;
6710
6711 if (debug_infrun)
6712 fprintf_unfiltered (gdb_stdlog,
6713 "infrun: stepped into inlined function\n");
6714
6715 find_frame_sal (get_current_frame (), &call_sal);
6716
6717 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6718 {
6719 /* For "step", we're going to stop. But if the call site
6720 for this inlined function is on the same source line as
6721 we were previously stepping, go down into the function
6722 first. Otherwise stop at the call site. */
6723
6724 if (call_sal.line == ecs->event_thread->current_line
6725 && call_sal.symtab == ecs->event_thread->current_symtab)
6726 step_into_inline_frame (ecs->ptid);
6727
6728 end_stepping_range (ecs);
6729 return;
6730 }
6731 else
6732 {
6733 /* For "next", we should stop at the call site if it is on a
6734 different source line. Otherwise continue through the
6735 inlined function. */
6736 if (call_sal.line == ecs->event_thread->current_line
6737 && call_sal.symtab == ecs->event_thread->current_symtab)
6738 keep_going (ecs);
6739 else
6740 end_stepping_range (ecs);
6741 return;
6742 }
6743 }
6744
6745 /* Look for "calls" to inlined functions, part two. If we are still
6746 in the same real function we were stepping through, but we have
6747 to go further up to find the exact frame ID, we are stepping
6748 through a more inlined call beyond its call site. */
6749
6750 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6751 && !frame_id_eq (get_frame_id (get_current_frame ()),
6752 ecs->event_thread->control.step_frame_id)
6753 && stepped_in_from (get_current_frame (),
6754 ecs->event_thread->control.step_frame_id))
6755 {
6756 if (debug_infrun)
6757 fprintf_unfiltered (gdb_stdlog,
6758 "infrun: stepping through inlined function\n");
6759
6760 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6761 keep_going (ecs);
6762 else
6763 end_stepping_range (ecs);
6764 return;
6765 }
6766
6767 if ((stop_pc == stop_pc_sal.pc)
6768 && (ecs->event_thread->current_line != stop_pc_sal.line
6769 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6770 {
6771 /* We are at the start of a different line. So stop. Note that
6772 we don't stop if we step into the middle of a different line.
6773 That is said to make things like for (;;) statements work
6774 better. */
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepped to a different line\n");
6778 end_stepping_range (ecs);
6779 return;
6780 }
6781
6782 /* We aren't done stepping.
6783
6784 Optimize by setting the stepping range to the line.
6785 (We might not be in the original line, but if we entered a
6786 new line in mid-statement, we continue stepping. This makes
6787 things like for(;;) statements work better.) */
6788
6789 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6790 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6791 ecs->event_thread->control.may_range_step = 1;
6792 set_step_info (frame, stop_pc_sal);
6793
6794 if (debug_infrun)
6795 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6796 keep_going (ecs);
6797 }
6798
6799 /* In all-stop mode, if we're currently stepping but have stopped in
6800 some other thread, we may need to switch back to the stepped
6801 thread. Returns true we set the inferior running, false if we left
6802 it stopped (and the event needs further processing). */
6803
6804 static int
6805 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6806 {
6807 if (!target_is_non_stop_p ())
6808 {
6809 struct thread_info *tp;
6810 struct thread_info *stepping_thread;
6811
6812 /* If any thread is blocked on some internal breakpoint, and we
6813 simply need to step over that breakpoint to get it going
6814 again, do that first. */
6815
6816 /* However, if we see an event for the stepping thread, then we
6817 know all other threads have been moved past their breakpoints
6818 already. Let the caller check whether the step is finished,
6819 etc., before deciding to move it past a breakpoint. */
6820 if (ecs->event_thread->control.step_range_end != 0)
6821 return 0;
6822
6823 /* Check if the current thread is blocked on an incomplete
6824 step-over, interrupted by a random signal. */
6825 if (ecs->event_thread->control.trap_expected
6826 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6827 {
6828 if (debug_infrun)
6829 {
6830 fprintf_unfiltered (gdb_stdlog,
6831 "infrun: need to finish step-over of [%s]\n",
6832 target_pid_to_str (ecs->event_thread->ptid));
6833 }
6834 keep_going (ecs);
6835 return 1;
6836 }
6837
6838 /* Check if the current thread is blocked by a single-step
6839 breakpoint of another thread. */
6840 if (ecs->hit_singlestep_breakpoint)
6841 {
6842 if (debug_infrun)
6843 {
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: need to step [%s] over single-step "
6846 "breakpoint\n",
6847 target_pid_to_str (ecs->ptid));
6848 }
6849 keep_going (ecs);
6850 return 1;
6851 }
6852
6853 /* If this thread needs yet another step-over (e.g., stepping
6854 through a delay slot), do it first before moving on to
6855 another thread. */
6856 if (thread_still_needs_step_over (ecs->event_thread))
6857 {
6858 if (debug_infrun)
6859 {
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: thread [%s] still needs step-over\n",
6862 target_pid_to_str (ecs->event_thread->ptid));
6863 }
6864 keep_going (ecs);
6865 return 1;
6866 }
6867
6868 /* If scheduler locking applies even if not stepping, there's no
6869 need to walk over threads. Above we've checked whether the
6870 current thread is stepping. If some other thread not the
6871 event thread is stepping, then it must be that scheduler
6872 locking is not in effect. */
6873 if (schedlock_applies (ecs->event_thread))
6874 return 0;
6875
6876 /* Otherwise, we no longer expect a trap in the current thread.
6877 Clear the trap_expected flag before switching back -- this is
6878 what keep_going does as well, if we call it. */
6879 ecs->event_thread->control.trap_expected = 0;
6880
6881 /* Likewise, clear the signal if it should not be passed. */
6882 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6883 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6884
6885 /* Do all pending step-overs before actually proceeding with
6886 step/next/etc. */
6887 if (start_step_over ())
6888 {
6889 prepare_to_wait (ecs);
6890 return 1;
6891 }
6892
6893 /* Look for the stepping/nexting thread. */
6894 stepping_thread = NULL;
6895
6896 ALL_NON_EXITED_THREADS (tp)
6897 {
6898 /* Ignore threads of processes the caller is not
6899 resuming. */
6900 if (!sched_multi
6901 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6902 continue;
6903
6904 /* When stepping over a breakpoint, we lock all threads
6905 except the one that needs to move past the breakpoint.
6906 If a non-event thread has this set, the "incomplete
6907 step-over" check above should have caught it earlier. */
6908 if (tp->control.trap_expected)
6909 {
6910 internal_error (__FILE__, __LINE__,
6911 "[%s] has inconsistent state: "
6912 "trap_expected=%d\n",
6913 target_pid_to_str (tp->ptid),
6914 tp->control.trap_expected);
6915 }
6916
6917 /* Did we find the stepping thread? */
6918 if (tp->control.step_range_end)
6919 {
6920 /* Yep. There should only one though. */
6921 gdb_assert (stepping_thread == NULL);
6922
6923 /* The event thread is handled at the top, before we
6924 enter this loop. */
6925 gdb_assert (tp != ecs->event_thread);
6926
6927 /* If some thread other than the event thread is
6928 stepping, then scheduler locking can't be in effect,
6929 otherwise we wouldn't have resumed the current event
6930 thread in the first place. */
6931 gdb_assert (!schedlock_applies (tp));
6932
6933 stepping_thread = tp;
6934 }
6935 }
6936
6937 if (stepping_thread != NULL)
6938 {
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: switching back to stepped thread\n");
6942
6943 if (keep_going_stepped_thread (stepping_thread))
6944 {
6945 prepare_to_wait (ecs);
6946 return 1;
6947 }
6948 }
6949 }
6950
6951 return 0;
6952 }
6953
6954 /* Set a previously stepped thread back to stepping. Returns true on
6955 success, false if the resume is not possible (e.g., the thread
6956 vanished). */
6957
6958 static int
6959 keep_going_stepped_thread (struct thread_info *tp)
6960 {
6961 struct frame_info *frame;
6962 struct gdbarch *gdbarch;
6963 struct execution_control_state ecss;
6964 struct execution_control_state *ecs = &ecss;
6965
6966 /* If the stepping thread exited, then don't try to switch back and
6967 resume it, which could fail in several different ways depending
6968 on the target. Instead, just keep going.
6969
6970 We can find a stepping dead thread in the thread list in two
6971 cases:
6972
6973 - The target supports thread exit events, and when the target
6974 tries to delete the thread from the thread list, inferior_ptid
6975 pointed at the exiting thread. In such case, calling
6976 delete_thread does not really remove the thread from the list;
6977 instead, the thread is left listed, with 'exited' state.
6978
6979 - The target's debug interface does not support thread exit
6980 events, and so we have no idea whatsoever if the previously
6981 stepping thread is still alive. For that reason, we need to
6982 synchronously query the target now. */
6983
6984 if (is_exited (tp->ptid)
6985 || !target_thread_alive (tp->ptid))
6986 {
6987 if (debug_infrun)
6988 fprintf_unfiltered (gdb_stdlog,
6989 "infrun: not resuming previously "
6990 "stepped thread, it has vanished\n");
6991
6992 delete_thread (tp->ptid);
6993 return 0;
6994 }
6995
6996 if (debug_infrun)
6997 fprintf_unfiltered (gdb_stdlog,
6998 "infrun: resuming previously stepped thread\n");
6999
7000 reset_ecs (ecs, tp);
7001 switch_to_thread (tp->ptid);
7002
7003 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7004 frame = get_current_frame ();
7005 gdbarch = get_frame_arch (frame);
7006
7007 /* If the PC of the thread we were trying to single-step has
7008 changed, then that thread has trapped or been signaled, but the
7009 event has not been reported to GDB yet. Re-poll the target
7010 looking for this particular thread's event (i.e. temporarily
7011 enable schedlock) by:
7012
7013 - setting a break at the current PC
7014 - resuming that particular thread, only (by setting trap
7015 expected)
7016
7017 This prevents us continuously moving the single-step breakpoint
7018 forward, one instruction at a time, overstepping. */
7019
7020 if (stop_pc != tp->prev_pc)
7021 {
7022 ptid_t resume_ptid;
7023
7024 if (debug_infrun)
7025 fprintf_unfiltered (gdb_stdlog,
7026 "infrun: expected thread advanced also (%s -> %s)\n",
7027 paddress (target_gdbarch (), tp->prev_pc),
7028 paddress (target_gdbarch (), stop_pc));
7029
7030 /* Clear the info of the previous step-over, as it's no longer
7031 valid (if the thread was trying to step over a breakpoint, it
7032 has already succeeded). It's what keep_going would do too,
7033 if we called it. Do this before trying to insert the sss
7034 breakpoint, otherwise if we were previously trying to step
7035 over this exact address in another thread, the breakpoint is
7036 skipped. */
7037 clear_step_over_info ();
7038 tp->control.trap_expected = 0;
7039
7040 insert_single_step_breakpoint (get_frame_arch (frame),
7041 get_frame_address_space (frame),
7042 stop_pc);
7043
7044 tp->resumed = 1;
7045 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7046 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7047 }
7048 else
7049 {
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: expected thread still hasn't advanced\n");
7053
7054 keep_going_pass_signal (ecs);
7055 }
7056 return 1;
7057 }
7058
7059 /* Is thread TP in the middle of (software or hardware)
7060 single-stepping? (Note the result of this function must never be
7061 passed directly as target_resume's STEP parameter.) */
7062
7063 static int
7064 currently_stepping (struct thread_info *tp)
7065 {
7066 return ((tp->control.step_range_end
7067 && tp->control.step_resume_breakpoint == NULL)
7068 || tp->control.trap_expected
7069 || tp->stepped_breakpoint
7070 || bpstat_should_step ());
7071 }
7072
7073 /* Inferior has stepped into a subroutine call with source code that
7074 we should not step over. Do step to the first line of code in
7075 it. */
7076
7077 static void
7078 handle_step_into_function (struct gdbarch *gdbarch,
7079 struct execution_control_state *ecs)
7080 {
7081 struct compunit_symtab *cust;
7082 struct symtab_and_line stop_func_sal, sr_sal;
7083
7084 fill_in_stop_func (gdbarch, ecs);
7085
7086 cust = find_pc_compunit_symtab (stop_pc);
7087 if (cust != NULL && compunit_language (cust) != language_asm)
7088 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7089 ecs->stop_func_start);
7090
7091 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7092 /* Use the step_resume_break to step until the end of the prologue,
7093 even if that involves jumps (as it seems to on the vax under
7094 4.2). */
7095 /* If the prologue ends in the middle of a source line, continue to
7096 the end of that source line (if it is still within the function).
7097 Otherwise, just go to end of prologue. */
7098 if (stop_func_sal.end
7099 && stop_func_sal.pc != ecs->stop_func_start
7100 && stop_func_sal.end < ecs->stop_func_end)
7101 ecs->stop_func_start = stop_func_sal.end;
7102
7103 /* Architectures which require breakpoint adjustment might not be able
7104 to place a breakpoint at the computed address. If so, the test
7105 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7106 ecs->stop_func_start to an address at which a breakpoint may be
7107 legitimately placed.
7108
7109 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7110 made, GDB will enter an infinite loop when stepping through
7111 optimized code consisting of VLIW instructions which contain
7112 subinstructions corresponding to different source lines. On
7113 FR-V, it's not permitted to place a breakpoint on any but the
7114 first subinstruction of a VLIW instruction. When a breakpoint is
7115 set, GDB will adjust the breakpoint address to the beginning of
7116 the VLIW instruction. Thus, we need to make the corresponding
7117 adjustment here when computing the stop address. */
7118
7119 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7120 {
7121 ecs->stop_func_start
7122 = gdbarch_adjust_breakpoint_address (gdbarch,
7123 ecs->stop_func_start);
7124 }
7125
7126 if (ecs->stop_func_start == stop_pc)
7127 {
7128 /* We are already there: stop now. */
7129 end_stepping_range (ecs);
7130 return;
7131 }
7132 else
7133 {
7134 /* Put the step-breakpoint there and go until there. */
7135 init_sal (&sr_sal); /* initialize to zeroes */
7136 sr_sal.pc = ecs->stop_func_start;
7137 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7138 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7139
7140 /* Do not specify what the fp should be when we stop since on
7141 some machines the prologue is where the new fp value is
7142 established. */
7143 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7144
7145 /* And make sure stepping stops right away then. */
7146 ecs->event_thread->control.step_range_end
7147 = ecs->event_thread->control.step_range_start;
7148 }
7149 keep_going (ecs);
7150 }
7151
7152 /* Inferior has stepped backward into a subroutine call with source
7153 code that we should not step over. Do step to the beginning of the
7154 last line of code in it. */
7155
7156 static void
7157 handle_step_into_function_backward (struct gdbarch *gdbarch,
7158 struct execution_control_state *ecs)
7159 {
7160 struct compunit_symtab *cust;
7161 struct symtab_and_line stop_func_sal;
7162
7163 fill_in_stop_func (gdbarch, ecs);
7164
7165 cust = find_pc_compunit_symtab (stop_pc);
7166 if (cust != NULL && compunit_language (cust) != language_asm)
7167 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7168 ecs->stop_func_start);
7169
7170 stop_func_sal = find_pc_line (stop_pc, 0);
7171
7172 /* OK, we're just going to keep stepping here. */
7173 if (stop_func_sal.pc == stop_pc)
7174 {
7175 /* We're there already. Just stop stepping now. */
7176 end_stepping_range (ecs);
7177 }
7178 else
7179 {
7180 /* Else just reset the step range and keep going.
7181 No step-resume breakpoint, they don't work for
7182 epilogues, which can have multiple entry paths. */
7183 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7184 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7185 keep_going (ecs);
7186 }
7187 return;
7188 }
7189
7190 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7191 This is used to both functions and to skip over code. */
7192
7193 static void
7194 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7195 struct symtab_and_line sr_sal,
7196 struct frame_id sr_id,
7197 enum bptype sr_type)
7198 {
7199 /* There should never be more than one step-resume or longjmp-resume
7200 breakpoint per thread, so we should never be setting a new
7201 step_resume_breakpoint when one is already active. */
7202 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7203 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7204
7205 if (debug_infrun)
7206 fprintf_unfiltered (gdb_stdlog,
7207 "infrun: inserting step-resume breakpoint at %s\n",
7208 paddress (gdbarch, sr_sal.pc));
7209
7210 inferior_thread ()->control.step_resume_breakpoint
7211 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7212 }
7213
7214 void
7215 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7216 struct symtab_and_line sr_sal,
7217 struct frame_id sr_id)
7218 {
7219 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7220 sr_sal, sr_id,
7221 bp_step_resume);
7222 }
7223
7224 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7225 This is used to skip a potential signal handler.
7226
7227 This is called with the interrupted function's frame. The signal
7228 handler, when it returns, will resume the interrupted function at
7229 RETURN_FRAME.pc. */
7230
7231 static void
7232 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7233 {
7234 struct symtab_and_line sr_sal;
7235 struct gdbarch *gdbarch;
7236
7237 gdb_assert (return_frame != NULL);
7238 init_sal (&sr_sal); /* initialize to zeros */
7239
7240 gdbarch = get_frame_arch (return_frame);
7241 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7242 sr_sal.section = find_pc_overlay (sr_sal.pc);
7243 sr_sal.pspace = get_frame_program_space (return_frame);
7244
7245 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7246 get_stack_frame_id (return_frame),
7247 bp_hp_step_resume);
7248 }
7249
7250 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7251 is used to skip a function after stepping into it (for "next" or if
7252 the called function has no debugging information).
7253
7254 The current function has almost always been reached by single
7255 stepping a call or return instruction. NEXT_FRAME belongs to the
7256 current function, and the breakpoint will be set at the caller's
7257 resume address.
7258
7259 This is a separate function rather than reusing
7260 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7261 get_prev_frame, which may stop prematurely (see the implementation
7262 of frame_unwind_caller_id for an example). */
7263
7264 static void
7265 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7266 {
7267 struct symtab_and_line sr_sal;
7268 struct gdbarch *gdbarch;
7269
7270 /* We shouldn't have gotten here if we don't know where the call site
7271 is. */
7272 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7273
7274 init_sal (&sr_sal); /* initialize to zeros */
7275
7276 gdbarch = frame_unwind_caller_arch (next_frame);
7277 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7278 frame_unwind_caller_pc (next_frame));
7279 sr_sal.section = find_pc_overlay (sr_sal.pc);
7280 sr_sal.pspace = frame_unwind_program_space (next_frame);
7281
7282 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7283 frame_unwind_caller_id (next_frame));
7284 }
7285
7286 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7287 new breakpoint at the target of a jmp_buf. The handling of
7288 longjmp-resume uses the same mechanisms used for handling
7289 "step-resume" breakpoints. */
7290
7291 static void
7292 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7293 {
7294 /* There should never be more than one longjmp-resume breakpoint per
7295 thread, so we should never be setting a new
7296 longjmp_resume_breakpoint when one is already active. */
7297 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7298
7299 if (debug_infrun)
7300 fprintf_unfiltered (gdb_stdlog,
7301 "infrun: inserting longjmp-resume breakpoint at %s\n",
7302 paddress (gdbarch, pc));
7303
7304 inferior_thread ()->control.exception_resume_breakpoint =
7305 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7306 }
7307
7308 /* Insert an exception resume breakpoint. TP is the thread throwing
7309 the exception. The block B is the block of the unwinder debug hook
7310 function. FRAME is the frame corresponding to the call to this
7311 function. SYM is the symbol of the function argument holding the
7312 target PC of the exception. */
7313
7314 static void
7315 insert_exception_resume_breakpoint (struct thread_info *tp,
7316 const struct block *b,
7317 struct frame_info *frame,
7318 struct symbol *sym)
7319 {
7320 TRY
7321 {
7322 struct block_symbol vsym;
7323 struct value *value;
7324 CORE_ADDR handler;
7325 struct breakpoint *bp;
7326
7327 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7328 value = read_var_value (vsym.symbol, vsym.block, frame);
7329 /* If the value was optimized out, revert to the old behavior. */
7330 if (! value_optimized_out (value))
7331 {
7332 handler = value_as_address (value);
7333
7334 if (debug_infrun)
7335 fprintf_unfiltered (gdb_stdlog,
7336 "infrun: exception resume at %lx\n",
7337 (unsigned long) handler);
7338
7339 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7340 handler, bp_exception_resume);
7341
7342 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7343 frame = NULL;
7344
7345 bp->thread = tp->num;
7346 inferior_thread ()->control.exception_resume_breakpoint = bp;
7347 }
7348 }
7349 CATCH (e, RETURN_MASK_ERROR)
7350 {
7351 /* We want to ignore errors here. */
7352 }
7353 END_CATCH
7354 }
7355
7356 /* A helper for check_exception_resume that sets an
7357 exception-breakpoint based on a SystemTap probe. */
7358
7359 static void
7360 insert_exception_resume_from_probe (struct thread_info *tp,
7361 const struct bound_probe *probe,
7362 struct frame_info *frame)
7363 {
7364 struct value *arg_value;
7365 CORE_ADDR handler;
7366 struct breakpoint *bp;
7367
7368 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7369 if (!arg_value)
7370 return;
7371
7372 handler = value_as_address (arg_value);
7373
7374 if (debug_infrun)
7375 fprintf_unfiltered (gdb_stdlog,
7376 "infrun: exception resume at %s\n",
7377 paddress (get_objfile_arch (probe->objfile),
7378 handler));
7379
7380 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7381 handler, bp_exception_resume);
7382 bp->thread = tp->num;
7383 inferior_thread ()->control.exception_resume_breakpoint = bp;
7384 }
7385
7386 /* This is called when an exception has been intercepted. Check to
7387 see whether the exception's destination is of interest, and if so,
7388 set an exception resume breakpoint there. */
7389
7390 static void
7391 check_exception_resume (struct execution_control_state *ecs,
7392 struct frame_info *frame)
7393 {
7394 struct bound_probe probe;
7395 struct symbol *func;
7396
7397 /* First see if this exception unwinding breakpoint was set via a
7398 SystemTap probe point. If so, the probe has two arguments: the
7399 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7400 set a breakpoint there. */
7401 probe = find_probe_by_pc (get_frame_pc (frame));
7402 if (probe.probe)
7403 {
7404 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7405 return;
7406 }
7407
7408 func = get_frame_function (frame);
7409 if (!func)
7410 return;
7411
7412 TRY
7413 {
7414 const struct block *b;
7415 struct block_iterator iter;
7416 struct symbol *sym;
7417 int argno = 0;
7418
7419 /* The exception breakpoint is a thread-specific breakpoint on
7420 the unwinder's debug hook, declared as:
7421
7422 void _Unwind_DebugHook (void *cfa, void *handler);
7423
7424 The CFA argument indicates the frame to which control is
7425 about to be transferred. HANDLER is the destination PC.
7426
7427 We ignore the CFA and set a temporary breakpoint at HANDLER.
7428 This is not extremely efficient but it avoids issues in gdb
7429 with computing the DWARF CFA, and it also works even in weird
7430 cases such as throwing an exception from inside a signal
7431 handler. */
7432
7433 b = SYMBOL_BLOCK_VALUE (func);
7434 ALL_BLOCK_SYMBOLS (b, iter, sym)
7435 {
7436 if (!SYMBOL_IS_ARGUMENT (sym))
7437 continue;
7438
7439 if (argno == 0)
7440 ++argno;
7441 else
7442 {
7443 insert_exception_resume_breakpoint (ecs->event_thread,
7444 b, frame, sym);
7445 break;
7446 }
7447 }
7448 }
7449 CATCH (e, RETURN_MASK_ERROR)
7450 {
7451 }
7452 END_CATCH
7453 }
7454
7455 static void
7456 stop_waiting (struct execution_control_state *ecs)
7457 {
7458 if (debug_infrun)
7459 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7460
7461 clear_step_over_info ();
7462
7463 /* Let callers know we don't want to wait for the inferior anymore. */
7464 ecs->wait_some_more = 0;
7465
7466 /* If all-stop, but the target is always in non-stop mode, stop all
7467 threads now that we're presenting the stop to the user. */
7468 if (!non_stop && target_is_non_stop_p ())
7469 stop_all_threads ();
7470 }
7471
7472 /* Like keep_going, but passes the signal to the inferior, even if the
7473 signal is set to nopass. */
7474
7475 static void
7476 keep_going_pass_signal (struct execution_control_state *ecs)
7477 {
7478 /* Make sure normal_stop is called if we get a QUIT handled before
7479 reaching resume. */
7480 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7481
7482 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7483 gdb_assert (!ecs->event_thread->resumed);
7484
7485 /* Save the pc before execution, to compare with pc after stop. */
7486 ecs->event_thread->prev_pc
7487 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7488
7489 if (ecs->event_thread->control.trap_expected)
7490 {
7491 struct thread_info *tp = ecs->event_thread;
7492
7493 if (debug_infrun)
7494 fprintf_unfiltered (gdb_stdlog,
7495 "infrun: %s has trap_expected set, "
7496 "resuming to collect trap\n",
7497 target_pid_to_str (tp->ptid));
7498
7499 /* We haven't yet gotten our trap, and either: intercepted a
7500 non-signal event (e.g., a fork); or took a signal which we
7501 are supposed to pass through to the inferior. Simply
7502 continue. */
7503 discard_cleanups (old_cleanups);
7504 resume (ecs->event_thread->suspend.stop_signal);
7505 }
7506 else if (step_over_info_valid_p ())
7507 {
7508 /* Another thread is stepping over a breakpoint in-line. If
7509 this thread needs a step-over too, queue the request. In
7510 either case, this resume must be deferred for later. */
7511 struct thread_info *tp = ecs->event_thread;
7512
7513 if (ecs->hit_singlestep_breakpoint
7514 || thread_still_needs_step_over (tp))
7515 {
7516 if (debug_infrun)
7517 fprintf_unfiltered (gdb_stdlog,
7518 "infrun: step-over already in progress: "
7519 "step-over for %s deferred\n",
7520 target_pid_to_str (tp->ptid));
7521 thread_step_over_chain_enqueue (tp);
7522 }
7523 else
7524 {
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: step-over in progress: "
7528 "resume of %s deferred\n",
7529 target_pid_to_str (tp->ptid));
7530 }
7531
7532 discard_cleanups (old_cleanups);
7533 }
7534 else
7535 {
7536 struct regcache *regcache = get_current_regcache ();
7537 int remove_bp;
7538 int remove_wps;
7539 enum step_over_what step_what;
7540
7541 /* Either the trap was not expected, but we are continuing
7542 anyway (if we got a signal, the user asked it be passed to
7543 the child)
7544 -- or --
7545 We got our expected trap, but decided we should resume from
7546 it.
7547
7548 We're going to run this baby now!
7549
7550 Note that insert_breakpoints won't try to re-insert
7551 already inserted breakpoints. Therefore, we don't
7552 care if breakpoints were already inserted, or not. */
7553
7554 /* If we need to step over a breakpoint, and we're not using
7555 displaced stepping to do so, insert all breakpoints
7556 (watchpoints, etc.) but the one we're stepping over, step one
7557 instruction, and then re-insert the breakpoint when that step
7558 is finished. */
7559
7560 step_what = thread_still_needs_step_over (ecs->event_thread);
7561
7562 remove_bp = (ecs->hit_singlestep_breakpoint
7563 || (step_what & STEP_OVER_BREAKPOINT));
7564 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7565
7566 /* We can't use displaced stepping if we need to step past a
7567 watchpoint. The instruction copied to the scratch pad would
7568 still trigger the watchpoint. */
7569 if (remove_bp
7570 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7571 {
7572 set_step_over_info (get_regcache_aspace (regcache),
7573 regcache_read_pc (regcache), remove_wps);
7574 }
7575 else if (remove_wps)
7576 set_step_over_info (NULL, 0, remove_wps);
7577
7578 /* If we now need to do an in-line step-over, we need to stop
7579 all other threads. Note this must be done before
7580 insert_breakpoints below, because that removes the breakpoint
7581 we're about to step over, otherwise other threads could miss
7582 it. */
7583 if (step_over_info_valid_p () && target_is_non_stop_p ())
7584 stop_all_threads ();
7585
7586 /* Stop stepping if inserting breakpoints fails. */
7587 TRY
7588 {
7589 insert_breakpoints ();
7590 }
7591 CATCH (e, RETURN_MASK_ERROR)
7592 {
7593 exception_print (gdb_stderr, e);
7594 stop_waiting (ecs);
7595 discard_cleanups (old_cleanups);
7596 return;
7597 }
7598 END_CATCH
7599
7600 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7601
7602 discard_cleanups (old_cleanups);
7603 resume (ecs->event_thread->suspend.stop_signal);
7604 }
7605
7606 prepare_to_wait (ecs);
7607 }
7608
7609 /* Called when we should continue running the inferior, because the
7610 current event doesn't cause a user visible stop. This does the
7611 resuming part; waiting for the next event is done elsewhere. */
7612
7613 static void
7614 keep_going (struct execution_control_state *ecs)
7615 {
7616 if (ecs->event_thread->control.trap_expected
7617 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7618 ecs->event_thread->control.trap_expected = 0;
7619
7620 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7622 keep_going_pass_signal (ecs);
7623 }
7624
7625 /* This function normally comes after a resume, before
7626 handle_inferior_event exits. It takes care of any last bits of
7627 housekeeping, and sets the all-important wait_some_more flag. */
7628
7629 static void
7630 prepare_to_wait (struct execution_control_state *ecs)
7631 {
7632 if (debug_infrun)
7633 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7634
7635 ecs->wait_some_more = 1;
7636
7637 if (!target_is_async_p ())
7638 mark_infrun_async_event_handler ();
7639 }
7640
7641 /* We are done with the step range of a step/next/si/ni command.
7642 Called once for each n of a "step n" operation. */
7643
7644 static void
7645 end_stepping_range (struct execution_control_state *ecs)
7646 {
7647 ecs->event_thread->control.stop_step = 1;
7648 stop_waiting (ecs);
7649 }
7650
7651 /* Several print_*_reason functions to print why the inferior has stopped.
7652 We always print something when the inferior exits, or receives a signal.
7653 The rest of the cases are dealt with later on in normal_stop and
7654 print_it_typical. Ideally there should be a call to one of these
7655 print_*_reason functions functions from handle_inferior_event each time
7656 stop_waiting is called.
7657
7658 Note that we don't call these directly, instead we delegate that to
7659 the interpreters, through observers. Interpreters then call these
7660 with whatever uiout is right. */
7661
7662 void
7663 print_end_stepping_range_reason (struct ui_out *uiout)
7664 {
7665 /* For CLI-like interpreters, print nothing. */
7666
7667 if (ui_out_is_mi_like_p (uiout))
7668 {
7669 ui_out_field_string (uiout, "reason",
7670 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7671 }
7672 }
7673
7674 void
7675 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7676 {
7677 annotate_signalled ();
7678 if (ui_out_is_mi_like_p (uiout))
7679 ui_out_field_string
7680 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7681 ui_out_text (uiout, "\nProgram terminated with signal ");
7682 annotate_signal_name ();
7683 ui_out_field_string (uiout, "signal-name",
7684 gdb_signal_to_name (siggnal));
7685 annotate_signal_name_end ();
7686 ui_out_text (uiout, ", ");
7687 annotate_signal_string ();
7688 ui_out_field_string (uiout, "signal-meaning",
7689 gdb_signal_to_string (siggnal));
7690 annotate_signal_string_end ();
7691 ui_out_text (uiout, ".\n");
7692 ui_out_text (uiout, "The program no longer exists.\n");
7693 }
7694
7695 void
7696 print_exited_reason (struct ui_out *uiout, int exitstatus)
7697 {
7698 struct inferior *inf = current_inferior ();
7699 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7700
7701 annotate_exited (exitstatus);
7702 if (exitstatus)
7703 {
7704 if (ui_out_is_mi_like_p (uiout))
7705 ui_out_field_string (uiout, "reason",
7706 async_reason_lookup (EXEC_ASYNC_EXITED));
7707 ui_out_text (uiout, "[Inferior ");
7708 ui_out_text (uiout, plongest (inf->num));
7709 ui_out_text (uiout, " (");
7710 ui_out_text (uiout, pidstr);
7711 ui_out_text (uiout, ") exited with code ");
7712 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7713 ui_out_text (uiout, "]\n");
7714 }
7715 else
7716 {
7717 if (ui_out_is_mi_like_p (uiout))
7718 ui_out_field_string
7719 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7720 ui_out_text (uiout, "[Inferior ");
7721 ui_out_text (uiout, plongest (inf->num));
7722 ui_out_text (uiout, " (");
7723 ui_out_text (uiout, pidstr);
7724 ui_out_text (uiout, ") exited normally]\n");
7725 }
7726 }
7727
7728 void
7729 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7730 {
7731 annotate_signal ();
7732
7733 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7734 {
7735 struct thread_info *t = inferior_thread ();
7736
7737 ui_out_text (uiout, "\n[");
7738 ui_out_field_string (uiout, "thread-name",
7739 target_pid_to_str (t->ptid));
7740 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7741 ui_out_text (uiout, " stopped");
7742 }
7743 else
7744 {
7745 ui_out_text (uiout, "\nProgram received signal ");
7746 annotate_signal_name ();
7747 if (ui_out_is_mi_like_p (uiout))
7748 ui_out_field_string
7749 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7750 ui_out_field_string (uiout, "signal-name",
7751 gdb_signal_to_name (siggnal));
7752 annotate_signal_name_end ();
7753 ui_out_text (uiout, ", ");
7754 annotate_signal_string ();
7755 ui_out_field_string (uiout, "signal-meaning",
7756 gdb_signal_to_string (siggnal));
7757 annotate_signal_string_end ();
7758 }
7759 ui_out_text (uiout, ".\n");
7760 }
7761
7762 void
7763 print_no_history_reason (struct ui_out *uiout)
7764 {
7765 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7766 }
7767
7768 /* Print current location without a level number, if we have changed
7769 functions or hit a breakpoint. Print source line if we have one.
7770 bpstat_print contains the logic deciding in detail what to print,
7771 based on the event(s) that just occurred. */
7772
7773 static void
7774 print_stop_location (struct target_waitstatus *ws)
7775 {
7776 int bpstat_ret;
7777 enum print_what source_flag;
7778 int do_frame_printing = 1;
7779 struct thread_info *tp = inferior_thread ();
7780
7781 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7782 switch (bpstat_ret)
7783 {
7784 case PRINT_UNKNOWN:
7785 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7786 should) carry around the function and does (or should) use
7787 that when doing a frame comparison. */
7788 if (tp->control.stop_step
7789 && frame_id_eq (tp->control.step_frame_id,
7790 get_frame_id (get_current_frame ()))
7791 && tp->control.step_start_function == find_pc_function (stop_pc))
7792 {
7793 /* Finished step, just print source line. */
7794 source_flag = SRC_LINE;
7795 }
7796 else
7797 {
7798 /* Print location and source line. */
7799 source_flag = SRC_AND_LOC;
7800 }
7801 break;
7802 case PRINT_SRC_AND_LOC:
7803 /* Print location and source line. */
7804 source_flag = SRC_AND_LOC;
7805 break;
7806 case PRINT_SRC_ONLY:
7807 source_flag = SRC_LINE;
7808 break;
7809 case PRINT_NOTHING:
7810 /* Something bogus. */
7811 source_flag = SRC_LINE;
7812 do_frame_printing = 0;
7813 break;
7814 default:
7815 internal_error (__FILE__, __LINE__, _("Unknown value."));
7816 }
7817
7818 /* The behavior of this routine with respect to the source
7819 flag is:
7820 SRC_LINE: Print only source line
7821 LOCATION: Print only location
7822 SRC_AND_LOC: Print location and source line. */
7823 if (do_frame_printing)
7824 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7825 }
7826
7827 /* Cleanup that restores a previous current uiout. */
7828
7829 static void
7830 restore_current_uiout_cleanup (void *arg)
7831 {
7832 struct ui_out *saved_uiout = (struct ui_out *) arg;
7833
7834 current_uiout = saved_uiout;
7835 }
7836
7837 /* See infrun.h. */
7838
7839 void
7840 print_stop_event (struct ui_out *uiout)
7841 {
7842 struct cleanup *old_chain;
7843 struct target_waitstatus last;
7844 ptid_t last_ptid;
7845 struct thread_info *tp;
7846
7847 get_last_target_status (&last_ptid, &last);
7848
7849 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7850 current_uiout = uiout;
7851
7852 print_stop_location (&last);
7853
7854 /* Display the auto-display expressions. */
7855 do_displays ();
7856
7857 do_cleanups (old_chain);
7858
7859 tp = inferior_thread ();
7860 if (tp->thread_fsm != NULL
7861 && thread_fsm_finished_p (tp->thread_fsm))
7862 {
7863 struct return_value_info *rv;
7864
7865 rv = thread_fsm_return_value (tp->thread_fsm);
7866 if (rv != NULL)
7867 print_return_value (uiout, rv);
7868 }
7869 }
7870
7871 /* See infrun.h. */
7872
7873 void
7874 maybe_remove_breakpoints (void)
7875 {
7876 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7877 {
7878 if (remove_breakpoints ())
7879 {
7880 target_terminal_ours_for_output ();
7881 printf_filtered (_("Cannot remove breakpoints because "
7882 "program is no longer writable.\nFurther "
7883 "execution is probably impossible.\n"));
7884 }
7885 }
7886 }
7887
7888 /* The execution context that just caused a normal stop. */
7889
7890 struct stop_context
7891 {
7892 /* The stop ID. */
7893 ULONGEST stop_id;
7894
7895 /* The event PTID. */
7896
7897 ptid_t ptid;
7898
7899 /* If stopp for a thread event, this is the thread that caused the
7900 stop. */
7901 struct thread_info *thread;
7902
7903 /* The inferior that caused the stop. */
7904 int inf_num;
7905 };
7906
7907 /* Returns a new stop context. If stopped for a thread event, this
7908 takes a strong reference to the thread. */
7909
7910 static struct stop_context *
7911 save_stop_context (void)
7912 {
7913 struct stop_context *sc = XNEW (struct stop_context);
7914
7915 sc->stop_id = get_stop_id ();
7916 sc->ptid = inferior_ptid;
7917 sc->inf_num = current_inferior ()->num;
7918
7919 if (!ptid_equal (inferior_ptid, null_ptid))
7920 {
7921 /* Take a strong reference so that the thread can't be deleted
7922 yet. */
7923 sc->thread = inferior_thread ();
7924 sc->thread->refcount++;
7925 }
7926 else
7927 sc->thread = NULL;
7928
7929 return sc;
7930 }
7931
7932 /* Release a stop context previously created with save_stop_context.
7933 Releases the strong reference to the thread as well. */
7934
7935 static void
7936 release_stop_context_cleanup (void *arg)
7937 {
7938 struct stop_context *sc = (struct stop_context *) arg;
7939
7940 if (sc->thread != NULL)
7941 sc->thread->refcount--;
7942 xfree (sc);
7943 }
7944
7945 /* Return true if the current context no longer matches the saved stop
7946 context. */
7947
7948 static int
7949 stop_context_changed (struct stop_context *prev)
7950 {
7951 if (!ptid_equal (prev->ptid, inferior_ptid))
7952 return 1;
7953 if (prev->inf_num != current_inferior ()->num)
7954 return 1;
7955 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7956 return 1;
7957 if (get_stop_id () != prev->stop_id)
7958 return 1;
7959 return 0;
7960 }
7961
7962 /* See infrun.h. */
7963
7964 int
7965 normal_stop (void)
7966 {
7967 struct target_waitstatus last;
7968 ptid_t last_ptid;
7969 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7970 ptid_t pid_ptid;
7971
7972 get_last_target_status (&last_ptid, &last);
7973
7974 new_stop_id ();
7975
7976 /* If an exception is thrown from this point on, make sure to
7977 propagate GDB's knowledge of the executing state to the
7978 frontend/user running state. A QUIT is an easy exception to see
7979 here, so do this before any filtered output. */
7980 if (!non_stop)
7981 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
7982 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7983 || last.kind == TARGET_WAITKIND_EXITED)
7984 {
7985 /* On some targets, we may still have live threads in the
7986 inferior when we get a process exit event. E.g., for
7987 "checkpoint", when the current checkpoint/fork exits,
7988 linux-fork.c automatically switches to another fork from
7989 within target_mourn_inferior. */
7990 if (!ptid_equal (inferior_ptid, null_ptid))
7991 {
7992 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7993 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7994 }
7995 }
7996 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7997 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
7998
7999 /* As we're presenting a stop, and potentially removing breakpoints,
8000 update the thread list so we can tell whether there are threads
8001 running on the target. With target remote, for example, we can
8002 only learn about new threads when we explicitly update the thread
8003 list. Do this before notifying the interpreters about signal
8004 stops, end of stepping ranges, etc., so that the "new thread"
8005 output is emitted before e.g., "Program received signal FOO",
8006 instead of after. */
8007 update_thread_list ();
8008
8009 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8010 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8011
8012 /* As with the notification of thread events, we want to delay
8013 notifying the user that we've switched thread context until
8014 the inferior actually stops.
8015
8016 There's no point in saying anything if the inferior has exited.
8017 Note that SIGNALLED here means "exited with a signal", not
8018 "received a signal".
8019
8020 Also skip saying anything in non-stop mode. In that mode, as we
8021 don't want GDB to switch threads behind the user's back, to avoid
8022 races where the user is typing a command to apply to thread x,
8023 but GDB switches to thread y before the user finishes entering
8024 the command, fetch_inferior_event installs a cleanup to restore
8025 the current thread back to the thread the user had selected right
8026 after this event is handled, so we're not really switching, only
8027 informing of a stop. */
8028 if (!non_stop
8029 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8030 && target_has_execution
8031 && last.kind != TARGET_WAITKIND_SIGNALLED
8032 && last.kind != TARGET_WAITKIND_EXITED
8033 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8034 {
8035 target_terminal_ours_for_output ();
8036 printf_filtered (_("[Switching to %s]\n"),
8037 target_pid_to_str (inferior_ptid));
8038 annotate_thread_changed ();
8039 previous_inferior_ptid = inferior_ptid;
8040 }
8041
8042 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8043 {
8044 gdb_assert (sync_execution || !target_can_async_p ());
8045
8046 target_terminal_ours_for_output ();
8047 printf_filtered (_("No unwaited-for children left.\n"));
8048 }
8049
8050 /* Note: this depends on the update_thread_list call above. */
8051 maybe_remove_breakpoints ();
8052
8053 /* If an auto-display called a function and that got a signal,
8054 delete that auto-display to avoid an infinite recursion. */
8055
8056 if (stopped_by_random_signal)
8057 disable_current_display ();
8058
8059 target_terminal_ours ();
8060 async_enable_stdin ();
8061
8062 /* Let the user/frontend see the threads as stopped. */
8063 do_cleanups (old_chain);
8064
8065 /* Select innermost stack frame - i.e., current frame is frame 0,
8066 and current location is based on that. Handle the case where the
8067 dummy call is returning after being stopped. E.g. the dummy call
8068 previously hit a breakpoint. (If the dummy call returns
8069 normally, we won't reach here.) Do this before the stop hook is
8070 run, so that it doesn't get to see the temporary dummy frame,
8071 which is not where we'll present the stop. */
8072 if (has_stack_frames ())
8073 {
8074 if (stop_stack_dummy == STOP_STACK_DUMMY)
8075 {
8076 /* Pop the empty frame that contains the stack dummy. This
8077 also restores inferior state prior to the call (struct
8078 infcall_suspend_state). */
8079 struct frame_info *frame = get_current_frame ();
8080
8081 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8082 frame_pop (frame);
8083 /* frame_pop calls reinit_frame_cache as the last thing it
8084 does which means there's now no selected frame. */
8085 }
8086
8087 select_frame (get_current_frame ());
8088
8089 /* Set the current source location. */
8090 set_current_sal_from_frame (get_current_frame ());
8091 }
8092
8093 /* Look up the hook_stop and run it (CLI internally handles problem
8094 of stop_command's pre-hook not existing). */
8095 if (stop_command != NULL)
8096 {
8097 struct stop_context *saved_context = save_stop_context ();
8098 struct cleanup *old_chain
8099 = make_cleanup (release_stop_context_cleanup, saved_context);
8100
8101 catch_errors (hook_stop_stub, stop_command,
8102 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8103
8104 /* If the stop hook resumes the target, then there's no point in
8105 trying to notify about the previous stop; its context is
8106 gone. Likewise if the command switches thread or inferior --
8107 the observers would print a stop for the wrong
8108 thread/inferior. */
8109 if (stop_context_changed (saved_context))
8110 {
8111 do_cleanups (old_chain);
8112 return 1;
8113 }
8114 do_cleanups (old_chain);
8115 }
8116
8117 /* Notify observers about the stop. This is where the interpreters
8118 print the stop event. */
8119 if (!ptid_equal (inferior_ptid, null_ptid))
8120 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8121 stop_print_frame);
8122 else
8123 observer_notify_normal_stop (NULL, stop_print_frame);
8124
8125 annotate_stopped ();
8126
8127 if (target_has_execution)
8128 {
8129 if (last.kind != TARGET_WAITKIND_SIGNALLED
8130 && last.kind != TARGET_WAITKIND_EXITED)
8131 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8132 Delete any breakpoint that is to be deleted at the next stop. */
8133 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8134 }
8135
8136 /* Try to get rid of automatically added inferiors that are no
8137 longer needed. Keeping those around slows down things linearly.
8138 Note that this never removes the current inferior. */
8139 prune_inferiors ();
8140
8141 return 0;
8142 }
8143
8144 static int
8145 hook_stop_stub (void *cmd)
8146 {
8147 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8148 return (0);
8149 }
8150 \f
8151 int
8152 signal_stop_state (int signo)
8153 {
8154 return signal_stop[signo];
8155 }
8156
8157 int
8158 signal_print_state (int signo)
8159 {
8160 return signal_print[signo];
8161 }
8162
8163 int
8164 signal_pass_state (int signo)
8165 {
8166 return signal_program[signo];
8167 }
8168
8169 static void
8170 signal_cache_update (int signo)
8171 {
8172 if (signo == -1)
8173 {
8174 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8175 signal_cache_update (signo);
8176
8177 return;
8178 }
8179
8180 signal_pass[signo] = (signal_stop[signo] == 0
8181 && signal_print[signo] == 0
8182 && signal_program[signo] == 1
8183 && signal_catch[signo] == 0);
8184 }
8185
8186 int
8187 signal_stop_update (int signo, int state)
8188 {
8189 int ret = signal_stop[signo];
8190
8191 signal_stop[signo] = state;
8192 signal_cache_update (signo);
8193 return ret;
8194 }
8195
8196 int
8197 signal_print_update (int signo, int state)
8198 {
8199 int ret = signal_print[signo];
8200
8201 signal_print[signo] = state;
8202 signal_cache_update (signo);
8203 return ret;
8204 }
8205
8206 int
8207 signal_pass_update (int signo, int state)
8208 {
8209 int ret = signal_program[signo];
8210
8211 signal_program[signo] = state;
8212 signal_cache_update (signo);
8213 return ret;
8214 }
8215
8216 /* Update the global 'signal_catch' from INFO and notify the
8217 target. */
8218
8219 void
8220 signal_catch_update (const unsigned int *info)
8221 {
8222 int i;
8223
8224 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8225 signal_catch[i] = info[i] > 0;
8226 signal_cache_update (-1);
8227 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8228 }
8229
8230 static void
8231 sig_print_header (void)
8232 {
8233 printf_filtered (_("Signal Stop\tPrint\tPass "
8234 "to program\tDescription\n"));
8235 }
8236
8237 static void
8238 sig_print_info (enum gdb_signal oursig)
8239 {
8240 const char *name = gdb_signal_to_name (oursig);
8241 int name_padding = 13 - strlen (name);
8242
8243 if (name_padding <= 0)
8244 name_padding = 0;
8245
8246 printf_filtered ("%s", name);
8247 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8248 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8249 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8250 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8251 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8252 }
8253
8254 /* Specify how various signals in the inferior should be handled. */
8255
8256 static void
8257 handle_command (char *args, int from_tty)
8258 {
8259 char **argv;
8260 int digits, wordlen;
8261 int sigfirst, signum, siglast;
8262 enum gdb_signal oursig;
8263 int allsigs;
8264 int nsigs;
8265 unsigned char *sigs;
8266 struct cleanup *old_chain;
8267
8268 if (args == NULL)
8269 {
8270 error_no_arg (_("signal to handle"));
8271 }
8272
8273 /* Allocate and zero an array of flags for which signals to handle. */
8274
8275 nsigs = (int) GDB_SIGNAL_LAST;
8276 sigs = (unsigned char *) alloca (nsigs);
8277 memset (sigs, 0, nsigs);
8278
8279 /* Break the command line up into args. */
8280
8281 argv = gdb_buildargv (args);
8282 old_chain = make_cleanup_freeargv (argv);
8283
8284 /* Walk through the args, looking for signal oursigs, signal names, and
8285 actions. Signal numbers and signal names may be interspersed with
8286 actions, with the actions being performed for all signals cumulatively
8287 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8288
8289 while (*argv != NULL)
8290 {
8291 wordlen = strlen (*argv);
8292 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8293 {;
8294 }
8295 allsigs = 0;
8296 sigfirst = siglast = -1;
8297
8298 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8299 {
8300 /* Apply action to all signals except those used by the
8301 debugger. Silently skip those. */
8302 allsigs = 1;
8303 sigfirst = 0;
8304 siglast = nsigs - 1;
8305 }
8306 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8307 {
8308 SET_SIGS (nsigs, sigs, signal_stop);
8309 SET_SIGS (nsigs, sigs, signal_print);
8310 }
8311 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8312 {
8313 UNSET_SIGS (nsigs, sigs, signal_program);
8314 }
8315 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8316 {
8317 SET_SIGS (nsigs, sigs, signal_print);
8318 }
8319 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8320 {
8321 SET_SIGS (nsigs, sigs, signal_program);
8322 }
8323 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8324 {
8325 UNSET_SIGS (nsigs, sigs, signal_stop);
8326 }
8327 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8328 {
8329 SET_SIGS (nsigs, sigs, signal_program);
8330 }
8331 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8332 {
8333 UNSET_SIGS (nsigs, sigs, signal_print);
8334 UNSET_SIGS (nsigs, sigs, signal_stop);
8335 }
8336 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8337 {
8338 UNSET_SIGS (nsigs, sigs, signal_program);
8339 }
8340 else if (digits > 0)
8341 {
8342 /* It is numeric. The numeric signal refers to our own
8343 internal signal numbering from target.h, not to host/target
8344 signal number. This is a feature; users really should be
8345 using symbolic names anyway, and the common ones like
8346 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8347
8348 sigfirst = siglast = (int)
8349 gdb_signal_from_command (atoi (*argv));
8350 if ((*argv)[digits] == '-')
8351 {
8352 siglast = (int)
8353 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8354 }
8355 if (sigfirst > siglast)
8356 {
8357 /* Bet he didn't figure we'd think of this case... */
8358 signum = sigfirst;
8359 sigfirst = siglast;
8360 siglast = signum;
8361 }
8362 }
8363 else
8364 {
8365 oursig = gdb_signal_from_name (*argv);
8366 if (oursig != GDB_SIGNAL_UNKNOWN)
8367 {
8368 sigfirst = siglast = (int) oursig;
8369 }
8370 else
8371 {
8372 /* Not a number and not a recognized flag word => complain. */
8373 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8374 }
8375 }
8376
8377 /* If any signal numbers or symbol names were found, set flags for
8378 which signals to apply actions to. */
8379
8380 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8381 {
8382 switch ((enum gdb_signal) signum)
8383 {
8384 case GDB_SIGNAL_TRAP:
8385 case GDB_SIGNAL_INT:
8386 if (!allsigs && !sigs[signum])
8387 {
8388 if (query (_("%s is used by the debugger.\n\
8389 Are you sure you want to change it? "),
8390 gdb_signal_to_name ((enum gdb_signal) signum)))
8391 {
8392 sigs[signum] = 1;
8393 }
8394 else
8395 {
8396 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8397 gdb_flush (gdb_stdout);
8398 }
8399 }
8400 break;
8401 case GDB_SIGNAL_0:
8402 case GDB_SIGNAL_DEFAULT:
8403 case GDB_SIGNAL_UNKNOWN:
8404 /* Make sure that "all" doesn't print these. */
8405 break;
8406 default:
8407 sigs[signum] = 1;
8408 break;
8409 }
8410 }
8411
8412 argv++;
8413 }
8414
8415 for (signum = 0; signum < nsigs; signum++)
8416 if (sigs[signum])
8417 {
8418 signal_cache_update (-1);
8419 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8420 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8421
8422 if (from_tty)
8423 {
8424 /* Show the results. */
8425 sig_print_header ();
8426 for (; signum < nsigs; signum++)
8427 if (sigs[signum])
8428 sig_print_info ((enum gdb_signal) signum);
8429 }
8430
8431 break;
8432 }
8433
8434 do_cleanups (old_chain);
8435 }
8436
8437 /* Complete the "handle" command. */
8438
8439 static VEC (char_ptr) *
8440 handle_completer (struct cmd_list_element *ignore,
8441 const char *text, const char *word)
8442 {
8443 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8444 static const char * const keywords[] =
8445 {
8446 "all",
8447 "stop",
8448 "ignore",
8449 "print",
8450 "pass",
8451 "nostop",
8452 "noignore",
8453 "noprint",
8454 "nopass",
8455 NULL,
8456 };
8457
8458 vec_signals = signal_completer (ignore, text, word);
8459 vec_keywords = complete_on_enum (keywords, word, word);
8460
8461 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8462 VEC_free (char_ptr, vec_signals);
8463 VEC_free (char_ptr, vec_keywords);
8464 return return_val;
8465 }
8466
8467 enum gdb_signal
8468 gdb_signal_from_command (int num)
8469 {
8470 if (num >= 1 && num <= 15)
8471 return (enum gdb_signal) num;
8472 error (_("Only signals 1-15 are valid as numeric signals.\n\
8473 Use \"info signals\" for a list of symbolic signals."));
8474 }
8475
8476 /* Print current contents of the tables set by the handle command.
8477 It is possible we should just be printing signals actually used
8478 by the current target (but for things to work right when switching
8479 targets, all signals should be in the signal tables). */
8480
8481 static void
8482 signals_info (char *signum_exp, int from_tty)
8483 {
8484 enum gdb_signal oursig;
8485
8486 sig_print_header ();
8487
8488 if (signum_exp)
8489 {
8490 /* First see if this is a symbol name. */
8491 oursig = gdb_signal_from_name (signum_exp);
8492 if (oursig == GDB_SIGNAL_UNKNOWN)
8493 {
8494 /* No, try numeric. */
8495 oursig =
8496 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8497 }
8498 sig_print_info (oursig);
8499 return;
8500 }
8501
8502 printf_filtered ("\n");
8503 /* These ugly casts brought to you by the native VAX compiler. */
8504 for (oursig = GDB_SIGNAL_FIRST;
8505 (int) oursig < (int) GDB_SIGNAL_LAST;
8506 oursig = (enum gdb_signal) ((int) oursig + 1))
8507 {
8508 QUIT;
8509
8510 if (oursig != GDB_SIGNAL_UNKNOWN
8511 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8512 sig_print_info (oursig);
8513 }
8514
8515 printf_filtered (_("\nUse the \"handle\" command "
8516 "to change these tables.\n"));
8517 }
8518
8519 /* Check if it makes sense to read $_siginfo from the current thread
8520 at this point. If not, throw an error. */
8521
8522 static void
8523 validate_siginfo_access (void)
8524 {
8525 /* No current inferior, no siginfo. */
8526 if (ptid_equal (inferior_ptid, null_ptid))
8527 error (_("No thread selected."));
8528
8529 /* Don't try to read from a dead thread. */
8530 if (is_exited (inferior_ptid))
8531 error (_("The current thread has terminated"));
8532
8533 /* ... or from a spinning thread. */
8534 if (is_running (inferior_ptid))
8535 error (_("Selected thread is running."));
8536 }
8537
8538 /* The $_siginfo convenience variable is a bit special. We don't know
8539 for sure the type of the value until we actually have a chance to
8540 fetch the data. The type can change depending on gdbarch, so it is
8541 also dependent on which thread you have selected.
8542
8543 1. making $_siginfo be an internalvar that creates a new value on
8544 access.
8545
8546 2. making the value of $_siginfo be an lval_computed value. */
8547
8548 /* This function implements the lval_computed support for reading a
8549 $_siginfo value. */
8550
8551 static void
8552 siginfo_value_read (struct value *v)
8553 {
8554 LONGEST transferred;
8555
8556 validate_siginfo_access ();
8557
8558 transferred =
8559 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8560 NULL,
8561 value_contents_all_raw (v),
8562 value_offset (v),
8563 TYPE_LENGTH (value_type (v)));
8564
8565 if (transferred != TYPE_LENGTH (value_type (v)))
8566 error (_("Unable to read siginfo"));
8567 }
8568
8569 /* This function implements the lval_computed support for writing a
8570 $_siginfo value. */
8571
8572 static void
8573 siginfo_value_write (struct value *v, struct value *fromval)
8574 {
8575 LONGEST transferred;
8576
8577 validate_siginfo_access ();
8578
8579 transferred = target_write (&current_target,
8580 TARGET_OBJECT_SIGNAL_INFO,
8581 NULL,
8582 value_contents_all_raw (fromval),
8583 value_offset (v),
8584 TYPE_LENGTH (value_type (fromval)));
8585
8586 if (transferred != TYPE_LENGTH (value_type (fromval)))
8587 error (_("Unable to write siginfo"));
8588 }
8589
8590 static const struct lval_funcs siginfo_value_funcs =
8591 {
8592 siginfo_value_read,
8593 siginfo_value_write
8594 };
8595
8596 /* Return a new value with the correct type for the siginfo object of
8597 the current thread using architecture GDBARCH. Return a void value
8598 if there's no object available. */
8599
8600 static struct value *
8601 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8602 void *ignore)
8603 {
8604 if (target_has_stack
8605 && !ptid_equal (inferior_ptid, null_ptid)
8606 && gdbarch_get_siginfo_type_p (gdbarch))
8607 {
8608 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8609
8610 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8611 }
8612
8613 return allocate_value (builtin_type (gdbarch)->builtin_void);
8614 }
8615
8616 \f
8617 /* infcall_suspend_state contains state about the program itself like its
8618 registers and any signal it received when it last stopped.
8619 This state must be restored regardless of how the inferior function call
8620 ends (either successfully, or after it hits a breakpoint or signal)
8621 if the program is to properly continue where it left off. */
8622
8623 struct infcall_suspend_state
8624 {
8625 struct thread_suspend_state thread_suspend;
8626
8627 /* Other fields: */
8628 CORE_ADDR stop_pc;
8629 struct regcache *registers;
8630
8631 /* Format of SIGINFO_DATA or NULL if it is not present. */
8632 struct gdbarch *siginfo_gdbarch;
8633
8634 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8635 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8636 content would be invalid. */
8637 gdb_byte *siginfo_data;
8638 };
8639
8640 struct infcall_suspend_state *
8641 save_infcall_suspend_state (void)
8642 {
8643 struct infcall_suspend_state *inf_state;
8644 struct thread_info *tp = inferior_thread ();
8645 struct regcache *regcache = get_current_regcache ();
8646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8647 gdb_byte *siginfo_data = NULL;
8648
8649 if (gdbarch_get_siginfo_type_p (gdbarch))
8650 {
8651 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8652 size_t len = TYPE_LENGTH (type);
8653 struct cleanup *back_to;
8654
8655 siginfo_data = (gdb_byte *) xmalloc (len);
8656 back_to = make_cleanup (xfree, siginfo_data);
8657
8658 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8659 siginfo_data, 0, len) == len)
8660 discard_cleanups (back_to);
8661 else
8662 {
8663 /* Errors ignored. */
8664 do_cleanups (back_to);
8665 siginfo_data = NULL;
8666 }
8667 }
8668
8669 inf_state = XCNEW (struct infcall_suspend_state);
8670
8671 if (siginfo_data)
8672 {
8673 inf_state->siginfo_gdbarch = gdbarch;
8674 inf_state->siginfo_data = siginfo_data;
8675 }
8676
8677 inf_state->thread_suspend = tp->suspend;
8678
8679 /* run_inferior_call will not use the signal due to its `proceed' call with
8680 GDB_SIGNAL_0 anyway. */
8681 tp->suspend.stop_signal = GDB_SIGNAL_0;
8682
8683 inf_state->stop_pc = stop_pc;
8684
8685 inf_state->registers = regcache_dup (regcache);
8686
8687 return inf_state;
8688 }
8689
8690 /* Restore inferior session state to INF_STATE. */
8691
8692 void
8693 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8694 {
8695 struct thread_info *tp = inferior_thread ();
8696 struct regcache *regcache = get_current_regcache ();
8697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8698
8699 tp->suspend = inf_state->thread_suspend;
8700
8701 stop_pc = inf_state->stop_pc;
8702
8703 if (inf_state->siginfo_gdbarch == gdbarch)
8704 {
8705 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8706
8707 /* Errors ignored. */
8708 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8709 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8710 }
8711
8712 /* The inferior can be gone if the user types "print exit(0)"
8713 (and perhaps other times). */
8714 if (target_has_execution)
8715 /* NB: The register write goes through to the target. */
8716 regcache_cpy (regcache, inf_state->registers);
8717
8718 discard_infcall_suspend_state (inf_state);
8719 }
8720
8721 static void
8722 do_restore_infcall_suspend_state_cleanup (void *state)
8723 {
8724 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8725 }
8726
8727 struct cleanup *
8728 make_cleanup_restore_infcall_suspend_state
8729 (struct infcall_suspend_state *inf_state)
8730 {
8731 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8732 }
8733
8734 void
8735 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8736 {
8737 regcache_xfree (inf_state->registers);
8738 xfree (inf_state->siginfo_data);
8739 xfree (inf_state);
8740 }
8741
8742 struct regcache *
8743 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8744 {
8745 return inf_state->registers;
8746 }
8747
8748 /* infcall_control_state contains state regarding gdb's control of the
8749 inferior itself like stepping control. It also contains session state like
8750 the user's currently selected frame. */
8751
8752 struct infcall_control_state
8753 {
8754 struct thread_control_state thread_control;
8755 struct inferior_control_state inferior_control;
8756
8757 /* Other fields: */
8758 enum stop_stack_kind stop_stack_dummy;
8759 int stopped_by_random_signal;
8760
8761 /* ID if the selected frame when the inferior function call was made. */
8762 struct frame_id selected_frame_id;
8763 };
8764
8765 /* Save all of the information associated with the inferior<==>gdb
8766 connection. */
8767
8768 struct infcall_control_state *
8769 save_infcall_control_state (void)
8770 {
8771 struct infcall_control_state *inf_status =
8772 XNEW (struct infcall_control_state);
8773 struct thread_info *tp = inferior_thread ();
8774 struct inferior *inf = current_inferior ();
8775
8776 inf_status->thread_control = tp->control;
8777 inf_status->inferior_control = inf->control;
8778
8779 tp->control.step_resume_breakpoint = NULL;
8780 tp->control.exception_resume_breakpoint = NULL;
8781
8782 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8783 chain. If caller's caller is walking the chain, they'll be happier if we
8784 hand them back the original chain when restore_infcall_control_state is
8785 called. */
8786 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8787
8788 /* Other fields: */
8789 inf_status->stop_stack_dummy = stop_stack_dummy;
8790 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8791
8792 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8793
8794 return inf_status;
8795 }
8796
8797 static int
8798 restore_selected_frame (void *args)
8799 {
8800 struct frame_id *fid = (struct frame_id *) args;
8801 struct frame_info *frame;
8802
8803 frame = frame_find_by_id (*fid);
8804
8805 /* If inf_status->selected_frame_id is NULL, there was no previously
8806 selected frame. */
8807 if (frame == NULL)
8808 {
8809 warning (_("Unable to restore previously selected frame."));
8810 return 0;
8811 }
8812
8813 select_frame (frame);
8814
8815 return (1);
8816 }
8817
8818 /* Restore inferior session state to INF_STATUS. */
8819
8820 void
8821 restore_infcall_control_state (struct infcall_control_state *inf_status)
8822 {
8823 struct thread_info *tp = inferior_thread ();
8824 struct inferior *inf = current_inferior ();
8825
8826 if (tp->control.step_resume_breakpoint)
8827 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8828
8829 if (tp->control.exception_resume_breakpoint)
8830 tp->control.exception_resume_breakpoint->disposition
8831 = disp_del_at_next_stop;
8832
8833 /* Handle the bpstat_copy of the chain. */
8834 bpstat_clear (&tp->control.stop_bpstat);
8835
8836 tp->control = inf_status->thread_control;
8837 inf->control = inf_status->inferior_control;
8838
8839 /* Other fields: */
8840 stop_stack_dummy = inf_status->stop_stack_dummy;
8841 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8842
8843 if (target_has_stack)
8844 {
8845 /* The point of catch_errors is that if the stack is clobbered,
8846 walking the stack might encounter a garbage pointer and
8847 error() trying to dereference it. */
8848 if (catch_errors
8849 (restore_selected_frame, &inf_status->selected_frame_id,
8850 "Unable to restore previously selected frame:\n",
8851 RETURN_MASK_ERROR) == 0)
8852 /* Error in restoring the selected frame. Select the innermost
8853 frame. */
8854 select_frame (get_current_frame ());
8855 }
8856
8857 xfree (inf_status);
8858 }
8859
8860 static void
8861 do_restore_infcall_control_state_cleanup (void *sts)
8862 {
8863 restore_infcall_control_state ((struct infcall_control_state *) sts);
8864 }
8865
8866 struct cleanup *
8867 make_cleanup_restore_infcall_control_state
8868 (struct infcall_control_state *inf_status)
8869 {
8870 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8871 }
8872
8873 void
8874 discard_infcall_control_state (struct infcall_control_state *inf_status)
8875 {
8876 if (inf_status->thread_control.step_resume_breakpoint)
8877 inf_status->thread_control.step_resume_breakpoint->disposition
8878 = disp_del_at_next_stop;
8879
8880 if (inf_status->thread_control.exception_resume_breakpoint)
8881 inf_status->thread_control.exception_resume_breakpoint->disposition
8882 = disp_del_at_next_stop;
8883
8884 /* See save_infcall_control_state for info on stop_bpstat. */
8885 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8886
8887 xfree (inf_status);
8888 }
8889 \f
8890 /* restore_inferior_ptid() will be used by the cleanup machinery
8891 to restore the inferior_ptid value saved in a call to
8892 save_inferior_ptid(). */
8893
8894 static void
8895 restore_inferior_ptid (void *arg)
8896 {
8897 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
8898
8899 inferior_ptid = *saved_ptid_ptr;
8900 xfree (arg);
8901 }
8902
8903 /* Save the value of inferior_ptid so that it may be restored by a
8904 later call to do_cleanups(). Returns the struct cleanup pointer
8905 needed for later doing the cleanup. */
8906
8907 struct cleanup *
8908 save_inferior_ptid (void)
8909 {
8910 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8911
8912 *saved_ptid_ptr = inferior_ptid;
8913 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8914 }
8915
8916 /* See infrun.h. */
8917
8918 void
8919 clear_exit_convenience_vars (void)
8920 {
8921 clear_internalvar (lookup_internalvar ("_exitsignal"));
8922 clear_internalvar (lookup_internalvar ("_exitcode"));
8923 }
8924 \f
8925
8926 /* User interface for reverse debugging:
8927 Set exec-direction / show exec-direction commands
8928 (returns error unless target implements to_set_exec_direction method). */
8929
8930 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8931 static const char exec_forward[] = "forward";
8932 static const char exec_reverse[] = "reverse";
8933 static const char *exec_direction = exec_forward;
8934 static const char *const exec_direction_names[] = {
8935 exec_forward,
8936 exec_reverse,
8937 NULL
8938 };
8939
8940 static void
8941 set_exec_direction_func (char *args, int from_tty,
8942 struct cmd_list_element *cmd)
8943 {
8944 if (target_can_execute_reverse)
8945 {
8946 if (!strcmp (exec_direction, exec_forward))
8947 execution_direction = EXEC_FORWARD;
8948 else if (!strcmp (exec_direction, exec_reverse))
8949 execution_direction = EXEC_REVERSE;
8950 }
8951 else
8952 {
8953 exec_direction = exec_forward;
8954 error (_("Target does not support this operation."));
8955 }
8956 }
8957
8958 static void
8959 show_exec_direction_func (struct ui_file *out, int from_tty,
8960 struct cmd_list_element *cmd, const char *value)
8961 {
8962 switch (execution_direction) {
8963 case EXEC_FORWARD:
8964 fprintf_filtered (out, _("Forward.\n"));
8965 break;
8966 case EXEC_REVERSE:
8967 fprintf_filtered (out, _("Reverse.\n"));
8968 break;
8969 default:
8970 internal_error (__FILE__, __LINE__,
8971 _("bogus execution_direction value: %d"),
8972 (int) execution_direction);
8973 }
8974 }
8975
8976 static void
8977 show_schedule_multiple (struct ui_file *file, int from_tty,
8978 struct cmd_list_element *c, const char *value)
8979 {
8980 fprintf_filtered (file, _("Resuming the execution of threads "
8981 "of all processes is %s.\n"), value);
8982 }
8983
8984 /* Implementation of `siginfo' variable. */
8985
8986 static const struct internalvar_funcs siginfo_funcs =
8987 {
8988 siginfo_make_value,
8989 NULL,
8990 NULL
8991 };
8992
8993 /* Callback for infrun's target events source. This is marked when a
8994 thread has a pending status to process. */
8995
8996 static void
8997 infrun_async_inferior_event_handler (gdb_client_data data)
8998 {
8999 inferior_event_handler (INF_REG_EVENT, NULL);
9000 }
9001
9002 void
9003 _initialize_infrun (void)
9004 {
9005 int i;
9006 int numsigs;
9007 struct cmd_list_element *c;
9008
9009 /* Register extra event sources in the event loop. */
9010 infrun_async_inferior_event_token
9011 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9012
9013 add_info ("signals", signals_info, _("\
9014 What debugger does when program gets various signals.\n\
9015 Specify a signal as argument to print info on that signal only."));
9016 add_info_alias ("handle", "signals", 0);
9017
9018 c = add_com ("handle", class_run, handle_command, _("\
9019 Specify how to handle signals.\n\
9020 Usage: handle SIGNAL [ACTIONS]\n\
9021 Args are signals and actions to apply to those signals.\n\
9022 If no actions are specified, the current settings for the specified signals\n\
9023 will be displayed instead.\n\
9024 \n\
9025 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9026 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9027 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9028 The special arg \"all\" is recognized to mean all signals except those\n\
9029 used by the debugger, typically SIGTRAP and SIGINT.\n\
9030 \n\
9031 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9032 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9033 Stop means reenter debugger if this signal happens (implies print).\n\
9034 Print means print a message if this signal happens.\n\
9035 Pass means let program see this signal; otherwise program doesn't know.\n\
9036 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9037 Pass and Stop may be combined.\n\
9038 \n\
9039 Multiple signals may be specified. Signal numbers and signal names\n\
9040 may be interspersed with actions, with the actions being performed for\n\
9041 all signals cumulatively specified."));
9042 set_cmd_completer (c, handle_completer);
9043
9044 if (!dbx_commands)
9045 stop_command = add_cmd ("stop", class_obscure,
9046 not_just_help_class_command, _("\
9047 There is no `stop' command, but you can set a hook on `stop'.\n\
9048 This allows you to set a list of commands to be run each time execution\n\
9049 of the program stops."), &cmdlist);
9050
9051 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9052 Set inferior debugging."), _("\
9053 Show inferior debugging."), _("\
9054 When non-zero, inferior specific debugging is enabled."),
9055 NULL,
9056 show_debug_infrun,
9057 &setdebuglist, &showdebuglist);
9058
9059 add_setshow_boolean_cmd ("displaced", class_maintenance,
9060 &debug_displaced, _("\
9061 Set displaced stepping debugging."), _("\
9062 Show displaced stepping debugging."), _("\
9063 When non-zero, displaced stepping specific debugging is enabled."),
9064 NULL,
9065 show_debug_displaced,
9066 &setdebuglist, &showdebuglist);
9067
9068 add_setshow_boolean_cmd ("non-stop", no_class,
9069 &non_stop_1, _("\
9070 Set whether gdb controls the inferior in non-stop mode."), _("\
9071 Show whether gdb controls the inferior in non-stop mode."), _("\
9072 When debugging a multi-threaded program and this setting is\n\
9073 off (the default, also called all-stop mode), when one thread stops\n\
9074 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9075 all other threads in the program while you interact with the thread of\n\
9076 interest. When you continue or step a thread, you can allow the other\n\
9077 threads to run, or have them remain stopped, but while you inspect any\n\
9078 thread's state, all threads stop.\n\
9079 \n\
9080 In non-stop mode, when one thread stops, other threads can continue\n\
9081 to run freely. You'll be able to step each thread independently,\n\
9082 leave it stopped or free to run as needed."),
9083 set_non_stop,
9084 show_non_stop,
9085 &setlist,
9086 &showlist);
9087
9088 numsigs = (int) GDB_SIGNAL_LAST;
9089 signal_stop = XNEWVEC (unsigned char, numsigs);
9090 signal_print = XNEWVEC (unsigned char, numsigs);
9091 signal_program = XNEWVEC (unsigned char, numsigs);
9092 signal_catch = XNEWVEC (unsigned char, numsigs);
9093 signal_pass = XNEWVEC (unsigned char, numsigs);
9094 for (i = 0; i < numsigs; i++)
9095 {
9096 signal_stop[i] = 1;
9097 signal_print[i] = 1;
9098 signal_program[i] = 1;
9099 signal_catch[i] = 0;
9100 }
9101
9102 /* Signals caused by debugger's own actions should not be given to
9103 the program afterwards.
9104
9105 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9106 explicitly specifies that it should be delivered to the target
9107 program. Typically, that would occur when a user is debugging a
9108 target monitor on a simulator: the target monitor sets a
9109 breakpoint; the simulator encounters this breakpoint and halts
9110 the simulation handing control to GDB; GDB, noting that the stop
9111 address doesn't map to any known breakpoint, returns control back
9112 to the simulator; the simulator then delivers the hardware
9113 equivalent of a GDB_SIGNAL_TRAP to the program being
9114 debugged. */
9115 signal_program[GDB_SIGNAL_TRAP] = 0;
9116 signal_program[GDB_SIGNAL_INT] = 0;
9117
9118 /* Signals that are not errors should not normally enter the debugger. */
9119 signal_stop[GDB_SIGNAL_ALRM] = 0;
9120 signal_print[GDB_SIGNAL_ALRM] = 0;
9121 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9122 signal_print[GDB_SIGNAL_VTALRM] = 0;
9123 signal_stop[GDB_SIGNAL_PROF] = 0;
9124 signal_print[GDB_SIGNAL_PROF] = 0;
9125 signal_stop[GDB_SIGNAL_CHLD] = 0;
9126 signal_print[GDB_SIGNAL_CHLD] = 0;
9127 signal_stop[GDB_SIGNAL_IO] = 0;
9128 signal_print[GDB_SIGNAL_IO] = 0;
9129 signal_stop[GDB_SIGNAL_POLL] = 0;
9130 signal_print[GDB_SIGNAL_POLL] = 0;
9131 signal_stop[GDB_SIGNAL_URG] = 0;
9132 signal_print[GDB_SIGNAL_URG] = 0;
9133 signal_stop[GDB_SIGNAL_WINCH] = 0;
9134 signal_print[GDB_SIGNAL_WINCH] = 0;
9135 signal_stop[GDB_SIGNAL_PRIO] = 0;
9136 signal_print[GDB_SIGNAL_PRIO] = 0;
9137
9138 /* These signals are used internally by user-level thread
9139 implementations. (See signal(5) on Solaris.) Like the above
9140 signals, a healthy program receives and handles them as part of
9141 its normal operation. */
9142 signal_stop[GDB_SIGNAL_LWP] = 0;
9143 signal_print[GDB_SIGNAL_LWP] = 0;
9144 signal_stop[GDB_SIGNAL_WAITING] = 0;
9145 signal_print[GDB_SIGNAL_WAITING] = 0;
9146 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9147 signal_print[GDB_SIGNAL_CANCEL] = 0;
9148
9149 /* Update cached state. */
9150 signal_cache_update (-1);
9151
9152 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9153 &stop_on_solib_events, _("\
9154 Set stopping for shared library events."), _("\
9155 Show stopping for shared library events."), _("\
9156 If nonzero, gdb will give control to the user when the dynamic linker\n\
9157 notifies gdb of shared library events. The most common event of interest\n\
9158 to the user would be loading/unloading of a new library."),
9159 set_stop_on_solib_events,
9160 show_stop_on_solib_events,
9161 &setlist, &showlist);
9162
9163 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9164 follow_fork_mode_kind_names,
9165 &follow_fork_mode_string, _("\
9166 Set debugger response to a program call of fork or vfork."), _("\
9167 Show debugger response to a program call of fork or vfork."), _("\
9168 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9169 parent - the original process is debugged after a fork\n\
9170 child - the new process is debugged after a fork\n\
9171 The unfollowed process will continue to run.\n\
9172 By default, the debugger will follow the parent process."),
9173 NULL,
9174 show_follow_fork_mode_string,
9175 &setlist, &showlist);
9176
9177 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9178 follow_exec_mode_names,
9179 &follow_exec_mode_string, _("\
9180 Set debugger response to a program call of exec."), _("\
9181 Show debugger response to a program call of exec."), _("\
9182 An exec call replaces the program image of a process.\n\
9183 \n\
9184 follow-exec-mode can be:\n\
9185 \n\
9186 new - the debugger creates a new inferior and rebinds the process\n\
9187 to this new inferior. The program the process was running before\n\
9188 the exec call can be restarted afterwards by restarting the original\n\
9189 inferior.\n\
9190 \n\
9191 same - the debugger keeps the process bound to the same inferior.\n\
9192 The new executable image replaces the previous executable loaded in\n\
9193 the inferior. Restarting the inferior after the exec call restarts\n\
9194 the executable the process was running after the exec call.\n\
9195 \n\
9196 By default, the debugger will use the same inferior."),
9197 NULL,
9198 show_follow_exec_mode_string,
9199 &setlist, &showlist);
9200
9201 add_setshow_enum_cmd ("scheduler-locking", class_run,
9202 scheduler_enums, &scheduler_mode, _("\
9203 Set mode for locking scheduler during execution."), _("\
9204 Show mode for locking scheduler during execution."), _("\
9205 off == no locking (threads may preempt at any time)\n\
9206 on == full locking (no thread except the current thread may run)\n\
9207 This applies to both normal execution and replay mode.\n\
9208 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9209 In this mode, other threads may run during other commands.\n\
9210 This applies to both normal execution and replay mode.\n\
9211 replay == scheduler locked in replay mode and unlocked during normal execution."),
9212 set_schedlock_func, /* traps on target vector */
9213 show_scheduler_mode,
9214 &setlist, &showlist);
9215
9216 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9217 Set mode for resuming threads of all processes."), _("\
9218 Show mode for resuming threads of all processes."), _("\
9219 When on, execution commands (such as 'continue' or 'next') resume all\n\
9220 threads of all processes. When off (which is the default), execution\n\
9221 commands only resume the threads of the current process. The set of\n\
9222 threads that are resumed is further refined by the scheduler-locking\n\
9223 mode (see help set scheduler-locking)."),
9224 NULL,
9225 show_schedule_multiple,
9226 &setlist, &showlist);
9227
9228 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9229 Set mode of the step operation."), _("\
9230 Show mode of the step operation."), _("\
9231 When set, doing a step over a function without debug line information\n\
9232 will stop at the first instruction of that function. Otherwise, the\n\
9233 function is skipped and the step command stops at a different source line."),
9234 NULL,
9235 show_step_stop_if_no_debug,
9236 &setlist, &showlist);
9237
9238 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9239 &can_use_displaced_stepping, _("\
9240 Set debugger's willingness to use displaced stepping."), _("\
9241 Show debugger's willingness to use displaced stepping."), _("\
9242 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9243 supported by the target architecture. If off, gdb will not use displaced\n\
9244 stepping to step over breakpoints, even if such is supported by the target\n\
9245 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9246 if the target architecture supports it and non-stop mode is active, but will not\n\
9247 use it in all-stop mode (see help set non-stop)."),
9248 NULL,
9249 show_can_use_displaced_stepping,
9250 &setlist, &showlist);
9251
9252 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9253 &exec_direction, _("Set direction of execution.\n\
9254 Options are 'forward' or 'reverse'."),
9255 _("Show direction of execution (forward/reverse)."),
9256 _("Tells gdb whether to execute forward or backward."),
9257 set_exec_direction_func, show_exec_direction_func,
9258 &setlist, &showlist);
9259
9260 /* Set/show detach-on-fork: user-settable mode. */
9261
9262 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9263 Set whether gdb will detach the child of a fork."), _("\
9264 Show whether gdb will detach the child of a fork."), _("\
9265 Tells gdb whether to detach the child of a fork."),
9266 NULL, NULL, &setlist, &showlist);
9267
9268 /* Set/show disable address space randomization mode. */
9269
9270 add_setshow_boolean_cmd ("disable-randomization", class_support,
9271 &disable_randomization, _("\
9272 Set disabling of debuggee's virtual address space randomization."), _("\
9273 Show disabling of debuggee's virtual address space randomization."), _("\
9274 When this mode is on (which is the default), randomization of the virtual\n\
9275 address space is disabled. Standalone programs run with the randomization\n\
9276 enabled by default on some platforms."),
9277 &set_disable_randomization,
9278 &show_disable_randomization,
9279 &setlist, &showlist);
9280
9281 /* ptid initializations */
9282 inferior_ptid = null_ptid;
9283 target_last_wait_ptid = minus_one_ptid;
9284
9285 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9286 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9287 observer_attach_thread_exit (infrun_thread_thread_exit);
9288 observer_attach_inferior_exit (infrun_inferior_exit);
9289
9290 /* Explicitly create without lookup, since that tries to create a
9291 value with a void typed value, and when we get here, gdbarch
9292 isn't initialized yet. At this point, we're quite sure there
9293 isn't another convenience variable of the same name. */
9294 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9295
9296 add_setshow_boolean_cmd ("observer", no_class,
9297 &observer_mode_1, _("\
9298 Set whether gdb controls the inferior in observer mode."), _("\
9299 Show whether gdb controls the inferior in observer mode."), _("\
9300 In observer mode, GDB can get data from the inferior, but not\n\
9301 affect its execution. Registers and memory may not be changed,\n\
9302 breakpoints may not be set, and the program cannot be interrupted\n\
9303 or signalled."),
9304 set_observer_mode,
9305 show_observer_mode,
9306 &setlist,
9307 &showlist);
9308 }
This page took 0.225709 seconds and 4 git commands to generate.