942fb7dd1e681a93d324437830727f1698776e0a
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are presently stepping over a breakpoint.
222
223 If we hit a breakpoint or watchpoint, and then continue,
224 we need to single step the current thread with breakpoints
225 disabled, to avoid hitting the same breakpoint or
226 watchpoint again. And we should step just a single
227 thread and keep other threads stopped, so that
228 other threads don't miss breakpoints while they are removed.
229
230 So, this variable simultaneously means that we need to single
231 step the current thread, keep other threads stopped, and that
232 breakpoints should be removed while we step.
233
234 This variable is set either:
235 - in proceed, when we resume inferior on user's explicit request
236 - in keep_going, if handle_inferior_event decides we need to
237 step over breakpoint.
238
239 The variable is cleared in clear_proceed_status, called every
240 time before we call proceed. The proceed calls wait_for_inferior,
241 which calls handle_inferior_event in a loop, and until
242 wait_for_inferior exits, this variable is changed only by keep_going. */
243
244 static int stepping_over_breakpoint;
245
246 /* Nonzero if we want to give control to the user when we're notified
247 of shared library events by the dynamic linker. */
248 static int stop_on_solib_events;
249 static void
250 show_stop_on_solib_events (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
254 value);
255 }
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero after stop if current stack frame should be printed. */
282
283 static int stop_print_frame;
284
285 static struct breakpoint *step_resume_breakpoint = NULL;
286
287 /* This is a cached copy of the pid/waitstatus of the last event
288 returned by target_wait()/deprecated_target_wait_hook(). This
289 information is returned by get_last_target_status(). */
290 static ptid_t target_last_wait_ptid;
291 static struct target_waitstatus target_last_waitstatus;
292
293 /* This is used to remember when a fork, vfork or exec event
294 was caught by a catchpoint, and thus the event is to be
295 followed at the next resume of the inferior, and not
296 immediately. */
297 static struct
298 {
299 enum target_waitkind kind;
300 struct
301 {
302 int parent_pid;
303 int child_pid;
304 }
305 fork_event;
306 char *execd_pathname;
307 }
308 pending_follow;
309
310 static const char follow_fork_mode_child[] = "child";
311 static const char follow_fork_mode_parent[] = "parent";
312
313 static const char *follow_fork_mode_kind_names[] = {
314 follow_fork_mode_child,
315 follow_fork_mode_parent,
316 NULL
317 };
318
319 static const char *follow_fork_mode_string = follow_fork_mode_parent;
320 static void
321 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
322 struct cmd_list_element *c, const char *value)
323 {
324 fprintf_filtered (file, _("\
325 Debugger response to a program call of fork or vfork is \"%s\".\n"),
326 value);
327 }
328 \f
329
330 static int
331 follow_fork (void)
332 {
333 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
334
335 return target_follow_fork (follow_child);
336 }
337
338 void
339 follow_inferior_reset_breakpoints (void)
340 {
341 /* Was there a step_resume breakpoint? (There was if the user
342 did a "next" at the fork() call.) If so, explicitly reset its
343 thread number.
344
345 step_resumes are a form of bp that are made to be per-thread.
346 Since we created the step_resume bp when the parent process
347 was being debugged, and now are switching to the child process,
348 from the breakpoint package's viewpoint, that's a switch of
349 "threads". We must update the bp's notion of which thread
350 it is for, or it'll be ignored when it triggers. */
351
352 if (step_resume_breakpoint)
353 breakpoint_re_set_thread (step_resume_breakpoint);
354
355 /* Reinsert all breakpoints in the child. The user may have set
356 breakpoints after catching the fork, in which case those
357 were never set in the child, but only in the parent. This makes
358 sure the inserted breakpoints match the breakpoint list. */
359
360 breakpoint_re_set ();
361 insert_breakpoints ();
362 }
363
364 /* EXECD_PATHNAME is assumed to be non-NULL. */
365
366 static void
367 follow_exec (int pid, char *execd_pathname)
368 {
369 int saved_pid = pid;
370 struct target_ops *tgt;
371
372 if (!may_follow_exec)
373 return;
374
375 /* This is an exec event that we actually wish to pay attention to.
376 Refresh our symbol table to the newly exec'd program, remove any
377 momentary bp's, etc.
378
379 If there are breakpoints, they aren't really inserted now,
380 since the exec() transformed our inferior into a fresh set
381 of instructions.
382
383 We want to preserve symbolic breakpoints on the list, since
384 we have hopes that they can be reset after the new a.out's
385 symbol table is read.
386
387 However, any "raw" breakpoints must be removed from the list
388 (e.g., the solib bp's), since their address is probably invalid
389 now.
390
391 And, we DON'T want to call delete_breakpoints() here, since
392 that may write the bp's "shadow contents" (the instruction
393 value that was overwritten witha TRAP instruction). Since
394 we now have a new a.out, those shadow contents aren't valid. */
395 update_breakpoints_after_exec ();
396
397 /* If there was one, it's gone now. We cannot truly step-to-next
398 statement through an exec(). */
399 step_resume_breakpoint = NULL;
400 step_range_start = 0;
401 step_range_end = 0;
402
403 /* What is this a.out's name? */
404 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
405
406 /* We've followed the inferior through an exec. Therefore, the
407 inferior has essentially been killed & reborn. */
408
409 /* First collect the run target in effect. */
410 tgt = find_run_target ();
411 /* If we can't find one, things are in a very strange state... */
412 if (tgt == NULL)
413 error (_("Could find run target to save before following exec"));
414
415 gdb_flush (gdb_stdout);
416 target_mourn_inferior ();
417 inferior_ptid = pid_to_ptid (saved_pid);
418 /* Because mourn_inferior resets inferior_ptid. */
419 push_target (tgt);
420
421 /* That a.out is now the one to use. */
422 exec_file_attach (execd_pathname, 0);
423
424 /* And also is where symbols can be found. */
425 symbol_file_add_main (execd_pathname, 0);
426
427 /* Reset the shared library package. This ensures that we get
428 a shlib event when the child reaches "_start", at which point
429 the dld will have had a chance to initialize the child. */
430 #if defined(SOLIB_RESTART)
431 SOLIB_RESTART ();
432 #endif
433 #ifdef SOLIB_CREATE_INFERIOR_HOOK
434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
435 #else
436 solib_create_inferior_hook ();
437 #endif
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
448 }
449
450 /* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453 static int singlestep_breakpoints_inserted_p = 0;
454
455 /* The thread we inserted single-step breakpoints for. */
456 static ptid_t singlestep_ptid;
457
458 /* PC when we started this single-step. */
459 static CORE_ADDR singlestep_pc;
460
461 /* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463 static ptid_t saved_singlestep_ptid;
464 static int stepping_past_singlestep_breakpoint;
465
466 /* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473 static ptid_t deferred_step_ptid;
474 \f
475
476 /* Things to clean up if we QUIT out of resume (). */
477 static void
478 resume_cleanups (void *ignore)
479 {
480 normal_stop ();
481 }
482
483 static const char schedlock_off[] = "off";
484 static const char schedlock_on[] = "on";
485 static const char schedlock_step[] = "step";
486 static const char *scheduler_enums[] = {
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491 };
492 static const char *scheduler_mode = schedlock_off;
493 static void
494 show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496 {
497 fprintf_filtered (file, _("\
498 Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500 }
501
502 static void
503 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
504 {
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
510 }
511
512
513 /* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521 void
522 resume (int step, enum target_signal sig)
523 {
524 int should_resume = 1;
525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
526 QUIT;
527
528 if (debug_infrun)
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
531
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
534
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step)
544 remove_hw_watchpoints ();
545
546
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 {
553 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
554 gdbarch_skip_permanent_breakpoint (current_gdbarch,
555 get_current_regcache ());
556 else
557 error (_("\
558 The program is stopped at a permanent breakpoint, but GDB does not know\n\
559 how to step past a permanent breakpoint on this architecture. Try using\n\
560 a command like `return' or `jump' to continue execution."));
561 }
562
563 if (step && gdbarch_software_single_step_p (current_gdbarch))
564 {
565 /* Do it the hard way, w/temp breakpoints */
566 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
567 {
568 /* ...and don't ask hardware to do it. */
569 step = 0;
570 /* and do not pull these breakpoints until after a `wait' in
571 `wait_for_inferior' */
572 singlestep_breakpoints_inserted_p = 1;
573 singlestep_ptid = inferior_ptid;
574 singlestep_pc = read_pc ();
575 }
576 }
577
578 /* If there were any forks/vforks/execs that were caught and are
579 now to be followed, then do so. */
580 switch (pending_follow.kind)
581 {
582 case TARGET_WAITKIND_FORKED:
583 case TARGET_WAITKIND_VFORKED:
584 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
585 if (follow_fork ())
586 should_resume = 0;
587 break;
588
589 case TARGET_WAITKIND_EXECD:
590 /* follow_exec is called as soon as the exec event is seen. */
591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
592 break;
593
594 default:
595 break;
596 }
597
598 /* Install inferior's terminal modes. */
599 target_terminal_inferior ();
600
601 if (should_resume)
602 {
603 ptid_t resume_ptid;
604
605 resume_ptid = RESUME_ALL; /* Default */
606
607 /* If STEP is set, it's a request to use hardware stepping
608 facilities. But in that case, we should never
609 use singlestep breakpoint. */
610 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
611
612 if (singlestep_breakpoints_inserted_p
613 && stepping_past_singlestep_breakpoint)
614 {
615 /* The situation here is as follows. In thread T1 we wanted to
616 single-step. Lacking hardware single-stepping we've
617 set breakpoint at the PC of the next instruction -- call it
618 P. After resuming, we've hit that breakpoint in thread T2.
619 Now we've removed original breakpoint, inserted breakpoint
620 at P+1, and try to step to advance T2 past breakpoint.
621 We need to step only T2, as if T1 is allowed to freely run,
622 it can run past P, and if other threads are allowed to run,
623 they can hit breakpoint at P+1, and nested hits of single-step
624 breakpoints is not something we'd want -- that's complicated
625 to support, and has no value. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if ((step || singlestep_breakpoints_inserted_p)
630 && breakpoint_here_p (read_pc ())
631 && !breakpoint_inserted_here_p (read_pc ()))
632 {
633 /* We're stepping, have breakpoint at PC, and it's
634 not inserted. Most likely, proceed has noticed that
635 we have breakpoint and tries to single-step over it,
636 so that it's not hit. In which case, we need to
637 single-step only this thread, and keep others stopped,
638 as they can miss this breakpoint if allowed to run.
639
640 The current code either has all breakpoints inserted,
641 or all removed, so if we let other threads run,
642 we can actually miss any breakpoint, not the one at PC. */
643 resume_ptid = inferior_ptid;
644 }
645
646 if ((scheduler_mode == schedlock_on)
647 || (scheduler_mode == schedlock_step
648 && (step || singlestep_breakpoints_inserted_p)))
649 {
650 /* User-settable 'scheduler' mode requires solo thread resume. */
651 resume_ptid = inferior_ptid;
652 }
653
654 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
655 {
656 /* Most targets can step a breakpoint instruction, thus
657 executing it normally. But if this one cannot, just
658 continue and we will hit it anyway. */
659 if (step && breakpoint_inserted_here_p (read_pc ()))
660 step = 0;
661 }
662 target_resume (resume_ptid, step, sig);
663 }
664
665 discard_cleanups (old_cleanups);
666 }
667 \f
668
669 /* Clear out all variables saying what to do when inferior is continued.
670 First do this, then set the ones you want, then call `proceed'. */
671
672 void
673 clear_proceed_status (void)
674 {
675 stepping_over_breakpoint = 0;
676 step_range_start = 0;
677 step_range_end = 0;
678 step_frame_id = null_frame_id;
679 step_over_calls = STEP_OVER_UNDEBUGGABLE;
680 stop_after_trap = 0;
681 stop_soon = NO_STOP_QUIETLY;
682 proceed_to_finish = 0;
683 breakpoint_proceeded = 1; /* We're about to proceed... */
684
685 if (stop_registers)
686 {
687 regcache_xfree (stop_registers);
688 stop_registers = NULL;
689 }
690
691 /* Discard any remaining commands or status from previous stop. */
692 bpstat_clear (&stop_bpstat);
693 }
694
695 /* This should be suitable for any targets that support threads. */
696
697 static int
698 prepare_to_proceed (int step)
699 {
700 ptid_t wait_ptid;
701 struct target_waitstatus wait_status;
702
703 /* Get the last target status returned by target_wait(). */
704 get_last_target_status (&wait_ptid, &wait_status);
705
706 /* Make sure we were stopped at a breakpoint. */
707 if (wait_status.kind != TARGET_WAITKIND_STOPPED
708 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
709 {
710 return 0;
711 }
712
713 /* Switched over from WAIT_PID. */
714 if (!ptid_equal (wait_ptid, minus_one_ptid)
715 && !ptid_equal (inferior_ptid, wait_ptid)
716 && breakpoint_here_p (read_pc_pid (wait_ptid)))
717 {
718 /* If stepping, remember current thread to switch back to. */
719 if (step)
720 {
721 deferred_step_ptid = inferior_ptid;
722 }
723
724 /* Switch back to WAIT_PID thread. */
725 switch_to_thread (wait_ptid);
726
727 /* We return 1 to indicate that there is a breakpoint here,
728 so we need to step over it before continuing to avoid
729 hitting it straight away. */
730 return 1;
731 }
732
733 return 0;
734 }
735
736 /* Record the pc of the program the last time it stopped. This is
737 just used internally by wait_for_inferior, but need to be preserved
738 over calls to it and cleared when the inferior is started. */
739 static CORE_ADDR prev_pc;
740
741 /* Basic routine for continuing the program in various fashions.
742
743 ADDR is the address to resume at, or -1 for resume where stopped.
744 SIGGNAL is the signal to give it, or 0 for none,
745 or -1 for act according to how it stopped.
746 STEP is nonzero if should trap after one instruction.
747 -1 means return after that and print nothing.
748 You should probably set various step_... variables
749 before calling here, if you are stepping.
750
751 You should call clear_proceed_status before calling proceed. */
752
753 void
754 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
755 {
756 int oneproc = 0;
757
758 if (step > 0)
759 step_start_function = find_pc_function (read_pc ());
760 if (step < 0)
761 stop_after_trap = 1;
762
763 if (addr == (CORE_ADDR) -1)
764 {
765 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
766 /* There is a breakpoint at the address we will resume at,
767 step one instruction before inserting breakpoints so that
768 we do not stop right away (and report a second hit at this
769 breakpoint). */
770 oneproc = 1;
771 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
772 && gdbarch_single_step_through_delay (current_gdbarch,
773 get_current_frame ()))
774 /* We stepped onto an instruction that needs to be stepped
775 again before re-inserting the breakpoint, do so. */
776 oneproc = 1;
777 }
778 else
779 {
780 write_pc (addr);
781 }
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
786 paddr_nz (addr), siggnal, step);
787
788 /* In a multi-threaded task we may select another thread
789 and then continue or step.
790
791 But if the old thread was stopped at a breakpoint, it
792 will immediately cause another breakpoint stop without
793 any execution (i.e. it will report a breakpoint hit
794 incorrectly). So we must step over it first.
795
796 prepare_to_proceed checks the current thread against the thread
797 that reported the most recent event. If a step-over is required
798 it returns TRUE and sets the current thread to the old thread. */
799 if (prepare_to_proceed (step))
800 oneproc = 1;
801
802 if (oneproc)
803 /* We will get a trace trap after one instruction.
804 Continue it automatically and insert breakpoints then. */
805 stepping_over_breakpoint = 1;
806 else
807 insert_breakpoints ();
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
843 updated correctly when the inferior is stopped. */
844 prev_pc = read_pc ();
845
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
853 if (!target_can_async_p ())
854 {
855 wait_for_inferior ();
856 normal_stop ();
857 }
858 }
859 \f
860
861 /* Start remote-debugging of a machine over a serial link. */
862
863 void
864 start_remote (int from_tty)
865 {
866 init_thread_list ();
867 init_wait_for_inferior ();
868 stop_soon = STOP_QUIETLY_REMOTE;
869 stepping_over_breakpoint = 0;
870
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
873 indicate to wait_for_inferior that a target should timeout if
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior ();
886
887 /* Now that the inferior has stopped, do any bookkeeping like
888 loading shared libraries. We want to do this before normal_stop,
889 so that the displayed frame is up to date. */
890 post_create_inferior (&current_target, from_tty);
891
892 normal_stop ();
893 }
894
895 /* Initialize static vars when a new inferior begins. */
896
897 void
898 init_wait_for_inferior (void)
899 {
900 /* These are meaningless until the first time through wait_for_inferior. */
901 prev_pc = 0;
902
903 breakpoint_init_inferior (inf_starting);
904
905 /* Don't confuse first call to proceed(). */
906 stop_signal = TARGET_SIGNAL_0;
907
908 /* The first resume is not following a fork/vfork/exec. */
909 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
910
911 clear_proceed_status ();
912
913 stepping_past_singlestep_breakpoint = 0;
914 deferred_step_ptid = null_ptid;
915
916 target_last_wait_ptid = minus_one_ptid;
917 }
918 \f
919 /* This enum encodes possible reasons for doing a target_wait, so that
920 wfi can call target_wait in one place. (Ultimately the call will be
921 moved out of the infinite loop entirely.) */
922
923 enum infwait_states
924 {
925 infwait_normal_state,
926 infwait_thread_hop_state,
927 infwait_step_watch_state,
928 infwait_nonstep_watch_state
929 };
930
931 /* Why did the inferior stop? Used to print the appropriate messages
932 to the interface from within handle_inferior_event(). */
933 enum inferior_stop_reason
934 {
935 /* Step, next, nexti, stepi finished. */
936 END_STEPPING_RANGE,
937 /* Inferior terminated by signal. */
938 SIGNAL_EXITED,
939 /* Inferior exited. */
940 EXITED,
941 /* Inferior received signal, and user asked to be notified. */
942 SIGNAL_RECEIVED
943 };
944
945 /* This structure contains what used to be local variables in
946 wait_for_inferior. Probably many of them can return to being
947 locals in handle_inferior_event. */
948
949 struct execution_control_state
950 {
951 struct target_waitstatus ws;
952 struct target_waitstatus *wp;
953 /* Should we step over breakpoint next time keep_going
954 is called? */
955 int stepping_over_breakpoint;
956 int random_signal;
957 CORE_ADDR stop_func_start;
958 CORE_ADDR stop_func_end;
959 char *stop_func_name;
960 struct symtab_and_line sal;
961 int current_line;
962 struct symtab *current_symtab;
963 int handling_longjmp; /* FIXME */
964 ptid_t ptid;
965 ptid_t saved_inferior_ptid;
966 int step_after_step_resume_breakpoint;
967 int stepping_through_solib_after_catch;
968 bpstat stepping_through_solib_catchpoints;
969 int new_thread_event;
970 struct target_waitstatus tmpstatus;
971 enum infwait_states infwait_state;
972 ptid_t waiton_ptid;
973 int wait_some_more;
974 };
975
976 void init_execution_control_state (struct execution_control_state *ecs);
977
978 void handle_inferior_event (struct execution_control_state *ecs);
979
980 static void step_into_function (struct execution_control_state *ecs);
981 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
982 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
983 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
984 struct frame_id sr_id);
985 static void stop_stepping (struct execution_control_state *ecs);
986 static void prepare_to_wait (struct execution_control_state *ecs);
987 static void keep_going (struct execution_control_state *ecs);
988 static void print_stop_reason (enum inferior_stop_reason stop_reason,
989 int stop_info);
990
991 /* Wait for control to return from inferior to debugger.
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (void)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
1006
1007 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1008 &step_resume_breakpoint);
1009
1010 /* wfi still stays in a loop, so it's OK just to take the address of
1011 a local to get the ecs pointer. */
1012 ecs = &ecss;
1013
1014 /* Fill in with reasonable starting values. */
1015 init_execution_control_state (ecs);
1016
1017 /* We'll update this if & when we switch to a new thread. */
1018 previous_inferior_ptid = inferior_ptid;
1019
1020 overlay_cache_invalid = 1;
1021
1022 /* We have to invalidate the registers BEFORE calling target_wait
1023 because they can be loaded from the target while in target_wait.
1024 This makes remote debugging a bit more efficient for those
1025 targets that provide critical registers as part of their normal
1026 status mechanism. */
1027
1028 registers_changed ();
1029
1030 while (1)
1031 {
1032 if (deprecated_target_wait_hook)
1033 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1034 else
1035 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1036
1037 /* Now figure out what to do with the result of the result. */
1038 handle_inferior_event (ecs);
1039
1040 if (!ecs->wait_some_more)
1041 break;
1042 }
1043 do_cleanups (old_cleanups);
1044 }
1045
1046 /* Asynchronous version of wait_for_inferior. It is called by the
1047 event loop whenever a change of state is detected on the file
1048 descriptor corresponding to the target. It can be called more than
1049 once to complete a single execution command. In such cases we need
1050 to keep the state in a global variable ASYNC_ECSS. If it is the
1051 last time that this function is called for a single execution
1052 command, then report to the user that the inferior has stopped, and
1053 do the necessary cleanups. */
1054
1055 struct execution_control_state async_ecss;
1056 struct execution_control_state *async_ecs;
1057
1058 void
1059 fetch_inferior_event (void *client_data)
1060 {
1061 static struct cleanup *old_cleanups;
1062
1063 async_ecs = &async_ecss;
1064
1065 if (!async_ecs->wait_some_more)
1066 {
1067 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1068 &step_resume_breakpoint);
1069
1070 /* Fill in with reasonable starting values. */
1071 init_execution_control_state (async_ecs);
1072
1073 /* We'll update this if & when we switch to a new thread. */
1074 previous_inferior_ptid = inferior_ptid;
1075
1076 overlay_cache_invalid = 1;
1077
1078 /* We have to invalidate the registers BEFORE calling target_wait
1079 because they can be loaded from the target while in target_wait.
1080 This makes remote debugging a bit more efficient for those
1081 targets that provide critical registers as part of their normal
1082 status mechanism. */
1083
1084 registers_changed ();
1085 }
1086
1087 if (deprecated_target_wait_hook)
1088 async_ecs->ptid =
1089 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1090 else
1091 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1092
1093 /* Now figure out what to do with the result of the result. */
1094 handle_inferior_event (async_ecs);
1095
1096 if (!async_ecs->wait_some_more)
1097 {
1098 /* Do only the cleanups that have been added by this
1099 function. Let the continuations for the commands do the rest,
1100 if there are any. */
1101 do_exec_cleanups (old_cleanups);
1102 normal_stop ();
1103 if (step_multi && stop_step)
1104 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1105 else
1106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1107 }
1108 }
1109
1110 /* Prepare an execution control state for looping through a
1111 wait_for_inferior-type loop. */
1112
1113 void
1114 init_execution_control_state (struct execution_control_state *ecs)
1115 {
1116 ecs->stepping_over_breakpoint = 0;
1117 ecs->random_signal = 0;
1118 ecs->step_after_step_resume_breakpoint = 0;
1119 ecs->handling_longjmp = 0; /* FIXME */
1120 ecs->stepping_through_solib_after_catch = 0;
1121 ecs->stepping_through_solib_catchpoints = NULL;
1122 ecs->sal = find_pc_line (prev_pc, 0);
1123 ecs->current_line = ecs->sal.line;
1124 ecs->current_symtab = ecs->sal.symtab;
1125 ecs->infwait_state = infwait_normal_state;
1126 ecs->waiton_ptid = pid_to_ptid (-1);
1127 ecs->wp = &(ecs->ws);
1128 }
1129
1130 /* Return the cached copy of the last pid/waitstatus returned by
1131 target_wait()/deprecated_target_wait_hook(). The data is actually
1132 cached by handle_inferior_event(), which gets called immediately
1133 after target_wait()/deprecated_target_wait_hook(). */
1134
1135 void
1136 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1137 {
1138 *ptidp = target_last_wait_ptid;
1139 *status = target_last_waitstatus;
1140 }
1141
1142 void
1143 nullify_last_target_wait_ptid (void)
1144 {
1145 target_last_wait_ptid = minus_one_ptid;
1146 }
1147
1148 /* Switch thread contexts, maintaining "infrun state". */
1149
1150 static void
1151 context_switch (struct execution_control_state *ecs)
1152 {
1153 /* Caution: it may happen that the new thread (or the old one!)
1154 is not in the thread list. In this case we must not attempt
1155 to "switch context", or we run the risk that our context may
1156 be lost. This may happen as a result of the target module
1157 mishandling thread creation. */
1158
1159 if (debug_infrun)
1160 {
1161 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1162 target_pid_to_str (inferior_ptid));
1163 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1164 target_pid_to_str (ecs->ptid));
1165 }
1166
1167 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1168 { /* Perform infrun state context switch: */
1169 /* Save infrun state for the old thread. */
1170 save_infrun_state (inferior_ptid, prev_pc,
1171 stepping_over_breakpoint, step_resume_breakpoint,
1172 step_range_start,
1173 step_range_end, &step_frame_id,
1174 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1175 ecs->stepping_through_solib_after_catch,
1176 ecs->stepping_through_solib_catchpoints,
1177 ecs->current_line, ecs->current_symtab);
1178
1179 /* Load infrun state for the new thread. */
1180 load_infrun_state (ecs->ptid, &prev_pc,
1181 &stepping_over_breakpoint, &step_resume_breakpoint,
1182 &step_range_start,
1183 &step_range_end, &step_frame_id,
1184 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1185 &ecs->stepping_through_solib_after_catch,
1186 &ecs->stepping_through_solib_catchpoints,
1187 &ecs->current_line, &ecs->current_symtab);
1188 }
1189
1190 switch_to_thread (ecs->ptid);
1191 }
1192
1193 static void
1194 adjust_pc_after_break (struct execution_control_state *ecs)
1195 {
1196 CORE_ADDR breakpoint_pc;
1197
1198 /* If this target does not decrement the PC after breakpoints, then
1199 we have nothing to do. */
1200 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1201 return;
1202
1203 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1204 we aren't, just return.
1205
1206 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1207 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1208 implemented by software breakpoints should be handled through the normal
1209 breakpoint layer.
1210
1211 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1212 different signals (SIGILL or SIGEMT for instance), but it is less
1213 clear where the PC is pointing afterwards. It may not match
1214 gdbarch_decr_pc_after_break. I don't know any specific target that
1215 generates these signals at breakpoints (the code has been in GDB since at
1216 least 1992) so I can not guess how to handle them here.
1217
1218 In earlier versions of GDB, a target with
1219 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1220 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1221 target with both of these set in GDB history, and it seems unlikely to be
1222 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1223
1224 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1225 return;
1226
1227 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1228 return;
1229
1230 /* Find the location where (if we've hit a breakpoint) the
1231 breakpoint would be. */
1232 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1233 (current_gdbarch);
1234
1235 /* Check whether there actually is a software breakpoint inserted
1236 at that location. */
1237 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1238 {
1239 /* When using hardware single-step, a SIGTRAP is reported for both
1240 a completed single-step and a software breakpoint. Need to
1241 differentiate between the two, as the latter needs adjusting
1242 but the former does not.
1243
1244 The SIGTRAP can be due to a completed hardware single-step only if
1245 - we didn't insert software single-step breakpoints
1246 - the thread to be examined is still the current thread
1247 - this thread is currently being stepped
1248
1249 If any of these events did not occur, we must have stopped due
1250 to hitting a software breakpoint, and have to back up to the
1251 breakpoint address.
1252
1253 As a special case, we could have hardware single-stepped a
1254 software breakpoint. In this case (prev_pc == breakpoint_pc),
1255 we also need to back up to the breakpoint address. */
1256
1257 if (singlestep_breakpoints_inserted_p
1258 || !ptid_equal (ecs->ptid, inferior_ptid)
1259 || !currently_stepping (ecs)
1260 || prev_pc == breakpoint_pc)
1261 write_pc_pid (breakpoint_pc, ecs->ptid);
1262 }
1263 }
1264
1265 /* Given an execution control state that has been freshly filled in
1266 by an event from the inferior, figure out what it means and take
1267 appropriate action. */
1268
1269 void
1270 handle_inferior_event (struct execution_control_state *ecs)
1271 {
1272 int sw_single_step_trap_p = 0;
1273 int stopped_by_watchpoint;
1274 int stepped_after_stopped_by_watchpoint = 0;
1275
1276 /* Cache the last pid/waitstatus. */
1277 target_last_wait_ptid = ecs->ptid;
1278 target_last_waitstatus = *ecs->wp;
1279
1280 /* Always clear state belonging to the previous time we stopped. */
1281 stop_stack_dummy = 0;
1282
1283 adjust_pc_after_break (ecs);
1284
1285 switch (ecs->infwait_state)
1286 {
1287 case infwait_thread_hop_state:
1288 if (debug_infrun)
1289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1290 /* Cancel the waiton_ptid. */
1291 ecs->waiton_ptid = pid_to_ptid (-1);
1292 break;
1293
1294 case infwait_normal_state:
1295 if (debug_infrun)
1296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1297 break;
1298
1299 case infwait_step_watch_state:
1300 if (debug_infrun)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "infrun: infwait_step_watch_state\n");
1303
1304 stepped_after_stopped_by_watchpoint = 1;
1305 break;
1306
1307 case infwait_nonstep_watch_state:
1308 if (debug_infrun)
1309 fprintf_unfiltered (gdb_stdlog,
1310 "infrun: infwait_nonstep_watch_state\n");
1311 insert_breakpoints ();
1312
1313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1314 handle things like signals arriving and other things happening
1315 in combination correctly? */
1316 stepped_after_stopped_by_watchpoint = 1;
1317 break;
1318
1319 default:
1320 internal_error (__FILE__, __LINE__, _("bad switch"));
1321 }
1322 ecs->infwait_state = infwait_normal_state;
1323
1324 reinit_frame_cache ();
1325
1326 /* If it's a new process, add it to the thread database */
1327
1328 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1329 && !ptid_equal (ecs->ptid, minus_one_ptid)
1330 && !in_thread_list (ecs->ptid));
1331
1332 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1333 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1334 add_thread (ecs->ptid);
1335
1336 switch (ecs->ws.kind)
1337 {
1338 case TARGET_WAITKIND_LOADED:
1339 if (debug_infrun)
1340 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1341 /* Ignore gracefully during startup of the inferior, as it might
1342 be the shell which has just loaded some objects, otherwise
1343 add the symbols for the newly loaded objects. Also ignore at
1344 the beginning of an attach or remote session; we will query
1345 the full list of libraries once the connection is
1346 established. */
1347 if (stop_soon == NO_STOP_QUIETLY)
1348 {
1349 /* Remove breakpoints, SOLIB_ADD might adjust
1350 breakpoint addresses via breakpoint_re_set. */
1351 remove_breakpoints ();
1352
1353 /* Check for any newly added shared libraries if we're
1354 supposed to be adding them automatically. Switch
1355 terminal for any messages produced by
1356 breakpoint_re_set. */
1357 target_terminal_ours_for_output ();
1358 /* NOTE: cagney/2003-11-25: Make certain that the target
1359 stack's section table is kept up-to-date. Architectures,
1360 (e.g., PPC64), use the section table to perform
1361 operations such as address => section name and hence
1362 require the table to contain all sections (including
1363 those found in shared libraries). */
1364 /* NOTE: cagney/2003-11-25: Pass current_target and not
1365 exec_ops to SOLIB_ADD. This is because current GDB is
1366 only tooled to propagate section_table changes out from
1367 the "current_target" (see target_resize_to_sections), and
1368 not up from the exec stratum. This, of course, isn't
1369 right. "infrun.c" should only interact with the
1370 exec/process stratum, instead relying on the target stack
1371 to propagate relevant changes (stop, section table
1372 changed, ...) up to other layers. */
1373 #ifdef SOLIB_ADD
1374 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1375 #else
1376 solib_add (NULL, 0, &current_target, auto_solib_add);
1377 #endif
1378 target_terminal_inferior ();
1379
1380 /* If requested, stop when the dynamic linker notifies
1381 gdb of events. This allows the user to get control
1382 and place breakpoints in initializer routines for
1383 dynamically loaded objects (among other things). */
1384 if (stop_on_solib_events)
1385 {
1386 stop_stepping (ecs);
1387 return;
1388 }
1389
1390 /* NOTE drow/2007-05-11: This might be a good place to check
1391 for "catch load". */
1392
1393 /* Reinsert breakpoints and continue. */
1394 insert_breakpoints ();
1395 }
1396
1397 /* If we are skipping through a shell, or through shared library
1398 loading that we aren't interested in, resume the program. If
1399 we're running the program normally, also resume. But stop if
1400 we're attaching or setting up a remote connection. */
1401 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1402 {
1403 resume (0, TARGET_SIGNAL_0);
1404 prepare_to_wait (ecs);
1405 return;
1406 }
1407
1408 break;
1409
1410 case TARGET_WAITKIND_SPURIOUS:
1411 if (debug_infrun)
1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1413 resume (0, TARGET_SIGNAL_0);
1414 prepare_to_wait (ecs);
1415 return;
1416
1417 case TARGET_WAITKIND_EXITED:
1418 if (debug_infrun)
1419 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1420 target_terminal_ours (); /* Must do this before mourn anyway */
1421 print_stop_reason (EXITED, ecs->ws.value.integer);
1422
1423 /* Record the exit code in the convenience variable $_exitcode, so
1424 that the user can inspect this again later. */
1425 set_internalvar (lookup_internalvar ("_exitcode"),
1426 value_from_longest (builtin_type_int,
1427 (LONGEST) ecs->ws.value.integer));
1428 gdb_flush (gdb_stdout);
1429 target_mourn_inferior ();
1430 singlestep_breakpoints_inserted_p = 0;
1431 stop_print_frame = 0;
1432 stop_stepping (ecs);
1433 return;
1434
1435 case TARGET_WAITKIND_SIGNALLED:
1436 if (debug_infrun)
1437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1438 stop_print_frame = 0;
1439 stop_signal = ecs->ws.value.sig;
1440 target_terminal_ours (); /* Must do this before mourn anyway */
1441
1442 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1443 reach here unless the inferior is dead. However, for years
1444 target_kill() was called here, which hints that fatal signals aren't
1445 really fatal on some systems. If that's true, then some changes
1446 may be needed. */
1447 target_mourn_inferior ();
1448
1449 print_stop_reason (SIGNAL_EXITED, stop_signal);
1450 singlestep_breakpoints_inserted_p = 0;
1451 stop_stepping (ecs);
1452 return;
1453
1454 /* The following are the only cases in which we keep going;
1455 the above cases end in a continue or goto. */
1456 case TARGET_WAITKIND_FORKED:
1457 case TARGET_WAITKIND_VFORKED:
1458 if (debug_infrun)
1459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1460 stop_signal = TARGET_SIGNAL_TRAP;
1461 pending_follow.kind = ecs->ws.kind;
1462
1463 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1464 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1465
1466 if (!ptid_equal (ecs->ptid, inferior_ptid))
1467 {
1468 context_switch (ecs);
1469 reinit_frame_cache ();
1470 }
1471
1472 stop_pc = read_pc ();
1473
1474 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1475
1476 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1477
1478 /* If no catchpoint triggered for this, then keep going. */
1479 if (ecs->random_signal)
1480 {
1481 stop_signal = TARGET_SIGNAL_0;
1482 keep_going (ecs);
1483 return;
1484 }
1485 goto process_event_stop_test;
1486
1487 case TARGET_WAITKIND_EXECD:
1488 if (debug_infrun)
1489 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1490 stop_signal = TARGET_SIGNAL_TRAP;
1491
1492 /* NOTE drow/2002-12-05: This code should be pushed down into the
1493 target_wait function. Until then following vfork on HP/UX 10.20
1494 is probably broken by this. Of course, it's broken anyway. */
1495 /* Is this a target which reports multiple exec events per actual
1496 call to exec()? (HP-UX using ptrace does, for example.) If so,
1497 ignore all but the last one. Just resume the exec'r, and wait
1498 for the next exec event. */
1499 if (inferior_ignoring_leading_exec_events)
1500 {
1501 inferior_ignoring_leading_exec_events--;
1502 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1503 prepare_to_wait (ecs);
1504 return;
1505 }
1506 inferior_ignoring_leading_exec_events =
1507 target_reported_exec_events_per_exec_call () - 1;
1508
1509 pending_follow.execd_pathname =
1510 savestring (ecs->ws.value.execd_pathname,
1511 strlen (ecs->ws.value.execd_pathname));
1512
1513 /* This causes the eventpoints and symbol table to be reset. Must
1514 do this now, before trying to determine whether to stop. */
1515 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1516 xfree (pending_follow.execd_pathname);
1517
1518 stop_pc = read_pc_pid (ecs->ptid);
1519 ecs->saved_inferior_ptid = inferior_ptid;
1520 inferior_ptid = ecs->ptid;
1521
1522 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1523
1524 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1525 inferior_ptid = ecs->saved_inferior_ptid;
1526
1527 if (!ptid_equal (ecs->ptid, inferior_ptid))
1528 {
1529 context_switch (ecs);
1530 reinit_frame_cache ();
1531 }
1532
1533 /* If no catchpoint triggered for this, then keep going. */
1534 if (ecs->random_signal)
1535 {
1536 stop_signal = TARGET_SIGNAL_0;
1537 keep_going (ecs);
1538 return;
1539 }
1540 goto process_event_stop_test;
1541
1542 /* Be careful not to try to gather much state about a thread
1543 that's in a syscall. It's frequently a losing proposition. */
1544 case TARGET_WAITKIND_SYSCALL_ENTRY:
1545 if (debug_infrun)
1546 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1547 resume (0, TARGET_SIGNAL_0);
1548 prepare_to_wait (ecs);
1549 return;
1550
1551 /* Before examining the threads further, step this thread to
1552 get it entirely out of the syscall. (We get notice of the
1553 event when the thread is just on the verge of exiting a
1554 syscall. Stepping one instruction seems to get it back
1555 into user code.) */
1556 case TARGET_WAITKIND_SYSCALL_RETURN:
1557 if (debug_infrun)
1558 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1559 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1560 prepare_to_wait (ecs);
1561 return;
1562
1563 case TARGET_WAITKIND_STOPPED:
1564 if (debug_infrun)
1565 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1566 stop_signal = ecs->ws.value.sig;
1567 break;
1568
1569 /* We had an event in the inferior, but we are not interested
1570 in handling it at this level. The lower layers have already
1571 done what needs to be done, if anything.
1572
1573 One of the possible circumstances for this is when the
1574 inferior produces output for the console. The inferior has
1575 not stopped, and we are ignoring the event. Another possible
1576 circumstance is any event which the lower level knows will be
1577 reported multiple times without an intervening resume. */
1578 case TARGET_WAITKIND_IGNORE:
1579 if (debug_infrun)
1580 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1581 prepare_to_wait (ecs);
1582 return;
1583 }
1584
1585 /* We may want to consider not doing a resume here in order to give
1586 the user a chance to play with the new thread. It might be good
1587 to make that a user-settable option. */
1588
1589 /* At this point, all threads are stopped (happens automatically in
1590 either the OS or the native code). Therefore we need to continue
1591 all threads in order to make progress. */
1592 if (ecs->new_thread_event)
1593 {
1594 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1595 prepare_to_wait (ecs);
1596 return;
1597 }
1598
1599 stop_pc = read_pc_pid (ecs->ptid);
1600
1601 if (debug_infrun)
1602 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1603
1604 if (stepping_past_singlestep_breakpoint)
1605 {
1606 gdb_assert (singlestep_breakpoints_inserted_p);
1607 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1608 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1609
1610 stepping_past_singlestep_breakpoint = 0;
1611
1612 /* We've either finished single-stepping past the single-step
1613 breakpoint, or stopped for some other reason. It would be nice if
1614 we could tell, but we can't reliably. */
1615 if (stop_signal == TARGET_SIGNAL_TRAP)
1616 {
1617 if (debug_infrun)
1618 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1619 /* Pull the single step breakpoints out of the target. */
1620 remove_single_step_breakpoints ();
1621 singlestep_breakpoints_inserted_p = 0;
1622
1623 ecs->random_signal = 0;
1624
1625 ecs->ptid = saved_singlestep_ptid;
1626 context_switch (ecs);
1627 if (deprecated_context_hook)
1628 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1629
1630 resume (1, TARGET_SIGNAL_0);
1631 prepare_to_wait (ecs);
1632 return;
1633 }
1634 }
1635
1636 stepping_past_singlestep_breakpoint = 0;
1637
1638 if (!ptid_equal (deferred_step_ptid, null_ptid))
1639 {
1640 /* If we stopped for some other reason than single-stepping, ignore
1641 the fact that we were supposed to switch back. */
1642 if (stop_signal == TARGET_SIGNAL_TRAP)
1643 {
1644 if (debug_infrun)
1645 fprintf_unfiltered (gdb_stdlog,
1646 "infrun: handling deferred step\n");
1647
1648 /* Pull the single step breakpoints out of the target. */
1649 if (singlestep_breakpoints_inserted_p)
1650 {
1651 remove_single_step_breakpoints ();
1652 singlestep_breakpoints_inserted_p = 0;
1653 }
1654
1655 /* Note: We do not call context_switch at this point, as the
1656 context is already set up for stepping the original thread. */
1657 switch_to_thread (deferred_step_ptid);
1658 deferred_step_ptid = null_ptid;
1659 /* Suppress spurious "Switching to ..." message. */
1660 previous_inferior_ptid = inferior_ptid;
1661
1662 resume (1, TARGET_SIGNAL_0);
1663 prepare_to_wait (ecs);
1664 return;
1665 }
1666
1667 deferred_step_ptid = null_ptid;
1668 }
1669
1670 /* See if a thread hit a thread-specific breakpoint that was meant for
1671 another thread. If so, then step that thread past the breakpoint,
1672 and continue it. */
1673
1674 if (stop_signal == TARGET_SIGNAL_TRAP)
1675 {
1676 int thread_hop_needed = 0;
1677
1678 /* Check if a regular breakpoint has been hit before checking
1679 for a potential single step breakpoint. Otherwise, GDB will
1680 not see this breakpoint hit when stepping onto breakpoints. */
1681 if (regular_breakpoint_inserted_here_p (stop_pc))
1682 {
1683 ecs->random_signal = 0;
1684 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1685 thread_hop_needed = 1;
1686 }
1687 else if (singlestep_breakpoints_inserted_p)
1688 {
1689 /* We have not context switched yet, so this should be true
1690 no matter which thread hit the singlestep breakpoint. */
1691 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1692 if (debug_infrun)
1693 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1694 "trap for %s\n",
1695 target_pid_to_str (ecs->ptid));
1696
1697 ecs->random_signal = 0;
1698 /* The call to in_thread_list is necessary because PTIDs sometimes
1699 change when we go from single-threaded to multi-threaded. If
1700 the singlestep_ptid is still in the list, assume that it is
1701 really different from ecs->ptid. */
1702 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1703 && in_thread_list (singlestep_ptid))
1704 {
1705 /* If the PC of the thread we were trying to single-step
1706 has changed, discard this event (which we were going
1707 to ignore anyway), and pretend we saw that thread
1708 trap. This prevents us continuously moving the
1709 single-step breakpoint forward, one instruction at a
1710 time. If the PC has changed, then the thread we were
1711 trying to single-step has trapped or been signalled,
1712 but the event has not been reported to GDB yet.
1713
1714 There might be some cases where this loses signal
1715 information, if a signal has arrived at exactly the
1716 same time that the PC changed, but this is the best
1717 we can do with the information available. Perhaps we
1718 should arrange to report all events for all threads
1719 when they stop, or to re-poll the remote looking for
1720 this particular thread (i.e. temporarily enable
1721 schedlock). */
1722 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1723 {
1724 if (debug_infrun)
1725 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1726 " but expected thread advanced also\n");
1727
1728 /* The current context still belongs to
1729 singlestep_ptid. Don't swap here, since that's
1730 the context we want to use. Just fudge our
1731 state and continue. */
1732 ecs->ptid = singlestep_ptid;
1733 stop_pc = read_pc_pid (ecs->ptid);
1734 }
1735 else
1736 {
1737 if (debug_infrun)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "infrun: unexpected thread\n");
1740
1741 thread_hop_needed = 1;
1742 stepping_past_singlestep_breakpoint = 1;
1743 saved_singlestep_ptid = singlestep_ptid;
1744 }
1745 }
1746 }
1747
1748 if (thread_hop_needed)
1749 {
1750 int remove_status;
1751
1752 if (debug_infrun)
1753 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1754
1755 /* Saw a breakpoint, but it was hit by the wrong thread.
1756 Just continue. */
1757
1758 if (singlestep_breakpoints_inserted_p)
1759 {
1760 /* Pull the single step breakpoints out of the target. */
1761 remove_single_step_breakpoints ();
1762 singlestep_breakpoints_inserted_p = 0;
1763 }
1764
1765 remove_status = remove_breakpoints ();
1766 /* Did we fail to remove breakpoints? If so, try
1767 to set the PC past the bp. (There's at least
1768 one situation in which we can fail to remove
1769 the bp's: On HP-UX's that use ttrace, we can't
1770 change the address space of a vforking child
1771 process until the child exits (well, okay, not
1772 then either :-) or execs. */
1773 if (remove_status != 0)
1774 error (_("Cannot step over breakpoint hit in wrong thread"));
1775 else
1776 { /* Single step */
1777 if (!ptid_equal (inferior_ptid, ecs->ptid))
1778 context_switch (ecs);
1779 ecs->waiton_ptid = ecs->ptid;
1780 ecs->wp = &(ecs->ws);
1781 ecs->stepping_over_breakpoint = 1;
1782
1783 ecs->infwait_state = infwait_thread_hop_state;
1784 keep_going (ecs);
1785 registers_changed ();
1786 return;
1787 }
1788 }
1789 else if (singlestep_breakpoints_inserted_p)
1790 {
1791 sw_single_step_trap_p = 1;
1792 ecs->random_signal = 0;
1793 }
1794 }
1795 else
1796 ecs->random_signal = 1;
1797
1798 /* See if something interesting happened to the non-current thread. If
1799 so, then switch to that thread. */
1800 if (!ptid_equal (ecs->ptid, inferior_ptid))
1801 {
1802 if (debug_infrun)
1803 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1804
1805 context_switch (ecs);
1806
1807 if (deprecated_context_hook)
1808 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1809 }
1810
1811 if (singlestep_breakpoints_inserted_p)
1812 {
1813 /* Pull the single step breakpoints out of the target. */
1814 remove_single_step_breakpoints ();
1815 singlestep_breakpoints_inserted_p = 0;
1816 }
1817
1818 if (stepped_after_stopped_by_watchpoint)
1819 stopped_by_watchpoint = 0;
1820 else
1821 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1822
1823 /* If necessary, step over this watchpoint. We'll be back to display
1824 it in a moment. */
1825 if (stopped_by_watchpoint
1826 && (HAVE_STEPPABLE_WATCHPOINT
1827 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1828 {
1829 if (debug_infrun)
1830 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1831
1832 /* At this point, we are stopped at an instruction which has
1833 attempted to write to a piece of memory under control of
1834 a watchpoint. The instruction hasn't actually executed
1835 yet. If we were to evaluate the watchpoint expression
1836 now, we would get the old value, and therefore no change
1837 would seem to have occurred.
1838
1839 In order to make watchpoints work `right', we really need
1840 to complete the memory write, and then evaluate the
1841 watchpoint expression. We do this by single-stepping the
1842 target.
1843
1844 It may not be necessary to disable the watchpoint to stop over
1845 it. For example, the PA can (with some kernel cooperation)
1846 single step over a watchpoint without disabling the watchpoint.
1847
1848 It is far more common to need to disable a watchpoint to step
1849 the inferior over it. If we have non-steppable watchpoints,
1850 we must disable the current watchpoint; it's simplest to
1851 disable all watchpoints and breakpoints. */
1852
1853 if (!HAVE_STEPPABLE_WATCHPOINT)
1854 remove_breakpoints ();
1855 registers_changed ();
1856 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1857 ecs->waiton_ptid = ecs->ptid;
1858 if (HAVE_STEPPABLE_WATCHPOINT)
1859 ecs->infwait_state = infwait_step_watch_state;
1860 else
1861 ecs->infwait_state = infwait_nonstep_watch_state;
1862 prepare_to_wait (ecs);
1863 return;
1864 }
1865
1866 ecs->stop_func_start = 0;
1867 ecs->stop_func_end = 0;
1868 ecs->stop_func_name = 0;
1869 /* Don't care about return value; stop_func_start and stop_func_name
1870 will both be 0 if it doesn't work. */
1871 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1872 &ecs->stop_func_start, &ecs->stop_func_end);
1873 ecs->stop_func_start
1874 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1875 ecs->stepping_over_breakpoint = 0;
1876 bpstat_clear (&stop_bpstat);
1877 stop_step = 0;
1878 stop_print_frame = 1;
1879 ecs->random_signal = 0;
1880 stopped_by_random_signal = 0;
1881
1882 if (stop_signal == TARGET_SIGNAL_TRAP
1883 && stepping_over_breakpoint
1884 && gdbarch_single_step_through_delay_p (current_gdbarch)
1885 && currently_stepping (ecs))
1886 {
1887 /* We're trying to step off a breakpoint. Turns out that we're
1888 also on an instruction that needs to be stepped multiple
1889 times before it's been fully executing. E.g., architectures
1890 with a delay slot. It needs to be stepped twice, once for
1891 the instruction and once for the delay slot. */
1892 int step_through_delay
1893 = gdbarch_single_step_through_delay (current_gdbarch,
1894 get_current_frame ());
1895 if (debug_infrun && step_through_delay)
1896 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1897 if (step_range_end == 0 && step_through_delay)
1898 {
1899 /* The user issued a continue when stopped at a breakpoint.
1900 Set up for another trap and get out of here. */
1901 ecs->stepping_over_breakpoint = 1;
1902 keep_going (ecs);
1903 return;
1904 }
1905 else if (step_through_delay)
1906 {
1907 /* The user issued a step when stopped at a breakpoint.
1908 Maybe we should stop, maybe we should not - the delay
1909 slot *might* correspond to a line of source. In any
1910 case, don't decide that here, just set
1911 ecs->stepping_over_breakpoint, making sure we
1912 single-step again before breakpoints are re-inserted. */
1913 ecs->stepping_over_breakpoint = 1;
1914 }
1915 }
1916
1917 /* Look at the cause of the stop, and decide what to do.
1918 The alternatives are:
1919 1) break; to really stop and return to the debugger,
1920 2) drop through to start up again
1921 (set ecs->stepping_over_breakpoint to 1 to single step once)
1922 3) set ecs->random_signal to 1, and the decision between 1 and 2
1923 will be made according to the signal handling tables. */
1924
1925 /* First, distinguish signals caused by the debugger from signals
1926 that have to do with the program's own actions. Note that
1927 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1928 on the operating system version. Here we detect when a SIGILL or
1929 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1930 something similar for SIGSEGV, since a SIGSEGV will be generated
1931 when we're trying to execute a breakpoint instruction on a
1932 non-executable stack. This happens for call dummy breakpoints
1933 for architectures like SPARC that place call dummies on the
1934 stack. */
1935
1936 if (stop_signal == TARGET_SIGNAL_TRAP
1937 || (breakpoint_inserted_here_p (stop_pc)
1938 && (stop_signal == TARGET_SIGNAL_ILL
1939 || stop_signal == TARGET_SIGNAL_SEGV
1940 || stop_signal == TARGET_SIGNAL_EMT))
1941 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1942 || stop_soon == STOP_QUIETLY_REMOTE)
1943 {
1944 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1945 {
1946 if (debug_infrun)
1947 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1948 stop_print_frame = 0;
1949 stop_stepping (ecs);
1950 return;
1951 }
1952
1953 /* This is originated from start_remote(), start_inferior() and
1954 shared libraries hook functions. */
1955 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1956 {
1957 if (debug_infrun)
1958 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1959 stop_stepping (ecs);
1960 return;
1961 }
1962
1963 /* This originates from attach_command(). We need to overwrite
1964 the stop_signal here, because some kernels don't ignore a
1965 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1966 See more comments in inferior.h. */
1967 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1968 {
1969 stop_stepping (ecs);
1970 if (stop_signal == TARGET_SIGNAL_STOP)
1971 stop_signal = TARGET_SIGNAL_0;
1972 return;
1973 }
1974
1975 /* See if there is a breakpoint at the current PC. */
1976 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1977
1978 /* Following in case break condition called a
1979 function. */
1980 stop_print_frame = 1;
1981
1982 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1983 at one stage in the past included checks for an inferior
1984 function call's call dummy's return breakpoint. The original
1985 comment, that went with the test, read:
1986
1987 ``End of a stack dummy. Some systems (e.g. Sony news) give
1988 another signal besides SIGTRAP, so check here as well as
1989 above.''
1990
1991 If someone ever tries to get get call dummys on a
1992 non-executable stack to work (where the target would stop
1993 with something like a SIGSEGV), then those tests might need
1994 to be re-instated. Given, however, that the tests were only
1995 enabled when momentary breakpoints were not being used, I
1996 suspect that it won't be the case.
1997
1998 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1999 be necessary for call dummies on a non-executable stack on
2000 SPARC. */
2001
2002 if (stop_signal == TARGET_SIGNAL_TRAP)
2003 ecs->random_signal
2004 = !(bpstat_explains_signal (stop_bpstat)
2005 || stepping_over_breakpoint
2006 || (step_range_end && step_resume_breakpoint == NULL));
2007 else
2008 {
2009 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2010 if (!ecs->random_signal)
2011 stop_signal = TARGET_SIGNAL_TRAP;
2012 }
2013 }
2014
2015 /* When we reach this point, we've pretty much decided
2016 that the reason for stopping must've been a random
2017 (unexpected) signal. */
2018
2019 else
2020 ecs->random_signal = 1;
2021
2022 process_event_stop_test:
2023 /* For the program's own signals, act according to
2024 the signal handling tables. */
2025
2026 if (ecs->random_signal)
2027 {
2028 /* Signal not for debugging purposes. */
2029 int printed = 0;
2030
2031 if (debug_infrun)
2032 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2033
2034 stopped_by_random_signal = 1;
2035
2036 if (signal_print[stop_signal])
2037 {
2038 printed = 1;
2039 target_terminal_ours_for_output ();
2040 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2041 }
2042 if (signal_stop[stop_signal])
2043 {
2044 stop_stepping (ecs);
2045 return;
2046 }
2047 /* If not going to stop, give terminal back
2048 if we took it away. */
2049 else if (printed)
2050 target_terminal_inferior ();
2051
2052 /* Clear the signal if it should not be passed. */
2053 if (signal_program[stop_signal] == 0)
2054 stop_signal = TARGET_SIGNAL_0;
2055
2056 if (prev_pc == read_pc ()
2057 && breakpoint_here_p (read_pc ())
2058 && !breakpoint_inserted_here_p (read_pc ())
2059 && step_resume_breakpoint == NULL)
2060 {
2061 /* We were just starting a new sequence, attempting to
2062 single-step off of a breakpoint and expecting a SIGTRAP.
2063 Intead this signal arrives. This signal will take us out
2064 of the stepping range so GDB needs to remember to, when
2065 the signal handler returns, resume stepping off that
2066 breakpoint. */
2067 /* To simplify things, "continue" is forced to use the same
2068 code paths as single-step - set a breakpoint at the
2069 signal return address and then, once hit, step off that
2070 breakpoint. */
2071
2072 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2073 ecs->step_after_step_resume_breakpoint = 1;
2074 keep_going (ecs);
2075 return;
2076 }
2077
2078 if (step_range_end != 0
2079 && stop_signal != TARGET_SIGNAL_0
2080 && stop_pc >= step_range_start && stop_pc < step_range_end
2081 && frame_id_eq (get_frame_id (get_current_frame ()),
2082 step_frame_id)
2083 && step_resume_breakpoint == NULL)
2084 {
2085 /* The inferior is about to take a signal that will take it
2086 out of the single step range. Set a breakpoint at the
2087 current PC (which is presumably where the signal handler
2088 will eventually return) and then allow the inferior to
2089 run free.
2090
2091 Note that this is only needed for a signal delivered
2092 while in the single-step range. Nested signals aren't a
2093 problem as they eventually all return. */
2094 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2095 keep_going (ecs);
2096 return;
2097 }
2098
2099 /* Note: step_resume_breakpoint may be non-NULL. This occures
2100 when either there's a nested signal, or when there's a
2101 pending signal enabled just as the signal handler returns
2102 (leaving the inferior at the step-resume-breakpoint without
2103 actually executing it). Either way continue until the
2104 breakpoint is really hit. */
2105 keep_going (ecs);
2106 return;
2107 }
2108
2109 /* Handle cases caused by hitting a breakpoint. */
2110 {
2111 CORE_ADDR jmp_buf_pc;
2112 struct bpstat_what what;
2113
2114 what = bpstat_what (stop_bpstat);
2115
2116 if (what.call_dummy)
2117 {
2118 stop_stack_dummy = 1;
2119 }
2120
2121 switch (what.main_action)
2122 {
2123 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2124 /* If we hit the breakpoint at longjmp, disable it for the
2125 duration of this command. Then, install a temporary
2126 breakpoint at the target of the jmp_buf. */
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2129 disable_longjmp_breakpoint ();
2130 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2131 || !gdbarch_get_longjmp_target (current_gdbarch,
2132 get_current_frame (), &jmp_buf_pc))
2133 {
2134 keep_going (ecs);
2135 return;
2136 }
2137
2138 /* Need to blow away step-resume breakpoint, as it
2139 interferes with us */
2140 if (step_resume_breakpoint != NULL)
2141 {
2142 delete_step_resume_breakpoint (&step_resume_breakpoint);
2143 }
2144
2145 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2146 ecs->handling_longjmp = 1; /* FIXME */
2147 keep_going (ecs);
2148 return;
2149
2150 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2151 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2154 disable_longjmp_breakpoint ();
2155 ecs->handling_longjmp = 0; /* FIXME */
2156 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2157 break;
2158 /* else fallthrough */
2159
2160 case BPSTAT_WHAT_SINGLE:
2161 if (debug_infrun)
2162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2163 ecs->stepping_over_breakpoint = 1;
2164 /* Still need to check other stuff, at least the case
2165 where we are stepping and step out of the right range. */
2166 break;
2167
2168 case BPSTAT_WHAT_STOP_NOISY:
2169 if (debug_infrun)
2170 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2171 stop_print_frame = 1;
2172
2173 /* We are about to nuke the step_resume_breakpointt via the
2174 cleanup chain, so no need to worry about it here. */
2175
2176 stop_stepping (ecs);
2177 return;
2178
2179 case BPSTAT_WHAT_STOP_SILENT:
2180 if (debug_infrun)
2181 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2182 stop_print_frame = 0;
2183
2184 /* We are about to nuke the step_resume_breakpoin via the
2185 cleanup chain, so no need to worry about it here. */
2186
2187 stop_stepping (ecs);
2188 return;
2189
2190 case BPSTAT_WHAT_STEP_RESUME:
2191 /* This proably demands a more elegant solution, but, yeah
2192 right...
2193
2194 This function's use of the simple variable
2195 step_resume_breakpoint doesn't seem to accomodate
2196 simultaneously active step-resume bp's, although the
2197 breakpoint list certainly can.
2198
2199 If we reach here and step_resume_breakpoint is already
2200 NULL, then apparently we have multiple active
2201 step-resume bp's. We'll just delete the breakpoint we
2202 stopped at, and carry on.
2203
2204 Correction: what the code currently does is delete a
2205 step-resume bp, but it makes no effort to ensure that
2206 the one deleted is the one currently stopped at. MVS */
2207
2208 if (debug_infrun)
2209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2210
2211 if (step_resume_breakpoint == NULL)
2212 {
2213 step_resume_breakpoint =
2214 bpstat_find_step_resume_breakpoint (stop_bpstat);
2215 }
2216 delete_step_resume_breakpoint (&step_resume_breakpoint);
2217 if (ecs->step_after_step_resume_breakpoint)
2218 {
2219 /* Back when the step-resume breakpoint was inserted, we
2220 were trying to single-step off a breakpoint. Go back
2221 to doing that. */
2222 ecs->step_after_step_resume_breakpoint = 0;
2223 ecs->stepping_over_breakpoint = 1;
2224 keep_going (ecs);
2225 return;
2226 }
2227 break;
2228
2229 case BPSTAT_WHAT_CHECK_SHLIBS:
2230 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2231 {
2232 if (debug_infrun)
2233 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2234 /* Remove breakpoints, we eventually want to step over the
2235 shlib event breakpoint, and SOLIB_ADD might adjust
2236 breakpoint addresses via breakpoint_re_set. */
2237 remove_breakpoints ();
2238
2239 /* Check for any newly added shared libraries if we're
2240 supposed to be adding them automatically. Switch
2241 terminal for any messages produced by
2242 breakpoint_re_set. */
2243 target_terminal_ours_for_output ();
2244 /* NOTE: cagney/2003-11-25: Make certain that the target
2245 stack's section table is kept up-to-date. Architectures,
2246 (e.g., PPC64), use the section table to perform
2247 operations such as address => section name and hence
2248 require the table to contain all sections (including
2249 those found in shared libraries). */
2250 /* NOTE: cagney/2003-11-25: Pass current_target and not
2251 exec_ops to SOLIB_ADD. This is because current GDB is
2252 only tooled to propagate section_table changes out from
2253 the "current_target" (see target_resize_to_sections), and
2254 not up from the exec stratum. This, of course, isn't
2255 right. "infrun.c" should only interact with the
2256 exec/process stratum, instead relying on the target stack
2257 to propagate relevant changes (stop, section table
2258 changed, ...) up to other layers. */
2259 #ifdef SOLIB_ADD
2260 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2261 #else
2262 solib_add (NULL, 0, &current_target, auto_solib_add);
2263 #endif
2264 target_terminal_inferior ();
2265
2266 /* If requested, stop when the dynamic linker notifies
2267 gdb of events. This allows the user to get control
2268 and place breakpoints in initializer routines for
2269 dynamically loaded objects (among other things). */
2270 if (stop_on_solib_events || stop_stack_dummy)
2271 {
2272 stop_stepping (ecs);
2273 return;
2274 }
2275
2276 /* If we stopped due to an explicit catchpoint, then the
2277 (see above) call to SOLIB_ADD pulled in any symbols
2278 from a newly-loaded library, if appropriate.
2279
2280 We do want the inferior to stop, but not where it is
2281 now, which is in the dynamic linker callback. Rather,
2282 we would like it stop in the user's program, just after
2283 the call that caused this catchpoint to trigger. That
2284 gives the user a more useful vantage from which to
2285 examine their program's state. */
2286 else if (what.main_action
2287 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2288 {
2289 /* ??rehrauer: If I could figure out how to get the
2290 right return PC from here, we could just set a temp
2291 breakpoint and resume. I'm not sure we can without
2292 cracking open the dld's shared libraries and sniffing
2293 their unwind tables and text/data ranges, and that's
2294 not a terribly portable notion.
2295
2296 Until that time, we must step the inferior out of the
2297 dld callback, and also out of the dld itself (and any
2298 code or stubs in libdld.sl, such as "shl_load" and
2299 friends) until we reach non-dld code. At that point,
2300 we can stop stepping. */
2301 bpstat_get_triggered_catchpoints (stop_bpstat,
2302 &ecs->
2303 stepping_through_solib_catchpoints);
2304 ecs->stepping_through_solib_after_catch = 1;
2305
2306 /* Be sure to lift all breakpoints, so the inferior does
2307 actually step past this point... */
2308 ecs->stepping_over_breakpoint = 1;
2309 break;
2310 }
2311 else
2312 {
2313 /* We want to step over this breakpoint, then keep going. */
2314 ecs->stepping_over_breakpoint = 1;
2315 break;
2316 }
2317 }
2318 break;
2319
2320 case BPSTAT_WHAT_LAST:
2321 /* Not a real code, but listed here to shut up gcc -Wall. */
2322
2323 case BPSTAT_WHAT_KEEP_CHECKING:
2324 break;
2325 }
2326 }
2327
2328 /* We come here if we hit a breakpoint but should not
2329 stop for it. Possibly we also were stepping
2330 and should stop for that. So fall through and
2331 test for stepping. But, if not stepping,
2332 do not stop. */
2333
2334 /* Are we stepping to get the inferior out of the dynamic linker's
2335 hook (and possibly the dld itself) after catching a shlib
2336 event? */
2337 if (ecs->stepping_through_solib_after_catch)
2338 {
2339 #if defined(SOLIB_ADD)
2340 /* Have we reached our destination? If not, keep going. */
2341 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2342 {
2343 if (debug_infrun)
2344 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2345 ecs->stepping_over_breakpoint = 1;
2346 keep_going (ecs);
2347 return;
2348 }
2349 #endif
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2352 /* Else, stop and report the catchpoint(s) whose triggering
2353 caused us to begin stepping. */
2354 ecs->stepping_through_solib_after_catch = 0;
2355 bpstat_clear (&stop_bpstat);
2356 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2357 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2358 stop_print_frame = 1;
2359 stop_stepping (ecs);
2360 return;
2361 }
2362
2363 if (step_resume_breakpoint)
2364 {
2365 if (debug_infrun)
2366 fprintf_unfiltered (gdb_stdlog,
2367 "infrun: step-resume breakpoint is inserted\n");
2368
2369 /* Having a step-resume breakpoint overrides anything
2370 else having to do with stepping commands until
2371 that breakpoint is reached. */
2372 keep_going (ecs);
2373 return;
2374 }
2375
2376 if (step_range_end == 0)
2377 {
2378 if (debug_infrun)
2379 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2380 /* Likewise if we aren't even stepping. */
2381 keep_going (ecs);
2382 return;
2383 }
2384
2385 /* If stepping through a line, keep going if still within it.
2386
2387 Note that step_range_end is the address of the first instruction
2388 beyond the step range, and NOT the address of the last instruction
2389 within it! */
2390 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2391 {
2392 if (debug_infrun)
2393 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2394 paddr_nz (step_range_start),
2395 paddr_nz (step_range_end));
2396 keep_going (ecs);
2397 return;
2398 }
2399
2400 /* We stepped out of the stepping range. */
2401
2402 /* If we are stepping at the source level and entered the runtime
2403 loader dynamic symbol resolution code, we keep on single stepping
2404 until we exit the run time loader code and reach the callee's
2405 address. */
2406 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2407 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2408 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2409 #else
2410 && in_solib_dynsym_resolve_code (stop_pc)
2411 #endif
2412 )
2413 {
2414 CORE_ADDR pc_after_resolver =
2415 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2416
2417 if (debug_infrun)
2418 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2419
2420 if (pc_after_resolver)
2421 {
2422 /* Set up a step-resume breakpoint at the address
2423 indicated by SKIP_SOLIB_RESOLVER. */
2424 struct symtab_and_line sr_sal;
2425 init_sal (&sr_sal);
2426 sr_sal.pc = pc_after_resolver;
2427
2428 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2429 }
2430
2431 keep_going (ecs);
2432 return;
2433 }
2434
2435 if (step_range_end != 1
2436 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2437 || step_over_calls == STEP_OVER_ALL)
2438 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2439 {
2440 if (debug_infrun)
2441 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2442 /* The inferior, while doing a "step" or "next", has ended up in
2443 a signal trampoline (either by a signal being delivered or by
2444 the signal handler returning). Just single-step until the
2445 inferior leaves the trampoline (either by calling the handler
2446 or returning). */
2447 keep_going (ecs);
2448 return;
2449 }
2450
2451 /* Check for subroutine calls. The check for the current frame
2452 equalling the step ID is not necessary - the check of the
2453 previous frame's ID is sufficient - but it is a common case and
2454 cheaper than checking the previous frame's ID.
2455
2456 NOTE: frame_id_eq will never report two invalid frame IDs as
2457 being equal, so to get into this block, both the current and
2458 previous frame must have valid frame IDs. */
2459 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2460 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2461 {
2462 CORE_ADDR real_stop_pc;
2463
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2466
2467 if ((step_over_calls == STEP_OVER_NONE)
2468 || ((step_range_end == 1)
2469 && in_prologue (prev_pc, ecs->stop_func_start)))
2470 {
2471 /* I presume that step_over_calls is only 0 when we're
2472 supposed to be stepping at the assembly language level
2473 ("stepi"). Just stop. */
2474 /* Also, maybe we just did a "nexti" inside a prolog, so we
2475 thought it was a subroutine call but it was not. Stop as
2476 well. FENN */
2477 stop_step = 1;
2478 print_stop_reason (END_STEPPING_RANGE, 0);
2479 stop_stepping (ecs);
2480 return;
2481 }
2482
2483 if (step_over_calls == STEP_OVER_ALL)
2484 {
2485 /* We're doing a "next", set a breakpoint at callee's return
2486 address (the address at which the caller will
2487 resume). */
2488 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2489 keep_going (ecs);
2490 return;
2491 }
2492
2493 /* If we are in a function call trampoline (a stub between the
2494 calling routine and the real function), locate the real
2495 function. That's what tells us (a) whether we want to step
2496 into it at all, and (b) what prologue we want to run to the
2497 end of, if we do step into it. */
2498 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2499 if (real_stop_pc == 0)
2500 real_stop_pc = gdbarch_skip_trampoline_code
2501 (current_gdbarch, get_current_frame (), stop_pc);
2502 if (real_stop_pc != 0)
2503 ecs->stop_func_start = real_stop_pc;
2504
2505 if (
2506 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2507 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2508 #else
2509 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2510 #endif
2511 )
2512 {
2513 struct symtab_and_line sr_sal;
2514 init_sal (&sr_sal);
2515 sr_sal.pc = ecs->stop_func_start;
2516
2517 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2518 keep_going (ecs);
2519 return;
2520 }
2521
2522 /* If we have line number information for the function we are
2523 thinking of stepping into, step into it.
2524
2525 If there are several symtabs at that PC (e.g. with include
2526 files), just want to know whether *any* of them have line
2527 numbers. find_pc_line handles this. */
2528 {
2529 struct symtab_and_line tmp_sal;
2530
2531 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2532 if (tmp_sal.line != 0)
2533 {
2534 step_into_function (ecs);
2535 return;
2536 }
2537 }
2538
2539 /* If we have no line number and the step-stop-if-no-debug is
2540 set, we stop the step so that the user has a chance to switch
2541 in assembly mode. */
2542 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2543 {
2544 stop_step = 1;
2545 print_stop_reason (END_STEPPING_RANGE, 0);
2546 stop_stepping (ecs);
2547 return;
2548 }
2549
2550 /* Set a breakpoint at callee's return address (the address at
2551 which the caller will resume). */
2552 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2553 keep_going (ecs);
2554 return;
2555 }
2556
2557 /* If we're in the return path from a shared library trampoline,
2558 we want to proceed through the trampoline when stepping. */
2559 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2560 stop_pc, ecs->stop_func_name))
2561 {
2562 /* Determine where this trampoline returns. */
2563 CORE_ADDR real_stop_pc;
2564 real_stop_pc = gdbarch_skip_trampoline_code
2565 (current_gdbarch, get_current_frame (), stop_pc);
2566
2567 if (debug_infrun)
2568 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2569
2570 /* Only proceed through if we know where it's going. */
2571 if (real_stop_pc)
2572 {
2573 /* And put the step-breakpoint there and go until there. */
2574 struct symtab_and_line sr_sal;
2575
2576 init_sal (&sr_sal); /* initialize to zeroes */
2577 sr_sal.pc = real_stop_pc;
2578 sr_sal.section = find_pc_overlay (sr_sal.pc);
2579
2580 /* Do not specify what the fp should be when we stop since
2581 on some machines the prologue is where the new fp value
2582 is established. */
2583 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2584
2585 /* Restart without fiddling with the step ranges or
2586 other state. */
2587 keep_going (ecs);
2588 return;
2589 }
2590 }
2591
2592 ecs->sal = find_pc_line (stop_pc, 0);
2593
2594 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2595 the trampoline processing logic, however, there are some trampolines
2596 that have no names, so we should do trampoline handling first. */
2597 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2598 && ecs->stop_func_name == NULL
2599 && ecs->sal.line == 0)
2600 {
2601 if (debug_infrun)
2602 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2603
2604 /* The inferior just stepped into, or returned to, an
2605 undebuggable function (where there is no debugging information
2606 and no line number corresponding to the address where the
2607 inferior stopped). Since we want to skip this kind of code,
2608 we keep going until the inferior returns from this
2609 function - unless the user has asked us not to (via
2610 set step-mode) or we no longer know how to get back
2611 to the call site. */
2612 if (step_stop_if_no_debug
2613 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2614 {
2615 /* If we have no line number and the step-stop-if-no-debug
2616 is set, we stop the step so that the user has a chance to
2617 switch in assembly mode. */
2618 stop_step = 1;
2619 print_stop_reason (END_STEPPING_RANGE, 0);
2620 stop_stepping (ecs);
2621 return;
2622 }
2623 else
2624 {
2625 /* Set a breakpoint at callee's return address (the address
2626 at which the caller will resume). */
2627 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2628 keep_going (ecs);
2629 return;
2630 }
2631 }
2632
2633 if (step_range_end == 1)
2634 {
2635 /* It is stepi or nexti. We always want to stop stepping after
2636 one instruction. */
2637 if (debug_infrun)
2638 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2639 stop_step = 1;
2640 print_stop_reason (END_STEPPING_RANGE, 0);
2641 stop_stepping (ecs);
2642 return;
2643 }
2644
2645 if (ecs->sal.line == 0)
2646 {
2647 /* We have no line number information. That means to stop
2648 stepping (does this always happen right after one instruction,
2649 when we do "s" in a function with no line numbers,
2650 or can this happen as a result of a return or longjmp?). */
2651 if (debug_infrun)
2652 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2653 stop_step = 1;
2654 print_stop_reason (END_STEPPING_RANGE, 0);
2655 stop_stepping (ecs);
2656 return;
2657 }
2658
2659 if ((stop_pc == ecs->sal.pc)
2660 && (ecs->current_line != ecs->sal.line
2661 || ecs->current_symtab != ecs->sal.symtab))
2662 {
2663 /* We are at the start of a different line. So stop. Note that
2664 we don't stop if we step into the middle of a different line.
2665 That is said to make things like for (;;) statements work
2666 better. */
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2669 stop_step = 1;
2670 print_stop_reason (END_STEPPING_RANGE, 0);
2671 stop_stepping (ecs);
2672 return;
2673 }
2674
2675 /* We aren't done stepping.
2676
2677 Optimize by setting the stepping range to the line.
2678 (We might not be in the original line, but if we entered a
2679 new line in mid-statement, we continue stepping. This makes
2680 things like for(;;) statements work better.) */
2681
2682 step_range_start = ecs->sal.pc;
2683 step_range_end = ecs->sal.end;
2684 step_frame_id = get_frame_id (get_current_frame ());
2685 ecs->current_line = ecs->sal.line;
2686 ecs->current_symtab = ecs->sal.symtab;
2687
2688 /* In the case where we just stepped out of a function into the
2689 middle of a line of the caller, continue stepping, but
2690 step_frame_id must be modified to current frame */
2691 #if 0
2692 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2693 generous. It will trigger on things like a step into a frameless
2694 stackless leaf function. I think the logic should instead look
2695 at the unwound frame ID has that should give a more robust
2696 indication of what happened. */
2697 if (step - ID == current - ID)
2698 still stepping in same function;
2699 else if (step - ID == unwind (current - ID))
2700 stepped into a function;
2701 else
2702 stepped out of a function;
2703 /* Of course this assumes that the frame ID unwind code is robust
2704 and we're willing to introduce frame unwind logic into this
2705 function. Fortunately, those days are nearly upon us. */
2706 #endif
2707 {
2708 struct frame_info *frame = get_current_frame ();
2709 struct frame_id current_frame = get_frame_id (frame);
2710 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2711 step_frame_id)))
2712 step_frame_id = current_frame;
2713 }
2714
2715 if (debug_infrun)
2716 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2717 keep_going (ecs);
2718 }
2719
2720 /* Are we in the middle of stepping? */
2721
2722 static int
2723 currently_stepping (struct execution_control_state *ecs)
2724 {
2725 return ((!ecs->handling_longjmp
2726 && ((step_range_end && step_resume_breakpoint == NULL)
2727 || stepping_over_breakpoint))
2728 || ecs->stepping_through_solib_after_catch
2729 || bpstat_should_step ());
2730 }
2731
2732 /* Subroutine call with source code we should not step over. Do step
2733 to the first line of code in it. */
2734
2735 static void
2736 step_into_function (struct execution_control_state *ecs)
2737 {
2738 struct symtab *s;
2739 struct symtab_and_line sr_sal;
2740
2741 s = find_pc_symtab (stop_pc);
2742 if (s && s->language != language_asm)
2743 ecs->stop_func_start = gdbarch_skip_prologue
2744 (current_gdbarch, ecs->stop_func_start);
2745
2746 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2747 /* Use the step_resume_break to step until the end of the prologue,
2748 even if that involves jumps (as it seems to on the vax under
2749 4.2). */
2750 /* If the prologue ends in the middle of a source line, continue to
2751 the end of that source line (if it is still within the function).
2752 Otherwise, just go to end of prologue. */
2753 if (ecs->sal.end
2754 && ecs->sal.pc != ecs->stop_func_start
2755 && ecs->sal.end < ecs->stop_func_end)
2756 ecs->stop_func_start = ecs->sal.end;
2757
2758 /* Architectures which require breakpoint adjustment might not be able
2759 to place a breakpoint at the computed address. If so, the test
2760 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2761 ecs->stop_func_start to an address at which a breakpoint may be
2762 legitimately placed.
2763
2764 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2765 made, GDB will enter an infinite loop when stepping through
2766 optimized code consisting of VLIW instructions which contain
2767 subinstructions corresponding to different source lines. On
2768 FR-V, it's not permitted to place a breakpoint on any but the
2769 first subinstruction of a VLIW instruction. When a breakpoint is
2770 set, GDB will adjust the breakpoint address to the beginning of
2771 the VLIW instruction. Thus, we need to make the corresponding
2772 adjustment here when computing the stop address. */
2773
2774 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2775 {
2776 ecs->stop_func_start
2777 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2778 ecs->stop_func_start);
2779 }
2780
2781 if (ecs->stop_func_start == stop_pc)
2782 {
2783 /* We are already there: stop now. */
2784 stop_step = 1;
2785 print_stop_reason (END_STEPPING_RANGE, 0);
2786 stop_stepping (ecs);
2787 return;
2788 }
2789 else
2790 {
2791 /* Put the step-breakpoint there and go until there. */
2792 init_sal (&sr_sal); /* initialize to zeroes */
2793 sr_sal.pc = ecs->stop_func_start;
2794 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2795
2796 /* Do not specify what the fp should be when we stop since on
2797 some machines the prologue is where the new fp value is
2798 established. */
2799 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2800
2801 /* And make sure stepping stops right away then. */
2802 step_range_end = step_range_start;
2803 }
2804 keep_going (ecs);
2805 }
2806
2807 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2808 This is used to both functions and to skip over code. */
2809
2810 static void
2811 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2812 struct frame_id sr_id)
2813 {
2814 /* There should never be more than one step-resume breakpoint per
2815 thread, so we should never be setting a new
2816 step_resume_breakpoint when one is already active. */
2817 gdb_assert (step_resume_breakpoint == NULL);
2818
2819 if (debug_infrun)
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: inserting step-resume breakpoint at 0x%s\n",
2822 paddr_nz (sr_sal.pc));
2823
2824 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2825 bp_step_resume);
2826 }
2827
2828 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2829 to skip a potential signal handler.
2830
2831 This is called with the interrupted function's frame. The signal
2832 handler, when it returns, will resume the interrupted function at
2833 RETURN_FRAME.pc. */
2834
2835 static void
2836 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2837 {
2838 struct symtab_and_line sr_sal;
2839
2840 gdb_assert (return_frame != NULL);
2841 init_sal (&sr_sal); /* initialize to zeros */
2842
2843 sr_sal.pc = gdbarch_addr_bits_remove
2844 (current_gdbarch, get_frame_pc (return_frame));
2845 sr_sal.section = find_pc_overlay (sr_sal.pc);
2846
2847 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2848 }
2849
2850 /* Similar to insert_step_resume_breakpoint_at_frame, except
2851 but a breakpoint at the previous frame's PC. This is used to
2852 skip a function after stepping into it (for "next" or if the called
2853 function has no debugging information).
2854
2855 The current function has almost always been reached by single
2856 stepping a call or return instruction. NEXT_FRAME belongs to the
2857 current function, and the breakpoint will be set at the caller's
2858 resume address.
2859
2860 This is a separate function rather than reusing
2861 insert_step_resume_breakpoint_at_frame in order to avoid
2862 get_prev_frame, which may stop prematurely (see the implementation
2863 of frame_unwind_id for an example). */
2864
2865 static void
2866 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2867 {
2868 struct symtab_and_line sr_sal;
2869
2870 /* We shouldn't have gotten here if we don't know where the call site
2871 is. */
2872 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2873
2874 init_sal (&sr_sal); /* initialize to zeros */
2875
2876 sr_sal.pc = gdbarch_addr_bits_remove
2877 (current_gdbarch, frame_pc_unwind (next_frame));
2878 sr_sal.section = find_pc_overlay (sr_sal.pc);
2879
2880 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2881 }
2882
2883 static void
2884 stop_stepping (struct execution_control_state *ecs)
2885 {
2886 if (debug_infrun)
2887 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2888
2889 /* Let callers know we don't want to wait for the inferior anymore. */
2890 ecs->wait_some_more = 0;
2891 }
2892
2893 /* This function handles various cases where we need to continue
2894 waiting for the inferior. */
2895 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2896
2897 static void
2898 keep_going (struct execution_control_state *ecs)
2899 {
2900 /* Save the pc before execution, to compare with pc after stop. */
2901 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2902
2903 /* If we did not do break;, it means we should keep running the
2904 inferior and not return to debugger. */
2905
2906 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2907 {
2908 /* We took a signal (which we are supposed to pass through to
2909 the inferior, else we'd have done a break above) and we
2910 haven't yet gotten our trap. Simply continue. */
2911 resume (currently_stepping (ecs), stop_signal);
2912 }
2913 else
2914 {
2915 /* Either the trap was not expected, but we are continuing
2916 anyway (the user asked that this signal be passed to the
2917 child)
2918 -- or --
2919 The signal was SIGTRAP, e.g. it was our signal, but we
2920 decided we should resume from it.
2921
2922 We're going to run this baby now!
2923
2924 Note that insert_breakpoints won't try to re-insert
2925 already inserted breakpoints. Therefore, we don't
2926 care if breakpoints were already inserted, or not. */
2927
2928 if (ecs->stepping_over_breakpoint)
2929 {
2930 remove_breakpoints ();
2931 }
2932 else
2933 {
2934 struct gdb_exception e;
2935 /* Stop stepping when inserting breakpoints
2936 has failed. */
2937 TRY_CATCH (e, RETURN_MASK_ERROR)
2938 {
2939 insert_breakpoints ();
2940 }
2941 if (e.reason < 0)
2942 {
2943 stop_stepping (ecs);
2944 return;
2945 }
2946 }
2947
2948 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2949
2950 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2951 specifies that such a signal should be delivered to the
2952 target program).
2953
2954 Typically, this would occure when a user is debugging a
2955 target monitor on a simulator: the target monitor sets a
2956 breakpoint; the simulator encounters this break-point and
2957 halts the simulation handing control to GDB; GDB, noteing
2958 that the break-point isn't valid, returns control back to the
2959 simulator; the simulator then delivers the hardware
2960 equivalent of a SIGNAL_TRAP to the program being debugged. */
2961
2962 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2963 stop_signal = TARGET_SIGNAL_0;
2964
2965
2966 resume (currently_stepping (ecs), stop_signal);
2967 }
2968
2969 prepare_to_wait (ecs);
2970 }
2971
2972 /* This function normally comes after a resume, before
2973 handle_inferior_event exits. It takes care of any last bits of
2974 housekeeping, and sets the all-important wait_some_more flag. */
2975
2976 static void
2977 prepare_to_wait (struct execution_control_state *ecs)
2978 {
2979 if (debug_infrun)
2980 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2981 if (ecs->infwait_state == infwait_normal_state)
2982 {
2983 overlay_cache_invalid = 1;
2984
2985 /* We have to invalidate the registers BEFORE calling
2986 target_wait because they can be loaded from the target while
2987 in target_wait. This makes remote debugging a bit more
2988 efficient for those targets that provide critical registers
2989 as part of their normal status mechanism. */
2990
2991 registers_changed ();
2992 ecs->waiton_ptid = pid_to_ptid (-1);
2993 ecs->wp = &(ecs->ws);
2994 }
2995 /* This is the old end of the while loop. Let everybody know we
2996 want to wait for the inferior some more and get called again
2997 soon. */
2998 ecs->wait_some_more = 1;
2999 }
3000
3001 /* Print why the inferior has stopped. We always print something when
3002 the inferior exits, or receives a signal. The rest of the cases are
3003 dealt with later on in normal_stop() and print_it_typical(). Ideally
3004 there should be a call to this function from handle_inferior_event()
3005 each time stop_stepping() is called.*/
3006 static void
3007 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3008 {
3009 switch (stop_reason)
3010 {
3011 case END_STEPPING_RANGE:
3012 /* We are done with a step/next/si/ni command. */
3013 /* For now print nothing. */
3014 /* Print a message only if not in the middle of doing a "step n"
3015 operation for n > 1 */
3016 if (!step_multi || !stop_step)
3017 if (ui_out_is_mi_like_p (uiout))
3018 ui_out_field_string
3019 (uiout, "reason",
3020 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3021 break;
3022 case SIGNAL_EXITED:
3023 /* The inferior was terminated by a signal. */
3024 annotate_signalled ();
3025 if (ui_out_is_mi_like_p (uiout))
3026 ui_out_field_string
3027 (uiout, "reason",
3028 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3029 ui_out_text (uiout, "\nProgram terminated with signal ");
3030 annotate_signal_name ();
3031 ui_out_field_string (uiout, "signal-name",
3032 target_signal_to_name (stop_info));
3033 annotate_signal_name_end ();
3034 ui_out_text (uiout, ", ");
3035 annotate_signal_string ();
3036 ui_out_field_string (uiout, "signal-meaning",
3037 target_signal_to_string (stop_info));
3038 annotate_signal_string_end ();
3039 ui_out_text (uiout, ".\n");
3040 ui_out_text (uiout, "The program no longer exists.\n");
3041 break;
3042 case EXITED:
3043 /* The inferior program is finished. */
3044 annotate_exited (stop_info);
3045 if (stop_info)
3046 {
3047 if (ui_out_is_mi_like_p (uiout))
3048 ui_out_field_string (uiout, "reason",
3049 async_reason_lookup (EXEC_ASYNC_EXITED));
3050 ui_out_text (uiout, "\nProgram exited with code ");
3051 ui_out_field_fmt (uiout, "exit-code", "0%o",
3052 (unsigned int) stop_info);
3053 ui_out_text (uiout, ".\n");
3054 }
3055 else
3056 {
3057 if (ui_out_is_mi_like_p (uiout))
3058 ui_out_field_string
3059 (uiout, "reason",
3060 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3061 ui_out_text (uiout, "\nProgram exited normally.\n");
3062 }
3063 /* Support the --return-child-result option. */
3064 return_child_result_value = stop_info;
3065 break;
3066 case SIGNAL_RECEIVED:
3067 /* Signal received. The signal table tells us to print about
3068 it. */
3069 annotate_signal ();
3070 ui_out_text (uiout, "\nProgram received signal ");
3071 annotate_signal_name ();
3072 if (ui_out_is_mi_like_p (uiout))
3073 ui_out_field_string
3074 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3075 ui_out_field_string (uiout, "signal-name",
3076 target_signal_to_name (stop_info));
3077 annotate_signal_name_end ();
3078 ui_out_text (uiout, ", ");
3079 annotate_signal_string ();
3080 ui_out_field_string (uiout, "signal-meaning",
3081 target_signal_to_string (stop_info));
3082 annotate_signal_string_end ();
3083 ui_out_text (uiout, ".\n");
3084 break;
3085 default:
3086 internal_error (__FILE__, __LINE__,
3087 _("print_stop_reason: unrecognized enum value"));
3088 break;
3089 }
3090 }
3091 \f
3092
3093 /* Here to return control to GDB when the inferior stops for real.
3094 Print appropriate messages, remove breakpoints, give terminal our modes.
3095
3096 STOP_PRINT_FRAME nonzero means print the executing frame
3097 (pc, function, args, file, line number and line text).
3098 BREAKPOINTS_FAILED nonzero means stop was due to error
3099 attempting to insert breakpoints. */
3100
3101 void
3102 normal_stop (void)
3103 {
3104 struct target_waitstatus last;
3105 ptid_t last_ptid;
3106
3107 get_last_target_status (&last_ptid, &last);
3108
3109 /* As with the notification of thread events, we want to delay
3110 notifying the user that we've switched thread context until
3111 the inferior actually stops.
3112
3113 There's no point in saying anything if the inferior has exited.
3114 Note that SIGNALLED here means "exited with a signal", not
3115 "received a signal". */
3116 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3117 && target_has_execution
3118 && last.kind != TARGET_WAITKIND_SIGNALLED
3119 && last.kind != TARGET_WAITKIND_EXITED)
3120 {
3121 target_terminal_ours_for_output ();
3122 printf_filtered (_("[Switching to %s]\n"),
3123 target_pid_to_str (inferior_ptid));
3124 previous_inferior_ptid = inferior_ptid;
3125 }
3126
3127 /* NOTE drow/2004-01-17: Is this still necessary? */
3128 /* Make sure that the current_frame's pc is correct. This
3129 is a correction for setting up the frame info before doing
3130 gdbarch_decr_pc_after_break */
3131 if (target_has_execution)
3132 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3133 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3134 frame code to check for this and sort out any resultant mess.
3135 gdbarch_decr_pc_after_break needs to just go away. */
3136 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3137
3138 if (target_has_execution)
3139 {
3140 if (remove_breakpoints ())
3141 {
3142 target_terminal_ours_for_output ();
3143 printf_filtered (_("\
3144 Cannot remove breakpoints because program is no longer writable.\n\
3145 It might be running in another process.\n\
3146 Further execution is probably impossible.\n"));
3147 }
3148 }
3149
3150 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3151 Delete any breakpoint that is to be deleted at the next stop. */
3152
3153 breakpoint_auto_delete (stop_bpstat);
3154
3155 /* If an auto-display called a function and that got a signal,
3156 delete that auto-display to avoid an infinite recursion. */
3157
3158 if (stopped_by_random_signal)
3159 disable_current_display ();
3160
3161 /* Don't print a message if in the middle of doing a "step n"
3162 operation for n > 1 */
3163 if (step_multi && stop_step)
3164 goto done;
3165
3166 target_terminal_ours ();
3167
3168 /* Set the current source location. This will also happen if we
3169 display the frame below, but the current SAL will be incorrect
3170 during a user hook-stop function. */
3171 if (target_has_stack && !stop_stack_dummy)
3172 set_current_sal_from_frame (get_current_frame (), 1);
3173
3174 /* Look up the hook_stop and run it (CLI internally handles problem
3175 of stop_command's pre-hook not existing). */
3176 if (stop_command)
3177 catch_errors (hook_stop_stub, stop_command,
3178 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3179
3180 if (!target_has_stack)
3181 {
3182
3183 goto done;
3184 }
3185
3186 /* Select innermost stack frame - i.e., current frame is frame 0,
3187 and current location is based on that.
3188 Don't do this on return from a stack dummy routine,
3189 or if the program has exited. */
3190
3191 if (!stop_stack_dummy)
3192 {
3193 select_frame (get_current_frame ());
3194
3195 /* Print current location without a level number, if
3196 we have changed functions or hit a breakpoint.
3197 Print source line if we have one.
3198 bpstat_print() contains the logic deciding in detail
3199 what to print, based on the event(s) that just occurred. */
3200
3201 if (stop_print_frame)
3202 {
3203 int bpstat_ret;
3204 int source_flag;
3205 int do_frame_printing = 1;
3206
3207 bpstat_ret = bpstat_print (stop_bpstat);
3208 switch (bpstat_ret)
3209 {
3210 case PRINT_UNKNOWN:
3211 /* If we had hit a shared library event breakpoint,
3212 bpstat_print would print out this message. If we hit
3213 an OS-level shared library event, do the same
3214 thing. */
3215 if (last.kind == TARGET_WAITKIND_LOADED)
3216 {
3217 printf_filtered (_("Stopped due to shared library event\n"));
3218 source_flag = SRC_LINE; /* something bogus */
3219 do_frame_printing = 0;
3220 break;
3221 }
3222
3223 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3224 (or should) carry around the function and does (or
3225 should) use that when doing a frame comparison. */
3226 if (stop_step
3227 && frame_id_eq (step_frame_id,
3228 get_frame_id (get_current_frame ()))
3229 && step_start_function == find_pc_function (stop_pc))
3230 source_flag = SRC_LINE; /* finished step, just print source line */
3231 else
3232 source_flag = SRC_AND_LOC; /* print location and source line */
3233 break;
3234 case PRINT_SRC_AND_LOC:
3235 source_flag = SRC_AND_LOC; /* print location and source line */
3236 break;
3237 case PRINT_SRC_ONLY:
3238 source_flag = SRC_LINE;
3239 break;
3240 case PRINT_NOTHING:
3241 source_flag = SRC_LINE; /* something bogus */
3242 do_frame_printing = 0;
3243 break;
3244 default:
3245 internal_error (__FILE__, __LINE__, _("Unknown value."));
3246 }
3247
3248 if (ui_out_is_mi_like_p (uiout))
3249 ui_out_field_int (uiout, "thread-id",
3250 pid_to_thread_id (inferior_ptid));
3251 /* The behavior of this routine with respect to the source
3252 flag is:
3253 SRC_LINE: Print only source line
3254 LOCATION: Print only location
3255 SRC_AND_LOC: Print location and source line */
3256 if (do_frame_printing)
3257 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3258
3259 /* Display the auto-display expressions. */
3260 do_displays ();
3261 }
3262 }
3263
3264 /* Save the function value return registers, if we care.
3265 We might be about to restore their previous contents. */
3266 if (proceed_to_finish)
3267 {
3268 /* This should not be necessary. */
3269 if (stop_registers)
3270 regcache_xfree (stop_registers);
3271
3272 /* NB: The copy goes through to the target picking up the value of
3273 all the registers. */
3274 stop_registers = regcache_dup (get_current_regcache ());
3275 }
3276
3277 if (stop_stack_dummy)
3278 {
3279 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3280 ends with a setting of the current frame, so we can use that
3281 next. */
3282 frame_pop (get_current_frame ());
3283 /* Set stop_pc to what it was before we called the function.
3284 Can't rely on restore_inferior_status because that only gets
3285 called if we don't stop in the called function. */
3286 stop_pc = read_pc ();
3287 select_frame (get_current_frame ());
3288 }
3289
3290 done:
3291 annotate_stopped ();
3292 observer_notify_normal_stop (stop_bpstat);
3293 }
3294
3295 static int
3296 hook_stop_stub (void *cmd)
3297 {
3298 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3299 return (0);
3300 }
3301 \f
3302 int
3303 signal_stop_state (int signo)
3304 {
3305 return signal_stop[signo];
3306 }
3307
3308 int
3309 signal_print_state (int signo)
3310 {
3311 return signal_print[signo];
3312 }
3313
3314 int
3315 signal_pass_state (int signo)
3316 {
3317 return signal_program[signo];
3318 }
3319
3320 int
3321 signal_stop_update (int signo, int state)
3322 {
3323 int ret = signal_stop[signo];
3324 signal_stop[signo] = state;
3325 return ret;
3326 }
3327
3328 int
3329 signal_print_update (int signo, int state)
3330 {
3331 int ret = signal_print[signo];
3332 signal_print[signo] = state;
3333 return ret;
3334 }
3335
3336 int
3337 signal_pass_update (int signo, int state)
3338 {
3339 int ret = signal_program[signo];
3340 signal_program[signo] = state;
3341 return ret;
3342 }
3343
3344 static void
3345 sig_print_header (void)
3346 {
3347 printf_filtered (_("\
3348 Signal Stop\tPrint\tPass to program\tDescription\n"));
3349 }
3350
3351 static void
3352 sig_print_info (enum target_signal oursig)
3353 {
3354 char *name = target_signal_to_name (oursig);
3355 int name_padding = 13 - strlen (name);
3356
3357 if (name_padding <= 0)
3358 name_padding = 0;
3359
3360 printf_filtered ("%s", name);
3361 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3362 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3363 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3364 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3365 printf_filtered ("%s\n", target_signal_to_string (oursig));
3366 }
3367
3368 /* Specify how various signals in the inferior should be handled. */
3369
3370 static void
3371 handle_command (char *args, int from_tty)
3372 {
3373 char **argv;
3374 int digits, wordlen;
3375 int sigfirst, signum, siglast;
3376 enum target_signal oursig;
3377 int allsigs;
3378 int nsigs;
3379 unsigned char *sigs;
3380 struct cleanup *old_chain;
3381
3382 if (args == NULL)
3383 {
3384 error_no_arg (_("signal to handle"));
3385 }
3386
3387 /* Allocate and zero an array of flags for which signals to handle. */
3388
3389 nsigs = (int) TARGET_SIGNAL_LAST;
3390 sigs = (unsigned char *) alloca (nsigs);
3391 memset (sigs, 0, nsigs);
3392
3393 /* Break the command line up into args. */
3394
3395 argv = buildargv (args);
3396 if (argv == NULL)
3397 {
3398 nomem (0);
3399 }
3400 old_chain = make_cleanup_freeargv (argv);
3401
3402 /* Walk through the args, looking for signal oursigs, signal names, and
3403 actions. Signal numbers and signal names may be interspersed with
3404 actions, with the actions being performed for all signals cumulatively
3405 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3406
3407 while (*argv != NULL)
3408 {
3409 wordlen = strlen (*argv);
3410 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3411 {;
3412 }
3413 allsigs = 0;
3414 sigfirst = siglast = -1;
3415
3416 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3417 {
3418 /* Apply action to all signals except those used by the
3419 debugger. Silently skip those. */
3420 allsigs = 1;
3421 sigfirst = 0;
3422 siglast = nsigs - 1;
3423 }
3424 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3425 {
3426 SET_SIGS (nsigs, sigs, signal_stop);
3427 SET_SIGS (nsigs, sigs, signal_print);
3428 }
3429 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3430 {
3431 UNSET_SIGS (nsigs, sigs, signal_program);
3432 }
3433 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3434 {
3435 SET_SIGS (nsigs, sigs, signal_print);
3436 }
3437 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3438 {
3439 SET_SIGS (nsigs, sigs, signal_program);
3440 }
3441 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3442 {
3443 UNSET_SIGS (nsigs, sigs, signal_stop);
3444 }
3445 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3446 {
3447 SET_SIGS (nsigs, sigs, signal_program);
3448 }
3449 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3450 {
3451 UNSET_SIGS (nsigs, sigs, signal_print);
3452 UNSET_SIGS (nsigs, sigs, signal_stop);
3453 }
3454 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3455 {
3456 UNSET_SIGS (nsigs, sigs, signal_program);
3457 }
3458 else if (digits > 0)
3459 {
3460 /* It is numeric. The numeric signal refers to our own
3461 internal signal numbering from target.h, not to host/target
3462 signal number. This is a feature; users really should be
3463 using symbolic names anyway, and the common ones like
3464 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3465
3466 sigfirst = siglast = (int)
3467 target_signal_from_command (atoi (*argv));
3468 if ((*argv)[digits] == '-')
3469 {
3470 siglast = (int)
3471 target_signal_from_command (atoi ((*argv) + digits + 1));
3472 }
3473 if (sigfirst > siglast)
3474 {
3475 /* Bet he didn't figure we'd think of this case... */
3476 signum = sigfirst;
3477 sigfirst = siglast;
3478 siglast = signum;
3479 }
3480 }
3481 else
3482 {
3483 oursig = target_signal_from_name (*argv);
3484 if (oursig != TARGET_SIGNAL_UNKNOWN)
3485 {
3486 sigfirst = siglast = (int) oursig;
3487 }
3488 else
3489 {
3490 /* Not a number and not a recognized flag word => complain. */
3491 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3492 }
3493 }
3494
3495 /* If any signal numbers or symbol names were found, set flags for
3496 which signals to apply actions to. */
3497
3498 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3499 {
3500 switch ((enum target_signal) signum)
3501 {
3502 case TARGET_SIGNAL_TRAP:
3503 case TARGET_SIGNAL_INT:
3504 if (!allsigs && !sigs[signum])
3505 {
3506 if (query ("%s is used by the debugger.\n\
3507 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3508 {
3509 sigs[signum] = 1;
3510 }
3511 else
3512 {
3513 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3514 gdb_flush (gdb_stdout);
3515 }
3516 }
3517 break;
3518 case TARGET_SIGNAL_0:
3519 case TARGET_SIGNAL_DEFAULT:
3520 case TARGET_SIGNAL_UNKNOWN:
3521 /* Make sure that "all" doesn't print these. */
3522 break;
3523 default:
3524 sigs[signum] = 1;
3525 break;
3526 }
3527 }
3528
3529 argv++;
3530 }
3531
3532 target_notice_signals (inferior_ptid);
3533
3534 if (from_tty)
3535 {
3536 /* Show the results. */
3537 sig_print_header ();
3538 for (signum = 0; signum < nsigs; signum++)
3539 {
3540 if (sigs[signum])
3541 {
3542 sig_print_info (signum);
3543 }
3544 }
3545 }
3546
3547 do_cleanups (old_chain);
3548 }
3549
3550 static void
3551 xdb_handle_command (char *args, int from_tty)
3552 {
3553 char **argv;
3554 struct cleanup *old_chain;
3555
3556 /* Break the command line up into args. */
3557
3558 argv = buildargv (args);
3559 if (argv == NULL)
3560 {
3561 nomem (0);
3562 }
3563 old_chain = make_cleanup_freeargv (argv);
3564 if (argv[1] != (char *) NULL)
3565 {
3566 char *argBuf;
3567 int bufLen;
3568
3569 bufLen = strlen (argv[0]) + 20;
3570 argBuf = (char *) xmalloc (bufLen);
3571 if (argBuf)
3572 {
3573 int validFlag = 1;
3574 enum target_signal oursig;
3575
3576 oursig = target_signal_from_name (argv[0]);
3577 memset (argBuf, 0, bufLen);
3578 if (strcmp (argv[1], "Q") == 0)
3579 sprintf (argBuf, "%s %s", argv[0], "noprint");
3580 else
3581 {
3582 if (strcmp (argv[1], "s") == 0)
3583 {
3584 if (!signal_stop[oursig])
3585 sprintf (argBuf, "%s %s", argv[0], "stop");
3586 else
3587 sprintf (argBuf, "%s %s", argv[0], "nostop");
3588 }
3589 else if (strcmp (argv[1], "i") == 0)
3590 {
3591 if (!signal_program[oursig])
3592 sprintf (argBuf, "%s %s", argv[0], "pass");
3593 else
3594 sprintf (argBuf, "%s %s", argv[0], "nopass");
3595 }
3596 else if (strcmp (argv[1], "r") == 0)
3597 {
3598 if (!signal_print[oursig])
3599 sprintf (argBuf, "%s %s", argv[0], "print");
3600 else
3601 sprintf (argBuf, "%s %s", argv[0], "noprint");
3602 }
3603 else
3604 validFlag = 0;
3605 }
3606 if (validFlag)
3607 handle_command (argBuf, from_tty);
3608 else
3609 printf_filtered (_("Invalid signal handling flag.\n"));
3610 if (argBuf)
3611 xfree (argBuf);
3612 }
3613 }
3614 do_cleanups (old_chain);
3615 }
3616
3617 /* Print current contents of the tables set by the handle command.
3618 It is possible we should just be printing signals actually used
3619 by the current target (but for things to work right when switching
3620 targets, all signals should be in the signal tables). */
3621
3622 static void
3623 signals_info (char *signum_exp, int from_tty)
3624 {
3625 enum target_signal oursig;
3626 sig_print_header ();
3627
3628 if (signum_exp)
3629 {
3630 /* First see if this is a symbol name. */
3631 oursig = target_signal_from_name (signum_exp);
3632 if (oursig == TARGET_SIGNAL_UNKNOWN)
3633 {
3634 /* No, try numeric. */
3635 oursig =
3636 target_signal_from_command (parse_and_eval_long (signum_exp));
3637 }
3638 sig_print_info (oursig);
3639 return;
3640 }
3641
3642 printf_filtered ("\n");
3643 /* These ugly casts brought to you by the native VAX compiler. */
3644 for (oursig = TARGET_SIGNAL_FIRST;
3645 (int) oursig < (int) TARGET_SIGNAL_LAST;
3646 oursig = (enum target_signal) ((int) oursig + 1))
3647 {
3648 QUIT;
3649
3650 if (oursig != TARGET_SIGNAL_UNKNOWN
3651 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3652 sig_print_info (oursig);
3653 }
3654
3655 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3656 }
3657 \f
3658 struct inferior_status
3659 {
3660 enum target_signal stop_signal;
3661 CORE_ADDR stop_pc;
3662 bpstat stop_bpstat;
3663 int stop_step;
3664 int stop_stack_dummy;
3665 int stopped_by_random_signal;
3666 int stepping_over_breakpoint;
3667 CORE_ADDR step_range_start;
3668 CORE_ADDR step_range_end;
3669 struct frame_id step_frame_id;
3670 enum step_over_calls_kind step_over_calls;
3671 CORE_ADDR step_resume_break_address;
3672 int stop_after_trap;
3673 int stop_soon;
3674
3675 /* These are here because if call_function_by_hand has written some
3676 registers and then decides to call error(), we better not have changed
3677 any registers. */
3678 struct regcache *registers;
3679
3680 /* A frame unique identifier. */
3681 struct frame_id selected_frame_id;
3682
3683 int breakpoint_proceeded;
3684 int restore_stack_info;
3685 int proceed_to_finish;
3686 };
3687
3688 void
3689 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3690 LONGEST val)
3691 {
3692 int size = register_size (current_gdbarch, regno);
3693 void *buf = alloca (size);
3694 store_signed_integer (buf, size, val);
3695 regcache_raw_write (inf_status->registers, regno, buf);
3696 }
3697
3698 /* Save all of the information associated with the inferior<==>gdb
3699 connection. INF_STATUS is a pointer to a "struct inferior_status"
3700 (defined in inferior.h). */
3701
3702 struct inferior_status *
3703 save_inferior_status (int restore_stack_info)
3704 {
3705 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3706
3707 inf_status->stop_signal = stop_signal;
3708 inf_status->stop_pc = stop_pc;
3709 inf_status->stop_step = stop_step;
3710 inf_status->stop_stack_dummy = stop_stack_dummy;
3711 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3712 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3713 inf_status->step_range_start = step_range_start;
3714 inf_status->step_range_end = step_range_end;
3715 inf_status->step_frame_id = step_frame_id;
3716 inf_status->step_over_calls = step_over_calls;
3717 inf_status->stop_after_trap = stop_after_trap;
3718 inf_status->stop_soon = stop_soon;
3719 /* Save original bpstat chain here; replace it with copy of chain.
3720 If caller's caller is walking the chain, they'll be happier if we
3721 hand them back the original chain when restore_inferior_status is
3722 called. */
3723 inf_status->stop_bpstat = stop_bpstat;
3724 stop_bpstat = bpstat_copy (stop_bpstat);
3725 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3726 inf_status->restore_stack_info = restore_stack_info;
3727 inf_status->proceed_to_finish = proceed_to_finish;
3728
3729 inf_status->registers = regcache_dup (get_current_regcache ());
3730
3731 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3732 return inf_status;
3733 }
3734
3735 static int
3736 restore_selected_frame (void *args)
3737 {
3738 struct frame_id *fid = (struct frame_id *) args;
3739 struct frame_info *frame;
3740
3741 frame = frame_find_by_id (*fid);
3742
3743 /* If inf_status->selected_frame_id is NULL, there was no previously
3744 selected frame. */
3745 if (frame == NULL)
3746 {
3747 warning (_("Unable to restore previously selected frame."));
3748 return 0;
3749 }
3750
3751 select_frame (frame);
3752
3753 return (1);
3754 }
3755
3756 void
3757 restore_inferior_status (struct inferior_status *inf_status)
3758 {
3759 stop_signal = inf_status->stop_signal;
3760 stop_pc = inf_status->stop_pc;
3761 stop_step = inf_status->stop_step;
3762 stop_stack_dummy = inf_status->stop_stack_dummy;
3763 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3764 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3765 step_range_start = inf_status->step_range_start;
3766 step_range_end = inf_status->step_range_end;
3767 step_frame_id = inf_status->step_frame_id;
3768 step_over_calls = inf_status->step_over_calls;
3769 stop_after_trap = inf_status->stop_after_trap;
3770 stop_soon = inf_status->stop_soon;
3771 bpstat_clear (&stop_bpstat);
3772 stop_bpstat = inf_status->stop_bpstat;
3773 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3774 proceed_to_finish = inf_status->proceed_to_finish;
3775
3776 /* The inferior can be gone if the user types "print exit(0)"
3777 (and perhaps other times). */
3778 if (target_has_execution)
3779 /* NB: The register write goes through to the target. */
3780 regcache_cpy (get_current_regcache (), inf_status->registers);
3781 regcache_xfree (inf_status->registers);
3782
3783 /* FIXME: If we are being called after stopping in a function which
3784 is called from gdb, we should not be trying to restore the
3785 selected frame; it just prints a spurious error message (The
3786 message is useful, however, in detecting bugs in gdb (like if gdb
3787 clobbers the stack)). In fact, should we be restoring the
3788 inferior status at all in that case? . */
3789
3790 if (target_has_stack && inf_status->restore_stack_info)
3791 {
3792 /* The point of catch_errors is that if the stack is clobbered,
3793 walking the stack might encounter a garbage pointer and
3794 error() trying to dereference it. */
3795 if (catch_errors
3796 (restore_selected_frame, &inf_status->selected_frame_id,
3797 "Unable to restore previously selected frame:\n",
3798 RETURN_MASK_ERROR) == 0)
3799 /* Error in restoring the selected frame. Select the innermost
3800 frame. */
3801 select_frame (get_current_frame ());
3802
3803 }
3804
3805 xfree (inf_status);
3806 }
3807
3808 static void
3809 do_restore_inferior_status_cleanup (void *sts)
3810 {
3811 restore_inferior_status (sts);
3812 }
3813
3814 struct cleanup *
3815 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3816 {
3817 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3818 }
3819
3820 void
3821 discard_inferior_status (struct inferior_status *inf_status)
3822 {
3823 /* See save_inferior_status for info on stop_bpstat. */
3824 bpstat_clear (&inf_status->stop_bpstat);
3825 regcache_xfree (inf_status->registers);
3826 xfree (inf_status);
3827 }
3828
3829 int
3830 inferior_has_forked (int pid, int *child_pid)
3831 {
3832 struct target_waitstatus last;
3833 ptid_t last_ptid;
3834
3835 get_last_target_status (&last_ptid, &last);
3836
3837 if (last.kind != TARGET_WAITKIND_FORKED)
3838 return 0;
3839
3840 if (ptid_get_pid (last_ptid) != pid)
3841 return 0;
3842
3843 *child_pid = last.value.related_pid;
3844 return 1;
3845 }
3846
3847 int
3848 inferior_has_vforked (int pid, int *child_pid)
3849 {
3850 struct target_waitstatus last;
3851 ptid_t last_ptid;
3852
3853 get_last_target_status (&last_ptid, &last);
3854
3855 if (last.kind != TARGET_WAITKIND_VFORKED)
3856 return 0;
3857
3858 if (ptid_get_pid (last_ptid) != pid)
3859 return 0;
3860
3861 *child_pid = last.value.related_pid;
3862 return 1;
3863 }
3864
3865 int
3866 inferior_has_execd (int pid, char **execd_pathname)
3867 {
3868 struct target_waitstatus last;
3869 ptid_t last_ptid;
3870
3871 get_last_target_status (&last_ptid, &last);
3872
3873 if (last.kind != TARGET_WAITKIND_EXECD)
3874 return 0;
3875
3876 if (ptid_get_pid (last_ptid) != pid)
3877 return 0;
3878
3879 *execd_pathname = xstrdup (last.value.execd_pathname);
3880 return 1;
3881 }
3882
3883 /* Oft used ptids */
3884 ptid_t null_ptid;
3885 ptid_t minus_one_ptid;
3886
3887 /* Create a ptid given the necessary PID, LWP, and TID components. */
3888
3889 ptid_t
3890 ptid_build (int pid, long lwp, long tid)
3891 {
3892 ptid_t ptid;
3893
3894 ptid.pid = pid;
3895 ptid.lwp = lwp;
3896 ptid.tid = tid;
3897 return ptid;
3898 }
3899
3900 /* Create a ptid from just a pid. */
3901
3902 ptid_t
3903 pid_to_ptid (int pid)
3904 {
3905 return ptid_build (pid, 0, 0);
3906 }
3907
3908 /* Fetch the pid (process id) component from a ptid. */
3909
3910 int
3911 ptid_get_pid (ptid_t ptid)
3912 {
3913 return ptid.pid;
3914 }
3915
3916 /* Fetch the lwp (lightweight process) component from a ptid. */
3917
3918 long
3919 ptid_get_lwp (ptid_t ptid)
3920 {
3921 return ptid.lwp;
3922 }
3923
3924 /* Fetch the tid (thread id) component from a ptid. */
3925
3926 long
3927 ptid_get_tid (ptid_t ptid)
3928 {
3929 return ptid.tid;
3930 }
3931
3932 /* ptid_equal() is used to test equality of two ptids. */
3933
3934 int
3935 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3936 {
3937 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3938 && ptid1.tid == ptid2.tid);
3939 }
3940
3941 /* restore_inferior_ptid() will be used by the cleanup machinery
3942 to restore the inferior_ptid value saved in a call to
3943 save_inferior_ptid(). */
3944
3945 static void
3946 restore_inferior_ptid (void *arg)
3947 {
3948 ptid_t *saved_ptid_ptr = arg;
3949 inferior_ptid = *saved_ptid_ptr;
3950 xfree (arg);
3951 }
3952
3953 /* Save the value of inferior_ptid so that it may be restored by a
3954 later call to do_cleanups(). Returns the struct cleanup pointer
3955 needed for later doing the cleanup. */
3956
3957 struct cleanup *
3958 save_inferior_ptid (void)
3959 {
3960 ptid_t *saved_ptid_ptr;
3961
3962 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3963 *saved_ptid_ptr = inferior_ptid;
3964 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3965 }
3966 \f
3967
3968 void
3969 _initialize_infrun (void)
3970 {
3971 int i;
3972 int numsigs;
3973 struct cmd_list_element *c;
3974
3975 add_info ("signals", signals_info, _("\
3976 What debugger does when program gets various signals.\n\
3977 Specify a signal as argument to print info on that signal only."));
3978 add_info_alias ("handle", "signals", 0);
3979
3980 add_com ("handle", class_run, handle_command, _("\
3981 Specify how to handle a signal.\n\
3982 Args are signals and actions to apply to those signals.\n\
3983 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3984 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3985 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3986 The special arg \"all\" is recognized to mean all signals except those\n\
3987 used by the debugger, typically SIGTRAP and SIGINT.\n\
3988 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3989 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3990 Stop means reenter debugger if this signal happens (implies print).\n\
3991 Print means print a message if this signal happens.\n\
3992 Pass means let program see this signal; otherwise program doesn't know.\n\
3993 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3994 Pass and Stop may be combined."));
3995 if (xdb_commands)
3996 {
3997 add_com ("lz", class_info, signals_info, _("\
3998 What debugger does when program gets various signals.\n\
3999 Specify a signal as argument to print info on that signal only."));
4000 add_com ("z", class_run, xdb_handle_command, _("\
4001 Specify how to handle a signal.\n\
4002 Args are signals and actions to apply to those signals.\n\
4003 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4004 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4005 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4006 The special arg \"all\" is recognized to mean all signals except those\n\
4007 used by the debugger, typically SIGTRAP and SIGINT.\n\
4008 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4009 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4010 nopass), \"Q\" (noprint)\n\
4011 Stop means reenter debugger if this signal happens (implies print).\n\
4012 Print means print a message if this signal happens.\n\
4013 Pass means let program see this signal; otherwise program doesn't know.\n\
4014 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4015 Pass and Stop may be combined."));
4016 }
4017
4018 if (!dbx_commands)
4019 stop_command = add_cmd ("stop", class_obscure,
4020 not_just_help_class_command, _("\
4021 There is no `stop' command, but you can set a hook on `stop'.\n\
4022 This allows you to set a list of commands to be run each time execution\n\
4023 of the program stops."), &cmdlist);
4024
4025 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4026 Set inferior debugging."), _("\
4027 Show inferior debugging."), _("\
4028 When non-zero, inferior specific debugging is enabled."),
4029 NULL,
4030 show_debug_infrun,
4031 &setdebuglist, &showdebuglist);
4032
4033 numsigs = (int) TARGET_SIGNAL_LAST;
4034 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4035 signal_print = (unsigned char *)
4036 xmalloc (sizeof (signal_print[0]) * numsigs);
4037 signal_program = (unsigned char *)
4038 xmalloc (sizeof (signal_program[0]) * numsigs);
4039 for (i = 0; i < numsigs; i++)
4040 {
4041 signal_stop[i] = 1;
4042 signal_print[i] = 1;
4043 signal_program[i] = 1;
4044 }
4045
4046 /* Signals caused by debugger's own actions
4047 should not be given to the program afterwards. */
4048 signal_program[TARGET_SIGNAL_TRAP] = 0;
4049 signal_program[TARGET_SIGNAL_INT] = 0;
4050
4051 /* Signals that are not errors should not normally enter the debugger. */
4052 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4053 signal_print[TARGET_SIGNAL_ALRM] = 0;
4054 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4055 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4056 signal_stop[TARGET_SIGNAL_PROF] = 0;
4057 signal_print[TARGET_SIGNAL_PROF] = 0;
4058 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4059 signal_print[TARGET_SIGNAL_CHLD] = 0;
4060 signal_stop[TARGET_SIGNAL_IO] = 0;
4061 signal_print[TARGET_SIGNAL_IO] = 0;
4062 signal_stop[TARGET_SIGNAL_POLL] = 0;
4063 signal_print[TARGET_SIGNAL_POLL] = 0;
4064 signal_stop[TARGET_SIGNAL_URG] = 0;
4065 signal_print[TARGET_SIGNAL_URG] = 0;
4066 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4067 signal_print[TARGET_SIGNAL_WINCH] = 0;
4068
4069 /* These signals are used internally by user-level thread
4070 implementations. (See signal(5) on Solaris.) Like the above
4071 signals, a healthy program receives and handles them as part of
4072 its normal operation. */
4073 signal_stop[TARGET_SIGNAL_LWP] = 0;
4074 signal_print[TARGET_SIGNAL_LWP] = 0;
4075 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4076 signal_print[TARGET_SIGNAL_WAITING] = 0;
4077 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4078 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4079
4080 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4081 &stop_on_solib_events, _("\
4082 Set stopping for shared library events."), _("\
4083 Show stopping for shared library events."), _("\
4084 If nonzero, gdb will give control to the user when the dynamic linker\n\
4085 notifies gdb of shared library events. The most common event of interest\n\
4086 to the user would be loading/unloading of a new library."),
4087 NULL,
4088 show_stop_on_solib_events,
4089 &setlist, &showlist);
4090
4091 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4092 follow_fork_mode_kind_names,
4093 &follow_fork_mode_string, _("\
4094 Set debugger response to a program call of fork or vfork."), _("\
4095 Show debugger response to a program call of fork or vfork."), _("\
4096 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4097 parent - the original process is debugged after a fork\n\
4098 child - the new process is debugged after a fork\n\
4099 The unfollowed process will continue to run.\n\
4100 By default, the debugger will follow the parent process."),
4101 NULL,
4102 show_follow_fork_mode_string,
4103 &setlist, &showlist);
4104
4105 add_setshow_enum_cmd ("scheduler-locking", class_run,
4106 scheduler_enums, &scheduler_mode, _("\
4107 Set mode for locking scheduler during execution."), _("\
4108 Show mode for locking scheduler during execution."), _("\
4109 off == no locking (threads may preempt at any time)\n\
4110 on == full locking (no thread except the current thread may run)\n\
4111 step == scheduler locked during every single-step operation.\n\
4112 In this mode, no other thread may run during a step command.\n\
4113 Other threads may run while stepping over a function call ('next')."),
4114 set_schedlock_func, /* traps on target vector */
4115 show_scheduler_mode,
4116 &setlist, &showlist);
4117
4118 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4119 Set mode of the step operation."), _("\
4120 Show mode of the step operation."), _("\
4121 When set, doing a step over a function without debug line information\n\
4122 will stop at the first instruction of that function. Otherwise, the\n\
4123 function is skipped and the step command stops at a different source line."),
4124 NULL,
4125 show_step_stop_if_no_debug,
4126 &setlist, &showlist);
4127
4128 /* ptid initializations */
4129 null_ptid = ptid_build (0, 0, 0);
4130 minus_one_ptid = ptid_build (-1, 0, 0);
4131 inferior_ptid = null_ptid;
4132 target_last_wait_ptid = minus_one_ptid;
4133 }
This page took 0.133838 seconds and 4 git commands to generate.