* som.c (log2): Rename to exact_log2. Adjust all callers.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168 #ifndef IGNORE_HELPER_CALL
169 #define IGNORE_HELPER_CALL(pc) 0
170 #endif
171
172 /* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178 #ifndef INSTRUCTION_NULLIFIED
179 #define INSTRUCTION_NULLIFIED 0
180 #endif
181
182 /* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
187 #ifndef SKIP_PERMANENT_BREAKPOINT
188 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189 static void
190 default_skip_permanent_breakpoint (void)
191 {
192 error ("\
193 The program is stopped at a permanent breakpoint, but GDB does not know\n\
194 how to step past a permanent breakpoint on this architecture. Try using\n\
195 a command like `return' or `jump' to continue execution.");
196 }
197 #endif
198
199
200 /* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203 #ifndef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 0
205 #else
206 #undef HAVE_STEPPABLE_WATCHPOINT
207 #define HAVE_STEPPABLE_WATCHPOINT 1
208 #endif
209
210 #ifndef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 0
212 #else
213 #undef CANNOT_STEP_HW_WATCHPOINTS
214 #define CANNOT_STEP_HW_WATCHPOINTS 1
215 #endif
216
217 /* Tables of how to react to signals; the user sets them. */
218
219 static unsigned char *signal_stop;
220 static unsigned char *signal_print;
221 static unsigned char *signal_program;
222
223 #define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231 #define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
239 /* Value to pass to target_resume() to cause all threads to resume */
240
241 #define RESUME_ALL (pid_to_ptid (-1))
242
243 /* Command list pointer for the "stop" placeholder. */
244
245 static struct cmd_list_element *stop_command;
246
247 /* Nonzero if breakpoints are now inserted in the inferior. */
248
249 static int breakpoints_inserted;
250
251 /* Function inferior was in as of last step command. */
252
253 static struct symbol *step_start_function;
254
255 /* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257 static int trap_expected;
258
259 #ifdef SOLIB_ADD
260 /* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262 static int stop_on_solib_events;
263 #endif
264
265 #ifdef HP_OS_BUG
266 /* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270 static int trap_expected_after_continue;
271 #endif
272
273 /* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276 int stop_after_trap;
277
278 /* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
283 enum stop_kind stop_soon;
284
285 /* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288 int proceed_to_finish;
289
290 /* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
295 struct regcache *stop_registers;
296
297 /* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299 static int breakpoints_failed;
300
301 /* Nonzero after stop if current stack frame should be printed. */
302
303 static int stop_print_frame;
304
305 static struct breakpoint *step_resume_breakpoint = NULL;
306
307 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313 static int number_of_threads_in_syscalls;
314
315 /* This is a cached copy of the pid/waitstatus of the last event
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
318 static ptid_t target_last_wait_ptid;
319 static struct target_waitstatus target_last_waitstatus;
320
321 /* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325 static struct
326 {
327 enum target_waitkind kind;
328 struct
329 {
330 int parent_pid;
331 int child_pid;
332 }
333 fork_event;
334 char *execd_pathname;
335 }
336 pending_follow;
337
338 static const char follow_fork_mode_child[] = "child";
339 static const char follow_fork_mode_parent[] = "parent";
340
341 static const char *follow_fork_mode_kind_names[] = {
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
345 };
346
347 static const char *follow_fork_mode_string = follow_fork_mode_parent;
348 \f
349
350 static int
351 follow_fork (void)
352 {
353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
354
355 return target_follow_fork (follow_child);
356 }
357
358 void
359 follow_inferior_reset_breakpoints (void)
360 {
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
382 }
383
384 /* EXECD_PATHNAME is assumed to be non-NULL. */
385
386 static void
387 follow_exec (int pid, char *execd_pathname)
388 {
389 int saved_pid = pid;
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
394
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
437 inferior_ptid = pid_to_ptid (saved_pid);
438 /* Because mourn_inferior resets inferior_ptid. */
439 push_target (tgt);
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
445 symbol_file_add_main (execd_pathname, 0);
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
450 #if defined(SOLIB_RESTART)
451 SOLIB_RESTART ();
452 #endif
453 #ifdef SOLIB_CREATE_INFERIOR_HOOK
454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
455 #endif
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
466 }
467
468 /* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471 static int singlestep_breakpoints_inserted_p = 0;
472
473 /* The thread we inserted single-step breakpoints for. */
474 static ptid_t singlestep_ptid;
475
476 /* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478 static ptid_t saved_singlestep_ptid;
479 static int stepping_past_singlestep_breakpoint;
480 \f
481
482 /* Things to clean up if we QUIT out of resume (). */
483 static void
484 resume_cleanups (void *ignore)
485 {
486 normal_stop ();
487 }
488
489 static const char schedlock_off[] = "off";
490 static const char schedlock_on[] = "on";
491 static const char schedlock_step[] = "step";
492 static const char *scheduler_mode = schedlock_off;
493 static const char *scheduler_enums[] = {
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498 };
499
500 static void
501 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
502 {
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
507 callbacks. Unfortunately, for ``show'' commands cloned from
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
515 error ("Target '%s' cannot support this command.", target_shortname);
516 }
517 }
518
519
520 /* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528 void
529 resume (int step, enum target_signal sig)
530 {
531 int should_resume = 1;
532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
533 QUIT;
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on) ||
611 (scheduler_mode == schedlock_step &&
612 (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 /* If there is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740 #ifndef STEP_SKIPS_DELAY
741 #define STEP_SKIPS_DELAY(pc) (0)
742 #define STEP_SKIPS_DELAY_P (0)
743 #endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
755 }
756
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
765 prepare_to_proceed checks the current thread against the thread
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
770
771 #ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781 #endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
839 if (!event_loop_p || !target_can_async_p ())
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
844 }
845 \f
846
847 /* Start remote-debugging of a machine over a serial link. */
848
849 void
850 start_remote (void)
851 {
852 init_thread_list ();
853 init_wait_for_inferior ();
854 stop_soon = STOP_QUIETLY;
855 trap_expected = 0;
856
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
859 indicate to wait_for_inferior that a target should timeout if
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
873 }
874
875 /* Initialize static vars when a new inferior begins. */
876
877 void
878 init_wait_for_inferior (void)
879 {
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
882
883 #ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885 #endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
899
900 stepping_past_singlestep_breakpoint = 0;
901 }
902 \f
903 /* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
907 enum infwait_states
908 {
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
913 };
914
915 /* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917 enum inferior_stop_reason
918 {
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931 };
932
933 /* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
937 struct execution_control_state
938 {
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int stepping_through_solib_after_catch;
954 bpstat stepping_through_solib_catchpoints;
955 int enable_hw_watchpoints_after_wait;
956 int stepping_through_sigtramp;
957 int new_thread_event;
958 struct target_waitstatus tmpstatus;
959 enum infwait_states infwait_state;
960 ptid_t waiton_ptid;
961 int wait_some_more;
962 };
963
964 void init_execution_control_state (struct execution_control_state *ecs);
965
966 void handle_inferior_event (struct execution_control_state *ecs);
967
968 static void step_into_function (struct execution_control_state *ecs);
969 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
970 struct execution_control_state *ecs);
971 static void stop_stepping (struct execution_control_state *ecs);
972 static void prepare_to_wait (struct execution_control_state *ecs);
973 static void keep_going (struct execution_control_state *ecs);
974 static void print_stop_reason (enum inferior_stop_reason stop_reason,
975 int stop_info);
976
977 /* Wait for control to return from inferior to debugger.
978 If inferior gets a signal, we may decide to start it up again
979 instead of returning. That is why there is a loop in this function.
980 When this function actually returns it means the inferior
981 should be left stopped and GDB should read more commands. */
982
983 void
984 wait_for_inferior (void)
985 {
986 struct cleanup *old_cleanups;
987 struct execution_control_state ecss;
988 struct execution_control_state *ecs;
989
990 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
991 &step_resume_breakpoint);
992
993 /* wfi still stays in a loop, so it's OK just to take the address of
994 a local to get the ecs pointer. */
995 ecs = &ecss;
996
997 /* Fill in with reasonable starting values. */
998 init_execution_control_state (ecs);
999
1000 /* We'll update this if & when we switch to a new thread. */
1001 previous_inferior_ptid = inferior_ptid;
1002
1003 overlay_cache_invalid = 1;
1004
1005 /* We have to invalidate the registers BEFORE calling target_wait
1006 because they can be loaded from the target while in target_wait.
1007 This makes remote debugging a bit more efficient for those
1008 targets that provide critical registers as part of their normal
1009 status mechanism. */
1010
1011 registers_changed ();
1012
1013 while (1)
1014 {
1015 if (deprecated_target_wait_hook)
1016 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1017 else
1018 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1019
1020 /* Now figure out what to do with the result of the result. */
1021 handle_inferior_event (ecs);
1022
1023 if (!ecs->wait_some_more)
1024 break;
1025 }
1026 do_cleanups (old_cleanups);
1027 }
1028
1029 /* Asynchronous version of wait_for_inferior. It is called by the
1030 event loop whenever a change of state is detected on the file
1031 descriptor corresponding to the target. It can be called more than
1032 once to complete a single execution command. In such cases we need
1033 to keep the state in a global variable ASYNC_ECSS. If it is the
1034 last time that this function is called for a single execution
1035 command, then report to the user that the inferior has stopped, and
1036 do the necessary cleanups. */
1037
1038 struct execution_control_state async_ecss;
1039 struct execution_control_state *async_ecs;
1040
1041 void
1042 fetch_inferior_event (void *client_data)
1043 {
1044 static struct cleanup *old_cleanups;
1045
1046 async_ecs = &async_ecss;
1047
1048 if (!async_ecs->wait_some_more)
1049 {
1050 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1051 &step_resume_breakpoint);
1052
1053 /* Fill in with reasonable starting values. */
1054 init_execution_control_state (async_ecs);
1055
1056 /* We'll update this if & when we switch to a new thread. */
1057 previous_inferior_ptid = inferior_ptid;
1058
1059 overlay_cache_invalid = 1;
1060
1061 /* We have to invalidate the registers BEFORE calling target_wait
1062 because they can be loaded from the target while in target_wait.
1063 This makes remote debugging a bit more efficient for those
1064 targets that provide critical registers as part of their normal
1065 status mechanism. */
1066
1067 registers_changed ();
1068 }
1069
1070 if (deprecated_target_wait_hook)
1071 async_ecs->ptid =
1072 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1073 else
1074 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1075
1076 /* Now figure out what to do with the result of the result. */
1077 handle_inferior_event (async_ecs);
1078
1079 if (!async_ecs->wait_some_more)
1080 {
1081 /* Do only the cleanups that have been added by this
1082 function. Let the continuations for the commands do the rest,
1083 if there are any. */
1084 do_exec_cleanups (old_cleanups);
1085 normal_stop ();
1086 if (step_multi && stop_step)
1087 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1088 else
1089 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1090 }
1091 }
1092
1093 /* Prepare an execution control state for looping through a
1094 wait_for_inferior-type loop. */
1095
1096 void
1097 init_execution_control_state (struct execution_control_state *ecs)
1098 {
1099 /* ecs->another_trap? */
1100 ecs->random_signal = 0;
1101 ecs->remove_breakpoints_on_following_step = 0;
1102 ecs->handling_longjmp = 0; /* FIXME */
1103 ecs->stepping_through_solib_after_catch = 0;
1104 ecs->stepping_through_solib_catchpoints = NULL;
1105 ecs->enable_hw_watchpoints_after_wait = 0;
1106 ecs->stepping_through_sigtramp = 0;
1107 ecs->sal = find_pc_line (prev_pc, 0);
1108 ecs->current_line = ecs->sal.line;
1109 ecs->current_symtab = ecs->sal.symtab;
1110 ecs->infwait_state = infwait_normal_state;
1111 ecs->waiton_ptid = pid_to_ptid (-1);
1112 ecs->wp = &(ecs->ws);
1113 }
1114
1115 /* Call this function before setting step_resume_breakpoint, as a
1116 sanity check. There should never be more than one step-resume
1117 breakpoint per thread, so we should never be setting a new
1118 step_resume_breakpoint when one is already active. */
1119 static void
1120 check_for_old_step_resume_breakpoint (void)
1121 {
1122 if (step_resume_breakpoint)
1123 warning
1124 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1125 }
1126
1127 /* Return the cached copy of the last pid/waitstatus returned by
1128 target_wait()/deprecated_target_wait_hook(). The data is actually
1129 cached by handle_inferior_event(), which gets called immediately
1130 after target_wait()/deprecated_target_wait_hook(). */
1131
1132 void
1133 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1134 {
1135 *ptidp = target_last_wait_ptid;
1136 *status = target_last_waitstatus;
1137 }
1138
1139 /* Switch thread contexts, maintaining "infrun state". */
1140
1141 static void
1142 context_switch (struct execution_control_state *ecs)
1143 {
1144 /* Caution: it may happen that the new thread (or the old one!)
1145 is not in the thread list. In this case we must not attempt
1146 to "switch context", or we run the risk that our context may
1147 be lost. This may happen as a result of the target module
1148 mishandling thread creation. */
1149
1150 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1151 { /* Perform infrun state context switch: */
1152 /* Save infrun state for the old thread. */
1153 save_infrun_state (inferior_ptid, prev_pc,
1154 trap_expected, step_resume_breakpoint,
1155 step_range_start,
1156 step_range_end, &step_frame_id,
1157 ecs->handling_longjmp, ecs->another_trap,
1158 ecs->stepping_through_solib_after_catch,
1159 ecs->stepping_through_solib_catchpoints,
1160 ecs->stepping_through_sigtramp,
1161 ecs->current_line, ecs->current_symtab);
1162
1163 /* Load infrun state for the new thread. */
1164 load_infrun_state (ecs->ptid, &prev_pc,
1165 &trap_expected, &step_resume_breakpoint,
1166 &step_range_start,
1167 &step_range_end, &step_frame_id,
1168 &ecs->handling_longjmp, &ecs->another_trap,
1169 &ecs->stepping_through_solib_after_catch,
1170 &ecs->stepping_through_solib_catchpoints,
1171 &ecs->stepping_through_sigtramp,
1172 &ecs->current_line, &ecs->current_symtab);
1173 }
1174 inferior_ptid = ecs->ptid;
1175 }
1176
1177 static void
1178 adjust_pc_after_break (struct execution_control_state *ecs)
1179 {
1180 CORE_ADDR breakpoint_pc;
1181
1182 /* If this target does not decrement the PC after breakpoints, then
1183 we have nothing to do. */
1184 if (DECR_PC_AFTER_BREAK == 0)
1185 return;
1186
1187 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1188 we aren't, just return.
1189
1190 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1191 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1192 by software breakpoints should be handled through the normal breakpoint
1193 layer.
1194
1195 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1196 different signals (SIGILL or SIGEMT for instance), but it is less
1197 clear where the PC is pointing afterwards. It may not match
1198 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1199 these signals at breakpoints (the code has been in GDB since at least
1200 1992) so I can not guess how to handle them here.
1201
1202 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1203 would have the PC after hitting a watchpoint affected by
1204 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1205 in GDB history, and it seems unlikely to be correct, so
1206 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1207
1208 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1209 return;
1210
1211 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1212 return;
1213
1214 /* Find the location where (if we've hit a breakpoint) the
1215 breakpoint would be. */
1216 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1217
1218 if (SOFTWARE_SINGLE_STEP_P ())
1219 {
1220 /* When using software single-step, a SIGTRAP can only indicate
1221 an inserted breakpoint. This actually makes things
1222 easier. */
1223 if (singlestep_breakpoints_inserted_p)
1224 /* When software single stepping, the instruction at [prev_pc]
1225 is never a breakpoint, but the instruction following
1226 [prev_pc] (in program execution order) always is. Assume
1227 that following instruction was reached and hence a software
1228 breakpoint was hit. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1231 /* The inferior was free running (i.e., no single-step
1232 breakpoints inserted) and it hit a software breakpoint. */
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 else
1236 {
1237 /* When using hardware single-step, a SIGTRAP is reported for
1238 both a completed single-step and a software breakpoint. Need
1239 to differentiate between the two as the latter needs
1240 adjusting but the former does not. */
1241 if (currently_stepping (ecs))
1242 {
1243 if (prev_pc == breakpoint_pc
1244 && software_breakpoint_inserted_here_p (breakpoint_pc))
1245 /* Hardware single-stepped a software breakpoint (as
1246 occures when the inferior is resumed with PC pointing
1247 at not-yet-hit software breakpoint). Since the
1248 breakpoint really is executed, the inferior needs to be
1249 backed up to the breakpoint address. */
1250 write_pc_pid (breakpoint_pc, ecs->ptid);
1251 }
1252 else
1253 {
1254 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1255 /* The inferior was free running (i.e., no hardware
1256 single-step and no possibility of a false SIGTRAP) and
1257 hit a software breakpoint. */
1258 write_pc_pid (breakpoint_pc, ecs->ptid);
1259 }
1260 }
1261 }
1262
1263 /* Given an execution control state that has been freshly filled in
1264 by an event from the inferior, figure out what it means and take
1265 appropriate action. */
1266
1267 int stepped_after_stopped_by_watchpoint;
1268
1269 void
1270 handle_inferior_event (struct execution_control_state *ecs)
1271 {
1272 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1273 thinking that the variable stepped_after_stopped_by_watchpoint
1274 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1275 defined in the file "config/pa/nm-hppah.h", accesses the variable
1276 indirectly. Mutter something rude about the HP merge. */
1277 int sw_single_step_trap_p = 0;
1278 int stopped_by_watchpoint = 0;
1279
1280 /* Cache the last pid/waitstatus. */
1281 target_last_wait_ptid = ecs->ptid;
1282 target_last_waitstatus = *ecs->wp;
1283
1284 adjust_pc_after_break (ecs);
1285
1286 switch (ecs->infwait_state)
1287 {
1288 case infwait_thread_hop_state:
1289 /* Cancel the waiton_ptid. */
1290 ecs->waiton_ptid = pid_to_ptid (-1);
1291 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1292 is serviced in this loop, below. */
1293 if (ecs->enable_hw_watchpoints_after_wait)
1294 {
1295 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1296 ecs->enable_hw_watchpoints_after_wait = 0;
1297 }
1298 stepped_after_stopped_by_watchpoint = 0;
1299 break;
1300
1301 case infwait_normal_state:
1302 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1303 is serviced in this loop, below. */
1304 if (ecs->enable_hw_watchpoints_after_wait)
1305 {
1306 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1307 ecs->enable_hw_watchpoints_after_wait = 0;
1308 }
1309 stepped_after_stopped_by_watchpoint = 0;
1310 break;
1311
1312 case infwait_nullified_state:
1313 stepped_after_stopped_by_watchpoint = 0;
1314 break;
1315
1316 case infwait_nonstep_watch_state:
1317 insert_breakpoints ();
1318
1319 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1320 handle things like signals arriving and other things happening
1321 in combination correctly? */
1322 stepped_after_stopped_by_watchpoint = 1;
1323 break;
1324
1325 default:
1326 internal_error (__FILE__, __LINE__, "bad switch");
1327 }
1328 ecs->infwait_state = infwait_normal_state;
1329
1330 flush_cached_frames ();
1331
1332 /* If it's a new process, add it to the thread database */
1333
1334 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1335 && !in_thread_list (ecs->ptid));
1336
1337 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1338 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1339 {
1340 add_thread (ecs->ptid);
1341
1342 ui_out_text (uiout, "[New ");
1343 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1344 ui_out_text (uiout, "]\n");
1345
1346 #if 0
1347 /* NOTE: This block is ONLY meant to be invoked in case of a
1348 "thread creation event"! If it is invoked for any other
1349 sort of event (such as a new thread landing on a breakpoint),
1350 the event will be discarded, which is almost certainly
1351 a bad thing!
1352
1353 To avoid this, the low-level module (eg. target_wait)
1354 should call in_thread_list and add_thread, so that the
1355 new thread is known by the time we get here. */
1356
1357 /* We may want to consider not doing a resume here in order
1358 to give the user a chance to play with the new thread.
1359 It might be good to make that a user-settable option. */
1360
1361 /* At this point, all threads are stopped (happens
1362 automatically in either the OS or the native code).
1363 Therefore we need to continue all threads in order to
1364 make progress. */
1365
1366 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1367 prepare_to_wait (ecs);
1368 return;
1369 #endif
1370 }
1371
1372 switch (ecs->ws.kind)
1373 {
1374 case TARGET_WAITKIND_LOADED:
1375 /* Ignore gracefully during startup of the inferior, as it
1376 might be the shell which has just loaded some objects,
1377 otherwise add the symbols for the newly loaded objects. */
1378 #ifdef SOLIB_ADD
1379 if (stop_soon == NO_STOP_QUIETLY)
1380 {
1381 /* Remove breakpoints, SOLIB_ADD might adjust
1382 breakpoint addresses via breakpoint_re_set. */
1383 if (breakpoints_inserted)
1384 remove_breakpoints ();
1385
1386 /* Check for any newly added shared libraries if we're
1387 supposed to be adding them automatically. Switch
1388 terminal for any messages produced by
1389 breakpoint_re_set. */
1390 target_terminal_ours_for_output ();
1391 /* NOTE: cagney/2003-11-25: Make certain that the target
1392 stack's section table is kept up-to-date. Architectures,
1393 (e.g., PPC64), use the section table to perform
1394 operations such as address => section name and hence
1395 require the table to contain all sections (including
1396 those found in shared libraries). */
1397 /* NOTE: cagney/2003-11-25: Pass current_target and not
1398 exec_ops to SOLIB_ADD. This is because current GDB is
1399 only tooled to propagate section_table changes out from
1400 the "current_target" (see target_resize_to_sections), and
1401 not up from the exec stratum. This, of course, isn't
1402 right. "infrun.c" should only interact with the
1403 exec/process stratum, instead relying on the target stack
1404 to propagate relevant changes (stop, section table
1405 changed, ...) up to other layers. */
1406 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1407 target_terminal_inferior ();
1408
1409 /* Reinsert breakpoints and continue. */
1410 if (breakpoints_inserted)
1411 insert_breakpoints ();
1412 }
1413 #endif
1414 resume (0, TARGET_SIGNAL_0);
1415 prepare_to_wait (ecs);
1416 return;
1417
1418 case TARGET_WAITKIND_SPURIOUS:
1419 resume (0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
1422
1423 case TARGET_WAITKIND_EXITED:
1424 target_terminal_ours (); /* Must do this before mourn anyway */
1425 print_stop_reason (EXITED, ecs->ws.value.integer);
1426
1427 /* Record the exit code in the convenience variable $_exitcode, so
1428 that the user can inspect this again later. */
1429 set_internalvar (lookup_internalvar ("_exitcode"),
1430 value_from_longest (builtin_type_int,
1431 (LONGEST) ecs->ws.value.integer));
1432 gdb_flush (gdb_stdout);
1433 target_mourn_inferior ();
1434 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1435 stop_print_frame = 0;
1436 stop_stepping (ecs);
1437 return;
1438
1439 case TARGET_WAITKIND_SIGNALLED:
1440 stop_print_frame = 0;
1441 stop_signal = ecs->ws.value.sig;
1442 target_terminal_ours (); /* Must do this before mourn anyway */
1443
1444 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1445 reach here unless the inferior is dead. However, for years
1446 target_kill() was called here, which hints that fatal signals aren't
1447 really fatal on some systems. If that's true, then some changes
1448 may be needed. */
1449 target_mourn_inferior ();
1450
1451 print_stop_reason (SIGNAL_EXITED, stop_signal);
1452 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1453 stop_stepping (ecs);
1454 return;
1455
1456 /* The following are the only cases in which we keep going;
1457 the above cases end in a continue or goto. */
1458 case TARGET_WAITKIND_FORKED:
1459 case TARGET_WAITKIND_VFORKED:
1460 stop_signal = TARGET_SIGNAL_TRAP;
1461 pending_follow.kind = ecs->ws.kind;
1462
1463 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1464 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1465
1466 stop_pc = read_pc ();
1467
1468 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1469
1470 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1471
1472 /* If no catchpoint triggered for this, then keep going. */
1473 if (ecs->random_signal)
1474 {
1475 stop_signal = TARGET_SIGNAL_0;
1476 keep_going (ecs);
1477 return;
1478 }
1479 goto process_event_stop_test;
1480
1481 case TARGET_WAITKIND_EXECD:
1482 stop_signal = TARGET_SIGNAL_TRAP;
1483
1484 /* NOTE drow/2002-12-05: This code should be pushed down into the
1485 target_wait function. Until then following vfork on HP/UX 10.20
1486 is probably broken by this. Of course, it's broken anyway. */
1487 /* Is this a target which reports multiple exec events per actual
1488 call to exec()? (HP-UX using ptrace does, for example.) If so,
1489 ignore all but the last one. Just resume the exec'r, and wait
1490 for the next exec event. */
1491 if (inferior_ignoring_leading_exec_events)
1492 {
1493 inferior_ignoring_leading_exec_events--;
1494 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1495 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1496 parent_pid);
1497 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1498 prepare_to_wait (ecs);
1499 return;
1500 }
1501 inferior_ignoring_leading_exec_events =
1502 target_reported_exec_events_per_exec_call () - 1;
1503
1504 pending_follow.execd_pathname =
1505 savestring (ecs->ws.value.execd_pathname,
1506 strlen (ecs->ws.value.execd_pathname));
1507
1508 /* This causes the eventpoints and symbol table to be reset. Must
1509 do this now, before trying to determine whether to stop. */
1510 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1511 xfree (pending_follow.execd_pathname);
1512
1513 stop_pc = read_pc_pid (ecs->ptid);
1514 ecs->saved_inferior_ptid = inferior_ptid;
1515 inferior_ptid = ecs->ptid;
1516
1517 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1518
1519 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1520 inferior_ptid = ecs->saved_inferior_ptid;
1521
1522 /* If no catchpoint triggered for this, then keep going. */
1523 if (ecs->random_signal)
1524 {
1525 stop_signal = TARGET_SIGNAL_0;
1526 keep_going (ecs);
1527 return;
1528 }
1529 goto process_event_stop_test;
1530
1531 /* These syscall events are returned on HP-UX, as part of its
1532 implementation of page-protection-based "hardware" watchpoints.
1533 HP-UX has unfortunate interactions between page-protections and
1534 some system calls. Our solution is to disable hardware watches
1535 when a system call is entered, and reenable them when the syscall
1536 completes. The downside of this is that we may miss the precise
1537 point at which a watched piece of memory is modified. "Oh well."
1538
1539 Note that we may have multiple threads running, which may each
1540 enter syscalls at roughly the same time. Since we don't have a
1541 good notion currently of whether a watched piece of memory is
1542 thread-private, we'd best not have any page-protections active
1543 when any thread is in a syscall. Thus, we only want to reenable
1544 hardware watches when no threads are in a syscall.
1545
1546 Also, be careful not to try to gather much state about a thread
1547 that's in a syscall. It's frequently a losing proposition. */
1548 case TARGET_WAITKIND_SYSCALL_ENTRY:
1549 number_of_threads_in_syscalls++;
1550 if (number_of_threads_in_syscalls == 1)
1551 {
1552 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1553 }
1554 resume (0, TARGET_SIGNAL_0);
1555 prepare_to_wait (ecs);
1556 return;
1557
1558 /* Before examining the threads further, step this thread to
1559 get it entirely out of the syscall. (We get notice of the
1560 event when the thread is just on the verge of exiting a
1561 syscall. Stepping one instruction seems to get it back
1562 into user code.)
1563
1564 Note that although the logical place to reenable h/w watches
1565 is here, we cannot. We cannot reenable them before stepping
1566 the thread (this causes the next wait on the thread to hang).
1567
1568 Nor can we enable them after stepping until we've done a wait.
1569 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1570 here, which will be serviced immediately after the target
1571 is waited on. */
1572 case TARGET_WAITKIND_SYSCALL_RETURN:
1573 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1574
1575 if (number_of_threads_in_syscalls > 0)
1576 {
1577 number_of_threads_in_syscalls--;
1578 ecs->enable_hw_watchpoints_after_wait =
1579 (number_of_threads_in_syscalls == 0);
1580 }
1581 prepare_to_wait (ecs);
1582 return;
1583
1584 case TARGET_WAITKIND_STOPPED:
1585 stop_signal = ecs->ws.value.sig;
1586 break;
1587
1588 /* We had an event in the inferior, but we are not interested
1589 in handling it at this level. The lower layers have already
1590 done what needs to be done, if anything.
1591
1592 One of the possible circumstances for this is when the
1593 inferior produces output for the console. The inferior has
1594 not stopped, and we are ignoring the event. Another possible
1595 circumstance is any event which the lower level knows will be
1596 reported multiple times without an intervening resume. */
1597 case TARGET_WAITKIND_IGNORE:
1598 prepare_to_wait (ecs);
1599 return;
1600 }
1601
1602 /* We may want to consider not doing a resume here in order to give
1603 the user a chance to play with the new thread. It might be good
1604 to make that a user-settable option. */
1605
1606 /* At this point, all threads are stopped (happens automatically in
1607 either the OS or the native code). Therefore we need to continue
1608 all threads in order to make progress. */
1609 if (ecs->new_thread_event)
1610 {
1611 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1612 prepare_to_wait (ecs);
1613 return;
1614 }
1615
1616 stop_pc = read_pc_pid (ecs->ptid);
1617
1618 if (stepping_past_singlestep_breakpoint)
1619 {
1620 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1621 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1622 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1623
1624 stepping_past_singlestep_breakpoint = 0;
1625
1626 /* We've either finished single-stepping past the single-step
1627 breakpoint, or stopped for some other reason. It would be nice if
1628 we could tell, but we can't reliably. */
1629 if (stop_signal == TARGET_SIGNAL_TRAP)
1630 {
1631 /* Pull the single step breakpoints out of the target. */
1632 SOFTWARE_SINGLE_STEP (0, 0);
1633 singlestep_breakpoints_inserted_p = 0;
1634
1635 ecs->random_signal = 0;
1636
1637 ecs->ptid = saved_singlestep_ptid;
1638 context_switch (ecs);
1639 if (deprecated_context_hook)
1640 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1641
1642 resume (1, TARGET_SIGNAL_0);
1643 prepare_to_wait (ecs);
1644 return;
1645 }
1646 }
1647
1648 stepping_past_singlestep_breakpoint = 0;
1649
1650 /* See if a thread hit a thread-specific breakpoint that was meant for
1651 another thread. If so, then step that thread past the breakpoint,
1652 and continue it. */
1653
1654 if (stop_signal == TARGET_SIGNAL_TRAP)
1655 {
1656 int thread_hop_needed = 0;
1657
1658 /* Check if a regular breakpoint has been hit before checking
1659 for a potential single step breakpoint. Otherwise, GDB will
1660 not see this breakpoint hit when stepping onto breakpoints. */
1661 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1662 {
1663 ecs->random_signal = 0;
1664 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1665 thread_hop_needed = 1;
1666 }
1667 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1668 {
1669 ecs->random_signal = 0;
1670 /* The call to in_thread_list is necessary because PTIDs sometimes
1671 change when we go from single-threaded to multi-threaded. If
1672 the singlestep_ptid is still in the list, assume that it is
1673 really different from ecs->ptid. */
1674 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1675 && in_thread_list (singlestep_ptid))
1676 {
1677 thread_hop_needed = 1;
1678 stepping_past_singlestep_breakpoint = 1;
1679 saved_singlestep_ptid = singlestep_ptid;
1680 }
1681 }
1682
1683 if (thread_hop_needed)
1684 {
1685 int remove_status;
1686
1687 /* Saw a breakpoint, but it was hit by the wrong thread.
1688 Just continue. */
1689
1690 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1691 {
1692 /* Pull the single step breakpoints out of the target. */
1693 SOFTWARE_SINGLE_STEP (0, 0);
1694 singlestep_breakpoints_inserted_p = 0;
1695 }
1696
1697 remove_status = remove_breakpoints ();
1698 /* Did we fail to remove breakpoints? If so, try
1699 to set the PC past the bp. (There's at least
1700 one situation in which we can fail to remove
1701 the bp's: On HP-UX's that use ttrace, we can't
1702 change the address space of a vforking child
1703 process until the child exits (well, okay, not
1704 then either :-) or execs. */
1705 if (remove_status != 0)
1706 {
1707 /* FIXME! This is obviously non-portable! */
1708 write_pc_pid (stop_pc + 4, ecs->ptid);
1709 /* We need to restart all the threads now,
1710 * unles we're running in scheduler-locked mode.
1711 * Use currently_stepping to determine whether to
1712 * step or continue.
1713 */
1714 /* FIXME MVS: is there any reason not to call resume()? */
1715 if (scheduler_mode == schedlock_on)
1716 target_resume (ecs->ptid,
1717 currently_stepping (ecs), TARGET_SIGNAL_0);
1718 else
1719 target_resume (RESUME_ALL,
1720 currently_stepping (ecs), TARGET_SIGNAL_0);
1721 prepare_to_wait (ecs);
1722 return;
1723 }
1724 else
1725 { /* Single step */
1726 breakpoints_inserted = 0;
1727 if (!ptid_equal (inferior_ptid, ecs->ptid))
1728 context_switch (ecs);
1729 ecs->waiton_ptid = ecs->ptid;
1730 ecs->wp = &(ecs->ws);
1731 ecs->another_trap = 1;
1732
1733 ecs->infwait_state = infwait_thread_hop_state;
1734 keep_going (ecs);
1735 registers_changed ();
1736 return;
1737 }
1738 }
1739 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1740 {
1741 sw_single_step_trap_p = 1;
1742 ecs->random_signal = 0;
1743 }
1744 }
1745 else
1746 ecs->random_signal = 1;
1747
1748 /* See if something interesting happened to the non-current thread. If
1749 so, then switch to that thread. */
1750 if (!ptid_equal (ecs->ptid, inferior_ptid))
1751 {
1752 context_switch (ecs);
1753
1754 if (deprecated_context_hook)
1755 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1756
1757 flush_cached_frames ();
1758 }
1759
1760 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1761 {
1762 /* Pull the single step breakpoints out of the target. */
1763 SOFTWARE_SINGLE_STEP (0, 0);
1764 singlestep_breakpoints_inserted_p = 0;
1765 }
1766
1767 /* If PC is pointing at a nullified instruction, then step beyond
1768 it so that the user won't be confused when GDB appears to be ready
1769 to execute it. */
1770
1771 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1772 if (INSTRUCTION_NULLIFIED)
1773 {
1774 registers_changed ();
1775 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1776
1777 /* We may have received a signal that we want to pass to
1778 the inferior; therefore, we must not clobber the waitstatus
1779 in WS. */
1780
1781 ecs->infwait_state = infwait_nullified_state;
1782 ecs->waiton_ptid = ecs->ptid;
1783 ecs->wp = &(ecs->tmpstatus);
1784 prepare_to_wait (ecs);
1785 return;
1786 }
1787
1788 /* It may not be necessary to disable the watchpoint to stop over
1789 it. For example, the PA can (with some kernel cooperation)
1790 single step over a watchpoint without disabling the watchpoint. */
1791 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1792 {
1793 resume (1, 0);
1794 prepare_to_wait (ecs);
1795 return;
1796 }
1797
1798 /* It is far more common to need to disable a watchpoint to step
1799 the inferior over it. FIXME. What else might a debug
1800 register or page protection watchpoint scheme need here? */
1801 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1802 {
1803 /* At this point, we are stopped at an instruction which has
1804 attempted to write to a piece of memory under control of
1805 a watchpoint. The instruction hasn't actually executed
1806 yet. If we were to evaluate the watchpoint expression
1807 now, we would get the old value, and therefore no change
1808 would seem to have occurred.
1809
1810 In order to make watchpoints work `right', we really need
1811 to complete the memory write, and then evaluate the
1812 watchpoint expression. The following code does that by
1813 removing the watchpoint (actually, all watchpoints and
1814 breakpoints), single-stepping the target, re-inserting
1815 watchpoints, and then falling through to let normal
1816 single-step processing handle proceed. Since this
1817 includes evaluating watchpoints, things will come to a
1818 stop in the correct manner. */
1819
1820 remove_breakpoints ();
1821 registers_changed ();
1822 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1823
1824 ecs->waiton_ptid = ecs->ptid;
1825 ecs->wp = &(ecs->ws);
1826 ecs->infwait_state = infwait_nonstep_watch_state;
1827 prepare_to_wait (ecs);
1828 return;
1829 }
1830
1831 /* It may be possible to simply continue after a watchpoint. */
1832 if (HAVE_CONTINUABLE_WATCHPOINT)
1833 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1834
1835 ecs->stop_func_start = 0;
1836 ecs->stop_func_end = 0;
1837 ecs->stop_func_name = 0;
1838 /* Don't care about return value; stop_func_start and stop_func_name
1839 will both be 0 if it doesn't work. */
1840 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1841 &ecs->stop_func_start, &ecs->stop_func_end);
1842 ecs->stop_func_start += FUNCTION_START_OFFSET;
1843 ecs->another_trap = 0;
1844 bpstat_clear (&stop_bpstat);
1845 stop_step = 0;
1846 stop_stack_dummy = 0;
1847 stop_print_frame = 1;
1848 ecs->random_signal = 0;
1849 stopped_by_random_signal = 0;
1850 breakpoints_failed = 0;
1851
1852 /* Look at the cause of the stop, and decide what to do.
1853 The alternatives are:
1854 1) break; to really stop and return to the debugger,
1855 2) drop through to start up again
1856 (set ecs->another_trap to 1 to single step once)
1857 3) set ecs->random_signal to 1, and the decision between 1 and 2
1858 will be made according to the signal handling tables. */
1859
1860 /* First, distinguish signals caused by the debugger from signals
1861 that have to do with the program's own actions. Note that
1862 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1863 on the operating system version. Here we detect when a SIGILL or
1864 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1865 something similar for SIGSEGV, since a SIGSEGV will be generated
1866 when we're trying to execute a breakpoint instruction on a
1867 non-executable stack. This happens for call dummy breakpoints
1868 for architectures like SPARC that place call dummies on the
1869 stack. */
1870
1871 if (stop_signal == TARGET_SIGNAL_TRAP
1872 || (breakpoints_inserted &&
1873 (stop_signal == TARGET_SIGNAL_ILL
1874 || stop_signal == TARGET_SIGNAL_SEGV
1875 || stop_signal == TARGET_SIGNAL_EMT))
1876 || stop_soon == STOP_QUIETLY
1877 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1878 {
1879 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1880 {
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1883 return;
1884 }
1885
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
1888 if (stop_soon == STOP_QUIETLY)
1889 {
1890 stop_stepping (ecs);
1891 return;
1892 }
1893
1894 /* This originates from attach_command(). We need to overwrite
1895 the stop_signal here, because some kernels don't ignore a
1896 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1897 See more comments in inferior.h. */
1898 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1899 {
1900 stop_stepping (ecs);
1901 if (stop_signal == TARGET_SIGNAL_STOP)
1902 stop_signal = TARGET_SIGNAL_0;
1903 return;
1904 }
1905
1906 /* Don't even think about breakpoints if just proceeded over a
1907 breakpoint. */
1908 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1909 bpstat_clear (&stop_bpstat);
1910 else
1911 {
1912 /* See if there is a breakpoint at the current PC. */
1913 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1914 stopped_by_watchpoint);
1915
1916 /* Following in case break condition called a
1917 function. */
1918 stop_print_frame = 1;
1919 }
1920
1921 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1922 at one stage in the past included checks for an inferior
1923 function call's call dummy's return breakpoint. The original
1924 comment, that went with the test, read:
1925
1926 ``End of a stack dummy. Some systems (e.g. Sony news) give
1927 another signal besides SIGTRAP, so check here as well as
1928 above.''
1929
1930 If someone ever tries to get get call dummys on a
1931 non-executable stack to work (where the target would stop
1932 with something like a SIGSEGV), then those tests might need
1933 to be re-instated. Given, however, that the tests were only
1934 enabled when momentary breakpoints were not being used, I
1935 suspect that it won't be the case.
1936
1937 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1938 be necessary for call dummies on a non-executable stack on
1939 SPARC. */
1940
1941 if (stop_signal == TARGET_SIGNAL_TRAP)
1942 ecs->random_signal
1943 = !(bpstat_explains_signal (stop_bpstat)
1944 || trap_expected
1945 || (step_range_end && step_resume_breakpoint == NULL));
1946 else
1947 {
1948 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1949 if (!ecs->random_signal)
1950 stop_signal = TARGET_SIGNAL_TRAP;
1951 }
1952 }
1953
1954 /* When we reach this point, we've pretty much decided
1955 that the reason for stopping must've been a random
1956 (unexpected) signal. */
1957
1958 else
1959 ecs->random_signal = 1;
1960
1961 process_event_stop_test:
1962 /* For the program's own signals, act according to
1963 the signal handling tables. */
1964
1965 if (ecs->random_signal)
1966 {
1967 /* Signal not for debugging purposes. */
1968 int printed = 0;
1969
1970 stopped_by_random_signal = 1;
1971
1972 if (signal_print[stop_signal])
1973 {
1974 printed = 1;
1975 target_terminal_ours_for_output ();
1976 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1977 }
1978 if (signal_stop[stop_signal])
1979 {
1980 stop_stepping (ecs);
1981 return;
1982 }
1983 /* If not going to stop, give terminal back
1984 if we took it away. */
1985 else if (printed)
1986 target_terminal_inferior ();
1987
1988 /* Clear the signal if it should not be passed. */
1989 if (signal_program[stop_signal] == 0)
1990 stop_signal = TARGET_SIGNAL_0;
1991
1992 if (step_range_end != 0
1993 && stop_signal != TARGET_SIGNAL_0
1994 && stop_pc >= step_range_start && stop_pc < step_range_end
1995 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
1996 {
1997 /* The inferior is about to take a signal that will take it
1998 out of the single step range. Set a breakpoint at the
1999 current PC (which is presumably where the signal handler
2000 will eventually return) and then allow the inferior to
2001 run free.
2002
2003 Note that this is only needed for a signal delivered
2004 while in the single-step range. Nested signals aren't a
2005 problem as they eventually all return. */
2006 insert_step_resume_breakpoint (get_current_frame (), ecs);
2007 }
2008 keep_going (ecs);
2009 return;
2010 }
2011
2012 /* Handle cases caused by hitting a breakpoint. */
2013 {
2014 CORE_ADDR jmp_buf_pc;
2015 struct bpstat_what what;
2016
2017 what = bpstat_what (stop_bpstat);
2018
2019 if (what.call_dummy)
2020 {
2021 stop_stack_dummy = 1;
2022 #ifdef HP_OS_BUG
2023 trap_expected_after_continue = 1;
2024 #endif
2025 }
2026
2027 switch (what.main_action)
2028 {
2029 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2030 /* If we hit the breakpoint at longjmp, disable it for the
2031 duration of this command. Then, install a temporary
2032 breakpoint at the target of the jmp_buf. */
2033 disable_longjmp_breakpoint ();
2034 remove_breakpoints ();
2035 breakpoints_inserted = 0;
2036 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2037 {
2038 keep_going (ecs);
2039 return;
2040 }
2041
2042 /* Need to blow away step-resume breakpoint, as it
2043 interferes with us */
2044 if (step_resume_breakpoint != NULL)
2045 {
2046 delete_step_resume_breakpoint (&step_resume_breakpoint);
2047 }
2048
2049 #if 0
2050 /* FIXME - Need to implement nested temporary breakpoints */
2051 if (step_over_calls > 0)
2052 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2053 else
2054 #endif /* 0 */
2055 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2056 ecs->handling_longjmp = 1; /* FIXME */
2057 keep_going (ecs);
2058 return;
2059
2060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2061 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2062 remove_breakpoints ();
2063 breakpoints_inserted = 0;
2064 #if 0
2065 /* FIXME - Need to implement nested temporary breakpoints */
2066 if (step_over_calls
2067 && (frame_id_inner (get_frame_id (get_current_frame ()),
2068 step_frame_id)))
2069 {
2070 ecs->another_trap = 1;
2071 keep_going (ecs);
2072 return;
2073 }
2074 #endif /* 0 */
2075 disable_longjmp_breakpoint ();
2076 ecs->handling_longjmp = 0; /* FIXME */
2077 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2078 break;
2079 /* else fallthrough */
2080
2081 case BPSTAT_WHAT_SINGLE:
2082 if (breakpoints_inserted)
2083 {
2084 remove_breakpoints ();
2085 }
2086 breakpoints_inserted = 0;
2087 ecs->another_trap = 1;
2088 /* Still need to check other stuff, at least the case
2089 where we are stepping and step out of the right range. */
2090 break;
2091
2092 case BPSTAT_WHAT_STOP_NOISY:
2093 stop_print_frame = 1;
2094
2095 /* We are about to nuke the step_resume_breakpointt via the
2096 cleanup chain, so no need to worry about it here. */
2097
2098 stop_stepping (ecs);
2099 return;
2100
2101 case BPSTAT_WHAT_STOP_SILENT:
2102 stop_print_frame = 0;
2103
2104 /* We are about to nuke the step_resume_breakpoin via the
2105 cleanup chain, so no need to worry about it here. */
2106
2107 stop_stepping (ecs);
2108 return;
2109
2110 case BPSTAT_WHAT_STEP_RESUME:
2111 /* This proably demands a more elegant solution, but, yeah
2112 right...
2113
2114 This function's use of the simple variable
2115 step_resume_breakpoint doesn't seem to accomodate
2116 simultaneously active step-resume bp's, although the
2117 breakpoint list certainly can.
2118
2119 If we reach here and step_resume_breakpoint is already
2120 NULL, then apparently we have multiple active
2121 step-resume bp's. We'll just delete the breakpoint we
2122 stopped at, and carry on.
2123
2124 Correction: what the code currently does is delete a
2125 step-resume bp, but it makes no effort to ensure that
2126 the one deleted is the one currently stopped at. MVS */
2127
2128 if (step_resume_breakpoint == NULL)
2129 {
2130 step_resume_breakpoint =
2131 bpstat_find_step_resume_breakpoint (stop_bpstat);
2132 }
2133 delete_step_resume_breakpoint (&step_resume_breakpoint);
2134 break;
2135
2136 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2137 /* If were waiting for a trap, hitting the step_resume_break
2138 doesn't count as getting it. */
2139 if (trap_expected)
2140 ecs->another_trap = 1;
2141 break;
2142
2143 case BPSTAT_WHAT_CHECK_SHLIBS:
2144 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2145 #ifdef SOLIB_ADD
2146 {
2147 /* Remove breakpoints, we eventually want to step over the
2148 shlib event breakpoint, and SOLIB_ADD might adjust
2149 breakpoint addresses via breakpoint_re_set. */
2150 if (breakpoints_inserted)
2151 remove_breakpoints ();
2152 breakpoints_inserted = 0;
2153
2154 /* Check for any newly added shared libraries if we're
2155 supposed to be adding them automatically. Switch
2156 terminal for any messages produced by
2157 breakpoint_re_set. */
2158 target_terminal_ours_for_output ();
2159 /* NOTE: cagney/2003-11-25: Make certain that the target
2160 stack's section table is kept up-to-date. Architectures,
2161 (e.g., PPC64), use the section table to perform
2162 operations such as address => section name and hence
2163 require the table to contain all sections (including
2164 those found in shared libraries). */
2165 /* NOTE: cagney/2003-11-25: Pass current_target and not
2166 exec_ops to SOLIB_ADD. This is because current GDB is
2167 only tooled to propagate section_table changes out from
2168 the "current_target" (see target_resize_to_sections), and
2169 not up from the exec stratum. This, of course, isn't
2170 right. "infrun.c" should only interact with the
2171 exec/process stratum, instead relying on the target stack
2172 to propagate relevant changes (stop, section table
2173 changed, ...) up to other layers. */
2174 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2175 target_terminal_inferior ();
2176
2177 /* Try to reenable shared library breakpoints, additional
2178 code segments in shared libraries might be mapped in now. */
2179 re_enable_breakpoints_in_shlibs ();
2180
2181 /* If requested, stop when the dynamic linker notifies
2182 gdb of events. This allows the user to get control
2183 and place breakpoints in initializer routines for
2184 dynamically loaded objects (among other things). */
2185 if (stop_on_solib_events || stop_stack_dummy)
2186 {
2187 stop_stepping (ecs);
2188 return;
2189 }
2190
2191 /* If we stopped due to an explicit catchpoint, then the
2192 (see above) call to SOLIB_ADD pulled in any symbols
2193 from a newly-loaded library, if appropriate.
2194
2195 We do want the inferior to stop, but not where it is
2196 now, which is in the dynamic linker callback. Rather,
2197 we would like it stop in the user's program, just after
2198 the call that caused this catchpoint to trigger. That
2199 gives the user a more useful vantage from which to
2200 examine their program's state. */
2201 else if (what.main_action ==
2202 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2203 {
2204 /* ??rehrauer: If I could figure out how to get the
2205 right return PC from here, we could just set a temp
2206 breakpoint and resume. I'm not sure we can without
2207 cracking open the dld's shared libraries and sniffing
2208 their unwind tables and text/data ranges, and that's
2209 not a terribly portable notion.
2210
2211 Until that time, we must step the inferior out of the
2212 dld callback, and also out of the dld itself (and any
2213 code or stubs in libdld.sl, such as "shl_load" and
2214 friends) until we reach non-dld code. At that point,
2215 we can stop stepping. */
2216 bpstat_get_triggered_catchpoints (stop_bpstat,
2217 &ecs->
2218 stepping_through_solib_catchpoints);
2219 ecs->stepping_through_solib_after_catch = 1;
2220
2221 /* Be sure to lift all breakpoints, so the inferior does
2222 actually step past this point... */
2223 ecs->another_trap = 1;
2224 break;
2225 }
2226 else
2227 {
2228 /* We want to step over this breakpoint, then keep going. */
2229 ecs->another_trap = 1;
2230 break;
2231 }
2232 }
2233 #endif
2234 break;
2235
2236 case BPSTAT_WHAT_LAST:
2237 /* Not a real code, but listed here to shut up gcc -Wall. */
2238
2239 case BPSTAT_WHAT_KEEP_CHECKING:
2240 break;
2241 }
2242 }
2243
2244 /* We come here if we hit a breakpoint but should not
2245 stop for it. Possibly we also were stepping
2246 and should stop for that. So fall through and
2247 test for stepping. But, if not stepping,
2248 do not stop. */
2249
2250 /* Are we stepping to get the inferior out of the dynamic
2251 linker's hook (and possibly the dld itself) after catching
2252 a shlib event? */
2253 if (ecs->stepping_through_solib_after_catch)
2254 {
2255 #if defined(SOLIB_ADD)
2256 /* Have we reached our destination? If not, keep going. */
2257 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2258 {
2259 ecs->another_trap = 1;
2260 keep_going (ecs);
2261 return;
2262 }
2263 #endif
2264 /* Else, stop and report the catchpoint(s) whose triggering
2265 caused us to begin stepping. */
2266 ecs->stepping_through_solib_after_catch = 0;
2267 bpstat_clear (&stop_bpstat);
2268 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2269 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2270 stop_print_frame = 1;
2271 stop_stepping (ecs);
2272 return;
2273 }
2274
2275 if (step_resume_breakpoint)
2276 {
2277 /* Having a step-resume breakpoint overrides anything
2278 else having to do with stepping commands until
2279 that breakpoint is reached. */
2280 keep_going (ecs);
2281 return;
2282 }
2283
2284 if (step_range_end == 0)
2285 {
2286 /* Likewise if we aren't even stepping. */
2287 keep_going (ecs);
2288 return;
2289 }
2290
2291 /* If stepping through a line, keep going if still within it.
2292
2293 Note that step_range_end is the address of the first instruction
2294 beyond the step range, and NOT the address of the last instruction
2295 within it! */
2296 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2297 {
2298 keep_going (ecs);
2299 return;
2300 }
2301
2302 /* We stepped out of the stepping range. */
2303
2304 /* If we are stepping at the source level and entered the runtime
2305 loader dynamic symbol resolution code, we keep on single stepping
2306 until we exit the run time loader code and reach the callee's
2307 address. */
2308 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2309 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2310 {
2311 CORE_ADDR pc_after_resolver =
2312 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2313
2314 if (pc_after_resolver)
2315 {
2316 /* Set up a step-resume breakpoint at the address
2317 indicated by SKIP_SOLIB_RESOLVER. */
2318 struct symtab_and_line sr_sal;
2319 init_sal (&sr_sal);
2320 sr_sal.pc = pc_after_resolver;
2321
2322 check_for_old_step_resume_breakpoint ();
2323 step_resume_breakpoint =
2324 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2325 if (breakpoints_inserted)
2326 insert_breakpoints ();
2327 }
2328
2329 keep_going (ecs);
2330 return;
2331 }
2332
2333 if (step_range_end != 1
2334 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2335 || step_over_calls == STEP_OVER_ALL)
2336 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2337 {
2338 /* The inferior, while doing a "step" or "next", has ended up in
2339 a signal trampoline (either by a signal being delivered or by
2340 the signal handler returning). Just single-step until the
2341 inferior leaves the trampoline (either by calling the handler
2342 or returning). */
2343 keep_going (ecs);
2344 return;
2345 }
2346
2347 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2348 && ecs->stop_func_name == NULL)
2349 {
2350 /* The inferior just stepped into, or returned to, an
2351 undebuggable function (where there is no symbol, not even a
2352 minimal symbol, corresponding to the address where the
2353 inferior stopped). Since we want to skip this kind of code,
2354 we keep going until the inferior returns from this
2355 function. */
2356 /* NOTE: cagney/2004-05-12: This test is performed after the
2357 sigtramp test as often sigtramps, while recognized by GDB,
2358 have no symbol information. */
2359 CORE_ADDR real_stop_pc;
2360
2361 if ((step_over_calls == STEP_OVER_NONE)
2362 || ((step_range_end == 1)
2363 && in_prologue (prev_pc, ecs->stop_func_start)))
2364 {
2365 /* I presume that step_over_calls is only 0 when we're
2366 supposed to be stepping at the assembly language level
2367 ("stepi"). Just stop. */
2368 /* Also, maybe we just did a "nexti" inside a prolog, so we
2369 thought it was a subroutine call but it was not. Stop as
2370 well. FENN */
2371 stop_step = 1;
2372 print_stop_reason (END_STEPPING_RANGE, 0);
2373 stop_stepping (ecs);
2374 return;
2375 }
2376
2377 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2378 {
2379 /* We're doing a "next", set a breakpoint at callee's return
2380 address (the address at which the caller will
2381 resume). */
2382 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2383 ecs);
2384 keep_going (ecs);
2385 return;
2386 }
2387
2388 /* If we are in a function call trampoline (a stub between the
2389 calling routine and the real function), locate the real
2390 function. That's what tells us (a) whether we want to step
2391 into it at all, and (b) what prologue we want to run to the
2392 end of, if we do step into it. */
2393 real_stop_pc = skip_language_trampoline (stop_pc);
2394 if (real_stop_pc == 0)
2395 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2396 if (real_stop_pc != 0)
2397 ecs->stop_func_start = real_stop_pc;
2398
2399 /* If we have line number information for the function we are
2400 thinking of stepping into, step into it.
2401
2402 If there are several symtabs at that PC (e.g. with include
2403 files), just want to know whether *any* of them have line
2404 numbers. find_pc_line handles this. */
2405 {
2406 struct symtab_and_line tmp_sal;
2407
2408 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2409 if (tmp_sal.line != 0)
2410 {
2411 step_into_function (ecs);
2412 return;
2413 }
2414 }
2415
2416 /* If we have no line number and the step-stop-if-no-debug is
2417 set, we stop the step so that the user has a chance to switch
2418 in assembly mode. */
2419 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2420 {
2421 stop_step = 1;
2422 print_stop_reason (END_STEPPING_RANGE, 0);
2423 stop_stepping (ecs);
2424 return;
2425 }
2426
2427 /* Set a breakpoint at callee's return address (the address at
2428 which the caller will resume). */
2429 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
2430 keep_going (ecs);
2431 return;
2432 }
2433
2434 if (frame_id_eq (frame_unwind_id (get_current_frame ()),
2435 step_frame_id))
2436 {
2437 /* It's a subroutine call. */
2438 CORE_ADDR real_stop_pc;
2439
2440 if ((step_over_calls == STEP_OVER_NONE)
2441 || ((step_range_end == 1)
2442 && in_prologue (prev_pc, ecs->stop_func_start)))
2443 {
2444 /* I presume that step_over_calls is only 0 when we're
2445 supposed to be stepping at the assembly language level
2446 ("stepi"). Just stop. */
2447 /* Also, maybe we just did a "nexti" inside a prolog, so we
2448 thought it was a subroutine call but it was not. Stop as
2449 well. FENN */
2450 stop_step = 1;
2451 print_stop_reason (END_STEPPING_RANGE, 0);
2452 stop_stepping (ecs);
2453 return;
2454 }
2455
2456 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2457 {
2458 /* We're doing a "next", set a breakpoint at callee's return
2459 address (the address at which the caller will
2460 resume). */
2461 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2462 ecs);
2463 keep_going (ecs);
2464 return;
2465 }
2466
2467 /* If we are in a function call trampoline (a stub between the
2468 calling routine and the real function), locate the real
2469 function. That's what tells us (a) whether we want to step
2470 into it at all, and (b) what prologue we want to run to the
2471 end of, if we do step into it. */
2472 real_stop_pc = skip_language_trampoline (stop_pc);
2473 if (real_stop_pc == 0)
2474 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2475 if (real_stop_pc != 0)
2476 ecs->stop_func_start = real_stop_pc;
2477
2478 /* If we have line number information for the function we are
2479 thinking of stepping into, step into it.
2480
2481 If there are several symtabs at that PC (e.g. with include
2482 files), just want to know whether *any* of them have line
2483 numbers. find_pc_line handles this. */
2484 {
2485 struct symtab_and_line tmp_sal;
2486
2487 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2488 if (tmp_sal.line != 0)
2489 {
2490 step_into_function (ecs);
2491 return;
2492 }
2493 }
2494
2495 /* If we have no line number and the step-stop-if-no-debug is
2496 set, we stop the step so that the user has a chance to switch
2497 in assembly mode. */
2498 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2499 {
2500 stop_step = 1;
2501 print_stop_reason (END_STEPPING_RANGE, 0);
2502 stop_stepping (ecs);
2503 return;
2504 }
2505
2506 /* Set a breakpoint at callee's return address (the address at
2507 which the caller will resume). */
2508 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
2509 keep_going (ecs);
2510 return;
2511 }
2512
2513 /* We've wandered out of the step range. */
2514
2515 ecs->sal = find_pc_line (stop_pc, 0);
2516
2517 if (step_range_end == 1)
2518 {
2519 /* It is stepi or nexti. We always want to stop stepping after
2520 one instruction. */
2521 stop_step = 1;
2522 print_stop_reason (END_STEPPING_RANGE, 0);
2523 stop_stepping (ecs);
2524 return;
2525 }
2526
2527 /* If we're in the return path from a shared library trampoline,
2528 we want to proceed through the trampoline when stepping. */
2529 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2530 {
2531 /* Determine where this trampoline returns. */
2532 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2533
2534 /* Only proceed through if we know where it's going. */
2535 if (real_stop_pc)
2536 {
2537 /* And put the step-breakpoint there and go until there. */
2538 struct symtab_and_line sr_sal;
2539
2540 init_sal (&sr_sal); /* initialize to zeroes */
2541 sr_sal.pc = real_stop_pc;
2542 sr_sal.section = find_pc_overlay (sr_sal.pc);
2543 /* Do not specify what the fp should be when we stop
2544 since on some machines the prologue
2545 is where the new fp value is established. */
2546 check_for_old_step_resume_breakpoint ();
2547 step_resume_breakpoint =
2548 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2549 if (breakpoints_inserted)
2550 insert_breakpoints ();
2551
2552 /* Restart without fiddling with the step ranges or
2553 other state. */
2554 keep_going (ecs);
2555 return;
2556 }
2557 }
2558
2559 if (ecs->sal.line == 0)
2560 {
2561 /* We have no line number information. That means to stop
2562 stepping (does this always happen right after one instruction,
2563 when we do "s" in a function with no line numbers,
2564 or can this happen as a result of a return or longjmp?). */
2565 stop_step = 1;
2566 print_stop_reason (END_STEPPING_RANGE, 0);
2567 stop_stepping (ecs);
2568 return;
2569 }
2570
2571 if ((stop_pc == ecs->sal.pc)
2572 && (ecs->current_line != ecs->sal.line
2573 || ecs->current_symtab != ecs->sal.symtab))
2574 {
2575 /* We are at the start of a different line. So stop. Note that
2576 we don't stop if we step into the middle of a different line.
2577 That is said to make things like for (;;) statements work
2578 better. */
2579 stop_step = 1;
2580 print_stop_reason (END_STEPPING_RANGE, 0);
2581 stop_stepping (ecs);
2582 return;
2583 }
2584
2585 /* We aren't done stepping.
2586
2587 Optimize by setting the stepping range to the line.
2588 (We might not be in the original line, but if we entered a
2589 new line in mid-statement, we continue stepping. This makes
2590 things like for(;;) statements work better.) */
2591
2592 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2593 {
2594 /* If this is the last line of the function, don't keep stepping
2595 (it would probably step us out of the function).
2596 This is particularly necessary for a one-line function,
2597 in which after skipping the prologue we better stop even though
2598 we will be in mid-line. */
2599 stop_step = 1;
2600 print_stop_reason (END_STEPPING_RANGE, 0);
2601 stop_stepping (ecs);
2602 return;
2603 }
2604 step_range_start = ecs->sal.pc;
2605 step_range_end = ecs->sal.end;
2606 step_frame_id = get_frame_id (get_current_frame ());
2607 ecs->current_line = ecs->sal.line;
2608 ecs->current_symtab = ecs->sal.symtab;
2609
2610 /* In the case where we just stepped out of a function into the
2611 middle of a line of the caller, continue stepping, but
2612 step_frame_id must be modified to current frame */
2613 #if 0
2614 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2615 generous. It will trigger on things like a step into a frameless
2616 stackless leaf function. I think the logic should instead look
2617 at the unwound frame ID has that should give a more robust
2618 indication of what happened. */
2619 if (step-ID == current-ID)
2620 still stepping in same function;
2621 else if (step-ID == unwind (current-ID))
2622 stepped into a function;
2623 else
2624 stepped out of a function;
2625 /* Of course this assumes that the frame ID unwind code is robust
2626 and we're willing to introduce frame unwind logic into this
2627 function. Fortunately, those days are nearly upon us. */
2628 #endif
2629 {
2630 struct frame_id current_frame = get_frame_id (get_current_frame ());
2631 if (!(frame_id_inner (current_frame, step_frame_id)))
2632 step_frame_id = current_frame;
2633 }
2634
2635 keep_going (ecs);
2636 }
2637
2638 /* Are we in the middle of stepping? */
2639
2640 static int
2641 currently_stepping (struct execution_control_state *ecs)
2642 {
2643 return ((!ecs->handling_longjmp
2644 && ((step_range_end && step_resume_breakpoint == NULL)
2645 || trap_expected))
2646 || ecs->stepping_through_solib_after_catch
2647 || bpstat_should_step ());
2648 }
2649
2650 /* Subroutine call with source code we should not step over. Do step
2651 to the first line of code in it. */
2652
2653 static void
2654 step_into_function (struct execution_control_state *ecs)
2655 {
2656 struct symtab *s;
2657 struct symtab_and_line sr_sal;
2658
2659 s = find_pc_symtab (stop_pc);
2660 if (s && s->language != language_asm)
2661 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2662
2663 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2664 /* Use the step_resume_break to step until the end of the prologue,
2665 even if that involves jumps (as it seems to on the vax under
2666 4.2). */
2667 /* If the prologue ends in the middle of a source line, continue to
2668 the end of that source line (if it is still within the function).
2669 Otherwise, just go to end of prologue. */
2670 if (ecs->sal.end
2671 && ecs->sal.pc != ecs->stop_func_start
2672 && ecs->sal.end < ecs->stop_func_end)
2673 ecs->stop_func_start = ecs->sal.end;
2674
2675 /* Architectures which require breakpoint adjustment might not be able
2676 to place a breakpoint at the computed address. If so, the test
2677 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2678 ecs->stop_func_start to an address at which a breakpoint may be
2679 legitimately placed.
2680
2681 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2682 made, GDB will enter an infinite loop when stepping through
2683 optimized code consisting of VLIW instructions which contain
2684 subinstructions corresponding to different source lines. On
2685 FR-V, it's not permitted to place a breakpoint on any but the
2686 first subinstruction of a VLIW instruction. When a breakpoint is
2687 set, GDB will adjust the breakpoint address to the beginning of
2688 the VLIW instruction. Thus, we need to make the corresponding
2689 adjustment here when computing the stop address. */
2690
2691 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2692 {
2693 ecs->stop_func_start
2694 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2695 ecs->stop_func_start);
2696 }
2697
2698 if (ecs->stop_func_start == stop_pc)
2699 {
2700 /* We are already there: stop now. */
2701 stop_step = 1;
2702 print_stop_reason (END_STEPPING_RANGE, 0);
2703 stop_stepping (ecs);
2704 return;
2705 }
2706 else
2707 {
2708 /* Put the step-breakpoint there and go until there. */
2709 init_sal (&sr_sal); /* initialize to zeroes */
2710 sr_sal.pc = ecs->stop_func_start;
2711 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2712 /* Do not specify what the fp should be when we stop since on
2713 some machines the prologue is where the new fp value is
2714 established. */
2715 check_for_old_step_resume_breakpoint ();
2716 step_resume_breakpoint =
2717 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2718 if (breakpoints_inserted)
2719 insert_breakpoints ();
2720
2721 /* And make sure stepping stops right away then. */
2722 step_range_end = step_range_start;
2723 }
2724 keep_going (ecs);
2725 }
2726
2727 /* The inferior, as a result of a function call (has left) or signal
2728 (about to leave) the single-step range. Set a momentary breakpoint
2729 within the step range where the inferior is expected to later
2730 return. */
2731
2732 static void
2733 insert_step_resume_breakpoint (struct frame_info *step_frame,
2734 struct execution_control_state *ecs)
2735 {
2736 struct symtab_and_line sr_sal;
2737
2738 /* This is only used within the step-resume range/frame. */
2739 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2740 gdb_assert (step_range_end != 0);
2741 /* Remember, if the call instruction is the last in the step range,
2742 the breakpoint will land just beyond that. Hence ``<=
2743 step_range_end''. Also, ignore check when "nexti". */
2744 gdb_assert (step_range_start == step_range_end
2745 || (get_frame_pc (step_frame) >= step_range_start
2746 && get_frame_pc (step_frame) <= step_range_end));
2747
2748 init_sal (&sr_sal); /* initialize to zeros */
2749
2750 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2751 sr_sal.section = find_pc_overlay (sr_sal.pc);
2752
2753 check_for_old_step_resume_breakpoint ();
2754
2755 step_resume_breakpoint
2756 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2757 bp_step_resume);
2758
2759 if (breakpoints_inserted)
2760 insert_breakpoints ();
2761 }
2762
2763 static void
2764 stop_stepping (struct execution_control_state *ecs)
2765 {
2766 /* Let callers know we don't want to wait for the inferior anymore. */
2767 ecs->wait_some_more = 0;
2768 }
2769
2770 /* This function handles various cases where we need to continue
2771 waiting for the inferior. */
2772 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2773
2774 static void
2775 keep_going (struct execution_control_state *ecs)
2776 {
2777 /* Save the pc before execution, to compare with pc after stop. */
2778 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2779
2780 /* If we did not do break;, it means we should keep running the
2781 inferior and not return to debugger. */
2782
2783 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2784 {
2785 /* We took a signal (which we are supposed to pass through to
2786 the inferior, else we'd have done a break above) and we
2787 haven't yet gotten our trap. Simply continue. */
2788 resume (currently_stepping (ecs), stop_signal);
2789 }
2790 else
2791 {
2792 /* Either the trap was not expected, but we are continuing
2793 anyway (the user asked that this signal be passed to the
2794 child)
2795 -- or --
2796 The signal was SIGTRAP, e.g. it was our signal, but we
2797 decided we should resume from it.
2798
2799 We're going to run this baby now!
2800
2801 Insert breakpoints now, unless we are trying to one-proceed
2802 past a breakpoint. */
2803 /* If we've just finished a special step resume and we don't
2804 want to hit a breakpoint, pull em out. */
2805 if (step_resume_breakpoint == NULL
2806 && ecs->remove_breakpoints_on_following_step)
2807 {
2808 ecs->remove_breakpoints_on_following_step = 0;
2809 remove_breakpoints ();
2810 breakpoints_inserted = 0;
2811 }
2812 else if (!breakpoints_inserted && !ecs->another_trap)
2813 {
2814 breakpoints_failed = insert_breakpoints ();
2815 if (breakpoints_failed)
2816 {
2817 stop_stepping (ecs);
2818 return;
2819 }
2820 breakpoints_inserted = 1;
2821 }
2822
2823 trap_expected = ecs->another_trap;
2824
2825 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2826 specifies that such a signal should be delivered to the
2827 target program).
2828
2829 Typically, this would occure when a user is debugging a
2830 target monitor on a simulator: the target monitor sets a
2831 breakpoint; the simulator encounters this break-point and
2832 halts the simulation handing control to GDB; GDB, noteing
2833 that the break-point isn't valid, returns control back to the
2834 simulator; the simulator then delivers the hardware
2835 equivalent of a SIGNAL_TRAP to the program being debugged. */
2836
2837 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2838 stop_signal = TARGET_SIGNAL_0;
2839
2840
2841 resume (currently_stepping (ecs), stop_signal);
2842 }
2843
2844 prepare_to_wait (ecs);
2845 }
2846
2847 /* This function normally comes after a resume, before
2848 handle_inferior_event exits. It takes care of any last bits of
2849 housekeeping, and sets the all-important wait_some_more flag. */
2850
2851 static void
2852 prepare_to_wait (struct execution_control_state *ecs)
2853 {
2854 if (ecs->infwait_state == infwait_normal_state)
2855 {
2856 overlay_cache_invalid = 1;
2857
2858 /* We have to invalidate the registers BEFORE calling
2859 target_wait because they can be loaded from the target while
2860 in target_wait. This makes remote debugging a bit more
2861 efficient for those targets that provide critical registers
2862 as part of their normal status mechanism. */
2863
2864 registers_changed ();
2865 ecs->waiton_ptid = pid_to_ptid (-1);
2866 ecs->wp = &(ecs->ws);
2867 }
2868 /* This is the old end of the while loop. Let everybody know we
2869 want to wait for the inferior some more and get called again
2870 soon. */
2871 ecs->wait_some_more = 1;
2872 }
2873
2874 /* Print why the inferior has stopped. We always print something when
2875 the inferior exits, or receives a signal. The rest of the cases are
2876 dealt with later on in normal_stop() and print_it_typical(). Ideally
2877 there should be a call to this function from handle_inferior_event()
2878 each time stop_stepping() is called.*/
2879 static void
2880 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2881 {
2882 switch (stop_reason)
2883 {
2884 case STOP_UNKNOWN:
2885 /* We don't deal with these cases from handle_inferior_event()
2886 yet. */
2887 break;
2888 case END_STEPPING_RANGE:
2889 /* We are done with a step/next/si/ni command. */
2890 /* For now print nothing. */
2891 /* Print a message only if not in the middle of doing a "step n"
2892 operation for n > 1 */
2893 if (!step_multi || !stop_step)
2894 if (ui_out_is_mi_like_p (uiout))
2895 ui_out_field_string (uiout, "reason", "end-stepping-range");
2896 break;
2897 case BREAKPOINT_HIT:
2898 /* We found a breakpoint. */
2899 /* For now print nothing. */
2900 break;
2901 case SIGNAL_EXITED:
2902 /* The inferior was terminated by a signal. */
2903 annotate_signalled ();
2904 if (ui_out_is_mi_like_p (uiout))
2905 ui_out_field_string (uiout, "reason", "exited-signalled");
2906 ui_out_text (uiout, "\nProgram terminated with signal ");
2907 annotate_signal_name ();
2908 ui_out_field_string (uiout, "signal-name",
2909 target_signal_to_name (stop_info));
2910 annotate_signal_name_end ();
2911 ui_out_text (uiout, ", ");
2912 annotate_signal_string ();
2913 ui_out_field_string (uiout, "signal-meaning",
2914 target_signal_to_string (stop_info));
2915 annotate_signal_string_end ();
2916 ui_out_text (uiout, ".\n");
2917 ui_out_text (uiout, "The program no longer exists.\n");
2918 break;
2919 case EXITED:
2920 /* The inferior program is finished. */
2921 annotate_exited (stop_info);
2922 if (stop_info)
2923 {
2924 if (ui_out_is_mi_like_p (uiout))
2925 ui_out_field_string (uiout, "reason", "exited");
2926 ui_out_text (uiout, "\nProgram exited with code ");
2927 ui_out_field_fmt (uiout, "exit-code", "0%o",
2928 (unsigned int) stop_info);
2929 ui_out_text (uiout, ".\n");
2930 }
2931 else
2932 {
2933 if (ui_out_is_mi_like_p (uiout))
2934 ui_out_field_string (uiout, "reason", "exited-normally");
2935 ui_out_text (uiout, "\nProgram exited normally.\n");
2936 }
2937 break;
2938 case SIGNAL_RECEIVED:
2939 /* Signal received. The signal table tells us to print about
2940 it. */
2941 annotate_signal ();
2942 ui_out_text (uiout, "\nProgram received signal ");
2943 annotate_signal_name ();
2944 if (ui_out_is_mi_like_p (uiout))
2945 ui_out_field_string (uiout, "reason", "signal-received");
2946 ui_out_field_string (uiout, "signal-name",
2947 target_signal_to_name (stop_info));
2948 annotate_signal_name_end ();
2949 ui_out_text (uiout, ", ");
2950 annotate_signal_string ();
2951 ui_out_field_string (uiout, "signal-meaning",
2952 target_signal_to_string (stop_info));
2953 annotate_signal_string_end ();
2954 ui_out_text (uiout, ".\n");
2955 break;
2956 default:
2957 internal_error (__FILE__, __LINE__,
2958 "print_stop_reason: unrecognized enum value");
2959 break;
2960 }
2961 }
2962 \f
2963
2964 /* Here to return control to GDB when the inferior stops for real.
2965 Print appropriate messages, remove breakpoints, give terminal our modes.
2966
2967 STOP_PRINT_FRAME nonzero means print the executing frame
2968 (pc, function, args, file, line number and line text).
2969 BREAKPOINTS_FAILED nonzero means stop was due to error
2970 attempting to insert breakpoints. */
2971
2972 void
2973 normal_stop (void)
2974 {
2975 struct target_waitstatus last;
2976 ptid_t last_ptid;
2977
2978 get_last_target_status (&last_ptid, &last);
2979
2980 /* As with the notification of thread events, we want to delay
2981 notifying the user that we've switched thread context until
2982 the inferior actually stops.
2983
2984 There's no point in saying anything if the inferior has exited.
2985 Note that SIGNALLED here means "exited with a signal", not
2986 "received a signal". */
2987 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2988 && target_has_execution
2989 && last.kind != TARGET_WAITKIND_SIGNALLED
2990 && last.kind != TARGET_WAITKIND_EXITED)
2991 {
2992 target_terminal_ours_for_output ();
2993 printf_filtered ("[Switching to %s]\n",
2994 target_pid_or_tid_to_str (inferior_ptid));
2995 previous_inferior_ptid = inferior_ptid;
2996 }
2997
2998 /* NOTE drow/2004-01-17: Is this still necessary? */
2999 /* Make sure that the current_frame's pc is correct. This
3000 is a correction for setting up the frame info before doing
3001 DECR_PC_AFTER_BREAK */
3002 if (target_has_execution)
3003 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3004 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3005 frame code to check for this and sort out any resultant mess.
3006 DECR_PC_AFTER_BREAK needs to just go away. */
3007 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3008
3009 if (target_has_execution && breakpoints_inserted)
3010 {
3011 if (remove_breakpoints ())
3012 {
3013 target_terminal_ours_for_output ();
3014 printf_filtered ("Cannot remove breakpoints because ");
3015 printf_filtered ("program is no longer writable.\n");
3016 printf_filtered ("It might be running in another process.\n");
3017 printf_filtered ("Further execution is probably impossible.\n");
3018 }
3019 }
3020 breakpoints_inserted = 0;
3021
3022 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3023 Delete any breakpoint that is to be deleted at the next stop. */
3024
3025 breakpoint_auto_delete (stop_bpstat);
3026
3027 /* If an auto-display called a function and that got a signal,
3028 delete that auto-display to avoid an infinite recursion. */
3029
3030 if (stopped_by_random_signal)
3031 disable_current_display ();
3032
3033 /* Don't print a message if in the middle of doing a "step n"
3034 operation for n > 1 */
3035 if (step_multi && stop_step)
3036 goto done;
3037
3038 target_terminal_ours ();
3039
3040 /* Look up the hook_stop and run it (CLI internally handles problem
3041 of stop_command's pre-hook not existing). */
3042 if (stop_command)
3043 catch_errors (hook_stop_stub, stop_command,
3044 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3045
3046 if (!target_has_stack)
3047 {
3048
3049 goto done;
3050 }
3051
3052 /* Select innermost stack frame - i.e., current frame is frame 0,
3053 and current location is based on that.
3054 Don't do this on return from a stack dummy routine,
3055 or if the program has exited. */
3056
3057 if (!stop_stack_dummy)
3058 {
3059 select_frame (get_current_frame ());
3060
3061 /* Print current location without a level number, if
3062 we have changed functions or hit a breakpoint.
3063 Print source line if we have one.
3064 bpstat_print() contains the logic deciding in detail
3065 what to print, based on the event(s) that just occurred. */
3066
3067 if (stop_print_frame && deprecated_selected_frame)
3068 {
3069 int bpstat_ret;
3070 int source_flag;
3071 int do_frame_printing = 1;
3072
3073 bpstat_ret = bpstat_print (stop_bpstat);
3074 switch (bpstat_ret)
3075 {
3076 case PRINT_UNKNOWN:
3077 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3078 (or should) carry around the function and does (or
3079 should) use that when doing a frame comparison. */
3080 if (stop_step
3081 && frame_id_eq (step_frame_id,
3082 get_frame_id (get_current_frame ()))
3083 && step_start_function == find_pc_function (stop_pc))
3084 source_flag = SRC_LINE; /* finished step, just print source line */
3085 else
3086 source_flag = SRC_AND_LOC; /* print location and source line */
3087 break;
3088 case PRINT_SRC_AND_LOC:
3089 source_flag = SRC_AND_LOC; /* print location and source line */
3090 break;
3091 case PRINT_SRC_ONLY:
3092 source_flag = SRC_LINE;
3093 break;
3094 case PRINT_NOTHING:
3095 source_flag = SRC_LINE; /* something bogus */
3096 do_frame_printing = 0;
3097 break;
3098 default:
3099 internal_error (__FILE__, __LINE__, "Unknown value.");
3100 }
3101 /* For mi, have the same behavior every time we stop:
3102 print everything but the source line. */
3103 if (ui_out_is_mi_like_p (uiout))
3104 source_flag = LOC_AND_ADDRESS;
3105
3106 if (ui_out_is_mi_like_p (uiout))
3107 ui_out_field_int (uiout, "thread-id",
3108 pid_to_thread_id (inferior_ptid));
3109 /* The behavior of this routine with respect to the source
3110 flag is:
3111 SRC_LINE: Print only source line
3112 LOCATION: Print only location
3113 SRC_AND_LOC: Print location and source line */
3114 if (do_frame_printing)
3115 print_stack_frame (get_selected_frame (), 0, source_flag);
3116
3117 /* Display the auto-display expressions. */
3118 do_displays ();
3119 }
3120 }
3121
3122 /* Save the function value return registers, if we care.
3123 We might be about to restore their previous contents. */
3124 if (proceed_to_finish)
3125 /* NB: The copy goes through to the target picking up the value of
3126 all the registers. */
3127 regcache_cpy (stop_registers, current_regcache);
3128
3129 if (stop_stack_dummy)
3130 {
3131 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3132 ends with a setting of the current frame, so we can use that
3133 next. */
3134 frame_pop (get_current_frame ());
3135 /* Set stop_pc to what it was before we called the function.
3136 Can't rely on restore_inferior_status because that only gets
3137 called if we don't stop in the called function. */
3138 stop_pc = read_pc ();
3139 select_frame (get_current_frame ());
3140 }
3141
3142 done:
3143 annotate_stopped ();
3144 observer_notify_normal_stop (stop_bpstat);
3145 }
3146
3147 static int
3148 hook_stop_stub (void *cmd)
3149 {
3150 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3151 return (0);
3152 }
3153 \f
3154 int
3155 signal_stop_state (int signo)
3156 {
3157 return signal_stop[signo];
3158 }
3159
3160 int
3161 signal_print_state (int signo)
3162 {
3163 return signal_print[signo];
3164 }
3165
3166 int
3167 signal_pass_state (int signo)
3168 {
3169 return signal_program[signo];
3170 }
3171
3172 int
3173 signal_stop_update (int signo, int state)
3174 {
3175 int ret = signal_stop[signo];
3176 signal_stop[signo] = state;
3177 return ret;
3178 }
3179
3180 int
3181 signal_print_update (int signo, int state)
3182 {
3183 int ret = signal_print[signo];
3184 signal_print[signo] = state;
3185 return ret;
3186 }
3187
3188 int
3189 signal_pass_update (int signo, int state)
3190 {
3191 int ret = signal_program[signo];
3192 signal_program[signo] = state;
3193 return ret;
3194 }
3195
3196 static void
3197 sig_print_header (void)
3198 {
3199 printf_filtered ("\
3200 Signal Stop\tPrint\tPass to program\tDescription\n");
3201 }
3202
3203 static void
3204 sig_print_info (enum target_signal oursig)
3205 {
3206 char *name = target_signal_to_name (oursig);
3207 int name_padding = 13 - strlen (name);
3208
3209 if (name_padding <= 0)
3210 name_padding = 0;
3211
3212 printf_filtered ("%s", name);
3213 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3214 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3215 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3216 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3217 printf_filtered ("%s\n", target_signal_to_string (oursig));
3218 }
3219
3220 /* Specify how various signals in the inferior should be handled. */
3221
3222 static void
3223 handle_command (char *args, int from_tty)
3224 {
3225 char **argv;
3226 int digits, wordlen;
3227 int sigfirst, signum, siglast;
3228 enum target_signal oursig;
3229 int allsigs;
3230 int nsigs;
3231 unsigned char *sigs;
3232 struct cleanup *old_chain;
3233
3234 if (args == NULL)
3235 {
3236 error_no_arg ("signal to handle");
3237 }
3238
3239 /* Allocate and zero an array of flags for which signals to handle. */
3240
3241 nsigs = (int) TARGET_SIGNAL_LAST;
3242 sigs = (unsigned char *) alloca (nsigs);
3243 memset (sigs, 0, nsigs);
3244
3245 /* Break the command line up into args. */
3246
3247 argv = buildargv (args);
3248 if (argv == NULL)
3249 {
3250 nomem (0);
3251 }
3252 old_chain = make_cleanup_freeargv (argv);
3253
3254 /* Walk through the args, looking for signal oursigs, signal names, and
3255 actions. Signal numbers and signal names may be interspersed with
3256 actions, with the actions being performed for all signals cumulatively
3257 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3258
3259 while (*argv != NULL)
3260 {
3261 wordlen = strlen (*argv);
3262 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3263 {;
3264 }
3265 allsigs = 0;
3266 sigfirst = siglast = -1;
3267
3268 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3269 {
3270 /* Apply action to all signals except those used by the
3271 debugger. Silently skip those. */
3272 allsigs = 1;
3273 sigfirst = 0;
3274 siglast = nsigs - 1;
3275 }
3276 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3277 {
3278 SET_SIGS (nsigs, sigs, signal_stop);
3279 SET_SIGS (nsigs, sigs, signal_print);
3280 }
3281 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3282 {
3283 UNSET_SIGS (nsigs, sigs, signal_program);
3284 }
3285 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3286 {
3287 SET_SIGS (nsigs, sigs, signal_print);
3288 }
3289 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3290 {
3291 SET_SIGS (nsigs, sigs, signal_program);
3292 }
3293 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3294 {
3295 UNSET_SIGS (nsigs, sigs, signal_stop);
3296 }
3297 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3298 {
3299 SET_SIGS (nsigs, sigs, signal_program);
3300 }
3301 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3302 {
3303 UNSET_SIGS (nsigs, sigs, signal_print);
3304 UNSET_SIGS (nsigs, sigs, signal_stop);
3305 }
3306 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3307 {
3308 UNSET_SIGS (nsigs, sigs, signal_program);
3309 }
3310 else if (digits > 0)
3311 {
3312 /* It is numeric. The numeric signal refers to our own
3313 internal signal numbering from target.h, not to host/target
3314 signal number. This is a feature; users really should be
3315 using symbolic names anyway, and the common ones like
3316 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3317
3318 sigfirst = siglast = (int)
3319 target_signal_from_command (atoi (*argv));
3320 if ((*argv)[digits] == '-')
3321 {
3322 siglast = (int)
3323 target_signal_from_command (atoi ((*argv) + digits + 1));
3324 }
3325 if (sigfirst > siglast)
3326 {
3327 /* Bet he didn't figure we'd think of this case... */
3328 signum = sigfirst;
3329 sigfirst = siglast;
3330 siglast = signum;
3331 }
3332 }
3333 else
3334 {
3335 oursig = target_signal_from_name (*argv);
3336 if (oursig != TARGET_SIGNAL_UNKNOWN)
3337 {
3338 sigfirst = siglast = (int) oursig;
3339 }
3340 else
3341 {
3342 /* Not a number and not a recognized flag word => complain. */
3343 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3344 }
3345 }
3346
3347 /* If any signal numbers or symbol names were found, set flags for
3348 which signals to apply actions to. */
3349
3350 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3351 {
3352 switch ((enum target_signal) signum)
3353 {
3354 case TARGET_SIGNAL_TRAP:
3355 case TARGET_SIGNAL_INT:
3356 if (!allsigs && !sigs[signum])
3357 {
3358 if (query ("%s is used by the debugger.\n\
3359 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3360 {
3361 sigs[signum] = 1;
3362 }
3363 else
3364 {
3365 printf_unfiltered ("Not confirmed, unchanged.\n");
3366 gdb_flush (gdb_stdout);
3367 }
3368 }
3369 break;
3370 case TARGET_SIGNAL_0:
3371 case TARGET_SIGNAL_DEFAULT:
3372 case TARGET_SIGNAL_UNKNOWN:
3373 /* Make sure that "all" doesn't print these. */
3374 break;
3375 default:
3376 sigs[signum] = 1;
3377 break;
3378 }
3379 }
3380
3381 argv++;
3382 }
3383
3384 target_notice_signals (inferior_ptid);
3385
3386 if (from_tty)
3387 {
3388 /* Show the results. */
3389 sig_print_header ();
3390 for (signum = 0; signum < nsigs; signum++)
3391 {
3392 if (sigs[signum])
3393 {
3394 sig_print_info (signum);
3395 }
3396 }
3397 }
3398
3399 do_cleanups (old_chain);
3400 }
3401
3402 static void
3403 xdb_handle_command (char *args, int from_tty)
3404 {
3405 char **argv;
3406 struct cleanup *old_chain;
3407
3408 /* Break the command line up into args. */
3409
3410 argv = buildargv (args);
3411 if (argv == NULL)
3412 {
3413 nomem (0);
3414 }
3415 old_chain = make_cleanup_freeargv (argv);
3416 if (argv[1] != (char *) NULL)
3417 {
3418 char *argBuf;
3419 int bufLen;
3420
3421 bufLen = strlen (argv[0]) + 20;
3422 argBuf = (char *) xmalloc (bufLen);
3423 if (argBuf)
3424 {
3425 int validFlag = 1;
3426 enum target_signal oursig;
3427
3428 oursig = target_signal_from_name (argv[0]);
3429 memset (argBuf, 0, bufLen);
3430 if (strcmp (argv[1], "Q") == 0)
3431 sprintf (argBuf, "%s %s", argv[0], "noprint");
3432 else
3433 {
3434 if (strcmp (argv[1], "s") == 0)
3435 {
3436 if (!signal_stop[oursig])
3437 sprintf (argBuf, "%s %s", argv[0], "stop");
3438 else
3439 sprintf (argBuf, "%s %s", argv[0], "nostop");
3440 }
3441 else if (strcmp (argv[1], "i") == 0)
3442 {
3443 if (!signal_program[oursig])
3444 sprintf (argBuf, "%s %s", argv[0], "pass");
3445 else
3446 sprintf (argBuf, "%s %s", argv[0], "nopass");
3447 }
3448 else if (strcmp (argv[1], "r") == 0)
3449 {
3450 if (!signal_print[oursig])
3451 sprintf (argBuf, "%s %s", argv[0], "print");
3452 else
3453 sprintf (argBuf, "%s %s", argv[0], "noprint");
3454 }
3455 else
3456 validFlag = 0;
3457 }
3458 if (validFlag)
3459 handle_command (argBuf, from_tty);
3460 else
3461 printf_filtered ("Invalid signal handling flag.\n");
3462 if (argBuf)
3463 xfree (argBuf);
3464 }
3465 }
3466 do_cleanups (old_chain);
3467 }
3468
3469 /* Print current contents of the tables set by the handle command.
3470 It is possible we should just be printing signals actually used
3471 by the current target (but for things to work right when switching
3472 targets, all signals should be in the signal tables). */
3473
3474 static void
3475 signals_info (char *signum_exp, int from_tty)
3476 {
3477 enum target_signal oursig;
3478 sig_print_header ();
3479
3480 if (signum_exp)
3481 {
3482 /* First see if this is a symbol name. */
3483 oursig = target_signal_from_name (signum_exp);
3484 if (oursig == TARGET_SIGNAL_UNKNOWN)
3485 {
3486 /* No, try numeric. */
3487 oursig =
3488 target_signal_from_command (parse_and_eval_long (signum_exp));
3489 }
3490 sig_print_info (oursig);
3491 return;
3492 }
3493
3494 printf_filtered ("\n");
3495 /* These ugly casts brought to you by the native VAX compiler. */
3496 for (oursig = TARGET_SIGNAL_FIRST;
3497 (int) oursig < (int) TARGET_SIGNAL_LAST;
3498 oursig = (enum target_signal) ((int) oursig + 1))
3499 {
3500 QUIT;
3501
3502 if (oursig != TARGET_SIGNAL_UNKNOWN
3503 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3504 sig_print_info (oursig);
3505 }
3506
3507 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3508 }
3509 \f
3510 struct inferior_status
3511 {
3512 enum target_signal stop_signal;
3513 CORE_ADDR stop_pc;
3514 bpstat stop_bpstat;
3515 int stop_step;
3516 int stop_stack_dummy;
3517 int stopped_by_random_signal;
3518 int trap_expected;
3519 CORE_ADDR step_range_start;
3520 CORE_ADDR step_range_end;
3521 struct frame_id step_frame_id;
3522 enum step_over_calls_kind step_over_calls;
3523 CORE_ADDR step_resume_break_address;
3524 int stop_after_trap;
3525 int stop_soon;
3526 struct regcache *stop_registers;
3527
3528 /* These are here because if call_function_by_hand has written some
3529 registers and then decides to call error(), we better not have changed
3530 any registers. */
3531 struct regcache *registers;
3532
3533 /* A frame unique identifier. */
3534 struct frame_id selected_frame_id;
3535
3536 int breakpoint_proceeded;
3537 int restore_stack_info;
3538 int proceed_to_finish;
3539 };
3540
3541 void
3542 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3543 LONGEST val)
3544 {
3545 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
3546 void *buf = alloca (size);
3547 store_signed_integer (buf, size, val);
3548 regcache_raw_write (inf_status->registers, regno, buf);
3549 }
3550
3551 /* Save all of the information associated with the inferior<==>gdb
3552 connection. INF_STATUS is a pointer to a "struct inferior_status"
3553 (defined in inferior.h). */
3554
3555 struct inferior_status *
3556 save_inferior_status (int restore_stack_info)
3557 {
3558 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3559
3560 inf_status->stop_signal = stop_signal;
3561 inf_status->stop_pc = stop_pc;
3562 inf_status->stop_step = stop_step;
3563 inf_status->stop_stack_dummy = stop_stack_dummy;
3564 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3565 inf_status->trap_expected = trap_expected;
3566 inf_status->step_range_start = step_range_start;
3567 inf_status->step_range_end = step_range_end;
3568 inf_status->step_frame_id = step_frame_id;
3569 inf_status->step_over_calls = step_over_calls;
3570 inf_status->stop_after_trap = stop_after_trap;
3571 inf_status->stop_soon = stop_soon;
3572 /* Save original bpstat chain here; replace it with copy of chain.
3573 If caller's caller is walking the chain, they'll be happier if we
3574 hand them back the original chain when restore_inferior_status is
3575 called. */
3576 inf_status->stop_bpstat = stop_bpstat;
3577 stop_bpstat = bpstat_copy (stop_bpstat);
3578 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3579 inf_status->restore_stack_info = restore_stack_info;
3580 inf_status->proceed_to_finish = proceed_to_finish;
3581
3582 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3583
3584 inf_status->registers = regcache_dup (current_regcache);
3585
3586 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3587 return inf_status;
3588 }
3589
3590 static int
3591 restore_selected_frame (void *args)
3592 {
3593 struct frame_id *fid = (struct frame_id *) args;
3594 struct frame_info *frame;
3595
3596 frame = frame_find_by_id (*fid);
3597
3598 /* If inf_status->selected_frame_id is NULL, there was no previously
3599 selected frame. */
3600 if (frame == NULL)
3601 {
3602 warning ("Unable to restore previously selected frame.\n");
3603 return 0;
3604 }
3605
3606 select_frame (frame);
3607
3608 return (1);
3609 }
3610
3611 void
3612 restore_inferior_status (struct inferior_status *inf_status)
3613 {
3614 stop_signal = inf_status->stop_signal;
3615 stop_pc = inf_status->stop_pc;
3616 stop_step = inf_status->stop_step;
3617 stop_stack_dummy = inf_status->stop_stack_dummy;
3618 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3619 trap_expected = inf_status->trap_expected;
3620 step_range_start = inf_status->step_range_start;
3621 step_range_end = inf_status->step_range_end;
3622 step_frame_id = inf_status->step_frame_id;
3623 step_over_calls = inf_status->step_over_calls;
3624 stop_after_trap = inf_status->stop_after_trap;
3625 stop_soon = inf_status->stop_soon;
3626 bpstat_clear (&stop_bpstat);
3627 stop_bpstat = inf_status->stop_bpstat;
3628 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3629 proceed_to_finish = inf_status->proceed_to_finish;
3630
3631 /* FIXME: Is the restore of stop_registers always needed. */
3632 regcache_xfree (stop_registers);
3633 stop_registers = inf_status->stop_registers;
3634
3635 /* The inferior can be gone if the user types "print exit(0)"
3636 (and perhaps other times). */
3637 if (target_has_execution)
3638 /* NB: The register write goes through to the target. */
3639 regcache_cpy (current_regcache, inf_status->registers);
3640 regcache_xfree (inf_status->registers);
3641
3642 /* FIXME: If we are being called after stopping in a function which
3643 is called from gdb, we should not be trying to restore the
3644 selected frame; it just prints a spurious error message (The
3645 message is useful, however, in detecting bugs in gdb (like if gdb
3646 clobbers the stack)). In fact, should we be restoring the
3647 inferior status at all in that case? . */
3648
3649 if (target_has_stack && inf_status->restore_stack_info)
3650 {
3651 /* The point of catch_errors is that if the stack is clobbered,
3652 walking the stack might encounter a garbage pointer and
3653 error() trying to dereference it. */
3654 if (catch_errors
3655 (restore_selected_frame, &inf_status->selected_frame_id,
3656 "Unable to restore previously selected frame:\n",
3657 RETURN_MASK_ERROR) == 0)
3658 /* Error in restoring the selected frame. Select the innermost
3659 frame. */
3660 select_frame (get_current_frame ());
3661
3662 }
3663
3664 xfree (inf_status);
3665 }
3666
3667 static void
3668 do_restore_inferior_status_cleanup (void *sts)
3669 {
3670 restore_inferior_status (sts);
3671 }
3672
3673 struct cleanup *
3674 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3675 {
3676 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3677 }
3678
3679 void
3680 discard_inferior_status (struct inferior_status *inf_status)
3681 {
3682 /* See save_inferior_status for info on stop_bpstat. */
3683 bpstat_clear (&inf_status->stop_bpstat);
3684 regcache_xfree (inf_status->registers);
3685 regcache_xfree (inf_status->stop_registers);
3686 xfree (inf_status);
3687 }
3688
3689 int
3690 inferior_has_forked (int pid, int *child_pid)
3691 {
3692 struct target_waitstatus last;
3693 ptid_t last_ptid;
3694
3695 get_last_target_status (&last_ptid, &last);
3696
3697 if (last.kind != TARGET_WAITKIND_FORKED)
3698 return 0;
3699
3700 if (ptid_get_pid (last_ptid) != pid)
3701 return 0;
3702
3703 *child_pid = last.value.related_pid;
3704 return 1;
3705 }
3706
3707 int
3708 inferior_has_vforked (int pid, int *child_pid)
3709 {
3710 struct target_waitstatus last;
3711 ptid_t last_ptid;
3712
3713 get_last_target_status (&last_ptid, &last);
3714
3715 if (last.kind != TARGET_WAITKIND_VFORKED)
3716 return 0;
3717
3718 if (ptid_get_pid (last_ptid) != pid)
3719 return 0;
3720
3721 *child_pid = last.value.related_pid;
3722 return 1;
3723 }
3724
3725 int
3726 inferior_has_execd (int pid, char **execd_pathname)
3727 {
3728 struct target_waitstatus last;
3729 ptid_t last_ptid;
3730
3731 get_last_target_status (&last_ptid, &last);
3732
3733 if (last.kind != TARGET_WAITKIND_EXECD)
3734 return 0;
3735
3736 if (ptid_get_pid (last_ptid) != pid)
3737 return 0;
3738
3739 *execd_pathname = xstrdup (last.value.execd_pathname);
3740 return 1;
3741 }
3742
3743 /* Oft used ptids */
3744 ptid_t null_ptid;
3745 ptid_t minus_one_ptid;
3746
3747 /* Create a ptid given the necessary PID, LWP, and TID components. */
3748
3749 ptid_t
3750 ptid_build (int pid, long lwp, long tid)
3751 {
3752 ptid_t ptid;
3753
3754 ptid.pid = pid;
3755 ptid.lwp = lwp;
3756 ptid.tid = tid;
3757 return ptid;
3758 }
3759
3760 /* Create a ptid from just a pid. */
3761
3762 ptid_t
3763 pid_to_ptid (int pid)
3764 {
3765 return ptid_build (pid, 0, 0);
3766 }
3767
3768 /* Fetch the pid (process id) component from a ptid. */
3769
3770 int
3771 ptid_get_pid (ptid_t ptid)
3772 {
3773 return ptid.pid;
3774 }
3775
3776 /* Fetch the lwp (lightweight process) component from a ptid. */
3777
3778 long
3779 ptid_get_lwp (ptid_t ptid)
3780 {
3781 return ptid.lwp;
3782 }
3783
3784 /* Fetch the tid (thread id) component from a ptid. */
3785
3786 long
3787 ptid_get_tid (ptid_t ptid)
3788 {
3789 return ptid.tid;
3790 }
3791
3792 /* ptid_equal() is used to test equality of two ptids. */
3793
3794 int
3795 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3796 {
3797 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3798 && ptid1.tid == ptid2.tid);
3799 }
3800
3801 /* restore_inferior_ptid() will be used by the cleanup machinery
3802 to restore the inferior_ptid value saved in a call to
3803 save_inferior_ptid(). */
3804
3805 static void
3806 restore_inferior_ptid (void *arg)
3807 {
3808 ptid_t *saved_ptid_ptr = arg;
3809 inferior_ptid = *saved_ptid_ptr;
3810 xfree (arg);
3811 }
3812
3813 /* Save the value of inferior_ptid so that it may be restored by a
3814 later call to do_cleanups(). Returns the struct cleanup pointer
3815 needed for later doing the cleanup. */
3816
3817 struct cleanup *
3818 save_inferior_ptid (void)
3819 {
3820 ptid_t *saved_ptid_ptr;
3821
3822 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3823 *saved_ptid_ptr = inferior_ptid;
3824 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3825 }
3826 \f
3827
3828 static void
3829 build_infrun (void)
3830 {
3831 stop_registers = regcache_xmalloc (current_gdbarch);
3832 }
3833
3834 void
3835 _initialize_infrun (void)
3836 {
3837 int i;
3838 int numsigs;
3839 struct cmd_list_element *c;
3840
3841 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3842 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3843
3844 add_info ("signals", signals_info,
3845 "What debugger does when program gets various signals.\n\
3846 Specify a signal as argument to print info on that signal only.");
3847 add_info_alias ("handle", "signals", 0);
3848
3849 add_com ("handle", class_run, handle_command,
3850 concat ("Specify how to handle a signal.\n\
3851 Args are signals and actions to apply to those signals.\n\
3852 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3853 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3854 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3855 The special arg \"all\" is recognized to mean all signals except those\n\
3856 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3857 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3858 Stop means reenter debugger if this signal happens (implies print).\n\
3859 Print means print a message if this signal happens.\n\
3860 Pass means let program see this signal; otherwise program doesn't know.\n\
3861 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3862 Pass and Stop may be combined.", NULL));
3863 if (xdb_commands)
3864 {
3865 add_com ("lz", class_info, signals_info,
3866 "What debugger does when program gets various signals.\n\
3867 Specify a signal as argument to print info on that signal only.");
3868 add_com ("z", class_run, xdb_handle_command,
3869 concat ("Specify how to handle a signal.\n\
3870 Args are signals and actions to apply to those signals.\n\
3871 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3872 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3873 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3874 The special arg \"all\" is recognized to mean all signals except those\n\
3875 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3876 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3877 nopass), \"Q\" (noprint)\n\
3878 Stop means reenter debugger if this signal happens (implies print).\n\
3879 Print means print a message if this signal happens.\n\
3880 Pass means let program see this signal; otherwise program doesn't know.\n\
3881 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3882 Pass and Stop may be combined.", NULL));
3883 }
3884
3885 if (!dbx_commands)
3886 stop_command =
3887 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3888 This allows you to set a list of commands to be run each time execution\n\
3889 of the program stops.", &cmdlist);
3890
3891 numsigs = (int) TARGET_SIGNAL_LAST;
3892 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3893 signal_print = (unsigned char *)
3894 xmalloc (sizeof (signal_print[0]) * numsigs);
3895 signal_program = (unsigned char *)
3896 xmalloc (sizeof (signal_program[0]) * numsigs);
3897 for (i = 0; i < numsigs; i++)
3898 {
3899 signal_stop[i] = 1;
3900 signal_print[i] = 1;
3901 signal_program[i] = 1;
3902 }
3903
3904 /* Signals caused by debugger's own actions
3905 should not be given to the program afterwards. */
3906 signal_program[TARGET_SIGNAL_TRAP] = 0;
3907 signal_program[TARGET_SIGNAL_INT] = 0;
3908
3909 /* Signals that are not errors should not normally enter the debugger. */
3910 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3911 signal_print[TARGET_SIGNAL_ALRM] = 0;
3912 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3913 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3914 signal_stop[TARGET_SIGNAL_PROF] = 0;
3915 signal_print[TARGET_SIGNAL_PROF] = 0;
3916 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3917 signal_print[TARGET_SIGNAL_CHLD] = 0;
3918 signal_stop[TARGET_SIGNAL_IO] = 0;
3919 signal_print[TARGET_SIGNAL_IO] = 0;
3920 signal_stop[TARGET_SIGNAL_POLL] = 0;
3921 signal_print[TARGET_SIGNAL_POLL] = 0;
3922 signal_stop[TARGET_SIGNAL_URG] = 0;
3923 signal_print[TARGET_SIGNAL_URG] = 0;
3924 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3925 signal_print[TARGET_SIGNAL_WINCH] = 0;
3926
3927 /* These signals are used internally by user-level thread
3928 implementations. (See signal(5) on Solaris.) Like the above
3929 signals, a healthy program receives and handles them as part of
3930 its normal operation. */
3931 signal_stop[TARGET_SIGNAL_LWP] = 0;
3932 signal_print[TARGET_SIGNAL_LWP] = 0;
3933 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3934 signal_print[TARGET_SIGNAL_WAITING] = 0;
3935 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3936 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3937
3938 #ifdef SOLIB_ADD
3939 add_show_from_set
3940 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3941 (char *) &stop_on_solib_events,
3942 "Set stopping for shared library events.\n\
3943 If nonzero, gdb will give control to the user when the dynamic linker\n\
3944 notifies gdb of shared library events. The most common event of interest\n\
3945 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3946 #endif
3947
3948 c = add_set_enum_cmd ("follow-fork-mode",
3949 class_run,
3950 follow_fork_mode_kind_names, &follow_fork_mode_string,
3951 "Set debugger response to a program call of fork \
3952 or vfork.\n\
3953 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3954 parent - the original process is debugged after a fork\n\
3955 child - the new process is debugged after a fork\n\
3956 The unfollowed process will continue to run.\n\
3957 By default, the debugger will follow the parent process.", &setlist);
3958 add_show_from_set (c, &showlist);
3959
3960 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3961 &scheduler_mode, /* current mode */
3962 "Set mode for locking scheduler during execution.\n\
3963 off == no locking (threads may preempt at any time)\n\
3964 on == full locking (no thread except the current thread may run)\n\
3965 step == scheduler locked during every single-step operation.\n\
3966 In this mode, no other thread may run during a step command.\n\
3967 Other threads may run while stepping over a function call ('next').", &setlist);
3968
3969 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3970 add_show_from_set (c, &showlist);
3971
3972 c = add_set_cmd ("step-mode", class_run,
3973 var_boolean, (char *) &step_stop_if_no_debug,
3974 "Set mode of the step operation. When set, doing a step over a\n\
3975 function without debug line information will stop at the first\n\
3976 instruction of that function. Otherwise, the function is skipped and\n\
3977 the step command stops at a different source line.", &setlist);
3978 add_show_from_set (c, &showlist);
3979
3980 /* ptid initializations */
3981 null_ptid = ptid_build (0, 0, 0);
3982 minus_one_ptid = ptid_build (-1, 0, 0);
3983 inferior_ptid = null_ptid;
3984 target_last_wait_ptid = minus_one_ptid;
3985 }
This page took 0.218285 seconds and 4 git commands to generate.