b10aa03b669491e74c1575b5e66b13efa84ceb4d
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 ALL_THREADS_SAFE (th, tmp)
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = pid_to_ptid (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 gdb_flush (gdb_stdout);
1166
1167 breakpoint_init_inferior (inf_execd);
1168
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
1171
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1226
1227 do_cleanups (old_chain);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 struct address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over. */
1324
1325 static void
1326 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1327 int nonsteppable_watchpoint_p,
1328 int thread)
1329 {
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1333 step_over_info.thread = thread;
1334 }
1335
1336 /* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339 static void
1340 clear_step_over_info (void)
1341 {
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 - gdbarch_displaced_step_free_closure provides cleanup.
1440
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
1478 /* Per-inferior displaced stepping state. */
1479 struct displaced_step_inferior_state
1480 {
1481 /* Pointer to next in linked list. */
1482 struct displaced_step_inferior_state *next;
1483
1484 /* The process this displaced step state refers to. */
1485 int pid;
1486
1487 /* True if preparing a displaced step ever failed. If so, we won't
1488 try displaced stepping for this inferior again. */
1489 int failed_before;
1490
1491 /* If this is not null_ptid, this is the thread carrying out a
1492 displaced single-step in process PID. This thread's state will
1493 require fixing up once it has completed its step. */
1494 ptid_t step_ptid;
1495
1496 /* The architecture the thread had when we stepped it. */
1497 struct gdbarch *step_gdbarch;
1498
1499 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1500 for post-step cleanup. */
1501 struct displaced_step_closure *step_closure;
1502
1503 /* The address of the original instruction, and the copy we
1504 made. */
1505 CORE_ADDR step_original, step_copy;
1506
1507 /* Saved contents of copy area. */
1508 gdb_byte *step_saved_copy;
1509 };
1510
1511 /* The list of states of processes involved in displaced stepping
1512 presently. */
1513 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1514
1515 /* Get the displaced stepping state of process PID. */
1516
1517 static struct displaced_step_inferior_state *
1518 get_displaced_stepping_state (int pid)
1519 {
1520 struct displaced_step_inferior_state *state;
1521
1522 for (state = displaced_step_inferior_states;
1523 state != NULL;
1524 state = state->next)
1525 if (state->pid == pid)
1526 return state;
1527
1528 return NULL;
1529 }
1530
1531 /* Returns true if any inferior has a thread doing a displaced
1532 step. */
1533
1534 static int
1535 displaced_step_in_progress_any_inferior (void)
1536 {
1537 struct displaced_step_inferior_state *state;
1538
1539 for (state = displaced_step_inferior_states;
1540 state != NULL;
1541 state = state->next)
1542 if (!ptid_equal (state->step_ptid, null_ptid))
1543 return 1;
1544
1545 return 0;
1546 }
1547
1548 /* Return true if thread represented by PTID is doing a displaced
1549 step. */
1550
1551 static int
1552 displaced_step_in_progress_thread (ptid_t ptid)
1553 {
1554 struct displaced_step_inferior_state *displaced;
1555
1556 gdb_assert (!ptid_equal (ptid, null_ptid));
1557
1558 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1559
1560 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1561 }
1562
1563 /* Return true if process PID has a thread doing a displaced step. */
1564
1565 static int
1566 displaced_step_in_progress (int pid)
1567 {
1568 struct displaced_step_inferior_state *displaced;
1569
1570 displaced = get_displaced_stepping_state (pid);
1571 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1572 return 1;
1573
1574 return 0;
1575 }
1576
1577 /* Add a new displaced stepping state for process PID to the displaced
1578 stepping state list, or return a pointer to an already existing
1579 entry, if it already exists. Never returns NULL. */
1580
1581 static struct displaced_step_inferior_state *
1582 add_displaced_stepping_state (int pid)
1583 {
1584 struct displaced_step_inferior_state *state;
1585
1586 for (state = displaced_step_inferior_states;
1587 state != NULL;
1588 state = state->next)
1589 if (state->pid == pid)
1590 return state;
1591
1592 state = XCNEW (struct displaced_step_inferior_state);
1593 state->pid = pid;
1594 state->next = displaced_step_inferior_states;
1595 displaced_step_inferior_states = state;
1596
1597 return state;
1598 }
1599
1600 /* If inferior is in displaced stepping, and ADDR equals to starting address
1601 of copy area, return corresponding displaced_step_closure. Otherwise,
1602 return NULL. */
1603
1604 struct displaced_step_closure*
1605 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1606 {
1607 struct displaced_step_inferior_state *displaced
1608 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1609
1610 /* If checking the mode of displaced instruction in copy area. */
1611 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1612 && (displaced->step_copy == addr))
1613 return displaced->step_closure;
1614
1615 return NULL;
1616 }
1617
1618 /* Remove the displaced stepping state of process PID. */
1619
1620 static void
1621 remove_displaced_stepping_state (int pid)
1622 {
1623 struct displaced_step_inferior_state *it, **prev_next_p;
1624
1625 gdb_assert (pid != 0);
1626
1627 it = displaced_step_inferior_states;
1628 prev_next_p = &displaced_step_inferior_states;
1629 while (it)
1630 {
1631 if (it->pid == pid)
1632 {
1633 *prev_next_p = it->next;
1634 xfree (it);
1635 return;
1636 }
1637
1638 prev_next_p = &it->next;
1639 it = *prev_next_p;
1640 }
1641 }
1642
1643 static void
1644 infrun_inferior_exit (struct inferior *inf)
1645 {
1646 remove_displaced_stepping_state (inf->pid);
1647 }
1648
1649 /* If ON, and the architecture supports it, GDB will use displaced
1650 stepping to step over breakpoints. If OFF, or if the architecture
1651 doesn't support it, GDB will instead use the traditional
1652 hold-and-step approach. If AUTO (which is the default), GDB will
1653 decide which technique to use to step over breakpoints depending on
1654 which of all-stop or non-stop mode is active --- displaced stepping
1655 in non-stop mode; hold-and-step in all-stop mode. */
1656
1657 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1658
1659 static void
1660 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1661 struct cmd_list_element *c,
1662 const char *value)
1663 {
1664 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1665 fprintf_filtered (file,
1666 _("Debugger's willingness to use displaced stepping "
1667 "to step over breakpoints is %s (currently %s).\n"),
1668 value, target_is_non_stop_p () ? "on" : "off");
1669 else
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s.\n"), value);
1673 }
1674
1675 /* Return non-zero if displaced stepping can/should be used to step
1676 over breakpoints of thread TP. */
1677
1678 static int
1679 use_displaced_stepping (struct thread_info *tp)
1680 {
1681 struct regcache *regcache = get_thread_regcache (tp->ptid);
1682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1683 struct displaced_step_inferior_state *displaced_state;
1684
1685 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1686
1687 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1688 && target_is_non_stop_p ())
1689 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1690 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1691 && find_record_target () == NULL
1692 && (displaced_state == NULL
1693 || !displaced_state->failed_before));
1694 }
1695
1696 /* Clean out any stray displaced stepping state. */
1697 static void
1698 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1699 {
1700 /* Indicate that there is no cleanup pending. */
1701 displaced->step_ptid = null_ptid;
1702
1703 if (displaced->step_closure)
1704 {
1705 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1706 displaced->step_closure);
1707 displaced->step_closure = NULL;
1708 }
1709 }
1710
1711 static void
1712 displaced_step_clear_cleanup (void *arg)
1713 {
1714 struct displaced_step_inferior_state *state
1715 = (struct displaced_step_inferior_state *) arg;
1716
1717 displaced_step_clear (state);
1718 }
1719
1720 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1721 void
1722 displaced_step_dump_bytes (struct ui_file *file,
1723 const gdb_byte *buf,
1724 size_t len)
1725 {
1726 int i;
1727
1728 for (i = 0; i < len; i++)
1729 fprintf_unfiltered (file, "%02x ", buf[i]);
1730 fputs_unfiltered ("\n", file);
1731 }
1732
1733 /* Prepare to single-step, using displaced stepping.
1734
1735 Note that we cannot use displaced stepping when we have a signal to
1736 deliver. If we have a signal to deliver and an instruction to step
1737 over, then after the step, there will be no indication from the
1738 target whether the thread entered a signal handler or ignored the
1739 signal and stepped over the instruction successfully --- both cases
1740 result in a simple SIGTRAP. In the first case we mustn't do a
1741 fixup, and in the second case we must --- but we can't tell which.
1742 Comments in the code for 'random signals' in handle_inferior_event
1743 explain how we handle this case instead.
1744
1745 Returns 1 if preparing was successful -- this thread is going to be
1746 stepped now; 0 if displaced stepping this thread got queued; or -1
1747 if this instruction can't be displaced stepped. */
1748
1749 static int
1750 displaced_step_prepare_throw (ptid_t ptid)
1751 {
1752 struct cleanup *old_cleanups, *ignore_cleanups;
1753 struct thread_info *tp = find_thread_ptid (ptid);
1754 struct regcache *regcache = get_thread_regcache (ptid);
1755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1756 struct address_space *aspace = get_regcache_aspace (regcache);
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
1760 struct displaced_step_inferior_state *displaced;
1761 int status;
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
1778
1779 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1780
1781 if (!ptid_equal (displaced->step_ptid, null_ptid))
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "displaced: deferring step of %s\n",
1789 target_pid_to_str (ptid));
1790
1791 thread_step_over_chain_enqueue (tp);
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
1799 target_pid_to_str (ptid));
1800 }
1801
1802 displaced_step_clear (displaced);
1803
1804 old_cleanups = save_inferior_ptid ();
1805 inferior_ptid = ptid;
1806
1807 original = regcache_read_pc (regcache);
1808
1809 copy = gdbarch_displaced_step_location (gdbarch);
1810 len = gdbarch_max_insn_length (gdbarch);
1811
1812 if (breakpoint_in_range_p (aspace, copy, len))
1813 {
1814 /* There's a breakpoint set in the scratch pad location range
1815 (which is usually around the entry point). We'd either
1816 install it before resuming, which would overwrite/corrupt the
1817 scratch pad, or if it was already inserted, this displaced
1818 step would overwrite it. The latter is OK in the sense that
1819 we already assume that no thread is going to execute the code
1820 in the scratch pad range (after initial startup) anyway, but
1821 the former is unacceptable. Simply punt and fallback to
1822 stepping over this breakpoint in-line. */
1823 if (debug_displaced)
1824 {
1825 fprintf_unfiltered (gdb_stdlog,
1826 "displaced: breakpoint set in scratch pad. "
1827 "Stepping over breakpoint in-line instead.\n");
1828 }
1829
1830 do_cleanups (old_cleanups);
1831 return -1;
1832 }
1833
1834 /* Save the original contents of the copy area. */
1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1836 ignore_cleanups = make_cleanup (free_current_contents,
1837 &displaced->step_saved_copy);
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
1844 if (debug_displaced)
1845 {
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1854 original, copy, regcache);
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
1860 do_cleanups (old_cleanups);
1861 return -1;
1862 }
1863
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
1866 displaced->step_ptid = ptid;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
1871
1872 make_cleanup (displaced_step_clear_cleanup, displaced);
1873
1874 /* Resume execution at the copy. */
1875 regcache_write_pc (regcache, copy);
1876
1877 discard_cleanups (ignore_cleanups);
1878
1879 do_cleanups (old_cleanups);
1880
1881 if (debug_displaced)
1882 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1883 paddress (gdbarch, copy));
1884
1885 return 1;
1886 }
1887
1888 /* Wrapper for displaced_step_prepare_throw that disabled further
1889 attempts at displaced stepping if we get a memory error. */
1890
1891 static int
1892 displaced_step_prepare (ptid_t ptid)
1893 {
1894 int prepared = -1;
1895
1896 TRY
1897 {
1898 prepared = displaced_step_prepare_throw (ptid);
1899 }
1900 CATCH (ex, RETURN_MASK_ERROR)
1901 {
1902 struct displaced_step_inferior_state *displaced_state;
1903
1904 if (ex.error != MEMORY_ERROR
1905 && ex.error != NOT_SUPPORTED_ERROR)
1906 throw_exception (ex);
1907
1908 if (debug_infrun)
1909 {
1910 fprintf_unfiltered (gdb_stdlog,
1911 "infrun: disabling displaced stepping: %s\n",
1912 ex.message);
1913 }
1914
1915 /* Be verbose if "set displaced-stepping" is "on", silent if
1916 "auto". */
1917 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1918 {
1919 warning (_("disabling displaced stepping: %s"),
1920 ex.message);
1921 }
1922
1923 /* Disable further displaced stepping attempts. */
1924 displaced_state
1925 = get_displaced_stepping_state (ptid_get_pid (ptid));
1926 displaced_state->failed_before = 1;
1927 }
1928 END_CATCH
1929
1930 return prepared;
1931 }
1932
1933 static void
1934 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1935 const gdb_byte *myaddr, int len)
1936 {
1937 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1938
1939 inferior_ptid = ptid;
1940 write_memory (memaddr, myaddr, len);
1941 do_cleanups (ptid_cleanup);
1942 }
1943
1944 /* Restore the contents of the copy area for thread PTID. */
1945
1946 static void
1947 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1948 ptid_t ptid)
1949 {
1950 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1951
1952 write_memory_ptid (ptid, displaced->step_copy,
1953 displaced->step_saved_copy, len);
1954 if (debug_displaced)
1955 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1956 target_pid_to_str (ptid),
1957 paddress (displaced->step_gdbarch,
1958 displaced->step_copy));
1959 }
1960
1961 /* If we displaced stepped an instruction successfully, adjust
1962 registers and memory to yield the same effect the instruction would
1963 have had if we had executed it at its original address, and return
1964 1. If the instruction didn't complete, relocate the PC and return
1965 -1. If the thread wasn't displaced stepping, return 0. */
1966
1967 static int
1968 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1969 {
1970 struct cleanup *old_cleanups;
1971 struct displaced_step_inferior_state *displaced
1972 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1973 int ret;
1974
1975 /* Was any thread of this process doing a displaced step? */
1976 if (displaced == NULL)
1977 return 0;
1978
1979 /* Was this event for the pid we displaced? */
1980 if (ptid_equal (displaced->step_ptid, null_ptid)
1981 || ! ptid_equal (displaced->step_ptid, event_ptid))
1982 return 0;
1983
1984 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1985
1986 displaced_step_restore (displaced, displaced->step_ptid);
1987
1988 /* Fixup may need to read memory/registers. Switch to the thread
1989 that we're fixing up. Also, target_stopped_by_watchpoint checks
1990 the current thread. */
1991 switch_to_thread (event_ptid);
1992
1993 /* Did the instruction complete successfully? */
1994 if (signal == GDB_SIGNAL_TRAP
1995 && !(target_stopped_by_watchpoint ()
1996 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1997 || target_have_steppable_watchpoint)))
1998 {
1999 /* Fix up the resulting state. */
2000 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2001 displaced->step_closure,
2002 displaced->step_original,
2003 displaced->step_copy,
2004 get_thread_regcache (displaced->step_ptid));
2005 ret = 1;
2006 }
2007 else
2008 {
2009 /* Since the instruction didn't complete, all we can do is
2010 relocate the PC. */
2011 struct regcache *regcache = get_thread_regcache (event_ptid);
2012 CORE_ADDR pc = regcache_read_pc (regcache);
2013
2014 pc = displaced->step_original + (pc - displaced->step_copy);
2015 regcache_write_pc (regcache, pc);
2016 ret = -1;
2017 }
2018
2019 do_cleanups (old_cleanups);
2020
2021 displaced->step_ptid = null_ptid;
2022
2023 return ret;
2024 }
2025
2026 /* Data to be passed around while handling an event. This data is
2027 discarded between events. */
2028 struct execution_control_state
2029 {
2030 ptid_t ptid;
2031 /* The thread that got the event, if this was a thread event; NULL
2032 otherwise. */
2033 struct thread_info *event_thread;
2034
2035 struct target_waitstatus ws;
2036 int stop_func_filled_in;
2037 CORE_ADDR stop_func_start;
2038 CORE_ADDR stop_func_end;
2039 const char *stop_func_name;
2040 int wait_some_more;
2041
2042 /* True if the event thread hit the single-step breakpoint of
2043 another thread. Thus the event doesn't cause a stop, the thread
2044 needs to be single-stepped past the single-step breakpoint before
2045 we can switch back to the original stepping thread. */
2046 int hit_singlestep_breakpoint;
2047 };
2048
2049 /* Clear ECS and set it to point at TP. */
2050
2051 static void
2052 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2053 {
2054 memset (ecs, 0, sizeof (*ecs));
2055 ecs->event_thread = tp;
2056 ecs->ptid = tp->ptid;
2057 }
2058
2059 static void keep_going_pass_signal (struct execution_control_state *ecs);
2060 static void prepare_to_wait (struct execution_control_state *ecs);
2061 static int keep_going_stepped_thread (struct thread_info *tp);
2062 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2063
2064 /* Are there any pending step-over requests? If so, run all we can
2065 now and return true. Otherwise, return false. */
2066
2067 static int
2068 start_step_over (void)
2069 {
2070 struct thread_info *tp, *next;
2071
2072 /* Don't start a new step-over if we already have an in-line
2073 step-over operation ongoing. */
2074 if (step_over_info_valid_p ())
2075 return 0;
2076
2077 for (tp = step_over_queue_head; tp != NULL; tp = next)
2078 {
2079 struct execution_control_state ecss;
2080 struct execution_control_state *ecs = &ecss;
2081 step_over_what step_what;
2082 int must_be_in_line;
2083
2084 next = thread_step_over_chain_next (tp);
2085
2086 /* If this inferior already has a displaced step in process,
2087 don't start a new one. */
2088 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2089 continue;
2090
2091 step_what = thread_still_needs_step_over (tp);
2092 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2093 || ((step_what & STEP_OVER_BREAKPOINT)
2094 && !use_displaced_stepping (tp)));
2095
2096 /* We currently stop all threads of all processes to step-over
2097 in-line. If we need to start a new in-line step-over, let
2098 any pending displaced steps finish first. */
2099 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2100 return 0;
2101
2102 thread_step_over_chain_remove (tp);
2103
2104 if (step_over_queue_head == NULL)
2105 {
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: step-over queue now empty\n");
2109 }
2110
2111 if (tp->control.trap_expected
2112 || tp->resumed
2113 || tp->executing)
2114 {
2115 internal_error (__FILE__, __LINE__,
2116 "[%s] has inconsistent state: "
2117 "trap_expected=%d, resumed=%d, executing=%d\n",
2118 target_pid_to_str (tp->ptid),
2119 tp->control.trap_expected,
2120 tp->resumed,
2121 tp->executing);
2122 }
2123
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "infrun: resuming [%s] for step-over\n",
2127 target_pid_to_str (tp->ptid));
2128
2129 /* keep_going_pass_signal skips the step-over if the breakpoint
2130 is no longer inserted. In all-stop, we want to keep looking
2131 for a thread that needs a step-over instead of resuming TP,
2132 because we wouldn't be able to resume anything else until the
2133 target stops again. In non-stop, the resume always resumes
2134 only TP, so it's OK to let the thread resume freely. */
2135 if (!target_is_non_stop_p () && !step_what)
2136 continue;
2137
2138 switch_to_thread (tp->ptid);
2139 reset_ecs (ecs, tp);
2140 keep_going_pass_signal (ecs);
2141
2142 if (!ecs->wait_some_more)
2143 error (_("Command aborted."));
2144
2145 gdb_assert (tp->resumed);
2146
2147 /* If we started a new in-line step-over, we're done. */
2148 if (step_over_info_valid_p ())
2149 {
2150 gdb_assert (tp->control.trap_expected);
2151 return 1;
2152 }
2153
2154 if (!target_is_non_stop_p ())
2155 {
2156 /* On all-stop, shouldn't have resumed unless we needed a
2157 step over. */
2158 gdb_assert (tp->control.trap_expected
2159 || tp->step_after_step_resume_breakpoint);
2160
2161 /* With remote targets (at least), in all-stop, we can't
2162 issue any further remote commands until the program stops
2163 again. */
2164 return 1;
2165 }
2166
2167 /* Either the thread no longer needed a step-over, or a new
2168 displaced stepping sequence started. Even in the latter
2169 case, continue looking. Maybe we can also start another
2170 displaced step on a thread of other process. */
2171 }
2172
2173 return 0;
2174 }
2175
2176 /* Update global variables holding ptids to hold NEW_PTID if they were
2177 holding OLD_PTID. */
2178 static void
2179 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2180 {
2181 struct displaced_step_inferior_state *displaced;
2182
2183 if (ptid_equal (inferior_ptid, old_ptid))
2184 inferior_ptid = new_ptid;
2185
2186 for (displaced = displaced_step_inferior_states;
2187 displaced;
2188 displaced = displaced->next)
2189 {
2190 if (ptid_equal (displaced->step_ptid, old_ptid))
2191 displaced->step_ptid = new_ptid;
2192 }
2193 }
2194
2195 \f
2196 /* Resuming. */
2197
2198 /* Things to clean up if we QUIT out of resume (). */
2199 static void
2200 resume_cleanups (void *ignore)
2201 {
2202 if (!ptid_equal (inferior_ptid, null_ptid))
2203 delete_single_step_breakpoints (inferior_thread ());
2204
2205 normal_stop ();
2206 }
2207
2208 static const char schedlock_off[] = "off";
2209 static const char schedlock_on[] = "on";
2210 static const char schedlock_step[] = "step";
2211 static const char schedlock_replay[] = "replay";
2212 static const char *const scheduler_enums[] = {
2213 schedlock_off,
2214 schedlock_on,
2215 schedlock_step,
2216 schedlock_replay,
2217 NULL
2218 };
2219 static const char *scheduler_mode = schedlock_replay;
2220 static void
2221 show_scheduler_mode (struct ui_file *file, int from_tty,
2222 struct cmd_list_element *c, const char *value)
2223 {
2224 fprintf_filtered (file,
2225 _("Mode for locking scheduler "
2226 "during execution is \"%s\".\n"),
2227 value);
2228 }
2229
2230 static void
2231 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2232 {
2233 if (!target_can_lock_scheduler)
2234 {
2235 scheduler_mode = schedlock_off;
2236 error (_("Target '%s' cannot support this command."), target_shortname);
2237 }
2238 }
2239
2240 /* True if execution commands resume all threads of all processes by
2241 default; otherwise, resume only threads of the current inferior
2242 process. */
2243 int sched_multi = 0;
2244
2245 /* Try to setup for software single stepping over the specified location.
2246 Return 1 if target_resume() should use hardware single step.
2247
2248 GDBARCH the current gdbarch.
2249 PC the location to step over. */
2250
2251 static int
2252 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2253 {
2254 int hw_step = 1;
2255
2256 if (execution_direction == EXEC_FORWARD
2257 && gdbarch_software_single_step_p (gdbarch)
2258 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2259 {
2260 hw_step = 0;
2261 }
2262 return hw_step;
2263 }
2264
2265 /* See infrun.h. */
2266
2267 ptid_t
2268 user_visible_resume_ptid (int step)
2269 {
2270 ptid_t resume_ptid;
2271
2272 if (non_stop)
2273 {
2274 /* With non-stop mode on, threads are always handled
2275 individually. */
2276 resume_ptid = inferior_ptid;
2277 }
2278 else if ((scheduler_mode == schedlock_on)
2279 || (scheduler_mode == schedlock_step && step))
2280 {
2281 /* User-settable 'scheduler' mode requires solo thread
2282 resume. */
2283 resume_ptid = inferior_ptid;
2284 }
2285 else if ((scheduler_mode == schedlock_replay)
2286 && target_record_will_replay (minus_one_ptid, execution_direction))
2287 {
2288 /* User-settable 'scheduler' mode requires solo thread resume in replay
2289 mode. */
2290 resume_ptid = inferior_ptid;
2291 }
2292 else if (!sched_multi && target_supports_multi_process ())
2293 {
2294 /* Resume all threads of the current process (and none of other
2295 processes). */
2296 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2297 }
2298 else
2299 {
2300 /* Resume all threads of all processes. */
2301 resume_ptid = RESUME_ALL;
2302 }
2303
2304 return resume_ptid;
2305 }
2306
2307 /* Return a ptid representing the set of threads that we will resume,
2308 in the perspective of the target, assuming run control handling
2309 does not require leaving some threads stopped (e.g., stepping past
2310 breakpoint). USER_STEP indicates whether we're about to start the
2311 target for a stepping command. */
2312
2313 static ptid_t
2314 internal_resume_ptid (int user_step)
2315 {
2316 /* In non-stop, we always control threads individually. Note that
2317 the target may always work in non-stop mode even with "set
2318 non-stop off", in which case user_visible_resume_ptid could
2319 return a wildcard ptid. */
2320 if (target_is_non_stop_p ())
2321 return inferior_ptid;
2322 else
2323 return user_visible_resume_ptid (user_step);
2324 }
2325
2326 /* Wrapper for target_resume, that handles infrun-specific
2327 bookkeeping. */
2328
2329 static void
2330 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2331 {
2332 struct thread_info *tp = inferior_thread ();
2333
2334 /* Install inferior's terminal modes. */
2335 target_terminal_inferior ();
2336
2337 /* Avoid confusing the next resume, if the next stop/resume
2338 happens to apply to another thread. */
2339 tp->suspend.stop_signal = GDB_SIGNAL_0;
2340
2341 /* Advise target which signals may be handled silently.
2342
2343 If we have removed breakpoints because we are stepping over one
2344 in-line (in any thread), we need to receive all signals to avoid
2345 accidentally skipping a breakpoint during execution of a signal
2346 handler.
2347
2348 Likewise if we're displaced stepping, otherwise a trap for a
2349 breakpoint in a signal handler might be confused with the
2350 displaced step finishing. We don't make the displaced_step_fixup
2351 step distinguish the cases instead, because:
2352
2353 - a backtrace while stopped in the signal handler would show the
2354 scratch pad as frame older than the signal handler, instead of
2355 the real mainline code.
2356
2357 - when the thread is later resumed, the signal handler would
2358 return to the scratch pad area, which would no longer be
2359 valid. */
2360 if (step_over_info_valid_p ()
2361 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2362 target_pass_signals (0, NULL);
2363 else
2364 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2365
2366 target_resume (resume_ptid, step, sig);
2367
2368 target_commit_resume ();
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857
2858 void
2859 clear_proceed_status (int step)
2860 {
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906 }
2907
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947 }
2948
2949 /* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961 }
2962
2963 /* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 struct cleanup *defer_resume_cleanup;
2988 int started;
2989
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2999 return;
3000 }
3001
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
3007 aspace = get_regcache_aspace (regcache);
3008 pc = regcache_read_pc (regcache);
3009 tp = inferior_thread ();
3010
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
3016 if (addr == (CORE_ADDR) -1)
3017 {
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3020 && execution_direction != EXEC_REVERSE)
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
3029 tp->stepping_over_breakpoint = 1;
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
3035 tp->stepping_over_breakpoint = 1;
3036 }
3037 else
3038 {
3039 regcache_write_pc (regcache, addr);
3040 }
3041
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
3060
3061 if (debug_infrun)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "infrun: proceed (addr=%s, signal=%s)\n",
3064 paddress (gdbarch, addr),
3065 gdb_signal_to_symbol_string (siggnal));
3066
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
3087 {
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
3096
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
3100
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
3109 target_pid_to_str (tp->ptid));
3110
3111 thread_step_over_chain_enqueue (tp);
3112 }
3113
3114 tp = current;
3115 }
3116
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
3121
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
3128
3129 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3130
3131 started = start_step_over ();
3132
3133 if (step_over_info_valid_p ())
3134 {
3135 /* Either this thread started a new in-line step over, or some
3136 other thread was already doing one. In either case, don't
3137 resume anything else until the step-over is finished. */
3138 }
3139 else if (started && !target_is_non_stop_p ())
3140 {
3141 /* A new displaced stepping sequence was started. In all-stop,
3142 we can't talk to the target anymore until it next stops. */
3143 }
3144 else if (!non_stop && target_is_non_stop_p ())
3145 {
3146 /* In all-stop, but the target is always in non-stop mode.
3147 Start all other threads that are implicitly resumed too. */
3148 ALL_NON_EXITED_THREADS (tp)
3149 {
3150 /* Ignore threads of processes we're not resuming. */
3151 if (!ptid_match (tp->ptid, resume_ptid))
3152 continue;
3153
3154 if (tp->resumed)
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] resumed\n",
3159 target_pid_to_str (tp->ptid));
3160 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3161 continue;
3162 }
3163
3164 if (thread_is_in_step_over_chain (tp))
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] needs step-over\n",
3169 target_pid_to_str (tp->ptid));
3170 continue;
3171 }
3172
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: resuming %s\n",
3176 target_pid_to_str (tp->ptid));
3177
3178 reset_ecs (ecs, tp);
3179 switch_to_thread (tp->ptid);
3180 keep_going_pass_signal (ecs);
3181 if (!ecs->wait_some_more)
3182 error (_("Command aborted."));
3183 }
3184 }
3185 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3186 {
3187 /* The thread wasn't started, and isn't queued, run it now. */
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194
3195 do_cleanups (defer_resume_cleanup);
3196 target_commit_resume ();
3197
3198 discard_cleanups (old_chain);
3199
3200 /* Tell the event loop to wait for it to stop. If the target
3201 supports asynchronous execution, it'll do this from within
3202 target_resume. */
3203 if (!target_can_async_p ())
3204 mark_async_event_handler (infrun_async_inferior_event_token);
3205 }
3206 \f
3207
3208 /* Start remote-debugging of a machine over a serial link. */
3209
3210 void
3211 start_remote (int from_tty)
3212 {
3213 struct inferior *inferior;
3214
3215 inferior = current_inferior ();
3216 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3217
3218 /* Always go on waiting for the target, regardless of the mode. */
3219 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3220 indicate to wait_for_inferior that a target should timeout if
3221 nothing is returned (instead of just blocking). Because of this,
3222 targets expecting an immediate response need to, internally, set
3223 things up so that the target_wait() is forced to eventually
3224 timeout. */
3225 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3226 differentiate to its caller what the state of the target is after
3227 the initial open has been performed. Here we're assuming that
3228 the target has stopped. It should be possible to eventually have
3229 target_open() return to the caller an indication that the target
3230 is currently running and GDB state should be set to the same as
3231 for an async run. */
3232 wait_for_inferior ();
3233
3234 /* Now that the inferior has stopped, do any bookkeeping like
3235 loading shared libraries. We want to do this before normal_stop,
3236 so that the displayed frame is up to date. */
3237 post_create_inferior (&current_target, from_tty);
3238
3239 normal_stop ();
3240 }
3241
3242 /* Initialize static vars when a new inferior begins. */
3243
3244 void
3245 init_wait_for_inferior (void)
3246 {
3247 /* These are meaningless until the first time through wait_for_inferior. */
3248
3249 breakpoint_init_inferior (inf_starting);
3250
3251 clear_proceed_status (0);
3252
3253 target_last_wait_ptid = minus_one_ptid;
3254
3255 previous_inferior_ptid = inferior_ptid;
3256
3257 /* Discard any skipped inlined frames. */
3258 clear_inline_frame_state (minus_one_ptid);
3259 }
3260
3261 \f
3262
3263 static void handle_inferior_event (struct execution_control_state *ecs);
3264
3265 static void handle_step_into_function (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269 static void handle_signal_stop (struct execution_control_state *ecs);
3270 static void check_exception_resume (struct execution_control_state *,
3271 struct frame_info *);
3272
3273 static void end_stepping_range (struct execution_control_state *ecs);
3274 static void stop_waiting (struct execution_control_state *ecs);
3275 static void keep_going (struct execution_control_state *ecs);
3276 static void process_event_stop_test (struct execution_control_state *ecs);
3277 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3278
3279 /* Callback for iterate over threads. If the thread is stopped, but
3280 the user/frontend doesn't know about that yet, go through
3281 normal_stop, as if the thread had just stopped now. ARG points at
3282 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3283 ptid_is_pid(PTID) is true, applies to all threads of the process
3284 pointed at by PTID. Otherwise, apply only to the thread pointed by
3285 PTID. */
3286
3287 static int
3288 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3289 {
3290 ptid_t ptid = * (ptid_t *) arg;
3291
3292 if ((ptid_equal (info->ptid, ptid)
3293 || ptid_equal (minus_one_ptid, ptid)
3294 || (ptid_is_pid (ptid)
3295 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3296 && is_running (info->ptid)
3297 && !is_executing (info->ptid))
3298 {
3299 struct cleanup *old_chain;
3300 struct execution_control_state ecss;
3301 struct execution_control_state *ecs = &ecss;
3302
3303 memset (ecs, 0, sizeof (*ecs));
3304
3305 old_chain = make_cleanup_restore_current_thread ();
3306
3307 overlay_cache_invalid = 1;
3308 /* Flush target cache before starting to handle each event.
3309 Target was running and cache could be stale. This is just a
3310 heuristic. Running threads may modify target memory, but we
3311 don't get any event. */
3312 target_dcache_invalidate ();
3313
3314 /* Go through handle_inferior_event/normal_stop, so we always
3315 have consistent output as if the stop event had been
3316 reported. */
3317 ecs->ptid = info->ptid;
3318 ecs->event_thread = info;
3319 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3320 ecs->ws.value.sig = GDB_SIGNAL_0;
3321
3322 handle_inferior_event (ecs);
3323
3324 if (!ecs->wait_some_more)
3325 {
3326 /* Cancel any running execution command. */
3327 thread_cancel_execution_command (info);
3328
3329 normal_stop ();
3330 }
3331
3332 do_cleanups (old_chain);
3333 }
3334
3335 return 0;
3336 }
3337
3338 /* This function is attached as a "thread_stop_requested" observer.
3339 Cleanup local state that assumed the PTID was to be resumed, and
3340 report the stop to the frontend. */
3341
3342 static void
3343 infrun_thread_stop_requested (ptid_t ptid)
3344 {
3345 struct thread_info *tp;
3346
3347 /* PTID was requested to stop. Remove matching threads from the
3348 step-over queue, so we don't try to resume them
3349 automatically. */
3350 ALL_NON_EXITED_THREADS (tp)
3351 if (ptid_match (tp->ptid, ptid))
3352 {
3353 if (thread_is_in_step_over_chain (tp))
3354 thread_step_over_chain_remove (tp);
3355 }
3356
3357 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3358 }
3359
3360 static void
3361 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3362 {
3363 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3364 nullify_last_target_wait_ptid ();
3365 }
3366
3367 /* Delete the step resume, single-step and longjmp/exception resume
3368 breakpoints of TP. */
3369
3370 static void
3371 delete_thread_infrun_breakpoints (struct thread_info *tp)
3372 {
3373 delete_step_resume_breakpoint (tp);
3374 delete_exception_resume_breakpoint (tp);
3375 delete_single_step_breakpoints (tp);
3376 }
3377
3378 /* If the target still has execution, call FUNC for each thread that
3379 just stopped. In all-stop, that's all the non-exited threads; in
3380 non-stop, that's the current thread, only. */
3381
3382 typedef void (*for_each_just_stopped_thread_callback_func)
3383 (struct thread_info *tp);
3384
3385 static void
3386 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3387 {
3388 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3389 return;
3390
3391 if (target_is_non_stop_p ())
3392 {
3393 /* If in non-stop mode, only the current thread stopped. */
3394 func (inferior_thread ());
3395 }
3396 else
3397 {
3398 struct thread_info *tp;
3399
3400 /* In all-stop mode, all threads have stopped. */
3401 ALL_NON_EXITED_THREADS (tp)
3402 {
3403 func (tp);
3404 }
3405 }
3406 }
3407
3408 /* Delete the step resume and longjmp/exception resume breakpoints of
3409 the threads that just stopped. */
3410
3411 static void
3412 delete_just_stopped_threads_infrun_breakpoints (void)
3413 {
3414 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3415 }
3416
3417 /* Delete the single-step breakpoints of the threads that just
3418 stopped. */
3419
3420 static void
3421 delete_just_stopped_threads_single_step_breakpoints (void)
3422 {
3423 for_each_just_stopped_thread (delete_single_step_breakpoints);
3424 }
3425
3426 /* A cleanup wrapper. */
3427
3428 static void
3429 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3430 {
3431 delete_just_stopped_threads_infrun_breakpoints ();
3432 }
3433
3434 /* See infrun.h. */
3435
3436 void
3437 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3438 const struct target_waitstatus *ws)
3439 {
3440 char *status_string = target_waitstatus_to_string (ws);
3441 struct ui_file *tmp_stream = mem_fileopen ();
3442 char *text;
3443
3444 /* The text is split over several lines because it was getting too long.
3445 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3446 output as a unit; we want only one timestamp printed if debug_timestamp
3447 is set. */
3448
3449 fprintf_unfiltered (tmp_stream,
3450 "infrun: target_wait (%d.%ld.%ld",
3451 ptid_get_pid (waiton_ptid),
3452 ptid_get_lwp (waiton_ptid),
3453 ptid_get_tid (waiton_ptid));
3454 if (ptid_get_pid (waiton_ptid) != -1)
3455 fprintf_unfiltered (tmp_stream,
3456 " [%s]", target_pid_to_str (waiton_ptid));
3457 fprintf_unfiltered (tmp_stream, ", status) =\n");
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %d.%ld.%ld [%s],\n",
3460 ptid_get_pid (result_ptid),
3461 ptid_get_lwp (result_ptid),
3462 ptid_get_tid (result_ptid),
3463 target_pid_to_str (result_ptid));
3464 fprintf_unfiltered (tmp_stream,
3465 "infrun: %s\n",
3466 status_string);
3467
3468 text = ui_file_xstrdup (tmp_stream, NULL);
3469
3470 /* This uses %s in part to handle %'s in the text, but also to avoid
3471 a gcc error: the format attribute requires a string literal. */
3472 fprintf_unfiltered (gdb_stdlog, "%s", text);
3473
3474 xfree (status_string);
3475 xfree (text);
3476 ui_file_delete (tmp_stream);
3477 }
3478
3479 /* Select a thread at random, out of those which are resumed and have
3480 had events. */
3481
3482 static struct thread_info *
3483 random_pending_event_thread (ptid_t waiton_ptid)
3484 {
3485 struct thread_info *event_tp;
3486 int num_events = 0;
3487 int random_selector;
3488
3489 /* First see how many events we have. Count only resumed threads
3490 that have an event pending. */
3491 ALL_NON_EXITED_THREADS (event_tp)
3492 if (ptid_match (event_tp->ptid, waiton_ptid)
3493 && event_tp->resumed
3494 && event_tp->suspend.waitstatus_pending_p)
3495 num_events++;
3496
3497 if (num_events == 0)
3498 return NULL;
3499
3500 /* Now randomly pick a thread out of those that have had events. */
3501 random_selector = (int)
3502 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3503
3504 if (debug_infrun && num_events > 1)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: Found %d events, selecting #%d\n",
3507 num_events, random_selector);
3508
3509 /* Select the Nth thread that has had an event. */
3510 ALL_NON_EXITED_THREADS (event_tp)
3511 if (ptid_match (event_tp->ptid, waiton_ptid)
3512 && event_tp->resumed
3513 && event_tp->suspend.waitstatus_pending_p)
3514 if (random_selector-- == 0)
3515 break;
3516
3517 return event_tp;
3518 }
3519
3520 /* Wrapper for target_wait that first checks whether threads have
3521 pending statuses to report before actually asking the target for
3522 more events. */
3523
3524 static ptid_t
3525 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3526 {
3527 ptid_t event_ptid;
3528 struct thread_info *tp;
3529
3530 /* First check if there is a resumed thread with a wait status
3531 pending. */
3532 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3533 {
3534 tp = random_pending_event_thread (ptid);
3535 }
3536 else
3537 {
3538 if (debug_infrun)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "infrun: Waiting for specific thread %s.\n",
3541 target_pid_to_str (ptid));
3542
3543 /* We have a specific thread to check. */
3544 tp = find_thread_ptid (ptid);
3545 gdb_assert (tp != NULL);
3546 if (!tp->suspend.waitstatus_pending_p)
3547 tp = NULL;
3548 }
3549
3550 if (tp != NULL
3551 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3552 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3553 {
3554 struct regcache *regcache = get_thread_regcache (tp->ptid);
3555 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3556 CORE_ADDR pc;
3557 int discard = 0;
3558
3559 pc = regcache_read_pc (regcache);
3560
3561 if (pc != tp->suspend.stop_pc)
3562 {
3563 if (debug_infrun)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "infrun: PC of %s changed. was=%s, now=%s\n",
3566 target_pid_to_str (tp->ptid),
3567 paddress (gdbarch, tp->prev_pc),
3568 paddress (gdbarch, pc));
3569 discard = 1;
3570 }
3571 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3572 {
3573 if (debug_infrun)
3574 fprintf_unfiltered (gdb_stdlog,
3575 "infrun: previous breakpoint of %s, at %s gone\n",
3576 target_pid_to_str (tp->ptid),
3577 paddress (gdbarch, pc));
3578
3579 discard = 1;
3580 }
3581
3582 if (discard)
3583 {
3584 if (debug_infrun)
3585 fprintf_unfiltered (gdb_stdlog,
3586 "infrun: pending event of %s cancelled.\n",
3587 target_pid_to_str (tp->ptid));
3588
3589 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 }
3592 }
3593
3594 if (tp != NULL)
3595 {
3596 if (debug_infrun)
3597 {
3598 char *statstr;
3599
3600 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3601 fprintf_unfiltered (gdb_stdlog,
3602 "infrun: Using pending wait status %s for %s.\n",
3603 statstr,
3604 target_pid_to_str (tp->ptid));
3605 xfree (statstr);
3606 }
3607
3608 /* Now that we've selected our final event LWP, un-adjust its PC
3609 if it was a software breakpoint (and the target doesn't
3610 always adjust the PC itself). */
3611 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3612 && !target_supports_stopped_by_sw_breakpoint ())
3613 {
3614 struct regcache *regcache;
3615 struct gdbarch *gdbarch;
3616 int decr_pc;
3617
3618 regcache = get_thread_regcache (tp->ptid);
3619 gdbarch = get_regcache_arch (regcache);
3620
3621 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3622 if (decr_pc != 0)
3623 {
3624 CORE_ADDR pc;
3625
3626 pc = regcache_read_pc (regcache);
3627 regcache_write_pc (regcache, pc + decr_pc);
3628 }
3629 }
3630
3631 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3632 *status = tp->suspend.waitstatus;
3633 tp->suspend.waitstatus_pending_p = 0;
3634
3635 /* Wake up the event loop again, until all pending events are
3636 processed. */
3637 if (target_is_async_p ())
3638 mark_async_event_handler (infrun_async_inferior_event_token);
3639 return tp->ptid;
3640 }
3641
3642 /* But if we don't find one, we'll have to wait. */
3643
3644 if (deprecated_target_wait_hook)
3645 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3646 else
3647 event_ptid = target_wait (ptid, status, options);
3648
3649 return event_ptid;
3650 }
3651
3652 /* Prepare and stabilize the inferior for detaching it. E.g.,
3653 detaching while a thread is displaced stepping is a recipe for
3654 crashing it, as nothing would readjust the PC out of the scratch
3655 pad. */
3656
3657 void
3658 prepare_for_detach (void)
3659 {
3660 struct inferior *inf = current_inferior ();
3661 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3662 struct cleanup *old_chain_1;
3663 struct displaced_step_inferior_state *displaced;
3664
3665 displaced = get_displaced_stepping_state (inf->pid);
3666
3667 /* Is any thread of this process displaced stepping? If not,
3668 there's nothing else to do. */
3669 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3670 return;
3671
3672 if (debug_infrun)
3673 fprintf_unfiltered (gdb_stdlog,
3674 "displaced-stepping in-process while detaching");
3675
3676 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3677 inf->detaching = 1;
3678
3679 while (!ptid_equal (displaced->step_ptid, null_ptid))
3680 {
3681 struct cleanup *old_chain_2;
3682 struct execution_control_state ecss;
3683 struct execution_control_state *ecs;
3684
3685 ecs = &ecss;
3686 memset (ecs, 0, sizeof (*ecs));
3687
3688 overlay_cache_invalid = 1;
3689 /* Flush target cache before starting to handle each event.
3690 Target was running and cache could be stale. This is just a
3691 heuristic. Running threads may modify target memory, but we
3692 don't get any event. */
3693 target_dcache_invalidate ();
3694
3695 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3696
3697 if (debug_infrun)
3698 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3699
3700 /* If an error happens while handling the event, propagate GDB's
3701 knowledge of the executing state to the frontend/user running
3702 state. */
3703 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3704 &minus_one_ptid);
3705
3706 /* Now figure out what to do with the result of the result. */
3707 handle_inferior_event (ecs);
3708
3709 /* No error, don't finish the state yet. */
3710 discard_cleanups (old_chain_2);
3711
3712 /* Breakpoints and watchpoints are not installed on the target
3713 at this point, and signals are passed directly to the
3714 inferior, so this must mean the process is gone. */
3715 if (!ecs->wait_some_more)
3716 {
3717 discard_cleanups (old_chain_1);
3718 error (_("Program exited while detaching"));
3719 }
3720 }
3721
3722 discard_cleanups (old_chain_1);
3723 }
3724
3725 /* Wait for control to return from inferior to debugger.
3726
3727 If inferior gets a signal, we may decide to start it up again
3728 instead of returning. That is why there is a loop in this function.
3729 When this function actually returns it means the inferior
3730 should be left stopped and GDB should read more commands. */
3731
3732 void
3733 wait_for_inferior (void)
3734 {
3735 struct cleanup *old_cleanups;
3736 struct cleanup *thread_state_chain;
3737
3738 if (debug_infrun)
3739 fprintf_unfiltered
3740 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3741
3742 old_cleanups
3743 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3744 NULL);
3745
3746 /* If an error happens while handling the event, propagate GDB's
3747 knowledge of the executing state to the frontend/user running
3748 state. */
3749 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3750
3751 while (1)
3752 {
3753 struct execution_control_state ecss;
3754 struct execution_control_state *ecs = &ecss;
3755 ptid_t waiton_ptid = minus_one_ptid;
3756
3757 memset (ecs, 0, sizeof (*ecs));
3758
3759 overlay_cache_invalid = 1;
3760
3761 /* Flush target cache before starting to handle each event.
3762 Target was running and cache could be stale. This is just a
3763 heuristic. Running threads may modify target memory, but we
3764 don't get any event. */
3765 target_dcache_invalidate ();
3766
3767 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3768
3769 if (debug_infrun)
3770 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3771
3772 /* Now figure out what to do with the result of the result. */
3773 handle_inferior_event (ecs);
3774
3775 if (!ecs->wait_some_more)
3776 break;
3777 }
3778
3779 /* No error, don't finish the state yet. */
3780 discard_cleanups (thread_state_chain);
3781
3782 do_cleanups (old_cleanups);
3783 }
3784
3785 /* Cleanup that reinstalls the readline callback handler, if the
3786 target is running in the background. If while handling the target
3787 event something triggered a secondary prompt, like e.g., a
3788 pagination prompt, we'll have removed the callback handler (see
3789 gdb_readline_wrapper_line). Need to do this as we go back to the
3790 event loop, ready to process further input. Note this has no
3791 effect if the handler hasn't actually been removed, because calling
3792 rl_callback_handler_install resets the line buffer, thus losing
3793 input. */
3794
3795 static void
3796 reinstall_readline_callback_handler_cleanup (void *arg)
3797 {
3798 struct ui *ui = current_ui;
3799
3800 if (!ui->async)
3801 {
3802 /* We're not going back to the top level event loop yet. Don't
3803 install the readline callback, as it'd prep the terminal,
3804 readline-style (raw, noecho) (e.g., --batch). We'll install
3805 it the next time the prompt is displayed, when we're ready
3806 for input. */
3807 return;
3808 }
3809
3810 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3811 gdb_rl_callback_handler_reinstall ();
3812 }
3813
3814 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3815 that's just the event thread. In all-stop, that's all threads. */
3816
3817 static void
3818 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3819 {
3820 struct thread_info *thr = ecs->event_thread;
3821
3822 if (thr != NULL && thr->thread_fsm != NULL)
3823 thread_fsm_clean_up (thr->thread_fsm, thr);
3824
3825 if (!non_stop)
3826 {
3827 ALL_NON_EXITED_THREADS (thr)
3828 {
3829 if (thr->thread_fsm == NULL)
3830 continue;
3831 if (thr == ecs->event_thread)
3832 continue;
3833
3834 switch_to_thread (thr->ptid);
3835 thread_fsm_clean_up (thr->thread_fsm, thr);
3836 }
3837
3838 if (ecs->event_thread != NULL)
3839 switch_to_thread (ecs->event_thread->ptid);
3840 }
3841 }
3842
3843 /* Helper for all_uis_check_sync_execution_done that works on the
3844 current UI. */
3845
3846 static void
3847 check_curr_ui_sync_execution_done (void)
3848 {
3849 struct ui *ui = current_ui;
3850
3851 if (ui->prompt_state == PROMPT_NEEDED
3852 && ui->async
3853 && !gdb_in_secondary_prompt_p (ui))
3854 {
3855 target_terminal_ours ();
3856 observer_notify_sync_execution_done ();
3857 ui_register_input_event_handler (ui);
3858 }
3859 }
3860
3861 /* See infrun.h. */
3862
3863 void
3864 all_uis_check_sync_execution_done (void)
3865 {
3866 SWITCH_THRU_ALL_UIS ()
3867 {
3868 check_curr_ui_sync_execution_done ();
3869 }
3870 }
3871
3872 /* See infrun.h. */
3873
3874 void
3875 all_uis_on_sync_execution_starting (void)
3876 {
3877 SWITCH_THRU_ALL_UIS ()
3878 {
3879 if (current_ui->prompt_state == PROMPT_NEEDED)
3880 async_disable_stdin ();
3881 }
3882 }
3883
3884 /* Asynchronous version of wait_for_inferior. It is called by the
3885 event loop whenever a change of state is detected on the file
3886 descriptor corresponding to the target. It can be called more than
3887 once to complete a single execution command. In such cases we need
3888 to keep the state in a global variable ECSS. If it is the last time
3889 that this function is called for a single execution command, then
3890 report to the user that the inferior has stopped, and do the
3891 necessary cleanups. */
3892
3893 void
3894 fetch_inferior_event (void *client_data)
3895 {
3896 struct execution_control_state ecss;
3897 struct execution_control_state *ecs = &ecss;
3898 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3899 struct cleanup *ts_old_chain;
3900 int cmd_done = 0;
3901 ptid_t waiton_ptid = minus_one_ptid;
3902
3903 memset (ecs, 0, sizeof (*ecs));
3904
3905 /* Events are always processed with the main UI as current UI. This
3906 way, warnings, debug output, etc. are always consistently sent to
3907 the main console. */
3908 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3909
3910 /* End up with readline processing input, if necessary. */
3911 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3912
3913 /* We're handling a live event, so make sure we're doing live
3914 debugging. If we're looking at traceframes while the target is
3915 running, we're going to need to get back to that mode after
3916 handling the event. */
3917 if (non_stop)
3918 {
3919 make_cleanup_restore_current_traceframe ();
3920 set_current_traceframe (-1);
3921 }
3922
3923 if (non_stop)
3924 /* In non-stop mode, the user/frontend should not notice a thread
3925 switch due to internal events. Make sure we reverse to the
3926 user selected thread and frame after handling the event and
3927 running any breakpoint commands. */
3928 make_cleanup_restore_current_thread ();
3929
3930 overlay_cache_invalid = 1;
3931 /* Flush target cache before starting to handle each event. Target
3932 was running and cache could be stale. This is just a heuristic.
3933 Running threads may modify target memory, but we don't get any
3934 event. */
3935 target_dcache_invalidate ();
3936
3937 scoped_restore save_exec_dir
3938 = make_scoped_restore (&execution_direction, target_execution_direction ());
3939
3940 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3941 target_can_async_p () ? TARGET_WNOHANG : 0);
3942
3943 if (debug_infrun)
3944 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3945
3946 /* If an error happens while handling the event, propagate GDB's
3947 knowledge of the executing state to the frontend/user running
3948 state. */
3949 if (!target_is_non_stop_p ())
3950 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3951 else
3952 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3953
3954 /* Get executed before make_cleanup_restore_current_thread above to apply
3955 still for the thread which has thrown the exception. */
3956 make_bpstat_clear_actions_cleanup ();
3957
3958 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3959
3960 /* Now figure out what to do with the result of the result. */
3961 handle_inferior_event (ecs);
3962
3963 if (!ecs->wait_some_more)
3964 {
3965 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3966 int should_stop = 1;
3967 struct thread_info *thr = ecs->event_thread;
3968 int should_notify_stop = 1;
3969
3970 delete_just_stopped_threads_infrun_breakpoints ();
3971
3972 if (thr != NULL)
3973 {
3974 struct thread_fsm *thread_fsm = thr->thread_fsm;
3975
3976 if (thread_fsm != NULL)
3977 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3978 }
3979
3980 if (!should_stop)
3981 {
3982 keep_going (ecs);
3983 }
3984 else
3985 {
3986 clean_up_just_stopped_threads_fsms (ecs);
3987
3988 if (thr != NULL && thr->thread_fsm != NULL)
3989 {
3990 should_notify_stop
3991 = thread_fsm_should_notify_stop (thr->thread_fsm);
3992 }
3993
3994 if (should_notify_stop)
3995 {
3996 int proceeded = 0;
3997
3998 /* We may not find an inferior if this was a process exit. */
3999 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4000 proceeded = normal_stop ();
4001
4002 if (!proceeded)
4003 {
4004 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4005 cmd_done = 1;
4006 }
4007 }
4008 }
4009 }
4010
4011 /* No error, don't finish the thread states yet. */
4012 discard_cleanups (ts_old_chain);
4013
4014 /* Revert thread and frame. */
4015 do_cleanups (old_chain);
4016
4017 /* If a UI was in sync execution mode, and now isn't, restore its
4018 prompt (a synchronous execution command has finished, and we're
4019 ready for input). */
4020 all_uis_check_sync_execution_done ();
4021
4022 if (cmd_done
4023 && exec_done_display_p
4024 && (ptid_equal (inferior_ptid, null_ptid)
4025 || !is_running (inferior_ptid)))
4026 printf_unfiltered (_("completed.\n"));
4027 }
4028
4029 /* Record the frame and location we're currently stepping through. */
4030 void
4031 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4032 {
4033 struct thread_info *tp = inferior_thread ();
4034
4035 tp->control.step_frame_id = get_frame_id (frame);
4036 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4037
4038 tp->current_symtab = sal.symtab;
4039 tp->current_line = sal.line;
4040 }
4041
4042 /* Clear context switchable stepping state. */
4043
4044 void
4045 init_thread_stepping_state (struct thread_info *tss)
4046 {
4047 tss->stepped_breakpoint = 0;
4048 tss->stepping_over_breakpoint = 0;
4049 tss->stepping_over_watchpoint = 0;
4050 tss->step_after_step_resume_breakpoint = 0;
4051 }
4052
4053 /* Set the cached copy of the last ptid/waitstatus. */
4054
4055 void
4056 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4057 {
4058 target_last_wait_ptid = ptid;
4059 target_last_waitstatus = status;
4060 }
4061
4062 /* Return the cached copy of the last pid/waitstatus returned by
4063 target_wait()/deprecated_target_wait_hook(). The data is actually
4064 cached by handle_inferior_event(), which gets called immediately
4065 after target_wait()/deprecated_target_wait_hook(). */
4066
4067 void
4068 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4069 {
4070 *ptidp = target_last_wait_ptid;
4071 *status = target_last_waitstatus;
4072 }
4073
4074 void
4075 nullify_last_target_wait_ptid (void)
4076 {
4077 target_last_wait_ptid = minus_one_ptid;
4078 }
4079
4080 /* Switch thread contexts. */
4081
4082 static void
4083 context_switch (ptid_t ptid)
4084 {
4085 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4086 {
4087 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4088 target_pid_to_str (inferior_ptid));
4089 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4090 target_pid_to_str (ptid));
4091 }
4092
4093 switch_to_thread (ptid);
4094 }
4095
4096 /* If the target can't tell whether we've hit breakpoints
4097 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4098 check whether that could have been caused by a breakpoint. If so,
4099 adjust the PC, per gdbarch_decr_pc_after_break. */
4100
4101 static void
4102 adjust_pc_after_break (struct thread_info *thread,
4103 struct target_waitstatus *ws)
4104 {
4105 struct regcache *regcache;
4106 struct gdbarch *gdbarch;
4107 struct address_space *aspace;
4108 CORE_ADDR breakpoint_pc, decr_pc;
4109
4110 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4111 we aren't, just return.
4112
4113 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4114 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4115 implemented by software breakpoints should be handled through the normal
4116 breakpoint layer.
4117
4118 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4119 different signals (SIGILL or SIGEMT for instance), but it is less
4120 clear where the PC is pointing afterwards. It may not match
4121 gdbarch_decr_pc_after_break. I don't know any specific target that
4122 generates these signals at breakpoints (the code has been in GDB since at
4123 least 1992) so I can not guess how to handle them here.
4124
4125 In earlier versions of GDB, a target with
4126 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4127 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4128 target with both of these set in GDB history, and it seems unlikely to be
4129 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4130
4131 if (ws->kind != TARGET_WAITKIND_STOPPED)
4132 return;
4133
4134 if (ws->value.sig != GDB_SIGNAL_TRAP)
4135 return;
4136
4137 /* In reverse execution, when a breakpoint is hit, the instruction
4138 under it has already been de-executed. The reported PC always
4139 points at the breakpoint address, so adjusting it further would
4140 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4141 architecture:
4142
4143 B1 0x08000000 : INSN1
4144 B2 0x08000001 : INSN2
4145 0x08000002 : INSN3
4146 PC -> 0x08000003 : INSN4
4147
4148 Say you're stopped at 0x08000003 as above. Reverse continuing
4149 from that point should hit B2 as below. Reading the PC when the
4150 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4151 been de-executed already.
4152
4153 B1 0x08000000 : INSN1
4154 B2 PC -> 0x08000001 : INSN2
4155 0x08000002 : INSN3
4156 0x08000003 : INSN4
4157
4158 We can't apply the same logic as for forward execution, because
4159 we would wrongly adjust the PC to 0x08000000, since there's a
4160 breakpoint at PC - 1. We'd then report a hit on B1, although
4161 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4162 behaviour. */
4163 if (execution_direction == EXEC_REVERSE)
4164 return;
4165
4166 /* If the target can tell whether the thread hit a SW breakpoint,
4167 trust it. Targets that can tell also adjust the PC
4168 themselves. */
4169 if (target_supports_stopped_by_sw_breakpoint ())
4170 return;
4171
4172 /* Note that relying on whether a breakpoint is planted in memory to
4173 determine this can fail. E.g,. the breakpoint could have been
4174 removed since. Or the thread could have been told to step an
4175 instruction the size of a breakpoint instruction, and only
4176 _after_ was a breakpoint inserted at its address. */
4177
4178 /* If this target does not decrement the PC after breakpoints, then
4179 we have nothing to do. */
4180 regcache = get_thread_regcache (thread->ptid);
4181 gdbarch = get_regcache_arch (regcache);
4182
4183 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4184 if (decr_pc == 0)
4185 return;
4186
4187 aspace = get_regcache_aspace (regcache);
4188
4189 /* Find the location where (if we've hit a breakpoint) the
4190 breakpoint would be. */
4191 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4192
4193 /* If the target can't tell whether a software breakpoint triggered,
4194 fallback to figuring it out based on breakpoints we think were
4195 inserted in the target, and on whether the thread was stepped or
4196 continued. */
4197
4198 /* Check whether there actually is a software breakpoint inserted at
4199 that location.
4200
4201 If in non-stop mode, a race condition is possible where we've
4202 removed a breakpoint, but stop events for that breakpoint were
4203 already queued and arrive later. To suppress those spurious
4204 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4205 and retire them after a number of stop events are reported. Note
4206 this is an heuristic and can thus get confused. The real fix is
4207 to get the "stopped by SW BP and needs adjustment" info out of
4208 the target/kernel (and thus never reach here; see above). */
4209 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4210 || (target_is_non_stop_p ()
4211 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4212 {
4213 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4214
4215 if (record_full_is_used ())
4216 record_full_gdb_operation_disable_set ();
4217
4218 /* When using hardware single-step, a SIGTRAP is reported for both
4219 a completed single-step and a software breakpoint. Need to
4220 differentiate between the two, as the latter needs adjusting
4221 but the former does not.
4222
4223 The SIGTRAP can be due to a completed hardware single-step only if
4224 - we didn't insert software single-step breakpoints
4225 - this thread is currently being stepped
4226
4227 If any of these events did not occur, we must have stopped due
4228 to hitting a software breakpoint, and have to back up to the
4229 breakpoint address.
4230
4231 As a special case, we could have hardware single-stepped a
4232 software breakpoint. In this case (prev_pc == breakpoint_pc),
4233 we also need to back up to the breakpoint address. */
4234
4235 if (thread_has_single_step_breakpoints_set (thread)
4236 || !currently_stepping (thread)
4237 || (thread->stepped_breakpoint
4238 && thread->prev_pc == breakpoint_pc))
4239 regcache_write_pc (regcache, breakpoint_pc);
4240
4241 do_cleanups (old_cleanups);
4242 }
4243 }
4244
4245 static int
4246 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4247 {
4248 for (frame = get_prev_frame (frame);
4249 frame != NULL;
4250 frame = get_prev_frame (frame))
4251 {
4252 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4253 return 1;
4254 if (get_frame_type (frame) != INLINE_FRAME)
4255 break;
4256 }
4257
4258 return 0;
4259 }
4260
4261 /* Auxiliary function that handles syscall entry/return events.
4262 It returns 1 if the inferior should keep going (and GDB
4263 should ignore the event), or 0 if the event deserves to be
4264 processed. */
4265
4266 static int
4267 handle_syscall_event (struct execution_control_state *ecs)
4268 {
4269 struct regcache *regcache;
4270 int syscall_number;
4271
4272 if (!ptid_equal (ecs->ptid, inferior_ptid))
4273 context_switch (ecs->ptid);
4274
4275 regcache = get_thread_regcache (ecs->ptid);
4276 syscall_number = ecs->ws.value.syscall_number;
4277 stop_pc = regcache_read_pc (regcache);
4278
4279 if (catch_syscall_enabled () > 0
4280 && catching_syscall_number (syscall_number) > 0)
4281 {
4282 if (debug_infrun)
4283 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4284 syscall_number);
4285
4286 ecs->event_thread->control.stop_bpstat
4287 = bpstat_stop_status (get_regcache_aspace (regcache),
4288 stop_pc, ecs->ptid, &ecs->ws);
4289
4290 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4291 {
4292 /* Catchpoint hit. */
4293 return 0;
4294 }
4295 }
4296
4297 /* If no catchpoint triggered for this, then keep going. */
4298 keep_going (ecs);
4299 return 1;
4300 }
4301
4302 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4303
4304 static void
4305 fill_in_stop_func (struct gdbarch *gdbarch,
4306 struct execution_control_state *ecs)
4307 {
4308 if (!ecs->stop_func_filled_in)
4309 {
4310 /* Don't care about return value; stop_func_start and stop_func_name
4311 will both be 0 if it doesn't work. */
4312 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4313 &ecs->stop_func_start, &ecs->stop_func_end);
4314 ecs->stop_func_start
4315 += gdbarch_deprecated_function_start_offset (gdbarch);
4316
4317 if (gdbarch_skip_entrypoint_p (gdbarch))
4318 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4319 ecs->stop_func_start);
4320
4321 ecs->stop_func_filled_in = 1;
4322 }
4323 }
4324
4325
4326 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4327
4328 static enum stop_kind
4329 get_inferior_stop_soon (ptid_t ptid)
4330 {
4331 struct inferior *inf = find_inferior_ptid (ptid);
4332
4333 gdb_assert (inf != NULL);
4334 return inf->control.stop_soon;
4335 }
4336
4337 /* Wait for one event. Store the resulting waitstatus in WS, and
4338 return the event ptid. */
4339
4340 static ptid_t
4341 wait_one (struct target_waitstatus *ws)
4342 {
4343 ptid_t event_ptid;
4344 ptid_t wait_ptid = minus_one_ptid;
4345
4346 overlay_cache_invalid = 1;
4347
4348 /* Flush target cache before starting to handle each event.
4349 Target was running and cache could be stale. This is just a
4350 heuristic. Running threads may modify target memory, but we
4351 don't get any event. */
4352 target_dcache_invalidate ();
4353
4354 if (deprecated_target_wait_hook)
4355 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4356 else
4357 event_ptid = target_wait (wait_ptid, ws, 0);
4358
4359 if (debug_infrun)
4360 print_target_wait_results (wait_ptid, event_ptid, ws);
4361
4362 return event_ptid;
4363 }
4364
4365 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4366 instead of the current thread. */
4367 #define THREAD_STOPPED_BY(REASON) \
4368 static int \
4369 thread_stopped_by_ ## REASON (ptid_t ptid) \
4370 { \
4371 struct cleanup *old_chain; \
4372 int res; \
4373 \
4374 old_chain = save_inferior_ptid (); \
4375 inferior_ptid = ptid; \
4376 \
4377 res = target_stopped_by_ ## REASON (); \
4378 \
4379 do_cleanups (old_chain); \
4380 \
4381 return res; \
4382 }
4383
4384 /* Generate thread_stopped_by_watchpoint. */
4385 THREAD_STOPPED_BY (watchpoint)
4386 /* Generate thread_stopped_by_sw_breakpoint. */
4387 THREAD_STOPPED_BY (sw_breakpoint)
4388 /* Generate thread_stopped_by_hw_breakpoint. */
4389 THREAD_STOPPED_BY (hw_breakpoint)
4390
4391 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4392
4393 static void
4394 switch_to_thread_cleanup (void *ptid_p)
4395 {
4396 ptid_t ptid = *(ptid_t *) ptid_p;
4397
4398 switch_to_thread (ptid);
4399 }
4400
4401 /* Save the thread's event and stop reason to process it later. */
4402
4403 static void
4404 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4405 {
4406 struct regcache *regcache;
4407 struct address_space *aspace;
4408
4409 if (debug_infrun)
4410 {
4411 char *statstr;
4412
4413 statstr = target_waitstatus_to_string (ws);
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: saving status %s for %d.%ld.%ld\n",
4416 statstr,
4417 ptid_get_pid (tp->ptid),
4418 ptid_get_lwp (tp->ptid),
4419 ptid_get_tid (tp->ptid));
4420 xfree (statstr);
4421 }
4422
4423 /* Record for later. */
4424 tp->suspend.waitstatus = *ws;
4425 tp->suspend.waitstatus_pending_p = 1;
4426
4427 regcache = get_thread_regcache (tp->ptid);
4428 aspace = get_regcache_aspace (regcache);
4429
4430 if (ws->kind == TARGET_WAITKIND_STOPPED
4431 && ws->value.sig == GDB_SIGNAL_TRAP)
4432 {
4433 CORE_ADDR pc = regcache_read_pc (regcache);
4434
4435 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4436
4437 if (thread_stopped_by_watchpoint (tp->ptid))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_WATCHPOINT;
4441 }
4442 else if (target_supports_stopped_by_sw_breakpoint ()
4443 && thread_stopped_by_sw_breakpoint (tp->ptid))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4447 }
4448 else if (target_supports_stopped_by_hw_breakpoint ()
4449 && thread_stopped_by_hw_breakpoint (tp->ptid))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4453 }
4454 else if (!target_supports_stopped_by_hw_breakpoint ()
4455 && hardware_breakpoint_inserted_here_p (aspace,
4456 pc))
4457 {
4458 tp->suspend.stop_reason
4459 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4460 }
4461 else if (!target_supports_stopped_by_sw_breakpoint ()
4462 && software_breakpoint_inserted_here_p (aspace,
4463 pc))
4464 {
4465 tp->suspend.stop_reason
4466 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4467 }
4468 else if (!thread_has_single_step_breakpoints_set (tp)
4469 && currently_stepping (tp))
4470 {
4471 tp->suspend.stop_reason
4472 = TARGET_STOPPED_BY_SINGLE_STEP;
4473 }
4474 }
4475 }
4476
4477 /* A cleanup that disables thread create/exit events. */
4478
4479 static void
4480 disable_thread_events (void *arg)
4481 {
4482 target_thread_events (0);
4483 }
4484
4485 /* See infrun.h. */
4486
4487 void
4488 stop_all_threads (void)
4489 {
4490 /* We may need multiple passes to discover all threads. */
4491 int pass;
4492 int iterations = 0;
4493 ptid_t entry_ptid;
4494 struct cleanup *old_chain;
4495
4496 gdb_assert (target_is_non_stop_p ());
4497
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4500
4501 entry_ptid = inferior_ptid;
4502 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4503
4504 target_thread_events (1);
4505 make_cleanup (disable_thread_events, NULL);
4506
4507 /* Request threads to stop, and then wait for the stops. Because
4508 threads we already know about can spawn more threads while we're
4509 trying to stop them, and we only learn about new threads when we
4510 update the thread list, do this in a loop, and keep iterating
4511 until two passes find no threads that need to be stopped. */
4512 for (pass = 0; pass < 2; pass++, iterations++)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: stop_all_threads, pass=%d, "
4517 "iterations=%d\n", pass, iterations);
4518 while (1)
4519 {
4520 ptid_t event_ptid;
4521 struct target_waitstatus ws;
4522 int need_wait = 0;
4523 struct thread_info *t;
4524
4525 update_thread_list ();
4526
4527 /* Go through all threads looking for threads that we need
4528 to tell the target to stop. */
4529 ALL_NON_EXITED_THREADS (t)
4530 {
4531 if (t->executing)
4532 {
4533 /* If already stopping, don't request a stop again.
4534 We just haven't seen the notification yet. */
4535 if (!t->stop_requested)
4536 {
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: %s executing, "
4540 "need stop\n",
4541 target_pid_to_str (t->ptid));
4542 target_stop (t->ptid);
4543 t->stop_requested = 1;
4544 }
4545 else
4546 {
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "infrun: %s executing, "
4550 "already stopping\n",
4551 target_pid_to_str (t->ptid));
4552 }
4553
4554 if (t->stop_requested)
4555 need_wait = 1;
4556 }
4557 else
4558 {
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog,
4561 "infrun: %s not executing\n",
4562 target_pid_to_str (t->ptid));
4563
4564 /* The thread may be not executing, but still be
4565 resumed with a pending status to process. */
4566 t->resumed = 0;
4567 }
4568 }
4569
4570 if (!need_wait)
4571 break;
4572
4573 /* If we find new threads on the second iteration, restart
4574 over. We want to see two iterations in a row with all
4575 threads stopped. */
4576 if (pass > 0)
4577 pass = -1;
4578
4579 event_ptid = wait_one (&ws);
4580 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4581 {
4582 /* All resumed threads exited. */
4583 }
4584 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4585 || ws.kind == TARGET_WAITKIND_EXITED
4586 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4587 {
4588 if (debug_infrun)
4589 {
4590 ptid_t ptid = pid_to_ptid (ws.value.integer);
4591
4592 fprintf_unfiltered (gdb_stdlog,
4593 "infrun: %s exited while "
4594 "stopping threads\n",
4595 target_pid_to_str (ptid));
4596 }
4597 }
4598 else
4599 {
4600 struct inferior *inf;
4601
4602 t = find_thread_ptid (event_ptid);
4603 if (t == NULL)
4604 t = add_thread (event_ptid);
4605
4606 t->stop_requested = 0;
4607 t->executing = 0;
4608 t->resumed = 0;
4609 t->control.may_range_step = 0;
4610
4611 /* This may be the first time we see the inferior report
4612 a stop. */
4613 inf = find_inferior_ptid (event_ptid);
4614 if (inf->needs_setup)
4615 {
4616 switch_to_thread_no_regs (t);
4617 setup_inferior (0);
4618 }
4619
4620 if (ws.kind == TARGET_WAITKIND_STOPPED
4621 && ws.value.sig == GDB_SIGNAL_0)
4622 {
4623 /* We caught the event that we intended to catch, so
4624 there's no event pending. */
4625 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4626 t->suspend.waitstatus_pending_p = 0;
4627
4628 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4629 {
4630 /* Add it back to the step-over queue. */
4631 if (debug_infrun)
4632 {
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: displaced-step of %s "
4635 "canceled: adding back to the "
4636 "step-over queue\n",
4637 target_pid_to_str (t->ptid));
4638 }
4639 t->control.trap_expected = 0;
4640 thread_step_over_chain_enqueue (t);
4641 }
4642 }
4643 else
4644 {
4645 enum gdb_signal sig;
4646 struct regcache *regcache;
4647
4648 if (debug_infrun)
4649 {
4650 char *statstr;
4651
4652 statstr = target_waitstatus_to_string (&ws);
4653 fprintf_unfiltered (gdb_stdlog,
4654 "infrun: target_wait %s, saving "
4655 "status for %d.%ld.%ld\n",
4656 statstr,
4657 ptid_get_pid (t->ptid),
4658 ptid_get_lwp (t->ptid),
4659 ptid_get_tid (t->ptid));
4660 xfree (statstr);
4661 }
4662
4663 /* Record for later. */
4664 save_waitstatus (t, &ws);
4665
4666 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4667 ? ws.value.sig : GDB_SIGNAL_0);
4668
4669 if (displaced_step_fixup (t->ptid, sig) < 0)
4670 {
4671 /* Add it back to the step-over queue. */
4672 t->control.trap_expected = 0;
4673 thread_step_over_chain_enqueue (t);
4674 }
4675
4676 regcache = get_thread_regcache (t->ptid);
4677 t->suspend.stop_pc = regcache_read_pc (regcache);
4678
4679 if (debug_infrun)
4680 {
4681 fprintf_unfiltered (gdb_stdlog,
4682 "infrun: saved stop_pc=%s for %s "
4683 "(currently_stepping=%d)\n",
4684 paddress (target_gdbarch (),
4685 t->suspend.stop_pc),
4686 target_pid_to_str (t->ptid),
4687 currently_stepping (t));
4688 }
4689 }
4690 }
4691 }
4692 }
4693
4694 do_cleanups (old_chain);
4695
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4698 }
4699
4700 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4701
4702 static int
4703 handle_no_resumed (struct execution_control_state *ecs)
4704 {
4705 struct inferior *inf;
4706 struct thread_info *thread;
4707
4708 if (target_can_async_p ())
4709 {
4710 struct ui *ui;
4711 int any_sync = 0;
4712
4713 ALL_UIS (ui)
4714 {
4715 if (ui->prompt_state == PROMPT_BLOCKED)
4716 {
4717 any_sync = 1;
4718 break;
4719 }
4720 }
4721 if (!any_sync)
4722 {
4723 /* There were no unwaited-for children left in the target, but,
4724 we're not synchronously waiting for events either. Just
4725 ignore. */
4726
4727 if (debug_infrun)
4728 fprintf_unfiltered (gdb_stdlog,
4729 "infrun: TARGET_WAITKIND_NO_RESUMED "
4730 "(ignoring: bg)\n");
4731 prepare_to_wait (ecs);
4732 return 1;
4733 }
4734 }
4735
4736 /* Otherwise, if we were running a synchronous execution command, we
4737 may need to cancel it and give the user back the terminal.
4738
4739 In non-stop mode, the target can't tell whether we've already
4740 consumed previous stop events, so it can end up sending us a
4741 no-resumed event like so:
4742
4743 #0 - thread 1 is left stopped
4744
4745 #1 - thread 2 is resumed and hits breakpoint
4746 -> TARGET_WAITKIND_STOPPED
4747
4748 #2 - thread 3 is resumed and exits
4749 this is the last resumed thread, so
4750 -> TARGET_WAITKIND_NO_RESUMED
4751
4752 #3 - gdb processes stop for thread 2 and decides to re-resume
4753 it.
4754
4755 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4756 thread 2 is now resumed, so the event should be ignored.
4757
4758 IOW, if the stop for thread 2 doesn't end a foreground command,
4759 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4760 event. But it could be that the event meant that thread 2 itself
4761 (or whatever other thread was the last resumed thread) exited.
4762
4763 To address this we refresh the thread list and check whether we
4764 have resumed threads _now_. In the example above, this removes
4765 thread 3 from the thread list. If thread 2 was re-resumed, we
4766 ignore this event. If we find no thread resumed, then we cancel
4767 the synchronous command show "no unwaited-for " to the user. */
4768 update_thread_list ();
4769
4770 ALL_NON_EXITED_THREADS (thread)
4771 {
4772 if (thread->executing
4773 || thread->suspend.waitstatus_pending_p)
4774 {
4775 /* There were no unwaited-for children left in the target at
4776 some point, but there are now. Just ignore. */
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: TARGET_WAITKIND_NO_RESUMED "
4780 "(ignoring: found resumed)\n");
4781 prepare_to_wait (ecs);
4782 return 1;
4783 }
4784 }
4785
4786 /* Note however that we may find no resumed thread because the whole
4787 process exited meanwhile (thus updating the thread list results
4788 in an empty thread list). In this case we know we'll be getting
4789 a process exit event shortly. */
4790 ALL_INFERIORS (inf)
4791 {
4792 if (inf->pid == 0)
4793 continue;
4794
4795 thread = any_live_thread_of_process (inf->pid);
4796 if (thread == NULL)
4797 {
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "infrun: TARGET_WAITKIND_NO_RESUMED "
4801 "(expect process exit)\n");
4802 prepare_to_wait (ecs);
4803 return 1;
4804 }
4805 }
4806
4807 /* Go ahead and report the event. */
4808 return 0;
4809 }
4810
4811 /* Given an execution control state that has been freshly filled in by
4812 an event from the inferior, figure out what it means and take
4813 appropriate action.
4814
4815 The alternatives are:
4816
4817 1) stop_waiting and return; to really stop and return to the
4818 debugger.
4819
4820 2) keep_going and return; to wait for the next event (set
4821 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4822 once). */
4823
4824 static void
4825 handle_inferior_event_1 (struct execution_control_state *ecs)
4826 {
4827 enum stop_kind stop_soon;
4828
4829 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4830 {
4831 /* We had an event in the inferior, but we are not interested in
4832 handling it at this level. The lower layers have already
4833 done what needs to be done, if anything.
4834
4835 One of the possible circumstances for this is when the
4836 inferior produces output for the console. The inferior has
4837 not stopped, and we are ignoring the event. Another possible
4838 circumstance is any event which the lower level knows will be
4839 reported multiple times without an intervening resume. */
4840 if (debug_infrun)
4841 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4842 prepare_to_wait (ecs);
4843 return;
4844 }
4845
4846 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4847 {
4848 if (debug_infrun)
4849 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4850 prepare_to_wait (ecs);
4851 return;
4852 }
4853
4854 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4855 && handle_no_resumed (ecs))
4856 return;
4857
4858 /* Cache the last pid/waitstatus. */
4859 set_last_target_status (ecs->ptid, ecs->ws);
4860
4861 /* Always clear state belonging to the previous time we stopped. */
4862 stop_stack_dummy = STOP_NONE;
4863
4864 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4865 {
4866 /* No unwaited-for children left. IOW, all resumed children
4867 have exited. */
4868 if (debug_infrun)
4869 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4870
4871 stop_print_frame = 0;
4872 stop_waiting (ecs);
4873 return;
4874 }
4875
4876 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4877 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4878 {
4879 ecs->event_thread = find_thread_ptid (ecs->ptid);
4880 /* If it's a new thread, add it to the thread database. */
4881 if (ecs->event_thread == NULL)
4882 ecs->event_thread = add_thread (ecs->ptid);
4883
4884 /* Disable range stepping. If the next step request could use a
4885 range, this will be end up re-enabled then. */
4886 ecs->event_thread->control.may_range_step = 0;
4887 }
4888
4889 /* Dependent on valid ECS->EVENT_THREAD. */
4890 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4891
4892 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4893 reinit_frame_cache ();
4894
4895 breakpoint_retire_moribund ();
4896
4897 /* First, distinguish signals caused by the debugger from signals
4898 that have to do with the program's own actions. Note that
4899 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4900 on the operating system version. Here we detect when a SIGILL or
4901 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4902 something similar for SIGSEGV, since a SIGSEGV will be generated
4903 when we're trying to execute a breakpoint instruction on a
4904 non-executable stack. This happens for call dummy breakpoints
4905 for architectures like SPARC that place call dummies on the
4906 stack. */
4907 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4908 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4909 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4910 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4911 {
4912 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4913
4914 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4915 regcache_read_pc (regcache)))
4916 {
4917 if (debug_infrun)
4918 fprintf_unfiltered (gdb_stdlog,
4919 "infrun: Treating signal as SIGTRAP\n");
4920 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4921 }
4922 }
4923
4924 /* Mark the non-executing threads accordingly. In all-stop, all
4925 threads of all processes are stopped when we get any event
4926 reported. In non-stop mode, only the event thread stops. */
4927 {
4928 ptid_t mark_ptid;
4929
4930 if (!target_is_non_stop_p ())
4931 mark_ptid = minus_one_ptid;
4932 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4933 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4934 {
4935 /* If we're handling a process exit in non-stop mode, even
4936 though threads haven't been deleted yet, one would think
4937 that there is nothing to do, as threads of the dead process
4938 will be soon deleted, and threads of any other process were
4939 left running. However, on some targets, threads survive a
4940 process exit event. E.g., for the "checkpoint" command,
4941 when the current checkpoint/fork exits, linux-fork.c
4942 automatically switches to another fork from within
4943 target_mourn_inferior, by associating the same
4944 inferior/thread to another fork. We haven't mourned yet at
4945 this point, but we must mark any threads left in the
4946 process as not-executing so that finish_thread_state marks
4947 them stopped (in the user's perspective) if/when we present
4948 the stop to the user. */
4949 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4950 }
4951 else
4952 mark_ptid = ecs->ptid;
4953
4954 set_executing (mark_ptid, 0);
4955
4956 /* Likewise the resumed flag. */
4957 set_resumed (mark_ptid, 0);
4958 }
4959
4960 switch (ecs->ws.kind)
4961 {
4962 case TARGET_WAITKIND_LOADED:
4963 if (debug_infrun)
4964 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4965 if (!ptid_equal (ecs->ptid, inferior_ptid))
4966 context_switch (ecs->ptid);
4967 /* Ignore gracefully during startup of the inferior, as it might
4968 be the shell which has just loaded some objects, otherwise
4969 add the symbols for the newly loaded objects. Also ignore at
4970 the beginning of an attach or remote session; we will query
4971 the full list of libraries once the connection is
4972 established. */
4973
4974 stop_soon = get_inferior_stop_soon (ecs->ptid);
4975 if (stop_soon == NO_STOP_QUIETLY)
4976 {
4977 struct regcache *regcache;
4978
4979 regcache = get_thread_regcache (ecs->ptid);
4980
4981 handle_solib_event ();
4982
4983 ecs->event_thread->control.stop_bpstat
4984 = bpstat_stop_status (get_regcache_aspace (regcache),
4985 stop_pc, ecs->ptid, &ecs->ws);
4986
4987 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4988 {
4989 /* A catchpoint triggered. */
4990 process_event_stop_test (ecs);
4991 return;
4992 }
4993
4994 /* If requested, stop when the dynamic linker notifies
4995 gdb of events. This allows the user to get control
4996 and place breakpoints in initializer routines for
4997 dynamically loaded objects (among other things). */
4998 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4999 if (stop_on_solib_events)
5000 {
5001 /* Make sure we print "Stopped due to solib-event" in
5002 normal_stop. */
5003 stop_print_frame = 1;
5004
5005 stop_waiting (ecs);
5006 return;
5007 }
5008 }
5009
5010 /* If we are skipping through a shell, or through shared library
5011 loading that we aren't interested in, resume the program. If
5012 we're running the program normally, also resume. */
5013 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5014 {
5015 /* Loading of shared libraries might have changed breakpoint
5016 addresses. Make sure new breakpoints are inserted. */
5017 if (stop_soon == NO_STOP_QUIETLY)
5018 insert_breakpoints ();
5019 resume (GDB_SIGNAL_0);
5020 prepare_to_wait (ecs);
5021 return;
5022 }
5023
5024 /* But stop if we're attaching or setting up a remote
5025 connection. */
5026 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5027 || stop_soon == STOP_QUIETLY_REMOTE)
5028 {
5029 if (debug_infrun)
5030 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5031 stop_waiting (ecs);
5032 return;
5033 }
5034
5035 internal_error (__FILE__, __LINE__,
5036 _("unhandled stop_soon: %d"), (int) stop_soon);
5037
5038 case TARGET_WAITKIND_SPURIOUS:
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5041 if (!ptid_equal (ecs->ptid, inferior_ptid))
5042 context_switch (ecs->ptid);
5043 resume (GDB_SIGNAL_0);
5044 prepare_to_wait (ecs);
5045 return;
5046
5047 case TARGET_WAITKIND_THREAD_CREATED:
5048 if (debug_infrun)
5049 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5050 if (!ptid_equal (ecs->ptid, inferior_ptid))
5051 context_switch (ecs->ptid);
5052 if (!switch_back_to_stepped_thread (ecs))
5053 keep_going (ecs);
5054 return;
5055
5056 case TARGET_WAITKIND_EXITED:
5057 case TARGET_WAITKIND_SIGNALLED:
5058 if (debug_infrun)
5059 {
5060 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: TARGET_WAITKIND_EXITED\n");
5063 else
5064 fprintf_unfiltered (gdb_stdlog,
5065 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5066 }
5067
5068 inferior_ptid = ecs->ptid;
5069 set_current_inferior (find_inferior_ptid (ecs->ptid));
5070 set_current_program_space (current_inferior ()->pspace);
5071 handle_vfork_child_exec_or_exit (0);
5072 target_terminal_ours (); /* Must do this before mourn anyway. */
5073
5074 /* Clearing any previous state of convenience variables. */
5075 clear_exit_convenience_vars ();
5076
5077 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5078 {
5079 /* Record the exit code in the convenience variable $_exitcode, so
5080 that the user can inspect this again later. */
5081 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5082 (LONGEST) ecs->ws.value.integer);
5083
5084 /* Also record this in the inferior itself. */
5085 current_inferior ()->has_exit_code = 1;
5086 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5087
5088 /* Support the --return-child-result option. */
5089 return_child_result_value = ecs->ws.value.integer;
5090
5091 observer_notify_exited (ecs->ws.value.integer);
5092 }
5093 else
5094 {
5095 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5096 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5097
5098 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5099 {
5100 /* Set the value of the internal variable $_exitsignal,
5101 which holds the signal uncaught by the inferior. */
5102 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5103 gdbarch_gdb_signal_to_target (gdbarch,
5104 ecs->ws.value.sig));
5105 }
5106 else
5107 {
5108 /* We don't have access to the target's method used for
5109 converting between signal numbers (GDB's internal
5110 representation <-> target's representation).
5111 Therefore, we cannot do a good job at displaying this
5112 information to the user. It's better to just warn
5113 her about it (if infrun debugging is enabled), and
5114 give up. */
5115 if (debug_infrun)
5116 fprintf_filtered (gdb_stdlog, _("\
5117 Cannot fill $_exitsignal with the correct signal number.\n"));
5118 }
5119
5120 observer_notify_signal_exited (ecs->ws.value.sig);
5121 }
5122
5123 gdb_flush (gdb_stdout);
5124 target_mourn_inferior (inferior_ptid);
5125 stop_print_frame = 0;
5126 stop_waiting (ecs);
5127 return;
5128
5129 /* The following are the only cases in which we keep going;
5130 the above cases end in a continue or goto. */
5131 case TARGET_WAITKIND_FORKED:
5132 case TARGET_WAITKIND_VFORKED:
5133 if (debug_infrun)
5134 {
5135 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5137 else
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5139 }
5140
5141 /* Check whether the inferior is displaced stepping. */
5142 {
5143 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5145
5146 /* If checking displaced stepping is supported, and thread
5147 ecs->ptid is displaced stepping. */
5148 if (displaced_step_in_progress_thread (ecs->ptid))
5149 {
5150 struct inferior *parent_inf
5151 = find_inferior_ptid (ecs->ptid);
5152 struct regcache *child_regcache;
5153 CORE_ADDR parent_pc;
5154
5155 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5156 indicating that the displaced stepping of syscall instruction
5157 has been done. Perform cleanup for parent process here. Note
5158 that this operation also cleans up the child process for vfork,
5159 because their pages are shared. */
5160 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5161 /* Start a new step-over in another thread if there's one
5162 that needs it. */
5163 start_step_over ();
5164
5165 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5166 {
5167 struct displaced_step_inferior_state *displaced
5168 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5169
5170 /* Restore scratch pad for child process. */
5171 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5172 }
5173
5174 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5175 the child's PC is also within the scratchpad. Set the child's PC
5176 to the parent's PC value, which has already been fixed up.
5177 FIXME: we use the parent's aspace here, although we're touching
5178 the child, because the child hasn't been added to the inferior
5179 list yet at this point. */
5180
5181 child_regcache
5182 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5183 gdbarch,
5184 parent_inf->aspace);
5185 /* Read PC value of parent process. */
5186 parent_pc = regcache_read_pc (regcache);
5187
5188 if (debug_displaced)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "displaced: write child pc from %s to %s\n",
5191 paddress (gdbarch,
5192 regcache_read_pc (child_regcache)),
5193 paddress (gdbarch, parent_pc));
5194
5195 regcache_write_pc (child_regcache, parent_pc);
5196 }
5197 }
5198
5199 if (!ptid_equal (ecs->ptid, inferior_ptid))
5200 context_switch (ecs->ptid);
5201
5202 /* Immediately detach breakpoints from the child before there's
5203 any chance of letting the user delete breakpoints from the
5204 breakpoint lists. If we don't do this early, it's easy to
5205 leave left over traps in the child, vis: "break foo; catch
5206 fork; c; <fork>; del; c; <child calls foo>". We only follow
5207 the fork on the last `continue', and by that time the
5208 breakpoint at "foo" is long gone from the breakpoint table.
5209 If we vforked, then we don't need to unpatch here, since both
5210 parent and child are sharing the same memory pages; we'll
5211 need to unpatch at follow/detach time instead to be certain
5212 that new breakpoints added between catchpoint hit time and
5213 vfork follow are detached. */
5214 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5215 {
5216 /* This won't actually modify the breakpoint list, but will
5217 physically remove the breakpoints from the child. */
5218 detach_breakpoints (ecs->ws.value.related_pid);
5219 }
5220
5221 delete_just_stopped_threads_single_step_breakpoints ();
5222
5223 /* In case the event is caught by a catchpoint, remember that
5224 the event is to be followed at the next resume of the thread,
5225 and not immediately. */
5226 ecs->event_thread->pending_follow = ecs->ws;
5227
5228 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5229
5230 ecs->event_thread->control.stop_bpstat
5231 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5232 stop_pc, ecs->ptid, &ecs->ws);
5233
5234 /* If no catchpoint triggered for this, then keep going. Note
5235 that we're interested in knowing the bpstat actually causes a
5236 stop, not just if it may explain the signal. Software
5237 watchpoints, for example, always appear in the bpstat. */
5238 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5239 {
5240 ptid_t parent;
5241 ptid_t child;
5242 int should_resume;
5243 int follow_child
5244 = (follow_fork_mode_string == follow_fork_mode_child);
5245
5246 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5247
5248 should_resume = follow_fork ();
5249
5250 parent = ecs->ptid;
5251 child = ecs->ws.value.related_pid;
5252
5253 /* At this point, the parent is marked running, and the
5254 child is marked stopped. */
5255
5256 /* If not resuming the parent, mark it stopped. */
5257 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5258 set_running (parent, 0);
5259
5260 /* If resuming the child, mark it running. */
5261 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5262 set_running (child, 1);
5263
5264 /* In non-stop mode, also resume the other branch. */
5265 if (!detach_fork && (non_stop
5266 || (sched_multi && target_is_non_stop_p ())))
5267 {
5268 if (follow_child)
5269 switch_to_thread (parent);
5270 else
5271 switch_to_thread (child);
5272
5273 ecs->event_thread = inferior_thread ();
5274 ecs->ptid = inferior_ptid;
5275 keep_going (ecs);
5276 }
5277
5278 if (follow_child)
5279 switch_to_thread (child);
5280 else
5281 switch_to_thread (parent);
5282
5283 ecs->event_thread = inferior_thread ();
5284 ecs->ptid = inferior_ptid;
5285
5286 if (should_resume)
5287 keep_going (ecs);
5288 else
5289 stop_waiting (ecs);
5290 return;
5291 }
5292 process_event_stop_test (ecs);
5293 return;
5294
5295 case TARGET_WAITKIND_VFORK_DONE:
5296 /* Done with the shared memory region. Re-insert breakpoints in
5297 the parent, and keep going. */
5298
5299 if (debug_infrun)
5300 fprintf_unfiltered (gdb_stdlog,
5301 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5302
5303 if (!ptid_equal (ecs->ptid, inferior_ptid))
5304 context_switch (ecs->ptid);
5305
5306 current_inferior ()->waiting_for_vfork_done = 0;
5307 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5308 /* This also takes care of reinserting breakpoints in the
5309 previously locked inferior. */
5310 keep_going (ecs);
5311 return;
5312
5313 case TARGET_WAITKIND_EXECD:
5314 if (debug_infrun)
5315 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5316
5317 if (!ptid_equal (ecs->ptid, inferior_ptid))
5318 context_switch (ecs->ptid);
5319
5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5321
5322 /* Do whatever is necessary to the parent branch of the vfork. */
5323 handle_vfork_child_exec_or_exit (1);
5324
5325 /* This causes the eventpoints and symbol table to be reset.
5326 Must do this now, before trying to determine whether to
5327 stop. */
5328 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5329
5330 /* In follow_exec we may have deleted the original thread and
5331 created a new one. Make sure that the event thread is the
5332 execd thread for that case (this is a nop otherwise). */
5333 ecs->event_thread = inferior_thread ();
5334
5335 ecs->event_thread->control.stop_bpstat
5336 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5337 stop_pc, ecs->ptid, &ecs->ws);
5338
5339 /* Note that this may be referenced from inside
5340 bpstat_stop_status above, through inferior_has_execd. */
5341 xfree (ecs->ws.value.execd_pathname);
5342 ecs->ws.value.execd_pathname = NULL;
5343
5344 /* If no catchpoint triggered for this, then keep going. */
5345 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5346 {
5347 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5348 keep_going (ecs);
5349 return;
5350 }
5351 process_event_stop_test (ecs);
5352 return;
5353
5354 /* Be careful not to try to gather much state about a thread
5355 that's in a syscall. It's frequently a losing proposition. */
5356 case TARGET_WAITKIND_SYSCALL_ENTRY:
5357 if (debug_infrun)
5358 fprintf_unfiltered (gdb_stdlog,
5359 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5360 /* Getting the current syscall number. */
5361 if (handle_syscall_event (ecs) == 0)
5362 process_event_stop_test (ecs);
5363 return;
5364
5365 /* Before examining the threads further, step this thread to
5366 get it entirely out of the syscall. (We get notice of the
5367 event when the thread is just on the verge of exiting a
5368 syscall. Stepping one instruction seems to get it back
5369 into user code.) */
5370 case TARGET_WAITKIND_SYSCALL_RETURN:
5371 if (debug_infrun)
5372 fprintf_unfiltered (gdb_stdlog,
5373 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5374 if (handle_syscall_event (ecs) == 0)
5375 process_event_stop_test (ecs);
5376 return;
5377
5378 case TARGET_WAITKIND_STOPPED:
5379 if (debug_infrun)
5380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5381 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5382 handle_signal_stop (ecs);
5383 return;
5384
5385 case TARGET_WAITKIND_NO_HISTORY:
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5388 /* Reverse execution: target ran out of history info. */
5389
5390 /* Switch to the stopped thread. */
5391 if (!ptid_equal (ecs->ptid, inferior_ptid))
5392 context_switch (ecs->ptid);
5393 if (debug_infrun)
5394 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5395
5396 delete_just_stopped_threads_single_step_breakpoints ();
5397 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5398 observer_notify_no_history ();
5399 stop_waiting (ecs);
5400 return;
5401 }
5402 }
5403
5404 /* A wrapper around handle_inferior_event_1, which also makes sure
5405 that all temporary struct value objects that were created during
5406 the handling of the event get deleted at the end. */
5407
5408 static void
5409 handle_inferior_event (struct execution_control_state *ecs)
5410 {
5411 struct value *mark = value_mark ();
5412
5413 handle_inferior_event_1 (ecs);
5414 /* Purge all temporary values created during the event handling,
5415 as it could be a long time before we return to the command level
5416 where such values would otherwise be purged. */
5417 value_free_to_mark (mark);
5418 }
5419
5420 /* Restart threads back to what they were trying to do back when we
5421 paused them for an in-line step-over. The EVENT_THREAD thread is
5422 ignored. */
5423
5424 static void
5425 restart_threads (struct thread_info *event_thread)
5426 {
5427 struct thread_info *tp;
5428
5429 /* In case the instruction just stepped spawned a new thread. */
5430 update_thread_list ();
5431
5432 ALL_NON_EXITED_THREADS (tp)
5433 {
5434 if (tp == event_thread)
5435 {
5436 if (debug_infrun)
5437 fprintf_unfiltered (gdb_stdlog,
5438 "infrun: restart threads: "
5439 "[%s] is event thread\n",
5440 target_pid_to_str (tp->ptid));
5441 continue;
5442 }
5443
5444 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: "
5449 "[%s] not meant to be running\n",
5450 target_pid_to_str (tp->ptid));
5451 continue;
5452 }
5453
5454 if (tp->resumed)
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: [%s] resumed\n",
5459 target_pid_to_str (tp->ptid));
5460 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5461 continue;
5462 }
5463
5464 if (thread_is_in_step_over_chain (tp))
5465 {
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: restart threads: "
5469 "[%s] needs step-over\n",
5470 target_pid_to_str (tp->ptid));
5471 gdb_assert (!tp->resumed);
5472 continue;
5473 }
5474
5475
5476 if (tp->suspend.waitstatus_pending_p)
5477 {
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: restart threads: "
5481 "[%s] has pending status\n",
5482 target_pid_to_str (tp->ptid));
5483 tp->resumed = 1;
5484 continue;
5485 }
5486
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520 }
5521
5522 /* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525 static int
5526 resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528 {
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531 }
5532
5533 /* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539 static int
5540 finish_step_over (struct execution_control_state *ecs)
5541 {
5542 int had_step_over_info;
5543
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
5556 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5557 clear_step_over_info ();
5558 }
5559
5560 if (!target_is_non_stop_p ())
5561 return 0;
5562
5563 /* Start a new step-over in another thread if there's one that
5564 needs it. */
5565 start_step_over ();
5566
5567 /* If we were stepping over a breakpoint before, and haven't started
5568 a new in-line step-over sequence, then restart all other threads
5569 (except the event thread). We can't do this in all-stop, as then
5570 e.g., we wouldn't be able to issue any other remote packet until
5571 these other threads stop. */
5572 if (had_step_over_info && !step_over_info_valid_p ())
5573 {
5574 struct thread_info *pending;
5575
5576 /* If we only have threads with pending statuses, the restart
5577 below won't restart any thread and so nothing re-inserts the
5578 breakpoint we just stepped over. But we need it inserted
5579 when we later process the pending events, otherwise if
5580 another thread has a pending event for this breakpoint too,
5581 we'd discard its event (because the breakpoint that
5582 originally caused the event was no longer inserted). */
5583 context_switch (ecs->ptid);
5584 insert_breakpoints ();
5585
5586 restart_threads (ecs->event_thread);
5587
5588 /* If we have events pending, go through handle_inferior_event
5589 again, picking up a pending event at random. This avoids
5590 thread starvation. */
5591
5592 /* But not if we just stepped over a watchpoint in order to let
5593 the instruction execute so we can evaluate its expression.
5594 The set of watchpoints that triggered is recorded in the
5595 breakpoint objects themselves (see bp->watchpoint_triggered).
5596 If we processed another event first, that other event could
5597 clobber this info. */
5598 if (ecs->event_thread->stepping_over_watchpoint)
5599 return 0;
5600
5601 pending = iterate_over_threads (resumed_thread_with_pending_status,
5602 NULL);
5603 if (pending != NULL)
5604 {
5605 struct thread_info *tp = ecs->event_thread;
5606 struct regcache *regcache;
5607
5608 if (debug_infrun)
5609 {
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: found resumed threads with "
5612 "pending events, saving status\n");
5613 }
5614
5615 gdb_assert (pending != tp);
5616
5617 /* Record the event thread's event for later. */
5618 save_waitstatus (tp, &ecs->ws);
5619 /* This was cleared early, by handle_inferior_event. Set it
5620 so this pending event is considered by
5621 do_target_wait. */
5622 tp->resumed = 1;
5623
5624 gdb_assert (!tp->executing);
5625
5626 regcache = get_thread_regcache (tp->ptid);
5627 tp->suspend.stop_pc = regcache_read_pc (regcache);
5628
5629 if (debug_infrun)
5630 {
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: saved stop_pc=%s for %s "
5633 "(currently_stepping=%d)\n",
5634 paddress (target_gdbarch (),
5635 tp->suspend.stop_pc),
5636 target_pid_to_str (tp->ptid),
5637 currently_stepping (tp));
5638 }
5639
5640 /* This in-line step-over finished; clear this so we won't
5641 start a new one. This is what handle_signal_stop would
5642 do, if we returned false. */
5643 tp->stepping_over_breakpoint = 0;
5644
5645 /* Wake up the event loop again. */
5646 mark_async_event_handler (infrun_async_inferior_event_token);
5647
5648 prepare_to_wait (ecs);
5649 return 1;
5650 }
5651 }
5652
5653 return 0;
5654 }
5655
5656 /* Come here when the program has stopped with a signal. */
5657
5658 static void
5659 handle_signal_stop (struct execution_control_state *ecs)
5660 {
5661 struct frame_info *frame;
5662 struct gdbarch *gdbarch;
5663 int stopped_by_watchpoint;
5664 enum stop_kind stop_soon;
5665 int random_signal;
5666
5667 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5668
5669 /* Do we need to clean up the state of a thread that has
5670 completed a displaced single-step? (Doing so usually affects
5671 the PC, so do it here, before we set stop_pc.) */
5672 if (finish_step_over (ecs))
5673 return;
5674
5675 /* If we either finished a single-step or hit a breakpoint, but
5676 the user wanted this thread to be stopped, pretend we got a
5677 SIG0 (generic unsignaled stop). */
5678 if (ecs->event_thread->stop_requested
5679 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5680 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5681
5682 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5683
5684 if (debug_infrun)
5685 {
5686 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5687 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5688 struct cleanup *old_chain = save_inferior_ptid ();
5689
5690 inferior_ptid = ecs->ptid;
5691
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5693 paddress (gdbarch, stop_pc));
5694 if (target_stopped_by_watchpoint ())
5695 {
5696 CORE_ADDR addr;
5697
5698 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5699
5700 if (target_stopped_data_address (&current_target, &addr))
5701 fprintf_unfiltered (gdb_stdlog,
5702 "infrun: stopped data address = %s\n",
5703 paddress (gdbarch, addr));
5704 else
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: (no data address available)\n");
5707 }
5708
5709 do_cleanups (old_chain);
5710 }
5711
5712 /* This is originated from start_remote(), start_inferior() and
5713 shared libraries hook functions. */
5714 stop_soon = get_inferior_stop_soon (ecs->ptid);
5715 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5716 {
5717 if (!ptid_equal (ecs->ptid, inferior_ptid))
5718 context_switch (ecs->ptid);
5719 if (debug_infrun)
5720 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5721 stop_print_frame = 1;
5722 stop_waiting (ecs);
5723 return;
5724 }
5725
5726 /* This originates from attach_command(). We need to overwrite
5727 the stop_signal here, because some kernels don't ignore a
5728 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5729 See more comments in inferior.h. On the other hand, if we
5730 get a non-SIGSTOP, report it to the user - assume the backend
5731 will handle the SIGSTOP if it should show up later.
5732
5733 Also consider that the attach is complete when we see a
5734 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5735 target extended-remote report it instead of a SIGSTOP
5736 (e.g. gdbserver). We already rely on SIGTRAP being our
5737 signal, so this is no exception.
5738
5739 Also consider that the attach is complete when we see a
5740 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5741 the target to stop all threads of the inferior, in case the
5742 low level attach operation doesn't stop them implicitly. If
5743 they weren't stopped implicitly, then the stub will report a
5744 GDB_SIGNAL_0, meaning: stopped for no particular reason
5745 other than GDB's request. */
5746 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5747 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5749 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5750 {
5751 stop_print_frame = 1;
5752 stop_waiting (ecs);
5753 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5754 return;
5755 }
5756
5757 /* See if something interesting happened to the non-current thread. If
5758 so, then switch to that thread. */
5759 if (!ptid_equal (ecs->ptid, inferior_ptid))
5760 {
5761 if (debug_infrun)
5762 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5763
5764 context_switch (ecs->ptid);
5765
5766 if (deprecated_context_hook)
5767 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5768 }
5769
5770 /* At this point, get hold of the now-current thread's frame. */
5771 frame = get_current_frame ();
5772 gdbarch = get_frame_arch (frame);
5773
5774 /* Pull the single step breakpoints out of the target. */
5775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5776 {
5777 struct regcache *regcache;
5778 struct address_space *aspace;
5779 CORE_ADDR pc;
5780
5781 regcache = get_thread_regcache (ecs->ptid);
5782 aspace = get_regcache_aspace (regcache);
5783 pc = regcache_read_pc (regcache);
5784
5785 /* However, before doing so, if this single-step breakpoint was
5786 actually for another thread, set this thread up for moving
5787 past it. */
5788 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5789 aspace, pc))
5790 {
5791 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5792 {
5793 if (debug_infrun)
5794 {
5795 fprintf_unfiltered (gdb_stdlog,
5796 "infrun: [%s] hit another thread's "
5797 "single-step breakpoint\n",
5798 target_pid_to_str (ecs->ptid));
5799 }
5800 ecs->hit_singlestep_breakpoint = 1;
5801 }
5802 }
5803 else
5804 {
5805 if (debug_infrun)
5806 {
5807 fprintf_unfiltered (gdb_stdlog,
5808 "infrun: [%s] hit its "
5809 "single-step breakpoint\n",
5810 target_pid_to_str (ecs->ptid));
5811 }
5812 }
5813 }
5814 delete_just_stopped_threads_single_step_breakpoints ();
5815
5816 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5817 && ecs->event_thread->control.trap_expected
5818 && ecs->event_thread->stepping_over_watchpoint)
5819 stopped_by_watchpoint = 0;
5820 else
5821 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5822
5823 /* If necessary, step over this watchpoint. We'll be back to display
5824 it in a moment. */
5825 if (stopped_by_watchpoint
5826 && (target_have_steppable_watchpoint
5827 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5828 {
5829 /* At this point, we are stopped at an instruction which has
5830 attempted to write to a piece of memory under control of
5831 a watchpoint. The instruction hasn't actually executed
5832 yet. If we were to evaluate the watchpoint expression
5833 now, we would get the old value, and therefore no change
5834 would seem to have occurred.
5835
5836 In order to make watchpoints work `right', we really need
5837 to complete the memory write, and then evaluate the
5838 watchpoint expression. We do this by single-stepping the
5839 target.
5840
5841 It may not be necessary to disable the watchpoint to step over
5842 it. For example, the PA can (with some kernel cooperation)
5843 single step over a watchpoint without disabling the watchpoint.
5844
5845 It is far more common to need to disable a watchpoint to step
5846 the inferior over it. If we have non-steppable watchpoints,
5847 we must disable the current watchpoint; it's simplest to
5848 disable all watchpoints.
5849
5850 Any breakpoint at PC must also be stepped over -- if there's
5851 one, it will have already triggered before the watchpoint
5852 triggered, and we either already reported it to the user, or
5853 it didn't cause a stop and we called keep_going. In either
5854 case, if there was a breakpoint at PC, we must be trying to
5855 step past it. */
5856 ecs->event_thread->stepping_over_watchpoint = 1;
5857 keep_going (ecs);
5858 return;
5859 }
5860
5861 ecs->event_thread->stepping_over_breakpoint = 0;
5862 ecs->event_thread->stepping_over_watchpoint = 0;
5863 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5864 ecs->event_thread->control.stop_step = 0;
5865 stop_print_frame = 1;
5866 stopped_by_random_signal = 0;
5867
5868 /* Hide inlined functions starting here, unless we just performed stepi or
5869 nexti. After stepi and nexti, always show the innermost frame (not any
5870 inline function call sites). */
5871 if (ecs->event_thread->control.step_range_end != 1)
5872 {
5873 struct address_space *aspace =
5874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5875
5876 /* skip_inline_frames is expensive, so we avoid it if we can
5877 determine that the address is one where functions cannot have
5878 been inlined. This improves performance with inferiors that
5879 load a lot of shared libraries, because the solib event
5880 breakpoint is defined as the address of a function (i.e. not
5881 inline). Note that we have to check the previous PC as well
5882 as the current one to catch cases when we have just
5883 single-stepped off a breakpoint prior to reinstating it.
5884 Note that we're assuming that the code we single-step to is
5885 not inline, but that's not definitive: there's nothing
5886 preventing the event breakpoint function from containing
5887 inlined code, and the single-step ending up there. If the
5888 user had set a breakpoint on that inlined code, the missing
5889 skip_inline_frames call would break things. Fortunately
5890 that's an extremely unlikely scenario. */
5891 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5892 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5893 && ecs->event_thread->control.trap_expected
5894 && pc_at_non_inline_function (aspace,
5895 ecs->event_thread->prev_pc,
5896 &ecs->ws)))
5897 {
5898 skip_inline_frames (ecs->ptid);
5899
5900 /* Re-fetch current thread's frame in case that invalidated
5901 the frame cache. */
5902 frame = get_current_frame ();
5903 gdbarch = get_frame_arch (frame);
5904 }
5905 }
5906
5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5908 && ecs->event_thread->control.trap_expected
5909 && gdbarch_single_step_through_delay_p (gdbarch)
5910 && currently_stepping (ecs->event_thread))
5911 {
5912 /* We're trying to step off a breakpoint. Turns out that we're
5913 also on an instruction that needs to be stepped multiple
5914 times before it's been fully executing. E.g., architectures
5915 with a delay slot. It needs to be stepped twice, once for
5916 the instruction and once for the delay slot. */
5917 int step_through_delay
5918 = gdbarch_single_step_through_delay (gdbarch, frame);
5919
5920 if (debug_infrun && step_through_delay)
5921 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5922 if (ecs->event_thread->control.step_range_end == 0
5923 && step_through_delay)
5924 {
5925 /* The user issued a continue when stopped at a breakpoint.
5926 Set up for another trap and get out of here. */
5927 ecs->event_thread->stepping_over_breakpoint = 1;
5928 keep_going (ecs);
5929 return;
5930 }
5931 else if (step_through_delay)
5932 {
5933 /* The user issued a step when stopped at a breakpoint.
5934 Maybe we should stop, maybe we should not - the delay
5935 slot *might* correspond to a line of source. In any
5936 case, don't decide that here, just set
5937 ecs->stepping_over_breakpoint, making sure we
5938 single-step again before breakpoints are re-inserted. */
5939 ecs->event_thread->stepping_over_breakpoint = 1;
5940 }
5941 }
5942
5943 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5944 handles this event. */
5945 ecs->event_thread->control.stop_bpstat
5946 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5947 stop_pc, ecs->ptid, &ecs->ws);
5948
5949 /* Following in case break condition called a
5950 function. */
5951 stop_print_frame = 1;
5952
5953 /* This is where we handle "moribund" watchpoints. Unlike
5954 software breakpoints traps, hardware watchpoint traps are
5955 always distinguishable from random traps. If no high-level
5956 watchpoint is associated with the reported stop data address
5957 anymore, then the bpstat does not explain the signal ---
5958 simply make sure to ignore it if `stopped_by_watchpoint' is
5959 set. */
5960
5961 if (debug_infrun
5962 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5963 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5964 GDB_SIGNAL_TRAP)
5965 && stopped_by_watchpoint)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: no user watchpoint explains "
5968 "watchpoint SIGTRAP, ignoring\n");
5969
5970 /* NOTE: cagney/2003-03-29: These checks for a random signal
5971 at one stage in the past included checks for an inferior
5972 function call's call dummy's return breakpoint. The original
5973 comment, that went with the test, read:
5974
5975 ``End of a stack dummy. Some systems (e.g. Sony news) give
5976 another signal besides SIGTRAP, so check here as well as
5977 above.''
5978
5979 If someone ever tries to get call dummys on a
5980 non-executable stack to work (where the target would stop
5981 with something like a SIGSEGV), then those tests might need
5982 to be re-instated. Given, however, that the tests were only
5983 enabled when momentary breakpoints were not being used, I
5984 suspect that it won't be the case.
5985
5986 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5987 be necessary for call dummies on a non-executable stack on
5988 SPARC. */
5989
5990 /* See if the breakpoints module can explain the signal. */
5991 random_signal
5992 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5993 ecs->event_thread->suspend.stop_signal);
5994
5995 /* Maybe this was a trap for a software breakpoint that has since
5996 been removed. */
5997 if (random_signal && target_stopped_by_sw_breakpoint ())
5998 {
5999 if (program_breakpoint_here_p (gdbarch, stop_pc))
6000 {
6001 struct regcache *regcache;
6002 int decr_pc;
6003
6004 /* Re-adjust PC to what the program would see if GDB was not
6005 debugging it. */
6006 regcache = get_thread_regcache (ecs->event_thread->ptid);
6007 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6008 if (decr_pc != 0)
6009 {
6010 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6011
6012 if (record_full_is_used ())
6013 record_full_gdb_operation_disable_set ();
6014
6015 regcache_write_pc (regcache, stop_pc + decr_pc);
6016
6017 do_cleanups (old_cleanups);
6018 }
6019 }
6020 else
6021 {
6022 /* A delayed software breakpoint event. Ignore the trap. */
6023 if (debug_infrun)
6024 fprintf_unfiltered (gdb_stdlog,
6025 "infrun: delayed software breakpoint "
6026 "trap, ignoring\n");
6027 random_signal = 0;
6028 }
6029 }
6030
6031 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6032 has since been removed. */
6033 if (random_signal && target_stopped_by_hw_breakpoint ())
6034 {
6035 /* A delayed hardware breakpoint event. Ignore the trap. */
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: delayed hardware breakpoint/watchpoint "
6039 "trap, ignoring\n");
6040 random_signal = 0;
6041 }
6042
6043 /* If not, perhaps stepping/nexting can. */
6044 if (random_signal)
6045 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6046 && currently_stepping (ecs->event_thread));
6047
6048 /* Perhaps the thread hit a single-step breakpoint of _another_
6049 thread. Single-step breakpoints are transparent to the
6050 breakpoints module. */
6051 if (random_signal)
6052 random_signal = !ecs->hit_singlestep_breakpoint;
6053
6054 /* No? Perhaps we got a moribund watchpoint. */
6055 if (random_signal)
6056 random_signal = !stopped_by_watchpoint;
6057
6058 /* For the program's own signals, act according to
6059 the signal handling tables. */
6060
6061 if (random_signal)
6062 {
6063 /* Signal not for debugging purposes. */
6064 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6065 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6066
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6069 gdb_signal_to_symbol_string (stop_signal));
6070
6071 stopped_by_random_signal = 1;
6072
6073 /* Always stop on signals if we're either just gaining control
6074 of the program, or the user explicitly requested this thread
6075 to remain stopped. */
6076 if (stop_soon != NO_STOP_QUIETLY
6077 || ecs->event_thread->stop_requested
6078 || (!inf->detaching
6079 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6080 {
6081 stop_waiting (ecs);
6082 return;
6083 }
6084
6085 /* Notify observers the signal has "handle print" set. Note we
6086 returned early above if stopping; normal_stop handles the
6087 printing in that case. */
6088 if (signal_print[ecs->event_thread->suspend.stop_signal])
6089 {
6090 /* The signal table tells us to print about this signal. */
6091 target_terminal_ours_for_output ();
6092 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6093 target_terminal_inferior ();
6094 }
6095
6096 /* Clear the signal if it should not be passed. */
6097 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6098 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6099
6100 if (ecs->event_thread->prev_pc == stop_pc
6101 && ecs->event_thread->control.trap_expected
6102 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6103 {
6104 int was_in_line;
6105
6106 /* We were just starting a new sequence, attempting to
6107 single-step off of a breakpoint and expecting a SIGTRAP.
6108 Instead this signal arrives. This signal will take us out
6109 of the stepping range so GDB needs to remember to, when
6110 the signal handler returns, resume stepping off that
6111 breakpoint. */
6112 /* To simplify things, "continue" is forced to use the same
6113 code paths as single-step - set a breakpoint at the
6114 signal return address and then, once hit, step off that
6115 breakpoint. */
6116 if (debug_infrun)
6117 fprintf_unfiltered (gdb_stdlog,
6118 "infrun: signal arrived while stepping over "
6119 "breakpoint\n");
6120
6121 was_in_line = step_over_info_valid_p ();
6122 clear_step_over_info ();
6123 insert_hp_step_resume_breakpoint_at_frame (frame);
6124 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6125 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6126 ecs->event_thread->control.trap_expected = 0;
6127
6128 if (target_is_non_stop_p ())
6129 {
6130 /* Either "set non-stop" is "on", or the target is
6131 always in non-stop mode. In this case, we have a bit
6132 more work to do. Resume the current thread, and if
6133 we had paused all threads, restart them while the
6134 signal handler runs. */
6135 keep_going (ecs);
6136
6137 if (was_in_line)
6138 {
6139 restart_threads (ecs->event_thread);
6140 }
6141 else if (debug_infrun)
6142 {
6143 fprintf_unfiltered (gdb_stdlog,
6144 "infrun: no need to restart threads\n");
6145 }
6146 return;
6147 }
6148
6149 /* If we were nexting/stepping some other thread, switch to
6150 it, so that we don't continue it, losing control. */
6151 if (!switch_back_to_stepped_thread (ecs))
6152 keep_going (ecs);
6153 return;
6154 }
6155
6156 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6157 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6158 || ecs->event_thread->control.step_range_end == 1)
6159 && frame_id_eq (get_stack_frame_id (frame),
6160 ecs->event_thread->control.step_stack_frame_id)
6161 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6162 {
6163 /* The inferior is about to take a signal that will take it
6164 out of the single step range. Set a breakpoint at the
6165 current PC (which is presumably where the signal handler
6166 will eventually return) and then allow the inferior to
6167 run free.
6168
6169 Note that this is only needed for a signal delivered
6170 while in the single-step range. Nested signals aren't a
6171 problem as they eventually all return. */
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog,
6174 "infrun: signal may take us out of "
6175 "single-step range\n");
6176
6177 clear_step_over_info ();
6178 insert_hp_step_resume_breakpoint_at_frame (frame);
6179 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6180 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6181 ecs->event_thread->control.trap_expected = 0;
6182 keep_going (ecs);
6183 return;
6184 }
6185
6186 /* Note: step_resume_breakpoint may be non-NULL. This occures
6187 when either there's a nested signal, or when there's a
6188 pending signal enabled just as the signal handler returns
6189 (leaving the inferior at the step-resume-breakpoint without
6190 actually executing it). Either way continue until the
6191 breakpoint is really hit. */
6192
6193 if (!switch_back_to_stepped_thread (ecs))
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: random signal, keep going\n");
6198
6199 keep_going (ecs);
6200 }
6201 return;
6202 }
6203
6204 process_event_stop_test (ecs);
6205 }
6206
6207 /* Come here when we've got some debug event / signal we can explain
6208 (IOW, not a random signal), and test whether it should cause a
6209 stop, or whether we should resume the inferior (transparently).
6210 E.g., could be a breakpoint whose condition evaluates false; we
6211 could be still stepping within the line; etc. */
6212
6213 static void
6214 process_event_stop_test (struct execution_control_state *ecs)
6215 {
6216 struct symtab_and_line stop_pc_sal;
6217 struct frame_info *frame;
6218 struct gdbarch *gdbarch;
6219 CORE_ADDR jmp_buf_pc;
6220 struct bpstat_what what;
6221
6222 /* Handle cases caused by hitting a breakpoint. */
6223
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
6226
6227 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6228
6229 if (what.call_dummy)
6230 {
6231 stop_stack_dummy = what.call_dummy;
6232 }
6233
6234 /* A few breakpoint types have callbacks associated (e.g.,
6235 bp_jit_event). Run them now. */
6236 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6237
6238 /* If we hit an internal event that triggers symbol changes, the
6239 current frame will be invalidated within bpstat_what (e.g., if we
6240 hit an internal solib event). Re-fetch it. */
6241 frame = get_current_frame ();
6242 gdbarch = get_frame_arch (frame);
6243
6244 switch (what.main_action)
6245 {
6246 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6247 /* If we hit the breakpoint at longjmp while stepping, we
6248 install a momentary breakpoint at the target of the
6249 jmp_buf. */
6250
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6254
6255 ecs->event_thread->stepping_over_breakpoint = 1;
6256
6257 if (what.is_longjmp)
6258 {
6259 struct value *arg_value;
6260
6261 /* If we set the longjmp breakpoint via a SystemTap probe,
6262 then use it to extract the arguments. The destination PC
6263 is the third argument to the probe. */
6264 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6265 if (arg_value)
6266 {
6267 jmp_buf_pc = value_as_address (arg_value);
6268 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6269 }
6270 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6271 || !gdbarch_get_longjmp_target (gdbarch,
6272 frame, &jmp_buf_pc))
6273 {
6274 if (debug_infrun)
6275 fprintf_unfiltered (gdb_stdlog,
6276 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6277 "(!gdbarch_get_longjmp_target)\n");
6278 keep_going (ecs);
6279 return;
6280 }
6281
6282 /* Insert a breakpoint at resume address. */
6283 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6284 }
6285 else
6286 check_exception_resume (ecs, frame);
6287 keep_going (ecs);
6288 return;
6289
6290 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6291 {
6292 struct frame_info *init_frame;
6293
6294 /* There are several cases to consider.
6295
6296 1. The initiating frame no longer exists. In this case we
6297 must stop, because the exception or longjmp has gone too
6298 far.
6299
6300 2. The initiating frame exists, and is the same as the
6301 current frame. We stop, because the exception or longjmp
6302 has been caught.
6303
6304 3. The initiating frame exists and is different from the
6305 current frame. This means the exception or longjmp has
6306 been caught beneath the initiating frame, so keep going.
6307
6308 4. longjmp breakpoint has been placed just to protect
6309 against stale dummy frames and user is not interested in
6310 stopping around longjmps. */
6311
6312 if (debug_infrun)
6313 fprintf_unfiltered (gdb_stdlog,
6314 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6315
6316 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6317 != NULL);
6318 delete_exception_resume_breakpoint (ecs->event_thread);
6319
6320 if (what.is_longjmp)
6321 {
6322 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6323
6324 if (!frame_id_p (ecs->event_thread->initiating_frame))
6325 {
6326 /* Case 4. */
6327 keep_going (ecs);
6328 return;
6329 }
6330 }
6331
6332 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6333
6334 if (init_frame)
6335 {
6336 struct frame_id current_id
6337 = get_frame_id (get_current_frame ());
6338 if (frame_id_eq (current_id,
6339 ecs->event_thread->initiating_frame))
6340 {
6341 /* Case 2. Fall through. */
6342 }
6343 else
6344 {
6345 /* Case 3. */
6346 keep_going (ecs);
6347 return;
6348 }
6349 }
6350
6351 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6352 exists. */
6353 delete_step_resume_breakpoint (ecs->event_thread);
6354
6355 end_stepping_range (ecs);
6356 }
6357 return;
6358
6359 case BPSTAT_WHAT_SINGLE:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6362 ecs->event_thread->stepping_over_breakpoint = 1;
6363 /* Still need to check other stuff, at least the case where we
6364 are stepping and step out of the right range. */
6365 break;
6366
6367 case BPSTAT_WHAT_STEP_RESUME:
6368 if (debug_infrun)
6369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6370
6371 delete_step_resume_breakpoint (ecs->event_thread);
6372 if (ecs->event_thread->control.proceed_to_finish
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 struct thread_info *tp = ecs->event_thread;
6376
6377 /* We are finishing a function in reverse, and just hit the
6378 step-resume breakpoint at the start address of the
6379 function, and we're almost there -- just need to back up
6380 by one more single-step, which should take us back to the
6381 function call. */
6382 tp->control.step_range_start = tp->control.step_range_end = 1;
6383 keep_going (ecs);
6384 return;
6385 }
6386 fill_in_stop_func (gdbarch, ecs);
6387 if (stop_pc == ecs->stop_func_start
6388 && execution_direction == EXEC_REVERSE)
6389 {
6390 /* We are stepping over a function call in reverse, and just
6391 hit the step-resume breakpoint at the start address of
6392 the function. Go back to single-stepping, which should
6393 take us back to the function call. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
6395 keep_going (ecs);
6396 return;
6397 }
6398 break;
6399
6400 case BPSTAT_WHAT_STOP_NOISY:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6403 stop_print_frame = 1;
6404
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
6409
6410 stop_waiting (ecs);
6411 return;
6412
6413 case BPSTAT_WHAT_STOP_SILENT:
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6416 stop_print_frame = 0;
6417
6418 /* Assume the thread stopped for a breapoint. We'll still check
6419 whether a/the breakpoint is there when the thread is next
6420 resumed. */
6421 ecs->event_thread->stepping_over_breakpoint = 1;
6422 stop_waiting (ecs);
6423 return;
6424
6425 case BPSTAT_WHAT_HP_STEP_RESUME:
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6428
6429 delete_step_resume_breakpoint (ecs->event_thread);
6430 if (ecs->event_thread->step_after_step_resume_breakpoint)
6431 {
6432 /* Back when the step-resume breakpoint was inserted, we
6433 were trying to single-step off a breakpoint. Go back to
6434 doing that. */
6435 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6436 ecs->event_thread->stepping_over_breakpoint = 1;
6437 keep_going (ecs);
6438 return;
6439 }
6440 break;
6441
6442 case BPSTAT_WHAT_KEEP_CHECKING:
6443 break;
6444 }
6445
6446 /* If we stepped a permanent breakpoint and we had a high priority
6447 step-resume breakpoint for the address we stepped, but we didn't
6448 hit it, then we must have stepped into the signal handler. The
6449 step-resume was only necessary to catch the case of _not_
6450 stepping into the handler, so delete it, and fall through to
6451 checking whether the step finished. */
6452 if (ecs->event_thread->stepped_breakpoint)
6453 {
6454 struct breakpoint *sr_bp
6455 = ecs->event_thread->control.step_resume_breakpoint;
6456
6457 if (sr_bp != NULL
6458 && sr_bp->loc->permanent
6459 && sr_bp->type == bp_hp_step_resume
6460 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6461 {
6462 if (debug_infrun)
6463 fprintf_unfiltered (gdb_stdlog,
6464 "infrun: stepped permanent breakpoint, stopped in "
6465 "handler\n");
6466 delete_step_resume_breakpoint (ecs->event_thread);
6467 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6468 }
6469 }
6470
6471 /* We come here if we hit a breakpoint but should not stop for it.
6472 Possibly we also were stepping and should stop for that. So fall
6473 through and test for stepping. But, if not stepping, do not
6474 stop. */
6475
6476 /* In all-stop mode, if we're currently stepping but have stopped in
6477 some other thread, we need to switch back to the stepped thread. */
6478 if (switch_back_to_stepped_thread (ecs))
6479 return;
6480
6481 if (ecs->event_thread->control.step_resume_breakpoint)
6482 {
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: step-resume breakpoint is inserted\n");
6486
6487 /* Having a step-resume breakpoint overrides anything
6488 else having to do with stepping commands until
6489 that breakpoint is reached. */
6490 keep_going (ecs);
6491 return;
6492 }
6493
6494 if (ecs->event_thread->control.step_range_end == 0)
6495 {
6496 if (debug_infrun)
6497 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6498 /* Likewise if we aren't even stepping. */
6499 keep_going (ecs);
6500 return;
6501 }
6502
6503 /* Re-fetch current thread's frame in case the code above caused
6504 the frame cache to be re-initialized, making our FRAME variable
6505 a dangling pointer. */
6506 frame = get_current_frame ();
6507 gdbarch = get_frame_arch (frame);
6508 fill_in_stop_func (gdbarch, ecs);
6509
6510 /* If stepping through a line, keep going if still within it.
6511
6512 Note that step_range_end is the address of the first instruction
6513 beyond the step range, and NOT the address of the last instruction
6514 within it!
6515
6516 Note also that during reverse execution, we may be stepping
6517 through a function epilogue and therefore must detect when
6518 the current-frame changes in the middle of a line. */
6519
6520 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6521 && (execution_direction != EXEC_REVERSE
6522 || frame_id_eq (get_frame_id (frame),
6523 ecs->event_thread->control.step_frame_id)))
6524 {
6525 if (debug_infrun)
6526 fprintf_unfiltered
6527 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6528 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6529 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6530
6531 /* Tentatively re-enable range stepping; `resume' disables it if
6532 necessary (e.g., if we're stepping over a breakpoint or we
6533 have software watchpoints). */
6534 ecs->event_thread->control.may_range_step = 1;
6535
6536 /* When stepping backward, stop at beginning of line range
6537 (unless it's the function entry point, in which case
6538 keep going back to the call point). */
6539 if (stop_pc == ecs->event_thread->control.step_range_start
6540 && stop_pc != ecs->stop_func_start
6541 && execution_direction == EXEC_REVERSE)
6542 end_stepping_range (ecs);
6543 else
6544 keep_going (ecs);
6545
6546 return;
6547 }
6548
6549 /* We stepped out of the stepping range. */
6550
6551 /* If we are stepping at the source level and entered the runtime
6552 loader dynamic symbol resolution code...
6553
6554 EXEC_FORWARD: we keep on single stepping until we exit the run
6555 time loader code and reach the callee's address.
6556
6557 EXEC_REVERSE: we've already executed the callee (backward), and
6558 the runtime loader code is handled just like any other
6559 undebuggable function call. Now we need only keep stepping
6560 backward through the trampoline code, and that's handled further
6561 down, so there is nothing for us to do here. */
6562
6563 if (execution_direction != EXEC_REVERSE
6564 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6565 && in_solib_dynsym_resolve_code (stop_pc))
6566 {
6567 CORE_ADDR pc_after_resolver =
6568 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6569
6570 if (debug_infrun)
6571 fprintf_unfiltered (gdb_stdlog,
6572 "infrun: stepped into dynsym resolve code\n");
6573
6574 if (pc_after_resolver)
6575 {
6576 /* Set up a step-resume breakpoint at the address
6577 indicated by SKIP_SOLIB_RESOLVER. */
6578 struct symtab_and_line sr_sal;
6579
6580 init_sal (&sr_sal);
6581 sr_sal.pc = pc_after_resolver;
6582 sr_sal.pspace = get_frame_program_space (frame);
6583
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
6586 }
6587
6588 keep_going (ecs);
6589 return;
6590 }
6591
6592 if (ecs->event_thread->control.step_range_end != 1
6593 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6594 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6595 && get_frame_type (frame) == SIGTRAMP_FRAME)
6596 {
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog,
6599 "infrun: stepped into signal trampoline\n");
6600 /* The inferior, while doing a "step" or "next", has ended up in
6601 a signal trampoline (either by a signal being delivered or by
6602 the signal handler returning). Just single-step until the
6603 inferior leaves the trampoline (either by calling the handler
6604 or returning). */
6605 keep_going (ecs);
6606 return;
6607 }
6608
6609 /* If we're in the return path from a shared library trampoline,
6610 we want to proceed through the trampoline when stepping. */
6611 /* macro/2012-04-25: This needs to come before the subroutine
6612 call check below as on some targets return trampolines look
6613 like subroutine calls (MIPS16 return thunks). */
6614 if (gdbarch_in_solib_return_trampoline (gdbarch,
6615 stop_pc, ecs->stop_func_name)
6616 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6617 {
6618 /* Determine where this trampoline returns. */
6619 CORE_ADDR real_stop_pc;
6620
6621 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6622
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into solib return tramp\n");
6626
6627 /* Only proceed through if we know where it's going. */
6628 if (real_stop_pc)
6629 {
6630 /* And put the step-breakpoint there and go until there. */
6631 struct symtab_and_line sr_sal;
6632
6633 init_sal (&sr_sal); /* initialize to zeroes */
6634 sr_sal.pc = real_stop_pc;
6635 sr_sal.section = find_pc_overlay (sr_sal.pc);
6636 sr_sal.pspace = get_frame_program_space (frame);
6637
6638 /* Do not specify what the fp should be when we stop since
6639 on some machines the prologue is where the new fp value
6640 is established. */
6641 insert_step_resume_breakpoint_at_sal (gdbarch,
6642 sr_sal, null_frame_id);
6643
6644 /* Restart without fiddling with the step ranges or
6645 other state. */
6646 keep_going (ecs);
6647 return;
6648 }
6649 }
6650
6651 /* Check for subroutine calls. The check for the current frame
6652 equalling the step ID is not necessary - the check of the
6653 previous frame's ID is sufficient - but it is a common case and
6654 cheaper than checking the previous frame's ID.
6655
6656 NOTE: frame_id_eq will never report two invalid frame IDs as
6657 being equal, so to get into this block, both the current and
6658 previous frame must have valid frame IDs. */
6659 /* The outer_frame_id check is a heuristic to detect stepping
6660 through startup code. If we step over an instruction which
6661 sets the stack pointer from an invalid value to a valid value,
6662 we may detect that as a subroutine call from the mythical
6663 "outermost" function. This could be fixed by marking
6664 outermost frames as !stack_p,code_p,special_p. Then the
6665 initial outermost frame, before sp was valid, would
6666 have code_addr == &_start. See the comment in frame_id_eq
6667 for more. */
6668 if (!frame_id_eq (get_stack_frame_id (frame),
6669 ecs->event_thread->control.step_stack_frame_id)
6670 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6671 ecs->event_thread->control.step_stack_frame_id)
6672 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6673 outer_frame_id)
6674 || (ecs->event_thread->control.step_start_function
6675 != find_pc_function (stop_pc)))))
6676 {
6677 CORE_ADDR real_stop_pc;
6678
6679 if (debug_infrun)
6680 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6681
6682 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6683 {
6684 /* I presume that step_over_calls is only 0 when we're
6685 supposed to be stepping at the assembly language level
6686 ("stepi"). Just stop. */
6687 /* And this works the same backward as frontward. MVS */
6688 end_stepping_range (ecs);
6689 return;
6690 }
6691
6692 /* Reverse stepping through solib trampolines. */
6693
6694 if (execution_direction == EXEC_REVERSE
6695 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6696 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6697 || (ecs->stop_func_start == 0
6698 && in_solib_dynsym_resolve_code (stop_pc))))
6699 {
6700 /* Any solib trampoline code can be handled in reverse
6701 by simply continuing to single-step. We have already
6702 executed the solib function (backwards), and a few
6703 steps will take us back through the trampoline to the
6704 caller. */
6705 keep_going (ecs);
6706 return;
6707 }
6708
6709 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6710 {
6711 /* We're doing a "next".
6712
6713 Normal (forward) execution: set a breakpoint at the
6714 callee's return address (the address at which the caller
6715 will resume).
6716
6717 Reverse (backward) execution. set the step-resume
6718 breakpoint at the start of the function that we just
6719 stepped into (backwards), and continue to there. When we
6720 get there, we'll need to single-step back to the caller. */
6721
6722 if (execution_direction == EXEC_REVERSE)
6723 {
6724 /* If we're already at the start of the function, we've either
6725 just stepped backward into a single instruction function,
6726 or stepped back out of a signal handler to the first instruction
6727 of the function. Just keep going, which will single-step back
6728 to the caller. */
6729 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6730 {
6731 struct symtab_and_line sr_sal;
6732
6733 /* Normal function call return (static or dynamic). */
6734 init_sal (&sr_sal);
6735 sr_sal.pc = ecs->stop_func_start;
6736 sr_sal.pspace = get_frame_program_space (frame);
6737 insert_step_resume_breakpoint_at_sal (gdbarch,
6738 sr_sal, null_frame_id);
6739 }
6740 }
6741 else
6742 insert_step_resume_breakpoint_at_caller (frame);
6743
6744 keep_going (ecs);
6745 return;
6746 }
6747
6748 /* If we are in a function call trampoline (a stub between the
6749 calling routine and the real function), locate the real
6750 function. That's what tells us (a) whether we want to step
6751 into it at all, and (b) what prologue we want to run to the
6752 end of, if we do step into it. */
6753 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6754 if (real_stop_pc == 0)
6755 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6756 if (real_stop_pc != 0)
6757 ecs->stop_func_start = real_stop_pc;
6758
6759 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6760 {
6761 struct symtab_and_line sr_sal;
6762
6763 init_sal (&sr_sal);
6764 sr_sal.pc = ecs->stop_func_start;
6765 sr_sal.pspace = get_frame_program_space (frame);
6766
6767 insert_step_resume_breakpoint_at_sal (gdbarch,
6768 sr_sal, null_frame_id);
6769 keep_going (ecs);
6770 return;
6771 }
6772
6773 /* If we have line number information for the function we are
6774 thinking of stepping into and the function isn't on the skip
6775 list, step into it.
6776
6777 If there are several symtabs at that PC (e.g. with include
6778 files), just want to know whether *any* of them have line
6779 numbers. find_pc_line handles this. */
6780 {
6781 struct symtab_and_line tmp_sal;
6782
6783 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6784 if (tmp_sal.line != 0
6785 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6786 &tmp_sal))
6787 {
6788 if (execution_direction == EXEC_REVERSE)
6789 handle_step_into_function_backward (gdbarch, ecs);
6790 else
6791 handle_step_into_function (gdbarch, ecs);
6792 return;
6793 }
6794 }
6795
6796 /* If we have no line number and the step-stop-if-no-debug is
6797 set, we stop the step so that the user has a chance to switch
6798 in assembly mode. */
6799 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6800 && step_stop_if_no_debug)
6801 {
6802 end_stepping_range (ecs);
6803 return;
6804 }
6805
6806 if (execution_direction == EXEC_REVERSE)
6807 {
6808 /* If we're already at the start of the function, we've either just
6809 stepped backward into a single instruction function without line
6810 number info, or stepped back out of a signal handler to the first
6811 instruction of the function without line number info. Just keep
6812 going, which will single-step back to the caller. */
6813 if (ecs->stop_func_start != stop_pc)
6814 {
6815 /* Set a breakpoint at callee's start address.
6816 From there we can step once and be back in the caller. */
6817 struct symtab_and_line sr_sal;
6818
6819 init_sal (&sr_sal);
6820 sr_sal.pc = ecs->stop_func_start;
6821 sr_sal.pspace = get_frame_program_space (frame);
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
6824 }
6825 }
6826 else
6827 /* Set a breakpoint at callee's return address (the address
6828 at which the caller will resume). */
6829 insert_step_resume_breakpoint_at_caller (frame);
6830
6831 keep_going (ecs);
6832 return;
6833 }
6834
6835 /* Reverse stepping through solib trampolines. */
6836
6837 if (execution_direction == EXEC_REVERSE
6838 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6839 {
6840 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6841 || (ecs->stop_func_start == 0
6842 && in_solib_dynsym_resolve_code (stop_pc)))
6843 {
6844 /* Any solib trampoline code can be handled in reverse
6845 by simply continuing to single-step. We have already
6846 executed the solib function (backwards), and a few
6847 steps will take us back through the trampoline to the
6848 caller. */
6849 keep_going (ecs);
6850 return;
6851 }
6852 else if (in_solib_dynsym_resolve_code (stop_pc))
6853 {
6854 /* Stepped backward into the solib dynsym resolver.
6855 Set a breakpoint at its start and continue, then
6856 one more step will take us out. */
6857 struct symtab_and_line sr_sal;
6858
6859 init_sal (&sr_sal);
6860 sr_sal.pc = ecs->stop_func_start;
6861 sr_sal.pspace = get_frame_program_space (frame);
6862 insert_step_resume_breakpoint_at_sal (gdbarch,
6863 sr_sal, null_frame_id);
6864 keep_going (ecs);
6865 return;
6866 }
6867 }
6868
6869 stop_pc_sal = find_pc_line (stop_pc, 0);
6870
6871 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6872 the trampoline processing logic, however, there are some trampolines
6873 that have no names, so we should do trampoline handling first. */
6874 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6875 && ecs->stop_func_name == NULL
6876 && stop_pc_sal.line == 0)
6877 {
6878 if (debug_infrun)
6879 fprintf_unfiltered (gdb_stdlog,
6880 "infrun: stepped into undebuggable function\n");
6881
6882 /* The inferior just stepped into, or returned to, an
6883 undebuggable function (where there is no debugging information
6884 and no line number corresponding to the address where the
6885 inferior stopped). Since we want to skip this kind of code,
6886 we keep going until the inferior returns from this
6887 function - unless the user has asked us not to (via
6888 set step-mode) or we no longer know how to get back
6889 to the call site. */
6890 if (step_stop_if_no_debug
6891 || !frame_id_p (frame_unwind_caller_id (frame)))
6892 {
6893 /* If we have no line number and the step-stop-if-no-debug
6894 is set, we stop the step so that the user has a chance to
6895 switch in assembly mode. */
6896 end_stepping_range (ecs);
6897 return;
6898 }
6899 else
6900 {
6901 /* Set a breakpoint at callee's return address (the address
6902 at which the caller will resume). */
6903 insert_step_resume_breakpoint_at_caller (frame);
6904 keep_going (ecs);
6905 return;
6906 }
6907 }
6908
6909 if (ecs->event_thread->control.step_range_end == 1)
6910 {
6911 /* It is stepi or nexti. We always want to stop stepping after
6912 one instruction. */
6913 if (debug_infrun)
6914 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6915 end_stepping_range (ecs);
6916 return;
6917 }
6918
6919 if (stop_pc_sal.line == 0)
6920 {
6921 /* We have no line number information. That means to stop
6922 stepping (does this always happen right after one instruction,
6923 when we do "s" in a function with no line numbers,
6924 or can this happen as a result of a return or longjmp?). */
6925 if (debug_infrun)
6926 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6927 end_stepping_range (ecs);
6928 return;
6929 }
6930
6931 /* Look for "calls" to inlined functions, part one. If the inline
6932 frame machinery detected some skipped call sites, we have entered
6933 a new inline function. */
6934
6935 if (frame_id_eq (get_frame_id (get_current_frame ()),
6936 ecs->event_thread->control.step_frame_id)
6937 && inline_skipped_frames (ecs->ptid))
6938 {
6939 struct symtab_and_line call_sal;
6940
6941 if (debug_infrun)
6942 fprintf_unfiltered (gdb_stdlog,
6943 "infrun: stepped into inlined function\n");
6944
6945 find_frame_sal (get_current_frame (), &call_sal);
6946
6947 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6948 {
6949 /* For "step", we're going to stop. But if the call site
6950 for this inlined function is on the same source line as
6951 we were previously stepping, go down into the function
6952 first. Otherwise stop at the call site. */
6953
6954 if (call_sal.line == ecs->event_thread->current_line
6955 && call_sal.symtab == ecs->event_thread->current_symtab)
6956 step_into_inline_frame (ecs->ptid);
6957
6958 end_stepping_range (ecs);
6959 return;
6960 }
6961 else
6962 {
6963 /* For "next", we should stop at the call site if it is on a
6964 different source line. Otherwise continue through the
6965 inlined function. */
6966 if (call_sal.line == ecs->event_thread->current_line
6967 && call_sal.symtab == ecs->event_thread->current_symtab)
6968 keep_going (ecs);
6969 else
6970 end_stepping_range (ecs);
6971 return;
6972 }
6973 }
6974
6975 /* Look for "calls" to inlined functions, part two. If we are still
6976 in the same real function we were stepping through, but we have
6977 to go further up to find the exact frame ID, we are stepping
6978 through a more inlined call beyond its call site. */
6979
6980 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6981 && !frame_id_eq (get_frame_id (get_current_frame ()),
6982 ecs->event_thread->control.step_frame_id)
6983 && stepped_in_from (get_current_frame (),
6984 ecs->event_thread->control.step_frame_id))
6985 {
6986 if (debug_infrun)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "infrun: stepping through inlined function\n");
6989
6990 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6991 keep_going (ecs);
6992 else
6993 end_stepping_range (ecs);
6994 return;
6995 }
6996
6997 if ((stop_pc == stop_pc_sal.pc)
6998 && (ecs->event_thread->current_line != stop_pc_sal.line
6999 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7000 {
7001 /* We are at the start of a different line. So stop. Note that
7002 we don't stop if we step into the middle of a different line.
7003 That is said to make things like for (;;) statements work
7004 better. */
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: stepped to a different line\n");
7008 end_stepping_range (ecs);
7009 return;
7010 }
7011
7012 /* We aren't done stepping.
7013
7014 Optimize by setting the stepping range to the line.
7015 (We might not be in the original line, but if we entered a
7016 new line in mid-statement, we continue stepping. This makes
7017 things like for(;;) statements work better.) */
7018
7019 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7020 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7021 ecs->event_thread->control.may_range_step = 1;
7022 set_step_info (frame, stop_pc_sal);
7023
7024 if (debug_infrun)
7025 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7026 keep_going (ecs);
7027 }
7028
7029 /* In all-stop mode, if we're currently stepping but have stopped in
7030 some other thread, we may need to switch back to the stepped
7031 thread. Returns true we set the inferior running, false if we left
7032 it stopped (and the event needs further processing). */
7033
7034 static int
7035 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7036 {
7037 if (!target_is_non_stop_p ())
7038 {
7039 struct thread_info *tp;
7040 struct thread_info *stepping_thread;
7041
7042 /* If any thread is blocked on some internal breakpoint, and we
7043 simply need to step over that breakpoint to get it going
7044 again, do that first. */
7045
7046 /* However, if we see an event for the stepping thread, then we
7047 know all other threads have been moved past their breakpoints
7048 already. Let the caller check whether the step is finished,
7049 etc., before deciding to move it past a breakpoint. */
7050 if (ecs->event_thread->control.step_range_end != 0)
7051 return 0;
7052
7053 /* Check if the current thread is blocked on an incomplete
7054 step-over, interrupted by a random signal. */
7055 if (ecs->event_thread->control.trap_expected
7056 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7057 {
7058 if (debug_infrun)
7059 {
7060 fprintf_unfiltered (gdb_stdlog,
7061 "infrun: need to finish step-over of [%s]\n",
7062 target_pid_to_str (ecs->event_thread->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
7067
7068 /* Check if the current thread is blocked by a single-step
7069 breakpoint of another thread. */
7070 if (ecs->hit_singlestep_breakpoint)
7071 {
7072 if (debug_infrun)
7073 {
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: need to step [%s] over single-step "
7076 "breakpoint\n",
7077 target_pid_to_str (ecs->ptid));
7078 }
7079 keep_going (ecs);
7080 return 1;
7081 }
7082
7083 /* If this thread needs yet another step-over (e.g., stepping
7084 through a delay slot), do it first before moving on to
7085 another thread. */
7086 if (thread_still_needs_step_over (ecs->event_thread))
7087 {
7088 if (debug_infrun)
7089 {
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: thread [%s] still needs step-over\n",
7092 target_pid_to_str (ecs->event_thread->ptid));
7093 }
7094 keep_going (ecs);
7095 return 1;
7096 }
7097
7098 /* If scheduler locking applies even if not stepping, there's no
7099 need to walk over threads. Above we've checked whether the
7100 current thread is stepping. If some other thread not the
7101 event thread is stepping, then it must be that scheduler
7102 locking is not in effect. */
7103 if (schedlock_applies (ecs->event_thread))
7104 return 0;
7105
7106 /* Otherwise, we no longer expect a trap in the current thread.
7107 Clear the trap_expected flag before switching back -- this is
7108 what keep_going does as well, if we call it. */
7109 ecs->event_thread->control.trap_expected = 0;
7110
7111 /* Likewise, clear the signal if it should not be passed. */
7112 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7114
7115 /* Do all pending step-overs before actually proceeding with
7116 step/next/etc. */
7117 if (start_step_over ())
7118 {
7119 prepare_to_wait (ecs);
7120 return 1;
7121 }
7122
7123 /* Look for the stepping/nexting thread. */
7124 stepping_thread = NULL;
7125
7126 ALL_NON_EXITED_THREADS (tp)
7127 {
7128 /* Ignore threads of processes the caller is not
7129 resuming. */
7130 if (!sched_multi
7131 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7132 continue;
7133
7134 /* When stepping over a breakpoint, we lock all threads
7135 except the one that needs to move past the breakpoint.
7136 If a non-event thread has this set, the "incomplete
7137 step-over" check above should have caught it earlier. */
7138 if (tp->control.trap_expected)
7139 {
7140 internal_error (__FILE__, __LINE__,
7141 "[%s] has inconsistent state: "
7142 "trap_expected=%d\n",
7143 target_pid_to_str (tp->ptid),
7144 tp->control.trap_expected);
7145 }
7146
7147 /* Did we find the stepping thread? */
7148 if (tp->control.step_range_end)
7149 {
7150 /* Yep. There should only one though. */
7151 gdb_assert (stepping_thread == NULL);
7152
7153 /* The event thread is handled at the top, before we
7154 enter this loop. */
7155 gdb_assert (tp != ecs->event_thread);
7156
7157 /* If some thread other than the event thread is
7158 stepping, then scheduler locking can't be in effect,
7159 otherwise we wouldn't have resumed the current event
7160 thread in the first place. */
7161 gdb_assert (!schedlock_applies (tp));
7162
7163 stepping_thread = tp;
7164 }
7165 }
7166
7167 if (stepping_thread != NULL)
7168 {
7169 if (debug_infrun)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: switching back to stepped thread\n");
7172
7173 if (keep_going_stepped_thread (stepping_thread))
7174 {
7175 prepare_to_wait (ecs);
7176 return 1;
7177 }
7178 }
7179 }
7180
7181 return 0;
7182 }
7183
7184 /* Set a previously stepped thread back to stepping. Returns true on
7185 success, false if the resume is not possible (e.g., the thread
7186 vanished). */
7187
7188 static int
7189 keep_going_stepped_thread (struct thread_info *tp)
7190 {
7191 struct frame_info *frame;
7192 struct execution_control_state ecss;
7193 struct execution_control_state *ecs = &ecss;
7194
7195 /* If the stepping thread exited, then don't try to switch back and
7196 resume it, which could fail in several different ways depending
7197 on the target. Instead, just keep going.
7198
7199 We can find a stepping dead thread in the thread list in two
7200 cases:
7201
7202 - The target supports thread exit events, and when the target
7203 tries to delete the thread from the thread list, inferior_ptid
7204 pointed at the exiting thread. In such case, calling
7205 delete_thread does not really remove the thread from the list;
7206 instead, the thread is left listed, with 'exited' state.
7207
7208 - The target's debug interface does not support thread exit
7209 events, and so we have no idea whatsoever if the previously
7210 stepping thread is still alive. For that reason, we need to
7211 synchronously query the target now. */
7212
7213 if (is_exited (tp->ptid)
7214 || !target_thread_alive (tp->ptid))
7215 {
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: not resuming previously "
7219 "stepped thread, it has vanished\n");
7220
7221 delete_thread (tp->ptid);
7222 return 0;
7223 }
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: resuming previously stepped thread\n");
7228
7229 reset_ecs (ecs, tp);
7230 switch_to_thread (tp->ptid);
7231
7232 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7233 frame = get_current_frame ();
7234
7235 /* If the PC of the thread we were trying to single-step has
7236 changed, then that thread has trapped or been signaled, but the
7237 event has not been reported to GDB yet. Re-poll the target
7238 looking for this particular thread's event (i.e. temporarily
7239 enable schedlock) by:
7240
7241 - setting a break at the current PC
7242 - resuming that particular thread, only (by setting trap
7243 expected)
7244
7245 This prevents us continuously moving the single-step breakpoint
7246 forward, one instruction at a time, overstepping. */
7247
7248 if (stop_pc != tp->prev_pc)
7249 {
7250 ptid_t resume_ptid;
7251
7252 if (debug_infrun)
7253 fprintf_unfiltered (gdb_stdlog,
7254 "infrun: expected thread advanced also (%s -> %s)\n",
7255 paddress (target_gdbarch (), tp->prev_pc),
7256 paddress (target_gdbarch (), stop_pc));
7257
7258 /* Clear the info of the previous step-over, as it's no longer
7259 valid (if the thread was trying to step over a breakpoint, it
7260 has already succeeded). It's what keep_going would do too,
7261 if we called it. Do this before trying to insert the sss
7262 breakpoint, otherwise if we were previously trying to step
7263 over this exact address in another thread, the breakpoint is
7264 skipped. */
7265 clear_step_over_info ();
7266 tp->control.trap_expected = 0;
7267
7268 insert_single_step_breakpoint (get_frame_arch (frame),
7269 get_frame_address_space (frame),
7270 stop_pc);
7271
7272 tp->resumed = 1;
7273 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7274 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7275 }
7276 else
7277 {
7278 if (debug_infrun)
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: expected thread still hasn't advanced\n");
7281
7282 keep_going_pass_signal (ecs);
7283 }
7284 return 1;
7285 }
7286
7287 /* Is thread TP in the middle of (software or hardware)
7288 single-stepping? (Note the result of this function must never be
7289 passed directly as target_resume's STEP parameter.) */
7290
7291 static int
7292 currently_stepping (struct thread_info *tp)
7293 {
7294 return ((tp->control.step_range_end
7295 && tp->control.step_resume_breakpoint == NULL)
7296 || tp->control.trap_expected
7297 || tp->stepped_breakpoint
7298 || bpstat_should_step ());
7299 }
7300
7301 /* Inferior has stepped into a subroutine call with source code that
7302 we should not step over. Do step to the first line of code in
7303 it. */
7304
7305 static void
7306 handle_step_into_function (struct gdbarch *gdbarch,
7307 struct execution_control_state *ecs)
7308 {
7309 struct compunit_symtab *cust;
7310 struct symtab_and_line stop_func_sal, sr_sal;
7311
7312 fill_in_stop_func (gdbarch, ecs);
7313
7314 cust = find_pc_compunit_symtab (stop_pc);
7315 if (cust != NULL && compunit_language (cust) != language_asm)
7316 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7317 ecs->stop_func_start);
7318
7319 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7320 /* Use the step_resume_break to step until the end of the prologue,
7321 even if that involves jumps (as it seems to on the vax under
7322 4.2). */
7323 /* If the prologue ends in the middle of a source line, continue to
7324 the end of that source line (if it is still within the function).
7325 Otherwise, just go to end of prologue. */
7326 if (stop_func_sal.end
7327 && stop_func_sal.pc != ecs->stop_func_start
7328 && stop_func_sal.end < ecs->stop_func_end)
7329 ecs->stop_func_start = stop_func_sal.end;
7330
7331 /* Architectures which require breakpoint adjustment might not be able
7332 to place a breakpoint at the computed address. If so, the test
7333 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7334 ecs->stop_func_start to an address at which a breakpoint may be
7335 legitimately placed.
7336
7337 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7338 made, GDB will enter an infinite loop when stepping through
7339 optimized code consisting of VLIW instructions which contain
7340 subinstructions corresponding to different source lines. On
7341 FR-V, it's not permitted to place a breakpoint on any but the
7342 first subinstruction of a VLIW instruction. When a breakpoint is
7343 set, GDB will adjust the breakpoint address to the beginning of
7344 the VLIW instruction. Thus, we need to make the corresponding
7345 adjustment here when computing the stop address. */
7346
7347 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7348 {
7349 ecs->stop_func_start
7350 = gdbarch_adjust_breakpoint_address (gdbarch,
7351 ecs->stop_func_start);
7352 }
7353
7354 if (ecs->stop_func_start == stop_pc)
7355 {
7356 /* We are already there: stop now. */
7357 end_stepping_range (ecs);
7358 return;
7359 }
7360 else
7361 {
7362 /* Put the step-breakpoint there and go until there. */
7363 init_sal (&sr_sal); /* initialize to zeroes */
7364 sr_sal.pc = ecs->stop_func_start;
7365 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7366 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7367
7368 /* Do not specify what the fp should be when we stop since on
7369 some machines the prologue is where the new fp value is
7370 established. */
7371 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7372
7373 /* And make sure stepping stops right away then. */
7374 ecs->event_thread->control.step_range_end
7375 = ecs->event_thread->control.step_range_start;
7376 }
7377 keep_going (ecs);
7378 }
7379
7380 /* Inferior has stepped backward into a subroutine call with source
7381 code that we should not step over. Do step to the beginning of the
7382 last line of code in it. */
7383
7384 static void
7385 handle_step_into_function_backward (struct gdbarch *gdbarch,
7386 struct execution_control_state *ecs)
7387 {
7388 struct compunit_symtab *cust;
7389 struct symtab_and_line stop_func_sal;
7390
7391 fill_in_stop_func (gdbarch, ecs);
7392
7393 cust = find_pc_compunit_symtab (stop_pc);
7394 if (cust != NULL && compunit_language (cust) != language_asm)
7395 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7396 ecs->stop_func_start);
7397
7398 stop_func_sal = find_pc_line (stop_pc, 0);
7399
7400 /* OK, we're just going to keep stepping here. */
7401 if (stop_func_sal.pc == stop_pc)
7402 {
7403 /* We're there already. Just stop stepping now. */
7404 end_stepping_range (ecs);
7405 }
7406 else
7407 {
7408 /* Else just reset the step range and keep going.
7409 No step-resume breakpoint, they don't work for
7410 epilogues, which can have multiple entry paths. */
7411 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7412 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7413 keep_going (ecs);
7414 }
7415 return;
7416 }
7417
7418 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7419 This is used to both functions and to skip over code. */
7420
7421 static void
7422 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7423 struct symtab_and_line sr_sal,
7424 struct frame_id sr_id,
7425 enum bptype sr_type)
7426 {
7427 /* There should never be more than one step-resume or longjmp-resume
7428 breakpoint per thread, so we should never be setting a new
7429 step_resume_breakpoint when one is already active. */
7430 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7431 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7432
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "infrun: inserting step-resume breakpoint at %s\n",
7436 paddress (gdbarch, sr_sal.pc));
7437
7438 inferior_thread ()->control.step_resume_breakpoint
7439 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7440 }
7441
7442 void
7443 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7444 struct symtab_and_line sr_sal,
7445 struct frame_id sr_id)
7446 {
7447 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7448 sr_sal, sr_id,
7449 bp_step_resume);
7450 }
7451
7452 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7453 This is used to skip a potential signal handler.
7454
7455 This is called with the interrupted function's frame. The signal
7456 handler, when it returns, will resume the interrupted function at
7457 RETURN_FRAME.pc. */
7458
7459 static void
7460 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7461 {
7462 struct symtab_and_line sr_sal;
7463 struct gdbarch *gdbarch;
7464
7465 gdb_assert (return_frame != NULL);
7466 init_sal (&sr_sal); /* initialize to zeros */
7467
7468 gdbarch = get_frame_arch (return_frame);
7469 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7470 sr_sal.section = find_pc_overlay (sr_sal.pc);
7471 sr_sal.pspace = get_frame_program_space (return_frame);
7472
7473 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7474 get_stack_frame_id (return_frame),
7475 bp_hp_step_resume);
7476 }
7477
7478 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7479 is used to skip a function after stepping into it (for "next" or if
7480 the called function has no debugging information).
7481
7482 The current function has almost always been reached by single
7483 stepping a call or return instruction. NEXT_FRAME belongs to the
7484 current function, and the breakpoint will be set at the caller's
7485 resume address.
7486
7487 This is a separate function rather than reusing
7488 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7489 get_prev_frame, which may stop prematurely (see the implementation
7490 of frame_unwind_caller_id for an example). */
7491
7492 static void
7493 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7494 {
7495 struct symtab_and_line sr_sal;
7496 struct gdbarch *gdbarch;
7497
7498 /* We shouldn't have gotten here if we don't know where the call site
7499 is. */
7500 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7501
7502 init_sal (&sr_sal); /* initialize to zeros */
7503
7504 gdbarch = frame_unwind_caller_arch (next_frame);
7505 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7506 frame_unwind_caller_pc (next_frame));
7507 sr_sal.section = find_pc_overlay (sr_sal.pc);
7508 sr_sal.pspace = frame_unwind_program_space (next_frame);
7509
7510 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7511 frame_unwind_caller_id (next_frame));
7512 }
7513
7514 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7515 new breakpoint at the target of a jmp_buf. The handling of
7516 longjmp-resume uses the same mechanisms used for handling
7517 "step-resume" breakpoints. */
7518
7519 static void
7520 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7521 {
7522 /* There should never be more than one longjmp-resume breakpoint per
7523 thread, so we should never be setting a new
7524 longjmp_resume_breakpoint when one is already active. */
7525 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: inserting longjmp-resume breakpoint at %s\n",
7530 paddress (gdbarch, pc));
7531
7532 inferior_thread ()->control.exception_resume_breakpoint =
7533 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7534 }
7535
7536 /* Insert an exception resume breakpoint. TP is the thread throwing
7537 the exception. The block B is the block of the unwinder debug hook
7538 function. FRAME is the frame corresponding to the call to this
7539 function. SYM is the symbol of the function argument holding the
7540 target PC of the exception. */
7541
7542 static void
7543 insert_exception_resume_breakpoint (struct thread_info *tp,
7544 const struct block *b,
7545 struct frame_info *frame,
7546 struct symbol *sym)
7547 {
7548 TRY
7549 {
7550 struct block_symbol vsym;
7551 struct value *value;
7552 CORE_ADDR handler;
7553 struct breakpoint *bp;
7554
7555 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7556 value = read_var_value (vsym.symbol, vsym.block, frame);
7557 /* If the value was optimized out, revert to the old behavior. */
7558 if (! value_optimized_out (value))
7559 {
7560 handler = value_as_address (value);
7561
7562 if (debug_infrun)
7563 fprintf_unfiltered (gdb_stdlog,
7564 "infrun: exception resume at %lx\n",
7565 (unsigned long) handler);
7566
7567 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7568 handler, bp_exception_resume);
7569
7570 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7571 frame = NULL;
7572
7573 bp->thread = tp->global_num;
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576 }
7577 CATCH (e, RETURN_MASK_ERROR)
7578 {
7579 /* We want to ignore errors here. */
7580 }
7581 END_CATCH
7582 }
7583
7584 /* A helper for check_exception_resume that sets an
7585 exception-breakpoint based on a SystemTap probe. */
7586
7587 static void
7588 insert_exception_resume_from_probe (struct thread_info *tp,
7589 const struct bound_probe *probe,
7590 struct frame_info *frame)
7591 {
7592 struct value *arg_value;
7593 CORE_ADDR handler;
7594 struct breakpoint *bp;
7595
7596 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7597 if (!arg_value)
7598 return;
7599
7600 handler = value_as_address (arg_value);
7601
7602 if (debug_infrun)
7603 fprintf_unfiltered (gdb_stdlog,
7604 "infrun: exception resume at %s\n",
7605 paddress (get_objfile_arch (probe->objfile),
7606 handler));
7607
7608 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7609 handler, bp_exception_resume);
7610 bp->thread = tp->global_num;
7611 inferior_thread ()->control.exception_resume_breakpoint = bp;
7612 }
7613
7614 /* This is called when an exception has been intercepted. Check to
7615 see whether the exception's destination is of interest, and if so,
7616 set an exception resume breakpoint there. */
7617
7618 static void
7619 check_exception_resume (struct execution_control_state *ecs,
7620 struct frame_info *frame)
7621 {
7622 struct bound_probe probe;
7623 struct symbol *func;
7624
7625 /* First see if this exception unwinding breakpoint was set via a
7626 SystemTap probe point. If so, the probe has two arguments: the
7627 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7628 set a breakpoint there. */
7629 probe = find_probe_by_pc (get_frame_pc (frame));
7630 if (probe.probe)
7631 {
7632 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7633 return;
7634 }
7635
7636 func = get_frame_function (frame);
7637 if (!func)
7638 return;
7639
7640 TRY
7641 {
7642 const struct block *b;
7643 struct block_iterator iter;
7644 struct symbol *sym;
7645 int argno = 0;
7646
7647 /* The exception breakpoint is a thread-specific breakpoint on
7648 the unwinder's debug hook, declared as:
7649
7650 void _Unwind_DebugHook (void *cfa, void *handler);
7651
7652 The CFA argument indicates the frame to which control is
7653 about to be transferred. HANDLER is the destination PC.
7654
7655 We ignore the CFA and set a temporary breakpoint at HANDLER.
7656 This is not extremely efficient but it avoids issues in gdb
7657 with computing the DWARF CFA, and it also works even in weird
7658 cases such as throwing an exception from inside a signal
7659 handler. */
7660
7661 b = SYMBOL_BLOCK_VALUE (func);
7662 ALL_BLOCK_SYMBOLS (b, iter, sym)
7663 {
7664 if (!SYMBOL_IS_ARGUMENT (sym))
7665 continue;
7666
7667 if (argno == 0)
7668 ++argno;
7669 else
7670 {
7671 insert_exception_resume_breakpoint (ecs->event_thread,
7672 b, frame, sym);
7673 break;
7674 }
7675 }
7676 }
7677 CATCH (e, RETURN_MASK_ERROR)
7678 {
7679 }
7680 END_CATCH
7681 }
7682
7683 static void
7684 stop_waiting (struct execution_control_state *ecs)
7685 {
7686 if (debug_infrun)
7687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7688
7689 clear_step_over_info ();
7690
7691 /* Let callers know we don't want to wait for the inferior anymore. */
7692 ecs->wait_some_more = 0;
7693
7694 /* If all-stop, but the target is always in non-stop mode, stop all
7695 threads now that we're presenting the stop to the user. */
7696 if (!non_stop && target_is_non_stop_p ())
7697 stop_all_threads ();
7698 }
7699
7700 /* Like keep_going, but passes the signal to the inferior, even if the
7701 signal is set to nopass. */
7702
7703 static void
7704 keep_going_pass_signal (struct execution_control_state *ecs)
7705 {
7706 /* Make sure normal_stop is called if we get a QUIT handled before
7707 reaching resume. */
7708 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7709
7710 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7711 gdb_assert (!ecs->event_thread->resumed);
7712
7713 /* Save the pc before execution, to compare with pc after stop. */
7714 ecs->event_thread->prev_pc
7715 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7716
7717 if (ecs->event_thread->control.trap_expected)
7718 {
7719 struct thread_info *tp = ecs->event_thread;
7720
7721 if (debug_infrun)
7722 fprintf_unfiltered (gdb_stdlog,
7723 "infrun: %s has trap_expected set, "
7724 "resuming to collect trap\n",
7725 target_pid_to_str (tp->ptid));
7726
7727 /* We haven't yet gotten our trap, and either: intercepted a
7728 non-signal event (e.g., a fork); or took a signal which we
7729 are supposed to pass through to the inferior. Simply
7730 continue. */
7731 discard_cleanups (old_cleanups);
7732 resume (ecs->event_thread->suspend.stop_signal);
7733 }
7734 else if (step_over_info_valid_p ())
7735 {
7736 /* Another thread is stepping over a breakpoint in-line. If
7737 this thread needs a step-over too, queue the request. In
7738 either case, this resume must be deferred for later. */
7739 struct thread_info *tp = ecs->event_thread;
7740
7741 if (ecs->hit_singlestep_breakpoint
7742 || thread_still_needs_step_over (tp))
7743 {
7744 if (debug_infrun)
7745 fprintf_unfiltered (gdb_stdlog,
7746 "infrun: step-over already in progress: "
7747 "step-over for %s deferred\n",
7748 target_pid_to_str (tp->ptid));
7749 thread_step_over_chain_enqueue (tp);
7750 }
7751 else
7752 {
7753 if (debug_infrun)
7754 fprintf_unfiltered (gdb_stdlog,
7755 "infrun: step-over in progress: "
7756 "resume of %s deferred\n",
7757 target_pid_to_str (tp->ptid));
7758 }
7759
7760 discard_cleanups (old_cleanups);
7761 }
7762 else
7763 {
7764 struct regcache *regcache = get_current_regcache ();
7765 int remove_bp;
7766 int remove_wps;
7767 step_over_what step_what;
7768
7769 /* Either the trap was not expected, but we are continuing
7770 anyway (if we got a signal, the user asked it be passed to
7771 the child)
7772 -- or --
7773 We got our expected trap, but decided we should resume from
7774 it.
7775
7776 We're going to run this baby now!
7777
7778 Note that insert_breakpoints won't try to re-insert
7779 already inserted breakpoints. Therefore, we don't
7780 care if breakpoints were already inserted, or not. */
7781
7782 /* If we need to step over a breakpoint, and we're not using
7783 displaced stepping to do so, insert all breakpoints
7784 (watchpoints, etc.) but the one we're stepping over, step one
7785 instruction, and then re-insert the breakpoint when that step
7786 is finished. */
7787
7788 step_what = thread_still_needs_step_over (ecs->event_thread);
7789
7790 remove_bp = (ecs->hit_singlestep_breakpoint
7791 || (step_what & STEP_OVER_BREAKPOINT));
7792 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7793
7794 /* We can't use displaced stepping if we need to step past a
7795 watchpoint. The instruction copied to the scratch pad would
7796 still trigger the watchpoint. */
7797 if (remove_bp
7798 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7799 {
7800 set_step_over_info (get_regcache_aspace (regcache),
7801 regcache_read_pc (regcache), remove_wps,
7802 ecs->event_thread->global_num);
7803 }
7804 else if (remove_wps)
7805 set_step_over_info (NULL, 0, remove_wps, -1);
7806
7807 /* If we now need to do an in-line step-over, we need to stop
7808 all other threads. Note this must be done before
7809 insert_breakpoints below, because that removes the breakpoint
7810 we're about to step over, otherwise other threads could miss
7811 it. */
7812 if (step_over_info_valid_p () && target_is_non_stop_p ())
7813 stop_all_threads ();
7814
7815 /* Stop stepping if inserting breakpoints fails. */
7816 TRY
7817 {
7818 insert_breakpoints ();
7819 }
7820 CATCH (e, RETURN_MASK_ERROR)
7821 {
7822 exception_print (gdb_stderr, e);
7823 stop_waiting (ecs);
7824 discard_cleanups (old_cleanups);
7825 return;
7826 }
7827 END_CATCH
7828
7829 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7830
7831 discard_cleanups (old_cleanups);
7832 resume (ecs->event_thread->suspend.stop_signal);
7833 }
7834
7835 prepare_to_wait (ecs);
7836 }
7837
7838 /* Called when we should continue running the inferior, because the
7839 current event doesn't cause a user visible stop. This does the
7840 resuming part; waiting for the next event is done elsewhere. */
7841
7842 static void
7843 keep_going (struct execution_control_state *ecs)
7844 {
7845 if (ecs->event_thread->control.trap_expected
7846 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7847 ecs->event_thread->control.trap_expected = 0;
7848
7849 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7850 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7851 keep_going_pass_signal (ecs);
7852 }
7853
7854 /* This function normally comes after a resume, before
7855 handle_inferior_event exits. It takes care of any last bits of
7856 housekeeping, and sets the all-important wait_some_more flag. */
7857
7858 static void
7859 prepare_to_wait (struct execution_control_state *ecs)
7860 {
7861 if (debug_infrun)
7862 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7863
7864 ecs->wait_some_more = 1;
7865
7866 if (!target_is_async_p ())
7867 mark_infrun_async_event_handler ();
7868 }
7869
7870 /* We are done with the step range of a step/next/si/ni command.
7871 Called once for each n of a "step n" operation. */
7872
7873 static void
7874 end_stepping_range (struct execution_control_state *ecs)
7875 {
7876 ecs->event_thread->control.stop_step = 1;
7877 stop_waiting (ecs);
7878 }
7879
7880 /* Several print_*_reason functions to print why the inferior has stopped.
7881 We always print something when the inferior exits, or receives a signal.
7882 The rest of the cases are dealt with later on in normal_stop and
7883 print_it_typical. Ideally there should be a call to one of these
7884 print_*_reason functions functions from handle_inferior_event each time
7885 stop_waiting is called.
7886
7887 Note that we don't call these directly, instead we delegate that to
7888 the interpreters, through observers. Interpreters then call these
7889 with whatever uiout is right. */
7890
7891 void
7892 print_end_stepping_range_reason (struct ui_out *uiout)
7893 {
7894 /* For CLI-like interpreters, print nothing. */
7895
7896 if (ui_out_is_mi_like_p (uiout))
7897 {
7898 ui_out_field_string (uiout, "reason",
7899 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7900 }
7901 }
7902
7903 void
7904 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7905 {
7906 annotate_signalled ();
7907 if (ui_out_is_mi_like_p (uiout))
7908 ui_out_field_string
7909 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7910 ui_out_text (uiout, "\nProgram terminated with signal ");
7911 annotate_signal_name ();
7912 ui_out_field_string (uiout, "signal-name",
7913 gdb_signal_to_name (siggnal));
7914 annotate_signal_name_end ();
7915 ui_out_text (uiout, ", ");
7916 annotate_signal_string ();
7917 ui_out_field_string (uiout, "signal-meaning",
7918 gdb_signal_to_string (siggnal));
7919 annotate_signal_string_end ();
7920 ui_out_text (uiout, ".\n");
7921 ui_out_text (uiout, "The program no longer exists.\n");
7922 }
7923
7924 void
7925 print_exited_reason (struct ui_out *uiout, int exitstatus)
7926 {
7927 struct inferior *inf = current_inferior ();
7928 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7929
7930 annotate_exited (exitstatus);
7931 if (exitstatus)
7932 {
7933 if (ui_out_is_mi_like_p (uiout))
7934 ui_out_field_string (uiout, "reason",
7935 async_reason_lookup (EXEC_ASYNC_EXITED));
7936 ui_out_text (uiout, "[Inferior ");
7937 ui_out_text (uiout, plongest (inf->num));
7938 ui_out_text (uiout, " (");
7939 ui_out_text (uiout, pidstr);
7940 ui_out_text (uiout, ") exited with code ");
7941 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7942 ui_out_text (uiout, "]\n");
7943 }
7944 else
7945 {
7946 if (ui_out_is_mi_like_p (uiout))
7947 ui_out_field_string
7948 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7949 ui_out_text (uiout, "[Inferior ");
7950 ui_out_text (uiout, plongest (inf->num));
7951 ui_out_text (uiout, " (");
7952 ui_out_text (uiout, pidstr);
7953 ui_out_text (uiout, ") exited normally]\n");
7954 }
7955 }
7956
7957 /* Some targets/architectures can do extra processing/display of
7958 segmentation faults. E.g., Intel MPX boundary faults.
7959 Call the architecture dependent function to handle the fault. */
7960
7961 static void
7962 handle_segmentation_fault (struct ui_out *uiout)
7963 {
7964 struct regcache *regcache = get_current_regcache ();
7965 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7966
7967 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7968 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7969 }
7970
7971 void
7972 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7973 {
7974 struct thread_info *thr = inferior_thread ();
7975
7976 annotate_signal ();
7977
7978 if (ui_out_is_mi_like_p (uiout))
7979 ;
7980 else if (show_thread_that_caused_stop ())
7981 {
7982 const char *name;
7983
7984 ui_out_text (uiout, "\nThread ");
7985 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7986
7987 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7988 if (name != NULL)
7989 {
7990 ui_out_text (uiout, " \"");
7991 ui_out_field_fmt (uiout, "name", "%s", name);
7992 ui_out_text (uiout, "\"");
7993 }
7994 }
7995 else
7996 ui_out_text (uiout, "\nProgram");
7997
7998 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7999 ui_out_text (uiout, " stopped");
8000 else
8001 {
8002 ui_out_text (uiout, " received signal ");
8003 annotate_signal_name ();
8004 if (ui_out_is_mi_like_p (uiout))
8005 ui_out_field_string
8006 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8007 ui_out_field_string (uiout, "signal-name",
8008 gdb_signal_to_name (siggnal));
8009 annotate_signal_name_end ();
8010 ui_out_text (uiout, ", ");
8011 annotate_signal_string ();
8012 ui_out_field_string (uiout, "signal-meaning",
8013 gdb_signal_to_string (siggnal));
8014
8015 if (siggnal == GDB_SIGNAL_SEGV)
8016 handle_segmentation_fault (uiout);
8017
8018 annotate_signal_string_end ();
8019 }
8020 ui_out_text (uiout, ".\n");
8021 }
8022
8023 void
8024 print_no_history_reason (struct ui_out *uiout)
8025 {
8026 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8027 }
8028
8029 /* Print current location without a level number, if we have changed
8030 functions or hit a breakpoint. Print source line if we have one.
8031 bpstat_print contains the logic deciding in detail what to print,
8032 based on the event(s) that just occurred. */
8033
8034 static void
8035 print_stop_location (struct target_waitstatus *ws)
8036 {
8037 int bpstat_ret;
8038 enum print_what source_flag;
8039 int do_frame_printing = 1;
8040 struct thread_info *tp = inferior_thread ();
8041
8042 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8043 switch (bpstat_ret)
8044 {
8045 case PRINT_UNKNOWN:
8046 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8047 should) carry around the function and does (or should) use
8048 that when doing a frame comparison. */
8049 if (tp->control.stop_step
8050 && frame_id_eq (tp->control.step_frame_id,
8051 get_frame_id (get_current_frame ()))
8052 && tp->control.step_start_function == find_pc_function (stop_pc))
8053 {
8054 /* Finished step, just print source line. */
8055 source_flag = SRC_LINE;
8056 }
8057 else
8058 {
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 }
8062 break;
8063 case PRINT_SRC_AND_LOC:
8064 /* Print location and source line. */
8065 source_flag = SRC_AND_LOC;
8066 break;
8067 case PRINT_SRC_ONLY:
8068 source_flag = SRC_LINE;
8069 break;
8070 case PRINT_NOTHING:
8071 /* Something bogus. */
8072 source_flag = SRC_LINE;
8073 do_frame_printing = 0;
8074 break;
8075 default:
8076 internal_error (__FILE__, __LINE__, _("Unknown value."));
8077 }
8078
8079 /* The behavior of this routine with respect to the source
8080 flag is:
8081 SRC_LINE: Print only source line
8082 LOCATION: Print only location
8083 SRC_AND_LOC: Print location and source line. */
8084 if (do_frame_printing)
8085 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8086 }
8087
8088 /* See infrun.h. */
8089
8090 void
8091 print_stop_event (struct ui_out *uiout)
8092 {
8093 struct target_waitstatus last;
8094 ptid_t last_ptid;
8095 struct thread_info *tp;
8096
8097 get_last_target_status (&last_ptid, &last);
8098
8099 {
8100 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8101
8102 print_stop_location (&last);
8103
8104 /* Display the auto-display expressions. */
8105 do_displays ();
8106 }
8107
8108 tp = inferior_thread ();
8109 if (tp->thread_fsm != NULL
8110 && thread_fsm_finished_p (tp->thread_fsm))
8111 {
8112 struct return_value_info *rv;
8113
8114 rv = thread_fsm_return_value (tp->thread_fsm);
8115 if (rv != NULL)
8116 print_return_value (uiout, rv);
8117 }
8118 }
8119
8120 /* See infrun.h. */
8121
8122 void
8123 maybe_remove_breakpoints (void)
8124 {
8125 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8126 {
8127 if (remove_breakpoints ())
8128 {
8129 target_terminal_ours_for_output ();
8130 printf_filtered (_("Cannot remove breakpoints because "
8131 "program is no longer writable.\nFurther "
8132 "execution is probably impossible.\n"));
8133 }
8134 }
8135 }
8136
8137 /* The execution context that just caused a normal stop. */
8138
8139 struct stop_context
8140 {
8141 /* The stop ID. */
8142 ULONGEST stop_id;
8143
8144 /* The event PTID. */
8145
8146 ptid_t ptid;
8147
8148 /* If stopp for a thread event, this is the thread that caused the
8149 stop. */
8150 struct thread_info *thread;
8151
8152 /* The inferior that caused the stop. */
8153 int inf_num;
8154 };
8155
8156 /* Returns a new stop context. If stopped for a thread event, this
8157 takes a strong reference to the thread. */
8158
8159 static struct stop_context *
8160 save_stop_context (void)
8161 {
8162 struct stop_context *sc = XNEW (struct stop_context);
8163
8164 sc->stop_id = get_stop_id ();
8165 sc->ptid = inferior_ptid;
8166 sc->inf_num = current_inferior ()->num;
8167
8168 if (!ptid_equal (inferior_ptid, null_ptid))
8169 {
8170 /* Take a strong reference so that the thread can't be deleted
8171 yet. */
8172 sc->thread = inferior_thread ();
8173 sc->thread->refcount++;
8174 }
8175 else
8176 sc->thread = NULL;
8177
8178 return sc;
8179 }
8180
8181 /* Release a stop context previously created with save_stop_context.
8182 Releases the strong reference to the thread as well. */
8183
8184 static void
8185 release_stop_context_cleanup (void *arg)
8186 {
8187 struct stop_context *sc = (struct stop_context *) arg;
8188
8189 if (sc->thread != NULL)
8190 sc->thread->refcount--;
8191 xfree (sc);
8192 }
8193
8194 /* Return true if the current context no longer matches the saved stop
8195 context. */
8196
8197 static int
8198 stop_context_changed (struct stop_context *prev)
8199 {
8200 if (!ptid_equal (prev->ptid, inferior_ptid))
8201 return 1;
8202 if (prev->inf_num != current_inferior ()->num)
8203 return 1;
8204 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8205 return 1;
8206 if (get_stop_id () != prev->stop_id)
8207 return 1;
8208 return 0;
8209 }
8210
8211 /* See infrun.h. */
8212
8213 int
8214 normal_stop (void)
8215 {
8216 struct target_waitstatus last;
8217 ptid_t last_ptid;
8218 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8219 ptid_t pid_ptid;
8220
8221 get_last_target_status (&last_ptid, &last);
8222
8223 new_stop_id ();
8224
8225 /* If an exception is thrown from this point on, make sure to
8226 propagate GDB's knowledge of the executing state to the
8227 frontend/user running state. A QUIT is an easy exception to see
8228 here, so do this before any filtered output. */
8229 if (!non_stop)
8230 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8231 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8232 || last.kind == TARGET_WAITKIND_EXITED)
8233 {
8234 /* On some targets, we may still have live threads in the
8235 inferior when we get a process exit event. E.g., for
8236 "checkpoint", when the current checkpoint/fork exits,
8237 linux-fork.c automatically switches to another fork from
8238 within target_mourn_inferior. */
8239 if (!ptid_equal (inferior_ptid, null_ptid))
8240 {
8241 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8242 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8243 }
8244 }
8245 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8246 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8247
8248 /* As we're presenting a stop, and potentially removing breakpoints,
8249 update the thread list so we can tell whether there are threads
8250 running on the target. With target remote, for example, we can
8251 only learn about new threads when we explicitly update the thread
8252 list. Do this before notifying the interpreters about signal
8253 stops, end of stepping ranges, etc., so that the "new thread"
8254 output is emitted before e.g., "Program received signal FOO",
8255 instead of after. */
8256 update_thread_list ();
8257
8258 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8259 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8260
8261 /* As with the notification of thread events, we want to delay
8262 notifying the user that we've switched thread context until
8263 the inferior actually stops.
8264
8265 There's no point in saying anything if the inferior has exited.
8266 Note that SIGNALLED here means "exited with a signal", not
8267 "received a signal".
8268
8269 Also skip saying anything in non-stop mode. In that mode, as we
8270 don't want GDB to switch threads behind the user's back, to avoid
8271 races where the user is typing a command to apply to thread x,
8272 but GDB switches to thread y before the user finishes entering
8273 the command, fetch_inferior_event installs a cleanup to restore
8274 the current thread back to the thread the user had selected right
8275 after this event is handled, so we're not really switching, only
8276 informing of a stop. */
8277 if (!non_stop
8278 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8279 && target_has_execution
8280 && last.kind != TARGET_WAITKIND_SIGNALLED
8281 && last.kind != TARGET_WAITKIND_EXITED
8282 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8283 {
8284 SWITCH_THRU_ALL_UIS ()
8285 {
8286 target_terminal_ours_for_output ();
8287 printf_filtered (_("[Switching to %s]\n"),
8288 target_pid_to_str (inferior_ptid));
8289 annotate_thread_changed ();
8290 }
8291 previous_inferior_ptid = inferior_ptid;
8292 }
8293
8294 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8295 {
8296 SWITCH_THRU_ALL_UIS ()
8297 if (current_ui->prompt_state == PROMPT_BLOCKED)
8298 {
8299 target_terminal_ours_for_output ();
8300 printf_filtered (_("No unwaited-for children left.\n"));
8301 }
8302 }
8303
8304 /* Note: this depends on the update_thread_list call above. */
8305 maybe_remove_breakpoints ();
8306
8307 /* If an auto-display called a function and that got a signal,
8308 delete that auto-display to avoid an infinite recursion. */
8309
8310 if (stopped_by_random_signal)
8311 disable_current_display ();
8312
8313 SWITCH_THRU_ALL_UIS ()
8314 {
8315 async_enable_stdin ();
8316 }
8317
8318 /* Let the user/frontend see the threads as stopped. */
8319 do_cleanups (old_chain);
8320
8321 /* Select innermost stack frame - i.e., current frame is frame 0,
8322 and current location is based on that. Handle the case where the
8323 dummy call is returning after being stopped. E.g. the dummy call
8324 previously hit a breakpoint. (If the dummy call returns
8325 normally, we won't reach here.) Do this before the stop hook is
8326 run, so that it doesn't get to see the temporary dummy frame,
8327 which is not where we'll present the stop. */
8328 if (has_stack_frames ())
8329 {
8330 if (stop_stack_dummy == STOP_STACK_DUMMY)
8331 {
8332 /* Pop the empty frame that contains the stack dummy. This
8333 also restores inferior state prior to the call (struct
8334 infcall_suspend_state). */
8335 struct frame_info *frame = get_current_frame ();
8336
8337 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8338 frame_pop (frame);
8339 /* frame_pop calls reinit_frame_cache as the last thing it
8340 does which means there's now no selected frame. */
8341 }
8342
8343 select_frame (get_current_frame ());
8344
8345 /* Set the current source location. */
8346 set_current_sal_from_frame (get_current_frame ());
8347 }
8348
8349 /* Look up the hook_stop and run it (CLI internally handles problem
8350 of stop_command's pre-hook not existing). */
8351 if (stop_command != NULL)
8352 {
8353 struct stop_context *saved_context = save_stop_context ();
8354 struct cleanup *old_chain
8355 = make_cleanup (release_stop_context_cleanup, saved_context);
8356
8357 catch_errors (hook_stop_stub, stop_command,
8358 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8359
8360 /* If the stop hook resumes the target, then there's no point in
8361 trying to notify about the previous stop; its context is
8362 gone. Likewise if the command switches thread or inferior --
8363 the observers would print a stop for the wrong
8364 thread/inferior. */
8365 if (stop_context_changed (saved_context))
8366 {
8367 do_cleanups (old_chain);
8368 return 1;
8369 }
8370 do_cleanups (old_chain);
8371 }
8372
8373 /* Notify observers about the stop. This is where the interpreters
8374 print the stop event. */
8375 if (!ptid_equal (inferior_ptid, null_ptid))
8376 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8377 stop_print_frame);
8378 else
8379 observer_notify_normal_stop (NULL, stop_print_frame);
8380
8381 annotate_stopped ();
8382
8383 if (target_has_execution)
8384 {
8385 if (last.kind != TARGET_WAITKIND_SIGNALLED
8386 && last.kind != TARGET_WAITKIND_EXITED)
8387 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8388 Delete any breakpoint that is to be deleted at the next stop. */
8389 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8390 }
8391
8392 /* Try to get rid of automatically added inferiors that are no
8393 longer needed. Keeping those around slows down things linearly.
8394 Note that this never removes the current inferior. */
8395 prune_inferiors ();
8396
8397 return 0;
8398 }
8399
8400 static int
8401 hook_stop_stub (void *cmd)
8402 {
8403 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8404 return (0);
8405 }
8406 \f
8407 int
8408 signal_stop_state (int signo)
8409 {
8410 return signal_stop[signo];
8411 }
8412
8413 int
8414 signal_print_state (int signo)
8415 {
8416 return signal_print[signo];
8417 }
8418
8419 int
8420 signal_pass_state (int signo)
8421 {
8422 return signal_program[signo];
8423 }
8424
8425 static void
8426 signal_cache_update (int signo)
8427 {
8428 if (signo == -1)
8429 {
8430 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8431 signal_cache_update (signo);
8432
8433 return;
8434 }
8435
8436 signal_pass[signo] = (signal_stop[signo] == 0
8437 && signal_print[signo] == 0
8438 && signal_program[signo] == 1
8439 && signal_catch[signo] == 0);
8440 }
8441
8442 int
8443 signal_stop_update (int signo, int state)
8444 {
8445 int ret = signal_stop[signo];
8446
8447 signal_stop[signo] = state;
8448 signal_cache_update (signo);
8449 return ret;
8450 }
8451
8452 int
8453 signal_print_update (int signo, int state)
8454 {
8455 int ret = signal_print[signo];
8456
8457 signal_print[signo] = state;
8458 signal_cache_update (signo);
8459 return ret;
8460 }
8461
8462 int
8463 signal_pass_update (int signo, int state)
8464 {
8465 int ret = signal_program[signo];
8466
8467 signal_program[signo] = state;
8468 signal_cache_update (signo);
8469 return ret;
8470 }
8471
8472 /* Update the global 'signal_catch' from INFO and notify the
8473 target. */
8474
8475 void
8476 signal_catch_update (const unsigned int *info)
8477 {
8478 int i;
8479
8480 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8481 signal_catch[i] = info[i] > 0;
8482 signal_cache_update (-1);
8483 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8484 }
8485
8486 static void
8487 sig_print_header (void)
8488 {
8489 printf_filtered (_("Signal Stop\tPrint\tPass "
8490 "to program\tDescription\n"));
8491 }
8492
8493 static void
8494 sig_print_info (enum gdb_signal oursig)
8495 {
8496 const char *name = gdb_signal_to_name (oursig);
8497 int name_padding = 13 - strlen (name);
8498
8499 if (name_padding <= 0)
8500 name_padding = 0;
8501
8502 printf_filtered ("%s", name);
8503 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8504 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8505 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8506 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8507 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8508 }
8509
8510 /* Specify how various signals in the inferior should be handled. */
8511
8512 static void
8513 handle_command (char *args, int from_tty)
8514 {
8515 char **argv;
8516 int digits, wordlen;
8517 int sigfirst, signum, siglast;
8518 enum gdb_signal oursig;
8519 int allsigs;
8520 int nsigs;
8521 unsigned char *sigs;
8522 struct cleanup *old_chain;
8523
8524 if (args == NULL)
8525 {
8526 error_no_arg (_("signal to handle"));
8527 }
8528
8529 /* Allocate and zero an array of flags for which signals to handle. */
8530
8531 nsigs = (int) GDB_SIGNAL_LAST;
8532 sigs = (unsigned char *) alloca (nsigs);
8533 memset (sigs, 0, nsigs);
8534
8535 /* Break the command line up into args. */
8536
8537 argv = gdb_buildargv (args);
8538 old_chain = make_cleanup_freeargv (argv);
8539
8540 /* Walk through the args, looking for signal oursigs, signal names, and
8541 actions. Signal numbers and signal names may be interspersed with
8542 actions, with the actions being performed for all signals cumulatively
8543 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8544
8545 while (*argv != NULL)
8546 {
8547 wordlen = strlen (*argv);
8548 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8549 {;
8550 }
8551 allsigs = 0;
8552 sigfirst = siglast = -1;
8553
8554 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8555 {
8556 /* Apply action to all signals except those used by the
8557 debugger. Silently skip those. */
8558 allsigs = 1;
8559 sigfirst = 0;
8560 siglast = nsigs - 1;
8561 }
8562 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8563 {
8564 SET_SIGS (nsigs, sigs, signal_stop);
8565 SET_SIGS (nsigs, sigs, signal_print);
8566 }
8567 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8568 {
8569 UNSET_SIGS (nsigs, sigs, signal_program);
8570 }
8571 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8572 {
8573 SET_SIGS (nsigs, sigs, signal_print);
8574 }
8575 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8576 {
8577 SET_SIGS (nsigs, sigs, signal_program);
8578 }
8579 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8580 {
8581 UNSET_SIGS (nsigs, sigs, signal_stop);
8582 }
8583 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8584 {
8585 SET_SIGS (nsigs, sigs, signal_program);
8586 }
8587 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_print);
8590 UNSET_SIGS (nsigs, sigs, signal_stop);
8591 }
8592 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8593 {
8594 UNSET_SIGS (nsigs, sigs, signal_program);
8595 }
8596 else if (digits > 0)
8597 {
8598 /* It is numeric. The numeric signal refers to our own
8599 internal signal numbering from target.h, not to host/target
8600 signal number. This is a feature; users really should be
8601 using symbolic names anyway, and the common ones like
8602 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8603
8604 sigfirst = siglast = (int)
8605 gdb_signal_from_command (atoi (*argv));
8606 if ((*argv)[digits] == '-')
8607 {
8608 siglast = (int)
8609 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8610 }
8611 if (sigfirst > siglast)
8612 {
8613 /* Bet he didn't figure we'd think of this case... */
8614 signum = sigfirst;
8615 sigfirst = siglast;
8616 siglast = signum;
8617 }
8618 }
8619 else
8620 {
8621 oursig = gdb_signal_from_name (*argv);
8622 if (oursig != GDB_SIGNAL_UNKNOWN)
8623 {
8624 sigfirst = siglast = (int) oursig;
8625 }
8626 else
8627 {
8628 /* Not a number and not a recognized flag word => complain. */
8629 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8630 }
8631 }
8632
8633 /* If any signal numbers or symbol names were found, set flags for
8634 which signals to apply actions to. */
8635
8636 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8637 {
8638 switch ((enum gdb_signal) signum)
8639 {
8640 case GDB_SIGNAL_TRAP:
8641 case GDB_SIGNAL_INT:
8642 if (!allsigs && !sigs[signum])
8643 {
8644 if (query (_("%s is used by the debugger.\n\
8645 Are you sure you want to change it? "),
8646 gdb_signal_to_name ((enum gdb_signal) signum)))
8647 {
8648 sigs[signum] = 1;
8649 }
8650 else
8651 {
8652 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8653 gdb_flush (gdb_stdout);
8654 }
8655 }
8656 break;
8657 case GDB_SIGNAL_0:
8658 case GDB_SIGNAL_DEFAULT:
8659 case GDB_SIGNAL_UNKNOWN:
8660 /* Make sure that "all" doesn't print these. */
8661 break;
8662 default:
8663 sigs[signum] = 1;
8664 break;
8665 }
8666 }
8667
8668 argv++;
8669 }
8670
8671 for (signum = 0; signum < nsigs; signum++)
8672 if (sigs[signum])
8673 {
8674 signal_cache_update (-1);
8675 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8676 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8677
8678 if (from_tty)
8679 {
8680 /* Show the results. */
8681 sig_print_header ();
8682 for (; signum < nsigs; signum++)
8683 if (sigs[signum])
8684 sig_print_info ((enum gdb_signal) signum);
8685 }
8686
8687 break;
8688 }
8689
8690 do_cleanups (old_chain);
8691 }
8692
8693 /* Complete the "handle" command. */
8694
8695 static VEC (char_ptr) *
8696 handle_completer (struct cmd_list_element *ignore,
8697 const char *text, const char *word)
8698 {
8699 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8700 static const char * const keywords[] =
8701 {
8702 "all",
8703 "stop",
8704 "ignore",
8705 "print",
8706 "pass",
8707 "nostop",
8708 "noignore",
8709 "noprint",
8710 "nopass",
8711 NULL,
8712 };
8713
8714 vec_signals = signal_completer (ignore, text, word);
8715 vec_keywords = complete_on_enum (keywords, word, word);
8716
8717 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8718 VEC_free (char_ptr, vec_signals);
8719 VEC_free (char_ptr, vec_keywords);
8720 return return_val;
8721 }
8722
8723 enum gdb_signal
8724 gdb_signal_from_command (int num)
8725 {
8726 if (num >= 1 && num <= 15)
8727 return (enum gdb_signal) num;
8728 error (_("Only signals 1-15 are valid as numeric signals.\n\
8729 Use \"info signals\" for a list of symbolic signals."));
8730 }
8731
8732 /* Print current contents of the tables set by the handle command.
8733 It is possible we should just be printing signals actually used
8734 by the current target (but for things to work right when switching
8735 targets, all signals should be in the signal tables). */
8736
8737 static void
8738 signals_info (char *signum_exp, int from_tty)
8739 {
8740 enum gdb_signal oursig;
8741
8742 sig_print_header ();
8743
8744 if (signum_exp)
8745 {
8746 /* First see if this is a symbol name. */
8747 oursig = gdb_signal_from_name (signum_exp);
8748 if (oursig == GDB_SIGNAL_UNKNOWN)
8749 {
8750 /* No, try numeric. */
8751 oursig =
8752 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8753 }
8754 sig_print_info (oursig);
8755 return;
8756 }
8757
8758 printf_filtered ("\n");
8759 /* These ugly casts brought to you by the native VAX compiler. */
8760 for (oursig = GDB_SIGNAL_FIRST;
8761 (int) oursig < (int) GDB_SIGNAL_LAST;
8762 oursig = (enum gdb_signal) ((int) oursig + 1))
8763 {
8764 QUIT;
8765
8766 if (oursig != GDB_SIGNAL_UNKNOWN
8767 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8768 sig_print_info (oursig);
8769 }
8770
8771 printf_filtered (_("\nUse the \"handle\" command "
8772 "to change these tables.\n"));
8773 }
8774
8775 /* The $_siginfo convenience variable is a bit special. We don't know
8776 for sure the type of the value until we actually have a chance to
8777 fetch the data. The type can change depending on gdbarch, so it is
8778 also dependent on which thread you have selected.
8779
8780 1. making $_siginfo be an internalvar that creates a new value on
8781 access.
8782
8783 2. making the value of $_siginfo be an lval_computed value. */
8784
8785 /* This function implements the lval_computed support for reading a
8786 $_siginfo value. */
8787
8788 static void
8789 siginfo_value_read (struct value *v)
8790 {
8791 LONGEST transferred;
8792
8793 /* If we can access registers, so can we access $_siginfo. Likewise
8794 vice versa. */
8795 validate_registers_access ();
8796
8797 transferred =
8798 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8799 NULL,
8800 value_contents_all_raw (v),
8801 value_offset (v),
8802 TYPE_LENGTH (value_type (v)));
8803
8804 if (transferred != TYPE_LENGTH (value_type (v)))
8805 error (_("Unable to read siginfo"));
8806 }
8807
8808 /* This function implements the lval_computed support for writing a
8809 $_siginfo value. */
8810
8811 static void
8812 siginfo_value_write (struct value *v, struct value *fromval)
8813 {
8814 LONGEST transferred;
8815
8816 /* If we can access registers, so can we access $_siginfo. Likewise
8817 vice versa. */
8818 validate_registers_access ();
8819
8820 transferred = target_write (&current_target,
8821 TARGET_OBJECT_SIGNAL_INFO,
8822 NULL,
8823 value_contents_all_raw (fromval),
8824 value_offset (v),
8825 TYPE_LENGTH (value_type (fromval)));
8826
8827 if (transferred != TYPE_LENGTH (value_type (fromval)))
8828 error (_("Unable to write siginfo"));
8829 }
8830
8831 static const struct lval_funcs siginfo_value_funcs =
8832 {
8833 siginfo_value_read,
8834 siginfo_value_write
8835 };
8836
8837 /* Return a new value with the correct type for the siginfo object of
8838 the current thread using architecture GDBARCH. Return a void value
8839 if there's no object available. */
8840
8841 static struct value *
8842 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8843 void *ignore)
8844 {
8845 if (target_has_stack
8846 && !ptid_equal (inferior_ptid, null_ptid)
8847 && gdbarch_get_siginfo_type_p (gdbarch))
8848 {
8849 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8850
8851 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8852 }
8853
8854 return allocate_value (builtin_type (gdbarch)->builtin_void);
8855 }
8856
8857 \f
8858 /* infcall_suspend_state contains state about the program itself like its
8859 registers and any signal it received when it last stopped.
8860 This state must be restored regardless of how the inferior function call
8861 ends (either successfully, or after it hits a breakpoint or signal)
8862 if the program is to properly continue where it left off. */
8863
8864 struct infcall_suspend_state
8865 {
8866 struct thread_suspend_state thread_suspend;
8867
8868 /* Other fields: */
8869 CORE_ADDR stop_pc;
8870 struct regcache *registers;
8871
8872 /* Format of SIGINFO_DATA or NULL if it is not present. */
8873 struct gdbarch *siginfo_gdbarch;
8874
8875 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8876 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8877 content would be invalid. */
8878 gdb_byte *siginfo_data;
8879 };
8880
8881 struct infcall_suspend_state *
8882 save_infcall_suspend_state (void)
8883 {
8884 struct infcall_suspend_state *inf_state;
8885 struct thread_info *tp = inferior_thread ();
8886 struct regcache *regcache = get_current_regcache ();
8887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8888 gdb_byte *siginfo_data = NULL;
8889
8890 if (gdbarch_get_siginfo_type_p (gdbarch))
8891 {
8892 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8893 size_t len = TYPE_LENGTH (type);
8894 struct cleanup *back_to;
8895
8896 siginfo_data = (gdb_byte *) xmalloc (len);
8897 back_to = make_cleanup (xfree, siginfo_data);
8898
8899 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8900 siginfo_data, 0, len) == len)
8901 discard_cleanups (back_to);
8902 else
8903 {
8904 /* Errors ignored. */
8905 do_cleanups (back_to);
8906 siginfo_data = NULL;
8907 }
8908 }
8909
8910 inf_state = XCNEW (struct infcall_suspend_state);
8911
8912 if (siginfo_data)
8913 {
8914 inf_state->siginfo_gdbarch = gdbarch;
8915 inf_state->siginfo_data = siginfo_data;
8916 }
8917
8918 inf_state->thread_suspend = tp->suspend;
8919
8920 /* run_inferior_call will not use the signal due to its `proceed' call with
8921 GDB_SIGNAL_0 anyway. */
8922 tp->suspend.stop_signal = GDB_SIGNAL_0;
8923
8924 inf_state->stop_pc = stop_pc;
8925
8926 inf_state->registers = regcache_dup (regcache);
8927
8928 return inf_state;
8929 }
8930
8931 /* Restore inferior session state to INF_STATE. */
8932
8933 void
8934 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8935 {
8936 struct thread_info *tp = inferior_thread ();
8937 struct regcache *regcache = get_current_regcache ();
8938 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8939
8940 tp->suspend = inf_state->thread_suspend;
8941
8942 stop_pc = inf_state->stop_pc;
8943
8944 if (inf_state->siginfo_gdbarch == gdbarch)
8945 {
8946 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8947
8948 /* Errors ignored. */
8949 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8950 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8951 }
8952
8953 /* The inferior can be gone if the user types "print exit(0)"
8954 (and perhaps other times). */
8955 if (target_has_execution)
8956 /* NB: The register write goes through to the target. */
8957 regcache_cpy (regcache, inf_state->registers);
8958
8959 discard_infcall_suspend_state (inf_state);
8960 }
8961
8962 static void
8963 do_restore_infcall_suspend_state_cleanup (void *state)
8964 {
8965 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8966 }
8967
8968 struct cleanup *
8969 make_cleanup_restore_infcall_suspend_state
8970 (struct infcall_suspend_state *inf_state)
8971 {
8972 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8973 }
8974
8975 void
8976 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8977 {
8978 regcache_xfree (inf_state->registers);
8979 xfree (inf_state->siginfo_data);
8980 xfree (inf_state);
8981 }
8982
8983 struct regcache *
8984 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8985 {
8986 return inf_state->registers;
8987 }
8988
8989 /* infcall_control_state contains state regarding gdb's control of the
8990 inferior itself like stepping control. It also contains session state like
8991 the user's currently selected frame. */
8992
8993 struct infcall_control_state
8994 {
8995 struct thread_control_state thread_control;
8996 struct inferior_control_state inferior_control;
8997
8998 /* Other fields: */
8999 enum stop_stack_kind stop_stack_dummy;
9000 int stopped_by_random_signal;
9001
9002 /* ID if the selected frame when the inferior function call was made. */
9003 struct frame_id selected_frame_id;
9004 };
9005
9006 /* Save all of the information associated with the inferior<==>gdb
9007 connection. */
9008
9009 struct infcall_control_state *
9010 save_infcall_control_state (void)
9011 {
9012 struct infcall_control_state *inf_status =
9013 XNEW (struct infcall_control_state);
9014 struct thread_info *tp = inferior_thread ();
9015 struct inferior *inf = current_inferior ();
9016
9017 inf_status->thread_control = tp->control;
9018 inf_status->inferior_control = inf->control;
9019
9020 tp->control.step_resume_breakpoint = NULL;
9021 tp->control.exception_resume_breakpoint = NULL;
9022
9023 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9024 chain. If caller's caller is walking the chain, they'll be happier if we
9025 hand them back the original chain when restore_infcall_control_state is
9026 called. */
9027 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9028
9029 /* Other fields: */
9030 inf_status->stop_stack_dummy = stop_stack_dummy;
9031 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9032
9033 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9034
9035 return inf_status;
9036 }
9037
9038 static int
9039 restore_selected_frame (void *args)
9040 {
9041 struct frame_id *fid = (struct frame_id *) args;
9042 struct frame_info *frame;
9043
9044 frame = frame_find_by_id (*fid);
9045
9046 /* If inf_status->selected_frame_id is NULL, there was no previously
9047 selected frame. */
9048 if (frame == NULL)
9049 {
9050 warning (_("Unable to restore previously selected frame."));
9051 return 0;
9052 }
9053
9054 select_frame (frame);
9055
9056 return (1);
9057 }
9058
9059 /* Restore inferior session state to INF_STATUS. */
9060
9061 void
9062 restore_infcall_control_state (struct infcall_control_state *inf_status)
9063 {
9064 struct thread_info *tp = inferior_thread ();
9065 struct inferior *inf = current_inferior ();
9066
9067 if (tp->control.step_resume_breakpoint)
9068 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9069
9070 if (tp->control.exception_resume_breakpoint)
9071 tp->control.exception_resume_breakpoint->disposition
9072 = disp_del_at_next_stop;
9073
9074 /* Handle the bpstat_copy of the chain. */
9075 bpstat_clear (&tp->control.stop_bpstat);
9076
9077 tp->control = inf_status->thread_control;
9078 inf->control = inf_status->inferior_control;
9079
9080 /* Other fields: */
9081 stop_stack_dummy = inf_status->stop_stack_dummy;
9082 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9083
9084 if (target_has_stack)
9085 {
9086 /* The point of catch_errors is that if the stack is clobbered,
9087 walking the stack might encounter a garbage pointer and
9088 error() trying to dereference it. */
9089 if (catch_errors
9090 (restore_selected_frame, &inf_status->selected_frame_id,
9091 "Unable to restore previously selected frame:\n",
9092 RETURN_MASK_ERROR) == 0)
9093 /* Error in restoring the selected frame. Select the innermost
9094 frame. */
9095 select_frame (get_current_frame ());
9096 }
9097
9098 xfree (inf_status);
9099 }
9100
9101 static void
9102 do_restore_infcall_control_state_cleanup (void *sts)
9103 {
9104 restore_infcall_control_state ((struct infcall_control_state *) sts);
9105 }
9106
9107 struct cleanup *
9108 make_cleanup_restore_infcall_control_state
9109 (struct infcall_control_state *inf_status)
9110 {
9111 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9112 }
9113
9114 void
9115 discard_infcall_control_state (struct infcall_control_state *inf_status)
9116 {
9117 if (inf_status->thread_control.step_resume_breakpoint)
9118 inf_status->thread_control.step_resume_breakpoint->disposition
9119 = disp_del_at_next_stop;
9120
9121 if (inf_status->thread_control.exception_resume_breakpoint)
9122 inf_status->thread_control.exception_resume_breakpoint->disposition
9123 = disp_del_at_next_stop;
9124
9125 /* See save_infcall_control_state for info on stop_bpstat. */
9126 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9127
9128 xfree (inf_status);
9129 }
9130 \f
9131 /* restore_inferior_ptid() will be used by the cleanup machinery
9132 to restore the inferior_ptid value saved in a call to
9133 save_inferior_ptid(). */
9134
9135 static void
9136 restore_inferior_ptid (void *arg)
9137 {
9138 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9139
9140 inferior_ptid = *saved_ptid_ptr;
9141 xfree (arg);
9142 }
9143
9144 /* Save the value of inferior_ptid so that it may be restored by a
9145 later call to do_cleanups(). Returns the struct cleanup pointer
9146 needed for later doing the cleanup. */
9147
9148 struct cleanup *
9149 save_inferior_ptid (void)
9150 {
9151 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9152
9153 *saved_ptid_ptr = inferior_ptid;
9154 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9155 }
9156
9157 /* See infrun.h. */
9158
9159 void
9160 clear_exit_convenience_vars (void)
9161 {
9162 clear_internalvar (lookup_internalvar ("_exitsignal"));
9163 clear_internalvar (lookup_internalvar ("_exitcode"));
9164 }
9165 \f
9166
9167 /* User interface for reverse debugging:
9168 Set exec-direction / show exec-direction commands
9169 (returns error unless target implements to_set_exec_direction method). */
9170
9171 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9172 static const char exec_forward[] = "forward";
9173 static const char exec_reverse[] = "reverse";
9174 static const char *exec_direction = exec_forward;
9175 static const char *const exec_direction_names[] = {
9176 exec_forward,
9177 exec_reverse,
9178 NULL
9179 };
9180
9181 static void
9182 set_exec_direction_func (char *args, int from_tty,
9183 struct cmd_list_element *cmd)
9184 {
9185 if (target_can_execute_reverse)
9186 {
9187 if (!strcmp (exec_direction, exec_forward))
9188 execution_direction = EXEC_FORWARD;
9189 else if (!strcmp (exec_direction, exec_reverse))
9190 execution_direction = EXEC_REVERSE;
9191 }
9192 else
9193 {
9194 exec_direction = exec_forward;
9195 error (_("Target does not support this operation."));
9196 }
9197 }
9198
9199 static void
9200 show_exec_direction_func (struct ui_file *out, int from_tty,
9201 struct cmd_list_element *cmd, const char *value)
9202 {
9203 switch (execution_direction) {
9204 case EXEC_FORWARD:
9205 fprintf_filtered (out, _("Forward.\n"));
9206 break;
9207 case EXEC_REVERSE:
9208 fprintf_filtered (out, _("Reverse.\n"));
9209 break;
9210 default:
9211 internal_error (__FILE__, __LINE__,
9212 _("bogus execution_direction value: %d"),
9213 (int) execution_direction);
9214 }
9215 }
9216
9217 static void
9218 show_schedule_multiple (struct ui_file *file, int from_tty,
9219 struct cmd_list_element *c, const char *value)
9220 {
9221 fprintf_filtered (file, _("Resuming the execution of threads "
9222 "of all processes is %s.\n"), value);
9223 }
9224
9225 /* Implementation of `siginfo' variable. */
9226
9227 static const struct internalvar_funcs siginfo_funcs =
9228 {
9229 siginfo_make_value,
9230 NULL,
9231 NULL
9232 };
9233
9234 /* Callback for infrun's target events source. This is marked when a
9235 thread has a pending status to process. */
9236
9237 static void
9238 infrun_async_inferior_event_handler (gdb_client_data data)
9239 {
9240 inferior_event_handler (INF_REG_EVENT, NULL);
9241 }
9242
9243 void
9244 _initialize_infrun (void)
9245 {
9246 int i;
9247 int numsigs;
9248 struct cmd_list_element *c;
9249
9250 /* Register extra event sources in the event loop. */
9251 infrun_async_inferior_event_token
9252 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9253
9254 add_info ("signals", signals_info, _("\
9255 What debugger does when program gets various signals.\n\
9256 Specify a signal as argument to print info on that signal only."));
9257 add_info_alias ("handle", "signals", 0);
9258
9259 c = add_com ("handle", class_run, handle_command, _("\
9260 Specify how to handle signals.\n\
9261 Usage: handle SIGNAL [ACTIONS]\n\
9262 Args are signals and actions to apply to those signals.\n\
9263 If no actions are specified, the current settings for the specified signals\n\
9264 will be displayed instead.\n\
9265 \n\
9266 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9267 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9268 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9269 The special arg \"all\" is recognized to mean all signals except those\n\
9270 used by the debugger, typically SIGTRAP and SIGINT.\n\
9271 \n\
9272 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9273 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9274 Stop means reenter debugger if this signal happens (implies print).\n\
9275 Print means print a message if this signal happens.\n\
9276 Pass means let program see this signal; otherwise program doesn't know.\n\
9277 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9278 Pass and Stop may be combined.\n\
9279 \n\
9280 Multiple signals may be specified. Signal numbers and signal names\n\
9281 may be interspersed with actions, with the actions being performed for\n\
9282 all signals cumulatively specified."));
9283 set_cmd_completer (c, handle_completer);
9284
9285 if (!dbx_commands)
9286 stop_command = add_cmd ("stop", class_obscure,
9287 not_just_help_class_command, _("\
9288 There is no `stop' command, but you can set a hook on `stop'.\n\
9289 This allows you to set a list of commands to be run each time execution\n\
9290 of the program stops."), &cmdlist);
9291
9292 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9293 Set inferior debugging."), _("\
9294 Show inferior debugging."), _("\
9295 When non-zero, inferior specific debugging is enabled."),
9296 NULL,
9297 show_debug_infrun,
9298 &setdebuglist, &showdebuglist);
9299
9300 add_setshow_boolean_cmd ("displaced", class_maintenance,
9301 &debug_displaced, _("\
9302 Set displaced stepping debugging."), _("\
9303 Show displaced stepping debugging."), _("\
9304 When non-zero, displaced stepping specific debugging is enabled."),
9305 NULL,
9306 show_debug_displaced,
9307 &setdebuglist, &showdebuglist);
9308
9309 add_setshow_boolean_cmd ("non-stop", no_class,
9310 &non_stop_1, _("\
9311 Set whether gdb controls the inferior in non-stop mode."), _("\
9312 Show whether gdb controls the inferior in non-stop mode."), _("\
9313 When debugging a multi-threaded program and this setting is\n\
9314 off (the default, also called all-stop mode), when one thread stops\n\
9315 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9316 all other threads in the program while you interact with the thread of\n\
9317 interest. When you continue or step a thread, you can allow the other\n\
9318 threads to run, or have them remain stopped, but while you inspect any\n\
9319 thread's state, all threads stop.\n\
9320 \n\
9321 In non-stop mode, when one thread stops, other threads can continue\n\
9322 to run freely. You'll be able to step each thread independently,\n\
9323 leave it stopped or free to run as needed."),
9324 set_non_stop,
9325 show_non_stop,
9326 &setlist,
9327 &showlist);
9328
9329 numsigs = (int) GDB_SIGNAL_LAST;
9330 signal_stop = XNEWVEC (unsigned char, numsigs);
9331 signal_print = XNEWVEC (unsigned char, numsigs);
9332 signal_program = XNEWVEC (unsigned char, numsigs);
9333 signal_catch = XNEWVEC (unsigned char, numsigs);
9334 signal_pass = XNEWVEC (unsigned char, numsigs);
9335 for (i = 0; i < numsigs; i++)
9336 {
9337 signal_stop[i] = 1;
9338 signal_print[i] = 1;
9339 signal_program[i] = 1;
9340 signal_catch[i] = 0;
9341 }
9342
9343 /* Signals caused by debugger's own actions should not be given to
9344 the program afterwards.
9345
9346 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9347 explicitly specifies that it should be delivered to the target
9348 program. Typically, that would occur when a user is debugging a
9349 target monitor on a simulator: the target monitor sets a
9350 breakpoint; the simulator encounters this breakpoint and halts
9351 the simulation handing control to GDB; GDB, noting that the stop
9352 address doesn't map to any known breakpoint, returns control back
9353 to the simulator; the simulator then delivers the hardware
9354 equivalent of a GDB_SIGNAL_TRAP to the program being
9355 debugged. */
9356 signal_program[GDB_SIGNAL_TRAP] = 0;
9357 signal_program[GDB_SIGNAL_INT] = 0;
9358
9359 /* Signals that are not errors should not normally enter the debugger. */
9360 signal_stop[GDB_SIGNAL_ALRM] = 0;
9361 signal_print[GDB_SIGNAL_ALRM] = 0;
9362 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9363 signal_print[GDB_SIGNAL_VTALRM] = 0;
9364 signal_stop[GDB_SIGNAL_PROF] = 0;
9365 signal_print[GDB_SIGNAL_PROF] = 0;
9366 signal_stop[GDB_SIGNAL_CHLD] = 0;
9367 signal_print[GDB_SIGNAL_CHLD] = 0;
9368 signal_stop[GDB_SIGNAL_IO] = 0;
9369 signal_print[GDB_SIGNAL_IO] = 0;
9370 signal_stop[GDB_SIGNAL_POLL] = 0;
9371 signal_print[GDB_SIGNAL_POLL] = 0;
9372 signal_stop[GDB_SIGNAL_URG] = 0;
9373 signal_print[GDB_SIGNAL_URG] = 0;
9374 signal_stop[GDB_SIGNAL_WINCH] = 0;
9375 signal_print[GDB_SIGNAL_WINCH] = 0;
9376 signal_stop[GDB_SIGNAL_PRIO] = 0;
9377 signal_print[GDB_SIGNAL_PRIO] = 0;
9378
9379 /* These signals are used internally by user-level thread
9380 implementations. (See signal(5) on Solaris.) Like the above
9381 signals, a healthy program receives and handles them as part of
9382 its normal operation. */
9383 signal_stop[GDB_SIGNAL_LWP] = 0;
9384 signal_print[GDB_SIGNAL_LWP] = 0;
9385 signal_stop[GDB_SIGNAL_WAITING] = 0;
9386 signal_print[GDB_SIGNAL_WAITING] = 0;
9387 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9388 signal_print[GDB_SIGNAL_CANCEL] = 0;
9389 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9390 signal_print[GDB_SIGNAL_LIBRT] = 0;
9391
9392 /* Update cached state. */
9393 signal_cache_update (-1);
9394
9395 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9396 &stop_on_solib_events, _("\
9397 Set stopping for shared library events."), _("\
9398 Show stopping for shared library events."), _("\
9399 If nonzero, gdb will give control to the user when the dynamic linker\n\
9400 notifies gdb of shared library events. The most common event of interest\n\
9401 to the user would be loading/unloading of a new library."),
9402 set_stop_on_solib_events,
9403 show_stop_on_solib_events,
9404 &setlist, &showlist);
9405
9406 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9407 follow_fork_mode_kind_names,
9408 &follow_fork_mode_string, _("\
9409 Set debugger response to a program call of fork or vfork."), _("\
9410 Show debugger response to a program call of fork or vfork."), _("\
9411 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9412 parent - the original process is debugged after a fork\n\
9413 child - the new process is debugged after a fork\n\
9414 The unfollowed process will continue to run.\n\
9415 By default, the debugger will follow the parent process."),
9416 NULL,
9417 show_follow_fork_mode_string,
9418 &setlist, &showlist);
9419
9420 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9421 follow_exec_mode_names,
9422 &follow_exec_mode_string, _("\
9423 Set debugger response to a program call of exec."), _("\
9424 Show debugger response to a program call of exec."), _("\
9425 An exec call replaces the program image of a process.\n\
9426 \n\
9427 follow-exec-mode can be:\n\
9428 \n\
9429 new - the debugger creates a new inferior and rebinds the process\n\
9430 to this new inferior. The program the process was running before\n\
9431 the exec call can be restarted afterwards by restarting the original\n\
9432 inferior.\n\
9433 \n\
9434 same - the debugger keeps the process bound to the same inferior.\n\
9435 The new executable image replaces the previous executable loaded in\n\
9436 the inferior. Restarting the inferior after the exec call restarts\n\
9437 the executable the process was running after the exec call.\n\
9438 \n\
9439 By default, the debugger will use the same inferior."),
9440 NULL,
9441 show_follow_exec_mode_string,
9442 &setlist, &showlist);
9443
9444 add_setshow_enum_cmd ("scheduler-locking", class_run,
9445 scheduler_enums, &scheduler_mode, _("\
9446 Set mode for locking scheduler during execution."), _("\
9447 Show mode for locking scheduler during execution."), _("\
9448 off == no locking (threads may preempt at any time)\n\
9449 on == full locking (no thread except the current thread may run)\n\
9450 This applies to both normal execution and replay mode.\n\
9451 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9452 In this mode, other threads may run during other commands.\n\
9453 This applies to both normal execution and replay mode.\n\
9454 replay == scheduler locked in replay mode and unlocked during normal execution."),
9455 set_schedlock_func, /* traps on target vector */
9456 show_scheduler_mode,
9457 &setlist, &showlist);
9458
9459 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9460 Set mode for resuming threads of all processes."), _("\
9461 Show mode for resuming threads of all processes."), _("\
9462 When on, execution commands (such as 'continue' or 'next') resume all\n\
9463 threads of all processes. When off (which is the default), execution\n\
9464 commands only resume the threads of the current process. The set of\n\
9465 threads that are resumed is further refined by the scheduler-locking\n\
9466 mode (see help set scheduler-locking)."),
9467 NULL,
9468 show_schedule_multiple,
9469 &setlist, &showlist);
9470
9471 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9472 Set mode of the step operation."), _("\
9473 Show mode of the step operation."), _("\
9474 When set, doing a step over a function without debug line information\n\
9475 will stop at the first instruction of that function. Otherwise, the\n\
9476 function is skipped and the step command stops at a different source line."),
9477 NULL,
9478 show_step_stop_if_no_debug,
9479 &setlist, &showlist);
9480
9481 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9482 &can_use_displaced_stepping, _("\
9483 Set debugger's willingness to use displaced stepping."), _("\
9484 Show debugger's willingness to use displaced stepping."), _("\
9485 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9486 supported by the target architecture. If off, gdb will not use displaced\n\
9487 stepping to step over breakpoints, even if such is supported by the target\n\
9488 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9489 if the target architecture supports it and non-stop mode is active, but will not\n\
9490 use it in all-stop mode (see help set non-stop)."),
9491 NULL,
9492 show_can_use_displaced_stepping,
9493 &setlist, &showlist);
9494
9495 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9496 &exec_direction, _("Set direction of execution.\n\
9497 Options are 'forward' or 'reverse'."),
9498 _("Show direction of execution (forward/reverse)."),
9499 _("Tells gdb whether to execute forward or backward."),
9500 set_exec_direction_func, show_exec_direction_func,
9501 &setlist, &showlist);
9502
9503 /* Set/show detach-on-fork: user-settable mode. */
9504
9505 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9506 Set whether gdb will detach the child of a fork."), _("\
9507 Show whether gdb will detach the child of a fork."), _("\
9508 Tells gdb whether to detach the child of a fork."),
9509 NULL, NULL, &setlist, &showlist);
9510
9511 /* Set/show disable address space randomization mode. */
9512
9513 add_setshow_boolean_cmd ("disable-randomization", class_support,
9514 &disable_randomization, _("\
9515 Set disabling of debuggee's virtual address space randomization."), _("\
9516 Show disabling of debuggee's virtual address space randomization."), _("\
9517 When this mode is on (which is the default), randomization of the virtual\n\
9518 address space is disabled. Standalone programs run with the randomization\n\
9519 enabled by default on some platforms."),
9520 &set_disable_randomization,
9521 &show_disable_randomization,
9522 &setlist, &showlist);
9523
9524 /* ptid initializations */
9525 inferior_ptid = null_ptid;
9526 target_last_wait_ptid = minus_one_ptid;
9527
9528 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9529 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9530 observer_attach_thread_exit (infrun_thread_thread_exit);
9531 observer_attach_inferior_exit (infrun_inferior_exit);
9532
9533 /* Explicitly create without lookup, since that tries to create a
9534 value with a void typed value, and when we get here, gdbarch
9535 isn't initialized yet. At this point, we're quite sure there
9536 isn't another convenience variable of the same name. */
9537 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9538
9539 add_setshow_boolean_cmd ("observer", no_class,
9540 &observer_mode_1, _("\
9541 Set whether gdb controls the inferior in observer mode."), _("\
9542 Show whether gdb controls the inferior in observer mode."), _("\
9543 In observer mode, GDB can get data from the inferior, but not\n\
9544 affect its execution. Registers and memory may not be changed,\n\
9545 breakpoints may not be set, and the program cannot be interrupted\n\
9546 or signalled."),
9547 set_observer_mode,
9548 show_observer_mode,
9549 &setlist,
9550 &showlist);
9551 }
This page took 0.860855 seconds and 4 git commands to generate.