b1db8cbe9121c55f2f9d83de7fed04a9cc620422
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45
46 /* Prototypes for local functions */
47
48 static void signals_info (char *, int);
49
50 static void handle_command (char *, int);
51
52 static void sig_print_info (enum target_signal);
53
54 static void sig_print_header (void);
55
56 static void resume_cleanups (void *);
57
58 static int hook_stop_stub (void *);
59
60 static void delete_breakpoint_current_contents (void *);
61
62 static void set_follow_fork_mode_command (char *arg, int from_tty,
63 struct cmd_list_element *c);
64
65 static int restore_selected_frame (void *);
66
67 static void build_infrun (void);
68
69 static int follow_fork ();
70
71 static void set_schedlock_func (char *args, int from_tty,
72 struct cmd_list_element *c);
73
74 struct execution_control_state;
75
76 static int currently_stepping (struct execution_control_state *ecs);
77
78 static void xdb_handle_command (char *args, int from_tty);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* Dynamic function trampolines are similar to solib trampolines in that they
110 are between the caller and the callee. The difference is that when you
111 enter a dynamic trampoline, you can't determine the callee's address. Some
112 (usually complex) code needs to run in the dynamic trampoline to figure out
113 the callee's address. This macro is usually called twice. First, when we
114 enter the trampoline (looks like a normal function call at that point). It
115 should return the PC of a point within the trampoline where the callee's
116 address is known. Second, when we hit the breakpoint, this routine returns
117 the callee's address. At that point, things proceed as per a step resume
118 breakpoint. */
119
120 #ifndef DYNAMIC_TRAMPOLINE_NEXTPC
121 #define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
122 #endif
123
124 /* If the program uses ELF-style shared libraries, then calls to
125 functions in shared libraries go through stubs, which live in a
126 table called the PLT (Procedure Linkage Table). The first time the
127 function is called, the stub sends control to the dynamic linker,
128 which looks up the function's real address, patches the stub so
129 that future calls will go directly to the function, and then passes
130 control to the function.
131
132 If we are stepping at the source level, we don't want to see any of
133 this --- we just want to skip over the stub and the dynamic linker.
134 The simple approach is to single-step until control leaves the
135 dynamic linker.
136
137 However, on some systems (e.g., Red Hat's 5.2 distribution) the
138 dynamic linker calls functions in the shared C library, so you
139 can't tell from the PC alone whether the dynamic linker is still
140 running. In this case, we use a step-resume breakpoint to get us
141 past the dynamic linker, as if we were using "next" to step over a
142 function call.
143
144 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
145 linker code or not. Normally, this means we single-step. However,
146 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
147 address where we can place a step-resume breakpoint to get past the
148 linker's symbol resolution function.
149
150 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
151 pretty portable way, by comparing the PC against the address ranges
152 of the dynamic linker's sections.
153
154 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
155 it depends on internal details of the dynamic linker. It's usually
156 not too hard to figure out where to put a breakpoint, but it
157 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
158 sanity checking. If it can't figure things out, returning zero and
159 getting the (possibly confusing) stepping behavior is better than
160 signalling an error, which will obscure the change in the
161 inferior's state. */
162
163 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
164 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
165 #endif
166
167 #ifndef SKIP_SOLIB_RESOLVER
168 #define SKIP_SOLIB_RESOLVER(pc) 0
169 #endif
170
171 /* This function returns TRUE if pc is the address of an instruction
172 that lies within the dynamic linker (such as the event hook, or the
173 dld itself).
174
175 This function must be used only when a dynamic linker event has
176 been caught, and the inferior is being stepped out of the hook, or
177 undefined results are guaranteed. */
178
179 #ifndef SOLIB_IN_DYNAMIC_LINKER
180 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
181 #endif
182
183 /* On MIPS16, a function that returns a floating point value may call
184 a library helper function to copy the return value to a floating point
185 register. The IGNORE_HELPER_CALL macro returns non-zero if we
186 should ignore (i.e. step over) this function call. */
187 #ifndef IGNORE_HELPER_CALL
188 #define IGNORE_HELPER_CALL(pc) 0
189 #endif
190
191 /* On some systems, the PC may be left pointing at an instruction that won't
192 actually be executed. This is usually indicated by a bit in the PSW. If
193 we find ourselves in such a state, then we step the target beyond the
194 nullified instruction before returning control to the user so as to avoid
195 confusion. */
196
197 #ifndef INSTRUCTION_NULLIFIED
198 #define INSTRUCTION_NULLIFIED 0
199 #endif
200
201 /* We can't step off a permanent breakpoint in the ordinary way, because we
202 can't remove it. Instead, we have to advance the PC to the next
203 instruction. This macro should expand to a pointer to a function that
204 does that, or zero if we have no such function. If we don't have a
205 definition for it, we have to report an error. */
206 #ifndef SKIP_PERMANENT_BREAKPOINT
207 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
208 static void
209 default_skip_permanent_breakpoint (void)
210 {
211 error ("\
212 The program is stopped at a permanent breakpoint, but GDB does not know\n\
213 how to step past a permanent breakpoint on this architecture. Try using\n\
214 a command like `return' or `jump' to continue execution.");
215 }
216 #endif
217
218
219 /* Convert the #defines into values. This is temporary until wfi control
220 flow is completely sorted out. */
221
222 #ifndef HAVE_STEPPABLE_WATCHPOINT
223 #define HAVE_STEPPABLE_WATCHPOINT 0
224 #else
225 #undef HAVE_STEPPABLE_WATCHPOINT
226 #define HAVE_STEPPABLE_WATCHPOINT 1
227 #endif
228
229 #ifndef HAVE_CONTINUABLE_WATCHPOINT
230 #define HAVE_CONTINUABLE_WATCHPOINT 0
231 #else
232 #undef HAVE_CONTINUABLE_WATCHPOINT
233 #define HAVE_CONTINUABLE_WATCHPOINT 1
234 #endif
235
236 #ifndef CANNOT_STEP_HW_WATCHPOINTS
237 #define CANNOT_STEP_HW_WATCHPOINTS 0
238 #else
239 #undef CANNOT_STEP_HW_WATCHPOINTS
240 #define CANNOT_STEP_HW_WATCHPOINTS 1
241 #endif
242
243 /* Tables of how to react to signals; the user sets them. */
244
245 static unsigned char *signal_stop;
246 static unsigned char *signal_print;
247 static unsigned char *signal_program;
248
249 #define SET_SIGS(nsigs,sigs,flags) \
250 do { \
251 int signum = (nsigs); \
252 while (signum-- > 0) \
253 if ((sigs)[signum]) \
254 (flags)[signum] = 1; \
255 } while (0)
256
257 #define UNSET_SIGS(nsigs,sigs,flags) \
258 do { \
259 int signum = (nsigs); \
260 while (signum-- > 0) \
261 if ((sigs)[signum]) \
262 (flags)[signum] = 0; \
263 } while (0)
264
265 /* Value to pass to target_resume() to cause all threads to resume */
266
267 #define RESUME_ALL (pid_to_ptid (-1))
268
269 /* Command list pointer for the "stop" placeholder. */
270
271 static struct cmd_list_element *stop_command;
272
273 /* Nonzero if breakpoints are now inserted in the inferior. */
274
275 static int breakpoints_inserted;
276
277 /* Function inferior was in as of last step command. */
278
279 static struct symbol *step_start_function;
280
281 /* Nonzero if we are expecting a trace trap and should proceed from it. */
282
283 static int trap_expected;
284
285 #ifdef SOLIB_ADD
286 /* Nonzero if we want to give control to the user when we're notified
287 of shared library events by the dynamic linker. */
288 static int stop_on_solib_events;
289 #endif
290
291 #ifdef HP_OS_BUG
292 /* Nonzero if the next time we try to continue the inferior, it will
293 step one instruction and generate a spurious trace trap.
294 This is used to compensate for a bug in HP-UX. */
295
296 static int trap_expected_after_continue;
297 #endif
298
299 /* Nonzero means expecting a trace trap
300 and should stop the inferior and return silently when it happens. */
301
302 int stop_after_trap;
303
304 /* Nonzero means expecting a trap and caller will handle it themselves.
305 It is used after attach, due to attaching to a process;
306 when running in the shell before the child program has been exec'd;
307 and when running some kinds of remote stuff (FIXME?). */
308
309 int stop_soon_quietly;
310
311 /* Nonzero if proceed is being used for a "finish" command or a similar
312 situation when stop_registers should be saved. */
313
314 int proceed_to_finish;
315
316 /* Save register contents here when about to pop a stack dummy frame,
317 if-and-only-if proceed_to_finish is set.
318 Thus this contains the return value from the called function (assuming
319 values are returned in a register). */
320
321 struct regcache *stop_registers;
322
323 /* Nonzero if program stopped due to error trying to insert breakpoints. */
324
325 static int breakpoints_failed;
326
327 /* Nonzero after stop if current stack frame should be printed. */
328
329 static int stop_print_frame;
330
331 static struct breakpoint *step_resume_breakpoint = NULL;
332 static struct breakpoint *through_sigtramp_breakpoint = NULL;
333
334 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
335 interactions with an inferior that is running a kernel function
336 (aka, a system call or "syscall"). wait_for_inferior therefore
337 may have a need to know when the inferior is in a syscall. This
338 is a count of the number of inferior threads which are known to
339 currently be running in a syscall. */
340 static int number_of_threads_in_syscalls;
341
342 /* This is a cached copy of the pid/waitstatus of the last event
343 returned by target_wait()/target_wait_hook(). This information is
344 returned by get_last_target_status(). */
345 static ptid_t target_last_wait_ptid;
346 static struct target_waitstatus target_last_waitstatus;
347
348 /* This is used to remember when a fork, vfork or exec event
349 was caught by a catchpoint, and thus the event is to be
350 followed at the next resume of the inferior, and not
351 immediately. */
352 static struct
353 {
354 enum target_waitkind kind;
355 struct
356 {
357 int parent_pid;
358 int child_pid;
359 }
360 fork_event;
361 char *execd_pathname;
362 }
363 pending_follow;
364
365 static const char follow_fork_mode_ask[] = "ask";
366 static const char follow_fork_mode_child[] = "child";
367 static const char follow_fork_mode_parent[] = "parent";
368
369 static const char *follow_fork_mode_kind_names[] = {
370 follow_fork_mode_ask,
371 follow_fork_mode_child,
372 follow_fork_mode_parent,
373 NULL
374 };
375
376 static const char *follow_fork_mode_string = follow_fork_mode_parent;
377 \f
378
379 static int
380 follow_fork ()
381 {
382 const char *follow_mode = follow_fork_mode_string;
383 int follow_child = (follow_mode == follow_fork_mode_child);
384
385 /* Or, did the user not know, and want us to ask? */
386 if (follow_fork_mode_string == follow_fork_mode_ask)
387 {
388 internal_error (__FILE__, __LINE__,
389 "follow_inferior_fork: \"ask\" mode not implemented");
390 /* follow_mode = follow_fork_mode_...; */
391 }
392
393 return target_follow_fork (follow_child);
394 }
395
396 void
397 follow_inferior_reset_breakpoints (void)
398 {
399 /* Was there a step_resume breakpoint? (There was if the user
400 did a "next" at the fork() call.) If so, explicitly reset its
401 thread number.
402
403 step_resumes are a form of bp that are made to be per-thread.
404 Since we created the step_resume bp when the parent process
405 was being debugged, and now are switching to the child process,
406 from the breakpoint package's viewpoint, that's a switch of
407 "threads". We must update the bp's notion of which thread
408 it is for, or it'll be ignored when it triggers. */
409
410 if (step_resume_breakpoint)
411 breakpoint_re_set_thread (step_resume_breakpoint);
412
413 /* Reinsert all breakpoints in the child. The user may have set
414 breakpoints after catching the fork, in which case those
415 were never set in the child, but only in the parent. This makes
416 sure the inserted breakpoints match the breakpoint list. */
417
418 breakpoint_re_set ();
419 insert_breakpoints ();
420 }
421
422 /* EXECD_PATHNAME is assumed to be non-NULL. */
423
424 static void
425 follow_exec (int pid, char *execd_pathname)
426 {
427 int saved_pid = pid;
428 struct target_ops *tgt;
429
430 if (!may_follow_exec)
431 return;
432
433 /* This is an exec event that we actually wish to pay attention to.
434 Refresh our symbol table to the newly exec'd program, remove any
435 momentary bp's, etc.
436
437 If there are breakpoints, they aren't really inserted now,
438 since the exec() transformed our inferior into a fresh set
439 of instructions.
440
441 We want to preserve symbolic breakpoints on the list, since
442 we have hopes that they can be reset after the new a.out's
443 symbol table is read.
444
445 However, any "raw" breakpoints must be removed from the list
446 (e.g., the solib bp's), since their address is probably invalid
447 now.
448
449 And, we DON'T want to call delete_breakpoints() here, since
450 that may write the bp's "shadow contents" (the instruction
451 value that was overwritten witha TRAP instruction). Since
452 we now have a new a.out, those shadow contents aren't valid. */
453 update_breakpoints_after_exec ();
454
455 /* If there was one, it's gone now. We cannot truly step-to-next
456 statement through an exec(). */
457 step_resume_breakpoint = NULL;
458 step_range_start = 0;
459 step_range_end = 0;
460
461 /* If there was one, it's gone now. */
462 through_sigtramp_breakpoint = NULL;
463
464 /* What is this a.out's name? */
465 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
466
467 /* We've followed the inferior through an exec. Therefore, the
468 inferior has essentially been killed & reborn. */
469
470 /* First collect the run target in effect. */
471 tgt = find_run_target ();
472 /* If we can't find one, things are in a very strange state... */
473 if (tgt == NULL)
474 error ("Could find run target to save before following exec");
475
476 gdb_flush (gdb_stdout);
477 target_mourn_inferior ();
478 inferior_ptid = pid_to_ptid (saved_pid);
479 /* Because mourn_inferior resets inferior_ptid. */
480 push_target (tgt);
481
482 /* That a.out is now the one to use. */
483 exec_file_attach (execd_pathname, 0);
484
485 /* And also is where symbols can be found. */
486 symbol_file_add_main (execd_pathname, 0);
487
488 /* Reset the shared library package. This ensures that we get
489 a shlib event when the child reaches "_start", at which point
490 the dld will have had a chance to initialize the child. */
491 #if defined(SOLIB_RESTART)
492 SOLIB_RESTART ();
493 #endif
494 #ifdef SOLIB_CREATE_INFERIOR_HOOK
495 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
496 #endif
497
498 /* Reinsert all breakpoints. (Those which were symbolic have
499 been reset to the proper address in the new a.out, thanks
500 to symbol_file_command...) */
501 insert_breakpoints ();
502
503 /* The next resume of this inferior should bring it to the shlib
504 startup breakpoints. (If the user had also set bp's on
505 "main" from the old (parent) process, then they'll auto-
506 matically get reset there in the new process.) */
507 }
508
509 /* Non-zero if we just simulating a single-step. This is needed
510 because we cannot remove the breakpoints in the inferior process
511 until after the `wait' in `wait_for_inferior'. */
512 static int singlestep_breakpoints_inserted_p = 0;
513 \f
514
515 /* Things to clean up if we QUIT out of resume (). */
516 /* ARGSUSED */
517 static void
518 resume_cleanups (void *ignore)
519 {
520 normal_stop ();
521 }
522
523 static const char schedlock_off[] = "off";
524 static const char schedlock_on[] = "on";
525 static const char schedlock_step[] = "step";
526 static const char *scheduler_mode = schedlock_off;
527 static const char *scheduler_enums[] = {
528 schedlock_off,
529 schedlock_on,
530 schedlock_step,
531 NULL
532 };
533
534 static void
535 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
536 {
537 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
538 the set command passed as a parameter. The clone operation will
539 include (BUG?) any ``set'' command callback, if present.
540 Commands like ``info set'' call all the ``show'' command
541 callbacks. Unfortunatly, for ``show'' commands cloned from
542 ``set'', this includes callbacks belonging to ``set'' commands.
543 Making this worse, this only occures if add_show_from_set() is
544 called after add_cmd_sfunc() (BUG?). */
545 if (cmd_type (c) == set_cmd)
546 if (!target_can_lock_scheduler)
547 {
548 scheduler_mode = schedlock_off;
549 error ("Target '%s' cannot support this command.", target_shortname);
550 }
551 }
552
553
554 /* Resume the inferior, but allow a QUIT. This is useful if the user
555 wants to interrupt some lengthy single-stepping operation
556 (for child processes, the SIGINT goes to the inferior, and so
557 we get a SIGINT random_signal, but for remote debugging and perhaps
558 other targets, that's not true).
559
560 STEP nonzero if we should step (zero to continue instead).
561 SIG is the signal to give the inferior (zero for none). */
562 void
563 resume (int step, enum target_signal sig)
564 {
565 int should_resume = 1;
566 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
567 QUIT;
568
569 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
570
571
572 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
573 over an instruction that causes a page fault without triggering
574 a hardware watchpoint. The kernel properly notices that it shouldn't
575 stop, because the hardware watchpoint is not triggered, but it forgets
576 the step request and continues the program normally.
577 Work around the problem by removing hardware watchpoints if a step is
578 requested, GDB will check for a hardware watchpoint trigger after the
579 step anyway. */
580 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
581 remove_hw_watchpoints ();
582
583
584 /* Normally, by the time we reach `resume', the breakpoints are either
585 removed or inserted, as appropriate. The exception is if we're sitting
586 at a permanent breakpoint; we need to step over it, but permanent
587 breakpoints can't be removed. So we have to test for it here. */
588 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
589 SKIP_PERMANENT_BREAKPOINT ();
590
591 if (SOFTWARE_SINGLE_STEP_P () && step)
592 {
593 /* Do it the hard way, w/temp breakpoints */
594 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
595 /* ...and don't ask hardware to do it. */
596 step = 0;
597 /* and do not pull these breakpoints until after a `wait' in
598 `wait_for_inferior' */
599 singlestep_breakpoints_inserted_p = 1;
600 }
601
602 /* Handle any optimized stores to the inferior NOW... */
603 #ifdef DO_DEFERRED_STORES
604 DO_DEFERRED_STORES;
605 #endif
606
607 /* If there were any forks/vforks/execs that were caught and are
608 now to be followed, then do so. */
609 switch (pending_follow.kind)
610 {
611 case TARGET_WAITKIND_FORKED:
612 case TARGET_WAITKIND_VFORKED:
613 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
614 if (follow_fork ())
615 should_resume = 0;
616 break;
617
618 case TARGET_WAITKIND_EXECD:
619 /* follow_exec is called as soon as the exec event is seen. */
620 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
621 break;
622
623 default:
624 break;
625 }
626
627 /* Install inferior's terminal modes. */
628 target_terminal_inferior ();
629
630 if (should_resume)
631 {
632 ptid_t resume_ptid;
633
634 resume_ptid = RESUME_ALL; /* Default */
635
636 if ((step || singlestep_breakpoints_inserted_p) &&
637 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
638 {
639 /* Stepping past a breakpoint without inserting breakpoints.
640 Make sure only the current thread gets to step, so that
641 other threads don't sneak past breakpoints while they are
642 not inserted. */
643
644 resume_ptid = inferior_ptid;
645 }
646
647 if ((scheduler_mode == schedlock_on) ||
648 (scheduler_mode == schedlock_step &&
649 (step || singlestep_breakpoints_inserted_p)))
650 {
651 /* User-settable 'scheduler' mode requires solo thread resume. */
652 resume_ptid = inferior_ptid;
653 }
654
655 if (CANNOT_STEP_BREAKPOINT)
656 {
657 /* Most targets can step a breakpoint instruction, thus
658 executing it normally. But if this one cannot, just
659 continue and we will hit it anyway. */
660 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
661 step = 0;
662 }
663 target_resume (resume_ptid, step, sig);
664 }
665
666 discard_cleanups (old_cleanups);
667 }
668 \f
669
670 /* Clear out all variables saying what to do when inferior is continued.
671 First do this, then set the ones you want, then call `proceed'. */
672
673 void
674 clear_proceed_status (void)
675 {
676 trap_expected = 0;
677 step_range_start = 0;
678 step_range_end = 0;
679 step_frame_id = null_frame_id;
680 step_over_calls = STEP_OVER_UNDEBUGGABLE;
681 stop_after_trap = 0;
682 stop_soon_quietly = 0;
683 proceed_to_finish = 0;
684 breakpoint_proceeded = 1; /* We're about to proceed... */
685
686 /* Discard any remaining commands or status from previous stop. */
687 bpstat_clear (&stop_bpstat);
688 }
689
690 /* Basic routine for continuing the program in various fashions.
691
692 ADDR is the address to resume at, or -1 for resume where stopped.
693 SIGGNAL is the signal to give it, or 0 for none,
694 or -1 for act according to how it stopped.
695 STEP is nonzero if should trap after one instruction.
696 -1 means return after that and print nothing.
697 You should probably set various step_... variables
698 before calling here, if you are stepping.
699
700 You should call clear_proceed_status before calling proceed. */
701
702 void
703 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
704 {
705 int oneproc = 0;
706
707 if (step > 0)
708 step_start_function = find_pc_function (read_pc ());
709 if (step < 0)
710 stop_after_trap = 1;
711
712 if (addr == (CORE_ADDR) -1)
713 {
714 /* If there is a breakpoint at the address we will resume at,
715 step one instruction before inserting breakpoints
716 so that we do not stop right away (and report a second
717 hit at this breakpoint). */
718
719 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
720 oneproc = 1;
721
722 #ifndef STEP_SKIPS_DELAY
723 #define STEP_SKIPS_DELAY(pc) (0)
724 #define STEP_SKIPS_DELAY_P (0)
725 #endif
726 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
727 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
728 is slow (it needs to read memory from the target). */
729 if (STEP_SKIPS_DELAY_P
730 && breakpoint_here_p (read_pc () + 4)
731 && STEP_SKIPS_DELAY (read_pc ()))
732 oneproc = 1;
733 }
734 else
735 {
736 write_pc (addr);
737 }
738
739 #ifdef PREPARE_TO_PROCEED
740 /* In a multi-threaded task we may select another thread
741 and then continue or step.
742
743 But if the old thread was stopped at a breakpoint, it
744 will immediately cause another breakpoint stop without
745 any execution (i.e. it will report a breakpoint hit
746 incorrectly). So we must step over it first.
747
748 PREPARE_TO_PROCEED checks the current thread against the thread
749 that reported the most recent event. If a step-over is required
750 it returns TRUE and sets the current thread to the old thread. */
751 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
752 {
753 oneproc = 1;
754 }
755
756 #endif /* PREPARE_TO_PROCEED */
757
758 #ifdef HP_OS_BUG
759 if (trap_expected_after_continue)
760 {
761 /* If (step == 0), a trap will be automatically generated after
762 the first instruction is executed. Force step one
763 instruction to clear this condition. This should not occur
764 if step is nonzero, but it is harmless in that case. */
765 oneproc = 1;
766 trap_expected_after_continue = 0;
767 }
768 #endif /* HP_OS_BUG */
769
770 if (oneproc)
771 /* We will get a trace trap after one instruction.
772 Continue it automatically and insert breakpoints then. */
773 trap_expected = 1;
774 else
775 {
776 insert_breakpoints ();
777 /* If we get here there was no call to error() in
778 insert breakpoints -- so they were inserted. */
779 breakpoints_inserted = 1;
780 }
781
782 if (siggnal != TARGET_SIGNAL_DEFAULT)
783 stop_signal = siggnal;
784 /* If this signal should not be seen by program,
785 give it zero. Used for debugging signals. */
786 else if (!signal_program[stop_signal])
787 stop_signal = TARGET_SIGNAL_0;
788
789 annotate_starting ();
790
791 /* Make sure that output from GDB appears before output from the
792 inferior. */
793 gdb_flush (gdb_stdout);
794
795 /* Resume inferior. */
796 resume (oneproc || step || bpstat_should_step (), stop_signal);
797
798 /* Wait for it to stop (if not standalone)
799 and in any case decode why it stopped, and act accordingly. */
800 /* Do this only if we are not using the event loop, or if the target
801 does not support asynchronous execution. */
802 if (!event_loop_p || !target_can_async_p ())
803 {
804 wait_for_inferior ();
805 normal_stop ();
806 }
807 }
808
809 /* Record the pc and sp of the program the last time it stopped.
810 These are just used internally by wait_for_inferior, but need
811 to be preserved over calls to it and cleared when the inferior
812 is started. */
813 static CORE_ADDR prev_pc;
814 static CORE_ADDR prev_func_start;
815 static char *prev_func_name;
816 \f
817
818 /* Start remote-debugging of a machine over a serial link. */
819
820 void
821 start_remote (void)
822 {
823 init_thread_list ();
824 init_wait_for_inferior ();
825 stop_soon_quietly = 1;
826 trap_expected = 0;
827
828 /* Always go on waiting for the target, regardless of the mode. */
829 /* FIXME: cagney/1999-09-23: At present it isn't possible to
830 indicate to wait_for_inferior that a target should timeout if
831 nothing is returned (instead of just blocking). Because of this,
832 targets expecting an immediate response need to, internally, set
833 things up so that the target_wait() is forced to eventually
834 timeout. */
835 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
836 differentiate to its caller what the state of the target is after
837 the initial open has been performed. Here we're assuming that
838 the target has stopped. It should be possible to eventually have
839 target_open() return to the caller an indication that the target
840 is currently running and GDB state should be set to the same as
841 for an async run. */
842 wait_for_inferior ();
843 normal_stop ();
844 }
845
846 /* Initialize static vars when a new inferior begins. */
847
848 void
849 init_wait_for_inferior (void)
850 {
851 /* These are meaningless until the first time through wait_for_inferior. */
852 prev_pc = 0;
853 prev_func_start = 0;
854 prev_func_name = NULL;
855
856 #ifdef HP_OS_BUG
857 trap_expected_after_continue = 0;
858 #endif
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
867
868 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
869 number_of_threads_in_syscalls = 0;
870
871 clear_proceed_status ();
872 }
873
874 static void
875 delete_breakpoint_current_contents (void *arg)
876 {
877 struct breakpoint **breakpointp = (struct breakpoint **) arg;
878 if (*breakpointp != NULL)
879 {
880 delete_breakpoint (*breakpointp);
881 *breakpointp = NULL;
882 }
883 }
884 \f
885 /* This enum encodes possible reasons for doing a target_wait, so that
886 wfi can call target_wait in one place. (Ultimately the call will be
887 moved out of the infinite loop entirely.) */
888
889 enum infwait_states
890 {
891 infwait_normal_state,
892 infwait_thread_hop_state,
893 infwait_nullified_state,
894 infwait_nonstep_watch_state
895 };
896
897 /* Why did the inferior stop? Used to print the appropriate messages
898 to the interface from within handle_inferior_event(). */
899 enum inferior_stop_reason
900 {
901 /* We don't know why. */
902 STOP_UNKNOWN,
903 /* Step, next, nexti, stepi finished. */
904 END_STEPPING_RANGE,
905 /* Found breakpoint. */
906 BREAKPOINT_HIT,
907 /* Inferior terminated by signal. */
908 SIGNAL_EXITED,
909 /* Inferior exited. */
910 EXITED,
911 /* Inferior received signal, and user asked to be notified. */
912 SIGNAL_RECEIVED
913 };
914
915 /* This structure contains what used to be local variables in
916 wait_for_inferior. Probably many of them can return to being
917 locals in handle_inferior_event. */
918
919 struct execution_control_state
920 {
921 struct target_waitstatus ws;
922 struct target_waitstatus *wp;
923 int another_trap;
924 int random_signal;
925 CORE_ADDR stop_func_start;
926 CORE_ADDR stop_func_end;
927 char *stop_func_name;
928 struct symtab_and_line sal;
929 int remove_breakpoints_on_following_step;
930 int current_line;
931 struct symtab *current_symtab;
932 int handling_longjmp; /* FIXME */
933 ptid_t ptid;
934 ptid_t saved_inferior_ptid;
935 int update_step_sp;
936 int stepping_through_solib_after_catch;
937 bpstat stepping_through_solib_catchpoints;
938 int enable_hw_watchpoints_after_wait;
939 int stepping_through_sigtramp;
940 int new_thread_event;
941 struct target_waitstatus tmpstatus;
942 enum infwait_states infwait_state;
943 ptid_t waiton_ptid;
944 int wait_some_more;
945 };
946
947 void init_execution_control_state (struct execution_control_state *ecs);
948
949 void handle_inferior_event (struct execution_control_state *ecs);
950
951 static void check_sigtramp2 (struct execution_control_state *ecs);
952 static void step_into_function (struct execution_control_state *ecs);
953 static void step_over_function (struct execution_control_state *ecs);
954 static void stop_stepping (struct execution_control_state *ecs);
955 static void prepare_to_wait (struct execution_control_state *ecs);
956 static void keep_going (struct execution_control_state *ecs);
957 static void print_stop_reason (enum inferior_stop_reason stop_reason,
958 int stop_info);
959
960 /* Wait for control to return from inferior to debugger.
961 If inferior gets a signal, we may decide to start it up again
962 instead of returning. That is why there is a loop in this function.
963 When this function actually returns it means the inferior
964 should be left stopped and GDB should read more commands. */
965
966 void
967 wait_for_inferior (void)
968 {
969 struct cleanup *old_cleanups;
970 struct execution_control_state ecss;
971 struct execution_control_state *ecs;
972
973 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
974 &step_resume_breakpoint);
975 make_cleanup (delete_breakpoint_current_contents,
976 &through_sigtramp_breakpoint);
977
978 /* wfi still stays in a loop, so it's OK just to take the address of
979 a local to get the ecs pointer. */
980 ecs = &ecss;
981
982 /* Fill in with reasonable starting values. */
983 init_execution_control_state (ecs);
984
985 /* We'll update this if & when we switch to a new thread. */
986 previous_inferior_ptid = inferior_ptid;
987
988 overlay_cache_invalid = 1;
989
990 /* We have to invalidate the registers BEFORE calling target_wait
991 because they can be loaded from the target while in target_wait.
992 This makes remote debugging a bit more efficient for those
993 targets that provide critical registers as part of their normal
994 status mechanism. */
995
996 registers_changed ();
997
998 while (1)
999 {
1000 if (target_wait_hook)
1001 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
1002 else
1003 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1004
1005 /* Now figure out what to do with the result of the result. */
1006 handle_inferior_event (ecs);
1007
1008 if (!ecs->wait_some_more)
1009 break;
1010 }
1011 do_cleanups (old_cleanups);
1012 }
1013
1014 /* Asynchronous version of wait_for_inferior. It is called by the
1015 event loop whenever a change of state is detected on the file
1016 descriptor corresponding to the target. It can be called more than
1017 once to complete a single execution command. In such cases we need
1018 to keep the state in a global variable ASYNC_ECSS. If it is the
1019 last time that this function is called for a single execution
1020 command, then report to the user that the inferior has stopped, and
1021 do the necessary cleanups. */
1022
1023 struct execution_control_state async_ecss;
1024 struct execution_control_state *async_ecs;
1025
1026 void
1027 fetch_inferior_event (void *client_data)
1028 {
1029 static struct cleanup *old_cleanups;
1030
1031 async_ecs = &async_ecss;
1032
1033 if (!async_ecs->wait_some_more)
1034 {
1035 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1036 &step_resume_breakpoint);
1037 make_exec_cleanup (delete_breakpoint_current_contents,
1038 &through_sigtramp_breakpoint);
1039
1040 /* Fill in with reasonable starting values. */
1041 init_execution_control_state (async_ecs);
1042
1043 /* We'll update this if & when we switch to a new thread. */
1044 previous_inferior_ptid = inferior_ptid;
1045
1046 overlay_cache_invalid = 1;
1047
1048 /* We have to invalidate the registers BEFORE calling target_wait
1049 because they can be loaded from the target while in target_wait.
1050 This makes remote debugging a bit more efficient for those
1051 targets that provide critical registers as part of their normal
1052 status mechanism. */
1053
1054 registers_changed ();
1055 }
1056
1057 if (target_wait_hook)
1058 async_ecs->ptid =
1059 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1060 else
1061 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1062
1063 /* Now figure out what to do with the result of the result. */
1064 handle_inferior_event (async_ecs);
1065
1066 if (!async_ecs->wait_some_more)
1067 {
1068 /* Do only the cleanups that have been added by this
1069 function. Let the continuations for the commands do the rest,
1070 if there are any. */
1071 do_exec_cleanups (old_cleanups);
1072 normal_stop ();
1073 if (step_multi && stop_step)
1074 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1075 else
1076 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1077 }
1078 }
1079
1080 /* Prepare an execution control state for looping through a
1081 wait_for_inferior-type loop. */
1082
1083 void
1084 init_execution_control_state (struct execution_control_state *ecs)
1085 {
1086 /* ecs->another_trap? */
1087 ecs->random_signal = 0;
1088 ecs->remove_breakpoints_on_following_step = 0;
1089 ecs->handling_longjmp = 0; /* FIXME */
1090 ecs->update_step_sp = 0;
1091 ecs->stepping_through_solib_after_catch = 0;
1092 ecs->stepping_through_solib_catchpoints = NULL;
1093 ecs->enable_hw_watchpoints_after_wait = 0;
1094 ecs->stepping_through_sigtramp = 0;
1095 ecs->sal = find_pc_line (prev_pc, 0);
1096 ecs->current_line = ecs->sal.line;
1097 ecs->current_symtab = ecs->sal.symtab;
1098 ecs->infwait_state = infwait_normal_state;
1099 ecs->waiton_ptid = pid_to_ptid (-1);
1100 ecs->wp = &(ecs->ws);
1101 }
1102
1103 /* Call this function before setting step_resume_breakpoint, as a
1104 sanity check. There should never be more than one step-resume
1105 breakpoint per thread, so we should never be setting a new
1106 step_resume_breakpoint when one is already active. */
1107 static void
1108 check_for_old_step_resume_breakpoint (void)
1109 {
1110 if (step_resume_breakpoint)
1111 warning
1112 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1113 }
1114
1115 /* Return the cached copy of the last pid/waitstatus returned by
1116 target_wait()/target_wait_hook(). The data is actually cached by
1117 handle_inferior_event(), which gets called immediately after
1118 target_wait()/target_wait_hook(). */
1119
1120 void
1121 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1122 {
1123 *ptidp = target_last_wait_ptid;
1124 *status = target_last_waitstatus;
1125 }
1126
1127 /* Switch thread contexts, maintaining "infrun state". */
1128
1129 static void
1130 context_switch (struct execution_control_state *ecs)
1131 {
1132 /* Caution: it may happen that the new thread (or the old one!)
1133 is not in the thread list. In this case we must not attempt
1134 to "switch context", or we run the risk that our context may
1135 be lost. This may happen as a result of the target module
1136 mishandling thread creation. */
1137
1138 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1139 { /* Perform infrun state context switch: */
1140 /* Save infrun state for the old thread. */
1141 save_infrun_state (inferior_ptid, prev_pc,
1142 prev_func_start, prev_func_name,
1143 trap_expected, step_resume_breakpoint,
1144 through_sigtramp_breakpoint, step_range_start,
1145 step_range_end, &step_frame_id,
1146 ecs->handling_longjmp, ecs->another_trap,
1147 ecs->stepping_through_solib_after_catch,
1148 ecs->stepping_through_solib_catchpoints,
1149 ecs->stepping_through_sigtramp,
1150 ecs->current_line, ecs->current_symtab, step_sp);
1151
1152 /* Load infrun state for the new thread. */
1153 load_infrun_state (ecs->ptid, &prev_pc,
1154 &prev_func_start, &prev_func_name,
1155 &trap_expected, &step_resume_breakpoint,
1156 &through_sigtramp_breakpoint, &step_range_start,
1157 &step_range_end, &step_frame_id,
1158 &ecs->handling_longjmp, &ecs->another_trap,
1159 &ecs->stepping_through_solib_after_catch,
1160 &ecs->stepping_through_solib_catchpoints,
1161 &ecs->stepping_through_sigtramp,
1162 &ecs->current_line, &ecs->current_symtab, &step_sp);
1163 }
1164 inferior_ptid = ecs->ptid;
1165 }
1166
1167
1168 /* Given an execution control state that has been freshly filled in
1169 by an event from the inferior, figure out what it means and take
1170 appropriate action. */
1171
1172 void
1173 handle_inferior_event (struct execution_control_state *ecs)
1174 {
1175 CORE_ADDR tmp;
1176 int stepped_after_stopped_by_watchpoint;
1177 int sw_single_step_trap_p = 0;
1178
1179 /* Cache the last pid/waitstatus. */
1180 target_last_wait_ptid = ecs->ptid;
1181 target_last_waitstatus = *ecs->wp;
1182
1183 switch (ecs->infwait_state)
1184 {
1185 case infwait_thread_hop_state:
1186 /* Cancel the waiton_ptid. */
1187 ecs->waiton_ptid = pid_to_ptid (-1);
1188 /* Fall thru to the normal_state case. */
1189
1190 case infwait_normal_state:
1191 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1192 is serviced in this loop, below. */
1193 if (ecs->enable_hw_watchpoints_after_wait)
1194 {
1195 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1196 ecs->enable_hw_watchpoints_after_wait = 0;
1197 }
1198 stepped_after_stopped_by_watchpoint = 0;
1199 break;
1200
1201 case infwait_nullified_state:
1202 break;
1203
1204 case infwait_nonstep_watch_state:
1205 insert_breakpoints ();
1206
1207 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1208 handle things like signals arriving and other things happening
1209 in combination correctly? */
1210 stepped_after_stopped_by_watchpoint = 1;
1211 break;
1212 }
1213 ecs->infwait_state = infwait_normal_state;
1214
1215 flush_cached_frames ();
1216
1217 /* If it's a new process, add it to the thread database */
1218
1219 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1220 && !in_thread_list (ecs->ptid));
1221
1222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1224 {
1225 add_thread (ecs->ptid);
1226
1227 ui_out_text (uiout, "[New ");
1228 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1229 ui_out_text (uiout, "]\n");
1230
1231 #if 0
1232 /* NOTE: This block is ONLY meant to be invoked in case of a
1233 "thread creation event"! If it is invoked for any other
1234 sort of event (such as a new thread landing on a breakpoint),
1235 the event will be discarded, which is almost certainly
1236 a bad thing!
1237
1238 To avoid this, the low-level module (eg. target_wait)
1239 should call in_thread_list and add_thread, so that the
1240 new thread is known by the time we get here. */
1241
1242 /* We may want to consider not doing a resume here in order
1243 to give the user a chance to play with the new thread.
1244 It might be good to make that a user-settable option. */
1245
1246 /* At this point, all threads are stopped (happens
1247 automatically in either the OS or the native code).
1248 Therefore we need to continue all threads in order to
1249 make progress. */
1250
1251 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1252 prepare_to_wait (ecs);
1253 return;
1254 #endif
1255 }
1256
1257 switch (ecs->ws.kind)
1258 {
1259 case TARGET_WAITKIND_LOADED:
1260 /* Ignore gracefully during startup of the inferior, as it
1261 might be the shell which has just loaded some objects,
1262 otherwise add the symbols for the newly loaded objects. */
1263 #ifdef SOLIB_ADD
1264 if (!stop_soon_quietly)
1265 {
1266 /* Remove breakpoints, SOLIB_ADD might adjust
1267 breakpoint addresses via breakpoint_re_set. */
1268 if (breakpoints_inserted)
1269 remove_breakpoints ();
1270
1271 /* Check for any newly added shared libraries if we're
1272 supposed to be adding them automatically. Switch
1273 terminal for any messages produced by
1274 breakpoint_re_set. */
1275 target_terminal_ours_for_output ();
1276 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1277 target_terminal_inferior ();
1278
1279 /* Reinsert breakpoints and continue. */
1280 if (breakpoints_inserted)
1281 insert_breakpoints ();
1282 }
1283 #endif
1284 resume (0, TARGET_SIGNAL_0);
1285 prepare_to_wait (ecs);
1286 return;
1287
1288 case TARGET_WAITKIND_SPURIOUS:
1289 resume (0, TARGET_SIGNAL_0);
1290 prepare_to_wait (ecs);
1291 return;
1292
1293 case TARGET_WAITKIND_EXITED:
1294 target_terminal_ours (); /* Must do this before mourn anyway */
1295 print_stop_reason (EXITED, ecs->ws.value.integer);
1296
1297 /* Record the exit code in the convenience variable $_exitcode, so
1298 that the user can inspect this again later. */
1299 set_internalvar (lookup_internalvar ("_exitcode"),
1300 value_from_longest (builtin_type_int,
1301 (LONGEST) ecs->ws.value.integer));
1302 gdb_flush (gdb_stdout);
1303 target_mourn_inferior ();
1304 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1305 stop_print_frame = 0;
1306 stop_stepping (ecs);
1307 return;
1308
1309 case TARGET_WAITKIND_SIGNALLED:
1310 stop_print_frame = 0;
1311 stop_signal = ecs->ws.value.sig;
1312 target_terminal_ours (); /* Must do this before mourn anyway */
1313
1314 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1315 reach here unless the inferior is dead. However, for years
1316 target_kill() was called here, which hints that fatal signals aren't
1317 really fatal on some systems. If that's true, then some changes
1318 may be needed. */
1319 target_mourn_inferior ();
1320
1321 print_stop_reason (SIGNAL_EXITED, stop_signal);
1322 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1323 stop_stepping (ecs);
1324 return;
1325
1326 /* The following are the only cases in which we keep going;
1327 the above cases end in a continue or goto. */
1328 case TARGET_WAITKIND_FORKED:
1329 stop_signal = TARGET_SIGNAL_TRAP;
1330 pending_follow.kind = ecs->ws.kind;
1331
1332 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1333 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1334
1335 stop_pc = read_pc_pid (ecs->ptid);
1336 ecs->saved_inferior_ptid = inferior_ptid;
1337 inferior_ptid = ecs->ptid;
1338 /* The second argument of bpstat_stop_status is meant to help
1339 distinguish between a breakpoint trap and a singlestep trap.
1340 This is only important on targets where DECR_PC_AFTER_BREAK
1341 is non-zero. The prev_pc test is meant to distinguish between
1342 singlestepping a trap instruction, and singlestepping thru a
1343 jump to the instruction following a trap instruction. */
1344
1345 stop_bpstat = bpstat_stop_status (&stop_pc,
1346 currently_stepping (ecs) &&
1347 prev_pc !=
1348 stop_pc - DECR_PC_AFTER_BREAK);
1349 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1350 inferior_ptid = ecs->saved_inferior_ptid;
1351 goto process_event_stop_test;
1352
1353 /* If this a platform which doesn't allow a debugger to touch a
1354 vfork'd inferior until after it exec's, then we'd best keep
1355 our fingers entirely off the inferior, other than continuing
1356 it. This has the unfortunate side-effect that catchpoints
1357 of vforks will be ignored. But since the platform doesn't
1358 allow the inferior be touched at vfork time, there's really
1359 little choice. */
1360 case TARGET_WAITKIND_VFORKED:
1361 stop_signal = TARGET_SIGNAL_TRAP;
1362 pending_follow.kind = ecs->ws.kind;
1363
1364 /* Is this a vfork of the parent? If so, then give any
1365 vfork catchpoints a chance to trigger now. (It's
1366 dangerous to do so if the child canot be touched until
1367 it execs, and the child has not yet exec'd. We probably
1368 should warn the user to that effect when the catchpoint
1369 triggers...) */
1370 if (ptid_equal (ecs->ptid, inferior_ptid))
1371 {
1372 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1373 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1374 }
1375
1376 /* If we've seen the child's vfork event but cannot really touch
1377 the child until it execs, then we must continue the child now.
1378 Else, give any vfork catchpoints a chance to trigger now. */
1379 else
1380 {
1381 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1382 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1383 target_post_startup_inferior (pid_to_ptid
1384 (pending_follow.fork_event.
1385 child_pid));
1386 }
1387
1388 stop_pc = read_pc ();
1389 /* The second argument of bpstat_stop_status is meant to help
1390 distinguish between a breakpoint trap and a singlestep trap.
1391 This is only important on targets where DECR_PC_AFTER_BREAK
1392 is non-zero. The prev_pc test is meant to distinguish between
1393 singlestepping a trap instruction, and singlestepping thru a
1394 jump to the instruction following a trap instruction. */
1395
1396 stop_bpstat = bpstat_stop_status (&stop_pc,
1397 currently_stepping (ecs) &&
1398 prev_pc !=
1399 stop_pc - DECR_PC_AFTER_BREAK);
1400 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1401 goto process_event_stop_test;
1402
1403 case TARGET_WAITKIND_EXECD:
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405
1406 /* NOTE drow/2002-12-05: This code should be pushed down into the
1407 target_wait function. Until then following vfork on HP/UX 10.20
1408 is probably broken by this. Of course, it's broken anyway. */
1409 /* Is this a target which reports multiple exec events per actual
1410 call to exec()? (HP-UX using ptrace does, for example.) If so,
1411 ignore all but the last one. Just resume the exec'r, and wait
1412 for the next exec event. */
1413 if (inferior_ignoring_leading_exec_events)
1414 {
1415 inferior_ignoring_leading_exec_events--;
1416 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1417 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1418 parent_pid);
1419 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
1422 }
1423 inferior_ignoring_leading_exec_events =
1424 target_reported_exec_events_per_exec_call () - 1;
1425
1426 pending_follow.execd_pathname =
1427 savestring (ecs->ws.value.execd_pathname,
1428 strlen (ecs->ws.value.execd_pathname));
1429
1430 /* This causes the eventpoints and symbol table to be reset. Must
1431 do this now, before trying to determine whether to stop. */
1432 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1433 xfree (pending_follow.execd_pathname);
1434
1435 stop_pc = read_pc_pid (ecs->ptid);
1436 ecs->saved_inferior_ptid = inferior_ptid;
1437 inferior_ptid = ecs->ptid;
1438 /* The second argument of bpstat_stop_status is meant to help
1439 distinguish between a breakpoint trap and a singlestep trap.
1440 This is only important on targets where DECR_PC_AFTER_BREAK
1441 is non-zero. The prev_pc test is meant to distinguish between
1442 singlestepping a trap instruction, and singlestepping thru a
1443 jump to the instruction following a trap instruction. */
1444
1445 stop_bpstat = bpstat_stop_status (&stop_pc,
1446 currently_stepping (ecs) &&
1447 prev_pc !=
1448 stop_pc - DECR_PC_AFTER_BREAK);
1449 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1450 inferior_ptid = ecs->saved_inferior_ptid;
1451 goto process_event_stop_test;
1452
1453 /* These syscall events are returned on HP-UX, as part of its
1454 implementation of page-protection-based "hardware" watchpoints.
1455 HP-UX has unfortunate interactions between page-protections and
1456 some system calls. Our solution is to disable hardware watches
1457 when a system call is entered, and reenable them when the syscall
1458 completes. The downside of this is that we may miss the precise
1459 point at which a watched piece of memory is modified. "Oh well."
1460
1461 Note that we may have multiple threads running, which may each
1462 enter syscalls at roughly the same time. Since we don't have a
1463 good notion currently of whether a watched piece of memory is
1464 thread-private, we'd best not have any page-protections active
1465 when any thread is in a syscall. Thus, we only want to reenable
1466 hardware watches when no threads are in a syscall.
1467
1468 Also, be careful not to try to gather much state about a thread
1469 that's in a syscall. It's frequently a losing proposition. */
1470 case TARGET_WAITKIND_SYSCALL_ENTRY:
1471 number_of_threads_in_syscalls++;
1472 if (number_of_threads_in_syscalls == 1)
1473 {
1474 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1475 }
1476 resume (0, TARGET_SIGNAL_0);
1477 prepare_to_wait (ecs);
1478 return;
1479
1480 /* Before examining the threads further, step this thread to
1481 get it entirely out of the syscall. (We get notice of the
1482 event when the thread is just on the verge of exiting a
1483 syscall. Stepping one instruction seems to get it back
1484 into user code.)
1485
1486 Note that although the logical place to reenable h/w watches
1487 is here, we cannot. We cannot reenable them before stepping
1488 the thread (this causes the next wait on the thread to hang).
1489
1490 Nor can we enable them after stepping until we've done a wait.
1491 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1492 here, which will be serviced immediately after the target
1493 is waited on. */
1494 case TARGET_WAITKIND_SYSCALL_RETURN:
1495 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1496
1497 if (number_of_threads_in_syscalls > 0)
1498 {
1499 number_of_threads_in_syscalls--;
1500 ecs->enable_hw_watchpoints_after_wait =
1501 (number_of_threads_in_syscalls == 0);
1502 }
1503 prepare_to_wait (ecs);
1504 return;
1505
1506 case TARGET_WAITKIND_STOPPED:
1507 stop_signal = ecs->ws.value.sig;
1508 break;
1509
1510 /* We had an event in the inferior, but we are not interested
1511 in handling it at this level. The lower layers have already
1512 done what needs to be done, if anything.
1513
1514 One of the possible circumstances for this is when the
1515 inferior produces output for the console. The inferior has
1516 not stopped, and we are ignoring the event. Another possible
1517 circumstance is any event which the lower level knows will be
1518 reported multiple times without an intervening resume. */
1519 case TARGET_WAITKIND_IGNORE:
1520 prepare_to_wait (ecs);
1521 return;
1522 }
1523
1524 /* We may want to consider not doing a resume here in order to give
1525 the user a chance to play with the new thread. It might be good
1526 to make that a user-settable option. */
1527
1528 /* At this point, all threads are stopped (happens automatically in
1529 either the OS or the native code). Therefore we need to continue
1530 all threads in order to make progress. */
1531 if (ecs->new_thread_event)
1532 {
1533 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1534 prepare_to_wait (ecs);
1535 return;
1536 }
1537
1538 stop_pc = read_pc_pid (ecs->ptid);
1539
1540 /* See if a thread hit a thread-specific breakpoint that was meant for
1541 another thread. If so, then step that thread past the breakpoint,
1542 and continue it. */
1543
1544 if (stop_signal == TARGET_SIGNAL_TRAP)
1545 {
1546 /* Check if a regular breakpoint has been hit before checking
1547 for a potential single step breakpoint. Otherwise, GDB will
1548 not see this breakpoint hit when stepping onto breakpoints. */
1549 if (breakpoints_inserted
1550 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1551 {
1552 ecs->random_signal = 0;
1553 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1554 ecs->ptid))
1555 {
1556 int remove_status;
1557
1558 /* Saw a breakpoint, but it was hit by the wrong thread.
1559 Just continue. */
1560 if (DECR_PC_AFTER_BREAK)
1561 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1562
1563 remove_status = remove_breakpoints ();
1564 /* Did we fail to remove breakpoints? If so, try
1565 to set the PC past the bp. (There's at least
1566 one situation in which we can fail to remove
1567 the bp's: On HP-UX's that use ttrace, we can't
1568 change the address space of a vforking child
1569 process until the child exits (well, okay, not
1570 then either :-) or execs. */
1571 if (remove_status != 0)
1572 {
1573 /* FIXME! This is obviously non-portable! */
1574 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1575 /* We need to restart all the threads now,
1576 * unles we're running in scheduler-locked mode.
1577 * Use currently_stepping to determine whether to
1578 * step or continue.
1579 */
1580 /* FIXME MVS: is there any reason not to call resume()? */
1581 if (scheduler_mode == schedlock_on)
1582 target_resume (ecs->ptid,
1583 currently_stepping (ecs), TARGET_SIGNAL_0);
1584 else
1585 target_resume (RESUME_ALL,
1586 currently_stepping (ecs), TARGET_SIGNAL_0);
1587 prepare_to_wait (ecs);
1588 return;
1589 }
1590 else
1591 { /* Single step */
1592 breakpoints_inserted = 0;
1593 if (!ptid_equal (inferior_ptid, ecs->ptid))
1594 context_switch (ecs);
1595 ecs->waiton_ptid = ecs->ptid;
1596 ecs->wp = &(ecs->ws);
1597 ecs->another_trap = 1;
1598
1599 ecs->infwait_state = infwait_thread_hop_state;
1600 keep_going (ecs);
1601 registers_changed ();
1602 return;
1603 }
1604 }
1605 }
1606 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1607 {
1608 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1609 compared to the value it would have if the system stepping
1610 capability was used. This allows the rest of the code in
1611 this function to use this address without having to worry
1612 whether software single step is in use or not. */
1613 if (DECR_PC_AFTER_BREAK)
1614 {
1615 stop_pc -= DECR_PC_AFTER_BREAK;
1616 write_pc_pid (stop_pc, ecs->ptid);
1617 }
1618
1619 sw_single_step_trap_p = 1;
1620 ecs->random_signal = 0;
1621 }
1622 }
1623 else
1624 ecs->random_signal = 1;
1625
1626 /* See if something interesting happened to the non-current thread. If
1627 so, then switch to that thread, and eventually give control back to
1628 the user.
1629
1630 Note that if there's any kind of pending follow (i.e., of a fork,
1631 vfork or exec), we don't want to do this now. Rather, we'll let
1632 the next resume handle it. */
1633 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1634 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1635 {
1636 int printed = 0;
1637
1638 /* If it's a random signal for a non-current thread, notify user
1639 if he's expressed an interest. */
1640 if (ecs->random_signal && signal_print[stop_signal])
1641 {
1642 /* ??rehrauer: I don't understand the rationale for this code. If the
1643 inferior will stop as a result of this signal, then the act of handling
1644 the stop ought to print a message that's couches the stoppage in user
1645 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1646 won't stop as a result of the signal -- i.e., if the signal is merely
1647 a side-effect of something GDB's doing "under the covers" for the
1648 user, such as stepping threads over a breakpoint they shouldn't stop
1649 for -- then the message seems to be a serious annoyance at best.
1650
1651 For now, remove the message altogether. */
1652 #if 0
1653 printed = 1;
1654 target_terminal_ours_for_output ();
1655 printf_filtered ("\nProgram received signal %s, %s.\n",
1656 target_signal_to_name (stop_signal),
1657 target_signal_to_string (stop_signal));
1658 gdb_flush (gdb_stdout);
1659 #endif
1660 }
1661
1662 /* If it's not SIGTRAP and not a signal we want to stop for, then
1663 continue the thread. */
1664
1665 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1666 {
1667 if (printed)
1668 target_terminal_inferior ();
1669
1670 /* Clear the signal if it should not be passed. */
1671 if (signal_program[stop_signal] == 0)
1672 stop_signal = TARGET_SIGNAL_0;
1673
1674 target_resume (ecs->ptid, 0, stop_signal);
1675 prepare_to_wait (ecs);
1676 return;
1677 }
1678
1679 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1680 and fall into the rest of wait_for_inferior(). */
1681
1682 context_switch (ecs);
1683
1684 if (context_hook)
1685 context_hook (pid_to_thread_id (ecs->ptid));
1686
1687 flush_cached_frames ();
1688 }
1689
1690 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1691 {
1692 /* Pull the single step breakpoints out of the target. */
1693 SOFTWARE_SINGLE_STEP (0, 0);
1694 singlestep_breakpoints_inserted_p = 0;
1695 }
1696
1697 /* If PC is pointing at a nullified instruction, then step beyond
1698 it so that the user won't be confused when GDB appears to be ready
1699 to execute it. */
1700
1701 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1702 if (INSTRUCTION_NULLIFIED)
1703 {
1704 registers_changed ();
1705 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1706
1707 /* We may have received a signal that we want to pass to
1708 the inferior; therefore, we must not clobber the waitstatus
1709 in WS. */
1710
1711 ecs->infwait_state = infwait_nullified_state;
1712 ecs->waiton_ptid = ecs->ptid;
1713 ecs->wp = &(ecs->tmpstatus);
1714 prepare_to_wait (ecs);
1715 return;
1716 }
1717
1718 /* It may not be necessary to disable the watchpoint to stop over
1719 it. For example, the PA can (with some kernel cooperation)
1720 single step over a watchpoint without disabling the watchpoint. */
1721 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1722 {
1723 resume (1, 0);
1724 prepare_to_wait (ecs);
1725 return;
1726 }
1727
1728 /* It is far more common to need to disable a watchpoint to step
1729 the inferior over it. FIXME. What else might a debug
1730 register or page protection watchpoint scheme need here? */
1731 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1732 {
1733 /* At this point, we are stopped at an instruction which has
1734 attempted to write to a piece of memory under control of
1735 a watchpoint. The instruction hasn't actually executed
1736 yet. If we were to evaluate the watchpoint expression
1737 now, we would get the old value, and therefore no change
1738 would seem to have occurred.
1739
1740 In order to make watchpoints work `right', we really need
1741 to complete the memory write, and then evaluate the
1742 watchpoint expression. The following code does that by
1743 removing the watchpoint (actually, all watchpoints and
1744 breakpoints), single-stepping the target, re-inserting
1745 watchpoints, and then falling through to let normal
1746 single-step processing handle proceed. Since this
1747 includes evaluating watchpoints, things will come to a
1748 stop in the correct manner. */
1749
1750 if (DECR_PC_AFTER_BREAK)
1751 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
1752
1753 remove_breakpoints ();
1754 registers_changed ();
1755 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1756
1757 ecs->waiton_ptid = ecs->ptid;
1758 ecs->wp = &(ecs->ws);
1759 ecs->infwait_state = infwait_nonstep_watch_state;
1760 prepare_to_wait (ecs);
1761 return;
1762 }
1763
1764 /* It may be possible to simply continue after a watchpoint. */
1765 if (HAVE_CONTINUABLE_WATCHPOINT)
1766 STOPPED_BY_WATCHPOINT (ecs->ws);
1767
1768 ecs->stop_func_start = 0;
1769 ecs->stop_func_end = 0;
1770 ecs->stop_func_name = 0;
1771 /* Don't care about return value; stop_func_start and stop_func_name
1772 will both be 0 if it doesn't work. */
1773 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1774 &ecs->stop_func_start, &ecs->stop_func_end);
1775 ecs->stop_func_start += FUNCTION_START_OFFSET;
1776 ecs->another_trap = 0;
1777 bpstat_clear (&stop_bpstat);
1778 stop_step = 0;
1779 stop_stack_dummy = 0;
1780 stop_print_frame = 1;
1781 ecs->random_signal = 0;
1782 stopped_by_random_signal = 0;
1783 breakpoints_failed = 0;
1784
1785 /* Look at the cause of the stop, and decide what to do.
1786 The alternatives are:
1787 1) break; to really stop and return to the debugger,
1788 2) drop through to start up again
1789 (set ecs->another_trap to 1 to single step once)
1790 3) set ecs->random_signal to 1, and the decision between 1 and 2
1791 will be made according to the signal handling tables. */
1792
1793 /* First, distinguish signals caused by the debugger from signals
1794 that have to do with the program's own actions.
1795 Note that breakpoint insns may cause SIGTRAP or SIGILL
1796 or SIGEMT, depending on the operating system version.
1797 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1798 and change it to SIGTRAP. */
1799
1800 if (stop_signal == TARGET_SIGNAL_TRAP
1801 || (breakpoints_inserted &&
1802 (stop_signal == TARGET_SIGNAL_ILL
1803 || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
1804 {
1805 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1806 {
1807 stop_print_frame = 0;
1808 stop_stepping (ecs);
1809 return;
1810 }
1811 if (stop_soon_quietly)
1812 {
1813 stop_stepping (ecs);
1814 return;
1815 }
1816
1817 /* Don't even think about breakpoints
1818 if just proceeded over a breakpoint.
1819
1820 However, if we are trying to proceed over a breakpoint
1821 and end up in sigtramp, then through_sigtramp_breakpoint
1822 will be set and we should check whether we've hit the
1823 step breakpoint. */
1824 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1825 && through_sigtramp_breakpoint == NULL)
1826 bpstat_clear (&stop_bpstat);
1827 else
1828 {
1829 /* See if there is a breakpoint at the current PC. */
1830
1831 /* The second argument of bpstat_stop_status is meant to help
1832 distinguish between a breakpoint trap and a singlestep trap.
1833 This is only important on targets where DECR_PC_AFTER_BREAK
1834 is non-zero. The prev_pc test is meant to distinguish between
1835 singlestepping a trap instruction, and singlestepping thru a
1836 jump to the instruction following a trap instruction.
1837
1838 Therefore, pass TRUE if our reason for stopping is
1839 something other than hitting a breakpoint. We do this by
1840 checking that either: we detected earlier a software single
1841 step trap or, 1) stepping is going on and 2) we didn't hit
1842 a breakpoint in a signal handler without an intervening stop
1843 in sigtramp, which is detected by a new stack pointer value
1844 below any usual function calling stack adjustments. */
1845 stop_bpstat =
1846 bpstat_stop_status
1847 (&stop_pc,
1848 sw_single_step_trap_p
1849 || (currently_stepping (ecs)
1850 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1851 && !(step_range_end
1852 && INNER_THAN (read_sp (), (step_sp - 16)))));
1853 /* Following in case break condition called a
1854 function. */
1855 stop_print_frame = 1;
1856 }
1857
1858 if (stop_signal == TARGET_SIGNAL_TRAP)
1859 ecs->random_signal
1860 = !(bpstat_explains_signal (stop_bpstat)
1861 || trap_expected
1862 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1863 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1864 get_frame_base (get_current_frame ())))
1865 || (step_range_end && step_resume_breakpoint == NULL));
1866
1867 else
1868 {
1869 ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
1870 /* End of a stack dummy. Some systems (e.g. Sony
1871 news) give another signal besides SIGTRAP, so
1872 check here as well as above. */
1873 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1874 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1875 get_frame_base
1876 (get_current_frame
1877 ()))));
1878 if (!ecs->random_signal)
1879 stop_signal = TARGET_SIGNAL_TRAP;
1880 }
1881 }
1882
1883 /* When we reach this point, we've pretty much decided
1884 that the reason for stopping must've been a random
1885 (unexpected) signal. */
1886
1887 else
1888 ecs->random_signal = 1;
1889 /* If a fork, vfork or exec event was seen, then there are two
1890 possible responses we can make:
1891
1892 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
1893 then we must stop now and issue a prompt. We will resume
1894 the inferior when the user tells us to.
1895 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
1896 then we must resume the inferior now and keep checking.
1897
1898 In either case, we must take appropriate steps to "follow" the
1899 the fork/vfork/exec when the inferior is resumed. For example,
1900 if follow-fork-mode is "child", then we must detach from the
1901 parent inferior and follow the new child inferior.
1902
1903 In either case, setting pending_follow causes the next resume()
1904 to take the appropriate following action. */
1905 process_event_stop_test:
1906 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
1907 {
1908 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
1909 {
1910 trap_expected = 1;
1911 stop_signal = TARGET_SIGNAL_0;
1912 keep_going (ecs);
1913 return;
1914 }
1915 }
1916 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
1917 {
1918 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
1919 {
1920 stop_signal = TARGET_SIGNAL_0;
1921 keep_going (ecs);
1922 return;
1923 }
1924 }
1925 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
1926 {
1927 pending_follow.kind = ecs->ws.kind;
1928 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
1929 {
1930 trap_expected = 1;
1931 stop_signal = TARGET_SIGNAL_0;
1932 keep_going (ecs);
1933 return;
1934 }
1935 }
1936
1937 /* For the program's own signals, act according to
1938 the signal handling tables. */
1939
1940 if (ecs->random_signal)
1941 {
1942 /* Signal not for debugging purposes. */
1943 int printed = 0;
1944
1945 stopped_by_random_signal = 1;
1946
1947 if (signal_print[stop_signal])
1948 {
1949 printed = 1;
1950 target_terminal_ours_for_output ();
1951 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1952 }
1953 if (signal_stop[stop_signal])
1954 {
1955 stop_stepping (ecs);
1956 return;
1957 }
1958 /* If not going to stop, give terminal back
1959 if we took it away. */
1960 else if (printed)
1961 target_terminal_inferior ();
1962
1963 /* Clear the signal if it should not be passed. */
1964 if (signal_program[stop_signal] == 0)
1965 stop_signal = TARGET_SIGNAL_0;
1966
1967 /* I'm not sure whether this needs to be check_sigtramp2 or
1968 whether it could/should be keep_going.
1969
1970 This used to jump to step_over_function if we are stepping,
1971 which is wrong.
1972
1973 Suppose the user does a `next' over a function call, and while
1974 that call is in progress, the inferior receives a signal for
1975 which GDB does not stop (i.e., signal_stop[SIG] is false). In
1976 that case, when we reach this point, there is already a
1977 step-resume breakpoint established, right where it should be:
1978 immediately after the function call the user is "next"-ing
1979 over. If we call step_over_function now, two bad things
1980 happen:
1981
1982 - we'll create a new breakpoint, at wherever the current
1983 frame's return address happens to be. That could be
1984 anywhere, depending on what function call happens to be on
1985 the top of the stack at that point. Point is, it's probably
1986 not where we need it.
1987
1988 - the existing step-resume breakpoint (which is at the correct
1989 address) will get orphaned: step_resume_breakpoint will point
1990 to the new breakpoint, and the old step-resume breakpoint
1991 will never be cleaned up.
1992
1993 The old behavior was meant to help HP-UX single-step out of
1994 sigtramps. It would place the new breakpoint at prev_pc, which
1995 was certainly wrong. I don't know the details there, so fixing
1996 this probably breaks that. As with anything else, it's up to
1997 the HP-UX maintainer to furnish a fix that doesn't break other
1998 platforms. --JimB, 20 May 1999 */
1999 check_sigtramp2 (ecs);
2000 keep_going (ecs);
2001 return;
2002 }
2003
2004 /* Handle cases caused by hitting a breakpoint. */
2005 {
2006 CORE_ADDR jmp_buf_pc;
2007 struct bpstat_what what;
2008
2009 what = bpstat_what (stop_bpstat);
2010
2011 if (what.call_dummy)
2012 {
2013 stop_stack_dummy = 1;
2014 #ifdef HP_OS_BUG
2015 trap_expected_after_continue = 1;
2016 #endif
2017 }
2018
2019 switch (what.main_action)
2020 {
2021 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2022 /* If we hit the breakpoint at longjmp, disable it for the
2023 duration of this command. Then, install a temporary
2024 breakpoint at the target of the jmp_buf. */
2025 disable_longjmp_breakpoint ();
2026 remove_breakpoints ();
2027 breakpoints_inserted = 0;
2028 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2029 {
2030 keep_going (ecs);
2031 return;
2032 }
2033
2034 /* Need to blow away step-resume breakpoint, as it
2035 interferes with us */
2036 if (step_resume_breakpoint != NULL)
2037 {
2038 delete_step_resume_breakpoint (&step_resume_breakpoint);
2039 }
2040 /* Not sure whether we need to blow this away too, but probably
2041 it is like the step-resume breakpoint. */
2042 if (through_sigtramp_breakpoint != NULL)
2043 {
2044 delete_breakpoint (through_sigtramp_breakpoint);
2045 through_sigtramp_breakpoint = NULL;
2046 }
2047
2048 #if 0
2049 /* FIXME - Need to implement nested temporary breakpoints */
2050 if (step_over_calls > 0)
2051 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2052 else
2053 #endif /* 0 */
2054 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2055 ecs->handling_longjmp = 1; /* FIXME */
2056 keep_going (ecs);
2057 return;
2058
2059 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2061 remove_breakpoints ();
2062 breakpoints_inserted = 0;
2063 #if 0
2064 /* FIXME - Need to implement nested temporary breakpoints */
2065 if (step_over_calls
2066 && (frame_id_inner (get_frame_id (get_current_frame ()),
2067 step_frame_id)))
2068 {
2069 ecs->another_trap = 1;
2070 keep_going (ecs);
2071 return;
2072 }
2073 #endif /* 0 */
2074 disable_longjmp_breakpoint ();
2075 ecs->handling_longjmp = 0; /* FIXME */
2076 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2077 break;
2078 /* else fallthrough */
2079
2080 case BPSTAT_WHAT_SINGLE:
2081 if (breakpoints_inserted)
2082 {
2083 remove_breakpoints ();
2084 }
2085 breakpoints_inserted = 0;
2086 ecs->another_trap = 1;
2087 /* Still need to check other stuff, at least the case
2088 where we are stepping and step out of the right range. */
2089 break;
2090
2091 case BPSTAT_WHAT_STOP_NOISY:
2092 stop_print_frame = 1;
2093
2094 /* We are about to nuke the step_resume_breakpoint and
2095 through_sigtramp_breakpoint via the cleanup chain, so
2096 no need to worry about it here. */
2097
2098 stop_stepping (ecs);
2099 return;
2100
2101 case BPSTAT_WHAT_STOP_SILENT:
2102 stop_print_frame = 0;
2103
2104 /* We are about to nuke the step_resume_breakpoint and
2105 through_sigtramp_breakpoint via the cleanup chain, so
2106 no need to worry about it here. */
2107
2108 stop_stepping (ecs);
2109 return;
2110
2111 case BPSTAT_WHAT_STEP_RESUME:
2112 /* This proably demands a more elegant solution, but, yeah
2113 right...
2114
2115 This function's use of the simple variable
2116 step_resume_breakpoint doesn't seem to accomodate
2117 simultaneously active step-resume bp's, although the
2118 breakpoint list certainly can.
2119
2120 If we reach here and step_resume_breakpoint is already
2121 NULL, then apparently we have multiple active
2122 step-resume bp's. We'll just delete the breakpoint we
2123 stopped at, and carry on.
2124
2125 Correction: what the code currently does is delete a
2126 step-resume bp, but it makes no effort to ensure that
2127 the one deleted is the one currently stopped at. MVS */
2128
2129 if (step_resume_breakpoint == NULL)
2130 {
2131 step_resume_breakpoint =
2132 bpstat_find_step_resume_breakpoint (stop_bpstat);
2133 }
2134 delete_step_resume_breakpoint (&step_resume_breakpoint);
2135 break;
2136
2137 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2138 if (through_sigtramp_breakpoint)
2139 delete_breakpoint (through_sigtramp_breakpoint);
2140 through_sigtramp_breakpoint = NULL;
2141
2142 /* If were waiting for a trap, hitting the step_resume_break
2143 doesn't count as getting it. */
2144 if (trap_expected)
2145 ecs->another_trap = 1;
2146 break;
2147
2148 case BPSTAT_WHAT_CHECK_SHLIBS:
2149 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2150 #ifdef SOLIB_ADD
2151 {
2152 /* Remove breakpoints, we eventually want to step over the
2153 shlib event breakpoint, and SOLIB_ADD might adjust
2154 breakpoint addresses via breakpoint_re_set. */
2155 if (breakpoints_inserted)
2156 remove_breakpoints ();
2157 breakpoints_inserted = 0;
2158
2159 /* Check for any newly added shared libraries if we're
2160 supposed to be adding them automatically. Switch
2161 terminal for any messages produced by
2162 breakpoint_re_set. */
2163 target_terminal_ours_for_output ();
2164 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2165 target_terminal_inferior ();
2166
2167 /* Try to reenable shared library breakpoints, additional
2168 code segments in shared libraries might be mapped in now. */
2169 re_enable_breakpoints_in_shlibs ();
2170
2171 /* If requested, stop when the dynamic linker notifies
2172 gdb of events. This allows the user to get control
2173 and place breakpoints in initializer routines for
2174 dynamically loaded objects (among other things). */
2175 if (stop_on_solib_events)
2176 {
2177 stop_stepping (ecs);
2178 return;
2179 }
2180
2181 /* If we stopped due to an explicit catchpoint, then the
2182 (see above) call to SOLIB_ADD pulled in any symbols
2183 from a newly-loaded library, if appropriate.
2184
2185 We do want the inferior to stop, but not where it is
2186 now, which is in the dynamic linker callback. Rather,
2187 we would like it stop in the user's program, just after
2188 the call that caused this catchpoint to trigger. That
2189 gives the user a more useful vantage from which to
2190 examine their program's state. */
2191 else if (what.main_action ==
2192 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2193 {
2194 /* ??rehrauer: If I could figure out how to get the
2195 right return PC from here, we could just set a temp
2196 breakpoint and resume. I'm not sure we can without
2197 cracking open the dld's shared libraries and sniffing
2198 their unwind tables and text/data ranges, and that's
2199 not a terribly portable notion.
2200
2201 Until that time, we must step the inferior out of the
2202 dld callback, and also out of the dld itself (and any
2203 code or stubs in libdld.sl, such as "shl_load" and
2204 friends) until we reach non-dld code. At that point,
2205 we can stop stepping. */
2206 bpstat_get_triggered_catchpoints (stop_bpstat,
2207 &ecs->
2208 stepping_through_solib_catchpoints);
2209 ecs->stepping_through_solib_after_catch = 1;
2210
2211 /* Be sure to lift all breakpoints, so the inferior does
2212 actually step past this point... */
2213 ecs->another_trap = 1;
2214 break;
2215 }
2216 else
2217 {
2218 /* We want to step over this breakpoint, then keep going. */
2219 ecs->another_trap = 1;
2220 break;
2221 }
2222 }
2223 #endif
2224 break;
2225
2226 case BPSTAT_WHAT_LAST:
2227 /* Not a real code, but listed here to shut up gcc -Wall. */
2228
2229 case BPSTAT_WHAT_KEEP_CHECKING:
2230 break;
2231 }
2232 }
2233
2234 /* We come here if we hit a breakpoint but should not
2235 stop for it. Possibly we also were stepping
2236 and should stop for that. So fall through and
2237 test for stepping. But, if not stepping,
2238 do not stop. */
2239
2240 /* Are we stepping to get the inferior out of the dynamic
2241 linker's hook (and possibly the dld itself) after catching
2242 a shlib event? */
2243 if (ecs->stepping_through_solib_after_catch)
2244 {
2245 #if defined(SOLIB_ADD)
2246 /* Have we reached our destination? If not, keep going. */
2247 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2248 {
2249 ecs->another_trap = 1;
2250 keep_going (ecs);
2251 return;
2252 }
2253 #endif
2254 /* Else, stop and report the catchpoint(s) whose triggering
2255 caused us to begin stepping. */
2256 ecs->stepping_through_solib_after_catch = 0;
2257 bpstat_clear (&stop_bpstat);
2258 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2259 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2260 stop_print_frame = 1;
2261 stop_stepping (ecs);
2262 return;
2263 }
2264
2265 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2266 {
2267 /* This is the old way of detecting the end of the stack dummy.
2268 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2269 handled above. As soon as we can test it on all of them, all
2270 architectures should define it. */
2271
2272 /* If this is the breakpoint at the end of a stack dummy,
2273 just stop silently, unless the user was doing an si/ni, in which
2274 case she'd better know what she's doing. */
2275
2276 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2277 get_frame_base (get_current_frame ()))
2278 && !step_range_end)
2279 {
2280 stop_print_frame = 0;
2281 stop_stack_dummy = 1;
2282 #ifdef HP_OS_BUG
2283 trap_expected_after_continue = 1;
2284 #endif
2285 stop_stepping (ecs);
2286 return;
2287 }
2288 }
2289
2290 if (step_resume_breakpoint)
2291 {
2292 /* Having a step-resume breakpoint overrides anything
2293 else having to do with stepping commands until
2294 that breakpoint is reached. */
2295 /* I'm not sure whether this needs to be check_sigtramp2 or
2296 whether it could/should be keep_going. */
2297 check_sigtramp2 (ecs);
2298 keep_going (ecs);
2299 return;
2300 }
2301
2302 if (step_range_end == 0)
2303 {
2304 /* Likewise if we aren't even stepping. */
2305 /* I'm not sure whether this needs to be check_sigtramp2 or
2306 whether it could/should be keep_going. */
2307 check_sigtramp2 (ecs);
2308 keep_going (ecs);
2309 return;
2310 }
2311
2312 /* If stepping through a line, keep going if still within it.
2313
2314 Note that step_range_end is the address of the first instruction
2315 beyond the step range, and NOT the address of the last instruction
2316 within it! */
2317 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2318 {
2319 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2320 So definately need to check for sigtramp here. */
2321 check_sigtramp2 (ecs);
2322 keep_going (ecs);
2323 return;
2324 }
2325
2326 /* We stepped out of the stepping range. */
2327
2328 /* If we are stepping at the source level and entered the runtime
2329 loader dynamic symbol resolution code, we keep on single stepping
2330 until we exit the run time loader code and reach the callee's
2331 address. */
2332 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2333 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2334 {
2335 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2336
2337 if (pc_after_resolver)
2338 {
2339 /* Set up a step-resume breakpoint at the address
2340 indicated by SKIP_SOLIB_RESOLVER. */
2341 struct symtab_and_line sr_sal;
2342 init_sal (&sr_sal);
2343 sr_sal.pc = pc_after_resolver;
2344
2345 check_for_old_step_resume_breakpoint ();
2346 step_resume_breakpoint =
2347 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2348 if (breakpoints_inserted)
2349 insert_breakpoints ();
2350 }
2351
2352 keep_going (ecs);
2353 return;
2354 }
2355
2356 /* We can't update step_sp every time through the loop, because
2357 reading the stack pointer would slow down stepping too much.
2358 But we can update it every time we leave the step range. */
2359 ecs->update_step_sp = 1;
2360
2361 /* Did we just take a signal? */
2362 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2363 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2364 && INNER_THAN (read_sp (), step_sp))
2365 {
2366 /* We've just taken a signal; go until we are back to
2367 the point where we took it and one more. */
2368
2369 /* Note: The test above succeeds not only when we stepped
2370 into a signal handler, but also when we step past the last
2371 statement of a signal handler and end up in the return stub
2372 of the signal handler trampoline. To distinguish between
2373 these two cases, check that the frame is INNER_THAN the
2374 previous one below. pai/1997-09-11 */
2375
2376
2377 {
2378 struct frame_id current_frame = get_frame_id (get_current_frame ());
2379
2380 if (frame_id_inner (current_frame, step_frame_id))
2381 {
2382 /* We have just taken a signal; go until we are back to
2383 the point where we took it and one more. */
2384
2385 /* This code is needed at least in the following case:
2386 The user types "next" and then a signal arrives (before
2387 the "next" is done). */
2388
2389 /* Note that if we are stopped at a breakpoint, then we need
2390 the step_resume breakpoint to override any breakpoints at
2391 the same location, so that we will still step over the
2392 breakpoint even though the signal happened. */
2393 struct symtab_and_line sr_sal;
2394
2395 init_sal (&sr_sal);
2396 sr_sal.symtab = NULL;
2397 sr_sal.line = 0;
2398 sr_sal.pc = prev_pc;
2399 /* We could probably be setting the frame to
2400 step_frame_id; I don't think anyone thought to try it. */
2401 check_for_old_step_resume_breakpoint ();
2402 step_resume_breakpoint =
2403 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2404 if (breakpoints_inserted)
2405 insert_breakpoints ();
2406 }
2407 else
2408 {
2409 /* We just stepped out of a signal handler and into
2410 its calling trampoline.
2411
2412 Normally, we'd call step_over_function from
2413 here, but for some reason GDB can't unwind the
2414 stack correctly to find the real PC for the point
2415 user code where the signal trampoline will return
2416 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2417 But signal trampolines are pretty small stubs of
2418 code, anyway, so it's OK instead to just
2419 single-step out. Note: assuming such trampolines
2420 don't exhibit recursion on any platform... */
2421 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2422 &ecs->stop_func_start,
2423 &ecs->stop_func_end);
2424 /* Readjust stepping range */
2425 step_range_start = ecs->stop_func_start;
2426 step_range_end = ecs->stop_func_end;
2427 ecs->stepping_through_sigtramp = 1;
2428 }
2429 }
2430
2431
2432 /* If this is stepi or nexti, make sure that the stepping range
2433 gets us past that instruction. */
2434 if (step_range_end == 1)
2435 /* FIXME: Does this run afoul of the code below which, if
2436 we step into the middle of a line, resets the stepping
2437 range? */
2438 step_range_end = (step_range_start = prev_pc) + 1;
2439
2440 ecs->remove_breakpoints_on_following_step = 1;
2441 keep_going (ecs);
2442 return;
2443 }
2444
2445 if (stop_pc == ecs->stop_func_start /* Quick test */
2446 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2447 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2448 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2449 || ecs->stop_func_name == 0)
2450 {
2451 /* It's a subroutine call. */
2452
2453 if ((step_over_calls == STEP_OVER_NONE)
2454 || ((step_range_end == 1)
2455 && in_prologue (prev_pc, ecs->stop_func_start)))
2456 {
2457 /* I presume that step_over_calls is only 0 when we're
2458 supposed to be stepping at the assembly language level
2459 ("stepi"). Just stop. */
2460 /* Also, maybe we just did a "nexti" inside a prolog,
2461 so we thought it was a subroutine call but it was not.
2462 Stop as well. FENN */
2463 stop_step = 1;
2464 print_stop_reason (END_STEPPING_RANGE, 0);
2465 stop_stepping (ecs);
2466 return;
2467 }
2468
2469 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2470 {
2471 /* We're doing a "next". */
2472
2473 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2474 && frame_id_inner (step_frame_id,
2475 frame_id_build (read_sp (), 0)))
2476 /* We stepped out of a signal handler, and into its
2477 calling trampoline. This is misdetected as a
2478 subroutine call, but stepping over the signal
2479 trampoline isn't such a bad idea. In order to do that,
2480 we have to ignore the value in step_frame_id, since
2481 that doesn't represent the frame that'll reach when we
2482 return from the signal trampoline. Otherwise we'll
2483 probably continue to the end of the program. */
2484 step_frame_id = null_frame_id;
2485
2486 step_over_function (ecs);
2487 keep_going (ecs);
2488 return;
2489 }
2490
2491 /* If we are in a function call trampoline (a stub between
2492 the calling routine and the real function), locate the real
2493 function. That's what tells us (a) whether we want to step
2494 into it at all, and (b) what prologue we want to run to
2495 the end of, if we do step into it. */
2496 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2497 if (tmp != 0)
2498 ecs->stop_func_start = tmp;
2499 else
2500 {
2501 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2502 if (tmp)
2503 {
2504 struct symtab_and_line xxx;
2505 /* Why isn't this s_a_l called "sr_sal", like all of the
2506 other s_a_l's where this code is duplicated? */
2507 init_sal (&xxx); /* initialize to zeroes */
2508 xxx.pc = tmp;
2509 xxx.section = find_pc_overlay (xxx.pc);
2510 check_for_old_step_resume_breakpoint ();
2511 step_resume_breakpoint =
2512 set_momentary_breakpoint (xxx, null_frame_id, bp_step_resume);
2513 insert_breakpoints ();
2514 keep_going (ecs);
2515 return;
2516 }
2517 }
2518
2519 /* If we have line number information for the function we
2520 are thinking of stepping into, step into it.
2521
2522 If there are several symtabs at that PC (e.g. with include
2523 files), just want to know whether *any* of them have line
2524 numbers. find_pc_line handles this. */
2525 {
2526 struct symtab_and_line tmp_sal;
2527
2528 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2529 if (tmp_sal.line != 0)
2530 {
2531 step_into_function (ecs);
2532 return;
2533 }
2534 }
2535
2536 /* If we have no line number and the step-stop-if-no-debug
2537 is set, we stop the step so that the user has a chance to
2538 switch in assembly mode. */
2539 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2540 {
2541 stop_step = 1;
2542 print_stop_reason (END_STEPPING_RANGE, 0);
2543 stop_stepping (ecs);
2544 return;
2545 }
2546
2547 step_over_function (ecs);
2548 keep_going (ecs);
2549 return;
2550
2551 }
2552
2553 /* We've wandered out of the step range. */
2554
2555 ecs->sal = find_pc_line (stop_pc, 0);
2556
2557 if (step_range_end == 1)
2558 {
2559 /* It is stepi or nexti. We always want to stop stepping after
2560 one instruction. */
2561 stop_step = 1;
2562 print_stop_reason (END_STEPPING_RANGE, 0);
2563 stop_stepping (ecs);
2564 return;
2565 }
2566
2567 /* If we're in the return path from a shared library trampoline,
2568 we want to proceed through the trampoline when stepping. */
2569 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2570 {
2571 CORE_ADDR tmp;
2572
2573 /* Determine where this trampoline returns. */
2574 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2575
2576 /* Only proceed through if we know where it's going. */
2577 if (tmp)
2578 {
2579 /* And put the step-breakpoint there and go until there. */
2580 struct symtab_and_line sr_sal;
2581
2582 init_sal (&sr_sal); /* initialize to zeroes */
2583 sr_sal.pc = tmp;
2584 sr_sal.section = find_pc_overlay (sr_sal.pc);
2585 /* Do not specify what the fp should be when we stop
2586 since on some machines the prologue
2587 is where the new fp value is established. */
2588 check_for_old_step_resume_breakpoint ();
2589 step_resume_breakpoint =
2590 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2591 if (breakpoints_inserted)
2592 insert_breakpoints ();
2593
2594 /* Restart without fiddling with the step ranges or
2595 other state. */
2596 keep_going (ecs);
2597 return;
2598 }
2599 }
2600
2601 if (ecs->sal.line == 0)
2602 {
2603 /* We have no line number information. That means to stop
2604 stepping (does this always happen right after one instruction,
2605 when we do "s" in a function with no line numbers,
2606 or can this happen as a result of a return or longjmp?). */
2607 stop_step = 1;
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2610 return;
2611 }
2612
2613 if ((stop_pc == ecs->sal.pc)
2614 && (ecs->current_line != ecs->sal.line
2615 || ecs->current_symtab != ecs->sal.symtab))
2616 {
2617 /* We are at the start of a different line. So stop. Note that
2618 we don't stop if we step into the middle of a different line.
2619 That is said to make things like for (;;) statements work
2620 better. */
2621 stop_step = 1;
2622 print_stop_reason (END_STEPPING_RANGE, 0);
2623 stop_stepping (ecs);
2624 return;
2625 }
2626
2627 /* We aren't done stepping.
2628
2629 Optimize by setting the stepping range to the line.
2630 (We might not be in the original line, but if we entered a
2631 new line in mid-statement, we continue stepping. This makes
2632 things like for(;;) statements work better.) */
2633
2634 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2635 {
2636 /* If this is the last line of the function, don't keep stepping
2637 (it would probably step us out of the function).
2638 This is particularly necessary for a one-line function,
2639 in which after skipping the prologue we better stop even though
2640 we will be in mid-line. */
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 step_range_start = ecs->sal.pc;
2647 step_range_end = ecs->sal.end;
2648 step_frame_id = get_frame_id (get_current_frame ());
2649 ecs->current_line = ecs->sal.line;
2650 ecs->current_symtab = ecs->sal.symtab;
2651
2652 /* In the case where we just stepped out of a function into the
2653 middle of a line of the caller, continue stepping, but
2654 step_frame_id must be modified to current frame */
2655 {
2656 struct frame_id current_frame = get_frame_id (get_current_frame ());
2657 if (!(frame_id_inner (current_frame, step_frame_id)))
2658 step_frame_id = current_frame;
2659 }
2660
2661 keep_going (ecs);
2662 }
2663
2664 /* Are we in the middle of stepping? */
2665
2666 static int
2667 currently_stepping (struct execution_control_state *ecs)
2668 {
2669 return ((through_sigtramp_breakpoint == NULL
2670 && !ecs->handling_longjmp
2671 && ((step_range_end && step_resume_breakpoint == NULL)
2672 || trap_expected))
2673 || ecs->stepping_through_solib_after_catch
2674 || bpstat_should_step ());
2675 }
2676
2677 static void
2678 check_sigtramp2 (struct execution_control_state *ecs)
2679 {
2680 if (trap_expected
2681 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2682 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2683 && INNER_THAN (read_sp (), step_sp))
2684 {
2685 /* What has happened here is that we have just stepped the
2686 inferior with a signal (because it is a signal which
2687 shouldn't make us stop), thus stepping into sigtramp.
2688
2689 So we need to set a step_resume_break_address breakpoint and
2690 continue until we hit it, and then step. FIXME: This should
2691 be more enduring than a step_resume breakpoint; we should
2692 know that we will later need to keep going rather than
2693 re-hitting the breakpoint here (see the testsuite,
2694 gdb.base/signals.exp where it says "exceedingly difficult"). */
2695
2696 struct symtab_and_line sr_sal;
2697
2698 init_sal (&sr_sal); /* initialize to zeroes */
2699 sr_sal.pc = prev_pc;
2700 sr_sal.section = find_pc_overlay (sr_sal.pc);
2701 /* We perhaps could set the frame if we kept track of what the
2702 frame corresponding to prev_pc was. But we don't, so don't. */
2703 through_sigtramp_breakpoint =
2704 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
2705 if (breakpoints_inserted)
2706 insert_breakpoints ();
2707
2708 ecs->remove_breakpoints_on_following_step = 1;
2709 ecs->another_trap = 1;
2710 }
2711 }
2712
2713 /* Subroutine call with source code we should not step over. Do step
2714 to the first line of code in it. */
2715
2716 static void
2717 step_into_function (struct execution_control_state *ecs)
2718 {
2719 struct symtab *s;
2720 struct symtab_and_line sr_sal;
2721
2722 s = find_pc_symtab (stop_pc);
2723 if (s && s->language != language_asm)
2724 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2725
2726 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2727 /* Use the step_resume_break to step until the end of the prologue,
2728 even if that involves jumps (as it seems to on the vax under
2729 4.2). */
2730 /* If the prologue ends in the middle of a source line, continue to
2731 the end of that source line (if it is still within the function).
2732 Otherwise, just go to end of prologue. */
2733 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
2734 /* no, don't either. It skips any code that's legitimately on the
2735 first line. */
2736 #else
2737 if (ecs->sal.end
2738 && ecs->sal.pc != ecs->stop_func_start
2739 && ecs->sal.end < ecs->stop_func_end)
2740 ecs->stop_func_start = ecs->sal.end;
2741 #endif
2742
2743 if (ecs->stop_func_start == stop_pc)
2744 {
2745 /* We are already there: stop now. */
2746 stop_step = 1;
2747 print_stop_reason (END_STEPPING_RANGE, 0);
2748 stop_stepping (ecs);
2749 return;
2750 }
2751 else
2752 {
2753 /* Put the step-breakpoint there and go until there. */
2754 init_sal (&sr_sal); /* initialize to zeroes */
2755 sr_sal.pc = ecs->stop_func_start;
2756 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2757 /* Do not specify what the fp should be when we stop since on
2758 some machines the prologue is where the new fp value is
2759 established. */
2760 check_for_old_step_resume_breakpoint ();
2761 step_resume_breakpoint =
2762 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2763 if (breakpoints_inserted)
2764 insert_breakpoints ();
2765
2766 /* And make sure stepping stops right away then. */
2767 step_range_end = step_range_start;
2768 }
2769 keep_going (ecs);
2770 }
2771
2772 /* We've just entered a callee, and we wish to resume until it returns
2773 to the caller. Setting a step_resume breakpoint on the return
2774 address will catch a return from the callee.
2775
2776 However, if the callee is recursing, we want to be careful not to
2777 catch returns of those recursive calls, but only of THIS instance
2778 of the call.
2779
2780 To do this, we set the step_resume bp's frame to our current
2781 caller's frame (step_frame_id, which is set by the "next" or
2782 "until" command, before execution begins). */
2783
2784 static void
2785 step_over_function (struct execution_control_state *ecs)
2786 {
2787 struct symtab_and_line sr_sal;
2788
2789 init_sal (&sr_sal); /* initialize to zeros */
2790 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
2791 sr_sal.section = find_pc_overlay (sr_sal.pc);
2792
2793 check_for_old_step_resume_breakpoint ();
2794 step_resume_breakpoint =
2795 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2796 bp_step_resume);
2797
2798 if (frame_id_p (step_frame_id)
2799 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
2800 step_resume_breakpoint->frame_id = step_frame_id;
2801
2802 if (breakpoints_inserted)
2803 insert_breakpoints ();
2804 }
2805
2806 static void
2807 stop_stepping (struct execution_control_state *ecs)
2808 {
2809 if (target_has_execution)
2810 {
2811 /* Assuming the inferior still exists, set these up for next
2812 time, just like we did above if we didn't break out of the
2813 loop. */
2814 prev_pc = read_pc ();
2815 prev_func_start = ecs->stop_func_start;
2816 prev_func_name = ecs->stop_func_name;
2817 }
2818
2819 /* Let callers know we don't want to wait for the inferior anymore. */
2820 ecs->wait_some_more = 0;
2821 }
2822
2823 /* This function handles various cases where we need to continue
2824 waiting for the inferior. */
2825 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2826
2827 static void
2828 keep_going (struct execution_control_state *ecs)
2829 {
2830 /* Save the pc before execution, to compare with pc after stop. */
2831 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2832 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
2833 BREAK is defined, the
2834 original pc would not have
2835 been at the start of a
2836 function. */
2837 prev_func_name = ecs->stop_func_name;
2838
2839 if (ecs->update_step_sp)
2840 step_sp = read_sp ();
2841 ecs->update_step_sp = 0;
2842
2843 /* If we did not do break;, it means we should keep running the
2844 inferior and not return to debugger. */
2845
2846 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2847 {
2848 /* We took a signal (which we are supposed to pass through to
2849 the inferior, else we'd have done a break above) and we
2850 haven't yet gotten our trap. Simply continue. */
2851 resume (currently_stepping (ecs), stop_signal);
2852 }
2853 else
2854 {
2855 /* Either the trap was not expected, but we are continuing
2856 anyway (the user asked that this signal be passed to the
2857 child)
2858 -- or --
2859 The signal was SIGTRAP, e.g. it was our signal, but we
2860 decided we should resume from it.
2861
2862 We're going to run this baby now!
2863
2864 Insert breakpoints now, unless we are trying to one-proceed
2865 past a breakpoint. */
2866 /* If we've just finished a special step resume and we don't
2867 want to hit a breakpoint, pull em out. */
2868 if (step_resume_breakpoint == NULL
2869 && through_sigtramp_breakpoint == NULL
2870 && ecs->remove_breakpoints_on_following_step)
2871 {
2872 ecs->remove_breakpoints_on_following_step = 0;
2873 remove_breakpoints ();
2874 breakpoints_inserted = 0;
2875 }
2876 else if (!breakpoints_inserted &&
2877 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2878 {
2879 breakpoints_failed = insert_breakpoints ();
2880 if (breakpoints_failed)
2881 {
2882 stop_stepping (ecs);
2883 return;
2884 }
2885 breakpoints_inserted = 1;
2886 }
2887
2888 trap_expected = ecs->another_trap;
2889
2890 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2891 specifies that such a signal should be delivered to the
2892 target program).
2893
2894 Typically, this would occure when a user is debugging a
2895 target monitor on a simulator: the target monitor sets a
2896 breakpoint; the simulator encounters this break-point and
2897 halts the simulation handing control to GDB; GDB, noteing
2898 that the break-point isn't valid, returns control back to the
2899 simulator; the simulator then delivers the hardware
2900 equivalent of a SIGNAL_TRAP to the program being debugged. */
2901
2902 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2903 stop_signal = TARGET_SIGNAL_0;
2904
2905 #ifdef SHIFT_INST_REGS
2906 /* I'm not sure when this following segment applies. I do know,
2907 now, that we shouldn't rewrite the regs when we were stopped
2908 by a random signal from the inferior process. */
2909 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
2910 (this is only used on the 88k). */
2911
2912 if (!bpstat_explains_signal (stop_bpstat)
2913 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
2914 SHIFT_INST_REGS ();
2915 #endif /* SHIFT_INST_REGS */
2916
2917 resume (currently_stepping (ecs), stop_signal);
2918 }
2919
2920 prepare_to_wait (ecs);
2921 }
2922
2923 /* This function normally comes after a resume, before
2924 handle_inferior_event exits. It takes care of any last bits of
2925 housekeeping, and sets the all-important wait_some_more flag. */
2926
2927 static void
2928 prepare_to_wait (struct execution_control_state *ecs)
2929 {
2930 if (ecs->infwait_state == infwait_normal_state)
2931 {
2932 overlay_cache_invalid = 1;
2933
2934 /* We have to invalidate the registers BEFORE calling
2935 target_wait because they can be loaded from the target while
2936 in target_wait. This makes remote debugging a bit more
2937 efficient for those targets that provide critical registers
2938 as part of their normal status mechanism. */
2939
2940 registers_changed ();
2941 ecs->waiton_ptid = pid_to_ptid (-1);
2942 ecs->wp = &(ecs->ws);
2943 }
2944 /* This is the old end of the while loop. Let everybody know we
2945 want to wait for the inferior some more and get called again
2946 soon. */
2947 ecs->wait_some_more = 1;
2948 }
2949
2950 /* Print why the inferior has stopped. We always print something when
2951 the inferior exits, or receives a signal. The rest of the cases are
2952 dealt with later on in normal_stop() and print_it_typical(). Ideally
2953 there should be a call to this function from handle_inferior_event()
2954 each time stop_stepping() is called.*/
2955 static void
2956 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2957 {
2958 switch (stop_reason)
2959 {
2960 case STOP_UNKNOWN:
2961 /* We don't deal with these cases from handle_inferior_event()
2962 yet. */
2963 break;
2964 case END_STEPPING_RANGE:
2965 /* We are done with a step/next/si/ni command. */
2966 /* For now print nothing. */
2967 /* Print a message only if not in the middle of doing a "step n"
2968 operation for n > 1 */
2969 if (!step_multi || !stop_step)
2970 if (ui_out_is_mi_like_p (uiout))
2971 ui_out_field_string (uiout, "reason", "end-stepping-range");
2972 break;
2973 case BREAKPOINT_HIT:
2974 /* We found a breakpoint. */
2975 /* For now print nothing. */
2976 break;
2977 case SIGNAL_EXITED:
2978 /* The inferior was terminated by a signal. */
2979 annotate_signalled ();
2980 if (ui_out_is_mi_like_p (uiout))
2981 ui_out_field_string (uiout, "reason", "exited-signalled");
2982 ui_out_text (uiout, "\nProgram terminated with signal ");
2983 annotate_signal_name ();
2984 ui_out_field_string (uiout, "signal-name",
2985 target_signal_to_name (stop_info));
2986 annotate_signal_name_end ();
2987 ui_out_text (uiout, ", ");
2988 annotate_signal_string ();
2989 ui_out_field_string (uiout, "signal-meaning",
2990 target_signal_to_string (stop_info));
2991 annotate_signal_string_end ();
2992 ui_out_text (uiout, ".\n");
2993 ui_out_text (uiout, "The program no longer exists.\n");
2994 break;
2995 case EXITED:
2996 /* The inferior program is finished. */
2997 annotate_exited (stop_info);
2998 if (stop_info)
2999 {
3000 if (ui_out_is_mi_like_p (uiout))
3001 ui_out_field_string (uiout, "reason", "exited");
3002 ui_out_text (uiout, "\nProgram exited with code ");
3003 ui_out_field_fmt (uiout, "exit-code", "0%o",
3004 (unsigned int) stop_info);
3005 ui_out_text (uiout, ".\n");
3006 }
3007 else
3008 {
3009 if (ui_out_is_mi_like_p (uiout))
3010 ui_out_field_string (uiout, "reason", "exited-normally");
3011 ui_out_text (uiout, "\nProgram exited normally.\n");
3012 }
3013 break;
3014 case SIGNAL_RECEIVED:
3015 /* Signal received. The signal table tells us to print about
3016 it. */
3017 annotate_signal ();
3018 ui_out_text (uiout, "\nProgram received signal ");
3019 annotate_signal_name ();
3020 if (ui_out_is_mi_like_p (uiout))
3021 ui_out_field_string (uiout, "reason", "signal-received");
3022 ui_out_field_string (uiout, "signal-name",
3023 target_signal_to_name (stop_info));
3024 annotate_signal_name_end ();
3025 ui_out_text (uiout, ", ");
3026 annotate_signal_string ();
3027 ui_out_field_string (uiout, "signal-meaning",
3028 target_signal_to_string (stop_info));
3029 annotate_signal_string_end ();
3030 ui_out_text (uiout, ".\n");
3031 break;
3032 default:
3033 internal_error (__FILE__, __LINE__,
3034 "print_stop_reason: unrecognized enum value");
3035 break;
3036 }
3037 }
3038 \f
3039
3040 /* Here to return control to GDB when the inferior stops for real.
3041 Print appropriate messages, remove breakpoints, give terminal our modes.
3042
3043 STOP_PRINT_FRAME nonzero means print the executing frame
3044 (pc, function, args, file, line number and line text).
3045 BREAKPOINTS_FAILED nonzero means stop was due to error
3046 attempting to insert breakpoints. */
3047
3048 void
3049 normal_stop (void)
3050 {
3051 /* As with the notification of thread events, we want to delay
3052 notifying the user that we've switched thread context until
3053 the inferior actually stops.
3054
3055 (Note that there's no point in saying anything if the inferior
3056 has exited!) */
3057 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3058 && target_has_execution)
3059 {
3060 target_terminal_ours_for_output ();
3061 printf_filtered ("[Switching to %s]\n",
3062 target_pid_or_tid_to_str (inferior_ptid));
3063 previous_inferior_ptid = inferior_ptid;
3064 }
3065
3066 /* Make sure that the current_frame's pc is correct. This
3067 is a correction for setting up the frame info before doing
3068 DECR_PC_AFTER_BREAK */
3069 if (target_has_execution && get_current_frame ())
3070 (get_current_frame ())->pc = read_pc ();
3071
3072 if (target_has_execution && breakpoints_inserted)
3073 {
3074 if (remove_breakpoints ())
3075 {
3076 target_terminal_ours_for_output ();
3077 printf_filtered ("Cannot remove breakpoints because ");
3078 printf_filtered ("program is no longer writable.\n");
3079 printf_filtered ("It might be running in another process.\n");
3080 printf_filtered ("Further execution is probably impossible.\n");
3081 }
3082 }
3083 breakpoints_inserted = 0;
3084
3085 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3086 Delete any breakpoint that is to be deleted at the next stop. */
3087
3088 breakpoint_auto_delete (stop_bpstat);
3089
3090 /* If an auto-display called a function and that got a signal,
3091 delete that auto-display to avoid an infinite recursion. */
3092
3093 if (stopped_by_random_signal)
3094 disable_current_display ();
3095
3096 /* Don't print a message if in the middle of doing a "step n"
3097 operation for n > 1 */
3098 if (step_multi && stop_step)
3099 goto done;
3100
3101 target_terminal_ours ();
3102
3103 /* Look up the hook_stop and run it (CLI internally handles problem
3104 of stop_command's pre-hook not existing). */
3105 if (stop_command)
3106 catch_errors (hook_stop_stub, stop_command,
3107 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3108
3109 if (!target_has_stack)
3110 {
3111
3112 goto done;
3113 }
3114
3115 /* Select innermost stack frame - i.e., current frame is frame 0,
3116 and current location is based on that.
3117 Don't do this on return from a stack dummy routine,
3118 or if the program has exited. */
3119
3120 if (!stop_stack_dummy)
3121 {
3122 select_frame (get_current_frame ());
3123
3124 /* Print current location without a level number, if
3125 we have changed functions or hit a breakpoint.
3126 Print source line if we have one.
3127 bpstat_print() contains the logic deciding in detail
3128 what to print, based on the event(s) that just occurred. */
3129
3130 if (stop_print_frame && deprecated_selected_frame)
3131 {
3132 int bpstat_ret;
3133 int source_flag;
3134 int do_frame_printing = 1;
3135
3136 bpstat_ret = bpstat_print (stop_bpstat);
3137 switch (bpstat_ret)
3138 {
3139 case PRINT_UNKNOWN:
3140 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3141 (or should) carry around the function and does (or
3142 should) use that when doing a frame comparison. */
3143 if (stop_step
3144 && frame_id_eq (step_frame_id,
3145 get_frame_id (get_current_frame ()))
3146 && step_start_function == find_pc_function (stop_pc))
3147 source_flag = SRC_LINE; /* finished step, just print source line */
3148 else
3149 source_flag = SRC_AND_LOC; /* print location and source line */
3150 break;
3151 case PRINT_SRC_AND_LOC:
3152 source_flag = SRC_AND_LOC; /* print location and source line */
3153 break;
3154 case PRINT_SRC_ONLY:
3155 source_flag = SRC_LINE;
3156 break;
3157 case PRINT_NOTHING:
3158 source_flag = SRC_LINE; /* something bogus */
3159 do_frame_printing = 0;
3160 break;
3161 default:
3162 internal_error (__FILE__, __LINE__, "Unknown value.");
3163 }
3164 /* For mi, have the same behavior every time we stop:
3165 print everything but the source line. */
3166 if (ui_out_is_mi_like_p (uiout))
3167 source_flag = LOC_AND_ADDRESS;
3168
3169 if (ui_out_is_mi_like_p (uiout))
3170 ui_out_field_int (uiout, "thread-id",
3171 pid_to_thread_id (inferior_ptid));
3172 /* The behavior of this routine with respect to the source
3173 flag is:
3174 SRC_LINE: Print only source line
3175 LOCATION: Print only location
3176 SRC_AND_LOC: Print location and source line */
3177 if (do_frame_printing)
3178 show_and_print_stack_frame (deprecated_selected_frame, -1, source_flag);
3179
3180 /* Display the auto-display expressions. */
3181 do_displays ();
3182 }
3183 }
3184
3185 /* Save the function value return registers, if we care.
3186 We might be about to restore their previous contents. */
3187 if (proceed_to_finish)
3188 /* NB: The copy goes through to the target picking up the value of
3189 all the registers. */
3190 regcache_cpy (stop_registers, current_regcache);
3191
3192 if (stop_stack_dummy)
3193 {
3194 /* Pop the empty frame that contains the stack dummy.
3195 POP_FRAME ends with a setting of the current frame, so we
3196 can use that next. */
3197 POP_FRAME;
3198 /* Set stop_pc to what it was before we called the function.
3199 Can't rely on restore_inferior_status because that only gets
3200 called if we don't stop in the called function. */
3201 stop_pc = read_pc ();
3202 select_frame (get_current_frame ());
3203 }
3204
3205 done:
3206 annotate_stopped ();
3207 }
3208
3209 static int
3210 hook_stop_stub (void *cmd)
3211 {
3212 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3213 return (0);
3214 }
3215 \f
3216 int
3217 signal_stop_state (int signo)
3218 {
3219 return signal_stop[signo];
3220 }
3221
3222 int
3223 signal_print_state (int signo)
3224 {
3225 return signal_print[signo];
3226 }
3227
3228 int
3229 signal_pass_state (int signo)
3230 {
3231 return signal_program[signo];
3232 }
3233
3234 int
3235 signal_stop_update (int signo, int state)
3236 {
3237 int ret = signal_stop[signo];
3238 signal_stop[signo] = state;
3239 return ret;
3240 }
3241
3242 int
3243 signal_print_update (int signo, int state)
3244 {
3245 int ret = signal_print[signo];
3246 signal_print[signo] = state;
3247 return ret;
3248 }
3249
3250 int
3251 signal_pass_update (int signo, int state)
3252 {
3253 int ret = signal_program[signo];
3254 signal_program[signo] = state;
3255 return ret;
3256 }
3257
3258 static void
3259 sig_print_header (void)
3260 {
3261 printf_filtered ("\
3262 Signal Stop\tPrint\tPass to program\tDescription\n");
3263 }
3264
3265 static void
3266 sig_print_info (enum target_signal oursig)
3267 {
3268 char *name = target_signal_to_name (oursig);
3269 int name_padding = 13 - strlen (name);
3270
3271 if (name_padding <= 0)
3272 name_padding = 0;
3273
3274 printf_filtered ("%s", name);
3275 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3276 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3277 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3278 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3279 printf_filtered ("%s\n", target_signal_to_string (oursig));
3280 }
3281
3282 /* Specify how various signals in the inferior should be handled. */
3283
3284 static void
3285 handle_command (char *args, int from_tty)
3286 {
3287 char **argv;
3288 int digits, wordlen;
3289 int sigfirst, signum, siglast;
3290 enum target_signal oursig;
3291 int allsigs;
3292 int nsigs;
3293 unsigned char *sigs;
3294 struct cleanup *old_chain;
3295
3296 if (args == NULL)
3297 {
3298 error_no_arg ("signal to handle");
3299 }
3300
3301 /* Allocate and zero an array of flags for which signals to handle. */
3302
3303 nsigs = (int) TARGET_SIGNAL_LAST;
3304 sigs = (unsigned char *) alloca (nsigs);
3305 memset (sigs, 0, nsigs);
3306
3307 /* Break the command line up into args. */
3308
3309 argv = buildargv (args);
3310 if (argv == NULL)
3311 {
3312 nomem (0);
3313 }
3314 old_chain = make_cleanup_freeargv (argv);
3315
3316 /* Walk through the args, looking for signal oursigs, signal names, and
3317 actions. Signal numbers and signal names may be interspersed with
3318 actions, with the actions being performed for all signals cumulatively
3319 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3320
3321 while (*argv != NULL)
3322 {
3323 wordlen = strlen (*argv);
3324 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3325 {;
3326 }
3327 allsigs = 0;
3328 sigfirst = siglast = -1;
3329
3330 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3331 {
3332 /* Apply action to all signals except those used by the
3333 debugger. Silently skip those. */
3334 allsigs = 1;
3335 sigfirst = 0;
3336 siglast = nsigs - 1;
3337 }
3338 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3339 {
3340 SET_SIGS (nsigs, sigs, signal_stop);
3341 SET_SIGS (nsigs, sigs, signal_print);
3342 }
3343 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3344 {
3345 UNSET_SIGS (nsigs, sigs, signal_program);
3346 }
3347 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3348 {
3349 SET_SIGS (nsigs, sigs, signal_print);
3350 }
3351 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3352 {
3353 SET_SIGS (nsigs, sigs, signal_program);
3354 }
3355 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3356 {
3357 UNSET_SIGS (nsigs, sigs, signal_stop);
3358 }
3359 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3360 {
3361 SET_SIGS (nsigs, sigs, signal_program);
3362 }
3363 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3364 {
3365 UNSET_SIGS (nsigs, sigs, signal_print);
3366 UNSET_SIGS (nsigs, sigs, signal_stop);
3367 }
3368 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3369 {
3370 UNSET_SIGS (nsigs, sigs, signal_program);
3371 }
3372 else if (digits > 0)
3373 {
3374 /* It is numeric. The numeric signal refers to our own
3375 internal signal numbering from target.h, not to host/target
3376 signal number. This is a feature; users really should be
3377 using symbolic names anyway, and the common ones like
3378 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3379
3380 sigfirst = siglast = (int)
3381 target_signal_from_command (atoi (*argv));
3382 if ((*argv)[digits] == '-')
3383 {
3384 siglast = (int)
3385 target_signal_from_command (atoi ((*argv) + digits + 1));
3386 }
3387 if (sigfirst > siglast)
3388 {
3389 /* Bet he didn't figure we'd think of this case... */
3390 signum = sigfirst;
3391 sigfirst = siglast;
3392 siglast = signum;
3393 }
3394 }
3395 else
3396 {
3397 oursig = target_signal_from_name (*argv);
3398 if (oursig != TARGET_SIGNAL_UNKNOWN)
3399 {
3400 sigfirst = siglast = (int) oursig;
3401 }
3402 else
3403 {
3404 /* Not a number and not a recognized flag word => complain. */
3405 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3406 }
3407 }
3408
3409 /* If any signal numbers or symbol names were found, set flags for
3410 which signals to apply actions to. */
3411
3412 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3413 {
3414 switch ((enum target_signal) signum)
3415 {
3416 case TARGET_SIGNAL_TRAP:
3417 case TARGET_SIGNAL_INT:
3418 if (!allsigs && !sigs[signum])
3419 {
3420 if (query ("%s is used by the debugger.\n\
3421 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3422 {
3423 sigs[signum] = 1;
3424 }
3425 else
3426 {
3427 printf_unfiltered ("Not confirmed, unchanged.\n");
3428 gdb_flush (gdb_stdout);
3429 }
3430 }
3431 break;
3432 case TARGET_SIGNAL_0:
3433 case TARGET_SIGNAL_DEFAULT:
3434 case TARGET_SIGNAL_UNKNOWN:
3435 /* Make sure that "all" doesn't print these. */
3436 break;
3437 default:
3438 sigs[signum] = 1;
3439 break;
3440 }
3441 }
3442
3443 argv++;
3444 }
3445
3446 target_notice_signals (inferior_ptid);
3447
3448 if (from_tty)
3449 {
3450 /* Show the results. */
3451 sig_print_header ();
3452 for (signum = 0; signum < nsigs; signum++)
3453 {
3454 if (sigs[signum])
3455 {
3456 sig_print_info (signum);
3457 }
3458 }
3459 }
3460
3461 do_cleanups (old_chain);
3462 }
3463
3464 static void
3465 xdb_handle_command (char *args, int from_tty)
3466 {
3467 char **argv;
3468 struct cleanup *old_chain;
3469
3470 /* Break the command line up into args. */
3471
3472 argv = buildargv (args);
3473 if (argv == NULL)
3474 {
3475 nomem (0);
3476 }
3477 old_chain = make_cleanup_freeargv (argv);
3478 if (argv[1] != (char *) NULL)
3479 {
3480 char *argBuf;
3481 int bufLen;
3482
3483 bufLen = strlen (argv[0]) + 20;
3484 argBuf = (char *) xmalloc (bufLen);
3485 if (argBuf)
3486 {
3487 int validFlag = 1;
3488 enum target_signal oursig;
3489
3490 oursig = target_signal_from_name (argv[0]);
3491 memset (argBuf, 0, bufLen);
3492 if (strcmp (argv[1], "Q") == 0)
3493 sprintf (argBuf, "%s %s", argv[0], "noprint");
3494 else
3495 {
3496 if (strcmp (argv[1], "s") == 0)
3497 {
3498 if (!signal_stop[oursig])
3499 sprintf (argBuf, "%s %s", argv[0], "stop");
3500 else
3501 sprintf (argBuf, "%s %s", argv[0], "nostop");
3502 }
3503 else if (strcmp (argv[1], "i") == 0)
3504 {
3505 if (!signal_program[oursig])
3506 sprintf (argBuf, "%s %s", argv[0], "pass");
3507 else
3508 sprintf (argBuf, "%s %s", argv[0], "nopass");
3509 }
3510 else if (strcmp (argv[1], "r") == 0)
3511 {
3512 if (!signal_print[oursig])
3513 sprintf (argBuf, "%s %s", argv[0], "print");
3514 else
3515 sprintf (argBuf, "%s %s", argv[0], "noprint");
3516 }
3517 else
3518 validFlag = 0;
3519 }
3520 if (validFlag)
3521 handle_command (argBuf, from_tty);
3522 else
3523 printf_filtered ("Invalid signal handling flag.\n");
3524 if (argBuf)
3525 xfree (argBuf);
3526 }
3527 }
3528 do_cleanups (old_chain);
3529 }
3530
3531 /* Print current contents of the tables set by the handle command.
3532 It is possible we should just be printing signals actually used
3533 by the current target (but for things to work right when switching
3534 targets, all signals should be in the signal tables). */
3535
3536 static void
3537 signals_info (char *signum_exp, int from_tty)
3538 {
3539 enum target_signal oursig;
3540 sig_print_header ();
3541
3542 if (signum_exp)
3543 {
3544 /* First see if this is a symbol name. */
3545 oursig = target_signal_from_name (signum_exp);
3546 if (oursig == TARGET_SIGNAL_UNKNOWN)
3547 {
3548 /* No, try numeric. */
3549 oursig =
3550 target_signal_from_command (parse_and_eval_long (signum_exp));
3551 }
3552 sig_print_info (oursig);
3553 return;
3554 }
3555
3556 printf_filtered ("\n");
3557 /* These ugly casts brought to you by the native VAX compiler. */
3558 for (oursig = TARGET_SIGNAL_FIRST;
3559 (int) oursig < (int) TARGET_SIGNAL_LAST;
3560 oursig = (enum target_signal) ((int) oursig + 1))
3561 {
3562 QUIT;
3563
3564 if (oursig != TARGET_SIGNAL_UNKNOWN
3565 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3566 sig_print_info (oursig);
3567 }
3568
3569 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3570 }
3571 \f
3572 struct inferior_status
3573 {
3574 enum target_signal stop_signal;
3575 CORE_ADDR stop_pc;
3576 bpstat stop_bpstat;
3577 int stop_step;
3578 int stop_stack_dummy;
3579 int stopped_by_random_signal;
3580 int trap_expected;
3581 CORE_ADDR step_range_start;
3582 CORE_ADDR step_range_end;
3583 struct frame_id step_frame_id;
3584 enum step_over_calls_kind step_over_calls;
3585 CORE_ADDR step_resume_break_address;
3586 int stop_after_trap;
3587 int stop_soon_quietly;
3588 struct regcache *stop_registers;
3589
3590 /* These are here because if call_function_by_hand has written some
3591 registers and then decides to call error(), we better not have changed
3592 any registers. */
3593 struct regcache *registers;
3594
3595 /* A frame unique identifier. */
3596 struct frame_id selected_frame_id;
3597
3598 int breakpoint_proceeded;
3599 int restore_stack_info;
3600 int proceed_to_finish;
3601 };
3602
3603 void
3604 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3605 LONGEST val)
3606 {
3607 int size = REGISTER_RAW_SIZE (regno);
3608 void *buf = alloca (size);
3609 store_signed_integer (buf, size, val);
3610 regcache_raw_write (inf_status->registers, regno, buf);
3611 }
3612
3613 /* Save all of the information associated with the inferior<==>gdb
3614 connection. INF_STATUS is a pointer to a "struct inferior_status"
3615 (defined in inferior.h). */
3616
3617 struct inferior_status *
3618 save_inferior_status (int restore_stack_info)
3619 {
3620 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3621
3622 inf_status->stop_signal = stop_signal;
3623 inf_status->stop_pc = stop_pc;
3624 inf_status->stop_step = stop_step;
3625 inf_status->stop_stack_dummy = stop_stack_dummy;
3626 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3627 inf_status->trap_expected = trap_expected;
3628 inf_status->step_range_start = step_range_start;
3629 inf_status->step_range_end = step_range_end;
3630 inf_status->step_frame_id = step_frame_id;
3631 inf_status->step_over_calls = step_over_calls;
3632 inf_status->stop_after_trap = stop_after_trap;
3633 inf_status->stop_soon_quietly = stop_soon_quietly;
3634 /* Save original bpstat chain here; replace it with copy of chain.
3635 If caller's caller is walking the chain, they'll be happier if we
3636 hand them back the original chain when restore_inferior_status is
3637 called. */
3638 inf_status->stop_bpstat = stop_bpstat;
3639 stop_bpstat = bpstat_copy (stop_bpstat);
3640 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3641 inf_status->restore_stack_info = restore_stack_info;
3642 inf_status->proceed_to_finish = proceed_to_finish;
3643
3644 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3645
3646 inf_status->registers = regcache_dup (current_regcache);
3647
3648 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3649 return inf_status;
3650 }
3651
3652 static int
3653 restore_selected_frame (void *args)
3654 {
3655 struct frame_id *fid = (struct frame_id *) args;
3656 struct frame_info *frame;
3657
3658 frame = frame_find_by_id (*fid);
3659
3660 /* If inf_status->selected_frame_id is NULL, there was no previously
3661 selected frame. */
3662 if (frame == NULL)
3663 {
3664 warning ("Unable to restore previously selected frame.\n");
3665 return 0;
3666 }
3667
3668 select_frame (frame);
3669
3670 return (1);
3671 }
3672
3673 void
3674 restore_inferior_status (struct inferior_status *inf_status)
3675 {
3676 stop_signal = inf_status->stop_signal;
3677 stop_pc = inf_status->stop_pc;
3678 stop_step = inf_status->stop_step;
3679 stop_stack_dummy = inf_status->stop_stack_dummy;
3680 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3681 trap_expected = inf_status->trap_expected;
3682 step_range_start = inf_status->step_range_start;
3683 step_range_end = inf_status->step_range_end;
3684 step_frame_id = inf_status->step_frame_id;
3685 step_over_calls = inf_status->step_over_calls;
3686 stop_after_trap = inf_status->stop_after_trap;
3687 stop_soon_quietly = inf_status->stop_soon_quietly;
3688 bpstat_clear (&stop_bpstat);
3689 stop_bpstat = inf_status->stop_bpstat;
3690 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3691 proceed_to_finish = inf_status->proceed_to_finish;
3692
3693 /* FIXME: Is the restore of stop_registers always needed. */
3694 regcache_xfree (stop_registers);
3695 stop_registers = inf_status->stop_registers;
3696
3697 /* The inferior can be gone if the user types "print exit(0)"
3698 (and perhaps other times). */
3699 if (target_has_execution)
3700 /* NB: The register write goes through to the target. */
3701 regcache_cpy (current_regcache, inf_status->registers);
3702 regcache_xfree (inf_status->registers);
3703
3704 /* FIXME: If we are being called after stopping in a function which
3705 is called from gdb, we should not be trying to restore the
3706 selected frame; it just prints a spurious error message (The
3707 message is useful, however, in detecting bugs in gdb (like if gdb
3708 clobbers the stack)). In fact, should we be restoring the
3709 inferior status at all in that case? . */
3710
3711 if (target_has_stack && inf_status->restore_stack_info)
3712 {
3713 /* The point of catch_errors is that if the stack is clobbered,
3714 walking the stack might encounter a garbage pointer and
3715 error() trying to dereference it. */
3716 if (catch_errors
3717 (restore_selected_frame, &inf_status->selected_frame_id,
3718 "Unable to restore previously selected frame:\n",
3719 RETURN_MASK_ERROR) == 0)
3720 /* Error in restoring the selected frame. Select the innermost
3721 frame. */
3722 select_frame (get_current_frame ());
3723
3724 }
3725
3726 xfree (inf_status);
3727 }
3728
3729 static void
3730 do_restore_inferior_status_cleanup (void *sts)
3731 {
3732 restore_inferior_status (sts);
3733 }
3734
3735 struct cleanup *
3736 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3737 {
3738 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3739 }
3740
3741 void
3742 discard_inferior_status (struct inferior_status *inf_status)
3743 {
3744 /* See save_inferior_status for info on stop_bpstat. */
3745 bpstat_clear (&inf_status->stop_bpstat);
3746 regcache_xfree (inf_status->registers);
3747 regcache_xfree (inf_status->stop_registers);
3748 xfree (inf_status);
3749 }
3750
3751 int
3752 inferior_has_forked (int pid, int *child_pid)
3753 {
3754 struct target_waitstatus last;
3755 ptid_t last_ptid;
3756
3757 get_last_target_status (&last_ptid, &last);
3758
3759 if (last.kind != TARGET_WAITKIND_FORKED)
3760 return 0;
3761
3762 if (ptid_get_pid (last_ptid) != pid)
3763 return 0;
3764
3765 *child_pid = last.value.related_pid;
3766 return 1;
3767 }
3768
3769 int
3770 inferior_has_vforked (int pid, int *child_pid)
3771 {
3772 struct target_waitstatus last;
3773 ptid_t last_ptid;
3774
3775 get_last_target_status (&last_ptid, &last);
3776
3777 if (last.kind != TARGET_WAITKIND_VFORKED)
3778 return 0;
3779
3780 if (ptid_get_pid (last_ptid) != pid)
3781 return 0;
3782
3783 *child_pid = last.value.related_pid;
3784 return 1;
3785 }
3786
3787 int
3788 inferior_has_execd (int pid, char **execd_pathname)
3789 {
3790 struct target_waitstatus last;
3791 ptid_t last_ptid;
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind != TARGET_WAITKIND_EXECD)
3796 return 0;
3797
3798 if (ptid_get_pid (last_ptid) != pid)
3799 return 0;
3800
3801 *execd_pathname = xstrdup (last.value.execd_pathname);
3802 return 1;
3803 }
3804
3805 /* Oft used ptids */
3806 ptid_t null_ptid;
3807 ptid_t minus_one_ptid;
3808
3809 /* Create a ptid given the necessary PID, LWP, and TID components. */
3810
3811 ptid_t
3812 ptid_build (int pid, long lwp, long tid)
3813 {
3814 ptid_t ptid;
3815
3816 ptid.pid = pid;
3817 ptid.lwp = lwp;
3818 ptid.tid = tid;
3819 return ptid;
3820 }
3821
3822 /* Create a ptid from just a pid. */
3823
3824 ptid_t
3825 pid_to_ptid (int pid)
3826 {
3827 return ptid_build (pid, 0, 0);
3828 }
3829
3830 /* Fetch the pid (process id) component from a ptid. */
3831
3832 int
3833 ptid_get_pid (ptid_t ptid)
3834 {
3835 return ptid.pid;
3836 }
3837
3838 /* Fetch the lwp (lightweight process) component from a ptid. */
3839
3840 long
3841 ptid_get_lwp (ptid_t ptid)
3842 {
3843 return ptid.lwp;
3844 }
3845
3846 /* Fetch the tid (thread id) component from a ptid. */
3847
3848 long
3849 ptid_get_tid (ptid_t ptid)
3850 {
3851 return ptid.tid;
3852 }
3853
3854 /* ptid_equal() is used to test equality of two ptids. */
3855
3856 int
3857 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3858 {
3859 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3860 && ptid1.tid == ptid2.tid);
3861 }
3862
3863 /* restore_inferior_ptid() will be used by the cleanup machinery
3864 to restore the inferior_ptid value saved in a call to
3865 save_inferior_ptid(). */
3866
3867 static void
3868 restore_inferior_ptid (void *arg)
3869 {
3870 ptid_t *saved_ptid_ptr = arg;
3871 inferior_ptid = *saved_ptid_ptr;
3872 xfree (arg);
3873 }
3874
3875 /* Save the value of inferior_ptid so that it may be restored by a
3876 later call to do_cleanups(). Returns the struct cleanup pointer
3877 needed for later doing the cleanup. */
3878
3879 struct cleanup *
3880 save_inferior_ptid (void)
3881 {
3882 ptid_t *saved_ptid_ptr;
3883
3884 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3885 *saved_ptid_ptr = inferior_ptid;
3886 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3887 }
3888 \f
3889
3890 static void
3891 build_infrun (void)
3892 {
3893 stop_registers = regcache_xmalloc (current_gdbarch);
3894 }
3895
3896 void
3897 _initialize_infrun (void)
3898 {
3899 register int i;
3900 register int numsigs;
3901 struct cmd_list_element *c;
3902
3903 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3904 register_gdbarch_swap (NULL, 0, build_infrun);
3905
3906 add_info ("signals", signals_info,
3907 "What debugger does when program gets various signals.\n\
3908 Specify a signal as argument to print info on that signal only.");
3909 add_info_alias ("handle", "signals", 0);
3910
3911 add_com ("handle", class_run, handle_command,
3912 concat ("Specify how to handle a signal.\n\
3913 Args are signals and actions to apply to those signals.\n\
3914 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3915 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3916 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3917 The special arg \"all\" is recognized to mean all signals except those\n\
3918 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3919 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3920 Stop means reenter debugger if this signal happens (implies print).\n\
3921 Print means print a message if this signal happens.\n\
3922 Pass means let program see this signal; otherwise program doesn't know.\n\
3923 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3924 Pass and Stop may be combined.", NULL));
3925 if (xdb_commands)
3926 {
3927 add_com ("lz", class_info, signals_info,
3928 "What debugger does when program gets various signals.\n\
3929 Specify a signal as argument to print info on that signal only.");
3930 add_com ("z", class_run, xdb_handle_command,
3931 concat ("Specify how to handle a signal.\n\
3932 Args are signals and actions to apply to those signals.\n\
3933 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3934 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3935 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3936 The special arg \"all\" is recognized to mean all signals except those\n\
3937 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3938 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3939 nopass), \"Q\" (noprint)\n\
3940 Stop means reenter debugger if this signal happens (implies print).\n\
3941 Print means print a message if this signal happens.\n\
3942 Pass means let program see this signal; otherwise program doesn't know.\n\
3943 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3944 Pass and Stop may be combined.", NULL));
3945 }
3946
3947 if (!dbx_commands)
3948 stop_command =
3949 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3950 This allows you to set a list of commands to be run each time execution\n\
3951 of the program stops.", &cmdlist);
3952
3953 numsigs = (int) TARGET_SIGNAL_LAST;
3954 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3955 signal_print = (unsigned char *)
3956 xmalloc (sizeof (signal_print[0]) * numsigs);
3957 signal_program = (unsigned char *)
3958 xmalloc (sizeof (signal_program[0]) * numsigs);
3959 for (i = 0; i < numsigs; i++)
3960 {
3961 signal_stop[i] = 1;
3962 signal_print[i] = 1;
3963 signal_program[i] = 1;
3964 }
3965
3966 /* Signals caused by debugger's own actions
3967 should not be given to the program afterwards. */
3968 signal_program[TARGET_SIGNAL_TRAP] = 0;
3969 signal_program[TARGET_SIGNAL_INT] = 0;
3970
3971 /* Signals that are not errors should not normally enter the debugger. */
3972 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3973 signal_print[TARGET_SIGNAL_ALRM] = 0;
3974 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3975 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3976 signal_stop[TARGET_SIGNAL_PROF] = 0;
3977 signal_print[TARGET_SIGNAL_PROF] = 0;
3978 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3979 signal_print[TARGET_SIGNAL_CHLD] = 0;
3980 signal_stop[TARGET_SIGNAL_IO] = 0;
3981 signal_print[TARGET_SIGNAL_IO] = 0;
3982 signal_stop[TARGET_SIGNAL_POLL] = 0;
3983 signal_print[TARGET_SIGNAL_POLL] = 0;
3984 signal_stop[TARGET_SIGNAL_URG] = 0;
3985 signal_print[TARGET_SIGNAL_URG] = 0;
3986 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3987 signal_print[TARGET_SIGNAL_WINCH] = 0;
3988
3989 /* These signals are used internally by user-level thread
3990 implementations. (See signal(5) on Solaris.) Like the above
3991 signals, a healthy program receives and handles them as part of
3992 its normal operation. */
3993 signal_stop[TARGET_SIGNAL_LWP] = 0;
3994 signal_print[TARGET_SIGNAL_LWP] = 0;
3995 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3996 signal_print[TARGET_SIGNAL_WAITING] = 0;
3997 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3998 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3999
4000 #ifdef SOLIB_ADD
4001 add_show_from_set
4002 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4003 (char *) &stop_on_solib_events,
4004 "Set stopping for shared library events.\n\
4005 If nonzero, gdb will give control to the user when the dynamic linker\n\
4006 notifies gdb of shared library events. The most common event of interest\n\
4007 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
4008 #endif
4009
4010 c = add_set_enum_cmd ("follow-fork-mode",
4011 class_run,
4012 follow_fork_mode_kind_names, &follow_fork_mode_string,
4013 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
4014 kernel problem. It's also not terribly useful without a GUI to
4015 help the user drive two debuggers. So for now, I'm disabling
4016 the "both" option. */
4017 /* "Set debugger response to a program call of fork \
4018 or vfork.\n\
4019 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4020 parent - the original process is debugged after a fork\n\
4021 child - the new process is debugged after a fork\n\
4022 both - both the parent and child are debugged after a fork\n\
4023 ask - the debugger will ask for one of the above choices\n\
4024 For \"both\", another copy of the debugger will be started to follow\n\
4025 the new child process. The original debugger will continue to follow\n\
4026 the original parent process. To distinguish their prompts, the\n\
4027 debugger copy's prompt will be changed.\n\
4028 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4029 By default, the debugger will follow the parent process.",
4030 */
4031 "Set debugger response to a program call of fork \
4032 or vfork.\n\
4033 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4034 parent - the original process is debugged after a fork\n\
4035 child - the new process is debugged after a fork\n\
4036 ask - the debugger will ask for one of the above choices\n\
4037 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4038 By default, the debugger will follow the parent process.", &setlist);
4039 add_show_from_set (c, &showlist);
4040
4041 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
4042 &scheduler_mode, /* current mode */
4043 "Set mode for locking scheduler during execution.\n\
4044 off == no locking (threads may preempt at any time)\n\
4045 on == full locking (no thread except the current thread may run)\n\
4046 step == scheduler locked during every single-step operation.\n\
4047 In this mode, no other thread may run during a step command.\n\
4048 Other threads may run while stepping over a function call ('next').", &setlist);
4049
4050 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
4051 add_show_from_set (c, &showlist);
4052
4053 c = add_set_cmd ("step-mode", class_run,
4054 var_boolean, (char *) &step_stop_if_no_debug,
4055 "Set mode of the step operation. When set, doing a step over a\n\
4056 function without debug line information will stop at the first\n\
4057 instruction of that function. Otherwise, the function is skipped and\n\
4058 the step command stops at a different source line.", &setlist);
4059 add_show_from_set (c, &showlist);
4060
4061 /* ptid initializations */
4062 null_ptid = ptid_build (0, 0, 0);
4063 minus_one_ptid = ptid_build (-1, 0, 0);
4064 inferior_ptid = null_ptid;
4065 target_last_wait_ptid = minus_one_ptid;
4066 }
This page took 0.112415 seconds and 4 git commands to generate.