* infrun.c (inferior_ignoring_startup_exec_events): Delete.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_leading_exec_events = 0;
88
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
93 static void
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98 }
99
100 /* In asynchronous mode, but simulating synchronous execution. */
101
102 int sync_execution = 0;
103
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
106 running in. */
107
108 static ptid_t previous_inferior_ptid;
109
110 /* This is true for configurations that may follow through execl() and
111 similar functions. At present this is only true for HP-UX native. */
112
113 #ifndef MAY_FOLLOW_EXEC
114 #define MAY_FOLLOW_EXEC (0)
115 #endif
116
117 static int may_follow_exec = MAY_FOLLOW_EXEC;
118
119 static int debug_infrun = 0;
120 static void
121 show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125 }
126
127 /* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
146
147 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
165
166 /* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174 #ifndef SOLIB_IN_DYNAMIC_LINKER
175 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176 #endif
177
178
179 /* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
182 #ifndef CANNOT_STEP_HW_WATCHPOINTS
183 #define CANNOT_STEP_HW_WATCHPOINTS 0
184 #else
185 #undef CANNOT_STEP_HW_WATCHPOINTS
186 #define CANNOT_STEP_HW_WATCHPOINTS 1
187 #endif
188
189 /* Tables of how to react to signals; the user sets them. */
190
191 static unsigned char *signal_stop;
192 static unsigned char *signal_print;
193 static unsigned char *signal_program;
194
195 #define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203 #define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
211 /* Value to pass to target_resume() to cause all threads to resume */
212
213 #define RESUME_ALL (pid_to_ptid (-1))
214
215 /* Command list pointer for the "stop" placeholder. */
216
217 static struct cmd_list_element *stop_command;
218
219 /* Nonzero if breakpoints are now inserted in the inferior. */
220
221 static int breakpoints_inserted;
222
223 /* Function inferior was in as of last step command. */
224
225 static struct symbol *step_start_function;
226
227 /* Nonzero if we are expecting a trace trap and should proceed from it. */
228
229 static int trap_expected;
230
231 /* Nonzero if we want to give control to the user when we're notified
232 of shared library events by the dynamic linker. */
233 static int stop_on_solib_events;
234 static void
235 show_stop_on_solib_events (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237 {
238 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
239 value);
240 }
241
242 /* Nonzero means expecting a trace trap
243 and should stop the inferior and return silently when it happens. */
244
245 int stop_after_trap;
246
247 /* Nonzero means expecting a trap and caller will handle it themselves.
248 It is used after attach, due to attaching to a process;
249 when running in the shell before the child program has been exec'd;
250 and when running some kinds of remote stuff (FIXME?). */
251
252 enum stop_kind stop_soon;
253
254 /* Nonzero if proceed is being used for a "finish" command or a similar
255 situation when stop_registers should be saved. */
256
257 int proceed_to_finish;
258
259 /* Save register contents here when about to pop a stack dummy frame,
260 if-and-only-if proceed_to_finish is set.
261 Thus this contains the return value from the called function (assuming
262 values are returned in a register). */
263
264 struct regcache *stop_registers;
265
266 /* Nonzero after stop if current stack frame should be printed. */
267
268 static int stop_print_frame;
269
270 static struct breakpoint *step_resume_breakpoint = NULL;
271
272 /* This is a cached copy of the pid/waitstatus of the last event
273 returned by target_wait()/deprecated_target_wait_hook(). This
274 information is returned by get_last_target_status(). */
275 static ptid_t target_last_wait_ptid;
276 static struct target_waitstatus target_last_waitstatus;
277
278 /* This is used to remember when a fork, vfork or exec event
279 was caught by a catchpoint, and thus the event is to be
280 followed at the next resume of the inferior, and not
281 immediately. */
282 static struct
283 {
284 enum target_waitkind kind;
285 struct
286 {
287 int parent_pid;
288 int child_pid;
289 }
290 fork_event;
291 char *execd_pathname;
292 }
293 pending_follow;
294
295 static const char follow_fork_mode_child[] = "child";
296 static const char follow_fork_mode_parent[] = "parent";
297
298 static const char *follow_fork_mode_kind_names[] = {
299 follow_fork_mode_child,
300 follow_fork_mode_parent,
301 NULL
302 };
303
304 static const char *follow_fork_mode_string = follow_fork_mode_parent;
305 static void
306 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
307 struct cmd_list_element *c, const char *value)
308 {
309 fprintf_filtered (file, _("\
310 Debugger response to a program call of fork or vfork is \"%s\".\n"),
311 value);
312 }
313 \f
314
315 static int
316 follow_fork (void)
317 {
318 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
319
320 return target_follow_fork (follow_child);
321 }
322
323 void
324 follow_inferior_reset_breakpoints (void)
325 {
326 /* Was there a step_resume breakpoint? (There was if the user
327 did a "next" at the fork() call.) If so, explicitly reset its
328 thread number.
329
330 step_resumes are a form of bp that are made to be per-thread.
331 Since we created the step_resume bp when the parent process
332 was being debugged, and now are switching to the child process,
333 from the breakpoint package's viewpoint, that's a switch of
334 "threads". We must update the bp's notion of which thread
335 it is for, or it'll be ignored when it triggers. */
336
337 if (step_resume_breakpoint)
338 breakpoint_re_set_thread (step_resume_breakpoint);
339
340 /* Reinsert all breakpoints in the child. The user may have set
341 breakpoints after catching the fork, in which case those
342 were never set in the child, but only in the parent. This makes
343 sure the inserted breakpoints match the breakpoint list. */
344
345 breakpoint_re_set ();
346 insert_breakpoints ();
347 }
348
349 /* EXECD_PATHNAME is assumed to be non-NULL. */
350
351 static void
352 follow_exec (int pid, char *execd_pathname)
353 {
354 int saved_pid = pid;
355 struct target_ops *tgt;
356
357 if (!may_follow_exec)
358 return;
359
360 /* This is an exec event that we actually wish to pay attention to.
361 Refresh our symbol table to the newly exec'd program, remove any
362 momentary bp's, etc.
363
364 If there are breakpoints, they aren't really inserted now,
365 since the exec() transformed our inferior into a fresh set
366 of instructions.
367
368 We want to preserve symbolic breakpoints on the list, since
369 we have hopes that they can be reset after the new a.out's
370 symbol table is read.
371
372 However, any "raw" breakpoints must be removed from the list
373 (e.g., the solib bp's), since their address is probably invalid
374 now.
375
376 And, we DON'T want to call delete_breakpoints() here, since
377 that may write the bp's "shadow contents" (the instruction
378 value that was overwritten witha TRAP instruction). Since
379 we now have a new a.out, those shadow contents aren't valid. */
380 update_breakpoints_after_exec ();
381
382 /* If there was one, it's gone now. We cannot truly step-to-next
383 statement through an exec(). */
384 step_resume_breakpoint = NULL;
385 step_range_start = 0;
386 step_range_end = 0;
387
388 /* What is this a.out's name? */
389 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
390
391 /* We've followed the inferior through an exec. Therefore, the
392 inferior has essentially been killed & reborn. */
393
394 /* First collect the run target in effect. */
395 tgt = find_run_target ();
396 /* If we can't find one, things are in a very strange state... */
397 if (tgt == NULL)
398 error (_("Could find run target to save before following exec"));
399
400 gdb_flush (gdb_stdout);
401 target_mourn_inferior ();
402 inferior_ptid = pid_to_ptid (saved_pid);
403 /* Because mourn_inferior resets inferior_ptid. */
404 push_target (tgt);
405
406 /* That a.out is now the one to use. */
407 exec_file_attach (execd_pathname, 0);
408
409 /* And also is where symbols can be found. */
410 symbol_file_add_main (execd_pathname, 0);
411
412 /* Reset the shared library package. This ensures that we get
413 a shlib event when the child reaches "_start", at which point
414 the dld will have had a chance to initialize the child. */
415 #if defined(SOLIB_RESTART)
416 SOLIB_RESTART ();
417 #endif
418 #ifdef SOLIB_CREATE_INFERIOR_HOOK
419 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
420 #else
421 solib_create_inferior_hook ();
422 #endif
423
424 /* Reinsert all breakpoints. (Those which were symbolic have
425 been reset to the proper address in the new a.out, thanks
426 to symbol_file_command...) */
427 insert_breakpoints ();
428
429 /* The next resume of this inferior should bring it to the shlib
430 startup breakpoints. (If the user had also set bp's on
431 "main" from the old (parent) process, then they'll auto-
432 matically get reset there in the new process.) */
433 }
434
435 /* Non-zero if we just simulating a single-step. This is needed
436 because we cannot remove the breakpoints in the inferior process
437 until after the `wait' in `wait_for_inferior'. */
438 static int singlestep_breakpoints_inserted_p = 0;
439
440 /* The thread we inserted single-step breakpoints for. */
441 static ptid_t singlestep_ptid;
442
443 /* PC when we started this single-step. */
444 static CORE_ADDR singlestep_pc;
445
446 /* If another thread hit the singlestep breakpoint, we save the original
447 thread here so that we can resume single-stepping it later. */
448 static ptid_t saved_singlestep_ptid;
449 static int stepping_past_singlestep_breakpoint;
450 \f
451
452 /* Things to clean up if we QUIT out of resume (). */
453 static void
454 resume_cleanups (void *ignore)
455 {
456 normal_stop ();
457 }
458
459 static const char schedlock_off[] = "off";
460 static const char schedlock_on[] = "on";
461 static const char schedlock_step[] = "step";
462 static const char *scheduler_enums[] = {
463 schedlock_off,
464 schedlock_on,
465 schedlock_step,
466 NULL
467 };
468 static const char *scheduler_mode = schedlock_off;
469 static void
470 show_scheduler_mode (struct ui_file *file, int from_tty,
471 struct cmd_list_element *c, const char *value)
472 {
473 fprintf_filtered (file, _("\
474 Mode for locking scheduler during execution is \"%s\".\n"),
475 value);
476 }
477
478 static void
479 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
480 {
481 if (!target_can_lock_scheduler)
482 {
483 scheduler_mode = schedlock_off;
484 error (_("Target '%s' cannot support this command."), target_shortname);
485 }
486 }
487
488
489 /* Resume the inferior, but allow a QUIT. This is useful if the user
490 wants to interrupt some lengthy single-stepping operation
491 (for child processes, the SIGINT goes to the inferior, and so
492 we get a SIGINT random_signal, but for remote debugging and perhaps
493 other targets, that's not true).
494
495 STEP nonzero if we should step (zero to continue instead).
496 SIG is the signal to give the inferior (zero for none). */
497 void
498 resume (int step, enum target_signal sig)
499 {
500 int should_resume = 1;
501 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
502 QUIT;
503
504 if (debug_infrun)
505 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
506 step, sig);
507
508 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
509
510
511 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
512 over an instruction that causes a page fault without triggering
513 a hardware watchpoint. The kernel properly notices that it shouldn't
514 stop, because the hardware watchpoint is not triggered, but it forgets
515 the step request and continues the program normally.
516 Work around the problem by removing hardware watchpoints if a step is
517 requested, GDB will check for a hardware watchpoint trigger after the
518 step anyway. */
519 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
520 remove_hw_watchpoints ();
521
522
523 /* Normally, by the time we reach `resume', the breakpoints are either
524 removed or inserted, as appropriate. The exception is if we're sitting
525 at a permanent breakpoint; we need to step over it, but permanent
526 breakpoints can't be removed. So we have to test for it here. */
527 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
528 {
529 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
530 gdbarch_skip_permanent_breakpoint (current_gdbarch,
531 get_current_regcache ());
532 else
533 error (_("\
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
537 }
538
539 if (step && gdbarch_software_single_step_p (current_gdbarch))
540 {
541 /* Do it the hard way, w/temp breakpoints */
542 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 if (stop_registers)
635 {
636 regcache_xfree (stop_registers);
637 stop_registers = NULL;
638 }
639
640 /* Discard any remaining commands or status from previous stop. */
641 bpstat_clear (&stop_bpstat);
642 }
643
644 /* This should be suitable for any targets that support threads. */
645
646 static int
647 prepare_to_proceed (void)
648 {
649 ptid_t wait_ptid;
650 struct target_waitstatus wait_status;
651
652 /* Get the last target status returned by target_wait(). */
653 get_last_target_status (&wait_ptid, &wait_status);
654
655 /* Make sure we were stopped either at a breakpoint, or because
656 of a Ctrl-C. */
657 if (wait_status.kind != TARGET_WAITKIND_STOPPED
658 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
659 && wait_status.value.sig != TARGET_SIGNAL_INT))
660 {
661 return 0;
662 }
663
664 if (!ptid_equal (wait_ptid, minus_one_ptid)
665 && !ptid_equal (inferior_ptid, wait_ptid))
666 {
667 /* Switched over from WAIT_PID. */
668 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
669
670 if (wait_pc != read_pc ())
671 {
672 /* Switch back to WAIT_PID thread. */
673 inferior_ptid = wait_ptid;
674
675 /* FIXME: This stuff came from switch_to_thread() in
676 thread.c (which should probably be a public function). */
677 reinit_frame_cache ();
678 registers_changed ();
679 stop_pc = wait_pc;
680 }
681
682 /* We return 1 to indicate that there is a breakpoint here,
683 so we need to step over it before continuing to avoid
684 hitting it straight away. */
685 if (breakpoint_here_p (wait_pc))
686 return 1;
687 }
688
689 return 0;
690
691 }
692
693 /* Record the pc of the program the last time it stopped. This is
694 just used internally by wait_for_inferior, but need to be preserved
695 over calls to it and cleared when the inferior is started. */
696 static CORE_ADDR prev_pc;
697
698 /* Basic routine for continuing the program in various fashions.
699
700 ADDR is the address to resume at, or -1 for resume where stopped.
701 SIGGNAL is the signal to give it, or 0 for none,
702 or -1 for act according to how it stopped.
703 STEP is nonzero if should trap after one instruction.
704 -1 means return after that and print nothing.
705 You should probably set various step_... variables
706 before calling here, if you are stepping.
707
708 You should call clear_proceed_status before calling proceed. */
709
710 void
711 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
712 {
713 int oneproc = 0;
714
715 if (step > 0)
716 step_start_function = find_pc_function (read_pc ());
717 if (step < 0)
718 stop_after_trap = 1;
719
720 if (addr == (CORE_ADDR) -1)
721 {
722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 /* There is a breakpoint at the address we will resume at,
724 step one instruction before inserting breakpoints so that
725 we do not stop right away (and report a second hit at this
726 breakpoint). */
727 oneproc = 1;
728 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
729 && gdbarch_single_step_through_delay (current_gdbarch,
730 get_current_frame ()))
731 /* We stepped onto an instruction that needs to be stepped
732 again before re-inserting the breakpoint, do so. */
733 oneproc = 1;
734 }
735 else
736 {
737 write_pc (addr);
738 }
739
740 if (debug_infrun)
741 fprintf_unfiltered (gdb_stdlog,
742 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
743 paddr_nz (addr), siggnal, step);
744
745 /* In a multi-threaded task we may select another thread
746 and then continue or step.
747
748 But if the old thread was stopped at a breakpoint, it
749 will immediately cause another breakpoint stop without
750 any execution (i.e. it will report a breakpoint hit
751 incorrectly). So we must step over it first.
752
753 prepare_to_proceed checks the current thread against the thread
754 that reported the most recent event. If a step-over is required
755 it returns TRUE and sets the current thread to the old thread. */
756 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
757 oneproc = 1;
758
759 if (oneproc)
760 /* We will get a trace trap after one instruction.
761 Continue it automatically and insert breakpoints then. */
762 trap_expected = 1;
763 else
764 {
765 insert_breakpoints ();
766 /* If we get here there was no call to error() in
767 insert breakpoints -- so they were inserted. */
768 breakpoints_inserted = 1;
769 }
770
771 if (siggnal != TARGET_SIGNAL_DEFAULT)
772 stop_signal = siggnal;
773 /* If this signal should not be seen by program,
774 give it zero. Used for debugging signals. */
775 else if (!signal_program[stop_signal])
776 stop_signal = TARGET_SIGNAL_0;
777
778 annotate_starting ();
779
780 /* Make sure that output from GDB appears before output from the
781 inferior. */
782 gdb_flush (gdb_stdout);
783
784 /* Refresh prev_pc value just prior to resuming. This used to be
785 done in stop_stepping, however, setting prev_pc there did not handle
786 scenarios such as inferior function calls or returning from
787 a function via the return command. In those cases, the prev_pc
788 value was not set properly for subsequent commands. The prev_pc value
789 is used to initialize the starting line number in the ecs. With an
790 invalid value, the gdb next command ends up stopping at the position
791 represented by the next line table entry past our start position.
792 On platforms that generate one line table entry per line, this
793 is not a problem. However, on the ia64, the compiler generates
794 extraneous line table entries that do not increase the line number.
795 When we issue the gdb next command on the ia64 after an inferior call
796 or a return command, we often end up a few instructions forward, still
797 within the original line we started.
798
799 An attempt was made to have init_execution_control_state () refresh
800 the prev_pc value before calculating the line number. This approach
801 did not work because on platforms that use ptrace, the pc register
802 cannot be read unless the inferior is stopped. At that point, we
803 are not guaranteed the inferior is stopped and so the read_pc ()
804 call can fail. Setting the prev_pc value here ensures the value is
805 updated correctly when the inferior is stopped. */
806 prev_pc = read_pc ();
807
808 /* Resume inferior. */
809 resume (oneproc || step || bpstat_should_step (), stop_signal);
810
811 /* Wait for it to stop (if not standalone)
812 and in any case decode why it stopped, and act accordingly. */
813 /* Do this only if we are not using the event loop, or if the target
814 does not support asynchronous execution. */
815 if (!target_can_async_p ())
816 {
817 wait_for_inferior ();
818 normal_stop ();
819 }
820 }
821 \f
822
823 /* Start remote-debugging of a machine over a serial link. */
824
825 void
826 start_remote (int from_tty)
827 {
828 init_thread_list ();
829 init_wait_for_inferior ();
830 stop_soon = STOP_QUIETLY_REMOTE;
831 trap_expected = 0;
832
833 /* Always go on waiting for the target, regardless of the mode. */
834 /* FIXME: cagney/1999-09-23: At present it isn't possible to
835 indicate to wait_for_inferior that a target should timeout if
836 nothing is returned (instead of just blocking). Because of this,
837 targets expecting an immediate response need to, internally, set
838 things up so that the target_wait() is forced to eventually
839 timeout. */
840 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
841 differentiate to its caller what the state of the target is after
842 the initial open has been performed. Here we're assuming that
843 the target has stopped. It should be possible to eventually have
844 target_open() return to the caller an indication that the target
845 is currently running and GDB state should be set to the same as
846 for an async run. */
847 wait_for_inferior ();
848
849 /* Now that the inferior has stopped, do any bookkeeping like
850 loading shared libraries. We want to do this before normal_stop,
851 so that the displayed frame is up to date. */
852 post_create_inferior (&current_target, from_tty);
853
854 normal_stop ();
855 }
856
857 /* Initialize static vars when a new inferior begins. */
858
859 void
860 init_wait_for_inferior (void)
861 {
862 /* These are meaningless until the first time through wait_for_inferior. */
863 prev_pc = 0;
864
865 breakpoints_inserted = 0;
866 breakpoint_init_inferior (inf_starting);
867
868 /* Don't confuse first call to proceed(). */
869 stop_signal = TARGET_SIGNAL_0;
870
871 /* The first resume is not following a fork/vfork/exec. */
872 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
873
874 clear_proceed_status ();
875
876 stepping_past_singlestep_breakpoint = 0;
877 }
878 \f
879 /* This enum encodes possible reasons for doing a target_wait, so that
880 wfi can call target_wait in one place. (Ultimately the call will be
881 moved out of the infinite loop entirely.) */
882
883 enum infwait_states
884 {
885 infwait_normal_state,
886 infwait_thread_hop_state,
887 infwait_nonstep_watch_state
888 };
889
890 /* Why did the inferior stop? Used to print the appropriate messages
891 to the interface from within handle_inferior_event(). */
892 enum inferior_stop_reason
893 {
894 /* Step, next, nexti, stepi finished. */
895 END_STEPPING_RANGE,
896 /* Inferior terminated by signal. */
897 SIGNAL_EXITED,
898 /* Inferior exited. */
899 EXITED,
900 /* Inferior received signal, and user asked to be notified. */
901 SIGNAL_RECEIVED
902 };
903
904 /* This structure contains what used to be local variables in
905 wait_for_inferior. Probably many of them can return to being
906 locals in handle_inferior_event. */
907
908 struct execution_control_state
909 {
910 struct target_waitstatus ws;
911 struct target_waitstatus *wp;
912 int another_trap;
913 int random_signal;
914 CORE_ADDR stop_func_start;
915 CORE_ADDR stop_func_end;
916 char *stop_func_name;
917 struct symtab_and_line sal;
918 int current_line;
919 struct symtab *current_symtab;
920 int handling_longjmp; /* FIXME */
921 ptid_t ptid;
922 ptid_t saved_inferior_ptid;
923 int step_after_step_resume_breakpoint;
924 int stepping_through_solib_after_catch;
925 bpstat stepping_through_solib_catchpoints;
926 int new_thread_event;
927 struct target_waitstatus tmpstatus;
928 enum infwait_states infwait_state;
929 ptid_t waiton_ptid;
930 int wait_some_more;
931 };
932
933 void init_execution_control_state (struct execution_control_state *ecs);
934
935 void handle_inferior_event (struct execution_control_state *ecs);
936
937 static void step_into_function (struct execution_control_state *ecs);
938 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
939 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
940 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
941 struct frame_id sr_id);
942 static void stop_stepping (struct execution_control_state *ecs);
943 static void prepare_to_wait (struct execution_control_state *ecs);
944 static void keep_going (struct execution_control_state *ecs);
945 static void print_stop_reason (enum inferior_stop_reason stop_reason,
946 int stop_info);
947
948 /* Wait for control to return from inferior to debugger.
949 If inferior gets a signal, we may decide to start it up again
950 instead of returning. That is why there is a loop in this function.
951 When this function actually returns it means the inferior
952 should be left stopped and GDB should read more commands. */
953
954 void
955 wait_for_inferior (void)
956 {
957 struct cleanup *old_cleanups;
958 struct execution_control_state ecss;
959 struct execution_control_state *ecs;
960
961 if (debug_infrun)
962 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
963
964 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
965 &step_resume_breakpoint);
966
967 /* wfi still stays in a loop, so it's OK just to take the address of
968 a local to get the ecs pointer. */
969 ecs = &ecss;
970
971 /* Fill in with reasonable starting values. */
972 init_execution_control_state (ecs);
973
974 /* We'll update this if & when we switch to a new thread. */
975 previous_inferior_ptid = inferior_ptid;
976
977 overlay_cache_invalid = 1;
978
979 /* We have to invalidate the registers BEFORE calling target_wait
980 because they can be loaded from the target while in target_wait.
981 This makes remote debugging a bit more efficient for those
982 targets that provide critical registers as part of their normal
983 status mechanism. */
984
985 registers_changed ();
986
987 while (1)
988 {
989 if (deprecated_target_wait_hook)
990 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
991 else
992 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
993
994 /* Now figure out what to do with the result of the result. */
995 handle_inferior_event (ecs);
996
997 if (!ecs->wait_some_more)
998 break;
999 }
1000 do_cleanups (old_cleanups);
1001 }
1002
1003 /* Asynchronous version of wait_for_inferior. It is called by the
1004 event loop whenever a change of state is detected on the file
1005 descriptor corresponding to the target. It can be called more than
1006 once to complete a single execution command. In such cases we need
1007 to keep the state in a global variable ASYNC_ECSS. If it is the
1008 last time that this function is called for a single execution
1009 command, then report to the user that the inferior has stopped, and
1010 do the necessary cleanups. */
1011
1012 struct execution_control_state async_ecss;
1013 struct execution_control_state *async_ecs;
1014
1015 void
1016 fetch_inferior_event (void *client_data)
1017 {
1018 static struct cleanup *old_cleanups;
1019
1020 async_ecs = &async_ecss;
1021
1022 if (!async_ecs->wait_some_more)
1023 {
1024 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1025 &step_resume_breakpoint);
1026
1027 /* Fill in with reasonable starting values. */
1028 init_execution_control_state (async_ecs);
1029
1030 /* We'll update this if & when we switch to a new thread. */
1031 previous_inferior_ptid = inferior_ptid;
1032
1033 overlay_cache_invalid = 1;
1034
1035 /* We have to invalidate the registers BEFORE calling target_wait
1036 because they can be loaded from the target while in target_wait.
1037 This makes remote debugging a bit more efficient for those
1038 targets that provide critical registers as part of their normal
1039 status mechanism. */
1040
1041 registers_changed ();
1042 }
1043
1044 if (deprecated_target_wait_hook)
1045 async_ecs->ptid =
1046 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1047 else
1048 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1049
1050 /* Now figure out what to do with the result of the result. */
1051 handle_inferior_event (async_ecs);
1052
1053 if (!async_ecs->wait_some_more)
1054 {
1055 /* Do only the cleanups that have been added by this
1056 function. Let the continuations for the commands do the rest,
1057 if there are any. */
1058 do_exec_cleanups (old_cleanups);
1059 normal_stop ();
1060 if (step_multi && stop_step)
1061 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1062 else
1063 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1064 }
1065 }
1066
1067 /* Prepare an execution control state for looping through a
1068 wait_for_inferior-type loop. */
1069
1070 void
1071 init_execution_control_state (struct execution_control_state *ecs)
1072 {
1073 ecs->another_trap = 0;
1074 ecs->random_signal = 0;
1075 ecs->step_after_step_resume_breakpoint = 0;
1076 ecs->handling_longjmp = 0; /* FIXME */
1077 ecs->stepping_through_solib_after_catch = 0;
1078 ecs->stepping_through_solib_catchpoints = NULL;
1079 ecs->sal = find_pc_line (prev_pc, 0);
1080 ecs->current_line = ecs->sal.line;
1081 ecs->current_symtab = ecs->sal.symtab;
1082 ecs->infwait_state = infwait_normal_state;
1083 ecs->waiton_ptid = pid_to_ptid (-1);
1084 ecs->wp = &(ecs->ws);
1085 }
1086
1087 /* Return the cached copy of the last pid/waitstatus returned by
1088 target_wait()/deprecated_target_wait_hook(). The data is actually
1089 cached by handle_inferior_event(), which gets called immediately
1090 after target_wait()/deprecated_target_wait_hook(). */
1091
1092 void
1093 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1094 {
1095 *ptidp = target_last_wait_ptid;
1096 *status = target_last_waitstatus;
1097 }
1098
1099 void
1100 nullify_last_target_wait_ptid (void)
1101 {
1102 target_last_wait_ptid = minus_one_ptid;
1103 }
1104
1105 /* Switch thread contexts, maintaining "infrun state". */
1106
1107 static void
1108 context_switch (struct execution_control_state *ecs)
1109 {
1110 /* Caution: it may happen that the new thread (or the old one!)
1111 is not in the thread list. In this case we must not attempt
1112 to "switch context", or we run the risk that our context may
1113 be lost. This may happen as a result of the target module
1114 mishandling thread creation. */
1115
1116 if (debug_infrun)
1117 {
1118 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1119 target_pid_to_str (inferior_ptid));
1120 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1121 target_pid_to_str (ecs->ptid));
1122 }
1123
1124 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1125 { /* Perform infrun state context switch: */
1126 /* Save infrun state for the old thread. */
1127 save_infrun_state (inferior_ptid, prev_pc,
1128 trap_expected, step_resume_breakpoint,
1129 step_range_start,
1130 step_range_end, &step_frame_id,
1131 ecs->handling_longjmp, ecs->another_trap,
1132 ecs->stepping_through_solib_after_catch,
1133 ecs->stepping_through_solib_catchpoints,
1134 ecs->current_line, ecs->current_symtab);
1135
1136 /* Load infrun state for the new thread. */
1137 load_infrun_state (ecs->ptid, &prev_pc,
1138 &trap_expected, &step_resume_breakpoint,
1139 &step_range_start,
1140 &step_range_end, &step_frame_id,
1141 &ecs->handling_longjmp, &ecs->another_trap,
1142 &ecs->stepping_through_solib_after_catch,
1143 &ecs->stepping_through_solib_catchpoints,
1144 &ecs->current_line, &ecs->current_symtab);
1145 }
1146 inferior_ptid = ecs->ptid;
1147 reinit_frame_cache ();
1148 }
1149
1150 static void
1151 adjust_pc_after_break (struct execution_control_state *ecs)
1152 {
1153 CORE_ADDR breakpoint_pc;
1154
1155 /* If this target does not decrement the PC after breakpoints, then
1156 we have nothing to do. */
1157 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1158 return;
1159
1160 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1161 we aren't, just return.
1162
1163 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1164 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1165 implemented by software breakpoints should be handled through the normal
1166 breakpoint layer.
1167
1168 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1169 different signals (SIGILL or SIGEMT for instance), but it is less
1170 clear where the PC is pointing afterwards. It may not match
1171 gdbarch_decr_pc_after_break. I don't know any specific target that
1172 generates these signals at breakpoints (the code has been in GDB since at
1173 least 1992) so I can not guess how to handle them here.
1174
1175 In earlier versions of GDB, a target with
1176 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1177 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1178 target with both of these set in GDB history, and it seems unlikely to be
1179 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1180
1181 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1182 return;
1183
1184 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1185 return;
1186
1187 /* Find the location where (if we've hit a breakpoint) the
1188 breakpoint would be. */
1189 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1190 (current_gdbarch);
1191
1192 /* Check whether there actually is a software breakpoint inserted
1193 at that location. */
1194 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1195 {
1196 /* When using hardware single-step, a SIGTRAP is reported for both
1197 a completed single-step and a software breakpoint. Need to
1198 differentiate between the two, as the latter needs adjusting
1199 but the former does not.
1200
1201 The SIGTRAP can be due to a completed hardware single-step only if
1202 - we didn't insert software single-step breakpoints
1203 - the thread to be examined is still the current thread
1204 - this thread is currently being stepped
1205
1206 If any of these events did not occur, we must have stopped due
1207 to hitting a software breakpoint, and have to back up to the
1208 breakpoint address.
1209
1210 As a special case, we could have hardware single-stepped a
1211 software breakpoint. In this case (prev_pc == breakpoint_pc),
1212 we also need to back up to the breakpoint address. */
1213
1214 if (singlestep_breakpoints_inserted_p
1215 || !ptid_equal (ecs->ptid, inferior_ptid)
1216 || !currently_stepping (ecs)
1217 || prev_pc == breakpoint_pc)
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
1220 }
1221
1222 /* Given an execution control state that has been freshly filled in
1223 by an event from the inferior, figure out what it means and take
1224 appropriate action. */
1225
1226 int stepped_after_stopped_by_watchpoint;
1227
1228 void
1229 handle_inferior_event (struct execution_control_state *ecs)
1230 {
1231 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1232 that the variable stepped_after_stopped_by_watchpoint isn't used,
1233 then you're wrong! See remote.c:remote_stopped_data_address. */
1234
1235 int sw_single_step_trap_p = 0;
1236 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1237
1238 /* Cache the last pid/waitstatus. */
1239 target_last_wait_ptid = ecs->ptid;
1240 target_last_waitstatus = *ecs->wp;
1241
1242 adjust_pc_after_break (ecs);
1243
1244 switch (ecs->infwait_state)
1245 {
1246 case infwait_thread_hop_state:
1247 if (debug_infrun)
1248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1249 /* Cancel the waiton_ptid. */
1250 ecs->waiton_ptid = pid_to_ptid (-1);
1251 break;
1252
1253 case infwait_normal_state:
1254 if (debug_infrun)
1255 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1256 stepped_after_stopped_by_watchpoint = 0;
1257 break;
1258
1259 case infwait_nonstep_watch_state:
1260 if (debug_infrun)
1261 fprintf_unfiltered (gdb_stdlog,
1262 "infrun: infwait_nonstep_watch_state\n");
1263 insert_breakpoints ();
1264
1265 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1266 handle things like signals arriving and other things happening
1267 in combination correctly? */
1268 stepped_after_stopped_by_watchpoint = 1;
1269 break;
1270
1271 default:
1272 internal_error (__FILE__, __LINE__, _("bad switch"));
1273 }
1274 ecs->infwait_state = infwait_normal_state;
1275
1276 reinit_frame_cache ();
1277
1278 /* If it's a new process, add it to the thread database */
1279
1280 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1281 && !ptid_equal (ecs->ptid, minus_one_ptid)
1282 && !in_thread_list (ecs->ptid));
1283
1284 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1285 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1286 {
1287 add_thread (ecs->ptid);
1288
1289 ui_out_text (uiout, "[New ");
1290 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1291 ui_out_text (uiout, "]\n");
1292 }
1293
1294 switch (ecs->ws.kind)
1295 {
1296 case TARGET_WAITKIND_LOADED:
1297 if (debug_infrun)
1298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1299 /* Ignore gracefully during startup of the inferior, as it might
1300 be the shell which has just loaded some objects, otherwise
1301 add the symbols for the newly loaded objects. Also ignore at
1302 the beginning of an attach or remote session; we will query
1303 the full list of libraries once the connection is
1304 established. */
1305 if (stop_soon == NO_STOP_QUIETLY)
1306 {
1307 int breakpoints_were_inserted;
1308
1309 /* Remove breakpoints, SOLIB_ADD might adjust
1310 breakpoint addresses via breakpoint_re_set. */
1311 breakpoints_were_inserted = breakpoints_inserted;
1312 if (breakpoints_inserted)
1313 remove_breakpoints ();
1314 breakpoints_inserted = 0;
1315
1316 /* Check for any newly added shared libraries if we're
1317 supposed to be adding them automatically. Switch
1318 terminal for any messages produced by
1319 breakpoint_re_set. */
1320 target_terminal_ours_for_output ();
1321 /* NOTE: cagney/2003-11-25: Make certain that the target
1322 stack's section table is kept up-to-date. Architectures,
1323 (e.g., PPC64), use the section table to perform
1324 operations such as address => section name and hence
1325 require the table to contain all sections (including
1326 those found in shared libraries). */
1327 /* NOTE: cagney/2003-11-25: Pass current_target and not
1328 exec_ops to SOLIB_ADD. This is because current GDB is
1329 only tooled to propagate section_table changes out from
1330 the "current_target" (see target_resize_to_sections), and
1331 not up from the exec stratum. This, of course, isn't
1332 right. "infrun.c" should only interact with the
1333 exec/process stratum, instead relying on the target stack
1334 to propagate relevant changes (stop, section table
1335 changed, ...) up to other layers. */
1336 #ifdef SOLIB_ADD
1337 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1338 #else
1339 solib_add (NULL, 0, &current_target, auto_solib_add);
1340 #endif
1341 target_terminal_inferior ();
1342
1343 /* Try to reenable shared library breakpoints, additional
1344 code segments in shared libraries might be mapped in now. */
1345 re_enable_breakpoints_in_shlibs ();
1346
1347 /* If requested, stop when the dynamic linker notifies
1348 gdb of events. This allows the user to get control
1349 and place breakpoints in initializer routines for
1350 dynamically loaded objects (among other things). */
1351 if (stop_on_solib_events)
1352 {
1353 stop_stepping (ecs);
1354 return;
1355 }
1356
1357 /* NOTE drow/2007-05-11: This might be a good place to check
1358 for "catch load". */
1359
1360 /* Reinsert breakpoints and continue. */
1361 if (breakpoints_were_inserted)
1362 {
1363 insert_breakpoints ();
1364 breakpoints_inserted = 1;
1365 }
1366 }
1367
1368 /* If we are skipping through a shell, or through shared library
1369 loading that we aren't interested in, resume the program. If
1370 we're running the program normally, also resume. But stop if
1371 we're attaching or setting up a remote connection. */
1372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1373 {
1374 resume (0, TARGET_SIGNAL_0);
1375 prepare_to_wait (ecs);
1376 return;
1377 }
1378
1379 break;
1380
1381 case TARGET_WAITKIND_SPURIOUS:
1382 if (debug_infrun)
1383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1384 resume (0, TARGET_SIGNAL_0);
1385 prepare_to_wait (ecs);
1386 return;
1387
1388 case TARGET_WAITKIND_EXITED:
1389 if (debug_infrun)
1390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1391 target_terminal_ours (); /* Must do this before mourn anyway */
1392 print_stop_reason (EXITED, ecs->ws.value.integer);
1393
1394 /* Record the exit code in the convenience variable $_exitcode, so
1395 that the user can inspect this again later. */
1396 set_internalvar (lookup_internalvar ("_exitcode"),
1397 value_from_longest (builtin_type_int,
1398 (LONGEST) ecs->ws.value.integer));
1399 gdb_flush (gdb_stdout);
1400 target_mourn_inferior ();
1401 singlestep_breakpoints_inserted_p = 0;
1402 stop_print_frame = 0;
1403 stop_stepping (ecs);
1404 return;
1405
1406 case TARGET_WAITKIND_SIGNALLED:
1407 if (debug_infrun)
1408 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1409 stop_print_frame = 0;
1410 stop_signal = ecs->ws.value.sig;
1411 target_terminal_ours (); /* Must do this before mourn anyway */
1412
1413 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1414 reach here unless the inferior is dead. However, for years
1415 target_kill() was called here, which hints that fatal signals aren't
1416 really fatal on some systems. If that's true, then some changes
1417 may be needed. */
1418 target_mourn_inferior ();
1419
1420 print_stop_reason (SIGNAL_EXITED, stop_signal);
1421 singlestep_breakpoints_inserted_p = 0;
1422 stop_stepping (ecs);
1423 return;
1424
1425 /* The following are the only cases in which we keep going;
1426 the above cases end in a continue or goto. */
1427 case TARGET_WAITKIND_FORKED:
1428 case TARGET_WAITKIND_VFORKED:
1429 if (debug_infrun)
1430 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1431 stop_signal = TARGET_SIGNAL_TRAP;
1432 pending_follow.kind = ecs->ws.kind;
1433
1434 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1435 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1436
1437 if (!ptid_equal (ecs->ptid, inferior_ptid))
1438 {
1439 context_switch (ecs);
1440 reinit_frame_cache ();
1441 }
1442
1443 stop_pc = read_pc ();
1444
1445 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1446
1447 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1448
1449 /* If no catchpoint triggered for this, then keep going. */
1450 if (ecs->random_signal)
1451 {
1452 stop_signal = TARGET_SIGNAL_0;
1453 keep_going (ecs);
1454 return;
1455 }
1456 goto process_event_stop_test;
1457
1458 case TARGET_WAITKIND_EXECD:
1459 if (debug_infrun)
1460 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1461 stop_signal = TARGET_SIGNAL_TRAP;
1462
1463 /* NOTE drow/2002-12-05: This code should be pushed down into the
1464 target_wait function. Until then following vfork on HP/UX 10.20
1465 is probably broken by this. Of course, it's broken anyway. */
1466 /* Is this a target which reports multiple exec events per actual
1467 call to exec()? (HP-UX using ptrace does, for example.) If so,
1468 ignore all but the last one. Just resume the exec'r, and wait
1469 for the next exec event. */
1470 if (inferior_ignoring_leading_exec_events)
1471 {
1472 inferior_ignoring_leading_exec_events--;
1473 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1474 prepare_to_wait (ecs);
1475 return;
1476 }
1477 inferior_ignoring_leading_exec_events =
1478 target_reported_exec_events_per_exec_call () - 1;
1479
1480 pending_follow.execd_pathname =
1481 savestring (ecs->ws.value.execd_pathname,
1482 strlen (ecs->ws.value.execd_pathname));
1483
1484 /* This causes the eventpoints and symbol table to be reset. Must
1485 do this now, before trying to determine whether to stop. */
1486 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1487 xfree (pending_follow.execd_pathname);
1488
1489 stop_pc = read_pc_pid (ecs->ptid);
1490 ecs->saved_inferior_ptid = inferior_ptid;
1491 inferior_ptid = ecs->ptid;
1492
1493 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1494
1495 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1496 inferior_ptid = ecs->saved_inferior_ptid;
1497
1498 if (!ptid_equal (ecs->ptid, inferior_ptid))
1499 {
1500 context_switch (ecs);
1501 reinit_frame_cache ();
1502 }
1503
1504 /* If no catchpoint triggered for this, then keep going. */
1505 if (ecs->random_signal)
1506 {
1507 stop_signal = TARGET_SIGNAL_0;
1508 keep_going (ecs);
1509 return;
1510 }
1511 goto process_event_stop_test;
1512
1513 /* Be careful not to try to gather much state about a thread
1514 that's in a syscall. It's frequently a losing proposition. */
1515 case TARGET_WAITKIND_SYSCALL_ENTRY:
1516 if (debug_infrun)
1517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1518 resume (0, TARGET_SIGNAL_0);
1519 prepare_to_wait (ecs);
1520 return;
1521
1522 /* Before examining the threads further, step this thread to
1523 get it entirely out of the syscall. (We get notice of the
1524 event when the thread is just on the verge of exiting a
1525 syscall. Stepping one instruction seems to get it back
1526 into user code.) */
1527 case TARGET_WAITKIND_SYSCALL_RETURN:
1528 if (debug_infrun)
1529 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1530 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1531 prepare_to_wait (ecs);
1532 return;
1533
1534 case TARGET_WAITKIND_STOPPED:
1535 if (debug_infrun)
1536 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1537 stop_signal = ecs->ws.value.sig;
1538 break;
1539
1540 /* We had an event in the inferior, but we are not interested
1541 in handling it at this level. The lower layers have already
1542 done what needs to be done, if anything.
1543
1544 One of the possible circumstances for this is when the
1545 inferior produces output for the console. The inferior has
1546 not stopped, and we are ignoring the event. Another possible
1547 circumstance is any event which the lower level knows will be
1548 reported multiple times without an intervening resume. */
1549 case TARGET_WAITKIND_IGNORE:
1550 if (debug_infrun)
1551 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1552 prepare_to_wait (ecs);
1553 return;
1554 }
1555
1556 /* We may want to consider not doing a resume here in order to give
1557 the user a chance to play with the new thread. It might be good
1558 to make that a user-settable option. */
1559
1560 /* At this point, all threads are stopped (happens automatically in
1561 either the OS or the native code). Therefore we need to continue
1562 all threads in order to make progress. */
1563 if (ecs->new_thread_event)
1564 {
1565 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1566 prepare_to_wait (ecs);
1567 return;
1568 }
1569
1570 stop_pc = read_pc_pid (ecs->ptid);
1571
1572 if (debug_infrun)
1573 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1574
1575 if (stepping_past_singlestep_breakpoint)
1576 {
1577 gdb_assert (singlestep_breakpoints_inserted_p);
1578 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1579 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
1583 /* We've either finished single-stepping past the single-step
1584 breakpoint, or stopped for some other reason. It would be nice if
1585 we could tell, but we can't reliably. */
1586 if (stop_signal == TARGET_SIGNAL_TRAP)
1587 {
1588 if (debug_infrun)
1589 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1590 /* Pull the single step breakpoints out of the target. */
1591 remove_single_step_breakpoints ();
1592 singlestep_breakpoints_inserted_p = 0;
1593
1594 ecs->random_signal = 0;
1595
1596 ecs->ptid = saved_singlestep_ptid;
1597 context_switch (ecs);
1598 if (deprecated_context_hook)
1599 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1600
1601 resume (1, TARGET_SIGNAL_0);
1602 prepare_to_wait (ecs);
1603 return;
1604 }
1605 }
1606
1607 stepping_past_singlestep_breakpoint = 0;
1608
1609 /* See if a thread hit a thread-specific breakpoint that was meant for
1610 another thread. If so, then step that thread past the breakpoint,
1611 and continue it. */
1612
1613 if (stop_signal == TARGET_SIGNAL_TRAP)
1614 {
1615 int thread_hop_needed = 0;
1616
1617 /* Check if a regular breakpoint has been hit before checking
1618 for a potential single step breakpoint. Otherwise, GDB will
1619 not see this breakpoint hit when stepping onto breakpoints. */
1620 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1621 {
1622 ecs->random_signal = 0;
1623 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1624 thread_hop_needed = 1;
1625 }
1626 else if (singlestep_breakpoints_inserted_p)
1627 {
1628 /* We have not context switched yet, so this should be true
1629 no matter which thread hit the singlestep breakpoint. */
1630 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1631 if (debug_infrun)
1632 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1633 "trap for %s\n",
1634 target_pid_to_str (ecs->ptid));
1635
1636 ecs->random_signal = 0;
1637 /* The call to in_thread_list is necessary because PTIDs sometimes
1638 change when we go from single-threaded to multi-threaded. If
1639 the singlestep_ptid is still in the list, assume that it is
1640 really different from ecs->ptid. */
1641 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1642 && in_thread_list (singlestep_ptid))
1643 {
1644 /* If the PC of the thread we were trying to single-step
1645 has changed, discard this event (which we were going
1646 to ignore anyway), and pretend we saw that thread
1647 trap. This prevents us continuously moving the
1648 single-step breakpoint forward, one instruction at a
1649 time. If the PC has changed, then the thread we were
1650 trying to single-step has trapped or been signalled,
1651 but the event has not been reported to GDB yet.
1652
1653 There might be some cases where this loses signal
1654 information, if a signal has arrived at exactly the
1655 same time that the PC changed, but this is the best
1656 we can do with the information available. Perhaps we
1657 should arrange to report all events for all threads
1658 when they stop, or to re-poll the remote looking for
1659 this particular thread (i.e. temporarily enable
1660 schedlock). */
1661 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1662 {
1663 if (debug_infrun)
1664 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1665 " but expected thread advanced also\n");
1666
1667 /* The current context still belongs to
1668 singlestep_ptid. Don't swap here, since that's
1669 the context we want to use. Just fudge our
1670 state and continue. */
1671 ecs->ptid = singlestep_ptid;
1672 stop_pc = read_pc_pid (ecs->ptid);
1673 }
1674 else
1675 {
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "infrun: unexpected thread\n");
1679
1680 thread_hop_needed = 1;
1681 stepping_past_singlestep_breakpoint = 1;
1682 saved_singlestep_ptid = singlestep_ptid;
1683 }
1684 }
1685 }
1686
1687 if (thread_hop_needed)
1688 {
1689 int remove_status;
1690
1691 if (debug_infrun)
1692 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1693
1694 /* Saw a breakpoint, but it was hit by the wrong thread.
1695 Just continue. */
1696
1697 if (singlestep_breakpoints_inserted_p)
1698 {
1699 /* Pull the single step breakpoints out of the target. */
1700 remove_single_step_breakpoints ();
1701 singlestep_breakpoints_inserted_p = 0;
1702 }
1703
1704 remove_status = remove_breakpoints ();
1705 /* Did we fail to remove breakpoints? If so, try
1706 to set the PC past the bp. (There's at least
1707 one situation in which we can fail to remove
1708 the bp's: On HP-UX's that use ttrace, we can't
1709 change the address space of a vforking child
1710 process until the child exits (well, okay, not
1711 then either :-) or execs. */
1712 if (remove_status != 0)
1713 {
1714 /* FIXME! This is obviously non-portable! */
1715 write_pc_pid (stop_pc + 4, ecs->ptid);
1716 /* We need to restart all the threads now,
1717 * unles we're running in scheduler-locked mode.
1718 * Use currently_stepping to determine whether to
1719 * step or continue.
1720 */
1721 /* FIXME MVS: is there any reason not to call resume()? */
1722 if (scheduler_mode == schedlock_on)
1723 target_resume (ecs->ptid,
1724 currently_stepping (ecs), TARGET_SIGNAL_0);
1725 else
1726 target_resume (RESUME_ALL,
1727 currently_stepping (ecs), TARGET_SIGNAL_0);
1728 prepare_to_wait (ecs);
1729 return;
1730 }
1731 else
1732 { /* Single step */
1733 breakpoints_inserted = 0;
1734 if (!ptid_equal (inferior_ptid, ecs->ptid))
1735 context_switch (ecs);
1736 ecs->waiton_ptid = ecs->ptid;
1737 ecs->wp = &(ecs->ws);
1738 ecs->another_trap = 1;
1739
1740 ecs->infwait_state = infwait_thread_hop_state;
1741 keep_going (ecs);
1742 registers_changed ();
1743 return;
1744 }
1745 }
1746 else if (singlestep_breakpoints_inserted_p)
1747 {
1748 sw_single_step_trap_p = 1;
1749 ecs->random_signal = 0;
1750 }
1751 }
1752 else
1753 ecs->random_signal = 1;
1754
1755 /* See if something interesting happened to the non-current thread. If
1756 so, then switch to that thread. */
1757 if (!ptid_equal (ecs->ptid, inferior_ptid))
1758 {
1759 if (debug_infrun)
1760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1761
1762 context_switch (ecs);
1763
1764 if (deprecated_context_hook)
1765 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1766 }
1767
1768 if (singlestep_breakpoints_inserted_p)
1769 {
1770 /* Pull the single step breakpoints out of the target. */
1771 remove_single_step_breakpoints ();
1772 singlestep_breakpoints_inserted_p = 0;
1773 }
1774
1775 /* It may not be necessary to disable the watchpoint to stop over
1776 it. For example, the PA can (with some kernel cooperation)
1777 single step over a watchpoint without disabling the watchpoint. */
1778 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1779 {
1780 if (debug_infrun)
1781 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1782 resume (1, 0);
1783 prepare_to_wait (ecs);
1784 return;
1785 }
1786
1787 /* It is far more common to need to disable a watchpoint to step
1788 the inferior over it. FIXME. What else might a debug
1789 register or page protection watchpoint scheme need here? */
1790 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1791 && STOPPED_BY_WATCHPOINT (ecs->ws))
1792 {
1793 /* At this point, we are stopped at an instruction which has
1794 attempted to write to a piece of memory under control of
1795 a watchpoint. The instruction hasn't actually executed
1796 yet. If we were to evaluate the watchpoint expression
1797 now, we would get the old value, and therefore no change
1798 would seem to have occurred.
1799
1800 In order to make watchpoints work `right', we really need
1801 to complete the memory write, and then evaluate the
1802 watchpoint expression. The following code does that by
1803 removing the watchpoint (actually, all watchpoints and
1804 breakpoints), single-stepping the target, re-inserting
1805 watchpoints, and then falling through to let normal
1806 single-step processing handle proceed. Since this
1807 includes evaluating watchpoints, things will come to a
1808 stop in the correct manner. */
1809
1810 if (debug_infrun)
1811 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1812 remove_breakpoints ();
1813 registers_changed ();
1814 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1815
1816 ecs->waiton_ptid = ecs->ptid;
1817 ecs->wp = &(ecs->ws);
1818 ecs->infwait_state = infwait_nonstep_watch_state;
1819 prepare_to_wait (ecs);
1820 return;
1821 }
1822
1823 /* It may be possible to simply continue after a watchpoint. */
1824 if (HAVE_CONTINUABLE_WATCHPOINT)
1825 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1826
1827 ecs->stop_func_start = 0;
1828 ecs->stop_func_end = 0;
1829 ecs->stop_func_name = 0;
1830 /* Don't care about return value; stop_func_start and stop_func_name
1831 will both be 0 if it doesn't work. */
1832 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1833 &ecs->stop_func_start, &ecs->stop_func_end);
1834 ecs->stop_func_start
1835 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1836 ecs->another_trap = 0;
1837 bpstat_clear (&stop_bpstat);
1838 stop_step = 0;
1839 stop_stack_dummy = 0;
1840 stop_print_frame = 1;
1841 ecs->random_signal = 0;
1842 stopped_by_random_signal = 0;
1843
1844 if (stop_signal == TARGET_SIGNAL_TRAP
1845 && trap_expected
1846 && gdbarch_single_step_through_delay_p (current_gdbarch)
1847 && currently_stepping (ecs))
1848 {
1849 /* We're trying to step of a breakpoint. Turns out that we're
1850 also on an instruction that needs to be stepped multiple
1851 times before it's been fully executing. E.g., architectures
1852 with a delay slot. It needs to be stepped twice, once for
1853 the instruction and once for the delay slot. */
1854 int step_through_delay
1855 = gdbarch_single_step_through_delay (current_gdbarch,
1856 get_current_frame ());
1857 if (debug_infrun && step_through_delay)
1858 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1859 if (step_range_end == 0 && step_through_delay)
1860 {
1861 /* The user issued a continue when stopped at a breakpoint.
1862 Set up for another trap and get out of here. */
1863 ecs->another_trap = 1;
1864 keep_going (ecs);
1865 return;
1866 }
1867 else if (step_through_delay)
1868 {
1869 /* The user issued a step when stopped at a breakpoint.
1870 Maybe we should stop, maybe we should not - the delay
1871 slot *might* correspond to a line of source. In any
1872 case, don't decide that here, just set ecs->another_trap,
1873 making sure we single-step again before breakpoints are
1874 re-inserted. */
1875 ecs->another_trap = 1;
1876 }
1877 }
1878
1879 /* Look at the cause of the stop, and decide what to do.
1880 The alternatives are:
1881 1) break; to really stop and return to the debugger,
1882 2) drop through to start up again
1883 (set ecs->another_trap to 1 to single step once)
1884 3) set ecs->random_signal to 1, and the decision between 1 and 2
1885 will be made according to the signal handling tables. */
1886
1887 /* First, distinguish signals caused by the debugger from signals
1888 that have to do with the program's own actions. Note that
1889 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1890 on the operating system version. Here we detect when a SIGILL or
1891 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1892 something similar for SIGSEGV, since a SIGSEGV will be generated
1893 when we're trying to execute a breakpoint instruction on a
1894 non-executable stack. This happens for call dummy breakpoints
1895 for architectures like SPARC that place call dummies on the
1896 stack. */
1897
1898 if (stop_signal == TARGET_SIGNAL_TRAP
1899 || (breakpoints_inserted
1900 && (stop_signal == TARGET_SIGNAL_ILL
1901 || stop_signal == TARGET_SIGNAL_SEGV
1902 || stop_signal == TARGET_SIGNAL_EMT))
1903 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1904 || stop_soon == STOP_QUIETLY_REMOTE)
1905 {
1906 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1907 {
1908 if (debug_infrun)
1909 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1910 stop_print_frame = 0;
1911 stop_stepping (ecs);
1912 return;
1913 }
1914
1915 /* This is originated from start_remote(), start_inferior() and
1916 shared libraries hook functions. */
1917 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1918 {
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1921 stop_stepping (ecs);
1922 return;
1923 }
1924
1925 /* This originates from attach_command(). We need to overwrite
1926 the stop_signal here, because some kernels don't ignore a
1927 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1928 See more comments in inferior.h. */
1929 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1930 {
1931 stop_stepping (ecs);
1932 if (stop_signal == TARGET_SIGNAL_STOP)
1933 stop_signal = TARGET_SIGNAL_0;
1934 return;
1935 }
1936
1937 /* Don't even think about breakpoints if just proceeded over a
1938 breakpoint. */
1939 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1943 bpstat_clear (&stop_bpstat);
1944 }
1945 else
1946 {
1947 /* See if there is a breakpoint at the current PC. */
1948 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1949 stopped_by_watchpoint);
1950
1951 /* Following in case break condition called a
1952 function. */
1953 stop_print_frame = 1;
1954 }
1955
1956 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1957 at one stage in the past included checks for an inferior
1958 function call's call dummy's return breakpoint. The original
1959 comment, that went with the test, read:
1960
1961 ``End of a stack dummy. Some systems (e.g. Sony news) give
1962 another signal besides SIGTRAP, so check here as well as
1963 above.''
1964
1965 If someone ever tries to get get call dummys on a
1966 non-executable stack to work (where the target would stop
1967 with something like a SIGSEGV), then those tests might need
1968 to be re-instated. Given, however, that the tests were only
1969 enabled when momentary breakpoints were not being used, I
1970 suspect that it won't be the case.
1971
1972 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1973 be necessary for call dummies on a non-executable stack on
1974 SPARC. */
1975
1976 if (stop_signal == TARGET_SIGNAL_TRAP)
1977 ecs->random_signal
1978 = !(bpstat_explains_signal (stop_bpstat)
1979 || trap_expected
1980 || (step_range_end && step_resume_breakpoint == NULL));
1981 else
1982 {
1983 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1984 if (!ecs->random_signal)
1985 stop_signal = TARGET_SIGNAL_TRAP;
1986 }
1987 }
1988
1989 /* When we reach this point, we've pretty much decided
1990 that the reason for stopping must've been a random
1991 (unexpected) signal. */
1992
1993 else
1994 ecs->random_signal = 1;
1995
1996 process_event_stop_test:
1997 /* For the program's own signals, act according to
1998 the signal handling tables. */
1999
2000 if (ecs->random_signal)
2001 {
2002 /* Signal not for debugging purposes. */
2003 int printed = 0;
2004
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2007
2008 stopped_by_random_signal = 1;
2009
2010 if (signal_print[stop_signal])
2011 {
2012 printed = 1;
2013 target_terminal_ours_for_output ();
2014 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2015 }
2016 if (signal_stop[stop_signal])
2017 {
2018 stop_stepping (ecs);
2019 return;
2020 }
2021 /* If not going to stop, give terminal back
2022 if we took it away. */
2023 else if (printed)
2024 target_terminal_inferior ();
2025
2026 /* Clear the signal if it should not be passed. */
2027 if (signal_program[stop_signal] == 0)
2028 stop_signal = TARGET_SIGNAL_0;
2029
2030 if (prev_pc == read_pc ()
2031 && !breakpoints_inserted
2032 && breakpoint_here_p (read_pc ())
2033 && step_resume_breakpoint == NULL)
2034 {
2035 /* We were just starting a new sequence, attempting to
2036 single-step off of a breakpoint and expecting a SIGTRAP.
2037 Intead this signal arrives. This signal will take us out
2038 of the stepping range so GDB needs to remember to, when
2039 the signal handler returns, resume stepping off that
2040 breakpoint. */
2041 /* To simplify things, "continue" is forced to use the same
2042 code paths as single-step - set a breakpoint at the
2043 signal return address and then, once hit, step off that
2044 breakpoint. */
2045
2046 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2047 ecs->step_after_step_resume_breakpoint = 1;
2048 keep_going (ecs);
2049 return;
2050 }
2051
2052 if (step_range_end != 0
2053 && stop_signal != TARGET_SIGNAL_0
2054 && stop_pc >= step_range_start && stop_pc < step_range_end
2055 && frame_id_eq (get_frame_id (get_current_frame ()),
2056 step_frame_id)
2057 && step_resume_breakpoint == NULL)
2058 {
2059 /* The inferior is about to take a signal that will take it
2060 out of the single step range. Set a breakpoint at the
2061 current PC (which is presumably where the signal handler
2062 will eventually return) and then allow the inferior to
2063 run free.
2064
2065 Note that this is only needed for a signal delivered
2066 while in the single-step range. Nested signals aren't a
2067 problem as they eventually all return. */
2068 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2069 keep_going (ecs);
2070 return;
2071 }
2072
2073 /* Note: step_resume_breakpoint may be non-NULL. This occures
2074 when either there's a nested signal, or when there's a
2075 pending signal enabled just as the signal handler returns
2076 (leaving the inferior at the step-resume-breakpoint without
2077 actually executing it). Either way continue until the
2078 breakpoint is really hit. */
2079 keep_going (ecs);
2080 return;
2081 }
2082
2083 /* Handle cases caused by hitting a breakpoint. */
2084 {
2085 CORE_ADDR jmp_buf_pc;
2086 struct bpstat_what what;
2087
2088 what = bpstat_what (stop_bpstat);
2089
2090 if (what.call_dummy)
2091 {
2092 stop_stack_dummy = 1;
2093 }
2094
2095 switch (what.main_action)
2096 {
2097 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2098 /* If we hit the breakpoint at longjmp, disable it for the
2099 duration of this command. Then, install a temporary
2100 breakpoint at the target of the jmp_buf. */
2101 if (debug_infrun)
2102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2103 disable_longjmp_breakpoint ();
2104 remove_breakpoints ();
2105 breakpoints_inserted = 0;
2106 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2107 || !gdbarch_get_longjmp_target (current_gdbarch,
2108 get_current_frame (), &jmp_buf_pc))
2109 {
2110 keep_going (ecs);
2111 return;
2112 }
2113
2114 /* Need to blow away step-resume breakpoint, as it
2115 interferes with us */
2116 if (step_resume_breakpoint != NULL)
2117 {
2118 delete_step_resume_breakpoint (&step_resume_breakpoint);
2119 }
2120
2121 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2122 ecs->handling_longjmp = 1; /* FIXME */
2123 keep_going (ecs);
2124 return;
2125
2126 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2127 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2130 remove_breakpoints ();
2131 breakpoints_inserted = 0;
2132 disable_longjmp_breakpoint ();
2133 ecs->handling_longjmp = 0; /* FIXME */
2134 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2135 break;
2136 /* else fallthrough */
2137
2138 case BPSTAT_WHAT_SINGLE:
2139 if (debug_infrun)
2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2141 if (breakpoints_inserted)
2142 remove_breakpoints ();
2143 breakpoints_inserted = 0;
2144 ecs->another_trap = 1;
2145 /* Still need to check other stuff, at least the case
2146 where we are stepping and step out of the right range. */
2147 break;
2148
2149 case BPSTAT_WHAT_STOP_NOISY:
2150 if (debug_infrun)
2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2152 stop_print_frame = 1;
2153
2154 /* We are about to nuke the step_resume_breakpointt via the
2155 cleanup chain, so no need to worry about it here. */
2156
2157 stop_stepping (ecs);
2158 return;
2159
2160 case BPSTAT_WHAT_STOP_SILENT:
2161 if (debug_infrun)
2162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2163 stop_print_frame = 0;
2164
2165 /* We are about to nuke the step_resume_breakpoin via the
2166 cleanup chain, so no need to worry about it here. */
2167
2168 stop_stepping (ecs);
2169 return;
2170
2171 case BPSTAT_WHAT_STEP_RESUME:
2172 /* This proably demands a more elegant solution, but, yeah
2173 right...
2174
2175 This function's use of the simple variable
2176 step_resume_breakpoint doesn't seem to accomodate
2177 simultaneously active step-resume bp's, although the
2178 breakpoint list certainly can.
2179
2180 If we reach here and step_resume_breakpoint is already
2181 NULL, then apparently we have multiple active
2182 step-resume bp's. We'll just delete the breakpoint we
2183 stopped at, and carry on.
2184
2185 Correction: what the code currently does is delete a
2186 step-resume bp, but it makes no effort to ensure that
2187 the one deleted is the one currently stopped at. MVS */
2188
2189 if (debug_infrun)
2190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2191
2192 if (step_resume_breakpoint == NULL)
2193 {
2194 step_resume_breakpoint =
2195 bpstat_find_step_resume_breakpoint (stop_bpstat);
2196 }
2197 delete_step_resume_breakpoint (&step_resume_breakpoint);
2198 if (ecs->step_after_step_resume_breakpoint)
2199 {
2200 /* Back when the step-resume breakpoint was inserted, we
2201 were trying to single-step off a breakpoint. Go back
2202 to doing that. */
2203 ecs->step_after_step_resume_breakpoint = 0;
2204 remove_breakpoints ();
2205 breakpoints_inserted = 0;
2206 ecs->another_trap = 1;
2207 keep_going (ecs);
2208 return;
2209 }
2210 break;
2211
2212 case BPSTAT_WHAT_CHECK_SHLIBS:
2213 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2214 {
2215 if (debug_infrun)
2216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2217 /* Remove breakpoints, we eventually want to step over the
2218 shlib event breakpoint, and SOLIB_ADD might adjust
2219 breakpoint addresses via breakpoint_re_set. */
2220 if (breakpoints_inserted)
2221 remove_breakpoints ();
2222 breakpoints_inserted = 0;
2223
2224 /* Check for any newly added shared libraries if we're
2225 supposed to be adding them automatically. Switch
2226 terminal for any messages produced by
2227 breakpoint_re_set. */
2228 target_terminal_ours_for_output ();
2229 /* NOTE: cagney/2003-11-25: Make certain that the target
2230 stack's section table is kept up-to-date. Architectures,
2231 (e.g., PPC64), use the section table to perform
2232 operations such as address => section name and hence
2233 require the table to contain all sections (including
2234 those found in shared libraries). */
2235 /* NOTE: cagney/2003-11-25: Pass current_target and not
2236 exec_ops to SOLIB_ADD. This is because current GDB is
2237 only tooled to propagate section_table changes out from
2238 the "current_target" (see target_resize_to_sections), and
2239 not up from the exec stratum. This, of course, isn't
2240 right. "infrun.c" should only interact with the
2241 exec/process stratum, instead relying on the target stack
2242 to propagate relevant changes (stop, section table
2243 changed, ...) up to other layers. */
2244 #ifdef SOLIB_ADD
2245 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2246 #else
2247 solib_add (NULL, 0, &current_target, auto_solib_add);
2248 #endif
2249 target_terminal_inferior ();
2250
2251 /* Try to reenable shared library breakpoints, additional
2252 code segments in shared libraries might be mapped in now. */
2253 re_enable_breakpoints_in_shlibs ();
2254
2255 /* If requested, stop when the dynamic linker notifies
2256 gdb of events. This allows the user to get control
2257 and place breakpoints in initializer routines for
2258 dynamically loaded objects (among other things). */
2259 if (stop_on_solib_events || stop_stack_dummy)
2260 {
2261 stop_stepping (ecs);
2262 return;
2263 }
2264
2265 /* If we stopped due to an explicit catchpoint, then the
2266 (see above) call to SOLIB_ADD pulled in any symbols
2267 from a newly-loaded library, if appropriate.
2268
2269 We do want the inferior to stop, but not where it is
2270 now, which is in the dynamic linker callback. Rather,
2271 we would like it stop in the user's program, just after
2272 the call that caused this catchpoint to trigger. That
2273 gives the user a more useful vantage from which to
2274 examine their program's state. */
2275 else if (what.main_action
2276 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2277 {
2278 /* ??rehrauer: If I could figure out how to get the
2279 right return PC from here, we could just set a temp
2280 breakpoint and resume. I'm not sure we can without
2281 cracking open the dld's shared libraries and sniffing
2282 their unwind tables and text/data ranges, and that's
2283 not a terribly portable notion.
2284
2285 Until that time, we must step the inferior out of the
2286 dld callback, and also out of the dld itself (and any
2287 code or stubs in libdld.sl, such as "shl_load" and
2288 friends) until we reach non-dld code. At that point,
2289 we can stop stepping. */
2290 bpstat_get_triggered_catchpoints (stop_bpstat,
2291 &ecs->
2292 stepping_through_solib_catchpoints);
2293 ecs->stepping_through_solib_after_catch = 1;
2294
2295 /* Be sure to lift all breakpoints, so the inferior does
2296 actually step past this point... */
2297 ecs->another_trap = 1;
2298 break;
2299 }
2300 else
2301 {
2302 /* We want to step over this breakpoint, then keep going. */
2303 ecs->another_trap = 1;
2304 break;
2305 }
2306 }
2307 break;
2308
2309 case BPSTAT_WHAT_LAST:
2310 /* Not a real code, but listed here to shut up gcc -Wall. */
2311
2312 case BPSTAT_WHAT_KEEP_CHECKING:
2313 break;
2314 }
2315 }
2316
2317 /* We come here if we hit a breakpoint but should not
2318 stop for it. Possibly we also were stepping
2319 and should stop for that. So fall through and
2320 test for stepping. But, if not stepping,
2321 do not stop. */
2322
2323 /* Are we stepping to get the inferior out of the dynamic linker's
2324 hook (and possibly the dld itself) after catching a shlib
2325 event? */
2326 if (ecs->stepping_through_solib_after_catch)
2327 {
2328 #if defined(SOLIB_ADD)
2329 /* Have we reached our destination? If not, keep going. */
2330 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2331 {
2332 if (debug_infrun)
2333 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2334 ecs->another_trap = 1;
2335 keep_going (ecs);
2336 return;
2337 }
2338 #endif
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2341 /* Else, stop and report the catchpoint(s) whose triggering
2342 caused us to begin stepping. */
2343 ecs->stepping_through_solib_after_catch = 0;
2344 bpstat_clear (&stop_bpstat);
2345 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2346 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2347 stop_print_frame = 1;
2348 stop_stepping (ecs);
2349 return;
2350 }
2351
2352 if (step_resume_breakpoint)
2353 {
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: step-resume breakpoint is inserted\n");
2357
2358 /* Having a step-resume breakpoint overrides anything
2359 else having to do with stepping commands until
2360 that breakpoint is reached. */
2361 keep_going (ecs);
2362 return;
2363 }
2364
2365 if (step_range_end == 0)
2366 {
2367 if (debug_infrun)
2368 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2369 /* Likewise if we aren't even stepping. */
2370 keep_going (ecs);
2371 return;
2372 }
2373
2374 /* If stepping through a line, keep going if still within it.
2375
2376 Note that step_range_end is the address of the first instruction
2377 beyond the step range, and NOT the address of the last instruction
2378 within it! */
2379 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2380 {
2381 if (debug_infrun)
2382 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2383 paddr_nz (step_range_start),
2384 paddr_nz (step_range_end));
2385 keep_going (ecs);
2386 return;
2387 }
2388
2389 /* We stepped out of the stepping range. */
2390
2391 /* If we are stepping at the source level and entered the runtime
2392 loader dynamic symbol resolution code, we keep on single stepping
2393 until we exit the run time loader code and reach the callee's
2394 address. */
2395 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2396 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2397 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2398 #else
2399 && in_solib_dynsym_resolve_code (stop_pc)
2400 #endif
2401 )
2402 {
2403 CORE_ADDR pc_after_resolver =
2404 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2405
2406 if (debug_infrun)
2407 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2408
2409 if (pc_after_resolver)
2410 {
2411 /* Set up a step-resume breakpoint at the address
2412 indicated by SKIP_SOLIB_RESOLVER. */
2413 struct symtab_and_line sr_sal;
2414 init_sal (&sr_sal);
2415 sr_sal.pc = pc_after_resolver;
2416
2417 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2418 }
2419
2420 keep_going (ecs);
2421 return;
2422 }
2423
2424 if (step_range_end != 1
2425 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2426 || step_over_calls == STEP_OVER_ALL)
2427 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2428 {
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2431 /* The inferior, while doing a "step" or "next", has ended up in
2432 a signal trampoline (either by a signal being delivered or by
2433 the signal handler returning). Just single-step until the
2434 inferior leaves the trampoline (either by calling the handler
2435 or returning). */
2436 keep_going (ecs);
2437 return;
2438 }
2439
2440 /* Check for subroutine calls. The check for the current frame
2441 equalling the step ID is not necessary - the check of the
2442 previous frame's ID is sufficient - but it is a common case and
2443 cheaper than checking the previous frame's ID.
2444
2445 NOTE: frame_id_eq will never report two invalid frame IDs as
2446 being equal, so to get into this block, both the current and
2447 previous frame must have valid frame IDs. */
2448 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2449 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2450 {
2451 CORE_ADDR real_stop_pc;
2452
2453 if (debug_infrun)
2454 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2455
2456 if ((step_over_calls == STEP_OVER_NONE)
2457 || ((step_range_end == 1)
2458 && in_prologue (prev_pc, ecs->stop_func_start)))
2459 {
2460 /* I presume that step_over_calls is only 0 when we're
2461 supposed to be stepping at the assembly language level
2462 ("stepi"). Just stop. */
2463 /* Also, maybe we just did a "nexti" inside a prolog, so we
2464 thought it was a subroutine call but it was not. Stop as
2465 well. FENN */
2466 stop_step = 1;
2467 print_stop_reason (END_STEPPING_RANGE, 0);
2468 stop_stepping (ecs);
2469 return;
2470 }
2471
2472 if (step_over_calls == STEP_OVER_ALL)
2473 {
2474 /* We're doing a "next", set a breakpoint at callee's return
2475 address (the address at which the caller will
2476 resume). */
2477 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2478 keep_going (ecs);
2479 return;
2480 }
2481
2482 /* If we are in a function call trampoline (a stub between the
2483 calling routine and the real function), locate the real
2484 function. That's what tells us (a) whether we want to step
2485 into it at all, and (b) what prologue we want to run to the
2486 end of, if we do step into it. */
2487 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2488 if (real_stop_pc == 0)
2489 real_stop_pc = gdbarch_skip_trampoline_code
2490 (current_gdbarch, get_current_frame (), stop_pc);
2491 if (real_stop_pc != 0)
2492 ecs->stop_func_start = real_stop_pc;
2493
2494 if (
2495 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2496 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2497 #else
2498 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2499 #endif
2500 )
2501 {
2502 struct symtab_and_line sr_sal;
2503 init_sal (&sr_sal);
2504 sr_sal.pc = ecs->stop_func_start;
2505
2506 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2507 keep_going (ecs);
2508 return;
2509 }
2510
2511 /* If we have line number information for the function we are
2512 thinking of stepping into, step into it.
2513
2514 If there are several symtabs at that PC (e.g. with include
2515 files), just want to know whether *any* of them have line
2516 numbers. find_pc_line handles this. */
2517 {
2518 struct symtab_and_line tmp_sal;
2519
2520 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2521 if (tmp_sal.line != 0)
2522 {
2523 step_into_function (ecs);
2524 return;
2525 }
2526 }
2527
2528 /* If we have no line number and the step-stop-if-no-debug is
2529 set, we stop the step so that the user has a chance to switch
2530 in assembly mode. */
2531 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2532 {
2533 stop_step = 1;
2534 print_stop_reason (END_STEPPING_RANGE, 0);
2535 stop_stepping (ecs);
2536 return;
2537 }
2538
2539 /* Set a breakpoint at callee's return address (the address at
2540 which the caller will resume). */
2541 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2542 keep_going (ecs);
2543 return;
2544 }
2545
2546 /* If we're in the return path from a shared library trampoline,
2547 we want to proceed through the trampoline when stepping. */
2548 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2549 stop_pc, ecs->stop_func_name))
2550 {
2551 /* Determine where this trampoline returns. */
2552 CORE_ADDR real_stop_pc;
2553 real_stop_pc = gdbarch_skip_trampoline_code
2554 (current_gdbarch, get_current_frame (), stop_pc);
2555
2556 if (debug_infrun)
2557 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2558
2559 /* Only proceed through if we know where it's going. */
2560 if (real_stop_pc)
2561 {
2562 /* And put the step-breakpoint there and go until there. */
2563 struct symtab_and_line sr_sal;
2564
2565 init_sal (&sr_sal); /* initialize to zeroes */
2566 sr_sal.pc = real_stop_pc;
2567 sr_sal.section = find_pc_overlay (sr_sal.pc);
2568
2569 /* Do not specify what the fp should be when we stop since
2570 on some machines the prologue is where the new fp value
2571 is established. */
2572 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2573
2574 /* Restart without fiddling with the step ranges or
2575 other state. */
2576 keep_going (ecs);
2577 return;
2578 }
2579 }
2580
2581 ecs->sal = find_pc_line (stop_pc, 0);
2582
2583 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2584 the trampoline processing logic, however, there are some trampolines
2585 that have no names, so we should do trampoline handling first. */
2586 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2587 && ecs->stop_func_name == NULL
2588 && ecs->sal.line == 0)
2589 {
2590 if (debug_infrun)
2591 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2592
2593 /* The inferior just stepped into, or returned to, an
2594 undebuggable function (where there is no debugging information
2595 and no line number corresponding to the address where the
2596 inferior stopped). Since we want to skip this kind of code,
2597 we keep going until the inferior returns from this
2598 function - unless the user has asked us not to (via
2599 set step-mode) or we no longer know how to get back
2600 to the call site. */
2601 if (step_stop_if_no_debug
2602 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2603 {
2604 /* If we have no line number and the step-stop-if-no-debug
2605 is set, we stop the step so that the user has a chance to
2606 switch in assembly mode. */
2607 stop_step = 1;
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2610 return;
2611 }
2612 else
2613 {
2614 /* Set a breakpoint at callee's return address (the address
2615 at which the caller will resume). */
2616 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2617 keep_going (ecs);
2618 return;
2619 }
2620 }
2621
2622 if (step_range_end == 1)
2623 {
2624 /* It is stepi or nexti. We always want to stop stepping after
2625 one instruction. */
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632 }
2633
2634 if (ecs->sal.line == 0)
2635 {
2636 /* We have no line number information. That means to stop
2637 stepping (does this always happen right after one instruction,
2638 when we do "s" in a function with no line numbers,
2639 or can this happen as a result of a return or longjmp?). */
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2642 stop_step = 1;
2643 print_stop_reason (END_STEPPING_RANGE, 0);
2644 stop_stepping (ecs);
2645 return;
2646 }
2647
2648 if ((stop_pc == ecs->sal.pc)
2649 && (ecs->current_line != ecs->sal.line
2650 || ecs->current_symtab != ecs->sal.symtab))
2651 {
2652 /* We are at the start of a different line. So stop. Note that
2653 we don't stop if we step into the middle of a different line.
2654 That is said to make things like for (;;) statements work
2655 better. */
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2658 stop_step = 1;
2659 print_stop_reason (END_STEPPING_RANGE, 0);
2660 stop_stepping (ecs);
2661 return;
2662 }
2663
2664 /* We aren't done stepping.
2665
2666 Optimize by setting the stepping range to the line.
2667 (We might not be in the original line, but if we entered a
2668 new line in mid-statement, we continue stepping. This makes
2669 things like for(;;) statements work better.) */
2670
2671 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2672 {
2673 /* If this is the last line of the function, don't keep stepping
2674 (it would probably step us out of the function).
2675 This is particularly necessary for a one-line function,
2676 in which after skipping the prologue we better stop even though
2677 we will be in mid-line. */
2678 if (debug_infrun)
2679 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2680 stop_step = 1;
2681 print_stop_reason (END_STEPPING_RANGE, 0);
2682 stop_stepping (ecs);
2683 return;
2684 }
2685 step_range_start = ecs->sal.pc;
2686 step_range_end = ecs->sal.end;
2687 step_frame_id = get_frame_id (get_current_frame ());
2688 ecs->current_line = ecs->sal.line;
2689 ecs->current_symtab = ecs->sal.symtab;
2690
2691 /* In the case where we just stepped out of a function into the
2692 middle of a line of the caller, continue stepping, but
2693 step_frame_id must be modified to current frame */
2694 #if 0
2695 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2696 generous. It will trigger on things like a step into a frameless
2697 stackless leaf function. I think the logic should instead look
2698 at the unwound frame ID has that should give a more robust
2699 indication of what happened. */
2700 if (step - ID == current - ID)
2701 still stepping in same function;
2702 else if (step - ID == unwind (current - ID))
2703 stepped into a function;
2704 else
2705 stepped out of a function;
2706 /* Of course this assumes that the frame ID unwind code is robust
2707 and we're willing to introduce frame unwind logic into this
2708 function. Fortunately, those days are nearly upon us. */
2709 #endif
2710 {
2711 struct frame_id current_frame = get_frame_id (get_current_frame ());
2712 if (!(frame_id_inner (current_frame, step_frame_id)))
2713 step_frame_id = current_frame;
2714 }
2715
2716 if (debug_infrun)
2717 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2718 keep_going (ecs);
2719 }
2720
2721 /* Are we in the middle of stepping? */
2722
2723 static int
2724 currently_stepping (struct execution_control_state *ecs)
2725 {
2726 return ((!ecs->handling_longjmp
2727 && ((step_range_end && step_resume_breakpoint == NULL)
2728 || trap_expected))
2729 || ecs->stepping_through_solib_after_catch
2730 || bpstat_should_step ());
2731 }
2732
2733 /* Subroutine call with source code we should not step over. Do step
2734 to the first line of code in it. */
2735
2736 static void
2737 step_into_function (struct execution_control_state *ecs)
2738 {
2739 struct symtab *s;
2740 struct symtab_and_line sr_sal;
2741
2742 s = find_pc_symtab (stop_pc);
2743 if (s && s->language != language_asm)
2744 ecs->stop_func_start = gdbarch_skip_prologue
2745 (current_gdbarch, ecs->stop_func_start);
2746
2747 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2748 /* Use the step_resume_break to step until the end of the prologue,
2749 even if that involves jumps (as it seems to on the vax under
2750 4.2). */
2751 /* If the prologue ends in the middle of a source line, continue to
2752 the end of that source line (if it is still within the function).
2753 Otherwise, just go to end of prologue. */
2754 if (ecs->sal.end
2755 && ecs->sal.pc != ecs->stop_func_start
2756 && ecs->sal.end < ecs->stop_func_end)
2757 ecs->stop_func_start = ecs->sal.end;
2758
2759 /* Architectures which require breakpoint adjustment might not be able
2760 to place a breakpoint at the computed address. If so, the test
2761 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2762 ecs->stop_func_start to an address at which a breakpoint may be
2763 legitimately placed.
2764
2765 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2766 made, GDB will enter an infinite loop when stepping through
2767 optimized code consisting of VLIW instructions which contain
2768 subinstructions corresponding to different source lines. On
2769 FR-V, it's not permitted to place a breakpoint on any but the
2770 first subinstruction of a VLIW instruction. When a breakpoint is
2771 set, GDB will adjust the breakpoint address to the beginning of
2772 the VLIW instruction. Thus, we need to make the corresponding
2773 adjustment here when computing the stop address. */
2774
2775 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2776 {
2777 ecs->stop_func_start
2778 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2779 ecs->stop_func_start);
2780 }
2781
2782 if (ecs->stop_func_start == stop_pc)
2783 {
2784 /* We are already there: stop now. */
2785 stop_step = 1;
2786 print_stop_reason (END_STEPPING_RANGE, 0);
2787 stop_stepping (ecs);
2788 return;
2789 }
2790 else
2791 {
2792 /* Put the step-breakpoint there and go until there. */
2793 init_sal (&sr_sal); /* initialize to zeroes */
2794 sr_sal.pc = ecs->stop_func_start;
2795 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2796
2797 /* Do not specify what the fp should be when we stop since on
2798 some machines the prologue is where the new fp value is
2799 established. */
2800 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2801
2802 /* And make sure stepping stops right away then. */
2803 step_range_end = step_range_start;
2804 }
2805 keep_going (ecs);
2806 }
2807
2808 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2809 This is used to both functions and to skip over code. */
2810
2811 static void
2812 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2813 struct frame_id sr_id)
2814 {
2815 /* There should never be more than one step-resume breakpoint per
2816 thread, so we should never be setting a new
2817 step_resume_breakpoint when one is already active. */
2818 gdb_assert (step_resume_breakpoint == NULL);
2819
2820 if (debug_infrun)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "infrun: inserting step-resume breakpoint at 0x%s\n",
2823 paddr_nz (sr_sal.pc));
2824
2825 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2826 bp_step_resume);
2827 if (breakpoints_inserted)
2828 insert_breakpoints ();
2829 }
2830
2831 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2832 to skip a potential signal handler.
2833
2834 This is called with the interrupted function's frame. The signal
2835 handler, when it returns, will resume the interrupted function at
2836 RETURN_FRAME.pc. */
2837
2838 static void
2839 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2840 {
2841 struct symtab_and_line sr_sal;
2842
2843 init_sal (&sr_sal); /* initialize to zeros */
2844
2845 sr_sal.pc = gdbarch_addr_bits_remove
2846 (current_gdbarch, get_frame_pc (return_frame));
2847 sr_sal.section = find_pc_overlay (sr_sal.pc);
2848
2849 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2850 }
2851
2852 /* Similar to insert_step_resume_breakpoint_at_frame, except
2853 but a breakpoint at the previous frame's PC. This is used to
2854 skip a function after stepping into it (for "next" or if the called
2855 function has no debugging information).
2856
2857 The current function has almost always been reached by single
2858 stepping a call or return instruction. NEXT_FRAME belongs to the
2859 current function, and the breakpoint will be set at the caller's
2860 resume address.
2861
2862 This is a separate function rather than reusing
2863 insert_step_resume_breakpoint_at_frame in order to avoid
2864 get_prev_frame, which may stop prematurely (see the implementation
2865 of frame_unwind_id for an example). */
2866
2867 static void
2868 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2869 {
2870 struct symtab_and_line sr_sal;
2871
2872 /* We shouldn't have gotten here if we don't know where the call site
2873 is. */
2874 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2875
2876 init_sal (&sr_sal); /* initialize to zeros */
2877
2878 sr_sal.pc = gdbarch_addr_bits_remove
2879 (current_gdbarch, frame_pc_unwind (next_frame));
2880 sr_sal.section = find_pc_overlay (sr_sal.pc);
2881
2882 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2883 }
2884
2885 static void
2886 stop_stepping (struct execution_control_state *ecs)
2887 {
2888 if (debug_infrun)
2889 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2890
2891 /* Let callers know we don't want to wait for the inferior anymore. */
2892 ecs->wait_some_more = 0;
2893 }
2894
2895 /* This function handles various cases where we need to continue
2896 waiting for the inferior. */
2897 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2898
2899 static void
2900 keep_going (struct execution_control_state *ecs)
2901 {
2902 /* Save the pc before execution, to compare with pc after stop. */
2903 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2904
2905 /* If we did not do break;, it means we should keep running the
2906 inferior and not return to debugger. */
2907
2908 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2909 {
2910 /* We took a signal (which we are supposed to pass through to
2911 the inferior, else we'd have done a break above) and we
2912 haven't yet gotten our trap. Simply continue. */
2913 resume (currently_stepping (ecs), stop_signal);
2914 }
2915 else
2916 {
2917 /* Either the trap was not expected, but we are continuing
2918 anyway (the user asked that this signal be passed to the
2919 child)
2920 -- or --
2921 The signal was SIGTRAP, e.g. it was our signal, but we
2922 decided we should resume from it.
2923
2924 We're going to run this baby now! */
2925
2926 if (!breakpoints_inserted && !ecs->another_trap)
2927 {
2928 /* Stop stepping when inserting breakpoints
2929 has failed. */
2930 if (insert_breakpoints () != 0)
2931 {
2932 stop_stepping (ecs);
2933 return;
2934 }
2935 breakpoints_inserted = 1;
2936 }
2937
2938 trap_expected = ecs->another_trap;
2939
2940 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2941 specifies that such a signal should be delivered to the
2942 target program).
2943
2944 Typically, this would occure when a user is debugging a
2945 target monitor on a simulator: the target monitor sets a
2946 breakpoint; the simulator encounters this break-point and
2947 halts the simulation handing control to GDB; GDB, noteing
2948 that the break-point isn't valid, returns control back to the
2949 simulator; the simulator then delivers the hardware
2950 equivalent of a SIGNAL_TRAP to the program being debugged. */
2951
2952 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2953 stop_signal = TARGET_SIGNAL_0;
2954
2955
2956 resume (currently_stepping (ecs), stop_signal);
2957 }
2958
2959 prepare_to_wait (ecs);
2960 }
2961
2962 /* This function normally comes after a resume, before
2963 handle_inferior_event exits. It takes care of any last bits of
2964 housekeeping, and sets the all-important wait_some_more flag. */
2965
2966 static void
2967 prepare_to_wait (struct execution_control_state *ecs)
2968 {
2969 if (debug_infrun)
2970 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2971 if (ecs->infwait_state == infwait_normal_state)
2972 {
2973 overlay_cache_invalid = 1;
2974
2975 /* We have to invalidate the registers BEFORE calling
2976 target_wait because they can be loaded from the target while
2977 in target_wait. This makes remote debugging a bit more
2978 efficient for those targets that provide critical registers
2979 as part of their normal status mechanism. */
2980
2981 registers_changed ();
2982 ecs->waiton_ptid = pid_to_ptid (-1);
2983 ecs->wp = &(ecs->ws);
2984 }
2985 /* This is the old end of the while loop. Let everybody know we
2986 want to wait for the inferior some more and get called again
2987 soon. */
2988 ecs->wait_some_more = 1;
2989 }
2990
2991 /* Print why the inferior has stopped. We always print something when
2992 the inferior exits, or receives a signal. The rest of the cases are
2993 dealt with later on in normal_stop() and print_it_typical(). Ideally
2994 there should be a call to this function from handle_inferior_event()
2995 each time stop_stepping() is called.*/
2996 static void
2997 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2998 {
2999 switch (stop_reason)
3000 {
3001 case END_STEPPING_RANGE:
3002 /* We are done with a step/next/si/ni command. */
3003 /* For now print nothing. */
3004 /* Print a message only if not in the middle of doing a "step n"
3005 operation for n > 1 */
3006 if (!step_multi || !stop_step)
3007 if (ui_out_is_mi_like_p (uiout))
3008 ui_out_field_string
3009 (uiout, "reason",
3010 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3011 break;
3012 case SIGNAL_EXITED:
3013 /* The inferior was terminated by a signal. */
3014 annotate_signalled ();
3015 if (ui_out_is_mi_like_p (uiout))
3016 ui_out_field_string
3017 (uiout, "reason",
3018 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3019 ui_out_text (uiout, "\nProgram terminated with signal ");
3020 annotate_signal_name ();
3021 ui_out_field_string (uiout, "signal-name",
3022 target_signal_to_name (stop_info));
3023 annotate_signal_name_end ();
3024 ui_out_text (uiout, ", ");
3025 annotate_signal_string ();
3026 ui_out_field_string (uiout, "signal-meaning",
3027 target_signal_to_string (stop_info));
3028 annotate_signal_string_end ();
3029 ui_out_text (uiout, ".\n");
3030 ui_out_text (uiout, "The program no longer exists.\n");
3031 break;
3032 case EXITED:
3033 /* The inferior program is finished. */
3034 annotate_exited (stop_info);
3035 if (stop_info)
3036 {
3037 if (ui_out_is_mi_like_p (uiout))
3038 ui_out_field_string (uiout, "reason",
3039 async_reason_lookup (EXEC_ASYNC_EXITED));
3040 ui_out_text (uiout, "\nProgram exited with code ");
3041 ui_out_field_fmt (uiout, "exit-code", "0%o",
3042 (unsigned int) stop_info);
3043 ui_out_text (uiout, ".\n");
3044 }
3045 else
3046 {
3047 if (ui_out_is_mi_like_p (uiout))
3048 ui_out_field_string
3049 (uiout, "reason",
3050 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3051 ui_out_text (uiout, "\nProgram exited normally.\n");
3052 }
3053 /* Support the --return-child-result option. */
3054 return_child_result_value = stop_info;
3055 break;
3056 case SIGNAL_RECEIVED:
3057 /* Signal received. The signal table tells us to print about
3058 it. */
3059 annotate_signal ();
3060 ui_out_text (uiout, "\nProgram received signal ");
3061 annotate_signal_name ();
3062 if (ui_out_is_mi_like_p (uiout))
3063 ui_out_field_string
3064 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3065 ui_out_field_string (uiout, "signal-name",
3066 target_signal_to_name (stop_info));
3067 annotate_signal_name_end ();
3068 ui_out_text (uiout, ", ");
3069 annotate_signal_string ();
3070 ui_out_field_string (uiout, "signal-meaning",
3071 target_signal_to_string (stop_info));
3072 annotate_signal_string_end ();
3073 ui_out_text (uiout, ".\n");
3074 break;
3075 default:
3076 internal_error (__FILE__, __LINE__,
3077 _("print_stop_reason: unrecognized enum value"));
3078 break;
3079 }
3080 }
3081 \f
3082
3083 /* Here to return control to GDB when the inferior stops for real.
3084 Print appropriate messages, remove breakpoints, give terminal our modes.
3085
3086 STOP_PRINT_FRAME nonzero means print the executing frame
3087 (pc, function, args, file, line number and line text).
3088 BREAKPOINTS_FAILED nonzero means stop was due to error
3089 attempting to insert breakpoints. */
3090
3091 void
3092 normal_stop (void)
3093 {
3094 struct target_waitstatus last;
3095 ptid_t last_ptid;
3096
3097 get_last_target_status (&last_ptid, &last);
3098
3099 /* As with the notification of thread events, we want to delay
3100 notifying the user that we've switched thread context until
3101 the inferior actually stops.
3102
3103 There's no point in saying anything if the inferior has exited.
3104 Note that SIGNALLED here means "exited with a signal", not
3105 "received a signal". */
3106 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3107 && target_has_execution
3108 && last.kind != TARGET_WAITKIND_SIGNALLED
3109 && last.kind != TARGET_WAITKIND_EXITED)
3110 {
3111 target_terminal_ours_for_output ();
3112 printf_filtered (_("[Switching to %s]\n"),
3113 target_pid_or_tid_to_str (inferior_ptid));
3114 previous_inferior_ptid = inferior_ptid;
3115 }
3116
3117 /* NOTE drow/2004-01-17: Is this still necessary? */
3118 /* Make sure that the current_frame's pc is correct. This
3119 is a correction for setting up the frame info before doing
3120 gdbarch_decr_pc_after_break */
3121 if (target_has_execution)
3122 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3123 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3124 frame code to check for this and sort out any resultant mess.
3125 gdbarch_decr_pc_after_break needs to just go away. */
3126 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3127
3128 if (target_has_execution && breakpoints_inserted)
3129 {
3130 if (remove_breakpoints ())
3131 {
3132 target_terminal_ours_for_output ();
3133 printf_filtered (_("\
3134 Cannot remove breakpoints because program is no longer writable.\n\
3135 It might be running in another process.\n\
3136 Further execution is probably impossible.\n"));
3137 }
3138 }
3139 breakpoints_inserted = 0;
3140
3141 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3142 Delete any breakpoint that is to be deleted at the next stop. */
3143
3144 breakpoint_auto_delete (stop_bpstat);
3145
3146 /* If an auto-display called a function and that got a signal,
3147 delete that auto-display to avoid an infinite recursion. */
3148
3149 if (stopped_by_random_signal)
3150 disable_current_display ();
3151
3152 /* Don't print a message if in the middle of doing a "step n"
3153 operation for n > 1 */
3154 if (step_multi && stop_step)
3155 goto done;
3156
3157 target_terminal_ours ();
3158
3159 /* Set the current source location. This will also happen if we
3160 display the frame below, but the current SAL will be incorrect
3161 during a user hook-stop function. */
3162 if (target_has_stack && !stop_stack_dummy)
3163 set_current_sal_from_frame (get_current_frame (), 1);
3164
3165 /* Look up the hook_stop and run it (CLI internally handles problem
3166 of stop_command's pre-hook not existing). */
3167 if (stop_command)
3168 catch_errors (hook_stop_stub, stop_command,
3169 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3170
3171 if (!target_has_stack)
3172 {
3173
3174 goto done;
3175 }
3176
3177 /* Select innermost stack frame - i.e., current frame is frame 0,
3178 and current location is based on that.
3179 Don't do this on return from a stack dummy routine,
3180 or if the program has exited. */
3181
3182 if (!stop_stack_dummy)
3183 {
3184 select_frame (get_current_frame ());
3185
3186 /* Print current location without a level number, if
3187 we have changed functions or hit a breakpoint.
3188 Print source line if we have one.
3189 bpstat_print() contains the logic deciding in detail
3190 what to print, based on the event(s) that just occurred. */
3191
3192 if (stop_print_frame)
3193 {
3194 int bpstat_ret;
3195 int source_flag;
3196 int do_frame_printing = 1;
3197
3198 bpstat_ret = bpstat_print (stop_bpstat);
3199 switch (bpstat_ret)
3200 {
3201 case PRINT_UNKNOWN:
3202 /* If we had hit a shared library event breakpoint,
3203 bpstat_print would print out this message. If we hit
3204 an OS-level shared library event, do the same
3205 thing. */
3206 if (last.kind == TARGET_WAITKIND_LOADED)
3207 {
3208 printf_filtered (_("Stopped due to shared library event\n"));
3209 source_flag = SRC_LINE; /* something bogus */
3210 do_frame_printing = 0;
3211 break;
3212 }
3213
3214 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3215 (or should) carry around the function and does (or
3216 should) use that when doing a frame comparison. */
3217 if (stop_step
3218 && frame_id_eq (step_frame_id,
3219 get_frame_id (get_current_frame ()))
3220 && step_start_function == find_pc_function (stop_pc))
3221 source_flag = SRC_LINE; /* finished step, just print source line */
3222 else
3223 source_flag = SRC_AND_LOC; /* print location and source line */
3224 break;
3225 case PRINT_SRC_AND_LOC:
3226 source_flag = SRC_AND_LOC; /* print location and source line */
3227 break;
3228 case PRINT_SRC_ONLY:
3229 source_flag = SRC_LINE;
3230 break;
3231 case PRINT_NOTHING:
3232 source_flag = SRC_LINE; /* something bogus */
3233 do_frame_printing = 0;
3234 break;
3235 default:
3236 internal_error (__FILE__, __LINE__, _("Unknown value."));
3237 }
3238
3239 if (ui_out_is_mi_like_p (uiout))
3240 ui_out_field_int (uiout, "thread-id",
3241 pid_to_thread_id (inferior_ptid));
3242 /* The behavior of this routine with respect to the source
3243 flag is:
3244 SRC_LINE: Print only source line
3245 LOCATION: Print only location
3246 SRC_AND_LOC: Print location and source line */
3247 if (do_frame_printing)
3248 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3249
3250 /* Display the auto-display expressions. */
3251 do_displays ();
3252 }
3253 }
3254
3255 /* Save the function value return registers, if we care.
3256 We might be about to restore their previous contents. */
3257 if (proceed_to_finish)
3258 {
3259 /* This should not be necessary. */
3260 if (stop_registers)
3261 regcache_xfree (stop_registers);
3262
3263 /* NB: The copy goes through to the target picking up the value of
3264 all the registers. */
3265 stop_registers = regcache_dup (get_current_regcache ());
3266 }
3267
3268 if (stop_stack_dummy)
3269 {
3270 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3271 ends with a setting of the current frame, so we can use that
3272 next. */
3273 frame_pop (get_current_frame ());
3274 /* Set stop_pc to what it was before we called the function.
3275 Can't rely on restore_inferior_status because that only gets
3276 called if we don't stop in the called function. */
3277 stop_pc = read_pc ();
3278 select_frame (get_current_frame ());
3279 }
3280
3281 done:
3282 annotate_stopped ();
3283 observer_notify_normal_stop (stop_bpstat);
3284 }
3285
3286 static int
3287 hook_stop_stub (void *cmd)
3288 {
3289 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3290 return (0);
3291 }
3292 \f
3293 int
3294 signal_stop_state (int signo)
3295 {
3296 return signal_stop[signo];
3297 }
3298
3299 int
3300 signal_print_state (int signo)
3301 {
3302 return signal_print[signo];
3303 }
3304
3305 int
3306 signal_pass_state (int signo)
3307 {
3308 return signal_program[signo];
3309 }
3310
3311 int
3312 signal_stop_update (int signo, int state)
3313 {
3314 int ret = signal_stop[signo];
3315 signal_stop[signo] = state;
3316 return ret;
3317 }
3318
3319 int
3320 signal_print_update (int signo, int state)
3321 {
3322 int ret = signal_print[signo];
3323 signal_print[signo] = state;
3324 return ret;
3325 }
3326
3327 int
3328 signal_pass_update (int signo, int state)
3329 {
3330 int ret = signal_program[signo];
3331 signal_program[signo] = state;
3332 return ret;
3333 }
3334
3335 static void
3336 sig_print_header (void)
3337 {
3338 printf_filtered (_("\
3339 Signal Stop\tPrint\tPass to program\tDescription\n"));
3340 }
3341
3342 static void
3343 sig_print_info (enum target_signal oursig)
3344 {
3345 char *name = target_signal_to_name (oursig);
3346 int name_padding = 13 - strlen (name);
3347
3348 if (name_padding <= 0)
3349 name_padding = 0;
3350
3351 printf_filtered ("%s", name);
3352 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3353 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3354 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3355 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3356 printf_filtered ("%s\n", target_signal_to_string (oursig));
3357 }
3358
3359 /* Specify how various signals in the inferior should be handled. */
3360
3361 static void
3362 handle_command (char *args, int from_tty)
3363 {
3364 char **argv;
3365 int digits, wordlen;
3366 int sigfirst, signum, siglast;
3367 enum target_signal oursig;
3368 int allsigs;
3369 int nsigs;
3370 unsigned char *sigs;
3371 struct cleanup *old_chain;
3372
3373 if (args == NULL)
3374 {
3375 error_no_arg (_("signal to handle"));
3376 }
3377
3378 /* Allocate and zero an array of flags for which signals to handle. */
3379
3380 nsigs = (int) TARGET_SIGNAL_LAST;
3381 sigs = (unsigned char *) alloca (nsigs);
3382 memset (sigs, 0, nsigs);
3383
3384 /* Break the command line up into args. */
3385
3386 argv = buildargv (args);
3387 if (argv == NULL)
3388 {
3389 nomem (0);
3390 }
3391 old_chain = make_cleanup_freeargv (argv);
3392
3393 /* Walk through the args, looking for signal oursigs, signal names, and
3394 actions. Signal numbers and signal names may be interspersed with
3395 actions, with the actions being performed for all signals cumulatively
3396 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3397
3398 while (*argv != NULL)
3399 {
3400 wordlen = strlen (*argv);
3401 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3402 {;
3403 }
3404 allsigs = 0;
3405 sigfirst = siglast = -1;
3406
3407 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3408 {
3409 /* Apply action to all signals except those used by the
3410 debugger. Silently skip those. */
3411 allsigs = 1;
3412 sigfirst = 0;
3413 siglast = nsigs - 1;
3414 }
3415 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3416 {
3417 SET_SIGS (nsigs, sigs, signal_stop);
3418 SET_SIGS (nsigs, sigs, signal_print);
3419 }
3420 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3421 {
3422 UNSET_SIGS (nsigs, sigs, signal_program);
3423 }
3424 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3425 {
3426 SET_SIGS (nsigs, sigs, signal_print);
3427 }
3428 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3429 {
3430 SET_SIGS (nsigs, sigs, signal_program);
3431 }
3432 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3433 {
3434 UNSET_SIGS (nsigs, sigs, signal_stop);
3435 }
3436 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3437 {
3438 SET_SIGS (nsigs, sigs, signal_program);
3439 }
3440 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3441 {
3442 UNSET_SIGS (nsigs, sigs, signal_print);
3443 UNSET_SIGS (nsigs, sigs, signal_stop);
3444 }
3445 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3446 {
3447 UNSET_SIGS (nsigs, sigs, signal_program);
3448 }
3449 else if (digits > 0)
3450 {
3451 /* It is numeric. The numeric signal refers to our own
3452 internal signal numbering from target.h, not to host/target
3453 signal number. This is a feature; users really should be
3454 using symbolic names anyway, and the common ones like
3455 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3456
3457 sigfirst = siglast = (int)
3458 target_signal_from_command (atoi (*argv));
3459 if ((*argv)[digits] == '-')
3460 {
3461 siglast = (int)
3462 target_signal_from_command (atoi ((*argv) + digits + 1));
3463 }
3464 if (sigfirst > siglast)
3465 {
3466 /* Bet he didn't figure we'd think of this case... */
3467 signum = sigfirst;
3468 sigfirst = siglast;
3469 siglast = signum;
3470 }
3471 }
3472 else
3473 {
3474 oursig = target_signal_from_name (*argv);
3475 if (oursig != TARGET_SIGNAL_UNKNOWN)
3476 {
3477 sigfirst = siglast = (int) oursig;
3478 }
3479 else
3480 {
3481 /* Not a number and not a recognized flag word => complain. */
3482 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3483 }
3484 }
3485
3486 /* If any signal numbers or symbol names were found, set flags for
3487 which signals to apply actions to. */
3488
3489 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3490 {
3491 switch ((enum target_signal) signum)
3492 {
3493 case TARGET_SIGNAL_TRAP:
3494 case TARGET_SIGNAL_INT:
3495 if (!allsigs && !sigs[signum])
3496 {
3497 if (query ("%s is used by the debugger.\n\
3498 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3499 {
3500 sigs[signum] = 1;
3501 }
3502 else
3503 {
3504 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3505 gdb_flush (gdb_stdout);
3506 }
3507 }
3508 break;
3509 case TARGET_SIGNAL_0:
3510 case TARGET_SIGNAL_DEFAULT:
3511 case TARGET_SIGNAL_UNKNOWN:
3512 /* Make sure that "all" doesn't print these. */
3513 break;
3514 default:
3515 sigs[signum] = 1;
3516 break;
3517 }
3518 }
3519
3520 argv++;
3521 }
3522
3523 target_notice_signals (inferior_ptid);
3524
3525 if (from_tty)
3526 {
3527 /* Show the results. */
3528 sig_print_header ();
3529 for (signum = 0; signum < nsigs; signum++)
3530 {
3531 if (sigs[signum])
3532 {
3533 sig_print_info (signum);
3534 }
3535 }
3536 }
3537
3538 do_cleanups (old_chain);
3539 }
3540
3541 static void
3542 xdb_handle_command (char *args, int from_tty)
3543 {
3544 char **argv;
3545 struct cleanup *old_chain;
3546
3547 /* Break the command line up into args. */
3548
3549 argv = buildargv (args);
3550 if (argv == NULL)
3551 {
3552 nomem (0);
3553 }
3554 old_chain = make_cleanup_freeargv (argv);
3555 if (argv[1] != (char *) NULL)
3556 {
3557 char *argBuf;
3558 int bufLen;
3559
3560 bufLen = strlen (argv[0]) + 20;
3561 argBuf = (char *) xmalloc (bufLen);
3562 if (argBuf)
3563 {
3564 int validFlag = 1;
3565 enum target_signal oursig;
3566
3567 oursig = target_signal_from_name (argv[0]);
3568 memset (argBuf, 0, bufLen);
3569 if (strcmp (argv[1], "Q") == 0)
3570 sprintf (argBuf, "%s %s", argv[0], "noprint");
3571 else
3572 {
3573 if (strcmp (argv[1], "s") == 0)
3574 {
3575 if (!signal_stop[oursig])
3576 sprintf (argBuf, "%s %s", argv[0], "stop");
3577 else
3578 sprintf (argBuf, "%s %s", argv[0], "nostop");
3579 }
3580 else if (strcmp (argv[1], "i") == 0)
3581 {
3582 if (!signal_program[oursig])
3583 sprintf (argBuf, "%s %s", argv[0], "pass");
3584 else
3585 sprintf (argBuf, "%s %s", argv[0], "nopass");
3586 }
3587 else if (strcmp (argv[1], "r") == 0)
3588 {
3589 if (!signal_print[oursig])
3590 sprintf (argBuf, "%s %s", argv[0], "print");
3591 else
3592 sprintf (argBuf, "%s %s", argv[0], "noprint");
3593 }
3594 else
3595 validFlag = 0;
3596 }
3597 if (validFlag)
3598 handle_command (argBuf, from_tty);
3599 else
3600 printf_filtered (_("Invalid signal handling flag.\n"));
3601 if (argBuf)
3602 xfree (argBuf);
3603 }
3604 }
3605 do_cleanups (old_chain);
3606 }
3607
3608 /* Print current contents of the tables set by the handle command.
3609 It is possible we should just be printing signals actually used
3610 by the current target (but for things to work right when switching
3611 targets, all signals should be in the signal tables). */
3612
3613 static void
3614 signals_info (char *signum_exp, int from_tty)
3615 {
3616 enum target_signal oursig;
3617 sig_print_header ();
3618
3619 if (signum_exp)
3620 {
3621 /* First see if this is a symbol name. */
3622 oursig = target_signal_from_name (signum_exp);
3623 if (oursig == TARGET_SIGNAL_UNKNOWN)
3624 {
3625 /* No, try numeric. */
3626 oursig =
3627 target_signal_from_command (parse_and_eval_long (signum_exp));
3628 }
3629 sig_print_info (oursig);
3630 return;
3631 }
3632
3633 printf_filtered ("\n");
3634 /* These ugly casts brought to you by the native VAX compiler. */
3635 for (oursig = TARGET_SIGNAL_FIRST;
3636 (int) oursig < (int) TARGET_SIGNAL_LAST;
3637 oursig = (enum target_signal) ((int) oursig + 1))
3638 {
3639 QUIT;
3640
3641 if (oursig != TARGET_SIGNAL_UNKNOWN
3642 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3643 sig_print_info (oursig);
3644 }
3645
3646 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3647 }
3648 \f
3649 struct inferior_status
3650 {
3651 enum target_signal stop_signal;
3652 CORE_ADDR stop_pc;
3653 bpstat stop_bpstat;
3654 int stop_step;
3655 int stop_stack_dummy;
3656 int stopped_by_random_signal;
3657 int trap_expected;
3658 CORE_ADDR step_range_start;
3659 CORE_ADDR step_range_end;
3660 struct frame_id step_frame_id;
3661 enum step_over_calls_kind step_over_calls;
3662 CORE_ADDR step_resume_break_address;
3663 int stop_after_trap;
3664 int stop_soon;
3665
3666 /* These are here because if call_function_by_hand has written some
3667 registers and then decides to call error(), we better not have changed
3668 any registers. */
3669 struct regcache *registers;
3670
3671 /* A frame unique identifier. */
3672 struct frame_id selected_frame_id;
3673
3674 int breakpoint_proceeded;
3675 int restore_stack_info;
3676 int proceed_to_finish;
3677 };
3678
3679 void
3680 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3681 LONGEST val)
3682 {
3683 int size = register_size (current_gdbarch, regno);
3684 void *buf = alloca (size);
3685 store_signed_integer (buf, size, val);
3686 regcache_raw_write (inf_status->registers, regno, buf);
3687 }
3688
3689 /* Save all of the information associated with the inferior<==>gdb
3690 connection. INF_STATUS is a pointer to a "struct inferior_status"
3691 (defined in inferior.h). */
3692
3693 struct inferior_status *
3694 save_inferior_status (int restore_stack_info)
3695 {
3696 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3697
3698 inf_status->stop_signal = stop_signal;
3699 inf_status->stop_pc = stop_pc;
3700 inf_status->stop_step = stop_step;
3701 inf_status->stop_stack_dummy = stop_stack_dummy;
3702 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3703 inf_status->trap_expected = trap_expected;
3704 inf_status->step_range_start = step_range_start;
3705 inf_status->step_range_end = step_range_end;
3706 inf_status->step_frame_id = step_frame_id;
3707 inf_status->step_over_calls = step_over_calls;
3708 inf_status->stop_after_trap = stop_after_trap;
3709 inf_status->stop_soon = stop_soon;
3710 /* Save original bpstat chain here; replace it with copy of chain.
3711 If caller's caller is walking the chain, they'll be happier if we
3712 hand them back the original chain when restore_inferior_status is
3713 called. */
3714 inf_status->stop_bpstat = stop_bpstat;
3715 stop_bpstat = bpstat_copy (stop_bpstat);
3716 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3717 inf_status->restore_stack_info = restore_stack_info;
3718 inf_status->proceed_to_finish = proceed_to_finish;
3719
3720 inf_status->registers = regcache_dup (get_current_regcache ());
3721
3722 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3723 return inf_status;
3724 }
3725
3726 static int
3727 restore_selected_frame (void *args)
3728 {
3729 struct frame_id *fid = (struct frame_id *) args;
3730 struct frame_info *frame;
3731
3732 frame = frame_find_by_id (*fid);
3733
3734 /* If inf_status->selected_frame_id is NULL, there was no previously
3735 selected frame. */
3736 if (frame == NULL)
3737 {
3738 warning (_("Unable to restore previously selected frame."));
3739 return 0;
3740 }
3741
3742 select_frame (frame);
3743
3744 return (1);
3745 }
3746
3747 void
3748 restore_inferior_status (struct inferior_status *inf_status)
3749 {
3750 stop_signal = inf_status->stop_signal;
3751 stop_pc = inf_status->stop_pc;
3752 stop_step = inf_status->stop_step;
3753 stop_stack_dummy = inf_status->stop_stack_dummy;
3754 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3755 trap_expected = inf_status->trap_expected;
3756 step_range_start = inf_status->step_range_start;
3757 step_range_end = inf_status->step_range_end;
3758 step_frame_id = inf_status->step_frame_id;
3759 step_over_calls = inf_status->step_over_calls;
3760 stop_after_trap = inf_status->stop_after_trap;
3761 stop_soon = inf_status->stop_soon;
3762 bpstat_clear (&stop_bpstat);
3763 stop_bpstat = inf_status->stop_bpstat;
3764 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3765 proceed_to_finish = inf_status->proceed_to_finish;
3766
3767 /* The inferior can be gone if the user types "print exit(0)"
3768 (and perhaps other times). */
3769 if (target_has_execution)
3770 /* NB: The register write goes through to the target. */
3771 regcache_cpy (get_current_regcache (), inf_status->registers);
3772 regcache_xfree (inf_status->registers);
3773
3774 /* FIXME: If we are being called after stopping in a function which
3775 is called from gdb, we should not be trying to restore the
3776 selected frame; it just prints a spurious error message (The
3777 message is useful, however, in detecting bugs in gdb (like if gdb
3778 clobbers the stack)). In fact, should we be restoring the
3779 inferior status at all in that case? . */
3780
3781 if (target_has_stack && inf_status->restore_stack_info)
3782 {
3783 /* The point of catch_errors is that if the stack is clobbered,
3784 walking the stack might encounter a garbage pointer and
3785 error() trying to dereference it. */
3786 if (catch_errors
3787 (restore_selected_frame, &inf_status->selected_frame_id,
3788 "Unable to restore previously selected frame:\n",
3789 RETURN_MASK_ERROR) == 0)
3790 /* Error in restoring the selected frame. Select the innermost
3791 frame. */
3792 select_frame (get_current_frame ());
3793
3794 }
3795
3796 xfree (inf_status);
3797 }
3798
3799 static void
3800 do_restore_inferior_status_cleanup (void *sts)
3801 {
3802 restore_inferior_status (sts);
3803 }
3804
3805 struct cleanup *
3806 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3807 {
3808 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3809 }
3810
3811 void
3812 discard_inferior_status (struct inferior_status *inf_status)
3813 {
3814 /* See save_inferior_status for info on stop_bpstat. */
3815 bpstat_clear (&inf_status->stop_bpstat);
3816 regcache_xfree (inf_status->registers);
3817 xfree (inf_status);
3818 }
3819
3820 int
3821 inferior_has_forked (int pid, int *child_pid)
3822 {
3823 struct target_waitstatus last;
3824 ptid_t last_ptid;
3825
3826 get_last_target_status (&last_ptid, &last);
3827
3828 if (last.kind != TARGET_WAITKIND_FORKED)
3829 return 0;
3830
3831 if (ptid_get_pid (last_ptid) != pid)
3832 return 0;
3833
3834 *child_pid = last.value.related_pid;
3835 return 1;
3836 }
3837
3838 int
3839 inferior_has_vforked (int pid, int *child_pid)
3840 {
3841 struct target_waitstatus last;
3842 ptid_t last_ptid;
3843
3844 get_last_target_status (&last_ptid, &last);
3845
3846 if (last.kind != TARGET_WAITKIND_VFORKED)
3847 return 0;
3848
3849 if (ptid_get_pid (last_ptid) != pid)
3850 return 0;
3851
3852 *child_pid = last.value.related_pid;
3853 return 1;
3854 }
3855
3856 int
3857 inferior_has_execd (int pid, char **execd_pathname)
3858 {
3859 struct target_waitstatus last;
3860 ptid_t last_ptid;
3861
3862 get_last_target_status (&last_ptid, &last);
3863
3864 if (last.kind != TARGET_WAITKIND_EXECD)
3865 return 0;
3866
3867 if (ptid_get_pid (last_ptid) != pid)
3868 return 0;
3869
3870 *execd_pathname = xstrdup (last.value.execd_pathname);
3871 return 1;
3872 }
3873
3874 /* Oft used ptids */
3875 ptid_t null_ptid;
3876 ptid_t minus_one_ptid;
3877
3878 /* Create a ptid given the necessary PID, LWP, and TID components. */
3879
3880 ptid_t
3881 ptid_build (int pid, long lwp, long tid)
3882 {
3883 ptid_t ptid;
3884
3885 ptid.pid = pid;
3886 ptid.lwp = lwp;
3887 ptid.tid = tid;
3888 return ptid;
3889 }
3890
3891 /* Create a ptid from just a pid. */
3892
3893 ptid_t
3894 pid_to_ptid (int pid)
3895 {
3896 return ptid_build (pid, 0, 0);
3897 }
3898
3899 /* Fetch the pid (process id) component from a ptid. */
3900
3901 int
3902 ptid_get_pid (ptid_t ptid)
3903 {
3904 return ptid.pid;
3905 }
3906
3907 /* Fetch the lwp (lightweight process) component from a ptid. */
3908
3909 long
3910 ptid_get_lwp (ptid_t ptid)
3911 {
3912 return ptid.lwp;
3913 }
3914
3915 /* Fetch the tid (thread id) component from a ptid. */
3916
3917 long
3918 ptid_get_tid (ptid_t ptid)
3919 {
3920 return ptid.tid;
3921 }
3922
3923 /* ptid_equal() is used to test equality of two ptids. */
3924
3925 int
3926 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3927 {
3928 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3929 && ptid1.tid == ptid2.tid);
3930 }
3931
3932 /* restore_inferior_ptid() will be used by the cleanup machinery
3933 to restore the inferior_ptid value saved in a call to
3934 save_inferior_ptid(). */
3935
3936 static void
3937 restore_inferior_ptid (void *arg)
3938 {
3939 ptid_t *saved_ptid_ptr = arg;
3940 inferior_ptid = *saved_ptid_ptr;
3941 xfree (arg);
3942 }
3943
3944 /* Save the value of inferior_ptid so that it may be restored by a
3945 later call to do_cleanups(). Returns the struct cleanup pointer
3946 needed for later doing the cleanup. */
3947
3948 struct cleanup *
3949 save_inferior_ptid (void)
3950 {
3951 ptid_t *saved_ptid_ptr;
3952
3953 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3954 *saved_ptid_ptr = inferior_ptid;
3955 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3956 }
3957 \f
3958
3959 void
3960 _initialize_infrun (void)
3961 {
3962 int i;
3963 int numsigs;
3964 struct cmd_list_element *c;
3965
3966 add_info ("signals", signals_info, _("\
3967 What debugger does when program gets various signals.\n\
3968 Specify a signal as argument to print info on that signal only."));
3969 add_info_alias ("handle", "signals", 0);
3970
3971 add_com ("handle", class_run, handle_command, _("\
3972 Specify how to handle a signal.\n\
3973 Args are signals and actions to apply to those signals.\n\
3974 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3975 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3976 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3977 The special arg \"all\" is recognized to mean all signals except those\n\
3978 used by the debugger, typically SIGTRAP and SIGINT.\n\
3979 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3980 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3981 Stop means reenter debugger if this signal happens (implies print).\n\
3982 Print means print a message if this signal happens.\n\
3983 Pass means let program see this signal; otherwise program doesn't know.\n\
3984 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3985 Pass and Stop may be combined."));
3986 if (xdb_commands)
3987 {
3988 add_com ("lz", class_info, signals_info, _("\
3989 What debugger does when program gets various signals.\n\
3990 Specify a signal as argument to print info on that signal only."));
3991 add_com ("z", class_run, xdb_handle_command, _("\
3992 Specify how to handle a signal.\n\
3993 Args are signals and actions to apply to those signals.\n\
3994 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3995 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3996 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3997 The special arg \"all\" is recognized to mean all signals except those\n\
3998 used by the debugger, typically SIGTRAP and SIGINT.\n\
3999 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4000 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4001 nopass), \"Q\" (noprint)\n\
4002 Stop means reenter debugger if this signal happens (implies print).\n\
4003 Print means print a message if this signal happens.\n\
4004 Pass means let program see this signal; otherwise program doesn't know.\n\
4005 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4006 Pass and Stop may be combined."));
4007 }
4008
4009 if (!dbx_commands)
4010 stop_command = add_cmd ("stop", class_obscure,
4011 not_just_help_class_command, _("\
4012 There is no `stop' command, but you can set a hook on `stop'.\n\
4013 This allows you to set a list of commands to be run each time execution\n\
4014 of the program stops."), &cmdlist);
4015
4016 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4017 Set inferior debugging."), _("\
4018 Show inferior debugging."), _("\
4019 When non-zero, inferior specific debugging is enabled."),
4020 NULL,
4021 show_debug_infrun,
4022 &setdebuglist, &showdebuglist);
4023
4024 numsigs = (int) TARGET_SIGNAL_LAST;
4025 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4026 signal_print = (unsigned char *)
4027 xmalloc (sizeof (signal_print[0]) * numsigs);
4028 signal_program = (unsigned char *)
4029 xmalloc (sizeof (signal_program[0]) * numsigs);
4030 for (i = 0; i < numsigs; i++)
4031 {
4032 signal_stop[i] = 1;
4033 signal_print[i] = 1;
4034 signal_program[i] = 1;
4035 }
4036
4037 /* Signals caused by debugger's own actions
4038 should not be given to the program afterwards. */
4039 signal_program[TARGET_SIGNAL_TRAP] = 0;
4040 signal_program[TARGET_SIGNAL_INT] = 0;
4041
4042 /* Signals that are not errors should not normally enter the debugger. */
4043 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4044 signal_print[TARGET_SIGNAL_ALRM] = 0;
4045 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4046 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4047 signal_stop[TARGET_SIGNAL_PROF] = 0;
4048 signal_print[TARGET_SIGNAL_PROF] = 0;
4049 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4050 signal_print[TARGET_SIGNAL_CHLD] = 0;
4051 signal_stop[TARGET_SIGNAL_IO] = 0;
4052 signal_print[TARGET_SIGNAL_IO] = 0;
4053 signal_stop[TARGET_SIGNAL_POLL] = 0;
4054 signal_print[TARGET_SIGNAL_POLL] = 0;
4055 signal_stop[TARGET_SIGNAL_URG] = 0;
4056 signal_print[TARGET_SIGNAL_URG] = 0;
4057 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4058 signal_print[TARGET_SIGNAL_WINCH] = 0;
4059
4060 /* These signals are used internally by user-level thread
4061 implementations. (See signal(5) on Solaris.) Like the above
4062 signals, a healthy program receives and handles them as part of
4063 its normal operation. */
4064 signal_stop[TARGET_SIGNAL_LWP] = 0;
4065 signal_print[TARGET_SIGNAL_LWP] = 0;
4066 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4067 signal_print[TARGET_SIGNAL_WAITING] = 0;
4068 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4069 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4070
4071 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4072 &stop_on_solib_events, _("\
4073 Set stopping for shared library events."), _("\
4074 Show stopping for shared library events."), _("\
4075 If nonzero, gdb will give control to the user when the dynamic linker\n\
4076 notifies gdb of shared library events. The most common event of interest\n\
4077 to the user would be loading/unloading of a new library."),
4078 NULL,
4079 show_stop_on_solib_events,
4080 &setlist, &showlist);
4081
4082 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4083 follow_fork_mode_kind_names,
4084 &follow_fork_mode_string, _("\
4085 Set debugger response to a program call of fork or vfork."), _("\
4086 Show debugger response to a program call of fork or vfork."), _("\
4087 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4088 parent - the original process is debugged after a fork\n\
4089 child - the new process is debugged after a fork\n\
4090 The unfollowed process will continue to run.\n\
4091 By default, the debugger will follow the parent process."),
4092 NULL,
4093 show_follow_fork_mode_string,
4094 &setlist, &showlist);
4095
4096 add_setshow_enum_cmd ("scheduler-locking", class_run,
4097 scheduler_enums, &scheduler_mode, _("\
4098 Set mode for locking scheduler during execution."), _("\
4099 Show mode for locking scheduler during execution."), _("\
4100 off == no locking (threads may preempt at any time)\n\
4101 on == full locking (no thread except the current thread may run)\n\
4102 step == scheduler locked during every single-step operation.\n\
4103 In this mode, no other thread may run during a step command.\n\
4104 Other threads may run while stepping over a function call ('next')."),
4105 set_schedlock_func, /* traps on target vector */
4106 show_scheduler_mode,
4107 &setlist, &showlist);
4108
4109 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4110 Set mode of the step operation."), _("\
4111 Show mode of the step operation."), _("\
4112 When set, doing a step over a function without debug line information\n\
4113 will stop at the first instruction of that function. Otherwise, the\n\
4114 function is skipped and the step command stops at a different source line."),
4115 NULL,
4116 show_step_stop_if_no_debug,
4117 &setlist, &showlist);
4118
4119 /* ptid initializations */
4120 null_ptid = ptid_build (0, 0, 0);
4121 minus_one_ptid = ptid_build (-1, 0, 0);
4122 inferior_ptid = null_ptid;
4123 target_last_wait_ptid = minus_one_ptid;
4124 }
This page took 0.126801 seconds and 4 git commands to generate.