* xcoffexec.c (exec_ops): child_attach and child_create_inferior
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Start (run) and stop the inferior process, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Notes on the algorithm used in wait_for_inferior to determine if we
21 just did a subroutine call when stepping. We have the following
22 information at that point:
23
24 Current and previous (just before this step) pc.
25 Current and previous sp.
26 Current and previous start of current function.
27
28 If the starts of the functions don't match, then
29
30 a) We did a subroutine call.
31
32 In this case, the pc will be at the beginning of a function.
33
34 b) We did a subroutine return.
35
36 Otherwise.
37
38 c) We did a longjmp.
39
40 If we did a longjump, we were doing "nexti", since a next would
41 have attempted to skip over the assembly language routine in which
42 the longjmp is coded and would have simply been the equivalent of a
43 continue. I consider this ok behaivior. We'd like one of two
44 things to happen if we are doing a nexti through the longjmp()
45 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
46 above. Given that this is a special case, and that anybody who
47 thinks that the concept of sub calls is meaningful in the context
48 of a longjmp, I'll take either one. Let's see what happens.
49
50 Acts like a subroutine return. I can handle that with no problem
51 at all.
52
53 -->So: If the current and previous beginnings of the current
54 function don't match, *and* the pc is at the start of a function,
55 we've done a subroutine call. If the pc is not at the start of a
56 function, we *didn't* do a subroutine call.
57
58 -->If the beginnings of the current and previous function do match,
59 either:
60
61 a) We just did a recursive call.
62
63 In this case, we would be at the very beginning of a
64 function and 1) it will have a prologue (don't jump to
65 before prologue, or 2) (we assume here that it doesn't have
66 a prologue) there will have been a change in the stack
67 pointer over the last instruction. (Ie. it's got to put
68 the saved pc somewhere. The stack is the usual place. In
69 a recursive call a register is only an option if there's a
70 prologue to do something with it. This is even true on
71 register window machines; the prologue sets up the new
72 window. It might not be true on a register window machine
73 where the call instruction moved the register window
74 itself. Hmmm. One would hope that the stack pointer would
75 also change. If it doesn't, somebody send me a note, and
76 I'll work out a more general theory.
77 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
78 so) on all machines I'm aware of:
79
80 m68k: Call changes stack pointer. Regular jumps don't.
81
82 sparc: Recursive calls must have frames and therefor,
83 prologues.
84
85 vax: All calls have frames and hence change the
86 stack pointer.
87
88 b) We did a return from a recursive call. I don't see that we
89 have either the ability or the need to distinguish this
90 from an ordinary jump. The stack frame will be printed
91 when and if the frame pointer changes; if we are in a
92 function without a frame pointer, it's the users own
93 lookout.
94
95 c) We did a jump within a function. We assume that this is
96 true if we didn't do a recursive call.
97
98 d) We are in no-man's land ("I see no symbols here"). We
99 don't worry about this; it will make calls look like simple
100 jumps (and the stack frames will be printed when the frame
101 pointer moves), which is a reasonably non-violent response.
102 */
103
104 #include "defs.h"
105 #include <string.h>
106 #include "symtab.h"
107 #include "frame.h"
108 #include "inferior.h"
109 #include "breakpoint.h"
110 #include "wait.h"
111 #include "gdbcore.h"
112 #include "command.h"
113 #include "terminal.h" /* For #ifdef TIOCGPGRP and new_tty */
114 #include "target.h"
115
116 #include <signal.h>
117
118 /* unistd.h is needed to #define X_OK */
119 #ifdef USG
120 #include <unistd.h>
121 #else
122 #include <sys/file.h>
123 #endif
124
125 #ifdef SET_STACK_LIMIT_HUGE
126 #include <sys/time.h>
127 #include <sys/resource.h>
128
129 extern int original_stack_limit;
130 #endif /* SET_STACK_LIMIT_HUGE */
131
132 /* Prototypes for local functions */
133
134 static void
135 signals_info PARAMS ((char *, int));
136
137 static void
138 handle_command PARAMS ((char *, int));
139
140 static void
141 sig_print_info PARAMS ((int));
142
143 static void
144 sig_print_header PARAMS ((void));
145
146 static void
147 remove_step_breakpoint PARAMS ((void));
148
149 static void
150 insert_step_breakpoint PARAMS ((void));
151
152 static void
153 resume PARAMS ((int, int));
154
155 static void
156 resume_cleanups PARAMS ((int));
157
158 extern char **environ;
159
160 extern struct target_ops child_ops; /* In inftarg.c */
161
162 /* Sigtramp is a routine that the kernel calls (which then calls the
163 signal handler). On most machines it is a library routine that
164 is linked into the executable.
165
166 This macro, given a program counter value and the name of the
167 function in which that PC resides (which can be null if the
168 name is not known), returns nonzero if the PC and name show
169 that we are in sigtramp.
170
171 On most machines just see if the name is sigtramp (and if we have
172 no name, assume we are not in sigtramp). */
173 #if !defined (IN_SIGTRAMP)
174 #define IN_SIGTRAMP(pc, name) \
175 (name && !strcmp ("_sigtramp", name))
176 #endif
177
178 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
179 program. It needs to examine the jmp_buf argument and extract the PC
180 from it. The return value is non-zero on success, zero otherwise. */
181 #ifndef GET_LONGJMP_TARGET
182 #define GET_LONGJMP_TARGET(PC_ADDR) 0
183 #endif
184
185
186 /* Some machines have trampoline code that sits between function callers
187 and the actual functions themselves. If this machine doesn't have
188 such things, disable their processing. */
189 #ifndef SKIP_TRAMPOLINE_CODE
190 #define SKIP_TRAMPOLINE_CODE(pc) 0
191 #endif
192
193 /* For SVR4 shared libraries, each call goes through a small piece of
194 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
195 to nonzero if we are current stopped in one of these. */
196 #ifndef IN_SOLIB_TRAMPOLINE
197 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
198 #endif
199
200 /* Notify other parts of gdb that might care that signal handling may
201 have changed for one or more signals. */
202 #ifndef NOTICE_SIGNAL_HANDLING_CHANGE
203 #define NOTICE_SIGNAL_HANDLING_CHANGE /* No actions */
204 #endif
205
206 #ifdef TDESC
207 #include "tdesc.h"
208 int safe_to_init_tdesc_context = 0;
209 extern dc_dcontext_t current_context;
210 #endif
211
212 /* Tables of how to react to signals; the user sets them. */
213
214 static unsigned char *signal_stop;
215 static unsigned char *signal_print;
216 static unsigned char *signal_program;
217
218 #define SET_SIGS(nsigs,sigs,flags) \
219 do { \
220 int signum = (nsigs); \
221 while (signum-- > 0) \
222 if ((sigs)[signum]) \
223 (flags)[signum] = 1; \
224 } while (0)
225
226 #define UNSET_SIGS(nsigs,sigs,flags) \
227 do { \
228 int signum = (nsigs); \
229 while (signum-- > 0) \
230 if ((sigs)[signum]) \
231 (flags)[signum] = 0; \
232 } while (0)
233
234 /* Nonzero if breakpoints are now inserted in the inferior. */
235 /* Nonstatic for initialization during xxx_create_inferior. FIXME. */
236
237 /*static*/ int breakpoints_inserted;
238
239 /* Function inferior was in as of last step command. */
240
241 static struct symbol *step_start_function;
242
243 /* Nonzero => address for special breakpoint for resuming stepping. */
244
245 static CORE_ADDR step_resume_break_address;
246
247 /* Pointer to orig contents of the byte where the special breakpoint is. */
248
249 static char step_resume_break_shadow[BREAKPOINT_MAX];
250
251 /* Nonzero means the special breakpoint is a duplicate
252 so it has not itself been inserted. */
253
254 static int step_resume_break_duplicate;
255
256 /* Nonzero if we are expecting a trace trap and should proceed from it. */
257
258 static int trap_expected;
259
260 /* Nonzero if the next time we try to continue the inferior, it will
261 step one instruction and generate a spurious trace trap.
262 This is used to compensate for a bug in HP-UX. */
263
264 static int trap_expected_after_continue;
265
266 /* Nonzero means expecting a trace trap
267 and should stop the inferior and return silently when it happens. */
268
269 int stop_after_trap;
270
271 /* Nonzero means expecting a trap and caller will handle it themselves.
272 It is used after attach, due to attaching to a process;
273 when running in the shell before the child program has been exec'd;
274 and when running some kinds of remote stuff (FIXME?). */
275
276 int stop_soon_quietly;
277
278 /* Nonzero if pc has been changed by the debugger
279 since the inferior stopped. */
280
281 int pc_changed;
282
283 /* Nonzero if proceed is being used for a "finish" command or a similar
284 situation when stop_registers should be saved. */
285
286 int proceed_to_finish;
287
288 /* Save register contents here when about to pop a stack dummy frame,
289 if-and-only-if proceed_to_finish is set.
290 Thus this contains the return value from the called function (assuming
291 values are returned in a register). */
292
293 char stop_registers[REGISTER_BYTES];
294
295 /* Nonzero if program stopped due to error trying to insert breakpoints. */
296
297 static int breakpoints_failed;
298
299 /* Nonzero after stop if current stack frame should be printed. */
300
301 static int stop_print_frame;
302
303 #ifdef NO_SINGLE_STEP
304 extern int one_stepped; /* From machine dependent code */
305 extern void single_step (); /* Same. */
306 #endif /* NO_SINGLE_STEP */
307
308 \f
309 /* Things to clean up if we QUIT out of resume (). */
310 /* ARGSUSED */
311 static void
312 resume_cleanups (arg)
313 int arg;
314 {
315 normal_stop ();
316 }
317
318 /* Resume the inferior, but allow a QUIT. This is useful if the user
319 wants to interrupt some lengthy single-stepping operation
320 (for child processes, the SIGINT goes to the inferior, and so
321 we get a SIGINT random_signal, but for remote debugging and perhaps
322 other targets, that's not true).
323
324 STEP nonzero if we should step (zero to continue instead).
325 SIG is the signal to give the inferior (zero for none). */
326 static void
327 resume (step, sig)
328 int step;
329 int sig;
330 {
331 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
332 QUIT;
333
334 #ifdef NO_SINGLE_STEP
335 if (step) {
336 single_step(sig); /* Do it the hard way, w/temp breakpoints */
337 step = 0; /* ...and don't ask hardware to do it. */
338 }
339 #endif
340
341 /* Handle any optimized stores to the inferior NOW... */
342 #ifdef DO_DEFERRED_STORES
343 DO_DEFERRED_STORES;
344 #endif
345
346 target_resume (step, sig);
347 discard_cleanups (old_cleanups);
348 }
349
350 \f
351 /* Clear out all variables saying what to do when inferior is continued.
352 First do this, then set the ones you want, then call `proceed'. */
353
354 void
355 clear_proceed_status ()
356 {
357 trap_expected = 0;
358 step_range_start = 0;
359 step_range_end = 0;
360 step_frame_address = 0;
361 step_over_calls = -1;
362 step_resume_break_address = 0;
363 stop_after_trap = 0;
364 stop_soon_quietly = 0;
365 proceed_to_finish = 0;
366 breakpoint_proceeded = 1; /* We're about to proceed... */
367
368 /* Discard any remaining commands or status from previous stop. */
369 bpstat_clear (&stop_bpstat);
370 }
371
372 /* Basic routine for continuing the program in various fashions.
373
374 ADDR is the address to resume at, or -1 for resume where stopped.
375 SIGGNAL is the signal to give it, or 0 for none,
376 or -1 for act according to how it stopped.
377 STEP is nonzero if should trap after one instruction.
378 -1 means return after that and print nothing.
379 You should probably set various step_... variables
380 before calling here, if you are stepping.
381
382 You should call clear_proceed_status before calling proceed. */
383
384 void
385 proceed (addr, siggnal, step)
386 CORE_ADDR addr;
387 int siggnal;
388 int step;
389 {
390 int oneproc = 0;
391
392 if (step > 0)
393 step_start_function = find_pc_function (read_pc ());
394 if (step < 0)
395 stop_after_trap = 1;
396
397 if (addr == (CORE_ADDR)-1)
398 {
399 /* If there is a breakpoint at the address we will resume at,
400 step one instruction before inserting breakpoints
401 so that we do not stop right away. */
402
403 if (!pc_changed && breakpoint_here_p (read_pc ()))
404 oneproc = 1;
405 }
406 else
407 {
408 write_register (PC_REGNUM, addr);
409 #ifdef NPC_REGNUM
410 write_register (NPC_REGNUM, addr + 4);
411 #ifdef NNPC_REGNUM
412 write_register (NNPC_REGNUM, addr + 8);
413 #endif
414 #endif
415 }
416
417 if (trap_expected_after_continue)
418 {
419 /* If (step == 0), a trap will be automatically generated after
420 the first instruction is executed. Force step one
421 instruction to clear this condition. This should not occur
422 if step is nonzero, but it is harmless in that case. */
423 oneproc = 1;
424 trap_expected_after_continue = 0;
425 }
426
427 if (oneproc)
428 /* We will get a trace trap after one instruction.
429 Continue it automatically and insert breakpoints then. */
430 trap_expected = 1;
431 else
432 {
433 int temp = insert_breakpoints ();
434 if (temp)
435 {
436 print_sys_errmsg ("ptrace", temp);
437 error ("Cannot insert breakpoints.\n\
438 The same program may be running in another process.");
439 }
440 breakpoints_inserted = 1;
441 }
442
443 /* Install inferior's terminal modes. */
444 target_terminal_inferior ();
445
446 if (siggnal >= 0)
447 stop_signal = siggnal;
448 /* If this signal should not be seen by program,
449 give it zero. Used for debugging signals. */
450 else if (stop_signal < NSIG && !signal_program[stop_signal])
451 stop_signal= 0;
452
453 /* Resume inferior. */
454 resume (oneproc || step || bpstat_should_step (), stop_signal);
455
456 /* Wait for it to stop (if not standalone)
457 and in any case decode why it stopped, and act accordingly. */
458
459 wait_for_inferior ();
460 normal_stop ();
461 }
462
463 /* Record the pc and sp of the program the last time it stopped.
464 These are just used internally by wait_for_inferior, but need
465 to be preserved over calls to it and cleared when the inferior
466 is started. */
467 static CORE_ADDR prev_pc;
468 static CORE_ADDR prev_sp;
469 static CORE_ADDR prev_func_start;
470 static char *prev_func_name;
471
472 \f
473 /* Start an inferior Unix child process and sets inferior_pid to its pid.
474 EXEC_FILE is the file to run.
475 ALLARGS is a string containing the arguments to the program.
476 ENV is the environment vector to pass. Errors reported with error(). */
477
478 #ifndef SHELL_FILE
479 #define SHELL_FILE "/bin/sh"
480 #endif
481
482 void
483 child_create_inferior (exec_file, allargs, env)
484 char *exec_file;
485 char *allargs;
486 char **env;
487 {
488 int pid;
489 char *shell_command;
490 char *shell_file;
491 static char default_shell_file[] = SHELL_FILE;
492 int len;
493 int pending_execs;
494 /* Set debug_fork then attach to the child while it sleeps, to debug. */
495 static int debug_fork = 0;
496 /* This is set to the result of setpgrp, which if vforked, will be visible
497 to you in the parent process. It's only used by humans for debugging. */
498 static int debug_setpgrp = 657473;
499 char **save_our_env;
500
501 /* The user might want tilde-expansion, and in general probably wants
502 the program to behave the same way as if run from
503 his/her favorite shell. So we let the shell run it for us.
504 FIXME, this should probably search the local environment (as
505 modified by the setenv command), not the env gdb inherited. */
506 shell_file = getenv ("SHELL");
507 if (shell_file == NULL)
508 shell_file = default_shell_file;
509
510 len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
511 /* If desired, concat something onto the front of ALLARGS.
512 SHELL_COMMAND is the result. */
513 #ifdef SHELL_COMMAND_CONCAT
514 shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
515 strcpy (shell_command, SHELL_COMMAND_CONCAT);
516 #else
517 shell_command = (char *) alloca (len);
518 shell_command[0] = '\0';
519 #endif
520 strcat (shell_command, "exec ");
521 strcat (shell_command, exec_file);
522 strcat (shell_command, " ");
523 strcat (shell_command, allargs);
524
525 /* exec is said to fail if the executable is open. */
526 close_exec_file ();
527
528 /* Retain a copy of our environment variables, since the child will
529 replace the value of environ and if we're vforked, we have to
530 restore it. */
531 save_our_env = environ;
532
533 /* Tell the terminal handling subsystem what tty we plan to run on;
534 it will just record the information for later. */
535
536 new_tty_prefork (inferior_io_terminal);
537
538 /* It is generally good practice to flush any possible pending stdio
539 output prior to doing a fork, to avoid the possibility of both the
540 parent and child flushing the same data after the fork. */
541
542 fflush (stdout);
543 fflush (stderr);
544
545 #if defined(USG) && !defined(HAVE_VFORK)
546 pid = fork ();
547 #else
548 if (debug_fork)
549 pid = fork ();
550 else
551 pid = vfork ();
552 #endif
553
554 if (pid < 0)
555 perror_with_name ("vfork");
556
557 if (pid == 0)
558 {
559 if (debug_fork)
560 sleep (debug_fork);
561
562 #ifdef TIOCGPGRP
563 /* Run inferior in a separate process group. */
564 #ifdef NEED_POSIX_SETPGID
565 debug_setpgrp = setpgid (0, 0);
566 #else
567 #if defined(USG) && !defined(SETPGRP_ARGS)
568 debug_setpgrp = setpgrp ();
569 #else
570 debug_setpgrp = setpgrp (getpid (), getpid ());
571 #endif /* USG */
572 #endif /* NEED_POSIX_SETPGID */
573 if (debug_setpgrp == -1)
574 perror("setpgrp failed in child");
575 #endif /* TIOCGPGRP */
576
577 #ifdef SET_STACK_LIMIT_HUGE
578 /* Reset the stack limit back to what it was. */
579 {
580 struct rlimit rlim;
581
582 getrlimit (RLIMIT_STACK, &rlim);
583 rlim.rlim_cur = original_stack_limit;
584 setrlimit (RLIMIT_STACK, &rlim);
585 }
586 #endif /* SET_STACK_LIMIT_HUGE */
587
588 /* Ask the tty subsystem to switch to the one we specified earlier
589 (or to share the current terminal, if none was specified). */
590
591 new_tty ();
592
593 /* Changing the signal handlers for the inferior after
594 a vfork can also change them for the superior, so we don't mess
595 with signals here. See comments in
596 initialize_signals for how we get the right signal handlers
597 for the inferior. */
598
599 #ifdef USE_PROC_FS
600 /* Use SVR4 /proc interface */
601 proc_set_exec_trap ();
602 #else
603 /* "Trace me, Dr. Memory!" */
604 call_ptrace (0, 0, (PTRACE_ARG3_TYPE) 0, 0);
605 #endif
606
607 /* There is no execlpe call, so we have to set the environment
608 for our child in the global variable. If we've vforked, this
609 clobbers the parent, but environ is restored a few lines down
610 in the parent. By the way, yes we do need to look down the
611 path to find $SHELL. Rich Pixley says so, and I agree. */
612 environ = env;
613 execlp (shell_file, shell_file, "-c", shell_command, (char *)0);
614
615 fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
616 safe_strerror (errno));
617 fflush (stderr);
618 _exit (0177);
619 }
620
621 /* Restore our environment in case a vforked child clob'd it. */
622 environ = save_our_env;
623
624 /* Now that we have a child process, make it our target. */
625 push_target (&child_ops);
626
627 #ifdef CREATE_INFERIOR_HOOK
628 CREATE_INFERIOR_HOOK (pid);
629 #endif
630
631 /* The process was started by the fork that created it,
632 but it will have stopped one instruction after execing the shell.
633 Here we must get it up to actual execution of the real program. */
634
635 inferior_pid = pid; /* Needed for wait_for_inferior stuff below */
636
637 clear_proceed_status ();
638
639 /* We will get a trace trap after one instruction.
640 Continue it automatically. Eventually (after shell does an exec)
641 it will get another trace trap. Then insert breakpoints and continue. */
642
643 #ifdef START_INFERIOR_TRAPS_EXPECTED
644 pending_execs = START_INFERIOR_TRAPS_EXPECTED;
645 #else
646 pending_execs = 2;
647 #endif
648
649 init_wait_for_inferior ();
650
651 /* Set up the "saved terminal modes" of the inferior
652 based on what modes we are starting it with. */
653 target_terminal_init ();
654
655 /* Install inferior's terminal modes. */
656 target_terminal_inferior ();
657
658 while (1)
659 {
660 stop_soon_quietly = 1; /* Make wait_for_inferior be quiet */
661 wait_for_inferior ();
662 if (stop_signal != SIGTRAP)
663 {
664 /* Let shell child handle its own signals in its own way */
665 /* FIXME, what if child has exit()ed? Must exit loop somehow */
666 resume (0, stop_signal);
667 }
668 else
669 {
670 /* We handle SIGTRAP, however; it means child did an exec. */
671 if (0 == --pending_execs)
672 break;
673 resume (0, 0); /* Just make it go on */
674 }
675 }
676 stop_soon_quietly = 0;
677
678 /* We are now in the child process of interest, having exec'd the
679 correct program, and are poised at the first instruction of the
680 new program. */
681 #ifdef SOLIB_CREATE_INFERIOR_HOOK
682 SOLIB_CREATE_INFERIOR_HOOK (pid);
683 #endif
684
685 /* Pedal to the metal. Away we go. */
686 proceed ((CORE_ADDR) -1, 0, 0);
687 }
688
689 /* Start remote-debugging of a machine over a serial link. */
690
691 void
692 start_remote ()
693 {
694 init_wait_for_inferior ();
695 clear_proceed_status ();
696 stop_soon_quietly = 1;
697 trap_expected = 0;
698 wait_for_inferior ();
699 normal_stop ();
700 }
701
702 /* Initialize static vars when a new inferior begins. */
703
704 void
705 init_wait_for_inferior ()
706 {
707 /* These are meaningless until the first time through wait_for_inferior. */
708 prev_pc = 0;
709 prev_sp = 0;
710 prev_func_start = 0;
711 prev_func_name = NULL;
712
713 trap_expected_after_continue = 0;
714 breakpoints_inserted = 0;
715 mark_breakpoints_out ();
716 stop_signal = 0; /* Don't confuse first call to proceed(). */
717 }
718
719
720 /* Attach to process PID, then initialize for debugging it
721 and wait for the trace-trap that results from attaching. */
722
723 void
724 child_attach (args, from_tty)
725 char *args;
726 int from_tty;
727 {
728 char *exec_file;
729 int pid;
730
731 dont_repeat();
732
733 if (!args)
734 error_no_arg ("process-id to attach");
735
736 #ifndef ATTACH_DETACH
737 error ("Can't attach to a process on this machine.");
738 #else
739 pid = atoi (args);
740
741 if (pid == getpid()) /* Trying to masturbate? */
742 error ("I refuse to debug myself!");
743
744 if (target_has_execution)
745 {
746 if (query ("A program is being debugged already. Kill it? "))
747 target_kill ();
748 else
749 error ("Inferior not killed.");
750 }
751
752 exec_file = (char *) get_exec_file (1);
753
754 if (from_tty)
755 {
756 printf ("Attaching program: %s pid %d\n",
757 exec_file, pid);
758 fflush (stdout);
759 }
760
761 attach (pid);
762 inferior_pid = pid;
763 push_target (&child_ops);
764
765 mark_breakpoints_out ();
766 target_terminal_init ();
767 clear_proceed_status ();
768 stop_soon_quietly = 1;
769 /*proceed (-1, 0, -2);*/
770 target_terminal_inferior ();
771 wait_for_inferior ();
772 #ifdef SOLIB_ADD
773 SOLIB_ADD ((char *)0, from_tty, (struct target_ops *)0);
774 #endif
775 normal_stop ();
776 #endif /* ATTACH_DETACH */
777 }
778 \f
779 /* Wait for control to return from inferior to debugger.
780 If inferior gets a signal, we may decide to start it up again
781 instead of returning. That is why there is a loop in this function.
782 When this function actually returns it means the inferior
783 should be left stopped and GDB should read more commands. */
784
785 void
786 wait_for_inferior ()
787 {
788 WAITTYPE w;
789 int another_trap;
790 int random_signal;
791 CORE_ADDR stop_sp;
792 CORE_ADDR stop_func_start;
793 char *stop_func_name;
794 CORE_ADDR prologue_pc, tmp;
795 int stop_step_resume_break;
796 struct symtab_and_line sal;
797 int remove_breakpoints_on_following_step = 0;
798 int current_line;
799 int handling_longjmp = 0; /* FIXME */
800
801 sal = find_pc_line(prev_pc, 0);
802 current_line = sal.line;
803
804 while (1)
805 {
806 /* Clean up saved state that will become invalid. */
807 pc_changed = 0;
808 flush_cached_frames ();
809 registers_changed ();
810
811 target_wait (&w);
812
813 #ifdef SIGTRAP_STOP_AFTER_LOAD
814
815 /* Somebody called load(2), and it gave us a "trap signal after load".
816 Ignore it gracefully. */
817
818 SIGTRAP_STOP_AFTER_LOAD (w);
819 #endif
820
821 /* See if the process still exists; clean up if it doesn't. */
822 if (WIFEXITED (w))
823 {
824 target_terminal_ours (); /* Must do this before mourn anyway */
825 if (WEXITSTATUS (w))
826 printf_filtered ("\nProgram exited with code 0%o.\n",
827 (unsigned int)WEXITSTATUS (w));
828 else
829 if (!batch_mode())
830 printf_filtered ("\nProgram exited normally.\n");
831 fflush (stdout);
832 target_mourn_inferior ();
833 #ifdef NO_SINGLE_STEP
834 one_stepped = 0;
835 #endif
836 stop_print_frame = 0;
837 break;
838 }
839 else if (!WIFSTOPPED (w))
840 {
841 stop_print_frame = 0;
842 stop_signal = WTERMSIG (w);
843 target_terminal_ours (); /* Must do this before mourn anyway */
844 target_kill (); /* kill mourns as well */
845 #ifdef PRINT_RANDOM_SIGNAL
846 printf_filtered ("\nProgram terminated: ");
847 PRINT_RANDOM_SIGNAL (stop_signal);
848 #else
849 printf_filtered ("\nProgram terminated with signal %d, %s\n",
850 stop_signal, safe_strsignal (stop_signal));
851 #endif
852 printf_filtered ("The inferior process no longer exists.\n");
853 fflush (stdout);
854 #ifdef NO_SINGLE_STEP
855 one_stepped = 0;
856 #endif
857 break;
858 }
859
860 #ifdef NO_SINGLE_STEP
861 if (one_stepped)
862 single_step (0); /* This actually cleans up the ss */
863 #endif /* NO_SINGLE_STEP */
864
865 stop_pc = read_pc ();
866 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
867 read_pc ()));
868
869 stop_frame_address = FRAME_FP (get_current_frame ());
870 stop_sp = read_register (SP_REGNUM);
871 stop_func_start = 0;
872 stop_func_name = 0;
873 /* Don't care about return value; stop_func_start and stop_func_name
874 will both be 0 if it doesn't work. */
875 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start);
876 stop_func_start += FUNCTION_START_OFFSET;
877 another_trap = 0;
878 bpstat_clear (&stop_bpstat);
879 stop_step = 0;
880 stop_stack_dummy = 0;
881 stop_print_frame = 1;
882 stop_step_resume_break = 0;
883 random_signal = 0;
884 stopped_by_random_signal = 0;
885 breakpoints_failed = 0;
886
887 /* Look at the cause of the stop, and decide what to do.
888 The alternatives are:
889 1) break; to really stop and return to the debugger,
890 2) drop through to start up again
891 (set another_trap to 1 to single step once)
892 3) set random_signal to 1, and the decision between 1 and 2
893 will be made according to the signal handling tables. */
894
895 stop_signal = WSTOPSIG (w);
896
897 /* First, distinguish signals caused by the debugger from signals
898 that have to do with the program's own actions.
899 Note that breakpoint insns may cause SIGTRAP or SIGILL
900 or SIGEMT, depending on the operating system version.
901 Here we detect when a SIGILL or SIGEMT is really a breakpoint
902 and change it to SIGTRAP. */
903
904 if (stop_signal == SIGTRAP
905 || (breakpoints_inserted &&
906 (stop_signal == SIGILL
907 #ifdef SIGEMT
908 || stop_signal == SIGEMT
909 #endif
910 ))
911 || stop_soon_quietly)
912 {
913 if (stop_signal == SIGTRAP && stop_after_trap)
914 {
915 stop_print_frame = 0;
916 break;
917 }
918 if (stop_soon_quietly)
919 break;
920
921 /* Don't even think about breakpoints
922 if just proceeded over a breakpoint.
923
924 However, if we are trying to proceed over a breakpoint
925 and end up in sigtramp, then step_resume_break_address
926 will be set and we should check whether we've hit the
927 step breakpoint. */
928 if (stop_signal == SIGTRAP && trap_expected
929 && step_resume_break_address == 0)
930 bpstat_clear (&stop_bpstat);
931 else
932 {
933 /* See if there is a breakpoint at the current PC. */
934 #if DECR_PC_AFTER_BREAK
935 /* Notice the case of stepping through a jump
936 that lands just after a breakpoint.
937 Don't confuse that with hitting the breakpoint.
938 What we check for is that 1) stepping is going on
939 and 2) the pc before the last insn does not match
940 the address of the breakpoint before the current pc. */
941 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
942 || !step_range_end
943 || step_resume_break_address
944 || handling_longjmp /* FIXME */)
945 #endif /* DECR_PC_AFTER_BREAK not zero */
946 {
947 /* See if we stopped at the special breakpoint for
948 stepping over a subroutine call. If both are zero,
949 this wasn't the reason for the stop. */
950 if (step_resume_break_address
951 && stop_pc - DECR_PC_AFTER_BREAK
952 == step_resume_break_address)
953 {
954 stop_step_resume_break = 1;
955 if (DECR_PC_AFTER_BREAK)
956 {
957 stop_pc -= DECR_PC_AFTER_BREAK;
958 write_register (PC_REGNUM, stop_pc);
959 pc_changed = 0;
960 }
961 }
962 else
963 {
964 stop_bpstat =
965 bpstat_stop_status (&stop_pc, stop_frame_address);
966 /* Following in case break condition called a
967 function. */
968 stop_print_frame = 1;
969 }
970 }
971 }
972
973 if (stop_signal == SIGTRAP)
974 random_signal
975 = !(bpstat_explains_signal (stop_bpstat)
976 || trap_expected
977 || stop_step_resume_break
978 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
979 || (step_range_end && !step_resume_break_address));
980 else
981 {
982 random_signal
983 = !(bpstat_explains_signal (stop_bpstat)
984 || stop_step_resume_break
985 /* End of a stack dummy. Some systems (e.g. Sony
986 news) give another signal besides SIGTRAP,
987 so check here as well as above. */
988 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
989 );
990 if (!random_signal)
991 stop_signal = SIGTRAP;
992 }
993 }
994 else
995 random_signal = 1;
996
997 /* For the program's own signals, act according to
998 the signal handling tables. */
999
1000 if (random_signal)
1001 {
1002 /* Signal not for debugging purposes. */
1003 int printed = 0;
1004
1005 stopped_by_random_signal = 1;
1006
1007 if (stop_signal >= NSIG
1008 || signal_print[stop_signal])
1009 {
1010 printed = 1;
1011 target_terminal_ours_for_output ();
1012 #ifdef PRINT_RANDOM_SIGNAL
1013 PRINT_RANDOM_SIGNAL (stop_signal);
1014 #else
1015 printf_filtered ("\nProgram received signal %d, %s\n",
1016 stop_signal, safe_strsignal (stop_signal));
1017 #endif /* PRINT_RANDOM_SIGNAL */
1018 fflush (stdout);
1019 }
1020 if (stop_signal >= NSIG
1021 || signal_stop[stop_signal])
1022 break;
1023 /* If not going to stop, give terminal back
1024 if we took it away. */
1025 else if (printed)
1026 target_terminal_inferior ();
1027
1028 /* Note that virtually all the code below does `if !random_signal'.
1029 Perhaps this code should end with a goto or continue. At least
1030 one (now fixed) bug was caused by this -- a !random_signal was
1031 missing in one of the tests below. */
1032 }
1033
1034 /* Handle cases caused by hitting a breakpoint. */
1035
1036 if (!random_signal)
1037 if (bpstat_explains_signal (stop_bpstat))
1038 {
1039 CORE_ADDR jmp_buf_pc;
1040
1041 switch (stop_bpstat->breakpoint_at->type) /* FIXME */
1042 {
1043 /* If we hit the breakpoint at longjmp, disable it for the
1044 duration of this command. Then, install a temporary
1045 breakpoint at the target of the jmp_buf. */
1046 case bp_longjmp:
1047 disable_longjmp_breakpoint();
1048 remove_breakpoints ();
1049 breakpoints_inserted = 0;
1050 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
1051
1052 /* Need to blow away step-resume breakpoint, as it
1053 interferes with us */
1054 remove_step_breakpoint ();
1055 step_resume_break_address = 0;
1056 stop_step_resume_break = 0;
1057
1058 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1059 if (step_over_calls > 0)
1060 set_longjmp_resume_breakpoint(jmp_buf_pc,
1061 get_current_frame());
1062 else
1063 #endif /* 0 */
1064 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
1065 handling_longjmp = 1; /* FIXME */
1066 goto keep_going;
1067
1068 case bp_longjmp_resume:
1069 remove_breakpoints ();
1070 breakpoints_inserted = 0;
1071 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1072 if (step_over_calls
1073 && (stop_frame_address
1074 INNER_THAN step_frame_address))
1075 {
1076 another_trap = 1;
1077 goto keep_going;
1078 }
1079 #endif /* 0 */
1080 disable_longjmp_breakpoint();
1081 handling_longjmp = 0; /* FIXME */
1082 break;
1083
1084 default:
1085 fprintf(stderr, "Unknown breakpoint type %d\n",
1086 stop_bpstat->breakpoint_at->type);
1087 case bp_watchpoint:
1088 case bp_breakpoint:
1089 case bp_until:
1090 case bp_finish:
1091 /* Does a breakpoint want us to stop? */
1092 if (bpstat_stop (stop_bpstat))
1093 {
1094 stop_print_frame = bpstat_should_print (stop_bpstat);
1095 goto stop_stepping;
1096 }
1097 /* Otherwise, must remove breakpoints and single-step
1098 to get us past the one we hit. */
1099 else
1100 {
1101 remove_breakpoints ();
1102 remove_step_breakpoint ();
1103 breakpoints_inserted = 0;
1104 another_trap = 1;
1105 }
1106 break;
1107 }
1108 }
1109 else if (stop_step_resume_break)
1110 {
1111 /* But if we have hit the step-resumption breakpoint,
1112 remove it. It has done its job getting us here.
1113 The sp test is to make sure that we don't get hung
1114 up in recursive calls in functions without frame
1115 pointers. If the stack pointer isn't outside of
1116 where the breakpoint was set (within a routine to be
1117 stepped over), we're in the middle of a recursive
1118 call. Not true for reg window machines (sparc)
1119 because the must change frames to call things and
1120 the stack pointer doesn't have to change if it
1121 the bp was set in a routine without a frame (pc can
1122 be stored in some other window).
1123
1124 The removal of the sp test is to allow calls to
1125 alloca. Nasty things were happening. Oh, well,
1126 gdb can only handle one level deep of lack of
1127 frame pointer. */
1128
1129 /*
1130 Disable test for step_frame_address match so that we always stop even if the
1131 frames don't match. Reason: if we hit the step_resume_breakpoint, there is
1132 no way to temporarily disable it so that we can step past it. If we leave
1133 the breakpoint in, then we loop forever repeatedly hitting, but never
1134 getting past the breakpoint. This change keeps nexting over recursive
1135 function calls from hanging gdb.
1136 */
1137 #if 0
1138 if (* step_frame_address == 0
1139 || (step_frame_address == stop_frame_address))
1140 #endif
1141 {
1142 remove_step_breakpoint ();
1143 step_resume_break_address = 0;
1144
1145 /* If were waiting for a trap, hitting the step_resume_break
1146 doesn't count as getting it. */
1147 if (trap_expected)
1148 another_trap = 1;
1149 }
1150 }
1151
1152 /* We come here if we hit a breakpoint but should not
1153 stop for it. Possibly we also were stepping
1154 and should stop for that. So fall through and
1155 test for stepping. But, if not stepping,
1156 do not stop. */
1157
1158 /* If this is the breakpoint at the end of a stack dummy,
1159 just stop silently. */
1160 if (!random_signal
1161 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
1162 {
1163 stop_print_frame = 0;
1164 stop_stack_dummy = 1;
1165 #ifdef HP_OS_BUG
1166 trap_expected_after_continue = 1;
1167 #endif
1168 break;
1169 }
1170
1171 if (step_resume_break_address)
1172 /* Having a step-resume breakpoint overrides anything
1173 else having to do with stepping commands until
1174 that breakpoint is reached. */
1175 ;
1176 /* If stepping through a line, keep going if still within it. */
1177 else if (!random_signal
1178 && step_range_end
1179 && stop_pc >= step_range_start
1180 && stop_pc < step_range_end
1181 /* The step range might include the start of the
1182 function, so if we are at the start of the
1183 step range and either the stack or frame pointers
1184 just changed, we've stepped outside */
1185 && !(stop_pc == step_range_start
1186 && stop_frame_address
1187 && (stop_sp INNER_THAN prev_sp
1188 || stop_frame_address != step_frame_address)))
1189 {
1190 ;
1191 }
1192
1193 /* We stepped out of the stepping range. See if that was due
1194 to a subroutine call that we should proceed to the end of. */
1195 else if (!random_signal && step_range_end)
1196 {
1197 if (stop_func_start)
1198 {
1199 prologue_pc = stop_func_start;
1200 SKIP_PROLOGUE (prologue_pc);
1201 }
1202
1203 /* Did we just take a signal? */
1204 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1205 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1206 {
1207 /* This code is needed at least in the following case:
1208 The user types "next" and then a signal arrives (before
1209 the "next" is done). */
1210 /* We've just taken a signal; go until we are back to
1211 the point where we took it and one more. */
1212 step_resume_break_address = prev_pc;
1213 step_resume_break_duplicate =
1214 breakpoint_here_p (step_resume_break_address);
1215 if (breakpoints_inserted)
1216 insert_step_breakpoint ();
1217 /* Make sure that the stepping range gets us past
1218 that instruction. */
1219 if (step_range_end == 1)
1220 step_range_end = (step_range_start = prev_pc) + 1;
1221 remove_breakpoints_on_following_step = 1;
1222 goto save_pc;
1223 }
1224
1225 /* ==> See comments at top of file on this algorithm. <==*/
1226
1227 if ((stop_pc == stop_func_start
1228 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1229 && (stop_func_start != prev_func_start
1230 || prologue_pc != stop_func_start
1231 || stop_sp != prev_sp))
1232 {
1233 /* It's a subroutine call.
1234 (0) If we are not stepping over any calls ("stepi"), we
1235 just stop.
1236 (1) If we're doing a "next", we want to continue through
1237 the call ("step over the call").
1238 (2) If we are in a function-call trampoline (a stub between
1239 the calling routine and the real function), locate
1240 the real function and change stop_func_start.
1241 (3) If we're doing a "step", and there are no debug symbols
1242 at the target of the call, we want to continue through
1243 it ("step over the call").
1244 (4) Otherwise, we want to stop soon, after the function
1245 prologue ("step into the call"). */
1246
1247 if (step_over_calls == 0)
1248 {
1249 /* I presume that step_over_calls is only 0 when we're
1250 supposed to be stepping at the assembly language level. */
1251 stop_step = 1;
1252 break;
1253 }
1254
1255 if (step_over_calls > 0)
1256 goto step_over_function;
1257
1258 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1259 if (tmp != 0)
1260 stop_func_start = tmp;
1261
1262 if (find_pc_function (stop_func_start) != 0)
1263 goto step_into_function;
1264
1265 step_over_function:
1266 /* A subroutine call has happened. */
1267 /* Set a special breakpoint after the return */
1268 step_resume_break_address =
1269 ADDR_BITS_REMOVE
1270 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1271 step_resume_break_duplicate
1272 = breakpoint_here_p (step_resume_break_address);
1273 if (breakpoints_inserted)
1274 insert_step_breakpoint ();
1275 goto save_pc;
1276
1277 step_into_function:
1278 /* Subroutine call with source code we should not step over.
1279 Do step to the first line of code in it. */
1280 SKIP_PROLOGUE (stop_func_start);
1281 sal = find_pc_line (stop_func_start, 0);
1282 /* Use the step_resume_break to step until
1283 the end of the prologue, even if that involves jumps
1284 (as it seems to on the vax under 4.2). */
1285 /* If the prologue ends in the middle of a source line,
1286 continue to the end of that source line.
1287 Otherwise, just go to end of prologue. */
1288 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1289 /* no, don't either. It skips any code that's
1290 legitimately on the first line. */
1291 #else
1292 if (sal.end && sal.pc != stop_func_start)
1293 stop_func_start = sal.end;
1294 #endif
1295
1296 if (stop_func_start == stop_pc)
1297 {
1298 /* We are already there: stop now. */
1299 stop_step = 1;
1300 break;
1301 }
1302 else
1303 /* Put the step-breakpoint there and go until there. */
1304 {
1305 step_resume_break_address = stop_func_start;
1306
1307 step_resume_break_duplicate
1308 = breakpoint_here_p (step_resume_break_address);
1309 if (breakpoints_inserted)
1310 insert_step_breakpoint ();
1311 /* Do not specify what the fp should be when we stop
1312 since on some machines the prologue
1313 is where the new fp value is established. */
1314 step_frame_address = 0;
1315 /* And make sure stepping stops right away then. */
1316 step_range_end = step_range_start;
1317 }
1318 goto save_pc;
1319 }
1320
1321 /* We've wandered out of the step range (but haven't done a
1322 subroutine call or return). */
1323
1324 sal = find_pc_line(stop_pc, 0);
1325
1326 if (step_range_end == 1 || /* stepi or nexti */
1327 sal.line == 0 || /* ...or no line # info */
1328 (stop_pc == sal.pc /* ...or we're at the start */
1329 && current_line != sal.line)) { /* of a different line */
1330 /* Stop because we're done stepping. */
1331 stop_step = 1;
1332 break;
1333 } else {
1334 /* We aren't done stepping, and we have line number info for $pc.
1335 Optimize by setting the step_range for the line.
1336 (We might not be in the original line, but if we entered a
1337 new line in mid-statement, we continue stepping. This makes
1338 things like for(;;) statements work better.) */
1339 step_range_start = sal.pc;
1340 step_range_end = sal.end;
1341 goto save_pc;
1342 }
1343 /* We never fall through here */
1344 }
1345
1346 if (trap_expected
1347 && IN_SIGTRAMP (stop_pc, stop_func_name)
1348 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1349 {
1350 /* What has happened here is that we have just stepped the inferior
1351 with a signal (because it is a signal which shouldn't make
1352 us stop), thus stepping into sigtramp.
1353
1354 So we need to set a step_resume_break_address breakpoint
1355 and continue until we hit it, and then step. */
1356 step_resume_break_address = prev_pc;
1357 /* Always 1, I think, but it's probably easier to have
1358 the step_resume_break as usual rather than trying to
1359 re-use the breakpoint which is already there. */
1360 step_resume_break_duplicate =
1361 breakpoint_here_p (step_resume_break_address);
1362 if (breakpoints_inserted)
1363 insert_step_breakpoint ();
1364 remove_breakpoints_on_following_step = 1;
1365 another_trap = 1;
1366 }
1367
1368 /* My apologies to the gods of structured programming. */
1369 /* Come to this label when you need to resume the inferior. It's really much
1370 cleaner at this time to do a goto than to try and figure out what the
1371 if-else chain ought to look like!! */
1372
1373 keep_going:
1374
1375 save_pc:
1376 /* Save the pc before execution, to compare with pc after stop. */
1377 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1378 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1379 BREAK is defined, the
1380 original pc would not have
1381 been at the start of a
1382 function. */
1383 prev_func_name = stop_func_name;
1384 prev_sp = stop_sp;
1385
1386 /* If we did not do break;, it means we should keep
1387 running the inferior and not return to debugger. */
1388
1389 if (trap_expected && stop_signal != SIGTRAP)
1390 {
1391 /* We took a signal (which we are supposed to pass through to
1392 the inferior, else we'd have done a break above) and we
1393 haven't yet gotten our trap. Simply continue. */
1394 resume ((step_range_end && !step_resume_break_address)
1395 || (trap_expected && !step_resume_break_address)
1396 || bpstat_should_step (),
1397 stop_signal);
1398 }
1399 else
1400 {
1401 /* Either the trap was not expected, but we are continuing
1402 anyway (the user asked that this signal be passed to the
1403 child)
1404 -- or --
1405 The signal was SIGTRAP, e.g. it was our signal, but we
1406 decided we should resume from it.
1407
1408 We're going to run this baby now!
1409
1410 Insert breakpoints now, unless we are trying
1411 to one-proceed past a breakpoint. */
1412 /* If we've just finished a special step resume and we don't
1413 want to hit a breakpoint, pull em out. */
1414 if (!step_resume_break_address &&
1415 remove_breakpoints_on_following_step)
1416 {
1417 remove_breakpoints_on_following_step = 0;
1418 remove_breakpoints ();
1419 breakpoints_inserted = 0;
1420 }
1421 else if (!breakpoints_inserted &&
1422 (step_resume_break_address != 0 || !another_trap))
1423 {
1424 insert_step_breakpoint ();
1425 breakpoints_failed = insert_breakpoints ();
1426 if (breakpoints_failed)
1427 break;
1428 breakpoints_inserted = 1;
1429 }
1430
1431 trap_expected = another_trap;
1432
1433 if (stop_signal == SIGTRAP)
1434 stop_signal = 0;
1435
1436 #ifdef SHIFT_INST_REGS
1437 /* I'm not sure when this following segment applies. I do know, now,
1438 that we shouldn't rewrite the regs when we were stopped by a
1439 random signal from the inferior process. */
1440
1441 if (!bpstat_explains_signal (stop_bpstat)
1442 && (stop_signal != SIGCLD)
1443 && !stopped_by_random_signal)
1444 {
1445 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1446 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1447 if (pc_contents != npc_contents)
1448 {
1449 write_register (NNPC_REGNUM, npc_contents);
1450 write_register (NPC_REGNUM, pc_contents);
1451 }
1452 }
1453 #endif /* SHIFT_INST_REGS */
1454
1455 resume ((!step_resume_break_address
1456 && !handling_longjmp
1457 && (step_range_end
1458 || trap_expected))
1459 || bpstat_should_step (),
1460 stop_signal);
1461 }
1462 }
1463
1464 stop_stepping:
1465 if (target_has_execution)
1466 {
1467 /* Assuming the inferior still exists, set these up for next
1468 time, just like we did above if we didn't break out of the
1469 loop. */
1470 prev_pc = read_pc ();
1471 prev_func_start = stop_func_start;
1472 prev_func_name = stop_func_name;
1473 prev_sp = stop_sp;
1474 }
1475 }
1476 \f
1477 /* Here to return control to GDB when the inferior stops for real.
1478 Print appropriate messages, remove breakpoints, give terminal our modes.
1479
1480 STOP_PRINT_FRAME nonzero means print the executing frame
1481 (pc, function, args, file, line number and line text).
1482 BREAKPOINTS_FAILED nonzero means stop was due to error
1483 attempting to insert breakpoints. */
1484
1485 void
1486 normal_stop ()
1487 {
1488 /* Make sure that the current_frame's pc is correct. This
1489 is a correction for setting up the frame info before doing
1490 DECR_PC_AFTER_BREAK */
1491 if (target_has_execution)
1492 (get_current_frame ())->pc = read_pc ();
1493
1494 if (breakpoints_failed)
1495 {
1496 target_terminal_ours_for_output ();
1497 print_sys_errmsg ("ptrace", breakpoints_failed);
1498 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1499 The same program may be running in another process.\n");
1500 }
1501
1502 if (target_has_execution)
1503 remove_step_breakpoint ();
1504
1505 if (target_has_execution && breakpoints_inserted)
1506 if (remove_breakpoints ())
1507 {
1508 target_terminal_ours_for_output ();
1509 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1510 It might be running in another process.\n\
1511 Further execution is probably impossible.\n");
1512 }
1513
1514 breakpoints_inserted = 0;
1515
1516 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1517 Delete any breakpoint that is to be deleted at the next stop. */
1518
1519 breakpoint_auto_delete (stop_bpstat);
1520
1521 /* If an auto-display called a function and that got a signal,
1522 delete that auto-display to avoid an infinite recursion. */
1523
1524 if (stopped_by_random_signal)
1525 disable_current_display ();
1526
1527 if (step_multi && stop_step)
1528 return;
1529
1530 target_terminal_ours ();
1531
1532 if (!target_has_stack)
1533 return;
1534
1535 /* Select innermost stack frame except on return from a stack dummy routine,
1536 or if the program has exited. Print it without a level number if
1537 we have changed functions or hit a breakpoint. Print source line
1538 if we have one. */
1539 if (!stop_stack_dummy)
1540 {
1541 select_frame (get_current_frame (), 0);
1542
1543 if (stop_print_frame)
1544 {
1545 int source_only;
1546
1547 source_only = bpstat_print (stop_bpstat);
1548 source_only = source_only ||
1549 ( stop_step
1550 && step_frame_address == stop_frame_address
1551 && step_start_function == find_pc_function (stop_pc));
1552
1553 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1554
1555 /* Display the auto-display expressions. */
1556 do_displays ();
1557 }
1558 }
1559
1560 /* Save the function value return registers, if we care.
1561 We might be about to restore their previous contents. */
1562 if (proceed_to_finish)
1563 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1564
1565 if (stop_stack_dummy)
1566 {
1567 /* Pop the empty frame that contains the stack dummy.
1568 POP_FRAME ends with a setting of the current frame, so we
1569 can use that next. */
1570 POP_FRAME;
1571 select_frame (get_current_frame (), 0);
1572 }
1573 }
1574 \f
1575 static void
1576 insert_step_breakpoint ()
1577 {
1578 if (step_resume_break_address && !step_resume_break_duplicate)
1579 target_insert_breakpoint (step_resume_break_address,
1580 step_resume_break_shadow);
1581 }
1582
1583 static void
1584 remove_step_breakpoint ()
1585 {
1586 if (step_resume_break_address && !step_resume_break_duplicate)
1587 target_remove_breakpoint (step_resume_break_address,
1588 step_resume_break_shadow);
1589 }
1590 \f
1591 int signal_stop_state (signo)
1592 int signo;
1593 {
1594 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1595 }
1596
1597 int signal_print_state (signo)
1598 int signo;
1599 {
1600 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1601 }
1602
1603 int signal_pass_state (signo)
1604 int signo;
1605 {
1606 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1607 }
1608
1609 static void
1610 sig_print_header ()
1611 {
1612 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1613 }
1614
1615 static void
1616 sig_print_info (number)
1617 int number;
1618 {
1619 char *name;
1620
1621 if ((name = strsigno (number)) == NULL)
1622 printf_filtered ("%d\t\t", number);
1623 else
1624 printf_filtered ("%s (%d)\t", name, number);
1625 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1626 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1627 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1628 printf_filtered ("%s\n", safe_strsignal (number));
1629 }
1630
1631 /* Specify how various signals in the inferior should be handled. */
1632
1633 static void
1634 handle_command (args, from_tty)
1635 char *args;
1636 int from_tty;
1637 {
1638 char **argv;
1639 int digits, wordlen;
1640 int sigfirst, signum, siglast;
1641 int allsigs;
1642 int nsigs;
1643 unsigned char *sigs;
1644 struct cleanup *old_chain;
1645
1646 if (args == NULL)
1647 {
1648 error_no_arg ("signal to handle");
1649 }
1650
1651 /* Allocate and zero an array of flags for which signals to handle. */
1652
1653 nsigs = signo_max () + 1;
1654 sigs = (unsigned char *) alloca (nsigs);
1655 memset (sigs, 0, nsigs);
1656
1657 /* Break the command line up into args. */
1658
1659 argv = buildargv (args);
1660 if (argv == NULL)
1661 {
1662 nomem (0);
1663 }
1664 old_chain = make_cleanup (freeargv, (char *) argv);
1665
1666 /* Walk through the args, looking for signal numbers, signal names, and
1667 actions. Signal numbers and signal names may be interspersed with
1668 actions, with the actions being performed for all signals cumulatively
1669 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1670
1671 while (*argv != NULL)
1672 {
1673 wordlen = strlen (*argv);
1674 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1675 allsigs = 0;
1676 sigfirst = siglast = -1;
1677
1678 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1679 {
1680 /* Apply action to all signals except those used by the
1681 debugger. Silently skip those. */
1682 allsigs = 1;
1683 sigfirst = 0;
1684 siglast = nsigs - 1;
1685 }
1686 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1687 {
1688 SET_SIGS (nsigs, sigs, signal_stop);
1689 SET_SIGS (nsigs, sigs, signal_print);
1690 }
1691 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1692 {
1693 UNSET_SIGS (nsigs, sigs, signal_program);
1694 }
1695 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1696 {
1697 SET_SIGS (nsigs, sigs, signal_print);
1698 }
1699 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1700 {
1701 SET_SIGS (nsigs, sigs, signal_program);
1702 }
1703 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1704 {
1705 UNSET_SIGS (nsigs, sigs, signal_stop);
1706 }
1707 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1708 {
1709 SET_SIGS (nsigs, sigs, signal_program);
1710 }
1711 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1712 {
1713 UNSET_SIGS (nsigs, sigs, signal_print);
1714 UNSET_SIGS (nsigs, sigs, signal_stop);
1715 }
1716 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1717 {
1718 UNSET_SIGS (nsigs, sigs, signal_program);
1719 }
1720 else if (digits > 0)
1721 {
1722 sigfirst = siglast = atoi (*argv);
1723 if ((*argv)[digits] == '-')
1724 {
1725 siglast = atoi ((*argv) + digits + 1);
1726 }
1727 if (sigfirst > siglast)
1728 {
1729 /* Bet he didn't figure we'd think of this case... */
1730 signum = sigfirst;
1731 sigfirst = siglast;
1732 siglast = signum;
1733 }
1734 if (sigfirst < 0 || sigfirst >= nsigs)
1735 {
1736 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1737 }
1738 if (siglast < 0 || siglast >= nsigs)
1739 {
1740 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1741 }
1742 }
1743 else if ((signum = strtosigno (*argv)) != 0)
1744 {
1745 sigfirst = siglast = signum;
1746 }
1747 else
1748 {
1749 /* Not a number and not a recognized flag word => complain. */
1750 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1751 }
1752
1753 /* If any signal numbers or symbol names were found, set flags for
1754 which signals to apply actions to. */
1755
1756 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1757 {
1758 switch (signum)
1759 {
1760 case SIGTRAP:
1761 case SIGINT:
1762 if (!allsigs && !sigs[signum])
1763 {
1764 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1765 {
1766 sigs[signum] = 1;
1767 }
1768 else
1769 {
1770 printf ("Not confirmed, unchanged.\n");
1771 fflush (stdout);
1772 }
1773 }
1774 break;
1775 default:
1776 sigs[signum] = 1;
1777 break;
1778 }
1779 }
1780
1781 argv++;
1782 }
1783
1784 NOTICE_SIGNAL_HANDLING_CHANGE;
1785
1786 if (from_tty)
1787 {
1788 /* Show the results. */
1789 sig_print_header ();
1790 for (signum = 0; signum < nsigs; signum++)
1791 {
1792 if (sigs[signum])
1793 {
1794 sig_print_info (signum);
1795 }
1796 }
1797 }
1798
1799 do_cleanups (old_chain);
1800 }
1801
1802 /* Print current contents of the tables set by the handle command. */
1803
1804 static void
1805 signals_info (signum_exp, from_tty)
1806 char *signum_exp;
1807 int from_tty;
1808 {
1809 register int i;
1810 sig_print_header ();
1811
1812 if (signum_exp)
1813 {
1814 /* First see if this is a symbol name. */
1815 i = strtosigno (signum_exp);
1816 if (i == 0)
1817 {
1818 /* Nope, maybe it's an address which evaluates to a signal
1819 number. */
1820 i = parse_and_eval_address (signum_exp);
1821 if (i >= NSIG || i < 0)
1822 error ("Signal number out of bounds.");
1823 }
1824 sig_print_info (i);
1825 return;
1826 }
1827
1828 printf_filtered ("\n");
1829 for (i = 0; i < NSIG; i++)
1830 {
1831 QUIT;
1832
1833 sig_print_info (i);
1834 }
1835
1836 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1837 }
1838 \f
1839 /* Save all of the information associated with the inferior<==>gdb
1840 connection. INF_STATUS is a pointer to a "struct inferior_status"
1841 (defined in inferior.h). */
1842
1843 void
1844 save_inferior_status (inf_status, restore_stack_info)
1845 struct inferior_status *inf_status;
1846 int restore_stack_info;
1847 {
1848 inf_status->pc_changed = pc_changed;
1849 inf_status->stop_signal = stop_signal;
1850 inf_status->stop_pc = stop_pc;
1851 inf_status->stop_frame_address = stop_frame_address;
1852 inf_status->stop_step = stop_step;
1853 inf_status->stop_stack_dummy = stop_stack_dummy;
1854 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1855 inf_status->trap_expected = trap_expected;
1856 inf_status->step_range_start = step_range_start;
1857 inf_status->step_range_end = step_range_end;
1858 inf_status->step_frame_address = step_frame_address;
1859 inf_status->step_over_calls = step_over_calls;
1860 inf_status->step_resume_break_address = step_resume_break_address;
1861 inf_status->stop_after_trap = stop_after_trap;
1862 inf_status->stop_soon_quietly = stop_soon_quietly;
1863 /* Save original bpstat chain here; replace it with copy of chain.
1864 If caller's caller is walking the chain, they'll be happier if we
1865 hand them back the original chain when restore_i_s is called. */
1866 inf_status->stop_bpstat = stop_bpstat;
1867 stop_bpstat = bpstat_copy (stop_bpstat);
1868 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1869 inf_status->restore_stack_info = restore_stack_info;
1870 inf_status->proceed_to_finish = proceed_to_finish;
1871
1872 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1873
1874 record_selected_frame (&(inf_status->selected_frame_address),
1875 &(inf_status->selected_level));
1876 return;
1877 }
1878
1879 void
1880 restore_inferior_status (inf_status)
1881 struct inferior_status *inf_status;
1882 {
1883 FRAME fid;
1884 int level = inf_status->selected_level;
1885
1886 pc_changed = inf_status->pc_changed;
1887 stop_signal = inf_status->stop_signal;
1888 stop_pc = inf_status->stop_pc;
1889 stop_frame_address = inf_status->stop_frame_address;
1890 stop_step = inf_status->stop_step;
1891 stop_stack_dummy = inf_status->stop_stack_dummy;
1892 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1893 trap_expected = inf_status->trap_expected;
1894 step_range_start = inf_status->step_range_start;
1895 step_range_end = inf_status->step_range_end;
1896 step_frame_address = inf_status->step_frame_address;
1897 step_over_calls = inf_status->step_over_calls;
1898 step_resume_break_address = inf_status->step_resume_break_address;
1899 stop_after_trap = inf_status->stop_after_trap;
1900 stop_soon_quietly = inf_status->stop_soon_quietly;
1901 bpstat_clear (&stop_bpstat);
1902 stop_bpstat = inf_status->stop_bpstat;
1903 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1904 proceed_to_finish = inf_status->proceed_to_finish;
1905
1906 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1907
1908 /* The inferior can be gone if the user types "print exit(0)"
1909 (and perhaps other times). */
1910 if (target_has_stack && inf_status->restore_stack_info)
1911 {
1912 fid = find_relative_frame (get_current_frame (),
1913 &level);
1914
1915 /* If inf_status->selected_frame_address is NULL, there was no
1916 previously selected frame. */
1917 if (fid == 0 ||
1918 FRAME_FP (fid) != inf_status->selected_frame_address ||
1919 level != 0)
1920 {
1921 #if 1
1922 /* I'm not sure this error message is a good idea. I have
1923 only seen it occur after "Can't continue previously
1924 requested operation" (we get called from do_cleanups), in
1925 which case it just adds insult to injury (one confusing
1926 error message after another. Besides which, does the
1927 user really care if we can't restore the previously
1928 selected frame? */
1929 fprintf (stderr, "Unable to restore previously selected frame.\n");
1930 #endif
1931 select_frame (get_current_frame (), 0);
1932 return;
1933 }
1934
1935 select_frame (fid, inf_status->selected_level);
1936 }
1937 }
1938
1939 \f
1940 void
1941 _initialize_infrun ()
1942 {
1943 register int i;
1944 register int numsigs;
1945
1946 add_info ("signals", signals_info,
1947 "What debugger does when program gets various signals.\n\
1948 Specify a signal number as argument to print info on that signal only.");
1949 add_info_alias ("handle", "signals", 0);
1950
1951 add_com ("handle", class_run, handle_command,
1952 "Specify how to handle a signal.\n\
1953 Args are signal numbers and actions to apply to those signals.\n\
1954 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1955 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1956 The special arg \"all\" is recognized to mean all signals except those\n\
1957 used by the debugger, typically SIGTRAP and SIGINT.\n\
1958 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1959 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1960 Stop means reenter debugger if this signal happens (implies print).\n\
1961 Print means print a message if this signal happens.\n\
1962 Pass means let program see this signal; otherwise program doesn't know.\n\
1963 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1964 Pass and Stop may be combined.");
1965
1966 numsigs = signo_max () + 1;
1967 signal_stop = (unsigned char *)
1968 xmalloc (sizeof (signal_stop[0]) * numsigs);
1969 signal_print = (unsigned char *)
1970 xmalloc (sizeof (signal_print[0]) * numsigs);
1971 signal_program = (unsigned char *)
1972 xmalloc (sizeof (signal_program[0]) * numsigs);
1973 for (i = 0; i < numsigs; i++)
1974 {
1975 signal_stop[i] = 1;
1976 signal_print[i] = 1;
1977 signal_program[i] = 1;
1978 }
1979
1980 /* Signals caused by debugger's own actions
1981 should not be given to the program afterwards. */
1982 signal_program[SIGTRAP] = 0;
1983 signal_program[SIGINT] = 0;
1984
1985 /* Signals that are not errors should not normally enter the debugger. */
1986 #ifdef SIGALRM
1987 signal_stop[SIGALRM] = 0;
1988 signal_print[SIGALRM] = 0;
1989 #endif /* SIGALRM */
1990 #ifdef SIGVTALRM
1991 signal_stop[SIGVTALRM] = 0;
1992 signal_print[SIGVTALRM] = 0;
1993 #endif /* SIGVTALRM */
1994 #ifdef SIGPROF
1995 signal_stop[SIGPROF] = 0;
1996 signal_print[SIGPROF] = 0;
1997 #endif /* SIGPROF */
1998 #ifdef SIGCHLD
1999 signal_stop[SIGCHLD] = 0;
2000 signal_print[SIGCHLD] = 0;
2001 #endif /* SIGCHLD */
2002 #ifdef SIGCLD
2003 signal_stop[SIGCLD] = 0;
2004 signal_print[SIGCLD] = 0;
2005 #endif /* SIGCLD */
2006 #ifdef SIGIO
2007 signal_stop[SIGIO] = 0;
2008 signal_print[SIGIO] = 0;
2009 #endif /* SIGIO */
2010 #ifdef SIGURG
2011 signal_stop[SIGURG] = 0;
2012 signal_print[SIGURG] = 0;
2013 #endif /* SIGURG */
2014 }
This page took 0.071647 seconds and 4 git commands to generate.