* elf64-ppc.c (struct ppc64_elf_obj_tdata): Remove "has_dotsym"
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
6 2006
7 Free Software Foundation, Inc.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include "symtab.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "exceptions.h"
33 #include "breakpoint.h"
34 #include "gdb_wait.h"
35 #include "gdbcore.h"
36 #include "gdbcmd.h"
37 #include "cli/cli-script.h"
38 #include "target.h"
39 #include "gdbthread.h"
40 #include "annotate.h"
41 #include "symfile.h"
42 #include "top.h"
43 #include <signal.h>
44 #include "inf-loop.h"
45 #include "regcache.h"
46 #include "value.h"
47 #include "observer.h"
48 #include "language.h"
49 #include "solib.h"
50 #include "main.h"
51
52 #include "gdb_assert.h"
53 #include "mi/mi-common.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static void build_infrun (void);
72
73 static int follow_fork (void);
74
75 static void set_schedlock_func (char *args, int from_tty,
76 struct cmd_list_element *c);
77
78 struct execution_control_state;
79
80 static int currently_stepping (struct execution_control_state *ecs);
81
82 static void xdb_handle_command (char *args, int from_tty);
83
84 static int prepare_to_proceed (void);
85
86 void _initialize_infrun (void);
87
88 int inferior_ignoring_startup_exec_events = 0;
89 int inferior_ignoring_leading_exec_events = 0;
90
91 /* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94 int step_stop_if_no_debug = 0;
95 static void
96 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 }
101
102 /* In asynchronous mode, but simulating synchronous execution. */
103
104 int sync_execution = 0;
105
106 /* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
108 running in. */
109
110 static ptid_t previous_inferior_ptid;
111
112 /* This is true for configurations that may follow through execl() and
113 similar functions. At present this is only true for HP-UX native. */
114
115 #ifndef MAY_FOLLOW_EXEC
116 #define MAY_FOLLOW_EXEC (0)
117 #endif
118
119 static int may_follow_exec = MAY_FOLLOW_EXEC;
120
121 static int debug_infrun = 0;
122 static void
123 show_debug_infrun (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c, const char *value)
125 {
126 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
127 }
128
129 /* If the program uses ELF-style shared libraries, then calls to
130 functions in shared libraries go through stubs, which live in a
131 table called the PLT (Procedure Linkage Table). The first time the
132 function is called, the stub sends control to the dynamic linker,
133 which looks up the function's real address, patches the stub so
134 that future calls will go directly to the function, and then passes
135 control to the function.
136
137 If we are stepping at the source level, we don't want to see any of
138 this --- we just want to skip over the stub and the dynamic linker.
139 The simple approach is to single-step until control leaves the
140 dynamic linker.
141
142 However, on some systems (e.g., Red Hat's 5.2 distribution) the
143 dynamic linker calls functions in the shared C library, so you
144 can't tell from the PC alone whether the dynamic linker is still
145 running. In this case, we use a step-resume breakpoint to get us
146 past the dynamic linker, as if we were using "next" to step over a
147 function call.
148
149 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
150 linker code or not. Normally, this means we single-step. However,
151 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152 address where we can place a step-resume breakpoint to get past the
153 linker's symbol resolution function.
154
155 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
156 pretty portable way, by comparing the PC against the address ranges
157 of the dynamic linker's sections.
158
159 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160 it depends on internal details of the dynamic linker. It's usually
161 not too hard to figure out where to put a breakpoint, but it
162 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
163 sanity checking. If it can't figure things out, returning zero and
164 getting the (possibly confusing) stepping behavior is better than
165 signalling an error, which will obscure the change in the
166 inferior's state. */
167
168 /* This function returns TRUE if pc is the address of an instruction
169 that lies within the dynamic linker (such as the event hook, or the
170 dld itself).
171
172 This function must be used only when a dynamic linker event has
173 been caught, and the inferior is being stepped out of the hook, or
174 undefined results are guaranteed. */
175
176 #ifndef SOLIB_IN_DYNAMIC_LINKER
177 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
178 #endif
179
180 /* We can't step off a permanent breakpoint in the ordinary way, because we
181 can't remove it. Instead, we have to advance the PC to the next
182 instruction. This macro should expand to a pointer to a function that
183 does that, or zero if we have no such function. If we don't have a
184 definition for it, we have to report an error. */
185 #ifndef SKIP_PERMANENT_BREAKPOINT
186 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
187 static void
188 default_skip_permanent_breakpoint (void)
189 {
190 error (_("\
191 The program is stopped at a permanent breakpoint, but GDB does not know\n\
192 how to step past a permanent breakpoint on this architecture. Try using\n\
193 a command like `return' or `jump' to continue execution."));
194 }
195 #endif
196
197
198 /* Convert the #defines into values. This is temporary until wfi control
199 flow is completely sorted out. */
200
201 #ifndef HAVE_STEPPABLE_WATCHPOINT
202 #define HAVE_STEPPABLE_WATCHPOINT 0
203 #else
204 #undef HAVE_STEPPABLE_WATCHPOINT
205 #define HAVE_STEPPABLE_WATCHPOINT 1
206 #endif
207
208 #ifndef CANNOT_STEP_HW_WATCHPOINTS
209 #define CANNOT_STEP_HW_WATCHPOINTS 0
210 #else
211 #undef CANNOT_STEP_HW_WATCHPOINTS
212 #define CANNOT_STEP_HW_WATCHPOINTS 1
213 #endif
214
215 /* Tables of how to react to signals; the user sets them. */
216
217 static unsigned char *signal_stop;
218 static unsigned char *signal_print;
219 static unsigned char *signal_program;
220
221 #define SET_SIGS(nsigs,sigs,flags) \
222 do { \
223 int signum = (nsigs); \
224 while (signum-- > 0) \
225 if ((sigs)[signum]) \
226 (flags)[signum] = 1; \
227 } while (0)
228
229 #define UNSET_SIGS(nsigs,sigs,flags) \
230 do { \
231 int signum = (nsigs); \
232 while (signum-- > 0) \
233 if ((sigs)[signum]) \
234 (flags)[signum] = 0; \
235 } while (0)
236
237 /* Value to pass to target_resume() to cause all threads to resume */
238
239 #define RESUME_ALL (pid_to_ptid (-1))
240
241 /* Command list pointer for the "stop" placeholder. */
242
243 static struct cmd_list_element *stop_command;
244
245 /* Nonzero if breakpoints are now inserted in the inferior. */
246
247 static int breakpoints_inserted;
248
249 /* Function inferior was in as of last step command. */
250
251 static struct symbol *step_start_function;
252
253 /* Nonzero if we are expecting a trace trap and should proceed from it. */
254
255 static int trap_expected;
256
257 /* Nonzero if we want to give control to the user when we're notified
258 of shared library events by the dynamic linker. */
259 static int stop_on_solib_events;
260 static void
261 show_stop_on_solib_events (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
265 value);
266 }
267
268 /* Nonzero means expecting a trace trap
269 and should stop the inferior and return silently when it happens. */
270
271 int stop_after_trap;
272
273 /* Nonzero means expecting a trap and caller will handle it themselves.
274 It is used after attach, due to attaching to a process;
275 when running in the shell before the child program has been exec'd;
276 and when running some kinds of remote stuff (FIXME?). */
277
278 enum stop_kind stop_soon;
279
280 /* Nonzero if proceed is being used for a "finish" command or a similar
281 situation when stop_registers should be saved. */
282
283 int proceed_to_finish;
284
285 /* Save register contents here when about to pop a stack dummy frame,
286 if-and-only-if proceed_to_finish is set.
287 Thus this contains the return value from the called function (assuming
288 values are returned in a register). */
289
290 struct regcache *stop_registers;
291
292 /* Nonzero if program stopped due to error trying to insert breakpoints. */
293
294 static int breakpoints_failed;
295
296 /* Nonzero after stop if current stack frame should be printed. */
297
298 static int stop_print_frame;
299
300 static struct breakpoint *step_resume_breakpoint = NULL;
301
302 /* This is a cached copy of the pid/waitstatus of the last event
303 returned by target_wait()/deprecated_target_wait_hook(). This
304 information is returned by get_last_target_status(). */
305 static ptid_t target_last_wait_ptid;
306 static struct target_waitstatus target_last_waitstatus;
307
308 /* This is used to remember when a fork, vfork or exec event
309 was caught by a catchpoint, and thus the event is to be
310 followed at the next resume of the inferior, and not
311 immediately. */
312 static struct
313 {
314 enum target_waitkind kind;
315 struct
316 {
317 int parent_pid;
318 int child_pid;
319 }
320 fork_event;
321 char *execd_pathname;
322 }
323 pending_follow;
324
325 static const char follow_fork_mode_child[] = "child";
326 static const char follow_fork_mode_parent[] = "parent";
327
328 static const char *follow_fork_mode_kind_names[] = {
329 follow_fork_mode_child,
330 follow_fork_mode_parent,
331 NULL
332 };
333
334 static const char *follow_fork_mode_string = follow_fork_mode_parent;
335 static void
336 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
337 struct cmd_list_element *c, const char *value)
338 {
339 fprintf_filtered (file, _("\
340 Debugger response to a program call of fork or vfork is \"%s\".\n"),
341 value);
342 }
343 \f
344
345 static int
346 follow_fork (void)
347 {
348 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
349
350 return target_follow_fork (follow_child);
351 }
352
353 void
354 follow_inferior_reset_breakpoints (void)
355 {
356 /* Was there a step_resume breakpoint? (There was if the user
357 did a "next" at the fork() call.) If so, explicitly reset its
358 thread number.
359
360 step_resumes are a form of bp that are made to be per-thread.
361 Since we created the step_resume bp when the parent process
362 was being debugged, and now are switching to the child process,
363 from the breakpoint package's viewpoint, that's a switch of
364 "threads". We must update the bp's notion of which thread
365 it is for, or it'll be ignored when it triggers. */
366
367 if (step_resume_breakpoint)
368 breakpoint_re_set_thread (step_resume_breakpoint);
369
370 /* Reinsert all breakpoints in the child. The user may have set
371 breakpoints after catching the fork, in which case those
372 were never set in the child, but only in the parent. This makes
373 sure the inserted breakpoints match the breakpoint list. */
374
375 breakpoint_re_set ();
376 insert_breakpoints ();
377 }
378
379 /* EXECD_PATHNAME is assumed to be non-NULL. */
380
381 static void
382 follow_exec (int pid, char *execd_pathname)
383 {
384 int saved_pid = pid;
385 struct target_ops *tgt;
386
387 if (!may_follow_exec)
388 return;
389
390 /* This is an exec event that we actually wish to pay attention to.
391 Refresh our symbol table to the newly exec'd program, remove any
392 momentary bp's, etc.
393
394 If there are breakpoints, they aren't really inserted now,
395 since the exec() transformed our inferior into a fresh set
396 of instructions.
397
398 We want to preserve symbolic breakpoints on the list, since
399 we have hopes that they can be reset after the new a.out's
400 symbol table is read.
401
402 However, any "raw" breakpoints must be removed from the list
403 (e.g., the solib bp's), since their address is probably invalid
404 now.
405
406 And, we DON'T want to call delete_breakpoints() here, since
407 that may write the bp's "shadow contents" (the instruction
408 value that was overwritten witha TRAP instruction). Since
409 we now have a new a.out, those shadow contents aren't valid. */
410 update_breakpoints_after_exec ();
411
412 /* If there was one, it's gone now. We cannot truly step-to-next
413 statement through an exec(). */
414 step_resume_breakpoint = NULL;
415 step_range_start = 0;
416 step_range_end = 0;
417
418 /* What is this a.out's name? */
419 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
420
421 /* We've followed the inferior through an exec. Therefore, the
422 inferior has essentially been killed & reborn. */
423
424 /* First collect the run target in effect. */
425 tgt = find_run_target ();
426 /* If we can't find one, things are in a very strange state... */
427 if (tgt == NULL)
428 error (_("Could find run target to save before following exec"));
429
430 gdb_flush (gdb_stdout);
431 target_mourn_inferior ();
432 inferior_ptid = pid_to_ptid (saved_pid);
433 /* Because mourn_inferior resets inferior_ptid. */
434 push_target (tgt);
435
436 /* That a.out is now the one to use. */
437 exec_file_attach (execd_pathname, 0);
438
439 /* And also is where symbols can be found. */
440 symbol_file_add_main (execd_pathname, 0);
441
442 /* Reset the shared library package. This ensures that we get
443 a shlib event when the child reaches "_start", at which point
444 the dld will have had a chance to initialize the child. */
445 #if defined(SOLIB_RESTART)
446 SOLIB_RESTART ();
447 #endif
448 #ifdef SOLIB_CREATE_INFERIOR_HOOK
449 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
450 #else
451 solib_create_inferior_hook ();
452 #endif
453
454 /* Reinsert all breakpoints. (Those which were symbolic have
455 been reset to the proper address in the new a.out, thanks
456 to symbol_file_command...) */
457 insert_breakpoints ();
458
459 /* The next resume of this inferior should bring it to the shlib
460 startup breakpoints. (If the user had also set bp's on
461 "main" from the old (parent) process, then they'll auto-
462 matically get reset there in the new process.) */
463 }
464
465 /* Non-zero if we just simulating a single-step. This is needed
466 because we cannot remove the breakpoints in the inferior process
467 until after the `wait' in `wait_for_inferior'. */
468 static int singlestep_breakpoints_inserted_p = 0;
469
470 /* The thread we inserted single-step breakpoints for. */
471 static ptid_t singlestep_ptid;
472
473 /* If another thread hit the singlestep breakpoint, we save the original
474 thread here so that we can resume single-stepping it later. */
475 static ptid_t saved_singlestep_ptid;
476 static int stepping_past_singlestep_breakpoint;
477 \f
478
479 /* Things to clean up if we QUIT out of resume (). */
480 static void
481 resume_cleanups (void *ignore)
482 {
483 normal_stop ();
484 }
485
486 static const char schedlock_off[] = "off";
487 static const char schedlock_on[] = "on";
488 static const char schedlock_step[] = "step";
489 static const char *scheduler_enums[] = {
490 schedlock_off,
491 schedlock_on,
492 schedlock_step,
493 NULL
494 };
495 static const char *scheduler_mode = schedlock_off;
496 static void
497 show_scheduler_mode (struct ui_file *file, int from_tty,
498 struct cmd_list_element *c, const char *value)
499 {
500 fprintf_filtered (file, _("\
501 Mode for locking scheduler during execution is \"%s\".\n"),
502 value);
503 }
504
505 static void
506 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
507 {
508 if (!target_can_lock_scheduler)
509 {
510 scheduler_mode = schedlock_off;
511 error (_("Target '%s' cannot support this command."), target_shortname);
512 }
513 }
514
515
516 /* Resume the inferior, but allow a QUIT. This is useful if the user
517 wants to interrupt some lengthy single-stepping operation
518 (for child processes, the SIGINT goes to the inferior, and so
519 we get a SIGINT random_signal, but for remote debugging and perhaps
520 other targets, that's not true).
521
522 STEP nonzero if we should step (zero to continue instead).
523 SIG is the signal to give the inferior (zero for none). */
524 void
525 resume (int step, enum target_signal sig)
526 {
527 int should_resume = 1;
528 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
529 QUIT;
530
531 if (debug_infrun)
532 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
533 step, sig);
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p)
599 && (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on)
611 || (scheduler_mode == schedlock_step
612 && (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
668 && wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
733 /* There is a breakpoint at the address we will resume at,
734 step one instruction before inserting breakpoints so that
735 we do not stop right away (and report a second hit at this
736 breakpoint). */
737 oneproc = 1;
738 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
739 && gdbarch_single_step_through_delay (current_gdbarch,
740 get_current_frame ()))
741 /* We stepped onto an instruction that needs to be stepped
742 again before re-inserting the breakpoint, do so. */
743 oneproc = 1;
744 }
745 else
746 {
747 write_pc (addr);
748 }
749
750 if (debug_infrun)
751 fprintf_unfiltered (gdb_stdlog,
752 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
753 paddr_nz (addr), siggnal, step);
754
755 /* In a multi-threaded task we may select another thread
756 and then continue or step.
757
758 But if the old thread was stopped at a breakpoint, it
759 will immediately cause another breakpoint stop without
760 any execution (i.e. it will report a breakpoint hit
761 incorrectly). So we must step over it first.
762
763 prepare_to_proceed checks the current thread against the thread
764 that reported the most recent event. If a step-over is required
765 it returns TRUE and sets the current thread to the old thread. */
766 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
767 oneproc = 1;
768
769 if (oneproc)
770 /* We will get a trace trap after one instruction.
771 Continue it automatically and insert breakpoints then. */
772 trap_expected = 1;
773 else
774 {
775 insert_breakpoints ();
776 /* If we get here there was no call to error() in
777 insert breakpoints -- so they were inserted. */
778 breakpoints_inserted = 1;
779 }
780
781 if (siggnal != TARGET_SIGNAL_DEFAULT)
782 stop_signal = siggnal;
783 /* If this signal should not be seen by program,
784 give it zero. Used for debugging signals. */
785 else if (!signal_program[stop_signal])
786 stop_signal = TARGET_SIGNAL_0;
787
788 annotate_starting ();
789
790 /* Make sure that output from GDB appears before output from the
791 inferior. */
792 gdb_flush (gdb_stdout);
793
794 /* Refresh prev_pc value just prior to resuming. This used to be
795 done in stop_stepping, however, setting prev_pc there did not handle
796 scenarios such as inferior function calls or returning from
797 a function via the return command. In those cases, the prev_pc
798 value was not set properly for subsequent commands. The prev_pc value
799 is used to initialize the starting line number in the ecs. With an
800 invalid value, the gdb next command ends up stopping at the position
801 represented by the next line table entry past our start position.
802 On platforms that generate one line table entry per line, this
803 is not a problem. However, on the ia64, the compiler generates
804 extraneous line table entries that do not increase the line number.
805 When we issue the gdb next command on the ia64 after an inferior call
806 or a return command, we often end up a few instructions forward, still
807 within the original line we started.
808
809 An attempt was made to have init_execution_control_state () refresh
810 the prev_pc value before calculating the line number. This approach
811 did not work because on platforms that use ptrace, the pc register
812 cannot be read unless the inferior is stopped. At that point, we
813 are not guaranteed the inferior is stopped and so the read_pc ()
814 call can fail. Setting the prev_pc value here ensures the value is
815 updated correctly when the inferior is stopped. */
816 prev_pc = read_pc ();
817
818 /* Resume inferior. */
819 resume (oneproc || step || bpstat_should_step (), stop_signal);
820
821 /* Wait for it to stop (if not standalone)
822 and in any case decode why it stopped, and act accordingly. */
823 /* Do this only if we are not using the event loop, or if the target
824 does not support asynchronous execution. */
825 if (!target_can_async_p ())
826 {
827 wait_for_inferior ();
828 normal_stop ();
829 }
830 }
831 \f
832
833 /* Start remote-debugging of a machine over a serial link. */
834
835 void
836 start_remote (int from_tty)
837 {
838 init_thread_list ();
839 init_wait_for_inferior ();
840 stop_soon = STOP_QUIETLY;
841 trap_expected = 0;
842
843 /* Always go on waiting for the target, regardless of the mode. */
844 /* FIXME: cagney/1999-09-23: At present it isn't possible to
845 indicate to wait_for_inferior that a target should timeout if
846 nothing is returned (instead of just blocking). Because of this,
847 targets expecting an immediate response need to, internally, set
848 things up so that the target_wait() is forced to eventually
849 timeout. */
850 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
851 differentiate to its caller what the state of the target is after
852 the initial open has been performed. Here we're assuming that
853 the target has stopped. It should be possible to eventually have
854 target_open() return to the caller an indication that the target
855 is currently running and GDB state should be set to the same as
856 for an async run. */
857 wait_for_inferior ();
858
859 /* Now that the inferior has stopped, do any bookkeeping like
860 loading shared libraries. We want to do this before normal_stop,
861 so that the displayed frame is up to date. */
862 post_create_inferior (&current_target, from_tty);
863
864 normal_stop ();
865 }
866
867 /* Initialize static vars when a new inferior begins. */
868
869 void
870 init_wait_for_inferior (void)
871 {
872 /* These are meaningless until the first time through wait_for_inferior. */
873 prev_pc = 0;
874
875 breakpoints_inserted = 0;
876 breakpoint_init_inferior (inf_starting);
877
878 /* Don't confuse first call to proceed(). */
879 stop_signal = TARGET_SIGNAL_0;
880
881 /* The first resume is not following a fork/vfork/exec. */
882 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
883
884 clear_proceed_status ();
885
886 stepping_past_singlestep_breakpoint = 0;
887 }
888 \f
889 /* This enum encodes possible reasons for doing a target_wait, so that
890 wfi can call target_wait in one place. (Ultimately the call will be
891 moved out of the infinite loop entirely.) */
892
893 enum infwait_states
894 {
895 infwait_normal_state,
896 infwait_thread_hop_state,
897 infwait_nonstep_watch_state
898 };
899
900 /* Why did the inferior stop? Used to print the appropriate messages
901 to the interface from within handle_inferior_event(). */
902 enum inferior_stop_reason
903 {
904 /* We don't know why. */
905 STOP_UNKNOWN,
906 /* Step, next, nexti, stepi finished. */
907 END_STEPPING_RANGE,
908 /* Found breakpoint. */
909 BREAKPOINT_HIT,
910 /* Inferior terminated by signal. */
911 SIGNAL_EXITED,
912 /* Inferior exited. */
913 EXITED,
914 /* Inferior received signal, and user asked to be notified. */
915 SIGNAL_RECEIVED
916 };
917
918 /* This structure contains what used to be local variables in
919 wait_for_inferior. Probably many of them can return to being
920 locals in handle_inferior_event. */
921
922 struct execution_control_state
923 {
924 struct target_waitstatus ws;
925 struct target_waitstatus *wp;
926 int another_trap;
927 int random_signal;
928 CORE_ADDR stop_func_start;
929 CORE_ADDR stop_func_end;
930 char *stop_func_name;
931 struct symtab_and_line sal;
932 int current_line;
933 struct symtab *current_symtab;
934 int handling_longjmp; /* FIXME */
935 ptid_t ptid;
936 ptid_t saved_inferior_ptid;
937 int step_after_step_resume_breakpoint;
938 int stepping_through_solib_after_catch;
939 bpstat stepping_through_solib_catchpoints;
940 int new_thread_event;
941 struct target_waitstatus tmpstatus;
942 enum infwait_states infwait_state;
943 ptid_t waiton_ptid;
944 int wait_some_more;
945 };
946
947 void init_execution_control_state (struct execution_control_state *ecs);
948
949 void handle_inferior_event (struct execution_control_state *ecs);
950
951 static void step_into_function (struct execution_control_state *ecs);
952 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
953 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
954 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
955 struct frame_id sr_id);
956 static void stop_stepping (struct execution_control_state *ecs);
957 static void prepare_to_wait (struct execution_control_state *ecs);
958 static void keep_going (struct execution_control_state *ecs);
959 static void print_stop_reason (enum inferior_stop_reason stop_reason,
960 int stop_info);
961
962 /* Wait for control to return from inferior to debugger.
963 If inferior gets a signal, we may decide to start it up again
964 instead of returning. That is why there is a loop in this function.
965 When this function actually returns it means the inferior
966 should be left stopped and GDB should read more commands. */
967
968 void
969 wait_for_inferior (void)
970 {
971 struct cleanup *old_cleanups;
972 struct execution_control_state ecss;
973 struct execution_control_state *ecs;
974
975 if (debug_infrun)
976 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
977
978 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
979 &step_resume_breakpoint);
980
981 /* wfi still stays in a loop, so it's OK just to take the address of
982 a local to get the ecs pointer. */
983 ecs = &ecss;
984
985 /* Fill in with reasonable starting values. */
986 init_execution_control_state (ecs);
987
988 /* We'll update this if & when we switch to a new thread. */
989 previous_inferior_ptid = inferior_ptid;
990
991 overlay_cache_invalid = 1;
992
993 /* We have to invalidate the registers BEFORE calling target_wait
994 because they can be loaded from the target while in target_wait.
995 This makes remote debugging a bit more efficient for those
996 targets that provide critical registers as part of their normal
997 status mechanism. */
998
999 registers_changed ();
1000
1001 while (1)
1002 {
1003 if (deprecated_target_wait_hook)
1004 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1005 else
1006 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1007
1008 /* Now figure out what to do with the result of the result. */
1009 handle_inferior_event (ecs);
1010
1011 if (!ecs->wait_some_more)
1012 break;
1013 }
1014 do_cleanups (old_cleanups);
1015 }
1016
1017 /* Asynchronous version of wait_for_inferior. It is called by the
1018 event loop whenever a change of state is detected on the file
1019 descriptor corresponding to the target. It can be called more than
1020 once to complete a single execution command. In such cases we need
1021 to keep the state in a global variable ASYNC_ECSS. If it is the
1022 last time that this function is called for a single execution
1023 command, then report to the user that the inferior has stopped, and
1024 do the necessary cleanups. */
1025
1026 struct execution_control_state async_ecss;
1027 struct execution_control_state *async_ecs;
1028
1029 void
1030 fetch_inferior_event (void *client_data)
1031 {
1032 static struct cleanup *old_cleanups;
1033
1034 async_ecs = &async_ecss;
1035
1036 if (!async_ecs->wait_some_more)
1037 {
1038 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1039 &step_resume_breakpoint);
1040
1041 /* Fill in with reasonable starting values. */
1042 init_execution_control_state (async_ecs);
1043
1044 /* We'll update this if & when we switch to a new thread. */
1045 previous_inferior_ptid = inferior_ptid;
1046
1047 overlay_cache_invalid = 1;
1048
1049 /* We have to invalidate the registers BEFORE calling target_wait
1050 because they can be loaded from the target while in target_wait.
1051 This makes remote debugging a bit more efficient for those
1052 targets that provide critical registers as part of their normal
1053 status mechanism. */
1054
1055 registers_changed ();
1056 }
1057
1058 if (deprecated_target_wait_hook)
1059 async_ecs->ptid =
1060 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1061 else
1062 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1063
1064 /* Now figure out what to do with the result of the result. */
1065 handle_inferior_event (async_ecs);
1066
1067 if (!async_ecs->wait_some_more)
1068 {
1069 /* Do only the cleanups that have been added by this
1070 function. Let the continuations for the commands do the rest,
1071 if there are any. */
1072 do_exec_cleanups (old_cleanups);
1073 normal_stop ();
1074 if (step_multi && stop_step)
1075 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1076 else
1077 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1078 }
1079 }
1080
1081 /* Prepare an execution control state for looping through a
1082 wait_for_inferior-type loop. */
1083
1084 void
1085 init_execution_control_state (struct execution_control_state *ecs)
1086 {
1087 ecs->another_trap = 0;
1088 ecs->random_signal = 0;
1089 ecs->step_after_step_resume_breakpoint = 0;
1090 ecs->handling_longjmp = 0; /* FIXME */
1091 ecs->stepping_through_solib_after_catch = 0;
1092 ecs->stepping_through_solib_catchpoints = NULL;
1093 ecs->sal = find_pc_line (prev_pc, 0);
1094 ecs->current_line = ecs->sal.line;
1095 ecs->current_symtab = ecs->sal.symtab;
1096 ecs->infwait_state = infwait_normal_state;
1097 ecs->waiton_ptid = pid_to_ptid (-1);
1098 ecs->wp = &(ecs->ws);
1099 }
1100
1101 /* Return the cached copy of the last pid/waitstatus returned by
1102 target_wait()/deprecated_target_wait_hook(). The data is actually
1103 cached by handle_inferior_event(), which gets called immediately
1104 after target_wait()/deprecated_target_wait_hook(). */
1105
1106 void
1107 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1108 {
1109 *ptidp = target_last_wait_ptid;
1110 *status = target_last_waitstatus;
1111 }
1112
1113 void
1114 nullify_last_target_wait_ptid (void)
1115 {
1116 target_last_wait_ptid = minus_one_ptid;
1117 }
1118
1119 /* Switch thread contexts, maintaining "infrun state". */
1120
1121 static void
1122 context_switch (struct execution_control_state *ecs)
1123 {
1124 /* Caution: it may happen that the new thread (or the old one!)
1125 is not in the thread list. In this case we must not attempt
1126 to "switch context", or we run the risk that our context may
1127 be lost. This may happen as a result of the target module
1128 mishandling thread creation. */
1129
1130 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1131 { /* Perform infrun state context switch: */
1132 /* Save infrun state for the old thread. */
1133 save_infrun_state (inferior_ptid, prev_pc,
1134 trap_expected, step_resume_breakpoint,
1135 step_range_start,
1136 step_range_end, &step_frame_id,
1137 ecs->handling_longjmp, ecs->another_trap,
1138 ecs->stepping_through_solib_after_catch,
1139 ecs->stepping_through_solib_catchpoints,
1140 ecs->current_line, ecs->current_symtab);
1141
1142 /* Load infrun state for the new thread. */
1143 load_infrun_state (ecs->ptid, &prev_pc,
1144 &trap_expected, &step_resume_breakpoint,
1145 &step_range_start,
1146 &step_range_end, &step_frame_id,
1147 &ecs->handling_longjmp, &ecs->another_trap,
1148 &ecs->stepping_through_solib_after_catch,
1149 &ecs->stepping_through_solib_catchpoints,
1150 &ecs->current_line, &ecs->current_symtab);
1151 }
1152 inferior_ptid = ecs->ptid;
1153 }
1154
1155 static void
1156 adjust_pc_after_break (struct execution_control_state *ecs)
1157 {
1158 CORE_ADDR breakpoint_pc;
1159
1160 /* If this target does not decrement the PC after breakpoints, then
1161 we have nothing to do. */
1162 if (DECR_PC_AFTER_BREAK == 0)
1163 return;
1164
1165 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1166 we aren't, just return.
1167
1168 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1169 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1170 by software breakpoints should be handled through the normal breakpoint
1171 layer.
1172
1173 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1174 different signals (SIGILL or SIGEMT for instance), but it is less
1175 clear where the PC is pointing afterwards. It may not match
1176 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1177 these signals at breakpoints (the code has been in GDB since at least
1178 1992) so I can not guess how to handle them here.
1179
1180 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1181 would have the PC after hitting a watchpoint affected by
1182 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1183 in GDB history, and it seems unlikely to be correct, so
1184 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1185
1186 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1187 return;
1188
1189 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1190 return;
1191
1192 /* Find the location where (if we've hit a breakpoint) the
1193 breakpoint would be. */
1194 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1195
1196 if (SOFTWARE_SINGLE_STEP_P ())
1197 {
1198 /* When using software single-step, a SIGTRAP can only indicate
1199 an inserted breakpoint. This actually makes things
1200 easier. */
1201 if (singlestep_breakpoints_inserted_p)
1202 /* When software single stepping, the instruction at [prev_pc]
1203 is never a breakpoint, but the instruction following
1204 [prev_pc] (in program execution order) always is. Assume
1205 that following instruction was reached and hence a software
1206 breakpoint was hit. */
1207 write_pc_pid (breakpoint_pc, ecs->ptid);
1208 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1209 /* The inferior was free running (i.e., no single-step
1210 breakpoints inserted) and it hit a software breakpoint. */
1211 write_pc_pid (breakpoint_pc, ecs->ptid);
1212 }
1213 else
1214 {
1215 /* When using hardware single-step, a SIGTRAP is reported for
1216 both a completed single-step and a software breakpoint. Need
1217 to differentiate between the two as the latter needs
1218 adjusting but the former does not.
1219
1220 When the thread to be examined does not match the current thread
1221 context we can't use currently_stepping, so assume no
1222 single-stepping in this case. */
1223 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1224 {
1225 if (prev_pc == breakpoint_pc
1226 && software_breakpoint_inserted_here_p (breakpoint_pc))
1227 /* Hardware single-stepped a software breakpoint (as
1228 occures when the inferior is resumed with PC pointing
1229 at not-yet-hit software breakpoint). Since the
1230 breakpoint really is executed, the inferior needs to be
1231 backed up to the breakpoint address. */
1232 write_pc_pid (breakpoint_pc, ecs->ptid);
1233 }
1234 else
1235 {
1236 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1237 /* The inferior was free running (i.e., no hardware
1238 single-step and no possibility of a false SIGTRAP) and
1239 hit a software breakpoint. */
1240 write_pc_pid (breakpoint_pc, ecs->ptid);
1241 }
1242 }
1243 }
1244
1245 /* Given an execution control state that has been freshly filled in
1246 by an event from the inferior, figure out what it means and take
1247 appropriate action. */
1248
1249 int stepped_after_stopped_by_watchpoint;
1250
1251 void
1252 handle_inferior_event (struct execution_control_state *ecs)
1253 {
1254 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1255 that the variable stepped_after_stopped_by_watchpoint isn't used,
1256 then you're wrong! See remote.c:remote_stopped_data_address. */
1257
1258 int sw_single_step_trap_p = 0;
1259 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1260
1261 /* Cache the last pid/waitstatus. */
1262 target_last_wait_ptid = ecs->ptid;
1263 target_last_waitstatus = *ecs->wp;
1264
1265 adjust_pc_after_break (ecs);
1266
1267 switch (ecs->infwait_state)
1268 {
1269 case infwait_thread_hop_state:
1270 if (debug_infrun)
1271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1272 /* Cancel the waiton_ptid. */
1273 ecs->waiton_ptid = pid_to_ptid (-1);
1274 break;
1275
1276 case infwait_normal_state:
1277 if (debug_infrun)
1278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1279 stepped_after_stopped_by_watchpoint = 0;
1280 break;
1281
1282 case infwait_nonstep_watch_state:
1283 if (debug_infrun)
1284 fprintf_unfiltered (gdb_stdlog,
1285 "infrun: infwait_nonstep_watch_state\n");
1286 insert_breakpoints ();
1287
1288 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1289 handle things like signals arriving and other things happening
1290 in combination correctly? */
1291 stepped_after_stopped_by_watchpoint = 1;
1292 break;
1293
1294 default:
1295 internal_error (__FILE__, __LINE__, _("bad switch"));
1296 }
1297 ecs->infwait_state = infwait_normal_state;
1298
1299 flush_cached_frames ();
1300
1301 /* If it's a new process, add it to the thread database */
1302
1303 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1304 && !ptid_equal (ecs->ptid, minus_one_ptid)
1305 && !in_thread_list (ecs->ptid));
1306
1307 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1308 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1309 {
1310 add_thread (ecs->ptid);
1311
1312 ui_out_text (uiout, "[New ");
1313 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1314 ui_out_text (uiout, "]\n");
1315 }
1316
1317 switch (ecs->ws.kind)
1318 {
1319 case TARGET_WAITKIND_LOADED:
1320 if (debug_infrun)
1321 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1322 /* Ignore gracefully during startup of the inferior, as it
1323 might be the shell which has just loaded some objects,
1324 otherwise add the symbols for the newly loaded objects. */
1325 #ifdef SOLIB_ADD
1326 if (stop_soon == NO_STOP_QUIETLY)
1327 {
1328 /* Remove breakpoints, SOLIB_ADD might adjust
1329 breakpoint addresses via breakpoint_re_set. */
1330 if (breakpoints_inserted)
1331 remove_breakpoints ();
1332
1333 /* Check for any newly added shared libraries if we're
1334 supposed to be adding them automatically. Switch
1335 terminal for any messages produced by
1336 breakpoint_re_set. */
1337 target_terminal_ours_for_output ();
1338 /* NOTE: cagney/2003-11-25: Make certain that the target
1339 stack's section table is kept up-to-date. Architectures,
1340 (e.g., PPC64), use the section table to perform
1341 operations such as address => section name and hence
1342 require the table to contain all sections (including
1343 those found in shared libraries). */
1344 /* NOTE: cagney/2003-11-25: Pass current_target and not
1345 exec_ops to SOLIB_ADD. This is because current GDB is
1346 only tooled to propagate section_table changes out from
1347 the "current_target" (see target_resize_to_sections), and
1348 not up from the exec stratum. This, of course, isn't
1349 right. "infrun.c" should only interact with the
1350 exec/process stratum, instead relying on the target stack
1351 to propagate relevant changes (stop, section table
1352 changed, ...) up to other layers. */
1353 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1354 target_terminal_inferior ();
1355
1356 /* Reinsert breakpoints and continue. */
1357 if (breakpoints_inserted)
1358 insert_breakpoints ();
1359 }
1360 #endif
1361 resume (0, TARGET_SIGNAL_0);
1362 prepare_to_wait (ecs);
1363 return;
1364
1365 case TARGET_WAITKIND_SPURIOUS:
1366 if (debug_infrun)
1367 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1368 resume (0, TARGET_SIGNAL_0);
1369 prepare_to_wait (ecs);
1370 return;
1371
1372 case TARGET_WAITKIND_EXITED:
1373 if (debug_infrun)
1374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1375 target_terminal_ours (); /* Must do this before mourn anyway */
1376 print_stop_reason (EXITED, ecs->ws.value.integer);
1377
1378 /* Record the exit code in the convenience variable $_exitcode, so
1379 that the user can inspect this again later. */
1380 set_internalvar (lookup_internalvar ("_exitcode"),
1381 value_from_longest (builtin_type_int,
1382 (LONGEST) ecs->ws.value.integer));
1383 gdb_flush (gdb_stdout);
1384 target_mourn_inferior ();
1385 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1386 stop_print_frame = 0;
1387 stop_stepping (ecs);
1388 return;
1389
1390 case TARGET_WAITKIND_SIGNALLED:
1391 if (debug_infrun)
1392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1393 stop_print_frame = 0;
1394 stop_signal = ecs->ws.value.sig;
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396
1397 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1398 reach here unless the inferior is dead. However, for years
1399 target_kill() was called here, which hints that fatal signals aren't
1400 really fatal on some systems. If that's true, then some changes
1401 may be needed. */
1402 target_mourn_inferior ();
1403
1404 print_stop_reason (SIGNAL_EXITED, stop_signal);
1405 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1406 stop_stepping (ecs);
1407 return;
1408
1409 /* The following are the only cases in which we keep going;
1410 the above cases end in a continue or goto. */
1411 case TARGET_WAITKIND_FORKED:
1412 case TARGET_WAITKIND_VFORKED:
1413 if (debug_infrun)
1414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1415 stop_signal = TARGET_SIGNAL_TRAP;
1416 pending_follow.kind = ecs->ws.kind;
1417
1418 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1419 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1420
1421 if (!ptid_equal (ecs->ptid, inferior_ptid))
1422 {
1423 context_switch (ecs);
1424 flush_cached_frames ();
1425 }
1426
1427 stop_pc = read_pc ();
1428
1429 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1430
1431 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1432
1433 /* If no catchpoint triggered for this, then keep going. */
1434 if (ecs->random_signal)
1435 {
1436 stop_signal = TARGET_SIGNAL_0;
1437 keep_going (ecs);
1438 return;
1439 }
1440 goto process_event_stop_test;
1441
1442 case TARGET_WAITKIND_EXECD:
1443 if (debug_infrun)
1444 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1445 stop_signal = TARGET_SIGNAL_TRAP;
1446
1447 /* NOTE drow/2002-12-05: This code should be pushed down into the
1448 target_wait function. Until then following vfork on HP/UX 10.20
1449 is probably broken by this. Of course, it's broken anyway. */
1450 /* Is this a target which reports multiple exec events per actual
1451 call to exec()? (HP-UX using ptrace does, for example.) If so,
1452 ignore all but the last one. Just resume the exec'r, and wait
1453 for the next exec event. */
1454 if (inferior_ignoring_leading_exec_events)
1455 {
1456 inferior_ignoring_leading_exec_events--;
1457 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1458 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1459 parent_pid);
1460 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1461 prepare_to_wait (ecs);
1462 return;
1463 }
1464 inferior_ignoring_leading_exec_events =
1465 target_reported_exec_events_per_exec_call () - 1;
1466
1467 pending_follow.execd_pathname =
1468 savestring (ecs->ws.value.execd_pathname,
1469 strlen (ecs->ws.value.execd_pathname));
1470
1471 /* This causes the eventpoints and symbol table to be reset. Must
1472 do this now, before trying to determine whether to stop. */
1473 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1474 xfree (pending_follow.execd_pathname);
1475
1476 stop_pc = read_pc_pid (ecs->ptid);
1477 ecs->saved_inferior_ptid = inferior_ptid;
1478 inferior_ptid = ecs->ptid;
1479
1480 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1481
1482 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1483 inferior_ptid = ecs->saved_inferior_ptid;
1484
1485 if (!ptid_equal (ecs->ptid, inferior_ptid))
1486 {
1487 context_switch (ecs);
1488 flush_cached_frames ();
1489 }
1490
1491 /* If no catchpoint triggered for this, then keep going. */
1492 if (ecs->random_signal)
1493 {
1494 stop_signal = TARGET_SIGNAL_0;
1495 keep_going (ecs);
1496 return;
1497 }
1498 goto process_event_stop_test;
1499
1500 /* Be careful not to try to gather much state about a thread
1501 that's in a syscall. It's frequently a losing proposition. */
1502 case TARGET_WAITKIND_SYSCALL_ENTRY:
1503 if (debug_infrun)
1504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1505 resume (0, TARGET_SIGNAL_0);
1506 prepare_to_wait (ecs);
1507 return;
1508
1509 /* Before examining the threads further, step this thread to
1510 get it entirely out of the syscall. (We get notice of the
1511 event when the thread is just on the verge of exiting a
1512 syscall. Stepping one instruction seems to get it back
1513 into user code.) */
1514 case TARGET_WAITKIND_SYSCALL_RETURN:
1515 if (debug_infrun)
1516 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1517 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1518 prepare_to_wait (ecs);
1519 return;
1520
1521 case TARGET_WAITKIND_STOPPED:
1522 if (debug_infrun)
1523 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1524 stop_signal = ecs->ws.value.sig;
1525 break;
1526
1527 /* We had an event in the inferior, but we are not interested
1528 in handling it at this level. The lower layers have already
1529 done what needs to be done, if anything.
1530
1531 One of the possible circumstances for this is when the
1532 inferior produces output for the console. The inferior has
1533 not stopped, and we are ignoring the event. Another possible
1534 circumstance is any event which the lower level knows will be
1535 reported multiple times without an intervening resume. */
1536 case TARGET_WAITKIND_IGNORE:
1537 if (debug_infrun)
1538 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1539 prepare_to_wait (ecs);
1540 return;
1541 }
1542
1543 /* We may want to consider not doing a resume here in order to give
1544 the user a chance to play with the new thread. It might be good
1545 to make that a user-settable option. */
1546
1547 /* At this point, all threads are stopped (happens automatically in
1548 either the OS or the native code). Therefore we need to continue
1549 all threads in order to make progress. */
1550 if (ecs->new_thread_event)
1551 {
1552 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1553 prepare_to_wait (ecs);
1554 return;
1555 }
1556
1557 stop_pc = read_pc_pid (ecs->ptid);
1558
1559 if (debug_infrun)
1560 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1561
1562 if (stepping_past_singlestep_breakpoint)
1563 {
1564 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1565 && singlestep_breakpoints_inserted_p);
1566 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1567 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1568
1569 stepping_past_singlestep_breakpoint = 0;
1570
1571 /* We've either finished single-stepping past the single-step
1572 breakpoint, or stopped for some other reason. It would be nice if
1573 we could tell, but we can't reliably. */
1574 if (stop_signal == TARGET_SIGNAL_TRAP)
1575 {
1576 if (debug_infrun)
1577 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1578 /* Pull the single step breakpoints out of the target. */
1579 SOFTWARE_SINGLE_STEP (0, 0);
1580 singlestep_breakpoints_inserted_p = 0;
1581
1582 ecs->random_signal = 0;
1583
1584 ecs->ptid = saved_singlestep_ptid;
1585 context_switch (ecs);
1586 if (deprecated_context_hook)
1587 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1588
1589 resume (1, TARGET_SIGNAL_0);
1590 prepare_to_wait (ecs);
1591 return;
1592 }
1593 }
1594
1595 stepping_past_singlestep_breakpoint = 0;
1596
1597 /* See if a thread hit a thread-specific breakpoint that was meant for
1598 another thread. If so, then step that thread past the breakpoint,
1599 and continue it. */
1600
1601 if (stop_signal == TARGET_SIGNAL_TRAP)
1602 {
1603 int thread_hop_needed = 0;
1604
1605 /* Check if a regular breakpoint has been hit before checking
1606 for a potential single step breakpoint. Otherwise, GDB will
1607 not see this breakpoint hit when stepping onto breakpoints. */
1608 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1609 {
1610 ecs->random_signal = 0;
1611 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1612 thread_hop_needed = 1;
1613 }
1614 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1615 {
1616 ecs->random_signal = 0;
1617 /* The call to in_thread_list is necessary because PTIDs sometimes
1618 change when we go from single-threaded to multi-threaded. If
1619 the singlestep_ptid is still in the list, assume that it is
1620 really different from ecs->ptid. */
1621 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1622 && in_thread_list (singlestep_ptid))
1623 {
1624 thread_hop_needed = 1;
1625 stepping_past_singlestep_breakpoint = 1;
1626 saved_singlestep_ptid = singlestep_ptid;
1627 }
1628 }
1629
1630 if (thread_hop_needed)
1631 {
1632 int remove_status;
1633
1634 if (debug_infrun)
1635 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1636
1637 /* Saw a breakpoint, but it was hit by the wrong thread.
1638 Just continue. */
1639
1640 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1641 {
1642 /* Pull the single step breakpoints out of the target. */
1643 SOFTWARE_SINGLE_STEP (0, 0);
1644 singlestep_breakpoints_inserted_p = 0;
1645 }
1646
1647 remove_status = remove_breakpoints ();
1648 /* Did we fail to remove breakpoints? If so, try
1649 to set the PC past the bp. (There's at least
1650 one situation in which we can fail to remove
1651 the bp's: On HP-UX's that use ttrace, we can't
1652 change the address space of a vforking child
1653 process until the child exits (well, okay, not
1654 then either :-) or execs. */
1655 if (remove_status != 0)
1656 {
1657 /* FIXME! This is obviously non-portable! */
1658 write_pc_pid (stop_pc + 4, ecs->ptid);
1659 /* We need to restart all the threads now,
1660 * unles we're running in scheduler-locked mode.
1661 * Use currently_stepping to determine whether to
1662 * step or continue.
1663 */
1664 /* FIXME MVS: is there any reason not to call resume()? */
1665 if (scheduler_mode == schedlock_on)
1666 target_resume (ecs->ptid,
1667 currently_stepping (ecs), TARGET_SIGNAL_0);
1668 else
1669 target_resume (RESUME_ALL,
1670 currently_stepping (ecs), TARGET_SIGNAL_0);
1671 prepare_to_wait (ecs);
1672 return;
1673 }
1674 else
1675 { /* Single step */
1676 breakpoints_inserted = 0;
1677 if (!ptid_equal (inferior_ptid, ecs->ptid))
1678 context_switch (ecs);
1679 ecs->waiton_ptid = ecs->ptid;
1680 ecs->wp = &(ecs->ws);
1681 ecs->another_trap = 1;
1682
1683 ecs->infwait_state = infwait_thread_hop_state;
1684 keep_going (ecs);
1685 registers_changed ();
1686 return;
1687 }
1688 }
1689 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1690 {
1691 sw_single_step_trap_p = 1;
1692 ecs->random_signal = 0;
1693 }
1694 }
1695 else
1696 ecs->random_signal = 1;
1697
1698 /* See if something interesting happened to the non-current thread. If
1699 so, then switch to that thread. */
1700 if (!ptid_equal (ecs->ptid, inferior_ptid))
1701 {
1702 if (debug_infrun)
1703 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1704
1705 context_switch (ecs);
1706
1707 if (deprecated_context_hook)
1708 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1709
1710 flush_cached_frames ();
1711 }
1712
1713 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1714 {
1715 /* Pull the single step breakpoints out of the target. */
1716 SOFTWARE_SINGLE_STEP (0, 0);
1717 singlestep_breakpoints_inserted_p = 0;
1718 }
1719
1720 /* It may not be necessary to disable the watchpoint to stop over
1721 it. For example, the PA can (with some kernel cooperation)
1722 single step over a watchpoint without disabling the watchpoint. */
1723 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1724 {
1725 if (debug_infrun)
1726 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1727 resume (1, 0);
1728 prepare_to_wait (ecs);
1729 return;
1730 }
1731
1732 /* It is far more common to need to disable a watchpoint to step
1733 the inferior over it. FIXME. What else might a debug
1734 register or page protection watchpoint scheme need here? */
1735 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1736 {
1737 /* At this point, we are stopped at an instruction which has
1738 attempted to write to a piece of memory under control of
1739 a watchpoint. The instruction hasn't actually executed
1740 yet. If we were to evaluate the watchpoint expression
1741 now, we would get the old value, and therefore no change
1742 would seem to have occurred.
1743
1744 In order to make watchpoints work `right', we really need
1745 to complete the memory write, and then evaluate the
1746 watchpoint expression. The following code does that by
1747 removing the watchpoint (actually, all watchpoints and
1748 breakpoints), single-stepping the target, re-inserting
1749 watchpoints, and then falling through to let normal
1750 single-step processing handle proceed. Since this
1751 includes evaluating watchpoints, things will come to a
1752 stop in the correct manner. */
1753
1754 if (debug_infrun)
1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1756 remove_breakpoints ();
1757 registers_changed ();
1758 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1759
1760 ecs->waiton_ptid = ecs->ptid;
1761 ecs->wp = &(ecs->ws);
1762 ecs->infwait_state = infwait_nonstep_watch_state;
1763 prepare_to_wait (ecs);
1764 return;
1765 }
1766
1767 /* It may be possible to simply continue after a watchpoint. */
1768 if (HAVE_CONTINUABLE_WATCHPOINT)
1769 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1770
1771 ecs->stop_func_start = 0;
1772 ecs->stop_func_end = 0;
1773 ecs->stop_func_name = 0;
1774 /* Don't care about return value; stop_func_start and stop_func_name
1775 will both be 0 if it doesn't work. */
1776 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1777 &ecs->stop_func_start, &ecs->stop_func_end);
1778 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1779 ecs->another_trap = 0;
1780 bpstat_clear (&stop_bpstat);
1781 stop_step = 0;
1782 stop_stack_dummy = 0;
1783 stop_print_frame = 1;
1784 ecs->random_signal = 0;
1785 stopped_by_random_signal = 0;
1786 breakpoints_failed = 0;
1787
1788 if (stop_signal == TARGET_SIGNAL_TRAP
1789 && trap_expected
1790 && gdbarch_single_step_through_delay_p (current_gdbarch)
1791 && currently_stepping (ecs))
1792 {
1793 /* We're trying to step of a breakpoint. Turns out that we're
1794 also on an instruction that needs to be stepped multiple
1795 times before it's been fully executing. E.g., architectures
1796 with a delay slot. It needs to be stepped twice, once for
1797 the instruction and once for the delay slot. */
1798 int step_through_delay
1799 = gdbarch_single_step_through_delay (current_gdbarch,
1800 get_current_frame ());
1801 if (debug_infrun && step_through_delay)
1802 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1803 if (step_range_end == 0 && step_through_delay)
1804 {
1805 /* The user issued a continue when stopped at a breakpoint.
1806 Set up for another trap and get out of here. */
1807 ecs->another_trap = 1;
1808 keep_going (ecs);
1809 return;
1810 }
1811 else if (step_through_delay)
1812 {
1813 /* The user issued a step when stopped at a breakpoint.
1814 Maybe we should stop, maybe we should not - the delay
1815 slot *might* correspond to a line of source. In any
1816 case, don't decide that here, just set ecs->another_trap,
1817 making sure we single-step again before breakpoints are
1818 re-inserted. */
1819 ecs->another_trap = 1;
1820 }
1821 }
1822
1823 /* Look at the cause of the stop, and decide what to do.
1824 The alternatives are:
1825 1) break; to really stop and return to the debugger,
1826 2) drop through to start up again
1827 (set ecs->another_trap to 1 to single step once)
1828 3) set ecs->random_signal to 1, and the decision between 1 and 2
1829 will be made according to the signal handling tables. */
1830
1831 /* First, distinguish signals caused by the debugger from signals
1832 that have to do with the program's own actions. Note that
1833 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1834 on the operating system version. Here we detect when a SIGILL or
1835 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1836 something similar for SIGSEGV, since a SIGSEGV will be generated
1837 when we're trying to execute a breakpoint instruction on a
1838 non-executable stack. This happens for call dummy breakpoints
1839 for architectures like SPARC that place call dummies on the
1840 stack. */
1841
1842 if (stop_signal == TARGET_SIGNAL_TRAP
1843 || (breakpoints_inserted
1844 && (stop_signal == TARGET_SIGNAL_ILL
1845 || stop_signal == TARGET_SIGNAL_SEGV
1846 || stop_signal == TARGET_SIGNAL_EMT))
1847 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1848 {
1849 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1850 {
1851 if (debug_infrun)
1852 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1853 stop_print_frame = 0;
1854 stop_stepping (ecs);
1855 return;
1856 }
1857
1858 /* This is originated from start_remote(), start_inferior() and
1859 shared libraries hook functions. */
1860 if (stop_soon == STOP_QUIETLY)
1861 {
1862 if (debug_infrun)
1863 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1864 stop_stepping (ecs);
1865 return;
1866 }
1867
1868 /* This originates from attach_command(). We need to overwrite
1869 the stop_signal here, because some kernels don't ignore a
1870 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1871 See more comments in inferior.h. */
1872 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1873 {
1874 stop_stepping (ecs);
1875 if (stop_signal == TARGET_SIGNAL_STOP)
1876 stop_signal = TARGET_SIGNAL_0;
1877 return;
1878 }
1879
1880 /* Don't even think about breakpoints if just proceeded over a
1881 breakpoint. */
1882 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1883 {
1884 if (debug_infrun)
1885 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1886 bpstat_clear (&stop_bpstat);
1887 }
1888 else
1889 {
1890 /* See if there is a breakpoint at the current PC. */
1891 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1892 stopped_by_watchpoint);
1893
1894 /* Following in case break condition called a
1895 function. */
1896 stop_print_frame = 1;
1897 }
1898
1899 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1900 at one stage in the past included checks for an inferior
1901 function call's call dummy's return breakpoint. The original
1902 comment, that went with the test, read:
1903
1904 ``End of a stack dummy. Some systems (e.g. Sony news) give
1905 another signal besides SIGTRAP, so check here as well as
1906 above.''
1907
1908 If someone ever tries to get get call dummys on a
1909 non-executable stack to work (where the target would stop
1910 with something like a SIGSEGV), then those tests might need
1911 to be re-instated. Given, however, that the tests were only
1912 enabled when momentary breakpoints were not being used, I
1913 suspect that it won't be the case.
1914
1915 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1916 be necessary for call dummies on a non-executable stack on
1917 SPARC. */
1918
1919 if (stop_signal == TARGET_SIGNAL_TRAP)
1920 ecs->random_signal
1921 = !(bpstat_explains_signal (stop_bpstat)
1922 || trap_expected
1923 || (step_range_end && step_resume_breakpoint == NULL));
1924 else
1925 {
1926 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1927 if (!ecs->random_signal)
1928 stop_signal = TARGET_SIGNAL_TRAP;
1929 }
1930 }
1931
1932 /* When we reach this point, we've pretty much decided
1933 that the reason for stopping must've been a random
1934 (unexpected) signal. */
1935
1936 else
1937 ecs->random_signal = 1;
1938
1939 process_event_stop_test:
1940 /* For the program's own signals, act according to
1941 the signal handling tables. */
1942
1943 if (ecs->random_signal)
1944 {
1945 /* Signal not for debugging purposes. */
1946 int printed = 0;
1947
1948 if (debug_infrun)
1949 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1950
1951 stopped_by_random_signal = 1;
1952
1953 if (signal_print[stop_signal])
1954 {
1955 printed = 1;
1956 target_terminal_ours_for_output ();
1957 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1958 }
1959 if (signal_stop[stop_signal])
1960 {
1961 stop_stepping (ecs);
1962 return;
1963 }
1964 /* If not going to stop, give terminal back
1965 if we took it away. */
1966 else if (printed)
1967 target_terminal_inferior ();
1968
1969 /* Clear the signal if it should not be passed. */
1970 if (signal_program[stop_signal] == 0)
1971 stop_signal = TARGET_SIGNAL_0;
1972
1973 if (prev_pc == read_pc ()
1974 && !breakpoints_inserted
1975 && breakpoint_here_p (read_pc ())
1976 && step_resume_breakpoint == NULL)
1977 {
1978 /* We were just starting a new sequence, attempting to
1979 single-step off of a breakpoint and expecting a SIGTRAP.
1980 Intead this signal arrives. This signal will take us out
1981 of the stepping range so GDB needs to remember to, when
1982 the signal handler returns, resume stepping off that
1983 breakpoint. */
1984 /* To simplify things, "continue" is forced to use the same
1985 code paths as single-step - set a breakpoint at the
1986 signal return address and then, once hit, step off that
1987 breakpoint. */
1988 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1989 ecs->step_after_step_resume_breakpoint = 1;
1990 keep_going (ecs);
1991 return;
1992 }
1993
1994 if (step_range_end != 0
1995 && stop_signal != TARGET_SIGNAL_0
1996 && stop_pc >= step_range_start && stop_pc < step_range_end
1997 && frame_id_eq (get_frame_id (get_current_frame ()),
1998 step_frame_id)
1999 && step_resume_breakpoint == NULL)
2000 {
2001 /* The inferior is about to take a signal that will take it
2002 out of the single step range. Set a breakpoint at the
2003 current PC (which is presumably where the signal handler
2004 will eventually return) and then allow the inferior to
2005 run free.
2006
2007 Note that this is only needed for a signal delivered
2008 while in the single-step range. Nested signals aren't a
2009 problem as they eventually all return. */
2010 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2011 keep_going (ecs);
2012 return;
2013 }
2014
2015 /* Note: step_resume_breakpoint may be non-NULL. This occures
2016 when either there's a nested signal, or when there's a
2017 pending signal enabled just as the signal handler returns
2018 (leaving the inferior at the step-resume-breakpoint without
2019 actually executing it). Either way continue until the
2020 breakpoint is really hit. */
2021 keep_going (ecs);
2022 return;
2023 }
2024
2025 /* Handle cases caused by hitting a breakpoint. */
2026 {
2027 CORE_ADDR jmp_buf_pc;
2028 struct bpstat_what what;
2029
2030 what = bpstat_what (stop_bpstat);
2031
2032 if (what.call_dummy)
2033 {
2034 stop_stack_dummy = 1;
2035 }
2036
2037 switch (what.main_action)
2038 {
2039 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2040 /* If we hit the breakpoint at longjmp, disable it for the
2041 duration of this command. Then, install a temporary
2042 breakpoint at the target of the jmp_buf. */
2043 if (debug_infrun)
2044 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2045 disable_longjmp_breakpoint ();
2046 remove_breakpoints ();
2047 breakpoints_inserted = 0;
2048 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2049 {
2050 keep_going (ecs);
2051 return;
2052 }
2053
2054 /* Need to blow away step-resume breakpoint, as it
2055 interferes with us */
2056 if (step_resume_breakpoint != NULL)
2057 {
2058 delete_step_resume_breakpoint (&step_resume_breakpoint);
2059 }
2060
2061 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2062 ecs->handling_longjmp = 1; /* FIXME */
2063 keep_going (ecs);
2064 return;
2065
2066 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2067 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2068 if (debug_infrun)
2069 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2070 remove_breakpoints ();
2071 breakpoints_inserted = 0;
2072 disable_longjmp_breakpoint ();
2073 ecs->handling_longjmp = 0; /* FIXME */
2074 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2075 break;
2076 /* else fallthrough */
2077
2078 case BPSTAT_WHAT_SINGLE:
2079 if (debug_infrun)
2080 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2081 if (breakpoints_inserted)
2082 {
2083 remove_breakpoints ();
2084 }
2085 breakpoints_inserted = 0;
2086 ecs->another_trap = 1;
2087 /* Still need to check other stuff, at least the case
2088 where we are stepping and step out of the right range. */
2089 break;
2090
2091 case BPSTAT_WHAT_STOP_NOISY:
2092 if (debug_infrun)
2093 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2094 stop_print_frame = 1;
2095
2096 /* We are about to nuke the step_resume_breakpointt via the
2097 cleanup chain, so no need to worry about it here. */
2098
2099 stop_stepping (ecs);
2100 return;
2101
2102 case BPSTAT_WHAT_STOP_SILENT:
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2105 stop_print_frame = 0;
2106
2107 /* We are about to nuke the step_resume_breakpoin via the
2108 cleanup chain, so no need to worry about it here. */
2109
2110 stop_stepping (ecs);
2111 return;
2112
2113 case BPSTAT_WHAT_STEP_RESUME:
2114 /* This proably demands a more elegant solution, but, yeah
2115 right...
2116
2117 This function's use of the simple variable
2118 step_resume_breakpoint doesn't seem to accomodate
2119 simultaneously active step-resume bp's, although the
2120 breakpoint list certainly can.
2121
2122 If we reach here and step_resume_breakpoint is already
2123 NULL, then apparently we have multiple active
2124 step-resume bp's. We'll just delete the breakpoint we
2125 stopped at, and carry on.
2126
2127 Correction: what the code currently does is delete a
2128 step-resume bp, but it makes no effort to ensure that
2129 the one deleted is the one currently stopped at. MVS */
2130
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2133
2134 if (step_resume_breakpoint == NULL)
2135 {
2136 step_resume_breakpoint =
2137 bpstat_find_step_resume_breakpoint (stop_bpstat);
2138 }
2139 delete_step_resume_breakpoint (&step_resume_breakpoint);
2140 if (ecs->step_after_step_resume_breakpoint)
2141 {
2142 /* Back when the step-resume breakpoint was inserted, we
2143 were trying to single-step off a breakpoint. Go back
2144 to doing that. */
2145 ecs->step_after_step_resume_breakpoint = 0;
2146 remove_breakpoints ();
2147 breakpoints_inserted = 0;
2148 ecs->another_trap = 1;
2149 keep_going (ecs);
2150 return;
2151 }
2152 break;
2153
2154 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2155 if (debug_infrun)
2156 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2157 /* If were waiting for a trap, hitting the step_resume_break
2158 doesn't count as getting it. */
2159 if (trap_expected)
2160 ecs->another_trap = 1;
2161 break;
2162
2163 case BPSTAT_WHAT_CHECK_SHLIBS:
2164 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2165 {
2166 if (debug_infrun)
2167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2168 /* Remove breakpoints, we eventually want to step over the
2169 shlib event breakpoint, and SOLIB_ADD might adjust
2170 breakpoint addresses via breakpoint_re_set. */
2171 if (breakpoints_inserted)
2172 remove_breakpoints ();
2173 breakpoints_inserted = 0;
2174
2175 /* Check for any newly added shared libraries if we're
2176 supposed to be adding them automatically. Switch
2177 terminal for any messages produced by
2178 breakpoint_re_set. */
2179 target_terminal_ours_for_output ();
2180 /* NOTE: cagney/2003-11-25: Make certain that the target
2181 stack's section table is kept up-to-date. Architectures,
2182 (e.g., PPC64), use the section table to perform
2183 operations such as address => section name and hence
2184 require the table to contain all sections (including
2185 those found in shared libraries). */
2186 /* NOTE: cagney/2003-11-25: Pass current_target and not
2187 exec_ops to SOLIB_ADD. This is because current GDB is
2188 only tooled to propagate section_table changes out from
2189 the "current_target" (see target_resize_to_sections), and
2190 not up from the exec stratum. This, of course, isn't
2191 right. "infrun.c" should only interact with the
2192 exec/process stratum, instead relying on the target stack
2193 to propagate relevant changes (stop, section table
2194 changed, ...) up to other layers. */
2195 #ifdef SOLIB_ADD
2196 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2197 #else
2198 solib_add (NULL, 0, &current_target, auto_solib_add);
2199 #endif
2200 target_terminal_inferior ();
2201
2202 /* Try to reenable shared library breakpoints, additional
2203 code segments in shared libraries might be mapped in now. */
2204 re_enable_breakpoints_in_shlibs ();
2205
2206 /* If requested, stop when the dynamic linker notifies
2207 gdb of events. This allows the user to get control
2208 and place breakpoints in initializer routines for
2209 dynamically loaded objects (among other things). */
2210 if (stop_on_solib_events || stop_stack_dummy)
2211 {
2212 stop_stepping (ecs);
2213 return;
2214 }
2215
2216 /* If we stopped due to an explicit catchpoint, then the
2217 (see above) call to SOLIB_ADD pulled in any symbols
2218 from a newly-loaded library, if appropriate.
2219
2220 We do want the inferior to stop, but not where it is
2221 now, which is in the dynamic linker callback. Rather,
2222 we would like it stop in the user's program, just after
2223 the call that caused this catchpoint to trigger. That
2224 gives the user a more useful vantage from which to
2225 examine their program's state. */
2226 else if (what.main_action
2227 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2228 {
2229 /* ??rehrauer: If I could figure out how to get the
2230 right return PC from here, we could just set a temp
2231 breakpoint and resume. I'm not sure we can without
2232 cracking open the dld's shared libraries and sniffing
2233 their unwind tables and text/data ranges, and that's
2234 not a terribly portable notion.
2235
2236 Until that time, we must step the inferior out of the
2237 dld callback, and also out of the dld itself (and any
2238 code or stubs in libdld.sl, such as "shl_load" and
2239 friends) until we reach non-dld code. At that point,
2240 we can stop stepping. */
2241 bpstat_get_triggered_catchpoints (stop_bpstat,
2242 &ecs->
2243 stepping_through_solib_catchpoints);
2244 ecs->stepping_through_solib_after_catch = 1;
2245
2246 /* Be sure to lift all breakpoints, so the inferior does
2247 actually step past this point... */
2248 ecs->another_trap = 1;
2249 break;
2250 }
2251 else
2252 {
2253 /* We want to step over this breakpoint, then keep going. */
2254 ecs->another_trap = 1;
2255 break;
2256 }
2257 }
2258 break;
2259
2260 case BPSTAT_WHAT_LAST:
2261 /* Not a real code, but listed here to shut up gcc -Wall. */
2262
2263 case BPSTAT_WHAT_KEEP_CHECKING:
2264 break;
2265 }
2266 }
2267
2268 /* We come here if we hit a breakpoint but should not
2269 stop for it. Possibly we also were stepping
2270 and should stop for that. So fall through and
2271 test for stepping. But, if not stepping,
2272 do not stop. */
2273
2274 /* Are we stepping to get the inferior out of the dynamic linker's
2275 hook (and possibly the dld itself) after catching a shlib
2276 event? */
2277 if (ecs->stepping_through_solib_after_catch)
2278 {
2279 #if defined(SOLIB_ADD)
2280 /* Have we reached our destination? If not, keep going. */
2281 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2282 {
2283 if (debug_infrun)
2284 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2285 ecs->another_trap = 1;
2286 keep_going (ecs);
2287 return;
2288 }
2289 #endif
2290 if (debug_infrun)
2291 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2292 /* Else, stop and report the catchpoint(s) whose triggering
2293 caused us to begin stepping. */
2294 ecs->stepping_through_solib_after_catch = 0;
2295 bpstat_clear (&stop_bpstat);
2296 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2297 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2298 stop_print_frame = 1;
2299 stop_stepping (ecs);
2300 return;
2301 }
2302
2303 if (step_resume_breakpoint)
2304 {
2305 if (debug_infrun)
2306 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2307
2308 /* Having a step-resume breakpoint overrides anything
2309 else having to do with stepping commands until
2310 that breakpoint is reached. */
2311 keep_going (ecs);
2312 return;
2313 }
2314
2315 if (step_range_end == 0)
2316 {
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2319 /* Likewise if we aren't even stepping. */
2320 keep_going (ecs);
2321 return;
2322 }
2323
2324 /* If stepping through a line, keep going if still within it.
2325
2326 Note that step_range_end is the address of the first instruction
2327 beyond the step range, and NOT the address of the last instruction
2328 within it! */
2329 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2330 {
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2333 paddr_nz (step_range_start),
2334 paddr_nz (step_range_end));
2335 keep_going (ecs);
2336 return;
2337 }
2338
2339 /* We stepped out of the stepping range. */
2340
2341 /* If we are stepping at the source level and entered the runtime
2342 loader dynamic symbol resolution code, we keep on single stepping
2343 until we exit the run time loader code and reach the callee's
2344 address. */
2345 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2346 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2347 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2348 #else
2349 && in_solib_dynsym_resolve_code (stop_pc)
2350 #endif
2351 )
2352 {
2353 CORE_ADDR pc_after_resolver =
2354 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2355
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2358
2359 if (pc_after_resolver)
2360 {
2361 /* Set up a step-resume breakpoint at the address
2362 indicated by SKIP_SOLIB_RESOLVER. */
2363 struct symtab_and_line sr_sal;
2364 init_sal (&sr_sal);
2365 sr_sal.pc = pc_after_resolver;
2366
2367 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2368 }
2369
2370 keep_going (ecs);
2371 return;
2372 }
2373
2374 if (step_range_end != 1
2375 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2376 || step_over_calls == STEP_OVER_ALL)
2377 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2378 {
2379 if (debug_infrun)
2380 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2381 /* The inferior, while doing a "step" or "next", has ended up in
2382 a signal trampoline (either by a signal being delivered or by
2383 the signal handler returning). Just single-step until the
2384 inferior leaves the trampoline (either by calling the handler
2385 or returning). */
2386 keep_going (ecs);
2387 return;
2388 }
2389
2390 /* Check for subroutine calls. The check for the current frame
2391 equalling the step ID is not necessary - the check of the
2392 previous frame's ID is sufficient - but it is a common case and
2393 cheaper than checking the previous frame's ID.
2394
2395 NOTE: frame_id_eq will never report two invalid frame IDs as
2396 being equal, so to get into this block, both the current and
2397 previous frame must have valid frame IDs. */
2398 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2399 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2400 {
2401 CORE_ADDR real_stop_pc;
2402
2403 if (debug_infrun)
2404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2405
2406 if ((step_over_calls == STEP_OVER_NONE)
2407 || ((step_range_end == 1)
2408 && in_prologue (prev_pc, ecs->stop_func_start)))
2409 {
2410 /* I presume that step_over_calls is only 0 when we're
2411 supposed to be stepping at the assembly language level
2412 ("stepi"). Just stop. */
2413 /* Also, maybe we just did a "nexti" inside a prolog, so we
2414 thought it was a subroutine call but it was not. Stop as
2415 well. FENN */
2416 stop_step = 1;
2417 print_stop_reason (END_STEPPING_RANGE, 0);
2418 stop_stepping (ecs);
2419 return;
2420 }
2421
2422 if (step_over_calls == STEP_OVER_ALL)
2423 {
2424 /* We're doing a "next", set a breakpoint at callee's return
2425 address (the address at which the caller will
2426 resume). */
2427 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2428 keep_going (ecs);
2429 return;
2430 }
2431
2432 /* If we are in a function call trampoline (a stub between the
2433 calling routine and the real function), locate the real
2434 function. That's what tells us (a) whether we want to step
2435 into it at all, and (b) what prologue we want to run to the
2436 end of, if we do step into it. */
2437 real_stop_pc = skip_language_trampoline (stop_pc);
2438 if (real_stop_pc == 0)
2439 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2440 if (real_stop_pc != 0)
2441 ecs->stop_func_start = real_stop_pc;
2442
2443 if (
2444 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2445 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2446 #else
2447 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2448 #endif
2449 )
2450 {
2451 struct symtab_and_line sr_sal;
2452 init_sal (&sr_sal);
2453 sr_sal.pc = ecs->stop_func_start;
2454
2455 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2456 keep_going (ecs);
2457 return;
2458 }
2459
2460 /* If we have line number information for the function we are
2461 thinking of stepping into, step into it.
2462
2463 If there are several symtabs at that PC (e.g. with include
2464 files), just want to know whether *any* of them have line
2465 numbers. find_pc_line handles this. */
2466 {
2467 struct symtab_and_line tmp_sal;
2468
2469 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2470 if (tmp_sal.line != 0)
2471 {
2472 step_into_function (ecs);
2473 return;
2474 }
2475 }
2476
2477 /* If we have no line number and the step-stop-if-no-debug is
2478 set, we stop the step so that the user has a chance to switch
2479 in assembly mode. */
2480 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2481 {
2482 stop_step = 1;
2483 print_stop_reason (END_STEPPING_RANGE, 0);
2484 stop_stepping (ecs);
2485 return;
2486 }
2487
2488 /* Set a breakpoint at callee's return address (the address at
2489 which the caller will resume). */
2490 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2491 keep_going (ecs);
2492 return;
2493 }
2494
2495 /* If we're in the return path from a shared library trampoline,
2496 we want to proceed through the trampoline when stepping. */
2497 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2498 {
2499 /* Determine where this trampoline returns. */
2500 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2501
2502 if (debug_infrun)
2503 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2504
2505 /* Only proceed through if we know where it's going. */
2506 if (real_stop_pc)
2507 {
2508 /* And put the step-breakpoint there and go until there. */
2509 struct symtab_and_line sr_sal;
2510
2511 init_sal (&sr_sal); /* initialize to zeroes */
2512 sr_sal.pc = real_stop_pc;
2513 sr_sal.section = find_pc_overlay (sr_sal.pc);
2514
2515 /* Do not specify what the fp should be when we stop since
2516 on some machines the prologue is where the new fp value
2517 is established. */
2518 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2519
2520 /* Restart without fiddling with the step ranges or
2521 other state. */
2522 keep_going (ecs);
2523 return;
2524 }
2525 }
2526
2527 ecs->sal = find_pc_line (stop_pc, 0);
2528
2529 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2530 the trampoline processing logic, however, there are some trampolines
2531 that have no names, so we should do trampoline handling first. */
2532 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2533 && ecs->stop_func_name == NULL
2534 && ecs->sal.line == 0)
2535 {
2536 if (debug_infrun)
2537 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2538
2539 /* The inferior just stepped into, or returned to, an
2540 undebuggable function (where there is no debugging information
2541 and no line number corresponding to the address where the
2542 inferior stopped). Since we want to skip this kind of code,
2543 we keep going until the inferior returns from this
2544 function - unless the user has asked us not to (via
2545 set step-mode) or we no longer know how to get back
2546 to the call site. */
2547 if (step_stop_if_no_debug
2548 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2549 {
2550 /* If we have no line number and the step-stop-if-no-debug
2551 is set, we stop the step so that the user has a chance to
2552 switch in assembly mode. */
2553 stop_step = 1;
2554 print_stop_reason (END_STEPPING_RANGE, 0);
2555 stop_stepping (ecs);
2556 return;
2557 }
2558 else
2559 {
2560 /* Set a breakpoint at callee's return address (the address
2561 at which the caller will resume). */
2562 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2563 keep_going (ecs);
2564 return;
2565 }
2566 }
2567
2568 if (step_range_end == 1)
2569 {
2570 /* It is stepi or nexti. We always want to stop stepping after
2571 one instruction. */
2572 if (debug_infrun)
2573 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2574 stop_step = 1;
2575 print_stop_reason (END_STEPPING_RANGE, 0);
2576 stop_stepping (ecs);
2577 return;
2578 }
2579
2580 if (ecs->sal.line == 0)
2581 {
2582 /* We have no line number information. That means to stop
2583 stepping (does this always happen right after one instruction,
2584 when we do "s" in a function with no line numbers,
2585 or can this happen as a result of a return or longjmp?). */
2586 if (debug_infrun)
2587 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2588 stop_step = 1;
2589 print_stop_reason (END_STEPPING_RANGE, 0);
2590 stop_stepping (ecs);
2591 return;
2592 }
2593
2594 if ((stop_pc == ecs->sal.pc)
2595 && (ecs->current_line != ecs->sal.line
2596 || ecs->current_symtab != ecs->sal.symtab))
2597 {
2598 /* We are at the start of a different line. So stop. Note that
2599 we don't stop if we step into the middle of a different line.
2600 That is said to make things like for (;;) statements work
2601 better. */
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2604 stop_step = 1;
2605 print_stop_reason (END_STEPPING_RANGE, 0);
2606 stop_stepping (ecs);
2607 return;
2608 }
2609
2610 /* We aren't done stepping.
2611
2612 Optimize by setting the stepping range to the line.
2613 (We might not be in the original line, but if we entered a
2614 new line in mid-statement, we continue stepping. This makes
2615 things like for(;;) statements work better.) */
2616
2617 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2618 {
2619 /* If this is the last line of the function, don't keep stepping
2620 (it would probably step us out of the function).
2621 This is particularly necessary for a one-line function,
2622 in which after skipping the prologue we better stop even though
2623 we will be in mid-line. */
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2626 stop_step = 1;
2627 print_stop_reason (END_STEPPING_RANGE, 0);
2628 stop_stepping (ecs);
2629 return;
2630 }
2631 step_range_start = ecs->sal.pc;
2632 step_range_end = ecs->sal.end;
2633 step_frame_id = get_frame_id (get_current_frame ());
2634 ecs->current_line = ecs->sal.line;
2635 ecs->current_symtab = ecs->sal.symtab;
2636
2637 /* In the case where we just stepped out of a function into the
2638 middle of a line of the caller, continue stepping, but
2639 step_frame_id must be modified to current frame */
2640 #if 0
2641 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2642 generous. It will trigger on things like a step into a frameless
2643 stackless leaf function. I think the logic should instead look
2644 at the unwound frame ID has that should give a more robust
2645 indication of what happened. */
2646 if (step - ID == current - ID)
2647 still stepping in same function;
2648 else if (step - ID == unwind (current - ID))
2649 stepped into a function;
2650 else
2651 stepped out of a function;
2652 /* Of course this assumes that the frame ID unwind code is robust
2653 and we're willing to introduce frame unwind logic into this
2654 function. Fortunately, those days are nearly upon us. */
2655 #endif
2656 {
2657 struct frame_id current_frame = get_frame_id (get_current_frame ());
2658 if (!(frame_id_inner (current_frame, step_frame_id)))
2659 step_frame_id = current_frame;
2660 }
2661
2662 if (debug_infrun)
2663 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2664 keep_going (ecs);
2665 }
2666
2667 /* Are we in the middle of stepping? */
2668
2669 static int
2670 currently_stepping (struct execution_control_state *ecs)
2671 {
2672 return ((!ecs->handling_longjmp
2673 && ((step_range_end && step_resume_breakpoint == NULL)
2674 || trap_expected))
2675 || ecs->stepping_through_solib_after_catch
2676 || bpstat_should_step ());
2677 }
2678
2679 /* Subroutine call with source code we should not step over. Do step
2680 to the first line of code in it. */
2681
2682 static void
2683 step_into_function (struct execution_control_state *ecs)
2684 {
2685 struct symtab *s;
2686 struct symtab_and_line sr_sal;
2687
2688 s = find_pc_symtab (stop_pc);
2689 if (s && s->language != language_asm)
2690 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2691
2692 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2693 /* Use the step_resume_break to step until the end of the prologue,
2694 even if that involves jumps (as it seems to on the vax under
2695 4.2). */
2696 /* If the prologue ends in the middle of a source line, continue to
2697 the end of that source line (if it is still within the function).
2698 Otherwise, just go to end of prologue. */
2699 if (ecs->sal.end
2700 && ecs->sal.pc != ecs->stop_func_start
2701 && ecs->sal.end < ecs->stop_func_end)
2702 ecs->stop_func_start = ecs->sal.end;
2703
2704 /* Architectures which require breakpoint adjustment might not be able
2705 to place a breakpoint at the computed address. If so, the test
2706 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2707 ecs->stop_func_start to an address at which a breakpoint may be
2708 legitimately placed.
2709
2710 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2711 made, GDB will enter an infinite loop when stepping through
2712 optimized code consisting of VLIW instructions which contain
2713 subinstructions corresponding to different source lines. On
2714 FR-V, it's not permitted to place a breakpoint on any but the
2715 first subinstruction of a VLIW instruction. When a breakpoint is
2716 set, GDB will adjust the breakpoint address to the beginning of
2717 the VLIW instruction. Thus, we need to make the corresponding
2718 adjustment here when computing the stop address. */
2719
2720 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2721 {
2722 ecs->stop_func_start
2723 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2724 ecs->stop_func_start);
2725 }
2726
2727 if (ecs->stop_func_start == stop_pc)
2728 {
2729 /* We are already there: stop now. */
2730 stop_step = 1;
2731 print_stop_reason (END_STEPPING_RANGE, 0);
2732 stop_stepping (ecs);
2733 return;
2734 }
2735 else
2736 {
2737 /* Put the step-breakpoint there and go until there. */
2738 init_sal (&sr_sal); /* initialize to zeroes */
2739 sr_sal.pc = ecs->stop_func_start;
2740 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2741
2742 /* Do not specify what the fp should be when we stop since on
2743 some machines the prologue is where the new fp value is
2744 established. */
2745 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2746
2747 /* And make sure stepping stops right away then. */
2748 step_range_end = step_range_start;
2749 }
2750 keep_going (ecs);
2751 }
2752
2753 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2754 This is used to both functions and to skip over code. */
2755
2756 static void
2757 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2758 struct frame_id sr_id)
2759 {
2760 /* There should never be more than one step-resume breakpoint per
2761 thread, so we should never be setting a new
2762 step_resume_breakpoint when one is already active. */
2763 gdb_assert (step_resume_breakpoint == NULL);
2764 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2765 bp_step_resume);
2766 if (breakpoints_inserted)
2767 insert_breakpoints ();
2768 }
2769
2770 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2771 to skip a potential signal handler.
2772
2773 This is called with the interrupted function's frame. The signal
2774 handler, when it returns, will resume the interrupted function at
2775 RETURN_FRAME.pc. */
2776
2777 static void
2778 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2779 {
2780 struct symtab_and_line sr_sal;
2781
2782 init_sal (&sr_sal); /* initialize to zeros */
2783
2784 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2785 sr_sal.section = find_pc_overlay (sr_sal.pc);
2786
2787 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2788 }
2789
2790 /* Similar to insert_step_resume_breakpoint_at_frame, except
2791 but a breakpoint at the previous frame's PC. This is used to
2792 skip a function after stepping into it (for "next" or if the called
2793 function has no debugging information).
2794
2795 The current function has almost always been reached by single
2796 stepping a call or return instruction. NEXT_FRAME belongs to the
2797 current function, and the breakpoint will be set at the caller's
2798 resume address.
2799
2800 This is a separate function rather than reusing
2801 insert_step_resume_breakpoint_at_frame in order to avoid
2802 get_prev_frame, which may stop prematurely (see the implementation
2803 of frame_unwind_id for an example). */
2804
2805 static void
2806 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2807 {
2808 struct symtab_and_line sr_sal;
2809
2810 /* We shouldn't have gotten here if we don't know where the call site
2811 is. */
2812 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2813
2814 init_sal (&sr_sal); /* initialize to zeros */
2815
2816 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2817 sr_sal.section = find_pc_overlay (sr_sal.pc);
2818
2819 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2820 }
2821
2822 static void
2823 stop_stepping (struct execution_control_state *ecs)
2824 {
2825 if (debug_infrun)
2826 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2827
2828 /* Let callers know we don't want to wait for the inferior anymore. */
2829 ecs->wait_some_more = 0;
2830 }
2831
2832 /* This function handles various cases where we need to continue
2833 waiting for the inferior. */
2834 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2835
2836 static void
2837 keep_going (struct execution_control_state *ecs)
2838 {
2839 /* Save the pc before execution, to compare with pc after stop. */
2840 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2841
2842 /* If we did not do break;, it means we should keep running the
2843 inferior and not return to debugger. */
2844
2845 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2846 {
2847 /* We took a signal (which we are supposed to pass through to
2848 the inferior, else we'd have done a break above) and we
2849 haven't yet gotten our trap. Simply continue. */
2850 resume (currently_stepping (ecs), stop_signal);
2851 }
2852 else
2853 {
2854 /* Either the trap was not expected, but we are continuing
2855 anyway (the user asked that this signal be passed to the
2856 child)
2857 -- or --
2858 The signal was SIGTRAP, e.g. it was our signal, but we
2859 decided we should resume from it.
2860
2861 We're going to run this baby now! */
2862
2863 if (!breakpoints_inserted && !ecs->another_trap)
2864 {
2865 breakpoints_failed = insert_breakpoints ();
2866 if (breakpoints_failed)
2867 {
2868 stop_stepping (ecs);
2869 return;
2870 }
2871 breakpoints_inserted = 1;
2872 }
2873
2874 trap_expected = ecs->another_trap;
2875
2876 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2877 specifies that such a signal should be delivered to the
2878 target program).
2879
2880 Typically, this would occure when a user is debugging a
2881 target monitor on a simulator: the target monitor sets a
2882 breakpoint; the simulator encounters this break-point and
2883 halts the simulation handing control to GDB; GDB, noteing
2884 that the break-point isn't valid, returns control back to the
2885 simulator; the simulator then delivers the hardware
2886 equivalent of a SIGNAL_TRAP to the program being debugged. */
2887
2888 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2889 stop_signal = TARGET_SIGNAL_0;
2890
2891
2892 resume (currently_stepping (ecs), stop_signal);
2893 }
2894
2895 prepare_to_wait (ecs);
2896 }
2897
2898 /* This function normally comes after a resume, before
2899 handle_inferior_event exits. It takes care of any last bits of
2900 housekeeping, and sets the all-important wait_some_more flag. */
2901
2902 static void
2903 prepare_to_wait (struct execution_control_state *ecs)
2904 {
2905 if (debug_infrun)
2906 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2907 if (ecs->infwait_state == infwait_normal_state)
2908 {
2909 overlay_cache_invalid = 1;
2910
2911 /* We have to invalidate the registers BEFORE calling
2912 target_wait because they can be loaded from the target while
2913 in target_wait. This makes remote debugging a bit more
2914 efficient for those targets that provide critical registers
2915 as part of their normal status mechanism. */
2916
2917 registers_changed ();
2918 ecs->waiton_ptid = pid_to_ptid (-1);
2919 ecs->wp = &(ecs->ws);
2920 }
2921 /* This is the old end of the while loop. Let everybody know we
2922 want to wait for the inferior some more and get called again
2923 soon. */
2924 ecs->wait_some_more = 1;
2925 }
2926
2927 /* Print why the inferior has stopped. We always print something when
2928 the inferior exits, or receives a signal. The rest of the cases are
2929 dealt with later on in normal_stop() and print_it_typical(). Ideally
2930 there should be a call to this function from handle_inferior_event()
2931 each time stop_stepping() is called.*/
2932 static void
2933 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2934 {
2935 switch (stop_reason)
2936 {
2937 case STOP_UNKNOWN:
2938 /* We don't deal with these cases from handle_inferior_event()
2939 yet. */
2940 break;
2941 case END_STEPPING_RANGE:
2942 /* We are done with a step/next/si/ni command. */
2943 /* For now print nothing. */
2944 /* Print a message only if not in the middle of doing a "step n"
2945 operation for n > 1 */
2946 if (!step_multi || !stop_step)
2947 if (ui_out_is_mi_like_p (uiout))
2948 ui_out_field_string
2949 (uiout, "reason",
2950 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2951 break;
2952 case BREAKPOINT_HIT:
2953 /* We found a breakpoint. */
2954 /* For now print nothing. */
2955 break;
2956 case SIGNAL_EXITED:
2957 /* The inferior was terminated by a signal. */
2958 annotate_signalled ();
2959 if (ui_out_is_mi_like_p (uiout))
2960 ui_out_field_string
2961 (uiout, "reason",
2962 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2963 ui_out_text (uiout, "\nProgram terminated with signal ");
2964 annotate_signal_name ();
2965 ui_out_field_string (uiout, "signal-name",
2966 target_signal_to_name (stop_info));
2967 annotate_signal_name_end ();
2968 ui_out_text (uiout, ", ");
2969 annotate_signal_string ();
2970 ui_out_field_string (uiout, "signal-meaning",
2971 target_signal_to_string (stop_info));
2972 annotate_signal_string_end ();
2973 ui_out_text (uiout, ".\n");
2974 ui_out_text (uiout, "The program no longer exists.\n");
2975 break;
2976 case EXITED:
2977 /* The inferior program is finished. */
2978 annotate_exited (stop_info);
2979 if (stop_info)
2980 {
2981 if (ui_out_is_mi_like_p (uiout))
2982 ui_out_field_string (uiout, "reason",
2983 async_reason_lookup (EXEC_ASYNC_EXITED));
2984 ui_out_text (uiout, "\nProgram exited with code ");
2985 ui_out_field_fmt (uiout, "exit-code", "0%o",
2986 (unsigned int) stop_info);
2987 ui_out_text (uiout, ".\n");
2988 }
2989 else
2990 {
2991 if (ui_out_is_mi_like_p (uiout))
2992 ui_out_field_string
2993 (uiout, "reason",
2994 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2995 ui_out_text (uiout, "\nProgram exited normally.\n");
2996 }
2997 /* Support the --return-child-result option. */
2998 return_child_result_value = stop_info;
2999 break;
3000 case SIGNAL_RECEIVED:
3001 /* Signal received. The signal table tells us to print about
3002 it. */
3003 annotate_signal ();
3004 ui_out_text (uiout, "\nProgram received signal ");
3005 annotate_signal_name ();
3006 if (ui_out_is_mi_like_p (uiout))
3007 ui_out_field_string
3008 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3009 ui_out_field_string (uiout, "signal-name",
3010 target_signal_to_name (stop_info));
3011 annotate_signal_name_end ();
3012 ui_out_text (uiout, ", ");
3013 annotate_signal_string ();
3014 ui_out_field_string (uiout, "signal-meaning",
3015 target_signal_to_string (stop_info));
3016 annotate_signal_string_end ();
3017 ui_out_text (uiout, ".\n");
3018 break;
3019 default:
3020 internal_error (__FILE__, __LINE__,
3021 _("print_stop_reason: unrecognized enum value"));
3022 break;
3023 }
3024 }
3025 \f
3026
3027 /* Here to return control to GDB when the inferior stops for real.
3028 Print appropriate messages, remove breakpoints, give terminal our modes.
3029
3030 STOP_PRINT_FRAME nonzero means print the executing frame
3031 (pc, function, args, file, line number and line text).
3032 BREAKPOINTS_FAILED nonzero means stop was due to error
3033 attempting to insert breakpoints. */
3034
3035 void
3036 normal_stop (void)
3037 {
3038 struct target_waitstatus last;
3039 ptid_t last_ptid;
3040
3041 get_last_target_status (&last_ptid, &last);
3042
3043 /* As with the notification of thread events, we want to delay
3044 notifying the user that we've switched thread context until
3045 the inferior actually stops.
3046
3047 There's no point in saying anything if the inferior has exited.
3048 Note that SIGNALLED here means "exited with a signal", not
3049 "received a signal". */
3050 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3051 && target_has_execution
3052 && last.kind != TARGET_WAITKIND_SIGNALLED
3053 && last.kind != TARGET_WAITKIND_EXITED)
3054 {
3055 target_terminal_ours_for_output ();
3056 printf_filtered (_("[Switching to %s]\n"),
3057 target_pid_or_tid_to_str (inferior_ptid));
3058 previous_inferior_ptid = inferior_ptid;
3059 }
3060
3061 /* NOTE drow/2004-01-17: Is this still necessary? */
3062 /* Make sure that the current_frame's pc is correct. This
3063 is a correction for setting up the frame info before doing
3064 DECR_PC_AFTER_BREAK */
3065 if (target_has_execution)
3066 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3067 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3068 frame code to check for this and sort out any resultant mess.
3069 DECR_PC_AFTER_BREAK needs to just go away. */
3070 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3071
3072 if (target_has_execution && breakpoints_inserted)
3073 {
3074 if (remove_breakpoints ())
3075 {
3076 target_terminal_ours_for_output ();
3077 printf_filtered (_("\
3078 Cannot remove breakpoints because program is no longer writable.\n\
3079 It might be running in another process.\n\
3080 Further execution is probably impossible.\n"));
3081 }
3082 }
3083 breakpoints_inserted = 0;
3084
3085 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3086 Delete any breakpoint that is to be deleted at the next stop. */
3087
3088 breakpoint_auto_delete (stop_bpstat);
3089
3090 /* If an auto-display called a function and that got a signal,
3091 delete that auto-display to avoid an infinite recursion. */
3092
3093 if (stopped_by_random_signal)
3094 disable_current_display ();
3095
3096 /* Don't print a message if in the middle of doing a "step n"
3097 operation for n > 1 */
3098 if (step_multi && stop_step)
3099 goto done;
3100
3101 target_terminal_ours ();
3102
3103 /* Set the current source location. This will also happen if we
3104 display the frame below, but the current SAL will be incorrect
3105 during a user hook-stop function. */
3106 if (target_has_stack && !stop_stack_dummy)
3107 set_current_sal_from_frame (get_current_frame (), 1);
3108
3109 /* Look up the hook_stop and run it (CLI internally handles problem
3110 of stop_command's pre-hook not existing). */
3111 if (stop_command)
3112 catch_errors (hook_stop_stub, stop_command,
3113 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3114
3115 if (!target_has_stack)
3116 {
3117
3118 goto done;
3119 }
3120
3121 /* Select innermost stack frame - i.e., current frame is frame 0,
3122 and current location is based on that.
3123 Don't do this on return from a stack dummy routine,
3124 or if the program has exited. */
3125
3126 if (!stop_stack_dummy)
3127 {
3128 select_frame (get_current_frame ());
3129
3130 /* Print current location without a level number, if
3131 we have changed functions or hit a breakpoint.
3132 Print source line if we have one.
3133 bpstat_print() contains the logic deciding in detail
3134 what to print, based on the event(s) that just occurred. */
3135
3136 if (stop_print_frame && deprecated_selected_frame)
3137 {
3138 int bpstat_ret;
3139 int source_flag;
3140 int do_frame_printing = 1;
3141
3142 bpstat_ret = bpstat_print (stop_bpstat);
3143 switch (bpstat_ret)
3144 {
3145 case PRINT_UNKNOWN:
3146 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3147 (or should) carry around the function and does (or
3148 should) use that when doing a frame comparison. */
3149 if (stop_step
3150 && frame_id_eq (step_frame_id,
3151 get_frame_id (get_current_frame ()))
3152 && step_start_function == find_pc_function (stop_pc))
3153 source_flag = SRC_LINE; /* finished step, just print source line */
3154 else
3155 source_flag = SRC_AND_LOC; /* print location and source line */
3156 break;
3157 case PRINT_SRC_AND_LOC:
3158 source_flag = SRC_AND_LOC; /* print location and source line */
3159 break;
3160 case PRINT_SRC_ONLY:
3161 source_flag = SRC_LINE;
3162 break;
3163 case PRINT_NOTHING:
3164 source_flag = SRC_LINE; /* something bogus */
3165 do_frame_printing = 0;
3166 break;
3167 default:
3168 internal_error (__FILE__, __LINE__, _("Unknown value."));
3169 }
3170 /* For mi, have the same behavior every time we stop:
3171 print everything but the source line. */
3172 if (ui_out_is_mi_like_p (uiout))
3173 source_flag = LOC_AND_ADDRESS;
3174
3175 if (ui_out_is_mi_like_p (uiout))
3176 ui_out_field_int (uiout, "thread-id",
3177 pid_to_thread_id (inferior_ptid));
3178 /* The behavior of this routine with respect to the source
3179 flag is:
3180 SRC_LINE: Print only source line
3181 LOCATION: Print only location
3182 SRC_AND_LOC: Print location and source line */
3183 if (do_frame_printing)
3184 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3185
3186 /* Display the auto-display expressions. */
3187 do_displays ();
3188 }
3189 }
3190
3191 /* Save the function value return registers, if we care.
3192 We might be about to restore their previous contents. */
3193 if (proceed_to_finish)
3194 /* NB: The copy goes through to the target picking up the value of
3195 all the registers. */
3196 regcache_cpy (stop_registers, current_regcache);
3197
3198 if (stop_stack_dummy)
3199 {
3200 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3201 ends with a setting of the current frame, so we can use that
3202 next. */
3203 frame_pop (get_current_frame ());
3204 /* Set stop_pc to what it was before we called the function.
3205 Can't rely on restore_inferior_status because that only gets
3206 called if we don't stop in the called function. */
3207 stop_pc = read_pc ();
3208 select_frame (get_current_frame ());
3209 }
3210
3211 done:
3212 annotate_stopped ();
3213 observer_notify_normal_stop (stop_bpstat);
3214 }
3215
3216 static int
3217 hook_stop_stub (void *cmd)
3218 {
3219 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3220 return (0);
3221 }
3222 \f
3223 int
3224 signal_stop_state (int signo)
3225 {
3226 return signal_stop[signo];
3227 }
3228
3229 int
3230 signal_print_state (int signo)
3231 {
3232 return signal_print[signo];
3233 }
3234
3235 int
3236 signal_pass_state (int signo)
3237 {
3238 return signal_program[signo];
3239 }
3240
3241 int
3242 signal_stop_update (int signo, int state)
3243 {
3244 int ret = signal_stop[signo];
3245 signal_stop[signo] = state;
3246 return ret;
3247 }
3248
3249 int
3250 signal_print_update (int signo, int state)
3251 {
3252 int ret = signal_print[signo];
3253 signal_print[signo] = state;
3254 return ret;
3255 }
3256
3257 int
3258 signal_pass_update (int signo, int state)
3259 {
3260 int ret = signal_program[signo];
3261 signal_program[signo] = state;
3262 return ret;
3263 }
3264
3265 static void
3266 sig_print_header (void)
3267 {
3268 printf_filtered (_("\
3269 Signal Stop\tPrint\tPass to program\tDescription\n"));
3270 }
3271
3272 static void
3273 sig_print_info (enum target_signal oursig)
3274 {
3275 char *name = target_signal_to_name (oursig);
3276 int name_padding = 13 - strlen (name);
3277
3278 if (name_padding <= 0)
3279 name_padding = 0;
3280
3281 printf_filtered ("%s", name);
3282 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3283 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3284 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3285 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3286 printf_filtered ("%s\n", target_signal_to_string (oursig));
3287 }
3288
3289 /* Specify how various signals in the inferior should be handled. */
3290
3291 static void
3292 handle_command (char *args, int from_tty)
3293 {
3294 char **argv;
3295 int digits, wordlen;
3296 int sigfirst, signum, siglast;
3297 enum target_signal oursig;
3298 int allsigs;
3299 int nsigs;
3300 unsigned char *sigs;
3301 struct cleanup *old_chain;
3302
3303 if (args == NULL)
3304 {
3305 error_no_arg (_("signal to handle"));
3306 }
3307
3308 /* Allocate and zero an array of flags for which signals to handle. */
3309
3310 nsigs = (int) TARGET_SIGNAL_LAST;
3311 sigs = (unsigned char *) alloca (nsigs);
3312 memset (sigs, 0, nsigs);
3313
3314 /* Break the command line up into args. */
3315
3316 argv = buildargv (args);
3317 if (argv == NULL)
3318 {
3319 nomem (0);
3320 }
3321 old_chain = make_cleanup_freeargv (argv);
3322
3323 /* Walk through the args, looking for signal oursigs, signal names, and
3324 actions. Signal numbers and signal names may be interspersed with
3325 actions, with the actions being performed for all signals cumulatively
3326 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3327
3328 while (*argv != NULL)
3329 {
3330 wordlen = strlen (*argv);
3331 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3332 {;
3333 }
3334 allsigs = 0;
3335 sigfirst = siglast = -1;
3336
3337 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3338 {
3339 /* Apply action to all signals except those used by the
3340 debugger. Silently skip those. */
3341 allsigs = 1;
3342 sigfirst = 0;
3343 siglast = nsigs - 1;
3344 }
3345 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3346 {
3347 SET_SIGS (nsigs, sigs, signal_stop);
3348 SET_SIGS (nsigs, sigs, signal_print);
3349 }
3350 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3351 {
3352 UNSET_SIGS (nsigs, sigs, signal_program);
3353 }
3354 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3355 {
3356 SET_SIGS (nsigs, sigs, signal_print);
3357 }
3358 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3359 {
3360 SET_SIGS (nsigs, sigs, signal_program);
3361 }
3362 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3363 {
3364 UNSET_SIGS (nsigs, sigs, signal_stop);
3365 }
3366 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3367 {
3368 SET_SIGS (nsigs, sigs, signal_program);
3369 }
3370 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3371 {
3372 UNSET_SIGS (nsigs, sigs, signal_print);
3373 UNSET_SIGS (nsigs, sigs, signal_stop);
3374 }
3375 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3376 {
3377 UNSET_SIGS (nsigs, sigs, signal_program);
3378 }
3379 else if (digits > 0)
3380 {
3381 /* It is numeric. The numeric signal refers to our own
3382 internal signal numbering from target.h, not to host/target
3383 signal number. This is a feature; users really should be
3384 using symbolic names anyway, and the common ones like
3385 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3386
3387 sigfirst = siglast = (int)
3388 target_signal_from_command (atoi (*argv));
3389 if ((*argv)[digits] == '-')
3390 {
3391 siglast = (int)
3392 target_signal_from_command (atoi ((*argv) + digits + 1));
3393 }
3394 if (sigfirst > siglast)
3395 {
3396 /* Bet he didn't figure we'd think of this case... */
3397 signum = sigfirst;
3398 sigfirst = siglast;
3399 siglast = signum;
3400 }
3401 }
3402 else
3403 {
3404 oursig = target_signal_from_name (*argv);
3405 if (oursig != TARGET_SIGNAL_UNKNOWN)
3406 {
3407 sigfirst = siglast = (int) oursig;
3408 }
3409 else
3410 {
3411 /* Not a number and not a recognized flag word => complain. */
3412 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3413 }
3414 }
3415
3416 /* If any signal numbers or symbol names were found, set flags for
3417 which signals to apply actions to. */
3418
3419 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3420 {
3421 switch ((enum target_signal) signum)
3422 {
3423 case TARGET_SIGNAL_TRAP:
3424 case TARGET_SIGNAL_INT:
3425 if (!allsigs && !sigs[signum])
3426 {
3427 if (query ("%s is used by the debugger.\n\
3428 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3429 {
3430 sigs[signum] = 1;
3431 }
3432 else
3433 {
3434 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3435 gdb_flush (gdb_stdout);
3436 }
3437 }
3438 break;
3439 case TARGET_SIGNAL_0:
3440 case TARGET_SIGNAL_DEFAULT:
3441 case TARGET_SIGNAL_UNKNOWN:
3442 /* Make sure that "all" doesn't print these. */
3443 break;
3444 default:
3445 sigs[signum] = 1;
3446 break;
3447 }
3448 }
3449
3450 argv++;
3451 }
3452
3453 target_notice_signals (inferior_ptid);
3454
3455 if (from_tty)
3456 {
3457 /* Show the results. */
3458 sig_print_header ();
3459 for (signum = 0; signum < nsigs; signum++)
3460 {
3461 if (sigs[signum])
3462 {
3463 sig_print_info (signum);
3464 }
3465 }
3466 }
3467
3468 do_cleanups (old_chain);
3469 }
3470
3471 static void
3472 xdb_handle_command (char *args, int from_tty)
3473 {
3474 char **argv;
3475 struct cleanup *old_chain;
3476
3477 /* Break the command line up into args. */
3478
3479 argv = buildargv (args);
3480 if (argv == NULL)
3481 {
3482 nomem (0);
3483 }
3484 old_chain = make_cleanup_freeargv (argv);
3485 if (argv[1] != (char *) NULL)
3486 {
3487 char *argBuf;
3488 int bufLen;
3489
3490 bufLen = strlen (argv[0]) + 20;
3491 argBuf = (char *) xmalloc (bufLen);
3492 if (argBuf)
3493 {
3494 int validFlag = 1;
3495 enum target_signal oursig;
3496
3497 oursig = target_signal_from_name (argv[0]);
3498 memset (argBuf, 0, bufLen);
3499 if (strcmp (argv[1], "Q") == 0)
3500 sprintf (argBuf, "%s %s", argv[0], "noprint");
3501 else
3502 {
3503 if (strcmp (argv[1], "s") == 0)
3504 {
3505 if (!signal_stop[oursig])
3506 sprintf (argBuf, "%s %s", argv[0], "stop");
3507 else
3508 sprintf (argBuf, "%s %s", argv[0], "nostop");
3509 }
3510 else if (strcmp (argv[1], "i") == 0)
3511 {
3512 if (!signal_program[oursig])
3513 sprintf (argBuf, "%s %s", argv[0], "pass");
3514 else
3515 sprintf (argBuf, "%s %s", argv[0], "nopass");
3516 }
3517 else if (strcmp (argv[1], "r") == 0)
3518 {
3519 if (!signal_print[oursig])
3520 sprintf (argBuf, "%s %s", argv[0], "print");
3521 else
3522 sprintf (argBuf, "%s %s", argv[0], "noprint");
3523 }
3524 else
3525 validFlag = 0;
3526 }
3527 if (validFlag)
3528 handle_command (argBuf, from_tty);
3529 else
3530 printf_filtered (_("Invalid signal handling flag.\n"));
3531 if (argBuf)
3532 xfree (argBuf);
3533 }
3534 }
3535 do_cleanups (old_chain);
3536 }
3537
3538 /* Print current contents of the tables set by the handle command.
3539 It is possible we should just be printing signals actually used
3540 by the current target (but for things to work right when switching
3541 targets, all signals should be in the signal tables). */
3542
3543 static void
3544 signals_info (char *signum_exp, int from_tty)
3545 {
3546 enum target_signal oursig;
3547 sig_print_header ();
3548
3549 if (signum_exp)
3550 {
3551 /* First see if this is a symbol name. */
3552 oursig = target_signal_from_name (signum_exp);
3553 if (oursig == TARGET_SIGNAL_UNKNOWN)
3554 {
3555 /* No, try numeric. */
3556 oursig =
3557 target_signal_from_command (parse_and_eval_long (signum_exp));
3558 }
3559 sig_print_info (oursig);
3560 return;
3561 }
3562
3563 printf_filtered ("\n");
3564 /* These ugly casts brought to you by the native VAX compiler. */
3565 for (oursig = TARGET_SIGNAL_FIRST;
3566 (int) oursig < (int) TARGET_SIGNAL_LAST;
3567 oursig = (enum target_signal) ((int) oursig + 1))
3568 {
3569 QUIT;
3570
3571 if (oursig != TARGET_SIGNAL_UNKNOWN
3572 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3573 sig_print_info (oursig);
3574 }
3575
3576 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3577 }
3578 \f
3579 struct inferior_status
3580 {
3581 enum target_signal stop_signal;
3582 CORE_ADDR stop_pc;
3583 bpstat stop_bpstat;
3584 int stop_step;
3585 int stop_stack_dummy;
3586 int stopped_by_random_signal;
3587 int trap_expected;
3588 CORE_ADDR step_range_start;
3589 CORE_ADDR step_range_end;
3590 struct frame_id step_frame_id;
3591 enum step_over_calls_kind step_over_calls;
3592 CORE_ADDR step_resume_break_address;
3593 int stop_after_trap;
3594 int stop_soon;
3595 struct regcache *stop_registers;
3596
3597 /* These are here because if call_function_by_hand has written some
3598 registers and then decides to call error(), we better not have changed
3599 any registers. */
3600 struct regcache *registers;
3601
3602 /* A frame unique identifier. */
3603 struct frame_id selected_frame_id;
3604
3605 int breakpoint_proceeded;
3606 int restore_stack_info;
3607 int proceed_to_finish;
3608 };
3609
3610 void
3611 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3612 LONGEST val)
3613 {
3614 int size = register_size (current_gdbarch, regno);
3615 void *buf = alloca (size);
3616 store_signed_integer (buf, size, val);
3617 regcache_raw_write (inf_status->registers, regno, buf);
3618 }
3619
3620 /* Save all of the information associated with the inferior<==>gdb
3621 connection. INF_STATUS is a pointer to a "struct inferior_status"
3622 (defined in inferior.h). */
3623
3624 struct inferior_status *
3625 save_inferior_status (int restore_stack_info)
3626 {
3627 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3628
3629 inf_status->stop_signal = stop_signal;
3630 inf_status->stop_pc = stop_pc;
3631 inf_status->stop_step = stop_step;
3632 inf_status->stop_stack_dummy = stop_stack_dummy;
3633 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3634 inf_status->trap_expected = trap_expected;
3635 inf_status->step_range_start = step_range_start;
3636 inf_status->step_range_end = step_range_end;
3637 inf_status->step_frame_id = step_frame_id;
3638 inf_status->step_over_calls = step_over_calls;
3639 inf_status->stop_after_trap = stop_after_trap;
3640 inf_status->stop_soon = stop_soon;
3641 /* Save original bpstat chain here; replace it with copy of chain.
3642 If caller's caller is walking the chain, they'll be happier if we
3643 hand them back the original chain when restore_inferior_status is
3644 called. */
3645 inf_status->stop_bpstat = stop_bpstat;
3646 stop_bpstat = bpstat_copy (stop_bpstat);
3647 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3648 inf_status->restore_stack_info = restore_stack_info;
3649 inf_status->proceed_to_finish = proceed_to_finish;
3650
3651 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3652
3653 inf_status->registers = regcache_dup (current_regcache);
3654
3655 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3656 return inf_status;
3657 }
3658
3659 static int
3660 restore_selected_frame (void *args)
3661 {
3662 struct frame_id *fid = (struct frame_id *) args;
3663 struct frame_info *frame;
3664
3665 frame = frame_find_by_id (*fid);
3666
3667 /* If inf_status->selected_frame_id is NULL, there was no previously
3668 selected frame. */
3669 if (frame == NULL)
3670 {
3671 warning (_("Unable to restore previously selected frame."));
3672 return 0;
3673 }
3674
3675 select_frame (frame);
3676
3677 return (1);
3678 }
3679
3680 void
3681 restore_inferior_status (struct inferior_status *inf_status)
3682 {
3683 stop_signal = inf_status->stop_signal;
3684 stop_pc = inf_status->stop_pc;
3685 stop_step = inf_status->stop_step;
3686 stop_stack_dummy = inf_status->stop_stack_dummy;
3687 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3688 trap_expected = inf_status->trap_expected;
3689 step_range_start = inf_status->step_range_start;
3690 step_range_end = inf_status->step_range_end;
3691 step_frame_id = inf_status->step_frame_id;
3692 step_over_calls = inf_status->step_over_calls;
3693 stop_after_trap = inf_status->stop_after_trap;
3694 stop_soon = inf_status->stop_soon;
3695 bpstat_clear (&stop_bpstat);
3696 stop_bpstat = inf_status->stop_bpstat;
3697 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3698 proceed_to_finish = inf_status->proceed_to_finish;
3699
3700 /* FIXME: Is the restore of stop_registers always needed. */
3701 regcache_xfree (stop_registers);
3702 stop_registers = inf_status->stop_registers;
3703
3704 /* The inferior can be gone if the user types "print exit(0)"
3705 (and perhaps other times). */
3706 if (target_has_execution)
3707 /* NB: The register write goes through to the target. */
3708 regcache_cpy (current_regcache, inf_status->registers);
3709 regcache_xfree (inf_status->registers);
3710
3711 /* FIXME: If we are being called after stopping in a function which
3712 is called from gdb, we should not be trying to restore the
3713 selected frame; it just prints a spurious error message (The
3714 message is useful, however, in detecting bugs in gdb (like if gdb
3715 clobbers the stack)). In fact, should we be restoring the
3716 inferior status at all in that case? . */
3717
3718 if (target_has_stack && inf_status->restore_stack_info)
3719 {
3720 /* The point of catch_errors is that if the stack is clobbered,
3721 walking the stack might encounter a garbage pointer and
3722 error() trying to dereference it. */
3723 if (catch_errors
3724 (restore_selected_frame, &inf_status->selected_frame_id,
3725 "Unable to restore previously selected frame:\n",
3726 RETURN_MASK_ERROR) == 0)
3727 /* Error in restoring the selected frame. Select the innermost
3728 frame. */
3729 select_frame (get_current_frame ());
3730
3731 }
3732
3733 xfree (inf_status);
3734 }
3735
3736 static void
3737 do_restore_inferior_status_cleanup (void *sts)
3738 {
3739 restore_inferior_status (sts);
3740 }
3741
3742 struct cleanup *
3743 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3744 {
3745 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3746 }
3747
3748 void
3749 discard_inferior_status (struct inferior_status *inf_status)
3750 {
3751 /* See save_inferior_status for info on stop_bpstat. */
3752 bpstat_clear (&inf_status->stop_bpstat);
3753 regcache_xfree (inf_status->registers);
3754 regcache_xfree (inf_status->stop_registers);
3755 xfree (inf_status);
3756 }
3757
3758 int
3759 inferior_has_forked (int pid, int *child_pid)
3760 {
3761 struct target_waitstatus last;
3762 ptid_t last_ptid;
3763
3764 get_last_target_status (&last_ptid, &last);
3765
3766 if (last.kind != TARGET_WAITKIND_FORKED)
3767 return 0;
3768
3769 if (ptid_get_pid (last_ptid) != pid)
3770 return 0;
3771
3772 *child_pid = last.value.related_pid;
3773 return 1;
3774 }
3775
3776 int
3777 inferior_has_vforked (int pid, int *child_pid)
3778 {
3779 struct target_waitstatus last;
3780 ptid_t last_ptid;
3781
3782 get_last_target_status (&last_ptid, &last);
3783
3784 if (last.kind != TARGET_WAITKIND_VFORKED)
3785 return 0;
3786
3787 if (ptid_get_pid (last_ptid) != pid)
3788 return 0;
3789
3790 *child_pid = last.value.related_pid;
3791 return 1;
3792 }
3793
3794 int
3795 inferior_has_execd (int pid, char **execd_pathname)
3796 {
3797 struct target_waitstatus last;
3798 ptid_t last_ptid;
3799
3800 get_last_target_status (&last_ptid, &last);
3801
3802 if (last.kind != TARGET_WAITKIND_EXECD)
3803 return 0;
3804
3805 if (ptid_get_pid (last_ptid) != pid)
3806 return 0;
3807
3808 *execd_pathname = xstrdup (last.value.execd_pathname);
3809 return 1;
3810 }
3811
3812 /* Oft used ptids */
3813 ptid_t null_ptid;
3814 ptid_t minus_one_ptid;
3815
3816 /* Create a ptid given the necessary PID, LWP, and TID components. */
3817
3818 ptid_t
3819 ptid_build (int pid, long lwp, long tid)
3820 {
3821 ptid_t ptid;
3822
3823 ptid.pid = pid;
3824 ptid.lwp = lwp;
3825 ptid.tid = tid;
3826 return ptid;
3827 }
3828
3829 /* Create a ptid from just a pid. */
3830
3831 ptid_t
3832 pid_to_ptid (int pid)
3833 {
3834 return ptid_build (pid, 0, 0);
3835 }
3836
3837 /* Fetch the pid (process id) component from a ptid. */
3838
3839 int
3840 ptid_get_pid (ptid_t ptid)
3841 {
3842 return ptid.pid;
3843 }
3844
3845 /* Fetch the lwp (lightweight process) component from a ptid. */
3846
3847 long
3848 ptid_get_lwp (ptid_t ptid)
3849 {
3850 return ptid.lwp;
3851 }
3852
3853 /* Fetch the tid (thread id) component from a ptid. */
3854
3855 long
3856 ptid_get_tid (ptid_t ptid)
3857 {
3858 return ptid.tid;
3859 }
3860
3861 /* ptid_equal() is used to test equality of two ptids. */
3862
3863 int
3864 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3865 {
3866 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3867 && ptid1.tid == ptid2.tid);
3868 }
3869
3870 /* restore_inferior_ptid() will be used by the cleanup machinery
3871 to restore the inferior_ptid value saved in a call to
3872 save_inferior_ptid(). */
3873
3874 static void
3875 restore_inferior_ptid (void *arg)
3876 {
3877 ptid_t *saved_ptid_ptr = arg;
3878 inferior_ptid = *saved_ptid_ptr;
3879 xfree (arg);
3880 }
3881
3882 /* Save the value of inferior_ptid so that it may be restored by a
3883 later call to do_cleanups(). Returns the struct cleanup pointer
3884 needed for later doing the cleanup. */
3885
3886 struct cleanup *
3887 save_inferior_ptid (void)
3888 {
3889 ptid_t *saved_ptid_ptr;
3890
3891 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3892 *saved_ptid_ptr = inferior_ptid;
3893 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3894 }
3895 \f
3896
3897 static void
3898 build_infrun (void)
3899 {
3900 stop_registers = regcache_xmalloc (current_gdbarch);
3901 }
3902
3903 void
3904 _initialize_infrun (void)
3905 {
3906 int i;
3907 int numsigs;
3908 struct cmd_list_element *c;
3909
3910 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3911 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3912
3913 add_info ("signals", signals_info, _("\
3914 What debugger does when program gets various signals.\n\
3915 Specify a signal as argument to print info on that signal only."));
3916 add_info_alias ("handle", "signals", 0);
3917
3918 add_com ("handle", class_run, handle_command, _("\
3919 Specify how to handle a signal.\n\
3920 Args are signals and actions to apply to those signals.\n\
3921 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3922 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3923 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3924 The special arg \"all\" is recognized to mean all signals except those\n\
3925 used by the debugger, typically SIGTRAP and SIGINT.\n\
3926 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3927 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3928 Stop means reenter debugger if this signal happens (implies print).\n\
3929 Print means print a message if this signal happens.\n\
3930 Pass means let program see this signal; otherwise program doesn't know.\n\
3931 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3932 Pass and Stop may be combined."));
3933 if (xdb_commands)
3934 {
3935 add_com ("lz", class_info, signals_info, _("\
3936 What debugger does when program gets various signals.\n\
3937 Specify a signal as argument to print info on that signal only."));
3938 add_com ("z", class_run, xdb_handle_command, _("\
3939 Specify how to handle a signal.\n\
3940 Args are signals and actions to apply to those signals.\n\
3941 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3942 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3943 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3944 The special arg \"all\" is recognized to mean all signals except those\n\
3945 used by the debugger, typically SIGTRAP and SIGINT.\n\
3946 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3947 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3948 nopass), \"Q\" (noprint)\n\
3949 Stop means reenter debugger if this signal happens (implies print).\n\
3950 Print means print a message if this signal happens.\n\
3951 Pass means let program see this signal; otherwise program doesn't know.\n\
3952 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3953 Pass and Stop may be combined."));
3954 }
3955
3956 if (!dbx_commands)
3957 stop_command = add_cmd ("stop", class_obscure,
3958 not_just_help_class_command, _("\
3959 There is no `stop' command, but you can set a hook on `stop'.\n\
3960 This allows you to set a list of commands to be run each time execution\n\
3961 of the program stops."), &cmdlist);
3962
3963 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3964 Set inferior debugging."), _("\
3965 Show inferior debugging."), _("\
3966 When non-zero, inferior specific debugging is enabled."),
3967 NULL,
3968 show_debug_infrun,
3969 &setdebuglist, &showdebuglist);
3970
3971 numsigs = (int) TARGET_SIGNAL_LAST;
3972 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3973 signal_print = (unsigned char *)
3974 xmalloc (sizeof (signal_print[0]) * numsigs);
3975 signal_program = (unsigned char *)
3976 xmalloc (sizeof (signal_program[0]) * numsigs);
3977 for (i = 0; i < numsigs; i++)
3978 {
3979 signal_stop[i] = 1;
3980 signal_print[i] = 1;
3981 signal_program[i] = 1;
3982 }
3983
3984 /* Signals caused by debugger's own actions
3985 should not be given to the program afterwards. */
3986 signal_program[TARGET_SIGNAL_TRAP] = 0;
3987 signal_program[TARGET_SIGNAL_INT] = 0;
3988
3989 /* Signals that are not errors should not normally enter the debugger. */
3990 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3991 signal_print[TARGET_SIGNAL_ALRM] = 0;
3992 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3993 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3994 signal_stop[TARGET_SIGNAL_PROF] = 0;
3995 signal_print[TARGET_SIGNAL_PROF] = 0;
3996 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3997 signal_print[TARGET_SIGNAL_CHLD] = 0;
3998 signal_stop[TARGET_SIGNAL_IO] = 0;
3999 signal_print[TARGET_SIGNAL_IO] = 0;
4000 signal_stop[TARGET_SIGNAL_POLL] = 0;
4001 signal_print[TARGET_SIGNAL_POLL] = 0;
4002 signal_stop[TARGET_SIGNAL_URG] = 0;
4003 signal_print[TARGET_SIGNAL_URG] = 0;
4004 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4005 signal_print[TARGET_SIGNAL_WINCH] = 0;
4006
4007 /* These signals are used internally by user-level thread
4008 implementations. (See signal(5) on Solaris.) Like the above
4009 signals, a healthy program receives and handles them as part of
4010 its normal operation. */
4011 signal_stop[TARGET_SIGNAL_LWP] = 0;
4012 signal_print[TARGET_SIGNAL_LWP] = 0;
4013 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4014 signal_print[TARGET_SIGNAL_WAITING] = 0;
4015 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4016 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4017
4018 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4019 &stop_on_solib_events, _("\
4020 Set stopping for shared library events."), _("\
4021 Show stopping for shared library events."), _("\
4022 If nonzero, gdb will give control to the user when the dynamic linker\n\
4023 notifies gdb of shared library events. The most common event of interest\n\
4024 to the user would be loading/unloading of a new library."),
4025 NULL,
4026 show_stop_on_solib_events,
4027 &setlist, &showlist);
4028
4029 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4030 follow_fork_mode_kind_names,
4031 &follow_fork_mode_string, _("\
4032 Set debugger response to a program call of fork or vfork."), _("\
4033 Show debugger response to a program call of fork or vfork."), _("\
4034 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4035 parent - the original process is debugged after a fork\n\
4036 child - the new process is debugged after a fork\n\
4037 The unfollowed process will continue to run.\n\
4038 By default, the debugger will follow the parent process."),
4039 NULL,
4040 show_follow_fork_mode_string,
4041 &setlist, &showlist);
4042
4043 add_setshow_enum_cmd ("scheduler-locking", class_run,
4044 scheduler_enums, &scheduler_mode, _("\
4045 Set mode for locking scheduler during execution."), _("\
4046 Show mode for locking scheduler during execution."), _("\
4047 off == no locking (threads may preempt at any time)\n\
4048 on == full locking (no thread except the current thread may run)\n\
4049 step == scheduler locked during every single-step operation.\n\
4050 In this mode, no other thread may run during a step command.\n\
4051 Other threads may run while stepping over a function call ('next')."),
4052 set_schedlock_func, /* traps on target vector */
4053 show_scheduler_mode,
4054 &setlist, &showlist);
4055
4056 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4057 Set mode of the step operation."), _("\
4058 Show mode of the step operation."), _("\
4059 When set, doing a step over a function without debug line information\n\
4060 will stop at the first instruction of that function. Otherwise, the\n\
4061 function is skipped and the step command stops at a different source line."),
4062 NULL,
4063 show_step_stop_if_no_debug,
4064 &setlist, &showlist);
4065
4066 /* ptid initializations */
4067 null_ptid = ptid_build (0, 0, 0);
4068 minus_one_ptid = ptid_build (-1, 0, 0);
4069 inferior_ptid = null_ptid;
4070 target_last_wait_ptid = minus_one_ptid;
4071 }
This page took 0.113502 seconds and 4 git commands to generate.