c3d262eb79b182970760fd717021573a54ce2581
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are presently stepping over a breakpoint.
222
223 If we hit a breakpoint or watchpoint, and then continue,
224 we need to single step the current thread with breakpoints
225 disabled, to avoid hitting the same breakpoint or
226 watchpoint again. And we should step just a single
227 thread and keep other threads stopped, so that
228 other threads don't miss breakpoints while they are removed.
229
230 So, this variable simultaneously means that we need to single
231 step the current thread, keep other threads stopped, and that
232 breakpoints should be removed while we step.
233
234 This variable is set either:
235 - in proceed, when we resume inferior on user's explicit request
236 - in keep_going, if handle_inferior_event decides we need to
237 step over breakpoint.
238
239 The variable is cleared in clear_proceed_status, called every
240 time before we call proceed. The proceed calls wait_for_inferior,
241 which calls handle_inferior_event in a loop, and until
242 wait_for_inferior exits, this variable is changed only by keep_going. */
243
244 static int stepping_over_breakpoint;
245
246 /* Nonzero if we want to give control to the user when we're notified
247 of shared library events by the dynamic linker. */
248 static int stop_on_solib_events;
249 static void
250 show_stop_on_solib_events (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
254 value);
255 }
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero after stop if current stack frame should be printed. */
282
283 static int stop_print_frame;
284
285 static struct breakpoint *step_resume_breakpoint = NULL;
286
287 /* This is a cached copy of the pid/waitstatus of the last event
288 returned by target_wait()/deprecated_target_wait_hook(). This
289 information is returned by get_last_target_status(). */
290 static ptid_t target_last_wait_ptid;
291 static struct target_waitstatus target_last_waitstatus;
292
293 /* This is used to remember when a fork, vfork or exec event
294 was caught by a catchpoint, and thus the event is to be
295 followed at the next resume of the inferior, and not
296 immediately. */
297 static struct
298 {
299 enum target_waitkind kind;
300 struct
301 {
302 int parent_pid;
303 int child_pid;
304 }
305 fork_event;
306 char *execd_pathname;
307 }
308 pending_follow;
309
310 static const char follow_fork_mode_child[] = "child";
311 static const char follow_fork_mode_parent[] = "parent";
312
313 static const char *follow_fork_mode_kind_names[] = {
314 follow_fork_mode_child,
315 follow_fork_mode_parent,
316 NULL
317 };
318
319 static const char *follow_fork_mode_string = follow_fork_mode_parent;
320 static void
321 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
322 struct cmd_list_element *c, const char *value)
323 {
324 fprintf_filtered (file, _("\
325 Debugger response to a program call of fork or vfork is \"%s\".\n"),
326 value);
327 }
328 \f
329
330 static int
331 follow_fork (void)
332 {
333 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
334
335 return target_follow_fork (follow_child);
336 }
337
338 void
339 follow_inferior_reset_breakpoints (void)
340 {
341 /* Was there a step_resume breakpoint? (There was if the user
342 did a "next" at the fork() call.) If so, explicitly reset its
343 thread number.
344
345 step_resumes are a form of bp that are made to be per-thread.
346 Since we created the step_resume bp when the parent process
347 was being debugged, and now are switching to the child process,
348 from the breakpoint package's viewpoint, that's a switch of
349 "threads". We must update the bp's notion of which thread
350 it is for, or it'll be ignored when it triggers. */
351
352 if (step_resume_breakpoint)
353 breakpoint_re_set_thread (step_resume_breakpoint);
354
355 /* Reinsert all breakpoints in the child. The user may have set
356 breakpoints after catching the fork, in which case those
357 were never set in the child, but only in the parent. This makes
358 sure the inserted breakpoints match the breakpoint list. */
359
360 breakpoint_re_set ();
361 insert_breakpoints ();
362 }
363
364 /* EXECD_PATHNAME is assumed to be non-NULL. */
365
366 static void
367 follow_exec (int pid, char *execd_pathname)
368 {
369 int saved_pid = pid;
370 struct target_ops *tgt;
371
372 if (!may_follow_exec)
373 return;
374
375 /* This is an exec event that we actually wish to pay attention to.
376 Refresh our symbol table to the newly exec'd program, remove any
377 momentary bp's, etc.
378
379 If there are breakpoints, they aren't really inserted now,
380 since the exec() transformed our inferior into a fresh set
381 of instructions.
382
383 We want to preserve symbolic breakpoints on the list, since
384 we have hopes that they can be reset after the new a.out's
385 symbol table is read.
386
387 However, any "raw" breakpoints must be removed from the list
388 (e.g., the solib bp's), since their address is probably invalid
389 now.
390
391 And, we DON'T want to call delete_breakpoints() here, since
392 that may write the bp's "shadow contents" (the instruction
393 value that was overwritten witha TRAP instruction). Since
394 we now have a new a.out, those shadow contents aren't valid. */
395 update_breakpoints_after_exec ();
396
397 /* If there was one, it's gone now. We cannot truly step-to-next
398 statement through an exec(). */
399 step_resume_breakpoint = NULL;
400 step_range_start = 0;
401 step_range_end = 0;
402
403 /* What is this a.out's name? */
404 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
405
406 /* We've followed the inferior through an exec. Therefore, the
407 inferior has essentially been killed & reborn. */
408
409 /* First collect the run target in effect. */
410 tgt = find_run_target ();
411 /* If we can't find one, things are in a very strange state... */
412 if (tgt == NULL)
413 error (_("Could find run target to save before following exec"));
414
415 gdb_flush (gdb_stdout);
416 target_mourn_inferior ();
417 inferior_ptid = pid_to_ptid (saved_pid);
418 /* Because mourn_inferior resets inferior_ptid. */
419 push_target (tgt);
420
421 /* That a.out is now the one to use. */
422 exec_file_attach (execd_pathname, 0);
423
424 /* And also is where symbols can be found. */
425 symbol_file_add_main (execd_pathname, 0);
426
427 /* Reset the shared library package. This ensures that we get
428 a shlib event when the child reaches "_start", at which point
429 the dld will have had a chance to initialize the child. */
430 #if defined(SOLIB_RESTART)
431 SOLIB_RESTART ();
432 #endif
433 #ifdef SOLIB_CREATE_INFERIOR_HOOK
434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
435 #else
436 solib_create_inferior_hook ();
437 #endif
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
448 }
449
450 /* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453 static int singlestep_breakpoints_inserted_p = 0;
454
455 /* The thread we inserted single-step breakpoints for. */
456 static ptid_t singlestep_ptid;
457
458 /* PC when we started this single-step. */
459 static CORE_ADDR singlestep_pc;
460
461 /* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463 static ptid_t saved_singlestep_ptid;
464 static int stepping_past_singlestep_breakpoint;
465
466 /* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473 static ptid_t deferred_step_ptid;
474 \f
475
476 /* Things to clean up if we QUIT out of resume (). */
477 static void
478 resume_cleanups (void *ignore)
479 {
480 normal_stop ();
481 }
482
483 static const char schedlock_off[] = "off";
484 static const char schedlock_on[] = "on";
485 static const char schedlock_step[] = "step";
486 static const char *scheduler_enums[] = {
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491 };
492 static const char *scheduler_mode = schedlock_off;
493 static void
494 show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496 {
497 fprintf_filtered (file, _("\
498 Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500 }
501
502 static void
503 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
504 {
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
510 }
511
512
513 /* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521 void
522 resume (int step, enum target_signal sig)
523 {
524 int should_resume = 1;
525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
526 QUIT;
527
528 if (debug_infrun)
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
531
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
534
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step)
544 remove_hw_watchpoints ();
545
546
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 {
553 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
554 gdbarch_skip_permanent_breakpoint (current_gdbarch,
555 get_current_regcache ());
556 else
557 error (_("\
558 The program is stopped at a permanent breakpoint, but GDB does not know\n\
559 how to step past a permanent breakpoint on this architecture. Try using\n\
560 a command like `return' or `jump' to continue execution."));
561 }
562
563 if (step && gdbarch_software_single_step_p (current_gdbarch))
564 {
565 /* Do it the hard way, w/temp breakpoints */
566 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
567 {
568 /* ...and don't ask hardware to do it. */
569 step = 0;
570 /* and do not pull these breakpoints until after a `wait' in
571 `wait_for_inferior' */
572 singlestep_breakpoints_inserted_p = 1;
573 singlestep_ptid = inferior_ptid;
574 singlestep_pc = read_pc ();
575 }
576 }
577
578 /* If there were any forks/vforks/execs that were caught and are
579 now to be followed, then do so. */
580 switch (pending_follow.kind)
581 {
582 case TARGET_WAITKIND_FORKED:
583 case TARGET_WAITKIND_VFORKED:
584 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
585 if (follow_fork ())
586 should_resume = 0;
587 break;
588
589 case TARGET_WAITKIND_EXECD:
590 /* follow_exec is called as soon as the exec event is seen. */
591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
592 break;
593
594 default:
595 break;
596 }
597
598 /* Install inferior's terminal modes. */
599 target_terminal_inferior ();
600
601 if (should_resume)
602 {
603 ptid_t resume_ptid;
604
605 resume_ptid = RESUME_ALL; /* Default */
606
607 /* If STEP is set, it's a request to use hardware stepping
608 facilities. But in that case, we should never
609 use singlestep breakpoint. */
610 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
611
612 if (singlestep_breakpoints_inserted_p
613 && stepping_past_singlestep_breakpoint)
614 {
615 /* The situation here is as follows. In thread T1 we wanted to
616 single-step. Lacking hardware single-stepping we've
617 set breakpoint at the PC of the next instruction -- call it
618 P. After resuming, we've hit that breakpoint in thread T2.
619 Now we've removed original breakpoint, inserted breakpoint
620 at P+1, and try to step to advance T2 past breakpoint.
621 We need to step only T2, as if T1 is allowed to freely run,
622 it can run past P, and if other threads are allowed to run,
623 they can hit breakpoint at P+1, and nested hits of single-step
624 breakpoints is not something we'd want -- that's complicated
625 to support, and has no value. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if ((step || singlestep_breakpoints_inserted_p)
630 && breakpoint_here_p (read_pc ())
631 && !breakpoint_inserted_here_p (read_pc ()))
632 {
633 /* We're stepping, have breakpoint at PC, and it's
634 not inserted. Most likely, proceed has noticed that
635 we have breakpoint and tries to single-step over it,
636 so that it's not hit. In which case, we need to
637 single-step only this thread, and keep others stopped,
638 as they can miss this breakpoint if allowed to run.
639
640 The current code either has all breakpoints inserted,
641 or all removed, so if we let other threads run,
642 we can actually miss any breakpoint, not the one at PC. */
643 resume_ptid = inferior_ptid;
644 }
645
646 if ((scheduler_mode == schedlock_on)
647 || (scheduler_mode == schedlock_step
648 && (step || singlestep_breakpoints_inserted_p)))
649 {
650 /* User-settable 'scheduler' mode requires solo thread resume. */
651 resume_ptid = inferior_ptid;
652 }
653
654 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
655 {
656 /* Most targets can step a breakpoint instruction, thus
657 executing it normally. But if this one cannot, just
658 continue and we will hit it anyway. */
659 if (step && breakpoint_inserted_here_p (read_pc ()))
660 step = 0;
661 }
662 target_resume (resume_ptid, step, sig);
663 }
664
665 discard_cleanups (old_cleanups);
666 }
667 \f
668
669 /* Clear out all variables saying what to do when inferior is continued.
670 First do this, then set the ones you want, then call `proceed'. */
671
672 void
673 clear_proceed_status (void)
674 {
675 stepping_over_breakpoint = 0;
676 step_range_start = 0;
677 step_range_end = 0;
678 step_frame_id = null_frame_id;
679 step_over_calls = STEP_OVER_UNDEBUGGABLE;
680 stop_after_trap = 0;
681 stop_soon = NO_STOP_QUIETLY;
682 proceed_to_finish = 0;
683 breakpoint_proceeded = 1; /* We're about to proceed... */
684
685 if (stop_registers)
686 {
687 regcache_xfree (stop_registers);
688 stop_registers = NULL;
689 }
690
691 /* Discard any remaining commands or status from previous stop. */
692 bpstat_clear (&stop_bpstat);
693 }
694
695 /* This should be suitable for any targets that support threads. */
696
697 static int
698 prepare_to_proceed (int step)
699 {
700 ptid_t wait_ptid;
701 struct target_waitstatus wait_status;
702
703 /* Get the last target status returned by target_wait(). */
704 get_last_target_status (&wait_ptid, &wait_status);
705
706 /* Make sure we were stopped at a breakpoint. */
707 if (wait_status.kind != TARGET_WAITKIND_STOPPED
708 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
709 {
710 return 0;
711 }
712
713 /* Switched over from WAIT_PID. */
714 if (!ptid_equal (wait_ptid, minus_one_ptid)
715 && !ptid_equal (inferior_ptid, wait_ptid)
716 && breakpoint_here_p (read_pc_pid (wait_ptid)))
717 {
718 /* If stepping, remember current thread to switch back to. */
719 if (step)
720 {
721 deferred_step_ptid = inferior_ptid;
722 }
723
724 /* Switch back to WAIT_PID thread. */
725 switch_to_thread (wait_ptid);
726
727 /* We return 1 to indicate that there is a breakpoint here,
728 so we need to step over it before continuing to avoid
729 hitting it straight away. */
730 return 1;
731 }
732
733 return 0;
734 }
735
736 /* Record the pc of the program the last time it stopped. This is
737 just used internally by wait_for_inferior, but need to be preserved
738 over calls to it and cleared when the inferior is started. */
739 static CORE_ADDR prev_pc;
740
741 /* Basic routine for continuing the program in various fashions.
742
743 ADDR is the address to resume at, or -1 for resume where stopped.
744 SIGGNAL is the signal to give it, or 0 for none,
745 or -1 for act according to how it stopped.
746 STEP is nonzero if should trap after one instruction.
747 -1 means return after that and print nothing.
748 You should probably set various step_... variables
749 before calling here, if you are stepping.
750
751 You should call clear_proceed_status before calling proceed. */
752
753 void
754 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
755 {
756 int oneproc = 0;
757
758 if (step > 0)
759 step_start_function = find_pc_function (read_pc ());
760 if (step < 0)
761 stop_after_trap = 1;
762
763 if (addr == (CORE_ADDR) -1)
764 {
765 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
766 /* There is a breakpoint at the address we will resume at,
767 step one instruction before inserting breakpoints so that
768 we do not stop right away (and report a second hit at this
769 breakpoint). */
770 oneproc = 1;
771 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
772 && gdbarch_single_step_through_delay (current_gdbarch,
773 get_current_frame ()))
774 /* We stepped onto an instruction that needs to be stepped
775 again before re-inserting the breakpoint, do so. */
776 oneproc = 1;
777 }
778 else
779 {
780 write_pc (addr);
781 }
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
786 paddr_nz (addr), siggnal, step);
787
788 /* In a multi-threaded task we may select another thread
789 and then continue or step.
790
791 But if the old thread was stopped at a breakpoint, it
792 will immediately cause another breakpoint stop without
793 any execution (i.e. it will report a breakpoint hit
794 incorrectly). So we must step over it first.
795
796 prepare_to_proceed checks the current thread against the thread
797 that reported the most recent event. If a step-over is required
798 it returns TRUE and sets the current thread to the old thread. */
799 if (prepare_to_proceed (step))
800 oneproc = 1;
801
802 if (oneproc)
803 /* We will get a trace trap after one instruction.
804 Continue it automatically and insert breakpoints then. */
805 stepping_over_breakpoint = 1;
806 else
807 insert_breakpoints ();
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
843 updated correctly when the inferior is stopped. */
844 prev_pc = read_pc ();
845
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
853 if (!target_can_async_p ())
854 {
855 wait_for_inferior (0);
856 normal_stop ();
857 }
858 }
859 \f
860
861 /* Start remote-debugging of a machine over a serial link. */
862
863 void
864 start_remote (int from_tty)
865 {
866 init_thread_list ();
867 init_wait_for_inferior ();
868 stop_soon = STOP_QUIETLY_REMOTE;
869 stepping_over_breakpoint = 0;
870
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
873 indicate to wait_for_inferior that a target should timeout if
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior (0);
886
887 /* Now that the inferior has stopped, do any bookkeeping like
888 loading shared libraries. We want to do this before normal_stop,
889 so that the displayed frame is up to date. */
890 post_create_inferior (&current_target, from_tty);
891
892 normal_stop ();
893 }
894
895 /* Initialize static vars when a new inferior begins. */
896
897 void
898 init_wait_for_inferior (void)
899 {
900 /* These are meaningless until the first time through wait_for_inferior. */
901 prev_pc = 0;
902
903 breakpoint_init_inferior (inf_starting);
904
905 /* Don't confuse first call to proceed(). */
906 stop_signal = TARGET_SIGNAL_0;
907
908 /* The first resume is not following a fork/vfork/exec. */
909 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
910
911 clear_proceed_status ();
912
913 stepping_past_singlestep_breakpoint = 0;
914 deferred_step_ptid = null_ptid;
915
916 target_last_wait_ptid = minus_one_ptid;
917 }
918 \f
919 /* This enum encodes possible reasons for doing a target_wait, so that
920 wfi can call target_wait in one place. (Ultimately the call will be
921 moved out of the infinite loop entirely.) */
922
923 enum infwait_states
924 {
925 infwait_normal_state,
926 infwait_thread_hop_state,
927 infwait_step_watch_state,
928 infwait_nonstep_watch_state
929 };
930
931 /* Why did the inferior stop? Used to print the appropriate messages
932 to the interface from within handle_inferior_event(). */
933 enum inferior_stop_reason
934 {
935 /* Step, next, nexti, stepi finished. */
936 END_STEPPING_RANGE,
937 /* Inferior terminated by signal. */
938 SIGNAL_EXITED,
939 /* Inferior exited. */
940 EXITED,
941 /* Inferior received signal, and user asked to be notified. */
942 SIGNAL_RECEIVED
943 };
944
945 /* This structure contains what used to be local variables in
946 wait_for_inferior. Probably many of them can return to being
947 locals in handle_inferior_event. */
948
949 struct execution_control_state
950 {
951 struct target_waitstatus ws;
952 struct target_waitstatus *wp;
953 /* Should we step over breakpoint next time keep_going
954 is called? */
955 int stepping_over_breakpoint;
956 int random_signal;
957 CORE_ADDR stop_func_start;
958 CORE_ADDR stop_func_end;
959 char *stop_func_name;
960 struct symtab_and_line sal;
961 int current_line;
962 struct symtab *current_symtab;
963 int handling_longjmp; /* FIXME */
964 ptid_t ptid;
965 ptid_t saved_inferior_ptid;
966 int step_after_step_resume_breakpoint;
967 int stepping_through_solib_after_catch;
968 bpstat stepping_through_solib_catchpoints;
969 int new_thread_event;
970 struct target_waitstatus tmpstatus;
971 enum infwait_states infwait_state;
972 ptid_t waiton_ptid;
973 int wait_some_more;
974 };
975
976 void init_execution_control_state (struct execution_control_state *ecs);
977
978 void handle_inferior_event (struct execution_control_state *ecs);
979
980 static void step_into_function (struct execution_control_state *ecs);
981 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
982 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
983 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
984 struct frame_id sr_id);
985 static void stop_stepping (struct execution_control_state *ecs);
986 static void prepare_to_wait (struct execution_control_state *ecs);
987 static void keep_going (struct execution_control_state *ecs);
988 static void print_stop_reason (enum inferior_stop_reason stop_reason,
989 int stop_info);
990
991 /* Wait for control to return from inferior to debugger.
992
993 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
994 as if they were SIGTRAP signals. This can be useful during
995 the startup sequence on some targets such as HP/UX, where
996 we receive an EXEC event instead of the expected SIGTRAP.
997
998 If inferior gets a signal, we may decide to start it up again
999 instead of returning. That is why there is a loop in this function.
1000 When this function actually returns it means the inferior
1001 should be left stopped and GDB should read more commands. */
1002
1003 void
1004 wait_for_inferior (int treat_exec_as_sigtrap)
1005 {
1006 struct cleanup *old_cleanups;
1007 struct execution_control_state ecss;
1008 struct execution_control_state *ecs;
1009
1010 if (debug_infrun)
1011 fprintf_unfiltered
1012 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1013 treat_exec_as_sigtrap);
1014
1015 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1016 &step_resume_breakpoint);
1017
1018 /* wfi still stays in a loop, so it's OK just to take the address of
1019 a local to get the ecs pointer. */
1020 ecs = &ecss;
1021
1022 /* Fill in with reasonable starting values. */
1023 init_execution_control_state (ecs);
1024
1025 /* We'll update this if & when we switch to a new thread. */
1026 previous_inferior_ptid = inferior_ptid;
1027
1028 overlay_cache_invalid = 1;
1029
1030 /* We have to invalidate the registers BEFORE calling target_wait
1031 because they can be loaded from the target while in target_wait.
1032 This makes remote debugging a bit more efficient for those
1033 targets that provide critical registers as part of their normal
1034 status mechanism. */
1035
1036 registers_changed ();
1037
1038 while (1)
1039 {
1040 if (deprecated_target_wait_hook)
1041 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1042 else
1043 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1044
1045 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1046 {
1047 xfree (ecs->ws.value.execd_pathname);
1048 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1049 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1050 }
1051
1052 /* Now figure out what to do with the result of the result. */
1053 handle_inferior_event (ecs);
1054
1055 if (!ecs->wait_some_more)
1056 break;
1057 }
1058 do_cleanups (old_cleanups);
1059 }
1060
1061 /* Asynchronous version of wait_for_inferior. It is called by the
1062 event loop whenever a change of state is detected on the file
1063 descriptor corresponding to the target. It can be called more than
1064 once to complete a single execution command. In such cases we need
1065 to keep the state in a global variable ASYNC_ECSS. If it is the
1066 last time that this function is called for a single execution
1067 command, then report to the user that the inferior has stopped, and
1068 do the necessary cleanups. */
1069
1070 struct execution_control_state async_ecss;
1071 struct execution_control_state *async_ecs;
1072
1073 void
1074 fetch_inferior_event (void *client_data)
1075 {
1076 static struct cleanup *old_cleanups;
1077
1078 async_ecs = &async_ecss;
1079
1080 if (!async_ecs->wait_some_more)
1081 {
1082 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1083 &step_resume_breakpoint);
1084
1085 /* Fill in with reasonable starting values. */
1086 init_execution_control_state (async_ecs);
1087
1088 /* We'll update this if & when we switch to a new thread. */
1089 previous_inferior_ptid = inferior_ptid;
1090
1091 overlay_cache_invalid = 1;
1092
1093 /* We have to invalidate the registers BEFORE calling target_wait
1094 because they can be loaded from the target while in target_wait.
1095 This makes remote debugging a bit more efficient for those
1096 targets that provide critical registers as part of their normal
1097 status mechanism. */
1098
1099 registers_changed ();
1100 }
1101
1102 if (deprecated_target_wait_hook)
1103 async_ecs->ptid =
1104 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1105 else
1106 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1107
1108 /* Now figure out what to do with the result of the result. */
1109 handle_inferior_event (async_ecs);
1110
1111 if (!async_ecs->wait_some_more)
1112 {
1113 /* Do only the cleanups that have been added by this
1114 function. Let the continuations for the commands do the rest,
1115 if there are any. */
1116 do_exec_cleanups (old_cleanups);
1117 normal_stop ();
1118 if (step_multi && stop_step)
1119 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1120 else
1121 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1122 }
1123 }
1124
1125 /* Prepare an execution control state for looping through a
1126 wait_for_inferior-type loop. */
1127
1128 void
1129 init_execution_control_state (struct execution_control_state *ecs)
1130 {
1131 ecs->stepping_over_breakpoint = 0;
1132 ecs->random_signal = 0;
1133 ecs->step_after_step_resume_breakpoint = 0;
1134 ecs->handling_longjmp = 0; /* FIXME */
1135 ecs->stepping_through_solib_after_catch = 0;
1136 ecs->stepping_through_solib_catchpoints = NULL;
1137 ecs->sal = find_pc_line (prev_pc, 0);
1138 ecs->current_line = ecs->sal.line;
1139 ecs->current_symtab = ecs->sal.symtab;
1140 ecs->infwait_state = infwait_normal_state;
1141 ecs->waiton_ptid = pid_to_ptid (-1);
1142 ecs->wp = &(ecs->ws);
1143 }
1144
1145 /* Return the cached copy of the last pid/waitstatus returned by
1146 target_wait()/deprecated_target_wait_hook(). The data is actually
1147 cached by handle_inferior_event(), which gets called immediately
1148 after target_wait()/deprecated_target_wait_hook(). */
1149
1150 void
1151 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1152 {
1153 *ptidp = target_last_wait_ptid;
1154 *status = target_last_waitstatus;
1155 }
1156
1157 void
1158 nullify_last_target_wait_ptid (void)
1159 {
1160 target_last_wait_ptid = minus_one_ptid;
1161 }
1162
1163 /* Switch thread contexts, maintaining "infrun state". */
1164
1165 static void
1166 context_switch (struct execution_control_state *ecs)
1167 {
1168 /* Caution: it may happen that the new thread (or the old one!)
1169 is not in the thread list. In this case we must not attempt
1170 to "switch context", or we run the risk that our context may
1171 be lost. This may happen as a result of the target module
1172 mishandling thread creation. */
1173
1174 if (debug_infrun)
1175 {
1176 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1177 target_pid_to_str (inferior_ptid));
1178 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1179 target_pid_to_str (ecs->ptid));
1180 }
1181
1182 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1183 { /* Perform infrun state context switch: */
1184 /* Save infrun state for the old thread. */
1185 save_infrun_state (inferior_ptid, prev_pc,
1186 stepping_over_breakpoint, step_resume_breakpoint,
1187 step_range_start,
1188 step_range_end, &step_frame_id,
1189 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1190 ecs->stepping_through_solib_after_catch,
1191 ecs->stepping_through_solib_catchpoints,
1192 ecs->current_line, ecs->current_symtab);
1193
1194 /* Load infrun state for the new thread. */
1195 load_infrun_state (ecs->ptid, &prev_pc,
1196 &stepping_over_breakpoint, &step_resume_breakpoint,
1197 &step_range_start,
1198 &step_range_end, &step_frame_id,
1199 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1200 &ecs->stepping_through_solib_after_catch,
1201 &ecs->stepping_through_solib_catchpoints,
1202 &ecs->current_line, &ecs->current_symtab);
1203 }
1204
1205 switch_to_thread (ecs->ptid);
1206 }
1207
1208 static void
1209 adjust_pc_after_break (struct execution_control_state *ecs)
1210 {
1211 CORE_ADDR breakpoint_pc;
1212
1213 /* If this target does not decrement the PC after breakpoints, then
1214 we have nothing to do. */
1215 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1216 return;
1217
1218 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1219 we aren't, just return.
1220
1221 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1222 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1223 implemented by software breakpoints should be handled through the normal
1224 breakpoint layer.
1225
1226 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1227 different signals (SIGILL or SIGEMT for instance), but it is less
1228 clear where the PC is pointing afterwards. It may not match
1229 gdbarch_decr_pc_after_break. I don't know any specific target that
1230 generates these signals at breakpoints (the code has been in GDB since at
1231 least 1992) so I can not guess how to handle them here.
1232
1233 In earlier versions of GDB, a target with
1234 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1235 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1236 target with both of these set in GDB history, and it seems unlikely to be
1237 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1238
1239 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1240 return;
1241
1242 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1243 return;
1244
1245 /* Find the location where (if we've hit a breakpoint) the
1246 breakpoint would be. */
1247 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1248 (current_gdbarch);
1249
1250 /* Check whether there actually is a software breakpoint inserted
1251 at that location. */
1252 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1253 {
1254 /* When using hardware single-step, a SIGTRAP is reported for both
1255 a completed single-step and a software breakpoint. Need to
1256 differentiate between the two, as the latter needs adjusting
1257 but the former does not.
1258
1259 The SIGTRAP can be due to a completed hardware single-step only if
1260 - we didn't insert software single-step breakpoints
1261 - the thread to be examined is still the current thread
1262 - this thread is currently being stepped
1263
1264 If any of these events did not occur, we must have stopped due
1265 to hitting a software breakpoint, and have to back up to the
1266 breakpoint address.
1267
1268 As a special case, we could have hardware single-stepped a
1269 software breakpoint. In this case (prev_pc == breakpoint_pc),
1270 we also need to back up to the breakpoint address. */
1271
1272 if (singlestep_breakpoints_inserted_p
1273 || !ptid_equal (ecs->ptid, inferior_ptid)
1274 || !currently_stepping (ecs)
1275 || prev_pc == breakpoint_pc)
1276 write_pc_pid (breakpoint_pc, ecs->ptid);
1277 }
1278 }
1279
1280 /* Given an execution control state that has been freshly filled in
1281 by an event from the inferior, figure out what it means and take
1282 appropriate action. */
1283
1284 void
1285 handle_inferior_event (struct execution_control_state *ecs)
1286 {
1287 int sw_single_step_trap_p = 0;
1288 int stopped_by_watchpoint;
1289 int stepped_after_stopped_by_watchpoint = 0;
1290
1291 /* Cache the last pid/waitstatus. */
1292 target_last_wait_ptid = ecs->ptid;
1293 target_last_waitstatus = *ecs->wp;
1294
1295 /* Always clear state belonging to the previous time we stopped. */
1296 stop_stack_dummy = 0;
1297
1298 adjust_pc_after_break (ecs);
1299
1300 switch (ecs->infwait_state)
1301 {
1302 case infwait_thread_hop_state:
1303 if (debug_infrun)
1304 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1305 /* Cancel the waiton_ptid. */
1306 ecs->waiton_ptid = pid_to_ptid (-1);
1307 break;
1308
1309 case infwait_normal_state:
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1312 break;
1313
1314 case infwait_step_watch_state:
1315 if (debug_infrun)
1316 fprintf_unfiltered (gdb_stdlog,
1317 "infrun: infwait_step_watch_state\n");
1318
1319 stepped_after_stopped_by_watchpoint = 1;
1320 break;
1321
1322 case infwait_nonstep_watch_state:
1323 if (debug_infrun)
1324 fprintf_unfiltered (gdb_stdlog,
1325 "infrun: infwait_nonstep_watch_state\n");
1326 insert_breakpoints ();
1327
1328 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1329 handle things like signals arriving and other things happening
1330 in combination correctly? */
1331 stepped_after_stopped_by_watchpoint = 1;
1332 break;
1333
1334 default:
1335 internal_error (__FILE__, __LINE__, _("bad switch"));
1336 }
1337 ecs->infwait_state = infwait_normal_state;
1338
1339 reinit_frame_cache ();
1340
1341 /* If it's a new process, add it to the thread database */
1342
1343 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1344 && !ptid_equal (ecs->ptid, minus_one_ptid)
1345 && !in_thread_list (ecs->ptid));
1346
1347 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1348 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1349 add_thread (ecs->ptid);
1350
1351 switch (ecs->ws.kind)
1352 {
1353 case TARGET_WAITKIND_LOADED:
1354 if (debug_infrun)
1355 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1356 /* Ignore gracefully during startup of the inferior, as it might
1357 be the shell which has just loaded some objects, otherwise
1358 add the symbols for the newly loaded objects. Also ignore at
1359 the beginning of an attach or remote session; we will query
1360 the full list of libraries once the connection is
1361 established. */
1362 if (stop_soon == NO_STOP_QUIETLY)
1363 {
1364 /* Remove breakpoints, SOLIB_ADD might adjust
1365 breakpoint addresses via breakpoint_re_set. */
1366 remove_breakpoints ();
1367
1368 /* Check for any newly added shared libraries if we're
1369 supposed to be adding them automatically. Switch
1370 terminal for any messages produced by
1371 breakpoint_re_set. */
1372 target_terminal_ours_for_output ();
1373 /* NOTE: cagney/2003-11-25: Make certain that the target
1374 stack's section table is kept up-to-date. Architectures,
1375 (e.g., PPC64), use the section table to perform
1376 operations such as address => section name and hence
1377 require the table to contain all sections (including
1378 those found in shared libraries). */
1379 /* NOTE: cagney/2003-11-25: Pass current_target and not
1380 exec_ops to SOLIB_ADD. This is because current GDB is
1381 only tooled to propagate section_table changes out from
1382 the "current_target" (see target_resize_to_sections), and
1383 not up from the exec stratum. This, of course, isn't
1384 right. "infrun.c" should only interact with the
1385 exec/process stratum, instead relying on the target stack
1386 to propagate relevant changes (stop, section table
1387 changed, ...) up to other layers. */
1388 #ifdef SOLIB_ADD
1389 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1390 #else
1391 solib_add (NULL, 0, &current_target, auto_solib_add);
1392 #endif
1393 target_terminal_inferior ();
1394
1395 /* If requested, stop when the dynamic linker notifies
1396 gdb of events. This allows the user to get control
1397 and place breakpoints in initializer routines for
1398 dynamically loaded objects (among other things). */
1399 if (stop_on_solib_events)
1400 {
1401 stop_stepping (ecs);
1402 return;
1403 }
1404
1405 /* NOTE drow/2007-05-11: This might be a good place to check
1406 for "catch load". */
1407
1408 /* Reinsert breakpoints and continue. */
1409 insert_breakpoints ();
1410 }
1411
1412 /* If we are skipping through a shell, or through shared library
1413 loading that we aren't interested in, resume the program. If
1414 we're running the program normally, also resume. But stop if
1415 we're attaching or setting up a remote connection. */
1416 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1417 {
1418 resume (0, TARGET_SIGNAL_0);
1419 prepare_to_wait (ecs);
1420 return;
1421 }
1422
1423 break;
1424
1425 case TARGET_WAITKIND_SPURIOUS:
1426 if (debug_infrun)
1427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1428 resume (0, TARGET_SIGNAL_0);
1429 prepare_to_wait (ecs);
1430 return;
1431
1432 case TARGET_WAITKIND_EXITED:
1433 if (debug_infrun)
1434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1435 target_terminal_ours (); /* Must do this before mourn anyway */
1436 print_stop_reason (EXITED, ecs->ws.value.integer);
1437
1438 /* Record the exit code in the convenience variable $_exitcode, so
1439 that the user can inspect this again later. */
1440 set_internalvar (lookup_internalvar ("_exitcode"),
1441 value_from_longest (builtin_type_int,
1442 (LONGEST) ecs->ws.value.integer));
1443 gdb_flush (gdb_stdout);
1444 target_mourn_inferior ();
1445 singlestep_breakpoints_inserted_p = 0;
1446 stop_print_frame = 0;
1447 stop_stepping (ecs);
1448 return;
1449
1450 case TARGET_WAITKIND_SIGNALLED:
1451 if (debug_infrun)
1452 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1453 stop_print_frame = 0;
1454 stop_signal = ecs->ws.value.sig;
1455 target_terminal_ours (); /* Must do this before mourn anyway */
1456
1457 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1458 reach here unless the inferior is dead. However, for years
1459 target_kill() was called here, which hints that fatal signals aren't
1460 really fatal on some systems. If that's true, then some changes
1461 may be needed. */
1462 target_mourn_inferior ();
1463
1464 print_stop_reason (SIGNAL_EXITED, stop_signal);
1465 singlestep_breakpoints_inserted_p = 0;
1466 stop_stepping (ecs);
1467 return;
1468
1469 /* The following are the only cases in which we keep going;
1470 the above cases end in a continue or goto. */
1471 case TARGET_WAITKIND_FORKED:
1472 case TARGET_WAITKIND_VFORKED:
1473 if (debug_infrun)
1474 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1475 stop_signal = TARGET_SIGNAL_TRAP;
1476 pending_follow.kind = ecs->ws.kind;
1477
1478 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1479 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1480
1481 if (!ptid_equal (ecs->ptid, inferior_ptid))
1482 {
1483 context_switch (ecs);
1484 reinit_frame_cache ();
1485 }
1486
1487 stop_pc = read_pc ();
1488
1489 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1490
1491 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1492
1493 /* If no catchpoint triggered for this, then keep going. */
1494 if (ecs->random_signal)
1495 {
1496 stop_signal = TARGET_SIGNAL_0;
1497 keep_going (ecs);
1498 return;
1499 }
1500 goto process_event_stop_test;
1501
1502 case TARGET_WAITKIND_EXECD:
1503 if (debug_infrun)
1504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1505 stop_signal = TARGET_SIGNAL_TRAP;
1506
1507 /* NOTE drow/2002-12-05: This code should be pushed down into the
1508 target_wait function. Until then following vfork on HP/UX 10.20
1509 is probably broken by this. Of course, it's broken anyway. */
1510 /* Is this a target which reports multiple exec events per actual
1511 call to exec()? (HP-UX using ptrace does, for example.) If so,
1512 ignore all but the last one. Just resume the exec'r, and wait
1513 for the next exec event. */
1514 if (inferior_ignoring_leading_exec_events)
1515 {
1516 inferior_ignoring_leading_exec_events--;
1517 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1518 prepare_to_wait (ecs);
1519 return;
1520 }
1521 inferior_ignoring_leading_exec_events =
1522 target_reported_exec_events_per_exec_call () - 1;
1523
1524 pending_follow.execd_pathname =
1525 savestring (ecs->ws.value.execd_pathname,
1526 strlen (ecs->ws.value.execd_pathname));
1527
1528 /* This causes the eventpoints and symbol table to be reset. Must
1529 do this now, before trying to determine whether to stop. */
1530 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1531 xfree (pending_follow.execd_pathname);
1532
1533 stop_pc = read_pc_pid (ecs->ptid);
1534 ecs->saved_inferior_ptid = inferior_ptid;
1535 inferior_ptid = ecs->ptid;
1536
1537 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1538
1539 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1540 inferior_ptid = ecs->saved_inferior_ptid;
1541
1542 if (!ptid_equal (ecs->ptid, inferior_ptid))
1543 {
1544 context_switch (ecs);
1545 reinit_frame_cache ();
1546 }
1547
1548 /* If no catchpoint triggered for this, then keep going. */
1549 if (ecs->random_signal)
1550 {
1551 stop_signal = TARGET_SIGNAL_0;
1552 keep_going (ecs);
1553 return;
1554 }
1555 goto process_event_stop_test;
1556
1557 /* Be careful not to try to gather much state about a thread
1558 that's in a syscall. It's frequently a losing proposition. */
1559 case TARGET_WAITKIND_SYSCALL_ENTRY:
1560 if (debug_infrun)
1561 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1562 resume (0, TARGET_SIGNAL_0);
1563 prepare_to_wait (ecs);
1564 return;
1565
1566 /* Before examining the threads further, step this thread to
1567 get it entirely out of the syscall. (We get notice of the
1568 event when the thread is just on the verge of exiting a
1569 syscall. Stepping one instruction seems to get it back
1570 into user code.) */
1571 case TARGET_WAITKIND_SYSCALL_RETURN:
1572 if (debug_infrun)
1573 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1574 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1575 prepare_to_wait (ecs);
1576 return;
1577
1578 case TARGET_WAITKIND_STOPPED:
1579 if (debug_infrun)
1580 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1581 stop_signal = ecs->ws.value.sig;
1582 break;
1583
1584 /* We had an event in the inferior, but we are not interested
1585 in handling it at this level. The lower layers have already
1586 done what needs to be done, if anything.
1587
1588 One of the possible circumstances for this is when the
1589 inferior produces output for the console. The inferior has
1590 not stopped, and we are ignoring the event. Another possible
1591 circumstance is any event which the lower level knows will be
1592 reported multiple times without an intervening resume. */
1593 case TARGET_WAITKIND_IGNORE:
1594 if (debug_infrun)
1595 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1596 prepare_to_wait (ecs);
1597 return;
1598 }
1599
1600 /* We may want to consider not doing a resume here in order to give
1601 the user a chance to play with the new thread. It might be good
1602 to make that a user-settable option. */
1603
1604 /* At this point, all threads are stopped (happens automatically in
1605 either the OS or the native code). Therefore we need to continue
1606 all threads in order to make progress. */
1607 if (ecs->new_thread_event)
1608 {
1609 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1610 prepare_to_wait (ecs);
1611 return;
1612 }
1613
1614 stop_pc = read_pc_pid (ecs->ptid);
1615
1616 if (debug_infrun)
1617 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1618
1619 if (stepping_past_singlestep_breakpoint)
1620 {
1621 gdb_assert (singlestep_breakpoints_inserted_p);
1622 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1623 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1624
1625 stepping_past_singlestep_breakpoint = 0;
1626
1627 /* We've either finished single-stepping past the single-step
1628 breakpoint, or stopped for some other reason. It would be nice if
1629 we could tell, but we can't reliably. */
1630 if (stop_signal == TARGET_SIGNAL_TRAP)
1631 {
1632 if (debug_infrun)
1633 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1634 /* Pull the single step breakpoints out of the target. */
1635 remove_single_step_breakpoints ();
1636 singlestep_breakpoints_inserted_p = 0;
1637
1638 ecs->random_signal = 0;
1639
1640 ecs->ptid = saved_singlestep_ptid;
1641 context_switch (ecs);
1642 if (deprecated_context_hook)
1643 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1644
1645 resume (1, TARGET_SIGNAL_0);
1646 prepare_to_wait (ecs);
1647 return;
1648 }
1649 }
1650
1651 stepping_past_singlestep_breakpoint = 0;
1652
1653 if (!ptid_equal (deferred_step_ptid, null_ptid))
1654 {
1655 /* If we stopped for some other reason than single-stepping, ignore
1656 the fact that we were supposed to switch back. */
1657 if (stop_signal == TARGET_SIGNAL_TRAP)
1658 {
1659 if (debug_infrun)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "infrun: handling deferred step\n");
1662
1663 /* Pull the single step breakpoints out of the target. */
1664 if (singlestep_breakpoints_inserted_p)
1665 {
1666 remove_single_step_breakpoints ();
1667 singlestep_breakpoints_inserted_p = 0;
1668 }
1669
1670 /* Note: We do not call context_switch at this point, as the
1671 context is already set up for stepping the original thread. */
1672 switch_to_thread (deferred_step_ptid);
1673 deferred_step_ptid = null_ptid;
1674 /* Suppress spurious "Switching to ..." message. */
1675 previous_inferior_ptid = inferior_ptid;
1676
1677 resume (1, TARGET_SIGNAL_0);
1678 prepare_to_wait (ecs);
1679 return;
1680 }
1681
1682 deferred_step_ptid = null_ptid;
1683 }
1684
1685 /* See if a thread hit a thread-specific breakpoint that was meant for
1686 another thread. If so, then step that thread past the breakpoint,
1687 and continue it. */
1688
1689 if (stop_signal == TARGET_SIGNAL_TRAP)
1690 {
1691 int thread_hop_needed = 0;
1692
1693 /* Check if a regular breakpoint has been hit before checking
1694 for a potential single step breakpoint. Otherwise, GDB will
1695 not see this breakpoint hit when stepping onto breakpoints. */
1696 if (regular_breakpoint_inserted_here_p (stop_pc))
1697 {
1698 ecs->random_signal = 0;
1699 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1700 thread_hop_needed = 1;
1701 }
1702 else if (singlestep_breakpoints_inserted_p)
1703 {
1704 /* We have not context switched yet, so this should be true
1705 no matter which thread hit the singlestep breakpoint. */
1706 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1707 if (debug_infrun)
1708 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1709 "trap for %s\n",
1710 target_pid_to_str (ecs->ptid));
1711
1712 ecs->random_signal = 0;
1713 /* The call to in_thread_list is necessary because PTIDs sometimes
1714 change when we go from single-threaded to multi-threaded. If
1715 the singlestep_ptid is still in the list, assume that it is
1716 really different from ecs->ptid. */
1717 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1718 && in_thread_list (singlestep_ptid))
1719 {
1720 /* If the PC of the thread we were trying to single-step
1721 has changed, discard this event (which we were going
1722 to ignore anyway), and pretend we saw that thread
1723 trap. This prevents us continuously moving the
1724 single-step breakpoint forward, one instruction at a
1725 time. If the PC has changed, then the thread we were
1726 trying to single-step has trapped or been signalled,
1727 but the event has not been reported to GDB yet.
1728
1729 There might be some cases where this loses signal
1730 information, if a signal has arrived at exactly the
1731 same time that the PC changed, but this is the best
1732 we can do with the information available. Perhaps we
1733 should arrange to report all events for all threads
1734 when they stop, or to re-poll the remote looking for
1735 this particular thread (i.e. temporarily enable
1736 schedlock). */
1737 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1738 {
1739 if (debug_infrun)
1740 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1741 " but expected thread advanced also\n");
1742
1743 /* The current context still belongs to
1744 singlestep_ptid. Don't swap here, since that's
1745 the context we want to use. Just fudge our
1746 state and continue. */
1747 ecs->ptid = singlestep_ptid;
1748 stop_pc = read_pc_pid (ecs->ptid);
1749 }
1750 else
1751 {
1752 if (debug_infrun)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "infrun: unexpected thread\n");
1755
1756 thread_hop_needed = 1;
1757 stepping_past_singlestep_breakpoint = 1;
1758 saved_singlestep_ptid = singlestep_ptid;
1759 }
1760 }
1761 }
1762
1763 if (thread_hop_needed)
1764 {
1765 int remove_status;
1766
1767 if (debug_infrun)
1768 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1769
1770 /* Saw a breakpoint, but it was hit by the wrong thread.
1771 Just continue. */
1772
1773 if (singlestep_breakpoints_inserted_p)
1774 {
1775 /* Pull the single step breakpoints out of the target. */
1776 remove_single_step_breakpoints ();
1777 singlestep_breakpoints_inserted_p = 0;
1778 }
1779
1780 remove_status = remove_breakpoints ();
1781 /* Did we fail to remove breakpoints? If so, try
1782 to set the PC past the bp. (There's at least
1783 one situation in which we can fail to remove
1784 the bp's: On HP-UX's that use ttrace, we can't
1785 change the address space of a vforking child
1786 process until the child exits (well, okay, not
1787 then either :-) or execs. */
1788 if (remove_status != 0)
1789 error (_("Cannot step over breakpoint hit in wrong thread"));
1790 else
1791 { /* Single step */
1792 if (!ptid_equal (inferior_ptid, ecs->ptid))
1793 context_switch (ecs);
1794 ecs->waiton_ptid = ecs->ptid;
1795 ecs->wp = &(ecs->ws);
1796 ecs->stepping_over_breakpoint = 1;
1797
1798 ecs->infwait_state = infwait_thread_hop_state;
1799 keep_going (ecs);
1800 registers_changed ();
1801 return;
1802 }
1803 }
1804 else if (singlestep_breakpoints_inserted_p)
1805 {
1806 sw_single_step_trap_p = 1;
1807 ecs->random_signal = 0;
1808 }
1809 }
1810 else
1811 ecs->random_signal = 1;
1812
1813 /* See if something interesting happened to the non-current thread. If
1814 so, then switch to that thread. */
1815 if (!ptid_equal (ecs->ptid, inferior_ptid))
1816 {
1817 if (debug_infrun)
1818 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1819
1820 context_switch (ecs);
1821
1822 if (deprecated_context_hook)
1823 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1824 }
1825
1826 if (singlestep_breakpoints_inserted_p)
1827 {
1828 /* Pull the single step breakpoints out of the target. */
1829 remove_single_step_breakpoints ();
1830 singlestep_breakpoints_inserted_p = 0;
1831 }
1832
1833 if (stepped_after_stopped_by_watchpoint)
1834 stopped_by_watchpoint = 0;
1835 else
1836 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1837
1838 /* If necessary, step over this watchpoint. We'll be back to display
1839 it in a moment. */
1840 if (stopped_by_watchpoint
1841 && (HAVE_STEPPABLE_WATCHPOINT
1842 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1843 {
1844 if (debug_infrun)
1845 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1846
1847 /* At this point, we are stopped at an instruction which has
1848 attempted to write to a piece of memory under control of
1849 a watchpoint. The instruction hasn't actually executed
1850 yet. If we were to evaluate the watchpoint expression
1851 now, we would get the old value, and therefore no change
1852 would seem to have occurred.
1853
1854 In order to make watchpoints work `right', we really need
1855 to complete the memory write, and then evaluate the
1856 watchpoint expression. We do this by single-stepping the
1857 target.
1858
1859 It may not be necessary to disable the watchpoint to stop over
1860 it. For example, the PA can (with some kernel cooperation)
1861 single step over a watchpoint without disabling the watchpoint.
1862
1863 It is far more common to need to disable a watchpoint to step
1864 the inferior over it. If we have non-steppable watchpoints,
1865 we must disable the current watchpoint; it's simplest to
1866 disable all watchpoints and breakpoints. */
1867
1868 if (!HAVE_STEPPABLE_WATCHPOINT)
1869 remove_breakpoints ();
1870 registers_changed ();
1871 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1872 ecs->waiton_ptid = ecs->ptid;
1873 if (HAVE_STEPPABLE_WATCHPOINT)
1874 ecs->infwait_state = infwait_step_watch_state;
1875 else
1876 ecs->infwait_state = infwait_nonstep_watch_state;
1877 prepare_to_wait (ecs);
1878 return;
1879 }
1880
1881 ecs->stop_func_start = 0;
1882 ecs->stop_func_end = 0;
1883 ecs->stop_func_name = 0;
1884 /* Don't care about return value; stop_func_start and stop_func_name
1885 will both be 0 if it doesn't work. */
1886 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1887 &ecs->stop_func_start, &ecs->stop_func_end);
1888 ecs->stop_func_start
1889 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1890 ecs->stepping_over_breakpoint = 0;
1891 bpstat_clear (&stop_bpstat);
1892 stop_step = 0;
1893 stop_print_frame = 1;
1894 ecs->random_signal = 0;
1895 stopped_by_random_signal = 0;
1896
1897 if (stop_signal == TARGET_SIGNAL_TRAP
1898 && stepping_over_breakpoint
1899 && gdbarch_single_step_through_delay_p (current_gdbarch)
1900 && currently_stepping (ecs))
1901 {
1902 /* We're trying to step off a breakpoint. Turns out that we're
1903 also on an instruction that needs to be stepped multiple
1904 times before it's been fully executing. E.g., architectures
1905 with a delay slot. It needs to be stepped twice, once for
1906 the instruction and once for the delay slot. */
1907 int step_through_delay
1908 = gdbarch_single_step_through_delay (current_gdbarch,
1909 get_current_frame ());
1910 if (debug_infrun && step_through_delay)
1911 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1912 if (step_range_end == 0 && step_through_delay)
1913 {
1914 /* The user issued a continue when stopped at a breakpoint.
1915 Set up for another trap and get out of here. */
1916 ecs->stepping_over_breakpoint = 1;
1917 keep_going (ecs);
1918 return;
1919 }
1920 else if (step_through_delay)
1921 {
1922 /* The user issued a step when stopped at a breakpoint.
1923 Maybe we should stop, maybe we should not - the delay
1924 slot *might* correspond to a line of source. In any
1925 case, don't decide that here, just set
1926 ecs->stepping_over_breakpoint, making sure we
1927 single-step again before breakpoints are re-inserted. */
1928 ecs->stepping_over_breakpoint = 1;
1929 }
1930 }
1931
1932 /* Look at the cause of the stop, and decide what to do.
1933 The alternatives are:
1934 1) break; to really stop and return to the debugger,
1935 2) drop through to start up again
1936 (set ecs->stepping_over_breakpoint to 1 to single step once)
1937 3) set ecs->random_signal to 1, and the decision between 1 and 2
1938 will be made according to the signal handling tables. */
1939
1940 /* First, distinguish signals caused by the debugger from signals
1941 that have to do with the program's own actions. Note that
1942 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1943 on the operating system version. Here we detect when a SIGILL or
1944 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1945 something similar for SIGSEGV, since a SIGSEGV will be generated
1946 when we're trying to execute a breakpoint instruction on a
1947 non-executable stack. This happens for call dummy breakpoints
1948 for architectures like SPARC that place call dummies on the
1949 stack. */
1950
1951 if (stop_signal == TARGET_SIGNAL_TRAP
1952 || (breakpoint_inserted_here_p (stop_pc)
1953 && (stop_signal == TARGET_SIGNAL_ILL
1954 || stop_signal == TARGET_SIGNAL_SEGV
1955 || stop_signal == TARGET_SIGNAL_EMT))
1956 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1957 || stop_soon == STOP_QUIETLY_REMOTE)
1958 {
1959 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1960 {
1961 if (debug_infrun)
1962 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1963 stop_print_frame = 0;
1964 stop_stepping (ecs);
1965 return;
1966 }
1967
1968 /* This is originated from start_remote(), start_inferior() and
1969 shared libraries hook functions. */
1970 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1971 {
1972 if (debug_infrun)
1973 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1974 stop_stepping (ecs);
1975 return;
1976 }
1977
1978 /* This originates from attach_command(). We need to overwrite
1979 the stop_signal here, because some kernels don't ignore a
1980 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1981 See more comments in inferior.h. */
1982 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1983 {
1984 stop_stepping (ecs);
1985 if (stop_signal == TARGET_SIGNAL_STOP)
1986 stop_signal = TARGET_SIGNAL_0;
1987 return;
1988 }
1989
1990 /* See if there is a breakpoint at the current PC. */
1991 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1992
1993 /* Following in case break condition called a
1994 function. */
1995 stop_print_frame = 1;
1996
1997 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1998 at one stage in the past included checks for an inferior
1999 function call's call dummy's return breakpoint. The original
2000 comment, that went with the test, read:
2001
2002 ``End of a stack dummy. Some systems (e.g. Sony news) give
2003 another signal besides SIGTRAP, so check here as well as
2004 above.''
2005
2006 If someone ever tries to get get call dummys on a
2007 non-executable stack to work (where the target would stop
2008 with something like a SIGSEGV), then those tests might need
2009 to be re-instated. Given, however, that the tests were only
2010 enabled when momentary breakpoints were not being used, I
2011 suspect that it won't be the case.
2012
2013 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2014 be necessary for call dummies on a non-executable stack on
2015 SPARC. */
2016
2017 if (stop_signal == TARGET_SIGNAL_TRAP)
2018 ecs->random_signal
2019 = !(bpstat_explains_signal (stop_bpstat)
2020 || stepping_over_breakpoint
2021 || (step_range_end && step_resume_breakpoint == NULL));
2022 else
2023 {
2024 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2025 if (!ecs->random_signal)
2026 stop_signal = TARGET_SIGNAL_TRAP;
2027 }
2028 }
2029
2030 /* When we reach this point, we've pretty much decided
2031 that the reason for stopping must've been a random
2032 (unexpected) signal. */
2033
2034 else
2035 ecs->random_signal = 1;
2036
2037 process_event_stop_test:
2038 /* For the program's own signals, act according to
2039 the signal handling tables. */
2040
2041 if (ecs->random_signal)
2042 {
2043 /* Signal not for debugging purposes. */
2044 int printed = 0;
2045
2046 if (debug_infrun)
2047 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2048
2049 stopped_by_random_signal = 1;
2050
2051 if (signal_print[stop_signal])
2052 {
2053 printed = 1;
2054 target_terminal_ours_for_output ();
2055 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2056 }
2057 if (signal_stop[stop_signal])
2058 {
2059 stop_stepping (ecs);
2060 return;
2061 }
2062 /* If not going to stop, give terminal back
2063 if we took it away. */
2064 else if (printed)
2065 target_terminal_inferior ();
2066
2067 /* Clear the signal if it should not be passed. */
2068 if (signal_program[stop_signal] == 0)
2069 stop_signal = TARGET_SIGNAL_0;
2070
2071 if (prev_pc == read_pc ()
2072 && breakpoint_here_p (read_pc ())
2073 && !breakpoint_inserted_here_p (read_pc ())
2074 && step_resume_breakpoint == NULL)
2075 {
2076 /* We were just starting a new sequence, attempting to
2077 single-step off of a breakpoint and expecting a SIGTRAP.
2078 Intead this signal arrives. This signal will take us out
2079 of the stepping range so GDB needs to remember to, when
2080 the signal handler returns, resume stepping off that
2081 breakpoint. */
2082 /* To simplify things, "continue" is forced to use the same
2083 code paths as single-step - set a breakpoint at the
2084 signal return address and then, once hit, step off that
2085 breakpoint. */
2086
2087 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2088 ecs->step_after_step_resume_breakpoint = 1;
2089 keep_going (ecs);
2090 return;
2091 }
2092
2093 if (step_range_end != 0
2094 && stop_signal != TARGET_SIGNAL_0
2095 && stop_pc >= step_range_start && stop_pc < step_range_end
2096 && frame_id_eq (get_frame_id (get_current_frame ()),
2097 step_frame_id)
2098 && step_resume_breakpoint == NULL)
2099 {
2100 /* The inferior is about to take a signal that will take it
2101 out of the single step range. Set a breakpoint at the
2102 current PC (which is presumably where the signal handler
2103 will eventually return) and then allow the inferior to
2104 run free.
2105
2106 Note that this is only needed for a signal delivered
2107 while in the single-step range. Nested signals aren't a
2108 problem as they eventually all return. */
2109 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2110 keep_going (ecs);
2111 return;
2112 }
2113
2114 /* Note: step_resume_breakpoint may be non-NULL. This occures
2115 when either there's a nested signal, or when there's a
2116 pending signal enabled just as the signal handler returns
2117 (leaving the inferior at the step-resume-breakpoint without
2118 actually executing it). Either way continue until the
2119 breakpoint is really hit. */
2120 keep_going (ecs);
2121 return;
2122 }
2123
2124 /* Handle cases caused by hitting a breakpoint. */
2125 {
2126 CORE_ADDR jmp_buf_pc;
2127 struct bpstat_what what;
2128
2129 what = bpstat_what (stop_bpstat);
2130
2131 if (what.call_dummy)
2132 {
2133 stop_stack_dummy = 1;
2134 }
2135
2136 switch (what.main_action)
2137 {
2138 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2139 /* If we hit the breakpoint at longjmp, disable it for the
2140 duration of this command. Then, install a temporary
2141 breakpoint at the target of the jmp_buf. */
2142 if (debug_infrun)
2143 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2144 disable_longjmp_breakpoint ();
2145 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2146 || !gdbarch_get_longjmp_target (current_gdbarch,
2147 get_current_frame (), &jmp_buf_pc))
2148 {
2149 keep_going (ecs);
2150 return;
2151 }
2152
2153 /* Need to blow away step-resume breakpoint, as it
2154 interferes with us */
2155 if (step_resume_breakpoint != NULL)
2156 {
2157 delete_step_resume_breakpoint (&step_resume_breakpoint);
2158 }
2159
2160 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2161 ecs->handling_longjmp = 1; /* FIXME */
2162 keep_going (ecs);
2163 return;
2164
2165 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2166 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2167 if (debug_infrun)
2168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2169 disable_longjmp_breakpoint ();
2170 ecs->handling_longjmp = 0; /* FIXME */
2171 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2172 break;
2173 /* else fallthrough */
2174
2175 case BPSTAT_WHAT_SINGLE:
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2178 ecs->stepping_over_breakpoint = 1;
2179 /* Still need to check other stuff, at least the case
2180 where we are stepping and step out of the right range. */
2181 break;
2182
2183 case BPSTAT_WHAT_STOP_NOISY:
2184 if (debug_infrun)
2185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2186 stop_print_frame = 1;
2187
2188 /* We are about to nuke the step_resume_breakpointt via the
2189 cleanup chain, so no need to worry about it here. */
2190
2191 stop_stepping (ecs);
2192 return;
2193
2194 case BPSTAT_WHAT_STOP_SILENT:
2195 if (debug_infrun)
2196 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2197 stop_print_frame = 0;
2198
2199 /* We are about to nuke the step_resume_breakpoin via the
2200 cleanup chain, so no need to worry about it here. */
2201
2202 stop_stepping (ecs);
2203 return;
2204
2205 case BPSTAT_WHAT_STEP_RESUME:
2206 /* This proably demands a more elegant solution, but, yeah
2207 right...
2208
2209 This function's use of the simple variable
2210 step_resume_breakpoint doesn't seem to accomodate
2211 simultaneously active step-resume bp's, although the
2212 breakpoint list certainly can.
2213
2214 If we reach here and step_resume_breakpoint is already
2215 NULL, then apparently we have multiple active
2216 step-resume bp's. We'll just delete the breakpoint we
2217 stopped at, and carry on.
2218
2219 Correction: what the code currently does is delete a
2220 step-resume bp, but it makes no effort to ensure that
2221 the one deleted is the one currently stopped at. MVS */
2222
2223 if (debug_infrun)
2224 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2225
2226 if (step_resume_breakpoint == NULL)
2227 {
2228 step_resume_breakpoint =
2229 bpstat_find_step_resume_breakpoint (stop_bpstat);
2230 }
2231 delete_step_resume_breakpoint (&step_resume_breakpoint);
2232 if (ecs->step_after_step_resume_breakpoint)
2233 {
2234 /* Back when the step-resume breakpoint was inserted, we
2235 were trying to single-step off a breakpoint. Go back
2236 to doing that. */
2237 ecs->step_after_step_resume_breakpoint = 0;
2238 ecs->stepping_over_breakpoint = 1;
2239 keep_going (ecs);
2240 return;
2241 }
2242 break;
2243
2244 case BPSTAT_WHAT_CHECK_SHLIBS:
2245 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2246 {
2247 if (debug_infrun)
2248 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2249 /* Remove breakpoints, we eventually want to step over the
2250 shlib event breakpoint, and SOLIB_ADD might adjust
2251 breakpoint addresses via breakpoint_re_set. */
2252 remove_breakpoints ();
2253
2254 /* Check for any newly added shared libraries if we're
2255 supposed to be adding them automatically. Switch
2256 terminal for any messages produced by
2257 breakpoint_re_set. */
2258 target_terminal_ours_for_output ();
2259 /* NOTE: cagney/2003-11-25: Make certain that the target
2260 stack's section table is kept up-to-date. Architectures,
2261 (e.g., PPC64), use the section table to perform
2262 operations such as address => section name and hence
2263 require the table to contain all sections (including
2264 those found in shared libraries). */
2265 /* NOTE: cagney/2003-11-25: Pass current_target and not
2266 exec_ops to SOLIB_ADD. This is because current GDB is
2267 only tooled to propagate section_table changes out from
2268 the "current_target" (see target_resize_to_sections), and
2269 not up from the exec stratum. This, of course, isn't
2270 right. "infrun.c" should only interact with the
2271 exec/process stratum, instead relying on the target stack
2272 to propagate relevant changes (stop, section table
2273 changed, ...) up to other layers. */
2274 #ifdef SOLIB_ADD
2275 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2276 #else
2277 solib_add (NULL, 0, &current_target, auto_solib_add);
2278 #endif
2279 target_terminal_inferior ();
2280
2281 /* If requested, stop when the dynamic linker notifies
2282 gdb of events. This allows the user to get control
2283 and place breakpoints in initializer routines for
2284 dynamically loaded objects (among other things). */
2285 if (stop_on_solib_events || stop_stack_dummy)
2286 {
2287 stop_stepping (ecs);
2288 return;
2289 }
2290
2291 /* If we stopped due to an explicit catchpoint, then the
2292 (see above) call to SOLIB_ADD pulled in any symbols
2293 from a newly-loaded library, if appropriate.
2294
2295 We do want the inferior to stop, but not where it is
2296 now, which is in the dynamic linker callback. Rather,
2297 we would like it stop in the user's program, just after
2298 the call that caused this catchpoint to trigger. That
2299 gives the user a more useful vantage from which to
2300 examine their program's state. */
2301 else if (what.main_action
2302 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2303 {
2304 /* ??rehrauer: If I could figure out how to get the
2305 right return PC from here, we could just set a temp
2306 breakpoint and resume. I'm not sure we can without
2307 cracking open the dld's shared libraries and sniffing
2308 their unwind tables and text/data ranges, and that's
2309 not a terribly portable notion.
2310
2311 Until that time, we must step the inferior out of the
2312 dld callback, and also out of the dld itself (and any
2313 code or stubs in libdld.sl, such as "shl_load" and
2314 friends) until we reach non-dld code. At that point,
2315 we can stop stepping. */
2316 bpstat_get_triggered_catchpoints (stop_bpstat,
2317 &ecs->
2318 stepping_through_solib_catchpoints);
2319 ecs->stepping_through_solib_after_catch = 1;
2320
2321 /* Be sure to lift all breakpoints, so the inferior does
2322 actually step past this point... */
2323 ecs->stepping_over_breakpoint = 1;
2324 break;
2325 }
2326 else
2327 {
2328 /* We want to step over this breakpoint, then keep going. */
2329 ecs->stepping_over_breakpoint = 1;
2330 break;
2331 }
2332 }
2333 break;
2334
2335 case BPSTAT_WHAT_LAST:
2336 /* Not a real code, but listed here to shut up gcc -Wall. */
2337
2338 case BPSTAT_WHAT_KEEP_CHECKING:
2339 break;
2340 }
2341 }
2342
2343 /* We come here if we hit a breakpoint but should not
2344 stop for it. Possibly we also were stepping
2345 and should stop for that. So fall through and
2346 test for stepping. But, if not stepping,
2347 do not stop. */
2348
2349 /* Are we stepping to get the inferior out of the dynamic linker's
2350 hook (and possibly the dld itself) after catching a shlib
2351 event? */
2352 if (ecs->stepping_through_solib_after_catch)
2353 {
2354 #if defined(SOLIB_ADD)
2355 /* Have we reached our destination? If not, keep going. */
2356 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2357 {
2358 if (debug_infrun)
2359 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2360 ecs->stepping_over_breakpoint = 1;
2361 keep_going (ecs);
2362 return;
2363 }
2364 #endif
2365 if (debug_infrun)
2366 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2367 /* Else, stop and report the catchpoint(s) whose triggering
2368 caused us to begin stepping. */
2369 ecs->stepping_through_solib_after_catch = 0;
2370 bpstat_clear (&stop_bpstat);
2371 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2372 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2373 stop_print_frame = 1;
2374 stop_stepping (ecs);
2375 return;
2376 }
2377
2378 if (step_resume_breakpoint)
2379 {
2380 if (debug_infrun)
2381 fprintf_unfiltered (gdb_stdlog,
2382 "infrun: step-resume breakpoint is inserted\n");
2383
2384 /* Having a step-resume breakpoint overrides anything
2385 else having to do with stepping commands until
2386 that breakpoint is reached. */
2387 keep_going (ecs);
2388 return;
2389 }
2390
2391 if (step_range_end == 0)
2392 {
2393 if (debug_infrun)
2394 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2395 /* Likewise if we aren't even stepping. */
2396 keep_going (ecs);
2397 return;
2398 }
2399
2400 /* If stepping through a line, keep going if still within it.
2401
2402 Note that step_range_end is the address of the first instruction
2403 beyond the step range, and NOT the address of the last instruction
2404 within it! */
2405 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2406 {
2407 if (debug_infrun)
2408 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2409 paddr_nz (step_range_start),
2410 paddr_nz (step_range_end));
2411 keep_going (ecs);
2412 return;
2413 }
2414
2415 /* We stepped out of the stepping range. */
2416
2417 /* If we are stepping at the source level and entered the runtime
2418 loader dynamic symbol resolution code, we keep on single stepping
2419 until we exit the run time loader code and reach the callee's
2420 address. */
2421 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2422 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2423 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2424 #else
2425 && in_solib_dynsym_resolve_code (stop_pc)
2426 #endif
2427 )
2428 {
2429 CORE_ADDR pc_after_resolver =
2430 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2431
2432 if (debug_infrun)
2433 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2434
2435 if (pc_after_resolver)
2436 {
2437 /* Set up a step-resume breakpoint at the address
2438 indicated by SKIP_SOLIB_RESOLVER. */
2439 struct symtab_and_line sr_sal;
2440 init_sal (&sr_sal);
2441 sr_sal.pc = pc_after_resolver;
2442
2443 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2444 }
2445
2446 keep_going (ecs);
2447 return;
2448 }
2449
2450 if (step_range_end != 1
2451 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2452 || step_over_calls == STEP_OVER_ALL)
2453 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2454 {
2455 if (debug_infrun)
2456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2457 /* The inferior, while doing a "step" or "next", has ended up in
2458 a signal trampoline (either by a signal being delivered or by
2459 the signal handler returning). Just single-step until the
2460 inferior leaves the trampoline (either by calling the handler
2461 or returning). */
2462 keep_going (ecs);
2463 return;
2464 }
2465
2466 /* Check for subroutine calls. The check for the current frame
2467 equalling the step ID is not necessary - the check of the
2468 previous frame's ID is sufficient - but it is a common case and
2469 cheaper than checking the previous frame's ID.
2470
2471 NOTE: frame_id_eq will never report two invalid frame IDs as
2472 being equal, so to get into this block, both the current and
2473 previous frame must have valid frame IDs. */
2474 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2475 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2476 {
2477 CORE_ADDR real_stop_pc;
2478
2479 if (debug_infrun)
2480 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2481
2482 if ((step_over_calls == STEP_OVER_NONE)
2483 || ((step_range_end == 1)
2484 && in_prologue (prev_pc, ecs->stop_func_start)))
2485 {
2486 /* I presume that step_over_calls is only 0 when we're
2487 supposed to be stepping at the assembly language level
2488 ("stepi"). Just stop. */
2489 /* Also, maybe we just did a "nexti" inside a prolog, so we
2490 thought it was a subroutine call but it was not. Stop as
2491 well. FENN */
2492 stop_step = 1;
2493 print_stop_reason (END_STEPPING_RANGE, 0);
2494 stop_stepping (ecs);
2495 return;
2496 }
2497
2498 if (step_over_calls == STEP_OVER_ALL)
2499 {
2500 /* We're doing a "next", set a breakpoint at callee's return
2501 address (the address at which the caller will
2502 resume). */
2503 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2504 keep_going (ecs);
2505 return;
2506 }
2507
2508 /* If we are in a function call trampoline (a stub between the
2509 calling routine and the real function), locate the real
2510 function. That's what tells us (a) whether we want to step
2511 into it at all, and (b) what prologue we want to run to the
2512 end of, if we do step into it. */
2513 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2514 if (real_stop_pc == 0)
2515 real_stop_pc = gdbarch_skip_trampoline_code
2516 (current_gdbarch, get_current_frame (), stop_pc);
2517 if (real_stop_pc != 0)
2518 ecs->stop_func_start = real_stop_pc;
2519
2520 if (
2521 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2522 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2523 #else
2524 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2525 #endif
2526 )
2527 {
2528 struct symtab_and_line sr_sal;
2529 init_sal (&sr_sal);
2530 sr_sal.pc = ecs->stop_func_start;
2531
2532 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2533 keep_going (ecs);
2534 return;
2535 }
2536
2537 /* If we have line number information for the function we are
2538 thinking of stepping into, step into it.
2539
2540 If there are several symtabs at that PC (e.g. with include
2541 files), just want to know whether *any* of them have line
2542 numbers. find_pc_line handles this. */
2543 {
2544 struct symtab_and_line tmp_sal;
2545
2546 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2547 if (tmp_sal.line != 0)
2548 {
2549 step_into_function (ecs);
2550 return;
2551 }
2552 }
2553
2554 /* If we have no line number and the step-stop-if-no-debug is
2555 set, we stop the step so that the user has a chance to switch
2556 in assembly mode. */
2557 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2558 {
2559 stop_step = 1;
2560 print_stop_reason (END_STEPPING_RANGE, 0);
2561 stop_stepping (ecs);
2562 return;
2563 }
2564
2565 /* Set a breakpoint at callee's return address (the address at
2566 which the caller will resume). */
2567 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2568 keep_going (ecs);
2569 return;
2570 }
2571
2572 /* If we're in the return path from a shared library trampoline,
2573 we want to proceed through the trampoline when stepping. */
2574 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2575 stop_pc, ecs->stop_func_name))
2576 {
2577 /* Determine where this trampoline returns. */
2578 CORE_ADDR real_stop_pc;
2579 real_stop_pc = gdbarch_skip_trampoline_code
2580 (current_gdbarch, get_current_frame (), stop_pc);
2581
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2584
2585 /* Only proceed through if we know where it's going. */
2586 if (real_stop_pc)
2587 {
2588 /* And put the step-breakpoint there and go until there. */
2589 struct symtab_and_line sr_sal;
2590
2591 init_sal (&sr_sal); /* initialize to zeroes */
2592 sr_sal.pc = real_stop_pc;
2593 sr_sal.section = find_pc_overlay (sr_sal.pc);
2594
2595 /* Do not specify what the fp should be when we stop since
2596 on some machines the prologue is where the new fp value
2597 is established. */
2598 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2599
2600 /* Restart without fiddling with the step ranges or
2601 other state. */
2602 keep_going (ecs);
2603 return;
2604 }
2605 }
2606
2607 ecs->sal = find_pc_line (stop_pc, 0);
2608
2609 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2610 the trampoline processing logic, however, there are some trampolines
2611 that have no names, so we should do trampoline handling first. */
2612 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2613 && ecs->stop_func_name == NULL
2614 && ecs->sal.line == 0)
2615 {
2616 if (debug_infrun)
2617 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2618
2619 /* The inferior just stepped into, or returned to, an
2620 undebuggable function (where there is no debugging information
2621 and no line number corresponding to the address where the
2622 inferior stopped). Since we want to skip this kind of code,
2623 we keep going until the inferior returns from this
2624 function - unless the user has asked us not to (via
2625 set step-mode) or we no longer know how to get back
2626 to the call site. */
2627 if (step_stop_if_no_debug
2628 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2629 {
2630 /* If we have no line number and the step-stop-if-no-debug
2631 is set, we stop the step so that the user has a chance to
2632 switch in assembly mode. */
2633 stop_step = 1;
2634 print_stop_reason (END_STEPPING_RANGE, 0);
2635 stop_stepping (ecs);
2636 return;
2637 }
2638 else
2639 {
2640 /* Set a breakpoint at callee's return address (the address
2641 at which the caller will resume). */
2642 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2643 keep_going (ecs);
2644 return;
2645 }
2646 }
2647
2648 if (step_range_end == 1)
2649 {
2650 /* It is stepi or nexti. We always want to stop stepping after
2651 one instruction. */
2652 if (debug_infrun)
2653 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2654 stop_step = 1;
2655 print_stop_reason (END_STEPPING_RANGE, 0);
2656 stop_stepping (ecs);
2657 return;
2658 }
2659
2660 if (ecs->sal.line == 0)
2661 {
2662 /* We have no line number information. That means to stop
2663 stepping (does this always happen right after one instruction,
2664 when we do "s" in a function with no line numbers,
2665 or can this happen as a result of a return or longjmp?). */
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2668 stop_step = 1;
2669 print_stop_reason (END_STEPPING_RANGE, 0);
2670 stop_stepping (ecs);
2671 return;
2672 }
2673
2674 if ((stop_pc == ecs->sal.pc)
2675 && (ecs->current_line != ecs->sal.line
2676 || ecs->current_symtab != ecs->sal.symtab))
2677 {
2678 /* We are at the start of a different line. So stop. Note that
2679 we don't stop if we step into the middle of a different line.
2680 That is said to make things like for (;;) statements work
2681 better. */
2682 if (debug_infrun)
2683 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2684 stop_step = 1;
2685 print_stop_reason (END_STEPPING_RANGE, 0);
2686 stop_stepping (ecs);
2687 return;
2688 }
2689
2690 /* We aren't done stepping.
2691
2692 Optimize by setting the stepping range to the line.
2693 (We might not be in the original line, but if we entered a
2694 new line in mid-statement, we continue stepping. This makes
2695 things like for(;;) statements work better.) */
2696
2697 step_range_start = ecs->sal.pc;
2698 step_range_end = ecs->sal.end;
2699 step_frame_id = get_frame_id (get_current_frame ());
2700 ecs->current_line = ecs->sal.line;
2701 ecs->current_symtab = ecs->sal.symtab;
2702
2703 /* In the case where we just stepped out of a function into the
2704 middle of a line of the caller, continue stepping, but
2705 step_frame_id must be modified to current frame */
2706 #if 0
2707 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2708 generous. It will trigger on things like a step into a frameless
2709 stackless leaf function. I think the logic should instead look
2710 at the unwound frame ID has that should give a more robust
2711 indication of what happened. */
2712 if (step - ID == current - ID)
2713 still stepping in same function;
2714 else if (step - ID == unwind (current - ID))
2715 stepped into a function;
2716 else
2717 stepped out of a function;
2718 /* Of course this assumes that the frame ID unwind code is robust
2719 and we're willing to introduce frame unwind logic into this
2720 function. Fortunately, those days are nearly upon us. */
2721 #endif
2722 {
2723 struct frame_info *frame = get_current_frame ();
2724 struct frame_id current_frame = get_frame_id (frame);
2725 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2726 step_frame_id)))
2727 step_frame_id = current_frame;
2728 }
2729
2730 if (debug_infrun)
2731 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2732 keep_going (ecs);
2733 }
2734
2735 /* Are we in the middle of stepping? */
2736
2737 static int
2738 currently_stepping (struct execution_control_state *ecs)
2739 {
2740 return ((!ecs->handling_longjmp
2741 && ((step_range_end && step_resume_breakpoint == NULL)
2742 || stepping_over_breakpoint))
2743 || ecs->stepping_through_solib_after_catch
2744 || bpstat_should_step ());
2745 }
2746
2747 /* Subroutine call with source code we should not step over. Do step
2748 to the first line of code in it. */
2749
2750 static void
2751 step_into_function (struct execution_control_state *ecs)
2752 {
2753 struct symtab *s;
2754 struct symtab_and_line sr_sal;
2755
2756 s = find_pc_symtab (stop_pc);
2757 if (s && s->language != language_asm)
2758 ecs->stop_func_start = gdbarch_skip_prologue
2759 (current_gdbarch, ecs->stop_func_start);
2760
2761 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2762 /* Use the step_resume_break to step until the end of the prologue,
2763 even if that involves jumps (as it seems to on the vax under
2764 4.2). */
2765 /* If the prologue ends in the middle of a source line, continue to
2766 the end of that source line (if it is still within the function).
2767 Otherwise, just go to end of prologue. */
2768 if (ecs->sal.end
2769 && ecs->sal.pc != ecs->stop_func_start
2770 && ecs->sal.end < ecs->stop_func_end)
2771 ecs->stop_func_start = ecs->sal.end;
2772
2773 /* Architectures which require breakpoint adjustment might not be able
2774 to place a breakpoint at the computed address. If so, the test
2775 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2776 ecs->stop_func_start to an address at which a breakpoint may be
2777 legitimately placed.
2778
2779 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2780 made, GDB will enter an infinite loop when stepping through
2781 optimized code consisting of VLIW instructions which contain
2782 subinstructions corresponding to different source lines. On
2783 FR-V, it's not permitted to place a breakpoint on any but the
2784 first subinstruction of a VLIW instruction. When a breakpoint is
2785 set, GDB will adjust the breakpoint address to the beginning of
2786 the VLIW instruction. Thus, we need to make the corresponding
2787 adjustment here when computing the stop address. */
2788
2789 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2790 {
2791 ecs->stop_func_start
2792 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2793 ecs->stop_func_start);
2794 }
2795
2796 if (ecs->stop_func_start == stop_pc)
2797 {
2798 /* We are already there: stop now. */
2799 stop_step = 1;
2800 print_stop_reason (END_STEPPING_RANGE, 0);
2801 stop_stepping (ecs);
2802 return;
2803 }
2804 else
2805 {
2806 /* Put the step-breakpoint there and go until there. */
2807 init_sal (&sr_sal); /* initialize to zeroes */
2808 sr_sal.pc = ecs->stop_func_start;
2809 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2810
2811 /* Do not specify what the fp should be when we stop since on
2812 some machines the prologue is where the new fp value is
2813 established. */
2814 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2815
2816 /* And make sure stepping stops right away then. */
2817 step_range_end = step_range_start;
2818 }
2819 keep_going (ecs);
2820 }
2821
2822 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2823 This is used to both functions and to skip over code. */
2824
2825 static void
2826 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2827 struct frame_id sr_id)
2828 {
2829 /* There should never be more than one step-resume breakpoint per
2830 thread, so we should never be setting a new
2831 step_resume_breakpoint when one is already active. */
2832 gdb_assert (step_resume_breakpoint == NULL);
2833
2834 if (debug_infrun)
2835 fprintf_unfiltered (gdb_stdlog,
2836 "infrun: inserting step-resume breakpoint at 0x%s\n",
2837 paddr_nz (sr_sal.pc));
2838
2839 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2840 bp_step_resume);
2841 }
2842
2843 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2844 to skip a potential signal handler.
2845
2846 This is called with the interrupted function's frame. The signal
2847 handler, when it returns, will resume the interrupted function at
2848 RETURN_FRAME.pc. */
2849
2850 static void
2851 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2852 {
2853 struct symtab_and_line sr_sal;
2854
2855 gdb_assert (return_frame != NULL);
2856 init_sal (&sr_sal); /* initialize to zeros */
2857
2858 sr_sal.pc = gdbarch_addr_bits_remove
2859 (current_gdbarch, get_frame_pc (return_frame));
2860 sr_sal.section = find_pc_overlay (sr_sal.pc);
2861
2862 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2863 }
2864
2865 /* Similar to insert_step_resume_breakpoint_at_frame, except
2866 but a breakpoint at the previous frame's PC. This is used to
2867 skip a function after stepping into it (for "next" or if the called
2868 function has no debugging information).
2869
2870 The current function has almost always been reached by single
2871 stepping a call or return instruction. NEXT_FRAME belongs to the
2872 current function, and the breakpoint will be set at the caller's
2873 resume address.
2874
2875 This is a separate function rather than reusing
2876 insert_step_resume_breakpoint_at_frame in order to avoid
2877 get_prev_frame, which may stop prematurely (see the implementation
2878 of frame_unwind_id for an example). */
2879
2880 static void
2881 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2882 {
2883 struct symtab_and_line sr_sal;
2884
2885 /* We shouldn't have gotten here if we don't know where the call site
2886 is. */
2887 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2888
2889 init_sal (&sr_sal); /* initialize to zeros */
2890
2891 sr_sal.pc = gdbarch_addr_bits_remove
2892 (current_gdbarch, frame_pc_unwind (next_frame));
2893 sr_sal.section = find_pc_overlay (sr_sal.pc);
2894
2895 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2896 }
2897
2898 static void
2899 stop_stepping (struct execution_control_state *ecs)
2900 {
2901 if (debug_infrun)
2902 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2903
2904 /* Let callers know we don't want to wait for the inferior anymore. */
2905 ecs->wait_some_more = 0;
2906 }
2907
2908 /* This function handles various cases where we need to continue
2909 waiting for the inferior. */
2910 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2911
2912 static void
2913 keep_going (struct execution_control_state *ecs)
2914 {
2915 /* Save the pc before execution, to compare with pc after stop. */
2916 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2917
2918 /* If we did not do break;, it means we should keep running the
2919 inferior and not return to debugger. */
2920
2921 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2922 {
2923 /* We took a signal (which we are supposed to pass through to
2924 the inferior, else we'd have done a break above) and we
2925 haven't yet gotten our trap. Simply continue. */
2926 resume (currently_stepping (ecs), stop_signal);
2927 }
2928 else
2929 {
2930 /* Either the trap was not expected, but we are continuing
2931 anyway (the user asked that this signal be passed to the
2932 child)
2933 -- or --
2934 The signal was SIGTRAP, e.g. it was our signal, but we
2935 decided we should resume from it.
2936
2937 We're going to run this baby now!
2938
2939 Note that insert_breakpoints won't try to re-insert
2940 already inserted breakpoints. Therefore, we don't
2941 care if breakpoints were already inserted, or not. */
2942
2943 if (ecs->stepping_over_breakpoint)
2944 {
2945 remove_breakpoints ();
2946 }
2947 else
2948 {
2949 struct gdb_exception e;
2950 /* Stop stepping when inserting breakpoints
2951 has failed. */
2952 TRY_CATCH (e, RETURN_MASK_ERROR)
2953 {
2954 insert_breakpoints ();
2955 }
2956 if (e.reason < 0)
2957 {
2958 stop_stepping (ecs);
2959 return;
2960 }
2961 }
2962
2963 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2964
2965 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2966 specifies that such a signal should be delivered to the
2967 target program).
2968
2969 Typically, this would occure when a user is debugging a
2970 target monitor on a simulator: the target monitor sets a
2971 breakpoint; the simulator encounters this break-point and
2972 halts the simulation handing control to GDB; GDB, noteing
2973 that the break-point isn't valid, returns control back to the
2974 simulator; the simulator then delivers the hardware
2975 equivalent of a SIGNAL_TRAP to the program being debugged. */
2976
2977 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2978 stop_signal = TARGET_SIGNAL_0;
2979
2980
2981 resume (currently_stepping (ecs), stop_signal);
2982 }
2983
2984 prepare_to_wait (ecs);
2985 }
2986
2987 /* This function normally comes after a resume, before
2988 handle_inferior_event exits. It takes care of any last bits of
2989 housekeeping, and sets the all-important wait_some_more flag. */
2990
2991 static void
2992 prepare_to_wait (struct execution_control_state *ecs)
2993 {
2994 if (debug_infrun)
2995 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2996 if (ecs->infwait_state == infwait_normal_state)
2997 {
2998 overlay_cache_invalid = 1;
2999
3000 /* We have to invalidate the registers BEFORE calling
3001 target_wait because they can be loaded from the target while
3002 in target_wait. This makes remote debugging a bit more
3003 efficient for those targets that provide critical registers
3004 as part of their normal status mechanism. */
3005
3006 registers_changed ();
3007 ecs->waiton_ptid = pid_to_ptid (-1);
3008 ecs->wp = &(ecs->ws);
3009 }
3010 /* This is the old end of the while loop. Let everybody know we
3011 want to wait for the inferior some more and get called again
3012 soon. */
3013 ecs->wait_some_more = 1;
3014 }
3015
3016 /* Print why the inferior has stopped. We always print something when
3017 the inferior exits, or receives a signal. The rest of the cases are
3018 dealt with later on in normal_stop() and print_it_typical(). Ideally
3019 there should be a call to this function from handle_inferior_event()
3020 each time stop_stepping() is called.*/
3021 static void
3022 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3023 {
3024 switch (stop_reason)
3025 {
3026 case END_STEPPING_RANGE:
3027 /* We are done with a step/next/si/ni command. */
3028 /* For now print nothing. */
3029 /* Print a message only if not in the middle of doing a "step n"
3030 operation for n > 1 */
3031 if (!step_multi || !stop_step)
3032 if (ui_out_is_mi_like_p (uiout))
3033 ui_out_field_string
3034 (uiout, "reason",
3035 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3036 break;
3037 case SIGNAL_EXITED:
3038 /* The inferior was terminated by a signal. */
3039 annotate_signalled ();
3040 if (ui_out_is_mi_like_p (uiout))
3041 ui_out_field_string
3042 (uiout, "reason",
3043 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3044 ui_out_text (uiout, "\nProgram terminated with signal ");
3045 annotate_signal_name ();
3046 ui_out_field_string (uiout, "signal-name",
3047 target_signal_to_name (stop_info));
3048 annotate_signal_name_end ();
3049 ui_out_text (uiout, ", ");
3050 annotate_signal_string ();
3051 ui_out_field_string (uiout, "signal-meaning",
3052 target_signal_to_string (stop_info));
3053 annotate_signal_string_end ();
3054 ui_out_text (uiout, ".\n");
3055 ui_out_text (uiout, "The program no longer exists.\n");
3056 break;
3057 case EXITED:
3058 /* The inferior program is finished. */
3059 annotate_exited (stop_info);
3060 if (stop_info)
3061 {
3062 if (ui_out_is_mi_like_p (uiout))
3063 ui_out_field_string (uiout, "reason",
3064 async_reason_lookup (EXEC_ASYNC_EXITED));
3065 ui_out_text (uiout, "\nProgram exited with code ");
3066 ui_out_field_fmt (uiout, "exit-code", "0%o",
3067 (unsigned int) stop_info);
3068 ui_out_text (uiout, ".\n");
3069 }
3070 else
3071 {
3072 if (ui_out_is_mi_like_p (uiout))
3073 ui_out_field_string
3074 (uiout, "reason",
3075 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3076 ui_out_text (uiout, "\nProgram exited normally.\n");
3077 }
3078 /* Support the --return-child-result option. */
3079 return_child_result_value = stop_info;
3080 break;
3081 case SIGNAL_RECEIVED:
3082 /* Signal received. The signal table tells us to print about
3083 it. */
3084 annotate_signal ();
3085 ui_out_text (uiout, "\nProgram received signal ");
3086 annotate_signal_name ();
3087 if (ui_out_is_mi_like_p (uiout))
3088 ui_out_field_string
3089 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3090 ui_out_field_string (uiout, "signal-name",
3091 target_signal_to_name (stop_info));
3092 annotate_signal_name_end ();
3093 ui_out_text (uiout, ", ");
3094 annotate_signal_string ();
3095 ui_out_field_string (uiout, "signal-meaning",
3096 target_signal_to_string (stop_info));
3097 annotate_signal_string_end ();
3098 ui_out_text (uiout, ".\n");
3099 break;
3100 default:
3101 internal_error (__FILE__, __LINE__,
3102 _("print_stop_reason: unrecognized enum value"));
3103 break;
3104 }
3105 }
3106 \f
3107
3108 /* Here to return control to GDB when the inferior stops for real.
3109 Print appropriate messages, remove breakpoints, give terminal our modes.
3110
3111 STOP_PRINT_FRAME nonzero means print the executing frame
3112 (pc, function, args, file, line number and line text).
3113 BREAKPOINTS_FAILED nonzero means stop was due to error
3114 attempting to insert breakpoints. */
3115
3116 void
3117 normal_stop (void)
3118 {
3119 struct target_waitstatus last;
3120 ptid_t last_ptid;
3121
3122 get_last_target_status (&last_ptid, &last);
3123
3124 /* As with the notification of thread events, we want to delay
3125 notifying the user that we've switched thread context until
3126 the inferior actually stops.
3127
3128 There's no point in saying anything if the inferior has exited.
3129 Note that SIGNALLED here means "exited with a signal", not
3130 "received a signal". */
3131 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3132 && target_has_execution
3133 && last.kind != TARGET_WAITKIND_SIGNALLED
3134 && last.kind != TARGET_WAITKIND_EXITED)
3135 {
3136 target_terminal_ours_for_output ();
3137 printf_filtered (_("[Switching to %s]\n"),
3138 target_pid_to_str (inferior_ptid));
3139 previous_inferior_ptid = inferior_ptid;
3140 }
3141
3142 /* NOTE drow/2004-01-17: Is this still necessary? */
3143 /* Make sure that the current_frame's pc is correct. This
3144 is a correction for setting up the frame info before doing
3145 gdbarch_decr_pc_after_break */
3146 if (target_has_execution)
3147 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3148 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3149 frame code to check for this and sort out any resultant mess.
3150 gdbarch_decr_pc_after_break needs to just go away. */
3151 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3152
3153 if (target_has_execution)
3154 {
3155 if (remove_breakpoints ())
3156 {
3157 target_terminal_ours_for_output ();
3158 printf_filtered (_("\
3159 Cannot remove breakpoints because program is no longer writable.\n\
3160 It might be running in another process.\n\
3161 Further execution is probably impossible.\n"));
3162 }
3163 }
3164
3165 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3166 Delete any breakpoint that is to be deleted at the next stop. */
3167
3168 breakpoint_auto_delete (stop_bpstat);
3169
3170 /* If an auto-display called a function and that got a signal,
3171 delete that auto-display to avoid an infinite recursion. */
3172
3173 if (stopped_by_random_signal)
3174 disable_current_display ();
3175
3176 /* Don't print a message if in the middle of doing a "step n"
3177 operation for n > 1 */
3178 if (step_multi && stop_step)
3179 goto done;
3180
3181 target_terminal_ours ();
3182
3183 /* Set the current source location. This will also happen if we
3184 display the frame below, but the current SAL will be incorrect
3185 during a user hook-stop function. */
3186 if (target_has_stack && !stop_stack_dummy)
3187 set_current_sal_from_frame (get_current_frame (), 1);
3188
3189 /* Look up the hook_stop and run it (CLI internally handles problem
3190 of stop_command's pre-hook not existing). */
3191 if (stop_command)
3192 catch_errors (hook_stop_stub, stop_command,
3193 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3194
3195 if (!target_has_stack)
3196 {
3197
3198 goto done;
3199 }
3200
3201 /* Select innermost stack frame - i.e., current frame is frame 0,
3202 and current location is based on that.
3203 Don't do this on return from a stack dummy routine,
3204 or if the program has exited. */
3205
3206 if (!stop_stack_dummy)
3207 {
3208 select_frame (get_current_frame ());
3209
3210 /* Print current location without a level number, if
3211 we have changed functions or hit a breakpoint.
3212 Print source line if we have one.
3213 bpstat_print() contains the logic deciding in detail
3214 what to print, based on the event(s) that just occurred. */
3215
3216 if (stop_print_frame)
3217 {
3218 int bpstat_ret;
3219 int source_flag;
3220 int do_frame_printing = 1;
3221
3222 bpstat_ret = bpstat_print (stop_bpstat);
3223 switch (bpstat_ret)
3224 {
3225 case PRINT_UNKNOWN:
3226 /* If we had hit a shared library event breakpoint,
3227 bpstat_print would print out this message. If we hit
3228 an OS-level shared library event, do the same
3229 thing. */
3230 if (last.kind == TARGET_WAITKIND_LOADED)
3231 {
3232 printf_filtered (_("Stopped due to shared library event\n"));
3233 source_flag = SRC_LINE; /* something bogus */
3234 do_frame_printing = 0;
3235 break;
3236 }
3237
3238 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3239 (or should) carry around the function and does (or
3240 should) use that when doing a frame comparison. */
3241 if (stop_step
3242 && frame_id_eq (step_frame_id,
3243 get_frame_id (get_current_frame ()))
3244 && step_start_function == find_pc_function (stop_pc))
3245 source_flag = SRC_LINE; /* finished step, just print source line */
3246 else
3247 source_flag = SRC_AND_LOC; /* print location and source line */
3248 break;
3249 case PRINT_SRC_AND_LOC:
3250 source_flag = SRC_AND_LOC; /* print location and source line */
3251 break;
3252 case PRINT_SRC_ONLY:
3253 source_flag = SRC_LINE;
3254 break;
3255 case PRINT_NOTHING:
3256 source_flag = SRC_LINE; /* something bogus */
3257 do_frame_printing = 0;
3258 break;
3259 default:
3260 internal_error (__FILE__, __LINE__, _("Unknown value."));
3261 }
3262
3263 if (ui_out_is_mi_like_p (uiout))
3264 ui_out_field_int (uiout, "thread-id",
3265 pid_to_thread_id (inferior_ptid));
3266 /* The behavior of this routine with respect to the source
3267 flag is:
3268 SRC_LINE: Print only source line
3269 LOCATION: Print only location
3270 SRC_AND_LOC: Print location and source line */
3271 if (do_frame_printing)
3272 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3273
3274 /* Display the auto-display expressions. */
3275 do_displays ();
3276 }
3277 }
3278
3279 /* Save the function value return registers, if we care.
3280 We might be about to restore their previous contents. */
3281 if (proceed_to_finish)
3282 {
3283 /* This should not be necessary. */
3284 if (stop_registers)
3285 regcache_xfree (stop_registers);
3286
3287 /* NB: The copy goes through to the target picking up the value of
3288 all the registers. */
3289 stop_registers = regcache_dup (get_current_regcache ());
3290 }
3291
3292 if (stop_stack_dummy)
3293 {
3294 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3295 ends with a setting of the current frame, so we can use that
3296 next. */
3297 frame_pop (get_current_frame ());
3298 /* Set stop_pc to what it was before we called the function.
3299 Can't rely on restore_inferior_status because that only gets
3300 called if we don't stop in the called function. */
3301 stop_pc = read_pc ();
3302 select_frame (get_current_frame ());
3303 }
3304
3305 done:
3306 annotate_stopped ();
3307 observer_notify_normal_stop (stop_bpstat);
3308 }
3309
3310 static int
3311 hook_stop_stub (void *cmd)
3312 {
3313 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3314 return (0);
3315 }
3316 \f
3317 int
3318 signal_stop_state (int signo)
3319 {
3320 return signal_stop[signo];
3321 }
3322
3323 int
3324 signal_print_state (int signo)
3325 {
3326 return signal_print[signo];
3327 }
3328
3329 int
3330 signal_pass_state (int signo)
3331 {
3332 return signal_program[signo];
3333 }
3334
3335 int
3336 signal_stop_update (int signo, int state)
3337 {
3338 int ret = signal_stop[signo];
3339 signal_stop[signo] = state;
3340 return ret;
3341 }
3342
3343 int
3344 signal_print_update (int signo, int state)
3345 {
3346 int ret = signal_print[signo];
3347 signal_print[signo] = state;
3348 return ret;
3349 }
3350
3351 int
3352 signal_pass_update (int signo, int state)
3353 {
3354 int ret = signal_program[signo];
3355 signal_program[signo] = state;
3356 return ret;
3357 }
3358
3359 static void
3360 sig_print_header (void)
3361 {
3362 printf_filtered (_("\
3363 Signal Stop\tPrint\tPass to program\tDescription\n"));
3364 }
3365
3366 static void
3367 sig_print_info (enum target_signal oursig)
3368 {
3369 char *name = target_signal_to_name (oursig);
3370 int name_padding = 13 - strlen (name);
3371
3372 if (name_padding <= 0)
3373 name_padding = 0;
3374
3375 printf_filtered ("%s", name);
3376 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3377 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3378 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3379 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3380 printf_filtered ("%s\n", target_signal_to_string (oursig));
3381 }
3382
3383 /* Specify how various signals in the inferior should be handled. */
3384
3385 static void
3386 handle_command (char *args, int from_tty)
3387 {
3388 char **argv;
3389 int digits, wordlen;
3390 int sigfirst, signum, siglast;
3391 enum target_signal oursig;
3392 int allsigs;
3393 int nsigs;
3394 unsigned char *sigs;
3395 struct cleanup *old_chain;
3396
3397 if (args == NULL)
3398 {
3399 error_no_arg (_("signal to handle"));
3400 }
3401
3402 /* Allocate and zero an array of flags for which signals to handle. */
3403
3404 nsigs = (int) TARGET_SIGNAL_LAST;
3405 sigs = (unsigned char *) alloca (nsigs);
3406 memset (sigs, 0, nsigs);
3407
3408 /* Break the command line up into args. */
3409
3410 argv = buildargv (args);
3411 if (argv == NULL)
3412 {
3413 nomem (0);
3414 }
3415 old_chain = make_cleanup_freeargv (argv);
3416
3417 /* Walk through the args, looking for signal oursigs, signal names, and
3418 actions. Signal numbers and signal names may be interspersed with
3419 actions, with the actions being performed for all signals cumulatively
3420 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3421
3422 while (*argv != NULL)
3423 {
3424 wordlen = strlen (*argv);
3425 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3426 {;
3427 }
3428 allsigs = 0;
3429 sigfirst = siglast = -1;
3430
3431 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3432 {
3433 /* Apply action to all signals except those used by the
3434 debugger. Silently skip those. */
3435 allsigs = 1;
3436 sigfirst = 0;
3437 siglast = nsigs - 1;
3438 }
3439 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3440 {
3441 SET_SIGS (nsigs, sigs, signal_stop);
3442 SET_SIGS (nsigs, sigs, signal_print);
3443 }
3444 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3445 {
3446 UNSET_SIGS (nsigs, sigs, signal_program);
3447 }
3448 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3449 {
3450 SET_SIGS (nsigs, sigs, signal_print);
3451 }
3452 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3453 {
3454 SET_SIGS (nsigs, sigs, signal_program);
3455 }
3456 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3457 {
3458 UNSET_SIGS (nsigs, sigs, signal_stop);
3459 }
3460 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3461 {
3462 SET_SIGS (nsigs, sigs, signal_program);
3463 }
3464 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3465 {
3466 UNSET_SIGS (nsigs, sigs, signal_print);
3467 UNSET_SIGS (nsigs, sigs, signal_stop);
3468 }
3469 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3470 {
3471 UNSET_SIGS (nsigs, sigs, signal_program);
3472 }
3473 else if (digits > 0)
3474 {
3475 /* It is numeric. The numeric signal refers to our own
3476 internal signal numbering from target.h, not to host/target
3477 signal number. This is a feature; users really should be
3478 using symbolic names anyway, and the common ones like
3479 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3480
3481 sigfirst = siglast = (int)
3482 target_signal_from_command (atoi (*argv));
3483 if ((*argv)[digits] == '-')
3484 {
3485 siglast = (int)
3486 target_signal_from_command (atoi ((*argv) + digits + 1));
3487 }
3488 if (sigfirst > siglast)
3489 {
3490 /* Bet he didn't figure we'd think of this case... */
3491 signum = sigfirst;
3492 sigfirst = siglast;
3493 siglast = signum;
3494 }
3495 }
3496 else
3497 {
3498 oursig = target_signal_from_name (*argv);
3499 if (oursig != TARGET_SIGNAL_UNKNOWN)
3500 {
3501 sigfirst = siglast = (int) oursig;
3502 }
3503 else
3504 {
3505 /* Not a number and not a recognized flag word => complain. */
3506 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3507 }
3508 }
3509
3510 /* If any signal numbers or symbol names were found, set flags for
3511 which signals to apply actions to. */
3512
3513 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3514 {
3515 switch ((enum target_signal) signum)
3516 {
3517 case TARGET_SIGNAL_TRAP:
3518 case TARGET_SIGNAL_INT:
3519 if (!allsigs && !sigs[signum])
3520 {
3521 if (query ("%s is used by the debugger.\n\
3522 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3523 {
3524 sigs[signum] = 1;
3525 }
3526 else
3527 {
3528 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3529 gdb_flush (gdb_stdout);
3530 }
3531 }
3532 break;
3533 case TARGET_SIGNAL_0:
3534 case TARGET_SIGNAL_DEFAULT:
3535 case TARGET_SIGNAL_UNKNOWN:
3536 /* Make sure that "all" doesn't print these. */
3537 break;
3538 default:
3539 sigs[signum] = 1;
3540 break;
3541 }
3542 }
3543
3544 argv++;
3545 }
3546
3547 target_notice_signals (inferior_ptid);
3548
3549 if (from_tty)
3550 {
3551 /* Show the results. */
3552 sig_print_header ();
3553 for (signum = 0; signum < nsigs; signum++)
3554 {
3555 if (sigs[signum])
3556 {
3557 sig_print_info (signum);
3558 }
3559 }
3560 }
3561
3562 do_cleanups (old_chain);
3563 }
3564
3565 static void
3566 xdb_handle_command (char *args, int from_tty)
3567 {
3568 char **argv;
3569 struct cleanup *old_chain;
3570
3571 /* Break the command line up into args. */
3572
3573 argv = buildargv (args);
3574 if (argv == NULL)
3575 {
3576 nomem (0);
3577 }
3578 old_chain = make_cleanup_freeargv (argv);
3579 if (argv[1] != (char *) NULL)
3580 {
3581 char *argBuf;
3582 int bufLen;
3583
3584 bufLen = strlen (argv[0]) + 20;
3585 argBuf = (char *) xmalloc (bufLen);
3586 if (argBuf)
3587 {
3588 int validFlag = 1;
3589 enum target_signal oursig;
3590
3591 oursig = target_signal_from_name (argv[0]);
3592 memset (argBuf, 0, bufLen);
3593 if (strcmp (argv[1], "Q") == 0)
3594 sprintf (argBuf, "%s %s", argv[0], "noprint");
3595 else
3596 {
3597 if (strcmp (argv[1], "s") == 0)
3598 {
3599 if (!signal_stop[oursig])
3600 sprintf (argBuf, "%s %s", argv[0], "stop");
3601 else
3602 sprintf (argBuf, "%s %s", argv[0], "nostop");
3603 }
3604 else if (strcmp (argv[1], "i") == 0)
3605 {
3606 if (!signal_program[oursig])
3607 sprintf (argBuf, "%s %s", argv[0], "pass");
3608 else
3609 sprintf (argBuf, "%s %s", argv[0], "nopass");
3610 }
3611 else if (strcmp (argv[1], "r") == 0)
3612 {
3613 if (!signal_print[oursig])
3614 sprintf (argBuf, "%s %s", argv[0], "print");
3615 else
3616 sprintf (argBuf, "%s %s", argv[0], "noprint");
3617 }
3618 else
3619 validFlag = 0;
3620 }
3621 if (validFlag)
3622 handle_command (argBuf, from_tty);
3623 else
3624 printf_filtered (_("Invalid signal handling flag.\n"));
3625 if (argBuf)
3626 xfree (argBuf);
3627 }
3628 }
3629 do_cleanups (old_chain);
3630 }
3631
3632 /* Print current contents of the tables set by the handle command.
3633 It is possible we should just be printing signals actually used
3634 by the current target (but for things to work right when switching
3635 targets, all signals should be in the signal tables). */
3636
3637 static void
3638 signals_info (char *signum_exp, int from_tty)
3639 {
3640 enum target_signal oursig;
3641 sig_print_header ();
3642
3643 if (signum_exp)
3644 {
3645 /* First see if this is a symbol name. */
3646 oursig = target_signal_from_name (signum_exp);
3647 if (oursig == TARGET_SIGNAL_UNKNOWN)
3648 {
3649 /* No, try numeric. */
3650 oursig =
3651 target_signal_from_command (parse_and_eval_long (signum_exp));
3652 }
3653 sig_print_info (oursig);
3654 return;
3655 }
3656
3657 printf_filtered ("\n");
3658 /* These ugly casts brought to you by the native VAX compiler. */
3659 for (oursig = TARGET_SIGNAL_FIRST;
3660 (int) oursig < (int) TARGET_SIGNAL_LAST;
3661 oursig = (enum target_signal) ((int) oursig + 1))
3662 {
3663 QUIT;
3664
3665 if (oursig != TARGET_SIGNAL_UNKNOWN
3666 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3667 sig_print_info (oursig);
3668 }
3669
3670 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3671 }
3672 \f
3673 struct inferior_status
3674 {
3675 enum target_signal stop_signal;
3676 CORE_ADDR stop_pc;
3677 bpstat stop_bpstat;
3678 int stop_step;
3679 int stop_stack_dummy;
3680 int stopped_by_random_signal;
3681 int stepping_over_breakpoint;
3682 CORE_ADDR step_range_start;
3683 CORE_ADDR step_range_end;
3684 struct frame_id step_frame_id;
3685 enum step_over_calls_kind step_over_calls;
3686 CORE_ADDR step_resume_break_address;
3687 int stop_after_trap;
3688 int stop_soon;
3689
3690 /* These are here because if call_function_by_hand has written some
3691 registers and then decides to call error(), we better not have changed
3692 any registers. */
3693 struct regcache *registers;
3694
3695 /* A frame unique identifier. */
3696 struct frame_id selected_frame_id;
3697
3698 int breakpoint_proceeded;
3699 int restore_stack_info;
3700 int proceed_to_finish;
3701 };
3702
3703 void
3704 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3705 LONGEST val)
3706 {
3707 int size = register_size (current_gdbarch, regno);
3708 void *buf = alloca (size);
3709 store_signed_integer (buf, size, val);
3710 regcache_raw_write (inf_status->registers, regno, buf);
3711 }
3712
3713 /* Save all of the information associated with the inferior<==>gdb
3714 connection. INF_STATUS is a pointer to a "struct inferior_status"
3715 (defined in inferior.h). */
3716
3717 struct inferior_status *
3718 save_inferior_status (int restore_stack_info)
3719 {
3720 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3721
3722 inf_status->stop_signal = stop_signal;
3723 inf_status->stop_pc = stop_pc;
3724 inf_status->stop_step = stop_step;
3725 inf_status->stop_stack_dummy = stop_stack_dummy;
3726 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3727 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3728 inf_status->step_range_start = step_range_start;
3729 inf_status->step_range_end = step_range_end;
3730 inf_status->step_frame_id = step_frame_id;
3731 inf_status->step_over_calls = step_over_calls;
3732 inf_status->stop_after_trap = stop_after_trap;
3733 inf_status->stop_soon = stop_soon;
3734 /* Save original bpstat chain here; replace it with copy of chain.
3735 If caller's caller is walking the chain, they'll be happier if we
3736 hand them back the original chain when restore_inferior_status is
3737 called. */
3738 inf_status->stop_bpstat = stop_bpstat;
3739 stop_bpstat = bpstat_copy (stop_bpstat);
3740 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3741 inf_status->restore_stack_info = restore_stack_info;
3742 inf_status->proceed_to_finish = proceed_to_finish;
3743
3744 inf_status->registers = regcache_dup (get_current_regcache ());
3745
3746 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3747 return inf_status;
3748 }
3749
3750 static int
3751 restore_selected_frame (void *args)
3752 {
3753 struct frame_id *fid = (struct frame_id *) args;
3754 struct frame_info *frame;
3755
3756 frame = frame_find_by_id (*fid);
3757
3758 /* If inf_status->selected_frame_id is NULL, there was no previously
3759 selected frame. */
3760 if (frame == NULL)
3761 {
3762 warning (_("Unable to restore previously selected frame."));
3763 return 0;
3764 }
3765
3766 select_frame (frame);
3767
3768 return (1);
3769 }
3770
3771 void
3772 restore_inferior_status (struct inferior_status *inf_status)
3773 {
3774 stop_signal = inf_status->stop_signal;
3775 stop_pc = inf_status->stop_pc;
3776 stop_step = inf_status->stop_step;
3777 stop_stack_dummy = inf_status->stop_stack_dummy;
3778 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3779 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3780 step_range_start = inf_status->step_range_start;
3781 step_range_end = inf_status->step_range_end;
3782 step_frame_id = inf_status->step_frame_id;
3783 step_over_calls = inf_status->step_over_calls;
3784 stop_after_trap = inf_status->stop_after_trap;
3785 stop_soon = inf_status->stop_soon;
3786 bpstat_clear (&stop_bpstat);
3787 stop_bpstat = inf_status->stop_bpstat;
3788 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3789 proceed_to_finish = inf_status->proceed_to_finish;
3790
3791 /* The inferior can be gone if the user types "print exit(0)"
3792 (and perhaps other times). */
3793 if (target_has_execution)
3794 /* NB: The register write goes through to the target. */
3795 regcache_cpy (get_current_regcache (), inf_status->registers);
3796 regcache_xfree (inf_status->registers);
3797
3798 /* FIXME: If we are being called after stopping in a function which
3799 is called from gdb, we should not be trying to restore the
3800 selected frame; it just prints a spurious error message (The
3801 message is useful, however, in detecting bugs in gdb (like if gdb
3802 clobbers the stack)). In fact, should we be restoring the
3803 inferior status at all in that case? . */
3804
3805 if (target_has_stack && inf_status->restore_stack_info)
3806 {
3807 /* The point of catch_errors is that if the stack is clobbered,
3808 walking the stack might encounter a garbage pointer and
3809 error() trying to dereference it. */
3810 if (catch_errors
3811 (restore_selected_frame, &inf_status->selected_frame_id,
3812 "Unable to restore previously selected frame:\n",
3813 RETURN_MASK_ERROR) == 0)
3814 /* Error in restoring the selected frame. Select the innermost
3815 frame. */
3816 select_frame (get_current_frame ());
3817
3818 }
3819
3820 xfree (inf_status);
3821 }
3822
3823 static void
3824 do_restore_inferior_status_cleanup (void *sts)
3825 {
3826 restore_inferior_status (sts);
3827 }
3828
3829 struct cleanup *
3830 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3831 {
3832 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3833 }
3834
3835 void
3836 discard_inferior_status (struct inferior_status *inf_status)
3837 {
3838 /* See save_inferior_status for info on stop_bpstat. */
3839 bpstat_clear (&inf_status->stop_bpstat);
3840 regcache_xfree (inf_status->registers);
3841 xfree (inf_status);
3842 }
3843
3844 int
3845 inferior_has_forked (int pid, int *child_pid)
3846 {
3847 struct target_waitstatus last;
3848 ptid_t last_ptid;
3849
3850 get_last_target_status (&last_ptid, &last);
3851
3852 if (last.kind != TARGET_WAITKIND_FORKED)
3853 return 0;
3854
3855 if (ptid_get_pid (last_ptid) != pid)
3856 return 0;
3857
3858 *child_pid = last.value.related_pid;
3859 return 1;
3860 }
3861
3862 int
3863 inferior_has_vforked (int pid, int *child_pid)
3864 {
3865 struct target_waitstatus last;
3866 ptid_t last_ptid;
3867
3868 get_last_target_status (&last_ptid, &last);
3869
3870 if (last.kind != TARGET_WAITKIND_VFORKED)
3871 return 0;
3872
3873 if (ptid_get_pid (last_ptid) != pid)
3874 return 0;
3875
3876 *child_pid = last.value.related_pid;
3877 return 1;
3878 }
3879
3880 int
3881 inferior_has_execd (int pid, char **execd_pathname)
3882 {
3883 struct target_waitstatus last;
3884 ptid_t last_ptid;
3885
3886 get_last_target_status (&last_ptid, &last);
3887
3888 if (last.kind != TARGET_WAITKIND_EXECD)
3889 return 0;
3890
3891 if (ptid_get_pid (last_ptid) != pid)
3892 return 0;
3893
3894 *execd_pathname = xstrdup (last.value.execd_pathname);
3895 return 1;
3896 }
3897
3898 /* Oft used ptids */
3899 ptid_t null_ptid;
3900 ptid_t minus_one_ptid;
3901
3902 /* Create a ptid given the necessary PID, LWP, and TID components. */
3903
3904 ptid_t
3905 ptid_build (int pid, long lwp, long tid)
3906 {
3907 ptid_t ptid;
3908
3909 ptid.pid = pid;
3910 ptid.lwp = lwp;
3911 ptid.tid = tid;
3912 return ptid;
3913 }
3914
3915 /* Create a ptid from just a pid. */
3916
3917 ptid_t
3918 pid_to_ptid (int pid)
3919 {
3920 return ptid_build (pid, 0, 0);
3921 }
3922
3923 /* Fetch the pid (process id) component from a ptid. */
3924
3925 int
3926 ptid_get_pid (ptid_t ptid)
3927 {
3928 return ptid.pid;
3929 }
3930
3931 /* Fetch the lwp (lightweight process) component from a ptid. */
3932
3933 long
3934 ptid_get_lwp (ptid_t ptid)
3935 {
3936 return ptid.lwp;
3937 }
3938
3939 /* Fetch the tid (thread id) component from a ptid. */
3940
3941 long
3942 ptid_get_tid (ptid_t ptid)
3943 {
3944 return ptid.tid;
3945 }
3946
3947 /* ptid_equal() is used to test equality of two ptids. */
3948
3949 int
3950 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3951 {
3952 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3953 && ptid1.tid == ptid2.tid);
3954 }
3955
3956 /* restore_inferior_ptid() will be used by the cleanup machinery
3957 to restore the inferior_ptid value saved in a call to
3958 save_inferior_ptid(). */
3959
3960 static void
3961 restore_inferior_ptid (void *arg)
3962 {
3963 ptid_t *saved_ptid_ptr = arg;
3964 inferior_ptid = *saved_ptid_ptr;
3965 xfree (arg);
3966 }
3967
3968 /* Save the value of inferior_ptid so that it may be restored by a
3969 later call to do_cleanups(). Returns the struct cleanup pointer
3970 needed for later doing the cleanup. */
3971
3972 struct cleanup *
3973 save_inferior_ptid (void)
3974 {
3975 ptid_t *saved_ptid_ptr;
3976
3977 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3978 *saved_ptid_ptr = inferior_ptid;
3979 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3980 }
3981 \f
3982
3983 void
3984 _initialize_infrun (void)
3985 {
3986 int i;
3987 int numsigs;
3988 struct cmd_list_element *c;
3989
3990 add_info ("signals", signals_info, _("\
3991 What debugger does when program gets various signals.\n\
3992 Specify a signal as argument to print info on that signal only."));
3993 add_info_alias ("handle", "signals", 0);
3994
3995 add_com ("handle", class_run, handle_command, _("\
3996 Specify how to handle a signal.\n\
3997 Args are signals and actions to apply to those signals.\n\
3998 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3999 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4000 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4001 The special arg \"all\" is recognized to mean all signals except those\n\
4002 used by the debugger, typically SIGTRAP and SIGINT.\n\
4003 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4004 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4005 Stop means reenter debugger if this signal happens (implies print).\n\
4006 Print means print a message if this signal happens.\n\
4007 Pass means let program see this signal; otherwise program doesn't know.\n\
4008 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4009 Pass and Stop may be combined."));
4010 if (xdb_commands)
4011 {
4012 add_com ("lz", class_info, signals_info, _("\
4013 What debugger does when program gets various signals.\n\
4014 Specify a signal as argument to print info on that signal only."));
4015 add_com ("z", class_run, xdb_handle_command, _("\
4016 Specify how to handle a signal.\n\
4017 Args are signals and actions to apply to those signals.\n\
4018 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4019 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4020 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4021 The special arg \"all\" is recognized to mean all signals except those\n\
4022 used by the debugger, typically SIGTRAP and SIGINT.\n\
4023 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4024 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4025 nopass), \"Q\" (noprint)\n\
4026 Stop means reenter debugger if this signal happens (implies print).\n\
4027 Print means print a message if this signal happens.\n\
4028 Pass means let program see this signal; otherwise program doesn't know.\n\
4029 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4030 Pass and Stop may be combined."));
4031 }
4032
4033 if (!dbx_commands)
4034 stop_command = add_cmd ("stop", class_obscure,
4035 not_just_help_class_command, _("\
4036 There is no `stop' command, but you can set a hook on `stop'.\n\
4037 This allows you to set a list of commands to be run each time execution\n\
4038 of the program stops."), &cmdlist);
4039
4040 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4041 Set inferior debugging."), _("\
4042 Show inferior debugging."), _("\
4043 When non-zero, inferior specific debugging is enabled."),
4044 NULL,
4045 show_debug_infrun,
4046 &setdebuglist, &showdebuglist);
4047
4048 numsigs = (int) TARGET_SIGNAL_LAST;
4049 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4050 signal_print = (unsigned char *)
4051 xmalloc (sizeof (signal_print[0]) * numsigs);
4052 signal_program = (unsigned char *)
4053 xmalloc (sizeof (signal_program[0]) * numsigs);
4054 for (i = 0; i < numsigs; i++)
4055 {
4056 signal_stop[i] = 1;
4057 signal_print[i] = 1;
4058 signal_program[i] = 1;
4059 }
4060
4061 /* Signals caused by debugger's own actions
4062 should not be given to the program afterwards. */
4063 signal_program[TARGET_SIGNAL_TRAP] = 0;
4064 signal_program[TARGET_SIGNAL_INT] = 0;
4065
4066 /* Signals that are not errors should not normally enter the debugger. */
4067 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4068 signal_print[TARGET_SIGNAL_ALRM] = 0;
4069 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4070 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4071 signal_stop[TARGET_SIGNAL_PROF] = 0;
4072 signal_print[TARGET_SIGNAL_PROF] = 0;
4073 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4074 signal_print[TARGET_SIGNAL_CHLD] = 0;
4075 signal_stop[TARGET_SIGNAL_IO] = 0;
4076 signal_print[TARGET_SIGNAL_IO] = 0;
4077 signal_stop[TARGET_SIGNAL_POLL] = 0;
4078 signal_print[TARGET_SIGNAL_POLL] = 0;
4079 signal_stop[TARGET_SIGNAL_URG] = 0;
4080 signal_print[TARGET_SIGNAL_URG] = 0;
4081 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4082 signal_print[TARGET_SIGNAL_WINCH] = 0;
4083
4084 /* These signals are used internally by user-level thread
4085 implementations. (See signal(5) on Solaris.) Like the above
4086 signals, a healthy program receives and handles them as part of
4087 its normal operation. */
4088 signal_stop[TARGET_SIGNAL_LWP] = 0;
4089 signal_print[TARGET_SIGNAL_LWP] = 0;
4090 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4091 signal_print[TARGET_SIGNAL_WAITING] = 0;
4092 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4093 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4094
4095 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4096 &stop_on_solib_events, _("\
4097 Set stopping for shared library events."), _("\
4098 Show stopping for shared library events."), _("\
4099 If nonzero, gdb will give control to the user when the dynamic linker\n\
4100 notifies gdb of shared library events. The most common event of interest\n\
4101 to the user would be loading/unloading of a new library."),
4102 NULL,
4103 show_stop_on_solib_events,
4104 &setlist, &showlist);
4105
4106 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4107 follow_fork_mode_kind_names,
4108 &follow_fork_mode_string, _("\
4109 Set debugger response to a program call of fork or vfork."), _("\
4110 Show debugger response to a program call of fork or vfork."), _("\
4111 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4112 parent - the original process is debugged after a fork\n\
4113 child - the new process is debugged after a fork\n\
4114 The unfollowed process will continue to run.\n\
4115 By default, the debugger will follow the parent process."),
4116 NULL,
4117 show_follow_fork_mode_string,
4118 &setlist, &showlist);
4119
4120 add_setshow_enum_cmd ("scheduler-locking", class_run,
4121 scheduler_enums, &scheduler_mode, _("\
4122 Set mode for locking scheduler during execution."), _("\
4123 Show mode for locking scheduler during execution."), _("\
4124 off == no locking (threads may preempt at any time)\n\
4125 on == full locking (no thread except the current thread may run)\n\
4126 step == scheduler locked during every single-step operation.\n\
4127 In this mode, no other thread may run during a step command.\n\
4128 Other threads may run while stepping over a function call ('next')."),
4129 set_schedlock_func, /* traps on target vector */
4130 show_scheduler_mode,
4131 &setlist, &showlist);
4132
4133 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4134 Set mode of the step operation."), _("\
4135 Show mode of the step operation."), _("\
4136 When set, doing a step over a function without debug line information\n\
4137 will stop at the first instruction of that function. Otherwise, the\n\
4138 function is skipped and the step command stops at a different source line."),
4139 NULL,
4140 show_step_stop_if_no_debug,
4141 &setlist, &showlist);
4142
4143 /* ptid initializations */
4144 null_ptid = ptid_build (0, 0, 0);
4145 minus_one_ptid = ptid_build (-1, 0, 0);
4146 inferior_ptid = null_ptid;
4147 target_last_wait_ptid = minus_one_ptid;
4148 }
This page took 0.14633 seconds and 4 git commands to generate.