2007-06-09 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
532 else
533 error (_("\
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
537 }
538
539 if (SOFTWARE_SINGLE_STEP_P () && step)
540 {
541 /* Do it the hard way, w/temp breakpoints */
542 if (SOFTWARE_SINGLE_STEP (current_regcache))
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 reinit_frame_cache ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 }
675
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
680 return 1;
681 }
682
683 return 0;
684
685 }
686
687 /* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690 static CORE_ADDR prev_pc;
691
692 /* Basic routine for continuing the program in various fashions.
693
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
696 or -1 for act according to how it stopped.
697 STEP is nonzero if should trap after one instruction.
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
701
702 You should call clear_proceed_status before calling proceed. */
703
704 void
705 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
706 {
707 int oneproc = 0;
708
709 if (step > 0)
710 step_start_function = find_pc_function (read_pc ());
711 if (step < 0)
712 stop_after_trap = 1;
713
714 if (addr == (CORE_ADDR) -1)
715 {
716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
720 breakpoint). */
721 oneproc = 1;
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
727 oneproc = 1;
728 }
729 else
730 {
731 write_pc (addr);
732 }
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
738
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
741
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
746
747 prepare_to_proceed checks the current thread against the thread
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
751 oneproc = 1;
752
753 if (oneproc)
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
756 trap_expected = 1;
757 else
758 {
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
761 insert breakpoints -- so they were inserted. */
762 breakpoints_inserted = 1;
763 }
764
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
771
772 annotate_starting ();
773
774 /* Make sure that output from GDB appears before output from the
775 inferior. */
776 gdb_flush (gdb_stdout);
777
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
792
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
799 updated correctly when the inferior is stopped. */
800 prev_pc = read_pc ();
801
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
804
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
809 if (!target_can_async_p ())
810 {
811 wait_for_inferior ();
812 normal_stop ();
813 }
814 }
815 \f
816
817 /* Start remote-debugging of a machine over a serial link. */
818
819 void
820 start_remote (int from_tty)
821 {
822 init_thread_list ();
823 init_wait_for_inferior ();
824 stop_soon = STOP_QUIETLY;
825 trap_expected = 0;
826
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
829 indicate to wait_for_inferior that a target should timeout if
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
833 timeout. */
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
840 for an async run. */
841 wait_for_inferior ();
842
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (&current_target, from_tty);
847
848 normal_stop ();
849 }
850
851 /* Initialize static vars when a new inferior begins. */
852
853 void
854 init_wait_for_inferior (void)
855 {
856 /* These are meaningless until the first time through wait_for_inferior. */
857 prev_pc = 0;
858
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nonstep_watch_state
882 };
883
884 /* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886 enum inferior_stop_reason
887 {
888 /* Step, next, nexti, stepi finished. */
889 END_STEPPING_RANGE,
890 /* Inferior terminated by signal. */
891 SIGNAL_EXITED,
892 /* Inferior exited. */
893 EXITED,
894 /* Inferior received signal, and user asked to be notified. */
895 SIGNAL_RECEIVED
896 };
897
898 /* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
901
902 struct execution_control_state
903 {
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
906 int another_trap;
907 int random_signal;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
912 int current_line;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
915 ptid_t ptid;
916 ptid_t saved_inferior_ptid;
917 int step_after_step_resume_breakpoint;
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void step_into_function (struct execution_control_state *ecs);
932 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
933 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
934 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
936 static void stop_stepping (struct execution_control_state *ecs);
937 static void prepare_to_wait (struct execution_control_state *ecs);
938 static void keep_going (struct execution_control_state *ecs);
939 static void print_stop_reason (enum inferior_stop_reason stop_reason,
940 int stop_info);
941
942 /* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
947
948 void
949 wait_for_inferior (void)
950 {
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
954
955 if (debug_infrun)
956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
957
958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
959 &step_resume_breakpoint);
960
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
963 ecs = &ecss;
964
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
967
968 /* We'll update this if & when we switch to a new thread. */
969 previous_inferior_ptid = inferior_ptid;
970
971 overlay_cache_invalid = 1;
972
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
977 status mechanism. */
978
979 registers_changed ();
980
981 while (1)
982 {
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
985 else
986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
987
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
990
991 if (!ecs->wait_some_more)
992 break;
993 }
994 do_cleanups (old_cleanups);
995 }
996
997 /* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1005
1006 struct execution_control_state async_ecss;
1007 struct execution_control_state *async_ecs;
1008
1009 void
1010 fetch_inferior_event (void *client_data)
1011 {
1012 static struct cleanup *old_cleanups;
1013
1014 async_ecs = &async_ecss;
1015
1016 if (!async_ecs->wait_some_more)
1017 {
1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1019 &step_resume_breakpoint);
1020
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1023
1024 /* We'll update this if & when we switch to a new thread. */
1025 previous_inferior_ptid = inferior_ptid;
1026
1027 overlay_cache_invalid = 1;
1028
1029 /* We have to invalidate the registers BEFORE calling target_wait
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
1034
1035 registers_changed ();
1036 }
1037
1038 if (deprecated_target_wait_hook)
1039 async_ecs->ptid =
1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1041 else
1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1043
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1046
1047 if (!async_ecs->wait_some_more)
1048 {
1049 /* Do only the cleanups that have been added by this
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
1052 do_exec_cleanups (old_cleanups);
1053 normal_stop ();
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1056 else
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1058 }
1059 }
1060
1061 /* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1063
1064 void
1065 init_execution_control_state (struct execution_control_state *ecs)
1066 {
1067 ecs->another_trap = 0;
1068 ecs->random_signal = 0;
1069 ecs->step_after_step_resume_breakpoint = 0;
1070 ecs->handling_longjmp = 0; /* FIXME */
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
1077 ecs->waiton_ptid = pid_to_ptid (-1);
1078 ecs->wp = &(ecs->ws);
1079 }
1080
1081 /* Return the cached copy of the last pid/waitstatus returned by
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
1085
1086 void
1087 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1088 {
1089 *ptidp = target_last_wait_ptid;
1090 *status = target_last_waitstatus;
1091 }
1092
1093 void
1094 nullify_last_target_wait_ptid (void)
1095 {
1096 target_last_wait_ptid = minus_one_ptid;
1097 }
1098
1099 /* Switch thread contexts, maintaining "infrun state". */
1100
1101 static void
1102 context_switch (struct execution_control_state *ecs)
1103 {
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1109
1110 if (debug_infrun)
1111 {
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1116 }
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 trap_expected, step_resume_breakpoint,
1123 step_range_start,
1124 step_range_end, &step_frame_id,
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
1128 ecs->current_line, ecs->current_symtab);
1129
1130 /* Load infrun state for the new thread. */
1131 load_infrun_state (ecs->ptid, &prev_pc,
1132 &trap_expected, &step_resume_breakpoint,
1133 &step_range_start,
1134 &step_range_end, &step_frame_id,
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
1138 &ecs->current_line, &ecs->current_symtab);
1139 }
1140 inferior_ptid = ecs->ptid;
1141 reinit_frame_cache ();
1142 }
1143
1144 static void
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1146 {
1147 CORE_ADDR breakpoint_pc;
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1160 layer.
1161
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
1168
1169 In earlier versions of GDB, a target with
1170 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1171 watchpoint affected by DECR_PC_AFTER_BREAK. I haven't found any target
1172 with both of these set in GDB history, and it seems unlikely to be correct,
1173 so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1184
1185 if (SOFTWARE_SINGLE_STEP_P ())
1186 {
1187 /* When using software single-step, a SIGTRAP can only indicate
1188 an inserted breakpoint. This actually makes things
1189 easier. */
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 }
1202 else
1203 {
1204 /* When using hardware single-step, a SIGTRAP is reported for
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
1207 adjusting but the former does not.
1208
1209 When the thread to be examined does not match the current thread
1210 context we can't use currently_stepping, so assume no
1211 single-stepping in this case. */
1212 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1213 {
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 else
1224 {
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 }
1231 }
1232 }
1233
1234 /* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
1237
1238 int stepped_after_stopped_by_watchpoint;
1239
1240 void
1241 handle_inferior_event (struct execution_control_state *ecs)
1242 {
1243 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1244 that the variable stepped_after_stopped_by_watchpoint isn't used,
1245 then you're wrong! See remote.c:remote_stopped_data_address. */
1246
1247 int sw_single_step_trap_p = 0;
1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1249
1250 /* Cache the last pid/waitstatus. */
1251 target_last_wait_ptid = ecs->ptid;
1252 target_last_waitstatus = *ecs->wp;
1253
1254 adjust_pc_after_break (ecs);
1255
1256 switch (ecs->infwait_state)
1257 {
1258 case infwait_thread_hop_state:
1259 if (debug_infrun)
1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1261 /* Cancel the waiton_ptid. */
1262 ecs->waiton_ptid = pid_to_ptid (-1);
1263 break;
1264
1265 case infwait_normal_state:
1266 if (debug_infrun)
1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1268 stepped_after_stopped_by_watchpoint = 0;
1269 break;
1270
1271 case infwait_nonstep_watch_state:
1272 if (debug_infrun)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "infrun: infwait_nonstep_watch_state\n");
1275 insert_breakpoints ();
1276
1277 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1278 handle things like signals arriving and other things happening
1279 in combination correctly? */
1280 stepped_after_stopped_by_watchpoint = 1;
1281 break;
1282
1283 default:
1284 internal_error (__FILE__, __LINE__, _("bad switch"));
1285 }
1286 ecs->infwait_state = infwait_normal_state;
1287
1288 reinit_frame_cache ();
1289
1290 /* If it's a new process, add it to the thread database */
1291
1292 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1293 && !ptid_equal (ecs->ptid, minus_one_ptid)
1294 && !in_thread_list (ecs->ptid));
1295
1296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1298 {
1299 add_thread (ecs->ptid);
1300
1301 ui_out_text (uiout, "[New ");
1302 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1303 ui_out_text (uiout, "]\n");
1304 }
1305
1306 switch (ecs->ws.kind)
1307 {
1308 case TARGET_WAITKIND_LOADED:
1309 if (debug_infrun)
1310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1311 /* Ignore gracefully during startup of the inferior, as it
1312 might be the shell which has just loaded some objects,
1313 otherwise add the symbols for the newly loaded objects. */
1314 #ifdef SOLIB_ADD
1315 if (stop_soon == NO_STOP_QUIETLY)
1316 {
1317 /* Remove breakpoints, SOLIB_ADD might adjust
1318 breakpoint addresses via breakpoint_re_set. */
1319 if (breakpoints_inserted)
1320 remove_breakpoints ();
1321
1322 /* Check for any newly added shared libraries if we're
1323 supposed to be adding them automatically. Switch
1324 terminal for any messages produced by
1325 breakpoint_re_set. */
1326 target_terminal_ours_for_output ();
1327 /* NOTE: cagney/2003-11-25: Make certain that the target
1328 stack's section table is kept up-to-date. Architectures,
1329 (e.g., PPC64), use the section table to perform
1330 operations such as address => section name and hence
1331 require the table to contain all sections (including
1332 those found in shared libraries). */
1333 /* NOTE: cagney/2003-11-25: Pass current_target and not
1334 exec_ops to SOLIB_ADD. This is because current GDB is
1335 only tooled to propagate section_table changes out from
1336 the "current_target" (see target_resize_to_sections), and
1337 not up from the exec stratum. This, of course, isn't
1338 right. "infrun.c" should only interact with the
1339 exec/process stratum, instead relying on the target stack
1340 to propagate relevant changes (stop, section table
1341 changed, ...) up to other layers. */
1342 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1343 target_terminal_inferior ();
1344
1345 /* Reinsert breakpoints and continue. */
1346 if (breakpoints_inserted)
1347 insert_breakpoints ();
1348 }
1349 #endif
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1352 return;
1353
1354 case TARGET_WAITKIND_SPURIOUS:
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
1360
1361 case TARGET_WAITKIND_EXITED:
1362 if (debug_infrun)
1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1364 target_terminal_ours (); /* Must do this before mourn anyway */
1365 print_stop_reason (EXITED, ecs->ws.value.integer);
1366
1367 /* Record the exit code in the convenience variable $_exitcode, so
1368 that the user can inspect this again later. */
1369 set_internalvar (lookup_internalvar ("_exitcode"),
1370 value_from_longest (builtin_type_int,
1371 (LONGEST) ecs->ws.value.integer));
1372 gdb_flush (gdb_stdout);
1373 target_mourn_inferior ();
1374 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1375 stop_print_frame = 0;
1376 stop_stepping (ecs);
1377 return;
1378
1379 case TARGET_WAITKIND_SIGNALLED:
1380 if (debug_infrun)
1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1382 stop_print_frame = 0;
1383 stop_signal = ecs->ws.value.sig;
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1385
1386 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1387 reach here unless the inferior is dead. However, for years
1388 target_kill() was called here, which hints that fatal signals aren't
1389 really fatal on some systems. If that's true, then some changes
1390 may be needed. */
1391 target_mourn_inferior ();
1392
1393 print_stop_reason (SIGNAL_EXITED, stop_signal);
1394 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1395 stop_stepping (ecs);
1396 return;
1397
1398 /* The following are the only cases in which we keep going;
1399 the above cases end in a continue or goto. */
1400 case TARGET_WAITKIND_FORKED:
1401 case TARGET_WAITKIND_VFORKED:
1402 if (debug_infrun)
1403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405 pending_follow.kind = ecs->ws.kind;
1406
1407 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1408 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1409
1410 if (!ptid_equal (ecs->ptid, inferior_ptid))
1411 {
1412 context_switch (ecs);
1413 reinit_frame_cache ();
1414 }
1415
1416 stop_pc = read_pc ();
1417
1418 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1419
1420 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1421
1422 /* If no catchpoint triggered for this, then keep going. */
1423 if (ecs->random_signal)
1424 {
1425 stop_signal = TARGET_SIGNAL_0;
1426 keep_going (ecs);
1427 return;
1428 }
1429 goto process_event_stop_test;
1430
1431 case TARGET_WAITKIND_EXECD:
1432 if (debug_infrun)
1433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1434 stop_signal = TARGET_SIGNAL_TRAP;
1435
1436 /* NOTE drow/2002-12-05: This code should be pushed down into the
1437 target_wait function. Until then following vfork on HP/UX 10.20
1438 is probably broken by this. Of course, it's broken anyway. */
1439 /* Is this a target which reports multiple exec events per actual
1440 call to exec()? (HP-UX using ptrace does, for example.) If so,
1441 ignore all but the last one. Just resume the exec'r, and wait
1442 for the next exec event. */
1443 if (inferior_ignoring_leading_exec_events)
1444 {
1445 inferior_ignoring_leading_exec_events--;
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
1461
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
1465
1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1467
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
1470
1471 if (!ptid_equal (ecs->ptid, inferior_ptid))
1472 {
1473 context_switch (ecs);
1474 reinit_frame_cache ();
1475 }
1476
1477 /* If no catchpoint triggered for this, then keep going. */
1478 if (ecs->random_signal)
1479 {
1480 stop_signal = TARGET_SIGNAL_0;
1481 keep_going (ecs);
1482 return;
1483 }
1484 goto process_event_stop_test;
1485
1486 /* Be careful not to try to gather much state about a thread
1487 that's in a syscall. It's frequently a losing proposition. */
1488 case TARGET_WAITKIND_SYSCALL_ENTRY:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1491 resume (0, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1493 return;
1494
1495 /* Before examining the threads further, step this thread to
1496 get it entirely out of the syscall. (We get notice of the
1497 event when the thread is just on the verge of exiting a
1498 syscall. Stepping one instruction seems to get it back
1499 into user code.) */
1500 case TARGET_WAITKIND_SYSCALL_RETURN:
1501 if (debug_infrun)
1502 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1503 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1504 prepare_to_wait (ecs);
1505 return;
1506
1507 case TARGET_WAITKIND_STOPPED:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1510 stop_signal = ecs->ws.value.sig;
1511 break;
1512
1513 /* We had an event in the inferior, but we are not interested
1514 in handling it at this level. The lower layers have already
1515 done what needs to be done, if anything.
1516
1517 One of the possible circumstances for this is when the
1518 inferior produces output for the console. The inferior has
1519 not stopped, and we are ignoring the event. Another possible
1520 circumstance is any event which the lower level knows will be
1521 reported multiple times without an intervening resume. */
1522 case TARGET_WAITKIND_IGNORE:
1523 if (debug_infrun)
1524 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1525 prepare_to_wait (ecs);
1526 return;
1527 }
1528
1529 /* We may want to consider not doing a resume here in order to give
1530 the user a chance to play with the new thread. It might be good
1531 to make that a user-settable option. */
1532
1533 /* At this point, all threads are stopped (happens automatically in
1534 either the OS or the native code). Therefore we need to continue
1535 all threads in order to make progress. */
1536 if (ecs->new_thread_event)
1537 {
1538 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1540 return;
1541 }
1542
1543 stop_pc = read_pc_pid (ecs->ptid);
1544
1545 if (debug_infrun)
1546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1547
1548 if (stepping_past_singlestep_breakpoint)
1549 {
1550 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1551 && singlestep_breakpoints_inserted_p);
1552 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1553 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1554
1555 stepping_past_singlestep_breakpoint = 0;
1556
1557 /* We've either finished single-stepping past the single-step
1558 breakpoint, or stopped for some other reason. It would be nice if
1559 we could tell, but we can't reliably. */
1560 if (stop_signal == TARGET_SIGNAL_TRAP)
1561 {
1562 if (debug_infrun)
1563 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1564 /* Pull the single step breakpoints out of the target. */
1565 remove_single_step_breakpoints ();
1566 singlestep_breakpoints_inserted_p = 0;
1567
1568 ecs->random_signal = 0;
1569
1570 ecs->ptid = saved_singlestep_ptid;
1571 context_switch (ecs);
1572 if (deprecated_context_hook)
1573 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1574
1575 resume (1, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
1579 }
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
1583 /* See if a thread hit a thread-specific breakpoint that was meant for
1584 another thread. If so, then step that thread past the breakpoint,
1585 and continue it. */
1586
1587 if (stop_signal == TARGET_SIGNAL_TRAP)
1588 {
1589 int thread_hop_needed = 0;
1590
1591 /* Check if a regular breakpoint has been hit before checking
1592 for a potential single step breakpoint. Otherwise, GDB will
1593 not see this breakpoint hit when stepping onto breakpoints. */
1594 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1595 {
1596 ecs->random_signal = 0;
1597 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1598 thread_hop_needed = 1;
1599 }
1600 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1601 {
1602 /* We have not context switched yet, so this should be true
1603 no matter which thread hit the singlestep breakpoint. */
1604 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1605 if (debug_infrun)
1606 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1607 "trap for %s\n",
1608 target_pid_to_str (ecs->ptid));
1609
1610 ecs->random_signal = 0;
1611 /* The call to in_thread_list is necessary because PTIDs sometimes
1612 change when we go from single-threaded to multi-threaded. If
1613 the singlestep_ptid is still in the list, assume that it is
1614 really different from ecs->ptid. */
1615 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1616 && in_thread_list (singlestep_ptid))
1617 {
1618 /* If the PC of the thread we were trying to single-step
1619 has changed, discard this event (which we were going
1620 to ignore anyway), and pretend we saw that thread
1621 trap. This prevents us continuously moving the
1622 single-step breakpoint forward, one instruction at a
1623 time. If the PC has changed, then the thread we were
1624 trying to single-step has trapped or been signalled,
1625 but the event has not been reported to GDB yet.
1626
1627 There might be some cases where this loses signal
1628 information, if a signal has arrived at exactly the
1629 same time that the PC changed, but this is the best
1630 we can do with the information available. Perhaps we
1631 should arrange to report all events for all threads
1632 when they stop, or to re-poll the remote looking for
1633 this particular thread (i.e. temporarily enable
1634 schedlock). */
1635 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1636 {
1637 if (debug_infrun)
1638 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1639 " but expected thread advanced also\n");
1640
1641 /* The current context still belongs to
1642 singlestep_ptid. Don't swap here, since that's
1643 the context we want to use. Just fudge our
1644 state and continue. */
1645 ecs->ptid = singlestep_ptid;
1646 stop_pc = read_pc_pid (ecs->ptid);
1647 }
1648 else
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: unexpected thread\n");
1653
1654 thread_hop_needed = 1;
1655 stepping_past_singlestep_breakpoint = 1;
1656 saved_singlestep_ptid = singlestep_ptid;
1657 }
1658 }
1659 }
1660
1661 if (thread_hop_needed)
1662 {
1663 int remove_status;
1664
1665 if (debug_infrun)
1666 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1667
1668 /* Saw a breakpoint, but it was hit by the wrong thread.
1669 Just continue. */
1670
1671 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1672 {
1673 /* Pull the single step breakpoints out of the target. */
1674 remove_single_step_breakpoints ();
1675 singlestep_breakpoints_inserted_p = 0;
1676 }
1677
1678 remove_status = remove_breakpoints ();
1679 /* Did we fail to remove breakpoints? If so, try
1680 to set the PC past the bp. (There's at least
1681 one situation in which we can fail to remove
1682 the bp's: On HP-UX's that use ttrace, we can't
1683 change the address space of a vforking child
1684 process until the child exits (well, okay, not
1685 then either :-) or execs. */
1686 if (remove_status != 0)
1687 {
1688 /* FIXME! This is obviously non-portable! */
1689 write_pc_pid (stop_pc + 4, ecs->ptid);
1690 /* We need to restart all the threads now,
1691 * unles we're running in scheduler-locked mode.
1692 * Use currently_stepping to determine whether to
1693 * step or continue.
1694 */
1695 /* FIXME MVS: is there any reason not to call resume()? */
1696 if (scheduler_mode == schedlock_on)
1697 target_resume (ecs->ptid,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
1699 else
1700 target_resume (RESUME_ALL,
1701 currently_stepping (ecs), TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
1705 else
1706 { /* Single step */
1707 breakpoints_inserted = 0;
1708 if (!ptid_equal (inferior_ptid, ecs->ptid))
1709 context_switch (ecs);
1710 ecs->waiton_ptid = ecs->ptid;
1711 ecs->wp = &(ecs->ws);
1712 ecs->another_trap = 1;
1713
1714 ecs->infwait_state = infwait_thread_hop_state;
1715 keep_going (ecs);
1716 registers_changed ();
1717 return;
1718 }
1719 }
1720 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1721 {
1722 sw_single_step_trap_p = 1;
1723 ecs->random_signal = 0;
1724 }
1725 }
1726 else
1727 ecs->random_signal = 1;
1728
1729 /* See if something interesting happened to the non-current thread. If
1730 so, then switch to that thread. */
1731 if (!ptid_equal (ecs->ptid, inferior_ptid))
1732 {
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1735
1736 context_switch (ecs);
1737
1738 if (deprecated_context_hook)
1739 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1740 }
1741
1742 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 /* It may not be necessary to disable the watchpoint to stop over
1750 it. For example, the PA can (with some kernel cooperation)
1751 single step over a watchpoint without disabling the watchpoint. */
1752 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1753 {
1754 if (debug_infrun)
1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1756 resume (1, 0);
1757 prepare_to_wait (ecs);
1758 return;
1759 }
1760
1761 /* It is far more common to need to disable a watchpoint to step
1762 the inferior over it. FIXME. What else might a debug
1763 register or page protection watchpoint scheme need here? */
1764 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1765 && STOPPED_BY_WATCHPOINT (ecs->ws))
1766 {
1767 /* At this point, we are stopped at an instruction which has
1768 attempted to write to a piece of memory under control of
1769 a watchpoint. The instruction hasn't actually executed
1770 yet. If we were to evaluate the watchpoint expression
1771 now, we would get the old value, and therefore no change
1772 would seem to have occurred.
1773
1774 In order to make watchpoints work `right', we really need
1775 to complete the memory write, and then evaluate the
1776 watchpoint expression. The following code does that by
1777 removing the watchpoint (actually, all watchpoints and
1778 breakpoints), single-stepping the target, re-inserting
1779 watchpoints, and then falling through to let normal
1780 single-step processing handle proceed. Since this
1781 includes evaluating watchpoints, things will come to a
1782 stop in the correct manner. */
1783
1784 if (debug_infrun)
1785 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1786 remove_breakpoints ();
1787 registers_changed ();
1788 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1789
1790 ecs->waiton_ptid = ecs->ptid;
1791 ecs->wp = &(ecs->ws);
1792 ecs->infwait_state = infwait_nonstep_watch_state;
1793 prepare_to_wait (ecs);
1794 return;
1795 }
1796
1797 /* It may be possible to simply continue after a watchpoint. */
1798 if (HAVE_CONTINUABLE_WATCHPOINT)
1799 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1800
1801 ecs->stop_func_start = 0;
1802 ecs->stop_func_end = 0;
1803 ecs->stop_func_name = 0;
1804 /* Don't care about return value; stop_func_start and stop_func_name
1805 will both be 0 if it doesn't work. */
1806 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1807 &ecs->stop_func_start, &ecs->stop_func_end);
1808 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1809 ecs->another_trap = 0;
1810 bpstat_clear (&stop_bpstat);
1811 stop_step = 0;
1812 stop_stack_dummy = 0;
1813 stop_print_frame = 1;
1814 ecs->random_signal = 0;
1815 stopped_by_random_signal = 0;
1816
1817 if (stop_signal == TARGET_SIGNAL_TRAP
1818 && trap_expected
1819 && gdbarch_single_step_through_delay_p (current_gdbarch)
1820 && currently_stepping (ecs))
1821 {
1822 /* We're trying to step of a breakpoint. Turns out that we're
1823 also on an instruction that needs to be stepped multiple
1824 times before it's been fully executing. E.g., architectures
1825 with a delay slot. It needs to be stepped twice, once for
1826 the instruction and once for the delay slot. */
1827 int step_through_delay
1828 = gdbarch_single_step_through_delay (current_gdbarch,
1829 get_current_frame ());
1830 if (debug_infrun && step_through_delay)
1831 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1832 if (step_range_end == 0 && step_through_delay)
1833 {
1834 /* The user issued a continue when stopped at a breakpoint.
1835 Set up for another trap and get out of here. */
1836 ecs->another_trap = 1;
1837 keep_going (ecs);
1838 return;
1839 }
1840 else if (step_through_delay)
1841 {
1842 /* The user issued a step when stopped at a breakpoint.
1843 Maybe we should stop, maybe we should not - the delay
1844 slot *might* correspond to a line of source. In any
1845 case, don't decide that here, just set ecs->another_trap,
1846 making sure we single-step again before breakpoints are
1847 re-inserted. */
1848 ecs->another_trap = 1;
1849 }
1850 }
1851
1852 /* Look at the cause of the stop, and decide what to do.
1853 The alternatives are:
1854 1) break; to really stop and return to the debugger,
1855 2) drop through to start up again
1856 (set ecs->another_trap to 1 to single step once)
1857 3) set ecs->random_signal to 1, and the decision between 1 and 2
1858 will be made according to the signal handling tables. */
1859
1860 /* First, distinguish signals caused by the debugger from signals
1861 that have to do with the program's own actions. Note that
1862 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1863 on the operating system version. Here we detect when a SIGILL or
1864 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1865 something similar for SIGSEGV, since a SIGSEGV will be generated
1866 when we're trying to execute a breakpoint instruction on a
1867 non-executable stack. This happens for call dummy breakpoints
1868 for architectures like SPARC that place call dummies on the
1869 stack. */
1870
1871 if (stop_signal == TARGET_SIGNAL_TRAP
1872 || (breakpoints_inserted
1873 && (stop_signal == TARGET_SIGNAL_ILL
1874 || stop_signal == TARGET_SIGNAL_SEGV
1875 || stop_signal == TARGET_SIGNAL_EMT))
1876 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1877 {
1878 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1879 {
1880 if (debug_infrun)
1881 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1882 stop_print_frame = 0;
1883 stop_stepping (ecs);
1884 return;
1885 }
1886
1887 /* This is originated from start_remote(), start_inferior() and
1888 shared libraries hook functions. */
1889 if (stop_soon == STOP_QUIETLY)
1890 {
1891 if (debug_infrun)
1892 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1893 stop_stepping (ecs);
1894 return;
1895 }
1896
1897 /* This originates from attach_command(). We need to overwrite
1898 the stop_signal here, because some kernels don't ignore a
1899 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1900 See more comments in inferior.h. */
1901 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1902 {
1903 stop_stepping (ecs);
1904 if (stop_signal == TARGET_SIGNAL_STOP)
1905 stop_signal = TARGET_SIGNAL_0;
1906 return;
1907 }
1908
1909 /* Don't even think about breakpoints if just proceeded over a
1910 breakpoint. */
1911 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1912 {
1913 if (debug_infrun)
1914 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1915 bpstat_clear (&stop_bpstat);
1916 }
1917 else
1918 {
1919 /* See if there is a breakpoint at the current PC. */
1920 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1921 stopped_by_watchpoint);
1922
1923 /* Following in case break condition called a
1924 function. */
1925 stop_print_frame = 1;
1926 }
1927
1928 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1929 at one stage in the past included checks for an inferior
1930 function call's call dummy's return breakpoint. The original
1931 comment, that went with the test, read:
1932
1933 ``End of a stack dummy. Some systems (e.g. Sony news) give
1934 another signal besides SIGTRAP, so check here as well as
1935 above.''
1936
1937 If someone ever tries to get get call dummys on a
1938 non-executable stack to work (where the target would stop
1939 with something like a SIGSEGV), then those tests might need
1940 to be re-instated. Given, however, that the tests were only
1941 enabled when momentary breakpoints were not being used, I
1942 suspect that it won't be the case.
1943
1944 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1945 be necessary for call dummies on a non-executable stack on
1946 SPARC. */
1947
1948 if (stop_signal == TARGET_SIGNAL_TRAP)
1949 ecs->random_signal
1950 = !(bpstat_explains_signal (stop_bpstat)
1951 || trap_expected
1952 || (step_range_end && step_resume_breakpoint == NULL));
1953 else
1954 {
1955 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1956 if (!ecs->random_signal)
1957 stop_signal = TARGET_SIGNAL_TRAP;
1958 }
1959 }
1960
1961 /* When we reach this point, we've pretty much decided
1962 that the reason for stopping must've been a random
1963 (unexpected) signal. */
1964
1965 else
1966 ecs->random_signal = 1;
1967
1968 process_event_stop_test:
1969 /* For the program's own signals, act according to
1970 the signal handling tables. */
1971
1972 if (ecs->random_signal)
1973 {
1974 /* Signal not for debugging purposes. */
1975 int printed = 0;
1976
1977 if (debug_infrun)
1978 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1979
1980 stopped_by_random_signal = 1;
1981
1982 if (signal_print[stop_signal])
1983 {
1984 printed = 1;
1985 target_terminal_ours_for_output ();
1986 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1987 }
1988 if (signal_stop[stop_signal])
1989 {
1990 stop_stepping (ecs);
1991 return;
1992 }
1993 /* If not going to stop, give terminal back
1994 if we took it away. */
1995 else if (printed)
1996 target_terminal_inferior ();
1997
1998 /* Clear the signal if it should not be passed. */
1999 if (signal_program[stop_signal] == 0)
2000 stop_signal = TARGET_SIGNAL_0;
2001
2002 if (prev_pc == read_pc ()
2003 && !breakpoints_inserted
2004 && breakpoint_here_p (read_pc ())
2005 && step_resume_breakpoint == NULL)
2006 {
2007 /* We were just starting a new sequence, attempting to
2008 single-step off of a breakpoint and expecting a SIGTRAP.
2009 Intead this signal arrives. This signal will take us out
2010 of the stepping range so GDB needs to remember to, when
2011 the signal handler returns, resume stepping off that
2012 breakpoint. */
2013 /* To simplify things, "continue" is forced to use the same
2014 code paths as single-step - set a breakpoint at the
2015 signal return address and then, once hit, step off that
2016 breakpoint. */
2017
2018 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2019 ecs->step_after_step_resume_breakpoint = 1;
2020 keep_going (ecs);
2021 return;
2022 }
2023
2024 if (step_range_end != 0
2025 && stop_signal != TARGET_SIGNAL_0
2026 && stop_pc >= step_range_start && stop_pc < step_range_end
2027 && frame_id_eq (get_frame_id (get_current_frame ()),
2028 step_frame_id)
2029 && step_resume_breakpoint == NULL)
2030 {
2031 /* The inferior is about to take a signal that will take it
2032 out of the single step range. Set a breakpoint at the
2033 current PC (which is presumably where the signal handler
2034 will eventually return) and then allow the inferior to
2035 run free.
2036
2037 Note that this is only needed for a signal delivered
2038 while in the single-step range. Nested signals aren't a
2039 problem as they eventually all return. */
2040 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2041 keep_going (ecs);
2042 return;
2043 }
2044
2045 /* Note: step_resume_breakpoint may be non-NULL. This occures
2046 when either there's a nested signal, or when there's a
2047 pending signal enabled just as the signal handler returns
2048 (leaving the inferior at the step-resume-breakpoint without
2049 actually executing it). Either way continue until the
2050 breakpoint is really hit. */
2051 keep_going (ecs);
2052 return;
2053 }
2054
2055 /* Handle cases caused by hitting a breakpoint. */
2056 {
2057 CORE_ADDR jmp_buf_pc;
2058 struct bpstat_what what;
2059
2060 what = bpstat_what (stop_bpstat);
2061
2062 if (what.call_dummy)
2063 {
2064 stop_stack_dummy = 1;
2065 }
2066
2067 switch (what.main_action)
2068 {
2069 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2070 /* If we hit the breakpoint at longjmp, disable it for the
2071 duration of this command. Then, install a temporary
2072 breakpoint at the target of the jmp_buf. */
2073 if (debug_infrun)
2074 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2075 disable_longjmp_breakpoint ();
2076 remove_breakpoints ();
2077 breakpoints_inserted = 0;
2078 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2079 || !gdbarch_get_longjmp_target (current_gdbarch, &jmp_buf_pc))
2080 {
2081 keep_going (ecs);
2082 return;
2083 }
2084
2085 /* Need to blow away step-resume breakpoint, as it
2086 interferes with us */
2087 if (step_resume_breakpoint != NULL)
2088 {
2089 delete_step_resume_breakpoint (&step_resume_breakpoint);
2090 }
2091
2092 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2093 ecs->handling_longjmp = 1; /* FIXME */
2094 keep_going (ecs);
2095 return;
2096
2097 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2098 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2101 remove_breakpoints ();
2102 breakpoints_inserted = 0;
2103 disable_longjmp_breakpoint ();
2104 ecs->handling_longjmp = 0; /* FIXME */
2105 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2106 break;
2107 /* else fallthrough */
2108
2109 case BPSTAT_WHAT_SINGLE:
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2112 if (breakpoints_inserted)
2113 remove_breakpoints ();
2114 breakpoints_inserted = 0;
2115 ecs->another_trap = 1;
2116 /* Still need to check other stuff, at least the case
2117 where we are stepping and step out of the right range. */
2118 break;
2119
2120 case BPSTAT_WHAT_STOP_NOISY:
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2123 stop_print_frame = 1;
2124
2125 /* We are about to nuke the step_resume_breakpointt via the
2126 cleanup chain, so no need to worry about it here. */
2127
2128 stop_stepping (ecs);
2129 return;
2130
2131 case BPSTAT_WHAT_STOP_SILENT:
2132 if (debug_infrun)
2133 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2134 stop_print_frame = 0;
2135
2136 /* We are about to nuke the step_resume_breakpoin via the
2137 cleanup chain, so no need to worry about it here. */
2138
2139 stop_stepping (ecs);
2140 return;
2141
2142 case BPSTAT_WHAT_STEP_RESUME:
2143 /* This proably demands a more elegant solution, but, yeah
2144 right...
2145
2146 This function's use of the simple variable
2147 step_resume_breakpoint doesn't seem to accomodate
2148 simultaneously active step-resume bp's, although the
2149 breakpoint list certainly can.
2150
2151 If we reach here and step_resume_breakpoint is already
2152 NULL, then apparently we have multiple active
2153 step-resume bp's. We'll just delete the breakpoint we
2154 stopped at, and carry on.
2155
2156 Correction: what the code currently does is delete a
2157 step-resume bp, but it makes no effort to ensure that
2158 the one deleted is the one currently stopped at. MVS */
2159
2160 if (debug_infrun)
2161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2162
2163 if (step_resume_breakpoint == NULL)
2164 {
2165 step_resume_breakpoint =
2166 bpstat_find_step_resume_breakpoint (stop_bpstat);
2167 }
2168 delete_step_resume_breakpoint (&step_resume_breakpoint);
2169 if (ecs->step_after_step_resume_breakpoint)
2170 {
2171 /* Back when the step-resume breakpoint was inserted, we
2172 were trying to single-step off a breakpoint. Go back
2173 to doing that. */
2174 ecs->step_after_step_resume_breakpoint = 0;
2175 remove_breakpoints ();
2176 breakpoints_inserted = 0;
2177 ecs->another_trap = 1;
2178 keep_going (ecs);
2179 return;
2180 }
2181 break;
2182
2183 case BPSTAT_WHAT_CHECK_SHLIBS:
2184 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2185 {
2186 if (debug_infrun)
2187 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2188 /* Remove breakpoints, we eventually want to step over the
2189 shlib event breakpoint, and SOLIB_ADD might adjust
2190 breakpoint addresses via breakpoint_re_set. */
2191 if (breakpoints_inserted)
2192 remove_breakpoints ();
2193 breakpoints_inserted = 0;
2194
2195 /* Check for any newly added shared libraries if we're
2196 supposed to be adding them automatically. Switch
2197 terminal for any messages produced by
2198 breakpoint_re_set. */
2199 target_terminal_ours_for_output ();
2200 /* NOTE: cagney/2003-11-25: Make certain that the target
2201 stack's section table is kept up-to-date. Architectures,
2202 (e.g., PPC64), use the section table to perform
2203 operations such as address => section name and hence
2204 require the table to contain all sections (including
2205 those found in shared libraries). */
2206 /* NOTE: cagney/2003-11-25: Pass current_target and not
2207 exec_ops to SOLIB_ADD. This is because current GDB is
2208 only tooled to propagate section_table changes out from
2209 the "current_target" (see target_resize_to_sections), and
2210 not up from the exec stratum. This, of course, isn't
2211 right. "infrun.c" should only interact with the
2212 exec/process stratum, instead relying on the target stack
2213 to propagate relevant changes (stop, section table
2214 changed, ...) up to other layers. */
2215 #ifdef SOLIB_ADD
2216 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2217 #else
2218 solib_add (NULL, 0, &current_target, auto_solib_add);
2219 #endif
2220 target_terminal_inferior ();
2221
2222 /* Try to reenable shared library breakpoints, additional
2223 code segments in shared libraries might be mapped in now. */
2224 re_enable_breakpoints_in_shlibs ();
2225
2226 /* If requested, stop when the dynamic linker notifies
2227 gdb of events. This allows the user to get control
2228 and place breakpoints in initializer routines for
2229 dynamically loaded objects (among other things). */
2230 if (stop_on_solib_events || stop_stack_dummy)
2231 {
2232 stop_stepping (ecs);
2233 return;
2234 }
2235
2236 /* If we stopped due to an explicit catchpoint, then the
2237 (see above) call to SOLIB_ADD pulled in any symbols
2238 from a newly-loaded library, if appropriate.
2239
2240 We do want the inferior to stop, but not where it is
2241 now, which is in the dynamic linker callback. Rather,
2242 we would like it stop in the user's program, just after
2243 the call that caused this catchpoint to trigger. That
2244 gives the user a more useful vantage from which to
2245 examine their program's state. */
2246 else if (what.main_action
2247 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2248 {
2249 /* ??rehrauer: If I could figure out how to get the
2250 right return PC from here, we could just set a temp
2251 breakpoint and resume. I'm not sure we can without
2252 cracking open the dld's shared libraries and sniffing
2253 their unwind tables and text/data ranges, and that's
2254 not a terribly portable notion.
2255
2256 Until that time, we must step the inferior out of the
2257 dld callback, and also out of the dld itself (and any
2258 code or stubs in libdld.sl, such as "shl_load" and
2259 friends) until we reach non-dld code. At that point,
2260 we can stop stepping. */
2261 bpstat_get_triggered_catchpoints (stop_bpstat,
2262 &ecs->
2263 stepping_through_solib_catchpoints);
2264 ecs->stepping_through_solib_after_catch = 1;
2265
2266 /* Be sure to lift all breakpoints, so the inferior does
2267 actually step past this point... */
2268 ecs->another_trap = 1;
2269 break;
2270 }
2271 else
2272 {
2273 /* We want to step over this breakpoint, then keep going. */
2274 ecs->another_trap = 1;
2275 break;
2276 }
2277 }
2278 break;
2279
2280 case BPSTAT_WHAT_LAST:
2281 /* Not a real code, but listed here to shut up gcc -Wall. */
2282
2283 case BPSTAT_WHAT_KEEP_CHECKING:
2284 break;
2285 }
2286 }
2287
2288 /* We come here if we hit a breakpoint but should not
2289 stop for it. Possibly we also were stepping
2290 and should stop for that. So fall through and
2291 test for stepping. But, if not stepping,
2292 do not stop. */
2293
2294 /* Are we stepping to get the inferior out of the dynamic linker's
2295 hook (and possibly the dld itself) after catching a shlib
2296 event? */
2297 if (ecs->stepping_through_solib_after_catch)
2298 {
2299 #if defined(SOLIB_ADD)
2300 /* Have we reached our destination? If not, keep going. */
2301 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2302 {
2303 if (debug_infrun)
2304 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2305 ecs->another_trap = 1;
2306 keep_going (ecs);
2307 return;
2308 }
2309 #endif
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2312 /* Else, stop and report the catchpoint(s) whose triggering
2313 caused us to begin stepping. */
2314 ecs->stepping_through_solib_after_catch = 0;
2315 bpstat_clear (&stop_bpstat);
2316 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2317 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2318 stop_print_frame = 1;
2319 stop_stepping (ecs);
2320 return;
2321 }
2322
2323 if (step_resume_breakpoint)
2324 {
2325 if (debug_infrun)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "infrun: step-resume breakpoint is inserted\n");
2328
2329 /* Having a step-resume breakpoint overrides anything
2330 else having to do with stepping commands until
2331 that breakpoint is reached. */
2332 keep_going (ecs);
2333 return;
2334 }
2335
2336 if (step_range_end == 0)
2337 {
2338 if (debug_infrun)
2339 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2340 /* Likewise if we aren't even stepping. */
2341 keep_going (ecs);
2342 return;
2343 }
2344
2345 /* If stepping through a line, keep going if still within it.
2346
2347 Note that step_range_end is the address of the first instruction
2348 beyond the step range, and NOT the address of the last instruction
2349 within it! */
2350 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2351 {
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2354 paddr_nz (step_range_start),
2355 paddr_nz (step_range_end));
2356 keep_going (ecs);
2357 return;
2358 }
2359
2360 /* We stepped out of the stepping range. */
2361
2362 /* If we are stepping at the source level and entered the runtime
2363 loader dynamic symbol resolution code, we keep on single stepping
2364 until we exit the run time loader code and reach the callee's
2365 address. */
2366 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2367 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2368 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2369 #else
2370 && in_solib_dynsym_resolve_code (stop_pc)
2371 #endif
2372 )
2373 {
2374 CORE_ADDR pc_after_resolver =
2375 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2376
2377 if (debug_infrun)
2378 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2379
2380 if (pc_after_resolver)
2381 {
2382 /* Set up a step-resume breakpoint at the address
2383 indicated by SKIP_SOLIB_RESOLVER. */
2384 struct symtab_and_line sr_sal;
2385 init_sal (&sr_sal);
2386 sr_sal.pc = pc_after_resolver;
2387
2388 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2389 }
2390
2391 keep_going (ecs);
2392 return;
2393 }
2394
2395 if (step_range_end != 1
2396 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2397 || step_over_calls == STEP_OVER_ALL)
2398 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2399 {
2400 if (debug_infrun)
2401 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2402 /* The inferior, while doing a "step" or "next", has ended up in
2403 a signal trampoline (either by a signal being delivered or by
2404 the signal handler returning). Just single-step until the
2405 inferior leaves the trampoline (either by calling the handler
2406 or returning). */
2407 keep_going (ecs);
2408 return;
2409 }
2410
2411 /* Check for subroutine calls. The check for the current frame
2412 equalling the step ID is not necessary - the check of the
2413 previous frame's ID is sufficient - but it is a common case and
2414 cheaper than checking the previous frame's ID.
2415
2416 NOTE: frame_id_eq will never report two invalid frame IDs as
2417 being equal, so to get into this block, both the current and
2418 previous frame must have valid frame IDs. */
2419 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2420 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2421 {
2422 CORE_ADDR real_stop_pc;
2423
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2426
2427 if ((step_over_calls == STEP_OVER_NONE)
2428 || ((step_range_end == 1)
2429 && in_prologue (prev_pc, ecs->stop_func_start)))
2430 {
2431 /* I presume that step_over_calls is only 0 when we're
2432 supposed to be stepping at the assembly language level
2433 ("stepi"). Just stop. */
2434 /* Also, maybe we just did a "nexti" inside a prolog, so we
2435 thought it was a subroutine call but it was not. Stop as
2436 well. FENN */
2437 stop_step = 1;
2438 print_stop_reason (END_STEPPING_RANGE, 0);
2439 stop_stepping (ecs);
2440 return;
2441 }
2442
2443 if (step_over_calls == STEP_OVER_ALL)
2444 {
2445 /* We're doing a "next", set a breakpoint at callee's return
2446 address (the address at which the caller will
2447 resume). */
2448 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2449 keep_going (ecs);
2450 return;
2451 }
2452
2453 /* If we are in a function call trampoline (a stub between the
2454 calling routine and the real function), locate the real
2455 function. That's what tells us (a) whether we want to step
2456 into it at all, and (b) what prologue we want to run to the
2457 end of, if we do step into it. */
2458 real_stop_pc = skip_language_trampoline (stop_pc);
2459 if (real_stop_pc == 0)
2460 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2461 if (real_stop_pc != 0)
2462 ecs->stop_func_start = real_stop_pc;
2463
2464 if (
2465 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2466 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2467 #else
2468 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2469 #endif
2470 )
2471 {
2472 struct symtab_and_line sr_sal;
2473 init_sal (&sr_sal);
2474 sr_sal.pc = ecs->stop_func_start;
2475
2476 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2477 keep_going (ecs);
2478 return;
2479 }
2480
2481 /* If we have line number information for the function we are
2482 thinking of stepping into, step into it.
2483
2484 If there are several symtabs at that PC (e.g. with include
2485 files), just want to know whether *any* of them have line
2486 numbers. find_pc_line handles this. */
2487 {
2488 struct symtab_and_line tmp_sal;
2489
2490 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2491 if (tmp_sal.line != 0)
2492 {
2493 step_into_function (ecs);
2494 return;
2495 }
2496 }
2497
2498 /* If we have no line number and the step-stop-if-no-debug is
2499 set, we stop the step so that the user has a chance to switch
2500 in assembly mode. */
2501 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2502 {
2503 stop_step = 1;
2504 print_stop_reason (END_STEPPING_RANGE, 0);
2505 stop_stepping (ecs);
2506 return;
2507 }
2508
2509 /* Set a breakpoint at callee's return address (the address at
2510 which the caller will resume). */
2511 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2512 keep_going (ecs);
2513 return;
2514 }
2515
2516 /* If we're in the return path from a shared library trampoline,
2517 we want to proceed through the trampoline when stepping. */
2518 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2519 {
2520 /* Determine where this trampoline returns. */
2521 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2522
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2525
2526 /* Only proceed through if we know where it's going. */
2527 if (real_stop_pc)
2528 {
2529 /* And put the step-breakpoint there and go until there. */
2530 struct symtab_and_line sr_sal;
2531
2532 init_sal (&sr_sal); /* initialize to zeroes */
2533 sr_sal.pc = real_stop_pc;
2534 sr_sal.section = find_pc_overlay (sr_sal.pc);
2535
2536 /* Do not specify what the fp should be when we stop since
2537 on some machines the prologue is where the new fp value
2538 is established. */
2539 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2540
2541 /* Restart without fiddling with the step ranges or
2542 other state. */
2543 keep_going (ecs);
2544 return;
2545 }
2546 }
2547
2548 ecs->sal = find_pc_line (stop_pc, 0);
2549
2550 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2551 the trampoline processing logic, however, there are some trampolines
2552 that have no names, so we should do trampoline handling first. */
2553 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2554 && ecs->stop_func_name == NULL
2555 && ecs->sal.line == 0)
2556 {
2557 if (debug_infrun)
2558 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2559
2560 /* The inferior just stepped into, or returned to, an
2561 undebuggable function (where there is no debugging information
2562 and no line number corresponding to the address where the
2563 inferior stopped). Since we want to skip this kind of code,
2564 we keep going until the inferior returns from this
2565 function - unless the user has asked us not to (via
2566 set step-mode) or we no longer know how to get back
2567 to the call site. */
2568 if (step_stop_if_no_debug
2569 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2570 {
2571 /* If we have no line number and the step-stop-if-no-debug
2572 is set, we stop the step so that the user has a chance to
2573 switch in assembly mode. */
2574 stop_step = 1;
2575 print_stop_reason (END_STEPPING_RANGE, 0);
2576 stop_stepping (ecs);
2577 return;
2578 }
2579 else
2580 {
2581 /* Set a breakpoint at callee's return address (the address
2582 at which the caller will resume). */
2583 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2584 keep_going (ecs);
2585 return;
2586 }
2587 }
2588
2589 if (step_range_end == 1)
2590 {
2591 /* It is stepi or nexti. We always want to stop stepping after
2592 one instruction. */
2593 if (debug_infrun)
2594 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2595 stop_step = 1;
2596 print_stop_reason (END_STEPPING_RANGE, 0);
2597 stop_stepping (ecs);
2598 return;
2599 }
2600
2601 if (ecs->sal.line == 0)
2602 {
2603 /* We have no line number information. That means to stop
2604 stepping (does this always happen right after one instruction,
2605 when we do "s" in a function with no line numbers,
2606 or can this happen as a result of a return or longjmp?). */
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2609 stop_step = 1;
2610 print_stop_reason (END_STEPPING_RANGE, 0);
2611 stop_stepping (ecs);
2612 return;
2613 }
2614
2615 if ((stop_pc == ecs->sal.pc)
2616 && (ecs->current_line != ecs->sal.line
2617 || ecs->current_symtab != ecs->sal.symtab))
2618 {
2619 /* We are at the start of a different line. So stop. Note that
2620 we don't stop if we step into the middle of a different line.
2621 That is said to make things like for (;;) statements work
2622 better. */
2623 if (debug_infrun)
2624 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630
2631 /* We aren't done stepping.
2632
2633 Optimize by setting the stepping range to the line.
2634 (We might not be in the original line, but if we entered a
2635 new line in mid-statement, we continue stepping. This makes
2636 things like for(;;) statements work better.) */
2637
2638 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2639 {
2640 /* If this is the last line of the function, don't keep stepping
2641 (it would probably step us out of the function).
2642 This is particularly necessary for a one-line function,
2643 in which after skipping the prologue we better stop even though
2644 we will be in mid-line. */
2645 if (debug_infrun)
2646 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2647 stop_step = 1;
2648 print_stop_reason (END_STEPPING_RANGE, 0);
2649 stop_stepping (ecs);
2650 return;
2651 }
2652 step_range_start = ecs->sal.pc;
2653 step_range_end = ecs->sal.end;
2654 step_frame_id = get_frame_id (get_current_frame ());
2655 ecs->current_line = ecs->sal.line;
2656 ecs->current_symtab = ecs->sal.symtab;
2657
2658 /* In the case where we just stepped out of a function into the
2659 middle of a line of the caller, continue stepping, but
2660 step_frame_id must be modified to current frame */
2661 #if 0
2662 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2663 generous. It will trigger on things like a step into a frameless
2664 stackless leaf function. I think the logic should instead look
2665 at the unwound frame ID has that should give a more robust
2666 indication of what happened. */
2667 if (step - ID == current - ID)
2668 still stepping in same function;
2669 else if (step - ID == unwind (current - ID))
2670 stepped into a function;
2671 else
2672 stepped out of a function;
2673 /* Of course this assumes that the frame ID unwind code is robust
2674 and we're willing to introduce frame unwind logic into this
2675 function. Fortunately, those days are nearly upon us. */
2676 #endif
2677 {
2678 struct frame_id current_frame = get_frame_id (get_current_frame ());
2679 if (!(frame_id_inner (current_frame, step_frame_id)))
2680 step_frame_id = current_frame;
2681 }
2682
2683 if (debug_infrun)
2684 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2685 keep_going (ecs);
2686 }
2687
2688 /* Are we in the middle of stepping? */
2689
2690 static int
2691 currently_stepping (struct execution_control_state *ecs)
2692 {
2693 return ((!ecs->handling_longjmp
2694 && ((step_range_end && step_resume_breakpoint == NULL)
2695 || trap_expected))
2696 || ecs->stepping_through_solib_after_catch
2697 || bpstat_should_step ());
2698 }
2699
2700 /* Subroutine call with source code we should not step over. Do step
2701 to the first line of code in it. */
2702
2703 static void
2704 step_into_function (struct execution_control_state *ecs)
2705 {
2706 struct symtab *s;
2707 struct symtab_and_line sr_sal;
2708
2709 s = find_pc_symtab (stop_pc);
2710 if (s && s->language != language_asm)
2711 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2712
2713 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2714 /* Use the step_resume_break to step until the end of the prologue,
2715 even if that involves jumps (as it seems to on the vax under
2716 4.2). */
2717 /* If the prologue ends in the middle of a source line, continue to
2718 the end of that source line (if it is still within the function).
2719 Otherwise, just go to end of prologue. */
2720 if (ecs->sal.end
2721 && ecs->sal.pc != ecs->stop_func_start
2722 && ecs->sal.end < ecs->stop_func_end)
2723 ecs->stop_func_start = ecs->sal.end;
2724
2725 /* Architectures which require breakpoint adjustment might not be able
2726 to place a breakpoint at the computed address. If so, the test
2727 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2728 ecs->stop_func_start to an address at which a breakpoint may be
2729 legitimately placed.
2730
2731 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2732 made, GDB will enter an infinite loop when stepping through
2733 optimized code consisting of VLIW instructions which contain
2734 subinstructions corresponding to different source lines. On
2735 FR-V, it's not permitted to place a breakpoint on any but the
2736 first subinstruction of a VLIW instruction. When a breakpoint is
2737 set, GDB will adjust the breakpoint address to the beginning of
2738 the VLIW instruction. Thus, we need to make the corresponding
2739 adjustment here when computing the stop address. */
2740
2741 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2742 {
2743 ecs->stop_func_start
2744 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2745 ecs->stop_func_start);
2746 }
2747
2748 if (ecs->stop_func_start == stop_pc)
2749 {
2750 /* We are already there: stop now. */
2751 stop_step = 1;
2752 print_stop_reason (END_STEPPING_RANGE, 0);
2753 stop_stepping (ecs);
2754 return;
2755 }
2756 else
2757 {
2758 /* Put the step-breakpoint there and go until there. */
2759 init_sal (&sr_sal); /* initialize to zeroes */
2760 sr_sal.pc = ecs->stop_func_start;
2761 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2762
2763 /* Do not specify what the fp should be when we stop since on
2764 some machines the prologue is where the new fp value is
2765 established. */
2766 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2767
2768 /* And make sure stepping stops right away then. */
2769 step_range_end = step_range_start;
2770 }
2771 keep_going (ecs);
2772 }
2773
2774 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2775 This is used to both functions and to skip over code. */
2776
2777 static void
2778 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2779 struct frame_id sr_id)
2780 {
2781 /* There should never be more than one step-resume breakpoint per
2782 thread, so we should never be setting a new
2783 step_resume_breakpoint when one is already active. */
2784 gdb_assert (step_resume_breakpoint == NULL);
2785
2786 if (debug_infrun)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "infrun: inserting step-resume breakpoint at 0x%s\n",
2789 paddr_nz (sr_sal.pc));
2790
2791 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2792 bp_step_resume);
2793 if (breakpoints_inserted)
2794 insert_breakpoints ();
2795 }
2796
2797 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2798 to skip a potential signal handler.
2799
2800 This is called with the interrupted function's frame. The signal
2801 handler, when it returns, will resume the interrupted function at
2802 RETURN_FRAME.pc. */
2803
2804 static void
2805 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2806 {
2807 struct symtab_and_line sr_sal;
2808
2809 init_sal (&sr_sal); /* initialize to zeros */
2810
2811 sr_sal.pc = gdbarch_addr_bits_remove
2812 (current_gdbarch, get_frame_pc (return_frame));
2813 sr_sal.section = find_pc_overlay (sr_sal.pc);
2814
2815 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2816 }
2817
2818 /* Similar to insert_step_resume_breakpoint_at_frame, except
2819 but a breakpoint at the previous frame's PC. This is used to
2820 skip a function after stepping into it (for "next" or if the called
2821 function has no debugging information).
2822
2823 The current function has almost always been reached by single
2824 stepping a call or return instruction. NEXT_FRAME belongs to the
2825 current function, and the breakpoint will be set at the caller's
2826 resume address.
2827
2828 This is a separate function rather than reusing
2829 insert_step_resume_breakpoint_at_frame in order to avoid
2830 get_prev_frame, which may stop prematurely (see the implementation
2831 of frame_unwind_id for an example). */
2832
2833 static void
2834 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2835 {
2836 struct symtab_and_line sr_sal;
2837
2838 /* We shouldn't have gotten here if we don't know where the call site
2839 is. */
2840 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2841
2842 init_sal (&sr_sal); /* initialize to zeros */
2843
2844 sr_sal.pc = gdbarch_addr_bits_remove
2845 (current_gdbarch, frame_pc_unwind (next_frame));
2846 sr_sal.section = find_pc_overlay (sr_sal.pc);
2847
2848 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2849 }
2850
2851 static void
2852 stop_stepping (struct execution_control_state *ecs)
2853 {
2854 if (debug_infrun)
2855 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2856
2857 /* Let callers know we don't want to wait for the inferior anymore. */
2858 ecs->wait_some_more = 0;
2859 }
2860
2861 /* This function handles various cases where we need to continue
2862 waiting for the inferior. */
2863 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2864
2865 static void
2866 keep_going (struct execution_control_state *ecs)
2867 {
2868 /* Save the pc before execution, to compare with pc after stop. */
2869 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2870
2871 /* If we did not do break;, it means we should keep running the
2872 inferior and not return to debugger. */
2873
2874 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2875 {
2876 /* We took a signal (which we are supposed to pass through to
2877 the inferior, else we'd have done a break above) and we
2878 haven't yet gotten our trap. Simply continue. */
2879 resume (currently_stepping (ecs), stop_signal);
2880 }
2881 else
2882 {
2883 /* Either the trap was not expected, but we are continuing
2884 anyway (the user asked that this signal be passed to the
2885 child)
2886 -- or --
2887 The signal was SIGTRAP, e.g. it was our signal, but we
2888 decided we should resume from it.
2889
2890 We're going to run this baby now! */
2891
2892 if (!breakpoints_inserted && !ecs->another_trap)
2893 {
2894 /* Stop stepping when inserting breakpoints
2895 has failed. */
2896 if (insert_breakpoints () != 0)
2897 {
2898 stop_stepping (ecs);
2899 return;
2900 }
2901 breakpoints_inserted = 1;
2902 }
2903
2904 trap_expected = ecs->another_trap;
2905
2906 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2907 specifies that such a signal should be delivered to the
2908 target program).
2909
2910 Typically, this would occure when a user is debugging a
2911 target monitor on a simulator: the target monitor sets a
2912 breakpoint; the simulator encounters this break-point and
2913 halts the simulation handing control to GDB; GDB, noteing
2914 that the break-point isn't valid, returns control back to the
2915 simulator; the simulator then delivers the hardware
2916 equivalent of a SIGNAL_TRAP to the program being debugged. */
2917
2918 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2919 stop_signal = TARGET_SIGNAL_0;
2920
2921
2922 resume (currently_stepping (ecs), stop_signal);
2923 }
2924
2925 prepare_to_wait (ecs);
2926 }
2927
2928 /* This function normally comes after a resume, before
2929 handle_inferior_event exits. It takes care of any last bits of
2930 housekeeping, and sets the all-important wait_some_more flag. */
2931
2932 static void
2933 prepare_to_wait (struct execution_control_state *ecs)
2934 {
2935 if (debug_infrun)
2936 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2937 if (ecs->infwait_state == infwait_normal_state)
2938 {
2939 overlay_cache_invalid = 1;
2940
2941 /* We have to invalidate the registers BEFORE calling
2942 target_wait because they can be loaded from the target while
2943 in target_wait. This makes remote debugging a bit more
2944 efficient for those targets that provide critical registers
2945 as part of their normal status mechanism. */
2946
2947 registers_changed ();
2948 ecs->waiton_ptid = pid_to_ptid (-1);
2949 ecs->wp = &(ecs->ws);
2950 }
2951 /* This is the old end of the while loop. Let everybody know we
2952 want to wait for the inferior some more and get called again
2953 soon. */
2954 ecs->wait_some_more = 1;
2955 }
2956
2957 /* Print why the inferior has stopped. We always print something when
2958 the inferior exits, or receives a signal. The rest of the cases are
2959 dealt with later on in normal_stop() and print_it_typical(). Ideally
2960 there should be a call to this function from handle_inferior_event()
2961 each time stop_stepping() is called.*/
2962 static void
2963 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2964 {
2965 switch (stop_reason)
2966 {
2967 case END_STEPPING_RANGE:
2968 /* We are done with a step/next/si/ni command. */
2969 /* For now print nothing. */
2970 /* Print a message only if not in the middle of doing a "step n"
2971 operation for n > 1 */
2972 if (!step_multi || !stop_step)
2973 if (ui_out_is_mi_like_p (uiout))
2974 ui_out_field_string
2975 (uiout, "reason",
2976 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2977 break;
2978 case SIGNAL_EXITED:
2979 /* The inferior was terminated by a signal. */
2980 annotate_signalled ();
2981 if (ui_out_is_mi_like_p (uiout))
2982 ui_out_field_string
2983 (uiout, "reason",
2984 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2985 ui_out_text (uiout, "\nProgram terminated with signal ");
2986 annotate_signal_name ();
2987 ui_out_field_string (uiout, "signal-name",
2988 target_signal_to_name (stop_info));
2989 annotate_signal_name_end ();
2990 ui_out_text (uiout, ", ");
2991 annotate_signal_string ();
2992 ui_out_field_string (uiout, "signal-meaning",
2993 target_signal_to_string (stop_info));
2994 annotate_signal_string_end ();
2995 ui_out_text (uiout, ".\n");
2996 ui_out_text (uiout, "The program no longer exists.\n");
2997 break;
2998 case EXITED:
2999 /* The inferior program is finished. */
3000 annotate_exited (stop_info);
3001 if (stop_info)
3002 {
3003 if (ui_out_is_mi_like_p (uiout))
3004 ui_out_field_string (uiout, "reason",
3005 async_reason_lookup (EXEC_ASYNC_EXITED));
3006 ui_out_text (uiout, "\nProgram exited with code ");
3007 ui_out_field_fmt (uiout, "exit-code", "0%o",
3008 (unsigned int) stop_info);
3009 ui_out_text (uiout, ".\n");
3010 }
3011 else
3012 {
3013 if (ui_out_is_mi_like_p (uiout))
3014 ui_out_field_string
3015 (uiout, "reason",
3016 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3017 ui_out_text (uiout, "\nProgram exited normally.\n");
3018 }
3019 /* Support the --return-child-result option. */
3020 return_child_result_value = stop_info;
3021 break;
3022 case SIGNAL_RECEIVED:
3023 /* Signal received. The signal table tells us to print about
3024 it. */
3025 annotate_signal ();
3026 ui_out_text (uiout, "\nProgram received signal ");
3027 annotate_signal_name ();
3028 if (ui_out_is_mi_like_p (uiout))
3029 ui_out_field_string
3030 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3031 ui_out_field_string (uiout, "signal-name",
3032 target_signal_to_name (stop_info));
3033 annotate_signal_name_end ();
3034 ui_out_text (uiout, ", ");
3035 annotate_signal_string ();
3036 ui_out_field_string (uiout, "signal-meaning",
3037 target_signal_to_string (stop_info));
3038 annotate_signal_string_end ();
3039 ui_out_text (uiout, ".\n");
3040 break;
3041 default:
3042 internal_error (__FILE__, __LINE__,
3043 _("print_stop_reason: unrecognized enum value"));
3044 break;
3045 }
3046 }
3047 \f
3048
3049 /* Here to return control to GDB when the inferior stops for real.
3050 Print appropriate messages, remove breakpoints, give terminal our modes.
3051
3052 STOP_PRINT_FRAME nonzero means print the executing frame
3053 (pc, function, args, file, line number and line text).
3054 BREAKPOINTS_FAILED nonzero means stop was due to error
3055 attempting to insert breakpoints. */
3056
3057 void
3058 normal_stop (void)
3059 {
3060 struct target_waitstatus last;
3061 ptid_t last_ptid;
3062
3063 get_last_target_status (&last_ptid, &last);
3064
3065 /* As with the notification of thread events, we want to delay
3066 notifying the user that we've switched thread context until
3067 the inferior actually stops.
3068
3069 There's no point in saying anything if the inferior has exited.
3070 Note that SIGNALLED here means "exited with a signal", not
3071 "received a signal". */
3072 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3073 && target_has_execution
3074 && last.kind != TARGET_WAITKIND_SIGNALLED
3075 && last.kind != TARGET_WAITKIND_EXITED)
3076 {
3077 target_terminal_ours_for_output ();
3078 printf_filtered (_("[Switching to %s]\n"),
3079 target_pid_or_tid_to_str (inferior_ptid));
3080 previous_inferior_ptid = inferior_ptid;
3081 }
3082
3083 /* NOTE drow/2004-01-17: Is this still necessary? */
3084 /* Make sure that the current_frame's pc is correct. This
3085 is a correction for setting up the frame info before doing
3086 DECR_PC_AFTER_BREAK */
3087 if (target_has_execution)
3088 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3089 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3090 frame code to check for this and sort out any resultant mess.
3091 DECR_PC_AFTER_BREAK needs to just go away. */
3092 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3093
3094 if (target_has_execution && breakpoints_inserted)
3095 {
3096 if (remove_breakpoints ())
3097 {
3098 target_terminal_ours_for_output ();
3099 printf_filtered (_("\
3100 Cannot remove breakpoints because program is no longer writable.\n\
3101 It might be running in another process.\n\
3102 Further execution is probably impossible.\n"));
3103 }
3104 }
3105 breakpoints_inserted = 0;
3106
3107 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3108 Delete any breakpoint that is to be deleted at the next stop. */
3109
3110 breakpoint_auto_delete (stop_bpstat);
3111
3112 /* If an auto-display called a function and that got a signal,
3113 delete that auto-display to avoid an infinite recursion. */
3114
3115 if (stopped_by_random_signal)
3116 disable_current_display ();
3117
3118 /* Don't print a message if in the middle of doing a "step n"
3119 operation for n > 1 */
3120 if (step_multi && stop_step)
3121 goto done;
3122
3123 target_terminal_ours ();
3124
3125 /* Set the current source location. This will also happen if we
3126 display the frame below, but the current SAL will be incorrect
3127 during a user hook-stop function. */
3128 if (target_has_stack && !stop_stack_dummy)
3129 set_current_sal_from_frame (get_current_frame (), 1);
3130
3131 /* Look up the hook_stop and run it (CLI internally handles problem
3132 of stop_command's pre-hook not existing). */
3133 if (stop_command)
3134 catch_errors (hook_stop_stub, stop_command,
3135 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3136
3137 if (!target_has_stack)
3138 {
3139
3140 goto done;
3141 }
3142
3143 /* Select innermost stack frame - i.e., current frame is frame 0,
3144 and current location is based on that.
3145 Don't do this on return from a stack dummy routine,
3146 or if the program has exited. */
3147
3148 if (!stop_stack_dummy)
3149 {
3150 select_frame (get_current_frame ());
3151
3152 /* Print current location without a level number, if
3153 we have changed functions or hit a breakpoint.
3154 Print source line if we have one.
3155 bpstat_print() contains the logic deciding in detail
3156 what to print, based on the event(s) that just occurred. */
3157
3158 if (stop_print_frame)
3159 {
3160 int bpstat_ret;
3161 int source_flag;
3162 int do_frame_printing = 1;
3163
3164 bpstat_ret = bpstat_print (stop_bpstat);
3165 switch (bpstat_ret)
3166 {
3167 case PRINT_UNKNOWN:
3168 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3169 (or should) carry around the function and does (or
3170 should) use that when doing a frame comparison. */
3171 if (stop_step
3172 && frame_id_eq (step_frame_id,
3173 get_frame_id (get_current_frame ()))
3174 && step_start_function == find_pc_function (stop_pc))
3175 source_flag = SRC_LINE; /* finished step, just print source line */
3176 else
3177 source_flag = SRC_AND_LOC; /* print location and source line */
3178 break;
3179 case PRINT_SRC_AND_LOC:
3180 source_flag = SRC_AND_LOC; /* print location and source line */
3181 break;
3182 case PRINT_SRC_ONLY:
3183 source_flag = SRC_LINE;
3184 break;
3185 case PRINT_NOTHING:
3186 source_flag = SRC_LINE; /* something bogus */
3187 do_frame_printing = 0;
3188 break;
3189 default:
3190 internal_error (__FILE__, __LINE__, _("Unknown value."));
3191 }
3192
3193 if (ui_out_is_mi_like_p (uiout))
3194 ui_out_field_int (uiout, "thread-id",
3195 pid_to_thread_id (inferior_ptid));
3196 /* The behavior of this routine with respect to the source
3197 flag is:
3198 SRC_LINE: Print only source line
3199 LOCATION: Print only location
3200 SRC_AND_LOC: Print location and source line */
3201 if (do_frame_printing)
3202 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3203
3204 /* Display the auto-display expressions. */
3205 do_displays ();
3206 }
3207 }
3208
3209 /* Save the function value return registers, if we care.
3210 We might be about to restore their previous contents. */
3211 if (proceed_to_finish)
3212 /* NB: The copy goes through to the target picking up the value of
3213 all the registers. */
3214 regcache_cpy (stop_registers, current_regcache);
3215
3216 if (stop_stack_dummy)
3217 {
3218 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3219 ends with a setting of the current frame, so we can use that
3220 next. */
3221 frame_pop (get_current_frame ());
3222 /* Set stop_pc to what it was before we called the function.
3223 Can't rely on restore_inferior_status because that only gets
3224 called if we don't stop in the called function. */
3225 stop_pc = read_pc ();
3226 select_frame (get_current_frame ());
3227 }
3228
3229 done:
3230 annotate_stopped ();
3231 observer_notify_normal_stop (stop_bpstat);
3232 }
3233
3234 static int
3235 hook_stop_stub (void *cmd)
3236 {
3237 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3238 return (0);
3239 }
3240 \f
3241 int
3242 signal_stop_state (int signo)
3243 {
3244 return signal_stop[signo];
3245 }
3246
3247 int
3248 signal_print_state (int signo)
3249 {
3250 return signal_print[signo];
3251 }
3252
3253 int
3254 signal_pass_state (int signo)
3255 {
3256 return signal_program[signo];
3257 }
3258
3259 int
3260 signal_stop_update (int signo, int state)
3261 {
3262 int ret = signal_stop[signo];
3263 signal_stop[signo] = state;
3264 return ret;
3265 }
3266
3267 int
3268 signal_print_update (int signo, int state)
3269 {
3270 int ret = signal_print[signo];
3271 signal_print[signo] = state;
3272 return ret;
3273 }
3274
3275 int
3276 signal_pass_update (int signo, int state)
3277 {
3278 int ret = signal_program[signo];
3279 signal_program[signo] = state;
3280 return ret;
3281 }
3282
3283 static void
3284 sig_print_header (void)
3285 {
3286 printf_filtered (_("\
3287 Signal Stop\tPrint\tPass to program\tDescription\n"));
3288 }
3289
3290 static void
3291 sig_print_info (enum target_signal oursig)
3292 {
3293 char *name = target_signal_to_name (oursig);
3294 int name_padding = 13 - strlen (name);
3295
3296 if (name_padding <= 0)
3297 name_padding = 0;
3298
3299 printf_filtered ("%s", name);
3300 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3301 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3302 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3303 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3304 printf_filtered ("%s\n", target_signal_to_string (oursig));
3305 }
3306
3307 /* Specify how various signals in the inferior should be handled. */
3308
3309 static void
3310 handle_command (char *args, int from_tty)
3311 {
3312 char **argv;
3313 int digits, wordlen;
3314 int sigfirst, signum, siglast;
3315 enum target_signal oursig;
3316 int allsigs;
3317 int nsigs;
3318 unsigned char *sigs;
3319 struct cleanup *old_chain;
3320
3321 if (args == NULL)
3322 {
3323 error_no_arg (_("signal to handle"));
3324 }
3325
3326 /* Allocate and zero an array of flags for which signals to handle. */
3327
3328 nsigs = (int) TARGET_SIGNAL_LAST;
3329 sigs = (unsigned char *) alloca (nsigs);
3330 memset (sigs, 0, nsigs);
3331
3332 /* Break the command line up into args. */
3333
3334 argv = buildargv (args);
3335 if (argv == NULL)
3336 {
3337 nomem (0);
3338 }
3339 old_chain = make_cleanup_freeargv (argv);
3340
3341 /* Walk through the args, looking for signal oursigs, signal names, and
3342 actions. Signal numbers and signal names may be interspersed with
3343 actions, with the actions being performed for all signals cumulatively
3344 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3345
3346 while (*argv != NULL)
3347 {
3348 wordlen = strlen (*argv);
3349 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3350 {;
3351 }
3352 allsigs = 0;
3353 sigfirst = siglast = -1;
3354
3355 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3356 {
3357 /* Apply action to all signals except those used by the
3358 debugger. Silently skip those. */
3359 allsigs = 1;
3360 sigfirst = 0;
3361 siglast = nsigs - 1;
3362 }
3363 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3364 {
3365 SET_SIGS (nsigs, sigs, signal_stop);
3366 SET_SIGS (nsigs, sigs, signal_print);
3367 }
3368 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3369 {
3370 UNSET_SIGS (nsigs, sigs, signal_program);
3371 }
3372 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3373 {
3374 SET_SIGS (nsigs, sigs, signal_print);
3375 }
3376 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3377 {
3378 SET_SIGS (nsigs, sigs, signal_program);
3379 }
3380 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3381 {
3382 UNSET_SIGS (nsigs, sigs, signal_stop);
3383 }
3384 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3385 {
3386 SET_SIGS (nsigs, sigs, signal_program);
3387 }
3388 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3389 {
3390 UNSET_SIGS (nsigs, sigs, signal_print);
3391 UNSET_SIGS (nsigs, sigs, signal_stop);
3392 }
3393 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3394 {
3395 UNSET_SIGS (nsigs, sigs, signal_program);
3396 }
3397 else if (digits > 0)
3398 {
3399 /* It is numeric. The numeric signal refers to our own
3400 internal signal numbering from target.h, not to host/target
3401 signal number. This is a feature; users really should be
3402 using symbolic names anyway, and the common ones like
3403 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3404
3405 sigfirst = siglast = (int)
3406 target_signal_from_command (atoi (*argv));
3407 if ((*argv)[digits] == '-')
3408 {
3409 siglast = (int)
3410 target_signal_from_command (atoi ((*argv) + digits + 1));
3411 }
3412 if (sigfirst > siglast)
3413 {
3414 /* Bet he didn't figure we'd think of this case... */
3415 signum = sigfirst;
3416 sigfirst = siglast;
3417 siglast = signum;
3418 }
3419 }
3420 else
3421 {
3422 oursig = target_signal_from_name (*argv);
3423 if (oursig != TARGET_SIGNAL_UNKNOWN)
3424 {
3425 sigfirst = siglast = (int) oursig;
3426 }
3427 else
3428 {
3429 /* Not a number and not a recognized flag word => complain. */
3430 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3431 }
3432 }
3433
3434 /* If any signal numbers or symbol names were found, set flags for
3435 which signals to apply actions to. */
3436
3437 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3438 {
3439 switch ((enum target_signal) signum)
3440 {
3441 case TARGET_SIGNAL_TRAP:
3442 case TARGET_SIGNAL_INT:
3443 if (!allsigs && !sigs[signum])
3444 {
3445 if (query ("%s is used by the debugger.\n\
3446 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3447 {
3448 sigs[signum] = 1;
3449 }
3450 else
3451 {
3452 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3453 gdb_flush (gdb_stdout);
3454 }
3455 }
3456 break;
3457 case TARGET_SIGNAL_0:
3458 case TARGET_SIGNAL_DEFAULT:
3459 case TARGET_SIGNAL_UNKNOWN:
3460 /* Make sure that "all" doesn't print these. */
3461 break;
3462 default:
3463 sigs[signum] = 1;
3464 break;
3465 }
3466 }
3467
3468 argv++;
3469 }
3470
3471 target_notice_signals (inferior_ptid);
3472
3473 if (from_tty)
3474 {
3475 /* Show the results. */
3476 sig_print_header ();
3477 for (signum = 0; signum < nsigs; signum++)
3478 {
3479 if (sigs[signum])
3480 {
3481 sig_print_info (signum);
3482 }
3483 }
3484 }
3485
3486 do_cleanups (old_chain);
3487 }
3488
3489 static void
3490 xdb_handle_command (char *args, int from_tty)
3491 {
3492 char **argv;
3493 struct cleanup *old_chain;
3494
3495 /* Break the command line up into args. */
3496
3497 argv = buildargv (args);
3498 if (argv == NULL)
3499 {
3500 nomem (0);
3501 }
3502 old_chain = make_cleanup_freeargv (argv);
3503 if (argv[1] != (char *) NULL)
3504 {
3505 char *argBuf;
3506 int bufLen;
3507
3508 bufLen = strlen (argv[0]) + 20;
3509 argBuf = (char *) xmalloc (bufLen);
3510 if (argBuf)
3511 {
3512 int validFlag = 1;
3513 enum target_signal oursig;
3514
3515 oursig = target_signal_from_name (argv[0]);
3516 memset (argBuf, 0, bufLen);
3517 if (strcmp (argv[1], "Q") == 0)
3518 sprintf (argBuf, "%s %s", argv[0], "noprint");
3519 else
3520 {
3521 if (strcmp (argv[1], "s") == 0)
3522 {
3523 if (!signal_stop[oursig])
3524 sprintf (argBuf, "%s %s", argv[0], "stop");
3525 else
3526 sprintf (argBuf, "%s %s", argv[0], "nostop");
3527 }
3528 else if (strcmp (argv[1], "i") == 0)
3529 {
3530 if (!signal_program[oursig])
3531 sprintf (argBuf, "%s %s", argv[0], "pass");
3532 else
3533 sprintf (argBuf, "%s %s", argv[0], "nopass");
3534 }
3535 else if (strcmp (argv[1], "r") == 0)
3536 {
3537 if (!signal_print[oursig])
3538 sprintf (argBuf, "%s %s", argv[0], "print");
3539 else
3540 sprintf (argBuf, "%s %s", argv[0], "noprint");
3541 }
3542 else
3543 validFlag = 0;
3544 }
3545 if (validFlag)
3546 handle_command (argBuf, from_tty);
3547 else
3548 printf_filtered (_("Invalid signal handling flag.\n"));
3549 if (argBuf)
3550 xfree (argBuf);
3551 }
3552 }
3553 do_cleanups (old_chain);
3554 }
3555
3556 /* Print current contents of the tables set by the handle command.
3557 It is possible we should just be printing signals actually used
3558 by the current target (but for things to work right when switching
3559 targets, all signals should be in the signal tables). */
3560
3561 static void
3562 signals_info (char *signum_exp, int from_tty)
3563 {
3564 enum target_signal oursig;
3565 sig_print_header ();
3566
3567 if (signum_exp)
3568 {
3569 /* First see if this is a symbol name. */
3570 oursig = target_signal_from_name (signum_exp);
3571 if (oursig == TARGET_SIGNAL_UNKNOWN)
3572 {
3573 /* No, try numeric. */
3574 oursig =
3575 target_signal_from_command (parse_and_eval_long (signum_exp));
3576 }
3577 sig_print_info (oursig);
3578 return;
3579 }
3580
3581 printf_filtered ("\n");
3582 /* These ugly casts brought to you by the native VAX compiler. */
3583 for (oursig = TARGET_SIGNAL_FIRST;
3584 (int) oursig < (int) TARGET_SIGNAL_LAST;
3585 oursig = (enum target_signal) ((int) oursig + 1))
3586 {
3587 QUIT;
3588
3589 if (oursig != TARGET_SIGNAL_UNKNOWN
3590 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3591 sig_print_info (oursig);
3592 }
3593
3594 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3595 }
3596 \f
3597 struct inferior_status
3598 {
3599 enum target_signal stop_signal;
3600 CORE_ADDR stop_pc;
3601 bpstat stop_bpstat;
3602 int stop_step;
3603 int stop_stack_dummy;
3604 int stopped_by_random_signal;
3605 int trap_expected;
3606 CORE_ADDR step_range_start;
3607 CORE_ADDR step_range_end;
3608 struct frame_id step_frame_id;
3609 enum step_over_calls_kind step_over_calls;
3610 CORE_ADDR step_resume_break_address;
3611 int stop_after_trap;
3612 int stop_soon;
3613 struct regcache *stop_registers;
3614
3615 /* These are here because if call_function_by_hand has written some
3616 registers and then decides to call error(), we better not have changed
3617 any registers. */
3618 struct regcache *registers;
3619
3620 /* A frame unique identifier. */
3621 struct frame_id selected_frame_id;
3622
3623 int breakpoint_proceeded;
3624 int restore_stack_info;
3625 int proceed_to_finish;
3626 };
3627
3628 void
3629 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3630 LONGEST val)
3631 {
3632 int size = register_size (current_gdbarch, regno);
3633 void *buf = alloca (size);
3634 store_signed_integer (buf, size, val);
3635 regcache_raw_write (inf_status->registers, regno, buf);
3636 }
3637
3638 /* Save all of the information associated with the inferior<==>gdb
3639 connection. INF_STATUS is a pointer to a "struct inferior_status"
3640 (defined in inferior.h). */
3641
3642 struct inferior_status *
3643 save_inferior_status (int restore_stack_info)
3644 {
3645 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3646
3647 inf_status->stop_signal = stop_signal;
3648 inf_status->stop_pc = stop_pc;
3649 inf_status->stop_step = stop_step;
3650 inf_status->stop_stack_dummy = stop_stack_dummy;
3651 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3652 inf_status->trap_expected = trap_expected;
3653 inf_status->step_range_start = step_range_start;
3654 inf_status->step_range_end = step_range_end;
3655 inf_status->step_frame_id = step_frame_id;
3656 inf_status->step_over_calls = step_over_calls;
3657 inf_status->stop_after_trap = stop_after_trap;
3658 inf_status->stop_soon = stop_soon;
3659 /* Save original bpstat chain here; replace it with copy of chain.
3660 If caller's caller is walking the chain, they'll be happier if we
3661 hand them back the original chain when restore_inferior_status is
3662 called. */
3663 inf_status->stop_bpstat = stop_bpstat;
3664 stop_bpstat = bpstat_copy (stop_bpstat);
3665 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3666 inf_status->restore_stack_info = restore_stack_info;
3667 inf_status->proceed_to_finish = proceed_to_finish;
3668
3669 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3670
3671 inf_status->registers = regcache_dup (current_regcache);
3672
3673 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3674 return inf_status;
3675 }
3676
3677 static int
3678 restore_selected_frame (void *args)
3679 {
3680 struct frame_id *fid = (struct frame_id *) args;
3681 struct frame_info *frame;
3682
3683 frame = frame_find_by_id (*fid);
3684
3685 /* If inf_status->selected_frame_id is NULL, there was no previously
3686 selected frame. */
3687 if (frame == NULL)
3688 {
3689 warning (_("Unable to restore previously selected frame."));
3690 return 0;
3691 }
3692
3693 select_frame (frame);
3694
3695 return (1);
3696 }
3697
3698 void
3699 restore_inferior_status (struct inferior_status *inf_status)
3700 {
3701 stop_signal = inf_status->stop_signal;
3702 stop_pc = inf_status->stop_pc;
3703 stop_step = inf_status->stop_step;
3704 stop_stack_dummy = inf_status->stop_stack_dummy;
3705 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3706 trap_expected = inf_status->trap_expected;
3707 step_range_start = inf_status->step_range_start;
3708 step_range_end = inf_status->step_range_end;
3709 step_frame_id = inf_status->step_frame_id;
3710 step_over_calls = inf_status->step_over_calls;
3711 stop_after_trap = inf_status->stop_after_trap;
3712 stop_soon = inf_status->stop_soon;
3713 bpstat_clear (&stop_bpstat);
3714 stop_bpstat = inf_status->stop_bpstat;
3715 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3716 proceed_to_finish = inf_status->proceed_to_finish;
3717
3718 /* FIXME: Is the restore of stop_registers always needed. */
3719 regcache_xfree (stop_registers);
3720 stop_registers = inf_status->stop_registers;
3721
3722 /* The inferior can be gone if the user types "print exit(0)"
3723 (and perhaps other times). */
3724 if (target_has_execution)
3725 /* NB: The register write goes through to the target. */
3726 regcache_cpy (current_regcache, inf_status->registers);
3727 regcache_xfree (inf_status->registers);
3728
3729 /* FIXME: If we are being called after stopping in a function which
3730 is called from gdb, we should not be trying to restore the
3731 selected frame; it just prints a spurious error message (The
3732 message is useful, however, in detecting bugs in gdb (like if gdb
3733 clobbers the stack)). In fact, should we be restoring the
3734 inferior status at all in that case? . */
3735
3736 if (target_has_stack && inf_status->restore_stack_info)
3737 {
3738 /* The point of catch_errors is that if the stack is clobbered,
3739 walking the stack might encounter a garbage pointer and
3740 error() trying to dereference it. */
3741 if (catch_errors
3742 (restore_selected_frame, &inf_status->selected_frame_id,
3743 "Unable to restore previously selected frame:\n",
3744 RETURN_MASK_ERROR) == 0)
3745 /* Error in restoring the selected frame. Select the innermost
3746 frame. */
3747 select_frame (get_current_frame ());
3748
3749 }
3750
3751 xfree (inf_status);
3752 }
3753
3754 static void
3755 do_restore_inferior_status_cleanup (void *sts)
3756 {
3757 restore_inferior_status (sts);
3758 }
3759
3760 struct cleanup *
3761 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3762 {
3763 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3764 }
3765
3766 void
3767 discard_inferior_status (struct inferior_status *inf_status)
3768 {
3769 /* See save_inferior_status for info on stop_bpstat. */
3770 bpstat_clear (&inf_status->stop_bpstat);
3771 regcache_xfree (inf_status->registers);
3772 regcache_xfree (inf_status->stop_registers);
3773 xfree (inf_status);
3774 }
3775
3776 int
3777 inferior_has_forked (int pid, int *child_pid)
3778 {
3779 struct target_waitstatus last;
3780 ptid_t last_ptid;
3781
3782 get_last_target_status (&last_ptid, &last);
3783
3784 if (last.kind != TARGET_WAITKIND_FORKED)
3785 return 0;
3786
3787 if (ptid_get_pid (last_ptid) != pid)
3788 return 0;
3789
3790 *child_pid = last.value.related_pid;
3791 return 1;
3792 }
3793
3794 int
3795 inferior_has_vforked (int pid, int *child_pid)
3796 {
3797 struct target_waitstatus last;
3798 ptid_t last_ptid;
3799
3800 get_last_target_status (&last_ptid, &last);
3801
3802 if (last.kind != TARGET_WAITKIND_VFORKED)
3803 return 0;
3804
3805 if (ptid_get_pid (last_ptid) != pid)
3806 return 0;
3807
3808 *child_pid = last.value.related_pid;
3809 return 1;
3810 }
3811
3812 int
3813 inferior_has_execd (int pid, char **execd_pathname)
3814 {
3815 struct target_waitstatus last;
3816 ptid_t last_ptid;
3817
3818 get_last_target_status (&last_ptid, &last);
3819
3820 if (last.kind != TARGET_WAITKIND_EXECD)
3821 return 0;
3822
3823 if (ptid_get_pid (last_ptid) != pid)
3824 return 0;
3825
3826 *execd_pathname = xstrdup (last.value.execd_pathname);
3827 return 1;
3828 }
3829
3830 /* Oft used ptids */
3831 ptid_t null_ptid;
3832 ptid_t minus_one_ptid;
3833
3834 /* Create a ptid given the necessary PID, LWP, and TID components. */
3835
3836 ptid_t
3837 ptid_build (int pid, long lwp, long tid)
3838 {
3839 ptid_t ptid;
3840
3841 ptid.pid = pid;
3842 ptid.lwp = lwp;
3843 ptid.tid = tid;
3844 return ptid;
3845 }
3846
3847 /* Create a ptid from just a pid. */
3848
3849 ptid_t
3850 pid_to_ptid (int pid)
3851 {
3852 return ptid_build (pid, 0, 0);
3853 }
3854
3855 /* Fetch the pid (process id) component from a ptid. */
3856
3857 int
3858 ptid_get_pid (ptid_t ptid)
3859 {
3860 return ptid.pid;
3861 }
3862
3863 /* Fetch the lwp (lightweight process) component from a ptid. */
3864
3865 long
3866 ptid_get_lwp (ptid_t ptid)
3867 {
3868 return ptid.lwp;
3869 }
3870
3871 /* Fetch the tid (thread id) component from a ptid. */
3872
3873 long
3874 ptid_get_tid (ptid_t ptid)
3875 {
3876 return ptid.tid;
3877 }
3878
3879 /* ptid_equal() is used to test equality of two ptids. */
3880
3881 int
3882 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3883 {
3884 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3885 && ptid1.tid == ptid2.tid);
3886 }
3887
3888 /* restore_inferior_ptid() will be used by the cleanup machinery
3889 to restore the inferior_ptid value saved in a call to
3890 save_inferior_ptid(). */
3891
3892 static void
3893 restore_inferior_ptid (void *arg)
3894 {
3895 ptid_t *saved_ptid_ptr = arg;
3896 inferior_ptid = *saved_ptid_ptr;
3897 xfree (arg);
3898 }
3899
3900 /* Save the value of inferior_ptid so that it may be restored by a
3901 later call to do_cleanups(). Returns the struct cleanup pointer
3902 needed for later doing the cleanup. */
3903
3904 struct cleanup *
3905 save_inferior_ptid (void)
3906 {
3907 ptid_t *saved_ptid_ptr;
3908
3909 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3910 *saved_ptid_ptr = inferior_ptid;
3911 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3912 }
3913 \f
3914
3915 static void
3916 build_infrun (void)
3917 {
3918 stop_registers = regcache_xmalloc (current_gdbarch);
3919 }
3920
3921 void
3922 _initialize_infrun (void)
3923 {
3924 int i;
3925 int numsigs;
3926 struct cmd_list_element *c;
3927
3928 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3929 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3930
3931 add_info ("signals", signals_info, _("\
3932 What debugger does when program gets various signals.\n\
3933 Specify a signal as argument to print info on that signal only."));
3934 add_info_alias ("handle", "signals", 0);
3935
3936 add_com ("handle", class_run, handle_command, _("\
3937 Specify how to handle a signal.\n\
3938 Args are signals and actions to apply to those signals.\n\
3939 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3940 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3941 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3942 The special arg \"all\" is recognized to mean all signals except those\n\
3943 used by the debugger, typically SIGTRAP and SIGINT.\n\
3944 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3945 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3946 Stop means reenter debugger if this signal happens (implies print).\n\
3947 Print means print a message if this signal happens.\n\
3948 Pass means let program see this signal; otherwise program doesn't know.\n\
3949 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3950 Pass and Stop may be combined."));
3951 if (xdb_commands)
3952 {
3953 add_com ("lz", class_info, signals_info, _("\
3954 What debugger does when program gets various signals.\n\
3955 Specify a signal as argument to print info on that signal only."));
3956 add_com ("z", class_run, xdb_handle_command, _("\
3957 Specify how to handle a signal.\n\
3958 Args are signals and actions to apply to those signals.\n\
3959 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3960 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3961 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3962 The special arg \"all\" is recognized to mean all signals except those\n\
3963 used by the debugger, typically SIGTRAP and SIGINT.\n\
3964 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3965 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3966 nopass), \"Q\" (noprint)\n\
3967 Stop means reenter debugger if this signal happens (implies print).\n\
3968 Print means print a message if this signal happens.\n\
3969 Pass means let program see this signal; otherwise program doesn't know.\n\
3970 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3971 Pass and Stop may be combined."));
3972 }
3973
3974 if (!dbx_commands)
3975 stop_command = add_cmd ("stop", class_obscure,
3976 not_just_help_class_command, _("\
3977 There is no `stop' command, but you can set a hook on `stop'.\n\
3978 This allows you to set a list of commands to be run each time execution\n\
3979 of the program stops."), &cmdlist);
3980
3981 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3982 Set inferior debugging."), _("\
3983 Show inferior debugging."), _("\
3984 When non-zero, inferior specific debugging is enabled."),
3985 NULL,
3986 show_debug_infrun,
3987 &setdebuglist, &showdebuglist);
3988
3989 numsigs = (int) TARGET_SIGNAL_LAST;
3990 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3991 signal_print = (unsigned char *)
3992 xmalloc (sizeof (signal_print[0]) * numsigs);
3993 signal_program = (unsigned char *)
3994 xmalloc (sizeof (signal_program[0]) * numsigs);
3995 for (i = 0; i < numsigs; i++)
3996 {
3997 signal_stop[i] = 1;
3998 signal_print[i] = 1;
3999 signal_program[i] = 1;
4000 }
4001
4002 /* Signals caused by debugger's own actions
4003 should not be given to the program afterwards. */
4004 signal_program[TARGET_SIGNAL_TRAP] = 0;
4005 signal_program[TARGET_SIGNAL_INT] = 0;
4006
4007 /* Signals that are not errors should not normally enter the debugger. */
4008 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4009 signal_print[TARGET_SIGNAL_ALRM] = 0;
4010 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4011 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4012 signal_stop[TARGET_SIGNAL_PROF] = 0;
4013 signal_print[TARGET_SIGNAL_PROF] = 0;
4014 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4015 signal_print[TARGET_SIGNAL_CHLD] = 0;
4016 signal_stop[TARGET_SIGNAL_IO] = 0;
4017 signal_print[TARGET_SIGNAL_IO] = 0;
4018 signal_stop[TARGET_SIGNAL_POLL] = 0;
4019 signal_print[TARGET_SIGNAL_POLL] = 0;
4020 signal_stop[TARGET_SIGNAL_URG] = 0;
4021 signal_print[TARGET_SIGNAL_URG] = 0;
4022 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4023 signal_print[TARGET_SIGNAL_WINCH] = 0;
4024
4025 /* These signals are used internally by user-level thread
4026 implementations. (See signal(5) on Solaris.) Like the above
4027 signals, a healthy program receives and handles them as part of
4028 its normal operation. */
4029 signal_stop[TARGET_SIGNAL_LWP] = 0;
4030 signal_print[TARGET_SIGNAL_LWP] = 0;
4031 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4032 signal_print[TARGET_SIGNAL_WAITING] = 0;
4033 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4034 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4035
4036 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4037 &stop_on_solib_events, _("\
4038 Set stopping for shared library events."), _("\
4039 Show stopping for shared library events."), _("\
4040 If nonzero, gdb will give control to the user when the dynamic linker\n\
4041 notifies gdb of shared library events. The most common event of interest\n\
4042 to the user would be loading/unloading of a new library."),
4043 NULL,
4044 show_stop_on_solib_events,
4045 &setlist, &showlist);
4046
4047 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4048 follow_fork_mode_kind_names,
4049 &follow_fork_mode_string, _("\
4050 Set debugger response to a program call of fork or vfork."), _("\
4051 Show debugger response to a program call of fork or vfork."), _("\
4052 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4053 parent - the original process is debugged after a fork\n\
4054 child - the new process is debugged after a fork\n\
4055 The unfollowed process will continue to run.\n\
4056 By default, the debugger will follow the parent process."),
4057 NULL,
4058 show_follow_fork_mode_string,
4059 &setlist, &showlist);
4060
4061 add_setshow_enum_cmd ("scheduler-locking", class_run,
4062 scheduler_enums, &scheduler_mode, _("\
4063 Set mode for locking scheduler during execution."), _("\
4064 Show mode for locking scheduler during execution."), _("\
4065 off == no locking (threads may preempt at any time)\n\
4066 on == full locking (no thread except the current thread may run)\n\
4067 step == scheduler locked during every single-step operation.\n\
4068 In this mode, no other thread may run during a step command.\n\
4069 Other threads may run while stepping over a function call ('next')."),
4070 set_schedlock_func, /* traps on target vector */
4071 show_scheduler_mode,
4072 &setlist, &showlist);
4073
4074 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4075 Set mode of the step operation."), _("\
4076 Show mode of the step operation."), _("\
4077 When set, doing a step over a function without debug line information\n\
4078 will stop at the first instruction of that function. Otherwise, the\n\
4079 function is skipped and the step command stops at a different source line."),
4080 NULL,
4081 show_step_stop_if_no_debug,
4082 &setlist, &showlist);
4083
4084 /* ptid initializations */
4085 null_ptid = ptid_build (0, 0, 0);
4086 minus_one_ptid = ptid_build (-1, 0, 0);
4087 inferior_ptid = null_ptid;
4088 target_last_wait_ptid = minus_one_ptid;
4089 }
This page took 0.162692 seconds and 4 git commands to generate.