gdbserver: Suffix generated C files with -generated
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 ALL_THREADS_SAFE (th, tmp)
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = pid_to_ptid (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 gdb_flush (gdb_stdout);
1166
1167 breakpoint_init_inferior (inf_execd);
1168
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
1171
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1226
1227 do_cleanups (old_chain);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 struct address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 gdb_assert (!tp->stop_requested);
2087
2088 next = thread_step_over_chain_next (tp);
2089
2090 /* If this inferior already has a displaced step in process,
2091 don't start a new one. */
2092 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2093 continue;
2094
2095 step_what = thread_still_needs_step_over (tp);
2096 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2097 || ((step_what & STEP_OVER_BREAKPOINT)
2098 && !use_displaced_stepping (tp)));
2099
2100 /* We currently stop all threads of all processes to step-over
2101 in-line. If we need to start a new in-line step-over, let
2102 any pending displaced steps finish first. */
2103 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2104 return 0;
2105
2106 thread_step_over_chain_remove (tp);
2107
2108 if (step_over_queue_head == NULL)
2109 {
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "infrun: step-over queue now empty\n");
2113 }
2114
2115 if (tp->control.trap_expected
2116 || tp->resumed
2117 || tp->executing)
2118 {
2119 internal_error (__FILE__, __LINE__,
2120 "[%s] has inconsistent state: "
2121 "trap_expected=%d, resumed=%d, executing=%d\n",
2122 target_pid_to_str (tp->ptid),
2123 tp->control.trap_expected,
2124 tp->resumed,
2125 tp->executing);
2126 }
2127
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "infrun: resuming [%s] for step-over\n",
2131 target_pid_to_str (tp->ptid));
2132
2133 /* keep_going_pass_signal skips the step-over if the breakpoint
2134 is no longer inserted. In all-stop, we want to keep looking
2135 for a thread that needs a step-over instead of resuming TP,
2136 because we wouldn't be able to resume anything else until the
2137 target stops again. In non-stop, the resume always resumes
2138 only TP, so it's OK to let the thread resume freely. */
2139 if (!target_is_non_stop_p () && !step_what)
2140 continue;
2141
2142 switch_to_thread (tp->ptid);
2143 reset_ecs (ecs, tp);
2144 keep_going_pass_signal (ecs);
2145
2146 if (!ecs->wait_some_more)
2147 error (_("Command aborted."));
2148
2149 gdb_assert (tp->resumed);
2150
2151 /* If we started a new in-line step-over, we're done. */
2152 if (step_over_info_valid_p ())
2153 {
2154 gdb_assert (tp->control.trap_expected);
2155 return 1;
2156 }
2157
2158 if (!target_is_non_stop_p ())
2159 {
2160 /* On all-stop, shouldn't have resumed unless we needed a
2161 step over. */
2162 gdb_assert (tp->control.trap_expected
2163 || tp->step_after_step_resume_breakpoint);
2164
2165 /* With remote targets (at least), in all-stop, we can't
2166 issue any further remote commands until the program stops
2167 again. */
2168 return 1;
2169 }
2170
2171 /* Either the thread no longer needed a step-over, or a new
2172 displaced stepping sequence started. Even in the latter
2173 case, continue looking. Maybe we can also start another
2174 displaced step on a thread of other process. */
2175 }
2176
2177 return 0;
2178 }
2179
2180 /* Update global variables holding ptids to hold NEW_PTID if they were
2181 holding OLD_PTID. */
2182 static void
2183 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2184 {
2185 struct displaced_step_inferior_state *displaced;
2186
2187 if (ptid_equal (inferior_ptid, old_ptid))
2188 inferior_ptid = new_ptid;
2189
2190 for (displaced = displaced_step_inferior_states;
2191 displaced;
2192 displaced = displaced->next)
2193 {
2194 if (ptid_equal (displaced->step_ptid, old_ptid))
2195 displaced->step_ptid = new_ptid;
2196 }
2197 }
2198
2199 \f
2200 /* Resuming. */
2201
2202 /* Things to clean up if we QUIT out of resume (). */
2203 static void
2204 resume_cleanups (void *ignore)
2205 {
2206 if (!ptid_equal (inferior_ptid, null_ptid))
2207 delete_single_step_breakpoints (inferior_thread ());
2208
2209 normal_stop ();
2210 }
2211
2212 static const char schedlock_off[] = "off";
2213 static const char schedlock_on[] = "on";
2214 static const char schedlock_step[] = "step";
2215 static const char schedlock_replay[] = "replay";
2216 static const char *const scheduler_enums[] = {
2217 schedlock_off,
2218 schedlock_on,
2219 schedlock_step,
2220 schedlock_replay,
2221 NULL
2222 };
2223 static const char *scheduler_mode = schedlock_replay;
2224 static void
2225 show_scheduler_mode (struct ui_file *file, int from_tty,
2226 struct cmd_list_element *c, const char *value)
2227 {
2228 fprintf_filtered (file,
2229 _("Mode for locking scheduler "
2230 "during execution is \"%s\".\n"),
2231 value);
2232 }
2233
2234 static void
2235 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2236 {
2237 if (!target_can_lock_scheduler)
2238 {
2239 scheduler_mode = schedlock_off;
2240 error (_("Target '%s' cannot support this command."), target_shortname);
2241 }
2242 }
2243
2244 /* True if execution commands resume all threads of all processes by
2245 default; otherwise, resume only threads of the current inferior
2246 process. */
2247 int sched_multi = 0;
2248
2249 /* Try to setup for software single stepping over the specified location.
2250 Return 1 if target_resume() should use hardware single step.
2251
2252 GDBARCH the current gdbarch.
2253 PC the location to step over. */
2254
2255 static int
2256 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2257 {
2258 int hw_step = 1;
2259
2260 if (execution_direction == EXEC_FORWARD
2261 && gdbarch_software_single_step_p (gdbarch))
2262 hw_step = !insert_single_step_breakpoints (gdbarch);
2263
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 gdb_assert (!tp->stop_requested);
2337
2338 /* Install inferior's terminal modes. */
2339 target_terminal_inferior ();
2340
2341 /* Avoid confusing the next resume, if the next stop/resume
2342 happens to apply to another thread. */
2343 tp->suspend.stop_signal = GDB_SIGNAL_0;
2344
2345 /* Advise target which signals may be handled silently.
2346
2347 If we have removed breakpoints because we are stepping over one
2348 in-line (in any thread), we need to receive all signals to avoid
2349 accidentally skipping a breakpoint during execution of a signal
2350 handler.
2351
2352 Likewise if we're displaced stepping, otherwise a trap for a
2353 breakpoint in a signal handler might be confused with the
2354 displaced step finishing. We don't make the displaced_step_fixup
2355 step distinguish the cases instead, because:
2356
2357 - a backtrace while stopped in the signal handler would show the
2358 scratch pad as frame older than the signal handler, instead of
2359 the real mainline code.
2360
2361 - when the thread is later resumed, the signal handler would
2362 return to the scratch pad area, which would no longer be
2363 valid. */
2364 if (step_over_info_valid_p ()
2365 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2366 target_pass_signals (0, NULL);
2367 else
2368 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2369
2370 target_resume (resume_ptid, step, sig);
2371
2372 target_commit_resume ();
2373 }
2374
2375 /* Resume the inferior, but allow a QUIT. This is useful if the user
2376 wants to interrupt some lengthy single-stepping operation
2377 (for child processes, the SIGINT goes to the inferior, and so
2378 we get a SIGINT random_signal, but for remote debugging and perhaps
2379 other targets, that's not true).
2380
2381 SIG is the signal to give the inferior (zero for none). */
2382 void
2383 resume (enum gdb_signal sig)
2384 {
2385 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2386 struct regcache *regcache = get_current_regcache ();
2387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2388 struct thread_info *tp = inferior_thread ();
2389 CORE_ADDR pc = regcache_read_pc (regcache);
2390 struct address_space *aspace = get_regcache_aspace (regcache);
2391 ptid_t resume_ptid;
2392 /* This represents the user's step vs continue request. When
2393 deciding whether "set scheduler-locking step" applies, it's the
2394 user's intention that counts. */
2395 const int user_step = tp->control.stepping_command;
2396 /* This represents what we'll actually request the target to do.
2397 This can decay from a step to a continue, if e.g., we need to
2398 implement single-stepping with breakpoints (software
2399 single-step). */
2400 int step;
2401
2402 gdb_assert (!tp->stop_requested);
2403 gdb_assert (!thread_is_in_step_over_chain (tp));
2404
2405 QUIT;
2406
2407 if (tp->suspend.waitstatus_pending_p)
2408 {
2409 if (debug_infrun)
2410 {
2411 char *statstr;
2412
2413 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: thread %s has pending wait status %s "
2416 "(currently_stepping=%d).\n",
2417 target_pid_to_str (tp->ptid), statstr,
2418 currently_stepping (tp));
2419 xfree (statstr);
2420 }
2421
2422 tp->resumed = 1;
2423
2424 /* FIXME: What should we do if we are supposed to resume this
2425 thread with a signal? Maybe we should maintain a queue of
2426 pending signals to deliver. */
2427 if (sig != GDB_SIGNAL_0)
2428 {
2429 warning (_("Couldn't deliver signal %s to %s."),
2430 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2431 }
2432
2433 tp->suspend.stop_signal = GDB_SIGNAL_0;
2434 discard_cleanups (old_cleanups);
2435
2436 if (target_can_async_p ())
2437 target_async (1);
2438 return;
2439 }
2440
2441 tp->stepped_breakpoint = 0;
2442
2443 /* Depends on stepped_breakpoint. */
2444 step = currently_stepping (tp);
2445
2446 if (current_inferior ()->waiting_for_vfork_done)
2447 {
2448 /* Don't try to single-step a vfork parent that is waiting for
2449 the child to get out of the shared memory region (by exec'ing
2450 or exiting). This is particularly important on software
2451 single-step archs, as the child process would trip on the
2452 software single step breakpoint inserted for the parent
2453 process. Since the parent will not actually execute any
2454 instruction until the child is out of the shared region (such
2455 are vfork's semantics), it is safe to simply continue it.
2456 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2457 the parent, and tell it to `keep_going', which automatically
2458 re-sets it stepping. */
2459 if (debug_infrun)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "infrun: resume : clear step\n");
2462 step = 0;
2463 }
2464
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: resume (step=%d, signal=%s), "
2468 "trap_expected=%d, current thread [%s] at %s\n",
2469 step, gdb_signal_to_symbol_string (sig),
2470 tp->control.trap_expected,
2471 target_pid_to_str (inferior_ptid),
2472 paddress (gdbarch, pc));
2473
2474 /* Normally, by the time we reach `resume', the breakpoints are either
2475 removed or inserted, as appropriate. The exception is if we're sitting
2476 at a permanent breakpoint; we need to step over it, but permanent
2477 breakpoints can't be removed. So we have to test for it here. */
2478 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2479 {
2480 if (sig != GDB_SIGNAL_0)
2481 {
2482 /* We have a signal to pass to the inferior. The resume
2483 may, or may not take us to the signal handler. If this
2484 is a step, we'll need to stop in the signal handler, if
2485 there's one, (if the target supports stepping into
2486 handlers), or in the next mainline instruction, if
2487 there's no handler. If this is a continue, we need to be
2488 sure to run the handler with all breakpoints inserted.
2489 In all cases, set a breakpoint at the current address
2490 (where the handler returns to), and once that breakpoint
2491 is hit, resume skipping the permanent breakpoint. If
2492 that breakpoint isn't hit, then we've stepped into the
2493 signal handler (or hit some other event). We'll delete
2494 the step-resume breakpoint then. */
2495
2496 if (debug_infrun)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "infrun: resume: skipping permanent breakpoint, "
2499 "deliver signal first\n");
2500
2501 clear_step_over_info ();
2502 tp->control.trap_expected = 0;
2503
2504 if (tp->control.step_resume_breakpoint == NULL)
2505 {
2506 /* Set a "high-priority" step-resume, as we don't want
2507 user breakpoints at PC to trigger (again) when this
2508 hits. */
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2511
2512 tp->step_after_step_resume_breakpoint = step;
2513 }
2514
2515 insert_breakpoints ();
2516 }
2517 else
2518 {
2519 /* There's no signal to pass, we can go ahead and skip the
2520 permanent breakpoint manually. */
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "infrun: resume: skipping permanent breakpoint\n");
2524 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2525 /* Update pc to reflect the new address from which we will
2526 execute instructions. */
2527 pc = regcache_read_pc (regcache);
2528
2529 if (step)
2530 {
2531 /* We've already advanced the PC, so the stepping part
2532 is done. Now we need to arrange for a trap to be
2533 reported to handle_inferior_event. Set a breakpoint
2534 at the current PC, and run to it. Don't update
2535 prev_pc, because if we end in
2536 switch_back_to_stepped_thread, we want the "expected
2537 thread advanced also" branch to be taken. IOW, we
2538 don't want this thread to step further from PC
2539 (overstep). */
2540 gdb_assert (!step_over_info_valid_p ());
2541 insert_single_step_breakpoint (gdbarch, aspace, pc);
2542 insert_breakpoints ();
2543
2544 resume_ptid = internal_resume_ptid (user_step);
2545 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2546 discard_cleanups (old_cleanups);
2547 tp->resumed = 1;
2548 return;
2549 }
2550 }
2551 }
2552
2553 /* If we have a breakpoint to step over, make sure to do a single
2554 step only. Same if we have software watchpoints. */
2555 if (tp->control.trap_expected || bpstat_should_step ())
2556 tp->control.may_range_step = 0;
2557
2558 /* If enabled, step over breakpoints by executing a copy of the
2559 instruction at a different address.
2560
2561 We can't use displaced stepping when we have a signal to deliver;
2562 the comments for displaced_step_prepare explain why. The
2563 comments in the handle_inferior event for dealing with 'random
2564 signals' explain what we do instead.
2565
2566 We can't use displaced stepping when we are waiting for vfork_done
2567 event, displaced stepping breaks the vfork child similarly as single
2568 step software breakpoint. */
2569 if (tp->control.trap_expected
2570 && use_displaced_stepping (tp)
2571 && !step_over_info_valid_p ()
2572 && sig == GDB_SIGNAL_0
2573 && !current_inferior ()->waiting_for_vfork_done)
2574 {
2575 int prepared = displaced_step_prepare (inferior_ptid);
2576
2577 if (prepared == 0)
2578 {
2579 if (debug_infrun)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "Got placed in step-over queue\n");
2582
2583 tp->control.trap_expected = 0;
2584 discard_cleanups (old_cleanups);
2585 return;
2586 }
2587 else if (prepared < 0)
2588 {
2589 /* Fallback to stepping over the breakpoint in-line. */
2590
2591 if (target_is_non_stop_p ())
2592 stop_all_threads ();
2593
2594 set_step_over_info (get_regcache_aspace (regcache),
2595 regcache_read_pc (regcache), 0, tp->global_num);
2596
2597 step = maybe_software_singlestep (gdbarch, pc);
2598
2599 insert_breakpoints ();
2600 }
2601 else if (prepared > 0)
2602 {
2603 struct displaced_step_inferior_state *displaced;
2604
2605 /* Update pc to reflect the new address from which we will
2606 execute instructions due to displaced stepping. */
2607 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2608
2609 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2610 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2611 displaced->step_closure);
2612 }
2613 }
2614
2615 /* Do we need to do it the hard way, w/temp breakpoints? */
2616 else if (step)
2617 step = maybe_software_singlestep (gdbarch, pc);
2618
2619 /* Currently, our software single-step implementation leads to different
2620 results than hardware single-stepping in one situation: when stepping
2621 into delivering a signal which has an associated signal handler,
2622 hardware single-step will stop at the first instruction of the handler,
2623 while software single-step will simply skip execution of the handler.
2624
2625 For now, this difference in behavior is accepted since there is no
2626 easy way to actually implement single-stepping into a signal handler
2627 without kernel support.
2628
2629 However, there is one scenario where this difference leads to follow-on
2630 problems: if we're stepping off a breakpoint by removing all breakpoints
2631 and then single-stepping. In this case, the software single-step
2632 behavior means that even if there is a *breakpoint* in the signal
2633 handler, GDB still would not stop.
2634
2635 Fortunately, we can at least fix this particular issue. We detect
2636 here the case where we are about to deliver a signal while software
2637 single-stepping with breakpoints removed. In this situation, we
2638 revert the decisions to remove all breakpoints and insert single-
2639 step breakpoints, and instead we install a step-resume breakpoint
2640 at the current address, deliver the signal without stepping, and
2641 once we arrive back at the step-resume breakpoint, actually step
2642 over the breakpoint we originally wanted to step over. */
2643 if (thread_has_single_step_breakpoints_set (tp)
2644 && sig != GDB_SIGNAL_0
2645 && step_over_info_valid_p ())
2646 {
2647 /* If we have nested signals or a pending signal is delivered
2648 immediately after a handler returns, might might already have
2649 a step-resume breakpoint set on the earlier handler. We cannot
2650 set another step-resume breakpoint; just continue on until the
2651 original breakpoint is hit. */
2652 if (tp->control.step_resume_breakpoint == NULL)
2653 {
2654 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2655 tp->step_after_step_resume_breakpoint = 1;
2656 }
2657
2658 delete_single_step_breakpoints (tp);
2659
2660 clear_step_over_info ();
2661 tp->control.trap_expected = 0;
2662
2663 insert_breakpoints ();
2664 }
2665
2666 /* If STEP is set, it's a request to use hardware stepping
2667 facilities. But in that case, we should never
2668 use singlestep breakpoint. */
2669 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2670
2671 /* Decide the set of threads to ask the target to resume. */
2672 if (tp->control.trap_expected)
2673 {
2674 /* We're allowing a thread to run past a breakpoint it has
2675 hit, either by single-stepping the thread with the breakpoint
2676 removed, or by displaced stepping, with the breakpoint inserted.
2677 In the former case, we need to single-step only this thread,
2678 and keep others stopped, as they can miss this breakpoint if
2679 allowed to run. That's not really a problem for displaced
2680 stepping, but, we still keep other threads stopped, in case
2681 another thread is also stopped for a breakpoint waiting for
2682 its turn in the displaced stepping queue. */
2683 resume_ptid = inferior_ptid;
2684 }
2685 else
2686 resume_ptid = internal_resume_ptid (user_step);
2687
2688 if (execution_direction != EXEC_REVERSE
2689 && step && breakpoint_inserted_here_p (aspace, pc))
2690 {
2691 /* There are two cases where we currently need to step a
2692 breakpoint instruction when we have a signal to deliver:
2693
2694 - See handle_signal_stop where we handle random signals that
2695 could take out us out of the stepping range. Normally, in
2696 that case we end up continuing (instead of stepping) over the
2697 signal handler with a breakpoint at PC, but there are cases
2698 where we should _always_ single-step, even if we have a
2699 step-resume breakpoint, like when a software watchpoint is
2700 set. Assuming single-stepping and delivering a signal at the
2701 same time would takes us to the signal handler, then we could
2702 have removed the breakpoint at PC to step over it. However,
2703 some hardware step targets (like e.g., Mac OS) can't step
2704 into signal handlers, and for those, we need to leave the
2705 breakpoint at PC inserted, as otherwise if the handler
2706 recurses and executes PC again, it'll miss the breakpoint.
2707 So we leave the breakpoint inserted anyway, but we need to
2708 record that we tried to step a breakpoint instruction, so
2709 that adjust_pc_after_break doesn't end up confused.
2710
2711 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2712 in one thread after another thread that was stepping had been
2713 momentarily paused for a step-over. When we re-resume the
2714 stepping thread, it may be resumed from that address with a
2715 breakpoint that hasn't trapped yet. Seen with
2716 gdb.threads/non-stop-fair-events.exp, on targets that don't
2717 do displaced stepping. */
2718
2719 if (debug_infrun)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "infrun: resume: [%s] stepped breakpoint\n",
2722 target_pid_to_str (tp->ptid));
2723
2724 tp->stepped_breakpoint = 1;
2725
2726 /* Most targets can step a breakpoint instruction, thus
2727 executing it normally. But if this one cannot, just
2728 continue and we will hit it anyway. */
2729 if (gdbarch_cannot_step_breakpoint (gdbarch))
2730 step = 0;
2731 }
2732
2733 if (debug_displaced
2734 && tp->control.trap_expected
2735 && use_displaced_stepping (tp)
2736 && !step_over_info_valid_p ())
2737 {
2738 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2739 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2740 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2741 gdb_byte buf[4];
2742
2743 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2744 paddress (resume_gdbarch, actual_pc));
2745 read_memory (actual_pc, buf, sizeof (buf));
2746 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2747 }
2748
2749 if (tp->control.may_range_step)
2750 {
2751 /* If we're resuming a thread with the PC out of the step
2752 range, then we're doing some nested/finer run control
2753 operation, like stepping the thread out of the dynamic
2754 linker or the displaced stepping scratch pad. We
2755 shouldn't have allowed a range step then. */
2756 gdb_assert (pc_in_thread_step_range (pc, tp));
2757 }
2758
2759 do_target_resume (resume_ptid, step, sig);
2760 tp->resumed = 1;
2761 discard_cleanups (old_cleanups);
2762 }
2763 \f
2764 /* Proceeding. */
2765
2766 /* See infrun.h. */
2767
2768 /* Counter that tracks number of user visible stops. This can be used
2769 to tell whether a command has proceeded the inferior past the
2770 current location. This allows e.g., inferior function calls in
2771 breakpoint commands to not interrupt the command list. When the
2772 call finishes successfully, the inferior is standing at the same
2773 breakpoint as if nothing happened (and so we don't call
2774 normal_stop). */
2775 static ULONGEST current_stop_id;
2776
2777 /* See infrun.h. */
2778
2779 ULONGEST
2780 get_stop_id (void)
2781 {
2782 return current_stop_id;
2783 }
2784
2785 /* Called when we report a user visible stop. */
2786
2787 static void
2788 new_stop_id (void)
2789 {
2790 current_stop_id++;
2791 }
2792
2793 /* Clear out all variables saying what to do when inferior is continued.
2794 First do this, then set the ones you want, then call `proceed'. */
2795
2796 static void
2797 clear_proceed_status_thread (struct thread_info *tp)
2798 {
2799 if (debug_infrun)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: clear_proceed_status_thread (%s)\n",
2802 target_pid_to_str (tp->ptid));
2803
2804 /* If we're starting a new sequence, then the previous finished
2805 single-step is no longer relevant. */
2806 if (tp->suspend.waitstatus_pending_p)
2807 {
2808 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2809 {
2810 if (debug_infrun)
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status: pending "
2813 "event of %s was a finished step. "
2814 "Discarding.\n",
2815 target_pid_to_str (tp->ptid));
2816
2817 tp->suspend.waitstatus_pending_p = 0;
2818 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2819 }
2820 else if (debug_infrun)
2821 {
2822 char *statstr;
2823
2824 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2825 fprintf_unfiltered (gdb_stdlog,
2826 "infrun: clear_proceed_status_thread: thread %s "
2827 "has pending wait status %s "
2828 "(currently_stepping=%d).\n",
2829 target_pid_to_str (tp->ptid), statstr,
2830 currently_stepping (tp));
2831 xfree (statstr);
2832 }
2833 }
2834
2835 /* If this signal should not be seen by program, give it zero.
2836 Used for debugging signals. */
2837 if (!signal_pass_state (tp->suspend.stop_signal))
2838 tp->suspend.stop_signal = GDB_SIGNAL_0;
2839
2840 thread_fsm_delete (tp->thread_fsm);
2841 tp->thread_fsm = NULL;
2842
2843 tp->control.trap_expected = 0;
2844 tp->control.step_range_start = 0;
2845 tp->control.step_range_end = 0;
2846 tp->control.may_range_step = 0;
2847 tp->control.step_frame_id = null_frame_id;
2848 tp->control.step_stack_frame_id = null_frame_id;
2849 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2850 tp->control.step_start_function = NULL;
2851 tp->stop_requested = 0;
2852
2853 tp->control.stop_step = 0;
2854
2855 tp->control.proceed_to_finish = 0;
2856
2857 tp->control.stepping_command = 0;
2858
2859 /* Discard any remaining commands or status from previous stop. */
2860 bpstat_clear (&tp->control.stop_bpstat);
2861 }
2862
2863 void
2864 clear_proceed_status (int step)
2865 {
2866 /* With scheduler-locking replay, stop replaying other threads if we're
2867 not replaying the user-visible resume ptid.
2868
2869 This is a convenience feature to not require the user to explicitly
2870 stop replaying the other threads. We're assuming that the user's
2871 intent is to resume tracing the recorded process. */
2872 if (!non_stop && scheduler_mode == schedlock_replay
2873 && target_record_is_replaying (minus_one_ptid)
2874 && !target_record_will_replay (user_visible_resume_ptid (step),
2875 execution_direction))
2876 target_record_stop_replaying ();
2877
2878 if (!non_stop)
2879 {
2880 struct thread_info *tp;
2881 ptid_t resume_ptid;
2882
2883 resume_ptid = user_visible_resume_ptid (step);
2884
2885 /* In all-stop mode, delete the per-thread status of all threads
2886 we're about to resume, implicitly and explicitly. */
2887 ALL_NON_EXITED_THREADS (tp)
2888 {
2889 if (!ptid_match (tp->ptid, resume_ptid))
2890 continue;
2891 clear_proceed_status_thread (tp);
2892 }
2893 }
2894
2895 if (!ptid_equal (inferior_ptid, null_ptid))
2896 {
2897 struct inferior *inferior;
2898
2899 if (non_stop)
2900 {
2901 /* If in non-stop mode, only delete the per-thread status of
2902 the current thread. */
2903 clear_proceed_status_thread (inferior_thread ());
2904 }
2905
2906 inferior = current_inferior ();
2907 inferior->control.stop_soon = NO_STOP_QUIETLY;
2908 }
2909
2910 observer_notify_about_to_proceed ();
2911 }
2912
2913 /* Returns true if TP is still stopped at a breakpoint that needs
2914 stepping-over in order to make progress. If the breakpoint is gone
2915 meanwhile, we can skip the whole step-over dance. */
2916
2917 static int
2918 thread_still_needs_step_over_bp (struct thread_info *tp)
2919 {
2920 if (tp->stepping_over_breakpoint)
2921 {
2922 struct regcache *regcache = get_thread_regcache (tp->ptid);
2923
2924 if (breakpoint_here_p (get_regcache_aspace (regcache),
2925 regcache_read_pc (regcache))
2926 == ordinary_breakpoint_here)
2927 return 1;
2928
2929 tp->stepping_over_breakpoint = 0;
2930 }
2931
2932 return 0;
2933 }
2934
2935 /* Check whether thread TP still needs to start a step-over in order
2936 to make progress when resumed. Returns an bitwise or of enum
2937 step_over_what bits, indicating what needs to be stepped over. */
2938
2939 static step_over_what
2940 thread_still_needs_step_over (struct thread_info *tp)
2941 {
2942 step_over_what what = 0;
2943
2944 if (thread_still_needs_step_over_bp (tp))
2945 what |= STEP_OVER_BREAKPOINT;
2946
2947 if (tp->stepping_over_watchpoint
2948 && !target_have_steppable_watchpoint)
2949 what |= STEP_OVER_WATCHPOINT;
2950
2951 return what;
2952 }
2953
2954 /* Returns true if scheduler locking applies. STEP indicates whether
2955 we're about to do a step/next-like command to a thread. */
2956
2957 static int
2958 schedlock_applies (struct thread_info *tp)
2959 {
2960 return (scheduler_mode == schedlock_on
2961 || (scheduler_mode == schedlock_step
2962 && tp->control.stepping_command)
2963 || (scheduler_mode == schedlock_replay
2964 && target_record_will_replay (minus_one_ptid,
2965 execution_direction)));
2966 }
2967
2968 /* Basic routine for continuing the program in various fashions.
2969
2970 ADDR is the address to resume at, or -1 for resume where stopped.
2971 SIGGNAL is the signal to give it, or 0 for none,
2972 or -1 for act according to how it stopped.
2973 STEP is nonzero if should trap after one instruction.
2974 -1 means return after that and print nothing.
2975 You should probably set various step_... variables
2976 before calling here, if you are stepping.
2977
2978 You should call clear_proceed_status before calling proceed. */
2979
2980 void
2981 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2982 {
2983 struct regcache *regcache;
2984 struct gdbarch *gdbarch;
2985 struct thread_info *tp;
2986 CORE_ADDR pc;
2987 struct address_space *aspace;
2988 ptid_t resume_ptid;
2989 struct execution_control_state ecss;
2990 struct execution_control_state *ecs = &ecss;
2991 struct cleanup *old_chain;
2992 struct cleanup *defer_resume_cleanup;
2993 int started;
2994
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3004 return;
3005 }
3006
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
3012 aspace = get_regcache_aspace (regcache);
3013 pc = regcache_read_pc (regcache);
3014 tp = inferior_thread ();
3015
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
3021 if (addr == (CORE_ADDR) -1)
3022 {
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3025 && execution_direction != EXEC_REVERSE)
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
3034 tp->stepping_over_breakpoint = 1;
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
3040 tp->stepping_over_breakpoint = 1;
3041 }
3042 else
3043 {
3044 regcache_write_pc (regcache, addr);
3045 }
3046
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
3065
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: proceed (addr=%s, signal=%s)\n",
3069 paddress (gdbarch, addr),
3070 gdb_signal_to_symbol_string (siggnal));
3071
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
3092 {
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
3101
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
3105
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
3110
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
3114 target_pid_to_str (tp->ptid));
3115
3116 thread_step_over_chain_enqueue (tp);
3117 }
3118
3119 tp = current;
3120 }
3121
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
3126
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
3133
3134 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3135
3136 started = start_step_over ();
3137
3138 if (step_over_info_valid_p ())
3139 {
3140 /* Either this thread started a new in-line step over, or some
3141 other thread was already doing one. In either case, don't
3142 resume anything else until the step-over is finished. */
3143 }
3144 else if (started && !target_is_non_stop_p ())
3145 {
3146 /* A new displaced stepping sequence was started. In all-stop,
3147 we can't talk to the target anymore until it next stops. */
3148 }
3149 else if (!non_stop && target_is_non_stop_p ())
3150 {
3151 /* In all-stop, but the target is always in non-stop mode.
3152 Start all other threads that are implicitly resumed too. */
3153 ALL_NON_EXITED_THREADS (tp)
3154 {
3155 /* Ignore threads of processes we're not resuming. */
3156 if (!ptid_match (tp->ptid, resume_ptid))
3157 continue;
3158
3159 if (tp->resumed)
3160 {
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "infrun: proceed: [%s] resumed\n",
3164 target_pid_to_str (tp->ptid));
3165 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3166 continue;
3167 }
3168
3169 if (thread_is_in_step_over_chain (tp))
3170 {
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: [%s] needs step-over\n",
3174 target_pid_to_str (tp->ptid));
3175 continue;
3176 }
3177
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog,
3180 "infrun: proceed: resuming %s\n",
3181 target_pid_to_str (tp->ptid));
3182
3183 reset_ecs (ecs, tp);
3184 switch_to_thread (tp->ptid);
3185 keep_going_pass_signal (ecs);
3186 if (!ecs->wait_some_more)
3187 error (_("Command aborted."));
3188 }
3189 }
3190 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3191 {
3192 /* The thread wasn't started, and isn't queued, run it now. */
3193 reset_ecs (ecs, tp);
3194 switch_to_thread (tp->ptid);
3195 keep_going_pass_signal (ecs);
3196 if (!ecs->wait_some_more)
3197 error (_("Command aborted."));
3198 }
3199
3200 do_cleanups (defer_resume_cleanup);
3201 target_commit_resume ();
3202
3203 discard_cleanups (old_chain);
3204
3205 /* Tell the event loop to wait for it to stop. If the target
3206 supports asynchronous execution, it'll do this from within
3207 target_resume. */
3208 if (!target_can_async_p ())
3209 mark_async_event_handler (infrun_async_inferior_event_token);
3210 }
3211 \f
3212
3213 /* Start remote-debugging of a machine over a serial link. */
3214
3215 void
3216 start_remote (int from_tty)
3217 {
3218 struct inferior *inferior;
3219
3220 inferior = current_inferior ();
3221 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3222
3223 /* Always go on waiting for the target, regardless of the mode. */
3224 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3225 indicate to wait_for_inferior that a target should timeout if
3226 nothing is returned (instead of just blocking). Because of this,
3227 targets expecting an immediate response need to, internally, set
3228 things up so that the target_wait() is forced to eventually
3229 timeout. */
3230 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3231 differentiate to its caller what the state of the target is after
3232 the initial open has been performed. Here we're assuming that
3233 the target has stopped. It should be possible to eventually have
3234 target_open() return to the caller an indication that the target
3235 is currently running and GDB state should be set to the same as
3236 for an async run. */
3237 wait_for_inferior ();
3238
3239 /* Now that the inferior has stopped, do any bookkeeping like
3240 loading shared libraries. We want to do this before normal_stop,
3241 so that the displayed frame is up to date. */
3242 post_create_inferior (&current_target, from_tty);
3243
3244 normal_stop ();
3245 }
3246
3247 /* Initialize static vars when a new inferior begins. */
3248
3249 void
3250 init_wait_for_inferior (void)
3251 {
3252 /* These are meaningless until the first time through wait_for_inferior. */
3253
3254 breakpoint_init_inferior (inf_starting);
3255
3256 clear_proceed_status (0);
3257
3258 target_last_wait_ptid = minus_one_ptid;
3259
3260 previous_inferior_ptid = inferior_ptid;
3261
3262 /* Discard any skipped inlined frames. */
3263 clear_inline_frame_state (minus_one_ptid);
3264 }
3265
3266 \f
3267
3268 static void handle_inferior_event (struct execution_control_state *ecs);
3269
3270 static void handle_step_into_function (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
3272 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3273 struct execution_control_state *ecs);
3274 static void handle_signal_stop (struct execution_control_state *ecs);
3275 static void check_exception_resume (struct execution_control_state *,
3276 struct frame_info *);
3277
3278 static void end_stepping_range (struct execution_control_state *ecs);
3279 static void stop_waiting (struct execution_control_state *ecs);
3280 static void keep_going (struct execution_control_state *ecs);
3281 static void process_event_stop_test (struct execution_control_state *ecs);
3282 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3283
3284 /* This function is attached as a "thread_stop_requested" observer.
3285 Cleanup local state that assumed the PTID was to be resumed, and
3286 report the stop to the frontend. */
3287
3288 static void
3289 infrun_thread_stop_requested (ptid_t ptid)
3290 {
3291 struct thread_info *tp;
3292
3293 /* PTID was requested to stop. If the thread was already stopped,
3294 but the user/frontend doesn't know about that yet (e.g., the
3295 thread had been temporarily paused for some step-over), set up
3296 for reporting the stop now. */
3297 ALL_NON_EXITED_THREADS (tp)
3298 if (ptid_match (tp->ptid, ptid))
3299 {
3300 if (tp->state != THREAD_RUNNING)
3301 continue;
3302 if (tp->executing)
3303 continue;
3304
3305 /* Remove matching threads from the step-over queue, so
3306 start_step_over doesn't try to resume them
3307 automatically. */
3308 if (thread_is_in_step_over_chain (tp))
3309 thread_step_over_chain_remove (tp);
3310
3311 /* If the thread is stopped, but the user/frontend doesn't
3312 know about that yet, queue a pending event, as if the
3313 thread had just stopped now. Unless the thread already had
3314 a pending event. */
3315 if (!tp->suspend.waitstatus_pending_p)
3316 {
3317 tp->suspend.waitstatus_pending_p = 1;
3318 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3319 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3320 }
3321
3322 /* Clear the inline-frame state, since we're re-processing the
3323 stop. */
3324 clear_inline_frame_state (tp->ptid);
3325
3326 /* If this thread was paused because some other thread was
3327 doing an inline-step over, let that finish first. Once
3328 that happens, we'll restart all threads and consume pending
3329 stop events then. */
3330 if (step_over_info_valid_p ())
3331 continue;
3332
3333 /* Otherwise we can process the (new) pending event now. Set
3334 it so this pending event is considered by
3335 do_target_wait. */
3336 tp->resumed = 1;
3337 }
3338 }
3339
3340 static void
3341 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3342 {
3343 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3344 nullify_last_target_wait_ptid ();
3345 }
3346
3347 /* Delete the step resume, single-step and longjmp/exception resume
3348 breakpoints of TP. */
3349
3350 static void
3351 delete_thread_infrun_breakpoints (struct thread_info *tp)
3352 {
3353 delete_step_resume_breakpoint (tp);
3354 delete_exception_resume_breakpoint (tp);
3355 delete_single_step_breakpoints (tp);
3356 }
3357
3358 /* If the target still has execution, call FUNC for each thread that
3359 just stopped. In all-stop, that's all the non-exited threads; in
3360 non-stop, that's the current thread, only. */
3361
3362 typedef void (*for_each_just_stopped_thread_callback_func)
3363 (struct thread_info *tp);
3364
3365 static void
3366 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3367 {
3368 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3369 return;
3370
3371 if (target_is_non_stop_p ())
3372 {
3373 /* If in non-stop mode, only the current thread stopped. */
3374 func (inferior_thread ());
3375 }
3376 else
3377 {
3378 struct thread_info *tp;
3379
3380 /* In all-stop mode, all threads have stopped. */
3381 ALL_NON_EXITED_THREADS (tp)
3382 {
3383 func (tp);
3384 }
3385 }
3386 }
3387
3388 /* Delete the step resume and longjmp/exception resume breakpoints of
3389 the threads that just stopped. */
3390
3391 static void
3392 delete_just_stopped_threads_infrun_breakpoints (void)
3393 {
3394 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3395 }
3396
3397 /* Delete the single-step breakpoints of the threads that just
3398 stopped. */
3399
3400 static void
3401 delete_just_stopped_threads_single_step_breakpoints (void)
3402 {
3403 for_each_just_stopped_thread (delete_single_step_breakpoints);
3404 }
3405
3406 /* A cleanup wrapper. */
3407
3408 static void
3409 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3410 {
3411 delete_just_stopped_threads_infrun_breakpoints ();
3412 }
3413
3414 /* See infrun.h. */
3415
3416 void
3417 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3418 const struct target_waitstatus *ws)
3419 {
3420 char *status_string = target_waitstatus_to_string (ws);
3421 string_file stb;
3422
3423 /* The text is split over several lines because it was getting too long.
3424 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3425 output as a unit; we want only one timestamp printed if debug_timestamp
3426 is set. */
3427
3428 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3429 ptid_get_pid (waiton_ptid),
3430 ptid_get_lwp (waiton_ptid),
3431 ptid_get_tid (waiton_ptid));
3432 if (ptid_get_pid (waiton_ptid) != -1)
3433 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3434 stb.printf (", status) =\n");
3435 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3436 ptid_get_pid (result_ptid),
3437 ptid_get_lwp (result_ptid),
3438 ptid_get_tid (result_ptid),
3439 target_pid_to_str (result_ptid));
3440 stb.printf ("infrun: %s\n", status_string);
3441
3442 /* This uses %s in part to handle %'s in the text, but also to avoid
3443 a gcc error: the format attribute requires a string literal. */
3444 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3445
3446 xfree (status_string);
3447 }
3448
3449 /* Select a thread at random, out of those which are resumed and have
3450 had events. */
3451
3452 static struct thread_info *
3453 random_pending_event_thread (ptid_t waiton_ptid)
3454 {
3455 struct thread_info *event_tp;
3456 int num_events = 0;
3457 int random_selector;
3458
3459 /* First see how many events we have. Count only resumed threads
3460 that have an event pending. */
3461 ALL_NON_EXITED_THREADS (event_tp)
3462 if (ptid_match (event_tp->ptid, waiton_ptid)
3463 && event_tp->resumed
3464 && event_tp->suspend.waitstatus_pending_p)
3465 num_events++;
3466
3467 if (num_events == 0)
3468 return NULL;
3469
3470 /* Now randomly pick a thread out of those that have had events. */
3471 random_selector = (int)
3472 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3473
3474 if (debug_infrun && num_events > 1)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "infrun: Found %d events, selecting #%d\n",
3477 num_events, random_selector);
3478
3479 /* Select the Nth thread that has had an event. */
3480 ALL_NON_EXITED_THREADS (event_tp)
3481 if (ptid_match (event_tp->ptid, waiton_ptid)
3482 && event_tp->resumed
3483 && event_tp->suspend.waitstatus_pending_p)
3484 if (random_selector-- == 0)
3485 break;
3486
3487 return event_tp;
3488 }
3489
3490 /* Wrapper for target_wait that first checks whether threads have
3491 pending statuses to report before actually asking the target for
3492 more events. */
3493
3494 static ptid_t
3495 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3496 {
3497 ptid_t event_ptid;
3498 struct thread_info *tp;
3499
3500 /* First check if there is a resumed thread with a wait status
3501 pending. */
3502 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3503 {
3504 tp = random_pending_event_thread (ptid);
3505 }
3506 else
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: Waiting for specific thread %s.\n",
3511 target_pid_to_str (ptid));
3512
3513 /* We have a specific thread to check. */
3514 tp = find_thread_ptid (ptid);
3515 gdb_assert (tp != NULL);
3516 if (!tp->suspend.waitstatus_pending_p)
3517 tp = NULL;
3518 }
3519
3520 if (tp != NULL
3521 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3522 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3523 {
3524 struct regcache *regcache = get_thread_regcache (tp->ptid);
3525 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3526 CORE_ADDR pc;
3527 int discard = 0;
3528
3529 pc = regcache_read_pc (regcache);
3530
3531 if (pc != tp->suspend.stop_pc)
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: PC of %s changed. was=%s, now=%s\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, tp->prev_pc),
3538 paddress (gdbarch, pc));
3539 discard = 1;
3540 }
3541 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: previous breakpoint of %s, at %s gone\n",
3546 target_pid_to_str (tp->ptid),
3547 paddress (gdbarch, pc));
3548
3549 discard = 1;
3550 }
3551
3552 if (discard)
3553 {
3554 if (debug_infrun)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "infrun: pending event of %s cancelled.\n",
3557 target_pid_to_str (tp->ptid));
3558
3559 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3560 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3561 }
3562 }
3563
3564 if (tp != NULL)
3565 {
3566 if (debug_infrun)
3567 {
3568 char *statstr;
3569
3570 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: Using pending wait status %s for %s.\n",
3573 statstr,
3574 target_pid_to_str (tp->ptid));
3575 xfree (statstr);
3576 }
3577
3578 /* Now that we've selected our final event LWP, un-adjust its PC
3579 if it was a software breakpoint (and the target doesn't
3580 always adjust the PC itself). */
3581 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3582 && !target_supports_stopped_by_sw_breakpoint ())
3583 {
3584 struct regcache *regcache;
3585 struct gdbarch *gdbarch;
3586 int decr_pc;
3587
3588 regcache = get_thread_regcache (tp->ptid);
3589 gdbarch = get_regcache_arch (regcache);
3590
3591 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3592 if (decr_pc != 0)
3593 {
3594 CORE_ADDR pc;
3595
3596 pc = regcache_read_pc (regcache);
3597 regcache_write_pc (regcache, pc + decr_pc);
3598 }
3599 }
3600
3601 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3602 *status = tp->suspend.waitstatus;
3603 tp->suspend.waitstatus_pending_p = 0;
3604
3605 /* Wake up the event loop again, until all pending events are
3606 processed. */
3607 if (target_is_async_p ())
3608 mark_async_event_handler (infrun_async_inferior_event_token);
3609 return tp->ptid;
3610 }
3611
3612 /* But if we don't find one, we'll have to wait. */
3613
3614 if (deprecated_target_wait_hook)
3615 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3616 else
3617 event_ptid = target_wait (ptid, status, options);
3618
3619 return event_ptid;
3620 }
3621
3622 /* Prepare and stabilize the inferior for detaching it. E.g.,
3623 detaching while a thread is displaced stepping is a recipe for
3624 crashing it, as nothing would readjust the PC out of the scratch
3625 pad. */
3626
3627 void
3628 prepare_for_detach (void)
3629 {
3630 struct inferior *inf = current_inferior ();
3631 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3632 struct cleanup *old_chain_1;
3633 struct displaced_step_inferior_state *displaced;
3634
3635 displaced = get_displaced_stepping_state (inf->pid);
3636
3637 /* Is any thread of this process displaced stepping? If not,
3638 there's nothing else to do. */
3639 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3640 return;
3641
3642 if (debug_infrun)
3643 fprintf_unfiltered (gdb_stdlog,
3644 "displaced-stepping in-process while detaching");
3645
3646 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3647 inf->detaching = 1;
3648
3649 while (!ptid_equal (displaced->step_ptid, null_ptid))
3650 {
3651 struct cleanup *old_chain_2;
3652 struct execution_control_state ecss;
3653 struct execution_control_state *ecs;
3654
3655 ecs = &ecss;
3656 memset (ecs, 0, sizeof (*ecs));
3657
3658 overlay_cache_invalid = 1;
3659 /* Flush target cache before starting to handle each event.
3660 Target was running and cache could be stale. This is just a
3661 heuristic. Running threads may modify target memory, but we
3662 don't get any event. */
3663 target_dcache_invalidate ();
3664
3665 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3666
3667 if (debug_infrun)
3668 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3669
3670 /* If an error happens while handling the event, propagate GDB's
3671 knowledge of the executing state to the frontend/user running
3672 state. */
3673 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3674 &minus_one_ptid);
3675
3676 /* Now figure out what to do with the result of the result. */
3677 handle_inferior_event (ecs);
3678
3679 /* No error, don't finish the state yet. */
3680 discard_cleanups (old_chain_2);
3681
3682 /* Breakpoints and watchpoints are not installed on the target
3683 at this point, and signals are passed directly to the
3684 inferior, so this must mean the process is gone. */
3685 if (!ecs->wait_some_more)
3686 {
3687 discard_cleanups (old_chain_1);
3688 error (_("Program exited while detaching"));
3689 }
3690 }
3691
3692 discard_cleanups (old_chain_1);
3693 }
3694
3695 /* Wait for control to return from inferior to debugger.
3696
3697 If inferior gets a signal, we may decide to start it up again
3698 instead of returning. That is why there is a loop in this function.
3699 When this function actually returns it means the inferior
3700 should be left stopped and GDB should read more commands. */
3701
3702 void
3703 wait_for_inferior (void)
3704 {
3705 struct cleanup *old_cleanups;
3706 struct cleanup *thread_state_chain;
3707
3708 if (debug_infrun)
3709 fprintf_unfiltered
3710 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3711
3712 old_cleanups
3713 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3714 NULL);
3715
3716 /* If an error happens while handling the event, propagate GDB's
3717 knowledge of the executing state to the frontend/user running
3718 state. */
3719 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3720
3721 while (1)
3722 {
3723 struct execution_control_state ecss;
3724 struct execution_control_state *ecs = &ecss;
3725 ptid_t waiton_ptid = minus_one_ptid;
3726
3727 memset (ecs, 0, sizeof (*ecs));
3728
3729 overlay_cache_invalid = 1;
3730
3731 /* Flush target cache before starting to handle each event.
3732 Target was running and cache could be stale. This is just a
3733 heuristic. Running threads may modify target memory, but we
3734 don't get any event. */
3735 target_dcache_invalidate ();
3736
3737 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3738
3739 if (debug_infrun)
3740 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3741
3742 /* Now figure out what to do with the result of the result. */
3743 handle_inferior_event (ecs);
3744
3745 if (!ecs->wait_some_more)
3746 break;
3747 }
3748
3749 /* No error, don't finish the state yet. */
3750 discard_cleanups (thread_state_chain);
3751
3752 do_cleanups (old_cleanups);
3753 }
3754
3755 /* Cleanup that reinstalls the readline callback handler, if the
3756 target is running in the background. If while handling the target
3757 event something triggered a secondary prompt, like e.g., a
3758 pagination prompt, we'll have removed the callback handler (see
3759 gdb_readline_wrapper_line). Need to do this as we go back to the
3760 event loop, ready to process further input. Note this has no
3761 effect if the handler hasn't actually been removed, because calling
3762 rl_callback_handler_install resets the line buffer, thus losing
3763 input. */
3764
3765 static void
3766 reinstall_readline_callback_handler_cleanup (void *arg)
3767 {
3768 struct ui *ui = current_ui;
3769
3770 if (!ui->async)
3771 {
3772 /* We're not going back to the top level event loop yet. Don't
3773 install the readline callback, as it'd prep the terminal,
3774 readline-style (raw, noecho) (e.g., --batch). We'll install
3775 it the next time the prompt is displayed, when we're ready
3776 for input. */
3777 return;
3778 }
3779
3780 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3781 gdb_rl_callback_handler_reinstall ();
3782 }
3783
3784 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3785 that's just the event thread. In all-stop, that's all threads. */
3786
3787 static void
3788 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3789 {
3790 struct thread_info *thr = ecs->event_thread;
3791
3792 if (thr != NULL && thr->thread_fsm != NULL)
3793 thread_fsm_clean_up (thr->thread_fsm, thr);
3794
3795 if (!non_stop)
3796 {
3797 ALL_NON_EXITED_THREADS (thr)
3798 {
3799 if (thr->thread_fsm == NULL)
3800 continue;
3801 if (thr == ecs->event_thread)
3802 continue;
3803
3804 switch_to_thread (thr->ptid);
3805 thread_fsm_clean_up (thr->thread_fsm, thr);
3806 }
3807
3808 if (ecs->event_thread != NULL)
3809 switch_to_thread (ecs->event_thread->ptid);
3810 }
3811 }
3812
3813 /* Helper for all_uis_check_sync_execution_done that works on the
3814 current UI. */
3815
3816 static void
3817 check_curr_ui_sync_execution_done (void)
3818 {
3819 struct ui *ui = current_ui;
3820
3821 if (ui->prompt_state == PROMPT_NEEDED
3822 && ui->async
3823 && !gdb_in_secondary_prompt_p (ui))
3824 {
3825 target_terminal_ours ();
3826 observer_notify_sync_execution_done ();
3827 ui_register_input_event_handler (ui);
3828 }
3829 }
3830
3831 /* See infrun.h. */
3832
3833 void
3834 all_uis_check_sync_execution_done (void)
3835 {
3836 SWITCH_THRU_ALL_UIS ()
3837 {
3838 check_curr_ui_sync_execution_done ();
3839 }
3840 }
3841
3842 /* See infrun.h. */
3843
3844 void
3845 all_uis_on_sync_execution_starting (void)
3846 {
3847 SWITCH_THRU_ALL_UIS ()
3848 {
3849 if (current_ui->prompt_state == PROMPT_NEEDED)
3850 async_disable_stdin ();
3851 }
3852 }
3853
3854 /* Asynchronous version of wait_for_inferior. It is called by the
3855 event loop whenever a change of state is detected on the file
3856 descriptor corresponding to the target. It can be called more than
3857 once to complete a single execution command. In such cases we need
3858 to keep the state in a global variable ECSS. If it is the last time
3859 that this function is called for a single execution command, then
3860 report to the user that the inferior has stopped, and do the
3861 necessary cleanups. */
3862
3863 void
3864 fetch_inferior_event (void *client_data)
3865 {
3866 struct execution_control_state ecss;
3867 struct execution_control_state *ecs = &ecss;
3868 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3869 struct cleanup *ts_old_chain;
3870 int cmd_done = 0;
3871 ptid_t waiton_ptid = minus_one_ptid;
3872
3873 memset (ecs, 0, sizeof (*ecs));
3874
3875 /* Events are always processed with the main UI as current UI. This
3876 way, warnings, debug output, etc. are always consistently sent to
3877 the main console. */
3878 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3879
3880 /* End up with readline processing input, if necessary. */
3881 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3882
3883 /* We're handling a live event, so make sure we're doing live
3884 debugging. If we're looking at traceframes while the target is
3885 running, we're going to need to get back to that mode after
3886 handling the event. */
3887 if (non_stop)
3888 {
3889 make_cleanup_restore_current_traceframe ();
3890 set_current_traceframe (-1);
3891 }
3892
3893 if (non_stop)
3894 /* In non-stop mode, the user/frontend should not notice a thread
3895 switch due to internal events. Make sure we reverse to the
3896 user selected thread and frame after handling the event and
3897 running any breakpoint commands. */
3898 make_cleanup_restore_current_thread ();
3899
3900 overlay_cache_invalid = 1;
3901 /* Flush target cache before starting to handle each event. Target
3902 was running and cache could be stale. This is just a heuristic.
3903 Running threads may modify target memory, but we don't get any
3904 event. */
3905 target_dcache_invalidate ();
3906
3907 scoped_restore save_exec_dir
3908 = make_scoped_restore (&execution_direction, target_execution_direction ());
3909
3910 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3911 target_can_async_p () ? TARGET_WNOHANG : 0);
3912
3913 if (debug_infrun)
3914 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3915
3916 /* If an error happens while handling the event, propagate GDB's
3917 knowledge of the executing state to the frontend/user running
3918 state. */
3919 if (!target_is_non_stop_p ())
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3921 else
3922 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3923
3924 /* Get executed before make_cleanup_restore_current_thread above to apply
3925 still for the thread which has thrown the exception. */
3926 make_bpstat_clear_actions_cleanup ();
3927
3928 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3929
3930 /* Now figure out what to do with the result of the result. */
3931 handle_inferior_event (ecs);
3932
3933 if (!ecs->wait_some_more)
3934 {
3935 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3936 int should_stop = 1;
3937 struct thread_info *thr = ecs->event_thread;
3938 int should_notify_stop = 1;
3939
3940 delete_just_stopped_threads_infrun_breakpoints ();
3941
3942 if (thr != NULL)
3943 {
3944 struct thread_fsm *thread_fsm = thr->thread_fsm;
3945
3946 if (thread_fsm != NULL)
3947 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3948 }
3949
3950 if (!should_stop)
3951 {
3952 keep_going (ecs);
3953 }
3954 else
3955 {
3956 clean_up_just_stopped_threads_fsms (ecs);
3957
3958 if (thr != NULL && thr->thread_fsm != NULL)
3959 {
3960 should_notify_stop
3961 = thread_fsm_should_notify_stop (thr->thread_fsm);
3962 }
3963
3964 if (should_notify_stop)
3965 {
3966 int proceeded = 0;
3967
3968 /* We may not find an inferior if this was a process exit. */
3969 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3970 proceeded = normal_stop ();
3971
3972 if (!proceeded)
3973 {
3974 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3975 cmd_done = 1;
3976 }
3977 }
3978 }
3979 }
3980
3981 /* No error, don't finish the thread states yet. */
3982 discard_cleanups (ts_old_chain);
3983
3984 /* Revert thread and frame. */
3985 do_cleanups (old_chain);
3986
3987 /* If a UI was in sync execution mode, and now isn't, restore its
3988 prompt (a synchronous execution command has finished, and we're
3989 ready for input). */
3990 all_uis_check_sync_execution_done ();
3991
3992 if (cmd_done
3993 && exec_done_display_p
3994 && (ptid_equal (inferior_ptid, null_ptid)
3995 || !is_running (inferior_ptid)))
3996 printf_unfiltered (_("completed.\n"));
3997 }
3998
3999 /* Record the frame and location we're currently stepping through. */
4000 void
4001 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4002 {
4003 struct thread_info *tp = inferior_thread ();
4004
4005 tp->control.step_frame_id = get_frame_id (frame);
4006 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4007
4008 tp->current_symtab = sal.symtab;
4009 tp->current_line = sal.line;
4010 }
4011
4012 /* Clear context switchable stepping state. */
4013
4014 void
4015 init_thread_stepping_state (struct thread_info *tss)
4016 {
4017 tss->stepped_breakpoint = 0;
4018 tss->stepping_over_breakpoint = 0;
4019 tss->stepping_over_watchpoint = 0;
4020 tss->step_after_step_resume_breakpoint = 0;
4021 }
4022
4023 /* Set the cached copy of the last ptid/waitstatus. */
4024
4025 void
4026 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4027 {
4028 target_last_wait_ptid = ptid;
4029 target_last_waitstatus = status;
4030 }
4031
4032 /* Return the cached copy of the last pid/waitstatus returned by
4033 target_wait()/deprecated_target_wait_hook(). The data is actually
4034 cached by handle_inferior_event(), which gets called immediately
4035 after target_wait()/deprecated_target_wait_hook(). */
4036
4037 void
4038 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4039 {
4040 *ptidp = target_last_wait_ptid;
4041 *status = target_last_waitstatus;
4042 }
4043
4044 void
4045 nullify_last_target_wait_ptid (void)
4046 {
4047 target_last_wait_ptid = minus_one_ptid;
4048 }
4049
4050 /* Switch thread contexts. */
4051
4052 static void
4053 context_switch (ptid_t ptid)
4054 {
4055 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4056 {
4057 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4058 target_pid_to_str (inferior_ptid));
4059 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4060 target_pid_to_str (ptid));
4061 }
4062
4063 switch_to_thread (ptid);
4064 }
4065
4066 /* If the target can't tell whether we've hit breakpoints
4067 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4068 check whether that could have been caused by a breakpoint. If so,
4069 adjust the PC, per gdbarch_decr_pc_after_break. */
4070
4071 static void
4072 adjust_pc_after_break (struct thread_info *thread,
4073 struct target_waitstatus *ws)
4074 {
4075 struct regcache *regcache;
4076 struct gdbarch *gdbarch;
4077 struct address_space *aspace;
4078 CORE_ADDR breakpoint_pc, decr_pc;
4079
4080 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4081 we aren't, just return.
4082
4083 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4084 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4085 implemented by software breakpoints should be handled through the normal
4086 breakpoint layer.
4087
4088 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4089 different signals (SIGILL or SIGEMT for instance), but it is less
4090 clear where the PC is pointing afterwards. It may not match
4091 gdbarch_decr_pc_after_break. I don't know any specific target that
4092 generates these signals at breakpoints (the code has been in GDB since at
4093 least 1992) so I can not guess how to handle them here.
4094
4095 In earlier versions of GDB, a target with
4096 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4097 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4098 target with both of these set in GDB history, and it seems unlikely to be
4099 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4100
4101 if (ws->kind != TARGET_WAITKIND_STOPPED)
4102 return;
4103
4104 if (ws->value.sig != GDB_SIGNAL_TRAP)
4105 return;
4106
4107 /* In reverse execution, when a breakpoint is hit, the instruction
4108 under it has already been de-executed. The reported PC always
4109 points at the breakpoint address, so adjusting it further would
4110 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4111 architecture:
4112
4113 B1 0x08000000 : INSN1
4114 B2 0x08000001 : INSN2
4115 0x08000002 : INSN3
4116 PC -> 0x08000003 : INSN4
4117
4118 Say you're stopped at 0x08000003 as above. Reverse continuing
4119 from that point should hit B2 as below. Reading the PC when the
4120 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4121 been de-executed already.
4122
4123 B1 0x08000000 : INSN1
4124 B2 PC -> 0x08000001 : INSN2
4125 0x08000002 : INSN3
4126 0x08000003 : INSN4
4127
4128 We can't apply the same logic as for forward execution, because
4129 we would wrongly adjust the PC to 0x08000000, since there's a
4130 breakpoint at PC - 1. We'd then report a hit on B1, although
4131 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4132 behaviour. */
4133 if (execution_direction == EXEC_REVERSE)
4134 return;
4135
4136 /* If the target can tell whether the thread hit a SW breakpoint,
4137 trust it. Targets that can tell also adjust the PC
4138 themselves. */
4139 if (target_supports_stopped_by_sw_breakpoint ())
4140 return;
4141
4142 /* Note that relying on whether a breakpoint is planted in memory to
4143 determine this can fail. E.g,. the breakpoint could have been
4144 removed since. Or the thread could have been told to step an
4145 instruction the size of a breakpoint instruction, and only
4146 _after_ was a breakpoint inserted at its address. */
4147
4148 /* If this target does not decrement the PC after breakpoints, then
4149 we have nothing to do. */
4150 regcache = get_thread_regcache (thread->ptid);
4151 gdbarch = get_regcache_arch (regcache);
4152
4153 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4154 if (decr_pc == 0)
4155 return;
4156
4157 aspace = get_regcache_aspace (regcache);
4158
4159 /* Find the location where (if we've hit a breakpoint) the
4160 breakpoint would be. */
4161 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4162
4163 /* If the target can't tell whether a software breakpoint triggered,
4164 fallback to figuring it out based on breakpoints we think were
4165 inserted in the target, and on whether the thread was stepped or
4166 continued. */
4167
4168 /* Check whether there actually is a software breakpoint inserted at
4169 that location.
4170
4171 If in non-stop mode, a race condition is possible where we've
4172 removed a breakpoint, but stop events for that breakpoint were
4173 already queued and arrive later. To suppress those spurious
4174 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4175 and retire them after a number of stop events are reported. Note
4176 this is an heuristic and can thus get confused. The real fix is
4177 to get the "stopped by SW BP and needs adjustment" info out of
4178 the target/kernel (and thus never reach here; see above). */
4179 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4180 || (target_is_non_stop_p ()
4181 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4182 {
4183 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4184
4185 if (record_full_is_used ())
4186 record_full_gdb_operation_disable_set ();
4187
4188 /* When using hardware single-step, a SIGTRAP is reported for both
4189 a completed single-step and a software breakpoint. Need to
4190 differentiate between the two, as the latter needs adjusting
4191 but the former does not.
4192
4193 The SIGTRAP can be due to a completed hardware single-step only if
4194 - we didn't insert software single-step breakpoints
4195 - this thread is currently being stepped
4196
4197 If any of these events did not occur, we must have stopped due
4198 to hitting a software breakpoint, and have to back up to the
4199 breakpoint address.
4200
4201 As a special case, we could have hardware single-stepped a
4202 software breakpoint. In this case (prev_pc == breakpoint_pc),
4203 we also need to back up to the breakpoint address. */
4204
4205 if (thread_has_single_step_breakpoints_set (thread)
4206 || !currently_stepping (thread)
4207 || (thread->stepped_breakpoint
4208 && thread->prev_pc == breakpoint_pc))
4209 regcache_write_pc (regcache, breakpoint_pc);
4210
4211 do_cleanups (old_cleanups);
4212 }
4213 }
4214
4215 static int
4216 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4217 {
4218 for (frame = get_prev_frame (frame);
4219 frame != NULL;
4220 frame = get_prev_frame (frame))
4221 {
4222 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4223 return 1;
4224 if (get_frame_type (frame) != INLINE_FRAME)
4225 break;
4226 }
4227
4228 return 0;
4229 }
4230
4231 /* If the event thread has the stop requested flag set, pretend it
4232 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4233 target_stop). */
4234
4235 static bool
4236 handle_stop_requested (struct execution_control_state *ecs)
4237 {
4238 if (ecs->event_thread->stop_requested)
4239 {
4240 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4241 ecs->ws.value.sig = GDB_SIGNAL_0;
4242 handle_signal_stop (ecs);
4243 return true;
4244 }
4245 return false;
4246 }
4247
4248 /* Auxiliary function that handles syscall entry/return events.
4249 It returns 1 if the inferior should keep going (and GDB
4250 should ignore the event), or 0 if the event deserves to be
4251 processed. */
4252
4253 static int
4254 handle_syscall_event (struct execution_control_state *ecs)
4255 {
4256 struct regcache *regcache;
4257 int syscall_number;
4258
4259 if (!ptid_equal (ecs->ptid, inferior_ptid))
4260 context_switch (ecs->ptid);
4261
4262 regcache = get_thread_regcache (ecs->ptid);
4263 syscall_number = ecs->ws.value.syscall_number;
4264 stop_pc = regcache_read_pc (regcache);
4265
4266 if (catch_syscall_enabled () > 0
4267 && catching_syscall_number (syscall_number) > 0)
4268 {
4269 if (debug_infrun)
4270 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4271 syscall_number);
4272
4273 ecs->event_thread->control.stop_bpstat
4274 = bpstat_stop_status (get_regcache_aspace (regcache),
4275 stop_pc, ecs->ptid, &ecs->ws);
4276
4277 if (handle_stop_requested (ecs))
4278 return 0;
4279
4280 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4281 {
4282 /* Catchpoint hit. */
4283 return 0;
4284 }
4285 }
4286
4287 if (handle_stop_requested (ecs))
4288 return 0;
4289
4290 /* If no catchpoint triggered for this, then keep going. */
4291 keep_going (ecs);
4292 return 1;
4293 }
4294
4295 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4296
4297 static void
4298 fill_in_stop_func (struct gdbarch *gdbarch,
4299 struct execution_control_state *ecs)
4300 {
4301 if (!ecs->stop_func_filled_in)
4302 {
4303 /* Don't care about return value; stop_func_start and stop_func_name
4304 will both be 0 if it doesn't work. */
4305 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4306 &ecs->stop_func_start, &ecs->stop_func_end);
4307 ecs->stop_func_start
4308 += gdbarch_deprecated_function_start_offset (gdbarch);
4309
4310 if (gdbarch_skip_entrypoint_p (gdbarch))
4311 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4312 ecs->stop_func_start);
4313
4314 ecs->stop_func_filled_in = 1;
4315 }
4316 }
4317
4318
4319 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4320
4321 static enum stop_kind
4322 get_inferior_stop_soon (ptid_t ptid)
4323 {
4324 struct inferior *inf = find_inferior_ptid (ptid);
4325
4326 gdb_assert (inf != NULL);
4327 return inf->control.stop_soon;
4328 }
4329
4330 /* Wait for one event. Store the resulting waitstatus in WS, and
4331 return the event ptid. */
4332
4333 static ptid_t
4334 wait_one (struct target_waitstatus *ws)
4335 {
4336 ptid_t event_ptid;
4337 ptid_t wait_ptid = minus_one_ptid;
4338
4339 overlay_cache_invalid = 1;
4340
4341 /* Flush target cache before starting to handle each event.
4342 Target was running and cache could be stale. This is just a
4343 heuristic. Running threads may modify target memory, but we
4344 don't get any event. */
4345 target_dcache_invalidate ();
4346
4347 if (deprecated_target_wait_hook)
4348 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4349 else
4350 event_ptid = target_wait (wait_ptid, ws, 0);
4351
4352 if (debug_infrun)
4353 print_target_wait_results (wait_ptid, event_ptid, ws);
4354
4355 return event_ptid;
4356 }
4357
4358 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4359 instead of the current thread. */
4360 #define THREAD_STOPPED_BY(REASON) \
4361 static int \
4362 thread_stopped_by_ ## REASON (ptid_t ptid) \
4363 { \
4364 struct cleanup *old_chain; \
4365 int res; \
4366 \
4367 old_chain = save_inferior_ptid (); \
4368 inferior_ptid = ptid; \
4369 \
4370 res = target_stopped_by_ ## REASON (); \
4371 \
4372 do_cleanups (old_chain); \
4373 \
4374 return res; \
4375 }
4376
4377 /* Generate thread_stopped_by_watchpoint. */
4378 THREAD_STOPPED_BY (watchpoint)
4379 /* Generate thread_stopped_by_sw_breakpoint. */
4380 THREAD_STOPPED_BY (sw_breakpoint)
4381 /* Generate thread_stopped_by_hw_breakpoint. */
4382 THREAD_STOPPED_BY (hw_breakpoint)
4383
4384 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4385
4386 static void
4387 switch_to_thread_cleanup (void *ptid_p)
4388 {
4389 ptid_t ptid = *(ptid_t *) ptid_p;
4390
4391 switch_to_thread (ptid);
4392 }
4393
4394 /* Save the thread's event and stop reason to process it later. */
4395
4396 static void
4397 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4398 {
4399 struct regcache *regcache;
4400 struct address_space *aspace;
4401
4402 if (debug_infrun)
4403 {
4404 char *statstr;
4405
4406 statstr = target_waitstatus_to_string (ws);
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: saving status %s for %d.%ld.%ld\n",
4409 statstr,
4410 ptid_get_pid (tp->ptid),
4411 ptid_get_lwp (tp->ptid),
4412 ptid_get_tid (tp->ptid));
4413 xfree (statstr);
4414 }
4415
4416 /* Record for later. */
4417 tp->suspend.waitstatus = *ws;
4418 tp->suspend.waitstatus_pending_p = 1;
4419
4420 regcache = get_thread_regcache (tp->ptid);
4421 aspace = get_regcache_aspace (regcache);
4422
4423 if (ws->kind == TARGET_WAITKIND_STOPPED
4424 && ws->value.sig == GDB_SIGNAL_TRAP)
4425 {
4426 CORE_ADDR pc = regcache_read_pc (regcache);
4427
4428 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4429
4430 if (thread_stopped_by_watchpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_WATCHPOINT;
4434 }
4435 else if (target_supports_stopped_by_sw_breakpoint ()
4436 && thread_stopped_by_sw_breakpoint (tp->ptid))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4440 }
4441 else if (target_supports_stopped_by_hw_breakpoint ()
4442 && thread_stopped_by_hw_breakpoint (tp->ptid))
4443 {
4444 tp->suspend.stop_reason
4445 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4446 }
4447 else if (!target_supports_stopped_by_hw_breakpoint ()
4448 && hardware_breakpoint_inserted_here_p (aspace,
4449 pc))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4453 }
4454 else if (!target_supports_stopped_by_sw_breakpoint ()
4455 && software_breakpoint_inserted_here_p (aspace,
4456 pc))
4457 {
4458 tp->suspend.stop_reason
4459 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4460 }
4461 else if (!thread_has_single_step_breakpoints_set (tp)
4462 && currently_stepping (tp))
4463 {
4464 tp->suspend.stop_reason
4465 = TARGET_STOPPED_BY_SINGLE_STEP;
4466 }
4467 }
4468 }
4469
4470 /* A cleanup that disables thread create/exit events. */
4471
4472 static void
4473 disable_thread_events (void *arg)
4474 {
4475 target_thread_events (0);
4476 }
4477
4478 /* See infrun.h. */
4479
4480 void
4481 stop_all_threads (void)
4482 {
4483 /* We may need multiple passes to discover all threads. */
4484 int pass;
4485 int iterations = 0;
4486 ptid_t entry_ptid;
4487 struct cleanup *old_chain;
4488
4489 gdb_assert (target_is_non_stop_p ());
4490
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4493
4494 entry_ptid = inferior_ptid;
4495 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4496
4497 target_thread_events (1);
4498 make_cleanup (disable_thread_events, NULL);
4499
4500 /* Request threads to stop, and then wait for the stops. Because
4501 threads we already know about can spawn more threads while we're
4502 trying to stop them, and we only learn about new threads when we
4503 update the thread list, do this in a loop, and keep iterating
4504 until two passes find no threads that need to be stopped. */
4505 for (pass = 0; pass < 2; pass++, iterations++)
4506 {
4507 if (debug_infrun)
4508 fprintf_unfiltered (gdb_stdlog,
4509 "infrun: stop_all_threads, pass=%d, "
4510 "iterations=%d\n", pass, iterations);
4511 while (1)
4512 {
4513 ptid_t event_ptid;
4514 struct target_waitstatus ws;
4515 int need_wait = 0;
4516 struct thread_info *t;
4517
4518 update_thread_list ();
4519
4520 /* Go through all threads looking for threads that we need
4521 to tell the target to stop. */
4522 ALL_NON_EXITED_THREADS (t)
4523 {
4524 if (t->executing)
4525 {
4526 /* If already stopping, don't request a stop again.
4527 We just haven't seen the notification yet. */
4528 if (!t->stop_requested)
4529 {
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "infrun: %s executing, "
4533 "need stop\n",
4534 target_pid_to_str (t->ptid));
4535 target_stop (t->ptid);
4536 t->stop_requested = 1;
4537 }
4538 else
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: %s executing, "
4543 "already stopping\n",
4544 target_pid_to_str (t->ptid));
4545 }
4546
4547 if (t->stop_requested)
4548 need_wait = 1;
4549 }
4550 else
4551 {
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: %s not executing\n",
4555 target_pid_to_str (t->ptid));
4556
4557 /* The thread may be not executing, but still be
4558 resumed with a pending status to process. */
4559 t->resumed = 0;
4560 }
4561 }
4562
4563 if (!need_wait)
4564 break;
4565
4566 /* If we find new threads on the second iteration, restart
4567 over. We want to see two iterations in a row with all
4568 threads stopped. */
4569 if (pass > 0)
4570 pass = -1;
4571
4572 event_ptid = wait_one (&ws);
4573 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4574 {
4575 /* All resumed threads exited. */
4576 }
4577 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4578 || ws.kind == TARGET_WAITKIND_EXITED
4579 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4580 {
4581 if (debug_infrun)
4582 {
4583 ptid_t ptid = pid_to_ptid (ws.value.integer);
4584
4585 fprintf_unfiltered (gdb_stdlog,
4586 "infrun: %s exited while "
4587 "stopping threads\n",
4588 target_pid_to_str (ptid));
4589 }
4590 }
4591 else
4592 {
4593 struct inferior *inf;
4594
4595 t = find_thread_ptid (event_ptid);
4596 if (t == NULL)
4597 t = add_thread (event_ptid);
4598
4599 t->stop_requested = 0;
4600 t->executing = 0;
4601 t->resumed = 0;
4602 t->control.may_range_step = 0;
4603
4604 /* This may be the first time we see the inferior report
4605 a stop. */
4606 inf = find_inferior_ptid (event_ptid);
4607 if (inf->needs_setup)
4608 {
4609 switch_to_thread_no_regs (t);
4610 setup_inferior (0);
4611 }
4612
4613 if (ws.kind == TARGET_WAITKIND_STOPPED
4614 && ws.value.sig == GDB_SIGNAL_0)
4615 {
4616 /* We caught the event that we intended to catch, so
4617 there's no event pending. */
4618 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4619 t->suspend.waitstatus_pending_p = 0;
4620
4621 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4622 {
4623 /* Add it back to the step-over queue. */
4624 if (debug_infrun)
4625 {
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: displaced-step of %s "
4628 "canceled: adding back to the "
4629 "step-over queue\n",
4630 target_pid_to_str (t->ptid));
4631 }
4632 t->control.trap_expected = 0;
4633 thread_step_over_chain_enqueue (t);
4634 }
4635 }
4636 else
4637 {
4638 enum gdb_signal sig;
4639 struct regcache *regcache;
4640
4641 if (debug_infrun)
4642 {
4643 char *statstr;
4644
4645 statstr = target_waitstatus_to_string (&ws);
4646 fprintf_unfiltered (gdb_stdlog,
4647 "infrun: target_wait %s, saving "
4648 "status for %d.%ld.%ld\n",
4649 statstr,
4650 ptid_get_pid (t->ptid),
4651 ptid_get_lwp (t->ptid),
4652 ptid_get_tid (t->ptid));
4653 xfree (statstr);
4654 }
4655
4656 /* Record for later. */
4657 save_waitstatus (t, &ws);
4658
4659 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4660 ? ws.value.sig : GDB_SIGNAL_0);
4661
4662 if (displaced_step_fixup (t->ptid, sig) < 0)
4663 {
4664 /* Add it back to the step-over queue. */
4665 t->control.trap_expected = 0;
4666 thread_step_over_chain_enqueue (t);
4667 }
4668
4669 regcache = get_thread_regcache (t->ptid);
4670 t->suspend.stop_pc = regcache_read_pc (regcache);
4671
4672 if (debug_infrun)
4673 {
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: saved stop_pc=%s for %s "
4676 "(currently_stepping=%d)\n",
4677 paddress (target_gdbarch (),
4678 t->suspend.stop_pc),
4679 target_pid_to_str (t->ptid),
4680 currently_stepping (t));
4681 }
4682 }
4683 }
4684 }
4685 }
4686
4687 do_cleanups (old_chain);
4688
4689 if (debug_infrun)
4690 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4691 }
4692
4693 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4694
4695 static int
4696 handle_no_resumed (struct execution_control_state *ecs)
4697 {
4698 struct inferior *inf;
4699 struct thread_info *thread;
4700
4701 if (target_can_async_p ())
4702 {
4703 struct ui *ui;
4704 int any_sync = 0;
4705
4706 ALL_UIS (ui)
4707 {
4708 if (ui->prompt_state == PROMPT_BLOCKED)
4709 {
4710 any_sync = 1;
4711 break;
4712 }
4713 }
4714 if (!any_sync)
4715 {
4716 /* There were no unwaited-for children left in the target, but,
4717 we're not synchronously waiting for events either. Just
4718 ignore. */
4719
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: TARGET_WAITKIND_NO_RESUMED "
4723 "(ignoring: bg)\n");
4724 prepare_to_wait (ecs);
4725 return 1;
4726 }
4727 }
4728
4729 /* Otherwise, if we were running a synchronous execution command, we
4730 may need to cancel it and give the user back the terminal.
4731
4732 In non-stop mode, the target can't tell whether we've already
4733 consumed previous stop events, so it can end up sending us a
4734 no-resumed event like so:
4735
4736 #0 - thread 1 is left stopped
4737
4738 #1 - thread 2 is resumed and hits breakpoint
4739 -> TARGET_WAITKIND_STOPPED
4740
4741 #2 - thread 3 is resumed and exits
4742 this is the last resumed thread, so
4743 -> TARGET_WAITKIND_NO_RESUMED
4744
4745 #3 - gdb processes stop for thread 2 and decides to re-resume
4746 it.
4747
4748 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4749 thread 2 is now resumed, so the event should be ignored.
4750
4751 IOW, if the stop for thread 2 doesn't end a foreground command,
4752 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4753 event. But it could be that the event meant that thread 2 itself
4754 (or whatever other thread was the last resumed thread) exited.
4755
4756 To address this we refresh the thread list and check whether we
4757 have resumed threads _now_. In the example above, this removes
4758 thread 3 from the thread list. If thread 2 was re-resumed, we
4759 ignore this event. If we find no thread resumed, then we cancel
4760 the synchronous command show "no unwaited-for " to the user. */
4761 update_thread_list ();
4762
4763 ALL_NON_EXITED_THREADS (thread)
4764 {
4765 if (thread->executing
4766 || thread->suspend.waitstatus_pending_p)
4767 {
4768 /* There were no unwaited-for children left in the target at
4769 some point, but there are now. Just ignore. */
4770 if (debug_infrun)
4771 fprintf_unfiltered (gdb_stdlog,
4772 "infrun: TARGET_WAITKIND_NO_RESUMED "
4773 "(ignoring: found resumed)\n");
4774 prepare_to_wait (ecs);
4775 return 1;
4776 }
4777 }
4778
4779 /* Note however that we may find no resumed thread because the whole
4780 process exited meanwhile (thus updating the thread list results
4781 in an empty thread list). In this case we know we'll be getting
4782 a process exit event shortly. */
4783 ALL_INFERIORS (inf)
4784 {
4785 if (inf->pid == 0)
4786 continue;
4787
4788 thread = any_live_thread_of_process (inf->pid);
4789 if (thread == NULL)
4790 {
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog,
4793 "infrun: TARGET_WAITKIND_NO_RESUMED "
4794 "(expect process exit)\n");
4795 prepare_to_wait (ecs);
4796 return 1;
4797 }
4798 }
4799
4800 /* Go ahead and report the event. */
4801 return 0;
4802 }
4803
4804 /* Given an execution control state that has been freshly filled in by
4805 an event from the inferior, figure out what it means and take
4806 appropriate action.
4807
4808 The alternatives are:
4809
4810 1) stop_waiting and return; to really stop and return to the
4811 debugger.
4812
4813 2) keep_going and return; to wait for the next event (set
4814 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4815 once). */
4816
4817 static void
4818 handle_inferior_event_1 (struct execution_control_state *ecs)
4819 {
4820 enum stop_kind stop_soon;
4821
4822 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4823 {
4824 /* We had an event in the inferior, but we are not interested in
4825 handling it at this level. The lower layers have already
4826 done what needs to be done, if anything.
4827
4828 One of the possible circumstances for this is when the
4829 inferior produces output for the console. The inferior has
4830 not stopped, and we are ignoring the event. Another possible
4831 circumstance is any event which the lower level knows will be
4832 reported multiple times without an intervening resume. */
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4835 prepare_to_wait (ecs);
4836 return;
4837 }
4838
4839 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4840 {
4841 if (debug_infrun)
4842 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4843 prepare_to_wait (ecs);
4844 return;
4845 }
4846
4847 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4848 && handle_no_resumed (ecs))
4849 return;
4850
4851 /* Cache the last pid/waitstatus. */
4852 set_last_target_status (ecs->ptid, ecs->ws);
4853
4854 /* Always clear state belonging to the previous time we stopped. */
4855 stop_stack_dummy = STOP_NONE;
4856
4857 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4858 {
4859 /* No unwaited-for children left. IOW, all resumed children
4860 have exited. */
4861 if (debug_infrun)
4862 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4863
4864 stop_print_frame = 0;
4865 stop_waiting (ecs);
4866 return;
4867 }
4868
4869 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4870 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4871 {
4872 ecs->event_thread = find_thread_ptid (ecs->ptid);
4873 /* If it's a new thread, add it to the thread database. */
4874 if (ecs->event_thread == NULL)
4875 ecs->event_thread = add_thread (ecs->ptid);
4876
4877 /* Disable range stepping. If the next step request could use a
4878 range, this will be end up re-enabled then. */
4879 ecs->event_thread->control.may_range_step = 0;
4880 }
4881
4882 /* Dependent on valid ECS->EVENT_THREAD. */
4883 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4884
4885 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4886 reinit_frame_cache ();
4887
4888 breakpoint_retire_moribund ();
4889
4890 /* First, distinguish signals caused by the debugger from signals
4891 that have to do with the program's own actions. Note that
4892 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4893 on the operating system version. Here we detect when a SIGILL or
4894 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4895 something similar for SIGSEGV, since a SIGSEGV will be generated
4896 when we're trying to execute a breakpoint instruction on a
4897 non-executable stack. This happens for call dummy breakpoints
4898 for architectures like SPARC that place call dummies on the
4899 stack. */
4900 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4901 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4902 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4903 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4904 {
4905 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4906
4907 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4908 regcache_read_pc (regcache)))
4909 {
4910 if (debug_infrun)
4911 fprintf_unfiltered (gdb_stdlog,
4912 "infrun: Treating signal as SIGTRAP\n");
4913 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4914 }
4915 }
4916
4917 /* Mark the non-executing threads accordingly. In all-stop, all
4918 threads of all processes are stopped when we get any event
4919 reported. In non-stop mode, only the event thread stops. */
4920 {
4921 ptid_t mark_ptid;
4922
4923 if (!target_is_non_stop_p ())
4924 mark_ptid = minus_one_ptid;
4925 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4926 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4927 {
4928 /* If we're handling a process exit in non-stop mode, even
4929 though threads haven't been deleted yet, one would think
4930 that there is nothing to do, as threads of the dead process
4931 will be soon deleted, and threads of any other process were
4932 left running. However, on some targets, threads survive a
4933 process exit event. E.g., for the "checkpoint" command,
4934 when the current checkpoint/fork exits, linux-fork.c
4935 automatically switches to another fork from within
4936 target_mourn_inferior, by associating the same
4937 inferior/thread to another fork. We haven't mourned yet at
4938 this point, but we must mark any threads left in the
4939 process as not-executing so that finish_thread_state marks
4940 them stopped (in the user's perspective) if/when we present
4941 the stop to the user. */
4942 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4943 }
4944 else
4945 mark_ptid = ecs->ptid;
4946
4947 set_executing (mark_ptid, 0);
4948
4949 /* Likewise the resumed flag. */
4950 set_resumed (mark_ptid, 0);
4951 }
4952
4953 switch (ecs->ws.kind)
4954 {
4955 case TARGET_WAITKIND_LOADED:
4956 if (debug_infrun)
4957 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4958 if (!ptid_equal (ecs->ptid, inferior_ptid))
4959 context_switch (ecs->ptid);
4960 /* Ignore gracefully during startup of the inferior, as it might
4961 be the shell which has just loaded some objects, otherwise
4962 add the symbols for the newly loaded objects. Also ignore at
4963 the beginning of an attach or remote session; we will query
4964 the full list of libraries once the connection is
4965 established. */
4966
4967 stop_soon = get_inferior_stop_soon (ecs->ptid);
4968 if (stop_soon == NO_STOP_QUIETLY)
4969 {
4970 struct regcache *regcache;
4971
4972 regcache = get_thread_regcache (ecs->ptid);
4973
4974 handle_solib_event ();
4975
4976 ecs->event_thread->control.stop_bpstat
4977 = bpstat_stop_status (get_regcache_aspace (regcache),
4978 stop_pc, ecs->ptid, &ecs->ws);
4979
4980 if (handle_stop_requested (ecs))
4981 return;
4982
4983 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4984 {
4985 /* A catchpoint triggered. */
4986 process_event_stop_test (ecs);
4987 return;
4988 }
4989
4990 /* If requested, stop when the dynamic linker notifies
4991 gdb of events. This allows the user to get control
4992 and place breakpoints in initializer routines for
4993 dynamically loaded objects (among other things). */
4994 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4995 if (stop_on_solib_events)
4996 {
4997 /* Make sure we print "Stopped due to solib-event" in
4998 normal_stop. */
4999 stop_print_frame = 1;
5000
5001 stop_waiting (ecs);
5002 return;
5003 }
5004 }
5005
5006 /* If we are skipping through a shell, or through shared library
5007 loading that we aren't interested in, resume the program. If
5008 we're running the program normally, also resume. */
5009 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5010 {
5011 /* Loading of shared libraries might have changed breakpoint
5012 addresses. Make sure new breakpoints are inserted. */
5013 if (stop_soon == NO_STOP_QUIETLY)
5014 insert_breakpoints ();
5015 resume (GDB_SIGNAL_0);
5016 prepare_to_wait (ecs);
5017 return;
5018 }
5019
5020 /* But stop if we're attaching or setting up a remote
5021 connection. */
5022 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5023 || stop_soon == STOP_QUIETLY_REMOTE)
5024 {
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5027 stop_waiting (ecs);
5028 return;
5029 }
5030
5031 internal_error (__FILE__, __LINE__,
5032 _("unhandled stop_soon: %d"), (int) stop_soon);
5033
5034 case TARGET_WAITKIND_SPURIOUS:
5035 if (debug_infrun)
5036 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5037 if (handle_stop_requested (ecs))
5038 return;
5039 if (!ptid_equal (ecs->ptid, inferior_ptid))
5040 context_switch (ecs->ptid);
5041 resume (GDB_SIGNAL_0);
5042 prepare_to_wait (ecs);
5043 return;
5044
5045 case TARGET_WAITKIND_THREAD_CREATED:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5048 if (handle_stop_requested (ecs))
5049 return;
5050 if (!ptid_equal (ecs->ptid, inferior_ptid))
5051 context_switch (ecs->ptid);
5052 if (!switch_back_to_stepped_thread (ecs))
5053 keep_going (ecs);
5054 return;
5055
5056 case TARGET_WAITKIND_EXITED:
5057 case TARGET_WAITKIND_SIGNALLED:
5058 if (debug_infrun)
5059 {
5060 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: TARGET_WAITKIND_EXITED\n");
5063 else
5064 fprintf_unfiltered (gdb_stdlog,
5065 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5066 }
5067
5068 inferior_ptid = ecs->ptid;
5069 set_current_inferior (find_inferior_ptid (ecs->ptid));
5070 set_current_program_space (current_inferior ()->pspace);
5071 handle_vfork_child_exec_or_exit (0);
5072 target_terminal_ours (); /* Must do this before mourn anyway. */
5073
5074 /* Clearing any previous state of convenience variables. */
5075 clear_exit_convenience_vars ();
5076
5077 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5078 {
5079 /* Record the exit code in the convenience variable $_exitcode, so
5080 that the user can inspect this again later. */
5081 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5082 (LONGEST) ecs->ws.value.integer);
5083
5084 /* Also record this in the inferior itself. */
5085 current_inferior ()->has_exit_code = 1;
5086 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5087
5088 /* Support the --return-child-result option. */
5089 return_child_result_value = ecs->ws.value.integer;
5090
5091 observer_notify_exited (ecs->ws.value.integer);
5092 }
5093 else
5094 {
5095 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5096 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5097
5098 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5099 {
5100 /* Set the value of the internal variable $_exitsignal,
5101 which holds the signal uncaught by the inferior. */
5102 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5103 gdbarch_gdb_signal_to_target (gdbarch,
5104 ecs->ws.value.sig));
5105 }
5106 else
5107 {
5108 /* We don't have access to the target's method used for
5109 converting between signal numbers (GDB's internal
5110 representation <-> target's representation).
5111 Therefore, we cannot do a good job at displaying this
5112 information to the user. It's better to just warn
5113 her about it (if infrun debugging is enabled), and
5114 give up. */
5115 if (debug_infrun)
5116 fprintf_filtered (gdb_stdlog, _("\
5117 Cannot fill $_exitsignal with the correct signal number.\n"));
5118 }
5119
5120 observer_notify_signal_exited (ecs->ws.value.sig);
5121 }
5122
5123 gdb_flush (gdb_stdout);
5124 target_mourn_inferior (inferior_ptid);
5125 stop_print_frame = 0;
5126 stop_waiting (ecs);
5127 return;
5128
5129 /* The following are the only cases in which we keep going;
5130 the above cases end in a continue or goto. */
5131 case TARGET_WAITKIND_FORKED:
5132 case TARGET_WAITKIND_VFORKED:
5133 if (debug_infrun)
5134 {
5135 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5137 else
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5139 }
5140
5141 /* Check whether the inferior is displaced stepping. */
5142 {
5143 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5145
5146 /* If checking displaced stepping is supported, and thread
5147 ecs->ptid is displaced stepping. */
5148 if (displaced_step_in_progress_thread (ecs->ptid))
5149 {
5150 struct inferior *parent_inf
5151 = find_inferior_ptid (ecs->ptid);
5152 struct regcache *child_regcache;
5153 CORE_ADDR parent_pc;
5154
5155 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5156 indicating that the displaced stepping of syscall instruction
5157 has been done. Perform cleanup for parent process here. Note
5158 that this operation also cleans up the child process for vfork,
5159 because their pages are shared. */
5160 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5161 /* Start a new step-over in another thread if there's one
5162 that needs it. */
5163 start_step_over ();
5164
5165 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5166 {
5167 struct displaced_step_inferior_state *displaced
5168 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5169
5170 /* Restore scratch pad for child process. */
5171 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5172 }
5173
5174 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5175 the child's PC is also within the scratchpad. Set the child's PC
5176 to the parent's PC value, which has already been fixed up.
5177 FIXME: we use the parent's aspace here, although we're touching
5178 the child, because the child hasn't been added to the inferior
5179 list yet at this point. */
5180
5181 child_regcache
5182 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5183 gdbarch,
5184 parent_inf->aspace);
5185 /* Read PC value of parent process. */
5186 parent_pc = regcache_read_pc (regcache);
5187
5188 if (debug_displaced)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "displaced: write child pc from %s to %s\n",
5191 paddress (gdbarch,
5192 regcache_read_pc (child_regcache)),
5193 paddress (gdbarch, parent_pc));
5194
5195 regcache_write_pc (child_regcache, parent_pc);
5196 }
5197 }
5198
5199 if (!ptid_equal (ecs->ptid, inferior_ptid))
5200 context_switch (ecs->ptid);
5201
5202 /* Immediately detach breakpoints from the child before there's
5203 any chance of letting the user delete breakpoints from the
5204 breakpoint lists. If we don't do this early, it's easy to
5205 leave left over traps in the child, vis: "break foo; catch
5206 fork; c; <fork>; del; c; <child calls foo>". We only follow
5207 the fork on the last `continue', and by that time the
5208 breakpoint at "foo" is long gone from the breakpoint table.
5209 If we vforked, then we don't need to unpatch here, since both
5210 parent and child are sharing the same memory pages; we'll
5211 need to unpatch at follow/detach time instead to be certain
5212 that new breakpoints added between catchpoint hit time and
5213 vfork follow are detached. */
5214 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5215 {
5216 /* This won't actually modify the breakpoint list, but will
5217 physically remove the breakpoints from the child. */
5218 detach_breakpoints (ecs->ws.value.related_pid);
5219 }
5220
5221 delete_just_stopped_threads_single_step_breakpoints ();
5222
5223 /* In case the event is caught by a catchpoint, remember that
5224 the event is to be followed at the next resume of the thread,
5225 and not immediately. */
5226 ecs->event_thread->pending_follow = ecs->ws;
5227
5228 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5229
5230 ecs->event_thread->control.stop_bpstat
5231 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5232 stop_pc, ecs->ptid, &ecs->ws);
5233
5234 if (handle_stop_requested (ecs))
5235 return;
5236
5237 /* If no catchpoint triggered for this, then keep going. Note
5238 that we're interested in knowing the bpstat actually causes a
5239 stop, not just if it may explain the signal. Software
5240 watchpoints, for example, always appear in the bpstat. */
5241 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5242 {
5243 ptid_t parent;
5244 ptid_t child;
5245 int should_resume;
5246 int follow_child
5247 = (follow_fork_mode_string == follow_fork_mode_child);
5248
5249 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5250
5251 should_resume = follow_fork ();
5252
5253 parent = ecs->ptid;
5254 child = ecs->ws.value.related_pid;
5255
5256 /* At this point, the parent is marked running, and the
5257 child is marked stopped. */
5258
5259 /* If not resuming the parent, mark it stopped. */
5260 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5261 set_running (parent, 0);
5262
5263 /* If resuming the child, mark it running. */
5264 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5265 set_running (child, 1);
5266
5267 /* In non-stop mode, also resume the other branch. */
5268 if (!detach_fork && (non_stop
5269 || (sched_multi && target_is_non_stop_p ())))
5270 {
5271 if (follow_child)
5272 switch_to_thread (parent);
5273 else
5274 switch_to_thread (child);
5275
5276 ecs->event_thread = inferior_thread ();
5277 ecs->ptid = inferior_ptid;
5278 keep_going (ecs);
5279 }
5280
5281 if (follow_child)
5282 switch_to_thread (child);
5283 else
5284 switch_to_thread (parent);
5285
5286 ecs->event_thread = inferior_thread ();
5287 ecs->ptid = inferior_ptid;
5288
5289 if (should_resume)
5290 keep_going (ecs);
5291 else
5292 stop_waiting (ecs);
5293 return;
5294 }
5295 process_event_stop_test (ecs);
5296 return;
5297
5298 case TARGET_WAITKIND_VFORK_DONE:
5299 /* Done with the shared memory region. Re-insert breakpoints in
5300 the parent, and keep going. */
5301
5302 if (debug_infrun)
5303 fprintf_unfiltered (gdb_stdlog,
5304 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5305
5306 if (!ptid_equal (ecs->ptid, inferior_ptid))
5307 context_switch (ecs->ptid);
5308
5309 current_inferior ()->waiting_for_vfork_done = 0;
5310 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5311
5312 if (handle_stop_requested (ecs))
5313 return;
5314
5315 /* This also takes care of reinserting breakpoints in the
5316 previously locked inferior. */
5317 keep_going (ecs);
5318 return;
5319
5320 case TARGET_WAITKIND_EXECD:
5321 if (debug_infrun)
5322 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5323
5324 if (!ptid_equal (ecs->ptid, inferior_ptid))
5325 context_switch (ecs->ptid);
5326
5327 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5328
5329 /* Do whatever is necessary to the parent branch of the vfork. */
5330 handle_vfork_child_exec_or_exit (1);
5331
5332 /* This causes the eventpoints and symbol table to be reset.
5333 Must do this now, before trying to determine whether to
5334 stop. */
5335 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5336
5337 /* In follow_exec we may have deleted the original thread and
5338 created a new one. Make sure that the event thread is the
5339 execd thread for that case (this is a nop otherwise). */
5340 ecs->event_thread = inferior_thread ();
5341
5342 ecs->event_thread->control.stop_bpstat
5343 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5344 stop_pc, ecs->ptid, &ecs->ws);
5345
5346 /* Note that this may be referenced from inside
5347 bpstat_stop_status above, through inferior_has_execd. */
5348 xfree (ecs->ws.value.execd_pathname);
5349 ecs->ws.value.execd_pathname = NULL;
5350
5351 if (handle_stop_requested (ecs))
5352 return;
5353
5354 /* If no catchpoint triggered for this, then keep going. */
5355 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5356 {
5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5358 keep_going (ecs);
5359 return;
5360 }
5361 process_event_stop_test (ecs);
5362 return;
5363
5364 /* Be careful not to try to gather much state about a thread
5365 that's in a syscall. It's frequently a losing proposition. */
5366 case TARGET_WAITKIND_SYSCALL_ENTRY:
5367 if (debug_infrun)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5370 /* Getting the current syscall number. */
5371 if (handle_syscall_event (ecs) == 0)
5372 process_event_stop_test (ecs);
5373 return;
5374
5375 /* Before examining the threads further, step this thread to
5376 get it entirely out of the syscall. (We get notice of the
5377 event when the thread is just on the verge of exiting a
5378 syscall. Stepping one instruction seems to get it back
5379 into user code.) */
5380 case TARGET_WAITKIND_SYSCALL_RETURN:
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5384 if (handle_syscall_event (ecs) == 0)
5385 process_event_stop_test (ecs);
5386 return;
5387
5388 case TARGET_WAITKIND_STOPPED:
5389 if (debug_infrun)
5390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5391 handle_signal_stop (ecs);
5392 return;
5393
5394 case TARGET_WAITKIND_NO_HISTORY:
5395 if (debug_infrun)
5396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5397 /* Reverse execution: target ran out of history info. */
5398
5399 /* Switch to the stopped thread. */
5400 if (!ptid_equal (ecs->ptid, inferior_ptid))
5401 context_switch (ecs->ptid);
5402 if (debug_infrun)
5403 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5404
5405 delete_just_stopped_threads_single_step_breakpoints ();
5406 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5407
5408 if (handle_stop_requested (ecs))
5409 return;
5410
5411 observer_notify_no_history ();
5412 stop_waiting (ecs);
5413 return;
5414 }
5415 }
5416
5417 /* A wrapper around handle_inferior_event_1, which also makes sure
5418 that all temporary struct value objects that were created during
5419 the handling of the event get deleted at the end. */
5420
5421 static void
5422 handle_inferior_event (struct execution_control_state *ecs)
5423 {
5424 struct value *mark = value_mark ();
5425
5426 handle_inferior_event_1 (ecs);
5427 /* Purge all temporary values created during the event handling,
5428 as it could be a long time before we return to the command level
5429 where such values would otherwise be purged. */
5430 value_free_to_mark (mark);
5431 }
5432
5433 /* Restart threads back to what they were trying to do back when we
5434 paused them for an in-line step-over. The EVENT_THREAD thread is
5435 ignored. */
5436
5437 static void
5438 restart_threads (struct thread_info *event_thread)
5439 {
5440 struct thread_info *tp;
5441
5442 /* In case the instruction just stepped spawned a new thread. */
5443 update_thread_list ();
5444
5445 ALL_NON_EXITED_THREADS (tp)
5446 {
5447 if (tp == event_thread)
5448 {
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog,
5451 "infrun: restart threads: "
5452 "[%s] is event thread\n",
5453 target_pid_to_str (tp->ptid));
5454 continue;
5455 }
5456
5457 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5458 {
5459 if (debug_infrun)
5460 fprintf_unfiltered (gdb_stdlog,
5461 "infrun: restart threads: "
5462 "[%s] not meant to be running\n",
5463 target_pid_to_str (tp->ptid));
5464 continue;
5465 }
5466
5467 if (tp->resumed)
5468 {
5469 if (debug_infrun)
5470 fprintf_unfiltered (gdb_stdlog,
5471 "infrun: restart threads: [%s] resumed\n",
5472 target_pid_to_str (tp->ptid));
5473 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5474 continue;
5475 }
5476
5477 if (thread_is_in_step_over_chain (tp))
5478 {
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: restart threads: "
5482 "[%s] needs step-over\n",
5483 target_pid_to_str (tp->ptid));
5484 gdb_assert (!tp->resumed);
5485 continue;
5486 }
5487
5488
5489 if (tp->suspend.waitstatus_pending_p)
5490 {
5491 if (debug_infrun)
5492 fprintf_unfiltered (gdb_stdlog,
5493 "infrun: restart threads: "
5494 "[%s] has pending status\n",
5495 target_pid_to_str (tp->ptid));
5496 tp->resumed = 1;
5497 continue;
5498 }
5499
5500 gdb_assert (!tp->stop_requested);
5501
5502 /* If some thread needs to start a step-over at this point, it
5503 should still be in the step-over queue, and thus skipped
5504 above. */
5505 if (thread_still_needs_step_over (tp))
5506 {
5507 internal_error (__FILE__, __LINE__,
5508 "thread [%s] needs a step-over, but not in "
5509 "step-over queue\n",
5510 target_pid_to_str (tp->ptid));
5511 }
5512
5513 if (currently_stepping (tp))
5514 {
5515 if (debug_infrun)
5516 fprintf_unfiltered (gdb_stdlog,
5517 "infrun: restart threads: [%s] was stepping\n",
5518 target_pid_to_str (tp->ptid));
5519 keep_going_stepped_thread (tp);
5520 }
5521 else
5522 {
5523 struct execution_control_state ecss;
5524 struct execution_control_state *ecs = &ecss;
5525
5526 if (debug_infrun)
5527 fprintf_unfiltered (gdb_stdlog,
5528 "infrun: restart threads: [%s] continuing\n",
5529 target_pid_to_str (tp->ptid));
5530 reset_ecs (ecs, tp);
5531 switch_to_thread (tp->ptid);
5532 keep_going_pass_signal (ecs);
5533 }
5534 }
5535 }
5536
5537 /* Callback for iterate_over_threads. Find a resumed thread that has
5538 a pending waitstatus. */
5539
5540 static int
5541 resumed_thread_with_pending_status (struct thread_info *tp,
5542 void *arg)
5543 {
5544 return (tp->resumed
5545 && tp->suspend.waitstatus_pending_p);
5546 }
5547
5548 /* Called when we get an event that may finish an in-line or
5549 out-of-line (displaced stepping) step-over started previously.
5550 Return true if the event is processed and we should go back to the
5551 event loop; false if the caller should continue processing the
5552 event. */
5553
5554 static int
5555 finish_step_over (struct execution_control_state *ecs)
5556 {
5557 int had_step_over_info;
5558
5559 displaced_step_fixup (ecs->ptid,
5560 ecs->event_thread->suspend.stop_signal);
5561
5562 had_step_over_info = step_over_info_valid_p ();
5563
5564 if (had_step_over_info)
5565 {
5566 /* If we're stepping over a breakpoint with all threads locked,
5567 then only the thread that was stepped should be reporting
5568 back an event. */
5569 gdb_assert (ecs->event_thread->control.trap_expected);
5570
5571 clear_step_over_info ();
5572 }
5573
5574 if (!target_is_non_stop_p ())
5575 return 0;
5576
5577 /* Start a new step-over in another thread if there's one that
5578 needs it. */
5579 start_step_over ();
5580
5581 /* If we were stepping over a breakpoint before, and haven't started
5582 a new in-line step-over sequence, then restart all other threads
5583 (except the event thread). We can't do this in all-stop, as then
5584 e.g., we wouldn't be able to issue any other remote packet until
5585 these other threads stop. */
5586 if (had_step_over_info && !step_over_info_valid_p ())
5587 {
5588 struct thread_info *pending;
5589
5590 /* If we only have threads with pending statuses, the restart
5591 below won't restart any thread and so nothing re-inserts the
5592 breakpoint we just stepped over. But we need it inserted
5593 when we later process the pending events, otherwise if
5594 another thread has a pending event for this breakpoint too,
5595 we'd discard its event (because the breakpoint that
5596 originally caused the event was no longer inserted). */
5597 context_switch (ecs->ptid);
5598 insert_breakpoints ();
5599
5600 restart_threads (ecs->event_thread);
5601
5602 /* If we have events pending, go through handle_inferior_event
5603 again, picking up a pending event at random. This avoids
5604 thread starvation. */
5605
5606 /* But not if we just stepped over a watchpoint in order to let
5607 the instruction execute so we can evaluate its expression.
5608 The set of watchpoints that triggered is recorded in the
5609 breakpoint objects themselves (see bp->watchpoint_triggered).
5610 If we processed another event first, that other event could
5611 clobber this info. */
5612 if (ecs->event_thread->stepping_over_watchpoint)
5613 return 0;
5614
5615 pending = iterate_over_threads (resumed_thread_with_pending_status,
5616 NULL);
5617 if (pending != NULL)
5618 {
5619 struct thread_info *tp = ecs->event_thread;
5620 struct regcache *regcache;
5621
5622 if (debug_infrun)
5623 {
5624 fprintf_unfiltered (gdb_stdlog,
5625 "infrun: found resumed threads with "
5626 "pending events, saving status\n");
5627 }
5628
5629 gdb_assert (pending != tp);
5630
5631 /* Record the event thread's event for later. */
5632 save_waitstatus (tp, &ecs->ws);
5633 /* This was cleared early, by handle_inferior_event. Set it
5634 so this pending event is considered by
5635 do_target_wait. */
5636 tp->resumed = 1;
5637
5638 gdb_assert (!tp->executing);
5639
5640 regcache = get_thread_regcache (tp->ptid);
5641 tp->suspend.stop_pc = regcache_read_pc (regcache);
5642
5643 if (debug_infrun)
5644 {
5645 fprintf_unfiltered (gdb_stdlog,
5646 "infrun: saved stop_pc=%s for %s "
5647 "(currently_stepping=%d)\n",
5648 paddress (target_gdbarch (),
5649 tp->suspend.stop_pc),
5650 target_pid_to_str (tp->ptid),
5651 currently_stepping (tp));
5652 }
5653
5654 /* This in-line step-over finished; clear this so we won't
5655 start a new one. This is what handle_signal_stop would
5656 do, if we returned false. */
5657 tp->stepping_over_breakpoint = 0;
5658
5659 /* Wake up the event loop again. */
5660 mark_async_event_handler (infrun_async_inferior_event_token);
5661
5662 prepare_to_wait (ecs);
5663 return 1;
5664 }
5665 }
5666
5667 return 0;
5668 }
5669
5670 /* Come here when the program has stopped with a signal. */
5671
5672 static void
5673 handle_signal_stop (struct execution_control_state *ecs)
5674 {
5675 struct frame_info *frame;
5676 struct gdbarch *gdbarch;
5677 int stopped_by_watchpoint;
5678 enum stop_kind stop_soon;
5679 int random_signal;
5680
5681 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5682
5683 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5684
5685 /* Do we need to clean up the state of a thread that has
5686 completed a displaced single-step? (Doing so usually affects
5687 the PC, so do it here, before we set stop_pc.) */
5688 if (finish_step_over (ecs))
5689 return;
5690
5691 /* If we either finished a single-step or hit a breakpoint, but
5692 the user wanted this thread to be stopped, pretend we got a
5693 SIG0 (generic unsignaled stop). */
5694 if (ecs->event_thread->stop_requested
5695 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5696 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5697
5698 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5699
5700 if (debug_infrun)
5701 {
5702 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5704 struct cleanup *old_chain = save_inferior_ptid ();
5705
5706 inferior_ptid = ecs->ptid;
5707
5708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5709 paddress (gdbarch, stop_pc));
5710 if (target_stopped_by_watchpoint ())
5711 {
5712 CORE_ADDR addr;
5713
5714 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5715
5716 if (target_stopped_data_address (&current_target, &addr))
5717 fprintf_unfiltered (gdb_stdlog,
5718 "infrun: stopped data address = %s\n",
5719 paddress (gdbarch, addr));
5720 else
5721 fprintf_unfiltered (gdb_stdlog,
5722 "infrun: (no data address available)\n");
5723 }
5724
5725 do_cleanups (old_chain);
5726 }
5727
5728 /* This is originated from start_remote(), start_inferior() and
5729 shared libraries hook functions. */
5730 stop_soon = get_inferior_stop_soon (ecs->ptid);
5731 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5732 {
5733 if (!ptid_equal (ecs->ptid, inferior_ptid))
5734 context_switch (ecs->ptid);
5735 if (debug_infrun)
5736 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5737 stop_print_frame = 1;
5738 stop_waiting (ecs);
5739 return;
5740 }
5741
5742 /* This originates from attach_command(). We need to overwrite
5743 the stop_signal here, because some kernels don't ignore a
5744 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5745 See more comments in inferior.h. On the other hand, if we
5746 get a non-SIGSTOP, report it to the user - assume the backend
5747 will handle the SIGSTOP if it should show up later.
5748
5749 Also consider that the attach is complete when we see a
5750 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5751 target extended-remote report it instead of a SIGSTOP
5752 (e.g. gdbserver). We already rely on SIGTRAP being our
5753 signal, so this is no exception.
5754
5755 Also consider that the attach is complete when we see a
5756 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5757 the target to stop all threads of the inferior, in case the
5758 low level attach operation doesn't stop them implicitly. If
5759 they weren't stopped implicitly, then the stub will report a
5760 GDB_SIGNAL_0, meaning: stopped for no particular reason
5761 other than GDB's request. */
5762 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5763 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5764 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5765 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5766 {
5767 stop_print_frame = 1;
5768 stop_waiting (ecs);
5769 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5770 return;
5771 }
5772
5773 /* See if something interesting happened to the non-current thread. If
5774 so, then switch to that thread. */
5775 if (!ptid_equal (ecs->ptid, inferior_ptid))
5776 {
5777 if (debug_infrun)
5778 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5779
5780 context_switch (ecs->ptid);
5781
5782 if (deprecated_context_hook)
5783 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5784 }
5785
5786 /* At this point, get hold of the now-current thread's frame. */
5787 frame = get_current_frame ();
5788 gdbarch = get_frame_arch (frame);
5789
5790 /* Pull the single step breakpoints out of the target. */
5791 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5792 {
5793 struct regcache *regcache;
5794 struct address_space *aspace;
5795 CORE_ADDR pc;
5796
5797 regcache = get_thread_regcache (ecs->ptid);
5798 aspace = get_regcache_aspace (regcache);
5799 pc = regcache_read_pc (regcache);
5800
5801 /* However, before doing so, if this single-step breakpoint was
5802 actually for another thread, set this thread up for moving
5803 past it. */
5804 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5805 aspace, pc))
5806 {
5807 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5808 {
5809 if (debug_infrun)
5810 {
5811 fprintf_unfiltered (gdb_stdlog,
5812 "infrun: [%s] hit another thread's "
5813 "single-step breakpoint\n",
5814 target_pid_to_str (ecs->ptid));
5815 }
5816 ecs->hit_singlestep_breakpoint = 1;
5817 }
5818 }
5819 else
5820 {
5821 if (debug_infrun)
5822 {
5823 fprintf_unfiltered (gdb_stdlog,
5824 "infrun: [%s] hit its "
5825 "single-step breakpoint\n",
5826 target_pid_to_str (ecs->ptid));
5827 }
5828 }
5829 }
5830 delete_just_stopped_threads_single_step_breakpoints ();
5831
5832 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5833 && ecs->event_thread->control.trap_expected
5834 && ecs->event_thread->stepping_over_watchpoint)
5835 stopped_by_watchpoint = 0;
5836 else
5837 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5838
5839 /* If necessary, step over this watchpoint. We'll be back to display
5840 it in a moment. */
5841 if (stopped_by_watchpoint
5842 && (target_have_steppable_watchpoint
5843 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5844 {
5845 /* At this point, we are stopped at an instruction which has
5846 attempted to write to a piece of memory under control of
5847 a watchpoint. The instruction hasn't actually executed
5848 yet. If we were to evaluate the watchpoint expression
5849 now, we would get the old value, and therefore no change
5850 would seem to have occurred.
5851
5852 In order to make watchpoints work `right', we really need
5853 to complete the memory write, and then evaluate the
5854 watchpoint expression. We do this by single-stepping the
5855 target.
5856
5857 It may not be necessary to disable the watchpoint to step over
5858 it. For example, the PA can (with some kernel cooperation)
5859 single step over a watchpoint without disabling the watchpoint.
5860
5861 It is far more common to need to disable a watchpoint to step
5862 the inferior over it. If we have non-steppable watchpoints,
5863 we must disable the current watchpoint; it's simplest to
5864 disable all watchpoints.
5865
5866 Any breakpoint at PC must also be stepped over -- if there's
5867 one, it will have already triggered before the watchpoint
5868 triggered, and we either already reported it to the user, or
5869 it didn't cause a stop and we called keep_going. In either
5870 case, if there was a breakpoint at PC, we must be trying to
5871 step past it. */
5872 ecs->event_thread->stepping_over_watchpoint = 1;
5873 keep_going (ecs);
5874 return;
5875 }
5876
5877 ecs->event_thread->stepping_over_breakpoint = 0;
5878 ecs->event_thread->stepping_over_watchpoint = 0;
5879 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5880 ecs->event_thread->control.stop_step = 0;
5881 stop_print_frame = 1;
5882 stopped_by_random_signal = 0;
5883
5884 /* Hide inlined functions starting here, unless we just performed stepi or
5885 nexti. After stepi and nexti, always show the innermost frame (not any
5886 inline function call sites). */
5887 if (ecs->event_thread->control.step_range_end != 1)
5888 {
5889 struct address_space *aspace =
5890 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5891
5892 /* skip_inline_frames is expensive, so we avoid it if we can
5893 determine that the address is one where functions cannot have
5894 been inlined. This improves performance with inferiors that
5895 load a lot of shared libraries, because the solib event
5896 breakpoint is defined as the address of a function (i.e. not
5897 inline). Note that we have to check the previous PC as well
5898 as the current one to catch cases when we have just
5899 single-stepped off a breakpoint prior to reinstating it.
5900 Note that we're assuming that the code we single-step to is
5901 not inline, but that's not definitive: there's nothing
5902 preventing the event breakpoint function from containing
5903 inlined code, and the single-step ending up there. If the
5904 user had set a breakpoint on that inlined code, the missing
5905 skip_inline_frames call would break things. Fortunately
5906 that's an extremely unlikely scenario. */
5907 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5908 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5909 && ecs->event_thread->control.trap_expected
5910 && pc_at_non_inline_function (aspace,
5911 ecs->event_thread->prev_pc,
5912 &ecs->ws)))
5913 {
5914 skip_inline_frames (ecs->ptid);
5915
5916 /* Re-fetch current thread's frame in case that invalidated
5917 the frame cache. */
5918 frame = get_current_frame ();
5919 gdbarch = get_frame_arch (frame);
5920 }
5921 }
5922
5923 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5924 && ecs->event_thread->control.trap_expected
5925 && gdbarch_single_step_through_delay_p (gdbarch)
5926 && currently_stepping (ecs->event_thread))
5927 {
5928 /* We're trying to step off a breakpoint. Turns out that we're
5929 also on an instruction that needs to be stepped multiple
5930 times before it's been fully executing. E.g., architectures
5931 with a delay slot. It needs to be stepped twice, once for
5932 the instruction and once for the delay slot. */
5933 int step_through_delay
5934 = gdbarch_single_step_through_delay (gdbarch, frame);
5935
5936 if (debug_infrun && step_through_delay)
5937 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5938 if (ecs->event_thread->control.step_range_end == 0
5939 && step_through_delay)
5940 {
5941 /* The user issued a continue when stopped at a breakpoint.
5942 Set up for another trap and get out of here. */
5943 ecs->event_thread->stepping_over_breakpoint = 1;
5944 keep_going (ecs);
5945 return;
5946 }
5947 else if (step_through_delay)
5948 {
5949 /* The user issued a step when stopped at a breakpoint.
5950 Maybe we should stop, maybe we should not - the delay
5951 slot *might* correspond to a line of source. In any
5952 case, don't decide that here, just set
5953 ecs->stepping_over_breakpoint, making sure we
5954 single-step again before breakpoints are re-inserted. */
5955 ecs->event_thread->stepping_over_breakpoint = 1;
5956 }
5957 }
5958
5959 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5960 handles this event. */
5961 ecs->event_thread->control.stop_bpstat
5962 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5963 stop_pc, ecs->ptid, &ecs->ws);
5964
5965 /* Following in case break condition called a
5966 function. */
5967 stop_print_frame = 1;
5968
5969 /* This is where we handle "moribund" watchpoints. Unlike
5970 software breakpoints traps, hardware watchpoint traps are
5971 always distinguishable from random traps. If no high-level
5972 watchpoint is associated with the reported stop data address
5973 anymore, then the bpstat does not explain the signal ---
5974 simply make sure to ignore it if `stopped_by_watchpoint' is
5975 set. */
5976
5977 if (debug_infrun
5978 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5979 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5980 GDB_SIGNAL_TRAP)
5981 && stopped_by_watchpoint)
5982 fprintf_unfiltered (gdb_stdlog,
5983 "infrun: no user watchpoint explains "
5984 "watchpoint SIGTRAP, ignoring\n");
5985
5986 /* NOTE: cagney/2003-03-29: These checks for a random signal
5987 at one stage in the past included checks for an inferior
5988 function call's call dummy's return breakpoint. The original
5989 comment, that went with the test, read:
5990
5991 ``End of a stack dummy. Some systems (e.g. Sony news) give
5992 another signal besides SIGTRAP, so check here as well as
5993 above.''
5994
5995 If someone ever tries to get call dummys on a
5996 non-executable stack to work (where the target would stop
5997 with something like a SIGSEGV), then those tests might need
5998 to be re-instated. Given, however, that the tests were only
5999 enabled when momentary breakpoints were not being used, I
6000 suspect that it won't be the case.
6001
6002 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6003 be necessary for call dummies on a non-executable stack on
6004 SPARC. */
6005
6006 /* See if the breakpoints module can explain the signal. */
6007 random_signal
6008 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6009 ecs->event_thread->suspend.stop_signal);
6010
6011 /* Maybe this was a trap for a software breakpoint that has since
6012 been removed. */
6013 if (random_signal && target_stopped_by_sw_breakpoint ())
6014 {
6015 if (program_breakpoint_here_p (gdbarch, stop_pc))
6016 {
6017 struct regcache *regcache;
6018 int decr_pc;
6019
6020 /* Re-adjust PC to what the program would see if GDB was not
6021 debugging it. */
6022 regcache = get_thread_regcache (ecs->event_thread->ptid);
6023 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6024 if (decr_pc != 0)
6025 {
6026 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6027
6028 if (record_full_is_used ())
6029 record_full_gdb_operation_disable_set ();
6030
6031 regcache_write_pc (regcache, stop_pc + decr_pc);
6032
6033 do_cleanups (old_cleanups);
6034 }
6035 }
6036 else
6037 {
6038 /* A delayed software breakpoint event. Ignore the trap. */
6039 if (debug_infrun)
6040 fprintf_unfiltered (gdb_stdlog,
6041 "infrun: delayed software breakpoint "
6042 "trap, ignoring\n");
6043 random_signal = 0;
6044 }
6045 }
6046
6047 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6048 has since been removed. */
6049 if (random_signal && target_stopped_by_hw_breakpoint ())
6050 {
6051 /* A delayed hardware breakpoint event. Ignore the trap. */
6052 if (debug_infrun)
6053 fprintf_unfiltered (gdb_stdlog,
6054 "infrun: delayed hardware breakpoint/watchpoint "
6055 "trap, ignoring\n");
6056 random_signal = 0;
6057 }
6058
6059 /* If not, perhaps stepping/nexting can. */
6060 if (random_signal)
6061 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6062 && currently_stepping (ecs->event_thread));
6063
6064 /* Perhaps the thread hit a single-step breakpoint of _another_
6065 thread. Single-step breakpoints are transparent to the
6066 breakpoints module. */
6067 if (random_signal)
6068 random_signal = !ecs->hit_singlestep_breakpoint;
6069
6070 /* No? Perhaps we got a moribund watchpoint. */
6071 if (random_signal)
6072 random_signal = !stopped_by_watchpoint;
6073
6074 /* Always stop if the user explicitly requested this thread to
6075 remain stopped. */
6076 if (ecs->event_thread->stop_requested)
6077 {
6078 random_signal = 1;
6079 if (debug_infrun)
6080 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6081 }
6082
6083 /* For the program's own signals, act according to
6084 the signal handling tables. */
6085
6086 if (random_signal)
6087 {
6088 /* Signal not for debugging purposes. */
6089 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6090 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6091
6092 if (debug_infrun)
6093 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6094 gdb_signal_to_symbol_string (stop_signal));
6095
6096 stopped_by_random_signal = 1;
6097
6098 /* Always stop on signals if we're either just gaining control
6099 of the program, or the user explicitly requested this thread
6100 to remain stopped. */
6101 if (stop_soon != NO_STOP_QUIETLY
6102 || ecs->event_thread->stop_requested
6103 || (!inf->detaching
6104 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6105 {
6106 stop_waiting (ecs);
6107 return;
6108 }
6109
6110 /* Notify observers the signal has "handle print" set. Note we
6111 returned early above if stopping; normal_stop handles the
6112 printing in that case. */
6113 if (signal_print[ecs->event_thread->suspend.stop_signal])
6114 {
6115 /* The signal table tells us to print about this signal. */
6116 target_terminal_ours_for_output ();
6117 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6118 target_terminal_inferior ();
6119 }
6120
6121 /* Clear the signal if it should not be passed. */
6122 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6123 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6124
6125 if (ecs->event_thread->prev_pc == stop_pc
6126 && ecs->event_thread->control.trap_expected
6127 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6128 {
6129 /* We were just starting a new sequence, attempting to
6130 single-step off of a breakpoint and expecting a SIGTRAP.
6131 Instead this signal arrives. This signal will take us out
6132 of the stepping range so GDB needs to remember to, when
6133 the signal handler returns, resume stepping off that
6134 breakpoint. */
6135 /* To simplify things, "continue" is forced to use the same
6136 code paths as single-step - set a breakpoint at the
6137 signal return address and then, once hit, step off that
6138 breakpoint. */
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog,
6141 "infrun: signal arrived while stepping over "
6142 "breakpoint\n");
6143
6144 insert_hp_step_resume_breakpoint_at_frame (frame);
6145 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6146 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6147 ecs->event_thread->control.trap_expected = 0;
6148
6149 /* If we were nexting/stepping some other thread, switch to
6150 it, so that we don't continue it, losing control. */
6151 if (!switch_back_to_stepped_thread (ecs))
6152 keep_going (ecs);
6153 return;
6154 }
6155
6156 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6157 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6158 || ecs->event_thread->control.step_range_end == 1)
6159 && frame_id_eq (get_stack_frame_id (frame),
6160 ecs->event_thread->control.step_stack_frame_id)
6161 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6162 {
6163 /* The inferior is about to take a signal that will take it
6164 out of the single step range. Set a breakpoint at the
6165 current PC (which is presumably where the signal handler
6166 will eventually return) and then allow the inferior to
6167 run free.
6168
6169 Note that this is only needed for a signal delivered
6170 while in the single-step range. Nested signals aren't a
6171 problem as they eventually all return. */
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog,
6174 "infrun: signal may take us out of "
6175 "single-step range\n");
6176
6177 clear_step_over_info ();
6178 insert_hp_step_resume_breakpoint_at_frame (frame);
6179 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6180 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6181 ecs->event_thread->control.trap_expected = 0;
6182 keep_going (ecs);
6183 return;
6184 }
6185
6186 /* Note: step_resume_breakpoint may be non-NULL. This occures
6187 when either there's a nested signal, or when there's a
6188 pending signal enabled just as the signal handler returns
6189 (leaving the inferior at the step-resume-breakpoint without
6190 actually executing it). Either way continue until the
6191 breakpoint is really hit. */
6192
6193 if (!switch_back_to_stepped_thread (ecs))
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: random signal, keep going\n");
6198
6199 keep_going (ecs);
6200 }
6201 return;
6202 }
6203
6204 process_event_stop_test (ecs);
6205 }
6206
6207 /* Come here when we've got some debug event / signal we can explain
6208 (IOW, not a random signal), and test whether it should cause a
6209 stop, or whether we should resume the inferior (transparently).
6210 E.g., could be a breakpoint whose condition evaluates false; we
6211 could be still stepping within the line; etc. */
6212
6213 static void
6214 process_event_stop_test (struct execution_control_state *ecs)
6215 {
6216 struct symtab_and_line stop_pc_sal;
6217 struct frame_info *frame;
6218 struct gdbarch *gdbarch;
6219 CORE_ADDR jmp_buf_pc;
6220 struct bpstat_what what;
6221
6222 /* Handle cases caused by hitting a breakpoint. */
6223
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
6226
6227 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6228
6229 if (what.call_dummy)
6230 {
6231 stop_stack_dummy = what.call_dummy;
6232 }
6233
6234 /* A few breakpoint types have callbacks associated (e.g.,
6235 bp_jit_event). Run them now. */
6236 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6237
6238 /* If we hit an internal event that triggers symbol changes, the
6239 current frame will be invalidated within bpstat_what (e.g., if we
6240 hit an internal solib event). Re-fetch it. */
6241 frame = get_current_frame ();
6242 gdbarch = get_frame_arch (frame);
6243
6244 switch (what.main_action)
6245 {
6246 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6247 /* If we hit the breakpoint at longjmp while stepping, we
6248 install a momentary breakpoint at the target of the
6249 jmp_buf. */
6250
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6254
6255 ecs->event_thread->stepping_over_breakpoint = 1;
6256
6257 if (what.is_longjmp)
6258 {
6259 struct value *arg_value;
6260
6261 /* If we set the longjmp breakpoint via a SystemTap probe,
6262 then use it to extract the arguments. The destination PC
6263 is the third argument to the probe. */
6264 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6265 if (arg_value)
6266 {
6267 jmp_buf_pc = value_as_address (arg_value);
6268 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6269 }
6270 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6271 || !gdbarch_get_longjmp_target (gdbarch,
6272 frame, &jmp_buf_pc))
6273 {
6274 if (debug_infrun)
6275 fprintf_unfiltered (gdb_stdlog,
6276 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6277 "(!gdbarch_get_longjmp_target)\n");
6278 keep_going (ecs);
6279 return;
6280 }
6281
6282 /* Insert a breakpoint at resume address. */
6283 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6284 }
6285 else
6286 check_exception_resume (ecs, frame);
6287 keep_going (ecs);
6288 return;
6289
6290 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6291 {
6292 struct frame_info *init_frame;
6293
6294 /* There are several cases to consider.
6295
6296 1. The initiating frame no longer exists. In this case we
6297 must stop, because the exception or longjmp has gone too
6298 far.
6299
6300 2. The initiating frame exists, and is the same as the
6301 current frame. We stop, because the exception or longjmp
6302 has been caught.
6303
6304 3. The initiating frame exists and is different from the
6305 current frame. This means the exception or longjmp has
6306 been caught beneath the initiating frame, so keep going.
6307
6308 4. longjmp breakpoint has been placed just to protect
6309 against stale dummy frames and user is not interested in
6310 stopping around longjmps. */
6311
6312 if (debug_infrun)
6313 fprintf_unfiltered (gdb_stdlog,
6314 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6315
6316 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6317 != NULL);
6318 delete_exception_resume_breakpoint (ecs->event_thread);
6319
6320 if (what.is_longjmp)
6321 {
6322 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6323
6324 if (!frame_id_p (ecs->event_thread->initiating_frame))
6325 {
6326 /* Case 4. */
6327 keep_going (ecs);
6328 return;
6329 }
6330 }
6331
6332 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6333
6334 if (init_frame)
6335 {
6336 struct frame_id current_id
6337 = get_frame_id (get_current_frame ());
6338 if (frame_id_eq (current_id,
6339 ecs->event_thread->initiating_frame))
6340 {
6341 /* Case 2. Fall through. */
6342 }
6343 else
6344 {
6345 /* Case 3. */
6346 keep_going (ecs);
6347 return;
6348 }
6349 }
6350
6351 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6352 exists. */
6353 delete_step_resume_breakpoint (ecs->event_thread);
6354
6355 end_stepping_range (ecs);
6356 }
6357 return;
6358
6359 case BPSTAT_WHAT_SINGLE:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6362 ecs->event_thread->stepping_over_breakpoint = 1;
6363 /* Still need to check other stuff, at least the case where we
6364 are stepping and step out of the right range. */
6365 break;
6366
6367 case BPSTAT_WHAT_STEP_RESUME:
6368 if (debug_infrun)
6369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6370
6371 delete_step_resume_breakpoint (ecs->event_thread);
6372 if (ecs->event_thread->control.proceed_to_finish
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 struct thread_info *tp = ecs->event_thread;
6376
6377 /* We are finishing a function in reverse, and just hit the
6378 step-resume breakpoint at the start address of the
6379 function, and we're almost there -- just need to back up
6380 by one more single-step, which should take us back to the
6381 function call. */
6382 tp->control.step_range_start = tp->control.step_range_end = 1;
6383 keep_going (ecs);
6384 return;
6385 }
6386 fill_in_stop_func (gdbarch, ecs);
6387 if (stop_pc == ecs->stop_func_start
6388 && execution_direction == EXEC_REVERSE)
6389 {
6390 /* We are stepping over a function call in reverse, and just
6391 hit the step-resume breakpoint at the start address of
6392 the function. Go back to single-stepping, which should
6393 take us back to the function call. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
6395 keep_going (ecs);
6396 return;
6397 }
6398 break;
6399
6400 case BPSTAT_WHAT_STOP_NOISY:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6403 stop_print_frame = 1;
6404
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
6409
6410 stop_waiting (ecs);
6411 return;
6412
6413 case BPSTAT_WHAT_STOP_SILENT:
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6416 stop_print_frame = 0;
6417
6418 /* Assume the thread stopped for a breapoint. We'll still check
6419 whether a/the breakpoint is there when the thread is next
6420 resumed. */
6421 ecs->event_thread->stepping_over_breakpoint = 1;
6422 stop_waiting (ecs);
6423 return;
6424
6425 case BPSTAT_WHAT_HP_STEP_RESUME:
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6428
6429 delete_step_resume_breakpoint (ecs->event_thread);
6430 if (ecs->event_thread->step_after_step_resume_breakpoint)
6431 {
6432 /* Back when the step-resume breakpoint was inserted, we
6433 were trying to single-step off a breakpoint. Go back to
6434 doing that. */
6435 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6436 ecs->event_thread->stepping_over_breakpoint = 1;
6437 keep_going (ecs);
6438 return;
6439 }
6440 break;
6441
6442 case BPSTAT_WHAT_KEEP_CHECKING:
6443 break;
6444 }
6445
6446 /* If we stepped a permanent breakpoint and we had a high priority
6447 step-resume breakpoint for the address we stepped, but we didn't
6448 hit it, then we must have stepped into the signal handler. The
6449 step-resume was only necessary to catch the case of _not_
6450 stepping into the handler, so delete it, and fall through to
6451 checking whether the step finished. */
6452 if (ecs->event_thread->stepped_breakpoint)
6453 {
6454 struct breakpoint *sr_bp
6455 = ecs->event_thread->control.step_resume_breakpoint;
6456
6457 if (sr_bp != NULL
6458 && sr_bp->loc->permanent
6459 && sr_bp->type == bp_hp_step_resume
6460 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6461 {
6462 if (debug_infrun)
6463 fprintf_unfiltered (gdb_stdlog,
6464 "infrun: stepped permanent breakpoint, stopped in "
6465 "handler\n");
6466 delete_step_resume_breakpoint (ecs->event_thread);
6467 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6468 }
6469 }
6470
6471 /* We come here if we hit a breakpoint but should not stop for it.
6472 Possibly we also were stepping and should stop for that. So fall
6473 through and test for stepping. But, if not stepping, do not
6474 stop. */
6475
6476 /* In all-stop mode, if we're currently stepping but have stopped in
6477 some other thread, we need to switch back to the stepped thread. */
6478 if (switch_back_to_stepped_thread (ecs))
6479 return;
6480
6481 if (ecs->event_thread->control.step_resume_breakpoint)
6482 {
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: step-resume breakpoint is inserted\n");
6486
6487 /* Having a step-resume breakpoint overrides anything
6488 else having to do with stepping commands until
6489 that breakpoint is reached. */
6490 keep_going (ecs);
6491 return;
6492 }
6493
6494 if (ecs->event_thread->control.step_range_end == 0)
6495 {
6496 if (debug_infrun)
6497 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6498 /* Likewise if we aren't even stepping. */
6499 keep_going (ecs);
6500 return;
6501 }
6502
6503 /* Re-fetch current thread's frame in case the code above caused
6504 the frame cache to be re-initialized, making our FRAME variable
6505 a dangling pointer. */
6506 frame = get_current_frame ();
6507 gdbarch = get_frame_arch (frame);
6508 fill_in_stop_func (gdbarch, ecs);
6509
6510 /* If stepping through a line, keep going if still within it.
6511
6512 Note that step_range_end is the address of the first instruction
6513 beyond the step range, and NOT the address of the last instruction
6514 within it!
6515
6516 Note also that during reverse execution, we may be stepping
6517 through a function epilogue and therefore must detect when
6518 the current-frame changes in the middle of a line. */
6519
6520 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6521 && (execution_direction != EXEC_REVERSE
6522 || frame_id_eq (get_frame_id (frame),
6523 ecs->event_thread->control.step_frame_id)))
6524 {
6525 if (debug_infrun)
6526 fprintf_unfiltered
6527 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6528 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6529 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6530
6531 /* Tentatively re-enable range stepping; `resume' disables it if
6532 necessary (e.g., if we're stepping over a breakpoint or we
6533 have software watchpoints). */
6534 ecs->event_thread->control.may_range_step = 1;
6535
6536 /* When stepping backward, stop at beginning of line range
6537 (unless it's the function entry point, in which case
6538 keep going back to the call point). */
6539 if (stop_pc == ecs->event_thread->control.step_range_start
6540 && stop_pc != ecs->stop_func_start
6541 && execution_direction == EXEC_REVERSE)
6542 end_stepping_range (ecs);
6543 else
6544 keep_going (ecs);
6545
6546 return;
6547 }
6548
6549 /* We stepped out of the stepping range. */
6550
6551 /* If we are stepping at the source level and entered the runtime
6552 loader dynamic symbol resolution code...
6553
6554 EXEC_FORWARD: we keep on single stepping until we exit the run
6555 time loader code and reach the callee's address.
6556
6557 EXEC_REVERSE: we've already executed the callee (backward), and
6558 the runtime loader code is handled just like any other
6559 undebuggable function call. Now we need only keep stepping
6560 backward through the trampoline code, and that's handled further
6561 down, so there is nothing for us to do here. */
6562
6563 if (execution_direction != EXEC_REVERSE
6564 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6565 && in_solib_dynsym_resolve_code (stop_pc))
6566 {
6567 CORE_ADDR pc_after_resolver =
6568 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6569
6570 if (debug_infrun)
6571 fprintf_unfiltered (gdb_stdlog,
6572 "infrun: stepped into dynsym resolve code\n");
6573
6574 if (pc_after_resolver)
6575 {
6576 /* Set up a step-resume breakpoint at the address
6577 indicated by SKIP_SOLIB_RESOLVER. */
6578 struct symtab_and_line sr_sal;
6579
6580 init_sal (&sr_sal);
6581 sr_sal.pc = pc_after_resolver;
6582 sr_sal.pspace = get_frame_program_space (frame);
6583
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
6586 }
6587
6588 keep_going (ecs);
6589 return;
6590 }
6591
6592 if (ecs->event_thread->control.step_range_end != 1
6593 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6594 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6595 && get_frame_type (frame) == SIGTRAMP_FRAME)
6596 {
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog,
6599 "infrun: stepped into signal trampoline\n");
6600 /* The inferior, while doing a "step" or "next", has ended up in
6601 a signal trampoline (either by a signal being delivered or by
6602 the signal handler returning). Just single-step until the
6603 inferior leaves the trampoline (either by calling the handler
6604 or returning). */
6605 keep_going (ecs);
6606 return;
6607 }
6608
6609 /* If we're in the return path from a shared library trampoline,
6610 we want to proceed through the trampoline when stepping. */
6611 /* macro/2012-04-25: This needs to come before the subroutine
6612 call check below as on some targets return trampolines look
6613 like subroutine calls (MIPS16 return thunks). */
6614 if (gdbarch_in_solib_return_trampoline (gdbarch,
6615 stop_pc, ecs->stop_func_name)
6616 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6617 {
6618 /* Determine where this trampoline returns. */
6619 CORE_ADDR real_stop_pc;
6620
6621 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6622
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into solib return tramp\n");
6626
6627 /* Only proceed through if we know where it's going. */
6628 if (real_stop_pc)
6629 {
6630 /* And put the step-breakpoint there and go until there. */
6631 struct symtab_and_line sr_sal;
6632
6633 init_sal (&sr_sal); /* initialize to zeroes */
6634 sr_sal.pc = real_stop_pc;
6635 sr_sal.section = find_pc_overlay (sr_sal.pc);
6636 sr_sal.pspace = get_frame_program_space (frame);
6637
6638 /* Do not specify what the fp should be when we stop since
6639 on some machines the prologue is where the new fp value
6640 is established. */
6641 insert_step_resume_breakpoint_at_sal (gdbarch,
6642 sr_sal, null_frame_id);
6643
6644 /* Restart without fiddling with the step ranges or
6645 other state. */
6646 keep_going (ecs);
6647 return;
6648 }
6649 }
6650
6651 /* Check for subroutine calls. The check for the current frame
6652 equalling the step ID is not necessary - the check of the
6653 previous frame's ID is sufficient - but it is a common case and
6654 cheaper than checking the previous frame's ID.
6655
6656 NOTE: frame_id_eq will never report two invalid frame IDs as
6657 being equal, so to get into this block, both the current and
6658 previous frame must have valid frame IDs. */
6659 /* The outer_frame_id check is a heuristic to detect stepping
6660 through startup code. If we step over an instruction which
6661 sets the stack pointer from an invalid value to a valid value,
6662 we may detect that as a subroutine call from the mythical
6663 "outermost" function. This could be fixed by marking
6664 outermost frames as !stack_p,code_p,special_p. Then the
6665 initial outermost frame, before sp was valid, would
6666 have code_addr == &_start. See the comment in frame_id_eq
6667 for more. */
6668 if (!frame_id_eq (get_stack_frame_id (frame),
6669 ecs->event_thread->control.step_stack_frame_id)
6670 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6671 ecs->event_thread->control.step_stack_frame_id)
6672 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6673 outer_frame_id)
6674 || (ecs->event_thread->control.step_start_function
6675 != find_pc_function (stop_pc)))))
6676 {
6677 CORE_ADDR real_stop_pc;
6678
6679 if (debug_infrun)
6680 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6681
6682 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6683 {
6684 /* I presume that step_over_calls is only 0 when we're
6685 supposed to be stepping at the assembly language level
6686 ("stepi"). Just stop. */
6687 /* And this works the same backward as frontward. MVS */
6688 end_stepping_range (ecs);
6689 return;
6690 }
6691
6692 /* Reverse stepping through solib trampolines. */
6693
6694 if (execution_direction == EXEC_REVERSE
6695 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6696 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6697 || (ecs->stop_func_start == 0
6698 && in_solib_dynsym_resolve_code (stop_pc))))
6699 {
6700 /* Any solib trampoline code can be handled in reverse
6701 by simply continuing to single-step. We have already
6702 executed the solib function (backwards), and a few
6703 steps will take us back through the trampoline to the
6704 caller. */
6705 keep_going (ecs);
6706 return;
6707 }
6708
6709 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6710 {
6711 /* We're doing a "next".
6712
6713 Normal (forward) execution: set a breakpoint at the
6714 callee's return address (the address at which the caller
6715 will resume).
6716
6717 Reverse (backward) execution. set the step-resume
6718 breakpoint at the start of the function that we just
6719 stepped into (backwards), and continue to there. When we
6720 get there, we'll need to single-step back to the caller. */
6721
6722 if (execution_direction == EXEC_REVERSE)
6723 {
6724 /* If we're already at the start of the function, we've either
6725 just stepped backward into a single instruction function,
6726 or stepped back out of a signal handler to the first instruction
6727 of the function. Just keep going, which will single-step back
6728 to the caller. */
6729 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6730 {
6731 struct symtab_and_line sr_sal;
6732
6733 /* Normal function call return (static or dynamic). */
6734 init_sal (&sr_sal);
6735 sr_sal.pc = ecs->stop_func_start;
6736 sr_sal.pspace = get_frame_program_space (frame);
6737 insert_step_resume_breakpoint_at_sal (gdbarch,
6738 sr_sal, null_frame_id);
6739 }
6740 }
6741 else
6742 insert_step_resume_breakpoint_at_caller (frame);
6743
6744 keep_going (ecs);
6745 return;
6746 }
6747
6748 /* If we are in a function call trampoline (a stub between the
6749 calling routine and the real function), locate the real
6750 function. That's what tells us (a) whether we want to step
6751 into it at all, and (b) what prologue we want to run to the
6752 end of, if we do step into it. */
6753 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6754 if (real_stop_pc == 0)
6755 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6756 if (real_stop_pc != 0)
6757 ecs->stop_func_start = real_stop_pc;
6758
6759 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6760 {
6761 struct symtab_and_line sr_sal;
6762
6763 init_sal (&sr_sal);
6764 sr_sal.pc = ecs->stop_func_start;
6765 sr_sal.pspace = get_frame_program_space (frame);
6766
6767 insert_step_resume_breakpoint_at_sal (gdbarch,
6768 sr_sal, null_frame_id);
6769 keep_going (ecs);
6770 return;
6771 }
6772
6773 /* If we have line number information for the function we are
6774 thinking of stepping into and the function isn't on the skip
6775 list, step into it.
6776
6777 If there are several symtabs at that PC (e.g. with include
6778 files), just want to know whether *any* of them have line
6779 numbers. find_pc_line handles this. */
6780 {
6781 struct symtab_and_line tmp_sal;
6782
6783 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6784 if (tmp_sal.line != 0
6785 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6786 &tmp_sal))
6787 {
6788 if (execution_direction == EXEC_REVERSE)
6789 handle_step_into_function_backward (gdbarch, ecs);
6790 else
6791 handle_step_into_function (gdbarch, ecs);
6792 return;
6793 }
6794 }
6795
6796 /* If we have no line number and the step-stop-if-no-debug is
6797 set, we stop the step so that the user has a chance to switch
6798 in assembly mode. */
6799 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6800 && step_stop_if_no_debug)
6801 {
6802 end_stepping_range (ecs);
6803 return;
6804 }
6805
6806 if (execution_direction == EXEC_REVERSE)
6807 {
6808 /* If we're already at the start of the function, we've either just
6809 stepped backward into a single instruction function without line
6810 number info, or stepped back out of a signal handler to the first
6811 instruction of the function without line number info. Just keep
6812 going, which will single-step back to the caller. */
6813 if (ecs->stop_func_start != stop_pc)
6814 {
6815 /* Set a breakpoint at callee's start address.
6816 From there we can step once and be back in the caller. */
6817 struct symtab_and_line sr_sal;
6818
6819 init_sal (&sr_sal);
6820 sr_sal.pc = ecs->stop_func_start;
6821 sr_sal.pspace = get_frame_program_space (frame);
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
6824 }
6825 }
6826 else
6827 /* Set a breakpoint at callee's return address (the address
6828 at which the caller will resume). */
6829 insert_step_resume_breakpoint_at_caller (frame);
6830
6831 keep_going (ecs);
6832 return;
6833 }
6834
6835 /* Reverse stepping through solib trampolines. */
6836
6837 if (execution_direction == EXEC_REVERSE
6838 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6839 {
6840 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6841 || (ecs->stop_func_start == 0
6842 && in_solib_dynsym_resolve_code (stop_pc)))
6843 {
6844 /* Any solib trampoline code can be handled in reverse
6845 by simply continuing to single-step. We have already
6846 executed the solib function (backwards), and a few
6847 steps will take us back through the trampoline to the
6848 caller. */
6849 keep_going (ecs);
6850 return;
6851 }
6852 else if (in_solib_dynsym_resolve_code (stop_pc))
6853 {
6854 /* Stepped backward into the solib dynsym resolver.
6855 Set a breakpoint at its start and continue, then
6856 one more step will take us out. */
6857 struct symtab_and_line sr_sal;
6858
6859 init_sal (&sr_sal);
6860 sr_sal.pc = ecs->stop_func_start;
6861 sr_sal.pspace = get_frame_program_space (frame);
6862 insert_step_resume_breakpoint_at_sal (gdbarch,
6863 sr_sal, null_frame_id);
6864 keep_going (ecs);
6865 return;
6866 }
6867 }
6868
6869 stop_pc_sal = find_pc_line (stop_pc, 0);
6870
6871 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6872 the trampoline processing logic, however, there are some trampolines
6873 that have no names, so we should do trampoline handling first. */
6874 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6875 && ecs->stop_func_name == NULL
6876 && stop_pc_sal.line == 0)
6877 {
6878 if (debug_infrun)
6879 fprintf_unfiltered (gdb_stdlog,
6880 "infrun: stepped into undebuggable function\n");
6881
6882 /* The inferior just stepped into, or returned to, an
6883 undebuggable function (where there is no debugging information
6884 and no line number corresponding to the address where the
6885 inferior stopped). Since we want to skip this kind of code,
6886 we keep going until the inferior returns from this
6887 function - unless the user has asked us not to (via
6888 set step-mode) or we no longer know how to get back
6889 to the call site. */
6890 if (step_stop_if_no_debug
6891 || !frame_id_p (frame_unwind_caller_id (frame)))
6892 {
6893 /* If we have no line number and the step-stop-if-no-debug
6894 is set, we stop the step so that the user has a chance to
6895 switch in assembly mode. */
6896 end_stepping_range (ecs);
6897 return;
6898 }
6899 else
6900 {
6901 /* Set a breakpoint at callee's return address (the address
6902 at which the caller will resume). */
6903 insert_step_resume_breakpoint_at_caller (frame);
6904 keep_going (ecs);
6905 return;
6906 }
6907 }
6908
6909 if (ecs->event_thread->control.step_range_end == 1)
6910 {
6911 /* It is stepi or nexti. We always want to stop stepping after
6912 one instruction. */
6913 if (debug_infrun)
6914 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6915 end_stepping_range (ecs);
6916 return;
6917 }
6918
6919 if (stop_pc_sal.line == 0)
6920 {
6921 /* We have no line number information. That means to stop
6922 stepping (does this always happen right after one instruction,
6923 when we do "s" in a function with no line numbers,
6924 or can this happen as a result of a return or longjmp?). */
6925 if (debug_infrun)
6926 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6927 end_stepping_range (ecs);
6928 return;
6929 }
6930
6931 /* Look for "calls" to inlined functions, part one. If the inline
6932 frame machinery detected some skipped call sites, we have entered
6933 a new inline function. */
6934
6935 if (frame_id_eq (get_frame_id (get_current_frame ()),
6936 ecs->event_thread->control.step_frame_id)
6937 && inline_skipped_frames (ecs->ptid))
6938 {
6939 struct symtab_and_line call_sal;
6940
6941 if (debug_infrun)
6942 fprintf_unfiltered (gdb_stdlog,
6943 "infrun: stepped into inlined function\n");
6944
6945 find_frame_sal (get_current_frame (), &call_sal);
6946
6947 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6948 {
6949 /* For "step", we're going to stop. But if the call site
6950 for this inlined function is on the same source line as
6951 we were previously stepping, go down into the function
6952 first. Otherwise stop at the call site. */
6953
6954 if (call_sal.line == ecs->event_thread->current_line
6955 && call_sal.symtab == ecs->event_thread->current_symtab)
6956 step_into_inline_frame (ecs->ptid);
6957
6958 end_stepping_range (ecs);
6959 return;
6960 }
6961 else
6962 {
6963 /* For "next", we should stop at the call site if it is on a
6964 different source line. Otherwise continue through the
6965 inlined function. */
6966 if (call_sal.line == ecs->event_thread->current_line
6967 && call_sal.symtab == ecs->event_thread->current_symtab)
6968 keep_going (ecs);
6969 else
6970 end_stepping_range (ecs);
6971 return;
6972 }
6973 }
6974
6975 /* Look for "calls" to inlined functions, part two. If we are still
6976 in the same real function we were stepping through, but we have
6977 to go further up to find the exact frame ID, we are stepping
6978 through a more inlined call beyond its call site. */
6979
6980 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6981 && !frame_id_eq (get_frame_id (get_current_frame ()),
6982 ecs->event_thread->control.step_frame_id)
6983 && stepped_in_from (get_current_frame (),
6984 ecs->event_thread->control.step_frame_id))
6985 {
6986 if (debug_infrun)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "infrun: stepping through inlined function\n");
6989
6990 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6991 keep_going (ecs);
6992 else
6993 end_stepping_range (ecs);
6994 return;
6995 }
6996
6997 if ((stop_pc == stop_pc_sal.pc)
6998 && (ecs->event_thread->current_line != stop_pc_sal.line
6999 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7000 {
7001 /* We are at the start of a different line. So stop. Note that
7002 we don't stop if we step into the middle of a different line.
7003 That is said to make things like for (;;) statements work
7004 better. */
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: stepped to a different line\n");
7008 end_stepping_range (ecs);
7009 return;
7010 }
7011
7012 /* We aren't done stepping.
7013
7014 Optimize by setting the stepping range to the line.
7015 (We might not be in the original line, but if we entered a
7016 new line in mid-statement, we continue stepping. This makes
7017 things like for(;;) statements work better.) */
7018
7019 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7020 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7021 ecs->event_thread->control.may_range_step = 1;
7022 set_step_info (frame, stop_pc_sal);
7023
7024 if (debug_infrun)
7025 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7026 keep_going (ecs);
7027 }
7028
7029 /* In all-stop mode, if we're currently stepping but have stopped in
7030 some other thread, we may need to switch back to the stepped
7031 thread. Returns true we set the inferior running, false if we left
7032 it stopped (and the event needs further processing). */
7033
7034 static int
7035 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7036 {
7037 if (!target_is_non_stop_p ())
7038 {
7039 struct thread_info *tp;
7040 struct thread_info *stepping_thread;
7041
7042 /* If any thread is blocked on some internal breakpoint, and we
7043 simply need to step over that breakpoint to get it going
7044 again, do that first. */
7045
7046 /* However, if we see an event for the stepping thread, then we
7047 know all other threads have been moved past their breakpoints
7048 already. Let the caller check whether the step is finished,
7049 etc., before deciding to move it past a breakpoint. */
7050 if (ecs->event_thread->control.step_range_end != 0)
7051 return 0;
7052
7053 /* Check if the current thread is blocked on an incomplete
7054 step-over, interrupted by a random signal. */
7055 if (ecs->event_thread->control.trap_expected
7056 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7057 {
7058 if (debug_infrun)
7059 {
7060 fprintf_unfiltered (gdb_stdlog,
7061 "infrun: need to finish step-over of [%s]\n",
7062 target_pid_to_str (ecs->event_thread->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
7067
7068 /* Check if the current thread is blocked by a single-step
7069 breakpoint of another thread. */
7070 if (ecs->hit_singlestep_breakpoint)
7071 {
7072 if (debug_infrun)
7073 {
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: need to step [%s] over single-step "
7076 "breakpoint\n",
7077 target_pid_to_str (ecs->ptid));
7078 }
7079 keep_going (ecs);
7080 return 1;
7081 }
7082
7083 /* If this thread needs yet another step-over (e.g., stepping
7084 through a delay slot), do it first before moving on to
7085 another thread. */
7086 if (thread_still_needs_step_over (ecs->event_thread))
7087 {
7088 if (debug_infrun)
7089 {
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: thread [%s] still needs step-over\n",
7092 target_pid_to_str (ecs->event_thread->ptid));
7093 }
7094 keep_going (ecs);
7095 return 1;
7096 }
7097
7098 /* If scheduler locking applies even if not stepping, there's no
7099 need to walk over threads. Above we've checked whether the
7100 current thread is stepping. If some other thread not the
7101 event thread is stepping, then it must be that scheduler
7102 locking is not in effect. */
7103 if (schedlock_applies (ecs->event_thread))
7104 return 0;
7105
7106 /* Otherwise, we no longer expect a trap in the current thread.
7107 Clear the trap_expected flag before switching back -- this is
7108 what keep_going does as well, if we call it. */
7109 ecs->event_thread->control.trap_expected = 0;
7110
7111 /* Likewise, clear the signal if it should not be passed. */
7112 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7114
7115 /* Do all pending step-overs before actually proceeding with
7116 step/next/etc. */
7117 if (start_step_over ())
7118 {
7119 prepare_to_wait (ecs);
7120 return 1;
7121 }
7122
7123 /* Look for the stepping/nexting thread. */
7124 stepping_thread = NULL;
7125
7126 ALL_NON_EXITED_THREADS (tp)
7127 {
7128 /* Ignore threads of processes the caller is not
7129 resuming. */
7130 if (!sched_multi
7131 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7132 continue;
7133
7134 /* When stepping over a breakpoint, we lock all threads
7135 except the one that needs to move past the breakpoint.
7136 If a non-event thread has this set, the "incomplete
7137 step-over" check above should have caught it earlier. */
7138 if (tp->control.trap_expected)
7139 {
7140 internal_error (__FILE__, __LINE__,
7141 "[%s] has inconsistent state: "
7142 "trap_expected=%d\n",
7143 target_pid_to_str (tp->ptid),
7144 tp->control.trap_expected);
7145 }
7146
7147 /* Did we find the stepping thread? */
7148 if (tp->control.step_range_end)
7149 {
7150 /* Yep. There should only one though. */
7151 gdb_assert (stepping_thread == NULL);
7152
7153 /* The event thread is handled at the top, before we
7154 enter this loop. */
7155 gdb_assert (tp != ecs->event_thread);
7156
7157 /* If some thread other than the event thread is
7158 stepping, then scheduler locking can't be in effect,
7159 otherwise we wouldn't have resumed the current event
7160 thread in the first place. */
7161 gdb_assert (!schedlock_applies (tp));
7162
7163 stepping_thread = tp;
7164 }
7165 }
7166
7167 if (stepping_thread != NULL)
7168 {
7169 if (debug_infrun)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: switching back to stepped thread\n");
7172
7173 if (keep_going_stepped_thread (stepping_thread))
7174 {
7175 prepare_to_wait (ecs);
7176 return 1;
7177 }
7178 }
7179 }
7180
7181 return 0;
7182 }
7183
7184 /* Set a previously stepped thread back to stepping. Returns true on
7185 success, false if the resume is not possible (e.g., the thread
7186 vanished). */
7187
7188 static int
7189 keep_going_stepped_thread (struct thread_info *tp)
7190 {
7191 struct frame_info *frame;
7192 struct execution_control_state ecss;
7193 struct execution_control_state *ecs = &ecss;
7194
7195 /* If the stepping thread exited, then don't try to switch back and
7196 resume it, which could fail in several different ways depending
7197 on the target. Instead, just keep going.
7198
7199 We can find a stepping dead thread in the thread list in two
7200 cases:
7201
7202 - The target supports thread exit events, and when the target
7203 tries to delete the thread from the thread list, inferior_ptid
7204 pointed at the exiting thread. In such case, calling
7205 delete_thread does not really remove the thread from the list;
7206 instead, the thread is left listed, with 'exited' state.
7207
7208 - The target's debug interface does not support thread exit
7209 events, and so we have no idea whatsoever if the previously
7210 stepping thread is still alive. For that reason, we need to
7211 synchronously query the target now. */
7212
7213 if (is_exited (tp->ptid)
7214 || !target_thread_alive (tp->ptid))
7215 {
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: not resuming previously "
7219 "stepped thread, it has vanished\n");
7220
7221 delete_thread (tp->ptid);
7222 return 0;
7223 }
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: resuming previously stepped thread\n");
7228
7229 reset_ecs (ecs, tp);
7230 switch_to_thread (tp->ptid);
7231
7232 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7233 frame = get_current_frame ();
7234
7235 /* If the PC of the thread we were trying to single-step has
7236 changed, then that thread has trapped or been signaled, but the
7237 event has not been reported to GDB yet. Re-poll the target
7238 looking for this particular thread's event (i.e. temporarily
7239 enable schedlock) by:
7240
7241 - setting a break at the current PC
7242 - resuming that particular thread, only (by setting trap
7243 expected)
7244
7245 This prevents us continuously moving the single-step breakpoint
7246 forward, one instruction at a time, overstepping. */
7247
7248 if (stop_pc != tp->prev_pc)
7249 {
7250 ptid_t resume_ptid;
7251
7252 if (debug_infrun)
7253 fprintf_unfiltered (gdb_stdlog,
7254 "infrun: expected thread advanced also (%s -> %s)\n",
7255 paddress (target_gdbarch (), tp->prev_pc),
7256 paddress (target_gdbarch (), stop_pc));
7257
7258 /* Clear the info of the previous step-over, as it's no longer
7259 valid (if the thread was trying to step over a breakpoint, it
7260 has already succeeded). It's what keep_going would do too,
7261 if we called it. Do this before trying to insert the sss
7262 breakpoint, otherwise if we were previously trying to step
7263 over this exact address in another thread, the breakpoint is
7264 skipped. */
7265 clear_step_over_info ();
7266 tp->control.trap_expected = 0;
7267
7268 insert_single_step_breakpoint (get_frame_arch (frame),
7269 get_frame_address_space (frame),
7270 stop_pc);
7271
7272 tp->resumed = 1;
7273 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7274 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7275 }
7276 else
7277 {
7278 if (debug_infrun)
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: expected thread still hasn't advanced\n");
7281
7282 keep_going_pass_signal (ecs);
7283 }
7284 return 1;
7285 }
7286
7287 /* Is thread TP in the middle of (software or hardware)
7288 single-stepping? (Note the result of this function must never be
7289 passed directly as target_resume's STEP parameter.) */
7290
7291 static int
7292 currently_stepping (struct thread_info *tp)
7293 {
7294 return ((tp->control.step_range_end
7295 && tp->control.step_resume_breakpoint == NULL)
7296 || tp->control.trap_expected
7297 || tp->stepped_breakpoint
7298 || bpstat_should_step ());
7299 }
7300
7301 /* Inferior has stepped into a subroutine call with source code that
7302 we should not step over. Do step to the first line of code in
7303 it. */
7304
7305 static void
7306 handle_step_into_function (struct gdbarch *gdbarch,
7307 struct execution_control_state *ecs)
7308 {
7309 struct compunit_symtab *cust;
7310 struct symtab_and_line stop_func_sal, sr_sal;
7311
7312 fill_in_stop_func (gdbarch, ecs);
7313
7314 cust = find_pc_compunit_symtab (stop_pc);
7315 if (cust != NULL && compunit_language (cust) != language_asm)
7316 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7317 ecs->stop_func_start);
7318
7319 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7320 /* Use the step_resume_break to step until the end of the prologue,
7321 even if that involves jumps (as it seems to on the vax under
7322 4.2). */
7323 /* If the prologue ends in the middle of a source line, continue to
7324 the end of that source line (if it is still within the function).
7325 Otherwise, just go to end of prologue. */
7326 if (stop_func_sal.end
7327 && stop_func_sal.pc != ecs->stop_func_start
7328 && stop_func_sal.end < ecs->stop_func_end)
7329 ecs->stop_func_start = stop_func_sal.end;
7330
7331 /* Architectures which require breakpoint adjustment might not be able
7332 to place a breakpoint at the computed address. If so, the test
7333 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7334 ecs->stop_func_start to an address at which a breakpoint may be
7335 legitimately placed.
7336
7337 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7338 made, GDB will enter an infinite loop when stepping through
7339 optimized code consisting of VLIW instructions which contain
7340 subinstructions corresponding to different source lines. On
7341 FR-V, it's not permitted to place a breakpoint on any but the
7342 first subinstruction of a VLIW instruction. When a breakpoint is
7343 set, GDB will adjust the breakpoint address to the beginning of
7344 the VLIW instruction. Thus, we need to make the corresponding
7345 adjustment here when computing the stop address. */
7346
7347 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7348 {
7349 ecs->stop_func_start
7350 = gdbarch_adjust_breakpoint_address (gdbarch,
7351 ecs->stop_func_start);
7352 }
7353
7354 if (ecs->stop_func_start == stop_pc)
7355 {
7356 /* We are already there: stop now. */
7357 end_stepping_range (ecs);
7358 return;
7359 }
7360 else
7361 {
7362 /* Put the step-breakpoint there and go until there. */
7363 init_sal (&sr_sal); /* initialize to zeroes */
7364 sr_sal.pc = ecs->stop_func_start;
7365 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7366 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7367
7368 /* Do not specify what the fp should be when we stop since on
7369 some machines the prologue is where the new fp value is
7370 established. */
7371 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7372
7373 /* And make sure stepping stops right away then. */
7374 ecs->event_thread->control.step_range_end
7375 = ecs->event_thread->control.step_range_start;
7376 }
7377 keep_going (ecs);
7378 }
7379
7380 /* Inferior has stepped backward into a subroutine call with source
7381 code that we should not step over. Do step to the beginning of the
7382 last line of code in it. */
7383
7384 static void
7385 handle_step_into_function_backward (struct gdbarch *gdbarch,
7386 struct execution_control_state *ecs)
7387 {
7388 struct compunit_symtab *cust;
7389 struct symtab_and_line stop_func_sal;
7390
7391 fill_in_stop_func (gdbarch, ecs);
7392
7393 cust = find_pc_compunit_symtab (stop_pc);
7394 if (cust != NULL && compunit_language (cust) != language_asm)
7395 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7396 ecs->stop_func_start);
7397
7398 stop_func_sal = find_pc_line (stop_pc, 0);
7399
7400 /* OK, we're just going to keep stepping here. */
7401 if (stop_func_sal.pc == stop_pc)
7402 {
7403 /* We're there already. Just stop stepping now. */
7404 end_stepping_range (ecs);
7405 }
7406 else
7407 {
7408 /* Else just reset the step range and keep going.
7409 No step-resume breakpoint, they don't work for
7410 epilogues, which can have multiple entry paths. */
7411 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7412 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7413 keep_going (ecs);
7414 }
7415 return;
7416 }
7417
7418 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7419 This is used to both functions and to skip over code. */
7420
7421 static void
7422 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7423 struct symtab_and_line sr_sal,
7424 struct frame_id sr_id,
7425 enum bptype sr_type)
7426 {
7427 /* There should never be more than one step-resume or longjmp-resume
7428 breakpoint per thread, so we should never be setting a new
7429 step_resume_breakpoint when one is already active. */
7430 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7431 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7432
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "infrun: inserting step-resume breakpoint at %s\n",
7436 paddress (gdbarch, sr_sal.pc));
7437
7438 inferior_thread ()->control.step_resume_breakpoint
7439 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7440 }
7441
7442 void
7443 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7444 struct symtab_and_line sr_sal,
7445 struct frame_id sr_id)
7446 {
7447 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7448 sr_sal, sr_id,
7449 bp_step_resume);
7450 }
7451
7452 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7453 This is used to skip a potential signal handler.
7454
7455 This is called with the interrupted function's frame. The signal
7456 handler, when it returns, will resume the interrupted function at
7457 RETURN_FRAME.pc. */
7458
7459 static void
7460 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7461 {
7462 struct symtab_and_line sr_sal;
7463 struct gdbarch *gdbarch;
7464
7465 gdb_assert (return_frame != NULL);
7466 init_sal (&sr_sal); /* initialize to zeros */
7467
7468 gdbarch = get_frame_arch (return_frame);
7469 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7470 sr_sal.section = find_pc_overlay (sr_sal.pc);
7471 sr_sal.pspace = get_frame_program_space (return_frame);
7472
7473 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7474 get_stack_frame_id (return_frame),
7475 bp_hp_step_resume);
7476 }
7477
7478 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7479 is used to skip a function after stepping into it (for "next" or if
7480 the called function has no debugging information).
7481
7482 The current function has almost always been reached by single
7483 stepping a call or return instruction. NEXT_FRAME belongs to the
7484 current function, and the breakpoint will be set at the caller's
7485 resume address.
7486
7487 This is a separate function rather than reusing
7488 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7489 get_prev_frame, which may stop prematurely (see the implementation
7490 of frame_unwind_caller_id for an example). */
7491
7492 static void
7493 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7494 {
7495 struct symtab_and_line sr_sal;
7496 struct gdbarch *gdbarch;
7497
7498 /* We shouldn't have gotten here if we don't know where the call site
7499 is. */
7500 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7501
7502 init_sal (&sr_sal); /* initialize to zeros */
7503
7504 gdbarch = frame_unwind_caller_arch (next_frame);
7505 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7506 frame_unwind_caller_pc (next_frame));
7507 sr_sal.section = find_pc_overlay (sr_sal.pc);
7508 sr_sal.pspace = frame_unwind_program_space (next_frame);
7509
7510 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7511 frame_unwind_caller_id (next_frame));
7512 }
7513
7514 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7515 new breakpoint at the target of a jmp_buf. The handling of
7516 longjmp-resume uses the same mechanisms used for handling
7517 "step-resume" breakpoints. */
7518
7519 static void
7520 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7521 {
7522 /* There should never be more than one longjmp-resume breakpoint per
7523 thread, so we should never be setting a new
7524 longjmp_resume_breakpoint when one is already active. */
7525 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: inserting longjmp-resume breakpoint at %s\n",
7530 paddress (gdbarch, pc));
7531
7532 inferior_thread ()->control.exception_resume_breakpoint =
7533 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7534 }
7535
7536 /* Insert an exception resume breakpoint. TP is the thread throwing
7537 the exception. The block B is the block of the unwinder debug hook
7538 function. FRAME is the frame corresponding to the call to this
7539 function. SYM is the symbol of the function argument holding the
7540 target PC of the exception. */
7541
7542 static void
7543 insert_exception_resume_breakpoint (struct thread_info *tp,
7544 const struct block *b,
7545 struct frame_info *frame,
7546 struct symbol *sym)
7547 {
7548 TRY
7549 {
7550 struct block_symbol vsym;
7551 struct value *value;
7552 CORE_ADDR handler;
7553 struct breakpoint *bp;
7554
7555 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7556 value = read_var_value (vsym.symbol, vsym.block, frame);
7557 /* If the value was optimized out, revert to the old behavior. */
7558 if (! value_optimized_out (value))
7559 {
7560 handler = value_as_address (value);
7561
7562 if (debug_infrun)
7563 fprintf_unfiltered (gdb_stdlog,
7564 "infrun: exception resume at %lx\n",
7565 (unsigned long) handler);
7566
7567 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7568 handler, bp_exception_resume);
7569
7570 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7571 frame = NULL;
7572
7573 bp->thread = tp->global_num;
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576 }
7577 CATCH (e, RETURN_MASK_ERROR)
7578 {
7579 /* We want to ignore errors here. */
7580 }
7581 END_CATCH
7582 }
7583
7584 /* A helper for check_exception_resume that sets an
7585 exception-breakpoint based on a SystemTap probe. */
7586
7587 static void
7588 insert_exception_resume_from_probe (struct thread_info *tp,
7589 const struct bound_probe *probe,
7590 struct frame_info *frame)
7591 {
7592 struct value *arg_value;
7593 CORE_ADDR handler;
7594 struct breakpoint *bp;
7595
7596 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7597 if (!arg_value)
7598 return;
7599
7600 handler = value_as_address (arg_value);
7601
7602 if (debug_infrun)
7603 fprintf_unfiltered (gdb_stdlog,
7604 "infrun: exception resume at %s\n",
7605 paddress (get_objfile_arch (probe->objfile),
7606 handler));
7607
7608 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7609 handler, bp_exception_resume);
7610 bp->thread = tp->global_num;
7611 inferior_thread ()->control.exception_resume_breakpoint = bp;
7612 }
7613
7614 /* This is called when an exception has been intercepted. Check to
7615 see whether the exception's destination is of interest, and if so,
7616 set an exception resume breakpoint there. */
7617
7618 static void
7619 check_exception_resume (struct execution_control_state *ecs,
7620 struct frame_info *frame)
7621 {
7622 struct bound_probe probe;
7623 struct symbol *func;
7624
7625 /* First see if this exception unwinding breakpoint was set via a
7626 SystemTap probe point. If so, the probe has two arguments: the
7627 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7628 set a breakpoint there. */
7629 probe = find_probe_by_pc (get_frame_pc (frame));
7630 if (probe.probe)
7631 {
7632 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7633 return;
7634 }
7635
7636 func = get_frame_function (frame);
7637 if (!func)
7638 return;
7639
7640 TRY
7641 {
7642 const struct block *b;
7643 struct block_iterator iter;
7644 struct symbol *sym;
7645 int argno = 0;
7646
7647 /* The exception breakpoint is a thread-specific breakpoint on
7648 the unwinder's debug hook, declared as:
7649
7650 void _Unwind_DebugHook (void *cfa, void *handler);
7651
7652 The CFA argument indicates the frame to which control is
7653 about to be transferred. HANDLER is the destination PC.
7654
7655 We ignore the CFA and set a temporary breakpoint at HANDLER.
7656 This is not extremely efficient but it avoids issues in gdb
7657 with computing the DWARF CFA, and it also works even in weird
7658 cases such as throwing an exception from inside a signal
7659 handler. */
7660
7661 b = SYMBOL_BLOCK_VALUE (func);
7662 ALL_BLOCK_SYMBOLS (b, iter, sym)
7663 {
7664 if (!SYMBOL_IS_ARGUMENT (sym))
7665 continue;
7666
7667 if (argno == 0)
7668 ++argno;
7669 else
7670 {
7671 insert_exception_resume_breakpoint (ecs->event_thread,
7672 b, frame, sym);
7673 break;
7674 }
7675 }
7676 }
7677 CATCH (e, RETURN_MASK_ERROR)
7678 {
7679 }
7680 END_CATCH
7681 }
7682
7683 static void
7684 stop_waiting (struct execution_control_state *ecs)
7685 {
7686 if (debug_infrun)
7687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7688
7689 /* Let callers know we don't want to wait for the inferior anymore. */
7690 ecs->wait_some_more = 0;
7691
7692 /* If all-stop, but the target is always in non-stop mode, stop all
7693 threads now that we're presenting the stop to the user. */
7694 if (!non_stop && target_is_non_stop_p ())
7695 stop_all_threads ();
7696 }
7697
7698 /* Like keep_going, but passes the signal to the inferior, even if the
7699 signal is set to nopass. */
7700
7701 static void
7702 keep_going_pass_signal (struct execution_control_state *ecs)
7703 {
7704 /* Make sure normal_stop is called if we get a QUIT handled before
7705 reaching resume. */
7706 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7707
7708 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7709 gdb_assert (!ecs->event_thread->resumed);
7710
7711 /* Save the pc before execution, to compare with pc after stop. */
7712 ecs->event_thread->prev_pc
7713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7714
7715 if (ecs->event_thread->control.trap_expected)
7716 {
7717 struct thread_info *tp = ecs->event_thread;
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: %s has trap_expected set, "
7722 "resuming to collect trap\n",
7723 target_pid_to_str (tp->ptid));
7724
7725 /* We haven't yet gotten our trap, and either: intercepted a
7726 non-signal event (e.g., a fork); or took a signal which we
7727 are supposed to pass through to the inferior. Simply
7728 continue. */
7729 discard_cleanups (old_cleanups);
7730 resume (ecs->event_thread->suspend.stop_signal);
7731 }
7732 else if (step_over_info_valid_p ())
7733 {
7734 /* Another thread is stepping over a breakpoint in-line. If
7735 this thread needs a step-over too, queue the request. In
7736 either case, this resume must be deferred for later. */
7737 struct thread_info *tp = ecs->event_thread;
7738
7739 if (ecs->hit_singlestep_breakpoint
7740 || thread_still_needs_step_over (tp))
7741 {
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
7744 "infrun: step-over already in progress: "
7745 "step-over for %s deferred\n",
7746 target_pid_to_str (tp->ptid));
7747 thread_step_over_chain_enqueue (tp);
7748 }
7749 else
7750 {
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: step-over in progress: "
7754 "resume of %s deferred\n",
7755 target_pid_to_str (tp->ptid));
7756 }
7757
7758 discard_cleanups (old_cleanups);
7759 }
7760 else
7761 {
7762 struct regcache *regcache = get_current_regcache ();
7763 int remove_bp;
7764 int remove_wps;
7765 step_over_what step_what;
7766
7767 /* Either the trap was not expected, but we are continuing
7768 anyway (if we got a signal, the user asked it be passed to
7769 the child)
7770 -- or --
7771 We got our expected trap, but decided we should resume from
7772 it.
7773
7774 We're going to run this baby now!
7775
7776 Note that insert_breakpoints won't try to re-insert
7777 already inserted breakpoints. Therefore, we don't
7778 care if breakpoints were already inserted, or not. */
7779
7780 /* If we need to step over a breakpoint, and we're not using
7781 displaced stepping to do so, insert all breakpoints
7782 (watchpoints, etc.) but the one we're stepping over, step one
7783 instruction, and then re-insert the breakpoint when that step
7784 is finished. */
7785
7786 step_what = thread_still_needs_step_over (ecs->event_thread);
7787
7788 remove_bp = (ecs->hit_singlestep_breakpoint
7789 || (step_what & STEP_OVER_BREAKPOINT));
7790 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7791
7792 /* We can't use displaced stepping if we need to step past a
7793 watchpoint. The instruction copied to the scratch pad would
7794 still trigger the watchpoint. */
7795 if (remove_bp
7796 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7797 {
7798 set_step_over_info (get_regcache_aspace (regcache),
7799 regcache_read_pc (regcache), remove_wps,
7800 ecs->event_thread->global_num);
7801 }
7802 else if (remove_wps)
7803 set_step_over_info (NULL, 0, remove_wps, -1);
7804
7805 /* If we now need to do an in-line step-over, we need to stop
7806 all other threads. Note this must be done before
7807 insert_breakpoints below, because that removes the breakpoint
7808 we're about to step over, otherwise other threads could miss
7809 it. */
7810 if (step_over_info_valid_p () && target_is_non_stop_p ())
7811 stop_all_threads ();
7812
7813 /* Stop stepping if inserting breakpoints fails. */
7814 TRY
7815 {
7816 insert_breakpoints ();
7817 }
7818 CATCH (e, RETURN_MASK_ERROR)
7819 {
7820 exception_print (gdb_stderr, e);
7821 stop_waiting (ecs);
7822 discard_cleanups (old_cleanups);
7823 return;
7824 }
7825 END_CATCH
7826
7827 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7828
7829 discard_cleanups (old_cleanups);
7830 resume (ecs->event_thread->suspend.stop_signal);
7831 }
7832
7833 prepare_to_wait (ecs);
7834 }
7835
7836 /* Called when we should continue running the inferior, because the
7837 current event doesn't cause a user visible stop. This does the
7838 resuming part; waiting for the next event is done elsewhere. */
7839
7840 static void
7841 keep_going (struct execution_control_state *ecs)
7842 {
7843 if (ecs->event_thread->control.trap_expected
7844 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7845 ecs->event_thread->control.trap_expected = 0;
7846
7847 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7848 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7849 keep_going_pass_signal (ecs);
7850 }
7851
7852 /* This function normally comes after a resume, before
7853 handle_inferior_event exits. It takes care of any last bits of
7854 housekeeping, and sets the all-important wait_some_more flag. */
7855
7856 static void
7857 prepare_to_wait (struct execution_control_state *ecs)
7858 {
7859 if (debug_infrun)
7860 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7861
7862 ecs->wait_some_more = 1;
7863
7864 if (!target_is_async_p ())
7865 mark_infrun_async_event_handler ();
7866 }
7867
7868 /* We are done with the step range of a step/next/si/ni command.
7869 Called once for each n of a "step n" operation. */
7870
7871 static void
7872 end_stepping_range (struct execution_control_state *ecs)
7873 {
7874 ecs->event_thread->control.stop_step = 1;
7875 stop_waiting (ecs);
7876 }
7877
7878 /* Several print_*_reason functions to print why the inferior has stopped.
7879 We always print something when the inferior exits, or receives a signal.
7880 The rest of the cases are dealt with later on in normal_stop and
7881 print_it_typical. Ideally there should be a call to one of these
7882 print_*_reason functions functions from handle_inferior_event each time
7883 stop_waiting is called.
7884
7885 Note that we don't call these directly, instead we delegate that to
7886 the interpreters, through observers. Interpreters then call these
7887 with whatever uiout is right. */
7888
7889 void
7890 print_end_stepping_range_reason (struct ui_out *uiout)
7891 {
7892 /* For CLI-like interpreters, print nothing. */
7893
7894 if (uiout->is_mi_like_p ())
7895 {
7896 uiout->field_string ("reason",
7897 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7898 }
7899 }
7900
7901 void
7902 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7903 {
7904 annotate_signalled ();
7905 if (uiout->is_mi_like_p ())
7906 uiout->field_string
7907 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7908 uiout->text ("\nProgram terminated with signal ");
7909 annotate_signal_name ();
7910 uiout->field_string ("signal-name",
7911 gdb_signal_to_name (siggnal));
7912 annotate_signal_name_end ();
7913 uiout->text (", ");
7914 annotate_signal_string ();
7915 uiout->field_string ("signal-meaning",
7916 gdb_signal_to_string (siggnal));
7917 annotate_signal_string_end ();
7918 uiout->text (".\n");
7919 uiout->text ("The program no longer exists.\n");
7920 }
7921
7922 void
7923 print_exited_reason (struct ui_out *uiout, int exitstatus)
7924 {
7925 struct inferior *inf = current_inferior ();
7926 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7927
7928 annotate_exited (exitstatus);
7929 if (exitstatus)
7930 {
7931 if (uiout->is_mi_like_p ())
7932 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7933 uiout->text ("[Inferior ");
7934 uiout->text (plongest (inf->num));
7935 uiout->text (" (");
7936 uiout->text (pidstr);
7937 uiout->text (") exited with code ");
7938 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7939 uiout->text ("]\n");
7940 }
7941 else
7942 {
7943 if (uiout->is_mi_like_p ())
7944 uiout->field_string
7945 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7946 uiout->text ("[Inferior ");
7947 uiout->text (plongest (inf->num));
7948 uiout->text (" (");
7949 uiout->text (pidstr);
7950 uiout->text (") exited normally]\n");
7951 }
7952 }
7953
7954 /* Some targets/architectures can do extra processing/display of
7955 segmentation faults. E.g., Intel MPX boundary faults.
7956 Call the architecture dependent function to handle the fault. */
7957
7958 static void
7959 handle_segmentation_fault (struct ui_out *uiout)
7960 {
7961 struct regcache *regcache = get_current_regcache ();
7962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7963
7964 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7965 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7966 }
7967
7968 void
7969 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7970 {
7971 struct thread_info *thr = inferior_thread ();
7972
7973 annotate_signal ();
7974
7975 if (uiout->is_mi_like_p ())
7976 ;
7977 else if (show_thread_that_caused_stop ())
7978 {
7979 const char *name;
7980
7981 uiout->text ("\nThread ");
7982 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7983
7984 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7985 if (name != NULL)
7986 {
7987 uiout->text (" \"");
7988 uiout->field_fmt ("name", "%s", name);
7989 uiout->text ("\"");
7990 }
7991 }
7992 else
7993 uiout->text ("\nProgram");
7994
7995 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7996 uiout->text (" stopped");
7997 else
7998 {
7999 uiout->text (" received signal ");
8000 annotate_signal_name ();
8001 if (uiout->is_mi_like_p ())
8002 uiout->field_string
8003 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8004 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8005 annotate_signal_name_end ();
8006 uiout->text (", ");
8007 annotate_signal_string ();
8008 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8009
8010 if (siggnal == GDB_SIGNAL_SEGV)
8011 handle_segmentation_fault (uiout);
8012
8013 annotate_signal_string_end ();
8014 }
8015 uiout->text (".\n");
8016 }
8017
8018 void
8019 print_no_history_reason (struct ui_out *uiout)
8020 {
8021 uiout->text ("\nNo more reverse-execution history.\n");
8022 }
8023
8024 /* Print current location without a level number, if we have changed
8025 functions or hit a breakpoint. Print source line if we have one.
8026 bpstat_print contains the logic deciding in detail what to print,
8027 based on the event(s) that just occurred. */
8028
8029 static void
8030 print_stop_location (struct target_waitstatus *ws)
8031 {
8032 int bpstat_ret;
8033 enum print_what source_flag;
8034 int do_frame_printing = 1;
8035 struct thread_info *tp = inferior_thread ();
8036
8037 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8038 switch (bpstat_ret)
8039 {
8040 case PRINT_UNKNOWN:
8041 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8042 should) carry around the function and does (or should) use
8043 that when doing a frame comparison. */
8044 if (tp->control.stop_step
8045 && frame_id_eq (tp->control.step_frame_id,
8046 get_frame_id (get_current_frame ()))
8047 && tp->control.step_start_function == find_pc_function (stop_pc))
8048 {
8049 /* Finished step, just print source line. */
8050 source_flag = SRC_LINE;
8051 }
8052 else
8053 {
8054 /* Print location and source line. */
8055 source_flag = SRC_AND_LOC;
8056 }
8057 break;
8058 case PRINT_SRC_AND_LOC:
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 break;
8062 case PRINT_SRC_ONLY:
8063 source_flag = SRC_LINE;
8064 break;
8065 case PRINT_NOTHING:
8066 /* Something bogus. */
8067 source_flag = SRC_LINE;
8068 do_frame_printing = 0;
8069 break;
8070 default:
8071 internal_error (__FILE__, __LINE__, _("Unknown value."));
8072 }
8073
8074 /* The behavior of this routine with respect to the source
8075 flag is:
8076 SRC_LINE: Print only source line
8077 LOCATION: Print only location
8078 SRC_AND_LOC: Print location and source line. */
8079 if (do_frame_printing)
8080 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8081 }
8082
8083 /* See infrun.h. */
8084
8085 void
8086 print_stop_event (struct ui_out *uiout)
8087 {
8088 struct target_waitstatus last;
8089 ptid_t last_ptid;
8090 struct thread_info *tp;
8091
8092 get_last_target_status (&last_ptid, &last);
8093
8094 {
8095 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8096
8097 print_stop_location (&last);
8098
8099 /* Display the auto-display expressions. */
8100 do_displays ();
8101 }
8102
8103 tp = inferior_thread ();
8104 if (tp->thread_fsm != NULL
8105 && thread_fsm_finished_p (tp->thread_fsm))
8106 {
8107 struct return_value_info *rv;
8108
8109 rv = thread_fsm_return_value (tp->thread_fsm);
8110 if (rv != NULL)
8111 print_return_value (uiout, rv);
8112 }
8113 }
8114
8115 /* See infrun.h. */
8116
8117 void
8118 maybe_remove_breakpoints (void)
8119 {
8120 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8121 {
8122 if (remove_breakpoints ())
8123 {
8124 target_terminal_ours_for_output ();
8125 printf_filtered (_("Cannot remove breakpoints because "
8126 "program is no longer writable.\nFurther "
8127 "execution is probably impossible.\n"));
8128 }
8129 }
8130 }
8131
8132 /* The execution context that just caused a normal stop. */
8133
8134 struct stop_context
8135 {
8136 /* The stop ID. */
8137 ULONGEST stop_id;
8138
8139 /* The event PTID. */
8140
8141 ptid_t ptid;
8142
8143 /* If stopp for a thread event, this is the thread that caused the
8144 stop. */
8145 struct thread_info *thread;
8146
8147 /* The inferior that caused the stop. */
8148 int inf_num;
8149 };
8150
8151 /* Returns a new stop context. If stopped for a thread event, this
8152 takes a strong reference to the thread. */
8153
8154 static struct stop_context *
8155 save_stop_context (void)
8156 {
8157 struct stop_context *sc = XNEW (struct stop_context);
8158
8159 sc->stop_id = get_stop_id ();
8160 sc->ptid = inferior_ptid;
8161 sc->inf_num = current_inferior ()->num;
8162
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 {
8165 /* Take a strong reference so that the thread can't be deleted
8166 yet. */
8167 sc->thread = inferior_thread ();
8168 sc->thread->refcount++;
8169 }
8170 else
8171 sc->thread = NULL;
8172
8173 return sc;
8174 }
8175
8176 /* Release a stop context previously created with save_stop_context.
8177 Releases the strong reference to the thread as well. */
8178
8179 static void
8180 release_stop_context_cleanup (void *arg)
8181 {
8182 struct stop_context *sc = (struct stop_context *) arg;
8183
8184 if (sc->thread != NULL)
8185 sc->thread->refcount--;
8186 xfree (sc);
8187 }
8188
8189 /* Return true if the current context no longer matches the saved stop
8190 context. */
8191
8192 static int
8193 stop_context_changed (struct stop_context *prev)
8194 {
8195 if (!ptid_equal (prev->ptid, inferior_ptid))
8196 return 1;
8197 if (prev->inf_num != current_inferior ()->num)
8198 return 1;
8199 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8200 return 1;
8201 if (get_stop_id () != prev->stop_id)
8202 return 1;
8203 return 0;
8204 }
8205
8206 /* See infrun.h. */
8207
8208 int
8209 normal_stop (void)
8210 {
8211 struct target_waitstatus last;
8212 ptid_t last_ptid;
8213 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8214 ptid_t pid_ptid;
8215
8216 get_last_target_status (&last_ptid, &last);
8217
8218 new_stop_id ();
8219
8220 /* If an exception is thrown from this point on, make sure to
8221 propagate GDB's knowledge of the executing state to the
8222 frontend/user running state. A QUIT is an easy exception to see
8223 here, so do this before any filtered output. */
8224 if (!non_stop)
8225 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8226 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8227 || last.kind == TARGET_WAITKIND_EXITED)
8228 {
8229 /* On some targets, we may still have live threads in the
8230 inferior when we get a process exit event. E.g., for
8231 "checkpoint", when the current checkpoint/fork exits,
8232 linux-fork.c automatically switches to another fork from
8233 within target_mourn_inferior. */
8234 if (!ptid_equal (inferior_ptid, null_ptid))
8235 {
8236 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8237 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8238 }
8239 }
8240 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8241 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8242
8243 /* As we're presenting a stop, and potentially removing breakpoints,
8244 update the thread list so we can tell whether there are threads
8245 running on the target. With target remote, for example, we can
8246 only learn about new threads when we explicitly update the thread
8247 list. Do this before notifying the interpreters about signal
8248 stops, end of stepping ranges, etc., so that the "new thread"
8249 output is emitted before e.g., "Program received signal FOO",
8250 instead of after. */
8251 update_thread_list ();
8252
8253 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8254 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8255
8256 /* As with the notification of thread events, we want to delay
8257 notifying the user that we've switched thread context until
8258 the inferior actually stops.
8259
8260 There's no point in saying anything if the inferior has exited.
8261 Note that SIGNALLED here means "exited with a signal", not
8262 "received a signal".
8263
8264 Also skip saying anything in non-stop mode. In that mode, as we
8265 don't want GDB to switch threads behind the user's back, to avoid
8266 races where the user is typing a command to apply to thread x,
8267 but GDB switches to thread y before the user finishes entering
8268 the command, fetch_inferior_event installs a cleanup to restore
8269 the current thread back to the thread the user had selected right
8270 after this event is handled, so we're not really switching, only
8271 informing of a stop. */
8272 if (!non_stop
8273 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8274 && target_has_execution
8275 && last.kind != TARGET_WAITKIND_SIGNALLED
8276 && last.kind != TARGET_WAITKIND_EXITED
8277 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8278 {
8279 SWITCH_THRU_ALL_UIS ()
8280 {
8281 target_terminal_ours_for_output ();
8282 printf_filtered (_("[Switching to %s]\n"),
8283 target_pid_to_str (inferior_ptid));
8284 annotate_thread_changed ();
8285 }
8286 previous_inferior_ptid = inferior_ptid;
8287 }
8288
8289 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8290 {
8291 SWITCH_THRU_ALL_UIS ()
8292 if (current_ui->prompt_state == PROMPT_BLOCKED)
8293 {
8294 target_terminal_ours_for_output ();
8295 printf_filtered (_("No unwaited-for children left.\n"));
8296 }
8297 }
8298
8299 /* Note: this depends on the update_thread_list call above. */
8300 maybe_remove_breakpoints ();
8301
8302 /* If an auto-display called a function and that got a signal,
8303 delete that auto-display to avoid an infinite recursion. */
8304
8305 if (stopped_by_random_signal)
8306 disable_current_display ();
8307
8308 SWITCH_THRU_ALL_UIS ()
8309 {
8310 async_enable_stdin ();
8311 }
8312
8313 /* Let the user/frontend see the threads as stopped. */
8314 do_cleanups (old_chain);
8315
8316 /* Select innermost stack frame - i.e., current frame is frame 0,
8317 and current location is based on that. Handle the case where the
8318 dummy call is returning after being stopped. E.g. the dummy call
8319 previously hit a breakpoint. (If the dummy call returns
8320 normally, we won't reach here.) Do this before the stop hook is
8321 run, so that it doesn't get to see the temporary dummy frame,
8322 which is not where we'll present the stop. */
8323 if (has_stack_frames ())
8324 {
8325 if (stop_stack_dummy == STOP_STACK_DUMMY)
8326 {
8327 /* Pop the empty frame that contains the stack dummy. This
8328 also restores inferior state prior to the call (struct
8329 infcall_suspend_state). */
8330 struct frame_info *frame = get_current_frame ();
8331
8332 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8333 frame_pop (frame);
8334 /* frame_pop calls reinit_frame_cache as the last thing it
8335 does which means there's now no selected frame. */
8336 }
8337
8338 select_frame (get_current_frame ());
8339
8340 /* Set the current source location. */
8341 set_current_sal_from_frame (get_current_frame ());
8342 }
8343
8344 /* Look up the hook_stop and run it (CLI internally handles problem
8345 of stop_command's pre-hook not existing). */
8346 if (stop_command != NULL)
8347 {
8348 struct stop_context *saved_context = save_stop_context ();
8349 struct cleanup *old_chain
8350 = make_cleanup (release_stop_context_cleanup, saved_context);
8351
8352 catch_errors (hook_stop_stub, stop_command,
8353 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8354
8355 /* If the stop hook resumes the target, then there's no point in
8356 trying to notify about the previous stop; its context is
8357 gone. Likewise if the command switches thread or inferior --
8358 the observers would print a stop for the wrong
8359 thread/inferior. */
8360 if (stop_context_changed (saved_context))
8361 {
8362 do_cleanups (old_chain);
8363 return 1;
8364 }
8365 do_cleanups (old_chain);
8366 }
8367
8368 /* Notify observers about the stop. This is where the interpreters
8369 print the stop event. */
8370 if (!ptid_equal (inferior_ptid, null_ptid))
8371 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8372 stop_print_frame);
8373 else
8374 observer_notify_normal_stop (NULL, stop_print_frame);
8375
8376 annotate_stopped ();
8377
8378 if (target_has_execution)
8379 {
8380 if (last.kind != TARGET_WAITKIND_SIGNALLED
8381 && last.kind != TARGET_WAITKIND_EXITED)
8382 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8383 Delete any breakpoint that is to be deleted at the next stop. */
8384 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8385 }
8386
8387 /* Try to get rid of automatically added inferiors that are no
8388 longer needed. Keeping those around slows down things linearly.
8389 Note that this never removes the current inferior. */
8390 prune_inferiors ();
8391
8392 return 0;
8393 }
8394
8395 static int
8396 hook_stop_stub (void *cmd)
8397 {
8398 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8399 return (0);
8400 }
8401 \f
8402 int
8403 signal_stop_state (int signo)
8404 {
8405 return signal_stop[signo];
8406 }
8407
8408 int
8409 signal_print_state (int signo)
8410 {
8411 return signal_print[signo];
8412 }
8413
8414 int
8415 signal_pass_state (int signo)
8416 {
8417 return signal_program[signo];
8418 }
8419
8420 static void
8421 signal_cache_update (int signo)
8422 {
8423 if (signo == -1)
8424 {
8425 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8426 signal_cache_update (signo);
8427
8428 return;
8429 }
8430
8431 signal_pass[signo] = (signal_stop[signo] == 0
8432 && signal_print[signo] == 0
8433 && signal_program[signo] == 1
8434 && signal_catch[signo] == 0);
8435 }
8436
8437 int
8438 signal_stop_update (int signo, int state)
8439 {
8440 int ret = signal_stop[signo];
8441
8442 signal_stop[signo] = state;
8443 signal_cache_update (signo);
8444 return ret;
8445 }
8446
8447 int
8448 signal_print_update (int signo, int state)
8449 {
8450 int ret = signal_print[signo];
8451
8452 signal_print[signo] = state;
8453 signal_cache_update (signo);
8454 return ret;
8455 }
8456
8457 int
8458 signal_pass_update (int signo, int state)
8459 {
8460 int ret = signal_program[signo];
8461
8462 signal_program[signo] = state;
8463 signal_cache_update (signo);
8464 return ret;
8465 }
8466
8467 /* Update the global 'signal_catch' from INFO and notify the
8468 target. */
8469
8470 void
8471 signal_catch_update (const unsigned int *info)
8472 {
8473 int i;
8474
8475 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8476 signal_catch[i] = info[i] > 0;
8477 signal_cache_update (-1);
8478 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8479 }
8480
8481 static void
8482 sig_print_header (void)
8483 {
8484 printf_filtered (_("Signal Stop\tPrint\tPass "
8485 "to program\tDescription\n"));
8486 }
8487
8488 static void
8489 sig_print_info (enum gdb_signal oursig)
8490 {
8491 const char *name = gdb_signal_to_name (oursig);
8492 int name_padding = 13 - strlen (name);
8493
8494 if (name_padding <= 0)
8495 name_padding = 0;
8496
8497 printf_filtered ("%s", name);
8498 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8499 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8500 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8502 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8503 }
8504
8505 /* Specify how various signals in the inferior should be handled. */
8506
8507 static void
8508 handle_command (char *args, int from_tty)
8509 {
8510 char **argv;
8511 int digits, wordlen;
8512 int sigfirst, signum, siglast;
8513 enum gdb_signal oursig;
8514 int allsigs;
8515 int nsigs;
8516 unsigned char *sigs;
8517 struct cleanup *old_chain;
8518
8519 if (args == NULL)
8520 {
8521 error_no_arg (_("signal to handle"));
8522 }
8523
8524 /* Allocate and zero an array of flags for which signals to handle. */
8525
8526 nsigs = (int) GDB_SIGNAL_LAST;
8527 sigs = (unsigned char *) alloca (nsigs);
8528 memset (sigs, 0, nsigs);
8529
8530 /* Break the command line up into args. */
8531
8532 argv = gdb_buildargv (args);
8533 old_chain = make_cleanup_freeargv (argv);
8534
8535 /* Walk through the args, looking for signal oursigs, signal names, and
8536 actions. Signal numbers and signal names may be interspersed with
8537 actions, with the actions being performed for all signals cumulatively
8538 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8539
8540 while (*argv != NULL)
8541 {
8542 wordlen = strlen (*argv);
8543 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8544 {;
8545 }
8546 allsigs = 0;
8547 sigfirst = siglast = -1;
8548
8549 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8550 {
8551 /* Apply action to all signals except those used by the
8552 debugger. Silently skip those. */
8553 allsigs = 1;
8554 sigfirst = 0;
8555 siglast = nsigs - 1;
8556 }
8557 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8558 {
8559 SET_SIGS (nsigs, sigs, signal_stop);
8560 SET_SIGS (nsigs, sigs, signal_print);
8561 }
8562 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8563 {
8564 UNSET_SIGS (nsigs, sigs, signal_program);
8565 }
8566 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8567 {
8568 SET_SIGS (nsigs, sigs, signal_print);
8569 }
8570 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8571 {
8572 SET_SIGS (nsigs, sigs, signal_program);
8573 }
8574 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8575 {
8576 UNSET_SIGS (nsigs, sigs, signal_stop);
8577 }
8578 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8579 {
8580 SET_SIGS (nsigs, sigs, signal_program);
8581 }
8582 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8583 {
8584 UNSET_SIGS (nsigs, sigs, signal_print);
8585 UNSET_SIGS (nsigs, sigs, signal_stop);
8586 }
8587 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_program);
8590 }
8591 else if (digits > 0)
8592 {
8593 /* It is numeric. The numeric signal refers to our own
8594 internal signal numbering from target.h, not to host/target
8595 signal number. This is a feature; users really should be
8596 using symbolic names anyway, and the common ones like
8597 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8598
8599 sigfirst = siglast = (int)
8600 gdb_signal_from_command (atoi (*argv));
8601 if ((*argv)[digits] == '-')
8602 {
8603 siglast = (int)
8604 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8605 }
8606 if (sigfirst > siglast)
8607 {
8608 /* Bet he didn't figure we'd think of this case... */
8609 signum = sigfirst;
8610 sigfirst = siglast;
8611 siglast = signum;
8612 }
8613 }
8614 else
8615 {
8616 oursig = gdb_signal_from_name (*argv);
8617 if (oursig != GDB_SIGNAL_UNKNOWN)
8618 {
8619 sigfirst = siglast = (int) oursig;
8620 }
8621 else
8622 {
8623 /* Not a number and not a recognized flag word => complain. */
8624 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8625 }
8626 }
8627
8628 /* If any signal numbers or symbol names were found, set flags for
8629 which signals to apply actions to. */
8630
8631 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8632 {
8633 switch ((enum gdb_signal) signum)
8634 {
8635 case GDB_SIGNAL_TRAP:
8636 case GDB_SIGNAL_INT:
8637 if (!allsigs && !sigs[signum])
8638 {
8639 if (query (_("%s is used by the debugger.\n\
8640 Are you sure you want to change it? "),
8641 gdb_signal_to_name ((enum gdb_signal) signum)))
8642 {
8643 sigs[signum] = 1;
8644 }
8645 else
8646 {
8647 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8648 gdb_flush (gdb_stdout);
8649 }
8650 }
8651 break;
8652 case GDB_SIGNAL_0:
8653 case GDB_SIGNAL_DEFAULT:
8654 case GDB_SIGNAL_UNKNOWN:
8655 /* Make sure that "all" doesn't print these. */
8656 break;
8657 default:
8658 sigs[signum] = 1;
8659 break;
8660 }
8661 }
8662
8663 argv++;
8664 }
8665
8666 for (signum = 0; signum < nsigs; signum++)
8667 if (sigs[signum])
8668 {
8669 signal_cache_update (-1);
8670 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8671 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8672
8673 if (from_tty)
8674 {
8675 /* Show the results. */
8676 sig_print_header ();
8677 for (; signum < nsigs; signum++)
8678 if (sigs[signum])
8679 sig_print_info ((enum gdb_signal) signum);
8680 }
8681
8682 break;
8683 }
8684
8685 do_cleanups (old_chain);
8686 }
8687
8688 /* Complete the "handle" command. */
8689
8690 static VEC (char_ptr) *
8691 handle_completer (struct cmd_list_element *ignore,
8692 const char *text, const char *word)
8693 {
8694 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8695 static const char * const keywords[] =
8696 {
8697 "all",
8698 "stop",
8699 "ignore",
8700 "print",
8701 "pass",
8702 "nostop",
8703 "noignore",
8704 "noprint",
8705 "nopass",
8706 NULL,
8707 };
8708
8709 vec_signals = signal_completer (ignore, text, word);
8710 vec_keywords = complete_on_enum (keywords, word, word);
8711
8712 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8713 VEC_free (char_ptr, vec_signals);
8714 VEC_free (char_ptr, vec_keywords);
8715 return return_val;
8716 }
8717
8718 enum gdb_signal
8719 gdb_signal_from_command (int num)
8720 {
8721 if (num >= 1 && num <= 15)
8722 return (enum gdb_signal) num;
8723 error (_("Only signals 1-15 are valid as numeric signals.\n\
8724 Use \"info signals\" for a list of symbolic signals."));
8725 }
8726
8727 /* Print current contents of the tables set by the handle command.
8728 It is possible we should just be printing signals actually used
8729 by the current target (but for things to work right when switching
8730 targets, all signals should be in the signal tables). */
8731
8732 static void
8733 signals_info (char *signum_exp, int from_tty)
8734 {
8735 enum gdb_signal oursig;
8736
8737 sig_print_header ();
8738
8739 if (signum_exp)
8740 {
8741 /* First see if this is a symbol name. */
8742 oursig = gdb_signal_from_name (signum_exp);
8743 if (oursig == GDB_SIGNAL_UNKNOWN)
8744 {
8745 /* No, try numeric. */
8746 oursig =
8747 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8748 }
8749 sig_print_info (oursig);
8750 return;
8751 }
8752
8753 printf_filtered ("\n");
8754 /* These ugly casts brought to you by the native VAX compiler. */
8755 for (oursig = GDB_SIGNAL_FIRST;
8756 (int) oursig < (int) GDB_SIGNAL_LAST;
8757 oursig = (enum gdb_signal) ((int) oursig + 1))
8758 {
8759 QUIT;
8760
8761 if (oursig != GDB_SIGNAL_UNKNOWN
8762 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8763 sig_print_info (oursig);
8764 }
8765
8766 printf_filtered (_("\nUse the \"handle\" command "
8767 "to change these tables.\n"));
8768 }
8769
8770 /* The $_siginfo convenience variable is a bit special. We don't know
8771 for sure the type of the value until we actually have a chance to
8772 fetch the data. The type can change depending on gdbarch, so it is
8773 also dependent on which thread you have selected.
8774
8775 1. making $_siginfo be an internalvar that creates a new value on
8776 access.
8777
8778 2. making the value of $_siginfo be an lval_computed value. */
8779
8780 /* This function implements the lval_computed support for reading a
8781 $_siginfo value. */
8782
8783 static void
8784 siginfo_value_read (struct value *v)
8785 {
8786 LONGEST transferred;
8787
8788 /* If we can access registers, so can we access $_siginfo. Likewise
8789 vice versa. */
8790 validate_registers_access ();
8791
8792 transferred =
8793 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8794 NULL,
8795 value_contents_all_raw (v),
8796 value_offset (v),
8797 TYPE_LENGTH (value_type (v)));
8798
8799 if (transferred != TYPE_LENGTH (value_type (v)))
8800 error (_("Unable to read siginfo"));
8801 }
8802
8803 /* This function implements the lval_computed support for writing a
8804 $_siginfo value. */
8805
8806 static void
8807 siginfo_value_write (struct value *v, struct value *fromval)
8808 {
8809 LONGEST transferred;
8810
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
8814
8815 transferred = target_write (&current_target,
8816 TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (fromval),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (fromval)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (fromval)))
8823 error (_("Unable to write siginfo"));
8824 }
8825
8826 static const struct lval_funcs siginfo_value_funcs =
8827 {
8828 siginfo_value_read,
8829 siginfo_value_write
8830 };
8831
8832 /* Return a new value with the correct type for the siginfo object of
8833 the current thread using architecture GDBARCH. Return a void value
8834 if there's no object available. */
8835
8836 static struct value *
8837 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8838 void *ignore)
8839 {
8840 if (target_has_stack
8841 && !ptid_equal (inferior_ptid, null_ptid)
8842 && gdbarch_get_siginfo_type_p (gdbarch))
8843 {
8844 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8845
8846 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8847 }
8848
8849 return allocate_value (builtin_type (gdbarch)->builtin_void);
8850 }
8851
8852 \f
8853 /* infcall_suspend_state contains state about the program itself like its
8854 registers and any signal it received when it last stopped.
8855 This state must be restored regardless of how the inferior function call
8856 ends (either successfully, or after it hits a breakpoint or signal)
8857 if the program is to properly continue where it left off. */
8858
8859 struct infcall_suspend_state
8860 {
8861 struct thread_suspend_state thread_suspend;
8862
8863 /* Other fields: */
8864 CORE_ADDR stop_pc;
8865 struct regcache *registers;
8866
8867 /* Format of SIGINFO_DATA or NULL if it is not present. */
8868 struct gdbarch *siginfo_gdbarch;
8869
8870 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8871 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8872 content would be invalid. */
8873 gdb_byte *siginfo_data;
8874 };
8875
8876 struct infcall_suspend_state *
8877 save_infcall_suspend_state (void)
8878 {
8879 struct infcall_suspend_state *inf_state;
8880 struct thread_info *tp = inferior_thread ();
8881 struct regcache *regcache = get_current_regcache ();
8882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8883 gdb_byte *siginfo_data = NULL;
8884
8885 if (gdbarch_get_siginfo_type_p (gdbarch))
8886 {
8887 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8888 size_t len = TYPE_LENGTH (type);
8889 struct cleanup *back_to;
8890
8891 siginfo_data = (gdb_byte *) xmalloc (len);
8892 back_to = make_cleanup (xfree, siginfo_data);
8893
8894 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8895 siginfo_data, 0, len) == len)
8896 discard_cleanups (back_to);
8897 else
8898 {
8899 /* Errors ignored. */
8900 do_cleanups (back_to);
8901 siginfo_data = NULL;
8902 }
8903 }
8904
8905 inf_state = XCNEW (struct infcall_suspend_state);
8906
8907 if (siginfo_data)
8908 {
8909 inf_state->siginfo_gdbarch = gdbarch;
8910 inf_state->siginfo_data = siginfo_data;
8911 }
8912
8913 inf_state->thread_suspend = tp->suspend;
8914
8915 /* run_inferior_call will not use the signal due to its `proceed' call with
8916 GDB_SIGNAL_0 anyway. */
8917 tp->suspend.stop_signal = GDB_SIGNAL_0;
8918
8919 inf_state->stop_pc = stop_pc;
8920
8921 inf_state->registers = regcache_dup (regcache);
8922
8923 return inf_state;
8924 }
8925
8926 /* Restore inferior session state to INF_STATE. */
8927
8928 void
8929 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8930 {
8931 struct thread_info *tp = inferior_thread ();
8932 struct regcache *regcache = get_current_regcache ();
8933 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8934
8935 tp->suspend = inf_state->thread_suspend;
8936
8937 stop_pc = inf_state->stop_pc;
8938
8939 if (inf_state->siginfo_gdbarch == gdbarch)
8940 {
8941 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8942
8943 /* Errors ignored. */
8944 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8945 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8946 }
8947
8948 /* The inferior can be gone if the user types "print exit(0)"
8949 (and perhaps other times). */
8950 if (target_has_execution)
8951 /* NB: The register write goes through to the target. */
8952 regcache_cpy (regcache, inf_state->registers);
8953
8954 discard_infcall_suspend_state (inf_state);
8955 }
8956
8957 static void
8958 do_restore_infcall_suspend_state_cleanup (void *state)
8959 {
8960 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8961 }
8962
8963 struct cleanup *
8964 make_cleanup_restore_infcall_suspend_state
8965 (struct infcall_suspend_state *inf_state)
8966 {
8967 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8968 }
8969
8970 void
8971 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8972 {
8973 regcache_xfree (inf_state->registers);
8974 xfree (inf_state->siginfo_data);
8975 xfree (inf_state);
8976 }
8977
8978 struct regcache *
8979 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8980 {
8981 return inf_state->registers;
8982 }
8983
8984 /* infcall_control_state contains state regarding gdb's control of the
8985 inferior itself like stepping control. It also contains session state like
8986 the user's currently selected frame. */
8987
8988 struct infcall_control_state
8989 {
8990 struct thread_control_state thread_control;
8991 struct inferior_control_state inferior_control;
8992
8993 /* Other fields: */
8994 enum stop_stack_kind stop_stack_dummy;
8995 int stopped_by_random_signal;
8996
8997 /* ID if the selected frame when the inferior function call was made. */
8998 struct frame_id selected_frame_id;
8999 };
9000
9001 /* Save all of the information associated with the inferior<==>gdb
9002 connection. */
9003
9004 struct infcall_control_state *
9005 save_infcall_control_state (void)
9006 {
9007 struct infcall_control_state *inf_status =
9008 XNEW (struct infcall_control_state);
9009 struct thread_info *tp = inferior_thread ();
9010 struct inferior *inf = current_inferior ();
9011
9012 inf_status->thread_control = tp->control;
9013 inf_status->inferior_control = inf->control;
9014
9015 tp->control.step_resume_breakpoint = NULL;
9016 tp->control.exception_resume_breakpoint = NULL;
9017
9018 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9019 chain. If caller's caller is walking the chain, they'll be happier if we
9020 hand them back the original chain when restore_infcall_control_state is
9021 called. */
9022 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9023
9024 /* Other fields: */
9025 inf_status->stop_stack_dummy = stop_stack_dummy;
9026 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9027
9028 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9029
9030 return inf_status;
9031 }
9032
9033 static int
9034 restore_selected_frame (void *args)
9035 {
9036 struct frame_id *fid = (struct frame_id *) args;
9037 struct frame_info *frame;
9038
9039 frame = frame_find_by_id (*fid);
9040
9041 /* If inf_status->selected_frame_id is NULL, there was no previously
9042 selected frame. */
9043 if (frame == NULL)
9044 {
9045 warning (_("Unable to restore previously selected frame."));
9046 return 0;
9047 }
9048
9049 select_frame (frame);
9050
9051 return (1);
9052 }
9053
9054 /* Restore inferior session state to INF_STATUS. */
9055
9056 void
9057 restore_infcall_control_state (struct infcall_control_state *inf_status)
9058 {
9059 struct thread_info *tp = inferior_thread ();
9060 struct inferior *inf = current_inferior ();
9061
9062 if (tp->control.step_resume_breakpoint)
9063 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9064
9065 if (tp->control.exception_resume_breakpoint)
9066 tp->control.exception_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
9069 /* Handle the bpstat_copy of the chain. */
9070 bpstat_clear (&tp->control.stop_bpstat);
9071
9072 tp->control = inf_status->thread_control;
9073 inf->control = inf_status->inferior_control;
9074
9075 /* Other fields: */
9076 stop_stack_dummy = inf_status->stop_stack_dummy;
9077 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9078
9079 if (target_has_stack)
9080 {
9081 /* The point of catch_errors is that if the stack is clobbered,
9082 walking the stack might encounter a garbage pointer and
9083 error() trying to dereference it. */
9084 if (catch_errors
9085 (restore_selected_frame, &inf_status->selected_frame_id,
9086 "Unable to restore previously selected frame:\n",
9087 RETURN_MASK_ERROR) == 0)
9088 /* Error in restoring the selected frame. Select the innermost
9089 frame. */
9090 select_frame (get_current_frame ());
9091 }
9092
9093 xfree (inf_status);
9094 }
9095
9096 static void
9097 do_restore_infcall_control_state_cleanup (void *sts)
9098 {
9099 restore_infcall_control_state ((struct infcall_control_state *) sts);
9100 }
9101
9102 struct cleanup *
9103 make_cleanup_restore_infcall_control_state
9104 (struct infcall_control_state *inf_status)
9105 {
9106 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9107 }
9108
9109 void
9110 discard_infcall_control_state (struct infcall_control_state *inf_status)
9111 {
9112 if (inf_status->thread_control.step_resume_breakpoint)
9113 inf_status->thread_control.step_resume_breakpoint->disposition
9114 = disp_del_at_next_stop;
9115
9116 if (inf_status->thread_control.exception_resume_breakpoint)
9117 inf_status->thread_control.exception_resume_breakpoint->disposition
9118 = disp_del_at_next_stop;
9119
9120 /* See save_infcall_control_state for info on stop_bpstat. */
9121 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9122
9123 xfree (inf_status);
9124 }
9125 \f
9126 /* restore_inferior_ptid() will be used by the cleanup machinery
9127 to restore the inferior_ptid value saved in a call to
9128 save_inferior_ptid(). */
9129
9130 static void
9131 restore_inferior_ptid (void *arg)
9132 {
9133 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9134
9135 inferior_ptid = *saved_ptid_ptr;
9136 xfree (arg);
9137 }
9138
9139 /* Save the value of inferior_ptid so that it may be restored by a
9140 later call to do_cleanups(). Returns the struct cleanup pointer
9141 needed for later doing the cleanup. */
9142
9143 struct cleanup *
9144 save_inferior_ptid (void)
9145 {
9146 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9147
9148 *saved_ptid_ptr = inferior_ptid;
9149 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9150 }
9151
9152 /* See infrun.h. */
9153
9154 void
9155 clear_exit_convenience_vars (void)
9156 {
9157 clear_internalvar (lookup_internalvar ("_exitsignal"));
9158 clear_internalvar (lookup_internalvar ("_exitcode"));
9159 }
9160 \f
9161
9162 /* User interface for reverse debugging:
9163 Set exec-direction / show exec-direction commands
9164 (returns error unless target implements to_set_exec_direction method). */
9165
9166 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9167 static const char exec_forward[] = "forward";
9168 static const char exec_reverse[] = "reverse";
9169 static const char *exec_direction = exec_forward;
9170 static const char *const exec_direction_names[] = {
9171 exec_forward,
9172 exec_reverse,
9173 NULL
9174 };
9175
9176 static void
9177 set_exec_direction_func (char *args, int from_tty,
9178 struct cmd_list_element *cmd)
9179 {
9180 if (target_can_execute_reverse)
9181 {
9182 if (!strcmp (exec_direction, exec_forward))
9183 execution_direction = EXEC_FORWARD;
9184 else if (!strcmp (exec_direction, exec_reverse))
9185 execution_direction = EXEC_REVERSE;
9186 }
9187 else
9188 {
9189 exec_direction = exec_forward;
9190 error (_("Target does not support this operation."));
9191 }
9192 }
9193
9194 static void
9195 show_exec_direction_func (struct ui_file *out, int from_tty,
9196 struct cmd_list_element *cmd, const char *value)
9197 {
9198 switch (execution_direction) {
9199 case EXEC_FORWARD:
9200 fprintf_filtered (out, _("Forward.\n"));
9201 break;
9202 case EXEC_REVERSE:
9203 fprintf_filtered (out, _("Reverse.\n"));
9204 break;
9205 default:
9206 internal_error (__FILE__, __LINE__,
9207 _("bogus execution_direction value: %d"),
9208 (int) execution_direction);
9209 }
9210 }
9211
9212 static void
9213 show_schedule_multiple (struct ui_file *file, int from_tty,
9214 struct cmd_list_element *c, const char *value)
9215 {
9216 fprintf_filtered (file, _("Resuming the execution of threads "
9217 "of all processes is %s.\n"), value);
9218 }
9219
9220 /* Implementation of `siginfo' variable. */
9221
9222 static const struct internalvar_funcs siginfo_funcs =
9223 {
9224 siginfo_make_value,
9225 NULL,
9226 NULL
9227 };
9228
9229 /* Callback for infrun's target events source. This is marked when a
9230 thread has a pending status to process. */
9231
9232 static void
9233 infrun_async_inferior_event_handler (gdb_client_data data)
9234 {
9235 inferior_event_handler (INF_REG_EVENT, NULL);
9236 }
9237
9238 void
9239 _initialize_infrun (void)
9240 {
9241 int i;
9242 int numsigs;
9243 struct cmd_list_element *c;
9244
9245 /* Register extra event sources in the event loop. */
9246 infrun_async_inferior_event_token
9247 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9248
9249 add_info ("signals", signals_info, _("\
9250 What debugger does when program gets various signals.\n\
9251 Specify a signal as argument to print info on that signal only."));
9252 add_info_alias ("handle", "signals", 0);
9253
9254 c = add_com ("handle", class_run, handle_command, _("\
9255 Specify how to handle signals.\n\
9256 Usage: handle SIGNAL [ACTIONS]\n\
9257 Args are signals and actions to apply to those signals.\n\
9258 If no actions are specified, the current settings for the specified signals\n\
9259 will be displayed instead.\n\
9260 \n\
9261 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9262 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9263 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9264 The special arg \"all\" is recognized to mean all signals except those\n\
9265 used by the debugger, typically SIGTRAP and SIGINT.\n\
9266 \n\
9267 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9268 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9269 Stop means reenter debugger if this signal happens (implies print).\n\
9270 Print means print a message if this signal happens.\n\
9271 Pass means let program see this signal; otherwise program doesn't know.\n\
9272 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9273 Pass and Stop may be combined.\n\
9274 \n\
9275 Multiple signals may be specified. Signal numbers and signal names\n\
9276 may be interspersed with actions, with the actions being performed for\n\
9277 all signals cumulatively specified."));
9278 set_cmd_completer (c, handle_completer);
9279
9280 if (!dbx_commands)
9281 stop_command = add_cmd ("stop", class_obscure,
9282 not_just_help_class_command, _("\
9283 There is no `stop' command, but you can set a hook on `stop'.\n\
9284 This allows you to set a list of commands to be run each time execution\n\
9285 of the program stops."), &cmdlist);
9286
9287 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9288 Set inferior debugging."), _("\
9289 Show inferior debugging."), _("\
9290 When non-zero, inferior specific debugging is enabled."),
9291 NULL,
9292 show_debug_infrun,
9293 &setdebuglist, &showdebuglist);
9294
9295 add_setshow_boolean_cmd ("displaced", class_maintenance,
9296 &debug_displaced, _("\
9297 Set displaced stepping debugging."), _("\
9298 Show displaced stepping debugging."), _("\
9299 When non-zero, displaced stepping specific debugging is enabled."),
9300 NULL,
9301 show_debug_displaced,
9302 &setdebuglist, &showdebuglist);
9303
9304 add_setshow_boolean_cmd ("non-stop", no_class,
9305 &non_stop_1, _("\
9306 Set whether gdb controls the inferior in non-stop mode."), _("\
9307 Show whether gdb controls the inferior in non-stop mode."), _("\
9308 When debugging a multi-threaded program and this setting is\n\
9309 off (the default, also called all-stop mode), when one thread stops\n\
9310 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9311 all other threads in the program while you interact with the thread of\n\
9312 interest. When you continue or step a thread, you can allow the other\n\
9313 threads to run, or have them remain stopped, but while you inspect any\n\
9314 thread's state, all threads stop.\n\
9315 \n\
9316 In non-stop mode, when one thread stops, other threads can continue\n\
9317 to run freely. You'll be able to step each thread independently,\n\
9318 leave it stopped or free to run as needed."),
9319 set_non_stop,
9320 show_non_stop,
9321 &setlist,
9322 &showlist);
9323
9324 numsigs = (int) GDB_SIGNAL_LAST;
9325 signal_stop = XNEWVEC (unsigned char, numsigs);
9326 signal_print = XNEWVEC (unsigned char, numsigs);
9327 signal_program = XNEWVEC (unsigned char, numsigs);
9328 signal_catch = XNEWVEC (unsigned char, numsigs);
9329 signal_pass = XNEWVEC (unsigned char, numsigs);
9330 for (i = 0; i < numsigs; i++)
9331 {
9332 signal_stop[i] = 1;
9333 signal_print[i] = 1;
9334 signal_program[i] = 1;
9335 signal_catch[i] = 0;
9336 }
9337
9338 /* Signals caused by debugger's own actions should not be given to
9339 the program afterwards.
9340
9341 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9342 explicitly specifies that it should be delivered to the target
9343 program. Typically, that would occur when a user is debugging a
9344 target monitor on a simulator: the target monitor sets a
9345 breakpoint; the simulator encounters this breakpoint and halts
9346 the simulation handing control to GDB; GDB, noting that the stop
9347 address doesn't map to any known breakpoint, returns control back
9348 to the simulator; the simulator then delivers the hardware
9349 equivalent of a GDB_SIGNAL_TRAP to the program being
9350 debugged. */
9351 signal_program[GDB_SIGNAL_TRAP] = 0;
9352 signal_program[GDB_SIGNAL_INT] = 0;
9353
9354 /* Signals that are not errors should not normally enter the debugger. */
9355 signal_stop[GDB_SIGNAL_ALRM] = 0;
9356 signal_print[GDB_SIGNAL_ALRM] = 0;
9357 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9358 signal_print[GDB_SIGNAL_VTALRM] = 0;
9359 signal_stop[GDB_SIGNAL_PROF] = 0;
9360 signal_print[GDB_SIGNAL_PROF] = 0;
9361 signal_stop[GDB_SIGNAL_CHLD] = 0;
9362 signal_print[GDB_SIGNAL_CHLD] = 0;
9363 signal_stop[GDB_SIGNAL_IO] = 0;
9364 signal_print[GDB_SIGNAL_IO] = 0;
9365 signal_stop[GDB_SIGNAL_POLL] = 0;
9366 signal_print[GDB_SIGNAL_POLL] = 0;
9367 signal_stop[GDB_SIGNAL_URG] = 0;
9368 signal_print[GDB_SIGNAL_URG] = 0;
9369 signal_stop[GDB_SIGNAL_WINCH] = 0;
9370 signal_print[GDB_SIGNAL_WINCH] = 0;
9371 signal_stop[GDB_SIGNAL_PRIO] = 0;
9372 signal_print[GDB_SIGNAL_PRIO] = 0;
9373
9374 /* These signals are used internally by user-level thread
9375 implementations. (See signal(5) on Solaris.) Like the above
9376 signals, a healthy program receives and handles them as part of
9377 its normal operation. */
9378 signal_stop[GDB_SIGNAL_LWP] = 0;
9379 signal_print[GDB_SIGNAL_LWP] = 0;
9380 signal_stop[GDB_SIGNAL_WAITING] = 0;
9381 signal_print[GDB_SIGNAL_WAITING] = 0;
9382 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9383 signal_print[GDB_SIGNAL_CANCEL] = 0;
9384 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9385 signal_print[GDB_SIGNAL_LIBRT] = 0;
9386
9387 /* Update cached state. */
9388 signal_cache_update (-1);
9389
9390 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9391 &stop_on_solib_events, _("\
9392 Set stopping for shared library events."), _("\
9393 Show stopping for shared library events."), _("\
9394 If nonzero, gdb will give control to the user when the dynamic linker\n\
9395 notifies gdb of shared library events. The most common event of interest\n\
9396 to the user would be loading/unloading of a new library."),
9397 set_stop_on_solib_events,
9398 show_stop_on_solib_events,
9399 &setlist, &showlist);
9400
9401 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9402 follow_fork_mode_kind_names,
9403 &follow_fork_mode_string, _("\
9404 Set debugger response to a program call of fork or vfork."), _("\
9405 Show debugger response to a program call of fork or vfork."), _("\
9406 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9407 parent - the original process is debugged after a fork\n\
9408 child - the new process is debugged after a fork\n\
9409 The unfollowed process will continue to run.\n\
9410 By default, the debugger will follow the parent process."),
9411 NULL,
9412 show_follow_fork_mode_string,
9413 &setlist, &showlist);
9414
9415 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9416 follow_exec_mode_names,
9417 &follow_exec_mode_string, _("\
9418 Set debugger response to a program call of exec."), _("\
9419 Show debugger response to a program call of exec."), _("\
9420 An exec call replaces the program image of a process.\n\
9421 \n\
9422 follow-exec-mode can be:\n\
9423 \n\
9424 new - the debugger creates a new inferior and rebinds the process\n\
9425 to this new inferior. The program the process was running before\n\
9426 the exec call can be restarted afterwards by restarting the original\n\
9427 inferior.\n\
9428 \n\
9429 same - the debugger keeps the process bound to the same inferior.\n\
9430 The new executable image replaces the previous executable loaded in\n\
9431 the inferior. Restarting the inferior after the exec call restarts\n\
9432 the executable the process was running after the exec call.\n\
9433 \n\
9434 By default, the debugger will use the same inferior."),
9435 NULL,
9436 show_follow_exec_mode_string,
9437 &setlist, &showlist);
9438
9439 add_setshow_enum_cmd ("scheduler-locking", class_run,
9440 scheduler_enums, &scheduler_mode, _("\
9441 Set mode for locking scheduler during execution."), _("\
9442 Show mode for locking scheduler during execution."), _("\
9443 off == no locking (threads may preempt at any time)\n\
9444 on == full locking (no thread except the current thread may run)\n\
9445 This applies to both normal execution and replay mode.\n\
9446 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9447 In this mode, other threads may run during other commands.\n\
9448 This applies to both normal execution and replay mode.\n\
9449 replay == scheduler locked in replay mode and unlocked during normal execution."),
9450 set_schedlock_func, /* traps on target vector */
9451 show_scheduler_mode,
9452 &setlist, &showlist);
9453
9454 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9455 Set mode for resuming threads of all processes."), _("\
9456 Show mode for resuming threads of all processes."), _("\
9457 When on, execution commands (such as 'continue' or 'next') resume all\n\
9458 threads of all processes. When off (which is the default), execution\n\
9459 commands only resume the threads of the current process. The set of\n\
9460 threads that are resumed is further refined by the scheduler-locking\n\
9461 mode (see help set scheduler-locking)."),
9462 NULL,
9463 show_schedule_multiple,
9464 &setlist, &showlist);
9465
9466 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9467 Set mode of the step operation."), _("\
9468 Show mode of the step operation."), _("\
9469 When set, doing a step over a function without debug line information\n\
9470 will stop at the first instruction of that function. Otherwise, the\n\
9471 function is skipped and the step command stops at a different source line."),
9472 NULL,
9473 show_step_stop_if_no_debug,
9474 &setlist, &showlist);
9475
9476 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9477 &can_use_displaced_stepping, _("\
9478 Set debugger's willingness to use displaced stepping."), _("\
9479 Show debugger's willingness to use displaced stepping."), _("\
9480 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9481 supported by the target architecture. If off, gdb will not use displaced\n\
9482 stepping to step over breakpoints, even if such is supported by the target\n\
9483 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9484 if the target architecture supports it and non-stop mode is active, but will not\n\
9485 use it in all-stop mode (see help set non-stop)."),
9486 NULL,
9487 show_can_use_displaced_stepping,
9488 &setlist, &showlist);
9489
9490 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9491 &exec_direction, _("Set direction of execution.\n\
9492 Options are 'forward' or 'reverse'."),
9493 _("Show direction of execution (forward/reverse)."),
9494 _("Tells gdb whether to execute forward or backward."),
9495 set_exec_direction_func, show_exec_direction_func,
9496 &setlist, &showlist);
9497
9498 /* Set/show detach-on-fork: user-settable mode. */
9499
9500 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9501 Set whether gdb will detach the child of a fork."), _("\
9502 Show whether gdb will detach the child of a fork."), _("\
9503 Tells gdb whether to detach the child of a fork."),
9504 NULL, NULL, &setlist, &showlist);
9505
9506 /* Set/show disable address space randomization mode. */
9507
9508 add_setshow_boolean_cmd ("disable-randomization", class_support,
9509 &disable_randomization, _("\
9510 Set disabling of debuggee's virtual address space randomization."), _("\
9511 Show disabling of debuggee's virtual address space randomization."), _("\
9512 When this mode is on (which is the default), randomization of the virtual\n\
9513 address space is disabled. Standalone programs run with the randomization\n\
9514 enabled by default on some platforms."),
9515 &set_disable_randomization,
9516 &show_disable_randomization,
9517 &setlist, &showlist);
9518
9519 /* ptid initializations */
9520 inferior_ptid = null_ptid;
9521 target_last_wait_ptid = minus_one_ptid;
9522
9523 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9524 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9525 observer_attach_thread_exit (infrun_thread_thread_exit);
9526 observer_attach_inferior_exit (infrun_inferior_exit);
9527
9528 /* Explicitly create without lookup, since that tries to create a
9529 value with a void typed value, and when we get here, gdbarch
9530 isn't initialized yet. At this point, we're quite sure there
9531 isn't another convenience variable of the same name. */
9532 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9533
9534 add_setshow_boolean_cmd ("observer", no_class,
9535 &observer_mode_1, _("\
9536 Set whether gdb controls the inferior in observer mode."), _("\
9537 Show whether gdb controls the inferior in observer mode."), _("\
9538 In observer mode, GDB can get data from the inferior, but not\n\
9539 affect its execution. Registers and memory may not be changed,\n\
9540 breakpoints may not be set, and the program cannot be interrupted\n\
9541 or signalled."),
9542 set_observer_mode,
9543 show_observer_mode,
9544 &setlist,
9545 &showlist);
9546 }
This page took 0.410027 seconds and 4 git commands to generate.