*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are presently stepping over a breakpoint.
222
223 If we hit a breakpoint or watchpoint, and then continue,
224 we need to single step the current thread with breakpoints
225 disabled, to avoid hitting the same breakpoint or
226 watchpoint again. And we should step just a single
227 thread and keep other threads stopped, so that
228 other threads don't miss breakpoints while they are removed.
229
230 So, this variable simultaneously means that we need to single
231 step the current thread, keep other threads stopped, and that
232 breakpoints should be removed while we step.
233
234 This variable is set either:
235 - in proceed, when we resume inferior on user's explicit request
236 - in keep_going, if handle_inferior_event decides we need to
237 step over breakpoint.
238
239 The variable is cleared in clear_proceed_status, called every
240 time before we call proceed. The proceed calls wait_for_inferior,
241 which calls handle_inferior_event in a loop, and until
242 wait_for_inferior exits, this variable is changed only by keep_going. */
243
244 static int stepping_over_breakpoint;
245
246 /* Nonzero if we want to give control to the user when we're notified
247 of shared library events by the dynamic linker. */
248 static int stop_on_solib_events;
249 static void
250 show_stop_on_solib_events (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
254 value);
255 }
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero after stop if current stack frame should be printed. */
282
283 static int stop_print_frame;
284
285 static struct breakpoint *step_resume_breakpoint = NULL;
286
287 /* This is a cached copy of the pid/waitstatus of the last event
288 returned by target_wait()/deprecated_target_wait_hook(). This
289 information is returned by get_last_target_status(). */
290 static ptid_t target_last_wait_ptid;
291 static struct target_waitstatus target_last_waitstatus;
292
293 /* This is used to remember when a fork, vfork or exec event
294 was caught by a catchpoint, and thus the event is to be
295 followed at the next resume of the inferior, and not
296 immediately. */
297 static struct
298 {
299 enum target_waitkind kind;
300 struct
301 {
302 int parent_pid;
303 int child_pid;
304 }
305 fork_event;
306 char *execd_pathname;
307 }
308 pending_follow;
309
310 static const char follow_fork_mode_child[] = "child";
311 static const char follow_fork_mode_parent[] = "parent";
312
313 static const char *follow_fork_mode_kind_names[] = {
314 follow_fork_mode_child,
315 follow_fork_mode_parent,
316 NULL
317 };
318
319 static const char *follow_fork_mode_string = follow_fork_mode_parent;
320 static void
321 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
322 struct cmd_list_element *c, const char *value)
323 {
324 fprintf_filtered (file, _("\
325 Debugger response to a program call of fork or vfork is \"%s\".\n"),
326 value);
327 }
328 \f
329
330 static int
331 follow_fork (void)
332 {
333 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
334
335 return target_follow_fork (follow_child);
336 }
337
338 void
339 follow_inferior_reset_breakpoints (void)
340 {
341 /* Was there a step_resume breakpoint? (There was if the user
342 did a "next" at the fork() call.) If so, explicitly reset its
343 thread number.
344
345 step_resumes are a form of bp that are made to be per-thread.
346 Since we created the step_resume bp when the parent process
347 was being debugged, and now are switching to the child process,
348 from the breakpoint package's viewpoint, that's a switch of
349 "threads". We must update the bp's notion of which thread
350 it is for, or it'll be ignored when it triggers. */
351
352 if (step_resume_breakpoint)
353 breakpoint_re_set_thread (step_resume_breakpoint);
354
355 /* Reinsert all breakpoints in the child. The user may have set
356 breakpoints after catching the fork, in which case those
357 were never set in the child, but only in the parent. This makes
358 sure the inserted breakpoints match the breakpoint list. */
359
360 breakpoint_re_set ();
361 insert_breakpoints ();
362 }
363
364 /* EXECD_PATHNAME is assumed to be non-NULL. */
365
366 static void
367 follow_exec (int pid, char *execd_pathname)
368 {
369 int saved_pid = pid;
370 struct target_ops *tgt;
371
372 if (!may_follow_exec)
373 return;
374
375 /* This is an exec event that we actually wish to pay attention to.
376 Refresh our symbol table to the newly exec'd program, remove any
377 momentary bp's, etc.
378
379 If there are breakpoints, they aren't really inserted now,
380 since the exec() transformed our inferior into a fresh set
381 of instructions.
382
383 We want to preserve symbolic breakpoints on the list, since
384 we have hopes that they can be reset after the new a.out's
385 symbol table is read.
386
387 However, any "raw" breakpoints must be removed from the list
388 (e.g., the solib bp's), since their address is probably invalid
389 now.
390
391 And, we DON'T want to call delete_breakpoints() here, since
392 that may write the bp's "shadow contents" (the instruction
393 value that was overwritten witha TRAP instruction). Since
394 we now have a new a.out, those shadow contents aren't valid. */
395 update_breakpoints_after_exec ();
396
397 /* If there was one, it's gone now. We cannot truly step-to-next
398 statement through an exec(). */
399 step_resume_breakpoint = NULL;
400 step_range_start = 0;
401 step_range_end = 0;
402
403 /* What is this a.out's name? */
404 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
405
406 /* We've followed the inferior through an exec. Therefore, the
407 inferior has essentially been killed & reborn. */
408
409 /* First collect the run target in effect. */
410 tgt = find_run_target ();
411 /* If we can't find one, things are in a very strange state... */
412 if (tgt == NULL)
413 error (_("Could find run target to save before following exec"));
414
415 gdb_flush (gdb_stdout);
416 target_mourn_inferior ();
417 inferior_ptid = pid_to_ptid (saved_pid);
418 /* Because mourn_inferior resets inferior_ptid. */
419 push_target (tgt);
420
421 /* That a.out is now the one to use. */
422 exec_file_attach (execd_pathname, 0);
423
424 /* And also is where symbols can be found. */
425 symbol_file_add_main (execd_pathname, 0);
426
427 /* Reset the shared library package. This ensures that we get
428 a shlib event when the child reaches "_start", at which point
429 the dld will have had a chance to initialize the child. */
430 #if defined(SOLIB_RESTART)
431 SOLIB_RESTART ();
432 #endif
433 #ifdef SOLIB_CREATE_INFERIOR_HOOK
434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
435 #else
436 solib_create_inferior_hook ();
437 #endif
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
448 }
449
450 /* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453 static int singlestep_breakpoints_inserted_p = 0;
454
455 /* The thread we inserted single-step breakpoints for. */
456 static ptid_t singlestep_ptid;
457
458 /* PC when we started this single-step. */
459 static CORE_ADDR singlestep_pc;
460
461 /* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463 static ptid_t saved_singlestep_ptid;
464 static int stepping_past_singlestep_breakpoint;
465
466 /* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473 static ptid_t deferred_step_ptid;
474 \f
475
476 /* Things to clean up if we QUIT out of resume (). */
477 static void
478 resume_cleanups (void *ignore)
479 {
480 normal_stop ();
481 }
482
483 static const char schedlock_off[] = "off";
484 static const char schedlock_on[] = "on";
485 static const char schedlock_step[] = "step";
486 static const char *scheduler_enums[] = {
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491 };
492 static const char *scheduler_mode = schedlock_off;
493 static void
494 show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496 {
497 fprintf_filtered (file, _("\
498 Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500 }
501
502 static void
503 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
504 {
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
510 }
511
512
513 /* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521 void
522 resume (int step, enum target_signal sig)
523 {
524 int should_resume = 1;
525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
526 QUIT;
527
528 if (debug_infrun)
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
531
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
534
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step)
544 remove_hw_watchpoints ();
545
546
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 {
553 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
554 gdbarch_skip_permanent_breakpoint (current_gdbarch,
555 get_current_regcache ());
556 else
557 error (_("\
558 The program is stopped at a permanent breakpoint, but GDB does not know\n\
559 how to step past a permanent breakpoint on this architecture. Try using\n\
560 a command like `return' or `jump' to continue execution."));
561 }
562
563 if (step && gdbarch_software_single_step_p (current_gdbarch))
564 {
565 /* Do it the hard way, w/temp breakpoints */
566 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
567 {
568 /* ...and don't ask hardware to do it. */
569 step = 0;
570 /* and do not pull these breakpoints until after a `wait' in
571 `wait_for_inferior' */
572 singlestep_breakpoints_inserted_p = 1;
573 singlestep_ptid = inferior_ptid;
574 singlestep_pc = read_pc ();
575 }
576 }
577
578 /* If there were any forks/vforks/execs that were caught and are
579 now to be followed, then do so. */
580 switch (pending_follow.kind)
581 {
582 case TARGET_WAITKIND_FORKED:
583 case TARGET_WAITKIND_VFORKED:
584 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
585 if (follow_fork ())
586 should_resume = 0;
587 break;
588
589 case TARGET_WAITKIND_EXECD:
590 /* follow_exec is called as soon as the exec event is seen. */
591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
592 break;
593
594 default:
595 break;
596 }
597
598 /* Install inferior's terminal modes. */
599 target_terminal_inferior ();
600
601 if (should_resume)
602 {
603 ptid_t resume_ptid;
604
605 resume_ptid = RESUME_ALL; /* Default */
606
607 /* If STEP is set, it's a request to use hardware stepping
608 facilities. But in that case, we should never
609 use singlestep breakpoint. */
610 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
611
612 if (singlestep_breakpoints_inserted_p
613 && stepping_past_singlestep_breakpoint)
614 {
615 /* The situation here is as follows. In thread T1 we wanted to
616 single-step. Lacking hardware single-stepping we've
617 set breakpoint at the PC of the next instruction -- call it
618 P. After resuming, we've hit that breakpoint in thread T2.
619 Now we've removed original breakpoint, inserted breakpoint
620 at P+1, and try to step to advance T2 past breakpoint.
621 We need to step only T2, as if T1 is allowed to freely run,
622 it can run past P, and if other threads are allowed to run,
623 they can hit breakpoint at P+1, and nested hits of single-step
624 breakpoints is not something we'd want -- that's complicated
625 to support, and has no value. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if ((step || singlestep_breakpoints_inserted_p)
630 && breakpoint_here_p (read_pc ())
631 && !breakpoint_inserted_here_p (read_pc ()))
632 {
633 /* We're stepping, have breakpoint at PC, and it's
634 not inserted. Most likely, proceed has noticed that
635 we have breakpoint and tries to single-step over it,
636 so that it's not hit. In which case, we need to
637 single-step only this thread, and keep others stopped,
638 as they can miss this breakpoint if allowed to run.
639
640 The current code either has all breakpoints inserted,
641 or all removed, so if we let other threads run,
642 we can actually miss any breakpoint, not the one at PC. */
643 resume_ptid = inferior_ptid;
644 }
645
646 if ((scheduler_mode == schedlock_on)
647 || (scheduler_mode == schedlock_step
648 && (step || singlestep_breakpoints_inserted_p)))
649 {
650 /* User-settable 'scheduler' mode requires solo thread resume. */
651 resume_ptid = inferior_ptid;
652 }
653
654 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
655 {
656 /* Most targets can step a breakpoint instruction, thus
657 executing it normally. But if this one cannot, just
658 continue and we will hit it anyway. */
659 if (step && breakpoint_inserted_here_p (read_pc ()))
660 step = 0;
661 }
662 target_resume (resume_ptid, step, sig);
663 }
664
665 discard_cleanups (old_cleanups);
666 }
667 \f
668
669 /* Clear out all variables saying what to do when inferior is continued.
670 First do this, then set the ones you want, then call `proceed'. */
671
672 void
673 clear_proceed_status (void)
674 {
675 stepping_over_breakpoint = 0;
676 step_range_start = 0;
677 step_range_end = 0;
678 step_frame_id = null_frame_id;
679 step_over_calls = STEP_OVER_UNDEBUGGABLE;
680 stop_after_trap = 0;
681 stop_soon = NO_STOP_QUIETLY;
682 proceed_to_finish = 0;
683 breakpoint_proceeded = 1; /* We're about to proceed... */
684
685 if (stop_registers)
686 {
687 regcache_xfree (stop_registers);
688 stop_registers = NULL;
689 }
690
691 /* Discard any remaining commands or status from previous stop. */
692 bpstat_clear (&stop_bpstat);
693 }
694
695 /* This should be suitable for any targets that support threads. */
696
697 static int
698 prepare_to_proceed (int step)
699 {
700 ptid_t wait_ptid;
701 struct target_waitstatus wait_status;
702
703 /* Get the last target status returned by target_wait(). */
704 get_last_target_status (&wait_ptid, &wait_status);
705
706 /* Make sure we were stopped at a breakpoint. */
707 if (wait_status.kind != TARGET_WAITKIND_STOPPED
708 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
709 {
710 return 0;
711 }
712
713 /* Switched over from WAIT_PID. */
714 if (!ptid_equal (wait_ptid, minus_one_ptid)
715 && !ptid_equal (inferior_ptid, wait_ptid)
716 && breakpoint_here_p (read_pc_pid (wait_ptid)))
717 {
718 /* If stepping, remember current thread to switch back to. */
719 if (step)
720 {
721 deferred_step_ptid = inferior_ptid;
722 }
723
724 /* Switch back to WAIT_PID thread. */
725 switch_to_thread (wait_ptid);
726
727 /* We return 1 to indicate that there is a breakpoint here,
728 so we need to step over it before continuing to avoid
729 hitting it straight away. */
730 return 1;
731 }
732
733 return 0;
734 }
735
736 /* Record the pc of the program the last time it stopped. This is
737 just used internally by wait_for_inferior, but need to be preserved
738 over calls to it and cleared when the inferior is started. */
739 static CORE_ADDR prev_pc;
740
741 /* Basic routine for continuing the program in various fashions.
742
743 ADDR is the address to resume at, or -1 for resume where stopped.
744 SIGGNAL is the signal to give it, or 0 for none,
745 or -1 for act according to how it stopped.
746 STEP is nonzero if should trap after one instruction.
747 -1 means return after that and print nothing.
748 You should probably set various step_... variables
749 before calling here, if you are stepping.
750
751 You should call clear_proceed_status before calling proceed. */
752
753 void
754 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
755 {
756 int oneproc = 0;
757
758 if (step > 0)
759 step_start_function = find_pc_function (read_pc ());
760 if (step < 0)
761 stop_after_trap = 1;
762
763 if (addr == (CORE_ADDR) -1)
764 {
765 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
766 /* There is a breakpoint at the address we will resume at,
767 step one instruction before inserting breakpoints so that
768 we do not stop right away (and report a second hit at this
769 breakpoint). */
770 oneproc = 1;
771 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
772 && gdbarch_single_step_through_delay (current_gdbarch,
773 get_current_frame ()))
774 /* We stepped onto an instruction that needs to be stepped
775 again before re-inserting the breakpoint, do so. */
776 oneproc = 1;
777 }
778 else
779 {
780 write_pc (addr);
781 }
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
786 paddr_nz (addr), siggnal, step);
787
788 /* In a multi-threaded task we may select another thread
789 and then continue or step.
790
791 But if the old thread was stopped at a breakpoint, it
792 will immediately cause another breakpoint stop without
793 any execution (i.e. it will report a breakpoint hit
794 incorrectly). So we must step over it first.
795
796 prepare_to_proceed checks the current thread against the thread
797 that reported the most recent event. If a step-over is required
798 it returns TRUE and sets the current thread to the old thread. */
799 if (prepare_to_proceed (step))
800 oneproc = 1;
801
802 if (oneproc)
803 /* We will get a trace trap after one instruction.
804 Continue it automatically and insert breakpoints then. */
805 stepping_over_breakpoint = 1;
806 else
807 insert_breakpoints ();
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
843 updated correctly when the inferior is stopped. */
844 prev_pc = read_pc ();
845
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
853 if (!target_can_async_p ())
854 {
855 wait_for_inferior ();
856 normal_stop ();
857 }
858 }
859 \f
860
861 /* Start remote-debugging of a machine over a serial link. */
862
863 void
864 start_remote (int from_tty)
865 {
866 init_thread_list ();
867 init_wait_for_inferior ();
868 stop_soon = STOP_QUIETLY_REMOTE;
869 stepping_over_breakpoint = 0;
870
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
873 indicate to wait_for_inferior that a target should timeout if
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior ();
886
887 /* Now that the inferior has stopped, do any bookkeeping like
888 loading shared libraries. We want to do this before normal_stop,
889 so that the displayed frame is up to date. */
890 post_create_inferior (&current_target, from_tty);
891
892 normal_stop ();
893 }
894
895 /* Initialize static vars when a new inferior begins. */
896
897 void
898 init_wait_for_inferior (void)
899 {
900 /* These are meaningless until the first time through wait_for_inferior. */
901 prev_pc = 0;
902
903 breakpoint_init_inferior (inf_starting);
904
905 /* Don't confuse first call to proceed(). */
906 stop_signal = TARGET_SIGNAL_0;
907
908 /* The first resume is not following a fork/vfork/exec. */
909 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
910
911 clear_proceed_status ();
912
913 stepping_past_singlestep_breakpoint = 0;
914 deferred_step_ptid = null_ptid;
915
916 target_last_wait_ptid = minus_one_ptid;
917 }
918 \f
919 /* This enum encodes possible reasons for doing a target_wait, so that
920 wfi can call target_wait in one place. (Ultimately the call will be
921 moved out of the infinite loop entirely.) */
922
923 enum infwait_states
924 {
925 infwait_normal_state,
926 infwait_thread_hop_state,
927 infwait_step_watch_state,
928 infwait_nonstep_watch_state
929 };
930
931 /* Why did the inferior stop? Used to print the appropriate messages
932 to the interface from within handle_inferior_event(). */
933 enum inferior_stop_reason
934 {
935 /* Step, next, nexti, stepi finished. */
936 END_STEPPING_RANGE,
937 /* Inferior terminated by signal. */
938 SIGNAL_EXITED,
939 /* Inferior exited. */
940 EXITED,
941 /* Inferior received signal, and user asked to be notified. */
942 SIGNAL_RECEIVED
943 };
944
945 /* This structure contains what used to be local variables in
946 wait_for_inferior. Probably many of them can return to being
947 locals in handle_inferior_event. */
948
949 struct execution_control_state
950 {
951 struct target_waitstatus ws;
952 struct target_waitstatus *wp;
953 /* Should we step over breakpoint next time keep_going
954 is called? */
955 int stepping_over_breakpoint;
956 int random_signal;
957 CORE_ADDR stop_func_start;
958 CORE_ADDR stop_func_end;
959 char *stop_func_name;
960 struct symtab_and_line sal;
961 int current_line;
962 struct symtab *current_symtab;
963 int handling_longjmp; /* FIXME */
964 ptid_t ptid;
965 ptid_t saved_inferior_ptid;
966 int step_after_step_resume_breakpoint;
967 int stepping_through_solib_after_catch;
968 bpstat stepping_through_solib_catchpoints;
969 int new_thread_event;
970 struct target_waitstatus tmpstatus;
971 enum infwait_states infwait_state;
972 ptid_t waiton_ptid;
973 int wait_some_more;
974 };
975
976 void init_execution_control_state (struct execution_control_state *ecs);
977
978 void handle_inferior_event (struct execution_control_state *ecs);
979
980 static void step_into_function (struct execution_control_state *ecs);
981 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
982 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
983 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
984 struct frame_id sr_id);
985 static void stop_stepping (struct execution_control_state *ecs);
986 static void prepare_to_wait (struct execution_control_state *ecs);
987 static void keep_going (struct execution_control_state *ecs);
988 static void print_stop_reason (enum inferior_stop_reason stop_reason,
989 int stop_info);
990
991 /* Wait for control to return from inferior to debugger.
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (void)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
1006
1007 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1008 &step_resume_breakpoint);
1009
1010 /* wfi still stays in a loop, so it's OK just to take the address of
1011 a local to get the ecs pointer. */
1012 ecs = &ecss;
1013
1014 /* Fill in with reasonable starting values. */
1015 init_execution_control_state (ecs);
1016
1017 /* We'll update this if & when we switch to a new thread. */
1018 previous_inferior_ptid = inferior_ptid;
1019
1020 overlay_cache_invalid = 1;
1021
1022 /* We have to invalidate the registers BEFORE calling target_wait
1023 because they can be loaded from the target while in target_wait.
1024 This makes remote debugging a bit more efficient for those
1025 targets that provide critical registers as part of their normal
1026 status mechanism. */
1027
1028 registers_changed ();
1029
1030 while (1)
1031 {
1032 if (deprecated_target_wait_hook)
1033 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1034 else
1035 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1036
1037 /* Now figure out what to do with the result of the result. */
1038 handle_inferior_event (ecs);
1039
1040 if (!ecs->wait_some_more)
1041 break;
1042 }
1043 do_cleanups (old_cleanups);
1044 }
1045
1046 /* Asynchronous version of wait_for_inferior. It is called by the
1047 event loop whenever a change of state is detected on the file
1048 descriptor corresponding to the target. It can be called more than
1049 once to complete a single execution command. In such cases we need
1050 to keep the state in a global variable ASYNC_ECSS. If it is the
1051 last time that this function is called for a single execution
1052 command, then report to the user that the inferior has stopped, and
1053 do the necessary cleanups. */
1054
1055 struct execution_control_state async_ecss;
1056 struct execution_control_state *async_ecs;
1057
1058 void
1059 fetch_inferior_event (void *client_data)
1060 {
1061 static struct cleanup *old_cleanups;
1062
1063 async_ecs = &async_ecss;
1064
1065 if (!async_ecs->wait_some_more)
1066 {
1067 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1068 &step_resume_breakpoint);
1069
1070 /* Fill in with reasonable starting values. */
1071 init_execution_control_state (async_ecs);
1072
1073 /* We'll update this if & when we switch to a new thread. */
1074 previous_inferior_ptid = inferior_ptid;
1075
1076 overlay_cache_invalid = 1;
1077
1078 /* We have to invalidate the registers BEFORE calling target_wait
1079 because they can be loaded from the target while in target_wait.
1080 This makes remote debugging a bit more efficient for those
1081 targets that provide critical registers as part of their normal
1082 status mechanism. */
1083
1084 registers_changed ();
1085 }
1086
1087 if (deprecated_target_wait_hook)
1088 async_ecs->ptid =
1089 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1090 else
1091 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1092
1093 /* Now figure out what to do with the result of the result. */
1094 handle_inferior_event (async_ecs);
1095
1096 if (!async_ecs->wait_some_more)
1097 {
1098 /* Do only the cleanups that have been added by this
1099 function. Let the continuations for the commands do the rest,
1100 if there are any. */
1101 do_exec_cleanups (old_cleanups);
1102 normal_stop ();
1103 if (step_multi && stop_step)
1104 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1105 else
1106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1107 }
1108 }
1109
1110 /* Prepare an execution control state for looping through a
1111 wait_for_inferior-type loop. */
1112
1113 void
1114 init_execution_control_state (struct execution_control_state *ecs)
1115 {
1116 ecs->stepping_over_breakpoint = 0;
1117 ecs->random_signal = 0;
1118 ecs->step_after_step_resume_breakpoint = 0;
1119 ecs->handling_longjmp = 0; /* FIXME */
1120 ecs->stepping_through_solib_after_catch = 0;
1121 ecs->stepping_through_solib_catchpoints = NULL;
1122 ecs->sal = find_pc_line (prev_pc, 0);
1123 ecs->current_line = ecs->sal.line;
1124 ecs->current_symtab = ecs->sal.symtab;
1125 ecs->infwait_state = infwait_normal_state;
1126 ecs->waiton_ptid = pid_to_ptid (-1);
1127 ecs->wp = &(ecs->ws);
1128 }
1129
1130 /* Return the cached copy of the last pid/waitstatus returned by
1131 target_wait()/deprecated_target_wait_hook(). The data is actually
1132 cached by handle_inferior_event(), which gets called immediately
1133 after target_wait()/deprecated_target_wait_hook(). */
1134
1135 void
1136 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1137 {
1138 *ptidp = target_last_wait_ptid;
1139 *status = target_last_waitstatus;
1140 }
1141
1142 void
1143 nullify_last_target_wait_ptid (void)
1144 {
1145 target_last_wait_ptid = minus_one_ptid;
1146 }
1147
1148 /* Switch thread contexts, maintaining "infrun state". */
1149
1150 static void
1151 context_switch (struct execution_control_state *ecs)
1152 {
1153 /* Caution: it may happen that the new thread (or the old one!)
1154 is not in the thread list. In this case we must not attempt
1155 to "switch context", or we run the risk that our context may
1156 be lost. This may happen as a result of the target module
1157 mishandling thread creation. */
1158
1159 if (debug_infrun)
1160 {
1161 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1162 target_pid_to_str (inferior_ptid));
1163 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1164 target_pid_to_str (ecs->ptid));
1165 }
1166
1167 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1168 { /* Perform infrun state context switch: */
1169 /* Save infrun state for the old thread. */
1170 save_infrun_state (inferior_ptid, prev_pc,
1171 stepping_over_breakpoint, step_resume_breakpoint,
1172 step_range_start,
1173 step_range_end, &step_frame_id,
1174 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1175 ecs->stepping_through_solib_after_catch,
1176 ecs->stepping_through_solib_catchpoints,
1177 ecs->current_line, ecs->current_symtab);
1178
1179 /* Load infrun state for the new thread. */
1180 load_infrun_state (ecs->ptid, &prev_pc,
1181 &stepping_over_breakpoint, &step_resume_breakpoint,
1182 &step_range_start,
1183 &step_range_end, &step_frame_id,
1184 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1185 &ecs->stepping_through_solib_after_catch,
1186 &ecs->stepping_through_solib_catchpoints,
1187 &ecs->current_line, &ecs->current_symtab);
1188 }
1189
1190 switch_to_thread (ecs->ptid);
1191 }
1192
1193 static void
1194 adjust_pc_after_break (struct execution_control_state *ecs)
1195 {
1196 CORE_ADDR breakpoint_pc;
1197
1198 /* If this target does not decrement the PC after breakpoints, then
1199 we have nothing to do. */
1200 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1201 return;
1202
1203 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1204 we aren't, just return.
1205
1206 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1207 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1208 implemented by software breakpoints should be handled through the normal
1209 breakpoint layer.
1210
1211 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1212 different signals (SIGILL or SIGEMT for instance), but it is less
1213 clear where the PC is pointing afterwards. It may not match
1214 gdbarch_decr_pc_after_break. I don't know any specific target that
1215 generates these signals at breakpoints (the code has been in GDB since at
1216 least 1992) so I can not guess how to handle them here.
1217
1218 In earlier versions of GDB, a target with
1219 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1220 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1221 target with both of these set in GDB history, and it seems unlikely to be
1222 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1223
1224 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1225 return;
1226
1227 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1228 return;
1229
1230 /* Find the location where (if we've hit a breakpoint) the
1231 breakpoint would be. */
1232 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1233 (current_gdbarch);
1234
1235 /* Check whether there actually is a software breakpoint inserted
1236 at that location. */
1237 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1238 {
1239 /* When using hardware single-step, a SIGTRAP is reported for both
1240 a completed single-step and a software breakpoint. Need to
1241 differentiate between the two, as the latter needs adjusting
1242 but the former does not.
1243
1244 The SIGTRAP can be due to a completed hardware single-step only if
1245 - we didn't insert software single-step breakpoints
1246 - the thread to be examined is still the current thread
1247 - this thread is currently being stepped
1248
1249 If any of these events did not occur, we must have stopped due
1250 to hitting a software breakpoint, and have to back up to the
1251 breakpoint address.
1252
1253 As a special case, we could have hardware single-stepped a
1254 software breakpoint. In this case (prev_pc == breakpoint_pc),
1255 we also need to back up to the breakpoint address. */
1256
1257 if (singlestep_breakpoints_inserted_p
1258 || !ptid_equal (ecs->ptid, inferior_ptid)
1259 || !currently_stepping (ecs)
1260 || prev_pc == breakpoint_pc)
1261 write_pc_pid (breakpoint_pc, ecs->ptid);
1262 }
1263 }
1264
1265 /* Given an execution control state that has been freshly filled in
1266 by an event from the inferior, figure out what it means and take
1267 appropriate action. */
1268
1269 void
1270 handle_inferior_event (struct execution_control_state *ecs)
1271 {
1272 int sw_single_step_trap_p = 0;
1273 int stopped_by_watchpoint;
1274 int stepped_after_stopped_by_watchpoint = 0;
1275
1276 /* Cache the last pid/waitstatus. */
1277 target_last_wait_ptid = ecs->ptid;
1278 target_last_waitstatus = *ecs->wp;
1279
1280 /* Always clear state belonging to the previous time we stopped. */
1281 stop_stack_dummy = 0;
1282
1283 adjust_pc_after_break (ecs);
1284
1285 switch (ecs->infwait_state)
1286 {
1287 case infwait_thread_hop_state:
1288 if (debug_infrun)
1289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1290 /* Cancel the waiton_ptid. */
1291 ecs->waiton_ptid = pid_to_ptid (-1);
1292 break;
1293
1294 case infwait_normal_state:
1295 if (debug_infrun)
1296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1297 break;
1298
1299 case infwait_step_watch_state:
1300 if (debug_infrun)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "infrun: infwait_step_watch_state\n");
1303
1304 stepped_after_stopped_by_watchpoint = 1;
1305 break;
1306
1307 case infwait_nonstep_watch_state:
1308 if (debug_infrun)
1309 fprintf_unfiltered (gdb_stdlog,
1310 "infrun: infwait_nonstep_watch_state\n");
1311 insert_breakpoints ();
1312
1313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1314 handle things like signals arriving and other things happening
1315 in combination correctly? */
1316 stepped_after_stopped_by_watchpoint = 1;
1317 break;
1318
1319 default:
1320 internal_error (__FILE__, __LINE__, _("bad switch"));
1321 }
1322 ecs->infwait_state = infwait_normal_state;
1323
1324 reinit_frame_cache ();
1325
1326 /* If it's a new process, add it to the thread database */
1327
1328 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1329 && !ptid_equal (ecs->ptid, minus_one_ptid)
1330 && !in_thread_list (ecs->ptid));
1331
1332 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1333 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1334 {
1335 add_thread (ecs->ptid);
1336
1337 ui_out_text (uiout, "[New ");
1338 ui_out_text (uiout, target_pid_to_str (ecs->ptid));
1339 ui_out_text (uiout, "]\n");
1340 }
1341
1342 switch (ecs->ws.kind)
1343 {
1344 case TARGET_WAITKIND_LOADED:
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1347 /* Ignore gracefully during startup of the inferior, as it might
1348 be the shell which has just loaded some objects, otherwise
1349 add the symbols for the newly loaded objects. Also ignore at
1350 the beginning of an attach or remote session; we will query
1351 the full list of libraries once the connection is
1352 established. */
1353 if (stop_soon == NO_STOP_QUIETLY)
1354 {
1355 /* Remove breakpoints, SOLIB_ADD might adjust
1356 breakpoint addresses via breakpoint_re_set. */
1357 remove_breakpoints ();
1358
1359 /* Check for any newly added shared libraries if we're
1360 supposed to be adding them automatically. Switch
1361 terminal for any messages produced by
1362 breakpoint_re_set. */
1363 target_terminal_ours_for_output ();
1364 /* NOTE: cagney/2003-11-25: Make certain that the target
1365 stack's section table is kept up-to-date. Architectures,
1366 (e.g., PPC64), use the section table to perform
1367 operations such as address => section name and hence
1368 require the table to contain all sections (including
1369 those found in shared libraries). */
1370 /* NOTE: cagney/2003-11-25: Pass current_target and not
1371 exec_ops to SOLIB_ADD. This is because current GDB is
1372 only tooled to propagate section_table changes out from
1373 the "current_target" (see target_resize_to_sections), and
1374 not up from the exec stratum. This, of course, isn't
1375 right. "infrun.c" should only interact with the
1376 exec/process stratum, instead relying on the target stack
1377 to propagate relevant changes (stop, section table
1378 changed, ...) up to other layers. */
1379 #ifdef SOLIB_ADD
1380 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1381 #else
1382 solib_add (NULL, 0, &current_target, auto_solib_add);
1383 #endif
1384 target_terminal_inferior ();
1385
1386 /* If requested, stop when the dynamic linker notifies
1387 gdb of events. This allows the user to get control
1388 and place breakpoints in initializer routines for
1389 dynamically loaded objects (among other things). */
1390 if (stop_on_solib_events)
1391 {
1392 stop_stepping (ecs);
1393 return;
1394 }
1395
1396 /* NOTE drow/2007-05-11: This might be a good place to check
1397 for "catch load". */
1398
1399 /* Reinsert breakpoints and continue. */
1400 insert_breakpoints ();
1401 }
1402
1403 /* If we are skipping through a shell, or through shared library
1404 loading that we aren't interested in, resume the program. If
1405 we're running the program normally, also resume. But stop if
1406 we're attaching or setting up a remote connection. */
1407 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1408 {
1409 resume (0, TARGET_SIGNAL_0);
1410 prepare_to_wait (ecs);
1411 return;
1412 }
1413
1414 break;
1415
1416 case TARGET_WAITKIND_SPURIOUS:
1417 if (debug_infrun)
1418 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1419 resume (0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
1422
1423 case TARGET_WAITKIND_EXITED:
1424 if (debug_infrun)
1425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1426 target_terminal_ours (); /* Must do this before mourn anyway */
1427 print_stop_reason (EXITED, ecs->ws.value.integer);
1428
1429 /* Record the exit code in the convenience variable $_exitcode, so
1430 that the user can inspect this again later. */
1431 set_internalvar (lookup_internalvar ("_exitcode"),
1432 value_from_longest (builtin_type_int,
1433 (LONGEST) ecs->ws.value.integer));
1434 gdb_flush (gdb_stdout);
1435 target_mourn_inferior ();
1436 singlestep_breakpoints_inserted_p = 0;
1437 stop_print_frame = 0;
1438 stop_stepping (ecs);
1439 return;
1440
1441 case TARGET_WAITKIND_SIGNALLED:
1442 if (debug_infrun)
1443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1444 stop_print_frame = 0;
1445 stop_signal = ecs->ws.value.sig;
1446 target_terminal_ours (); /* Must do this before mourn anyway */
1447
1448 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1449 reach here unless the inferior is dead. However, for years
1450 target_kill() was called here, which hints that fatal signals aren't
1451 really fatal on some systems. If that's true, then some changes
1452 may be needed. */
1453 target_mourn_inferior ();
1454
1455 print_stop_reason (SIGNAL_EXITED, stop_signal);
1456 singlestep_breakpoints_inserted_p = 0;
1457 stop_stepping (ecs);
1458 return;
1459
1460 /* The following are the only cases in which we keep going;
1461 the above cases end in a continue or goto. */
1462 case TARGET_WAITKIND_FORKED:
1463 case TARGET_WAITKIND_VFORKED:
1464 if (debug_infrun)
1465 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1466 stop_signal = TARGET_SIGNAL_TRAP;
1467 pending_follow.kind = ecs->ws.kind;
1468
1469 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1470 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1471
1472 if (!ptid_equal (ecs->ptid, inferior_ptid))
1473 {
1474 context_switch (ecs);
1475 reinit_frame_cache ();
1476 }
1477
1478 stop_pc = read_pc ();
1479
1480 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1481
1482 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1483
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
1491 goto process_event_stop_test;
1492
1493 case TARGET_WAITKIND_EXECD:
1494 if (debug_infrun)
1495 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1496 stop_signal = TARGET_SIGNAL_TRAP;
1497
1498 /* NOTE drow/2002-12-05: This code should be pushed down into the
1499 target_wait function. Until then following vfork on HP/UX 10.20
1500 is probably broken by this. Of course, it's broken anyway. */
1501 /* Is this a target which reports multiple exec events per actual
1502 call to exec()? (HP-UX using ptrace does, for example.) If so,
1503 ignore all but the last one. Just resume the exec'r, and wait
1504 for the next exec event. */
1505 if (inferior_ignoring_leading_exec_events)
1506 {
1507 inferior_ignoring_leading_exec_events--;
1508 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1509 prepare_to_wait (ecs);
1510 return;
1511 }
1512 inferior_ignoring_leading_exec_events =
1513 target_reported_exec_events_per_exec_call () - 1;
1514
1515 pending_follow.execd_pathname =
1516 savestring (ecs->ws.value.execd_pathname,
1517 strlen (ecs->ws.value.execd_pathname));
1518
1519 /* This causes the eventpoints and symbol table to be reset. Must
1520 do this now, before trying to determine whether to stop. */
1521 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1522 xfree (pending_follow.execd_pathname);
1523
1524 stop_pc = read_pc_pid (ecs->ptid);
1525 ecs->saved_inferior_ptid = inferior_ptid;
1526 inferior_ptid = ecs->ptid;
1527
1528 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1529
1530 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1531 inferior_ptid = ecs->saved_inferior_ptid;
1532
1533 if (!ptid_equal (ecs->ptid, inferior_ptid))
1534 {
1535 context_switch (ecs);
1536 reinit_frame_cache ();
1537 }
1538
1539 /* If no catchpoint triggered for this, then keep going. */
1540 if (ecs->random_signal)
1541 {
1542 stop_signal = TARGET_SIGNAL_0;
1543 keep_going (ecs);
1544 return;
1545 }
1546 goto process_event_stop_test;
1547
1548 /* Be careful not to try to gather much state about a thread
1549 that's in a syscall. It's frequently a losing proposition. */
1550 case TARGET_WAITKIND_SYSCALL_ENTRY:
1551 if (debug_infrun)
1552 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1553 resume (0, TARGET_SIGNAL_0);
1554 prepare_to_wait (ecs);
1555 return;
1556
1557 /* Before examining the threads further, step this thread to
1558 get it entirely out of the syscall. (We get notice of the
1559 event when the thread is just on the verge of exiting a
1560 syscall. Stepping one instruction seems to get it back
1561 into user code.) */
1562 case TARGET_WAITKIND_SYSCALL_RETURN:
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1565 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1566 prepare_to_wait (ecs);
1567 return;
1568
1569 case TARGET_WAITKIND_STOPPED:
1570 if (debug_infrun)
1571 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1572 stop_signal = ecs->ws.value.sig;
1573 break;
1574
1575 /* We had an event in the inferior, but we are not interested
1576 in handling it at this level. The lower layers have already
1577 done what needs to be done, if anything.
1578
1579 One of the possible circumstances for this is when the
1580 inferior produces output for the console. The inferior has
1581 not stopped, and we are ignoring the event. Another possible
1582 circumstance is any event which the lower level knows will be
1583 reported multiple times without an intervening resume. */
1584 case TARGET_WAITKIND_IGNORE:
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1587 prepare_to_wait (ecs);
1588 return;
1589 }
1590
1591 /* We may want to consider not doing a resume here in order to give
1592 the user a chance to play with the new thread. It might be good
1593 to make that a user-settable option. */
1594
1595 /* At this point, all threads are stopped (happens automatically in
1596 either the OS or the native code). Therefore we need to continue
1597 all threads in order to make progress. */
1598 if (ecs->new_thread_event)
1599 {
1600 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1601 prepare_to_wait (ecs);
1602 return;
1603 }
1604
1605 stop_pc = read_pc_pid (ecs->ptid);
1606
1607 if (debug_infrun)
1608 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1609
1610 if (stepping_past_singlestep_breakpoint)
1611 {
1612 gdb_assert (singlestep_breakpoints_inserted_p);
1613 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1614 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1615
1616 stepping_past_singlestep_breakpoint = 0;
1617
1618 /* We've either finished single-stepping past the single-step
1619 breakpoint, or stopped for some other reason. It would be nice if
1620 we could tell, but we can't reliably. */
1621 if (stop_signal == TARGET_SIGNAL_TRAP)
1622 {
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1625 /* Pull the single step breakpoints out of the target. */
1626 remove_single_step_breakpoints ();
1627 singlestep_breakpoints_inserted_p = 0;
1628
1629 ecs->random_signal = 0;
1630
1631 ecs->ptid = saved_singlestep_ptid;
1632 context_switch (ecs);
1633 if (deprecated_context_hook)
1634 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1635
1636 resume (1, TARGET_SIGNAL_0);
1637 prepare_to_wait (ecs);
1638 return;
1639 }
1640 }
1641
1642 stepping_past_singlestep_breakpoint = 0;
1643
1644 if (!ptid_equal (deferred_step_ptid, null_ptid))
1645 {
1646 /* If we stopped for some other reason than single-stepping, ignore
1647 the fact that we were supposed to switch back. */
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: handling deferred step\n");
1653
1654 /* Pull the single step breakpoints out of the target. */
1655 if (singlestep_breakpoints_inserted_p)
1656 {
1657 remove_single_step_breakpoints ();
1658 singlestep_breakpoints_inserted_p = 0;
1659 }
1660
1661 /* Note: We do not call context_switch at this point, as the
1662 context is already set up for stepping the original thread. */
1663 switch_to_thread (deferred_step_ptid);
1664 deferred_step_ptid = null_ptid;
1665 /* Suppress spurious "Switching to ..." message. */
1666 previous_inferior_ptid = inferior_ptid;
1667
1668 resume (1, TARGET_SIGNAL_0);
1669 prepare_to_wait (ecs);
1670 return;
1671 }
1672
1673 deferred_step_ptid = null_ptid;
1674 }
1675
1676 /* See if a thread hit a thread-specific breakpoint that was meant for
1677 another thread. If so, then step that thread past the breakpoint,
1678 and continue it. */
1679
1680 if (stop_signal == TARGET_SIGNAL_TRAP)
1681 {
1682 int thread_hop_needed = 0;
1683
1684 /* Check if a regular breakpoint has been hit before checking
1685 for a potential single step breakpoint. Otherwise, GDB will
1686 not see this breakpoint hit when stepping onto breakpoints. */
1687 if (regular_breakpoint_inserted_here_p (stop_pc))
1688 {
1689 ecs->random_signal = 0;
1690 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1691 thread_hop_needed = 1;
1692 }
1693 else if (singlestep_breakpoints_inserted_p)
1694 {
1695 /* We have not context switched yet, so this should be true
1696 no matter which thread hit the singlestep breakpoint. */
1697 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1700 "trap for %s\n",
1701 target_pid_to_str (ecs->ptid));
1702
1703 ecs->random_signal = 0;
1704 /* The call to in_thread_list is necessary because PTIDs sometimes
1705 change when we go from single-threaded to multi-threaded. If
1706 the singlestep_ptid is still in the list, assume that it is
1707 really different from ecs->ptid. */
1708 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1709 && in_thread_list (singlestep_ptid))
1710 {
1711 /* If the PC of the thread we were trying to single-step
1712 has changed, discard this event (which we were going
1713 to ignore anyway), and pretend we saw that thread
1714 trap. This prevents us continuously moving the
1715 single-step breakpoint forward, one instruction at a
1716 time. If the PC has changed, then the thread we were
1717 trying to single-step has trapped or been signalled,
1718 but the event has not been reported to GDB yet.
1719
1720 There might be some cases where this loses signal
1721 information, if a signal has arrived at exactly the
1722 same time that the PC changed, but this is the best
1723 we can do with the information available. Perhaps we
1724 should arrange to report all events for all threads
1725 when they stop, or to re-poll the remote looking for
1726 this particular thread (i.e. temporarily enable
1727 schedlock). */
1728 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1729 {
1730 if (debug_infrun)
1731 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1732 " but expected thread advanced also\n");
1733
1734 /* The current context still belongs to
1735 singlestep_ptid. Don't swap here, since that's
1736 the context we want to use. Just fudge our
1737 state and continue. */
1738 ecs->ptid = singlestep_ptid;
1739 stop_pc = read_pc_pid (ecs->ptid);
1740 }
1741 else
1742 {
1743 if (debug_infrun)
1744 fprintf_unfiltered (gdb_stdlog,
1745 "infrun: unexpected thread\n");
1746
1747 thread_hop_needed = 1;
1748 stepping_past_singlestep_breakpoint = 1;
1749 saved_singlestep_ptid = singlestep_ptid;
1750 }
1751 }
1752 }
1753
1754 if (thread_hop_needed)
1755 {
1756 int remove_status;
1757
1758 if (debug_infrun)
1759 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1760
1761 /* Saw a breakpoint, but it was hit by the wrong thread.
1762 Just continue. */
1763
1764 if (singlestep_breakpoints_inserted_p)
1765 {
1766 /* Pull the single step breakpoints out of the target. */
1767 remove_single_step_breakpoints ();
1768 singlestep_breakpoints_inserted_p = 0;
1769 }
1770
1771 remove_status = remove_breakpoints ();
1772 /* Did we fail to remove breakpoints? If so, try
1773 to set the PC past the bp. (There's at least
1774 one situation in which we can fail to remove
1775 the bp's: On HP-UX's that use ttrace, we can't
1776 change the address space of a vforking child
1777 process until the child exits (well, okay, not
1778 then either :-) or execs. */
1779 if (remove_status != 0)
1780 error (_("Cannot step over breakpoint hit in wrong thread"));
1781 else
1782 { /* Single step */
1783 if (!ptid_equal (inferior_ptid, ecs->ptid))
1784 context_switch (ecs);
1785 ecs->waiton_ptid = ecs->ptid;
1786 ecs->wp = &(ecs->ws);
1787 ecs->stepping_over_breakpoint = 1;
1788
1789 ecs->infwait_state = infwait_thread_hop_state;
1790 keep_going (ecs);
1791 registers_changed ();
1792 return;
1793 }
1794 }
1795 else if (singlestep_breakpoints_inserted_p)
1796 {
1797 sw_single_step_trap_p = 1;
1798 ecs->random_signal = 0;
1799 }
1800 }
1801 else
1802 ecs->random_signal = 1;
1803
1804 /* See if something interesting happened to the non-current thread. If
1805 so, then switch to that thread. */
1806 if (!ptid_equal (ecs->ptid, inferior_ptid))
1807 {
1808 if (debug_infrun)
1809 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1810
1811 context_switch (ecs);
1812
1813 if (deprecated_context_hook)
1814 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1815 }
1816
1817 if (singlestep_breakpoints_inserted_p)
1818 {
1819 /* Pull the single step breakpoints out of the target. */
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822 }
1823
1824 if (stepped_after_stopped_by_watchpoint)
1825 stopped_by_watchpoint = 0;
1826 else
1827 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1828
1829 /* If necessary, step over this watchpoint. We'll be back to display
1830 it in a moment. */
1831 if (stopped_by_watchpoint
1832 && (HAVE_STEPPABLE_WATCHPOINT
1833 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1834 {
1835 if (debug_infrun)
1836 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1837
1838 /* At this point, we are stopped at an instruction which has
1839 attempted to write to a piece of memory under control of
1840 a watchpoint. The instruction hasn't actually executed
1841 yet. If we were to evaluate the watchpoint expression
1842 now, we would get the old value, and therefore no change
1843 would seem to have occurred.
1844
1845 In order to make watchpoints work `right', we really need
1846 to complete the memory write, and then evaluate the
1847 watchpoint expression. We do this by single-stepping the
1848 target.
1849
1850 It may not be necessary to disable the watchpoint to stop over
1851 it. For example, the PA can (with some kernel cooperation)
1852 single step over a watchpoint without disabling the watchpoint.
1853
1854 It is far more common to need to disable a watchpoint to step
1855 the inferior over it. If we have non-steppable watchpoints,
1856 we must disable the current watchpoint; it's simplest to
1857 disable all watchpoints and breakpoints. */
1858
1859 if (!HAVE_STEPPABLE_WATCHPOINT)
1860 remove_breakpoints ();
1861 registers_changed ();
1862 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1863 ecs->waiton_ptid = ecs->ptid;
1864 if (HAVE_STEPPABLE_WATCHPOINT)
1865 ecs->infwait_state = infwait_step_watch_state;
1866 else
1867 ecs->infwait_state = infwait_nonstep_watch_state;
1868 prepare_to_wait (ecs);
1869 return;
1870 }
1871
1872 ecs->stop_func_start = 0;
1873 ecs->stop_func_end = 0;
1874 ecs->stop_func_name = 0;
1875 /* Don't care about return value; stop_func_start and stop_func_name
1876 will both be 0 if it doesn't work. */
1877 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1878 &ecs->stop_func_start, &ecs->stop_func_end);
1879 ecs->stop_func_start
1880 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1881 ecs->stepping_over_breakpoint = 0;
1882 bpstat_clear (&stop_bpstat);
1883 stop_step = 0;
1884 stop_print_frame = 1;
1885 ecs->random_signal = 0;
1886 stopped_by_random_signal = 0;
1887
1888 if (stop_signal == TARGET_SIGNAL_TRAP
1889 && stepping_over_breakpoint
1890 && gdbarch_single_step_through_delay_p (current_gdbarch)
1891 && currently_stepping (ecs))
1892 {
1893 /* We're trying to step off a breakpoint. Turns out that we're
1894 also on an instruction that needs to be stepped multiple
1895 times before it's been fully executing. E.g., architectures
1896 with a delay slot. It needs to be stepped twice, once for
1897 the instruction and once for the delay slot. */
1898 int step_through_delay
1899 = gdbarch_single_step_through_delay (current_gdbarch,
1900 get_current_frame ());
1901 if (debug_infrun && step_through_delay)
1902 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1903 if (step_range_end == 0 && step_through_delay)
1904 {
1905 /* The user issued a continue when stopped at a breakpoint.
1906 Set up for another trap and get out of here. */
1907 ecs->stepping_over_breakpoint = 1;
1908 keep_going (ecs);
1909 return;
1910 }
1911 else if (step_through_delay)
1912 {
1913 /* The user issued a step when stopped at a breakpoint.
1914 Maybe we should stop, maybe we should not - the delay
1915 slot *might* correspond to a line of source. In any
1916 case, don't decide that here, just set
1917 ecs->stepping_over_breakpoint, making sure we
1918 single-step again before breakpoints are re-inserted. */
1919 ecs->stepping_over_breakpoint = 1;
1920 }
1921 }
1922
1923 /* Look at the cause of the stop, and decide what to do.
1924 The alternatives are:
1925 1) break; to really stop and return to the debugger,
1926 2) drop through to start up again
1927 (set ecs->stepping_over_breakpoint to 1 to single step once)
1928 3) set ecs->random_signal to 1, and the decision between 1 and 2
1929 will be made according to the signal handling tables. */
1930
1931 /* First, distinguish signals caused by the debugger from signals
1932 that have to do with the program's own actions. Note that
1933 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1934 on the operating system version. Here we detect when a SIGILL or
1935 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1936 something similar for SIGSEGV, since a SIGSEGV will be generated
1937 when we're trying to execute a breakpoint instruction on a
1938 non-executable stack. This happens for call dummy breakpoints
1939 for architectures like SPARC that place call dummies on the
1940 stack. */
1941
1942 if (stop_signal == TARGET_SIGNAL_TRAP
1943 || (breakpoint_inserted_here_p (stop_pc)
1944 && (stop_signal == TARGET_SIGNAL_ILL
1945 || stop_signal == TARGET_SIGNAL_SEGV
1946 || stop_signal == TARGET_SIGNAL_EMT))
1947 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1948 || stop_soon == STOP_QUIETLY_REMOTE)
1949 {
1950 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1951 {
1952 if (debug_infrun)
1953 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1954 stop_print_frame = 0;
1955 stop_stepping (ecs);
1956 return;
1957 }
1958
1959 /* This is originated from start_remote(), start_inferior() and
1960 shared libraries hook functions. */
1961 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1962 {
1963 if (debug_infrun)
1964 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1965 stop_stepping (ecs);
1966 return;
1967 }
1968
1969 /* This originates from attach_command(). We need to overwrite
1970 the stop_signal here, because some kernels don't ignore a
1971 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1972 See more comments in inferior.h. */
1973 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1974 {
1975 stop_stepping (ecs);
1976 if (stop_signal == TARGET_SIGNAL_STOP)
1977 stop_signal = TARGET_SIGNAL_0;
1978 return;
1979 }
1980
1981 /* See if there is a breakpoint at the current PC. */
1982 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1983
1984 /* Following in case break condition called a
1985 function. */
1986 stop_print_frame = 1;
1987
1988 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1989 at one stage in the past included checks for an inferior
1990 function call's call dummy's return breakpoint. The original
1991 comment, that went with the test, read:
1992
1993 ``End of a stack dummy. Some systems (e.g. Sony news) give
1994 another signal besides SIGTRAP, so check here as well as
1995 above.''
1996
1997 If someone ever tries to get get call dummys on a
1998 non-executable stack to work (where the target would stop
1999 with something like a SIGSEGV), then those tests might need
2000 to be re-instated. Given, however, that the tests were only
2001 enabled when momentary breakpoints were not being used, I
2002 suspect that it won't be the case.
2003
2004 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2005 be necessary for call dummies on a non-executable stack on
2006 SPARC. */
2007
2008 if (stop_signal == TARGET_SIGNAL_TRAP)
2009 ecs->random_signal
2010 = !(bpstat_explains_signal (stop_bpstat)
2011 || stepping_over_breakpoint
2012 || (step_range_end && step_resume_breakpoint == NULL));
2013 else
2014 {
2015 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2016 if (!ecs->random_signal)
2017 stop_signal = TARGET_SIGNAL_TRAP;
2018 }
2019 }
2020
2021 /* When we reach this point, we've pretty much decided
2022 that the reason for stopping must've been a random
2023 (unexpected) signal. */
2024
2025 else
2026 ecs->random_signal = 1;
2027
2028 process_event_stop_test:
2029 /* For the program's own signals, act according to
2030 the signal handling tables. */
2031
2032 if (ecs->random_signal)
2033 {
2034 /* Signal not for debugging purposes. */
2035 int printed = 0;
2036
2037 if (debug_infrun)
2038 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2039
2040 stopped_by_random_signal = 1;
2041
2042 if (signal_print[stop_signal])
2043 {
2044 printed = 1;
2045 target_terminal_ours_for_output ();
2046 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2047 }
2048 if (signal_stop[stop_signal])
2049 {
2050 stop_stepping (ecs);
2051 return;
2052 }
2053 /* If not going to stop, give terminal back
2054 if we took it away. */
2055 else if (printed)
2056 target_terminal_inferior ();
2057
2058 /* Clear the signal if it should not be passed. */
2059 if (signal_program[stop_signal] == 0)
2060 stop_signal = TARGET_SIGNAL_0;
2061
2062 if (prev_pc == read_pc ()
2063 && breakpoint_here_p (read_pc ())
2064 && !breakpoint_inserted_here_p (read_pc ())
2065 && step_resume_breakpoint == NULL)
2066 {
2067 /* We were just starting a new sequence, attempting to
2068 single-step off of a breakpoint and expecting a SIGTRAP.
2069 Intead this signal arrives. This signal will take us out
2070 of the stepping range so GDB needs to remember to, when
2071 the signal handler returns, resume stepping off that
2072 breakpoint. */
2073 /* To simplify things, "continue" is forced to use the same
2074 code paths as single-step - set a breakpoint at the
2075 signal return address and then, once hit, step off that
2076 breakpoint. */
2077
2078 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2079 ecs->step_after_step_resume_breakpoint = 1;
2080 keep_going (ecs);
2081 return;
2082 }
2083
2084 if (step_range_end != 0
2085 && stop_signal != TARGET_SIGNAL_0
2086 && stop_pc >= step_range_start && stop_pc < step_range_end
2087 && frame_id_eq (get_frame_id (get_current_frame ()),
2088 step_frame_id)
2089 && step_resume_breakpoint == NULL)
2090 {
2091 /* The inferior is about to take a signal that will take it
2092 out of the single step range. Set a breakpoint at the
2093 current PC (which is presumably where the signal handler
2094 will eventually return) and then allow the inferior to
2095 run free.
2096
2097 Note that this is only needed for a signal delivered
2098 while in the single-step range. Nested signals aren't a
2099 problem as they eventually all return. */
2100 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2101 keep_going (ecs);
2102 return;
2103 }
2104
2105 /* Note: step_resume_breakpoint may be non-NULL. This occures
2106 when either there's a nested signal, or when there's a
2107 pending signal enabled just as the signal handler returns
2108 (leaving the inferior at the step-resume-breakpoint without
2109 actually executing it). Either way continue until the
2110 breakpoint is really hit. */
2111 keep_going (ecs);
2112 return;
2113 }
2114
2115 /* Handle cases caused by hitting a breakpoint. */
2116 {
2117 CORE_ADDR jmp_buf_pc;
2118 struct bpstat_what what;
2119
2120 what = bpstat_what (stop_bpstat);
2121
2122 if (what.call_dummy)
2123 {
2124 stop_stack_dummy = 1;
2125 }
2126
2127 switch (what.main_action)
2128 {
2129 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2130 /* If we hit the breakpoint at longjmp, disable it for the
2131 duration of this command. Then, install a temporary
2132 breakpoint at the target of the jmp_buf. */
2133 if (debug_infrun)
2134 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2135 disable_longjmp_breakpoint ();
2136 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2137 || !gdbarch_get_longjmp_target (current_gdbarch,
2138 get_current_frame (), &jmp_buf_pc))
2139 {
2140 keep_going (ecs);
2141 return;
2142 }
2143
2144 /* Need to blow away step-resume breakpoint, as it
2145 interferes with us */
2146 if (step_resume_breakpoint != NULL)
2147 {
2148 delete_step_resume_breakpoint (&step_resume_breakpoint);
2149 }
2150
2151 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2152 ecs->handling_longjmp = 1; /* FIXME */
2153 keep_going (ecs);
2154 return;
2155
2156 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2157 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2160 disable_longjmp_breakpoint ();
2161 ecs->handling_longjmp = 0; /* FIXME */
2162 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2163 break;
2164 /* else fallthrough */
2165
2166 case BPSTAT_WHAT_SINGLE:
2167 if (debug_infrun)
2168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2169 ecs->stepping_over_breakpoint = 1;
2170 /* Still need to check other stuff, at least the case
2171 where we are stepping and step out of the right range. */
2172 break;
2173
2174 case BPSTAT_WHAT_STOP_NOISY:
2175 if (debug_infrun)
2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2177 stop_print_frame = 1;
2178
2179 /* We are about to nuke the step_resume_breakpointt via the
2180 cleanup chain, so no need to worry about it here. */
2181
2182 stop_stepping (ecs);
2183 return;
2184
2185 case BPSTAT_WHAT_STOP_SILENT:
2186 if (debug_infrun)
2187 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2188 stop_print_frame = 0;
2189
2190 /* We are about to nuke the step_resume_breakpoin via the
2191 cleanup chain, so no need to worry about it here. */
2192
2193 stop_stepping (ecs);
2194 return;
2195
2196 case BPSTAT_WHAT_STEP_RESUME:
2197 /* This proably demands a more elegant solution, but, yeah
2198 right...
2199
2200 This function's use of the simple variable
2201 step_resume_breakpoint doesn't seem to accomodate
2202 simultaneously active step-resume bp's, although the
2203 breakpoint list certainly can.
2204
2205 If we reach here and step_resume_breakpoint is already
2206 NULL, then apparently we have multiple active
2207 step-resume bp's. We'll just delete the breakpoint we
2208 stopped at, and carry on.
2209
2210 Correction: what the code currently does is delete a
2211 step-resume bp, but it makes no effort to ensure that
2212 the one deleted is the one currently stopped at. MVS */
2213
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2216
2217 if (step_resume_breakpoint == NULL)
2218 {
2219 step_resume_breakpoint =
2220 bpstat_find_step_resume_breakpoint (stop_bpstat);
2221 }
2222 delete_step_resume_breakpoint (&step_resume_breakpoint);
2223 if (ecs->step_after_step_resume_breakpoint)
2224 {
2225 /* Back when the step-resume breakpoint was inserted, we
2226 were trying to single-step off a breakpoint. Go back
2227 to doing that. */
2228 ecs->step_after_step_resume_breakpoint = 0;
2229 ecs->stepping_over_breakpoint = 1;
2230 keep_going (ecs);
2231 return;
2232 }
2233 break;
2234
2235 case BPSTAT_WHAT_CHECK_SHLIBS:
2236 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2237 {
2238 if (debug_infrun)
2239 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2240 /* Remove breakpoints, we eventually want to step over the
2241 shlib event breakpoint, and SOLIB_ADD might adjust
2242 breakpoint addresses via breakpoint_re_set. */
2243 remove_breakpoints ();
2244
2245 /* Check for any newly added shared libraries if we're
2246 supposed to be adding them automatically. Switch
2247 terminal for any messages produced by
2248 breakpoint_re_set. */
2249 target_terminal_ours_for_output ();
2250 /* NOTE: cagney/2003-11-25: Make certain that the target
2251 stack's section table is kept up-to-date. Architectures,
2252 (e.g., PPC64), use the section table to perform
2253 operations such as address => section name and hence
2254 require the table to contain all sections (including
2255 those found in shared libraries). */
2256 /* NOTE: cagney/2003-11-25: Pass current_target and not
2257 exec_ops to SOLIB_ADD. This is because current GDB is
2258 only tooled to propagate section_table changes out from
2259 the "current_target" (see target_resize_to_sections), and
2260 not up from the exec stratum. This, of course, isn't
2261 right. "infrun.c" should only interact with the
2262 exec/process stratum, instead relying on the target stack
2263 to propagate relevant changes (stop, section table
2264 changed, ...) up to other layers. */
2265 #ifdef SOLIB_ADD
2266 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2267 #else
2268 solib_add (NULL, 0, &current_target, auto_solib_add);
2269 #endif
2270 target_terminal_inferior ();
2271
2272 /* If requested, stop when the dynamic linker notifies
2273 gdb of events. This allows the user to get control
2274 and place breakpoints in initializer routines for
2275 dynamically loaded objects (among other things). */
2276 if (stop_on_solib_events || stop_stack_dummy)
2277 {
2278 stop_stepping (ecs);
2279 return;
2280 }
2281
2282 /* If we stopped due to an explicit catchpoint, then the
2283 (see above) call to SOLIB_ADD pulled in any symbols
2284 from a newly-loaded library, if appropriate.
2285
2286 We do want the inferior to stop, but not where it is
2287 now, which is in the dynamic linker callback. Rather,
2288 we would like it stop in the user's program, just after
2289 the call that caused this catchpoint to trigger. That
2290 gives the user a more useful vantage from which to
2291 examine their program's state. */
2292 else if (what.main_action
2293 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2294 {
2295 /* ??rehrauer: If I could figure out how to get the
2296 right return PC from here, we could just set a temp
2297 breakpoint and resume. I'm not sure we can without
2298 cracking open the dld's shared libraries and sniffing
2299 their unwind tables and text/data ranges, and that's
2300 not a terribly portable notion.
2301
2302 Until that time, we must step the inferior out of the
2303 dld callback, and also out of the dld itself (and any
2304 code or stubs in libdld.sl, such as "shl_load" and
2305 friends) until we reach non-dld code. At that point,
2306 we can stop stepping. */
2307 bpstat_get_triggered_catchpoints (stop_bpstat,
2308 &ecs->
2309 stepping_through_solib_catchpoints);
2310 ecs->stepping_through_solib_after_catch = 1;
2311
2312 /* Be sure to lift all breakpoints, so the inferior does
2313 actually step past this point... */
2314 ecs->stepping_over_breakpoint = 1;
2315 break;
2316 }
2317 else
2318 {
2319 /* We want to step over this breakpoint, then keep going. */
2320 ecs->stepping_over_breakpoint = 1;
2321 break;
2322 }
2323 }
2324 break;
2325
2326 case BPSTAT_WHAT_LAST:
2327 /* Not a real code, but listed here to shut up gcc -Wall. */
2328
2329 case BPSTAT_WHAT_KEEP_CHECKING:
2330 break;
2331 }
2332 }
2333
2334 /* We come here if we hit a breakpoint but should not
2335 stop for it. Possibly we also were stepping
2336 and should stop for that. So fall through and
2337 test for stepping. But, if not stepping,
2338 do not stop. */
2339
2340 /* Are we stepping to get the inferior out of the dynamic linker's
2341 hook (and possibly the dld itself) after catching a shlib
2342 event? */
2343 if (ecs->stepping_through_solib_after_catch)
2344 {
2345 #if defined(SOLIB_ADD)
2346 /* Have we reached our destination? If not, keep going. */
2347 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2348 {
2349 if (debug_infrun)
2350 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2351 ecs->stepping_over_breakpoint = 1;
2352 keep_going (ecs);
2353 return;
2354 }
2355 #endif
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2358 /* Else, stop and report the catchpoint(s) whose triggering
2359 caused us to begin stepping. */
2360 ecs->stepping_through_solib_after_catch = 0;
2361 bpstat_clear (&stop_bpstat);
2362 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2363 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2364 stop_print_frame = 1;
2365 stop_stepping (ecs);
2366 return;
2367 }
2368
2369 if (step_resume_breakpoint)
2370 {
2371 if (debug_infrun)
2372 fprintf_unfiltered (gdb_stdlog,
2373 "infrun: step-resume breakpoint is inserted\n");
2374
2375 /* Having a step-resume breakpoint overrides anything
2376 else having to do with stepping commands until
2377 that breakpoint is reached. */
2378 keep_going (ecs);
2379 return;
2380 }
2381
2382 if (step_range_end == 0)
2383 {
2384 if (debug_infrun)
2385 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2386 /* Likewise if we aren't even stepping. */
2387 keep_going (ecs);
2388 return;
2389 }
2390
2391 /* If stepping through a line, keep going if still within it.
2392
2393 Note that step_range_end is the address of the first instruction
2394 beyond the step range, and NOT the address of the last instruction
2395 within it! */
2396 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2397 {
2398 if (debug_infrun)
2399 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2400 paddr_nz (step_range_start),
2401 paddr_nz (step_range_end));
2402 keep_going (ecs);
2403 return;
2404 }
2405
2406 /* We stepped out of the stepping range. */
2407
2408 /* If we are stepping at the source level and entered the runtime
2409 loader dynamic symbol resolution code, we keep on single stepping
2410 until we exit the run time loader code and reach the callee's
2411 address. */
2412 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2413 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2414 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2415 #else
2416 && in_solib_dynsym_resolve_code (stop_pc)
2417 #endif
2418 )
2419 {
2420 CORE_ADDR pc_after_resolver =
2421 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2422
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2425
2426 if (pc_after_resolver)
2427 {
2428 /* Set up a step-resume breakpoint at the address
2429 indicated by SKIP_SOLIB_RESOLVER. */
2430 struct symtab_and_line sr_sal;
2431 init_sal (&sr_sal);
2432 sr_sal.pc = pc_after_resolver;
2433
2434 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2435 }
2436
2437 keep_going (ecs);
2438 return;
2439 }
2440
2441 if (step_range_end != 1
2442 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2443 || step_over_calls == STEP_OVER_ALL)
2444 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2445 {
2446 if (debug_infrun)
2447 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2448 /* The inferior, while doing a "step" or "next", has ended up in
2449 a signal trampoline (either by a signal being delivered or by
2450 the signal handler returning). Just single-step until the
2451 inferior leaves the trampoline (either by calling the handler
2452 or returning). */
2453 keep_going (ecs);
2454 return;
2455 }
2456
2457 /* Check for subroutine calls. The check for the current frame
2458 equalling the step ID is not necessary - the check of the
2459 previous frame's ID is sufficient - but it is a common case and
2460 cheaper than checking the previous frame's ID.
2461
2462 NOTE: frame_id_eq will never report two invalid frame IDs as
2463 being equal, so to get into this block, both the current and
2464 previous frame must have valid frame IDs. */
2465 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2466 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2467 {
2468 CORE_ADDR real_stop_pc;
2469
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2472
2473 if ((step_over_calls == STEP_OVER_NONE)
2474 || ((step_range_end == 1)
2475 && in_prologue (prev_pc, ecs->stop_func_start)))
2476 {
2477 /* I presume that step_over_calls is only 0 when we're
2478 supposed to be stepping at the assembly language level
2479 ("stepi"). Just stop. */
2480 /* Also, maybe we just did a "nexti" inside a prolog, so we
2481 thought it was a subroutine call but it was not. Stop as
2482 well. FENN */
2483 stop_step = 1;
2484 print_stop_reason (END_STEPPING_RANGE, 0);
2485 stop_stepping (ecs);
2486 return;
2487 }
2488
2489 if (step_over_calls == STEP_OVER_ALL)
2490 {
2491 /* We're doing a "next", set a breakpoint at callee's return
2492 address (the address at which the caller will
2493 resume). */
2494 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2495 keep_going (ecs);
2496 return;
2497 }
2498
2499 /* If we are in a function call trampoline (a stub between the
2500 calling routine and the real function), locate the real
2501 function. That's what tells us (a) whether we want to step
2502 into it at all, and (b) what prologue we want to run to the
2503 end of, if we do step into it. */
2504 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2505 if (real_stop_pc == 0)
2506 real_stop_pc = gdbarch_skip_trampoline_code
2507 (current_gdbarch, get_current_frame (), stop_pc);
2508 if (real_stop_pc != 0)
2509 ecs->stop_func_start = real_stop_pc;
2510
2511 if (
2512 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2513 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2514 #else
2515 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2516 #endif
2517 )
2518 {
2519 struct symtab_and_line sr_sal;
2520 init_sal (&sr_sal);
2521 sr_sal.pc = ecs->stop_func_start;
2522
2523 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2524 keep_going (ecs);
2525 return;
2526 }
2527
2528 /* If we have line number information for the function we are
2529 thinking of stepping into, step into it.
2530
2531 If there are several symtabs at that PC (e.g. with include
2532 files), just want to know whether *any* of them have line
2533 numbers. find_pc_line handles this. */
2534 {
2535 struct symtab_and_line tmp_sal;
2536
2537 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2538 if (tmp_sal.line != 0)
2539 {
2540 step_into_function (ecs);
2541 return;
2542 }
2543 }
2544
2545 /* If we have no line number and the step-stop-if-no-debug is
2546 set, we stop the step so that the user has a chance to switch
2547 in assembly mode. */
2548 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2549 {
2550 stop_step = 1;
2551 print_stop_reason (END_STEPPING_RANGE, 0);
2552 stop_stepping (ecs);
2553 return;
2554 }
2555
2556 /* Set a breakpoint at callee's return address (the address at
2557 which the caller will resume). */
2558 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2559 keep_going (ecs);
2560 return;
2561 }
2562
2563 /* If we're in the return path from a shared library trampoline,
2564 we want to proceed through the trampoline when stepping. */
2565 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2566 stop_pc, ecs->stop_func_name))
2567 {
2568 /* Determine where this trampoline returns. */
2569 CORE_ADDR real_stop_pc;
2570 real_stop_pc = gdbarch_skip_trampoline_code
2571 (current_gdbarch, get_current_frame (), stop_pc);
2572
2573 if (debug_infrun)
2574 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2575
2576 /* Only proceed through if we know where it's going. */
2577 if (real_stop_pc)
2578 {
2579 /* And put the step-breakpoint there and go until there. */
2580 struct symtab_and_line sr_sal;
2581
2582 init_sal (&sr_sal); /* initialize to zeroes */
2583 sr_sal.pc = real_stop_pc;
2584 sr_sal.section = find_pc_overlay (sr_sal.pc);
2585
2586 /* Do not specify what the fp should be when we stop since
2587 on some machines the prologue is where the new fp value
2588 is established. */
2589 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2590
2591 /* Restart without fiddling with the step ranges or
2592 other state. */
2593 keep_going (ecs);
2594 return;
2595 }
2596 }
2597
2598 ecs->sal = find_pc_line (stop_pc, 0);
2599
2600 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2601 the trampoline processing logic, however, there are some trampolines
2602 that have no names, so we should do trampoline handling first. */
2603 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2604 && ecs->stop_func_name == NULL
2605 && ecs->sal.line == 0)
2606 {
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2609
2610 /* The inferior just stepped into, or returned to, an
2611 undebuggable function (where there is no debugging information
2612 and no line number corresponding to the address where the
2613 inferior stopped). Since we want to skip this kind of code,
2614 we keep going until the inferior returns from this
2615 function - unless the user has asked us not to (via
2616 set step-mode) or we no longer know how to get back
2617 to the call site. */
2618 if (step_stop_if_no_debug
2619 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2620 {
2621 /* If we have no line number and the step-stop-if-no-debug
2622 is set, we stop the step so that the user has a chance to
2623 switch in assembly mode. */
2624 stop_step = 1;
2625 print_stop_reason (END_STEPPING_RANGE, 0);
2626 stop_stepping (ecs);
2627 return;
2628 }
2629 else
2630 {
2631 /* Set a breakpoint at callee's return address (the address
2632 at which the caller will resume). */
2633 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2634 keep_going (ecs);
2635 return;
2636 }
2637 }
2638
2639 if (step_range_end == 1)
2640 {
2641 /* It is stepi or nexti. We always want to stop stepping after
2642 one instruction. */
2643 if (debug_infrun)
2644 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2645 stop_step = 1;
2646 print_stop_reason (END_STEPPING_RANGE, 0);
2647 stop_stepping (ecs);
2648 return;
2649 }
2650
2651 if (ecs->sal.line == 0)
2652 {
2653 /* We have no line number information. That means to stop
2654 stepping (does this always happen right after one instruction,
2655 when we do "s" in a function with no line numbers,
2656 or can this happen as a result of a return or longjmp?). */
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2659 stop_step = 1;
2660 print_stop_reason (END_STEPPING_RANGE, 0);
2661 stop_stepping (ecs);
2662 return;
2663 }
2664
2665 if ((stop_pc == ecs->sal.pc)
2666 && (ecs->current_line != ecs->sal.line
2667 || ecs->current_symtab != ecs->sal.symtab))
2668 {
2669 /* We are at the start of a different line. So stop. Note that
2670 we don't stop if we step into the middle of a different line.
2671 That is said to make things like for (;;) statements work
2672 better. */
2673 if (debug_infrun)
2674 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2675 stop_step = 1;
2676 print_stop_reason (END_STEPPING_RANGE, 0);
2677 stop_stepping (ecs);
2678 return;
2679 }
2680
2681 /* We aren't done stepping.
2682
2683 Optimize by setting the stepping range to the line.
2684 (We might not be in the original line, but if we entered a
2685 new line in mid-statement, we continue stepping. This makes
2686 things like for(;;) statements work better.) */
2687
2688 step_range_start = ecs->sal.pc;
2689 step_range_end = ecs->sal.end;
2690 step_frame_id = get_frame_id (get_current_frame ());
2691 ecs->current_line = ecs->sal.line;
2692 ecs->current_symtab = ecs->sal.symtab;
2693
2694 /* In the case where we just stepped out of a function into the
2695 middle of a line of the caller, continue stepping, but
2696 step_frame_id must be modified to current frame */
2697 #if 0
2698 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2699 generous. It will trigger on things like a step into a frameless
2700 stackless leaf function. I think the logic should instead look
2701 at the unwound frame ID has that should give a more robust
2702 indication of what happened. */
2703 if (step - ID == current - ID)
2704 still stepping in same function;
2705 else if (step - ID == unwind (current - ID))
2706 stepped into a function;
2707 else
2708 stepped out of a function;
2709 /* Of course this assumes that the frame ID unwind code is robust
2710 and we're willing to introduce frame unwind logic into this
2711 function. Fortunately, those days are nearly upon us. */
2712 #endif
2713 {
2714 struct frame_info *frame = get_current_frame ();
2715 struct frame_id current_frame = get_frame_id (frame);
2716 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2717 step_frame_id)))
2718 step_frame_id = current_frame;
2719 }
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2723 keep_going (ecs);
2724 }
2725
2726 /* Are we in the middle of stepping? */
2727
2728 static int
2729 currently_stepping (struct execution_control_state *ecs)
2730 {
2731 return ((!ecs->handling_longjmp
2732 && ((step_range_end && step_resume_breakpoint == NULL)
2733 || stepping_over_breakpoint))
2734 || ecs->stepping_through_solib_after_catch
2735 || bpstat_should_step ());
2736 }
2737
2738 /* Subroutine call with source code we should not step over. Do step
2739 to the first line of code in it. */
2740
2741 static void
2742 step_into_function (struct execution_control_state *ecs)
2743 {
2744 struct symtab *s;
2745 struct symtab_and_line sr_sal;
2746
2747 s = find_pc_symtab (stop_pc);
2748 if (s && s->language != language_asm)
2749 ecs->stop_func_start = gdbarch_skip_prologue
2750 (current_gdbarch, ecs->stop_func_start);
2751
2752 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2753 /* Use the step_resume_break to step until the end of the prologue,
2754 even if that involves jumps (as it seems to on the vax under
2755 4.2). */
2756 /* If the prologue ends in the middle of a source line, continue to
2757 the end of that source line (if it is still within the function).
2758 Otherwise, just go to end of prologue. */
2759 if (ecs->sal.end
2760 && ecs->sal.pc != ecs->stop_func_start
2761 && ecs->sal.end < ecs->stop_func_end)
2762 ecs->stop_func_start = ecs->sal.end;
2763
2764 /* Architectures which require breakpoint adjustment might not be able
2765 to place a breakpoint at the computed address. If so, the test
2766 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2767 ecs->stop_func_start to an address at which a breakpoint may be
2768 legitimately placed.
2769
2770 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2771 made, GDB will enter an infinite loop when stepping through
2772 optimized code consisting of VLIW instructions which contain
2773 subinstructions corresponding to different source lines. On
2774 FR-V, it's not permitted to place a breakpoint on any but the
2775 first subinstruction of a VLIW instruction. When a breakpoint is
2776 set, GDB will adjust the breakpoint address to the beginning of
2777 the VLIW instruction. Thus, we need to make the corresponding
2778 adjustment here when computing the stop address. */
2779
2780 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2781 {
2782 ecs->stop_func_start
2783 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2784 ecs->stop_func_start);
2785 }
2786
2787 if (ecs->stop_func_start == stop_pc)
2788 {
2789 /* We are already there: stop now. */
2790 stop_step = 1;
2791 print_stop_reason (END_STEPPING_RANGE, 0);
2792 stop_stepping (ecs);
2793 return;
2794 }
2795 else
2796 {
2797 /* Put the step-breakpoint there and go until there. */
2798 init_sal (&sr_sal); /* initialize to zeroes */
2799 sr_sal.pc = ecs->stop_func_start;
2800 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2801
2802 /* Do not specify what the fp should be when we stop since on
2803 some machines the prologue is where the new fp value is
2804 established. */
2805 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2806
2807 /* And make sure stepping stops right away then. */
2808 step_range_end = step_range_start;
2809 }
2810 keep_going (ecs);
2811 }
2812
2813 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2814 This is used to both functions and to skip over code. */
2815
2816 static void
2817 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2818 struct frame_id sr_id)
2819 {
2820 /* There should never be more than one step-resume breakpoint per
2821 thread, so we should never be setting a new
2822 step_resume_breakpoint when one is already active. */
2823 gdb_assert (step_resume_breakpoint == NULL);
2824
2825 if (debug_infrun)
2826 fprintf_unfiltered (gdb_stdlog,
2827 "infrun: inserting step-resume breakpoint at 0x%s\n",
2828 paddr_nz (sr_sal.pc));
2829
2830 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2831 bp_step_resume);
2832 }
2833
2834 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2835 to skip a potential signal handler.
2836
2837 This is called with the interrupted function's frame. The signal
2838 handler, when it returns, will resume the interrupted function at
2839 RETURN_FRAME.pc. */
2840
2841 static void
2842 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2843 {
2844 struct symtab_and_line sr_sal;
2845
2846 gdb_assert (return_frame != NULL);
2847 init_sal (&sr_sal); /* initialize to zeros */
2848
2849 sr_sal.pc = gdbarch_addr_bits_remove
2850 (current_gdbarch, get_frame_pc (return_frame));
2851 sr_sal.section = find_pc_overlay (sr_sal.pc);
2852
2853 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2854 }
2855
2856 /* Similar to insert_step_resume_breakpoint_at_frame, except
2857 but a breakpoint at the previous frame's PC. This is used to
2858 skip a function after stepping into it (for "next" or if the called
2859 function has no debugging information).
2860
2861 The current function has almost always been reached by single
2862 stepping a call or return instruction. NEXT_FRAME belongs to the
2863 current function, and the breakpoint will be set at the caller's
2864 resume address.
2865
2866 This is a separate function rather than reusing
2867 insert_step_resume_breakpoint_at_frame in order to avoid
2868 get_prev_frame, which may stop prematurely (see the implementation
2869 of frame_unwind_id for an example). */
2870
2871 static void
2872 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2873 {
2874 struct symtab_and_line sr_sal;
2875
2876 /* We shouldn't have gotten here if we don't know where the call site
2877 is. */
2878 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2879
2880 init_sal (&sr_sal); /* initialize to zeros */
2881
2882 sr_sal.pc = gdbarch_addr_bits_remove
2883 (current_gdbarch, frame_pc_unwind (next_frame));
2884 sr_sal.section = find_pc_overlay (sr_sal.pc);
2885
2886 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2887 }
2888
2889 static void
2890 stop_stepping (struct execution_control_state *ecs)
2891 {
2892 if (debug_infrun)
2893 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2894
2895 /* Let callers know we don't want to wait for the inferior anymore. */
2896 ecs->wait_some_more = 0;
2897 }
2898
2899 /* This function handles various cases where we need to continue
2900 waiting for the inferior. */
2901 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2902
2903 static void
2904 keep_going (struct execution_control_state *ecs)
2905 {
2906 /* Save the pc before execution, to compare with pc after stop. */
2907 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2908
2909 /* If we did not do break;, it means we should keep running the
2910 inferior and not return to debugger. */
2911
2912 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2913 {
2914 /* We took a signal (which we are supposed to pass through to
2915 the inferior, else we'd have done a break above) and we
2916 haven't yet gotten our trap. Simply continue. */
2917 resume (currently_stepping (ecs), stop_signal);
2918 }
2919 else
2920 {
2921 /* Either the trap was not expected, but we are continuing
2922 anyway (the user asked that this signal be passed to the
2923 child)
2924 -- or --
2925 The signal was SIGTRAP, e.g. it was our signal, but we
2926 decided we should resume from it.
2927
2928 We're going to run this baby now!
2929
2930 Note that insert_breakpoints won't try to re-insert
2931 already inserted breakpoints. Therefore, we don't
2932 care if breakpoints were already inserted, or not. */
2933
2934 if (ecs->stepping_over_breakpoint)
2935 {
2936 remove_breakpoints ();
2937 }
2938 else
2939 {
2940 struct gdb_exception e;
2941 /* Stop stepping when inserting breakpoints
2942 has failed. */
2943 TRY_CATCH (e, RETURN_MASK_ERROR)
2944 {
2945 insert_breakpoints ();
2946 }
2947 if (e.reason < 0)
2948 {
2949 stop_stepping (ecs);
2950 return;
2951 }
2952 }
2953
2954 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2955
2956 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2957 specifies that such a signal should be delivered to the
2958 target program).
2959
2960 Typically, this would occure when a user is debugging a
2961 target monitor on a simulator: the target monitor sets a
2962 breakpoint; the simulator encounters this break-point and
2963 halts the simulation handing control to GDB; GDB, noteing
2964 that the break-point isn't valid, returns control back to the
2965 simulator; the simulator then delivers the hardware
2966 equivalent of a SIGNAL_TRAP to the program being debugged. */
2967
2968 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2969 stop_signal = TARGET_SIGNAL_0;
2970
2971
2972 resume (currently_stepping (ecs), stop_signal);
2973 }
2974
2975 prepare_to_wait (ecs);
2976 }
2977
2978 /* This function normally comes after a resume, before
2979 handle_inferior_event exits. It takes care of any last bits of
2980 housekeeping, and sets the all-important wait_some_more flag. */
2981
2982 static void
2983 prepare_to_wait (struct execution_control_state *ecs)
2984 {
2985 if (debug_infrun)
2986 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2987 if (ecs->infwait_state == infwait_normal_state)
2988 {
2989 overlay_cache_invalid = 1;
2990
2991 /* We have to invalidate the registers BEFORE calling
2992 target_wait because they can be loaded from the target while
2993 in target_wait. This makes remote debugging a bit more
2994 efficient for those targets that provide critical registers
2995 as part of their normal status mechanism. */
2996
2997 registers_changed ();
2998 ecs->waiton_ptid = pid_to_ptid (-1);
2999 ecs->wp = &(ecs->ws);
3000 }
3001 /* This is the old end of the while loop. Let everybody know we
3002 want to wait for the inferior some more and get called again
3003 soon. */
3004 ecs->wait_some_more = 1;
3005 }
3006
3007 /* Print why the inferior has stopped. We always print something when
3008 the inferior exits, or receives a signal. The rest of the cases are
3009 dealt with later on in normal_stop() and print_it_typical(). Ideally
3010 there should be a call to this function from handle_inferior_event()
3011 each time stop_stepping() is called.*/
3012 static void
3013 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3014 {
3015 switch (stop_reason)
3016 {
3017 case END_STEPPING_RANGE:
3018 /* We are done with a step/next/si/ni command. */
3019 /* For now print nothing. */
3020 /* Print a message only if not in the middle of doing a "step n"
3021 operation for n > 1 */
3022 if (!step_multi || !stop_step)
3023 if (ui_out_is_mi_like_p (uiout))
3024 ui_out_field_string
3025 (uiout, "reason",
3026 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3027 break;
3028 case SIGNAL_EXITED:
3029 /* The inferior was terminated by a signal. */
3030 annotate_signalled ();
3031 if (ui_out_is_mi_like_p (uiout))
3032 ui_out_field_string
3033 (uiout, "reason",
3034 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3035 ui_out_text (uiout, "\nProgram terminated with signal ");
3036 annotate_signal_name ();
3037 ui_out_field_string (uiout, "signal-name",
3038 target_signal_to_name (stop_info));
3039 annotate_signal_name_end ();
3040 ui_out_text (uiout, ", ");
3041 annotate_signal_string ();
3042 ui_out_field_string (uiout, "signal-meaning",
3043 target_signal_to_string (stop_info));
3044 annotate_signal_string_end ();
3045 ui_out_text (uiout, ".\n");
3046 ui_out_text (uiout, "The program no longer exists.\n");
3047 break;
3048 case EXITED:
3049 /* The inferior program is finished. */
3050 annotate_exited (stop_info);
3051 if (stop_info)
3052 {
3053 if (ui_out_is_mi_like_p (uiout))
3054 ui_out_field_string (uiout, "reason",
3055 async_reason_lookup (EXEC_ASYNC_EXITED));
3056 ui_out_text (uiout, "\nProgram exited with code ");
3057 ui_out_field_fmt (uiout, "exit-code", "0%o",
3058 (unsigned int) stop_info);
3059 ui_out_text (uiout, ".\n");
3060 }
3061 else
3062 {
3063 if (ui_out_is_mi_like_p (uiout))
3064 ui_out_field_string
3065 (uiout, "reason",
3066 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3067 ui_out_text (uiout, "\nProgram exited normally.\n");
3068 }
3069 /* Support the --return-child-result option. */
3070 return_child_result_value = stop_info;
3071 break;
3072 case SIGNAL_RECEIVED:
3073 /* Signal received. The signal table tells us to print about
3074 it. */
3075 annotate_signal ();
3076 ui_out_text (uiout, "\nProgram received signal ");
3077 annotate_signal_name ();
3078 if (ui_out_is_mi_like_p (uiout))
3079 ui_out_field_string
3080 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3081 ui_out_field_string (uiout, "signal-name",
3082 target_signal_to_name (stop_info));
3083 annotate_signal_name_end ();
3084 ui_out_text (uiout, ", ");
3085 annotate_signal_string ();
3086 ui_out_field_string (uiout, "signal-meaning",
3087 target_signal_to_string (stop_info));
3088 annotate_signal_string_end ();
3089 ui_out_text (uiout, ".\n");
3090 break;
3091 default:
3092 internal_error (__FILE__, __LINE__,
3093 _("print_stop_reason: unrecognized enum value"));
3094 break;
3095 }
3096 }
3097 \f
3098
3099 /* Here to return control to GDB when the inferior stops for real.
3100 Print appropriate messages, remove breakpoints, give terminal our modes.
3101
3102 STOP_PRINT_FRAME nonzero means print the executing frame
3103 (pc, function, args, file, line number and line text).
3104 BREAKPOINTS_FAILED nonzero means stop was due to error
3105 attempting to insert breakpoints. */
3106
3107 void
3108 normal_stop (void)
3109 {
3110 struct target_waitstatus last;
3111 ptid_t last_ptid;
3112
3113 get_last_target_status (&last_ptid, &last);
3114
3115 /* As with the notification of thread events, we want to delay
3116 notifying the user that we've switched thread context until
3117 the inferior actually stops.
3118
3119 There's no point in saying anything if the inferior has exited.
3120 Note that SIGNALLED here means "exited with a signal", not
3121 "received a signal". */
3122 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3123 && target_has_execution
3124 && last.kind != TARGET_WAITKIND_SIGNALLED
3125 && last.kind != TARGET_WAITKIND_EXITED)
3126 {
3127 target_terminal_ours_for_output ();
3128 printf_filtered (_("[Switching to %s]\n"),
3129 target_pid_to_str (inferior_ptid));
3130 previous_inferior_ptid = inferior_ptid;
3131 }
3132
3133 /* NOTE drow/2004-01-17: Is this still necessary? */
3134 /* Make sure that the current_frame's pc is correct. This
3135 is a correction for setting up the frame info before doing
3136 gdbarch_decr_pc_after_break */
3137 if (target_has_execution)
3138 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3139 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3140 frame code to check for this and sort out any resultant mess.
3141 gdbarch_decr_pc_after_break needs to just go away. */
3142 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3143
3144 if (target_has_execution)
3145 {
3146 if (remove_breakpoints ())
3147 {
3148 target_terminal_ours_for_output ();
3149 printf_filtered (_("\
3150 Cannot remove breakpoints because program is no longer writable.\n\
3151 It might be running in another process.\n\
3152 Further execution is probably impossible.\n"));
3153 }
3154 }
3155
3156 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3157 Delete any breakpoint that is to be deleted at the next stop. */
3158
3159 breakpoint_auto_delete (stop_bpstat);
3160
3161 /* If an auto-display called a function and that got a signal,
3162 delete that auto-display to avoid an infinite recursion. */
3163
3164 if (stopped_by_random_signal)
3165 disable_current_display ();
3166
3167 /* Don't print a message if in the middle of doing a "step n"
3168 operation for n > 1 */
3169 if (step_multi && stop_step)
3170 goto done;
3171
3172 target_terminal_ours ();
3173
3174 /* Set the current source location. This will also happen if we
3175 display the frame below, but the current SAL will be incorrect
3176 during a user hook-stop function. */
3177 if (target_has_stack && !stop_stack_dummy)
3178 set_current_sal_from_frame (get_current_frame (), 1);
3179
3180 /* Look up the hook_stop and run it (CLI internally handles problem
3181 of stop_command's pre-hook not existing). */
3182 if (stop_command)
3183 catch_errors (hook_stop_stub, stop_command,
3184 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3185
3186 if (!target_has_stack)
3187 {
3188
3189 goto done;
3190 }
3191
3192 /* Select innermost stack frame - i.e., current frame is frame 0,
3193 and current location is based on that.
3194 Don't do this on return from a stack dummy routine,
3195 or if the program has exited. */
3196
3197 if (!stop_stack_dummy)
3198 {
3199 select_frame (get_current_frame ());
3200
3201 /* Print current location without a level number, if
3202 we have changed functions or hit a breakpoint.
3203 Print source line if we have one.
3204 bpstat_print() contains the logic deciding in detail
3205 what to print, based on the event(s) that just occurred. */
3206
3207 if (stop_print_frame)
3208 {
3209 int bpstat_ret;
3210 int source_flag;
3211 int do_frame_printing = 1;
3212
3213 bpstat_ret = bpstat_print (stop_bpstat);
3214 switch (bpstat_ret)
3215 {
3216 case PRINT_UNKNOWN:
3217 /* If we had hit a shared library event breakpoint,
3218 bpstat_print would print out this message. If we hit
3219 an OS-level shared library event, do the same
3220 thing. */
3221 if (last.kind == TARGET_WAITKIND_LOADED)
3222 {
3223 printf_filtered (_("Stopped due to shared library event\n"));
3224 source_flag = SRC_LINE; /* something bogus */
3225 do_frame_printing = 0;
3226 break;
3227 }
3228
3229 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3230 (or should) carry around the function and does (or
3231 should) use that when doing a frame comparison. */
3232 if (stop_step
3233 && frame_id_eq (step_frame_id,
3234 get_frame_id (get_current_frame ()))
3235 && step_start_function == find_pc_function (stop_pc))
3236 source_flag = SRC_LINE; /* finished step, just print source line */
3237 else
3238 source_flag = SRC_AND_LOC; /* print location and source line */
3239 break;
3240 case PRINT_SRC_AND_LOC:
3241 source_flag = SRC_AND_LOC; /* print location and source line */
3242 break;
3243 case PRINT_SRC_ONLY:
3244 source_flag = SRC_LINE;
3245 break;
3246 case PRINT_NOTHING:
3247 source_flag = SRC_LINE; /* something bogus */
3248 do_frame_printing = 0;
3249 break;
3250 default:
3251 internal_error (__FILE__, __LINE__, _("Unknown value."));
3252 }
3253
3254 if (ui_out_is_mi_like_p (uiout))
3255 ui_out_field_int (uiout, "thread-id",
3256 pid_to_thread_id (inferior_ptid));
3257 /* The behavior of this routine with respect to the source
3258 flag is:
3259 SRC_LINE: Print only source line
3260 LOCATION: Print only location
3261 SRC_AND_LOC: Print location and source line */
3262 if (do_frame_printing)
3263 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3264
3265 /* Display the auto-display expressions. */
3266 do_displays ();
3267 }
3268 }
3269
3270 /* Save the function value return registers, if we care.
3271 We might be about to restore their previous contents. */
3272 if (proceed_to_finish)
3273 {
3274 /* This should not be necessary. */
3275 if (stop_registers)
3276 regcache_xfree (stop_registers);
3277
3278 /* NB: The copy goes through to the target picking up the value of
3279 all the registers. */
3280 stop_registers = regcache_dup (get_current_regcache ());
3281 }
3282
3283 if (stop_stack_dummy)
3284 {
3285 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3286 ends with a setting of the current frame, so we can use that
3287 next. */
3288 frame_pop (get_current_frame ());
3289 /* Set stop_pc to what it was before we called the function.
3290 Can't rely on restore_inferior_status because that only gets
3291 called if we don't stop in the called function. */
3292 stop_pc = read_pc ();
3293 select_frame (get_current_frame ());
3294 }
3295
3296 done:
3297 annotate_stopped ();
3298 observer_notify_normal_stop (stop_bpstat);
3299 }
3300
3301 static int
3302 hook_stop_stub (void *cmd)
3303 {
3304 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3305 return (0);
3306 }
3307 \f
3308 int
3309 signal_stop_state (int signo)
3310 {
3311 return signal_stop[signo];
3312 }
3313
3314 int
3315 signal_print_state (int signo)
3316 {
3317 return signal_print[signo];
3318 }
3319
3320 int
3321 signal_pass_state (int signo)
3322 {
3323 return signal_program[signo];
3324 }
3325
3326 int
3327 signal_stop_update (int signo, int state)
3328 {
3329 int ret = signal_stop[signo];
3330 signal_stop[signo] = state;
3331 return ret;
3332 }
3333
3334 int
3335 signal_print_update (int signo, int state)
3336 {
3337 int ret = signal_print[signo];
3338 signal_print[signo] = state;
3339 return ret;
3340 }
3341
3342 int
3343 signal_pass_update (int signo, int state)
3344 {
3345 int ret = signal_program[signo];
3346 signal_program[signo] = state;
3347 return ret;
3348 }
3349
3350 static void
3351 sig_print_header (void)
3352 {
3353 printf_filtered (_("\
3354 Signal Stop\tPrint\tPass to program\tDescription\n"));
3355 }
3356
3357 static void
3358 sig_print_info (enum target_signal oursig)
3359 {
3360 char *name = target_signal_to_name (oursig);
3361 int name_padding = 13 - strlen (name);
3362
3363 if (name_padding <= 0)
3364 name_padding = 0;
3365
3366 printf_filtered ("%s", name);
3367 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3368 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3369 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3370 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3371 printf_filtered ("%s\n", target_signal_to_string (oursig));
3372 }
3373
3374 /* Specify how various signals in the inferior should be handled. */
3375
3376 static void
3377 handle_command (char *args, int from_tty)
3378 {
3379 char **argv;
3380 int digits, wordlen;
3381 int sigfirst, signum, siglast;
3382 enum target_signal oursig;
3383 int allsigs;
3384 int nsigs;
3385 unsigned char *sigs;
3386 struct cleanup *old_chain;
3387
3388 if (args == NULL)
3389 {
3390 error_no_arg (_("signal to handle"));
3391 }
3392
3393 /* Allocate and zero an array of flags for which signals to handle. */
3394
3395 nsigs = (int) TARGET_SIGNAL_LAST;
3396 sigs = (unsigned char *) alloca (nsigs);
3397 memset (sigs, 0, nsigs);
3398
3399 /* Break the command line up into args. */
3400
3401 argv = buildargv (args);
3402 if (argv == NULL)
3403 {
3404 nomem (0);
3405 }
3406 old_chain = make_cleanup_freeargv (argv);
3407
3408 /* Walk through the args, looking for signal oursigs, signal names, and
3409 actions. Signal numbers and signal names may be interspersed with
3410 actions, with the actions being performed for all signals cumulatively
3411 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3412
3413 while (*argv != NULL)
3414 {
3415 wordlen = strlen (*argv);
3416 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3417 {;
3418 }
3419 allsigs = 0;
3420 sigfirst = siglast = -1;
3421
3422 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3423 {
3424 /* Apply action to all signals except those used by the
3425 debugger. Silently skip those. */
3426 allsigs = 1;
3427 sigfirst = 0;
3428 siglast = nsigs - 1;
3429 }
3430 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3431 {
3432 SET_SIGS (nsigs, sigs, signal_stop);
3433 SET_SIGS (nsigs, sigs, signal_print);
3434 }
3435 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3436 {
3437 UNSET_SIGS (nsigs, sigs, signal_program);
3438 }
3439 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3440 {
3441 SET_SIGS (nsigs, sigs, signal_print);
3442 }
3443 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3444 {
3445 SET_SIGS (nsigs, sigs, signal_program);
3446 }
3447 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3448 {
3449 UNSET_SIGS (nsigs, sigs, signal_stop);
3450 }
3451 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3452 {
3453 SET_SIGS (nsigs, sigs, signal_program);
3454 }
3455 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3456 {
3457 UNSET_SIGS (nsigs, sigs, signal_print);
3458 UNSET_SIGS (nsigs, sigs, signal_stop);
3459 }
3460 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3461 {
3462 UNSET_SIGS (nsigs, sigs, signal_program);
3463 }
3464 else if (digits > 0)
3465 {
3466 /* It is numeric. The numeric signal refers to our own
3467 internal signal numbering from target.h, not to host/target
3468 signal number. This is a feature; users really should be
3469 using symbolic names anyway, and the common ones like
3470 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3471
3472 sigfirst = siglast = (int)
3473 target_signal_from_command (atoi (*argv));
3474 if ((*argv)[digits] == '-')
3475 {
3476 siglast = (int)
3477 target_signal_from_command (atoi ((*argv) + digits + 1));
3478 }
3479 if (sigfirst > siglast)
3480 {
3481 /* Bet he didn't figure we'd think of this case... */
3482 signum = sigfirst;
3483 sigfirst = siglast;
3484 siglast = signum;
3485 }
3486 }
3487 else
3488 {
3489 oursig = target_signal_from_name (*argv);
3490 if (oursig != TARGET_SIGNAL_UNKNOWN)
3491 {
3492 sigfirst = siglast = (int) oursig;
3493 }
3494 else
3495 {
3496 /* Not a number and not a recognized flag word => complain. */
3497 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3498 }
3499 }
3500
3501 /* If any signal numbers or symbol names were found, set flags for
3502 which signals to apply actions to. */
3503
3504 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3505 {
3506 switch ((enum target_signal) signum)
3507 {
3508 case TARGET_SIGNAL_TRAP:
3509 case TARGET_SIGNAL_INT:
3510 if (!allsigs && !sigs[signum])
3511 {
3512 if (query ("%s is used by the debugger.\n\
3513 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3514 {
3515 sigs[signum] = 1;
3516 }
3517 else
3518 {
3519 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3520 gdb_flush (gdb_stdout);
3521 }
3522 }
3523 break;
3524 case TARGET_SIGNAL_0:
3525 case TARGET_SIGNAL_DEFAULT:
3526 case TARGET_SIGNAL_UNKNOWN:
3527 /* Make sure that "all" doesn't print these. */
3528 break;
3529 default:
3530 sigs[signum] = 1;
3531 break;
3532 }
3533 }
3534
3535 argv++;
3536 }
3537
3538 target_notice_signals (inferior_ptid);
3539
3540 if (from_tty)
3541 {
3542 /* Show the results. */
3543 sig_print_header ();
3544 for (signum = 0; signum < nsigs; signum++)
3545 {
3546 if (sigs[signum])
3547 {
3548 sig_print_info (signum);
3549 }
3550 }
3551 }
3552
3553 do_cleanups (old_chain);
3554 }
3555
3556 static void
3557 xdb_handle_command (char *args, int from_tty)
3558 {
3559 char **argv;
3560 struct cleanup *old_chain;
3561
3562 /* Break the command line up into args. */
3563
3564 argv = buildargv (args);
3565 if (argv == NULL)
3566 {
3567 nomem (0);
3568 }
3569 old_chain = make_cleanup_freeargv (argv);
3570 if (argv[1] != (char *) NULL)
3571 {
3572 char *argBuf;
3573 int bufLen;
3574
3575 bufLen = strlen (argv[0]) + 20;
3576 argBuf = (char *) xmalloc (bufLen);
3577 if (argBuf)
3578 {
3579 int validFlag = 1;
3580 enum target_signal oursig;
3581
3582 oursig = target_signal_from_name (argv[0]);
3583 memset (argBuf, 0, bufLen);
3584 if (strcmp (argv[1], "Q") == 0)
3585 sprintf (argBuf, "%s %s", argv[0], "noprint");
3586 else
3587 {
3588 if (strcmp (argv[1], "s") == 0)
3589 {
3590 if (!signal_stop[oursig])
3591 sprintf (argBuf, "%s %s", argv[0], "stop");
3592 else
3593 sprintf (argBuf, "%s %s", argv[0], "nostop");
3594 }
3595 else if (strcmp (argv[1], "i") == 0)
3596 {
3597 if (!signal_program[oursig])
3598 sprintf (argBuf, "%s %s", argv[0], "pass");
3599 else
3600 sprintf (argBuf, "%s %s", argv[0], "nopass");
3601 }
3602 else if (strcmp (argv[1], "r") == 0)
3603 {
3604 if (!signal_print[oursig])
3605 sprintf (argBuf, "%s %s", argv[0], "print");
3606 else
3607 sprintf (argBuf, "%s %s", argv[0], "noprint");
3608 }
3609 else
3610 validFlag = 0;
3611 }
3612 if (validFlag)
3613 handle_command (argBuf, from_tty);
3614 else
3615 printf_filtered (_("Invalid signal handling flag.\n"));
3616 if (argBuf)
3617 xfree (argBuf);
3618 }
3619 }
3620 do_cleanups (old_chain);
3621 }
3622
3623 /* Print current contents of the tables set by the handle command.
3624 It is possible we should just be printing signals actually used
3625 by the current target (but for things to work right when switching
3626 targets, all signals should be in the signal tables). */
3627
3628 static void
3629 signals_info (char *signum_exp, int from_tty)
3630 {
3631 enum target_signal oursig;
3632 sig_print_header ();
3633
3634 if (signum_exp)
3635 {
3636 /* First see if this is a symbol name. */
3637 oursig = target_signal_from_name (signum_exp);
3638 if (oursig == TARGET_SIGNAL_UNKNOWN)
3639 {
3640 /* No, try numeric. */
3641 oursig =
3642 target_signal_from_command (parse_and_eval_long (signum_exp));
3643 }
3644 sig_print_info (oursig);
3645 return;
3646 }
3647
3648 printf_filtered ("\n");
3649 /* These ugly casts brought to you by the native VAX compiler. */
3650 for (oursig = TARGET_SIGNAL_FIRST;
3651 (int) oursig < (int) TARGET_SIGNAL_LAST;
3652 oursig = (enum target_signal) ((int) oursig + 1))
3653 {
3654 QUIT;
3655
3656 if (oursig != TARGET_SIGNAL_UNKNOWN
3657 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3658 sig_print_info (oursig);
3659 }
3660
3661 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3662 }
3663 \f
3664 struct inferior_status
3665 {
3666 enum target_signal stop_signal;
3667 CORE_ADDR stop_pc;
3668 bpstat stop_bpstat;
3669 int stop_step;
3670 int stop_stack_dummy;
3671 int stopped_by_random_signal;
3672 int stepping_over_breakpoint;
3673 CORE_ADDR step_range_start;
3674 CORE_ADDR step_range_end;
3675 struct frame_id step_frame_id;
3676 enum step_over_calls_kind step_over_calls;
3677 CORE_ADDR step_resume_break_address;
3678 int stop_after_trap;
3679 int stop_soon;
3680
3681 /* These are here because if call_function_by_hand has written some
3682 registers and then decides to call error(), we better not have changed
3683 any registers. */
3684 struct regcache *registers;
3685
3686 /* A frame unique identifier. */
3687 struct frame_id selected_frame_id;
3688
3689 int breakpoint_proceeded;
3690 int restore_stack_info;
3691 int proceed_to_finish;
3692 };
3693
3694 void
3695 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3696 LONGEST val)
3697 {
3698 int size = register_size (current_gdbarch, regno);
3699 void *buf = alloca (size);
3700 store_signed_integer (buf, size, val);
3701 regcache_raw_write (inf_status->registers, regno, buf);
3702 }
3703
3704 /* Save all of the information associated with the inferior<==>gdb
3705 connection. INF_STATUS is a pointer to a "struct inferior_status"
3706 (defined in inferior.h). */
3707
3708 struct inferior_status *
3709 save_inferior_status (int restore_stack_info)
3710 {
3711 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3712
3713 inf_status->stop_signal = stop_signal;
3714 inf_status->stop_pc = stop_pc;
3715 inf_status->stop_step = stop_step;
3716 inf_status->stop_stack_dummy = stop_stack_dummy;
3717 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3718 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3719 inf_status->step_range_start = step_range_start;
3720 inf_status->step_range_end = step_range_end;
3721 inf_status->step_frame_id = step_frame_id;
3722 inf_status->step_over_calls = step_over_calls;
3723 inf_status->stop_after_trap = stop_after_trap;
3724 inf_status->stop_soon = stop_soon;
3725 /* Save original bpstat chain here; replace it with copy of chain.
3726 If caller's caller is walking the chain, they'll be happier if we
3727 hand them back the original chain when restore_inferior_status is
3728 called. */
3729 inf_status->stop_bpstat = stop_bpstat;
3730 stop_bpstat = bpstat_copy (stop_bpstat);
3731 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3732 inf_status->restore_stack_info = restore_stack_info;
3733 inf_status->proceed_to_finish = proceed_to_finish;
3734
3735 inf_status->registers = regcache_dup (get_current_regcache ());
3736
3737 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3738 return inf_status;
3739 }
3740
3741 static int
3742 restore_selected_frame (void *args)
3743 {
3744 struct frame_id *fid = (struct frame_id *) args;
3745 struct frame_info *frame;
3746
3747 frame = frame_find_by_id (*fid);
3748
3749 /* If inf_status->selected_frame_id is NULL, there was no previously
3750 selected frame. */
3751 if (frame == NULL)
3752 {
3753 warning (_("Unable to restore previously selected frame."));
3754 return 0;
3755 }
3756
3757 select_frame (frame);
3758
3759 return (1);
3760 }
3761
3762 void
3763 restore_inferior_status (struct inferior_status *inf_status)
3764 {
3765 stop_signal = inf_status->stop_signal;
3766 stop_pc = inf_status->stop_pc;
3767 stop_step = inf_status->stop_step;
3768 stop_stack_dummy = inf_status->stop_stack_dummy;
3769 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3770 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3771 step_range_start = inf_status->step_range_start;
3772 step_range_end = inf_status->step_range_end;
3773 step_frame_id = inf_status->step_frame_id;
3774 step_over_calls = inf_status->step_over_calls;
3775 stop_after_trap = inf_status->stop_after_trap;
3776 stop_soon = inf_status->stop_soon;
3777 bpstat_clear (&stop_bpstat);
3778 stop_bpstat = inf_status->stop_bpstat;
3779 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3780 proceed_to_finish = inf_status->proceed_to_finish;
3781
3782 /* The inferior can be gone if the user types "print exit(0)"
3783 (and perhaps other times). */
3784 if (target_has_execution)
3785 /* NB: The register write goes through to the target. */
3786 regcache_cpy (get_current_regcache (), inf_status->registers);
3787 regcache_xfree (inf_status->registers);
3788
3789 /* FIXME: If we are being called after stopping in a function which
3790 is called from gdb, we should not be trying to restore the
3791 selected frame; it just prints a spurious error message (The
3792 message is useful, however, in detecting bugs in gdb (like if gdb
3793 clobbers the stack)). In fact, should we be restoring the
3794 inferior status at all in that case? . */
3795
3796 if (target_has_stack && inf_status->restore_stack_info)
3797 {
3798 /* The point of catch_errors is that if the stack is clobbered,
3799 walking the stack might encounter a garbage pointer and
3800 error() trying to dereference it. */
3801 if (catch_errors
3802 (restore_selected_frame, &inf_status->selected_frame_id,
3803 "Unable to restore previously selected frame:\n",
3804 RETURN_MASK_ERROR) == 0)
3805 /* Error in restoring the selected frame. Select the innermost
3806 frame. */
3807 select_frame (get_current_frame ());
3808
3809 }
3810
3811 xfree (inf_status);
3812 }
3813
3814 static void
3815 do_restore_inferior_status_cleanup (void *sts)
3816 {
3817 restore_inferior_status (sts);
3818 }
3819
3820 struct cleanup *
3821 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3822 {
3823 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3824 }
3825
3826 void
3827 discard_inferior_status (struct inferior_status *inf_status)
3828 {
3829 /* See save_inferior_status for info on stop_bpstat. */
3830 bpstat_clear (&inf_status->stop_bpstat);
3831 regcache_xfree (inf_status->registers);
3832 xfree (inf_status);
3833 }
3834
3835 int
3836 inferior_has_forked (int pid, int *child_pid)
3837 {
3838 struct target_waitstatus last;
3839 ptid_t last_ptid;
3840
3841 get_last_target_status (&last_ptid, &last);
3842
3843 if (last.kind != TARGET_WAITKIND_FORKED)
3844 return 0;
3845
3846 if (ptid_get_pid (last_ptid) != pid)
3847 return 0;
3848
3849 *child_pid = last.value.related_pid;
3850 return 1;
3851 }
3852
3853 int
3854 inferior_has_vforked (int pid, int *child_pid)
3855 {
3856 struct target_waitstatus last;
3857 ptid_t last_ptid;
3858
3859 get_last_target_status (&last_ptid, &last);
3860
3861 if (last.kind != TARGET_WAITKIND_VFORKED)
3862 return 0;
3863
3864 if (ptid_get_pid (last_ptid) != pid)
3865 return 0;
3866
3867 *child_pid = last.value.related_pid;
3868 return 1;
3869 }
3870
3871 int
3872 inferior_has_execd (int pid, char **execd_pathname)
3873 {
3874 struct target_waitstatus last;
3875 ptid_t last_ptid;
3876
3877 get_last_target_status (&last_ptid, &last);
3878
3879 if (last.kind != TARGET_WAITKIND_EXECD)
3880 return 0;
3881
3882 if (ptid_get_pid (last_ptid) != pid)
3883 return 0;
3884
3885 *execd_pathname = xstrdup (last.value.execd_pathname);
3886 return 1;
3887 }
3888
3889 /* Oft used ptids */
3890 ptid_t null_ptid;
3891 ptid_t minus_one_ptid;
3892
3893 /* Create a ptid given the necessary PID, LWP, and TID components. */
3894
3895 ptid_t
3896 ptid_build (int pid, long lwp, long tid)
3897 {
3898 ptid_t ptid;
3899
3900 ptid.pid = pid;
3901 ptid.lwp = lwp;
3902 ptid.tid = tid;
3903 return ptid;
3904 }
3905
3906 /* Create a ptid from just a pid. */
3907
3908 ptid_t
3909 pid_to_ptid (int pid)
3910 {
3911 return ptid_build (pid, 0, 0);
3912 }
3913
3914 /* Fetch the pid (process id) component from a ptid. */
3915
3916 int
3917 ptid_get_pid (ptid_t ptid)
3918 {
3919 return ptid.pid;
3920 }
3921
3922 /* Fetch the lwp (lightweight process) component from a ptid. */
3923
3924 long
3925 ptid_get_lwp (ptid_t ptid)
3926 {
3927 return ptid.lwp;
3928 }
3929
3930 /* Fetch the tid (thread id) component from a ptid. */
3931
3932 long
3933 ptid_get_tid (ptid_t ptid)
3934 {
3935 return ptid.tid;
3936 }
3937
3938 /* ptid_equal() is used to test equality of two ptids. */
3939
3940 int
3941 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3942 {
3943 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3944 && ptid1.tid == ptid2.tid);
3945 }
3946
3947 /* restore_inferior_ptid() will be used by the cleanup machinery
3948 to restore the inferior_ptid value saved in a call to
3949 save_inferior_ptid(). */
3950
3951 static void
3952 restore_inferior_ptid (void *arg)
3953 {
3954 ptid_t *saved_ptid_ptr = arg;
3955 inferior_ptid = *saved_ptid_ptr;
3956 xfree (arg);
3957 }
3958
3959 /* Save the value of inferior_ptid so that it may be restored by a
3960 later call to do_cleanups(). Returns the struct cleanup pointer
3961 needed for later doing the cleanup. */
3962
3963 struct cleanup *
3964 save_inferior_ptid (void)
3965 {
3966 ptid_t *saved_ptid_ptr;
3967
3968 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3969 *saved_ptid_ptr = inferior_ptid;
3970 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3971 }
3972 \f
3973
3974 void
3975 _initialize_infrun (void)
3976 {
3977 int i;
3978 int numsigs;
3979 struct cmd_list_element *c;
3980
3981 add_info ("signals", signals_info, _("\
3982 What debugger does when program gets various signals.\n\
3983 Specify a signal as argument to print info on that signal only."));
3984 add_info_alias ("handle", "signals", 0);
3985
3986 add_com ("handle", class_run, handle_command, _("\
3987 Specify how to handle a signal.\n\
3988 Args are signals and actions to apply to those signals.\n\
3989 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3990 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3991 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3992 The special arg \"all\" is recognized to mean all signals except those\n\
3993 used by the debugger, typically SIGTRAP and SIGINT.\n\
3994 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3995 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3996 Stop means reenter debugger if this signal happens (implies print).\n\
3997 Print means print a message if this signal happens.\n\
3998 Pass means let program see this signal; otherwise program doesn't know.\n\
3999 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4000 Pass and Stop may be combined."));
4001 if (xdb_commands)
4002 {
4003 add_com ("lz", class_info, signals_info, _("\
4004 What debugger does when program gets various signals.\n\
4005 Specify a signal as argument to print info on that signal only."));
4006 add_com ("z", class_run, xdb_handle_command, _("\
4007 Specify how to handle a signal.\n\
4008 Args are signals and actions to apply to those signals.\n\
4009 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4010 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4011 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4012 The special arg \"all\" is recognized to mean all signals except those\n\
4013 used by the debugger, typically SIGTRAP and SIGINT.\n\
4014 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4015 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4016 nopass), \"Q\" (noprint)\n\
4017 Stop means reenter debugger if this signal happens (implies print).\n\
4018 Print means print a message if this signal happens.\n\
4019 Pass means let program see this signal; otherwise program doesn't know.\n\
4020 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4021 Pass and Stop may be combined."));
4022 }
4023
4024 if (!dbx_commands)
4025 stop_command = add_cmd ("stop", class_obscure,
4026 not_just_help_class_command, _("\
4027 There is no `stop' command, but you can set a hook on `stop'.\n\
4028 This allows you to set a list of commands to be run each time execution\n\
4029 of the program stops."), &cmdlist);
4030
4031 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4032 Set inferior debugging."), _("\
4033 Show inferior debugging."), _("\
4034 When non-zero, inferior specific debugging is enabled."),
4035 NULL,
4036 show_debug_infrun,
4037 &setdebuglist, &showdebuglist);
4038
4039 numsigs = (int) TARGET_SIGNAL_LAST;
4040 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4041 signal_print = (unsigned char *)
4042 xmalloc (sizeof (signal_print[0]) * numsigs);
4043 signal_program = (unsigned char *)
4044 xmalloc (sizeof (signal_program[0]) * numsigs);
4045 for (i = 0; i < numsigs; i++)
4046 {
4047 signal_stop[i] = 1;
4048 signal_print[i] = 1;
4049 signal_program[i] = 1;
4050 }
4051
4052 /* Signals caused by debugger's own actions
4053 should not be given to the program afterwards. */
4054 signal_program[TARGET_SIGNAL_TRAP] = 0;
4055 signal_program[TARGET_SIGNAL_INT] = 0;
4056
4057 /* Signals that are not errors should not normally enter the debugger. */
4058 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4059 signal_print[TARGET_SIGNAL_ALRM] = 0;
4060 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4061 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4062 signal_stop[TARGET_SIGNAL_PROF] = 0;
4063 signal_print[TARGET_SIGNAL_PROF] = 0;
4064 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4065 signal_print[TARGET_SIGNAL_CHLD] = 0;
4066 signal_stop[TARGET_SIGNAL_IO] = 0;
4067 signal_print[TARGET_SIGNAL_IO] = 0;
4068 signal_stop[TARGET_SIGNAL_POLL] = 0;
4069 signal_print[TARGET_SIGNAL_POLL] = 0;
4070 signal_stop[TARGET_SIGNAL_URG] = 0;
4071 signal_print[TARGET_SIGNAL_URG] = 0;
4072 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4073 signal_print[TARGET_SIGNAL_WINCH] = 0;
4074
4075 /* These signals are used internally by user-level thread
4076 implementations. (See signal(5) on Solaris.) Like the above
4077 signals, a healthy program receives and handles them as part of
4078 its normal operation. */
4079 signal_stop[TARGET_SIGNAL_LWP] = 0;
4080 signal_print[TARGET_SIGNAL_LWP] = 0;
4081 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4082 signal_print[TARGET_SIGNAL_WAITING] = 0;
4083 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4084 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4085
4086 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4087 &stop_on_solib_events, _("\
4088 Set stopping for shared library events."), _("\
4089 Show stopping for shared library events."), _("\
4090 If nonzero, gdb will give control to the user when the dynamic linker\n\
4091 notifies gdb of shared library events. The most common event of interest\n\
4092 to the user would be loading/unloading of a new library."),
4093 NULL,
4094 show_stop_on_solib_events,
4095 &setlist, &showlist);
4096
4097 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4098 follow_fork_mode_kind_names,
4099 &follow_fork_mode_string, _("\
4100 Set debugger response to a program call of fork or vfork."), _("\
4101 Show debugger response to a program call of fork or vfork."), _("\
4102 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4103 parent - the original process is debugged after a fork\n\
4104 child - the new process is debugged after a fork\n\
4105 The unfollowed process will continue to run.\n\
4106 By default, the debugger will follow the parent process."),
4107 NULL,
4108 show_follow_fork_mode_string,
4109 &setlist, &showlist);
4110
4111 add_setshow_enum_cmd ("scheduler-locking", class_run,
4112 scheduler_enums, &scheduler_mode, _("\
4113 Set mode for locking scheduler during execution."), _("\
4114 Show mode for locking scheduler during execution."), _("\
4115 off == no locking (threads may preempt at any time)\n\
4116 on == full locking (no thread except the current thread may run)\n\
4117 step == scheduler locked during every single-step operation.\n\
4118 In this mode, no other thread may run during a step command.\n\
4119 Other threads may run while stepping over a function call ('next')."),
4120 set_schedlock_func, /* traps on target vector */
4121 show_scheduler_mode,
4122 &setlist, &showlist);
4123
4124 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4125 Set mode of the step operation."), _("\
4126 Show mode of the step operation."), _("\
4127 When set, doing a step over a function without debug line information\n\
4128 will stop at the first instruction of that function. Otherwise, the\n\
4129 function is skipped and the step command stops at a different source line."),
4130 NULL,
4131 show_step_stop_if_no_debug,
4132 &setlist, &showlist);
4133
4134 /* ptid initializations */
4135 null_ptid = ptid_build (0, 0, 0);
4136 minus_one_ptid = ptid_build (-1, 0, 0);
4137 inferior_ptid = null_ptid;
4138 target_last_wait_ptid = minus_one_ptid;
4139 }
This page took 0.12308 seconds and 4 git commands to generate.