2004-08-20 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On some systems, the PC may be left pointing at an instruction that won't
165 actually be executed. This is usually indicated by a bit in the PSW. If
166 we find ourselves in such a state, then we step the target beyond the
167 nullified instruction before returning control to the user so as to avoid
168 confusion. */
169
170 #ifndef INSTRUCTION_NULLIFIED
171 #define INSTRUCTION_NULLIFIED 0
172 #endif
173
174 /* We can't step off a permanent breakpoint in the ordinary way, because we
175 can't remove it. Instead, we have to advance the PC to the next
176 instruction. This macro should expand to a pointer to a function that
177 does that, or zero if we have no such function. If we don't have a
178 definition for it, we have to report an error. */
179 #ifndef SKIP_PERMANENT_BREAKPOINT
180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
181 static void
182 default_skip_permanent_breakpoint (void)
183 {
184 error ("\
185 The program is stopped at a permanent breakpoint, but GDB does not know\n\
186 how to step past a permanent breakpoint on this architecture. Try using\n\
187 a command like `return' or `jump' to continue execution.");
188 }
189 #endif
190
191
192 /* Convert the #defines into values. This is temporary until wfi control
193 flow is completely sorted out. */
194
195 #ifndef HAVE_STEPPABLE_WATCHPOINT
196 #define HAVE_STEPPABLE_WATCHPOINT 0
197 #else
198 #undef HAVE_STEPPABLE_WATCHPOINT
199 #define HAVE_STEPPABLE_WATCHPOINT 1
200 #endif
201
202 #ifndef CANNOT_STEP_HW_WATCHPOINTS
203 #define CANNOT_STEP_HW_WATCHPOINTS 0
204 #else
205 #undef CANNOT_STEP_HW_WATCHPOINTS
206 #define CANNOT_STEP_HW_WATCHPOINTS 1
207 #endif
208
209 /* Tables of how to react to signals; the user sets them. */
210
211 static unsigned char *signal_stop;
212 static unsigned char *signal_print;
213 static unsigned char *signal_program;
214
215 #define SET_SIGS(nsigs,sigs,flags) \
216 do { \
217 int signum = (nsigs); \
218 while (signum-- > 0) \
219 if ((sigs)[signum]) \
220 (flags)[signum] = 1; \
221 } while (0)
222
223 #define UNSET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 0; \
229 } while (0)
230
231 /* Value to pass to target_resume() to cause all threads to resume */
232
233 #define RESUME_ALL (pid_to_ptid (-1))
234
235 /* Command list pointer for the "stop" placeholder. */
236
237 static struct cmd_list_element *stop_command;
238
239 /* Nonzero if breakpoints are now inserted in the inferior. */
240
241 static int breakpoints_inserted;
242
243 /* Function inferior was in as of last step command. */
244
245 static struct symbol *step_start_function;
246
247 /* Nonzero if we are expecting a trace trap and should proceed from it. */
248
249 static int trap_expected;
250
251 #ifdef SOLIB_ADD
252 /* Nonzero if we want to give control to the user when we're notified
253 of shared library events by the dynamic linker. */
254 static int stop_on_solib_events;
255 #endif
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero if program stopped due to error trying to insert breakpoints. */
282
283 static int breakpoints_failed;
284
285 /* Nonzero after stop if current stack frame should be printed. */
286
287 static int stop_print_frame;
288
289 static struct breakpoint *step_resume_breakpoint = NULL;
290
291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
292 interactions with an inferior that is running a kernel function
293 (aka, a system call or "syscall"). wait_for_inferior therefore
294 may have a need to know when the inferior is in a syscall. This
295 is a count of the number of inferior threads which are known to
296 currently be running in a syscall. */
297 static int number_of_threads_in_syscalls;
298
299 /* This is a cached copy of the pid/waitstatus of the last event
300 returned by target_wait()/deprecated_target_wait_hook(). This
301 information is returned by get_last_target_status(). */
302 static ptid_t target_last_wait_ptid;
303 static struct target_waitstatus target_last_waitstatus;
304
305 /* This is used to remember when a fork, vfork or exec event
306 was caught by a catchpoint, and thus the event is to be
307 followed at the next resume of the inferior, and not
308 immediately. */
309 static struct
310 {
311 enum target_waitkind kind;
312 struct
313 {
314 int parent_pid;
315 int child_pid;
316 }
317 fork_event;
318 char *execd_pathname;
319 }
320 pending_follow;
321
322 static const char follow_fork_mode_child[] = "child";
323 static const char follow_fork_mode_parent[] = "parent";
324
325 static const char *follow_fork_mode_kind_names[] = {
326 follow_fork_mode_child,
327 follow_fork_mode_parent,
328 NULL
329 };
330
331 static const char *follow_fork_mode_string = follow_fork_mode_parent;
332 \f
333
334 static int
335 follow_fork (void)
336 {
337 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
338
339 return target_follow_fork (follow_child);
340 }
341
342 void
343 follow_inferior_reset_breakpoints (void)
344 {
345 /* Was there a step_resume breakpoint? (There was if the user
346 did a "next" at the fork() call.) If so, explicitly reset its
347 thread number.
348
349 step_resumes are a form of bp that are made to be per-thread.
350 Since we created the step_resume bp when the parent process
351 was being debugged, and now are switching to the child process,
352 from the breakpoint package's viewpoint, that's a switch of
353 "threads". We must update the bp's notion of which thread
354 it is for, or it'll be ignored when it triggers. */
355
356 if (step_resume_breakpoint)
357 breakpoint_re_set_thread (step_resume_breakpoint);
358
359 /* Reinsert all breakpoints in the child. The user may have set
360 breakpoints after catching the fork, in which case those
361 were never set in the child, but only in the parent. This makes
362 sure the inserted breakpoints match the breakpoint list. */
363
364 breakpoint_re_set ();
365 insert_breakpoints ();
366 }
367
368 /* EXECD_PATHNAME is assumed to be non-NULL. */
369
370 static void
371 follow_exec (int pid, char *execd_pathname)
372 {
373 int saved_pid = pid;
374 struct target_ops *tgt;
375
376 if (!may_follow_exec)
377 return;
378
379 /* This is an exec event that we actually wish to pay attention to.
380 Refresh our symbol table to the newly exec'd program, remove any
381 momentary bp's, etc.
382
383 If there are breakpoints, they aren't really inserted now,
384 since the exec() transformed our inferior into a fresh set
385 of instructions.
386
387 We want to preserve symbolic breakpoints on the list, since
388 we have hopes that they can be reset after the new a.out's
389 symbol table is read.
390
391 However, any "raw" breakpoints must be removed from the list
392 (e.g., the solib bp's), since their address is probably invalid
393 now.
394
395 And, we DON'T want to call delete_breakpoints() here, since
396 that may write the bp's "shadow contents" (the instruction
397 value that was overwritten witha TRAP instruction). Since
398 we now have a new a.out, those shadow contents aren't valid. */
399 update_breakpoints_after_exec ();
400
401 /* If there was one, it's gone now. We cannot truly step-to-next
402 statement through an exec(). */
403 step_resume_breakpoint = NULL;
404 step_range_start = 0;
405 step_range_end = 0;
406
407 /* What is this a.out's name? */
408 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
409
410 /* We've followed the inferior through an exec. Therefore, the
411 inferior has essentially been killed & reborn. */
412
413 /* First collect the run target in effect. */
414 tgt = find_run_target ();
415 /* If we can't find one, things are in a very strange state... */
416 if (tgt == NULL)
417 error ("Could find run target to save before following exec");
418
419 gdb_flush (gdb_stdout);
420 target_mourn_inferior ();
421 inferior_ptid = pid_to_ptid (saved_pid);
422 /* Because mourn_inferior resets inferior_ptid. */
423 push_target (tgt);
424
425 /* That a.out is now the one to use. */
426 exec_file_attach (execd_pathname, 0);
427
428 /* And also is where symbols can be found. */
429 symbol_file_add_main (execd_pathname, 0);
430
431 /* Reset the shared library package. This ensures that we get
432 a shlib event when the child reaches "_start", at which point
433 the dld will have had a chance to initialize the child. */
434 #if defined(SOLIB_RESTART)
435 SOLIB_RESTART ();
436 #endif
437 #ifdef SOLIB_CREATE_INFERIOR_HOOK
438 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
439 #endif
440
441 /* Reinsert all breakpoints. (Those which were symbolic have
442 been reset to the proper address in the new a.out, thanks
443 to symbol_file_command...) */
444 insert_breakpoints ();
445
446 /* The next resume of this inferior should bring it to the shlib
447 startup breakpoints. (If the user had also set bp's on
448 "main" from the old (parent) process, then they'll auto-
449 matically get reset there in the new process.) */
450 }
451
452 /* Non-zero if we just simulating a single-step. This is needed
453 because we cannot remove the breakpoints in the inferior process
454 until after the `wait' in `wait_for_inferior'. */
455 static int singlestep_breakpoints_inserted_p = 0;
456
457 /* The thread we inserted single-step breakpoints for. */
458 static ptid_t singlestep_ptid;
459
460 /* If another thread hit the singlestep breakpoint, we save the original
461 thread here so that we can resume single-stepping it later. */
462 static ptid_t saved_singlestep_ptid;
463 static int stepping_past_singlestep_breakpoint;
464 \f
465
466 /* Things to clean up if we QUIT out of resume (). */
467 static void
468 resume_cleanups (void *ignore)
469 {
470 normal_stop ();
471 }
472
473 static const char schedlock_off[] = "off";
474 static const char schedlock_on[] = "on";
475 static const char schedlock_step[] = "step";
476 static const char *scheduler_mode = schedlock_off;
477 static const char *scheduler_enums[] = {
478 schedlock_off,
479 schedlock_on,
480 schedlock_step,
481 NULL
482 };
483
484 static void
485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
486 {
487 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
488 function clones the set command passed as a parameter. The clone
489 operation will include (BUG?) any ``set'' command callback, if
490 present. Commands like ``info set'' call all the ``show''
491 command callbacks. Unfortunately, for ``show'' commands cloned
492 from ``set'', this includes callbacks belonging to ``set''
493 commands. Making this worse, this only occures if
494 deprecated_add_show_from_set() is called after add_cmd_sfunc()
495 (BUG?). */
496 if (cmd_type (c) == set_cmd)
497 if (!target_can_lock_scheduler)
498 {
499 scheduler_mode = schedlock_off;
500 error ("Target '%s' cannot support this command.", target_shortname);
501 }
502 }
503
504
505 /* Resume the inferior, but allow a QUIT. This is useful if the user
506 wants to interrupt some lengthy single-stepping operation
507 (for child processes, the SIGINT goes to the inferior, and so
508 we get a SIGINT random_signal, but for remote debugging and perhaps
509 other targets, that's not true).
510
511 STEP nonzero if we should step (zero to continue instead).
512 SIG is the signal to give the inferior (zero for none). */
513 void
514 resume (int step, enum target_signal sig)
515 {
516 int should_resume = 1;
517 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
518 QUIT;
519
520 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
521
522
523 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
524 over an instruction that causes a page fault without triggering
525 a hardware watchpoint. The kernel properly notices that it shouldn't
526 stop, because the hardware watchpoint is not triggered, but it forgets
527 the step request and continues the program normally.
528 Work around the problem by removing hardware watchpoints if a step is
529 requested, GDB will check for a hardware watchpoint trigger after the
530 step anyway. */
531 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
532 remove_hw_watchpoints ();
533
534
535 /* Normally, by the time we reach `resume', the breakpoints are either
536 removed or inserted, as appropriate. The exception is if we're sitting
537 at a permanent breakpoint; we need to step over it, but permanent
538 breakpoints can't be removed. So we have to test for it here. */
539 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
540 SKIP_PERMANENT_BREAKPOINT ();
541
542 if (SOFTWARE_SINGLE_STEP_P () && step)
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
546 /* ...and don't ask hardware to do it. */
547 step = 0;
548 /* and do not pull these breakpoints until after a `wait' in
549 `wait_for_inferior' */
550 singlestep_breakpoints_inserted_p = 1;
551 singlestep_ptid = inferior_ptid;
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p) &&
584 (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on) ||
596 (scheduler_mode == schedlock_step &&
597 (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
653 wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 flush_cached_frames ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 select_frame (get_current_frame ());
675 }
676
677 /* We return 1 to indicate that there is a breakpoint here,
678 so we need to step over it before continuing to avoid
679 hitting it straight away. */
680 if (breakpoint_here_p (wait_pc))
681 return 1;
682 }
683
684 return 0;
685
686 }
687
688 /* Record the pc of the program the last time it stopped. This is
689 just used internally by wait_for_inferior, but need to be preserved
690 over calls to it and cleared when the inferior is started. */
691 static CORE_ADDR prev_pc;
692
693 /* Basic routine for continuing the program in various fashions.
694
695 ADDR is the address to resume at, or -1 for resume where stopped.
696 SIGGNAL is the signal to give it, or 0 for none,
697 or -1 for act according to how it stopped.
698 STEP is nonzero if should trap after one instruction.
699 -1 means return after that and print nothing.
700 You should probably set various step_... variables
701 before calling here, if you are stepping.
702
703 You should call clear_proceed_status before calling proceed. */
704
705 void
706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708 int oneproc = 0;
709
710 if (step > 0)
711 step_start_function = find_pc_function (read_pc ());
712 if (step < 0)
713 stop_after_trap = 1;
714
715 if (addr == (CORE_ADDR) -1)
716 {
717 /* If there is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints
719 so that we do not stop right away (and report a second
720 hit at this breakpoint). */
721
722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 oneproc = 1;
724
725 #ifndef STEP_SKIPS_DELAY
726 #define STEP_SKIPS_DELAY(pc) (0)
727 #define STEP_SKIPS_DELAY_P (0)
728 #endif
729 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
730 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
731 is slow (it needs to read memory from the target). */
732 if (STEP_SKIPS_DELAY_P
733 && breakpoint_here_p (read_pc () + 4)
734 && STEP_SKIPS_DELAY (read_pc ()))
735 oneproc = 1;
736 }
737 else
738 {
739 write_pc (addr);
740 }
741
742 /* In a multi-threaded task we may select another thread
743 and then continue or step.
744
745 But if the old thread was stopped at a breakpoint, it
746 will immediately cause another breakpoint stop without
747 any execution (i.e. it will report a breakpoint hit
748 incorrectly). So we must step over it first.
749
750 prepare_to_proceed checks the current thread against the thread
751 that reported the most recent event. If a step-over is required
752 it returns TRUE and sets the current thread to the old thread. */
753 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754 oneproc = 1;
755
756 if (oneproc)
757 /* We will get a trace trap after one instruction.
758 Continue it automatically and insert breakpoints then. */
759 trap_expected = 1;
760 else
761 {
762 insert_breakpoints ();
763 /* If we get here there was no call to error() in
764 insert breakpoints -- so they were inserted. */
765 breakpoints_inserted = 1;
766 }
767
768 if (siggnal != TARGET_SIGNAL_DEFAULT)
769 stop_signal = siggnal;
770 /* If this signal should not be seen by program,
771 give it zero. Used for debugging signals. */
772 else if (!signal_program[stop_signal])
773 stop_signal = TARGET_SIGNAL_0;
774
775 annotate_starting ();
776
777 /* Make sure that output from GDB appears before output from the
778 inferior. */
779 gdb_flush (gdb_stdout);
780
781 /* Refresh prev_pc value just prior to resuming. This used to be
782 done in stop_stepping, however, setting prev_pc there did not handle
783 scenarios such as inferior function calls or returning from
784 a function via the return command. In those cases, the prev_pc
785 value was not set properly for subsequent commands. The prev_pc value
786 is used to initialize the starting line number in the ecs. With an
787 invalid value, the gdb next command ends up stopping at the position
788 represented by the next line table entry past our start position.
789 On platforms that generate one line table entry per line, this
790 is not a problem. However, on the ia64, the compiler generates
791 extraneous line table entries that do not increase the line number.
792 When we issue the gdb next command on the ia64 after an inferior call
793 or a return command, we often end up a few instructions forward, still
794 within the original line we started.
795
796 An attempt was made to have init_execution_control_state () refresh
797 the prev_pc value before calculating the line number. This approach
798 did not work because on platforms that use ptrace, the pc register
799 cannot be read unless the inferior is stopped. At that point, we
800 are not guaranteed the inferior is stopped and so the read_pc ()
801 call can fail. Setting the prev_pc value here ensures the value is
802 updated correctly when the inferior is stopped. */
803 prev_pc = read_pc ();
804
805 /* Resume inferior. */
806 resume (oneproc || step || bpstat_should_step (), stop_signal);
807
808 /* Wait for it to stop (if not standalone)
809 and in any case decode why it stopped, and act accordingly. */
810 /* Do this only if we are not using the event loop, or if the target
811 does not support asynchronous execution. */
812 if (!event_loop_p || !target_can_async_p ())
813 {
814 wait_for_inferior ();
815 normal_stop ();
816 }
817 }
818 \f
819
820 /* Start remote-debugging of a machine over a serial link. */
821
822 void
823 start_remote (void)
824 {
825 init_thread_list ();
826 init_wait_for_inferior ();
827 stop_soon = STOP_QUIETLY;
828 trap_expected = 0;
829
830 /* Always go on waiting for the target, regardless of the mode. */
831 /* FIXME: cagney/1999-09-23: At present it isn't possible to
832 indicate to wait_for_inferior that a target should timeout if
833 nothing is returned (instead of just blocking). Because of this,
834 targets expecting an immediate response need to, internally, set
835 things up so that the target_wait() is forced to eventually
836 timeout. */
837 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
838 differentiate to its caller what the state of the target is after
839 the initial open has been performed. Here we're assuming that
840 the target has stopped. It should be possible to eventually have
841 target_open() return to the caller an indication that the target
842 is currently running and GDB state should be set to the same as
843 for an async run. */
844 wait_for_inferior ();
845 normal_stop ();
846 }
847
848 /* Initialize static vars when a new inferior begins. */
849
850 void
851 init_wait_for_inferior (void)
852 {
853 /* These are meaningless until the first time through wait_for_inferior. */
854 prev_pc = 0;
855
856 breakpoints_inserted = 0;
857 breakpoint_init_inferior (inf_starting);
858
859 /* Don't confuse first call to proceed(). */
860 stop_signal = TARGET_SIGNAL_0;
861
862 /* The first resume is not following a fork/vfork/exec. */
863 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
864
865 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
866 number_of_threads_in_syscalls = 0;
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nullified_state,
882 infwait_nonstep_watch_state
883 };
884
885 /* Why did the inferior stop? Used to print the appropriate messages
886 to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889 /* We don't know why. */
890 STOP_UNKNOWN,
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
893 /* Found breakpoint. */
894 BREAKPOINT_HIT,
895 /* Inferior terminated by signal. */
896 SIGNAL_EXITED,
897 /* Inferior exited. */
898 EXITED,
899 /* Inferior received signal, and user asked to be notified. */
900 SIGNAL_RECEIVED
901 };
902
903 /* This structure contains what used to be local variables in
904 wait_for_inferior. Probably many of them can return to being
905 locals in handle_inferior_event. */
906
907 struct execution_control_state
908 {
909 struct target_waitstatus ws;
910 struct target_waitstatus *wp;
911 int another_trap;
912 int random_signal;
913 CORE_ADDR stop_func_start;
914 CORE_ADDR stop_func_end;
915 char *stop_func_name;
916 struct symtab_and_line sal;
917 int remove_breakpoints_on_following_step;
918 int current_line;
919 struct symtab *current_symtab;
920 int handling_longjmp; /* FIXME */
921 ptid_t ptid;
922 ptid_t saved_inferior_ptid;
923 int stepping_through_solib_after_catch;
924 bpstat stepping_through_solib_catchpoints;
925 int enable_hw_watchpoints_after_wait;
926 int stepping_through_sigtramp;
927 int new_thread_event;
928 struct target_waitstatus tmpstatus;
929 enum infwait_states infwait_state;
930 ptid_t waiton_ptid;
931 int wait_some_more;
932 };
933
934 void init_execution_control_state (struct execution_control_state *ecs);
935
936 void handle_inferior_event (struct execution_control_state *ecs);
937
938 static void step_into_function (struct execution_control_state *ecs);
939 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
940 struct execution_control_state *ecs);
941 static void stop_stepping (struct execution_control_state *ecs);
942 static void prepare_to_wait (struct execution_control_state *ecs);
943 static void keep_going (struct execution_control_state *ecs);
944 static void print_stop_reason (enum inferior_stop_reason stop_reason,
945 int stop_info);
946
947 /* Wait for control to return from inferior to debugger.
948 If inferior gets a signal, we may decide to start it up again
949 instead of returning. That is why there is a loop in this function.
950 When this function actually returns it means the inferior
951 should be left stopped and GDB should read more commands. */
952
953 void
954 wait_for_inferior (void)
955 {
956 struct cleanup *old_cleanups;
957 struct execution_control_state ecss;
958 struct execution_control_state *ecs;
959
960 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
961 &step_resume_breakpoint);
962
963 /* wfi still stays in a loop, so it's OK just to take the address of
964 a local to get the ecs pointer. */
965 ecs = &ecss;
966
967 /* Fill in with reasonable starting values. */
968 init_execution_control_state (ecs);
969
970 /* We'll update this if & when we switch to a new thread. */
971 previous_inferior_ptid = inferior_ptid;
972
973 overlay_cache_invalid = 1;
974
975 /* We have to invalidate the registers BEFORE calling target_wait
976 because they can be loaded from the target while in target_wait.
977 This makes remote debugging a bit more efficient for those
978 targets that provide critical registers as part of their normal
979 status mechanism. */
980
981 registers_changed ();
982
983 while (1)
984 {
985 if (deprecated_target_wait_hook)
986 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
987 else
988 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
989
990 /* Now figure out what to do with the result of the result. */
991 handle_inferior_event (ecs);
992
993 if (!ecs->wait_some_more)
994 break;
995 }
996 do_cleanups (old_cleanups);
997 }
998
999 /* Asynchronous version of wait_for_inferior. It is called by the
1000 event loop whenever a change of state is detected on the file
1001 descriptor corresponding to the target. It can be called more than
1002 once to complete a single execution command. In such cases we need
1003 to keep the state in a global variable ASYNC_ECSS. If it is the
1004 last time that this function is called for a single execution
1005 command, then report to the user that the inferior has stopped, and
1006 do the necessary cleanups. */
1007
1008 struct execution_control_state async_ecss;
1009 struct execution_control_state *async_ecs;
1010
1011 void
1012 fetch_inferior_event (void *client_data)
1013 {
1014 static struct cleanup *old_cleanups;
1015
1016 async_ecs = &async_ecss;
1017
1018 if (!async_ecs->wait_some_more)
1019 {
1020 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1021 &step_resume_breakpoint);
1022
1023 /* Fill in with reasonable starting values. */
1024 init_execution_control_state (async_ecs);
1025
1026 /* We'll update this if & when we switch to a new thread. */
1027 previous_inferior_ptid = inferior_ptid;
1028
1029 overlay_cache_invalid = 1;
1030
1031 /* We have to invalidate the registers BEFORE calling target_wait
1032 because they can be loaded from the target while in target_wait.
1033 This makes remote debugging a bit more efficient for those
1034 targets that provide critical registers as part of their normal
1035 status mechanism. */
1036
1037 registers_changed ();
1038 }
1039
1040 if (deprecated_target_wait_hook)
1041 async_ecs->ptid =
1042 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1043 else
1044 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1045
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (async_ecs);
1048
1049 if (!async_ecs->wait_some_more)
1050 {
1051 /* Do only the cleanups that have been added by this
1052 function. Let the continuations for the commands do the rest,
1053 if there are any. */
1054 do_exec_cleanups (old_cleanups);
1055 normal_stop ();
1056 if (step_multi && stop_step)
1057 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1058 else
1059 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1060 }
1061 }
1062
1063 /* Prepare an execution control state for looping through a
1064 wait_for_inferior-type loop. */
1065
1066 void
1067 init_execution_control_state (struct execution_control_state *ecs)
1068 {
1069 /* ecs->another_trap? */
1070 ecs->random_signal = 0;
1071 ecs->remove_breakpoints_on_following_step = 0;
1072 ecs->handling_longjmp = 0; /* FIXME */
1073 ecs->stepping_through_solib_after_catch = 0;
1074 ecs->stepping_through_solib_catchpoints = NULL;
1075 ecs->enable_hw_watchpoints_after_wait = 0;
1076 ecs->stepping_through_sigtramp = 0;
1077 ecs->sal = find_pc_line (prev_pc, 0);
1078 ecs->current_line = ecs->sal.line;
1079 ecs->current_symtab = ecs->sal.symtab;
1080 ecs->infwait_state = infwait_normal_state;
1081 ecs->waiton_ptid = pid_to_ptid (-1);
1082 ecs->wp = &(ecs->ws);
1083 }
1084
1085 /* Call this function before setting step_resume_breakpoint, as a
1086 sanity check. There should never be more than one step-resume
1087 breakpoint per thread, so we should never be setting a new
1088 step_resume_breakpoint when one is already active. */
1089 static void
1090 check_for_old_step_resume_breakpoint (void)
1091 {
1092 if (step_resume_breakpoint)
1093 warning
1094 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1095 }
1096
1097 /* Return the cached copy of the last pid/waitstatus returned by
1098 target_wait()/deprecated_target_wait_hook(). The data is actually
1099 cached by handle_inferior_event(), which gets called immediately
1100 after target_wait()/deprecated_target_wait_hook(). */
1101
1102 void
1103 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1104 {
1105 *ptidp = target_last_wait_ptid;
1106 *status = target_last_waitstatus;
1107 }
1108
1109 /* Switch thread contexts, maintaining "infrun state". */
1110
1111 static void
1112 context_switch (struct execution_control_state *ecs)
1113 {
1114 /* Caution: it may happen that the new thread (or the old one!)
1115 is not in the thread list. In this case we must not attempt
1116 to "switch context", or we run the risk that our context may
1117 be lost. This may happen as a result of the target module
1118 mishandling thread creation. */
1119
1120 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1121 { /* Perform infrun state context switch: */
1122 /* Save infrun state for the old thread. */
1123 save_infrun_state (inferior_ptid, prev_pc,
1124 trap_expected, step_resume_breakpoint,
1125 step_range_start,
1126 step_range_end, &step_frame_id,
1127 ecs->handling_longjmp, ecs->another_trap,
1128 ecs->stepping_through_solib_after_catch,
1129 ecs->stepping_through_solib_catchpoints,
1130 ecs->stepping_through_sigtramp,
1131 ecs->current_line, ecs->current_symtab);
1132
1133 /* Load infrun state for the new thread. */
1134 load_infrun_state (ecs->ptid, &prev_pc,
1135 &trap_expected, &step_resume_breakpoint,
1136 &step_range_start,
1137 &step_range_end, &step_frame_id,
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
1141 &ecs->stepping_through_sigtramp,
1142 &ecs->current_line, &ecs->current_symtab);
1143 }
1144 inferior_ptid = ecs->ptid;
1145 }
1146
1147 static void
1148 adjust_pc_after_break (struct execution_control_state *ecs)
1149 {
1150 CORE_ADDR breakpoint_pc;
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
1154 if (DECR_PC_AFTER_BREAK == 0)
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1161 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1162 by software breakpoints should be handled through the normal breakpoint
1163 layer.
1164
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
1168 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1169 these signals at breakpoints (the code has been in GDB since at least
1170 1992) so I can not guess how to handle them here.
1171
1172 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1173 would have the PC after hitting a watchpoint affected by
1174 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1175 in GDB history, and it seems unlikely to be correct, so
1176 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1187
1188 if (SOFTWARE_SINGLE_STEP_P ())
1189 {
1190 /* When using software single-step, a SIGTRAP can only indicate
1191 an inserted breakpoint. This actually makes things
1192 easier. */
1193 if (singlestep_breakpoints_inserted_p)
1194 /* When software single stepping, the instruction at [prev_pc]
1195 is never a breakpoint, but the instruction following
1196 [prev_pc] (in program execution order) always is. Assume
1197 that following instruction was reached and hence a software
1198 breakpoint was hit. */
1199 write_pc_pid (breakpoint_pc, ecs->ptid);
1200 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1201 /* The inferior was free running (i.e., no single-step
1202 breakpoints inserted) and it hit a software breakpoint. */
1203 write_pc_pid (breakpoint_pc, ecs->ptid);
1204 }
1205 else
1206 {
1207 /* When using hardware single-step, a SIGTRAP is reported for
1208 both a completed single-step and a software breakpoint. Need
1209 to differentiate between the two as the latter needs
1210 adjusting but the former does not. */
1211 if (currently_stepping (ecs))
1212 {
1213 if (prev_pc == breakpoint_pc
1214 && software_breakpoint_inserted_here_p (breakpoint_pc))
1215 /* Hardware single-stepped a software breakpoint (as
1216 occures when the inferior is resumed with PC pointing
1217 at not-yet-hit software breakpoint). Since the
1218 breakpoint really is executed, the inferior needs to be
1219 backed up to the breakpoint address. */
1220 write_pc_pid (breakpoint_pc, ecs->ptid);
1221 }
1222 else
1223 {
1224 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1225 /* The inferior was free running (i.e., no hardware
1226 single-step and no possibility of a false SIGTRAP) and
1227 hit a software breakpoint. */
1228 write_pc_pid (breakpoint_pc, ecs->ptid);
1229 }
1230 }
1231 }
1232
1233 /* Given an execution control state that has been freshly filled in
1234 by an event from the inferior, figure out what it means and take
1235 appropriate action. */
1236
1237 int stepped_after_stopped_by_watchpoint;
1238
1239 void
1240 handle_inferior_event (struct execution_control_state *ecs)
1241 {
1242 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1243 thinking that the variable stepped_after_stopped_by_watchpoint
1244 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1245 defined in the file "config/pa/nm-hppah.h", accesses the variable
1246 indirectly. Mutter something rude about the HP merge. */
1247 int sw_single_step_trap_p = 0;
1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1249
1250 /* Cache the last pid/waitstatus. */
1251 target_last_wait_ptid = ecs->ptid;
1252 target_last_waitstatus = *ecs->wp;
1253
1254 adjust_pc_after_break (ecs);
1255
1256 switch (ecs->infwait_state)
1257 {
1258 case infwait_thread_hop_state:
1259 /* Cancel the waiton_ptid. */
1260 ecs->waiton_ptid = pid_to_ptid (-1);
1261 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1262 is serviced in this loop, below. */
1263 if (ecs->enable_hw_watchpoints_after_wait)
1264 {
1265 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1266 ecs->enable_hw_watchpoints_after_wait = 0;
1267 }
1268 stepped_after_stopped_by_watchpoint = 0;
1269 break;
1270
1271 case infwait_normal_state:
1272 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1273 is serviced in this loop, below. */
1274 if (ecs->enable_hw_watchpoints_after_wait)
1275 {
1276 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1277 ecs->enable_hw_watchpoints_after_wait = 0;
1278 }
1279 stepped_after_stopped_by_watchpoint = 0;
1280 break;
1281
1282 case infwait_nullified_state:
1283 stepped_after_stopped_by_watchpoint = 0;
1284 break;
1285
1286 case infwait_nonstep_watch_state:
1287 insert_breakpoints ();
1288
1289 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1290 handle things like signals arriving and other things happening
1291 in combination correctly? */
1292 stepped_after_stopped_by_watchpoint = 1;
1293 break;
1294
1295 default:
1296 internal_error (__FILE__, __LINE__, "bad switch");
1297 }
1298 ecs->infwait_state = infwait_normal_state;
1299
1300 flush_cached_frames ();
1301
1302 /* If it's a new process, add it to the thread database */
1303
1304 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1305 && !ptid_equal (ecs->ptid, minus_one_ptid)
1306 && !in_thread_list (ecs->ptid));
1307
1308 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1309 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1310 {
1311 add_thread (ecs->ptid);
1312
1313 ui_out_text (uiout, "[New ");
1314 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1315 ui_out_text (uiout, "]\n");
1316
1317 #if 0
1318 /* NOTE: This block is ONLY meant to be invoked in case of a
1319 "thread creation event"! If it is invoked for any other
1320 sort of event (such as a new thread landing on a breakpoint),
1321 the event will be discarded, which is almost certainly
1322 a bad thing!
1323
1324 To avoid this, the low-level module (eg. target_wait)
1325 should call in_thread_list and add_thread, so that the
1326 new thread is known by the time we get here. */
1327
1328 /* We may want to consider not doing a resume here in order
1329 to give the user a chance to play with the new thread.
1330 It might be good to make that a user-settable option. */
1331
1332 /* At this point, all threads are stopped (happens
1333 automatically in either the OS or the native code).
1334 Therefore we need to continue all threads in order to
1335 make progress. */
1336
1337 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1338 prepare_to_wait (ecs);
1339 return;
1340 #endif
1341 }
1342
1343 switch (ecs->ws.kind)
1344 {
1345 case TARGET_WAITKIND_LOADED:
1346 /* Ignore gracefully during startup of the inferior, as it
1347 might be the shell which has just loaded some objects,
1348 otherwise add the symbols for the newly loaded objects. */
1349 #ifdef SOLIB_ADD
1350 if (stop_soon == NO_STOP_QUIETLY)
1351 {
1352 /* Remove breakpoints, SOLIB_ADD might adjust
1353 breakpoint addresses via breakpoint_re_set. */
1354 if (breakpoints_inserted)
1355 remove_breakpoints ();
1356
1357 /* Check for any newly added shared libraries if we're
1358 supposed to be adding them automatically. Switch
1359 terminal for any messages produced by
1360 breakpoint_re_set. */
1361 target_terminal_ours_for_output ();
1362 /* NOTE: cagney/2003-11-25: Make certain that the target
1363 stack's section table is kept up-to-date. Architectures,
1364 (e.g., PPC64), use the section table to perform
1365 operations such as address => section name and hence
1366 require the table to contain all sections (including
1367 those found in shared libraries). */
1368 /* NOTE: cagney/2003-11-25: Pass current_target and not
1369 exec_ops to SOLIB_ADD. This is because current GDB is
1370 only tooled to propagate section_table changes out from
1371 the "current_target" (see target_resize_to_sections), and
1372 not up from the exec stratum. This, of course, isn't
1373 right. "infrun.c" should only interact with the
1374 exec/process stratum, instead relying on the target stack
1375 to propagate relevant changes (stop, section table
1376 changed, ...) up to other layers. */
1377 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1378 target_terminal_inferior ();
1379
1380 /* Reinsert breakpoints and continue. */
1381 if (breakpoints_inserted)
1382 insert_breakpoints ();
1383 }
1384 #endif
1385 resume (0, TARGET_SIGNAL_0);
1386 prepare_to_wait (ecs);
1387 return;
1388
1389 case TARGET_WAITKIND_SPURIOUS:
1390 resume (0, TARGET_SIGNAL_0);
1391 prepare_to_wait (ecs);
1392 return;
1393
1394 case TARGET_WAITKIND_EXITED:
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396 print_stop_reason (EXITED, ecs->ws.value.integer);
1397
1398 /* Record the exit code in the convenience variable $_exitcode, so
1399 that the user can inspect this again later. */
1400 set_internalvar (lookup_internalvar ("_exitcode"),
1401 value_from_longest (builtin_type_int,
1402 (LONGEST) ecs->ws.value.integer));
1403 gdb_flush (gdb_stdout);
1404 target_mourn_inferior ();
1405 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1406 stop_print_frame = 0;
1407 stop_stepping (ecs);
1408 return;
1409
1410 case TARGET_WAITKIND_SIGNALLED:
1411 stop_print_frame = 0;
1412 stop_signal = ecs->ws.value.sig;
1413 target_terminal_ours (); /* Must do this before mourn anyway */
1414
1415 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1416 reach here unless the inferior is dead. However, for years
1417 target_kill() was called here, which hints that fatal signals aren't
1418 really fatal on some systems. If that's true, then some changes
1419 may be needed. */
1420 target_mourn_inferior ();
1421
1422 print_stop_reason (SIGNAL_EXITED, stop_signal);
1423 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1424 stop_stepping (ecs);
1425 return;
1426
1427 /* The following are the only cases in which we keep going;
1428 the above cases end in a continue or goto. */
1429 case TARGET_WAITKIND_FORKED:
1430 case TARGET_WAITKIND_VFORKED:
1431 stop_signal = TARGET_SIGNAL_TRAP;
1432 pending_follow.kind = ecs->ws.kind;
1433
1434 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1435 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1436
1437 stop_pc = read_pc ();
1438
1439 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1440
1441 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1442
1443 /* If no catchpoint triggered for this, then keep going. */
1444 if (ecs->random_signal)
1445 {
1446 stop_signal = TARGET_SIGNAL_0;
1447 keep_going (ecs);
1448 return;
1449 }
1450 goto process_event_stop_test;
1451
1452 case TARGET_WAITKIND_EXECD:
1453 stop_signal = TARGET_SIGNAL_TRAP;
1454
1455 /* NOTE drow/2002-12-05: This code should be pushed down into the
1456 target_wait function. Until then following vfork on HP/UX 10.20
1457 is probably broken by this. Of course, it's broken anyway. */
1458 /* Is this a target which reports multiple exec events per actual
1459 call to exec()? (HP-UX using ptrace does, for example.) If so,
1460 ignore all but the last one. Just resume the exec'r, and wait
1461 for the next exec event. */
1462 if (inferior_ignoring_leading_exec_events)
1463 {
1464 inferior_ignoring_leading_exec_events--;
1465 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1466 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1467 parent_pid);
1468 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1469 prepare_to_wait (ecs);
1470 return;
1471 }
1472 inferior_ignoring_leading_exec_events =
1473 target_reported_exec_events_per_exec_call () - 1;
1474
1475 pending_follow.execd_pathname =
1476 savestring (ecs->ws.value.execd_pathname,
1477 strlen (ecs->ws.value.execd_pathname));
1478
1479 /* This causes the eventpoints and symbol table to be reset. Must
1480 do this now, before trying to determine whether to stop. */
1481 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1482 xfree (pending_follow.execd_pathname);
1483
1484 stop_pc = read_pc_pid (ecs->ptid);
1485 ecs->saved_inferior_ptid = inferior_ptid;
1486 inferior_ptid = ecs->ptid;
1487
1488 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1489
1490 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1491 inferior_ptid = ecs->saved_inferior_ptid;
1492
1493 /* If no catchpoint triggered for this, then keep going. */
1494 if (ecs->random_signal)
1495 {
1496 stop_signal = TARGET_SIGNAL_0;
1497 keep_going (ecs);
1498 return;
1499 }
1500 goto process_event_stop_test;
1501
1502 /* These syscall events are returned on HP-UX, as part of its
1503 implementation of page-protection-based "hardware" watchpoints.
1504 HP-UX has unfortunate interactions between page-protections and
1505 some system calls. Our solution is to disable hardware watches
1506 when a system call is entered, and reenable them when the syscall
1507 completes. The downside of this is that we may miss the precise
1508 point at which a watched piece of memory is modified. "Oh well."
1509
1510 Note that we may have multiple threads running, which may each
1511 enter syscalls at roughly the same time. Since we don't have a
1512 good notion currently of whether a watched piece of memory is
1513 thread-private, we'd best not have any page-protections active
1514 when any thread is in a syscall. Thus, we only want to reenable
1515 hardware watches when no threads are in a syscall.
1516
1517 Also, be careful not to try to gather much state about a thread
1518 that's in a syscall. It's frequently a losing proposition. */
1519 case TARGET_WAITKIND_SYSCALL_ENTRY:
1520 number_of_threads_in_syscalls++;
1521 if (number_of_threads_in_syscalls == 1)
1522 {
1523 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1524 }
1525 resume (0, TARGET_SIGNAL_0);
1526 prepare_to_wait (ecs);
1527 return;
1528
1529 /* Before examining the threads further, step this thread to
1530 get it entirely out of the syscall. (We get notice of the
1531 event when the thread is just on the verge of exiting a
1532 syscall. Stepping one instruction seems to get it back
1533 into user code.)
1534
1535 Note that although the logical place to reenable h/w watches
1536 is here, we cannot. We cannot reenable them before stepping
1537 the thread (this causes the next wait on the thread to hang).
1538
1539 Nor can we enable them after stepping until we've done a wait.
1540 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1541 here, which will be serviced immediately after the target
1542 is waited on. */
1543 case TARGET_WAITKIND_SYSCALL_RETURN:
1544 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1545
1546 if (number_of_threads_in_syscalls > 0)
1547 {
1548 number_of_threads_in_syscalls--;
1549 ecs->enable_hw_watchpoints_after_wait =
1550 (number_of_threads_in_syscalls == 0);
1551 }
1552 prepare_to_wait (ecs);
1553 return;
1554
1555 case TARGET_WAITKIND_STOPPED:
1556 stop_signal = ecs->ws.value.sig;
1557 break;
1558
1559 /* We had an event in the inferior, but we are not interested
1560 in handling it at this level. The lower layers have already
1561 done what needs to be done, if anything.
1562
1563 One of the possible circumstances for this is when the
1564 inferior produces output for the console. The inferior has
1565 not stopped, and we are ignoring the event. Another possible
1566 circumstance is any event which the lower level knows will be
1567 reported multiple times without an intervening resume. */
1568 case TARGET_WAITKIND_IGNORE:
1569 prepare_to_wait (ecs);
1570 return;
1571 }
1572
1573 /* We may want to consider not doing a resume here in order to give
1574 the user a chance to play with the new thread. It might be good
1575 to make that a user-settable option. */
1576
1577 /* At this point, all threads are stopped (happens automatically in
1578 either the OS or the native code). Therefore we need to continue
1579 all threads in order to make progress. */
1580 if (ecs->new_thread_event)
1581 {
1582 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1583 prepare_to_wait (ecs);
1584 return;
1585 }
1586
1587 stop_pc = read_pc_pid (ecs->ptid);
1588
1589 if (stepping_past_singlestep_breakpoint)
1590 {
1591 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1592 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1593 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1594
1595 stepping_past_singlestep_breakpoint = 0;
1596
1597 /* We've either finished single-stepping past the single-step
1598 breakpoint, or stopped for some other reason. It would be nice if
1599 we could tell, but we can't reliably. */
1600 if (stop_signal == TARGET_SIGNAL_TRAP)
1601 {
1602 /* Pull the single step breakpoints out of the target. */
1603 SOFTWARE_SINGLE_STEP (0, 0);
1604 singlestep_breakpoints_inserted_p = 0;
1605
1606 ecs->random_signal = 0;
1607
1608 ecs->ptid = saved_singlestep_ptid;
1609 context_switch (ecs);
1610 if (deprecated_context_hook)
1611 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1612
1613 resume (1, TARGET_SIGNAL_0);
1614 prepare_to_wait (ecs);
1615 return;
1616 }
1617 }
1618
1619 stepping_past_singlestep_breakpoint = 0;
1620
1621 /* See if a thread hit a thread-specific breakpoint that was meant for
1622 another thread. If so, then step that thread past the breakpoint,
1623 and continue it. */
1624
1625 if (stop_signal == TARGET_SIGNAL_TRAP)
1626 {
1627 int thread_hop_needed = 0;
1628
1629 /* Check if a regular breakpoint has been hit before checking
1630 for a potential single step breakpoint. Otherwise, GDB will
1631 not see this breakpoint hit when stepping onto breakpoints. */
1632 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1633 {
1634 ecs->random_signal = 0;
1635 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1636 thread_hop_needed = 1;
1637 }
1638 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1639 {
1640 ecs->random_signal = 0;
1641 /* The call to in_thread_list is necessary because PTIDs sometimes
1642 change when we go from single-threaded to multi-threaded. If
1643 the singlestep_ptid is still in the list, assume that it is
1644 really different from ecs->ptid. */
1645 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1646 && in_thread_list (singlestep_ptid))
1647 {
1648 thread_hop_needed = 1;
1649 stepping_past_singlestep_breakpoint = 1;
1650 saved_singlestep_ptid = singlestep_ptid;
1651 }
1652 }
1653
1654 if (thread_hop_needed)
1655 {
1656 int remove_status;
1657
1658 /* Saw a breakpoint, but it was hit by the wrong thread.
1659 Just continue. */
1660
1661 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1662 {
1663 /* Pull the single step breakpoints out of the target. */
1664 SOFTWARE_SINGLE_STEP (0, 0);
1665 singlestep_breakpoints_inserted_p = 0;
1666 }
1667
1668 remove_status = remove_breakpoints ();
1669 /* Did we fail to remove breakpoints? If so, try
1670 to set the PC past the bp. (There's at least
1671 one situation in which we can fail to remove
1672 the bp's: On HP-UX's that use ttrace, we can't
1673 change the address space of a vforking child
1674 process until the child exits (well, okay, not
1675 then either :-) or execs. */
1676 if (remove_status != 0)
1677 {
1678 /* FIXME! This is obviously non-portable! */
1679 write_pc_pid (stop_pc + 4, ecs->ptid);
1680 /* We need to restart all the threads now,
1681 * unles we're running in scheduler-locked mode.
1682 * Use currently_stepping to determine whether to
1683 * step or continue.
1684 */
1685 /* FIXME MVS: is there any reason not to call resume()? */
1686 if (scheduler_mode == schedlock_on)
1687 target_resume (ecs->ptid,
1688 currently_stepping (ecs), TARGET_SIGNAL_0);
1689 else
1690 target_resume (RESUME_ALL,
1691 currently_stepping (ecs), TARGET_SIGNAL_0);
1692 prepare_to_wait (ecs);
1693 return;
1694 }
1695 else
1696 { /* Single step */
1697 breakpoints_inserted = 0;
1698 if (!ptid_equal (inferior_ptid, ecs->ptid))
1699 context_switch (ecs);
1700 ecs->waiton_ptid = ecs->ptid;
1701 ecs->wp = &(ecs->ws);
1702 ecs->another_trap = 1;
1703
1704 ecs->infwait_state = infwait_thread_hop_state;
1705 keep_going (ecs);
1706 registers_changed ();
1707 return;
1708 }
1709 }
1710 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1711 {
1712 sw_single_step_trap_p = 1;
1713 ecs->random_signal = 0;
1714 }
1715 }
1716 else
1717 ecs->random_signal = 1;
1718
1719 /* See if something interesting happened to the non-current thread. If
1720 so, then switch to that thread. */
1721 if (!ptid_equal (ecs->ptid, inferior_ptid))
1722 {
1723 context_switch (ecs);
1724
1725 if (deprecated_context_hook)
1726 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1727
1728 flush_cached_frames ();
1729 }
1730
1731 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1732 {
1733 /* Pull the single step breakpoints out of the target. */
1734 SOFTWARE_SINGLE_STEP (0, 0);
1735 singlestep_breakpoints_inserted_p = 0;
1736 }
1737
1738 /* If PC is pointing at a nullified instruction, then step beyond
1739 it so that the user won't be confused when GDB appears to be ready
1740 to execute it. */
1741
1742 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1743 if (INSTRUCTION_NULLIFIED)
1744 {
1745 registers_changed ();
1746 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1747
1748 /* We may have received a signal that we want to pass to
1749 the inferior; therefore, we must not clobber the waitstatus
1750 in WS. */
1751
1752 ecs->infwait_state = infwait_nullified_state;
1753 ecs->waiton_ptid = ecs->ptid;
1754 ecs->wp = &(ecs->tmpstatus);
1755 prepare_to_wait (ecs);
1756 return;
1757 }
1758
1759 /* It may not be necessary to disable the watchpoint to stop over
1760 it. For example, the PA can (with some kernel cooperation)
1761 single step over a watchpoint without disabling the watchpoint. */
1762 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1763 {
1764 resume (1, 0);
1765 prepare_to_wait (ecs);
1766 return;
1767 }
1768
1769 /* It is far more common to need to disable a watchpoint to step
1770 the inferior over it. FIXME. What else might a debug
1771 register or page protection watchpoint scheme need here? */
1772 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1773 {
1774 /* At this point, we are stopped at an instruction which has
1775 attempted to write to a piece of memory under control of
1776 a watchpoint. The instruction hasn't actually executed
1777 yet. If we were to evaluate the watchpoint expression
1778 now, we would get the old value, and therefore no change
1779 would seem to have occurred.
1780
1781 In order to make watchpoints work `right', we really need
1782 to complete the memory write, and then evaluate the
1783 watchpoint expression. The following code does that by
1784 removing the watchpoint (actually, all watchpoints and
1785 breakpoints), single-stepping the target, re-inserting
1786 watchpoints, and then falling through to let normal
1787 single-step processing handle proceed. Since this
1788 includes evaluating watchpoints, things will come to a
1789 stop in the correct manner. */
1790
1791 remove_breakpoints ();
1792 registers_changed ();
1793 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1794
1795 ecs->waiton_ptid = ecs->ptid;
1796 ecs->wp = &(ecs->ws);
1797 ecs->infwait_state = infwait_nonstep_watch_state;
1798 prepare_to_wait (ecs);
1799 return;
1800 }
1801
1802 /* It may be possible to simply continue after a watchpoint. */
1803 if (HAVE_CONTINUABLE_WATCHPOINT)
1804 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1805
1806 ecs->stop_func_start = 0;
1807 ecs->stop_func_end = 0;
1808 ecs->stop_func_name = 0;
1809 /* Don't care about return value; stop_func_start and stop_func_name
1810 will both be 0 if it doesn't work. */
1811 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1812 &ecs->stop_func_start, &ecs->stop_func_end);
1813 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1814 ecs->another_trap = 0;
1815 bpstat_clear (&stop_bpstat);
1816 stop_step = 0;
1817 stop_stack_dummy = 0;
1818 stop_print_frame = 1;
1819 ecs->random_signal = 0;
1820 stopped_by_random_signal = 0;
1821 breakpoints_failed = 0;
1822
1823 /* Look at the cause of the stop, and decide what to do.
1824 The alternatives are:
1825 1) break; to really stop and return to the debugger,
1826 2) drop through to start up again
1827 (set ecs->another_trap to 1 to single step once)
1828 3) set ecs->random_signal to 1, and the decision between 1 and 2
1829 will be made according to the signal handling tables. */
1830
1831 /* First, distinguish signals caused by the debugger from signals
1832 that have to do with the program's own actions. Note that
1833 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1834 on the operating system version. Here we detect when a SIGILL or
1835 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1836 something similar for SIGSEGV, since a SIGSEGV will be generated
1837 when we're trying to execute a breakpoint instruction on a
1838 non-executable stack. This happens for call dummy breakpoints
1839 for architectures like SPARC that place call dummies on the
1840 stack. */
1841
1842 if (stop_signal == TARGET_SIGNAL_TRAP
1843 || (breakpoints_inserted &&
1844 (stop_signal == TARGET_SIGNAL_ILL
1845 || stop_signal == TARGET_SIGNAL_SEGV
1846 || stop_signal == TARGET_SIGNAL_EMT))
1847 || stop_soon == STOP_QUIETLY
1848 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1849 {
1850 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1851 {
1852 stop_print_frame = 0;
1853 stop_stepping (ecs);
1854 return;
1855 }
1856
1857 /* This is originated from start_remote(), start_inferior() and
1858 shared libraries hook functions. */
1859 if (stop_soon == STOP_QUIETLY)
1860 {
1861 stop_stepping (ecs);
1862 return;
1863 }
1864
1865 /* This originates from attach_command(). We need to overwrite
1866 the stop_signal here, because some kernels don't ignore a
1867 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1868 See more comments in inferior.h. */
1869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1870 {
1871 stop_stepping (ecs);
1872 if (stop_signal == TARGET_SIGNAL_STOP)
1873 stop_signal = TARGET_SIGNAL_0;
1874 return;
1875 }
1876
1877 /* Don't even think about breakpoints if just proceeded over a
1878 breakpoint. */
1879 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1880 bpstat_clear (&stop_bpstat);
1881 else
1882 {
1883 /* See if there is a breakpoint at the current PC. */
1884 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1885 stopped_by_watchpoint);
1886
1887 /* Following in case break condition called a
1888 function. */
1889 stop_print_frame = 1;
1890 }
1891
1892 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1893 at one stage in the past included checks for an inferior
1894 function call's call dummy's return breakpoint. The original
1895 comment, that went with the test, read:
1896
1897 ``End of a stack dummy. Some systems (e.g. Sony news) give
1898 another signal besides SIGTRAP, so check here as well as
1899 above.''
1900
1901 If someone ever tries to get get call dummys on a
1902 non-executable stack to work (where the target would stop
1903 with something like a SIGSEGV), then those tests might need
1904 to be re-instated. Given, however, that the tests were only
1905 enabled when momentary breakpoints were not being used, I
1906 suspect that it won't be the case.
1907
1908 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1909 be necessary for call dummies on a non-executable stack on
1910 SPARC. */
1911
1912 if (stop_signal == TARGET_SIGNAL_TRAP)
1913 ecs->random_signal
1914 = !(bpstat_explains_signal (stop_bpstat)
1915 || trap_expected
1916 || (step_range_end && step_resume_breakpoint == NULL));
1917 else
1918 {
1919 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1920 if (!ecs->random_signal)
1921 stop_signal = TARGET_SIGNAL_TRAP;
1922 }
1923 }
1924
1925 /* When we reach this point, we've pretty much decided
1926 that the reason for stopping must've been a random
1927 (unexpected) signal. */
1928
1929 else
1930 ecs->random_signal = 1;
1931
1932 process_event_stop_test:
1933 /* For the program's own signals, act according to
1934 the signal handling tables. */
1935
1936 if (ecs->random_signal)
1937 {
1938 /* Signal not for debugging purposes. */
1939 int printed = 0;
1940
1941 stopped_by_random_signal = 1;
1942
1943 if (signal_print[stop_signal])
1944 {
1945 printed = 1;
1946 target_terminal_ours_for_output ();
1947 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1948 }
1949 if (signal_stop[stop_signal])
1950 {
1951 stop_stepping (ecs);
1952 return;
1953 }
1954 /* If not going to stop, give terminal back
1955 if we took it away. */
1956 else if (printed)
1957 target_terminal_inferior ();
1958
1959 /* Clear the signal if it should not be passed. */
1960 if (signal_program[stop_signal] == 0)
1961 stop_signal = TARGET_SIGNAL_0;
1962
1963 if (step_range_end != 0
1964 && stop_signal != TARGET_SIGNAL_0
1965 && stop_pc >= step_range_start && stop_pc < step_range_end
1966 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
1967 {
1968 /* The inferior is about to take a signal that will take it
1969 out of the single step range. Set a breakpoint at the
1970 current PC (which is presumably where the signal handler
1971 will eventually return) and then allow the inferior to
1972 run free.
1973
1974 Note that this is only needed for a signal delivered
1975 while in the single-step range. Nested signals aren't a
1976 problem as they eventually all return. */
1977 insert_step_resume_breakpoint (get_current_frame (), ecs);
1978 }
1979 keep_going (ecs);
1980 return;
1981 }
1982
1983 /* Handle cases caused by hitting a breakpoint. */
1984 {
1985 CORE_ADDR jmp_buf_pc;
1986 struct bpstat_what what;
1987
1988 what = bpstat_what (stop_bpstat);
1989
1990 if (what.call_dummy)
1991 {
1992 stop_stack_dummy = 1;
1993 }
1994
1995 switch (what.main_action)
1996 {
1997 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1998 /* If we hit the breakpoint at longjmp, disable it for the
1999 duration of this command. Then, install a temporary
2000 breakpoint at the target of the jmp_buf. */
2001 disable_longjmp_breakpoint ();
2002 remove_breakpoints ();
2003 breakpoints_inserted = 0;
2004 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2005 {
2006 keep_going (ecs);
2007 return;
2008 }
2009
2010 /* Need to blow away step-resume breakpoint, as it
2011 interferes with us */
2012 if (step_resume_breakpoint != NULL)
2013 {
2014 delete_step_resume_breakpoint (&step_resume_breakpoint);
2015 }
2016
2017 #if 0
2018 /* FIXME - Need to implement nested temporary breakpoints */
2019 if (step_over_calls > 0)
2020 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2021 else
2022 #endif /* 0 */
2023 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2024 ecs->handling_longjmp = 1; /* FIXME */
2025 keep_going (ecs);
2026 return;
2027
2028 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2029 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2030 remove_breakpoints ();
2031 breakpoints_inserted = 0;
2032 #if 0
2033 /* FIXME - Need to implement nested temporary breakpoints */
2034 if (step_over_calls
2035 && (frame_id_inner (get_frame_id (get_current_frame ()),
2036 step_frame_id)))
2037 {
2038 ecs->another_trap = 1;
2039 keep_going (ecs);
2040 return;
2041 }
2042 #endif /* 0 */
2043 disable_longjmp_breakpoint ();
2044 ecs->handling_longjmp = 0; /* FIXME */
2045 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2046 break;
2047 /* else fallthrough */
2048
2049 case BPSTAT_WHAT_SINGLE:
2050 if (breakpoints_inserted)
2051 {
2052 remove_breakpoints ();
2053 }
2054 breakpoints_inserted = 0;
2055 ecs->another_trap = 1;
2056 /* Still need to check other stuff, at least the case
2057 where we are stepping and step out of the right range. */
2058 break;
2059
2060 case BPSTAT_WHAT_STOP_NOISY:
2061 stop_print_frame = 1;
2062
2063 /* We are about to nuke the step_resume_breakpointt via the
2064 cleanup chain, so no need to worry about it here. */
2065
2066 stop_stepping (ecs);
2067 return;
2068
2069 case BPSTAT_WHAT_STOP_SILENT:
2070 stop_print_frame = 0;
2071
2072 /* We are about to nuke the step_resume_breakpoin via the
2073 cleanup chain, so no need to worry about it here. */
2074
2075 stop_stepping (ecs);
2076 return;
2077
2078 case BPSTAT_WHAT_STEP_RESUME:
2079 /* This proably demands a more elegant solution, but, yeah
2080 right...
2081
2082 This function's use of the simple variable
2083 step_resume_breakpoint doesn't seem to accomodate
2084 simultaneously active step-resume bp's, although the
2085 breakpoint list certainly can.
2086
2087 If we reach here and step_resume_breakpoint is already
2088 NULL, then apparently we have multiple active
2089 step-resume bp's. We'll just delete the breakpoint we
2090 stopped at, and carry on.
2091
2092 Correction: what the code currently does is delete a
2093 step-resume bp, but it makes no effort to ensure that
2094 the one deleted is the one currently stopped at. MVS */
2095
2096 if (step_resume_breakpoint == NULL)
2097 {
2098 step_resume_breakpoint =
2099 bpstat_find_step_resume_breakpoint (stop_bpstat);
2100 }
2101 delete_step_resume_breakpoint (&step_resume_breakpoint);
2102 break;
2103
2104 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2105 /* If were waiting for a trap, hitting the step_resume_break
2106 doesn't count as getting it. */
2107 if (trap_expected)
2108 ecs->another_trap = 1;
2109 break;
2110
2111 case BPSTAT_WHAT_CHECK_SHLIBS:
2112 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2113 #ifdef SOLIB_ADD
2114 {
2115 /* Remove breakpoints, we eventually want to step over the
2116 shlib event breakpoint, and SOLIB_ADD might adjust
2117 breakpoint addresses via breakpoint_re_set. */
2118 if (breakpoints_inserted)
2119 remove_breakpoints ();
2120 breakpoints_inserted = 0;
2121
2122 /* Check for any newly added shared libraries if we're
2123 supposed to be adding them automatically. Switch
2124 terminal for any messages produced by
2125 breakpoint_re_set. */
2126 target_terminal_ours_for_output ();
2127 /* NOTE: cagney/2003-11-25: Make certain that the target
2128 stack's section table is kept up-to-date. Architectures,
2129 (e.g., PPC64), use the section table to perform
2130 operations such as address => section name and hence
2131 require the table to contain all sections (including
2132 those found in shared libraries). */
2133 /* NOTE: cagney/2003-11-25: Pass current_target and not
2134 exec_ops to SOLIB_ADD. This is because current GDB is
2135 only tooled to propagate section_table changes out from
2136 the "current_target" (see target_resize_to_sections), and
2137 not up from the exec stratum. This, of course, isn't
2138 right. "infrun.c" should only interact with the
2139 exec/process stratum, instead relying on the target stack
2140 to propagate relevant changes (stop, section table
2141 changed, ...) up to other layers. */
2142 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2143 target_terminal_inferior ();
2144
2145 /* Try to reenable shared library breakpoints, additional
2146 code segments in shared libraries might be mapped in now. */
2147 re_enable_breakpoints_in_shlibs ();
2148
2149 /* If requested, stop when the dynamic linker notifies
2150 gdb of events. This allows the user to get control
2151 and place breakpoints in initializer routines for
2152 dynamically loaded objects (among other things). */
2153 if (stop_on_solib_events || stop_stack_dummy)
2154 {
2155 stop_stepping (ecs);
2156 return;
2157 }
2158
2159 /* If we stopped due to an explicit catchpoint, then the
2160 (see above) call to SOLIB_ADD pulled in any symbols
2161 from a newly-loaded library, if appropriate.
2162
2163 We do want the inferior to stop, but not where it is
2164 now, which is in the dynamic linker callback. Rather,
2165 we would like it stop in the user's program, just after
2166 the call that caused this catchpoint to trigger. That
2167 gives the user a more useful vantage from which to
2168 examine their program's state. */
2169 else if (what.main_action ==
2170 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2171 {
2172 /* ??rehrauer: If I could figure out how to get the
2173 right return PC from here, we could just set a temp
2174 breakpoint and resume. I'm not sure we can without
2175 cracking open the dld's shared libraries and sniffing
2176 their unwind tables and text/data ranges, and that's
2177 not a terribly portable notion.
2178
2179 Until that time, we must step the inferior out of the
2180 dld callback, and also out of the dld itself (and any
2181 code or stubs in libdld.sl, such as "shl_load" and
2182 friends) until we reach non-dld code. At that point,
2183 we can stop stepping. */
2184 bpstat_get_triggered_catchpoints (stop_bpstat,
2185 &ecs->
2186 stepping_through_solib_catchpoints);
2187 ecs->stepping_through_solib_after_catch = 1;
2188
2189 /* Be sure to lift all breakpoints, so the inferior does
2190 actually step past this point... */
2191 ecs->another_trap = 1;
2192 break;
2193 }
2194 else
2195 {
2196 /* We want to step over this breakpoint, then keep going. */
2197 ecs->another_trap = 1;
2198 break;
2199 }
2200 }
2201 #endif
2202 break;
2203
2204 case BPSTAT_WHAT_LAST:
2205 /* Not a real code, but listed here to shut up gcc -Wall. */
2206
2207 case BPSTAT_WHAT_KEEP_CHECKING:
2208 break;
2209 }
2210 }
2211
2212 /* We come here if we hit a breakpoint but should not
2213 stop for it. Possibly we also were stepping
2214 and should stop for that. So fall through and
2215 test for stepping. But, if not stepping,
2216 do not stop. */
2217
2218 /* Are we stepping to get the inferior out of the dynamic
2219 linker's hook (and possibly the dld itself) after catching
2220 a shlib event? */
2221 if (ecs->stepping_through_solib_after_catch)
2222 {
2223 #if defined(SOLIB_ADD)
2224 /* Have we reached our destination? If not, keep going. */
2225 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2226 {
2227 ecs->another_trap = 1;
2228 keep_going (ecs);
2229 return;
2230 }
2231 #endif
2232 /* Else, stop and report the catchpoint(s) whose triggering
2233 caused us to begin stepping. */
2234 ecs->stepping_through_solib_after_catch = 0;
2235 bpstat_clear (&stop_bpstat);
2236 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2237 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2238 stop_print_frame = 1;
2239 stop_stepping (ecs);
2240 return;
2241 }
2242
2243 if (step_resume_breakpoint)
2244 {
2245 /* Having a step-resume breakpoint overrides anything
2246 else having to do with stepping commands until
2247 that breakpoint is reached. */
2248 keep_going (ecs);
2249 return;
2250 }
2251
2252 if (step_range_end == 0)
2253 {
2254 /* Likewise if we aren't even stepping. */
2255 keep_going (ecs);
2256 return;
2257 }
2258
2259 /* If stepping through a line, keep going if still within it.
2260
2261 Note that step_range_end is the address of the first instruction
2262 beyond the step range, and NOT the address of the last instruction
2263 within it! */
2264 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2265 {
2266 keep_going (ecs);
2267 return;
2268 }
2269
2270 /* We stepped out of the stepping range. */
2271
2272 /* If we are stepping at the source level and entered the runtime
2273 loader dynamic symbol resolution code, we keep on single stepping
2274 until we exit the run time loader code and reach the callee's
2275 address. */
2276 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2277 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2278 {
2279 CORE_ADDR pc_after_resolver =
2280 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2281
2282 if (pc_after_resolver)
2283 {
2284 /* Set up a step-resume breakpoint at the address
2285 indicated by SKIP_SOLIB_RESOLVER. */
2286 struct symtab_and_line sr_sal;
2287 init_sal (&sr_sal);
2288 sr_sal.pc = pc_after_resolver;
2289
2290 check_for_old_step_resume_breakpoint ();
2291 step_resume_breakpoint =
2292 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2293 if (breakpoints_inserted)
2294 insert_breakpoints ();
2295 }
2296
2297 keep_going (ecs);
2298 return;
2299 }
2300
2301 if (step_range_end != 1
2302 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2303 || step_over_calls == STEP_OVER_ALL)
2304 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2305 {
2306 /* The inferior, while doing a "step" or "next", has ended up in
2307 a signal trampoline (either by a signal being delivered or by
2308 the signal handler returning). Just single-step until the
2309 inferior leaves the trampoline (either by calling the handler
2310 or returning). */
2311 keep_going (ecs);
2312 return;
2313 }
2314
2315 if (frame_id_eq (frame_unwind_id (get_current_frame ()),
2316 step_frame_id))
2317 {
2318 /* It's a subroutine call. */
2319 CORE_ADDR real_stop_pc;
2320
2321 if ((step_over_calls == STEP_OVER_NONE)
2322 || ((step_range_end == 1)
2323 && in_prologue (prev_pc, ecs->stop_func_start)))
2324 {
2325 /* I presume that step_over_calls is only 0 when we're
2326 supposed to be stepping at the assembly language level
2327 ("stepi"). Just stop. */
2328 /* Also, maybe we just did a "nexti" inside a prolog, so we
2329 thought it was a subroutine call but it was not. Stop as
2330 well. FENN */
2331 stop_step = 1;
2332 print_stop_reason (END_STEPPING_RANGE, 0);
2333 stop_stepping (ecs);
2334 return;
2335 }
2336
2337 #ifdef DEPRECATED_IGNORE_HELPER_CALL
2338 /* On MIPS16, a function that returns a floating point value may
2339 call a library helper function to copy the return value to a
2340 floating point register. The DEPRECATED_IGNORE_HELPER_CALL
2341 macro returns non-zero if we should ignore (i.e. step over)
2342 this function call. */
2343 /* FIXME: cagney/2004-07-21: These custom ``ignore frame when
2344 stepping'' function attributes (SIGTRAMP_FRAME,
2345 DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE,
2346 skip_language_trampoline frame, et.al.) need to be replaced
2347 with generic attributes bound to the frame's function. */
2348 if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc))
2349 {
2350 /* We're doing a "next", set a breakpoint at callee's return
2351 address (the address at which the caller will
2352 resume). */
2353 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2354 ecs);
2355 keep_going (ecs);
2356 return;
2357 }
2358 #endif
2359 if (step_over_calls == STEP_OVER_ALL)
2360 {
2361 /* We're doing a "next", set a breakpoint at callee's return
2362 address (the address at which the caller will
2363 resume). */
2364 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2365 ecs);
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 /* If we are in a function call trampoline (a stub between the
2371 calling routine and the real function), locate the real
2372 function. That's what tells us (a) whether we want to step
2373 into it at all, and (b) what prologue we want to run to the
2374 end of, if we do step into it. */
2375 real_stop_pc = skip_language_trampoline (stop_pc);
2376 if (real_stop_pc == 0)
2377 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2378 if (real_stop_pc != 0)
2379 ecs->stop_func_start = real_stop_pc;
2380
2381 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2382 {
2383 struct symtab_and_line sr_sal;
2384 init_sal (&sr_sal);
2385 sr_sal.pc = ecs->stop_func_start;
2386
2387 check_for_old_step_resume_breakpoint ();
2388 step_resume_breakpoint =
2389 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2390 if (breakpoints_inserted)
2391 insert_breakpoints ();
2392
2393 keep_going (ecs);
2394 return;
2395 }
2396
2397 /* If we have line number information for the function we are
2398 thinking of stepping into, step into it.
2399
2400 If there are several symtabs at that PC (e.g. with include
2401 files), just want to know whether *any* of them have line
2402 numbers. find_pc_line handles this. */
2403 {
2404 struct symtab_and_line tmp_sal;
2405
2406 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2407 if (tmp_sal.line != 0)
2408 {
2409 step_into_function (ecs);
2410 return;
2411 }
2412 }
2413
2414 /* If we have no line number and the step-stop-if-no-debug is
2415 set, we stop the step so that the user has a chance to switch
2416 in assembly mode. */
2417 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2418 {
2419 stop_step = 1;
2420 print_stop_reason (END_STEPPING_RANGE, 0);
2421 stop_stepping (ecs);
2422 return;
2423 }
2424
2425 /* Set a breakpoint at callee's return address (the address at
2426 which the caller will resume). */
2427 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
2428 keep_going (ecs);
2429 return;
2430 }
2431
2432 /* If we're in the return path from a shared library trampoline,
2433 we want to proceed through the trampoline when stepping. */
2434 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2435 {
2436 /* Determine where this trampoline returns. */
2437 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2438
2439 /* Only proceed through if we know where it's going. */
2440 if (real_stop_pc)
2441 {
2442 /* And put the step-breakpoint there and go until there. */
2443 struct symtab_and_line sr_sal;
2444
2445 init_sal (&sr_sal); /* initialize to zeroes */
2446 sr_sal.pc = real_stop_pc;
2447 sr_sal.section = find_pc_overlay (sr_sal.pc);
2448 /* Do not specify what the fp should be when we stop
2449 since on some machines the prologue
2450 is where the new fp value is established. */
2451 check_for_old_step_resume_breakpoint ();
2452 step_resume_breakpoint =
2453 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2454 if (breakpoints_inserted)
2455 insert_breakpoints ();
2456
2457 /* Restart without fiddling with the step ranges or
2458 other state. */
2459 keep_going (ecs);
2460 return;
2461 }
2462 }
2463
2464 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2465 the trampoline processing logic, however, there are some trampolines
2466 that have no names, so we should do trampoline handling first. */
2467 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2468 && ecs->stop_func_name == NULL)
2469 {
2470 /* The inferior just stepped into, or returned to, an
2471 undebuggable function (where there is no symbol, not even a
2472 minimal symbol, corresponding to the address where the
2473 inferior stopped). Since we want to skip this kind of code,
2474 we keep going until the inferior returns from this
2475 function. */
2476 if (step_stop_if_no_debug)
2477 {
2478 /* If we have no line number and the step-stop-if-no-debug
2479 is set, we stop the step so that the user has a chance to
2480 switch in assembly mode. */
2481 stop_step = 1;
2482 print_stop_reason (END_STEPPING_RANGE, 0);
2483 stop_stepping (ecs);
2484 return;
2485 }
2486 else
2487 {
2488 /* Set a breakpoint at callee's return address (the address
2489 at which the caller will resume). */
2490 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2491 ecs);
2492 keep_going (ecs);
2493 return;
2494 }
2495 }
2496
2497 if (step_range_end == 1)
2498 {
2499 /* It is stepi or nexti. We always want to stop stepping after
2500 one instruction. */
2501 stop_step = 1;
2502 print_stop_reason (END_STEPPING_RANGE, 0);
2503 stop_stepping (ecs);
2504 return;
2505 }
2506
2507 ecs->sal = find_pc_line (stop_pc, 0);
2508
2509 if (ecs->sal.line == 0)
2510 {
2511 /* We have no line number information. That means to stop
2512 stepping (does this always happen right after one instruction,
2513 when we do "s" in a function with no line numbers,
2514 or can this happen as a result of a return or longjmp?). */
2515 stop_step = 1;
2516 print_stop_reason (END_STEPPING_RANGE, 0);
2517 stop_stepping (ecs);
2518 return;
2519 }
2520
2521 if ((stop_pc == ecs->sal.pc)
2522 && (ecs->current_line != ecs->sal.line
2523 || ecs->current_symtab != ecs->sal.symtab))
2524 {
2525 /* We are at the start of a different line. So stop. Note that
2526 we don't stop if we step into the middle of a different line.
2527 That is said to make things like for (;;) statements work
2528 better. */
2529 stop_step = 1;
2530 print_stop_reason (END_STEPPING_RANGE, 0);
2531 stop_stepping (ecs);
2532 return;
2533 }
2534
2535 /* We aren't done stepping.
2536
2537 Optimize by setting the stepping range to the line.
2538 (We might not be in the original line, but if we entered a
2539 new line in mid-statement, we continue stepping. This makes
2540 things like for(;;) statements work better.) */
2541
2542 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2543 {
2544 /* If this is the last line of the function, don't keep stepping
2545 (it would probably step us out of the function).
2546 This is particularly necessary for a one-line function,
2547 in which after skipping the prologue we better stop even though
2548 we will be in mid-line. */
2549 stop_step = 1;
2550 print_stop_reason (END_STEPPING_RANGE, 0);
2551 stop_stepping (ecs);
2552 return;
2553 }
2554 step_range_start = ecs->sal.pc;
2555 step_range_end = ecs->sal.end;
2556 step_frame_id = get_frame_id (get_current_frame ());
2557 ecs->current_line = ecs->sal.line;
2558 ecs->current_symtab = ecs->sal.symtab;
2559
2560 /* In the case where we just stepped out of a function into the
2561 middle of a line of the caller, continue stepping, but
2562 step_frame_id must be modified to current frame */
2563 #if 0
2564 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2565 generous. It will trigger on things like a step into a frameless
2566 stackless leaf function. I think the logic should instead look
2567 at the unwound frame ID has that should give a more robust
2568 indication of what happened. */
2569 if (step-ID == current-ID)
2570 still stepping in same function;
2571 else if (step-ID == unwind (current-ID))
2572 stepped into a function;
2573 else
2574 stepped out of a function;
2575 /* Of course this assumes that the frame ID unwind code is robust
2576 and we're willing to introduce frame unwind logic into this
2577 function. Fortunately, those days are nearly upon us. */
2578 #endif
2579 {
2580 struct frame_id current_frame = get_frame_id (get_current_frame ());
2581 if (!(frame_id_inner (current_frame, step_frame_id)))
2582 step_frame_id = current_frame;
2583 }
2584
2585 keep_going (ecs);
2586 }
2587
2588 /* Are we in the middle of stepping? */
2589
2590 static int
2591 currently_stepping (struct execution_control_state *ecs)
2592 {
2593 return ((!ecs->handling_longjmp
2594 && ((step_range_end && step_resume_breakpoint == NULL)
2595 || trap_expected))
2596 || ecs->stepping_through_solib_after_catch
2597 || bpstat_should_step ());
2598 }
2599
2600 /* Subroutine call with source code we should not step over. Do step
2601 to the first line of code in it. */
2602
2603 static void
2604 step_into_function (struct execution_control_state *ecs)
2605 {
2606 struct symtab *s;
2607 struct symtab_and_line sr_sal;
2608
2609 s = find_pc_symtab (stop_pc);
2610 if (s && s->language != language_asm)
2611 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2612
2613 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2614 /* Use the step_resume_break to step until the end of the prologue,
2615 even if that involves jumps (as it seems to on the vax under
2616 4.2). */
2617 /* If the prologue ends in the middle of a source line, continue to
2618 the end of that source line (if it is still within the function).
2619 Otherwise, just go to end of prologue. */
2620 if (ecs->sal.end
2621 && ecs->sal.pc != ecs->stop_func_start
2622 && ecs->sal.end < ecs->stop_func_end)
2623 ecs->stop_func_start = ecs->sal.end;
2624
2625 /* Architectures which require breakpoint adjustment might not be able
2626 to place a breakpoint at the computed address. If so, the test
2627 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2628 ecs->stop_func_start to an address at which a breakpoint may be
2629 legitimately placed.
2630
2631 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2632 made, GDB will enter an infinite loop when stepping through
2633 optimized code consisting of VLIW instructions which contain
2634 subinstructions corresponding to different source lines. On
2635 FR-V, it's not permitted to place a breakpoint on any but the
2636 first subinstruction of a VLIW instruction. When a breakpoint is
2637 set, GDB will adjust the breakpoint address to the beginning of
2638 the VLIW instruction. Thus, we need to make the corresponding
2639 adjustment here when computing the stop address. */
2640
2641 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2642 {
2643 ecs->stop_func_start
2644 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2645 ecs->stop_func_start);
2646 }
2647
2648 if (ecs->stop_func_start == stop_pc)
2649 {
2650 /* We are already there: stop now. */
2651 stop_step = 1;
2652 print_stop_reason (END_STEPPING_RANGE, 0);
2653 stop_stepping (ecs);
2654 return;
2655 }
2656 else
2657 {
2658 /* Put the step-breakpoint there and go until there. */
2659 init_sal (&sr_sal); /* initialize to zeroes */
2660 sr_sal.pc = ecs->stop_func_start;
2661 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2662 /* Do not specify what the fp should be when we stop since on
2663 some machines the prologue is where the new fp value is
2664 established. */
2665 check_for_old_step_resume_breakpoint ();
2666 step_resume_breakpoint =
2667 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2668 if (breakpoints_inserted)
2669 insert_breakpoints ();
2670
2671 /* And make sure stepping stops right away then. */
2672 step_range_end = step_range_start;
2673 }
2674 keep_going (ecs);
2675 }
2676
2677 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2678 to skip a function (next, skip-no-debug) or signal. It's assumed
2679 that the function/signal handler being skipped eventually returns
2680 to the breakpoint inserted at RETURN_FRAME.pc.
2681
2682 For the skip-function case, the function may have been reached by
2683 either single stepping a call / return / signal-return instruction,
2684 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2685 to the skip-function's caller.
2686
2687 For the signals case, this is called with the interrupted
2688 function's frame. The signal handler, when it returns, will resume
2689 the interrupted function at RETURN_FRAME.pc. */
2690
2691 static void
2692 insert_step_resume_breakpoint (struct frame_info *return_frame,
2693 struct execution_control_state *ecs)
2694 {
2695 struct symtab_and_line sr_sal;
2696
2697 init_sal (&sr_sal); /* initialize to zeros */
2698
2699 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2700 sr_sal.section = find_pc_overlay (sr_sal.pc);
2701
2702 check_for_old_step_resume_breakpoint ();
2703
2704 step_resume_breakpoint
2705 = set_momentary_breakpoint (sr_sal, get_frame_id (return_frame),
2706 bp_step_resume);
2707
2708 if (breakpoints_inserted)
2709 insert_breakpoints ();
2710 }
2711
2712 static void
2713 stop_stepping (struct execution_control_state *ecs)
2714 {
2715 /* Let callers know we don't want to wait for the inferior anymore. */
2716 ecs->wait_some_more = 0;
2717 }
2718
2719 /* This function handles various cases where we need to continue
2720 waiting for the inferior. */
2721 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2722
2723 static void
2724 keep_going (struct execution_control_state *ecs)
2725 {
2726 /* Save the pc before execution, to compare with pc after stop. */
2727 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2728
2729 /* If we did not do break;, it means we should keep running the
2730 inferior and not return to debugger. */
2731
2732 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2733 {
2734 /* We took a signal (which we are supposed to pass through to
2735 the inferior, else we'd have done a break above) and we
2736 haven't yet gotten our trap. Simply continue. */
2737 resume (currently_stepping (ecs), stop_signal);
2738 }
2739 else
2740 {
2741 /* Either the trap was not expected, but we are continuing
2742 anyway (the user asked that this signal be passed to the
2743 child)
2744 -- or --
2745 The signal was SIGTRAP, e.g. it was our signal, but we
2746 decided we should resume from it.
2747
2748 We're going to run this baby now!
2749
2750 Insert breakpoints now, unless we are trying to one-proceed
2751 past a breakpoint. */
2752 /* If we've just finished a special step resume and we don't
2753 want to hit a breakpoint, pull em out. */
2754 if (step_resume_breakpoint == NULL
2755 && ecs->remove_breakpoints_on_following_step)
2756 {
2757 ecs->remove_breakpoints_on_following_step = 0;
2758 remove_breakpoints ();
2759 breakpoints_inserted = 0;
2760 }
2761 else if (!breakpoints_inserted && !ecs->another_trap)
2762 {
2763 breakpoints_failed = insert_breakpoints ();
2764 if (breakpoints_failed)
2765 {
2766 stop_stepping (ecs);
2767 return;
2768 }
2769 breakpoints_inserted = 1;
2770 }
2771
2772 trap_expected = ecs->another_trap;
2773
2774 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2775 specifies that such a signal should be delivered to the
2776 target program).
2777
2778 Typically, this would occure when a user is debugging a
2779 target monitor on a simulator: the target monitor sets a
2780 breakpoint; the simulator encounters this break-point and
2781 halts the simulation handing control to GDB; GDB, noteing
2782 that the break-point isn't valid, returns control back to the
2783 simulator; the simulator then delivers the hardware
2784 equivalent of a SIGNAL_TRAP to the program being debugged. */
2785
2786 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2787 stop_signal = TARGET_SIGNAL_0;
2788
2789
2790 resume (currently_stepping (ecs), stop_signal);
2791 }
2792
2793 prepare_to_wait (ecs);
2794 }
2795
2796 /* This function normally comes after a resume, before
2797 handle_inferior_event exits. It takes care of any last bits of
2798 housekeeping, and sets the all-important wait_some_more flag. */
2799
2800 static void
2801 prepare_to_wait (struct execution_control_state *ecs)
2802 {
2803 if (ecs->infwait_state == infwait_normal_state)
2804 {
2805 overlay_cache_invalid = 1;
2806
2807 /* We have to invalidate the registers BEFORE calling
2808 target_wait because they can be loaded from the target while
2809 in target_wait. This makes remote debugging a bit more
2810 efficient for those targets that provide critical registers
2811 as part of their normal status mechanism. */
2812
2813 registers_changed ();
2814 ecs->waiton_ptid = pid_to_ptid (-1);
2815 ecs->wp = &(ecs->ws);
2816 }
2817 /* This is the old end of the while loop. Let everybody know we
2818 want to wait for the inferior some more and get called again
2819 soon. */
2820 ecs->wait_some_more = 1;
2821 }
2822
2823 /* Print why the inferior has stopped. We always print something when
2824 the inferior exits, or receives a signal. The rest of the cases are
2825 dealt with later on in normal_stop() and print_it_typical(). Ideally
2826 there should be a call to this function from handle_inferior_event()
2827 each time stop_stepping() is called.*/
2828 static void
2829 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2830 {
2831 switch (stop_reason)
2832 {
2833 case STOP_UNKNOWN:
2834 /* We don't deal with these cases from handle_inferior_event()
2835 yet. */
2836 break;
2837 case END_STEPPING_RANGE:
2838 /* We are done with a step/next/si/ni command. */
2839 /* For now print nothing. */
2840 /* Print a message only if not in the middle of doing a "step n"
2841 operation for n > 1 */
2842 if (!step_multi || !stop_step)
2843 if (ui_out_is_mi_like_p (uiout))
2844 ui_out_field_string (uiout, "reason", "end-stepping-range");
2845 break;
2846 case BREAKPOINT_HIT:
2847 /* We found a breakpoint. */
2848 /* For now print nothing. */
2849 break;
2850 case SIGNAL_EXITED:
2851 /* The inferior was terminated by a signal. */
2852 annotate_signalled ();
2853 if (ui_out_is_mi_like_p (uiout))
2854 ui_out_field_string (uiout, "reason", "exited-signalled");
2855 ui_out_text (uiout, "\nProgram terminated with signal ");
2856 annotate_signal_name ();
2857 ui_out_field_string (uiout, "signal-name",
2858 target_signal_to_name (stop_info));
2859 annotate_signal_name_end ();
2860 ui_out_text (uiout, ", ");
2861 annotate_signal_string ();
2862 ui_out_field_string (uiout, "signal-meaning",
2863 target_signal_to_string (stop_info));
2864 annotate_signal_string_end ();
2865 ui_out_text (uiout, ".\n");
2866 ui_out_text (uiout, "The program no longer exists.\n");
2867 break;
2868 case EXITED:
2869 /* The inferior program is finished. */
2870 annotate_exited (stop_info);
2871 if (stop_info)
2872 {
2873 if (ui_out_is_mi_like_p (uiout))
2874 ui_out_field_string (uiout, "reason", "exited");
2875 ui_out_text (uiout, "\nProgram exited with code ");
2876 ui_out_field_fmt (uiout, "exit-code", "0%o",
2877 (unsigned int) stop_info);
2878 ui_out_text (uiout, ".\n");
2879 }
2880 else
2881 {
2882 if (ui_out_is_mi_like_p (uiout))
2883 ui_out_field_string (uiout, "reason", "exited-normally");
2884 ui_out_text (uiout, "\nProgram exited normally.\n");
2885 }
2886 break;
2887 case SIGNAL_RECEIVED:
2888 /* Signal received. The signal table tells us to print about
2889 it. */
2890 annotate_signal ();
2891 ui_out_text (uiout, "\nProgram received signal ");
2892 annotate_signal_name ();
2893 if (ui_out_is_mi_like_p (uiout))
2894 ui_out_field_string (uiout, "reason", "signal-received");
2895 ui_out_field_string (uiout, "signal-name",
2896 target_signal_to_name (stop_info));
2897 annotate_signal_name_end ();
2898 ui_out_text (uiout, ", ");
2899 annotate_signal_string ();
2900 ui_out_field_string (uiout, "signal-meaning",
2901 target_signal_to_string (stop_info));
2902 annotate_signal_string_end ();
2903 ui_out_text (uiout, ".\n");
2904 break;
2905 default:
2906 internal_error (__FILE__, __LINE__,
2907 "print_stop_reason: unrecognized enum value");
2908 break;
2909 }
2910 }
2911 \f
2912
2913 /* Here to return control to GDB when the inferior stops for real.
2914 Print appropriate messages, remove breakpoints, give terminal our modes.
2915
2916 STOP_PRINT_FRAME nonzero means print the executing frame
2917 (pc, function, args, file, line number and line text).
2918 BREAKPOINTS_FAILED nonzero means stop was due to error
2919 attempting to insert breakpoints. */
2920
2921 void
2922 normal_stop (void)
2923 {
2924 struct target_waitstatus last;
2925 ptid_t last_ptid;
2926
2927 get_last_target_status (&last_ptid, &last);
2928
2929 /* As with the notification of thread events, we want to delay
2930 notifying the user that we've switched thread context until
2931 the inferior actually stops.
2932
2933 There's no point in saying anything if the inferior has exited.
2934 Note that SIGNALLED here means "exited with a signal", not
2935 "received a signal". */
2936 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2937 && target_has_execution
2938 && last.kind != TARGET_WAITKIND_SIGNALLED
2939 && last.kind != TARGET_WAITKIND_EXITED)
2940 {
2941 target_terminal_ours_for_output ();
2942 printf_filtered ("[Switching to %s]\n",
2943 target_pid_or_tid_to_str (inferior_ptid));
2944 previous_inferior_ptid = inferior_ptid;
2945 }
2946
2947 /* NOTE drow/2004-01-17: Is this still necessary? */
2948 /* Make sure that the current_frame's pc is correct. This
2949 is a correction for setting up the frame info before doing
2950 DECR_PC_AFTER_BREAK */
2951 if (target_has_execution)
2952 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2953 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2954 frame code to check for this and sort out any resultant mess.
2955 DECR_PC_AFTER_BREAK needs to just go away. */
2956 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2957
2958 if (target_has_execution && breakpoints_inserted)
2959 {
2960 if (remove_breakpoints ())
2961 {
2962 target_terminal_ours_for_output ();
2963 printf_filtered ("Cannot remove breakpoints because ");
2964 printf_filtered ("program is no longer writable.\n");
2965 printf_filtered ("It might be running in another process.\n");
2966 printf_filtered ("Further execution is probably impossible.\n");
2967 }
2968 }
2969 breakpoints_inserted = 0;
2970
2971 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2972 Delete any breakpoint that is to be deleted at the next stop. */
2973
2974 breakpoint_auto_delete (stop_bpstat);
2975
2976 /* If an auto-display called a function and that got a signal,
2977 delete that auto-display to avoid an infinite recursion. */
2978
2979 if (stopped_by_random_signal)
2980 disable_current_display ();
2981
2982 /* Don't print a message if in the middle of doing a "step n"
2983 operation for n > 1 */
2984 if (step_multi && stop_step)
2985 goto done;
2986
2987 target_terminal_ours ();
2988
2989 /* Look up the hook_stop and run it (CLI internally handles problem
2990 of stop_command's pre-hook not existing). */
2991 if (stop_command)
2992 catch_errors (hook_stop_stub, stop_command,
2993 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2994
2995 if (!target_has_stack)
2996 {
2997
2998 goto done;
2999 }
3000
3001 /* Select innermost stack frame - i.e., current frame is frame 0,
3002 and current location is based on that.
3003 Don't do this on return from a stack dummy routine,
3004 or if the program has exited. */
3005
3006 if (!stop_stack_dummy)
3007 {
3008 select_frame (get_current_frame ());
3009
3010 /* Print current location without a level number, if
3011 we have changed functions or hit a breakpoint.
3012 Print source line if we have one.
3013 bpstat_print() contains the logic deciding in detail
3014 what to print, based on the event(s) that just occurred. */
3015
3016 if (stop_print_frame && deprecated_selected_frame)
3017 {
3018 int bpstat_ret;
3019 int source_flag;
3020 int do_frame_printing = 1;
3021
3022 bpstat_ret = bpstat_print (stop_bpstat);
3023 switch (bpstat_ret)
3024 {
3025 case PRINT_UNKNOWN:
3026 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3027 (or should) carry around the function and does (or
3028 should) use that when doing a frame comparison. */
3029 if (stop_step
3030 && frame_id_eq (step_frame_id,
3031 get_frame_id (get_current_frame ()))
3032 && step_start_function == find_pc_function (stop_pc))
3033 source_flag = SRC_LINE; /* finished step, just print source line */
3034 else
3035 source_flag = SRC_AND_LOC; /* print location and source line */
3036 break;
3037 case PRINT_SRC_AND_LOC:
3038 source_flag = SRC_AND_LOC; /* print location and source line */
3039 break;
3040 case PRINT_SRC_ONLY:
3041 source_flag = SRC_LINE;
3042 break;
3043 case PRINT_NOTHING:
3044 source_flag = SRC_LINE; /* something bogus */
3045 do_frame_printing = 0;
3046 break;
3047 default:
3048 internal_error (__FILE__, __LINE__, "Unknown value.");
3049 }
3050 /* For mi, have the same behavior every time we stop:
3051 print everything but the source line. */
3052 if (ui_out_is_mi_like_p (uiout))
3053 source_flag = LOC_AND_ADDRESS;
3054
3055 if (ui_out_is_mi_like_p (uiout))
3056 ui_out_field_int (uiout, "thread-id",
3057 pid_to_thread_id (inferior_ptid));
3058 /* The behavior of this routine with respect to the source
3059 flag is:
3060 SRC_LINE: Print only source line
3061 LOCATION: Print only location
3062 SRC_AND_LOC: Print location and source line */
3063 if (do_frame_printing)
3064 print_stack_frame (get_selected_frame (), 0, source_flag);
3065
3066 /* Display the auto-display expressions. */
3067 do_displays ();
3068 }
3069 }
3070
3071 /* Save the function value return registers, if we care.
3072 We might be about to restore their previous contents. */
3073 if (proceed_to_finish)
3074 /* NB: The copy goes through to the target picking up the value of
3075 all the registers. */
3076 regcache_cpy (stop_registers, current_regcache);
3077
3078 if (stop_stack_dummy)
3079 {
3080 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3081 ends with a setting of the current frame, so we can use that
3082 next. */
3083 frame_pop (get_current_frame ());
3084 /* Set stop_pc to what it was before we called the function.
3085 Can't rely on restore_inferior_status because that only gets
3086 called if we don't stop in the called function. */
3087 stop_pc = read_pc ();
3088 select_frame (get_current_frame ());
3089 }
3090
3091 done:
3092 annotate_stopped ();
3093 observer_notify_normal_stop (stop_bpstat);
3094 }
3095
3096 static int
3097 hook_stop_stub (void *cmd)
3098 {
3099 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3100 return (0);
3101 }
3102 \f
3103 int
3104 signal_stop_state (int signo)
3105 {
3106 return signal_stop[signo];
3107 }
3108
3109 int
3110 signal_print_state (int signo)
3111 {
3112 return signal_print[signo];
3113 }
3114
3115 int
3116 signal_pass_state (int signo)
3117 {
3118 return signal_program[signo];
3119 }
3120
3121 int
3122 signal_stop_update (int signo, int state)
3123 {
3124 int ret = signal_stop[signo];
3125 signal_stop[signo] = state;
3126 return ret;
3127 }
3128
3129 int
3130 signal_print_update (int signo, int state)
3131 {
3132 int ret = signal_print[signo];
3133 signal_print[signo] = state;
3134 return ret;
3135 }
3136
3137 int
3138 signal_pass_update (int signo, int state)
3139 {
3140 int ret = signal_program[signo];
3141 signal_program[signo] = state;
3142 return ret;
3143 }
3144
3145 static void
3146 sig_print_header (void)
3147 {
3148 printf_filtered ("\
3149 Signal Stop\tPrint\tPass to program\tDescription\n");
3150 }
3151
3152 static void
3153 sig_print_info (enum target_signal oursig)
3154 {
3155 char *name = target_signal_to_name (oursig);
3156 int name_padding = 13 - strlen (name);
3157
3158 if (name_padding <= 0)
3159 name_padding = 0;
3160
3161 printf_filtered ("%s", name);
3162 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3163 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3164 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3165 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3166 printf_filtered ("%s\n", target_signal_to_string (oursig));
3167 }
3168
3169 /* Specify how various signals in the inferior should be handled. */
3170
3171 static void
3172 handle_command (char *args, int from_tty)
3173 {
3174 char **argv;
3175 int digits, wordlen;
3176 int sigfirst, signum, siglast;
3177 enum target_signal oursig;
3178 int allsigs;
3179 int nsigs;
3180 unsigned char *sigs;
3181 struct cleanup *old_chain;
3182
3183 if (args == NULL)
3184 {
3185 error_no_arg ("signal to handle");
3186 }
3187
3188 /* Allocate and zero an array of flags for which signals to handle. */
3189
3190 nsigs = (int) TARGET_SIGNAL_LAST;
3191 sigs = (unsigned char *) alloca (nsigs);
3192 memset (sigs, 0, nsigs);
3193
3194 /* Break the command line up into args. */
3195
3196 argv = buildargv (args);
3197 if (argv == NULL)
3198 {
3199 nomem (0);
3200 }
3201 old_chain = make_cleanup_freeargv (argv);
3202
3203 /* Walk through the args, looking for signal oursigs, signal names, and
3204 actions. Signal numbers and signal names may be interspersed with
3205 actions, with the actions being performed for all signals cumulatively
3206 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3207
3208 while (*argv != NULL)
3209 {
3210 wordlen = strlen (*argv);
3211 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3212 {;
3213 }
3214 allsigs = 0;
3215 sigfirst = siglast = -1;
3216
3217 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3218 {
3219 /* Apply action to all signals except those used by the
3220 debugger. Silently skip those. */
3221 allsigs = 1;
3222 sigfirst = 0;
3223 siglast = nsigs - 1;
3224 }
3225 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3226 {
3227 SET_SIGS (nsigs, sigs, signal_stop);
3228 SET_SIGS (nsigs, sigs, signal_print);
3229 }
3230 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3231 {
3232 UNSET_SIGS (nsigs, sigs, signal_program);
3233 }
3234 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3235 {
3236 SET_SIGS (nsigs, sigs, signal_print);
3237 }
3238 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3239 {
3240 SET_SIGS (nsigs, sigs, signal_program);
3241 }
3242 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3243 {
3244 UNSET_SIGS (nsigs, sigs, signal_stop);
3245 }
3246 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3247 {
3248 SET_SIGS (nsigs, sigs, signal_program);
3249 }
3250 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3251 {
3252 UNSET_SIGS (nsigs, sigs, signal_print);
3253 UNSET_SIGS (nsigs, sigs, signal_stop);
3254 }
3255 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3256 {
3257 UNSET_SIGS (nsigs, sigs, signal_program);
3258 }
3259 else if (digits > 0)
3260 {
3261 /* It is numeric. The numeric signal refers to our own
3262 internal signal numbering from target.h, not to host/target
3263 signal number. This is a feature; users really should be
3264 using symbolic names anyway, and the common ones like
3265 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3266
3267 sigfirst = siglast = (int)
3268 target_signal_from_command (atoi (*argv));
3269 if ((*argv)[digits] == '-')
3270 {
3271 siglast = (int)
3272 target_signal_from_command (atoi ((*argv) + digits + 1));
3273 }
3274 if (sigfirst > siglast)
3275 {
3276 /* Bet he didn't figure we'd think of this case... */
3277 signum = sigfirst;
3278 sigfirst = siglast;
3279 siglast = signum;
3280 }
3281 }
3282 else
3283 {
3284 oursig = target_signal_from_name (*argv);
3285 if (oursig != TARGET_SIGNAL_UNKNOWN)
3286 {
3287 sigfirst = siglast = (int) oursig;
3288 }
3289 else
3290 {
3291 /* Not a number and not a recognized flag word => complain. */
3292 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3293 }
3294 }
3295
3296 /* If any signal numbers or symbol names were found, set flags for
3297 which signals to apply actions to. */
3298
3299 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3300 {
3301 switch ((enum target_signal) signum)
3302 {
3303 case TARGET_SIGNAL_TRAP:
3304 case TARGET_SIGNAL_INT:
3305 if (!allsigs && !sigs[signum])
3306 {
3307 if (query ("%s is used by the debugger.\n\
3308 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3309 {
3310 sigs[signum] = 1;
3311 }
3312 else
3313 {
3314 printf_unfiltered ("Not confirmed, unchanged.\n");
3315 gdb_flush (gdb_stdout);
3316 }
3317 }
3318 break;
3319 case TARGET_SIGNAL_0:
3320 case TARGET_SIGNAL_DEFAULT:
3321 case TARGET_SIGNAL_UNKNOWN:
3322 /* Make sure that "all" doesn't print these. */
3323 break;
3324 default:
3325 sigs[signum] = 1;
3326 break;
3327 }
3328 }
3329
3330 argv++;
3331 }
3332
3333 target_notice_signals (inferior_ptid);
3334
3335 if (from_tty)
3336 {
3337 /* Show the results. */
3338 sig_print_header ();
3339 for (signum = 0; signum < nsigs; signum++)
3340 {
3341 if (sigs[signum])
3342 {
3343 sig_print_info (signum);
3344 }
3345 }
3346 }
3347
3348 do_cleanups (old_chain);
3349 }
3350
3351 static void
3352 xdb_handle_command (char *args, int from_tty)
3353 {
3354 char **argv;
3355 struct cleanup *old_chain;
3356
3357 /* Break the command line up into args. */
3358
3359 argv = buildargv (args);
3360 if (argv == NULL)
3361 {
3362 nomem (0);
3363 }
3364 old_chain = make_cleanup_freeargv (argv);
3365 if (argv[1] != (char *) NULL)
3366 {
3367 char *argBuf;
3368 int bufLen;
3369
3370 bufLen = strlen (argv[0]) + 20;
3371 argBuf = (char *) xmalloc (bufLen);
3372 if (argBuf)
3373 {
3374 int validFlag = 1;
3375 enum target_signal oursig;
3376
3377 oursig = target_signal_from_name (argv[0]);
3378 memset (argBuf, 0, bufLen);
3379 if (strcmp (argv[1], "Q") == 0)
3380 sprintf (argBuf, "%s %s", argv[0], "noprint");
3381 else
3382 {
3383 if (strcmp (argv[1], "s") == 0)
3384 {
3385 if (!signal_stop[oursig])
3386 sprintf (argBuf, "%s %s", argv[0], "stop");
3387 else
3388 sprintf (argBuf, "%s %s", argv[0], "nostop");
3389 }
3390 else if (strcmp (argv[1], "i") == 0)
3391 {
3392 if (!signal_program[oursig])
3393 sprintf (argBuf, "%s %s", argv[0], "pass");
3394 else
3395 sprintf (argBuf, "%s %s", argv[0], "nopass");
3396 }
3397 else if (strcmp (argv[1], "r") == 0)
3398 {
3399 if (!signal_print[oursig])
3400 sprintf (argBuf, "%s %s", argv[0], "print");
3401 else
3402 sprintf (argBuf, "%s %s", argv[0], "noprint");
3403 }
3404 else
3405 validFlag = 0;
3406 }
3407 if (validFlag)
3408 handle_command (argBuf, from_tty);
3409 else
3410 printf_filtered ("Invalid signal handling flag.\n");
3411 if (argBuf)
3412 xfree (argBuf);
3413 }
3414 }
3415 do_cleanups (old_chain);
3416 }
3417
3418 /* Print current contents of the tables set by the handle command.
3419 It is possible we should just be printing signals actually used
3420 by the current target (but for things to work right when switching
3421 targets, all signals should be in the signal tables). */
3422
3423 static void
3424 signals_info (char *signum_exp, int from_tty)
3425 {
3426 enum target_signal oursig;
3427 sig_print_header ();
3428
3429 if (signum_exp)
3430 {
3431 /* First see if this is a symbol name. */
3432 oursig = target_signal_from_name (signum_exp);
3433 if (oursig == TARGET_SIGNAL_UNKNOWN)
3434 {
3435 /* No, try numeric. */
3436 oursig =
3437 target_signal_from_command (parse_and_eval_long (signum_exp));
3438 }
3439 sig_print_info (oursig);
3440 return;
3441 }
3442
3443 printf_filtered ("\n");
3444 /* These ugly casts brought to you by the native VAX compiler. */
3445 for (oursig = TARGET_SIGNAL_FIRST;
3446 (int) oursig < (int) TARGET_SIGNAL_LAST;
3447 oursig = (enum target_signal) ((int) oursig + 1))
3448 {
3449 QUIT;
3450
3451 if (oursig != TARGET_SIGNAL_UNKNOWN
3452 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3453 sig_print_info (oursig);
3454 }
3455
3456 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3457 }
3458 \f
3459 struct inferior_status
3460 {
3461 enum target_signal stop_signal;
3462 CORE_ADDR stop_pc;
3463 bpstat stop_bpstat;
3464 int stop_step;
3465 int stop_stack_dummy;
3466 int stopped_by_random_signal;
3467 int trap_expected;
3468 CORE_ADDR step_range_start;
3469 CORE_ADDR step_range_end;
3470 struct frame_id step_frame_id;
3471 enum step_over_calls_kind step_over_calls;
3472 CORE_ADDR step_resume_break_address;
3473 int stop_after_trap;
3474 int stop_soon;
3475 struct regcache *stop_registers;
3476
3477 /* These are here because if call_function_by_hand has written some
3478 registers and then decides to call error(), we better not have changed
3479 any registers. */
3480 struct regcache *registers;
3481
3482 /* A frame unique identifier. */
3483 struct frame_id selected_frame_id;
3484
3485 int breakpoint_proceeded;
3486 int restore_stack_info;
3487 int proceed_to_finish;
3488 };
3489
3490 void
3491 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3492 LONGEST val)
3493 {
3494 int size = register_size (current_gdbarch, regno);
3495 void *buf = alloca (size);
3496 store_signed_integer (buf, size, val);
3497 regcache_raw_write (inf_status->registers, regno, buf);
3498 }
3499
3500 /* Save all of the information associated with the inferior<==>gdb
3501 connection. INF_STATUS is a pointer to a "struct inferior_status"
3502 (defined in inferior.h). */
3503
3504 struct inferior_status *
3505 save_inferior_status (int restore_stack_info)
3506 {
3507 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3508
3509 inf_status->stop_signal = stop_signal;
3510 inf_status->stop_pc = stop_pc;
3511 inf_status->stop_step = stop_step;
3512 inf_status->stop_stack_dummy = stop_stack_dummy;
3513 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3514 inf_status->trap_expected = trap_expected;
3515 inf_status->step_range_start = step_range_start;
3516 inf_status->step_range_end = step_range_end;
3517 inf_status->step_frame_id = step_frame_id;
3518 inf_status->step_over_calls = step_over_calls;
3519 inf_status->stop_after_trap = stop_after_trap;
3520 inf_status->stop_soon = stop_soon;
3521 /* Save original bpstat chain here; replace it with copy of chain.
3522 If caller's caller is walking the chain, they'll be happier if we
3523 hand them back the original chain when restore_inferior_status is
3524 called. */
3525 inf_status->stop_bpstat = stop_bpstat;
3526 stop_bpstat = bpstat_copy (stop_bpstat);
3527 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3528 inf_status->restore_stack_info = restore_stack_info;
3529 inf_status->proceed_to_finish = proceed_to_finish;
3530
3531 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3532
3533 inf_status->registers = regcache_dup (current_regcache);
3534
3535 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3536 return inf_status;
3537 }
3538
3539 static int
3540 restore_selected_frame (void *args)
3541 {
3542 struct frame_id *fid = (struct frame_id *) args;
3543 struct frame_info *frame;
3544
3545 frame = frame_find_by_id (*fid);
3546
3547 /* If inf_status->selected_frame_id is NULL, there was no previously
3548 selected frame. */
3549 if (frame == NULL)
3550 {
3551 warning ("Unable to restore previously selected frame.\n");
3552 return 0;
3553 }
3554
3555 select_frame (frame);
3556
3557 return (1);
3558 }
3559
3560 void
3561 restore_inferior_status (struct inferior_status *inf_status)
3562 {
3563 stop_signal = inf_status->stop_signal;
3564 stop_pc = inf_status->stop_pc;
3565 stop_step = inf_status->stop_step;
3566 stop_stack_dummy = inf_status->stop_stack_dummy;
3567 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3568 trap_expected = inf_status->trap_expected;
3569 step_range_start = inf_status->step_range_start;
3570 step_range_end = inf_status->step_range_end;
3571 step_frame_id = inf_status->step_frame_id;
3572 step_over_calls = inf_status->step_over_calls;
3573 stop_after_trap = inf_status->stop_after_trap;
3574 stop_soon = inf_status->stop_soon;
3575 bpstat_clear (&stop_bpstat);
3576 stop_bpstat = inf_status->stop_bpstat;
3577 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3578 proceed_to_finish = inf_status->proceed_to_finish;
3579
3580 /* FIXME: Is the restore of stop_registers always needed. */
3581 regcache_xfree (stop_registers);
3582 stop_registers = inf_status->stop_registers;
3583
3584 /* The inferior can be gone if the user types "print exit(0)"
3585 (and perhaps other times). */
3586 if (target_has_execution)
3587 /* NB: The register write goes through to the target. */
3588 regcache_cpy (current_regcache, inf_status->registers);
3589 regcache_xfree (inf_status->registers);
3590
3591 /* FIXME: If we are being called after stopping in a function which
3592 is called from gdb, we should not be trying to restore the
3593 selected frame; it just prints a spurious error message (The
3594 message is useful, however, in detecting bugs in gdb (like if gdb
3595 clobbers the stack)). In fact, should we be restoring the
3596 inferior status at all in that case? . */
3597
3598 if (target_has_stack && inf_status->restore_stack_info)
3599 {
3600 /* The point of catch_errors is that if the stack is clobbered,
3601 walking the stack might encounter a garbage pointer and
3602 error() trying to dereference it. */
3603 if (catch_errors
3604 (restore_selected_frame, &inf_status->selected_frame_id,
3605 "Unable to restore previously selected frame:\n",
3606 RETURN_MASK_ERROR) == 0)
3607 /* Error in restoring the selected frame. Select the innermost
3608 frame. */
3609 select_frame (get_current_frame ());
3610
3611 }
3612
3613 xfree (inf_status);
3614 }
3615
3616 static void
3617 do_restore_inferior_status_cleanup (void *sts)
3618 {
3619 restore_inferior_status (sts);
3620 }
3621
3622 struct cleanup *
3623 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3624 {
3625 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3626 }
3627
3628 void
3629 discard_inferior_status (struct inferior_status *inf_status)
3630 {
3631 /* See save_inferior_status for info on stop_bpstat. */
3632 bpstat_clear (&inf_status->stop_bpstat);
3633 regcache_xfree (inf_status->registers);
3634 regcache_xfree (inf_status->stop_registers);
3635 xfree (inf_status);
3636 }
3637
3638 int
3639 inferior_has_forked (int pid, int *child_pid)
3640 {
3641 struct target_waitstatus last;
3642 ptid_t last_ptid;
3643
3644 get_last_target_status (&last_ptid, &last);
3645
3646 if (last.kind != TARGET_WAITKIND_FORKED)
3647 return 0;
3648
3649 if (ptid_get_pid (last_ptid) != pid)
3650 return 0;
3651
3652 *child_pid = last.value.related_pid;
3653 return 1;
3654 }
3655
3656 int
3657 inferior_has_vforked (int pid, int *child_pid)
3658 {
3659 struct target_waitstatus last;
3660 ptid_t last_ptid;
3661
3662 get_last_target_status (&last_ptid, &last);
3663
3664 if (last.kind != TARGET_WAITKIND_VFORKED)
3665 return 0;
3666
3667 if (ptid_get_pid (last_ptid) != pid)
3668 return 0;
3669
3670 *child_pid = last.value.related_pid;
3671 return 1;
3672 }
3673
3674 int
3675 inferior_has_execd (int pid, char **execd_pathname)
3676 {
3677 struct target_waitstatus last;
3678 ptid_t last_ptid;
3679
3680 get_last_target_status (&last_ptid, &last);
3681
3682 if (last.kind != TARGET_WAITKIND_EXECD)
3683 return 0;
3684
3685 if (ptid_get_pid (last_ptid) != pid)
3686 return 0;
3687
3688 *execd_pathname = xstrdup (last.value.execd_pathname);
3689 return 1;
3690 }
3691
3692 /* Oft used ptids */
3693 ptid_t null_ptid;
3694 ptid_t minus_one_ptid;
3695
3696 /* Create a ptid given the necessary PID, LWP, and TID components. */
3697
3698 ptid_t
3699 ptid_build (int pid, long lwp, long tid)
3700 {
3701 ptid_t ptid;
3702
3703 ptid.pid = pid;
3704 ptid.lwp = lwp;
3705 ptid.tid = tid;
3706 return ptid;
3707 }
3708
3709 /* Create a ptid from just a pid. */
3710
3711 ptid_t
3712 pid_to_ptid (int pid)
3713 {
3714 return ptid_build (pid, 0, 0);
3715 }
3716
3717 /* Fetch the pid (process id) component from a ptid. */
3718
3719 int
3720 ptid_get_pid (ptid_t ptid)
3721 {
3722 return ptid.pid;
3723 }
3724
3725 /* Fetch the lwp (lightweight process) component from a ptid. */
3726
3727 long
3728 ptid_get_lwp (ptid_t ptid)
3729 {
3730 return ptid.lwp;
3731 }
3732
3733 /* Fetch the tid (thread id) component from a ptid. */
3734
3735 long
3736 ptid_get_tid (ptid_t ptid)
3737 {
3738 return ptid.tid;
3739 }
3740
3741 /* ptid_equal() is used to test equality of two ptids. */
3742
3743 int
3744 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3745 {
3746 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3747 && ptid1.tid == ptid2.tid);
3748 }
3749
3750 /* restore_inferior_ptid() will be used by the cleanup machinery
3751 to restore the inferior_ptid value saved in a call to
3752 save_inferior_ptid(). */
3753
3754 static void
3755 restore_inferior_ptid (void *arg)
3756 {
3757 ptid_t *saved_ptid_ptr = arg;
3758 inferior_ptid = *saved_ptid_ptr;
3759 xfree (arg);
3760 }
3761
3762 /* Save the value of inferior_ptid so that it may be restored by a
3763 later call to do_cleanups(). Returns the struct cleanup pointer
3764 needed for later doing the cleanup. */
3765
3766 struct cleanup *
3767 save_inferior_ptid (void)
3768 {
3769 ptid_t *saved_ptid_ptr;
3770
3771 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3772 *saved_ptid_ptr = inferior_ptid;
3773 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3774 }
3775 \f
3776
3777 static void
3778 build_infrun (void)
3779 {
3780 stop_registers = regcache_xmalloc (current_gdbarch);
3781 }
3782
3783 void
3784 _initialize_infrun (void)
3785 {
3786 int i;
3787 int numsigs;
3788 struct cmd_list_element *c;
3789
3790 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3791 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3792
3793 add_info ("signals", signals_info,
3794 "What debugger does when program gets various signals.\n\
3795 Specify a signal as argument to print info on that signal only.");
3796 add_info_alias ("handle", "signals", 0);
3797
3798 add_com ("handle", class_run, handle_command,
3799 concat ("Specify how to handle a signal.\n\
3800 Args are signals and actions to apply to those signals.\n\
3801 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3802 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3803 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3804 The special arg \"all\" is recognized to mean all signals except those\n\
3805 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3806 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3807 Stop means reenter debugger if this signal happens (implies print).\n\
3808 Print means print a message if this signal happens.\n\
3809 Pass means let program see this signal; otherwise program doesn't know.\n\
3810 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3811 Pass and Stop may be combined.", NULL));
3812 if (xdb_commands)
3813 {
3814 add_com ("lz", class_info, signals_info,
3815 "What debugger does when program gets various signals.\n\
3816 Specify a signal as argument to print info on that signal only.");
3817 add_com ("z", class_run, xdb_handle_command,
3818 concat ("Specify how to handle a signal.\n\
3819 Args are signals and actions to apply to those signals.\n\
3820 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3821 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3822 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3823 The special arg \"all\" is recognized to mean all signals except those\n\
3824 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3825 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3826 nopass), \"Q\" (noprint)\n\
3827 Stop means reenter debugger if this signal happens (implies print).\n\
3828 Print means print a message if this signal happens.\n\
3829 Pass means let program see this signal; otherwise program doesn't know.\n\
3830 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3831 Pass and Stop may be combined.", NULL));
3832 }
3833
3834 if (!dbx_commands)
3835 stop_command =
3836 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3837 This allows you to set a list of commands to be run each time execution\n\
3838 of the program stops.", &cmdlist);
3839
3840 numsigs = (int) TARGET_SIGNAL_LAST;
3841 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3842 signal_print = (unsigned char *)
3843 xmalloc (sizeof (signal_print[0]) * numsigs);
3844 signal_program = (unsigned char *)
3845 xmalloc (sizeof (signal_program[0]) * numsigs);
3846 for (i = 0; i < numsigs; i++)
3847 {
3848 signal_stop[i] = 1;
3849 signal_print[i] = 1;
3850 signal_program[i] = 1;
3851 }
3852
3853 /* Signals caused by debugger's own actions
3854 should not be given to the program afterwards. */
3855 signal_program[TARGET_SIGNAL_TRAP] = 0;
3856 signal_program[TARGET_SIGNAL_INT] = 0;
3857
3858 /* Signals that are not errors should not normally enter the debugger. */
3859 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3860 signal_print[TARGET_SIGNAL_ALRM] = 0;
3861 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3862 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3863 signal_stop[TARGET_SIGNAL_PROF] = 0;
3864 signal_print[TARGET_SIGNAL_PROF] = 0;
3865 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3866 signal_print[TARGET_SIGNAL_CHLD] = 0;
3867 signal_stop[TARGET_SIGNAL_IO] = 0;
3868 signal_print[TARGET_SIGNAL_IO] = 0;
3869 signal_stop[TARGET_SIGNAL_POLL] = 0;
3870 signal_print[TARGET_SIGNAL_POLL] = 0;
3871 signal_stop[TARGET_SIGNAL_URG] = 0;
3872 signal_print[TARGET_SIGNAL_URG] = 0;
3873 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3874 signal_print[TARGET_SIGNAL_WINCH] = 0;
3875
3876 /* These signals are used internally by user-level thread
3877 implementations. (See signal(5) on Solaris.) Like the above
3878 signals, a healthy program receives and handles them as part of
3879 its normal operation. */
3880 signal_stop[TARGET_SIGNAL_LWP] = 0;
3881 signal_print[TARGET_SIGNAL_LWP] = 0;
3882 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3883 signal_print[TARGET_SIGNAL_WAITING] = 0;
3884 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3885 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3886
3887 #ifdef SOLIB_ADD
3888 deprecated_add_show_from_set
3889 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3890 (char *) &stop_on_solib_events,
3891 "Set stopping for shared library events.\n\
3892 If nonzero, gdb will give control to the user when the dynamic linker\n\
3893 notifies gdb of shared library events. The most common event of interest\n\
3894 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3895 #endif
3896
3897 c = add_set_enum_cmd ("follow-fork-mode",
3898 class_run,
3899 follow_fork_mode_kind_names, &follow_fork_mode_string,
3900 "Set debugger response to a program call of fork \
3901 or vfork.\n\
3902 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3903 parent - the original process is debugged after a fork\n\
3904 child - the new process is debugged after a fork\n\
3905 The unfollowed process will continue to run.\n\
3906 By default, the debugger will follow the parent process.", &setlist);
3907 deprecated_add_show_from_set (c, &showlist);
3908
3909 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3910 &scheduler_mode, /* current mode */
3911 "Set mode for locking scheduler during execution.\n\
3912 off == no locking (threads may preempt at any time)\n\
3913 on == full locking (no thread except the current thread may run)\n\
3914 step == scheduler locked during every single-step operation.\n\
3915 In this mode, no other thread may run during a step command.\n\
3916 Other threads may run while stepping over a function call ('next').", &setlist);
3917
3918 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3919 deprecated_add_show_from_set (c, &showlist);
3920
3921 c = add_set_cmd ("step-mode", class_run,
3922 var_boolean, (char *) &step_stop_if_no_debug,
3923 "Set mode of the step operation. When set, doing a step over a\n\
3924 function without debug line information will stop at the first\n\
3925 instruction of that function. Otherwise, the function is skipped and\n\
3926 the step command stops at a different source line.", &setlist);
3927 deprecated_add_show_from_set (c, &showlist);
3928
3929 /* ptid initializations */
3930 null_ptid = ptid_build (0, 0, 0);
3931 minus_one_ptid = ptid_build (-1, 0, 0);
3932 inferior_ptid = null_ptid;
3933 target_last_wait_ptid = minus_one_ptid;
3934 }
This page took 0.109222 seconds and 4 git commands to generate.