make remote_protocol_features "const"
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* Default behavior is to detach newly forked processes (legacy). */
136 int detach_fork = 1;
137
138 int debug_displaced = 0;
139 static void
140 show_debug_displaced (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144 }
145
146 unsigned int debug_infrun = 0;
147 static void
148 show_debug_infrun (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152 }
153
154
155 /* Support for disabling address space randomization. */
156
157 int disable_randomization = 1;
158
159 static void
160 show_disable_randomization (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 if (target_supports_disable_randomization ())
164 fprintf_filtered (file,
165 _("Disabling randomization of debuggee's "
166 "virtual address space is %s.\n"),
167 value);
168 else
169 fputs_filtered (_("Disabling randomization of debuggee's "
170 "virtual address space is unsupported on\n"
171 "this platform.\n"), file);
172 }
173
174 static void
175 set_disable_randomization (char *args, int from_tty,
176 struct cmd_list_element *c)
177 {
178 if (!target_supports_disable_randomization ())
179 error (_("Disabling randomization of debuggee's "
180 "virtual address space is unsupported on\n"
181 "this platform."));
182 }
183
184 /* User interface for non-stop mode. */
185
186 int non_stop = 0;
187 static int non_stop_1 = 0;
188
189 static void
190 set_non_stop (char *args, int from_tty,
191 struct cmd_list_element *c)
192 {
193 if (target_has_execution)
194 {
195 non_stop_1 = non_stop;
196 error (_("Cannot change this setting while the inferior is running."));
197 }
198
199 non_stop = non_stop_1;
200 }
201
202 static void
203 show_non_stop (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file,
207 _("Controlling the inferior in non-stop mode is %s.\n"),
208 value);
209 }
210
211 /* "Observer mode" is somewhat like a more extreme version of
212 non-stop, in which all GDB operations that might affect the
213 target's execution have been disabled. */
214
215 int observer_mode = 0;
216 static int observer_mode_1 = 0;
217
218 static void
219 set_observer_mode (char *args, int from_tty,
220 struct cmd_list_element *c)
221 {
222 if (target_has_execution)
223 {
224 observer_mode_1 = observer_mode;
225 error (_("Cannot change this setting while the inferior is running."));
226 }
227
228 observer_mode = observer_mode_1;
229
230 may_write_registers = !observer_mode;
231 may_write_memory = !observer_mode;
232 may_insert_breakpoints = !observer_mode;
233 may_insert_tracepoints = !observer_mode;
234 /* We can insert fast tracepoints in or out of observer mode,
235 but enable them if we're going into this mode. */
236 if (observer_mode)
237 may_insert_fast_tracepoints = 1;
238 may_stop = !observer_mode;
239 update_target_permissions ();
240
241 /* Going *into* observer mode we must force non-stop, then
242 going out we leave it that way. */
243 if (observer_mode)
244 {
245 target_async_permitted = 1;
246 pagination_enabled = 0;
247 non_stop = non_stop_1 = 1;
248 }
249
250 if (from_tty)
251 printf_filtered (_("Observer mode is now %s.\n"),
252 (observer_mode ? "on" : "off"));
253 }
254
255 static void
256 show_observer_mode (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258 {
259 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
260 }
261
262 /* This updates the value of observer mode based on changes in
263 permissions. Note that we are deliberately ignoring the values of
264 may-write-registers and may-write-memory, since the user may have
265 reason to enable these during a session, for instance to turn on a
266 debugging-related global. */
267
268 void
269 update_observer_mode (void)
270 {
271 int newval;
272
273 newval = (!may_insert_breakpoints
274 && !may_insert_tracepoints
275 && may_insert_fast_tracepoints
276 && !may_stop
277 && non_stop);
278
279 /* Let the user know if things change. */
280 if (newval != observer_mode)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (newval ? "on" : "off"));
283
284 observer_mode = observer_mode_1 = newval;
285 }
286
287 /* Tables of how to react to signals; the user sets them. */
288
289 static unsigned char *signal_stop;
290 static unsigned char *signal_print;
291 static unsigned char *signal_program;
292
293 /* Table of signals that are registered with "catch signal". A
294 non-zero entry indicates that the signal is caught by some "catch
295 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
296 signals. */
297 static unsigned char *signal_catch;
298
299 /* Table of signals that the target may silently handle.
300 This is automatically determined from the flags above,
301 and simply cached here. */
302 static unsigned char *signal_pass;
303
304 #define SET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 1; \
310 } while (0)
311
312 #define UNSET_SIGS(nsigs,sigs,flags) \
313 do { \
314 int signum = (nsigs); \
315 while (signum-- > 0) \
316 if ((sigs)[signum]) \
317 (flags)[signum] = 0; \
318 } while (0)
319
320 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
321 this function is to avoid exporting `signal_program'. */
322
323 void
324 update_signals_program_target (void)
325 {
326 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
327 }
328
329 /* Value to pass to target_resume() to cause all threads to resume. */
330
331 #define RESUME_ALL minus_one_ptid
332
333 /* Command list pointer for the "stop" placeholder. */
334
335 static struct cmd_list_element *stop_command;
336
337 /* Function inferior was in as of last step command. */
338
339 static struct symbol *step_start_function;
340
341 /* Nonzero if we want to give control to the user when we're notified
342 of shared library events by the dynamic linker. */
343 int stop_on_solib_events;
344
345 /* Enable or disable optional shared library event breakpoints
346 as appropriate when the above flag is changed. */
347
348 static void
349 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
350 {
351 update_solib_breakpoints ();
352 }
353
354 static void
355 show_stop_on_solib_events (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c, const char *value)
357 {
358 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
359 value);
360 }
361
362 /* Nonzero means expecting a trace trap
363 and should stop the inferior and return silently when it happens. */
364
365 int stop_after_trap;
366
367 /* Save register contents here when executing a "finish" command or are
368 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
369 Thus this contains the return value from the called function (assuming
370 values are returned in a register). */
371
372 struct regcache *stop_registers;
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the pid/waitstatus of the last event
379 returned by target_wait()/deprecated_target_wait_hook(). This
380 information is returned by get_last_target_status(). */
381 static ptid_t target_last_wait_ptid;
382 static struct target_waitstatus target_last_waitstatus;
383
384 static void context_switch (ptid_t ptid);
385
386 void init_thread_stepping_state (struct thread_info *tss);
387
388 static void init_infwait_state (void);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Tell the target to follow the fork we're stopped at. Returns true
412 if the inferior should be resumed; false, if the target for some
413 reason decided it's best not to resume. */
414
415 static int
416 follow_fork (void)
417 {
418 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
419 int should_resume = 1;
420 struct thread_info *tp;
421
422 /* Copy user stepping state to the new inferior thread. FIXME: the
423 followed fork child thread should have a copy of most of the
424 parent thread structure's run control related fields, not just these.
425 Initialized to avoid "may be used uninitialized" warnings from gcc. */
426 struct breakpoint *step_resume_breakpoint = NULL;
427 struct breakpoint *exception_resume_breakpoint = NULL;
428 CORE_ADDR step_range_start = 0;
429 CORE_ADDR step_range_end = 0;
430 struct frame_id step_frame_id = { 0 };
431
432 if (!non_stop)
433 {
434 ptid_t wait_ptid;
435 struct target_waitstatus wait_status;
436
437 /* Get the last target status returned by target_wait(). */
438 get_last_target_status (&wait_ptid, &wait_status);
439
440 /* If not stopped at a fork event, then there's nothing else to
441 do. */
442 if (wait_status.kind != TARGET_WAITKIND_FORKED
443 && wait_status.kind != TARGET_WAITKIND_VFORKED)
444 return 1;
445
446 /* Check if we switched over from WAIT_PTID, since the event was
447 reported. */
448 if (!ptid_equal (wait_ptid, minus_one_ptid)
449 && !ptid_equal (inferior_ptid, wait_ptid))
450 {
451 /* We did. Switch back to WAIT_PTID thread, to tell the
452 target to follow it (in either direction). We'll
453 afterwards refuse to resume, and inform the user what
454 happened. */
455 switch_to_thread (wait_ptid);
456 should_resume = 0;
457 }
458 }
459
460 tp = inferior_thread ();
461
462 /* If there were any forks/vforks that were caught and are now to be
463 followed, then do so now. */
464 switch (tp->pending_follow.kind)
465 {
466 case TARGET_WAITKIND_FORKED:
467 case TARGET_WAITKIND_VFORKED:
468 {
469 ptid_t parent, child;
470
471 /* If the user did a next/step, etc, over a fork call,
472 preserve the stepping state in the fork child. */
473 if (follow_child && should_resume)
474 {
475 step_resume_breakpoint = clone_momentary_breakpoint
476 (tp->control.step_resume_breakpoint);
477 step_range_start = tp->control.step_range_start;
478 step_range_end = tp->control.step_range_end;
479 step_frame_id = tp->control.step_frame_id;
480 exception_resume_breakpoint
481 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
482
483 /* For now, delete the parent's sr breakpoint, otherwise,
484 parent/child sr breakpoints are considered duplicates,
485 and the child version will not be installed. Remove
486 this when the breakpoints module becomes aware of
487 inferiors and address spaces. */
488 delete_step_resume_breakpoint (tp);
489 tp->control.step_range_start = 0;
490 tp->control.step_range_end = 0;
491 tp->control.step_frame_id = null_frame_id;
492 delete_exception_resume_breakpoint (tp);
493 }
494
495 parent = inferior_ptid;
496 child = tp->pending_follow.value.related_pid;
497
498 /* Tell the target to do whatever is necessary to follow
499 either parent or child. */
500 if (target_follow_fork (follow_child))
501 {
502 /* Target refused to follow, or there's some other reason
503 we shouldn't resume. */
504 should_resume = 0;
505 }
506 else
507 {
508 /* This pending follow fork event is now handled, one way
509 or another. The previous selected thread may be gone
510 from the lists by now, but if it is still around, need
511 to clear the pending follow request. */
512 tp = find_thread_ptid (parent);
513 if (tp)
514 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
515
516 /* This makes sure we don't try to apply the "Switched
517 over from WAIT_PID" logic above. */
518 nullify_last_target_wait_ptid ();
519
520 /* If we followed the child, switch to it... */
521 if (follow_child)
522 {
523 switch_to_thread (child);
524
525 /* ... and preserve the stepping state, in case the
526 user was stepping over the fork call. */
527 if (should_resume)
528 {
529 tp = inferior_thread ();
530 tp->control.step_resume_breakpoint
531 = step_resume_breakpoint;
532 tp->control.step_range_start = step_range_start;
533 tp->control.step_range_end = step_range_end;
534 tp->control.step_frame_id = step_frame_id;
535 tp->control.exception_resume_breakpoint
536 = exception_resume_breakpoint;
537 }
538 else
539 {
540 /* If we get here, it was because we're trying to
541 resume from a fork catchpoint, but, the user
542 has switched threads away from the thread that
543 forked. In that case, the resume command
544 issued is most likely not applicable to the
545 child, so just warn, and refuse to resume. */
546 warning (_("Not resuming: switched threads "
547 "before following fork child.\n"));
548 }
549
550 /* Reset breakpoints in the child as appropriate. */
551 follow_inferior_reset_breakpoints ();
552 }
553 else
554 switch_to_thread (parent);
555 }
556 }
557 break;
558 case TARGET_WAITKIND_SPURIOUS:
559 /* Nothing to follow. */
560 break;
561 default:
562 internal_error (__FILE__, __LINE__,
563 "Unexpected pending_follow.kind %d\n",
564 tp->pending_follow.kind);
565 break;
566 }
567
568 return should_resume;
569 }
570
571 void
572 follow_inferior_reset_breakpoints (void)
573 {
574 struct thread_info *tp = inferior_thread ();
575
576 /* Was there a step_resume breakpoint? (There was if the user
577 did a "next" at the fork() call.) If so, explicitly reset its
578 thread number.
579
580 step_resumes are a form of bp that are made to be per-thread.
581 Since we created the step_resume bp when the parent process
582 was being debugged, and now are switching to the child process,
583 from the breakpoint package's viewpoint, that's a switch of
584 "threads". We must update the bp's notion of which thread
585 it is for, or it'll be ignored when it triggers. */
586
587 if (tp->control.step_resume_breakpoint)
588 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
589
590 if (tp->control.exception_resume_breakpoint)
591 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
592
593 /* Reinsert all breakpoints in the child. The user may have set
594 breakpoints after catching the fork, in which case those
595 were never set in the child, but only in the parent. This makes
596 sure the inserted breakpoints match the breakpoint list. */
597
598 breakpoint_re_set ();
599 insert_breakpoints ();
600 }
601
602 /* The child has exited or execed: resume threads of the parent the
603 user wanted to be executing. */
604
605 static int
606 proceed_after_vfork_done (struct thread_info *thread,
607 void *arg)
608 {
609 int pid = * (int *) arg;
610
611 if (ptid_get_pid (thread->ptid) == pid
612 && is_running (thread->ptid)
613 && !is_executing (thread->ptid)
614 && !thread->stop_requested
615 && thread->suspend.stop_signal == GDB_SIGNAL_0)
616 {
617 if (debug_infrun)
618 fprintf_unfiltered (gdb_stdlog,
619 "infrun: resuming vfork parent thread %s\n",
620 target_pid_to_str (thread->ptid));
621
622 switch_to_thread (thread->ptid);
623 clear_proceed_status ();
624 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
625 }
626
627 return 0;
628 }
629
630 /* Called whenever we notice an exec or exit event, to handle
631 detaching or resuming a vfork parent. */
632
633 static void
634 handle_vfork_child_exec_or_exit (int exec)
635 {
636 struct inferior *inf = current_inferior ();
637
638 if (inf->vfork_parent)
639 {
640 int resume_parent = -1;
641
642 /* This exec or exit marks the end of the shared memory region
643 between the parent and the child. If the user wanted to
644 detach from the parent, now is the time. */
645
646 if (inf->vfork_parent->pending_detach)
647 {
648 struct thread_info *tp;
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651 struct address_space *aspace;
652
653 /* follow-fork child, detach-on-fork on. */
654
655 inf->vfork_parent->pending_detach = 0;
656
657 if (!exec)
658 {
659 /* If we're handling a child exit, then inferior_ptid
660 points at the inferior's pid, not to a thread. */
661 old_chain = save_inferior_ptid ();
662 save_current_program_space ();
663 save_current_inferior ();
664 }
665 else
666 old_chain = save_current_space_and_thread ();
667
668 /* We're letting loose of the parent. */
669 tp = any_live_thread_of_process (inf->vfork_parent->pid);
670 switch_to_thread (tp->ptid);
671
672 /* We're about to detach from the parent, which implicitly
673 removes breakpoints from its address space. There's a
674 catch here: we want to reuse the spaces for the child,
675 but, parent/child are still sharing the pspace at this
676 point, although the exec in reality makes the kernel give
677 the child a fresh set of new pages. The problem here is
678 that the breakpoints module being unaware of this, would
679 likely chose the child process to write to the parent
680 address space. Swapping the child temporarily away from
681 the spaces has the desired effect. Yes, this is "sort
682 of" a hack. */
683
684 pspace = inf->pspace;
685 aspace = inf->aspace;
686 inf->aspace = NULL;
687 inf->pspace = NULL;
688
689 if (debug_infrun || info_verbose)
690 {
691 target_terminal_ours ();
692
693 if (exec)
694 fprintf_filtered (gdb_stdlog,
695 "Detaching vfork parent process "
696 "%d after child exec.\n",
697 inf->vfork_parent->pid);
698 else
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exit.\n",
702 inf->vfork_parent->pid);
703 }
704
705 target_detach (NULL, 0);
706
707 /* Put it back. */
708 inf->pspace = pspace;
709 inf->aspace = aspace;
710
711 do_cleanups (old_chain);
712 }
713 else if (exec)
714 {
715 /* We're staying attached to the parent, so, really give the
716 child a new address space. */
717 inf->pspace = add_program_space (maybe_new_address_space ());
718 inf->aspace = inf->pspace->aspace;
719 inf->removable = 1;
720 set_current_program_space (inf->pspace);
721
722 resume_parent = inf->vfork_parent->pid;
723
724 /* Break the bonds. */
725 inf->vfork_parent->vfork_child = NULL;
726 }
727 else
728 {
729 struct cleanup *old_chain;
730 struct program_space *pspace;
731
732 /* If this is a vfork child exiting, then the pspace and
733 aspaces were shared with the parent. Since we're
734 reporting the process exit, we'll be mourning all that is
735 found in the address space, and switching to null_ptid,
736 preparing to start a new inferior. But, since we don't
737 want to clobber the parent's address/program spaces, we
738 go ahead and create a new one for this exiting
739 inferior. */
740
741 /* Switch to null_ptid, so that clone_program_space doesn't want
742 to read the selected frame of a dead process. */
743 old_chain = save_inferior_ptid ();
744 inferior_ptid = null_ptid;
745
746 /* This inferior is dead, so avoid giving the breakpoints
747 module the option to write through to it (cloning a
748 program space resets breakpoints). */
749 inf->aspace = NULL;
750 inf->pspace = NULL;
751 pspace = add_program_space (maybe_new_address_space ());
752 set_current_program_space (pspace);
753 inf->removable = 1;
754 inf->symfile_flags = SYMFILE_NO_READ;
755 clone_program_space (pspace, inf->vfork_parent->pspace);
756 inf->pspace = pspace;
757 inf->aspace = pspace->aspace;
758
759 /* Put back inferior_ptid. We'll continue mourning this
760 inferior. */
761 do_cleanups (old_chain);
762
763 resume_parent = inf->vfork_parent->pid;
764 /* Break the bonds. */
765 inf->vfork_parent->vfork_child = NULL;
766 }
767
768 inf->vfork_parent = NULL;
769
770 gdb_assert (current_program_space == inf->pspace);
771
772 if (non_stop && resume_parent != -1)
773 {
774 /* If the user wanted the parent to be running, let it go
775 free now. */
776 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
777
778 if (debug_infrun)
779 fprintf_unfiltered (gdb_stdlog,
780 "infrun: resuming vfork parent process %d\n",
781 resume_parent);
782
783 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
784
785 do_cleanups (old_chain);
786 }
787 }
788 }
789
790 /* Enum strings for "set|show follow-exec-mode". */
791
792 static const char follow_exec_mode_new[] = "new";
793 static const char follow_exec_mode_same[] = "same";
794 static const char *const follow_exec_mode_names[] =
795 {
796 follow_exec_mode_new,
797 follow_exec_mode_same,
798 NULL,
799 };
800
801 static const char *follow_exec_mode_string = follow_exec_mode_same;
802 static void
803 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c, const char *value)
805 {
806 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
807 }
808
809 /* EXECD_PATHNAME is assumed to be non-NULL. */
810
811 static void
812 follow_exec (ptid_t pid, char *execd_pathname)
813 {
814 struct thread_info *th = inferior_thread ();
815 struct inferior *inf = current_inferior ();
816
817 /* This is an exec event that we actually wish to pay attention to.
818 Refresh our symbol table to the newly exec'd program, remove any
819 momentary bp's, etc.
820
821 If there are breakpoints, they aren't really inserted now,
822 since the exec() transformed our inferior into a fresh set
823 of instructions.
824
825 We want to preserve symbolic breakpoints on the list, since
826 we have hopes that they can be reset after the new a.out's
827 symbol table is read.
828
829 However, any "raw" breakpoints must be removed from the list
830 (e.g., the solib bp's), since their address is probably invalid
831 now.
832
833 And, we DON'T want to call delete_breakpoints() here, since
834 that may write the bp's "shadow contents" (the instruction
835 value that was overwritten witha TRAP instruction). Since
836 we now have a new a.out, those shadow contents aren't valid. */
837
838 mark_breakpoints_out ();
839
840 update_breakpoints_after_exec ();
841
842 /* If there was one, it's gone now. We cannot truly step-to-next
843 statement through an exec(). */
844 th->control.step_resume_breakpoint = NULL;
845 th->control.exception_resume_breakpoint = NULL;
846 th->control.step_range_start = 0;
847 th->control.step_range_end = 0;
848
849 /* The target reports the exec event to the main thread, even if
850 some other thread does the exec, and even if the main thread was
851 already stopped --- if debugging in non-stop mode, it's possible
852 the user had the main thread held stopped in the previous image
853 --- release it now. This is the same behavior as step-over-exec
854 with scheduler-locking on in all-stop mode. */
855 th->stop_requested = 0;
856
857 /* What is this a.out's name? */
858 printf_unfiltered (_("%s is executing new program: %s\n"),
859 target_pid_to_str (inferior_ptid),
860 execd_pathname);
861
862 /* We've followed the inferior through an exec. Therefore, the
863 inferior has essentially been killed & reborn. */
864
865 gdb_flush (gdb_stdout);
866
867 breakpoint_init_inferior (inf_execd);
868
869 if (gdb_sysroot && *gdb_sysroot)
870 {
871 char *name = alloca (strlen (gdb_sysroot)
872 + strlen (execd_pathname)
873 + 1);
874
875 strcpy (name, gdb_sysroot);
876 strcat (name, execd_pathname);
877 execd_pathname = name;
878 }
879
880 /* Reset the shared library package. This ensures that we get a
881 shlib event when the child reaches "_start", at which point the
882 dld will have had a chance to initialize the child. */
883 /* Also, loading a symbol file below may trigger symbol lookups, and
884 we don't want those to be satisfied by the libraries of the
885 previous incarnation of this process. */
886 no_shared_libraries (NULL, 0);
887
888 if (follow_exec_mode_string == follow_exec_mode_new)
889 {
890 struct program_space *pspace;
891
892 /* The user wants to keep the old inferior and program spaces
893 around. Create a new fresh one, and switch to it. */
894
895 inf = add_inferior (current_inferior ()->pid);
896 pspace = add_program_space (maybe_new_address_space ());
897 inf->pspace = pspace;
898 inf->aspace = pspace->aspace;
899
900 exit_inferior_num_silent (current_inferior ()->num);
901
902 set_current_inferior (inf);
903 set_current_program_space (pspace);
904 }
905 else
906 {
907 /* The old description may no longer be fit for the new image.
908 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
909 old description; we'll read a new one below. No need to do
910 this on "follow-exec-mode new", as the old inferior stays
911 around (its description is later cleared/refetched on
912 restart). */
913 target_clear_description ();
914 }
915
916 gdb_assert (current_program_space == inf->pspace);
917
918 /* That a.out is now the one to use. */
919 exec_file_attach (execd_pathname, 0);
920
921 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
922 (Position Independent Executable) main symbol file will get applied by
923 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
924 the breakpoints with the zero displacement. */
925
926 symbol_file_add (execd_pathname,
927 (inf->symfile_flags
928 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
929 NULL, 0);
930
931 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
932 set_initial_language ();
933
934 /* If the target can specify a description, read it. Must do this
935 after flipping to the new executable (because the target supplied
936 description must be compatible with the executable's
937 architecture, and the old executable may e.g., be 32-bit, while
938 the new one 64-bit), and before anything involving memory or
939 registers. */
940 target_find_description ();
941
942 solib_create_inferior_hook (0);
943
944 jit_inferior_created_hook ();
945
946 breakpoint_re_set ();
947
948 /* Reinsert all breakpoints. (Those which were symbolic have
949 been reset to the proper address in the new a.out, thanks
950 to symbol_file_command...). */
951 insert_breakpoints ();
952
953 /* The next resume of this inferior should bring it to the shlib
954 startup breakpoints. (If the user had also set bp's on
955 "main" from the old (parent) process, then they'll auto-
956 matically get reset there in the new process.). */
957 }
958
959 /* Non-zero if we just simulating a single-step. This is needed
960 because we cannot remove the breakpoints in the inferior process
961 until after the `wait' in `wait_for_inferior'. */
962 static int singlestep_breakpoints_inserted_p = 0;
963
964 /* The thread we inserted single-step breakpoints for. */
965 static ptid_t singlestep_ptid;
966
967 /* PC when we started this single-step. */
968 static CORE_ADDR singlestep_pc;
969
970 /* If another thread hit the singlestep breakpoint, we save the original
971 thread here so that we can resume single-stepping it later. */
972 static ptid_t saved_singlestep_ptid;
973 static int stepping_past_singlestep_breakpoint;
974
975 /* If not equal to null_ptid, this means that after stepping over breakpoint
976 is finished, we need to switch to deferred_step_ptid, and step it.
977
978 The use case is when one thread has hit a breakpoint, and then the user
979 has switched to another thread and issued 'step'. We need to step over
980 breakpoint in the thread which hit the breakpoint, but then continue
981 stepping the thread user has selected. */
982 static ptid_t deferred_step_ptid;
983 \f
984 /* Displaced stepping. */
985
986 /* In non-stop debugging mode, we must take special care to manage
987 breakpoints properly; in particular, the traditional strategy for
988 stepping a thread past a breakpoint it has hit is unsuitable.
989 'Displaced stepping' is a tactic for stepping one thread past a
990 breakpoint it has hit while ensuring that other threads running
991 concurrently will hit the breakpoint as they should.
992
993 The traditional way to step a thread T off a breakpoint in a
994 multi-threaded program in all-stop mode is as follows:
995
996 a0) Initially, all threads are stopped, and breakpoints are not
997 inserted.
998 a1) We single-step T, leaving breakpoints uninserted.
999 a2) We insert breakpoints, and resume all threads.
1000
1001 In non-stop debugging, however, this strategy is unsuitable: we
1002 don't want to have to stop all threads in the system in order to
1003 continue or step T past a breakpoint. Instead, we use displaced
1004 stepping:
1005
1006 n0) Initially, T is stopped, other threads are running, and
1007 breakpoints are inserted.
1008 n1) We copy the instruction "under" the breakpoint to a separate
1009 location, outside the main code stream, making any adjustments
1010 to the instruction, register, and memory state as directed by
1011 T's architecture.
1012 n2) We single-step T over the instruction at its new location.
1013 n3) We adjust the resulting register and memory state as directed
1014 by T's architecture. This includes resetting T's PC to point
1015 back into the main instruction stream.
1016 n4) We resume T.
1017
1018 This approach depends on the following gdbarch methods:
1019
1020 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1021 indicate where to copy the instruction, and how much space must
1022 be reserved there. We use these in step n1.
1023
1024 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1025 address, and makes any necessary adjustments to the instruction,
1026 register contents, and memory. We use this in step n1.
1027
1028 - gdbarch_displaced_step_fixup adjusts registers and memory after
1029 we have successfuly single-stepped the instruction, to yield the
1030 same effect the instruction would have had if we had executed it
1031 at its original address. We use this in step n3.
1032
1033 - gdbarch_displaced_step_free_closure provides cleanup.
1034
1035 The gdbarch_displaced_step_copy_insn and
1036 gdbarch_displaced_step_fixup functions must be written so that
1037 copying an instruction with gdbarch_displaced_step_copy_insn,
1038 single-stepping across the copied instruction, and then applying
1039 gdbarch_displaced_insn_fixup should have the same effects on the
1040 thread's memory and registers as stepping the instruction in place
1041 would have. Exactly which responsibilities fall to the copy and
1042 which fall to the fixup is up to the author of those functions.
1043
1044 See the comments in gdbarch.sh for details.
1045
1046 Note that displaced stepping and software single-step cannot
1047 currently be used in combination, although with some care I think
1048 they could be made to. Software single-step works by placing
1049 breakpoints on all possible subsequent instructions; if the
1050 displaced instruction is a PC-relative jump, those breakpoints
1051 could fall in very strange places --- on pages that aren't
1052 executable, or at addresses that are not proper instruction
1053 boundaries. (We do generally let other threads run while we wait
1054 to hit the software single-step breakpoint, and they might
1055 encounter such a corrupted instruction.) One way to work around
1056 this would be to have gdbarch_displaced_step_copy_insn fully
1057 simulate the effect of PC-relative instructions (and return NULL)
1058 on architectures that use software single-stepping.
1059
1060 In non-stop mode, we can have independent and simultaneous step
1061 requests, so more than one thread may need to simultaneously step
1062 over a breakpoint. The current implementation assumes there is
1063 only one scratch space per process. In this case, we have to
1064 serialize access to the scratch space. If thread A wants to step
1065 over a breakpoint, but we are currently waiting for some other
1066 thread to complete a displaced step, we leave thread A stopped and
1067 place it in the displaced_step_request_queue. Whenever a displaced
1068 step finishes, we pick the next thread in the queue and start a new
1069 displaced step operation on it. See displaced_step_prepare and
1070 displaced_step_fixup for details. */
1071
1072 struct displaced_step_request
1073 {
1074 ptid_t ptid;
1075 struct displaced_step_request *next;
1076 };
1077
1078 /* Per-inferior displaced stepping state. */
1079 struct displaced_step_inferior_state
1080 {
1081 /* Pointer to next in linked list. */
1082 struct displaced_step_inferior_state *next;
1083
1084 /* The process this displaced step state refers to. */
1085 int pid;
1086
1087 /* A queue of pending displaced stepping requests. One entry per
1088 thread that needs to do a displaced step. */
1089 struct displaced_step_request *step_request_queue;
1090
1091 /* If this is not null_ptid, this is the thread carrying out a
1092 displaced single-step in process PID. This thread's state will
1093 require fixing up once it has completed its step. */
1094 ptid_t step_ptid;
1095
1096 /* The architecture the thread had when we stepped it. */
1097 struct gdbarch *step_gdbarch;
1098
1099 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1100 for post-step cleanup. */
1101 struct displaced_step_closure *step_closure;
1102
1103 /* The address of the original instruction, and the copy we
1104 made. */
1105 CORE_ADDR step_original, step_copy;
1106
1107 /* Saved contents of copy area. */
1108 gdb_byte *step_saved_copy;
1109 };
1110
1111 /* The list of states of processes involved in displaced stepping
1112 presently. */
1113 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1114
1115 /* Get the displaced stepping state of process PID. */
1116
1117 static struct displaced_step_inferior_state *
1118 get_displaced_stepping_state (int pid)
1119 {
1120 struct displaced_step_inferior_state *state;
1121
1122 for (state = displaced_step_inferior_states;
1123 state != NULL;
1124 state = state->next)
1125 if (state->pid == pid)
1126 return state;
1127
1128 return NULL;
1129 }
1130
1131 /* Add a new displaced stepping state for process PID to the displaced
1132 stepping state list, or return a pointer to an already existing
1133 entry, if it already exists. Never returns NULL. */
1134
1135 static struct displaced_step_inferior_state *
1136 add_displaced_stepping_state (int pid)
1137 {
1138 struct displaced_step_inferior_state *state;
1139
1140 for (state = displaced_step_inferior_states;
1141 state != NULL;
1142 state = state->next)
1143 if (state->pid == pid)
1144 return state;
1145
1146 state = xcalloc (1, sizeof (*state));
1147 state->pid = pid;
1148 state->next = displaced_step_inferior_states;
1149 displaced_step_inferior_states = state;
1150
1151 return state;
1152 }
1153
1154 /* If inferior is in displaced stepping, and ADDR equals to starting address
1155 of copy area, return corresponding displaced_step_closure. Otherwise,
1156 return NULL. */
1157
1158 struct displaced_step_closure*
1159 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1160 {
1161 struct displaced_step_inferior_state *displaced
1162 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1163
1164 /* If checking the mode of displaced instruction in copy area. */
1165 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1166 && (displaced->step_copy == addr))
1167 return displaced->step_closure;
1168
1169 return NULL;
1170 }
1171
1172 /* Remove the displaced stepping state of process PID. */
1173
1174 static void
1175 remove_displaced_stepping_state (int pid)
1176 {
1177 struct displaced_step_inferior_state *it, **prev_next_p;
1178
1179 gdb_assert (pid != 0);
1180
1181 it = displaced_step_inferior_states;
1182 prev_next_p = &displaced_step_inferior_states;
1183 while (it)
1184 {
1185 if (it->pid == pid)
1186 {
1187 *prev_next_p = it->next;
1188 xfree (it);
1189 return;
1190 }
1191
1192 prev_next_p = &it->next;
1193 it = *prev_next_p;
1194 }
1195 }
1196
1197 static void
1198 infrun_inferior_exit (struct inferior *inf)
1199 {
1200 remove_displaced_stepping_state (inf->pid);
1201 }
1202
1203 /* If ON, and the architecture supports it, GDB will use displaced
1204 stepping to step over breakpoints. If OFF, or if the architecture
1205 doesn't support it, GDB will instead use the traditional
1206 hold-and-step approach. If AUTO (which is the default), GDB will
1207 decide which technique to use to step over breakpoints depending on
1208 which of all-stop or non-stop mode is active --- displaced stepping
1209 in non-stop mode; hold-and-step in all-stop mode. */
1210
1211 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1212
1213 static void
1214 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1215 struct cmd_list_element *c,
1216 const char *value)
1217 {
1218 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1219 fprintf_filtered (file,
1220 _("Debugger's willingness to use displaced stepping "
1221 "to step over breakpoints is %s (currently %s).\n"),
1222 value, non_stop ? "on" : "off");
1223 else
1224 fprintf_filtered (file,
1225 _("Debugger's willingness to use displaced stepping "
1226 "to step over breakpoints is %s.\n"), value);
1227 }
1228
1229 /* Return non-zero if displaced stepping can/should be used to step
1230 over breakpoints. */
1231
1232 static int
1233 use_displaced_stepping (struct gdbarch *gdbarch)
1234 {
1235 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1236 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1237 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1238 && !RECORD_IS_USED);
1239 }
1240
1241 /* Clean out any stray displaced stepping state. */
1242 static void
1243 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1244 {
1245 /* Indicate that there is no cleanup pending. */
1246 displaced->step_ptid = null_ptid;
1247
1248 if (displaced->step_closure)
1249 {
1250 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1251 displaced->step_closure);
1252 displaced->step_closure = NULL;
1253 }
1254 }
1255
1256 static void
1257 displaced_step_clear_cleanup (void *arg)
1258 {
1259 struct displaced_step_inferior_state *state = arg;
1260
1261 displaced_step_clear (state);
1262 }
1263
1264 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1265 void
1266 displaced_step_dump_bytes (struct ui_file *file,
1267 const gdb_byte *buf,
1268 size_t len)
1269 {
1270 int i;
1271
1272 for (i = 0; i < len; i++)
1273 fprintf_unfiltered (file, "%02x ", buf[i]);
1274 fputs_unfiltered ("\n", file);
1275 }
1276
1277 /* Prepare to single-step, using displaced stepping.
1278
1279 Note that we cannot use displaced stepping when we have a signal to
1280 deliver. If we have a signal to deliver and an instruction to step
1281 over, then after the step, there will be no indication from the
1282 target whether the thread entered a signal handler or ignored the
1283 signal and stepped over the instruction successfully --- both cases
1284 result in a simple SIGTRAP. In the first case we mustn't do a
1285 fixup, and in the second case we must --- but we can't tell which.
1286 Comments in the code for 'random signals' in handle_inferior_event
1287 explain how we handle this case instead.
1288
1289 Returns 1 if preparing was successful -- this thread is going to be
1290 stepped now; or 0 if displaced stepping this thread got queued. */
1291 static int
1292 displaced_step_prepare (ptid_t ptid)
1293 {
1294 struct cleanup *old_cleanups, *ignore_cleanups;
1295 struct thread_info *tp = find_thread_ptid (ptid);
1296 struct regcache *regcache = get_thread_regcache (ptid);
1297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1298 CORE_ADDR original, copy;
1299 ULONGEST len;
1300 struct displaced_step_closure *closure;
1301 struct displaced_step_inferior_state *displaced;
1302 int status;
1303
1304 /* We should never reach this function if the architecture does not
1305 support displaced stepping. */
1306 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1307
1308 /* Disable range stepping while executing in the scratch pad. We
1309 want a single-step even if executing the displaced instruction in
1310 the scratch buffer lands within the stepping range (e.g., a
1311 jump/branch). */
1312 tp->control.may_range_step = 0;
1313
1314 /* We have to displaced step one thread at a time, as we only have
1315 access to a single scratch space per inferior. */
1316
1317 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1318
1319 if (!ptid_equal (displaced->step_ptid, null_ptid))
1320 {
1321 /* Already waiting for a displaced step to finish. Defer this
1322 request and place in queue. */
1323 struct displaced_step_request *req, *new_req;
1324
1325 if (debug_displaced)
1326 fprintf_unfiltered (gdb_stdlog,
1327 "displaced: defering step of %s\n",
1328 target_pid_to_str (ptid));
1329
1330 new_req = xmalloc (sizeof (*new_req));
1331 new_req->ptid = ptid;
1332 new_req->next = NULL;
1333
1334 if (displaced->step_request_queue)
1335 {
1336 for (req = displaced->step_request_queue;
1337 req && req->next;
1338 req = req->next)
1339 ;
1340 req->next = new_req;
1341 }
1342 else
1343 displaced->step_request_queue = new_req;
1344
1345 return 0;
1346 }
1347 else
1348 {
1349 if (debug_displaced)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "displaced: stepping %s now\n",
1352 target_pid_to_str (ptid));
1353 }
1354
1355 displaced_step_clear (displaced);
1356
1357 old_cleanups = save_inferior_ptid ();
1358 inferior_ptid = ptid;
1359
1360 original = regcache_read_pc (regcache);
1361
1362 copy = gdbarch_displaced_step_location (gdbarch);
1363 len = gdbarch_max_insn_length (gdbarch);
1364
1365 /* Save the original contents of the copy area. */
1366 displaced->step_saved_copy = xmalloc (len);
1367 ignore_cleanups = make_cleanup (free_current_contents,
1368 &displaced->step_saved_copy);
1369 status = target_read_memory (copy, displaced->step_saved_copy, len);
1370 if (status != 0)
1371 throw_error (MEMORY_ERROR,
1372 _("Error accessing memory address %s (%s) for "
1373 "displaced-stepping scratch space."),
1374 paddress (gdbarch, copy), safe_strerror (status));
1375 if (debug_displaced)
1376 {
1377 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1378 paddress (gdbarch, copy));
1379 displaced_step_dump_bytes (gdb_stdlog,
1380 displaced->step_saved_copy,
1381 len);
1382 };
1383
1384 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1385 original, copy, regcache);
1386
1387 /* We don't support the fully-simulated case at present. */
1388 gdb_assert (closure);
1389
1390 /* Save the information we need to fix things up if the step
1391 succeeds. */
1392 displaced->step_ptid = ptid;
1393 displaced->step_gdbarch = gdbarch;
1394 displaced->step_closure = closure;
1395 displaced->step_original = original;
1396 displaced->step_copy = copy;
1397
1398 make_cleanup (displaced_step_clear_cleanup, displaced);
1399
1400 /* Resume execution at the copy. */
1401 regcache_write_pc (regcache, copy);
1402
1403 discard_cleanups (ignore_cleanups);
1404
1405 do_cleanups (old_cleanups);
1406
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1409 paddress (gdbarch, copy));
1410
1411 return 1;
1412 }
1413
1414 static void
1415 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1416 const gdb_byte *myaddr, int len)
1417 {
1418 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1419
1420 inferior_ptid = ptid;
1421 write_memory (memaddr, myaddr, len);
1422 do_cleanups (ptid_cleanup);
1423 }
1424
1425 /* Restore the contents of the copy area for thread PTID. */
1426
1427 static void
1428 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1429 ptid_t ptid)
1430 {
1431 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1432
1433 write_memory_ptid (ptid, displaced->step_copy,
1434 displaced->step_saved_copy, len);
1435 if (debug_displaced)
1436 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1437 target_pid_to_str (ptid),
1438 paddress (displaced->step_gdbarch,
1439 displaced->step_copy));
1440 }
1441
1442 static void
1443 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1444 {
1445 struct cleanup *old_cleanups;
1446 struct displaced_step_inferior_state *displaced
1447 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1448
1449 /* Was any thread of this process doing a displaced step? */
1450 if (displaced == NULL)
1451 return;
1452
1453 /* Was this event for the pid we displaced? */
1454 if (ptid_equal (displaced->step_ptid, null_ptid)
1455 || ! ptid_equal (displaced->step_ptid, event_ptid))
1456 return;
1457
1458 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1459
1460 displaced_step_restore (displaced, displaced->step_ptid);
1461
1462 /* Did the instruction complete successfully? */
1463 if (signal == GDB_SIGNAL_TRAP)
1464 {
1465 /* Fix up the resulting state. */
1466 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1467 displaced->step_closure,
1468 displaced->step_original,
1469 displaced->step_copy,
1470 get_thread_regcache (displaced->step_ptid));
1471 }
1472 else
1473 {
1474 /* Since the instruction didn't complete, all we can do is
1475 relocate the PC. */
1476 struct regcache *regcache = get_thread_regcache (event_ptid);
1477 CORE_ADDR pc = regcache_read_pc (regcache);
1478
1479 pc = displaced->step_original + (pc - displaced->step_copy);
1480 regcache_write_pc (regcache, pc);
1481 }
1482
1483 do_cleanups (old_cleanups);
1484
1485 displaced->step_ptid = null_ptid;
1486
1487 /* Are there any pending displaced stepping requests? If so, run
1488 one now. Leave the state object around, since we're likely to
1489 need it again soon. */
1490 while (displaced->step_request_queue)
1491 {
1492 struct displaced_step_request *head;
1493 ptid_t ptid;
1494 struct regcache *regcache;
1495 struct gdbarch *gdbarch;
1496 CORE_ADDR actual_pc;
1497 struct address_space *aspace;
1498
1499 head = displaced->step_request_queue;
1500 ptid = head->ptid;
1501 displaced->step_request_queue = head->next;
1502 xfree (head);
1503
1504 context_switch (ptid);
1505
1506 regcache = get_thread_regcache (ptid);
1507 actual_pc = regcache_read_pc (regcache);
1508 aspace = get_regcache_aspace (regcache);
1509
1510 if (breakpoint_here_p (aspace, actual_pc))
1511 {
1512 if (debug_displaced)
1513 fprintf_unfiltered (gdb_stdlog,
1514 "displaced: stepping queued %s now\n",
1515 target_pid_to_str (ptid));
1516
1517 displaced_step_prepare (ptid);
1518
1519 gdbarch = get_regcache_arch (regcache);
1520
1521 if (debug_displaced)
1522 {
1523 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1524 gdb_byte buf[4];
1525
1526 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1527 paddress (gdbarch, actual_pc));
1528 read_memory (actual_pc, buf, sizeof (buf));
1529 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1530 }
1531
1532 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1533 displaced->step_closure))
1534 target_resume (ptid, 1, GDB_SIGNAL_0);
1535 else
1536 target_resume (ptid, 0, GDB_SIGNAL_0);
1537
1538 /* Done, we're stepping a thread. */
1539 break;
1540 }
1541 else
1542 {
1543 int step;
1544 struct thread_info *tp = inferior_thread ();
1545
1546 /* The breakpoint we were sitting under has since been
1547 removed. */
1548 tp->control.trap_expected = 0;
1549
1550 /* Go back to what we were trying to do. */
1551 step = currently_stepping (tp);
1552
1553 if (debug_displaced)
1554 fprintf_unfiltered (gdb_stdlog,
1555 "displaced: breakpoint is gone: %s, step(%d)\n",
1556 target_pid_to_str (tp->ptid), step);
1557
1558 target_resume (ptid, step, GDB_SIGNAL_0);
1559 tp->suspend.stop_signal = GDB_SIGNAL_0;
1560
1561 /* This request was discarded. See if there's any other
1562 thread waiting for its turn. */
1563 }
1564 }
1565 }
1566
1567 /* Update global variables holding ptids to hold NEW_PTID if they were
1568 holding OLD_PTID. */
1569 static void
1570 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1571 {
1572 struct displaced_step_request *it;
1573 struct displaced_step_inferior_state *displaced;
1574
1575 if (ptid_equal (inferior_ptid, old_ptid))
1576 inferior_ptid = new_ptid;
1577
1578 if (ptid_equal (singlestep_ptid, old_ptid))
1579 singlestep_ptid = new_ptid;
1580
1581 if (ptid_equal (deferred_step_ptid, old_ptid))
1582 deferred_step_ptid = new_ptid;
1583
1584 for (displaced = displaced_step_inferior_states;
1585 displaced;
1586 displaced = displaced->next)
1587 {
1588 if (ptid_equal (displaced->step_ptid, old_ptid))
1589 displaced->step_ptid = new_ptid;
1590
1591 for (it = displaced->step_request_queue; it; it = it->next)
1592 if (ptid_equal (it->ptid, old_ptid))
1593 it->ptid = new_ptid;
1594 }
1595 }
1596
1597 \f
1598 /* Resuming. */
1599
1600 /* Things to clean up if we QUIT out of resume (). */
1601 static void
1602 resume_cleanups (void *ignore)
1603 {
1604 normal_stop ();
1605 }
1606
1607 static const char schedlock_off[] = "off";
1608 static const char schedlock_on[] = "on";
1609 static const char schedlock_step[] = "step";
1610 static const char *const scheduler_enums[] = {
1611 schedlock_off,
1612 schedlock_on,
1613 schedlock_step,
1614 NULL
1615 };
1616 static const char *scheduler_mode = schedlock_off;
1617 static void
1618 show_scheduler_mode (struct ui_file *file, int from_tty,
1619 struct cmd_list_element *c, const char *value)
1620 {
1621 fprintf_filtered (file,
1622 _("Mode for locking scheduler "
1623 "during execution is \"%s\".\n"),
1624 value);
1625 }
1626
1627 static void
1628 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1629 {
1630 if (!target_can_lock_scheduler)
1631 {
1632 scheduler_mode = schedlock_off;
1633 error (_("Target '%s' cannot support this command."), target_shortname);
1634 }
1635 }
1636
1637 /* True if execution commands resume all threads of all processes by
1638 default; otherwise, resume only threads of the current inferior
1639 process. */
1640 int sched_multi = 0;
1641
1642 /* Try to setup for software single stepping over the specified location.
1643 Return 1 if target_resume() should use hardware single step.
1644
1645 GDBARCH the current gdbarch.
1646 PC the location to step over. */
1647
1648 static int
1649 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1650 {
1651 int hw_step = 1;
1652
1653 if (execution_direction == EXEC_FORWARD
1654 && gdbarch_software_single_step_p (gdbarch)
1655 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1656 {
1657 hw_step = 0;
1658 /* Do not pull these breakpoints until after a `wait' in
1659 `wait_for_inferior'. */
1660 singlestep_breakpoints_inserted_p = 1;
1661 singlestep_ptid = inferior_ptid;
1662 singlestep_pc = pc;
1663 }
1664 return hw_step;
1665 }
1666
1667 /* Return a ptid representing the set of threads that we will proceed,
1668 in the perspective of the user/frontend. We may actually resume
1669 fewer threads at first, e.g., if a thread is stopped at a
1670 breakpoint that needs stepping-off, but that should not be visible
1671 to the user/frontend, and neither should the frontend/user be
1672 allowed to proceed any of the threads that happen to be stopped for
1673 internal run control handling, if a previous command wanted them
1674 resumed. */
1675
1676 ptid_t
1677 user_visible_resume_ptid (int step)
1678 {
1679 /* By default, resume all threads of all processes. */
1680 ptid_t resume_ptid = RESUME_ALL;
1681
1682 /* Maybe resume only all threads of the current process. */
1683 if (!sched_multi && target_supports_multi_process ())
1684 {
1685 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1686 }
1687
1688 /* Maybe resume a single thread after all. */
1689 if (non_stop)
1690 {
1691 /* With non-stop mode on, threads are always handled
1692 individually. */
1693 resume_ptid = inferior_ptid;
1694 }
1695 else if ((scheduler_mode == schedlock_on)
1696 || (scheduler_mode == schedlock_step
1697 && (step || singlestep_breakpoints_inserted_p)))
1698 {
1699 /* User-settable 'scheduler' mode requires solo thread resume. */
1700 resume_ptid = inferior_ptid;
1701 }
1702
1703 return resume_ptid;
1704 }
1705
1706 /* Resume the inferior, but allow a QUIT. This is useful if the user
1707 wants to interrupt some lengthy single-stepping operation
1708 (for child processes, the SIGINT goes to the inferior, and so
1709 we get a SIGINT random_signal, but for remote debugging and perhaps
1710 other targets, that's not true).
1711
1712 STEP nonzero if we should step (zero to continue instead).
1713 SIG is the signal to give the inferior (zero for none). */
1714 void
1715 resume (int step, enum gdb_signal sig)
1716 {
1717 int should_resume = 1;
1718 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1719 struct regcache *regcache = get_current_regcache ();
1720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1721 struct thread_info *tp = inferior_thread ();
1722 CORE_ADDR pc = regcache_read_pc (regcache);
1723 struct address_space *aspace = get_regcache_aspace (regcache);
1724
1725 QUIT;
1726
1727 if (current_inferior ()->waiting_for_vfork_done)
1728 {
1729 /* Don't try to single-step a vfork parent that is waiting for
1730 the child to get out of the shared memory region (by exec'ing
1731 or exiting). This is particularly important on software
1732 single-step archs, as the child process would trip on the
1733 software single step breakpoint inserted for the parent
1734 process. Since the parent will not actually execute any
1735 instruction until the child is out of the shared region (such
1736 are vfork's semantics), it is safe to simply continue it.
1737 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1738 the parent, and tell it to `keep_going', which automatically
1739 re-sets it stepping. */
1740 if (debug_infrun)
1741 fprintf_unfiltered (gdb_stdlog,
1742 "infrun: resume : clear step\n");
1743 step = 0;
1744 }
1745
1746 if (debug_infrun)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "infrun: resume (step=%d, signal=%d), "
1749 "trap_expected=%d, current thread [%s] at %s\n",
1750 step, sig, tp->control.trap_expected,
1751 target_pid_to_str (inferior_ptid),
1752 paddress (gdbarch, pc));
1753
1754 /* Normally, by the time we reach `resume', the breakpoints are either
1755 removed or inserted, as appropriate. The exception is if we're sitting
1756 at a permanent breakpoint; we need to step over it, but permanent
1757 breakpoints can't be removed. So we have to test for it here. */
1758 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1759 {
1760 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1761 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1762 else
1763 error (_("\
1764 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1765 how to step past a permanent breakpoint on this architecture. Try using\n\
1766 a command like `return' or `jump' to continue execution."));
1767 }
1768
1769 /* If we have a breakpoint to step over, make sure to do a single
1770 step only. Same if we have software watchpoints. */
1771 if (tp->control.trap_expected || bpstat_should_step ())
1772 tp->control.may_range_step = 0;
1773
1774 /* If enabled, step over breakpoints by executing a copy of the
1775 instruction at a different address.
1776
1777 We can't use displaced stepping when we have a signal to deliver;
1778 the comments for displaced_step_prepare explain why. The
1779 comments in the handle_inferior event for dealing with 'random
1780 signals' explain what we do instead.
1781
1782 We can't use displaced stepping when we are waiting for vfork_done
1783 event, displaced stepping breaks the vfork child similarly as single
1784 step software breakpoint. */
1785 if (use_displaced_stepping (gdbarch)
1786 && (tp->control.trap_expected
1787 || (step && gdbarch_software_single_step_p (gdbarch)))
1788 && sig == GDB_SIGNAL_0
1789 && !current_inferior ()->waiting_for_vfork_done)
1790 {
1791 struct displaced_step_inferior_state *displaced;
1792
1793 if (!displaced_step_prepare (inferior_ptid))
1794 {
1795 /* Got placed in displaced stepping queue. Will be resumed
1796 later when all the currently queued displaced stepping
1797 requests finish. The thread is not executing at this point,
1798 and the call to set_executing will be made later. But we
1799 need to call set_running here, since from frontend point of view,
1800 the thread is running. */
1801 set_running (inferior_ptid, 1);
1802 discard_cleanups (old_cleanups);
1803 return;
1804 }
1805
1806 /* Update pc to reflect the new address from which we will execute
1807 instructions due to displaced stepping. */
1808 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1809
1810 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1811 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1812 displaced->step_closure);
1813 }
1814
1815 /* Do we need to do it the hard way, w/temp breakpoints? */
1816 else if (step)
1817 step = maybe_software_singlestep (gdbarch, pc);
1818
1819 /* Currently, our software single-step implementation leads to different
1820 results than hardware single-stepping in one situation: when stepping
1821 into delivering a signal which has an associated signal handler,
1822 hardware single-step will stop at the first instruction of the handler,
1823 while software single-step will simply skip execution of the handler.
1824
1825 For now, this difference in behavior is accepted since there is no
1826 easy way to actually implement single-stepping into a signal handler
1827 without kernel support.
1828
1829 However, there is one scenario where this difference leads to follow-on
1830 problems: if we're stepping off a breakpoint by removing all breakpoints
1831 and then single-stepping. In this case, the software single-step
1832 behavior means that even if there is a *breakpoint* in the signal
1833 handler, GDB still would not stop.
1834
1835 Fortunately, we can at least fix this particular issue. We detect
1836 here the case where we are about to deliver a signal while software
1837 single-stepping with breakpoints removed. In this situation, we
1838 revert the decisions to remove all breakpoints and insert single-
1839 step breakpoints, and instead we install a step-resume breakpoint
1840 at the current address, deliver the signal without stepping, and
1841 once we arrive back at the step-resume breakpoint, actually step
1842 over the breakpoint we originally wanted to step over. */
1843 if (singlestep_breakpoints_inserted_p
1844 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1845 {
1846 /* If we have nested signals or a pending signal is delivered
1847 immediately after a handler returns, might might already have
1848 a step-resume breakpoint set on the earlier handler. We cannot
1849 set another step-resume breakpoint; just continue on until the
1850 original breakpoint is hit. */
1851 if (tp->control.step_resume_breakpoint == NULL)
1852 {
1853 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1854 tp->step_after_step_resume_breakpoint = 1;
1855 }
1856
1857 remove_single_step_breakpoints ();
1858 singlestep_breakpoints_inserted_p = 0;
1859
1860 insert_breakpoints ();
1861 tp->control.trap_expected = 0;
1862 }
1863
1864 if (should_resume)
1865 {
1866 ptid_t resume_ptid;
1867
1868 /* If STEP is set, it's a request to use hardware stepping
1869 facilities. But in that case, we should never
1870 use singlestep breakpoint. */
1871 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1872
1873 /* Decide the set of threads to ask the target to resume. Start
1874 by assuming everything will be resumed, than narrow the set
1875 by applying increasingly restricting conditions. */
1876 resume_ptid = user_visible_resume_ptid (step);
1877
1878 /* Maybe resume a single thread after all. */
1879 if (singlestep_breakpoints_inserted_p
1880 && stepping_past_singlestep_breakpoint)
1881 {
1882 /* The situation here is as follows. In thread T1 we wanted to
1883 single-step. Lacking hardware single-stepping we've
1884 set breakpoint at the PC of the next instruction -- call it
1885 P. After resuming, we've hit that breakpoint in thread T2.
1886 Now we've removed original breakpoint, inserted breakpoint
1887 at P+1, and try to step to advance T2 past breakpoint.
1888 We need to step only T2, as if T1 is allowed to freely run,
1889 it can run past P, and if other threads are allowed to run,
1890 they can hit breakpoint at P+1, and nested hits of single-step
1891 breakpoints is not something we'd want -- that's complicated
1892 to support, and has no value. */
1893 resume_ptid = inferior_ptid;
1894 }
1895 else if ((step || singlestep_breakpoints_inserted_p)
1896 && tp->control.trap_expected)
1897 {
1898 /* We're allowing a thread to run past a breakpoint it has
1899 hit, by single-stepping the thread with the breakpoint
1900 removed. In which case, we need to single-step only this
1901 thread, and keep others stopped, as they can miss this
1902 breakpoint if allowed to run.
1903
1904 The current code actually removes all breakpoints when
1905 doing this, not just the one being stepped over, so if we
1906 let other threads run, we can actually miss any
1907 breakpoint, not just the one at PC. */
1908 resume_ptid = inferior_ptid;
1909 }
1910
1911 if (gdbarch_cannot_step_breakpoint (gdbarch))
1912 {
1913 /* Most targets can step a breakpoint instruction, thus
1914 executing it normally. But if this one cannot, just
1915 continue and we will hit it anyway. */
1916 if (step && breakpoint_inserted_here_p (aspace, pc))
1917 step = 0;
1918 }
1919
1920 if (debug_displaced
1921 && use_displaced_stepping (gdbarch)
1922 && tp->control.trap_expected)
1923 {
1924 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1925 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1926 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1927 gdb_byte buf[4];
1928
1929 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1930 paddress (resume_gdbarch, actual_pc));
1931 read_memory (actual_pc, buf, sizeof (buf));
1932 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1933 }
1934
1935 if (tp->control.may_range_step)
1936 {
1937 /* If we're resuming a thread with the PC out of the step
1938 range, then we're doing some nested/finer run control
1939 operation, like stepping the thread out of the dynamic
1940 linker or the displaced stepping scratch pad. We
1941 shouldn't have allowed a range step then. */
1942 gdb_assert (pc_in_thread_step_range (pc, tp));
1943 }
1944
1945 /* Install inferior's terminal modes. */
1946 target_terminal_inferior ();
1947
1948 /* Avoid confusing the next resume, if the next stop/resume
1949 happens to apply to another thread. */
1950 tp->suspend.stop_signal = GDB_SIGNAL_0;
1951
1952 /* Advise target which signals may be handled silently. If we have
1953 removed breakpoints because we are stepping over one (which can
1954 happen only if we are not using displaced stepping), we need to
1955 receive all signals to avoid accidentally skipping a breakpoint
1956 during execution of a signal handler. */
1957 if ((step || singlestep_breakpoints_inserted_p)
1958 && tp->control.trap_expected
1959 && !use_displaced_stepping (gdbarch))
1960 target_pass_signals (0, NULL);
1961 else
1962 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1963
1964 target_resume (resume_ptid, step, sig);
1965 }
1966
1967 discard_cleanups (old_cleanups);
1968 }
1969 \f
1970 /* Proceeding. */
1971
1972 /* Clear out all variables saying what to do when inferior is continued.
1973 First do this, then set the ones you want, then call `proceed'. */
1974
1975 static void
1976 clear_proceed_status_thread (struct thread_info *tp)
1977 {
1978 if (debug_infrun)
1979 fprintf_unfiltered (gdb_stdlog,
1980 "infrun: clear_proceed_status_thread (%s)\n",
1981 target_pid_to_str (tp->ptid));
1982
1983 tp->control.trap_expected = 0;
1984 tp->control.step_range_start = 0;
1985 tp->control.step_range_end = 0;
1986 tp->control.may_range_step = 0;
1987 tp->control.step_frame_id = null_frame_id;
1988 tp->control.step_stack_frame_id = null_frame_id;
1989 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1990 tp->stop_requested = 0;
1991
1992 tp->control.stop_step = 0;
1993
1994 tp->control.proceed_to_finish = 0;
1995
1996 /* Discard any remaining commands or status from previous stop. */
1997 bpstat_clear (&tp->control.stop_bpstat);
1998 }
1999
2000 static int
2001 clear_proceed_status_callback (struct thread_info *tp, void *data)
2002 {
2003 if (is_exited (tp->ptid))
2004 return 0;
2005
2006 clear_proceed_status_thread (tp);
2007 return 0;
2008 }
2009
2010 void
2011 clear_proceed_status (void)
2012 {
2013 if (!non_stop)
2014 {
2015 /* In all-stop mode, delete the per-thread status of all
2016 threads, even if inferior_ptid is null_ptid, there may be
2017 threads on the list. E.g., we may be launching a new
2018 process, while selecting the executable. */
2019 iterate_over_threads (clear_proceed_status_callback, NULL);
2020 }
2021
2022 if (!ptid_equal (inferior_ptid, null_ptid))
2023 {
2024 struct inferior *inferior;
2025
2026 if (non_stop)
2027 {
2028 /* If in non-stop mode, only delete the per-thread status of
2029 the current thread. */
2030 clear_proceed_status_thread (inferior_thread ());
2031 }
2032
2033 inferior = current_inferior ();
2034 inferior->control.stop_soon = NO_STOP_QUIETLY;
2035 }
2036
2037 stop_after_trap = 0;
2038
2039 observer_notify_about_to_proceed ();
2040
2041 if (stop_registers)
2042 {
2043 regcache_xfree (stop_registers);
2044 stop_registers = NULL;
2045 }
2046 }
2047
2048 /* Check the current thread against the thread that reported the most recent
2049 event. If a step-over is required return TRUE and set the current thread
2050 to the old thread. Otherwise return FALSE.
2051
2052 This should be suitable for any targets that support threads. */
2053
2054 static int
2055 prepare_to_proceed (int step)
2056 {
2057 ptid_t wait_ptid;
2058 struct target_waitstatus wait_status;
2059 int schedlock_enabled;
2060
2061 /* With non-stop mode on, threads are always handled individually. */
2062 gdb_assert (! non_stop);
2063
2064 /* Get the last target status returned by target_wait(). */
2065 get_last_target_status (&wait_ptid, &wait_status);
2066
2067 /* Make sure we were stopped at a breakpoint. */
2068 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2069 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2070 && wait_status.value.sig != GDB_SIGNAL_ILL
2071 && wait_status.value.sig != GDB_SIGNAL_SEGV
2072 && wait_status.value.sig != GDB_SIGNAL_EMT))
2073 {
2074 return 0;
2075 }
2076
2077 schedlock_enabled = (scheduler_mode == schedlock_on
2078 || (scheduler_mode == schedlock_step
2079 && step));
2080
2081 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2082 if (schedlock_enabled)
2083 return 0;
2084
2085 /* Don't switch over if we're about to resume some other process
2086 other than WAIT_PTID's, and schedule-multiple is off. */
2087 if (!sched_multi
2088 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2089 return 0;
2090
2091 /* Switched over from WAIT_PID. */
2092 if (!ptid_equal (wait_ptid, minus_one_ptid)
2093 && !ptid_equal (inferior_ptid, wait_ptid))
2094 {
2095 struct regcache *regcache = get_thread_regcache (wait_ptid);
2096
2097 if (breakpoint_here_p (get_regcache_aspace (regcache),
2098 regcache_read_pc (regcache)))
2099 {
2100 /* If stepping, remember current thread to switch back to. */
2101 if (step)
2102 deferred_step_ptid = inferior_ptid;
2103
2104 /* Switch back to WAIT_PID thread. */
2105 switch_to_thread (wait_ptid);
2106
2107 if (debug_infrun)
2108 fprintf_unfiltered (gdb_stdlog,
2109 "infrun: prepare_to_proceed (step=%d), "
2110 "switched to [%s]\n",
2111 step, target_pid_to_str (inferior_ptid));
2112
2113 /* We return 1 to indicate that there is a breakpoint here,
2114 so we need to step over it before continuing to avoid
2115 hitting it straight away. */
2116 return 1;
2117 }
2118 }
2119
2120 return 0;
2121 }
2122
2123 /* Basic routine for continuing the program in various fashions.
2124
2125 ADDR is the address to resume at, or -1 for resume where stopped.
2126 SIGGNAL is the signal to give it, or 0 for none,
2127 or -1 for act according to how it stopped.
2128 STEP is nonzero if should trap after one instruction.
2129 -1 means return after that and print nothing.
2130 You should probably set various step_... variables
2131 before calling here, if you are stepping.
2132
2133 You should call clear_proceed_status before calling proceed. */
2134
2135 void
2136 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2137 {
2138 struct regcache *regcache;
2139 struct gdbarch *gdbarch;
2140 struct thread_info *tp;
2141 CORE_ADDR pc;
2142 struct address_space *aspace;
2143 /* GDB may force the inferior to step due to various reasons. */
2144 int force_step = 0;
2145
2146 /* If we're stopped at a fork/vfork, follow the branch set by the
2147 "set follow-fork-mode" command; otherwise, we'll just proceed
2148 resuming the current thread. */
2149 if (!follow_fork ())
2150 {
2151 /* The target for some reason decided not to resume. */
2152 normal_stop ();
2153 if (target_can_async_p ())
2154 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2155 return;
2156 }
2157
2158 /* We'll update this if & when we switch to a new thread. */
2159 previous_inferior_ptid = inferior_ptid;
2160
2161 regcache = get_current_regcache ();
2162 gdbarch = get_regcache_arch (regcache);
2163 aspace = get_regcache_aspace (regcache);
2164 pc = regcache_read_pc (regcache);
2165
2166 if (step > 0)
2167 step_start_function = find_pc_function (pc);
2168 if (step < 0)
2169 stop_after_trap = 1;
2170
2171 if (addr == (CORE_ADDR) -1)
2172 {
2173 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2174 && execution_direction != EXEC_REVERSE)
2175 /* There is a breakpoint at the address we will resume at,
2176 step one instruction before inserting breakpoints so that
2177 we do not stop right away (and report a second hit at this
2178 breakpoint).
2179
2180 Note, we don't do this in reverse, because we won't
2181 actually be executing the breakpoint insn anyway.
2182 We'll be (un-)executing the previous instruction. */
2183
2184 force_step = 1;
2185 else if (gdbarch_single_step_through_delay_p (gdbarch)
2186 && gdbarch_single_step_through_delay (gdbarch,
2187 get_current_frame ()))
2188 /* We stepped onto an instruction that needs to be stepped
2189 again before re-inserting the breakpoint, do so. */
2190 force_step = 1;
2191 }
2192 else
2193 {
2194 regcache_write_pc (regcache, addr);
2195 }
2196
2197 if (debug_infrun)
2198 fprintf_unfiltered (gdb_stdlog,
2199 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2200 paddress (gdbarch, addr), siggnal, step);
2201
2202 if (non_stop)
2203 /* In non-stop, each thread is handled individually. The context
2204 must already be set to the right thread here. */
2205 ;
2206 else
2207 {
2208 /* In a multi-threaded task we may select another thread and
2209 then continue or step.
2210
2211 But if the old thread was stopped at a breakpoint, it will
2212 immediately cause another breakpoint stop without any
2213 execution (i.e. it will report a breakpoint hit incorrectly).
2214 So we must step over it first.
2215
2216 prepare_to_proceed checks the current thread against the
2217 thread that reported the most recent event. If a step-over
2218 is required it returns TRUE and sets the current thread to
2219 the old thread. */
2220 if (prepare_to_proceed (step))
2221 force_step = 1;
2222 }
2223
2224 /* prepare_to_proceed may change the current thread. */
2225 tp = inferior_thread ();
2226
2227 if (force_step)
2228 {
2229 tp->control.trap_expected = 1;
2230 /* If displaced stepping is enabled, we can step over the
2231 breakpoint without hitting it, so leave all breakpoints
2232 inserted. Otherwise we need to disable all breakpoints, step
2233 one instruction, and then re-add them when that step is
2234 finished. */
2235 if (!use_displaced_stepping (gdbarch))
2236 remove_breakpoints ();
2237 }
2238
2239 /* We can insert breakpoints if we're not trying to step over one,
2240 or if we are stepping over one but we're using displaced stepping
2241 to do so. */
2242 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2243 insert_breakpoints ();
2244
2245 if (!non_stop)
2246 {
2247 /* Pass the last stop signal to the thread we're resuming,
2248 irrespective of whether the current thread is the thread that
2249 got the last event or not. This was historically GDB's
2250 behaviour before keeping a stop_signal per thread. */
2251
2252 struct thread_info *last_thread;
2253 ptid_t last_ptid;
2254 struct target_waitstatus last_status;
2255
2256 get_last_target_status (&last_ptid, &last_status);
2257 if (!ptid_equal (inferior_ptid, last_ptid)
2258 && !ptid_equal (last_ptid, null_ptid)
2259 && !ptid_equal (last_ptid, minus_one_ptid))
2260 {
2261 last_thread = find_thread_ptid (last_ptid);
2262 if (last_thread)
2263 {
2264 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2265 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2266 }
2267 }
2268 }
2269
2270 if (siggnal != GDB_SIGNAL_DEFAULT)
2271 tp->suspend.stop_signal = siggnal;
2272 /* If this signal should not be seen by program,
2273 give it zero. Used for debugging signals. */
2274 else if (!signal_program[tp->suspend.stop_signal])
2275 tp->suspend.stop_signal = GDB_SIGNAL_0;
2276
2277 annotate_starting ();
2278
2279 /* Make sure that output from GDB appears before output from the
2280 inferior. */
2281 gdb_flush (gdb_stdout);
2282
2283 /* Refresh prev_pc value just prior to resuming. This used to be
2284 done in stop_stepping, however, setting prev_pc there did not handle
2285 scenarios such as inferior function calls or returning from
2286 a function via the return command. In those cases, the prev_pc
2287 value was not set properly for subsequent commands. The prev_pc value
2288 is used to initialize the starting line number in the ecs. With an
2289 invalid value, the gdb next command ends up stopping at the position
2290 represented by the next line table entry past our start position.
2291 On platforms that generate one line table entry per line, this
2292 is not a problem. However, on the ia64, the compiler generates
2293 extraneous line table entries that do not increase the line number.
2294 When we issue the gdb next command on the ia64 after an inferior call
2295 or a return command, we often end up a few instructions forward, still
2296 within the original line we started.
2297
2298 An attempt was made to refresh the prev_pc at the same time the
2299 execution_control_state is initialized (for instance, just before
2300 waiting for an inferior event). But this approach did not work
2301 because of platforms that use ptrace, where the pc register cannot
2302 be read unless the inferior is stopped. At that point, we are not
2303 guaranteed the inferior is stopped and so the regcache_read_pc() call
2304 can fail. Setting the prev_pc value here ensures the value is updated
2305 correctly when the inferior is stopped. */
2306 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2307
2308 /* Fill in with reasonable starting values. */
2309 init_thread_stepping_state (tp);
2310
2311 /* Reset to normal state. */
2312 init_infwait_state ();
2313
2314 /* Resume inferior. */
2315 resume (force_step || step || bpstat_should_step (),
2316 tp->suspend.stop_signal);
2317
2318 /* Wait for it to stop (if not standalone)
2319 and in any case decode why it stopped, and act accordingly. */
2320 /* Do this only if we are not using the event loop, or if the target
2321 does not support asynchronous execution. */
2322 if (!target_can_async_p ())
2323 {
2324 wait_for_inferior ();
2325 normal_stop ();
2326 }
2327 }
2328 \f
2329
2330 /* Start remote-debugging of a machine over a serial link. */
2331
2332 void
2333 start_remote (int from_tty)
2334 {
2335 struct inferior *inferior;
2336
2337 inferior = current_inferior ();
2338 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2339
2340 /* Always go on waiting for the target, regardless of the mode. */
2341 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2342 indicate to wait_for_inferior that a target should timeout if
2343 nothing is returned (instead of just blocking). Because of this,
2344 targets expecting an immediate response need to, internally, set
2345 things up so that the target_wait() is forced to eventually
2346 timeout. */
2347 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2348 differentiate to its caller what the state of the target is after
2349 the initial open has been performed. Here we're assuming that
2350 the target has stopped. It should be possible to eventually have
2351 target_open() return to the caller an indication that the target
2352 is currently running and GDB state should be set to the same as
2353 for an async run. */
2354 wait_for_inferior ();
2355
2356 /* Now that the inferior has stopped, do any bookkeeping like
2357 loading shared libraries. We want to do this before normal_stop,
2358 so that the displayed frame is up to date. */
2359 post_create_inferior (&current_target, from_tty);
2360
2361 normal_stop ();
2362 }
2363
2364 /* Initialize static vars when a new inferior begins. */
2365
2366 void
2367 init_wait_for_inferior (void)
2368 {
2369 /* These are meaningless until the first time through wait_for_inferior. */
2370
2371 breakpoint_init_inferior (inf_starting);
2372
2373 clear_proceed_status ();
2374
2375 stepping_past_singlestep_breakpoint = 0;
2376 deferred_step_ptid = null_ptid;
2377
2378 target_last_wait_ptid = minus_one_ptid;
2379
2380 previous_inferior_ptid = inferior_ptid;
2381 init_infwait_state ();
2382
2383 /* Discard any skipped inlined frames. */
2384 clear_inline_frame_state (minus_one_ptid);
2385 }
2386
2387 \f
2388 /* This enum encodes possible reasons for doing a target_wait, so that
2389 wfi can call target_wait in one place. (Ultimately the call will be
2390 moved out of the infinite loop entirely.) */
2391
2392 enum infwait_states
2393 {
2394 infwait_normal_state,
2395 infwait_thread_hop_state,
2396 infwait_step_watch_state,
2397 infwait_nonstep_watch_state
2398 };
2399
2400 /* The PTID we'll do a target_wait on.*/
2401 ptid_t waiton_ptid;
2402
2403 /* Current inferior wait state. */
2404 static enum infwait_states infwait_state;
2405
2406 /* Data to be passed around while handling an event. This data is
2407 discarded between events. */
2408 struct execution_control_state
2409 {
2410 ptid_t ptid;
2411 /* The thread that got the event, if this was a thread event; NULL
2412 otherwise. */
2413 struct thread_info *event_thread;
2414
2415 struct target_waitstatus ws;
2416 int random_signal;
2417 int stop_func_filled_in;
2418 CORE_ADDR stop_func_start;
2419 CORE_ADDR stop_func_end;
2420 const char *stop_func_name;
2421 int wait_some_more;
2422 };
2423
2424 static void handle_inferior_event (struct execution_control_state *ecs);
2425
2426 static void handle_step_into_function (struct gdbarch *gdbarch,
2427 struct execution_control_state *ecs);
2428 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2429 struct execution_control_state *ecs);
2430 static void check_exception_resume (struct execution_control_state *,
2431 struct frame_info *);
2432
2433 static void stop_stepping (struct execution_control_state *ecs);
2434 static void prepare_to_wait (struct execution_control_state *ecs);
2435 static void keep_going (struct execution_control_state *ecs);
2436
2437 /* Callback for iterate over threads. If the thread is stopped, but
2438 the user/frontend doesn't know about that yet, go through
2439 normal_stop, as if the thread had just stopped now. ARG points at
2440 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2441 ptid_is_pid(PTID) is true, applies to all threads of the process
2442 pointed at by PTID. Otherwise, apply only to the thread pointed by
2443 PTID. */
2444
2445 static int
2446 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2447 {
2448 ptid_t ptid = * (ptid_t *) arg;
2449
2450 if ((ptid_equal (info->ptid, ptid)
2451 || ptid_equal (minus_one_ptid, ptid)
2452 || (ptid_is_pid (ptid)
2453 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2454 && is_running (info->ptid)
2455 && !is_executing (info->ptid))
2456 {
2457 struct cleanup *old_chain;
2458 struct execution_control_state ecss;
2459 struct execution_control_state *ecs = &ecss;
2460
2461 memset (ecs, 0, sizeof (*ecs));
2462
2463 old_chain = make_cleanup_restore_current_thread ();
2464
2465 /* Go through handle_inferior_event/normal_stop, so we always
2466 have consistent output as if the stop event had been
2467 reported. */
2468 ecs->ptid = info->ptid;
2469 ecs->event_thread = find_thread_ptid (info->ptid);
2470 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2471 ecs->ws.value.sig = GDB_SIGNAL_0;
2472
2473 handle_inferior_event (ecs);
2474
2475 if (!ecs->wait_some_more)
2476 {
2477 struct thread_info *tp;
2478
2479 normal_stop ();
2480
2481 /* Finish off the continuations. */
2482 tp = inferior_thread ();
2483 do_all_intermediate_continuations_thread (tp, 1);
2484 do_all_continuations_thread (tp, 1);
2485 }
2486
2487 do_cleanups (old_chain);
2488 }
2489
2490 return 0;
2491 }
2492
2493 /* This function is attached as a "thread_stop_requested" observer.
2494 Cleanup local state that assumed the PTID was to be resumed, and
2495 report the stop to the frontend. */
2496
2497 static void
2498 infrun_thread_stop_requested (ptid_t ptid)
2499 {
2500 struct displaced_step_inferior_state *displaced;
2501
2502 /* PTID was requested to stop. Remove it from the displaced
2503 stepping queue, so we don't try to resume it automatically. */
2504
2505 for (displaced = displaced_step_inferior_states;
2506 displaced;
2507 displaced = displaced->next)
2508 {
2509 struct displaced_step_request *it, **prev_next_p;
2510
2511 it = displaced->step_request_queue;
2512 prev_next_p = &displaced->step_request_queue;
2513 while (it)
2514 {
2515 if (ptid_match (it->ptid, ptid))
2516 {
2517 *prev_next_p = it->next;
2518 it->next = NULL;
2519 xfree (it);
2520 }
2521 else
2522 {
2523 prev_next_p = &it->next;
2524 }
2525
2526 it = *prev_next_p;
2527 }
2528 }
2529
2530 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2531 }
2532
2533 static void
2534 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2535 {
2536 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2537 nullify_last_target_wait_ptid ();
2538 }
2539
2540 /* Callback for iterate_over_threads. */
2541
2542 static int
2543 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2544 {
2545 if (is_exited (info->ptid))
2546 return 0;
2547
2548 delete_step_resume_breakpoint (info);
2549 delete_exception_resume_breakpoint (info);
2550 return 0;
2551 }
2552
2553 /* In all-stop, delete the step resume breakpoint of any thread that
2554 had one. In non-stop, delete the step resume breakpoint of the
2555 thread that just stopped. */
2556
2557 static void
2558 delete_step_thread_step_resume_breakpoint (void)
2559 {
2560 if (!target_has_execution
2561 || ptid_equal (inferior_ptid, null_ptid))
2562 /* If the inferior has exited, we have already deleted the step
2563 resume breakpoints out of GDB's lists. */
2564 return;
2565
2566 if (non_stop)
2567 {
2568 /* If in non-stop mode, only delete the step-resume or
2569 longjmp-resume breakpoint of the thread that just stopped
2570 stepping. */
2571 struct thread_info *tp = inferior_thread ();
2572
2573 delete_step_resume_breakpoint (tp);
2574 delete_exception_resume_breakpoint (tp);
2575 }
2576 else
2577 /* In all-stop mode, delete all step-resume and longjmp-resume
2578 breakpoints of any thread that had them. */
2579 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2580 }
2581
2582 /* A cleanup wrapper. */
2583
2584 static void
2585 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2586 {
2587 delete_step_thread_step_resume_breakpoint ();
2588 }
2589
2590 /* Pretty print the results of target_wait, for debugging purposes. */
2591
2592 static void
2593 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2594 const struct target_waitstatus *ws)
2595 {
2596 char *status_string = target_waitstatus_to_string (ws);
2597 struct ui_file *tmp_stream = mem_fileopen ();
2598 char *text;
2599
2600 /* The text is split over several lines because it was getting too long.
2601 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2602 output as a unit; we want only one timestamp printed if debug_timestamp
2603 is set. */
2604
2605 fprintf_unfiltered (tmp_stream,
2606 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2607 if (PIDGET (waiton_ptid) != -1)
2608 fprintf_unfiltered (tmp_stream,
2609 " [%s]", target_pid_to_str (waiton_ptid));
2610 fprintf_unfiltered (tmp_stream, ", status) =\n");
2611 fprintf_unfiltered (tmp_stream,
2612 "infrun: %d [%s],\n",
2613 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2614 fprintf_unfiltered (tmp_stream,
2615 "infrun: %s\n",
2616 status_string);
2617
2618 text = ui_file_xstrdup (tmp_stream, NULL);
2619
2620 /* This uses %s in part to handle %'s in the text, but also to avoid
2621 a gcc error: the format attribute requires a string literal. */
2622 fprintf_unfiltered (gdb_stdlog, "%s", text);
2623
2624 xfree (status_string);
2625 xfree (text);
2626 ui_file_delete (tmp_stream);
2627 }
2628
2629 /* Prepare and stabilize the inferior for detaching it. E.g.,
2630 detaching while a thread is displaced stepping is a recipe for
2631 crashing it, as nothing would readjust the PC out of the scratch
2632 pad. */
2633
2634 void
2635 prepare_for_detach (void)
2636 {
2637 struct inferior *inf = current_inferior ();
2638 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2639 struct cleanup *old_chain_1;
2640 struct displaced_step_inferior_state *displaced;
2641
2642 displaced = get_displaced_stepping_state (inf->pid);
2643
2644 /* Is any thread of this process displaced stepping? If not,
2645 there's nothing else to do. */
2646 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2647 return;
2648
2649 if (debug_infrun)
2650 fprintf_unfiltered (gdb_stdlog,
2651 "displaced-stepping in-process while detaching");
2652
2653 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2654 inf->detaching = 1;
2655
2656 while (!ptid_equal (displaced->step_ptid, null_ptid))
2657 {
2658 struct cleanup *old_chain_2;
2659 struct execution_control_state ecss;
2660 struct execution_control_state *ecs;
2661
2662 ecs = &ecss;
2663 memset (ecs, 0, sizeof (*ecs));
2664
2665 overlay_cache_invalid = 1;
2666
2667 if (deprecated_target_wait_hook)
2668 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2669 else
2670 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2671
2672 if (debug_infrun)
2673 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2674
2675 /* If an error happens while handling the event, propagate GDB's
2676 knowledge of the executing state to the frontend/user running
2677 state. */
2678 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2679 &minus_one_ptid);
2680
2681 /* Now figure out what to do with the result of the result. */
2682 handle_inferior_event (ecs);
2683
2684 /* No error, don't finish the state yet. */
2685 discard_cleanups (old_chain_2);
2686
2687 /* Breakpoints and watchpoints are not installed on the target
2688 at this point, and signals are passed directly to the
2689 inferior, so this must mean the process is gone. */
2690 if (!ecs->wait_some_more)
2691 {
2692 discard_cleanups (old_chain_1);
2693 error (_("Program exited while detaching"));
2694 }
2695 }
2696
2697 discard_cleanups (old_chain_1);
2698 }
2699
2700 /* Wait for control to return from inferior to debugger.
2701
2702 If inferior gets a signal, we may decide to start it up again
2703 instead of returning. That is why there is a loop in this function.
2704 When this function actually returns it means the inferior
2705 should be left stopped and GDB should read more commands. */
2706
2707 void
2708 wait_for_inferior (void)
2709 {
2710 struct cleanup *old_cleanups;
2711
2712 if (debug_infrun)
2713 fprintf_unfiltered
2714 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2715
2716 old_cleanups =
2717 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2718
2719 while (1)
2720 {
2721 struct execution_control_state ecss;
2722 struct execution_control_state *ecs = &ecss;
2723 struct cleanup *old_chain;
2724
2725 memset (ecs, 0, sizeof (*ecs));
2726
2727 overlay_cache_invalid = 1;
2728
2729 if (deprecated_target_wait_hook)
2730 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2731 else
2732 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2733
2734 if (debug_infrun)
2735 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2736
2737 /* If an error happens while handling the event, propagate GDB's
2738 knowledge of the executing state to the frontend/user running
2739 state. */
2740 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2741
2742 /* Now figure out what to do with the result of the result. */
2743 handle_inferior_event (ecs);
2744
2745 /* No error, don't finish the state yet. */
2746 discard_cleanups (old_chain);
2747
2748 if (!ecs->wait_some_more)
2749 break;
2750 }
2751
2752 do_cleanups (old_cleanups);
2753 }
2754
2755 /* Asynchronous version of wait_for_inferior. It is called by the
2756 event loop whenever a change of state is detected on the file
2757 descriptor corresponding to the target. It can be called more than
2758 once to complete a single execution command. In such cases we need
2759 to keep the state in a global variable ECSS. If it is the last time
2760 that this function is called for a single execution command, then
2761 report to the user that the inferior has stopped, and do the
2762 necessary cleanups. */
2763
2764 void
2765 fetch_inferior_event (void *client_data)
2766 {
2767 struct execution_control_state ecss;
2768 struct execution_control_state *ecs = &ecss;
2769 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2770 struct cleanup *ts_old_chain;
2771 int was_sync = sync_execution;
2772 int cmd_done = 0;
2773
2774 memset (ecs, 0, sizeof (*ecs));
2775
2776 /* We're handling a live event, so make sure we're doing live
2777 debugging. If we're looking at traceframes while the target is
2778 running, we're going to need to get back to that mode after
2779 handling the event. */
2780 if (non_stop)
2781 {
2782 make_cleanup_restore_current_traceframe ();
2783 set_current_traceframe (-1);
2784 }
2785
2786 if (non_stop)
2787 /* In non-stop mode, the user/frontend should not notice a thread
2788 switch due to internal events. Make sure we reverse to the
2789 user selected thread and frame after handling the event and
2790 running any breakpoint commands. */
2791 make_cleanup_restore_current_thread ();
2792
2793 overlay_cache_invalid = 1;
2794
2795 make_cleanup_restore_integer (&execution_direction);
2796 execution_direction = target_execution_direction ();
2797
2798 if (deprecated_target_wait_hook)
2799 ecs->ptid =
2800 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2801 else
2802 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2803
2804 if (debug_infrun)
2805 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2806
2807 /* If an error happens while handling the event, propagate GDB's
2808 knowledge of the executing state to the frontend/user running
2809 state. */
2810 if (!non_stop)
2811 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2812 else
2813 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2814
2815 /* Get executed before make_cleanup_restore_current_thread above to apply
2816 still for the thread which has thrown the exception. */
2817 make_bpstat_clear_actions_cleanup ();
2818
2819 /* Now figure out what to do with the result of the result. */
2820 handle_inferior_event (ecs);
2821
2822 if (!ecs->wait_some_more)
2823 {
2824 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2825
2826 delete_step_thread_step_resume_breakpoint ();
2827
2828 /* We may not find an inferior if this was a process exit. */
2829 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2830 normal_stop ();
2831
2832 if (target_has_execution
2833 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2834 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2835 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2836 && ecs->event_thread->step_multi
2837 && ecs->event_thread->control.stop_step)
2838 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2839 else
2840 {
2841 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2842 cmd_done = 1;
2843 }
2844 }
2845
2846 /* No error, don't finish the thread states yet. */
2847 discard_cleanups (ts_old_chain);
2848
2849 /* Revert thread and frame. */
2850 do_cleanups (old_chain);
2851
2852 /* If the inferior was in sync execution mode, and now isn't,
2853 restore the prompt (a synchronous execution command has finished,
2854 and we're ready for input). */
2855 if (interpreter_async && was_sync && !sync_execution)
2856 display_gdb_prompt (0);
2857
2858 if (cmd_done
2859 && !was_sync
2860 && exec_done_display_p
2861 && (ptid_equal (inferior_ptid, null_ptid)
2862 || !is_running (inferior_ptid)))
2863 printf_unfiltered (_("completed.\n"));
2864 }
2865
2866 /* Record the frame and location we're currently stepping through. */
2867 void
2868 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2869 {
2870 struct thread_info *tp = inferior_thread ();
2871
2872 tp->control.step_frame_id = get_frame_id (frame);
2873 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2874
2875 tp->current_symtab = sal.symtab;
2876 tp->current_line = sal.line;
2877 }
2878
2879 /* Clear context switchable stepping state. */
2880
2881 void
2882 init_thread_stepping_state (struct thread_info *tss)
2883 {
2884 tss->stepping_over_breakpoint = 0;
2885 tss->step_after_step_resume_breakpoint = 0;
2886 }
2887
2888 /* Return the cached copy of the last pid/waitstatus returned by
2889 target_wait()/deprecated_target_wait_hook(). The data is actually
2890 cached by handle_inferior_event(), which gets called immediately
2891 after target_wait()/deprecated_target_wait_hook(). */
2892
2893 void
2894 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2895 {
2896 *ptidp = target_last_wait_ptid;
2897 *status = target_last_waitstatus;
2898 }
2899
2900 void
2901 nullify_last_target_wait_ptid (void)
2902 {
2903 target_last_wait_ptid = minus_one_ptid;
2904 }
2905
2906 /* Switch thread contexts. */
2907
2908 static void
2909 context_switch (ptid_t ptid)
2910 {
2911 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2912 {
2913 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2914 target_pid_to_str (inferior_ptid));
2915 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2916 target_pid_to_str (ptid));
2917 }
2918
2919 switch_to_thread (ptid);
2920 }
2921
2922 static void
2923 adjust_pc_after_break (struct execution_control_state *ecs)
2924 {
2925 struct regcache *regcache;
2926 struct gdbarch *gdbarch;
2927 struct address_space *aspace;
2928 CORE_ADDR breakpoint_pc;
2929
2930 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2931 we aren't, just return.
2932
2933 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2934 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2935 implemented by software breakpoints should be handled through the normal
2936 breakpoint layer.
2937
2938 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2939 different signals (SIGILL or SIGEMT for instance), but it is less
2940 clear where the PC is pointing afterwards. It may not match
2941 gdbarch_decr_pc_after_break. I don't know any specific target that
2942 generates these signals at breakpoints (the code has been in GDB since at
2943 least 1992) so I can not guess how to handle them here.
2944
2945 In earlier versions of GDB, a target with
2946 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2947 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2948 target with both of these set in GDB history, and it seems unlikely to be
2949 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2950
2951 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2952 return;
2953
2954 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2955 return;
2956
2957 /* In reverse execution, when a breakpoint is hit, the instruction
2958 under it has already been de-executed. The reported PC always
2959 points at the breakpoint address, so adjusting it further would
2960 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2961 architecture:
2962
2963 B1 0x08000000 : INSN1
2964 B2 0x08000001 : INSN2
2965 0x08000002 : INSN3
2966 PC -> 0x08000003 : INSN4
2967
2968 Say you're stopped at 0x08000003 as above. Reverse continuing
2969 from that point should hit B2 as below. Reading the PC when the
2970 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2971 been de-executed already.
2972
2973 B1 0x08000000 : INSN1
2974 B2 PC -> 0x08000001 : INSN2
2975 0x08000002 : INSN3
2976 0x08000003 : INSN4
2977
2978 We can't apply the same logic as for forward execution, because
2979 we would wrongly adjust the PC to 0x08000000, since there's a
2980 breakpoint at PC - 1. We'd then report a hit on B1, although
2981 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2982 behaviour. */
2983 if (execution_direction == EXEC_REVERSE)
2984 return;
2985
2986 /* If this target does not decrement the PC after breakpoints, then
2987 we have nothing to do. */
2988 regcache = get_thread_regcache (ecs->ptid);
2989 gdbarch = get_regcache_arch (regcache);
2990 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2991 return;
2992
2993 aspace = get_regcache_aspace (regcache);
2994
2995 /* Find the location where (if we've hit a breakpoint) the
2996 breakpoint would be. */
2997 breakpoint_pc = regcache_read_pc (regcache)
2998 - gdbarch_decr_pc_after_break (gdbarch);
2999
3000 /* Check whether there actually is a software breakpoint inserted at
3001 that location.
3002
3003 If in non-stop mode, a race condition is possible where we've
3004 removed a breakpoint, but stop events for that breakpoint were
3005 already queued and arrive later. To suppress those spurious
3006 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3007 and retire them after a number of stop events are reported. */
3008 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3009 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3010 {
3011 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3012
3013 if (RECORD_IS_USED)
3014 record_full_gdb_operation_disable_set ();
3015
3016 /* When using hardware single-step, a SIGTRAP is reported for both
3017 a completed single-step and a software breakpoint. Need to
3018 differentiate between the two, as the latter needs adjusting
3019 but the former does not.
3020
3021 The SIGTRAP can be due to a completed hardware single-step only if
3022 - we didn't insert software single-step breakpoints
3023 - the thread to be examined is still the current thread
3024 - this thread is currently being stepped
3025
3026 If any of these events did not occur, we must have stopped due
3027 to hitting a software breakpoint, and have to back up to the
3028 breakpoint address.
3029
3030 As a special case, we could have hardware single-stepped a
3031 software breakpoint. In this case (prev_pc == breakpoint_pc),
3032 we also need to back up to the breakpoint address. */
3033
3034 if (singlestep_breakpoints_inserted_p
3035 || !ptid_equal (ecs->ptid, inferior_ptid)
3036 || !currently_stepping (ecs->event_thread)
3037 || ecs->event_thread->prev_pc == breakpoint_pc)
3038 regcache_write_pc (regcache, breakpoint_pc);
3039
3040 do_cleanups (old_cleanups);
3041 }
3042 }
3043
3044 static void
3045 init_infwait_state (void)
3046 {
3047 waiton_ptid = pid_to_ptid (-1);
3048 infwait_state = infwait_normal_state;
3049 }
3050
3051 static int
3052 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3053 {
3054 for (frame = get_prev_frame (frame);
3055 frame != NULL;
3056 frame = get_prev_frame (frame))
3057 {
3058 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3059 return 1;
3060 if (get_frame_type (frame) != INLINE_FRAME)
3061 break;
3062 }
3063
3064 return 0;
3065 }
3066
3067 /* Auxiliary function that handles syscall entry/return events.
3068 It returns 1 if the inferior should keep going (and GDB
3069 should ignore the event), or 0 if the event deserves to be
3070 processed. */
3071
3072 static int
3073 handle_syscall_event (struct execution_control_state *ecs)
3074 {
3075 struct regcache *regcache;
3076 int syscall_number;
3077
3078 if (!ptid_equal (ecs->ptid, inferior_ptid))
3079 context_switch (ecs->ptid);
3080
3081 regcache = get_thread_regcache (ecs->ptid);
3082 syscall_number = ecs->ws.value.syscall_number;
3083 stop_pc = regcache_read_pc (regcache);
3084
3085 if (catch_syscall_enabled () > 0
3086 && catching_syscall_number (syscall_number) > 0)
3087 {
3088 enum bpstat_signal_value sval;
3089
3090 if (debug_infrun)
3091 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3092 syscall_number);
3093
3094 ecs->event_thread->control.stop_bpstat
3095 = bpstat_stop_status (get_regcache_aspace (regcache),
3096 stop_pc, ecs->ptid, &ecs->ws);
3097
3098 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3099 GDB_SIGNAL_TRAP);
3100 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3101
3102 if (!ecs->random_signal)
3103 {
3104 /* Catchpoint hit. */
3105 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3106 return 0;
3107 }
3108 }
3109
3110 /* If no catchpoint triggered for this, then keep going. */
3111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3112 keep_going (ecs);
3113 return 1;
3114 }
3115
3116 /* Clear the supplied execution_control_state's stop_func_* fields. */
3117
3118 static void
3119 clear_stop_func (struct execution_control_state *ecs)
3120 {
3121 ecs->stop_func_filled_in = 0;
3122 ecs->stop_func_start = 0;
3123 ecs->stop_func_end = 0;
3124 ecs->stop_func_name = NULL;
3125 }
3126
3127 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3128
3129 static void
3130 fill_in_stop_func (struct gdbarch *gdbarch,
3131 struct execution_control_state *ecs)
3132 {
3133 if (!ecs->stop_func_filled_in)
3134 {
3135 /* Don't care about return value; stop_func_start and stop_func_name
3136 will both be 0 if it doesn't work. */
3137 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3138 &ecs->stop_func_start, &ecs->stop_func_end);
3139 ecs->stop_func_start
3140 += gdbarch_deprecated_function_start_offset (gdbarch);
3141
3142 ecs->stop_func_filled_in = 1;
3143 }
3144 }
3145
3146 /* Given an execution control state that has been freshly filled in
3147 by an event from the inferior, figure out what it means and take
3148 appropriate action. */
3149
3150 static void
3151 handle_inferior_event (struct execution_control_state *ecs)
3152 {
3153 struct frame_info *frame;
3154 struct gdbarch *gdbarch;
3155 int stopped_by_watchpoint;
3156 int stepped_after_stopped_by_watchpoint = 0;
3157 struct symtab_and_line stop_pc_sal;
3158 enum stop_kind stop_soon;
3159
3160 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3161 {
3162 /* We had an event in the inferior, but we are not interested in
3163 handling it at this level. The lower layers have already
3164 done what needs to be done, if anything.
3165
3166 One of the possible circumstances for this is when the
3167 inferior produces output for the console. The inferior has
3168 not stopped, and we are ignoring the event. Another possible
3169 circumstance is any event which the lower level knows will be
3170 reported multiple times without an intervening resume. */
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3173 prepare_to_wait (ecs);
3174 return;
3175 }
3176
3177 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3178 && target_can_async_p () && !sync_execution)
3179 {
3180 /* There were no unwaited-for children left in the target, but,
3181 we're not synchronously waiting for events either. Just
3182 ignore. Otherwise, if we were running a synchronous
3183 execution command, we need to cancel it and give the user
3184 back the terminal. */
3185 if (debug_infrun)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3188 prepare_to_wait (ecs);
3189 return;
3190 }
3191
3192 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3193 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3194 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3195 {
3196 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3197
3198 gdb_assert (inf);
3199 stop_soon = inf->control.stop_soon;
3200 }
3201 else
3202 stop_soon = NO_STOP_QUIETLY;
3203
3204 /* Cache the last pid/waitstatus. */
3205 target_last_wait_ptid = ecs->ptid;
3206 target_last_waitstatus = ecs->ws;
3207
3208 /* Always clear state belonging to the previous time we stopped. */
3209 stop_stack_dummy = STOP_NONE;
3210
3211 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3212 {
3213 /* No unwaited-for children left. IOW, all resumed children
3214 have exited. */
3215 if (debug_infrun)
3216 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3217
3218 stop_print_frame = 0;
3219 stop_stepping (ecs);
3220 return;
3221 }
3222
3223 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3224 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3225 {
3226 ecs->event_thread = find_thread_ptid (ecs->ptid);
3227 /* If it's a new thread, add it to the thread database. */
3228 if (ecs->event_thread == NULL)
3229 ecs->event_thread = add_thread (ecs->ptid);
3230
3231 /* Disable range stepping. If the next step request could use a
3232 range, this will be end up re-enabled then. */
3233 ecs->event_thread->control.may_range_step = 0;
3234 }
3235
3236 /* Dependent on valid ECS->EVENT_THREAD. */
3237 adjust_pc_after_break (ecs);
3238
3239 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3240 reinit_frame_cache ();
3241
3242 breakpoint_retire_moribund ();
3243
3244 /* First, distinguish signals caused by the debugger from signals
3245 that have to do with the program's own actions. Note that
3246 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3247 on the operating system version. Here we detect when a SIGILL or
3248 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3249 something similar for SIGSEGV, since a SIGSEGV will be generated
3250 when we're trying to execute a breakpoint instruction on a
3251 non-executable stack. This happens for call dummy breakpoints
3252 for architectures like SPARC that place call dummies on the
3253 stack. */
3254 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3255 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3256 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3257 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3258 {
3259 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3260
3261 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3262 regcache_read_pc (regcache)))
3263 {
3264 if (debug_infrun)
3265 fprintf_unfiltered (gdb_stdlog,
3266 "infrun: Treating signal as SIGTRAP\n");
3267 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3268 }
3269 }
3270
3271 /* Mark the non-executing threads accordingly. In all-stop, all
3272 threads of all processes are stopped when we get any event
3273 reported. In non-stop mode, only the event thread stops. If
3274 we're handling a process exit in non-stop mode, there's nothing
3275 to do, as threads of the dead process are gone, and threads of
3276 any other process were left running. */
3277 if (!non_stop)
3278 set_executing (minus_one_ptid, 0);
3279 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3280 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3281 set_executing (ecs->ptid, 0);
3282
3283 switch (infwait_state)
3284 {
3285 case infwait_thread_hop_state:
3286 if (debug_infrun)
3287 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3288 break;
3289
3290 case infwait_normal_state:
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3293 break;
3294
3295 case infwait_step_watch_state:
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog,
3298 "infrun: infwait_step_watch_state\n");
3299
3300 stepped_after_stopped_by_watchpoint = 1;
3301 break;
3302
3303 case infwait_nonstep_watch_state:
3304 if (debug_infrun)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "infrun: infwait_nonstep_watch_state\n");
3307 insert_breakpoints ();
3308
3309 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3310 handle things like signals arriving and other things happening
3311 in combination correctly? */
3312 stepped_after_stopped_by_watchpoint = 1;
3313 break;
3314
3315 default:
3316 internal_error (__FILE__, __LINE__, _("bad switch"));
3317 }
3318
3319 infwait_state = infwait_normal_state;
3320 waiton_ptid = pid_to_ptid (-1);
3321
3322 switch (ecs->ws.kind)
3323 {
3324 case TARGET_WAITKIND_LOADED:
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3327 /* Ignore gracefully during startup of the inferior, as it might
3328 be the shell which has just loaded some objects, otherwise
3329 add the symbols for the newly loaded objects. Also ignore at
3330 the beginning of an attach or remote session; we will query
3331 the full list of libraries once the connection is
3332 established. */
3333 if (stop_soon == NO_STOP_QUIETLY)
3334 {
3335 struct regcache *regcache;
3336 enum bpstat_signal_value sval;
3337
3338 if (!ptid_equal (ecs->ptid, inferior_ptid))
3339 context_switch (ecs->ptid);
3340 regcache = get_thread_regcache (ecs->ptid);
3341
3342 handle_solib_event ();
3343
3344 ecs->event_thread->control.stop_bpstat
3345 = bpstat_stop_status (get_regcache_aspace (regcache),
3346 stop_pc, ecs->ptid, &ecs->ws);
3347
3348 sval
3349 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3350 GDB_SIGNAL_TRAP);
3351 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3352
3353 if (!ecs->random_signal)
3354 {
3355 /* A catchpoint triggered. */
3356 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3357 goto process_event_stop_test;
3358 }
3359
3360 /* If requested, stop when the dynamic linker notifies
3361 gdb of events. This allows the user to get control
3362 and place breakpoints in initializer routines for
3363 dynamically loaded objects (among other things). */
3364 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3365 if (stop_on_solib_events)
3366 {
3367 /* Make sure we print "Stopped due to solib-event" in
3368 normal_stop. */
3369 stop_print_frame = 1;
3370
3371 stop_stepping (ecs);
3372 return;
3373 }
3374 }
3375
3376 /* If we are skipping through a shell, or through shared library
3377 loading that we aren't interested in, resume the program. If
3378 we're running the program normally, also resume. But stop if
3379 we're attaching or setting up a remote connection. */
3380 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3381 {
3382 if (!ptid_equal (ecs->ptid, inferior_ptid))
3383 context_switch (ecs->ptid);
3384
3385 /* Loading of shared libraries might have changed breakpoint
3386 addresses. Make sure new breakpoints are inserted. */
3387 if (stop_soon == NO_STOP_QUIETLY
3388 && !breakpoints_always_inserted_mode ())
3389 insert_breakpoints ();
3390 resume (0, GDB_SIGNAL_0);
3391 prepare_to_wait (ecs);
3392 return;
3393 }
3394
3395 break;
3396
3397 case TARGET_WAITKIND_SPURIOUS:
3398 if (debug_infrun)
3399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3400 if (!ptid_equal (ecs->ptid, inferior_ptid))
3401 context_switch (ecs->ptid);
3402 resume (0, GDB_SIGNAL_0);
3403 prepare_to_wait (ecs);
3404 return;
3405
3406 case TARGET_WAITKIND_EXITED:
3407 case TARGET_WAITKIND_SIGNALLED:
3408 if (debug_infrun)
3409 {
3410 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3411 fprintf_unfiltered (gdb_stdlog,
3412 "infrun: TARGET_WAITKIND_EXITED\n");
3413 else
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3416 }
3417
3418 inferior_ptid = ecs->ptid;
3419 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3420 set_current_program_space (current_inferior ()->pspace);
3421 handle_vfork_child_exec_or_exit (0);
3422 target_terminal_ours (); /* Must do this before mourn anyway. */
3423
3424 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3425 {
3426 /* Record the exit code in the convenience variable $_exitcode, so
3427 that the user can inspect this again later. */
3428 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3429 (LONGEST) ecs->ws.value.integer);
3430
3431 /* Also record this in the inferior itself. */
3432 current_inferior ()->has_exit_code = 1;
3433 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3434
3435 print_exited_reason (ecs->ws.value.integer);
3436 }
3437 else
3438 print_signal_exited_reason (ecs->ws.value.sig);
3439
3440 gdb_flush (gdb_stdout);
3441 target_mourn_inferior ();
3442 singlestep_breakpoints_inserted_p = 0;
3443 cancel_single_step_breakpoints ();
3444 stop_print_frame = 0;
3445 stop_stepping (ecs);
3446 return;
3447
3448 /* The following are the only cases in which we keep going;
3449 the above cases end in a continue or goto. */
3450 case TARGET_WAITKIND_FORKED:
3451 case TARGET_WAITKIND_VFORKED:
3452 if (debug_infrun)
3453 {
3454 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3455 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3456 else
3457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3458 }
3459
3460 /* Check whether the inferior is displaced stepping. */
3461 {
3462 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3464 struct displaced_step_inferior_state *displaced
3465 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3466
3467 /* If checking displaced stepping is supported, and thread
3468 ecs->ptid is displaced stepping. */
3469 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3470 {
3471 struct inferior *parent_inf
3472 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3473 struct regcache *child_regcache;
3474 CORE_ADDR parent_pc;
3475
3476 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3477 indicating that the displaced stepping of syscall instruction
3478 has been done. Perform cleanup for parent process here. Note
3479 that this operation also cleans up the child process for vfork,
3480 because their pages are shared. */
3481 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3482
3483 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3484 {
3485 /* Restore scratch pad for child process. */
3486 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3487 }
3488
3489 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3490 the child's PC is also within the scratchpad. Set the child's PC
3491 to the parent's PC value, which has already been fixed up.
3492 FIXME: we use the parent's aspace here, although we're touching
3493 the child, because the child hasn't been added to the inferior
3494 list yet at this point. */
3495
3496 child_regcache
3497 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3498 gdbarch,
3499 parent_inf->aspace);
3500 /* Read PC value of parent process. */
3501 parent_pc = regcache_read_pc (regcache);
3502
3503 if (debug_displaced)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "displaced: write child pc from %s to %s\n",
3506 paddress (gdbarch,
3507 regcache_read_pc (child_regcache)),
3508 paddress (gdbarch, parent_pc));
3509
3510 regcache_write_pc (child_regcache, parent_pc);
3511 }
3512 }
3513
3514 if (!ptid_equal (ecs->ptid, inferior_ptid))
3515 context_switch (ecs->ptid);
3516
3517 /* Immediately detach breakpoints from the child before there's
3518 any chance of letting the user delete breakpoints from the
3519 breakpoint lists. If we don't do this early, it's easy to
3520 leave left over traps in the child, vis: "break foo; catch
3521 fork; c; <fork>; del; c; <child calls foo>". We only follow
3522 the fork on the last `continue', and by that time the
3523 breakpoint at "foo" is long gone from the breakpoint table.
3524 If we vforked, then we don't need to unpatch here, since both
3525 parent and child are sharing the same memory pages; we'll
3526 need to unpatch at follow/detach time instead to be certain
3527 that new breakpoints added between catchpoint hit time and
3528 vfork follow are detached. */
3529 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3530 {
3531 /* This won't actually modify the breakpoint list, but will
3532 physically remove the breakpoints from the child. */
3533 detach_breakpoints (ecs->ws.value.related_pid);
3534 }
3535
3536 if (singlestep_breakpoints_inserted_p)
3537 {
3538 /* Pull the single step breakpoints out of the target. */
3539 remove_single_step_breakpoints ();
3540 singlestep_breakpoints_inserted_p = 0;
3541 }
3542
3543 /* In case the event is caught by a catchpoint, remember that
3544 the event is to be followed at the next resume of the thread,
3545 and not immediately. */
3546 ecs->event_thread->pending_follow = ecs->ws;
3547
3548 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3549
3550 ecs->event_thread->control.stop_bpstat
3551 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3552 stop_pc, ecs->ptid, &ecs->ws);
3553
3554 /* Note that we're interested in knowing the bpstat actually
3555 causes a stop, not just if it may explain the signal.
3556 Software watchpoints, for example, always appear in the
3557 bpstat. */
3558 ecs->random_signal
3559 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3560
3561 /* If no catchpoint triggered for this, then keep going. */
3562 if (ecs->random_signal)
3563 {
3564 ptid_t parent;
3565 ptid_t child;
3566 int should_resume;
3567 int follow_child
3568 = (follow_fork_mode_string == follow_fork_mode_child);
3569
3570 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3571
3572 should_resume = follow_fork ();
3573
3574 parent = ecs->ptid;
3575 child = ecs->ws.value.related_pid;
3576
3577 /* In non-stop mode, also resume the other branch. */
3578 if (non_stop && !detach_fork)
3579 {
3580 if (follow_child)
3581 switch_to_thread (parent);
3582 else
3583 switch_to_thread (child);
3584
3585 ecs->event_thread = inferior_thread ();
3586 ecs->ptid = inferior_ptid;
3587 keep_going (ecs);
3588 }
3589
3590 if (follow_child)
3591 switch_to_thread (child);
3592 else
3593 switch_to_thread (parent);
3594
3595 ecs->event_thread = inferior_thread ();
3596 ecs->ptid = inferior_ptid;
3597
3598 if (should_resume)
3599 keep_going (ecs);
3600 else
3601 stop_stepping (ecs);
3602 return;
3603 }
3604 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3605 goto process_event_stop_test;
3606
3607 case TARGET_WAITKIND_VFORK_DONE:
3608 /* Done with the shared memory region. Re-insert breakpoints in
3609 the parent, and keep going. */
3610
3611 if (debug_infrun)
3612 fprintf_unfiltered (gdb_stdlog,
3613 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3614
3615 if (!ptid_equal (ecs->ptid, inferior_ptid))
3616 context_switch (ecs->ptid);
3617
3618 current_inferior ()->waiting_for_vfork_done = 0;
3619 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3620 /* This also takes care of reinserting breakpoints in the
3621 previously locked inferior. */
3622 keep_going (ecs);
3623 return;
3624
3625 case TARGET_WAITKIND_EXECD:
3626 if (debug_infrun)
3627 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3628
3629 if (!ptid_equal (ecs->ptid, inferior_ptid))
3630 context_switch (ecs->ptid);
3631
3632 singlestep_breakpoints_inserted_p = 0;
3633 cancel_single_step_breakpoints ();
3634
3635 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3636
3637 /* Do whatever is necessary to the parent branch of the vfork. */
3638 handle_vfork_child_exec_or_exit (1);
3639
3640 /* This causes the eventpoints and symbol table to be reset.
3641 Must do this now, before trying to determine whether to
3642 stop. */
3643 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3644
3645 ecs->event_thread->control.stop_bpstat
3646 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3647 stop_pc, ecs->ptid, &ecs->ws);
3648 ecs->random_signal
3649 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3650 GDB_SIGNAL_TRAP)
3651 == BPSTAT_SIGNAL_NO);
3652
3653 /* Note that this may be referenced from inside
3654 bpstat_stop_status above, through inferior_has_execd. */
3655 xfree (ecs->ws.value.execd_pathname);
3656 ecs->ws.value.execd_pathname = NULL;
3657
3658 /* If no catchpoint triggered for this, then keep going. */
3659 if (ecs->random_signal)
3660 {
3661 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3662 keep_going (ecs);
3663 return;
3664 }
3665 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3666 goto process_event_stop_test;
3667
3668 /* Be careful not to try to gather much state about a thread
3669 that's in a syscall. It's frequently a losing proposition. */
3670 case TARGET_WAITKIND_SYSCALL_ENTRY:
3671 if (debug_infrun)
3672 fprintf_unfiltered (gdb_stdlog,
3673 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3674 /* Getting the current syscall number. */
3675 if (handle_syscall_event (ecs) != 0)
3676 return;
3677 goto process_event_stop_test;
3678
3679 /* Before examining the threads further, step this thread to
3680 get it entirely out of the syscall. (We get notice of the
3681 event when the thread is just on the verge of exiting a
3682 syscall. Stepping one instruction seems to get it back
3683 into user code.) */
3684 case TARGET_WAITKIND_SYSCALL_RETURN:
3685 if (debug_infrun)
3686 fprintf_unfiltered (gdb_stdlog,
3687 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3688 if (handle_syscall_event (ecs) != 0)
3689 return;
3690 goto process_event_stop_test;
3691
3692 case TARGET_WAITKIND_STOPPED:
3693 if (debug_infrun)
3694 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3695 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3696 break;
3697
3698 case TARGET_WAITKIND_NO_HISTORY:
3699 if (debug_infrun)
3700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3701 /* Reverse execution: target ran out of history info. */
3702
3703 /* Pull the single step breakpoints out of the target. */
3704 if (singlestep_breakpoints_inserted_p)
3705 {
3706 if (!ptid_equal (ecs->ptid, inferior_ptid))
3707 context_switch (ecs->ptid);
3708 remove_single_step_breakpoints ();
3709 singlestep_breakpoints_inserted_p = 0;
3710 }
3711 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3712 print_no_history_reason ();
3713 stop_stepping (ecs);
3714 return;
3715 }
3716
3717 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3718 {
3719 /* Do we need to clean up the state of a thread that has
3720 completed a displaced single-step? (Doing so usually affects
3721 the PC, so do it here, before we set stop_pc.) */
3722 displaced_step_fixup (ecs->ptid,
3723 ecs->event_thread->suspend.stop_signal);
3724
3725 /* If we either finished a single-step or hit a breakpoint, but
3726 the user wanted this thread to be stopped, pretend we got a
3727 SIG0 (generic unsignaled stop). */
3728
3729 if (ecs->event_thread->stop_requested
3730 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3731 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3732 }
3733
3734 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3735
3736 if (debug_infrun)
3737 {
3738 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3739 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3740 struct cleanup *old_chain = save_inferior_ptid ();
3741
3742 inferior_ptid = ecs->ptid;
3743
3744 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3745 paddress (gdbarch, stop_pc));
3746 if (target_stopped_by_watchpoint ())
3747 {
3748 CORE_ADDR addr;
3749
3750 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3751
3752 if (target_stopped_data_address (&current_target, &addr))
3753 fprintf_unfiltered (gdb_stdlog,
3754 "infrun: stopped data address = %s\n",
3755 paddress (gdbarch, addr));
3756 else
3757 fprintf_unfiltered (gdb_stdlog,
3758 "infrun: (no data address available)\n");
3759 }
3760
3761 do_cleanups (old_chain);
3762 }
3763
3764 if (stepping_past_singlestep_breakpoint)
3765 {
3766 gdb_assert (singlestep_breakpoints_inserted_p);
3767 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3768 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3769
3770 stepping_past_singlestep_breakpoint = 0;
3771
3772 /* We've either finished single-stepping past the single-step
3773 breakpoint, or stopped for some other reason. It would be nice if
3774 we could tell, but we can't reliably. */
3775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3776 {
3777 if (debug_infrun)
3778 fprintf_unfiltered (gdb_stdlog,
3779 "infrun: stepping_past_"
3780 "singlestep_breakpoint\n");
3781 /* Pull the single step breakpoints out of the target. */
3782 if (!ptid_equal (ecs->ptid, inferior_ptid))
3783 context_switch (ecs->ptid);
3784 remove_single_step_breakpoints ();
3785 singlestep_breakpoints_inserted_p = 0;
3786
3787 ecs->random_signal = 0;
3788 ecs->event_thread->control.trap_expected = 0;
3789
3790 context_switch (saved_singlestep_ptid);
3791 if (deprecated_context_hook)
3792 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3793
3794 resume (1, GDB_SIGNAL_0);
3795 prepare_to_wait (ecs);
3796 return;
3797 }
3798 }
3799
3800 if (!ptid_equal (deferred_step_ptid, null_ptid))
3801 {
3802 /* In non-stop mode, there's never a deferred_step_ptid set. */
3803 gdb_assert (!non_stop);
3804
3805 /* If we stopped for some other reason than single-stepping, ignore
3806 the fact that we were supposed to switch back. */
3807 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3808 {
3809 if (debug_infrun)
3810 fprintf_unfiltered (gdb_stdlog,
3811 "infrun: handling deferred step\n");
3812
3813 /* Pull the single step breakpoints out of the target. */
3814 if (singlestep_breakpoints_inserted_p)
3815 {
3816 if (!ptid_equal (ecs->ptid, inferior_ptid))
3817 context_switch (ecs->ptid);
3818 remove_single_step_breakpoints ();
3819 singlestep_breakpoints_inserted_p = 0;
3820 }
3821
3822 ecs->event_thread->control.trap_expected = 0;
3823
3824 context_switch (deferred_step_ptid);
3825 deferred_step_ptid = null_ptid;
3826 /* Suppress spurious "Switching to ..." message. */
3827 previous_inferior_ptid = inferior_ptid;
3828
3829 resume (1, GDB_SIGNAL_0);
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833
3834 deferred_step_ptid = null_ptid;
3835 }
3836
3837 /* See if a thread hit a thread-specific breakpoint that was meant for
3838 another thread. If so, then step that thread past the breakpoint,
3839 and continue it. */
3840
3841 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3842 {
3843 int thread_hop_needed = 0;
3844 struct address_space *aspace =
3845 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3846
3847 /* Check if a regular breakpoint has been hit before checking
3848 for a potential single step breakpoint. Otherwise, GDB will
3849 not see this breakpoint hit when stepping onto breakpoints. */
3850 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3851 {
3852 ecs->random_signal = 0;
3853 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3854 thread_hop_needed = 1;
3855 }
3856 else if (singlestep_breakpoints_inserted_p)
3857 {
3858 /* We have not context switched yet, so this should be true
3859 no matter which thread hit the singlestep breakpoint. */
3860 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3861 if (debug_infrun)
3862 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3863 "trap for %s\n",
3864 target_pid_to_str (ecs->ptid));
3865
3866 ecs->random_signal = 0;
3867 /* The call to in_thread_list is necessary because PTIDs sometimes
3868 change when we go from single-threaded to multi-threaded. If
3869 the singlestep_ptid is still in the list, assume that it is
3870 really different from ecs->ptid. */
3871 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3872 && in_thread_list (singlestep_ptid))
3873 {
3874 /* If the PC of the thread we were trying to single-step
3875 has changed, discard this event (which we were going
3876 to ignore anyway), and pretend we saw that thread
3877 trap. This prevents us continuously moving the
3878 single-step breakpoint forward, one instruction at a
3879 time. If the PC has changed, then the thread we were
3880 trying to single-step has trapped or been signalled,
3881 but the event has not been reported to GDB yet.
3882
3883 There might be some cases where this loses signal
3884 information, if a signal has arrived at exactly the
3885 same time that the PC changed, but this is the best
3886 we can do with the information available. Perhaps we
3887 should arrange to report all events for all threads
3888 when they stop, or to re-poll the remote looking for
3889 this particular thread (i.e. temporarily enable
3890 schedlock). */
3891
3892 CORE_ADDR new_singlestep_pc
3893 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3894
3895 if (new_singlestep_pc != singlestep_pc)
3896 {
3897 enum gdb_signal stop_signal;
3898
3899 if (debug_infrun)
3900 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3901 " but expected thread advanced also\n");
3902
3903 /* The current context still belongs to
3904 singlestep_ptid. Don't swap here, since that's
3905 the context we want to use. Just fudge our
3906 state and continue. */
3907 stop_signal = ecs->event_thread->suspend.stop_signal;
3908 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3909 ecs->ptid = singlestep_ptid;
3910 ecs->event_thread = find_thread_ptid (ecs->ptid);
3911 ecs->event_thread->suspend.stop_signal = stop_signal;
3912 stop_pc = new_singlestep_pc;
3913 }
3914 else
3915 {
3916 if (debug_infrun)
3917 fprintf_unfiltered (gdb_stdlog,
3918 "infrun: unexpected thread\n");
3919
3920 thread_hop_needed = 1;
3921 stepping_past_singlestep_breakpoint = 1;
3922 saved_singlestep_ptid = singlestep_ptid;
3923 }
3924 }
3925 }
3926
3927 if (thread_hop_needed)
3928 {
3929 struct regcache *thread_regcache;
3930 int remove_status = 0;
3931
3932 if (debug_infrun)
3933 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3934
3935 /* Switch context before touching inferior memory, the
3936 previous thread may have exited. */
3937 if (!ptid_equal (inferior_ptid, ecs->ptid))
3938 context_switch (ecs->ptid);
3939
3940 /* Saw a breakpoint, but it was hit by the wrong thread.
3941 Just continue. */
3942
3943 if (singlestep_breakpoints_inserted_p)
3944 {
3945 /* Pull the single step breakpoints out of the target. */
3946 remove_single_step_breakpoints ();
3947 singlestep_breakpoints_inserted_p = 0;
3948 }
3949
3950 /* If the arch can displace step, don't remove the
3951 breakpoints. */
3952 thread_regcache = get_thread_regcache (ecs->ptid);
3953 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3954 remove_status = remove_breakpoints ();
3955
3956 /* Did we fail to remove breakpoints? If so, try
3957 to set the PC past the bp. (There's at least
3958 one situation in which we can fail to remove
3959 the bp's: On HP-UX's that use ttrace, we can't
3960 change the address space of a vforking child
3961 process until the child exits (well, okay, not
3962 then either :-) or execs. */
3963 if (remove_status != 0)
3964 error (_("Cannot step over breakpoint hit in wrong thread"));
3965 else
3966 { /* Single step */
3967 if (!non_stop)
3968 {
3969 /* Only need to require the next event from this
3970 thread in all-stop mode. */
3971 waiton_ptid = ecs->ptid;
3972 infwait_state = infwait_thread_hop_state;
3973 }
3974
3975 ecs->event_thread->stepping_over_breakpoint = 1;
3976 keep_going (ecs);
3977 return;
3978 }
3979 }
3980 else if (singlestep_breakpoints_inserted_p)
3981 {
3982 ecs->random_signal = 0;
3983 }
3984 }
3985 else
3986 ecs->random_signal = 1;
3987
3988 /* See if something interesting happened to the non-current thread. If
3989 so, then switch to that thread. */
3990 if (!ptid_equal (ecs->ptid, inferior_ptid))
3991 {
3992 if (debug_infrun)
3993 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3994
3995 context_switch (ecs->ptid);
3996
3997 if (deprecated_context_hook)
3998 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3999 }
4000
4001 /* At this point, get hold of the now-current thread's frame. */
4002 frame = get_current_frame ();
4003 gdbarch = get_frame_arch (frame);
4004
4005 if (singlestep_breakpoints_inserted_p)
4006 {
4007 /* Pull the single step breakpoints out of the target. */
4008 remove_single_step_breakpoints ();
4009 singlestep_breakpoints_inserted_p = 0;
4010 }
4011
4012 if (stepped_after_stopped_by_watchpoint)
4013 stopped_by_watchpoint = 0;
4014 else
4015 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4016
4017 /* If necessary, step over this watchpoint. We'll be back to display
4018 it in a moment. */
4019 if (stopped_by_watchpoint
4020 && (target_have_steppable_watchpoint
4021 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4022 {
4023 /* At this point, we are stopped at an instruction which has
4024 attempted to write to a piece of memory under control of
4025 a watchpoint. The instruction hasn't actually executed
4026 yet. If we were to evaluate the watchpoint expression
4027 now, we would get the old value, and therefore no change
4028 would seem to have occurred.
4029
4030 In order to make watchpoints work `right', we really need
4031 to complete the memory write, and then evaluate the
4032 watchpoint expression. We do this by single-stepping the
4033 target.
4034
4035 It may not be necessary to disable the watchpoint to stop over
4036 it. For example, the PA can (with some kernel cooperation)
4037 single step over a watchpoint without disabling the watchpoint.
4038
4039 It is far more common to need to disable a watchpoint to step
4040 the inferior over it. If we have non-steppable watchpoints,
4041 we must disable the current watchpoint; it's simplest to
4042 disable all watchpoints and breakpoints. */
4043 int hw_step = 1;
4044
4045 if (!target_have_steppable_watchpoint)
4046 {
4047 remove_breakpoints ();
4048 /* See comment in resume why we need to stop bypassing signals
4049 while breakpoints have been removed. */
4050 target_pass_signals (0, NULL);
4051 }
4052 /* Single step */
4053 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4054 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4055 waiton_ptid = ecs->ptid;
4056 if (target_have_steppable_watchpoint)
4057 infwait_state = infwait_step_watch_state;
4058 else
4059 infwait_state = infwait_nonstep_watch_state;
4060 prepare_to_wait (ecs);
4061 return;
4062 }
4063
4064 clear_stop_func (ecs);
4065 ecs->event_thread->stepping_over_breakpoint = 0;
4066 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4067 ecs->event_thread->control.stop_step = 0;
4068 stop_print_frame = 1;
4069 ecs->random_signal = 0;
4070 stopped_by_random_signal = 0;
4071
4072 /* Hide inlined functions starting here, unless we just performed stepi or
4073 nexti. After stepi and nexti, always show the innermost frame (not any
4074 inline function call sites). */
4075 if (ecs->event_thread->control.step_range_end != 1)
4076 {
4077 struct address_space *aspace =
4078 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4079
4080 /* skip_inline_frames is expensive, so we avoid it if we can
4081 determine that the address is one where functions cannot have
4082 been inlined. This improves performance with inferiors that
4083 load a lot of shared libraries, because the solib event
4084 breakpoint is defined as the address of a function (i.e. not
4085 inline). Note that we have to check the previous PC as well
4086 as the current one to catch cases when we have just
4087 single-stepped off a breakpoint prior to reinstating it.
4088 Note that we're assuming that the code we single-step to is
4089 not inline, but that's not definitive: there's nothing
4090 preventing the event breakpoint function from containing
4091 inlined code, and the single-step ending up there. If the
4092 user had set a breakpoint on that inlined code, the missing
4093 skip_inline_frames call would break things. Fortunately
4094 that's an extremely unlikely scenario. */
4095 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4096 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4097 && ecs->event_thread->control.trap_expected
4098 && pc_at_non_inline_function (aspace,
4099 ecs->event_thread->prev_pc,
4100 &ecs->ws)))
4101 {
4102 skip_inline_frames (ecs->ptid);
4103
4104 /* Re-fetch current thread's frame in case that invalidated
4105 the frame cache. */
4106 frame = get_current_frame ();
4107 gdbarch = get_frame_arch (frame);
4108 }
4109 }
4110
4111 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4112 && ecs->event_thread->control.trap_expected
4113 && gdbarch_single_step_through_delay_p (gdbarch)
4114 && currently_stepping (ecs->event_thread))
4115 {
4116 /* We're trying to step off a breakpoint. Turns out that we're
4117 also on an instruction that needs to be stepped multiple
4118 times before it's been fully executing. E.g., architectures
4119 with a delay slot. It needs to be stepped twice, once for
4120 the instruction and once for the delay slot. */
4121 int step_through_delay
4122 = gdbarch_single_step_through_delay (gdbarch, frame);
4123
4124 if (debug_infrun && step_through_delay)
4125 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4126 if (ecs->event_thread->control.step_range_end == 0
4127 && step_through_delay)
4128 {
4129 /* The user issued a continue when stopped at a breakpoint.
4130 Set up for another trap and get out of here. */
4131 ecs->event_thread->stepping_over_breakpoint = 1;
4132 keep_going (ecs);
4133 return;
4134 }
4135 else if (step_through_delay)
4136 {
4137 /* The user issued a step when stopped at a breakpoint.
4138 Maybe we should stop, maybe we should not - the delay
4139 slot *might* correspond to a line of source. In any
4140 case, don't decide that here, just set
4141 ecs->stepping_over_breakpoint, making sure we
4142 single-step again before breakpoints are re-inserted. */
4143 ecs->event_thread->stepping_over_breakpoint = 1;
4144 }
4145 }
4146
4147 /* Look at the cause of the stop, and decide what to do.
4148 The alternatives are:
4149 1) stop_stepping and return; to really stop and return to the debugger,
4150 2) keep_going and return to start up again
4151 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4152 3) set ecs->random_signal to 1, and the decision between 1 and 2
4153 will be made according to the signal handling tables. */
4154
4155 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4156 && stop_after_trap)
4157 {
4158 if (debug_infrun)
4159 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4160 stop_print_frame = 0;
4161 stop_stepping (ecs);
4162 return;
4163 }
4164
4165 /* This is originated from start_remote(), start_inferior() and
4166 shared libraries hook functions. */
4167 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4168 {
4169 if (debug_infrun)
4170 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4171 stop_stepping (ecs);
4172 return;
4173 }
4174
4175 /* This originates from attach_command(). We need to overwrite
4176 the stop_signal here, because some kernels don't ignore a
4177 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4178 See more comments in inferior.h. On the other hand, if we
4179 get a non-SIGSTOP, report it to the user - assume the backend
4180 will handle the SIGSTOP if it should show up later.
4181
4182 Also consider that the attach is complete when we see a
4183 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4184 target extended-remote report it instead of a SIGSTOP
4185 (e.g. gdbserver). We already rely on SIGTRAP being our
4186 signal, so this is no exception.
4187
4188 Also consider that the attach is complete when we see a
4189 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4190 the target to stop all threads of the inferior, in case the
4191 low level attach operation doesn't stop them implicitly. If
4192 they weren't stopped implicitly, then the stub will report a
4193 GDB_SIGNAL_0, meaning: stopped for no particular reason
4194 other than GDB's request. */
4195 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4196 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4197 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4198 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4199 {
4200 stop_stepping (ecs);
4201 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4202 return;
4203 }
4204
4205 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4206 handles this event. */
4207 ecs->event_thread->control.stop_bpstat
4208 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4209 stop_pc, ecs->ptid, &ecs->ws);
4210
4211 /* Following in case break condition called a
4212 function. */
4213 stop_print_frame = 1;
4214
4215 /* This is where we handle "moribund" watchpoints. Unlike
4216 software breakpoints traps, hardware watchpoint traps are
4217 always distinguishable from random traps. If no high-level
4218 watchpoint is associated with the reported stop data address
4219 anymore, then the bpstat does not explain the signal ---
4220 simply make sure to ignore it if `stopped_by_watchpoint' is
4221 set. */
4222
4223 if (debug_infrun
4224 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4225 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4226 GDB_SIGNAL_TRAP)
4227 == BPSTAT_SIGNAL_NO)
4228 && stopped_by_watchpoint)
4229 fprintf_unfiltered (gdb_stdlog,
4230 "infrun: no user watchpoint explains "
4231 "watchpoint SIGTRAP, ignoring\n");
4232
4233 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4234 at one stage in the past included checks for an inferior
4235 function call's call dummy's return breakpoint. The original
4236 comment, that went with the test, read:
4237
4238 ``End of a stack dummy. Some systems (e.g. Sony news) give
4239 another signal besides SIGTRAP, so check here as well as
4240 above.''
4241
4242 If someone ever tries to get call dummys on a
4243 non-executable stack to work (where the target would stop
4244 with something like a SIGSEGV), then those tests might need
4245 to be re-instated. Given, however, that the tests were only
4246 enabled when momentary breakpoints were not being used, I
4247 suspect that it won't be the case.
4248
4249 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4250 be necessary for call dummies on a non-executable stack on
4251 SPARC. */
4252
4253 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4254 ecs->random_signal
4255 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4256 GDB_SIGNAL_TRAP)
4257 != BPSTAT_SIGNAL_NO)
4258 || stopped_by_watchpoint
4259 || ecs->event_thread->control.trap_expected
4260 || (ecs->event_thread->control.step_range_end
4261 && (ecs->event_thread->control.step_resume_breakpoint
4262 == NULL)));
4263 else
4264 {
4265 enum bpstat_signal_value sval;
4266
4267 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4268 ecs->event_thread->suspend.stop_signal);
4269 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4270
4271 if (sval == BPSTAT_SIGNAL_HIDE)
4272 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4273 }
4274
4275 process_event_stop_test:
4276
4277 /* Re-fetch current thread's frame in case we did a
4278 "goto process_event_stop_test" above. */
4279 frame = get_current_frame ();
4280 gdbarch = get_frame_arch (frame);
4281
4282 /* For the program's own signals, act according to
4283 the signal handling tables. */
4284
4285 if (ecs->random_signal)
4286 {
4287 /* Signal not for debugging purposes. */
4288 int printed = 0;
4289 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4290
4291 if (debug_infrun)
4292 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4293 ecs->event_thread->suspend.stop_signal);
4294
4295 stopped_by_random_signal = 1;
4296
4297 if (signal_print[ecs->event_thread->suspend.stop_signal])
4298 {
4299 printed = 1;
4300 target_terminal_ours_for_output ();
4301 print_signal_received_reason
4302 (ecs->event_thread->suspend.stop_signal);
4303 }
4304 /* Always stop on signals if we're either just gaining control
4305 of the program, or the user explicitly requested this thread
4306 to remain stopped. */
4307 if (stop_soon != NO_STOP_QUIETLY
4308 || ecs->event_thread->stop_requested
4309 || (!inf->detaching
4310 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4311 {
4312 stop_stepping (ecs);
4313 return;
4314 }
4315 /* If not going to stop, give terminal back
4316 if we took it away. */
4317 else if (printed)
4318 target_terminal_inferior ();
4319
4320 /* Clear the signal if it should not be passed. */
4321 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4323
4324 if (ecs->event_thread->prev_pc == stop_pc
4325 && ecs->event_thread->control.trap_expected
4326 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4327 {
4328 /* We were just starting a new sequence, attempting to
4329 single-step off of a breakpoint and expecting a SIGTRAP.
4330 Instead this signal arrives. This signal will take us out
4331 of the stepping range so GDB needs to remember to, when
4332 the signal handler returns, resume stepping off that
4333 breakpoint. */
4334 /* To simplify things, "continue" is forced to use the same
4335 code paths as single-step - set a breakpoint at the
4336 signal return address and then, once hit, step off that
4337 breakpoint. */
4338 if (debug_infrun)
4339 fprintf_unfiltered (gdb_stdlog,
4340 "infrun: signal arrived while stepping over "
4341 "breakpoint\n");
4342
4343 insert_hp_step_resume_breakpoint_at_frame (frame);
4344 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4345 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4346 ecs->event_thread->control.trap_expected = 0;
4347 keep_going (ecs);
4348 return;
4349 }
4350
4351 if (ecs->event_thread->control.step_range_end != 0
4352 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4353 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4354 && frame_id_eq (get_stack_frame_id (frame),
4355 ecs->event_thread->control.step_stack_frame_id)
4356 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4357 {
4358 /* The inferior is about to take a signal that will take it
4359 out of the single step range. Set a breakpoint at the
4360 current PC (which is presumably where the signal handler
4361 will eventually return) and then allow the inferior to
4362 run free.
4363
4364 Note that this is only needed for a signal delivered
4365 while in the single-step range. Nested signals aren't a
4366 problem as they eventually all return. */
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: signal may take us out of "
4370 "single-step range\n");
4371
4372 insert_hp_step_resume_breakpoint_at_frame (frame);
4373 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4374 ecs->event_thread->control.trap_expected = 0;
4375 keep_going (ecs);
4376 return;
4377 }
4378
4379 /* Note: step_resume_breakpoint may be non-NULL. This occures
4380 when either there's a nested signal, or when there's a
4381 pending signal enabled just as the signal handler returns
4382 (leaving the inferior at the step-resume-breakpoint without
4383 actually executing it). Either way continue until the
4384 breakpoint is really hit. */
4385 }
4386 else
4387 {
4388 /* Handle cases caused by hitting a breakpoint. */
4389
4390 CORE_ADDR jmp_buf_pc;
4391 struct bpstat_what what;
4392
4393 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4394
4395 if (what.call_dummy)
4396 {
4397 stop_stack_dummy = what.call_dummy;
4398 }
4399
4400 /* If we hit an internal event that triggers symbol changes, the
4401 current frame will be invalidated within bpstat_what (e.g.,
4402 if we hit an internal solib event). Re-fetch it. */
4403 frame = get_current_frame ();
4404 gdbarch = get_frame_arch (frame);
4405
4406 switch (what.main_action)
4407 {
4408 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4409 /* If we hit the breakpoint at longjmp while stepping, we
4410 install a momentary breakpoint at the target of the
4411 jmp_buf. */
4412
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4416
4417 ecs->event_thread->stepping_over_breakpoint = 1;
4418
4419 if (what.is_longjmp)
4420 {
4421 struct value *arg_value;
4422
4423 /* If we set the longjmp breakpoint via a SystemTap
4424 probe, then use it to extract the arguments. The
4425 destination PC is the third argument to the
4426 probe. */
4427 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4428 if (arg_value)
4429 jmp_buf_pc = value_as_address (arg_value);
4430 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4431 || !gdbarch_get_longjmp_target (gdbarch,
4432 frame, &jmp_buf_pc))
4433 {
4434 if (debug_infrun)
4435 fprintf_unfiltered (gdb_stdlog,
4436 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4437 "(!gdbarch_get_longjmp_target)\n");
4438 keep_going (ecs);
4439 return;
4440 }
4441
4442 /* Insert a breakpoint at resume address. */
4443 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4444 }
4445 else
4446 check_exception_resume (ecs, frame);
4447 keep_going (ecs);
4448 return;
4449
4450 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4451 {
4452 struct frame_info *init_frame;
4453
4454 /* There are several cases to consider.
4455
4456 1. The initiating frame no longer exists. In this case
4457 we must stop, because the exception or longjmp has gone
4458 too far.
4459
4460 2. The initiating frame exists, and is the same as the
4461 current frame. We stop, because the exception or
4462 longjmp has been caught.
4463
4464 3. The initiating frame exists and is different from
4465 the current frame. This means the exception or longjmp
4466 has been caught beneath the initiating frame, so keep
4467 going.
4468
4469 4. longjmp breakpoint has been placed just to protect
4470 against stale dummy frames and user is not interested
4471 in stopping around longjmps. */
4472
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog,
4475 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4476
4477 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4478 != NULL);
4479 delete_exception_resume_breakpoint (ecs->event_thread);
4480
4481 if (what.is_longjmp)
4482 {
4483 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4484
4485 if (!frame_id_p (ecs->event_thread->initiating_frame))
4486 {
4487 /* Case 4. */
4488 keep_going (ecs);
4489 return;
4490 }
4491 }
4492
4493 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4494
4495 if (init_frame)
4496 {
4497 struct frame_id current_id
4498 = get_frame_id (get_current_frame ());
4499 if (frame_id_eq (current_id,
4500 ecs->event_thread->initiating_frame))
4501 {
4502 /* Case 2. Fall through. */
4503 }
4504 else
4505 {
4506 /* Case 3. */
4507 keep_going (ecs);
4508 return;
4509 }
4510 }
4511
4512 /* For Cases 1 and 2, remove the step-resume breakpoint,
4513 if it exists. */
4514 delete_step_resume_breakpoint (ecs->event_thread);
4515
4516 ecs->event_thread->control.stop_step = 1;
4517 print_end_stepping_range_reason ();
4518 stop_stepping (ecs);
4519 }
4520 return;
4521
4522 case BPSTAT_WHAT_SINGLE:
4523 if (debug_infrun)
4524 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4525 ecs->event_thread->stepping_over_breakpoint = 1;
4526 /* Still need to check other stuff, at least the case where
4527 we are stepping and step out of the right range. */
4528 break;
4529
4530 case BPSTAT_WHAT_STEP_RESUME:
4531 if (debug_infrun)
4532 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4533
4534 delete_step_resume_breakpoint (ecs->event_thread);
4535 if (ecs->event_thread->control.proceed_to_finish
4536 && execution_direction == EXEC_REVERSE)
4537 {
4538 struct thread_info *tp = ecs->event_thread;
4539
4540 /* We are finishing a function in reverse, and just hit
4541 the step-resume breakpoint at the start address of
4542 the function, and we're almost there -- just need to
4543 back up by one more single-step, which should take us
4544 back to the function call. */
4545 tp->control.step_range_start = tp->control.step_range_end = 1;
4546 keep_going (ecs);
4547 return;
4548 }
4549 fill_in_stop_func (gdbarch, ecs);
4550 if (stop_pc == ecs->stop_func_start
4551 && execution_direction == EXEC_REVERSE)
4552 {
4553 /* We are stepping over a function call in reverse, and
4554 just hit the step-resume breakpoint at the start
4555 address of the function. Go back to single-stepping,
4556 which should take us back to the function call. */
4557 ecs->event_thread->stepping_over_breakpoint = 1;
4558 keep_going (ecs);
4559 return;
4560 }
4561 break;
4562
4563 case BPSTAT_WHAT_STOP_NOISY:
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4566 stop_print_frame = 1;
4567
4568 /* We are about to nuke the step_resume_breakpointt via the
4569 cleanup chain, so no need to worry about it here. */
4570
4571 stop_stepping (ecs);
4572 return;
4573
4574 case BPSTAT_WHAT_STOP_SILENT:
4575 if (debug_infrun)
4576 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4577 stop_print_frame = 0;
4578
4579 /* We are about to nuke the step_resume_breakpoin via the
4580 cleanup chain, so no need to worry about it here. */
4581
4582 stop_stepping (ecs);
4583 return;
4584
4585 case BPSTAT_WHAT_HP_STEP_RESUME:
4586 if (debug_infrun)
4587 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4588
4589 delete_step_resume_breakpoint (ecs->event_thread);
4590 if (ecs->event_thread->step_after_step_resume_breakpoint)
4591 {
4592 /* Back when the step-resume breakpoint was inserted, we
4593 were trying to single-step off a breakpoint. Go back
4594 to doing that. */
4595 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4596 ecs->event_thread->stepping_over_breakpoint = 1;
4597 keep_going (ecs);
4598 return;
4599 }
4600 break;
4601
4602 case BPSTAT_WHAT_KEEP_CHECKING:
4603 break;
4604 }
4605 }
4606
4607 /* We come here if we hit a breakpoint but should not
4608 stop for it. Possibly we also were stepping
4609 and should stop for that. So fall through and
4610 test for stepping. But, if not stepping,
4611 do not stop. */
4612
4613 /* In all-stop mode, if we're currently stepping but have stopped in
4614 some other thread, we need to switch back to the stepped thread. */
4615 if (!non_stop)
4616 {
4617 struct thread_info *tp;
4618
4619 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4620 ecs->event_thread);
4621 if (tp)
4622 {
4623 /* However, if the current thread is blocked on some internal
4624 breakpoint, and we simply need to step over that breakpoint
4625 to get it going again, do that first. */
4626 if ((ecs->event_thread->control.trap_expected
4627 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4628 || ecs->event_thread->stepping_over_breakpoint)
4629 {
4630 keep_going (ecs);
4631 return;
4632 }
4633
4634 /* If the stepping thread exited, then don't try to switch
4635 back and resume it, which could fail in several different
4636 ways depending on the target. Instead, just keep going.
4637
4638 We can find a stepping dead thread in the thread list in
4639 two cases:
4640
4641 - The target supports thread exit events, and when the
4642 target tries to delete the thread from the thread list,
4643 inferior_ptid pointed at the exiting thread. In such
4644 case, calling delete_thread does not really remove the
4645 thread from the list; instead, the thread is left listed,
4646 with 'exited' state.
4647
4648 - The target's debug interface does not support thread
4649 exit events, and so we have no idea whatsoever if the
4650 previously stepping thread is still alive. For that
4651 reason, we need to synchronously query the target
4652 now. */
4653 if (is_exited (tp->ptid)
4654 || !target_thread_alive (tp->ptid))
4655 {
4656 if (debug_infrun)
4657 fprintf_unfiltered (gdb_stdlog,
4658 "infrun: not switching back to "
4659 "stepped thread, it has vanished\n");
4660
4661 delete_thread (tp->ptid);
4662 keep_going (ecs);
4663 return;
4664 }
4665
4666 /* Otherwise, we no longer expect a trap in the current thread.
4667 Clear the trap_expected flag before switching back -- this is
4668 what keep_going would do as well, if we called it. */
4669 ecs->event_thread->control.trap_expected = 0;
4670
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog,
4673 "infrun: switching back to stepped thread\n");
4674
4675 ecs->event_thread = tp;
4676 ecs->ptid = tp->ptid;
4677 context_switch (ecs->ptid);
4678 keep_going (ecs);
4679 return;
4680 }
4681 }
4682
4683 if (ecs->event_thread->control.step_resume_breakpoint)
4684 {
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: step-resume breakpoint is inserted\n");
4688
4689 /* Having a step-resume breakpoint overrides anything
4690 else having to do with stepping commands until
4691 that breakpoint is reached. */
4692 keep_going (ecs);
4693 return;
4694 }
4695
4696 if (ecs->event_thread->control.step_range_end == 0)
4697 {
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4700 /* Likewise if we aren't even stepping. */
4701 keep_going (ecs);
4702 return;
4703 }
4704
4705 /* Re-fetch current thread's frame in case the code above caused
4706 the frame cache to be re-initialized, making our FRAME variable
4707 a dangling pointer. */
4708 frame = get_current_frame ();
4709 gdbarch = get_frame_arch (frame);
4710 fill_in_stop_func (gdbarch, ecs);
4711
4712 /* If stepping through a line, keep going if still within it.
4713
4714 Note that step_range_end is the address of the first instruction
4715 beyond the step range, and NOT the address of the last instruction
4716 within it!
4717
4718 Note also that during reverse execution, we may be stepping
4719 through a function epilogue and therefore must detect when
4720 the current-frame changes in the middle of a line. */
4721
4722 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4723 && (execution_direction != EXEC_REVERSE
4724 || frame_id_eq (get_frame_id (frame),
4725 ecs->event_thread->control.step_frame_id)))
4726 {
4727 if (debug_infrun)
4728 fprintf_unfiltered
4729 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4730 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4731 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4732
4733 /* Tentatively re-enable range stepping; `resume' disables it if
4734 necessary (e.g., if we're stepping over a breakpoint or we
4735 have software watchpoints). */
4736 ecs->event_thread->control.may_range_step = 1;
4737
4738 /* When stepping backward, stop at beginning of line range
4739 (unless it's the function entry point, in which case
4740 keep going back to the call point). */
4741 if (stop_pc == ecs->event_thread->control.step_range_start
4742 && stop_pc != ecs->stop_func_start
4743 && execution_direction == EXEC_REVERSE)
4744 {
4745 ecs->event_thread->control.stop_step = 1;
4746 print_end_stepping_range_reason ();
4747 stop_stepping (ecs);
4748 }
4749 else
4750 keep_going (ecs);
4751
4752 return;
4753 }
4754
4755 /* We stepped out of the stepping range. */
4756
4757 /* If we are stepping at the source level and entered the runtime
4758 loader dynamic symbol resolution code...
4759
4760 EXEC_FORWARD: we keep on single stepping until we exit the run
4761 time loader code and reach the callee's address.
4762
4763 EXEC_REVERSE: we've already executed the callee (backward), and
4764 the runtime loader code is handled just like any other
4765 undebuggable function call. Now we need only keep stepping
4766 backward through the trampoline code, and that's handled further
4767 down, so there is nothing for us to do here. */
4768
4769 if (execution_direction != EXEC_REVERSE
4770 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 && in_solib_dynsym_resolve_code (stop_pc))
4772 {
4773 CORE_ADDR pc_after_resolver =
4774 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4775
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: stepped into dynsym resolve code\n");
4779
4780 if (pc_after_resolver)
4781 {
4782 /* Set up a step-resume breakpoint at the address
4783 indicated by SKIP_SOLIB_RESOLVER. */
4784 struct symtab_and_line sr_sal;
4785
4786 init_sal (&sr_sal);
4787 sr_sal.pc = pc_after_resolver;
4788 sr_sal.pspace = get_frame_program_space (frame);
4789
4790 insert_step_resume_breakpoint_at_sal (gdbarch,
4791 sr_sal, null_frame_id);
4792 }
4793
4794 keep_going (ecs);
4795 return;
4796 }
4797
4798 if (ecs->event_thread->control.step_range_end != 1
4799 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4800 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4801 && get_frame_type (frame) == SIGTRAMP_FRAME)
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: stepped into signal trampoline\n");
4806 /* The inferior, while doing a "step" or "next", has ended up in
4807 a signal trampoline (either by a signal being delivered or by
4808 the signal handler returning). Just single-step until the
4809 inferior leaves the trampoline (either by calling the handler
4810 or returning). */
4811 keep_going (ecs);
4812 return;
4813 }
4814
4815 /* If we're in the return path from a shared library trampoline,
4816 we want to proceed through the trampoline when stepping. */
4817 /* macro/2012-04-25: This needs to come before the subroutine
4818 call check below as on some targets return trampolines look
4819 like subroutine calls (MIPS16 return thunks). */
4820 if (gdbarch_in_solib_return_trampoline (gdbarch,
4821 stop_pc, ecs->stop_func_name)
4822 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4823 {
4824 /* Determine where this trampoline returns. */
4825 CORE_ADDR real_stop_pc;
4826
4827 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4828
4829 if (debug_infrun)
4830 fprintf_unfiltered (gdb_stdlog,
4831 "infrun: stepped into solib return tramp\n");
4832
4833 /* Only proceed through if we know where it's going. */
4834 if (real_stop_pc)
4835 {
4836 /* And put the step-breakpoint there and go until there. */
4837 struct symtab_and_line sr_sal;
4838
4839 init_sal (&sr_sal); /* initialize to zeroes */
4840 sr_sal.pc = real_stop_pc;
4841 sr_sal.section = find_pc_overlay (sr_sal.pc);
4842 sr_sal.pspace = get_frame_program_space (frame);
4843
4844 /* Do not specify what the fp should be when we stop since
4845 on some machines the prologue is where the new fp value
4846 is established. */
4847 insert_step_resume_breakpoint_at_sal (gdbarch,
4848 sr_sal, null_frame_id);
4849
4850 /* Restart without fiddling with the step ranges or
4851 other state. */
4852 keep_going (ecs);
4853 return;
4854 }
4855 }
4856
4857 /* Check for subroutine calls. The check for the current frame
4858 equalling the step ID is not necessary - the check of the
4859 previous frame's ID is sufficient - but it is a common case and
4860 cheaper than checking the previous frame's ID.
4861
4862 NOTE: frame_id_eq will never report two invalid frame IDs as
4863 being equal, so to get into this block, both the current and
4864 previous frame must have valid frame IDs. */
4865 /* The outer_frame_id check is a heuristic to detect stepping
4866 through startup code. If we step over an instruction which
4867 sets the stack pointer from an invalid value to a valid value,
4868 we may detect that as a subroutine call from the mythical
4869 "outermost" function. This could be fixed by marking
4870 outermost frames as !stack_p,code_p,special_p. Then the
4871 initial outermost frame, before sp was valid, would
4872 have code_addr == &_start. See the comment in frame_id_eq
4873 for more. */
4874 if (!frame_id_eq (get_stack_frame_id (frame),
4875 ecs->event_thread->control.step_stack_frame_id)
4876 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4877 ecs->event_thread->control.step_stack_frame_id)
4878 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4879 outer_frame_id)
4880 || step_start_function != find_pc_function (stop_pc))))
4881 {
4882 CORE_ADDR real_stop_pc;
4883
4884 if (debug_infrun)
4885 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4886
4887 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4888 || ((ecs->event_thread->control.step_range_end == 1)
4889 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4890 ecs->stop_func_start)))
4891 {
4892 /* I presume that step_over_calls is only 0 when we're
4893 supposed to be stepping at the assembly language level
4894 ("stepi"). Just stop. */
4895 /* Also, maybe we just did a "nexti" inside a prolog, so we
4896 thought it was a subroutine call but it was not. Stop as
4897 well. FENN */
4898 /* And this works the same backward as frontward. MVS */
4899 ecs->event_thread->control.stop_step = 1;
4900 print_end_stepping_range_reason ();
4901 stop_stepping (ecs);
4902 return;
4903 }
4904
4905 /* Reverse stepping through solib trampolines. */
4906
4907 if (execution_direction == EXEC_REVERSE
4908 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4909 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4910 || (ecs->stop_func_start == 0
4911 && in_solib_dynsym_resolve_code (stop_pc))))
4912 {
4913 /* Any solib trampoline code can be handled in reverse
4914 by simply continuing to single-step. We have already
4915 executed the solib function (backwards), and a few
4916 steps will take us back through the trampoline to the
4917 caller. */
4918 keep_going (ecs);
4919 return;
4920 }
4921
4922 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4923 {
4924 /* We're doing a "next".
4925
4926 Normal (forward) execution: set a breakpoint at the
4927 callee's return address (the address at which the caller
4928 will resume).
4929
4930 Reverse (backward) execution. set the step-resume
4931 breakpoint at the start of the function that we just
4932 stepped into (backwards), and continue to there. When we
4933 get there, we'll need to single-step back to the caller. */
4934
4935 if (execution_direction == EXEC_REVERSE)
4936 {
4937 /* If we're already at the start of the function, we've either
4938 just stepped backward into a single instruction function,
4939 or stepped back out of a signal handler to the first instruction
4940 of the function. Just keep going, which will single-step back
4941 to the caller. */
4942 if (ecs->stop_func_start != stop_pc)
4943 {
4944 struct symtab_and_line sr_sal;
4945
4946 /* Normal function call return (static or dynamic). */
4947 init_sal (&sr_sal);
4948 sr_sal.pc = ecs->stop_func_start;
4949 sr_sal.pspace = get_frame_program_space (frame);
4950 insert_step_resume_breakpoint_at_sal (gdbarch,
4951 sr_sal, null_frame_id);
4952 }
4953 }
4954 else
4955 insert_step_resume_breakpoint_at_caller (frame);
4956
4957 keep_going (ecs);
4958 return;
4959 }
4960
4961 /* If we are in a function call trampoline (a stub between the
4962 calling routine and the real function), locate the real
4963 function. That's what tells us (a) whether we want to step
4964 into it at all, and (b) what prologue we want to run to the
4965 end of, if we do step into it. */
4966 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4967 if (real_stop_pc == 0)
4968 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4969 if (real_stop_pc != 0)
4970 ecs->stop_func_start = real_stop_pc;
4971
4972 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4973 {
4974 struct symtab_and_line sr_sal;
4975
4976 init_sal (&sr_sal);
4977 sr_sal.pc = ecs->stop_func_start;
4978 sr_sal.pspace = get_frame_program_space (frame);
4979
4980 insert_step_resume_breakpoint_at_sal (gdbarch,
4981 sr_sal, null_frame_id);
4982 keep_going (ecs);
4983 return;
4984 }
4985
4986 /* If we have line number information for the function we are
4987 thinking of stepping into and the function isn't on the skip
4988 list, step into it.
4989
4990 If there are several symtabs at that PC (e.g. with include
4991 files), just want to know whether *any* of them have line
4992 numbers. find_pc_line handles this. */
4993 {
4994 struct symtab_and_line tmp_sal;
4995
4996 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4997 if (tmp_sal.line != 0
4998 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4999 &tmp_sal))
5000 {
5001 if (execution_direction == EXEC_REVERSE)
5002 handle_step_into_function_backward (gdbarch, ecs);
5003 else
5004 handle_step_into_function (gdbarch, ecs);
5005 return;
5006 }
5007 }
5008
5009 /* If we have no line number and the step-stop-if-no-debug is
5010 set, we stop the step so that the user has a chance to switch
5011 in assembly mode. */
5012 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5013 && step_stop_if_no_debug)
5014 {
5015 ecs->event_thread->control.stop_step = 1;
5016 print_end_stepping_range_reason ();
5017 stop_stepping (ecs);
5018 return;
5019 }
5020
5021 if (execution_direction == EXEC_REVERSE)
5022 {
5023 /* If we're already at the start of the function, we've either just
5024 stepped backward into a single instruction function without line
5025 number info, or stepped back out of a signal handler to the first
5026 instruction of the function without line number info. Just keep
5027 going, which will single-step back to the caller. */
5028 if (ecs->stop_func_start != stop_pc)
5029 {
5030 /* Set a breakpoint at callee's start address.
5031 From there we can step once and be back in the caller. */
5032 struct symtab_and_line sr_sal;
5033
5034 init_sal (&sr_sal);
5035 sr_sal.pc = ecs->stop_func_start;
5036 sr_sal.pspace = get_frame_program_space (frame);
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
5039 }
5040 }
5041 else
5042 /* Set a breakpoint at callee's return address (the address
5043 at which the caller will resume). */
5044 insert_step_resume_breakpoint_at_caller (frame);
5045
5046 keep_going (ecs);
5047 return;
5048 }
5049
5050 /* Reverse stepping through solib trampolines. */
5051
5052 if (execution_direction == EXEC_REVERSE
5053 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5054 {
5055 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5056 || (ecs->stop_func_start == 0
5057 && in_solib_dynsym_resolve_code (stop_pc)))
5058 {
5059 /* Any solib trampoline code can be handled in reverse
5060 by simply continuing to single-step. We have already
5061 executed the solib function (backwards), and a few
5062 steps will take us back through the trampoline to the
5063 caller. */
5064 keep_going (ecs);
5065 return;
5066 }
5067 else if (in_solib_dynsym_resolve_code (stop_pc))
5068 {
5069 /* Stepped backward into the solib dynsym resolver.
5070 Set a breakpoint at its start and continue, then
5071 one more step will take us out. */
5072 struct symtab_and_line sr_sal;
5073
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
5076 sr_sal.pspace = get_frame_program_space (frame);
5077 insert_step_resume_breakpoint_at_sal (gdbarch,
5078 sr_sal, null_frame_id);
5079 keep_going (ecs);
5080 return;
5081 }
5082 }
5083
5084 stop_pc_sal = find_pc_line (stop_pc, 0);
5085
5086 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5087 the trampoline processing logic, however, there are some trampolines
5088 that have no names, so we should do trampoline handling first. */
5089 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5090 && ecs->stop_func_name == NULL
5091 && stop_pc_sal.line == 0)
5092 {
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog,
5095 "infrun: stepped into undebuggable function\n");
5096
5097 /* The inferior just stepped into, or returned to, an
5098 undebuggable function (where there is no debugging information
5099 and no line number corresponding to the address where the
5100 inferior stopped). Since we want to skip this kind of code,
5101 we keep going until the inferior returns from this
5102 function - unless the user has asked us not to (via
5103 set step-mode) or we no longer know how to get back
5104 to the call site. */
5105 if (step_stop_if_no_debug
5106 || !frame_id_p (frame_unwind_caller_id (frame)))
5107 {
5108 /* If we have no line number and the step-stop-if-no-debug
5109 is set, we stop the step so that the user has a chance to
5110 switch in assembly mode. */
5111 ecs->event_thread->control.stop_step = 1;
5112 print_end_stepping_range_reason ();
5113 stop_stepping (ecs);
5114 return;
5115 }
5116 else
5117 {
5118 /* Set a breakpoint at callee's return address (the address
5119 at which the caller will resume). */
5120 insert_step_resume_breakpoint_at_caller (frame);
5121 keep_going (ecs);
5122 return;
5123 }
5124 }
5125
5126 if (ecs->event_thread->control.step_range_end == 1)
5127 {
5128 /* It is stepi or nexti. We always want to stop stepping after
5129 one instruction. */
5130 if (debug_infrun)
5131 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5132 ecs->event_thread->control.stop_step = 1;
5133 print_end_stepping_range_reason ();
5134 stop_stepping (ecs);
5135 return;
5136 }
5137
5138 if (stop_pc_sal.line == 0)
5139 {
5140 /* We have no line number information. That means to stop
5141 stepping (does this always happen right after one instruction,
5142 when we do "s" in a function with no line numbers,
5143 or can this happen as a result of a return or longjmp?). */
5144 if (debug_infrun)
5145 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5146 ecs->event_thread->control.stop_step = 1;
5147 print_end_stepping_range_reason ();
5148 stop_stepping (ecs);
5149 return;
5150 }
5151
5152 /* Look for "calls" to inlined functions, part one. If the inline
5153 frame machinery detected some skipped call sites, we have entered
5154 a new inline function. */
5155
5156 if (frame_id_eq (get_frame_id (get_current_frame ()),
5157 ecs->event_thread->control.step_frame_id)
5158 && inline_skipped_frames (ecs->ptid))
5159 {
5160 struct symtab_and_line call_sal;
5161
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog,
5164 "infrun: stepped into inlined function\n");
5165
5166 find_frame_sal (get_current_frame (), &call_sal);
5167
5168 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5169 {
5170 /* For "step", we're going to stop. But if the call site
5171 for this inlined function is on the same source line as
5172 we were previously stepping, go down into the function
5173 first. Otherwise stop at the call site. */
5174
5175 if (call_sal.line == ecs->event_thread->current_line
5176 && call_sal.symtab == ecs->event_thread->current_symtab)
5177 step_into_inline_frame (ecs->ptid);
5178
5179 ecs->event_thread->control.stop_step = 1;
5180 print_end_stepping_range_reason ();
5181 stop_stepping (ecs);
5182 return;
5183 }
5184 else
5185 {
5186 /* For "next", we should stop at the call site if it is on a
5187 different source line. Otherwise continue through the
5188 inlined function. */
5189 if (call_sal.line == ecs->event_thread->current_line
5190 && call_sal.symtab == ecs->event_thread->current_symtab)
5191 keep_going (ecs);
5192 else
5193 {
5194 ecs->event_thread->control.stop_step = 1;
5195 print_end_stepping_range_reason ();
5196 stop_stepping (ecs);
5197 }
5198 return;
5199 }
5200 }
5201
5202 /* Look for "calls" to inlined functions, part two. If we are still
5203 in the same real function we were stepping through, but we have
5204 to go further up to find the exact frame ID, we are stepping
5205 through a more inlined call beyond its call site. */
5206
5207 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5208 && !frame_id_eq (get_frame_id (get_current_frame ()),
5209 ecs->event_thread->control.step_frame_id)
5210 && stepped_in_from (get_current_frame (),
5211 ecs->event_thread->control.step_frame_id))
5212 {
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: stepping through inlined function\n");
5216
5217 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5218 keep_going (ecs);
5219 else
5220 {
5221 ecs->event_thread->control.stop_step = 1;
5222 print_end_stepping_range_reason ();
5223 stop_stepping (ecs);
5224 }
5225 return;
5226 }
5227
5228 if ((stop_pc == stop_pc_sal.pc)
5229 && (ecs->event_thread->current_line != stop_pc_sal.line
5230 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5231 {
5232 /* We are at the start of a different line. So stop. Note that
5233 we don't stop if we step into the middle of a different line.
5234 That is said to make things like for (;;) statements work
5235 better. */
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: stepped to a different line\n");
5239 ecs->event_thread->control.stop_step = 1;
5240 print_end_stepping_range_reason ();
5241 stop_stepping (ecs);
5242 return;
5243 }
5244
5245 /* We aren't done stepping.
5246
5247 Optimize by setting the stepping range to the line.
5248 (We might not be in the original line, but if we entered a
5249 new line in mid-statement, we continue stepping. This makes
5250 things like for(;;) statements work better.) */
5251
5252 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5253 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5254 ecs->event_thread->control.may_range_step = 1;
5255 set_step_info (frame, stop_pc_sal);
5256
5257 if (debug_infrun)
5258 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5259 keep_going (ecs);
5260 }
5261
5262 /* Is thread TP in the middle of single-stepping? */
5263
5264 static int
5265 currently_stepping (struct thread_info *tp)
5266 {
5267 return ((tp->control.step_range_end
5268 && tp->control.step_resume_breakpoint == NULL)
5269 || tp->control.trap_expected
5270 || bpstat_should_step ());
5271 }
5272
5273 /* Returns true if any thread *but* the one passed in "data" is in the
5274 middle of stepping or of handling a "next". */
5275
5276 static int
5277 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5278 {
5279 if (tp == data)
5280 return 0;
5281
5282 return (tp->control.step_range_end
5283 || tp->control.trap_expected);
5284 }
5285
5286 /* Inferior has stepped into a subroutine call with source code that
5287 we should not step over. Do step to the first line of code in
5288 it. */
5289
5290 static void
5291 handle_step_into_function (struct gdbarch *gdbarch,
5292 struct execution_control_state *ecs)
5293 {
5294 struct symtab *s;
5295 struct symtab_and_line stop_func_sal, sr_sal;
5296
5297 fill_in_stop_func (gdbarch, ecs);
5298
5299 s = find_pc_symtab (stop_pc);
5300 if (s && s->language != language_asm)
5301 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5302 ecs->stop_func_start);
5303
5304 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5305 /* Use the step_resume_break to step until the end of the prologue,
5306 even if that involves jumps (as it seems to on the vax under
5307 4.2). */
5308 /* If the prologue ends in the middle of a source line, continue to
5309 the end of that source line (if it is still within the function).
5310 Otherwise, just go to end of prologue. */
5311 if (stop_func_sal.end
5312 && stop_func_sal.pc != ecs->stop_func_start
5313 && stop_func_sal.end < ecs->stop_func_end)
5314 ecs->stop_func_start = stop_func_sal.end;
5315
5316 /* Architectures which require breakpoint adjustment might not be able
5317 to place a breakpoint at the computed address. If so, the test
5318 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5319 ecs->stop_func_start to an address at which a breakpoint may be
5320 legitimately placed.
5321
5322 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5323 made, GDB will enter an infinite loop when stepping through
5324 optimized code consisting of VLIW instructions which contain
5325 subinstructions corresponding to different source lines. On
5326 FR-V, it's not permitted to place a breakpoint on any but the
5327 first subinstruction of a VLIW instruction. When a breakpoint is
5328 set, GDB will adjust the breakpoint address to the beginning of
5329 the VLIW instruction. Thus, we need to make the corresponding
5330 adjustment here when computing the stop address. */
5331
5332 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5333 {
5334 ecs->stop_func_start
5335 = gdbarch_adjust_breakpoint_address (gdbarch,
5336 ecs->stop_func_start);
5337 }
5338
5339 if (ecs->stop_func_start == stop_pc)
5340 {
5341 /* We are already there: stop now. */
5342 ecs->event_thread->control.stop_step = 1;
5343 print_end_stepping_range_reason ();
5344 stop_stepping (ecs);
5345 return;
5346 }
5347 else
5348 {
5349 /* Put the step-breakpoint there and go until there. */
5350 init_sal (&sr_sal); /* initialize to zeroes */
5351 sr_sal.pc = ecs->stop_func_start;
5352 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5353 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5354
5355 /* Do not specify what the fp should be when we stop since on
5356 some machines the prologue is where the new fp value is
5357 established. */
5358 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5359
5360 /* And make sure stepping stops right away then. */
5361 ecs->event_thread->control.step_range_end
5362 = ecs->event_thread->control.step_range_start;
5363 }
5364 keep_going (ecs);
5365 }
5366
5367 /* Inferior has stepped backward into a subroutine call with source
5368 code that we should not step over. Do step to the beginning of the
5369 last line of code in it. */
5370
5371 static void
5372 handle_step_into_function_backward (struct gdbarch *gdbarch,
5373 struct execution_control_state *ecs)
5374 {
5375 struct symtab *s;
5376 struct symtab_and_line stop_func_sal;
5377
5378 fill_in_stop_func (gdbarch, ecs);
5379
5380 s = find_pc_symtab (stop_pc);
5381 if (s && s->language != language_asm)
5382 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5383 ecs->stop_func_start);
5384
5385 stop_func_sal = find_pc_line (stop_pc, 0);
5386
5387 /* OK, we're just going to keep stepping here. */
5388 if (stop_func_sal.pc == stop_pc)
5389 {
5390 /* We're there already. Just stop stepping now. */
5391 ecs->event_thread->control.stop_step = 1;
5392 print_end_stepping_range_reason ();
5393 stop_stepping (ecs);
5394 }
5395 else
5396 {
5397 /* Else just reset the step range and keep going.
5398 No step-resume breakpoint, they don't work for
5399 epilogues, which can have multiple entry paths. */
5400 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5401 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5402 keep_going (ecs);
5403 }
5404 return;
5405 }
5406
5407 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5408 This is used to both functions and to skip over code. */
5409
5410 static void
5411 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5412 struct symtab_and_line sr_sal,
5413 struct frame_id sr_id,
5414 enum bptype sr_type)
5415 {
5416 /* There should never be more than one step-resume or longjmp-resume
5417 breakpoint per thread, so we should never be setting a new
5418 step_resume_breakpoint when one is already active. */
5419 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5420 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5421
5422 if (debug_infrun)
5423 fprintf_unfiltered (gdb_stdlog,
5424 "infrun: inserting step-resume breakpoint at %s\n",
5425 paddress (gdbarch, sr_sal.pc));
5426
5427 inferior_thread ()->control.step_resume_breakpoint
5428 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5429 }
5430
5431 void
5432 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5433 struct symtab_and_line sr_sal,
5434 struct frame_id sr_id)
5435 {
5436 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5437 sr_sal, sr_id,
5438 bp_step_resume);
5439 }
5440
5441 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5442 This is used to skip a potential signal handler.
5443
5444 This is called with the interrupted function's frame. The signal
5445 handler, when it returns, will resume the interrupted function at
5446 RETURN_FRAME.pc. */
5447
5448 static void
5449 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5450 {
5451 struct symtab_and_line sr_sal;
5452 struct gdbarch *gdbarch;
5453
5454 gdb_assert (return_frame != NULL);
5455 init_sal (&sr_sal); /* initialize to zeros */
5456
5457 gdbarch = get_frame_arch (return_frame);
5458 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5459 sr_sal.section = find_pc_overlay (sr_sal.pc);
5460 sr_sal.pspace = get_frame_program_space (return_frame);
5461
5462 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5463 get_stack_frame_id (return_frame),
5464 bp_hp_step_resume);
5465 }
5466
5467 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5468 is used to skip a function after stepping into it (for "next" or if
5469 the called function has no debugging information).
5470
5471 The current function has almost always been reached by single
5472 stepping a call or return instruction. NEXT_FRAME belongs to the
5473 current function, and the breakpoint will be set at the caller's
5474 resume address.
5475
5476 This is a separate function rather than reusing
5477 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5478 get_prev_frame, which may stop prematurely (see the implementation
5479 of frame_unwind_caller_id for an example). */
5480
5481 static void
5482 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5483 {
5484 struct symtab_and_line sr_sal;
5485 struct gdbarch *gdbarch;
5486
5487 /* We shouldn't have gotten here if we don't know where the call site
5488 is. */
5489 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5490
5491 init_sal (&sr_sal); /* initialize to zeros */
5492
5493 gdbarch = frame_unwind_caller_arch (next_frame);
5494 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5495 frame_unwind_caller_pc (next_frame));
5496 sr_sal.section = find_pc_overlay (sr_sal.pc);
5497 sr_sal.pspace = frame_unwind_program_space (next_frame);
5498
5499 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5500 frame_unwind_caller_id (next_frame));
5501 }
5502
5503 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5504 new breakpoint at the target of a jmp_buf. The handling of
5505 longjmp-resume uses the same mechanisms used for handling
5506 "step-resume" breakpoints. */
5507
5508 static void
5509 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5510 {
5511 /* There should never be more than one longjmp-resume breakpoint per
5512 thread, so we should never be setting a new
5513 longjmp_resume_breakpoint when one is already active. */
5514 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: inserting longjmp-resume breakpoint at %s\n",
5519 paddress (gdbarch, pc));
5520
5521 inferior_thread ()->control.exception_resume_breakpoint =
5522 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5523 }
5524
5525 /* Insert an exception resume breakpoint. TP is the thread throwing
5526 the exception. The block B is the block of the unwinder debug hook
5527 function. FRAME is the frame corresponding to the call to this
5528 function. SYM is the symbol of the function argument holding the
5529 target PC of the exception. */
5530
5531 static void
5532 insert_exception_resume_breakpoint (struct thread_info *tp,
5533 struct block *b,
5534 struct frame_info *frame,
5535 struct symbol *sym)
5536 {
5537 volatile struct gdb_exception e;
5538
5539 /* We want to ignore errors here. */
5540 TRY_CATCH (e, RETURN_MASK_ERROR)
5541 {
5542 struct symbol *vsym;
5543 struct value *value;
5544 CORE_ADDR handler;
5545 struct breakpoint *bp;
5546
5547 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5548 value = read_var_value (vsym, frame);
5549 /* If the value was optimized out, revert to the old behavior. */
5550 if (! value_optimized_out (value))
5551 {
5552 handler = value_as_address (value);
5553
5554 if (debug_infrun)
5555 fprintf_unfiltered (gdb_stdlog,
5556 "infrun: exception resume at %lx\n",
5557 (unsigned long) handler);
5558
5559 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5560 handler, bp_exception_resume);
5561
5562 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5563 frame = NULL;
5564
5565 bp->thread = tp->num;
5566 inferior_thread ()->control.exception_resume_breakpoint = bp;
5567 }
5568 }
5569 }
5570
5571 /* A helper for check_exception_resume that sets an
5572 exception-breakpoint based on a SystemTap probe. */
5573
5574 static void
5575 insert_exception_resume_from_probe (struct thread_info *tp,
5576 const struct probe *probe,
5577 struct frame_info *frame)
5578 {
5579 struct value *arg_value;
5580 CORE_ADDR handler;
5581 struct breakpoint *bp;
5582
5583 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5584 if (!arg_value)
5585 return;
5586
5587 handler = value_as_address (arg_value);
5588
5589 if (debug_infrun)
5590 fprintf_unfiltered (gdb_stdlog,
5591 "infrun: exception resume at %s\n",
5592 paddress (get_objfile_arch (probe->objfile),
5593 handler));
5594
5595 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5596 handler, bp_exception_resume);
5597 bp->thread = tp->num;
5598 inferior_thread ()->control.exception_resume_breakpoint = bp;
5599 }
5600
5601 /* This is called when an exception has been intercepted. Check to
5602 see whether the exception's destination is of interest, and if so,
5603 set an exception resume breakpoint there. */
5604
5605 static void
5606 check_exception_resume (struct execution_control_state *ecs,
5607 struct frame_info *frame)
5608 {
5609 volatile struct gdb_exception e;
5610 const struct probe *probe;
5611 struct symbol *func;
5612
5613 /* First see if this exception unwinding breakpoint was set via a
5614 SystemTap probe point. If so, the probe has two arguments: the
5615 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5616 set a breakpoint there. */
5617 probe = find_probe_by_pc (get_frame_pc (frame));
5618 if (probe)
5619 {
5620 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5621 return;
5622 }
5623
5624 func = get_frame_function (frame);
5625 if (!func)
5626 return;
5627
5628 TRY_CATCH (e, RETURN_MASK_ERROR)
5629 {
5630 struct block *b;
5631 struct block_iterator iter;
5632 struct symbol *sym;
5633 int argno = 0;
5634
5635 /* The exception breakpoint is a thread-specific breakpoint on
5636 the unwinder's debug hook, declared as:
5637
5638 void _Unwind_DebugHook (void *cfa, void *handler);
5639
5640 The CFA argument indicates the frame to which control is
5641 about to be transferred. HANDLER is the destination PC.
5642
5643 We ignore the CFA and set a temporary breakpoint at HANDLER.
5644 This is not extremely efficient but it avoids issues in gdb
5645 with computing the DWARF CFA, and it also works even in weird
5646 cases such as throwing an exception from inside a signal
5647 handler. */
5648
5649 b = SYMBOL_BLOCK_VALUE (func);
5650 ALL_BLOCK_SYMBOLS (b, iter, sym)
5651 {
5652 if (!SYMBOL_IS_ARGUMENT (sym))
5653 continue;
5654
5655 if (argno == 0)
5656 ++argno;
5657 else
5658 {
5659 insert_exception_resume_breakpoint (ecs->event_thread,
5660 b, frame, sym);
5661 break;
5662 }
5663 }
5664 }
5665 }
5666
5667 static void
5668 stop_stepping (struct execution_control_state *ecs)
5669 {
5670 if (debug_infrun)
5671 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5672
5673 /* Let callers know we don't want to wait for the inferior anymore. */
5674 ecs->wait_some_more = 0;
5675 }
5676
5677 /* This function handles various cases where we need to continue
5678 waiting for the inferior. */
5679 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5680
5681 static void
5682 keep_going (struct execution_control_state *ecs)
5683 {
5684 /* Make sure normal_stop is called if we get a QUIT handled before
5685 reaching resume. */
5686 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5687
5688 /* Save the pc before execution, to compare with pc after stop. */
5689 ecs->event_thread->prev_pc
5690 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5691
5692 /* If we did not do break;, it means we should keep running the
5693 inferior and not return to debugger. */
5694
5695 if (ecs->event_thread->control.trap_expected
5696 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5697 {
5698 /* We took a signal (which we are supposed to pass through to
5699 the inferior, else we'd not get here) and we haven't yet
5700 gotten our trap. Simply continue. */
5701
5702 discard_cleanups (old_cleanups);
5703 resume (currently_stepping (ecs->event_thread),
5704 ecs->event_thread->suspend.stop_signal);
5705 }
5706 else
5707 {
5708 /* Either the trap was not expected, but we are continuing
5709 anyway (the user asked that this signal be passed to the
5710 child)
5711 -- or --
5712 The signal was SIGTRAP, e.g. it was our signal, but we
5713 decided we should resume from it.
5714
5715 We're going to run this baby now!
5716
5717 Note that insert_breakpoints won't try to re-insert
5718 already inserted breakpoints. Therefore, we don't
5719 care if breakpoints were already inserted, or not. */
5720
5721 if (ecs->event_thread->stepping_over_breakpoint)
5722 {
5723 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5724
5725 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5726 /* Since we can't do a displaced step, we have to remove
5727 the breakpoint while we step it. To keep things
5728 simple, we remove them all. */
5729 remove_breakpoints ();
5730 }
5731 else
5732 {
5733 volatile struct gdb_exception e;
5734
5735 /* Stop stepping when inserting breakpoints
5736 has failed. */
5737 TRY_CATCH (e, RETURN_MASK_ERROR)
5738 {
5739 insert_breakpoints ();
5740 }
5741 if (e.reason < 0)
5742 {
5743 exception_print (gdb_stderr, e);
5744 stop_stepping (ecs);
5745 return;
5746 }
5747 }
5748
5749 ecs->event_thread->control.trap_expected
5750 = ecs->event_thread->stepping_over_breakpoint;
5751
5752 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5753 specifies that such a signal should be delivered to the
5754 target program).
5755
5756 Typically, this would occure when a user is debugging a
5757 target monitor on a simulator: the target monitor sets a
5758 breakpoint; the simulator encounters this break-point and
5759 halts the simulation handing control to GDB; GDB, noteing
5760 that the break-point isn't valid, returns control back to the
5761 simulator; the simulator then delivers the hardware
5762 equivalent of a SIGNAL_TRAP to the program being debugged. */
5763
5764 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5765 && !signal_program[ecs->event_thread->suspend.stop_signal])
5766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5767
5768 discard_cleanups (old_cleanups);
5769 resume (currently_stepping (ecs->event_thread),
5770 ecs->event_thread->suspend.stop_signal);
5771 }
5772
5773 prepare_to_wait (ecs);
5774 }
5775
5776 /* This function normally comes after a resume, before
5777 handle_inferior_event exits. It takes care of any last bits of
5778 housekeeping, and sets the all-important wait_some_more flag. */
5779
5780 static void
5781 prepare_to_wait (struct execution_control_state *ecs)
5782 {
5783 if (debug_infrun)
5784 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5785
5786 /* This is the old end of the while loop. Let everybody know we
5787 want to wait for the inferior some more and get called again
5788 soon. */
5789 ecs->wait_some_more = 1;
5790 }
5791
5792 /* Several print_*_reason functions to print why the inferior has stopped.
5793 We always print something when the inferior exits, or receives a signal.
5794 The rest of the cases are dealt with later on in normal_stop and
5795 print_it_typical. Ideally there should be a call to one of these
5796 print_*_reason functions functions from handle_inferior_event each time
5797 stop_stepping is called. */
5798
5799 /* Print why the inferior has stopped.
5800 We are done with a step/next/si/ni command, print why the inferior has
5801 stopped. For now print nothing. Print a message only if not in the middle
5802 of doing a "step n" operation for n > 1. */
5803
5804 static void
5805 print_end_stepping_range_reason (void)
5806 {
5807 if ((!inferior_thread ()->step_multi
5808 || !inferior_thread ()->control.stop_step)
5809 && ui_out_is_mi_like_p (current_uiout))
5810 ui_out_field_string (current_uiout, "reason",
5811 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5812 }
5813
5814 /* The inferior was terminated by a signal, print why it stopped. */
5815
5816 static void
5817 print_signal_exited_reason (enum gdb_signal siggnal)
5818 {
5819 struct ui_out *uiout = current_uiout;
5820
5821 annotate_signalled ();
5822 if (ui_out_is_mi_like_p (uiout))
5823 ui_out_field_string
5824 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5825 ui_out_text (uiout, "\nProgram terminated with signal ");
5826 annotate_signal_name ();
5827 ui_out_field_string (uiout, "signal-name",
5828 gdb_signal_to_name (siggnal));
5829 annotate_signal_name_end ();
5830 ui_out_text (uiout, ", ");
5831 annotate_signal_string ();
5832 ui_out_field_string (uiout, "signal-meaning",
5833 gdb_signal_to_string (siggnal));
5834 annotate_signal_string_end ();
5835 ui_out_text (uiout, ".\n");
5836 ui_out_text (uiout, "The program no longer exists.\n");
5837 }
5838
5839 /* The inferior program is finished, print why it stopped. */
5840
5841 static void
5842 print_exited_reason (int exitstatus)
5843 {
5844 struct inferior *inf = current_inferior ();
5845 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5846 struct ui_out *uiout = current_uiout;
5847
5848 annotate_exited (exitstatus);
5849 if (exitstatus)
5850 {
5851 if (ui_out_is_mi_like_p (uiout))
5852 ui_out_field_string (uiout, "reason",
5853 async_reason_lookup (EXEC_ASYNC_EXITED));
5854 ui_out_text (uiout, "[Inferior ");
5855 ui_out_text (uiout, plongest (inf->num));
5856 ui_out_text (uiout, " (");
5857 ui_out_text (uiout, pidstr);
5858 ui_out_text (uiout, ") exited with code ");
5859 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5860 ui_out_text (uiout, "]\n");
5861 }
5862 else
5863 {
5864 if (ui_out_is_mi_like_p (uiout))
5865 ui_out_field_string
5866 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5867 ui_out_text (uiout, "[Inferior ");
5868 ui_out_text (uiout, plongest (inf->num));
5869 ui_out_text (uiout, " (");
5870 ui_out_text (uiout, pidstr);
5871 ui_out_text (uiout, ") exited normally]\n");
5872 }
5873 /* Support the --return-child-result option. */
5874 return_child_result_value = exitstatus;
5875 }
5876
5877 /* Signal received, print why the inferior has stopped. The signal table
5878 tells us to print about it. */
5879
5880 static void
5881 print_signal_received_reason (enum gdb_signal siggnal)
5882 {
5883 struct ui_out *uiout = current_uiout;
5884
5885 annotate_signal ();
5886
5887 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5888 {
5889 struct thread_info *t = inferior_thread ();
5890
5891 ui_out_text (uiout, "\n[");
5892 ui_out_field_string (uiout, "thread-name",
5893 target_pid_to_str (t->ptid));
5894 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5895 ui_out_text (uiout, " stopped");
5896 }
5897 else
5898 {
5899 ui_out_text (uiout, "\nProgram received signal ");
5900 annotate_signal_name ();
5901 if (ui_out_is_mi_like_p (uiout))
5902 ui_out_field_string
5903 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5904 ui_out_field_string (uiout, "signal-name",
5905 gdb_signal_to_name (siggnal));
5906 annotate_signal_name_end ();
5907 ui_out_text (uiout, ", ");
5908 annotate_signal_string ();
5909 ui_out_field_string (uiout, "signal-meaning",
5910 gdb_signal_to_string (siggnal));
5911 annotate_signal_string_end ();
5912 }
5913 ui_out_text (uiout, ".\n");
5914 }
5915
5916 /* Reverse execution: target ran out of history info, print why the inferior
5917 has stopped. */
5918
5919 static void
5920 print_no_history_reason (void)
5921 {
5922 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5923 }
5924
5925 /* Here to return control to GDB when the inferior stops for real.
5926 Print appropriate messages, remove breakpoints, give terminal our modes.
5927
5928 STOP_PRINT_FRAME nonzero means print the executing frame
5929 (pc, function, args, file, line number and line text).
5930 BREAKPOINTS_FAILED nonzero means stop was due to error
5931 attempting to insert breakpoints. */
5932
5933 void
5934 normal_stop (void)
5935 {
5936 struct target_waitstatus last;
5937 ptid_t last_ptid;
5938 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5939
5940 get_last_target_status (&last_ptid, &last);
5941
5942 /* If an exception is thrown from this point on, make sure to
5943 propagate GDB's knowledge of the executing state to the
5944 frontend/user running state. A QUIT is an easy exception to see
5945 here, so do this before any filtered output. */
5946 if (!non_stop)
5947 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5948 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5949 && last.kind != TARGET_WAITKIND_EXITED
5950 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5951 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5952
5953 /* In non-stop mode, we don't want GDB to switch threads behind the
5954 user's back, to avoid races where the user is typing a command to
5955 apply to thread x, but GDB switches to thread y before the user
5956 finishes entering the command. */
5957
5958 /* As with the notification of thread events, we want to delay
5959 notifying the user that we've switched thread context until
5960 the inferior actually stops.
5961
5962 There's no point in saying anything if the inferior has exited.
5963 Note that SIGNALLED here means "exited with a signal", not
5964 "received a signal". */
5965 if (!non_stop
5966 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5967 && target_has_execution
5968 && last.kind != TARGET_WAITKIND_SIGNALLED
5969 && last.kind != TARGET_WAITKIND_EXITED
5970 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5971 {
5972 target_terminal_ours_for_output ();
5973 printf_filtered (_("[Switching to %s]\n"),
5974 target_pid_to_str (inferior_ptid));
5975 annotate_thread_changed ();
5976 previous_inferior_ptid = inferior_ptid;
5977 }
5978
5979 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5980 {
5981 gdb_assert (sync_execution || !target_can_async_p ());
5982
5983 target_terminal_ours_for_output ();
5984 printf_filtered (_("No unwaited-for children left.\n"));
5985 }
5986
5987 if (!breakpoints_always_inserted_mode () && target_has_execution)
5988 {
5989 if (remove_breakpoints ())
5990 {
5991 target_terminal_ours_for_output ();
5992 printf_filtered (_("Cannot remove breakpoints because "
5993 "program is no longer writable.\nFurther "
5994 "execution is probably impossible.\n"));
5995 }
5996 }
5997
5998 /* If an auto-display called a function and that got a signal,
5999 delete that auto-display to avoid an infinite recursion. */
6000
6001 if (stopped_by_random_signal)
6002 disable_current_display ();
6003
6004 /* Don't print a message if in the middle of doing a "step n"
6005 operation for n > 1 */
6006 if (target_has_execution
6007 && last.kind != TARGET_WAITKIND_SIGNALLED
6008 && last.kind != TARGET_WAITKIND_EXITED
6009 && inferior_thread ()->step_multi
6010 && inferior_thread ()->control.stop_step)
6011 goto done;
6012
6013 target_terminal_ours ();
6014 async_enable_stdin ();
6015
6016 /* Set the current source location. This will also happen if we
6017 display the frame below, but the current SAL will be incorrect
6018 during a user hook-stop function. */
6019 if (has_stack_frames () && !stop_stack_dummy)
6020 set_current_sal_from_frame (get_current_frame (), 1);
6021
6022 /* Let the user/frontend see the threads as stopped. */
6023 do_cleanups (old_chain);
6024
6025 /* Look up the hook_stop and run it (CLI internally handles problem
6026 of stop_command's pre-hook not existing). */
6027 if (stop_command)
6028 catch_errors (hook_stop_stub, stop_command,
6029 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6030
6031 if (!has_stack_frames ())
6032 goto done;
6033
6034 if (last.kind == TARGET_WAITKIND_SIGNALLED
6035 || last.kind == TARGET_WAITKIND_EXITED)
6036 goto done;
6037
6038 /* Select innermost stack frame - i.e., current frame is frame 0,
6039 and current location is based on that.
6040 Don't do this on return from a stack dummy routine,
6041 or if the program has exited. */
6042
6043 if (!stop_stack_dummy)
6044 {
6045 select_frame (get_current_frame ());
6046
6047 /* Print current location without a level number, if
6048 we have changed functions or hit a breakpoint.
6049 Print source line if we have one.
6050 bpstat_print() contains the logic deciding in detail
6051 what to print, based on the event(s) that just occurred. */
6052
6053 /* If --batch-silent is enabled then there's no need to print the current
6054 source location, and to try risks causing an error message about
6055 missing source files. */
6056 if (stop_print_frame && !batch_silent)
6057 {
6058 int bpstat_ret;
6059 int source_flag;
6060 int do_frame_printing = 1;
6061 struct thread_info *tp = inferior_thread ();
6062
6063 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6064 switch (bpstat_ret)
6065 {
6066 case PRINT_UNKNOWN:
6067 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6068 (or should) carry around the function and does (or
6069 should) use that when doing a frame comparison. */
6070 if (tp->control.stop_step
6071 && frame_id_eq (tp->control.step_frame_id,
6072 get_frame_id (get_current_frame ()))
6073 && step_start_function == find_pc_function (stop_pc))
6074 source_flag = SRC_LINE; /* Finished step, just
6075 print source line. */
6076 else
6077 source_flag = SRC_AND_LOC; /* Print location and
6078 source line. */
6079 break;
6080 case PRINT_SRC_AND_LOC:
6081 source_flag = SRC_AND_LOC; /* Print location and
6082 source line. */
6083 break;
6084 case PRINT_SRC_ONLY:
6085 source_flag = SRC_LINE;
6086 break;
6087 case PRINT_NOTHING:
6088 source_flag = SRC_LINE; /* something bogus */
6089 do_frame_printing = 0;
6090 break;
6091 default:
6092 internal_error (__FILE__, __LINE__, _("Unknown value."));
6093 }
6094
6095 /* The behavior of this routine with respect to the source
6096 flag is:
6097 SRC_LINE: Print only source line
6098 LOCATION: Print only location
6099 SRC_AND_LOC: Print location and source line. */
6100 if (do_frame_printing)
6101 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6102
6103 /* Display the auto-display expressions. */
6104 do_displays ();
6105 }
6106 }
6107
6108 /* Save the function value return registers, if we care.
6109 We might be about to restore their previous contents. */
6110 if (inferior_thread ()->control.proceed_to_finish
6111 && execution_direction != EXEC_REVERSE)
6112 {
6113 /* This should not be necessary. */
6114 if (stop_registers)
6115 regcache_xfree (stop_registers);
6116
6117 /* NB: The copy goes through to the target picking up the value of
6118 all the registers. */
6119 stop_registers = regcache_dup (get_current_regcache ());
6120 }
6121
6122 if (stop_stack_dummy == STOP_STACK_DUMMY)
6123 {
6124 /* Pop the empty frame that contains the stack dummy.
6125 This also restores inferior state prior to the call
6126 (struct infcall_suspend_state). */
6127 struct frame_info *frame = get_current_frame ();
6128
6129 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6130 frame_pop (frame);
6131 /* frame_pop() calls reinit_frame_cache as the last thing it
6132 does which means there's currently no selected frame. We
6133 don't need to re-establish a selected frame if the dummy call
6134 returns normally, that will be done by
6135 restore_infcall_control_state. However, we do have to handle
6136 the case where the dummy call is returning after being
6137 stopped (e.g. the dummy call previously hit a breakpoint).
6138 We can't know which case we have so just always re-establish
6139 a selected frame here. */
6140 select_frame (get_current_frame ());
6141 }
6142
6143 done:
6144 annotate_stopped ();
6145
6146 /* Suppress the stop observer if we're in the middle of:
6147
6148 - a step n (n > 1), as there still more steps to be done.
6149
6150 - a "finish" command, as the observer will be called in
6151 finish_command_continuation, so it can include the inferior
6152 function's return value.
6153
6154 - calling an inferior function, as we pretend we inferior didn't
6155 run at all. The return value of the call is handled by the
6156 expression evaluator, through call_function_by_hand. */
6157
6158 if (!target_has_execution
6159 || last.kind == TARGET_WAITKIND_SIGNALLED
6160 || last.kind == TARGET_WAITKIND_EXITED
6161 || last.kind == TARGET_WAITKIND_NO_RESUMED
6162 || (!(inferior_thread ()->step_multi
6163 && inferior_thread ()->control.stop_step)
6164 && !(inferior_thread ()->control.stop_bpstat
6165 && inferior_thread ()->control.proceed_to_finish)
6166 && !inferior_thread ()->control.in_infcall))
6167 {
6168 if (!ptid_equal (inferior_ptid, null_ptid))
6169 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6170 stop_print_frame);
6171 else
6172 observer_notify_normal_stop (NULL, stop_print_frame);
6173 }
6174
6175 if (target_has_execution)
6176 {
6177 if (last.kind != TARGET_WAITKIND_SIGNALLED
6178 && last.kind != TARGET_WAITKIND_EXITED)
6179 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6180 Delete any breakpoint that is to be deleted at the next stop. */
6181 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6182 }
6183
6184 /* Try to get rid of automatically added inferiors that are no
6185 longer needed. Keeping those around slows down things linearly.
6186 Note that this never removes the current inferior. */
6187 prune_inferiors ();
6188 }
6189
6190 static int
6191 hook_stop_stub (void *cmd)
6192 {
6193 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6194 return (0);
6195 }
6196 \f
6197 int
6198 signal_stop_state (int signo)
6199 {
6200 return signal_stop[signo];
6201 }
6202
6203 int
6204 signal_print_state (int signo)
6205 {
6206 return signal_print[signo];
6207 }
6208
6209 int
6210 signal_pass_state (int signo)
6211 {
6212 return signal_program[signo];
6213 }
6214
6215 static void
6216 signal_cache_update (int signo)
6217 {
6218 if (signo == -1)
6219 {
6220 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6221 signal_cache_update (signo);
6222
6223 return;
6224 }
6225
6226 signal_pass[signo] = (signal_stop[signo] == 0
6227 && signal_print[signo] == 0
6228 && signal_program[signo] == 1
6229 && signal_catch[signo] == 0);
6230 }
6231
6232 int
6233 signal_stop_update (int signo, int state)
6234 {
6235 int ret = signal_stop[signo];
6236
6237 signal_stop[signo] = state;
6238 signal_cache_update (signo);
6239 return ret;
6240 }
6241
6242 int
6243 signal_print_update (int signo, int state)
6244 {
6245 int ret = signal_print[signo];
6246
6247 signal_print[signo] = state;
6248 signal_cache_update (signo);
6249 return ret;
6250 }
6251
6252 int
6253 signal_pass_update (int signo, int state)
6254 {
6255 int ret = signal_program[signo];
6256
6257 signal_program[signo] = state;
6258 signal_cache_update (signo);
6259 return ret;
6260 }
6261
6262 /* Update the global 'signal_catch' from INFO and notify the
6263 target. */
6264
6265 void
6266 signal_catch_update (const unsigned int *info)
6267 {
6268 int i;
6269
6270 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6271 signal_catch[i] = info[i] > 0;
6272 signal_cache_update (-1);
6273 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6274 }
6275
6276 static void
6277 sig_print_header (void)
6278 {
6279 printf_filtered (_("Signal Stop\tPrint\tPass "
6280 "to program\tDescription\n"));
6281 }
6282
6283 static void
6284 sig_print_info (enum gdb_signal oursig)
6285 {
6286 const char *name = gdb_signal_to_name (oursig);
6287 int name_padding = 13 - strlen (name);
6288
6289 if (name_padding <= 0)
6290 name_padding = 0;
6291
6292 printf_filtered ("%s", name);
6293 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6294 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6295 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6296 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6297 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6298 }
6299
6300 /* Specify how various signals in the inferior should be handled. */
6301
6302 static void
6303 handle_command (char *args, int from_tty)
6304 {
6305 char **argv;
6306 int digits, wordlen;
6307 int sigfirst, signum, siglast;
6308 enum gdb_signal oursig;
6309 int allsigs;
6310 int nsigs;
6311 unsigned char *sigs;
6312 struct cleanup *old_chain;
6313
6314 if (args == NULL)
6315 {
6316 error_no_arg (_("signal to handle"));
6317 }
6318
6319 /* Allocate and zero an array of flags for which signals to handle. */
6320
6321 nsigs = (int) GDB_SIGNAL_LAST;
6322 sigs = (unsigned char *) alloca (nsigs);
6323 memset (sigs, 0, nsigs);
6324
6325 /* Break the command line up into args. */
6326
6327 argv = gdb_buildargv (args);
6328 old_chain = make_cleanup_freeargv (argv);
6329
6330 /* Walk through the args, looking for signal oursigs, signal names, and
6331 actions. Signal numbers and signal names may be interspersed with
6332 actions, with the actions being performed for all signals cumulatively
6333 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6334
6335 while (*argv != NULL)
6336 {
6337 wordlen = strlen (*argv);
6338 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6339 {;
6340 }
6341 allsigs = 0;
6342 sigfirst = siglast = -1;
6343
6344 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6345 {
6346 /* Apply action to all signals except those used by the
6347 debugger. Silently skip those. */
6348 allsigs = 1;
6349 sigfirst = 0;
6350 siglast = nsigs - 1;
6351 }
6352 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6353 {
6354 SET_SIGS (nsigs, sigs, signal_stop);
6355 SET_SIGS (nsigs, sigs, signal_print);
6356 }
6357 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6358 {
6359 UNSET_SIGS (nsigs, sigs, signal_program);
6360 }
6361 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6362 {
6363 SET_SIGS (nsigs, sigs, signal_print);
6364 }
6365 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6366 {
6367 SET_SIGS (nsigs, sigs, signal_program);
6368 }
6369 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6370 {
6371 UNSET_SIGS (nsigs, sigs, signal_stop);
6372 }
6373 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6374 {
6375 SET_SIGS (nsigs, sigs, signal_program);
6376 }
6377 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6378 {
6379 UNSET_SIGS (nsigs, sigs, signal_print);
6380 UNSET_SIGS (nsigs, sigs, signal_stop);
6381 }
6382 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6383 {
6384 UNSET_SIGS (nsigs, sigs, signal_program);
6385 }
6386 else if (digits > 0)
6387 {
6388 /* It is numeric. The numeric signal refers to our own
6389 internal signal numbering from target.h, not to host/target
6390 signal number. This is a feature; users really should be
6391 using symbolic names anyway, and the common ones like
6392 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6393
6394 sigfirst = siglast = (int)
6395 gdb_signal_from_command (atoi (*argv));
6396 if ((*argv)[digits] == '-')
6397 {
6398 siglast = (int)
6399 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6400 }
6401 if (sigfirst > siglast)
6402 {
6403 /* Bet he didn't figure we'd think of this case... */
6404 signum = sigfirst;
6405 sigfirst = siglast;
6406 siglast = signum;
6407 }
6408 }
6409 else
6410 {
6411 oursig = gdb_signal_from_name (*argv);
6412 if (oursig != GDB_SIGNAL_UNKNOWN)
6413 {
6414 sigfirst = siglast = (int) oursig;
6415 }
6416 else
6417 {
6418 /* Not a number and not a recognized flag word => complain. */
6419 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6420 }
6421 }
6422
6423 /* If any signal numbers or symbol names were found, set flags for
6424 which signals to apply actions to. */
6425
6426 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6427 {
6428 switch ((enum gdb_signal) signum)
6429 {
6430 case GDB_SIGNAL_TRAP:
6431 case GDB_SIGNAL_INT:
6432 if (!allsigs && !sigs[signum])
6433 {
6434 if (query (_("%s is used by the debugger.\n\
6435 Are you sure you want to change it? "),
6436 gdb_signal_to_name ((enum gdb_signal) signum)))
6437 {
6438 sigs[signum] = 1;
6439 }
6440 else
6441 {
6442 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6443 gdb_flush (gdb_stdout);
6444 }
6445 }
6446 break;
6447 case GDB_SIGNAL_0:
6448 case GDB_SIGNAL_DEFAULT:
6449 case GDB_SIGNAL_UNKNOWN:
6450 /* Make sure that "all" doesn't print these. */
6451 break;
6452 default:
6453 sigs[signum] = 1;
6454 break;
6455 }
6456 }
6457
6458 argv++;
6459 }
6460
6461 for (signum = 0; signum < nsigs; signum++)
6462 if (sigs[signum])
6463 {
6464 signal_cache_update (-1);
6465 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6466 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6467
6468 if (from_tty)
6469 {
6470 /* Show the results. */
6471 sig_print_header ();
6472 for (; signum < nsigs; signum++)
6473 if (sigs[signum])
6474 sig_print_info (signum);
6475 }
6476
6477 break;
6478 }
6479
6480 do_cleanups (old_chain);
6481 }
6482
6483 /* Complete the "handle" command. */
6484
6485 static VEC (char_ptr) *
6486 handle_completer (struct cmd_list_element *ignore,
6487 const char *text, const char *word)
6488 {
6489 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6490 static const char * const keywords[] =
6491 {
6492 "all",
6493 "stop",
6494 "ignore",
6495 "print",
6496 "pass",
6497 "nostop",
6498 "noignore",
6499 "noprint",
6500 "nopass",
6501 NULL,
6502 };
6503
6504 vec_signals = signal_completer (ignore, text, word);
6505 vec_keywords = complete_on_enum (keywords, word, word);
6506
6507 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6508 VEC_free (char_ptr, vec_signals);
6509 VEC_free (char_ptr, vec_keywords);
6510 return return_val;
6511 }
6512
6513 static void
6514 xdb_handle_command (char *args, int from_tty)
6515 {
6516 char **argv;
6517 struct cleanup *old_chain;
6518
6519 if (args == NULL)
6520 error_no_arg (_("xdb command"));
6521
6522 /* Break the command line up into args. */
6523
6524 argv = gdb_buildargv (args);
6525 old_chain = make_cleanup_freeargv (argv);
6526 if (argv[1] != (char *) NULL)
6527 {
6528 char *argBuf;
6529 int bufLen;
6530
6531 bufLen = strlen (argv[0]) + 20;
6532 argBuf = (char *) xmalloc (bufLen);
6533 if (argBuf)
6534 {
6535 int validFlag = 1;
6536 enum gdb_signal oursig;
6537
6538 oursig = gdb_signal_from_name (argv[0]);
6539 memset (argBuf, 0, bufLen);
6540 if (strcmp (argv[1], "Q") == 0)
6541 sprintf (argBuf, "%s %s", argv[0], "noprint");
6542 else
6543 {
6544 if (strcmp (argv[1], "s") == 0)
6545 {
6546 if (!signal_stop[oursig])
6547 sprintf (argBuf, "%s %s", argv[0], "stop");
6548 else
6549 sprintf (argBuf, "%s %s", argv[0], "nostop");
6550 }
6551 else if (strcmp (argv[1], "i") == 0)
6552 {
6553 if (!signal_program[oursig])
6554 sprintf (argBuf, "%s %s", argv[0], "pass");
6555 else
6556 sprintf (argBuf, "%s %s", argv[0], "nopass");
6557 }
6558 else if (strcmp (argv[1], "r") == 0)
6559 {
6560 if (!signal_print[oursig])
6561 sprintf (argBuf, "%s %s", argv[0], "print");
6562 else
6563 sprintf (argBuf, "%s %s", argv[0], "noprint");
6564 }
6565 else
6566 validFlag = 0;
6567 }
6568 if (validFlag)
6569 handle_command (argBuf, from_tty);
6570 else
6571 printf_filtered (_("Invalid signal handling flag.\n"));
6572 if (argBuf)
6573 xfree (argBuf);
6574 }
6575 }
6576 do_cleanups (old_chain);
6577 }
6578
6579 enum gdb_signal
6580 gdb_signal_from_command (int num)
6581 {
6582 if (num >= 1 && num <= 15)
6583 return (enum gdb_signal) num;
6584 error (_("Only signals 1-15 are valid as numeric signals.\n\
6585 Use \"info signals\" for a list of symbolic signals."));
6586 }
6587
6588 /* Print current contents of the tables set by the handle command.
6589 It is possible we should just be printing signals actually used
6590 by the current target (but for things to work right when switching
6591 targets, all signals should be in the signal tables). */
6592
6593 static void
6594 signals_info (char *signum_exp, int from_tty)
6595 {
6596 enum gdb_signal oursig;
6597
6598 sig_print_header ();
6599
6600 if (signum_exp)
6601 {
6602 /* First see if this is a symbol name. */
6603 oursig = gdb_signal_from_name (signum_exp);
6604 if (oursig == GDB_SIGNAL_UNKNOWN)
6605 {
6606 /* No, try numeric. */
6607 oursig =
6608 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6609 }
6610 sig_print_info (oursig);
6611 return;
6612 }
6613
6614 printf_filtered ("\n");
6615 /* These ugly casts brought to you by the native VAX compiler. */
6616 for (oursig = GDB_SIGNAL_FIRST;
6617 (int) oursig < (int) GDB_SIGNAL_LAST;
6618 oursig = (enum gdb_signal) ((int) oursig + 1))
6619 {
6620 QUIT;
6621
6622 if (oursig != GDB_SIGNAL_UNKNOWN
6623 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6624 sig_print_info (oursig);
6625 }
6626
6627 printf_filtered (_("\nUse the \"handle\" command "
6628 "to change these tables.\n"));
6629 }
6630
6631 /* Check if it makes sense to read $_siginfo from the current thread
6632 at this point. If not, throw an error. */
6633
6634 static void
6635 validate_siginfo_access (void)
6636 {
6637 /* No current inferior, no siginfo. */
6638 if (ptid_equal (inferior_ptid, null_ptid))
6639 error (_("No thread selected."));
6640
6641 /* Don't try to read from a dead thread. */
6642 if (is_exited (inferior_ptid))
6643 error (_("The current thread has terminated"));
6644
6645 /* ... or from a spinning thread. */
6646 if (is_running (inferior_ptid))
6647 error (_("Selected thread is running."));
6648 }
6649
6650 /* The $_siginfo convenience variable is a bit special. We don't know
6651 for sure the type of the value until we actually have a chance to
6652 fetch the data. The type can change depending on gdbarch, so it is
6653 also dependent on which thread you have selected.
6654
6655 1. making $_siginfo be an internalvar that creates a new value on
6656 access.
6657
6658 2. making the value of $_siginfo be an lval_computed value. */
6659
6660 /* This function implements the lval_computed support for reading a
6661 $_siginfo value. */
6662
6663 static void
6664 siginfo_value_read (struct value *v)
6665 {
6666 LONGEST transferred;
6667
6668 validate_siginfo_access ();
6669
6670 transferred =
6671 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6672 NULL,
6673 value_contents_all_raw (v),
6674 value_offset (v),
6675 TYPE_LENGTH (value_type (v)));
6676
6677 if (transferred != TYPE_LENGTH (value_type (v)))
6678 error (_("Unable to read siginfo"));
6679 }
6680
6681 /* This function implements the lval_computed support for writing a
6682 $_siginfo value. */
6683
6684 static void
6685 siginfo_value_write (struct value *v, struct value *fromval)
6686 {
6687 LONGEST transferred;
6688
6689 validate_siginfo_access ();
6690
6691 transferred = target_write (&current_target,
6692 TARGET_OBJECT_SIGNAL_INFO,
6693 NULL,
6694 value_contents_all_raw (fromval),
6695 value_offset (v),
6696 TYPE_LENGTH (value_type (fromval)));
6697
6698 if (transferred != TYPE_LENGTH (value_type (fromval)))
6699 error (_("Unable to write siginfo"));
6700 }
6701
6702 static const struct lval_funcs siginfo_value_funcs =
6703 {
6704 siginfo_value_read,
6705 siginfo_value_write
6706 };
6707
6708 /* Return a new value with the correct type for the siginfo object of
6709 the current thread using architecture GDBARCH. Return a void value
6710 if there's no object available. */
6711
6712 static struct value *
6713 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6714 void *ignore)
6715 {
6716 if (target_has_stack
6717 && !ptid_equal (inferior_ptid, null_ptid)
6718 && gdbarch_get_siginfo_type_p (gdbarch))
6719 {
6720 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6721
6722 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6723 }
6724
6725 return allocate_value (builtin_type (gdbarch)->builtin_void);
6726 }
6727
6728 \f
6729 /* infcall_suspend_state contains state about the program itself like its
6730 registers and any signal it received when it last stopped.
6731 This state must be restored regardless of how the inferior function call
6732 ends (either successfully, or after it hits a breakpoint or signal)
6733 if the program is to properly continue where it left off. */
6734
6735 struct infcall_suspend_state
6736 {
6737 struct thread_suspend_state thread_suspend;
6738 #if 0 /* Currently unused and empty structures are not valid C. */
6739 struct inferior_suspend_state inferior_suspend;
6740 #endif
6741
6742 /* Other fields: */
6743 CORE_ADDR stop_pc;
6744 struct regcache *registers;
6745
6746 /* Format of SIGINFO_DATA or NULL if it is not present. */
6747 struct gdbarch *siginfo_gdbarch;
6748
6749 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6750 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6751 content would be invalid. */
6752 gdb_byte *siginfo_data;
6753 };
6754
6755 struct infcall_suspend_state *
6756 save_infcall_suspend_state (void)
6757 {
6758 struct infcall_suspend_state *inf_state;
6759 struct thread_info *tp = inferior_thread ();
6760 #if 0
6761 struct inferior *inf = current_inferior ();
6762 #endif
6763 struct regcache *regcache = get_current_regcache ();
6764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6765 gdb_byte *siginfo_data = NULL;
6766
6767 if (gdbarch_get_siginfo_type_p (gdbarch))
6768 {
6769 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6770 size_t len = TYPE_LENGTH (type);
6771 struct cleanup *back_to;
6772
6773 siginfo_data = xmalloc (len);
6774 back_to = make_cleanup (xfree, siginfo_data);
6775
6776 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6777 siginfo_data, 0, len) == len)
6778 discard_cleanups (back_to);
6779 else
6780 {
6781 /* Errors ignored. */
6782 do_cleanups (back_to);
6783 siginfo_data = NULL;
6784 }
6785 }
6786
6787 inf_state = XZALLOC (struct infcall_suspend_state);
6788
6789 if (siginfo_data)
6790 {
6791 inf_state->siginfo_gdbarch = gdbarch;
6792 inf_state->siginfo_data = siginfo_data;
6793 }
6794
6795 inf_state->thread_suspend = tp->suspend;
6796 #if 0 /* Currently unused and empty structures are not valid C. */
6797 inf_state->inferior_suspend = inf->suspend;
6798 #endif
6799
6800 /* run_inferior_call will not use the signal due to its `proceed' call with
6801 GDB_SIGNAL_0 anyway. */
6802 tp->suspend.stop_signal = GDB_SIGNAL_0;
6803
6804 inf_state->stop_pc = stop_pc;
6805
6806 inf_state->registers = regcache_dup (regcache);
6807
6808 return inf_state;
6809 }
6810
6811 /* Restore inferior session state to INF_STATE. */
6812
6813 void
6814 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6815 {
6816 struct thread_info *tp = inferior_thread ();
6817 #if 0
6818 struct inferior *inf = current_inferior ();
6819 #endif
6820 struct regcache *regcache = get_current_regcache ();
6821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6822
6823 tp->suspend = inf_state->thread_suspend;
6824 #if 0 /* Currently unused and empty structures are not valid C. */
6825 inf->suspend = inf_state->inferior_suspend;
6826 #endif
6827
6828 stop_pc = inf_state->stop_pc;
6829
6830 if (inf_state->siginfo_gdbarch == gdbarch)
6831 {
6832 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6833
6834 /* Errors ignored. */
6835 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6836 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6837 }
6838
6839 /* The inferior can be gone if the user types "print exit(0)"
6840 (and perhaps other times). */
6841 if (target_has_execution)
6842 /* NB: The register write goes through to the target. */
6843 regcache_cpy (regcache, inf_state->registers);
6844
6845 discard_infcall_suspend_state (inf_state);
6846 }
6847
6848 static void
6849 do_restore_infcall_suspend_state_cleanup (void *state)
6850 {
6851 restore_infcall_suspend_state (state);
6852 }
6853
6854 struct cleanup *
6855 make_cleanup_restore_infcall_suspend_state
6856 (struct infcall_suspend_state *inf_state)
6857 {
6858 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6859 }
6860
6861 void
6862 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6863 {
6864 regcache_xfree (inf_state->registers);
6865 xfree (inf_state->siginfo_data);
6866 xfree (inf_state);
6867 }
6868
6869 struct regcache *
6870 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6871 {
6872 return inf_state->registers;
6873 }
6874
6875 /* infcall_control_state contains state regarding gdb's control of the
6876 inferior itself like stepping control. It also contains session state like
6877 the user's currently selected frame. */
6878
6879 struct infcall_control_state
6880 {
6881 struct thread_control_state thread_control;
6882 struct inferior_control_state inferior_control;
6883
6884 /* Other fields: */
6885 enum stop_stack_kind stop_stack_dummy;
6886 int stopped_by_random_signal;
6887 int stop_after_trap;
6888
6889 /* ID if the selected frame when the inferior function call was made. */
6890 struct frame_id selected_frame_id;
6891 };
6892
6893 /* Save all of the information associated with the inferior<==>gdb
6894 connection. */
6895
6896 struct infcall_control_state *
6897 save_infcall_control_state (void)
6898 {
6899 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6900 struct thread_info *tp = inferior_thread ();
6901 struct inferior *inf = current_inferior ();
6902
6903 inf_status->thread_control = tp->control;
6904 inf_status->inferior_control = inf->control;
6905
6906 tp->control.step_resume_breakpoint = NULL;
6907 tp->control.exception_resume_breakpoint = NULL;
6908
6909 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6910 chain. If caller's caller is walking the chain, they'll be happier if we
6911 hand them back the original chain when restore_infcall_control_state is
6912 called. */
6913 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6914
6915 /* Other fields: */
6916 inf_status->stop_stack_dummy = stop_stack_dummy;
6917 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6918 inf_status->stop_after_trap = stop_after_trap;
6919
6920 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6921
6922 return inf_status;
6923 }
6924
6925 static int
6926 restore_selected_frame (void *args)
6927 {
6928 struct frame_id *fid = (struct frame_id *) args;
6929 struct frame_info *frame;
6930
6931 frame = frame_find_by_id (*fid);
6932
6933 /* If inf_status->selected_frame_id is NULL, there was no previously
6934 selected frame. */
6935 if (frame == NULL)
6936 {
6937 warning (_("Unable to restore previously selected frame."));
6938 return 0;
6939 }
6940
6941 select_frame (frame);
6942
6943 return (1);
6944 }
6945
6946 /* Restore inferior session state to INF_STATUS. */
6947
6948 void
6949 restore_infcall_control_state (struct infcall_control_state *inf_status)
6950 {
6951 struct thread_info *tp = inferior_thread ();
6952 struct inferior *inf = current_inferior ();
6953
6954 if (tp->control.step_resume_breakpoint)
6955 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6956
6957 if (tp->control.exception_resume_breakpoint)
6958 tp->control.exception_resume_breakpoint->disposition
6959 = disp_del_at_next_stop;
6960
6961 /* Handle the bpstat_copy of the chain. */
6962 bpstat_clear (&tp->control.stop_bpstat);
6963
6964 tp->control = inf_status->thread_control;
6965 inf->control = inf_status->inferior_control;
6966
6967 /* Other fields: */
6968 stop_stack_dummy = inf_status->stop_stack_dummy;
6969 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6970 stop_after_trap = inf_status->stop_after_trap;
6971
6972 if (target_has_stack)
6973 {
6974 /* The point of catch_errors is that if the stack is clobbered,
6975 walking the stack might encounter a garbage pointer and
6976 error() trying to dereference it. */
6977 if (catch_errors
6978 (restore_selected_frame, &inf_status->selected_frame_id,
6979 "Unable to restore previously selected frame:\n",
6980 RETURN_MASK_ERROR) == 0)
6981 /* Error in restoring the selected frame. Select the innermost
6982 frame. */
6983 select_frame (get_current_frame ());
6984 }
6985
6986 xfree (inf_status);
6987 }
6988
6989 static void
6990 do_restore_infcall_control_state_cleanup (void *sts)
6991 {
6992 restore_infcall_control_state (sts);
6993 }
6994
6995 struct cleanup *
6996 make_cleanup_restore_infcall_control_state
6997 (struct infcall_control_state *inf_status)
6998 {
6999 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7000 }
7001
7002 void
7003 discard_infcall_control_state (struct infcall_control_state *inf_status)
7004 {
7005 if (inf_status->thread_control.step_resume_breakpoint)
7006 inf_status->thread_control.step_resume_breakpoint->disposition
7007 = disp_del_at_next_stop;
7008
7009 if (inf_status->thread_control.exception_resume_breakpoint)
7010 inf_status->thread_control.exception_resume_breakpoint->disposition
7011 = disp_del_at_next_stop;
7012
7013 /* See save_infcall_control_state for info on stop_bpstat. */
7014 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7015
7016 xfree (inf_status);
7017 }
7018 \f
7019 int
7020 ptid_match (ptid_t ptid, ptid_t filter)
7021 {
7022 if (ptid_equal (filter, minus_one_ptid))
7023 return 1;
7024 if (ptid_is_pid (filter)
7025 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7026 return 1;
7027 else if (ptid_equal (ptid, filter))
7028 return 1;
7029
7030 return 0;
7031 }
7032
7033 /* restore_inferior_ptid() will be used by the cleanup machinery
7034 to restore the inferior_ptid value saved in a call to
7035 save_inferior_ptid(). */
7036
7037 static void
7038 restore_inferior_ptid (void *arg)
7039 {
7040 ptid_t *saved_ptid_ptr = arg;
7041
7042 inferior_ptid = *saved_ptid_ptr;
7043 xfree (arg);
7044 }
7045
7046 /* Save the value of inferior_ptid so that it may be restored by a
7047 later call to do_cleanups(). Returns the struct cleanup pointer
7048 needed for later doing the cleanup. */
7049
7050 struct cleanup *
7051 save_inferior_ptid (void)
7052 {
7053 ptid_t *saved_ptid_ptr;
7054
7055 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7056 *saved_ptid_ptr = inferior_ptid;
7057 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7058 }
7059 \f
7060
7061 /* User interface for reverse debugging:
7062 Set exec-direction / show exec-direction commands
7063 (returns error unless target implements to_set_exec_direction method). */
7064
7065 int execution_direction = EXEC_FORWARD;
7066 static const char exec_forward[] = "forward";
7067 static const char exec_reverse[] = "reverse";
7068 static const char *exec_direction = exec_forward;
7069 static const char *const exec_direction_names[] = {
7070 exec_forward,
7071 exec_reverse,
7072 NULL
7073 };
7074
7075 static void
7076 set_exec_direction_func (char *args, int from_tty,
7077 struct cmd_list_element *cmd)
7078 {
7079 if (target_can_execute_reverse)
7080 {
7081 if (!strcmp (exec_direction, exec_forward))
7082 execution_direction = EXEC_FORWARD;
7083 else if (!strcmp (exec_direction, exec_reverse))
7084 execution_direction = EXEC_REVERSE;
7085 }
7086 else
7087 {
7088 exec_direction = exec_forward;
7089 error (_("Target does not support this operation."));
7090 }
7091 }
7092
7093 static void
7094 show_exec_direction_func (struct ui_file *out, int from_tty,
7095 struct cmd_list_element *cmd, const char *value)
7096 {
7097 switch (execution_direction) {
7098 case EXEC_FORWARD:
7099 fprintf_filtered (out, _("Forward.\n"));
7100 break;
7101 case EXEC_REVERSE:
7102 fprintf_filtered (out, _("Reverse.\n"));
7103 break;
7104 default:
7105 internal_error (__FILE__, __LINE__,
7106 _("bogus execution_direction value: %d"),
7107 (int) execution_direction);
7108 }
7109 }
7110
7111 static void
7112 show_schedule_multiple (struct ui_file *file, int from_tty,
7113 struct cmd_list_element *c, const char *value)
7114 {
7115 fprintf_filtered (file, _("Resuming the execution of threads "
7116 "of all processes is %s.\n"), value);
7117 }
7118
7119 /* Implementation of `siginfo' variable. */
7120
7121 static const struct internalvar_funcs siginfo_funcs =
7122 {
7123 siginfo_make_value,
7124 NULL,
7125 NULL
7126 };
7127
7128 void
7129 _initialize_infrun (void)
7130 {
7131 int i;
7132 int numsigs;
7133 struct cmd_list_element *c;
7134
7135 add_info ("signals", signals_info, _("\
7136 What debugger does when program gets various signals.\n\
7137 Specify a signal as argument to print info on that signal only."));
7138 add_info_alias ("handle", "signals", 0);
7139
7140 c = add_com ("handle", class_run, handle_command, _("\
7141 Specify how to handle signals.\n\
7142 Usage: handle SIGNAL [ACTIONS]\n\
7143 Args are signals and actions to apply to those signals.\n\
7144 If no actions are specified, the current settings for the specified signals\n\
7145 will be displayed instead.\n\
7146 \n\
7147 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7148 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7149 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7150 The special arg \"all\" is recognized to mean all signals except those\n\
7151 used by the debugger, typically SIGTRAP and SIGINT.\n\
7152 \n\
7153 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7154 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7155 Stop means reenter debugger if this signal happens (implies print).\n\
7156 Print means print a message if this signal happens.\n\
7157 Pass means let program see this signal; otherwise program doesn't know.\n\
7158 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7159 Pass and Stop may be combined.\n\
7160 \n\
7161 Multiple signals may be specified. Signal numbers and signal names\n\
7162 may be interspersed with actions, with the actions being performed for\n\
7163 all signals cumulatively specified."));
7164 set_cmd_completer (c, handle_completer);
7165
7166 if (xdb_commands)
7167 {
7168 add_com ("lz", class_info, signals_info, _("\
7169 What debugger does when program gets various signals.\n\
7170 Specify a signal as argument to print info on that signal only."));
7171 add_com ("z", class_run, xdb_handle_command, _("\
7172 Specify how to handle a signal.\n\
7173 Args are signals and actions to apply to those signals.\n\
7174 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7175 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7176 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7177 The special arg \"all\" is recognized to mean all signals except those\n\
7178 used by the debugger, typically SIGTRAP and SIGINT.\n\
7179 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7180 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7181 nopass), \"Q\" (noprint)\n\
7182 Stop means reenter debugger if this signal happens (implies print).\n\
7183 Print means print a message if this signal happens.\n\
7184 Pass means let program see this signal; otherwise program doesn't know.\n\
7185 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7186 Pass and Stop may be combined."));
7187 }
7188
7189 if (!dbx_commands)
7190 stop_command = add_cmd ("stop", class_obscure,
7191 not_just_help_class_command, _("\
7192 There is no `stop' command, but you can set a hook on `stop'.\n\
7193 This allows you to set a list of commands to be run each time execution\n\
7194 of the program stops."), &cmdlist);
7195
7196 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7197 Set inferior debugging."), _("\
7198 Show inferior debugging."), _("\
7199 When non-zero, inferior specific debugging is enabled."),
7200 NULL,
7201 show_debug_infrun,
7202 &setdebuglist, &showdebuglist);
7203
7204 add_setshow_boolean_cmd ("displaced", class_maintenance,
7205 &debug_displaced, _("\
7206 Set displaced stepping debugging."), _("\
7207 Show displaced stepping debugging."), _("\
7208 When non-zero, displaced stepping specific debugging is enabled."),
7209 NULL,
7210 show_debug_displaced,
7211 &setdebuglist, &showdebuglist);
7212
7213 add_setshow_boolean_cmd ("non-stop", no_class,
7214 &non_stop_1, _("\
7215 Set whether gdb controls the inferior in non-stop mode."), _("\
7216 Show whether gdb controls the inferior in non-stop mode."), _("\
7217 When debugging a multi-threaded program and this setting is\n\
7218 off (the default, also called all-stop mode), when one thread stops\n\
7219 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7220 all other threads in the program while you interact with the thread of\n\
7221 interest. When you continue or step a thread, you can allow the other\n\
7222 threads to run, or have them remain stopped, but while you inspect any\n\
7223 thread's state, all threads stop.\n\
7224 \n\
7225 In non-stop mode, when one thread stops, other threads can continue\n\
7226 to run freely. You'll be able to step each thread independently,\n\
7227 leave it stopped or free to run as needed."),
7228 set_non_stop,
7229 show_non_stop,
7230 &setlist,
7231 &showlist);
7232
7233 numsigs = (int) GDB_SIGNAL_LAST;
7234 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7235 signal_print = (unsigned char *)
7236 xmalloc (sizeof (signal_print[0]) * numsigs);
7237 signal_program = (unsigned char *)
7238 xmalloc (sizeof (signal_program[0]) * numsigs);
7239 signal_catch = (unsigned char *)
7240 xmalloc (sizeof (signal_catch[0]) * numsigs);
7241 signal_pass = (unsigned char *)
7242 xmalloc (sizeof (signal_program[0]) * numsigs);
7243 for (i = 0; i < numsigs; i++)
7244 {
7245 signal_stop[i] = 1;
7246 signal_print[i] = 1;
7247 signal_program[i] = 1;
7248 signal_catch[i] = 0;
7249 }
7250
7251 /* Signals caused by debugger's own actions
7252 should not be given to the program afterwards. */
7253 signal_program[GDB_SIGNAL_TRAP] = 0;
7254 signal_program[GDB_SIGNAL_INT] = 0;
7255
7256 /* Signals that are not errors should not normally enter the debugger. */
7257 signal_stop[GDB_SIGNAL_ALRM] = 0;
7258 signal_print[GDB_SIGNAL_ALRM] = 0;
7259 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7260 signal_print[GDB_SIGNAL_VTALRM] = 0;
7261 signal_stop[GDB_SIGNAL_PROF] = 0;
7262 signal_print[GDB_SIGNAL_PROF] = 0;
7263 signal_stop[GDB_SIGNAL_CHLD] = 0;
7264 signal_print[GDB_SIGNAL_CHLD] = 0;
7265 signal_stop[GDB_SIGNAL_IO] = 0;
7266 signal_print[GDB_SIGNAL_IO] = 0;
7267 signal_stop[GDB_SIGNAL_POLL] = 0;
7268 signal_print[GDB_SIGNAL_POLL] = 0;
7269 signal_stop[GDB_SIGNAL_URG] = 0;
7270 signal_print[GDB_SIGNAL_URG] = 0;
7271 signal_stop[GDB_SIGNAL_WINCH] = 0;
7272 signal_print[GDB_SIGNAL_WINCH] = 0;
7273 signal_stop[GDB_SIGNAL_PRIO] = 0;
7274 signal_print[GDB_SIGNAL_PRIO] = 0;
7275
7276 /* These signals are used internally by user-level thread
7277 implementations. (See signal(5) on Solaris.) Like the above
7278 signals, a healthy program receives and handles them as part of
7279 its normal operation. */
7280 signal_stop[GDB_SIGNAL_LWP] = 0;
7281 signal_print[GDB_SIGNAL_LWP] = 0;
7282 signal_stop[GDB_SIGNAL_WAITING] = 0;
7283 signal_print[GDB_SIGNAL_WAITING] = 0;
7284 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7285 signal_print[GDB_SIGNAL_CANCEL] = 0;
7286
7287 /* Update cached state. */
7288 signal_cache_update (-1);
7289
7290 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7291 &stop_on_solib_events, _("\
7292 Set stopping for shared library events."), _("\
7293 Show stopping for shared library events."), _("\
7294 If nonzero, gdb will give control to the user when the dynamic linker\n\
7295 notifies gdb of shared library events. The most common event of interest\n\
7296 to the user would be loading/unloading of a new library."),
7297 set_stop_on_solib_events,
7298 show_stop_on_solib_events,
7299 &setlist, &showlist);
7300
7301 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7302 follow_fork_mode_kind_names,
7303 &follow_fork_mode_string, _("\
7304 Set debugger response to a program call of fork or vfork."), _("\
7305 Show debugger response to a program call of fork or vfork."), _("\
7306 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7307 parent - the original process is debugged after a fork\n\
7308 child - the new process is debugged after a fork\n\
7309 The unfollowed process will continue to run.\n\
7310 By default, the debugger will follow the parent process."),
7311 NULL,
7312 show_follow_fork_mode_string,
7313 &setlist, &showlist);
7314
7315 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7316 follow_exec_mode_names,
7317 &follow_exec_mode_string, _("\
7318 Set debugger response to a program call of exec."), _("\
7319 Show debugger response to a program call of exec."), _("\
7320 An exec call replaces the program image of a process.\n\
7321 \n\
7322 follow-exec-mode can be:\n\
7323 \n\
7324 new - the debugger creates a new inferior and rebinds the process\n\
7325 to this new inferior. The program the process was running before\n\
7326 the exec call can be restarted afterwards by restarting the original\n\
7327 inferior.\n\
7328 \n\
7329 same - the debugger keeps the process bound to the same inferior.\n\
7330 The new executable image replaces the previous executable loaded in\n\
7331 the inferior. Restarting the inferior after the exec call restarts\n\
7332 the executable the process was running after the exec call.\n\
7333 \n\
7334 By default, the debugger will use the same inferior."),
7335 NULL,
7336 show_follow_exec_mode_string,
7337 &setlist, &showlist);
7338
7339 add_setshow_enum_cmd ("scheduler-locking", class_run,
7340 scheduler_enums, &scheduler_mode, _("\
7341 Set mode for locking scheduler during execution."), _("\
7342 Show mode for locking scheduler during execution."), _("\
7343 off == no locking (threads may preempt at any time)\n\
7344 on == full locking (no thread except the current thread may run)\n\
7345 step == scheduler locked during every single-step operation.\n\
7346 In this mode, no other thread may run during a step command.\n\
7347 Other threads may run while stepping over a function call ('next')."),
7348 set_schedlock_func, /* traps on target vector */
7349 show_scheduler_mode,
7350 &setlist, &showlist);
7351
7352 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7353 Set mode for resuming threads of all processes."), _("\
7354 Show mode for resuming threads of all processes."), _("\
7355 When on, execution commands (such as 'continue' or 'next') resume all\n\
7356 threads of all processes. When off (which is the default), execution\n\
7357 commands only resume the threads of the current process. The set of\n\
7358 threads that are resumed is further refined by the scheduler-locking\n\
7359 mode (see help set scheduler-locking)."),
7360 NULL,
7361 show_schedule_multiple,
7362 &setlist, &showlist);
7363
7364 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7365 Set mode of the step operation."), _("\
7366 Show mode of the step operation."), _("\
7367 When set, doing a step over a function without debug line information\n\
7368 will stop at the first instruction of that function. Otherwise, the\n\
7369 function is skipped and the step command stops at a different source line."),
7370 NULL,
7371 show_step_stop_if_no_debug,
7372 &setlist, &showlist);
7373
7374 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7375 &can_use_displaced_stepping, _("\
7376 Set debugger's willingness to use displaced stepping."), _("\
7377 Show debugger's willingness to use displaced stepping."), _("\
7378 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7379 supported by the target architecture. If off, gdb will not use displaced\n\
7380 stepping to step over breakpoints, even if such is supported by the target\n\
7381 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7382 if the target architecture supports it and non-stop mode is active, but will not\n\
7383 use it in all-stop mode (see help set non-stop)."),
7384 NULL,
7385 show_can_use_displaced_stepping,
7386 &setlist, &showlist);
7387
7388 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7389 &exec_direction, _("Set direction of execution.\n\
7390 Options are 'forward' or 'reverse'."),
7391 _("Show direction of execution (forward/reverse)."),
7392 _("Tells gdb whether to execute forward or backward."),
7393 set_exec_direction_func, show_exec_direction_func,
7394 &setlist, &showlist);
7395
7396 /* Set/show detach-on-fork: user-settable mode. */
7397
7398 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7399 Set whether gdb will detach the child of a fork."), _("\
7400 Show whether gdb will detach the child of a fork."), _("\
7401 Tells gdb whether to detach the child of a fork."),
7402 NULL, NULL, &setlist, &showlist);
7403
7404 /* Set/show disable address space randomization mode. */
7405
7406 add_setshow_boolean_cmd ("disable-randomization", class_support,
7407 &disable_randomization, _("\
7408 Set disabling of debuggee's virtual address space randomization."), _("\
7409 Show disabling of debuggee's virtual address space randomization."), _("\
7410 When this mode is on (which is the default), randomization of the virtual\n\
7411 address space is disabled. Standalone programs run with the randomization\n\
7412 enabled by default on some platforms."),
7413 &set_disable_randomization,
7414 &show_disable_randomization,
7415 &setlist, &showlist);
7416
7417 /* ptid initializations */
7418 inferior_ptid = null_ptid;
7419 target_last_wait_ptid = minus_one_ptid;
7420
7421 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7422 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7423 observer_attach_thread_exit (infrun_thread_thread_exit);
7424 observer_attach_inferior_exit (infrun_inferior_exit);
7425
7426 /* Explicitly create without lookup, since that tries to create a
7427 value with a void typed value, and when we get here, gdbarch
7428 isn't initialized yet. At this point, we're quite sure there
7429 isn't another convenience variable of the same name. */
7430 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7431
7432 add_setshow_boolean_cmd ("observer", no_class,
7433 &observer_mode_1, _("\
7434 Set whether gdb controls the inferior in observer mode."), _("\
7435 Show whether gdb controls the inferior in observer mode."), _("\
7436 In observer mode, GDB can get data from the inferior, but not\n\
7437 affect its execution. Registers and memory may not be changed,\n\
7438 breakpoints may not be set, and the program cannot be interrupted\n\
7439 or signalled."),
7440 set_observer_mode,
7441 show_observer_mode,
7442 &setlist,
7443 &showlist);
7444 }
This page took 0.320748 seconds and 4 git commands to generate.