2004-11-12 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 static int debug_infrun = 0;
110
111 /* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
149
150 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152 #endif
153
154 /* This function returns TRUE if pc is the address of an instruction
155 that lies within the dynamic linker (such as the event hook, or the
156 dld itself).
157
158 This function must be used only when a dynamic linker event has
159 been caught, and the inferior is being stepped out of the hook, or
160 undefined results are guaranteed. */
161
162 #ifndef SOLIB_IN_DYNAMIC_LINKER
163 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
164 #endif
165
166 /* On some systems, the PC may be left pointing at an instruction that won't
167 actually be executed. This is usually indicated by a bit in the PSW. If
168 we find ourselves in such a state, then we step the target beyond the
169 nullified instruction before returning control to the user so as to avoid
170 confusion. */
171
172 #ifndef INSTRUCTION_NULLIFIED
173 #define INSTRUCTION_NULLIFIED 0
174 #endif
175
176 /* We can't step off a permanent breakpoint in the ordinary way, because we
177 can't remove it. Instead, we have to advance the PC to the next
178 instruction. This macro should expand to a pointer to a function that
179 does that, or zero if we have no such function. If we don't have a
180 definition for it, we have to report an error. */
181 #ifndef SKIP_PERMANENT_BREAKPOINT
182 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
183 static void
184 default_skip_permanent_breakpoint (void)
185 {
186 error ("\
187 The program is stopped at a permanent breakpoint, but GDB does not know\n\
188 how to step past a permanent breakpoint on this architecture. Try using\n\
189 a command like `return' or `jump' to continue execution.");
190 }
191 #endif
192
193
194 /* Convert the #defines into values. This is temporary until wfi control
195 flow is completely sorted out. */
196
197 #ifndef HAVE_STEPPABLE_WATCHPOINT
198 #define HAVE_STEPPABLE_WATCHPOINT 0
199 #else
200 #undef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 1
202 #endif
203
204 #ifndef CANNOT_STEP_HW_WATCHPOINTS
205 #define CANNOT_STEP_HW_WATCHPOINTS 0
206 #else
207 #undef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 1
209 #endif
210
211 /* Tables of how to react to signals; the user sets them. */
212
213 static unsigned char *signal_stop;
214 static unsigned char *signal_print;
215 static unsigned char *signal_program;
216
217 #define SET_SIGS(nsigs,sigs,flags) \
218 do { \
219 int signum = (nsigs); \
220 while (signum-- > 0) \
221 if ((sigs)[signum]) \
222 (flags)[signum] = 1; \
223 } while (0)
224
225 #define UNSET_SIGS(nsigs,sigs,flags) \
226 do { \
227 int signum = (nsigs); \
228 while (signum-- > 0) \
229 if ((sigs)[signum]) \
230 (flags)[signum] = 0; \
231 } while (0)
232
233 /* Value to pass to target_resume() to cause all threads to resume */
234
235 #define RESUME_ALL (pid_to_ptid (-1))
236
237 /* Command list pointer for the "stop" placeholder. */
238
239 static struct cmd_list_element *stop_command;
240
241 /* Nonzero if breakpoints are now inserted in the inferior. */
242
243 static int breakpoints_inserted;
244
245 /* Function inferior was in as of last step command. */
246
247 static struct symbol *step_start_function;
248
249 /* Nonzero if we are expecting a trace trap and should proceed from it. */
250
251 static int trap_expected;
252
253 #ifdef SOLIB_ADD
254 /* Nonzero if we want to give control to the user when we're notified
255 of shared library events by the dynamic linker. */
256 static int stop_on_solib_events;
257 #endif
258
259 /* Nonzero means expecting a trace trap
260 and should stop the inferior and return silently when it happens. */
261
262 int stop_after_trap;
263
264 /* Nonzero means expecting a trap and caller will handle it themselves.
265 It is used after attach, due to attaching to a process;
266 when running in the shell before the child program has been exec'd;
267 and when running some kinds of remote stuff (FIXME?). */
268
269 enum stop_kind stop_soon;
270
271 /* Nonzero if proceed is being used for a "finish" command or a similar
272 situation when stop_registers should be saved. */
273
274 int proceed_to_finish;
275
276 /* Save register contents here when about to pop a stack dummy frame,
277 if-and-only-if proceed_to_finish is set.
278 Thus this contains the return value from the called function (assuming
279 values are returned in a register). */
280
281 struct regcache *stop_registers;
282
283 /* Nonzero if program stopped due to error trying to insert breakpoints. */
284
285 static int breakpoints_failed;
286
287 /* Nonzero after stop if current stack frame should be printed. */
288
289 static int stop_print_frame;
290
291 static struct breakpoint *step_resume_breakpoint = NULL;
292
293 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
294 interactions with an inferior that is running a kernel function
295 (aka, a system call or "syscall"). wait_for_inferior therefore
296 may have a need to know when the inferior is in a syscall. This
297 is a count of the number of inferior threads which are known to
298 currently be running in a syscall. */
299 static int number_of_threads_in_syscalls;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 \f
335
336 static int
337 follow_fork (void)
338 {
339 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
340
341 return target_follow_fork (follow_child);
342 }
343
344 void
345 follow_inferior_reset_breakpoints (void)
346 {
347 /* Was there a step_resume breakpoint? (There was if the user
348 did a "next" at the fork() call.) If so, explicitly reset its
349 thread number.
350
351 step_resumes are a form of bp that are made to be per-thread.
352 Since we created the step_resume bp when the parent process
353 was being debugged, and now are switching to the child process,
354 from the breakpoint package's viewpoint, that's a switch of
355 "threads". We must update the bp's notion of which thread
356 it is for, or it'll be ignored when it triggers. */
357
358 if (step_resume_breakpoint)
359 breakpoint_re_set_thread (step_resume_breakpoint);
360
361 /* Reinsert all breakpoints in the child. The user may have set
362 breakpoints after catching the fork, in which case those
363 were never set in the child, but only in the parent. This makes
364 sure the inserted breakpoints match the breakpoint list. */
365
366 breakpoint_re_set ();
367 insert_breakpoints ();
368 }
369
370 /* EXECD_PATHNAME is assumed to be non-NULL. */
371
372 static void
373 follow_exec (int pid, char *execd_pathname)
374 {
375 int saved_pid = pid;
376 struct target_ops *tgt;
377
378 if (!may_follow_exec)
379 return;
380
381 /* This is an exec event that we actually wish to pay attention to.
382 Refresh our symbol table to the newly exec'd program, remove any
383 momentary bp's, etc.
384
385 If there are breakpoints, they aren't really inserted now,
386 since the exec() transformed our inferior into a fresh set
387 of instructions.
388
389 We want to preserve symbolic breakpoints on the list, since
390 we have hopes that they can be reset after the new a.out's
391 symbol table is read.
392
393 However, any "raw" breakpoints must be removed from the list
394 (e.g., the solib bp's), since their address is probably invalid
395 now.
396
397 And, we DON'T want to call delete_breakpoints() here, since
398 that may write the bp's "shadow contents" (the instruction
399 value that was overwritten witha TRAP instruction). Since
400 we now have a new a.out, those shadow contents aren't valid. */
401 update_breakpoints_after_exec ();
402
403 /* If there was one, it's gone now. We cannot truly step-to-next
404 statement through an exec(). */
405 step_resume_breakpoint = NULL;
406 step_range_start = 0;
407 step_range_end = 0;
408
409 /* What is this a.out's name? */
410 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
411
412 /* We've followed the inferior through an exec. Therefore, the
413 inferior has essentially been killed & reborn. */
414
415 /* First collect the run target in effect. */
416 tgt = find_run_target ();
417 /* If we can't find one, things are in a very strange state... */
418 if (tgt == NULL)
419 error ("Could find run target to save before following exec");
420
421 gdb_flush (gdb_stdout);
422 target_mourn_inferior ();
423 inferior_ptid = pid_to_ptid (saved_pid);
424 /* Because mourn_inferior resets inferior_ptid. */
425 push_target (tgt);
426
427 /* That a.out is now the one to use. */
428 exec_file_attach (execd_pathname, 0);
429
430 /* And also is where symbols can be found. */
431 symbol_file_add_main (execd_pathname, 0);
432
433 /* Reset the shared library package. This ensures that we get
434 a shlib event when the child reaches "_start", at which point
435 the dld will have had a chance to initialize the child. */
436 #if defined(SOLIB_RESTART)
437 SOLIB_RESTART ();
438 #endif
439 #ifdef SOLIB_CREATE_INFERIOR_HOOK
440 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
441 #endif
442
443 /* Reinsert all breakpoints. (Those which were symbolic have
444 been reset to the proper address in the new a.out, thanks
445 to symbol_file_command...) */
446 insert_breakpoints ();
447
448 /* The next resume of this inferior should bring it to the shlib
449 startup breakpoints. (If the user had also set bp's on
450 "main" from the old (parent) process, then they'll auto-
451 matically get reset there in the new process.) */
452 }
453
454 /* Non-zero if we just simulating a single-step. This is needed
455 because we cannot remove the breakpoints in the inferior process
456 until after the `wait' in `wait_for_inferior'. */
457 static int singlestep_breakpoints_inserted_p = 0;
458
459 /* The thread we inserted single-step breakpoints for. */
460 static ptid_t singlestep_ptid;
461
462 /* If another thread hit the singlestep breakpoint, we save the original
463 thread here so that we can resume single-stepping it later. */
464 static ptid_t saved_singlestep_ptid;
465 static int stepping_past_singlestep_breakpoint;
466 \f
467
468 /* Things to clean up if we QUIT out of resume (). */
469 static void
470 resume_cleanups (void *ignore)
471 {
472 normal_stop ();
473 }
474
475 static const char schedlock_off[] = "off";
476 static const char schedlock_on[] = "on";
477 static const char schedlock_step[] = "step";
478 static const char *scheduler_mode = schedlock_off;
479 static const char *scheduler_enums[] = {
480 schedlock_off,
481 schedlock_on,
482 schedlock_step,
483 NULL
484 };
485
486 static void
487 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
488 {
489 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
490 function clones the set command passed as a parameter. The clone
491 operation will include (BUG?) any ``set'' command callback, if
492 present. Commands like ``info set'' call all the ``show''
493 command callbacks. Unfortunately, for ``show'' commands cloned
494 from ``set'', this includes callbacks belonging to ``set''
495 commands. Making this worse, this only occures if
496 deprecated_add_show_from_set() is called after add_cmd_sfunc()
497 (BUG?). */
498 if (cmd_type (c) == set_cmd)
499 if (!target_can_lock_scheduler)
500 {
501 scheduler_mode = schedlock_off;
502 error ("Target '%s' cannot support this command.", target_shortname);
503 }
504 }
505
506
507 /* Resume the inferior, but allow a QUIT. This is useful if the user
508 wants to interrupt some lengthy single-stepping operation
509 (for child processes, the SIGINT goes to the inferior, and so
510 we get a SIGINT random_signal, but for remote debugging and perhaps
511 other targets, that's not true).
512
513 STEP nonzero if we should step (zero to continue instead).
514 SIG is the signal to give the inferior (zero for none). */
515 void
516 resume (int step, enum target_signal sig)
517 {
518 int should_resume = 1;
519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
520 QUIT;
521
522 if (debug_infrun)
523 printf_unfiltered ("infrun: resume (step=%d, signal=%d)\n", step, sig);
524
525 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
526
527
528 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
529 over an instruction that causes a page fault without triggering
530 a hardware watchpoint. The kernel properly notices that it shouldn't
531 stop, because the hardware watchpoint is not triggered, but it forgets
532 the step request and continues the program normally.
533 Work around the problem by removing hardware watchpoints if a step is
534 requested, GDB will check for a hardware watchpoint trigger after the
535 step anyway. */
536 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
537 remove_hw_watchpoints ();
538
539
540 /* Normally, by the time we reach `resume', the breakpoints are either
541 removed or inserted, as appropriate. The exception is if we're sitting
542 at a permanent breakpoint; we need to step over it, but permanent
543 breakpoints can't be removed. So we have to test for it here. */
544 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
545 SKIP_PERMANENT_BREAKPOINT ();
546
547 if (SOFTWARE_SINGLE_STEP_P () && step)
548 {
549 /* Do it the hard way, w/temp breakpoints */
550 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
551 /* ...and don't ask hardware to do it. */
552 step = 0;
553 /* and do not pull these breakpoints until after a `wait' in
554 `wait_for_inferior' */
555 singlestep_breakpoints_inserted_p = 1;
556 singlestep_ptid = inferior_ptid;
557 }
558
559 /* If there were any forks/vforks/execs that were caught and are
560 now to be followed, then do so. */
561 switch (pending_follow.kind)
562 {
563 case TARGET_WAITKIND_FORKED:
564 case TARGET_WAITKIND_VFORKED:
565 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
566 if (follow_fork ())
567 should_resume = 0;
568 break;
569
570 case TARGET_WAITKIND_EXECD:
571 /* follow_exec is called as soon as the exec event is seen. */
572 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
573 break;
574
575 default:
576 break;
577 }
578
579 /* Install inferior's terminal modes. */
580 target_terminal_inferior ();
581
582 if (should_resume)
583 {
584 ptid_t resume_ptid;
585
586 resume_ptid = RESUME_ALL; /* Default */
587
588 if ((step || singlestep_breakpoints_inserted_p)
589 && (stepping_past_singlestep_breakpoint
590 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
591 {
592 /* Stepping past a breakpoint without inserting breakpoints.
593 Make sure only the current thread gets to step, so that
594 other threads don't sneak past breakpoints while they are
595 not inserted. */
596
597 resume_ptid = inferior_ptid;
598 }
599
600 if ((scheduler_mode == schedlock_on)
601 || (scheduler_mode == schedlock_step
602 && (step || singlestep_breakpoints_inserted_p)))
603 {
604 /* User-settable 'scheduler' mode requires solo thread resume. */
605 resume_ptid = inferior_ptid;
606 }
607
608 if (CANNOT_STEP_BREAKPOINT)
609 {
610 /* Most targets can step a breakpoint instruction, thus
611 executing it normally. But if this one cannot, just
612 continue and we will hit it anyway. */
613 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
614 step = 0;
615 }
616 target_resume (resume_ptid, step, sig);
617 }
618
619 discard_cleanups (old_cleanups);
620 }
621 \f
622
623 /* Clear out all variables saying what to do when inferior is continued.
624 First do this, then set the ones you want, then call `proceed'. */
625
626 void
627 clear_proceed_status (void)
628 {
629 trap_expected = 0;
630 step_range_start = 0;
631 step_range_end = 0;
632 step_frame_id = null_frame_id;
633 step_over_calls = STEP_OVER_UNDEBUGGABLE;
634 stop_after_trap = 0;
635 stop_soon = NO_STOP_QUIETLY;
636 proceed_to_finish = 0;
637 breakpoint_proceeded = 1; /* We're about to proceed... */
638
639 /* Discard any remaining commands or status from previous stop. */
640 bpstat_clear (&stop_bpstat);
641 }
642
643 /* This should be suitable for any targets that support threads. */
644
645 static int
646 prepare_to_proceed (void)
647 {
648 ptid_t wait_ptid;
649 struct target_waitstatus wait_status;
650
651 /* Get the last target status returned by target_wait(). */
652 get_last_target_status (&wait_ptid, &wait_status);
653
654 /* Make sure we were stopped either at a breakpoint, or because
655 of a Ctrl-C. */
656 if (wait_status.kind != TARGET_WAITKIND_STOPPED
657 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
658 && wait_status.value.sig != TARGET_SIGNAL_INT))
659 {
660 return 0;
661 }
662
663 if (!ptid_equal (wait_ptid, minus_one_ptid)
664 && !ptid_equal (inferior_ptid, wait_ptid))
665 {
666 /* Switched over from WAIT_PID. */
667 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
668
669 if (wait_pc != read_pc ())
670 {
671 /* Switch back to WAIT_PID thread. */
672 inferior_ptid = wait_ptid;
673
674 /* FIXME: This stuff came from switch_to_thread() in
675 thread.c (which should probably be a public function). */
676 flush_cached_frames ();
677 registers_changed ();
678 stop_pc = wait_pc;
679 select_frame (get_current_frame ());
680 }
681
682 /* We return 1 to indicate that there is a breakpoint here,
683 so we need to step over it before continuing to avoid
684 hitting it straight away. */
685 if (breakpoint_here_p (wait_pc))
686 return 1;
687 }
688
689 return 0;
690
691 }
692
693 /* Record the pc of the program the last time it stopped. This is
694 just used internally by wait_for_inferior, but need to be preserved
695 over calls to it and cleared when the inferior is started. */
696 static CORE_ADDR prev_pc;
697
698 /* Basic routine for continuing the program in various fashions.
699
700 ADDR is the address to resume at, or -1 for resume where stopped.
701 SIGGNAL is the signal to give it, or 0 for none,
702 or -1 for act according to how it stopped.
703 STEP is nonzero if should trap after one instruction.
704 -1 means return after that and print nothing.
705 You should probably set various step_... variables
706 before calling here, if you are stepping.
707
708 You should call clear_proceed_status before calling proceed. */
709
710 void
711 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
712 {
713 int oneproc = 0;
714
715 if (step > 0)
716 step_start_function = find_pc_function (read_pc ());
717 if (step < 0)
718 stop_after_trap = 1;
719
720 if (addr == (CORE_ADDR) -1)
721 {
722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 /* There is a breakpoint at the address we will resume at,
724 step one instruction before inserting breakpoints so that
725 we do not stop right away (and report a second hit at this
726 breakpoint). */
727 oneproc = 1;
728 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
729 && gdbarch_single_step_through_delay (current_gdbarch,
730 get_current_frame ()))
731 /* We stepped onto an instruction that needs to be stepped
732 again before re-inserting the breakpoint, do so. */
733 oneproc = 1;
734 }
735 else
736 {
737 write_pc (addr);
738 }
739
740 if (debug_infrun)
741 printf_unfiltered ("infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
742 paddr_nz (addr), siggnal, step);
743
744 /* In a multi-threaded task we may select another thread
745 and then continue or step.
746
747 But if the old thread was stopped at a breakpoint, it
748 will immediately cause another breakpoint stop without
749 any execution (i.e. it will report a breakpoint hit
750 incorrectly). So we must step over it first.
751
752 prepare_to_proceed checks the current thread against the thread
753 that reported the most recent event. If a step-over is required
754 it returns TRUE and sets the current thread to the old thread. */
755 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
756 oneproc = 1;
757
758 if (oneproc)
759 /* We will get a trace trap after one instruction.
760 Continue it automatically and insert breakpoints then. */
761 trap_expected = 1;
762 else
763 {
764 insert_breakpoints ();
765 /* If we get here there was no call to error() in
766 insert breakpoints -- so they were inserted. */
767 breakpoints_inserted = 1;
768 }
769
770 if (siggnal != TARGET_SIGNAL_DEFAULT)
771 stop_signal = siggnal;
772 /* If this signal should not be seen by program,
773 give it zero. Used for debugging signals. */
774 else if (!signal_program[stop_signal])
775 stop_signal = TARGET_SIGNAL_0;
776
777 annotate_starting ();
778
779 /* Make sure that output from GDB appears before output from the
780 inferior. */
781 gdb_flush (gdb_stdout);
782
783 /* Refresh prev_pc value just prior to resuming. This used to be
784 done in stop_stepping, however, setting prev_pc there did not handle
785 scenarios such as inferior function calls or returning from
786 a function via the return command. In those cases, the prev_pc
787 value was not set properly for subsequent commands. The prev_pc value
788 is used to initialize the starting line number in the ecs. With an
789 invalid value, the gdb next command ends up stopping at the position
790 represented by the next line table entry past our start position.
791 On platforms that generate one line table entry per line, this
792 is not a problem. However, on the ia64, the compiler generates
793 extraneous line table entries that do not increase the line number.
794 When we issue the gdb next command on the ia64 after an inferior call
795 or a return command, we often end up a few instructions forward, still
796 within the original line we started.
797
798 An attempt was made to have init_execution_control_state () refresh
799 the prev_pc value before calculating the line number. This approach
800 did not work because on platforms that use ptrace, the pc register
801 cannot be read unless the inferior is stopped. At that point, we
802 are not guaranteed the inferior is stopped and so the read_pc ()
803 call can fail. Setting the prev_pc value here ensures the value is
804 updated correctly when the inferior is stopped. */
805 prev_pc = read_pc ();
806
807 /* Resume inferior. */
808 resume (oneproc || step || bpstat_should_step (), stop_signal);
809
810 /* Wait for it to stop (if not standalone)
811 and in any case decode why it stopped, and act accordingly. */
812 /* Do this only if we are not using the event loop, or if the target
813 does not support asynchronous execution. */
814 if (!target_can_async_p ())
815 {
816 wait_for_inferior ();
817 normal_stop ();
818 }
819 }
820 \f
821
822 /* Start remote-debugging of a machine over a serial link. */
823
824 void
825 start_remote (void)
826 {
827 init_thread_list ();
828 init_wait_for_inferior ();
829 stop_soon = STOP_QUIETLY;
830 trap_expected = 0;
831
832 /* Always go on waiting for the target, regardless of the mode. */
833 /* FIXME: cagney/1999-09-23: At present it isn't possible to
834 indicate to wait_for_inferior that a target should timeout if
835 nothing is returned (instead of just blocking). Because of this,
836 targets expecting an immediate response need to, internally, set
837 things up so that the target_wait() is forced to eventually
838 timeout. */
839 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
840 differentiate to its caller what the state of the target is after
841 the initial open has been performed. Here we're assuming that
842 the target has stopped. It should be possible to eventually have
843 target_open() return to the caller an indication that the target
844 is currently running and GDB state should be set to the same as
845 for an async run. */
846 wait_for_inferior ();
847 normal_stop ();
848 }
849
850 /* Initialize static vars when a new inferior begins. */
851
852 void
853 init_wait_for_inferior (void)
854 {
855 /* These are meaningless until the first time through wait_for_inferior. */
856 prev_pc = 0;
857
858 breakpoints_inserted = 0;
859 breakpoint_init_inferior (inf_starting);
860
861 /* Don't confuse first call to proceed(). */
862 stop_signal = TARGET_SIGNAL_0;
863
864 /* The first resume is not following a fork/vfork/exec. */
865 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
866
867 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
868 number_of_threads_in_syscalls = 0;
869
870 clear_proceed_status ();
871
872 stepping_past_singlestep_breakpoint = 0;
873 }
874 \f
875 /* This enum encodes possible reasons for doing a target_wait, so that
876 wfi can call target_wait in one place. (Ultimately the call will be
877 moved out of the infinite loop entirely.) */
878
879 enum infwait_states
880 {
881 infwait_normal_state,
882 infwait_thread_hop_state,
883 infwait_nullified_state,
884 infwait_nonstep_watch_state
885 };
886
887 /* Why did the inferior stop? Used to print the appropriate messages
888 to the interface from within handle_inferior_event(). */
889 enum inferior_stop_reason
890 {
891 /* We don't know why. */
892 STOP_UNKNOWN,
893 /* Step, next, nexti, stepi finished. */
894 END_STEPPING_RANGE,
895 /* Found breakpoint. */
896 BREAKPOINT_HIT,
897 /* Inferior terminated by signal. */
898 SIGNAL_EXITED,
899 /* Inferior exited. */
900 EXITED,
901 /* Inferior received signal, and user asked to be notified. */
902 SIGNAL_RECEIVED
903 };
904
905 /* This structure contains what used to be local variables in
906 wait_for_inferior. Probably many of them can return to being
907 locals in handle_inferior_event. */
908
909 struct execution_control_state
910 {
911 struct target_waitstatus ws;
912 struct target_waitstatus *wp;
913 int another_trap;
914 int random_signal;
915 CORE_ADDR stop_func_start;
916 CORE_ADDR stop_func_end;
917 char *stop_func_name;
918 struct symtab_and_line sal;
919 int current_line;
920 struct symtab *current_symtab;
921 int handling_longjmp; /* FIXME */
922 ptid_t ptid;
923 ptid_t saved_inferior_ptid;
924 int step_after_step_resume_breakpoint;
925 int stepping_through_solib_after_catch;
926 bpstat stepping_through_solib_catchpoints;
927 int enable_hw_watchpoints_after_wait;
928 int new_thread_event;
929 struct target_waitstatus tmpstatus;
930 enum infwait_states infwait_state;
931 ptid_t waiton_ptid;
932 int wait_some_more;
933 };
934
935 void init_execution_control_state (struct execution_control_state *ecs);
936
937 void handle_inferior_event (struct execution_control_state *ecs);
938
939 static void step_into_function (struct execution_control_state *ecs);
940 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
941 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
942 struct frame_id sr_id);
943 static void stop_stepping (struct execution_control_state *ecs);
944 static void prepare_to_wait (struct execution_control_state *ecs);
945 static void keep_going (struct execution_control_state *ecs);
946 static void print_stop_reason (enum inferior_stop_reason stop_reason,
947 int stop_info);
948
949 /* Wait for control to return from inferior to debugger.
950 If inferior gets a signal, we may decide to start it up again
951 instead of returning. That is why there is a loop in this function.
952 When this function actually returns it means the inferior
953 should be left stopped and GDB should read more commands. */
954
955 void
956 wait_for_inferior (void)
957 {
958 struct cleanup *old_cleanups;
959 struct execution_control_state ecss;
960 struct execution_control_state *ecs;
961
962 if (debug_infrun)
963 printf_unfiltered ("infrun: wait_for_inferior\n");
964
965 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
966 &step_resume_breakpoint);
967
968 /* wfi still stays in a loop, so it's OK just to take the address of
969 a local to get the ecs pointer. */
970 ecs = &ecss;
971
972 /* Fill in with reasonable starting values. */
973 init_execution_control_state (ecs);
974
975 /* We'll update this if & when we switch to a new thread. */
976 previous_inferior_ptid = inferior_ptid;
977
978 overlay_cache_invalid = 1;
979
980 /* We have to invalidate the registers BEFORE calling target_wait
981 because they can be loaded from the target while in target_wait.
982 This makes remote debugging a bit more efficient for those
983 targets that provide critical registers as part of their normal
984 status mechanism. */
985
986 registers_changed ();
987
988 while (1)
989 {
990 if (deprecated_target_wait_hook)
991 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
992 else
993 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
994
995 /* Now figure out what to do with the result of the result. */
996 handle_inferior_event (ecs);
997
998 if (!ecs->wait_some_more)
999 break;
1000 }
1001 do_cleanups (old_cleanups);
1002 }
1003
1004 /* Asynchronous version of wait_for_inferior. It is called by the
1005 event loop whenever a change of state is detected on the file
1006 descriptor corresponding to the target. It can be called more than
1007 once to complete a single execution command. In such cases we need
1008 to keep the state in a global variable ASYNC_ECSS. If it is the
1009 last time that this function is called for a single execution
1010 command, then report to the user that the inferior has stopped, and
1011 do the necessary cleanups. */
1012
1013 struct execution_control_state async_ecss;
1014 struct execution_control_state *async_ecs;
1015
1016 void
1017 fetch_inferior_event (void *client_data)
1018 {
1019 static struct cleanup *old_cleanups;
1020
1021 async_ecs = &async_ecss;
1022
1023 if (!async_ecs->wait_some_more)
1024 {
1025 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1026 &step_resume_breakpoint);
1027
1028 /* Fill in with reasonable starting values. */
1029 init_execution_control_state (async_ecs);
1030
1031 /* We'll update this if & when we switch to a new thread. */
1032 previous_inferior_ptid = inferior_ptid;
1033
1034 overlay_cache_invalid = 1;
1035
1036 /* We have to invalidate the registers BEFORE calling target_wait
1037 because they can be loaded from the target while in target_wait.
1038 This makes remote debugging a bit more efficient for those
1039 targets that provide critical registers as part of their normal
1040 status mechanism. */
1041
1042 registers_changed ();
1043 }
1044
1045 if (deprecated_target_wait_hook)
1046 async_ecs->ptid =
1047 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1048 else
1049 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1050
1051 /* Now figure out what to do with the result of the result. */
1052 handle_inferior_event (async_ecs);
1053
1054 if (!async_ecs->wait_some_more)
1055 {
1056 /* Do only the cleanups that have been added by this
1057 function. Let the continuations for the commands do the rest,
1058 if there are any. */
1059 do_exec_cleanups (old_cleanups);
1060 normal_stop ();
1061 if (step_multi && stop_step)
1062 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1063 else
1064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1065 }
1066 }
1067
1068 /* Prepare an execution control state for looping through a
1069 wait_for_inferior-type loop. */
1070
1071 void
1072 init_execution_control_state (struct execution_control_state *ecs)
1073 {
1074 /* ecs->another_trap? */
1075 ecs->random_signal = 0;
1076 ecs->step_after_step_resume_breakpoint = 0;
1077 ecs->handling_longjmp = 0; /* FIXME */
1078 ecs->stepping_through_solib_after_catch = 0;
1079 ecs->stepping_through_solib_catchpoints = NULL;
1080 ecs->enable_hw_watchpoints_after_wait = 0;
1081 ecs->sal = find_pc_line (prev_pc, 0);
1082 ecs->current_line = ecs->sal.line;
1083 ecs->current_symtab = ecs->sal.symtab;
1084 ecs->infwait_state = infwait_normal_state;
1085 ecs->waiton_ptid = pid_to_ptid (-1);
1086 ecs->wp = &(ecs->ws);
1087 }
1088
1089 /* Return the cached copy of the last pid/waitstatus returned by
1090 target_wait()/deprecated_target_wait_hook(). The data is actually
1091 cached by handle_inferior_event(), which gets called immediately
1092 after target_wait()/deprecated_target_wait_hook(). */
1093
1094 void
1095 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1096 {
1097 *ptidp = target_last_wait_ptid;
1098 *status = target_last_waitstatus;
1099 }
1100
1101 /* Switch thread contexts, maintaining "infrun state". */
1102
1103 static void
1104 context_switch (struct execution_control_state *ecs)
1105 {
1106 /* Caution: it may happen that the new thread (or the old one!)
1107 is not in the thread list. In this case we must not attempt
1108 to "switch context", or we run the risk that our context may
1109 be lost. This may happen as a result of the target module
1110 mishandling thread creation. */
1111
1112 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1113 { /* Perform infrun state context switch: */
1114 /* Save infrun state for the old thread. */
1115 save_infrun_state (inferior_ptid, prev_pc,
1116 trap_expected, step_resume_breakpoint,
1117 step_range_start,
1118 step_range_end, &step_frame_id,
1119 ecs->handling_longjmp, ecs->another_trap,
1120 ecs->stepping_through_solib_after_catch,
1121 ecs->stepping_through_solib_catchpoints,
1122 ecs->current_line, ecs->current_symtab);
1123
1124 /* Load infrun state for the new thread. */
1125 load_infrun_state (ecs->ptid, &prev_pc,
1126 &trap_expected, &step_resume_breakpoint,
1127 &step_range_start,
1128 &step_range_end, &step_frame_id,
1129 &ecs->handling_longjmp, &ecs->another_trap,
1130 &ecs->stepping_through_solib_after_catch,
1131 &ecs->stepping_through_solib_catchpoints,
1132 &ecs->current_line, &ecs->current_symtab);
1133 }
1134 inferior_ptid = ecs->ptid;
1135 }
1136
1137 static void
1138 adjust_pc_after_break (struct execution_control_state *ecs)
1139 {
1140 CORE_ADDR breakpoint_pc;
1141
1142 /* If this target does not decrement the PC after breakpoints, then
1143 we have nothing to do. */
1144 if (DECR_PC_AFTER_BREAK == 0)
1145 return;
1146
1147 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1148 we aren't, just return.
1149
1150 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1151 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1152 by software breakpoints should be handled through the normal breakpoint
1153 layer.
1154
1155 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1156 different signals (SIGILL or SIGEMT for instance), but it is less
1157 clear where the PC is pointing afterwards. It may not match
1158 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1159 these signals at breakpoints (the code has been in GDB since at least
1160 1992) so I can not guess how to handle them here.
1161
1162 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1163 would have the PC after hitting a watchpoint affected by
1164 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1165 in GDB history, and it seems unlikely to be correct, so
1166 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1167
1168 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1169 return;
1170
1171 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1172 return;
1173
1174 /* Find the location where (if we've hit a breakpoint) the
1175 breakpoint would be. */
1176 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1177
1178 if (SOFTWARE_SINGLE_STEP_P ())
1179 {
1180 /* When using software single-step, a SIGTRAP can only indicate
1181 an inserted breakpoint. This actually makes things
1182 easier. */
1183 if (singlestep_breakpoints_inserted_p)
1184 /* When software single stepping, the instruction at [prev_pc]
1185 is never a breakpoint, but the instruction following
1186 [prev_pc] (in program execution order) always is. Assume
1187 that following instruction was reached and hence a software
1188 breakpoint was hit. */
1189 write_pc_pid (breakpoint_pc, ecs->ptid);
1190 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1191 /* The inferior was free running (i.e., no single-step
1192 breakpoints inserted) and it hit a software breakpoint. */
1193 write_pc_pid (breakpoint_pc, ecs->ptid);
1194 }
1195 else
1196 {
1197 /* When using hardware single-step, a SIGTRAP is reported for
1198 both a completed single-step and a software breakpoint. Need
1199 to differentiate between the two as the latter needs
1200 adjusting but the former does not. */
1201 if (currently_stepping (ecs))
1202 {
1203 if (prev_pc == breakpoint_pc
1204 && software_breakpoint_inserted_here_p (breakpoint_pc))
1205 /* Hardware single-stepped a software breakpoint (as
1206 occures when the inferior is resumed with PC pointing
1207 at not-yet-hit software breakpoint). Since the
1208 breakpoint really is executed, the inferior needs to be
1209 backed up to the breakpoint address. */
1210 write_pc_pid (breakpoint_pc, ecs->ptid);
1211 }
1212 else
1213 {
1214 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1215 /* The inferior was free running (i.e., no hardware
1216 single-step and no possibility of a false SIGTRAP) and
1217 hit a software breakpoint. */
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
1220 }
1221 }
1222
1223 /* Given an execution control state that has been freshly filled in
1224 by an event from the inferior, figure out what it means and take
1225 appropriate action. */
1226
1227 int stepped_after_stopped_by_watchpoint;
1228
1229 void
1230 handle_inferior_event (struct execution_control_state *ecs)
1231 {
1232 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1233 thinking that the variable stepped_after_stopped_by_watchpoint
1234 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1235 defined in the file "config/pa/nm-hppah.h", accesses the variable
1236 indirectly. Mutter something rude about the HP merge. */
1237 int sw_single_step_trap_p = 0;
1238 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1239
1240 /* Cache the last pid/waitstatus. */
1241 target_last_wait_ptid = ecs->ptid;
1242 target_last_waitstatus = *ecs->wp;
1243
1244 adjust_pc_after_break (ecs);
1245
1246 switch (ecs->infwait_state)
1247 {
1248 case infwait_thread_hop_state:
1249 if (debug_infrun)
1250 printf_unfiltered ("infrun: infwait_thread_hop_state\n");
1251 /* Cancel the waiton_ptid. */
1252 ecs->waiton_ptid = pid_to_ptid (-1);
1253 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1254 is serviced in this loop, below. */
1255 if (ecs->enable_hw_watchpoints_after_wait)
1256 {
1257 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1258 ecs->enable_hw_watchpoints_after_wait = 0;
1259 }
1260 stepped_after_stopped_by_watchpoint = 0;
1261 break;
1262
1263 case infwait_normal_state:
1264 if (debug_infrun)
1265 printf_unfiltered ("infrun: infwait_normal_state\n");
1266 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1267 is serviced in this loop, below. */
1268 if (ecs->enable_hw_watchpoints_after_wait)
1269 {
1270 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1271 ecs->enable_hw_watchpoints_after_wait = 0;
1272 }
1273 stepped_after_stopped_by_watchpoint = 0;
1274 break;
1275
1276 case infwait_nullified_state:
1277 if (debug_infrun)
1278 printf_unfiltered ("infrun: infwait_nullified_state\n");
1279 stepped_after_stopped_by_watchpoint = 0;
1280 break;
1281
1282 case infwait_nonstep_watch_state:
1283 if (debug_infrun)
1284 printf_unfiltered ("infrun: infwait_nonstep_watch_state\n");
1285 insert_breakpoints ();
1286
1287 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1288 handle things like signals arriving and other things happening
1289 in combination correctly? */
1290 stepped_after_stopped_by_watchpoint = 1;
1291 break;
1292
1293 default:
1294 internal_error (__FILE__, __LINE__, "bad switch");
1295 }
1296 ecs->infwait_state = infwait_normal_state;
1297
1298 flush_cached_frames ();
1299
1300 /* If it's a new process, add it to the thread database */
1301
1302 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1303 && !ptid_equal (ecs->ptid, minus_one_ptid)
1304 && !in_thread_list (ecs->ptid));
1305
1306 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1307 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1308 {
1309 add_thread (ecs->ptid);
1310
1311 ui_out_text (uiout, "[New ");
1312 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1313 ui_out_text (uiout, "]\n");
1314 }
1315
1316 switch (ecs->ws.kind)
1317 {
1318 case TARGET_WAITKIND_LOADED:
1319 if (debug_infrun)
1320 printf_unfiltered ("infrun: TARGET_WAITKIND_LOADED\n");
1321 /* Ignore gracefully during startup of the inferior, as it
1322 might be the shell which has just loaded some objects,
1323 otherwise add the symbols for the newly loaded objects. */
1324 #ifdef SOLIB_ADD
1325 if (stop_soon == NO_STOP_QUIETLY)
1326 {
1327 /* Remove breakpoints, SOLIB_ADD might adjust
1328 breakpoint addresses via breakpoint_re_set. */
1329 if (breakpoints_inserted)
1330 remove_breakpoints ();
1331
1332 /* Check for any newly added shared libraries if we're
1333 supposed to be adding them automatically. Switch
1334 terminal for any messages produced by
1335 breakpoint_re_set. */
1336 target_terminal_ours_for_output ();
1337 /* NOTE: cagney/2003-11-25: Make certain that the target
1338 stack's section table is kept up-to-date. Architectures,
1339 (e.g., PPC64), use the section table to perform
1340 operations such as address => section name and hence
1341 require the table to contain all sections (including
1342 those found in shared libraries). */
1343 /* NOTE: cagney/2003-11-25: Pass current_target and not
1344 exec_ops to SOLIB_ADD. This is because current GDB is
1345 only tooled to propagate section_table changes out from
1346 the "current_target" (see target_resize_to_sections), and
1347 not up from the exec stratum. This, of course, isn't
1348 right. "infrun.c" should only interact with the
1349 exec/process stratum, instead relying on the target stack
1350 to propagate relevant changes (stop, section table
1351 changed, ...) up to other layers. */
1352 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1353 target_terminal_inferior ();
1354
1355 /* Reinsert breakpoints and continue. */
1356 if (breakpoints_inserted)
1357 insert_breakpoints ();
1358 }
1359 #endif
1360 resume (0, TARGET_SIGNAL_0);
1361 prepare_to_wait (ecs);
1362 return;
1363
1364 case TARGET_WAITKIND_SPURIOUS:
1365 if (debug_infrun)
1366 printf_unfiltered ("infrun: TARGET_WAITKIND_SPURIOUS\n");
1367 resume (0, TARGET_SIGNAL_0);
1368 prepare_to_wait (ecs);
1369 return;
1370
1371 case TARGET_WAITKIND_EXITED:
1372 if (debug_infrun)
1373 printf_unfiltered ("infrun: TARGET_WAITKIND_EXITED\n");
1374 target_terminal_ours (); /* Must do this before mourn anyway */
1375 print_stop_reason (EXITED, ecs->ws.value.integer);
1376
1377 /* Record the exit code in the convenience variable $_exitcode, so
1378 that the user can inspect this again later. */
1379 set_internalvar (lookup_internalvar ("_exitcode"),
1380 value_from_longest (builtin_type_int,
1381 (LONGEST) ecs->ws.value.integer));
1382 gdb_flush (gdb_stdout);
1383 target_mourn_inferior ();
1384 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1385 stop_print_frame = 0;
1386 stop_stepping (ecs);
1387 return;
1388
1389 case TARGET_WAITKIND_SIGNALLED:
1390 if (debug_infrun)
1391 printf_unfiltered ("infrun: TARGET_WAITKIND_SIGNALLED\n");
1392 stop_print_frame = 0;
1393 stop_signal = ecs->ws.value.sig;
1394 target_terminal_ours (); /* Must do this before mourn anyway */
1395
1396 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1397 reach here unless the inferior is dead. However, for years
1398 target_kill() was called here, which hints that fatal signals aren't
1399 really fatal on some systems. If that's true, then some changes
1400 may be needed. */
1401 target_mourn_inferior ();
1402
1403 print_stop_reason (SIGNAL_EXITED, stop_signal);
1404 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1405 stop_stepping (ecs);
1406 return;
1407
1408 /* The following are the only cases in which we keep going;
1409 the above cases end in a continue or goto. */
1410 case TARGET_WAITKIND_FORKED:
1411 case TARGET_WAITKIND_VFORKED:
1412 if (debug_infrun)
1413 printf_unfiltered ("infrun: TARGET_WAITKIND_FORKED\n");
1414 stop_signal = TARGET_SIGNAL_TRAP;
1415 pending_follow.kind = ecs->ws.kind;
1416
1417 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1418 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1419
1420 stop_pc = read_pc ();
1421
1422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1423
1424 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1425
1426 /* If no catchpoint triggered for this, then keep going. */
1427 if (ecs->random_signal)
1428 {
1429 stop_signal = TARGET_SIGNAL_0;
1430 keep_going (ecs);
1431 return;
1432 }
1433 goto process_event_stop_test;
1434
1435 case TARGET_WAITKIND_EXECD:
1436 if (debug_infrun)
1437 printf_unfiltered ("infrun: TARGET_WAITKIND_EXECED\n");
1438 stop_signal = TARGET_SIGNAL_TRAP;
1439
1440 /* NOTE drow/2002-12-05: This code should be pushed down into the
1441 target_wait function. Until then following vfork on HP/UX 10.20
1442 is probably broken by this. Of course, it's broken anyway. */
1443 /* Is this a target which reports multiple exec events per actual
1444 call to exec()? (HP-UX using ptrace does, for example.) If so,
1445 ignore all but the last one. Just resume the exec'r, and wait
1446 for the next exec event. */
1447 if (inferior_ignoring_leading_exec_events)
1448 {
1449 inferior_ignoring_leading_exec_events--;
1450 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1451 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1452 parent_pid);
1453 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1454 prepare_to_wait (ecs);
1455 return;
1456 }
1457 inferior_ignoring_leading_exec_events =
1458 target_reported_exec_events_per_exec_call () - 1;
1459
1460 pending_follow.execd_pathname =
1461 savestring (ecs->ws.value.execd_pathname,
1462 strlen (ecs->ws.value.execd_pathname));
1463
1464 /* This causes the eventpoints and symbol table to be reset. Must
1465 do this now, before trying to determine whether to stop. */
1466 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1467 xfree (pending_follow.execd_pathname);
1468
1469 stop_pc = read_pc_pid (ecs->ptid);
1470 ecs->saved_inferior_ptid = inferior_ptid;
1471 inferior_ptid = ecs->ptid;
1472
1473 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1474
1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1476 inferior_ptid = ecs->saved_inferior_ptid;
1477
1478 /* If no catchpoint triggered for this, then keep going. */
1479 if (ecs->random_signal)
1480 {
1481 stop_signal = TARGET_SIGNAL_0;
1482 keep_going (ecs);
1483 return;
1484 }
1485 goto process_event_stop_test;
1486
1487 /* These syscall events are returned on HP-UX, as part of its
1488 implementation of page-protection-based "hardware" watchpoints.
1489 HP-UX has unfortunate interactions between page-protections and
1490 some system calls. Our solution is to disable hardware watches
1491 when a system call is entered, and reenable them when the syscall
1492 completes. The downside of this is that we may miss the precise
1493 point at which a watched piece of memory is modified. "Oh well."
1494
1495 Note that we may have multiple threads running, which may each
1496 enter syscalls at roughly the same time. Since we don't have a
1497 good notion currently of whether a watched piece of memory is
1498 thread-private, we'd best not have any page-protections active
1499 when any thread is in a syscall. Thus, we only want to reenable
1500 hardware watches when no threads are in a syscall.
1501
1502 Also, be careful not to try to gather much state about a thread
1503 that's in a syscall. It's frequently a losing proposition. */
1504 case TARGET_WAITKIND_SYSCALL_ENTRY:
1505 if (debug_infrun)
1506 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1507 number_of_threads_in_syscalls++;
1508 if (number_of_threads_in_syscalls == 1)
1509 {
1510 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1511 }
1512 resume (0, TARGET_SIGNAL_0);
1513 prepare_to_wait (ecs);
1514 return;
1515
1516 /* Before examining the threads further, step this thread to
1517 get it entirely out of the syscall. (We get notice of the
1518 event when the thread is just on the verge of exiting a
1519 syscall. Stepping one instruction seems to get it back
1520 into user code.)
1521
1522 Note that although the logical place to reenable h/w watches
1523 is here, we cannot. We cannot reenable them before stepping
1524 the thread (this causes the next wait on the thread to hang).
1525
1526 Nor can we enable them after stepping until we've done a wait.
1527 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1528 here, which will be serviced immediately after the target
1529 is waited on. */
1530 case TARGET_WAITKIND_SYSCALL_RETURN:
1531 if (debug_infrun)
1532 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1533 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1534
1535 if (number_of_threads_in_syscalls > 0)
1536 {
1537 number_of_threads_in_syscalls--;
1538 ecs->enable_hw_watchpoints_after_wait =
1539 (number_of_threads_in_syscalls == 0);
1540 }
1541 prepare_to_wait (ecs);
1542 return;
1543
1544 case TARGET_WAITKIND_STOPPED:
1545 if (debug_infrun)
1546 printf_unfiltered ("infrun: TARGET_WAITKIND_STOPPED\n");
1547 stop_signal = ecs->ws.value.sig;
1548 break;
1549
1550 /* We had an event in the inferior, but we are not interested
1551 in handling it at this level. The lower layers have already
1552 done what needs to be done, if anything.
1553
1554 One of the possible circumstances for this is when the
1555 inferior produces output for the console. The inferior has
1556 not stopped, and we are ignoring the event. Another possible
1557 circumstance is any event which the lower level knows will be
1558 reported multiple times without an intervening resume. */
1559 case TARGET_WAITKIND_IGNORE:
1560 if (debug_infrun)
1561 printf_unfiltered ("infrun: TARGET_WAITKIND_IGNORE\n");
1562 prepare_to_wait (ecs);
1563 return;
1564 }
1565
1566 /* We may want to consider not doing a resume here in order to give
1567 the user a chance to play with the new thread. It might be good
1568 to make that a user-settable option. */
1569
1570 /* At this point, all threads are stopped (happens automatically in
1571 either the OS or the native code). Therefore we need to continue
1572 all threads in order to make progress. */
1573 if (ecs->new_thread_event)
1574 {
1575 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
1579
1580 stop_pc = read_pc_pid (ecs->ptid);
1581
1582 if (debug_infrun)
1583 printf_unfiltered ("infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1584
1585 if (stepping_past_singlestep_breakpoint)
1586 {
1587 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1588 && singlestep_breakpoints_inserted_p);
1589 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1590 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1591
1592 stepping_past_singlestep_breakpoint = 0;
1593
1594 /* We've either finished single-stepping past the single-step
1595 breakpoint, or stopped for some other reason. It would be nice if
1596 we could tell, but we can't reliably. */
1597 if (stop_signal == TARGET_SIGNAL_TRAP)
1598 {
1599 if (debug_infrun)
1600 printf_unfiltered ("infrun: stepping_past_singlestep_breakpoint\n");
1601 /* Pull the single step breakpoints out of the target. */
1602 SOFTWARE_SINGLE_STEP (0, 0);
1603 singlestep_breakpoints_inserted_p = 0;
1604
1605 ecs->random_signal = 0;
1606
1607 ecs->ptid = saved_singlestep_ptid;
1608 context_switch (ecs);
1609 if (deprecated_context_hook)
1610 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1611
1612 resume (1, TARGET_SIGNAL_0);
1613 prepare_to_wait (ecs);
1614 return;
1615 }
1616 }
1617
1618 stepping_past_singlestep_breakpoint = 0;
1619
1620 /* See if a thread hit a thread-specific breakpoint that was meant for
1621 another thread. If so, then step that thread past the breakpoint,
1622 and continue it. */
1623
1624 if (stop_signal == TARGET_SIGNAL_TRAP)
1625 {
1626 int thread_hop_needed = 0;
1627
1628 /* Check if a regular breakpoint has been hit before checking
1629 for a potential single step breakpoint. Otherwise, GDB will
1630 not see this breakpoint hit when stepping onto breakpoints. */
1631 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1632 {
1633 ecs->random_signal = 0;
1634 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1635 thread_hop_needed = 1;
1636 }
1637 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1638 {
1639 ecs->random_signal = 0;
1640 /* The call to in_thread_list is necessary because PTIDs sometimes
1641 change when we go from single-threaded to multi-threaded. If
1642 the singlestep_ptid is still in the list, assume that it is
1643 really different from ecs->ptid. */
1644 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1645 && in_thread_list (singlestep_ptid))
1646 {
1647 thread_hop_needed = 1;
1648 stepping_past_singlestep_breakpoint = 1;
1649 saved_singlestep_ptid = singlestep_ptid;
1650 }
1651 }
1652
1653 if (thread_hop_needed)
1654 {
1655 int remove_status;
1656
1657 if (debug_infrun)
1658 printf_unfiltered ("infrun: thread_hop_needed\n");
1659
1660 /* Saw a breakpoint, but it was hit by the wrong thread.
1661 Just continue. */
1662
1663 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1664 {
1665 /* Pull the single step breakpoints out of the target. */
1666 SOFTWARE_SINGLE_STEP (0, 0);
1667 singlestep_breakpoints_inserted_p = 0;
1668 }
1669
1670 remove_status = remove_breakpoints ();
1671 /* Did we fail to remove breakpoints? If so, try
1672 to set the PC past the bp. (There's at least
1673 one situation in which we can fail to remove
1674 the bp's: On HP-UX's that use ttrace, we can't
1675 change the address space of a vforking child
1676 process until the child exits (well, okay, not
1677 then either :-) or execs. */
1678 if (remove_status != 0)
1679 {
1680 /* FIXME! This is obviously non-portable! */
1681 write_pc_pid (stop_pc + 4, ecs->ptid);
1682 /* We need to restart all the threads now,
1683 * unles we're running in scheduler-locked mode.
1684 * Use currently_stepping to determine whether to
1685 * step or continue.
1686 */
1687 /* FIXME MVS: is there any reason not to call resume()? */
1688 if (scheduler_mode == schedlock_on)
1689 target_resume (ecs->ptid,
1690 currently_stepping (ecs), TARGET_SIGNAL_0);
1691 else
1692 target_resume (RESUME_ALL,
1693 currently_stepping (ecs), TARGET_SIGNAL_0);
1694 prepare_to_wait (ecs);
1695 return;
1696 }
1697 else
1698 { /* Single step */
1699 breakpoints_inserted = 0;
1700 if (!ptid_equal (inferior_ptid, ecs->ptid))
1701 context_switch (ecs);
1702 ecs->waiton_ptid = ecs->ptid;
1703 ecs->wp = &(ecs->ws);
1704 ecs->another_trap = 1;
1705
1706 ecs->infwait_state = infwait_thread_hop_state;
1707 keep_going (ecs);
1708 registers_changed ();
1709 return;
1710 }
1711 }
1712 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1713 {
1714 sw_single_step_trap_p = 1;
1715 ecs->random_signal = 0;
1716 }
1717 }
1718 else
1719 ecs->random_signal = 1;
1720
1721 /* See if something interesting happened to the non-current thread. If
1722 so, then switch to that thread. */
1723 if (!ptid_equal (ecs->ptid, inferior_ptid))
1724 {
1725 if (debug_infrun)
1726 printf_unfiltered ("infrun: context switch\n");
1727
1728 context_switch (ecs);
1729
1730 if (deprecated_context_hook)
1731 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1732
1733 flush_cached_frames ();
1734 }
1735
1736 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1737 {
1738 /* Pull the single step breakpoints out of the target. */
1739 SOFTWARE_SINGLE_STEP (0, 0);
1740 singlestep_breakpoints_inserted_p = 0;
1741 }
1742
1743 /* If PC is pointing at a nullified instruction, then step beyond
1744 it so that the user won't be confused when GDB appears to be ready
1745 to execute it. */
1746
1747 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1748 if (INSTRUCTION_NULLIFIED)
1749 {
1750 if (debug_infrun)
1751 printf_unfiltered ("infrun: INSTRUCTION_NULLIFIED\n");
1752 registers_changed ();
1753 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1754
1755 /* We may have received a signal that we want to pass to
1756 the inferior; therefore, we must not clobber the waitstatus
1757 in WS. */
1758
1759 ecs->infwait_state = infwait_nullified_state;
1760 ecs->waiton_ptid = ecs->ptid;
1761 ecs->wp = &(ecs->tmpstatus);
1762 prepare_to_wait (ecs);
1763 return;
1764 }
1765
1766 /* It may not be necessary to disable the watchpoint to stop over
1767 it. For example, the PA can (with some kernel cooperation)
1768 single step over a watchpoint without disabling the watchpoint. */
1769 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1770 {
1771 if (debug_infrun)
1772 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
1773 resume (1, 0);
1774 prepare_to_wait (ecs);
1775 return;
1776 }
1777
1778 /* It is far more common to need to disable a watchpoint to step
1779 the inferior over it. FIXME. What else might a debug
1780 register or page protection watchpoint scheme need here? */
1781 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1782 {
1783 /* At this point, we are stopped at an instruction which has
1784 attempted to write to a piece of memory under control of
1785 a watchpoint. The instruction hasn't actually executed
1786 yet. If we were to evaluate the watchpoint expression
1787 now, we would get the old value, and therefore no change
1788 would seem to have occurred.
1789
1790 In order to make watchpoints work `right', we really need
1791 to complete the memory write, and then evaluate the
1792 watchpoint expression. The following code does that by
1793 removing the watchpoint (actually, all watchpoints and
1794 breakpoints), single-stepping the target, re-inserting
1795 watchpoints, and then falling through to let normal
1796 single-step processing handle proceed. Since this
1797 includes evaluating watchpoints, things will come to a
1798 stop in the correct manner. */
1799
1800 if (debug_infrun)
1801 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
1802 remove_breakpoints ();
1803 registers_changed ();
1804 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1805
1806 ecs->waiton_ptid = ecs->ptid;
1807 ecs->wp = &(ecs->ws);
1808 ecs->infwait_state = infwait_nonstep_watch_state;
1809 prepare_to_wait (ecs);
1810 return;
1811 }
1812
1813 /* It may be possible to simply continue after a watchpoint. */
1814 if (HAVE_CONTINUABLE_WATCHPOINT)
1815 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1816
1817 ecs->stop_func_start = 0;
1818 ecs->stop_func_end = 0;
1819 ecs->stop_func_name = 0;
1820 /* Don't care about return value; stop_func_start and stop_func_name
1821 will both be 0 if it doesn't work. */
1822 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1823 &ecs->stop_func_start, &ecs->stop_func_end);
1824 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1825 ecs->another_trap = 0;
1826 bpstat_clear (&stop_bpstat);
1827 stop_step = 0;
1828 stop_stack_dummy = 0;
1829 stop_print_frame = 1;
1830 ecs->random_signal = 0;
1831 stopped_by_random_signal = 0;
1832 breakpoints_failed = 0;
1833
1834 if (stop_signal == TARGET_SIGNAL_TRAP
1835 && trap_expected
1836 && gdbarch_single_step_through_delay_p (current_gdbarch)
1837 && currently_stepping (ecs))
1838 {
1839 /* We're trying to step of a breakpoint. Turns out that we're
1840 also on an instruction that needs to be stepped multiple
1841 times before it's been fully executing. E.g., architectures
1842 with a delay slot. It needs to be stepped twice, once for
1843 the instruction and once for the delay slot. */
1844 int step_through_delay
1845 = gdbarch_single_step_through_delay (current_gdbarch,
1846 get_current_frame ());
1847 if (debug_infrun && step_through_delay)
1848 printf_unfiltered ("infrun: step through delay\n");
1849 if (step_range_end == 0 && step_through_delay)
1850 {
1851 /* The user issued a continue when stopped at a breakpoint.
1852 Set up for another trap and get out of here. */
1853 ecs->another_trap = 1;
1854 keep_going (ecs);
1855 return;
1856 }
1857 else if (step_through_delay)
1858 {
1859 /* The user issued a step when stopped at a breakpoint.
1860 Maybe we should stop, maybe we should not - the delay
1861 slot *might* correspond to a line of source. In any
1862 case, don't decide that here, just set ecs->another_trap,
1863 making sure we single-step again before breakpoints are
1864 re-inserted. */
1865 ecs->another_trap = 1;
1866 }
1867 }
1868
1869 /* Look at the cause of the stop, and decide what to do.
1870 The alternatives are:
1871 1) break; to really stop and return to the debugger,
1872 2) drop through to start up again
1873 (set ecs->another_trap to 1 to single step once)
1874 3) set ecs->random_signal to 1, and the decision between 1 and 2
1875 will be made according to the signal handling tables. */
1876
1877 /* First, distinguish signals caused by the debugger from signals
1878 that have to do with the program's own actions. Note that
1879 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1880 on the operating system version. Here we detect when a SIGILL or
1881 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1882 something similar for SIGSEGV, since a SIGSEGV will be generated
1883 when we're trying to execute a breakpoint instruction on a
1884 non-executable stack. This happens for call dummy breakpoints
1885 for architectures like SPARC that place call dummies on the
1886 stack. */
1887
1888 if (stop_signal == TARGET_SIGNAL_TRAP
1889 || (breakpoints_inserted
1890 && (stop_signal == TARGET_SIGNAL_ILL
1891 || stop_signal == TARGET_SIGNAL_SEGV
1892 || stop_signal == TARGET_SIGNAL_EMT))
1893 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1894 {
1895 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1896 {
1897 if (debug_infrun)
1898 printf_unfiltered ("infrun: stopped\n");
1899 stop_print_frame = 0;
1900 stop_stepping (ecs);
1901 return;
1902 }
1903
1904 /* This is originated from start_remote(), start_inferior() and
1905 shared libraries hook functions. */
1906 if (stop_soon == STOP_QUIETLY)
1907 {
1908 if (debug_infrun)
1909 printf_unfiltered ("infrun: quietly stopped\n");
1910 stop_stepping (ecs);
1911 return;
1912 }
1913
1914 /* This originates from attach_command(). We need to overwrite
1915 the stop_signal here, because some kernels don't ignore a
1916 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1917 See more comments in inferior.h. */
1918 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1919 {
1920 stop_stepping (ecs);
1921 if (stop_signal == TARGET_SIGNAL_STOP)
1922 stop_signal = TARGET_SIGNAL_0;
1923 return;
1924 }
1925
1926 /* Don't even think about breakpoints if just proceeded over a
1927 breakpoint. */
1928 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1929 {
1930 if (debug_infrun)
1931 printf_unfiltered ("infrun: trap expected\n");
1932 bpstat_clear (&stop_bpstat);
1933 }
1934 else
1935 {
1936 /* See if there is a breakpoint at the current PC. */
1937 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1938 stopped_by_watchpoint);
1939
1940 /* Following in case break condition called a
1941 function. */
1942 stop_print_frame = 1;
1943 }
1944
1945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1946 at one stage in the past included checks for an inferior
1947 function call's call dummy's return breakpoint. The original
1948 comment, that went with the test, read:
1949
1950 ``End of a stack dummy. Some systems (e.g. Sony news) give
1951 another signal besides SIGTRAP, so check here as well as
1952 above.''
1953
1954 If someone ever tries to get get call dummys on a
1955 non-executable stack to work (where the target would stop
1956 with something like a SIGSEGV), then those tests might need
1957 to be re-instated. Given, however, that the tests were only
1958 enabled when momentary breakpoints were not being used, I
1959 suspect that it won't be the case.
1960
1961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1962 be necessary for call dummies on a non-executable stack on
1963 SPARC. */
1964
1965 if (stop_signal == TARGET_SIGNAL_TRAP)
1966 ecs->random_signal
1967 = !(bpstat_explains_signal (stop_bpstat)
1968 || trap_expected
1969 || (step_range_end && step_resume_breakpoint == NULL));
1970 else
1971 {
1972 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1973 if (!ecs->random_signal)
1974 stop_signal = TARGET_SIGNAL_TRAP;
1975 }
1976 }
1977
1978 /* When we reach this point, we've pretty much decided
1979 that the reason for stopping must've been a random
1980 (unexpected) signal. */
1981
1982 else
1983 ecs->random_signal = 1;
1984
1985 process_event_stop_test:
1986 /* For the program's own signals, act according to
1987 the signal handling tables. */
1988
1989 if (ecs->random_signal)
1990 {
1991 /* Signal not for debugging purposes. */
1992 int printed = 0;
1993
1994 if (debug_infrun)
1995 printf_unfiltered ("infrun: random signal %d\n", stop_signal);
1996
1997 stopped_by_random_signal = 1;
1998
1999 if (signal_print[stop_signal])
2000 {
2001 printed = 1;
2002 target_terminal_ours_for_output ();
2003 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2004 }
2005 if (signal_stop[stop_signal])
2006 {
2007 stop_stepping (ecs);
2008 return;
2009 }
2010 /* If not going to stop, give terminal back
2011 if we took it away. */
2012 else if (printed)
2013 target_terminal_inferior ();
2014
2015 /* Clear the signal if it should not be passed. */
2016 if (signal_program[stop_signal] == 0)
2017 stop_signal = TARGET_SIGNAL_0;
2018
2019 if (prev_pc == read_pc ()
2020 && !breakpoints_inserted
2021 && breakpoint_here_p (read_pc ())
2022 && step_resume_breakpoint == NULL)
2023 {
2024 /* We were just starting a new sequence, attempting to
2025 single-step off of a breakpoint and expecting a SIGTRAP.
2026 Intead this signal arrives. This signal will take us out
2027 of the stepping range so GDB needs to remember to, when
2028 the signal handler returns, resume stepping off that
2029 breakpoint. */
2030 /* To simplify things, "continue" is forced to use the same
2031 code paths as single-step - set a breakpoint at the
2032 signal return address and then, once hit, step off that
2033 breakpoint. */
2034 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2035 ecs->step_after_step_resume_breakpoint = 1;
2036 }
2037 else if (step_range_end != 0
2038 && stop_signal != TARGET_SIGNAL_0
2039 && stop_pc >= step_range_start && stop_pc < step_range_end
2040 && frame_id_eq (get_frame_id (get_current_frame ()),
2041 step_frame_id))
2042 {
2043 /* The inferior is about to take a signal that will take it
2044 out of the single step range. Set a breakpoint at the
2045 current PC (which is presumably where the signal handler
2046 will eventually return) and then allow the inferior to
2047 run free.
2048
2049 Note that this is only needed for a signal delivered
2050 while in the single-step range. Nested signals aren't a
2051 problem as they eventually all return. */
2052 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2053 }
2054 keep_going (ecs);
2055 return;
2056 }
2057
2058 /* Handle cases caused by hitting a breakpoint. */
2059 {
2060 CORE_ADDR jmp_buf_pc;
2061 struct bpstat_what what;
2062
2063 what = bpstat_what (stop_bpstat);
2064
2065 if (what.call_dummy)
2066 {
2067 stop_stack_dummy = 1;
2068 }
2069
2070 switch (what.main_action)
2071 {
2072 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2073 /* If we hit the breakpoint at longjmp, disable it for the
2074 duration of this command. Then, install a temporary
2075 breakpoint at the target of the jmp_buf. */
2076 if (debug_infrun)
2077 printf_unfiltered ("infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2078 disable_longjmp_breakpoint ();
2079 remove_breakpoints ();
2080 breakpoints_inserted = 0;
2081 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2082 {
2083 keep_going (ecs);
2084 return;
2085 }
2086
2087 /* Need to blow away step-resume breakpoint, as it
2088 interferes with us */
2089 if (step_resume_breakpoint != NULL)
2090 {
2091 delete_step_resume_breakpoint (&step_resume_breakpoint);
2092 }
2093
2094 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2095 ecs->handling_longjmp = 1; /* FIXME */
2096 keep_going (ecs);
2097 return;
2098
2099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2100 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2101 if (debug_infrun)
2102 printf_unfiltered ("infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2103 remove_breakpoints ();
2104 breakpoints_inserted = 0;
2105 disable_longjmp_breakpoint ();
2106 ecs->handling_longjmp = 0; /* FIXME */
2107 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2108 break;
2109 /* else fallthrough */
2110
2111 case BPSTAT_WHAT_SINGLE:
2112 if (debug_infrun)
2113 printf_unfiltered ("infrun: BPSTATE_WHAT_SINGLE\n");
2114 if (breakpoints_inserted)
2115 {
2116 remove_breakpoints ();
2117 }
2118 breakpoints_inserted = 0;
2119 ecs->another_trap = 1;
2120 /* Still need to check other stuff, at least the case
2121 where we are stepping and step out of the right range. */
2122 break;
2123
2124 case BPSTAT_WHAT_STOP_NOISY:
2125 if (debug_infrun)
2126 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_NOISY\n");
2127 stop_print_frame = 1;
2128
2129 /* We are about to nuke the step_resume_breakpointt via the
2130 cleanup chain, so no need to worry about it here. */
2131
2132 stop_stepping (ecs);
2133 return;
2134
2135 case BPSTAT_WHAT_STOP_SILENT:
2136 if (debug_infrun)
2137 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_SILENT\n");
2138 stop_print_frame = 0;
2139
2140 /* We are about to nuke the step_resume_breakpoin via the
2141 cleanup chain, so no need to worry about it here. */
2142
2143 stop_stepping (ecs);
2144 return;
2145
2146 case BPSTAT_WHAT_STEP_RESUME:
2147 /* This proably demands a more elegant solution, but, yeah
2148 right...
2149
2150 This function's use of the simple variable
2151 step_resume_breakpoint doesn't seem to accomodate
2152 simultaneously active step-resume bp's, although the
2153 breakpoint list certainly can.
2154
2155 If we reach here and step_resume_breakpoint is already
2156 NULL, then apparently we have multiple active
2157 step-resume bp's. We'll just delete the breakpoint we
2158 stopped at, and carry on.
2159
2160 Correction: what the code currently does is delete a
2161 step-resume bp, but it makes no effort to ensure that
2162 the one deleted is the one currently stopped at. MVS */
2163
2164 if (debug_infrun)
2165 printf_unfiltered ("infrun: BPSTATE_WHAT_STEP_RESUME\n");
2166
2167 if (step_resume_breakpoint == NULL)
2168 {
2169 step_resume_breakpoint =
2170 bpstat_find_step_resume_breakpoint (stop_bpstat);
2171 }
2172 delete_step_resume_breakpoint (&step_resume_breakpoint);
2173 if (ecs->step_after_step_resume_breakpoint)
2174 {
2175 /* Back when the step-resume breakpoint was inserted, we
2176 were trying to single-step off a breakpoint. Go back
2177 to doing that. */
2178 ecs->step_after_step_resume_breakpoint = 0;
2179 remove_breakpoints ();
2180 breakpoints_inserted = 0;
2181 ecs->another_trap = 1;
2182 keep_going (ecs);
2183 return;
2184 }
2185 break;
2186
2187 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2188 if (debug_infrun)
2189 printf_unfiltered ("infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2190 /* If were waiting for a trap, hitting the step_resume_break
2191 doesn't count as getting it. */
2192 if (trap_expected)
2193 ecs->another_trap = 1;
2194 break;
2195
2196 case BPSTAT_WHAT_CHECK_SHLIBS:
2197 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2198 #ifdef SOLIB_ADD
2199 {
2200 if (debug_infrun)
2201 printf_unfiltered ("infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2202 /* Remove breakpoints, we eventually want to step over the
2203 shlib event breakpoint, and SOLIB_ADD might adjust
2204 breakpoint addresses via breakpoint_re_set. */
2205 if (breakpoints_inserted)
2206 remove_breakpoints ();
2207 breakpoints_inserted = 0;
2208
2209 /* Check for any newly added shared libraries if we're
2210 supposed to be adding them automatically. Switch
2211 terminal for any messages produced by
2212 breakpoint_re_set. */
2213 target_terminal_ours_for_output ();
2214 /* NOTE: cagney/2003-11-25: Make certain that the target
2215 stack's section table is kept up-to-date. Architectures,
2216 (e.g., PPC64), use the section table to perform
2217 operations such as address => section name and hence
2218 require the table to contain all sections (including
2219 those found in shared libraries). */
2220 /* NOTE: cagney/2003-11-25: Pass current_target and not
2221 exec_ops to SOLIB_ADD. This is because current GDB is
2222 only tooled to propagate section_table changes out from
2223 the "current_target" (see target_resize_to_sections), and
2224 not up from the exec stratum. This, of course, isn't
2225 right. "infrun.c" should only interact with the
2226 exec/process stratum, instead relying on the target stack
2227 to propagate relevant changes (stop, section table
2228 changed, ...) up to other layers. */
2229 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2230 target_terminal_inferior ();
2231
2232 /* Try to reenable shared library breakpoints, additional
2233 code segments in shared libraries might be mapped in now. */
2234 re_enable_breakpoints_in_shlibs ();
2235
2236 /* If requested, stop when the dynamic linker notifies
2237 gdb of events. This allows the user to get control
2238 and place breakpoints in initializer routines for
2239 dynamically loaded objects (among other things). */
2240 if (stop_on_solib_events || stop_stack_dummy)
2241 {
2242 stop_stepping (ecs);
2243 return;
2244 }
2245
2246 /* If we stopped due to an explicit catchpoint, then the
2247 (see above) call to SOLIB_ADD pulled in any symbols
2248 from a newly-loaded library, if appropriate.
2249
2250 We do want the inferior to stop, but not where it is
2251 now, which is in the dynamic linker callback. Rather,
2252 we would like it stop in the user's program, just after
2253 the call that caused this catchpoint to trigger. That
2254 gives the user a more useful vantage from which to
2255 examine their program's state. */
2256 else if (what.main_action
2257 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2258 {
2259 /* ??rehrauer: If I could figure out how to get the
2260 right return PC from here, we could just set a temp
2261 breakpoint and resume. I'm not sure we can without
2262 cracking open the dld's shared libraries and sniffing
2263 their unwind tables and text/data ranges, and that's
2264 not a terribly portable notion.
2265
2266 Until that time, we must step the inferior out of the
2267 dld callback, and also out of the dld itself (and any
2268 code or stubs in libdld.sl, such as "shl_load" and
2269 friends) until we reach non-dld code. At that point,
2270 we can stop stepping. */
2271 bpstat_get_triggered_catchpoints (stop_bpstat,
2272 &ecs->
2273 stepping_through_solib_catchpoints);
2274 ecs->stepping_through_solib_after_catch = 1;
2275
2276 /* Be sure to lift all breakpoints, so the inferior does
2277 actually step past this point... */
2278 ecs->another_trap = 1;
2279 break;
2280 }
2281 else
2282 {
2283 /* We want to step over this breakpoint, then keep going. */
2284 ecs->another_trap = 1;
2285 break;
2286 }
2287 }
2288 #endif
2289 break;
2290
2291 case BPSTAT_WHAT_LAST:
2292 /* Not a real code, but listed here to shut up gcc -Wall. */
2293
2294 case BPSTAT_WHAT_KEEP_CHECKING:
2295 break;
2296 }
2297 }
2298
2299 /* We come here if we hit a breakpoint but should not
2300 stop for it. Possibly we also were stepping
2301 and should stop for that. So fall through and
2302 test for stepping. But, if not stepping,
2303 do not stop. */
2304
2305 /* Are we stepping to get the inferior out of the dynamic
2306 linker's hook (and possibly the dld itself) after catching
2307 a shlib event? */
2308 if (ecs->stepping_through_solib_after_catch)
2309 {
2310 #if defined(SOLIB_ADD)
2311 /* Have we reached our destination? If not, keep going. */
2312 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2313 {
2314 if (debug_infrun)
2315 printf_unfiltered ("infrun: stepping in dynamic linker\n");
2316 ecs->another_trap = 1;
2317 keep_going (ecs);
2318 return;
2319 }
2320 #endif
2321 if (debug_infrun)
2322 printf_unfiltered ("infrun: step past dynamic linker\n");
2323 /* Else, stop and report the catchpoint(s) whose triggering
2324 caused us to begin stepping. */
2325 ecs->stepping_through_solib_after_catch = 0;
2326 bpstat_clear (&stop_bpstat);
2327 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2328 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2329 stop_print_frame = 1;
2330 stop_stepping (ecs);
2331 return;
2332 }
2333
2334 if (step_resume_breakpoint)
2335 {
2336 if (debug_infrun)
2337 printf_unfiltered ("infrun: step-resume breakpoint\n");
2338
2339 /* Having a step-resume breakpoint overrides anything
2340 else having to do with stepping commands until
2341 that breakpoint is reached. */
2342 keep_going (ecs);
2343 return;
2344 }
2345
2346 if (step_range_end == 0)
2347 {
2348 if (debug_infrun)
2349 printf_unfiltered ("infrun: no stepping, continue\n");
2350 /* Likewise if we aren't even stepping. */
2351 keep_going (ecs);
2352 return;
2353 }
2354
2355 /* If stepping through a line, keep going if still within it.
2356
2357 Note that step_range_end is the address of the first instruction
2358 beyond the step range, and NOT the address of the last instruction
2359 within it! */
2360 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2361 {
2362 if (debug_infrun)
2363 printf_unfiltered ("infrun: stepping inside range [0x%s-0x%s]\n",
2364 paddr_nz (step_range_start),
2365 paddr_nz (step_range_end));
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 /* We stepped out of the stepping range. */
2371
2372 /* If we are stepping at the source level and entered the runtime
2373 loader dynamic symbol resolution code, we keep on single stepping
2374 until we exit the run time loader code and reach the callee's
2375 address. */
2376 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2377 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2378 {
2379 CORE_ADDR pc_after_resolver =
2380 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2381
2382 if (debug_infrun)
2383 printf_unfiltered ("infrun: stepped into dynsym resolve code\n");
2384
2385 if (pc_after_resolver)
2386 {
2387 /* Set up a step-resume breakpoint at the address
2388 indicated by SKIP_SOLIB_RESOLVER. */
2389 struct symtab_and_line sr_sal;
2390 init_sal (&sr_sal);
2391 sr_sal.pc = pc_after_resolver;
2392
2393 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2394 }
2395
2396 keep_going (ecs);
2397 return;
2398 }
2399
2400 if (step_range_end != 1
2401 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2402 || step_over_calls == STEP_OVER_ALL)
2403 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2404 {
2405 if (debug_infrun)
2406 printf_unfiltered ("infrun: stepped into signal trampoline\n");
2407 /* The inferior, while doing a "step" or "next", has ended up in
2408 a signal trampoline (either by a signal being delivered or by
2409 the signal handler returning). Just single-step until the
2410 inferior leaves the trampoline (either by calling the handler
2411 or returning). */
2412 keep_going (ecs);
2413 return;
2414 }
2415
2416 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2417 {
2418 /* It's a subroutine call. */
2419 CORE_ADDR real_stop_pc;
2420
2421 if (debug_infrun)
2422 printf_unfiltered ("infrun: stepped into subroutine\n");
2423
2424 if ((step_over_calls == STEP_OVER_NONE)
2425 || ((step_range_end == 1)
2426 && in_prologue (prev_pc, ecs->stop_func_start)))
2427 {
2428 /* I presume that step_over_calls is only 0 when we're
2429 supposed to be stepping at the assembly language level
2430 ("stepi"). Just stop. */
2431 /* Also, maybe we just did a "nexti" inside a prolog, so we
2432 thought it was a subroutine call but it was not. Stop as
2433 well. FENN */
2434 stop_step = 1;
2435 print_stop_reason (END_STEPPING_RANGE, 0);
2436 stop_stepping (ecs);
2437 return;
2438 }
2439
2440 if (step_over_calls == STEP_OVER_ALL)
2441 {
2442 /* We're doing a "next", set a breakpoint at callee's return
2443 address (the address at which the caller will
2444 resume). */
2445 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2446 keep_going (ecs);
2447 return;
2448 }
2449
2450 /* If we are in a function call trampoline (a stub between the
2451 calling routine and the real function), locate the real
2452 function. That's what tells us (a) whether we want to step
2453 into it at all, and (b) what prologue we want to run to the
2454 end of, if we do step into it. */
2455 real_stop_pc = skip_language_trampoline (stop_pc);
2456 if (real_stop_pc == 0)
2457 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2458 if (real_stop_pc != 0)
2459 ecs->stop_func_start = real_stop_pc;
2460
2461 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2462 {
2463 struct symtab_and_line sr_sal;
2464 init_sal (&sr_sal);
2465 sr_sal.pc = ecs->stop_func_start;
2466
2467 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2468 keep_going (ecs);
2469 return;
2470 }
2471
2472 /* If we have line number information for the function we are
2473 thinking of stepping into, step into it.
2474
2475 If there are several symtabs at that PC (e.g. with include
2476 files), just want to know whether *any* of them have line
2477 numbers. find_pc_line handles this. */
2478 {
2479 struct symtab_and_line tmp_sal;
2480
2481 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2482 if (tmp_sal.line != 0)
2483 {
2484 step_into_function (ecs);
2485 return;
2486 }
2487 }
2488
2489 /* If we have no line number and the step-stop-if-no-debug is
2490 set, we stop the step so that the user has a chance to switch
2491 in assembly mode. */
2492 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2493 {
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
2499
2500 /* Set a breakpoint at callee's return address (the address at
2501 which the caller will resume). */
2502 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2503 keep_going (ecs);
2504 return;
2505 }
2506
2507 /* If we're in the return path from a shared library trampoline,
2508 we want to proceed through the trampoline when stepping. */
2509 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2510 {
2511 /* Determine where this trampoline returns. */
2512 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2513
2514 if (debug_infrun)
2515 printf_unfiltered ("infrun: stepped into solib return tramp\n");
2516
2517 /* Only proceed through if we know where it's going. */
2518 if (real_stop_pc)
2519 {
2520 /* And put the step-breakpoint there and go until there. */
2521 struct symtab_and_line sr_sal;
2522
2523 init_sal (&sr_sal); /* initialize to zeroes */
2524 sr_sal.pc = real_stop_pc;
2525 sr_sal.section = find_pc_overlay (sr_sal.pc);
2526
2527 /* Do not specify what the fp should be when we stop since
2528 on some machines the prologue is where the new fp value
2529 is established. */
2530 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2531
2532 /* Restart without fiddling with the step ranges or
2533 other state. */
2534 keep_going (ecs);
2535 return;
2536 }
2537 }
2538
2539 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2540 the trampoline processing logic, however, there are some trampolines
2541 that have no names, so we should do trampoline handling first. */
2542 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2543 && ecs->stop_func_name == NULL)
2544 {
2545 if (debug_infrun)
2546 printf_unfiltered ("infrun: stepped into undebuggable function\n");
2547
2548 /* The inferior just stepped into, or returned to, an
2549 undebuggable function (where there is no symbol, not even a
2550 minimal symbol, corresponding to the address where the
2551 inferior stopped). Since we want to skip this kind of code,
2552 we keep going until the inferior returns from this
2553 function. */
2554 if (step_stop_if_no_debug)
2555 {
2556 /* If we have no line number and the step-stop-if-no-debug
2557 is set, we stop the step so that the user has a chance to
2558 switch in assembly mode. */
2559 stop_step = 1;
2560 print_stop_reason (END_STEPPING_RANGE, 0);
2561 stop_stepping (ecs);
2562 return;
2563 }
2564 else
2565 {
2566 /* Set a breakpoint at callee's return address (the address
2567 at which the caller will resume). */
2568 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2569 keep_going (ecs);
2570 return;
2571 }
2572 }
2573
2574 if (step_range_end == 1)
2575 {
2576 /* It is stepi or nexti. We always want to stop stepping after
2577 one instruction. */
2578 if (debug_infrun)
2579 printf_unfiltered ("infrun: stepi/nexti\n");
2580 stop_step = 1;
2581 print_stop_reason (END_STEPPING_RANGE, 0);
2582 stop_stepping (ecs);
2583 return;
2584 }
2585
2586 ecs->sal = find_pc_line (stop_pc, 0);
2587
2588 if (ecs->sal.line == 0)
2589 {
2590 /* We have no line number information. That means to stop
2591 stepping (does this always happen right after one instruction,
2592 when we do "s" in a function with no line numbers,
2593 or can this happen as a result of a return or longjmp?). */
2594 if (debug_infrun)
2595 printf_unfiltered ("infrun: no line number info\n");
2596 stop_step = 1;
2597 print_stop_reason (END_STEPPING_RANGE, 0);
2598 stop_stepping (ecs);
2599 return;
2600 }
2601
2602 if ((stop_pc == ecs->sal.pc)
2603 && (ecs->current_line != ecs->sal.line
2604 || ecs->current_symtab != ecs->sal.symtab))
2605 {
2606 /* We are at the start of a different line. So stop. Note that
2607 we don't stop if we step into the middle of a different line.
2608 That is said to make things like for (;;) statements work
2609 better. */
2610 if (debug_infrun)
2611 printf_unfiltered ("infrun: stepped to a different line\n");
2612 stop_step = 1;
2613 print_stop_reason (END_STEPPING_RANGE, 0);
2614 stop_stepping (ecs);
2615 return;
2616 }
2617
2618 /* We aren't done stepping.
2619
2620 Optimize by setting the stepping range to the line.
2621 (We might not be in the original line, but if we entered a
2622 new line in mid-statement, we continue stepping. This makes
2623 things like for(;;) statements work better.) */
2624
2625 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2626 {
2627 /* If this is the last line of the function, don't keep stepping
2628 (it would probably step us out of the function).
2629 This is particularly necessary for a one-line function,
2630 in which after skipping the prologue we better stop even though
2631 we will be in mid-line. */
2632 if (debug_infrun)
2633 printf_unfiltered ("infrun: stepped to a different function\n");
2634 stop_step = 1;
2635 print_stop_reason (END_STEPPING_RANGE, 0);
2636 stop_stepping (ecs);
2637 return;
2638 }
2639 step_range_start = ecs->sal.pc;
2640 step_range_end = ecs->sal.end;
2641 step_frame_id = get_frame_id (get_current_frame ());
2642 ecs->current_line = ecs->sal.line;
2643 ecs->current_symtab = ecs->sal.symtab;
2644
2645 /* In the case where we just stepped out of a function into the
2646 middle of a line of the caller, continue stepping, but
2647 step_frame_id must be modified to current frame */
2648 #if 0
2649 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2650 generous. It will trigger on things like a step into a frameless
2651 stackless leaf function. I think the logic should instead look
2652 at the unwound frame ID has that should give a more robust
2653 indication of what happened. */
2654 if (step - ID == current - ID)
2655 still stepping in same function;
2656 else if (step - ID == unwind (current - ID))
2657 stepped into a function;
2658 else
2659 stepped out of a function;
2660 /* Of course this assumes that the frame ID unwind code is robust
2661 and we're willing to introduce frame unwind logic into this
2662 function. Fortunately, those days are nearly upon us. */
2663 #endif
2664 {
2665 struct frame_id current_frame = get_frame_id (get_current_frame ());
2666 if (!(frame_id_inner (current_frame, step_frame_id)))
2667 step_frame_id = current_frame;
2668 }
2669
2670 if (debug_infrun)
2671 printf_unfiltered ("infrun: keep going\n");
2672 keep_going (ecs);
2673 }
2674
2675 /* Are we in the middle of stepping? */
2676
2677 static int
2678 currently_stepping (struct execution_control_state *ecs)
2679 {
2680 return ((!ecs->handling_longjmp
2681 && ((step_range_end && step_resume_breakpoint == NULL)
2682 || trap_expected))
2683 || ecs->stepping_through_solib_after_catch
2684 || bpstat_should_step ());
2685 }
2686
2687 /* Subroutine call with source code we should not step over. Do step
2688 to the first line of code in it. */
2689
2690 static void
2691 step_into_function (struct execution_control_state *ecs)
2692 {
2693 struct symtab *s;
2694 struct symtab_and_line sr_sal;
2695
2696 s = find_pc_symtab (stop_pc);
2697 if (s && s->language != language_asm)
2698 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2699
2700 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2701 /* Use the step_resume_break to step until the end of the prologue,
2702 even if that involves jumps (as it seems to on the vax under
2703 4.2). */
2704 /* If the prologue ends in the middle of a source line, continue to
2705 the end of that source line (if it is still within the function).
2706 Otherwise, just go to end of prologue. */
2707 if (ecs->sal.end
2708 && ecs->sal.pc != ecs->stop_func_start
2709 && ecs->sal.end < ecs->stop_func_end)
2710 ecs->stop_func_start = ecs->sal.end;
2711
2712 /* Architectures which require breakpoint adjustment might not be able
2713 to place a breakpoint at the computed address. If so, the test
2714 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2715 ecs->stop_func_start to an address at which a breakpoint may be
2716 legitimately placed.
2717
2718 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2719 made, GDB will enter an infinite loop when stepping through
2720 optimized code consisting of VLIW instructions which contain
2721 subinstructions corresponding to different source lines. On
2722 FR-V, it's not permitted to place a breakpoint on any but the
2723 first subinstruction of a VLIW instruction. When a breakpoint is
2724 set, GDB will adjust the breakpoint address to the beginning of
2725 the VLIW instruction. Thus, we need to make the corresponding
2726 adjustment here when computing the stop address. */
2727
2728 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2729 {
2730 ecs->stop_func_start
2731 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2732 ecs->stop_func_start);
2733 }
2734
2735 if (ecs->stop_func_start == stop_pc)
2736 {
2737 /* We are already there: stop now. */
2738 stop_step = 1;
2739 print_stop_reason (END_STEPPING_RANGE, 0);
2740 stop_stepping (ecs);
2741 return;
2742 }
2743 else
2744 {
2745 /* Put the step-breakpoint there and go until there. */
2746 init_sal (&sr_sal); /* initialize to zeroes */
2747 sr_sal.pc = ecs->stop_func_start;
2748 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2749
2750 /* Do not specify what the fp should be when we stop since on
2751 some machines the prologue is where the new fp value is
2752 established. */
2753 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2754
2755 /* And make sure stepping stops right away then. */
2756 step_range_end = step_range_start;
2757 }
2758 keep_going (ecs);
2759 }
2760
2761 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2762 This is used to both functions and to skip over code. */
2763
2764 static void
2765 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2766 struct frame_id sr_id)
2767 {
2768 /* There should never be more than one step-resume breakpoint per
2769 thread, so we should never be setting a new
2770 step_resume_breakpoint when one is already active. */
2771 gdb_assert (step_resume_breakpoint == NULL);
2772 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2773 bp_step_resume);
2774 if (breakpoints_inserted)
2775 insert_breakpoints ();
2776 }
2777
2778 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2779 to skip a function (next, skip-no-debug) or signal. It's assumed
2780 that the function/signal handler being skipped eventually returns
2781 to the breakpoint inserted at RETURN_FRAME.pc.
2782
2783 For the skip-function case, the function may have been reached by
2784 either single stepping a call / return / signal-return instruction,
2785 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2786 to the skip-function's caller.
2787
2788 For the signals case, this is called with the interrupted
2789 function's frame. The signal handler, when it returns, will resume
2790 the interrupted function at RETURN_FRAME.pc. */
2791
2792 static void
2793 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2794 {
2795 struct symtab_and_line sr_sal;
2796
2797 init_sal (&sr_sal); /* initialize to zeros */
2798
2799 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2800 sr_sal.section = find_pc_overlay (sr_sal.pc);
2801
2802 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2803 }
2804
2805 static void
2806 stop_stepping (struct execution_control_state *ecs)
2807 {
2808 if (debug_infrun)
2809 printf_unfiltered ("infrun: stop_stepping\n");
2810
2811 /* Let callers know we don't want to wait for the inferior anymore. */
2812 ecs->wait_some_more = 0;
2813 }
2814
2815 /* This function handles various cases where we need to continue
2816 waiting for the inferior. */
2817 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2818
2819 static void
2820 keep_going (struct execution_control_state *ecs)
2821 {
2822 /* Save the pc before execution, to compare with pc after stop. */
2823 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2824
2825 /* If we did not do break;, it means we should keep running the
2826 inferior and not return to debugger. */
2827
2828 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2829 {
2830 /* We took a signal (which we are supposed to pass through to
2831 the inferior, else we'd have done a break above) and we
2832 haven't yet gotten our trap. Simply continue. */
2833 resume (currently_stepping (ecs), stop_signal);
2834 }
2835 else
2836 {
2837 /* Either the trap was not expected, but we are continuing
2838 anyway (the user asked that this signal be passed to the
2839 child)
2840 -- or --
2841 The signal was SIGTRAP, e.g. it was our signal, but we
2842 decided we should resume from it.
2843
2844 We're going to run this baby now! */
2845
2846 if (!breakpoints_inserted && !ecs->another_trap)
2847 {
2848 breakpoints_failed = insert_breakpoints ();
2849 if (breakpoints_failed)
2850 {
2851 stop_stepping (ecs);
2852 return;
2853 }
2854 breakpoints_inserted = 1;
2855 }
2856
2857 trap_expected = ecs->another_trap;
2858
2859 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2860 specifies that such a signal should be delivered to the
2861 target program).
2862
2863 Typically, this would occure when a user is debugging a
2864 target monitor on a simulator: the target monitor sets a
2865 breakpoint; the simulator encounters this break-point and
2866 halts the simulation handing control to GDB; GDB, noteing
2867 that the break-point isn't valid, returns control back to the
2868 simulator; the simulator then delivers the hardware
2869 equivalent of a SIGNAL_TRAP to the program being debugged. */
2870
2871 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2872 stop_signal = TARGET_SIGNAL_0;
2873
2874
2875 resume (currently_stepping (ecs), stop_signal);
2876 }
2877
2878 prepare_to_wait (ecs);
2879 }
2880
2881 /* This function normally comes after a resume, before
2882 handle_inferior_event exits. It takes care of any last bits of
2883 housekeeping, and sets the all-important wait_some_more flag. */
2884
2885 static void
2886 prepare_to_wait (struct execution_control_state *ecs)
2887 {
2888 if (debug_infrun)
2889 printf_unfiltered ("infrun: prepare_to_wait\n");
2890 if (ecs->infwait_state == infwait_normal_state)
2891 {
2892 overlay_cache_invalid = 1;
2893
2894 /* We have to invalidate the registers BEFORE calling
2895 target_wait because they can be loaded from the target while
2896 in target_wait. This makes remote debugging a bit more
2897 efficient for those targets that provide critical registers
2898 as part of their normal status mechanism. */
2899
2900 registers_changed ();
2901 ecs->waiton_ptid = pid_to_ptid (-1);
2902 ecs->wp = &(ecs->ws);
2903 }
2904 /* This is the old end of the while loop. Let everybody know we
2905 want to wait for the inferior some more and get called again
2906 soon. */
2907 ecs->wait_some_more = 1;
2908 }
2909
2910 /* Print why the inferior has stopped. We always print something when
2911 the inferior exits, or receives a signal. The rest of the cases are
2912 dealt with later on in normal_stop() and print_it_typical(). Ideally
2913 there should be a call to this function from handle_inferior_event()
2914 each time stop_stepping() is called.*/
2915 static void
2916 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2917 {
2918 switch (stop_reason)
2919 {
2920 case STOP_UNKNOWN:
2921 /* We don't deal with these cases from handle_inferior_event()
2922 yet. */
2923 break;
2924 case END_STEPPING_RANGE:
2925 /* We are done with a step/next/si/ni command. */
2926 /* For now print nothing. */
2927 /* Print a message only if not in the middle of doing a "step n"
2928 operation for n > 1 */
2929 if (!step_multi || !stop_step)
2930 if (ui_out_is_mi_like_p (uiout))
2931 ui_out_field_string (uiout, "reason", "end-stepping-range");
2932 break;
2933 case BREAKPOINT_HIT:
2934 /* We found a breakpoint. */
2935 /* For now print nothing. */
2936 break;
2937 case SIGNAL_EXITED:
2938 /* The inferior was terminated by a signal. */
2939 annotate_signalled ();
2940 if (ui_out_is_mi_like_p (uiout))
2941 ui_out_field_string (uiout, "reason", "exited-signalled");
2942 ui_out_text (uiout, "\nProgram terminated with signal ");
2943 annotate_signal_name ();
2944 ui_out_field_string (uiout, "signal-name",
2945 target_signal_to_name (stop_info));
2946 annotate_signal_name_end ();
2947 ui_out_text (uiout, ", ");
2948 annotate_signal_string ();
2949 ui_out_field_string (uiout, "signal-meaning",
2950 target_signal_to_string (stop_info));
2951 annotate_signal_string_end ();
2952 ui_out_text (uiout, ".\n");
2953 ui_out_text (uiout, "The program no longer exists.\n");
2954 break;
2955 case EXITED:
2956 /* The inferior program is finished. */
2957 annotate_exited (stop_info);
2958 if (stop_info)
2959 {
2960 if (ui_out_is_mi_like_p (uiout))
2961 ui_out_field_string (uiout, "reason", "exited");
2962 ui_out_text (uiout, "\nProgram exited with code ");
2963 ui_out_field_fmt (uiout, "exit-code", "0%o",
2964 (unsigned int) stop_info);
2965 ui_out_text (uiout, ".\n");
2966 }
2967 else
2968 {
2969 if (ui_out_is_mi_like_p (uiout))
2970 ui_out_field_string (uiout, "reason", "exited-normally");
2971 ui_out_text (uiout, "\nProgram exited normally.\n");
2972 }
2973 break;
2974 case SIGNAL_RECEIVED:
2975 /* Signal received. The signal table tells us to print about
2976 it. */
2977 annotate_signal ();
2978 ui_out_text (uiout, "\nProgram received signal ");
2979 annotate_signal_name ();
2980 if (ui_out_is_mi_like_p (uiout))
2981 ui_out_field_string (uiout, "reason", "signal-received");
2982 ui_out_field_string (uiout, "signal-name",
2983 target_signal_to_name (stop_info));
2984 annotate_signal_name_end ();
2985 ui_out_text (uiout, ", ");
2986 annotate_signal_string ();
2987 ui_out_field_string (uiout, "signal-meaning",
2988 target_signal_to_string (stop_info));
2989 annotate_signal_string_end ();
2990 ui_out_text (uiout, ".\n");
2991 break;
2992 default:
2993 internal_error (__FILE__, __LINE__,
2994 "print_stop_reason: unrecognized enum value");
2995 break;
2996 }
2997 }
2998 \f
2999
3000 /* Here to return control to GDB when the inferior stops for real.
3001 Print appropriate messages, remove breakpoints, give terminal our modes.
3002
3003 STOP_PRINT_FRAME nonzero means print the executing frame
3004 (pc, function, args, file, line number and line text).
3005 BREAKPOINTS_FAILED nonzero means stop was due to error
3006 attempting to insert breakpoints. */
3007
3008 void
3009 normal_stop (void)
3010 {
3011 struct target_waitstatus last;
3012 ptid_t last_ptid;
3013
3014 get_last_target_status (&last_ptid, &last);
3015
3016 /* As with the notification of thread events, we want to delay
3017 notifying the user that we've switched thread context until
3018 the inferior actually stops.
3019
3020 There's no point in saying anything if the inferior has exited.
3021 Note that SIGNALLED here means "exited with a signal", not
3022 "received a signal". */
3023 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3024 && target_has_execution
3025 && last.kind != TARGET_WAITKIND_SIGNALLED
3026 && last.kind != TARGET_WAITKIND_EXITED)
3027 {
3028 target_terminal_ours_for_output ();
3029 printf_filtered ("[Switching to %s]\n",
3030 target_pid_or_tid_to_str (inferior_ptid));
3031 previous_inferior_ptid = inferior_ptid;
3032 }
3033
3034 /* NOTE drow/2004-01-17: Is this still necessary? */
3035 /* Make sure that the current_frame's pc is correct. This
3036 is a correction for setting up the frame info before doing
3037 DECR_PC_AFTER_BREAK */
3038 if (target_has_execution)
3039 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3040 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3041 frame code to check for this and sort out any resultant mess.
3042 DECR_PC_AFTER_BREAK needs to just go away. */
3043 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3044
3045 if (target_has_execution && breakpoints_inserted)
3046 {
3047 if (remove_breakpoints ())
3048 {
3049 target_terminal_ours_for_output ();
3050 printf_filtered ("Cannot remove breakpoints because ");
3051 printf_filtered ("program is no longer writable.\n");
3052 printf_filtered ("It might be running in another process.\n");
3053 printf_filtered ("Further execution is probably impossible.\n");
3054 }
3055 }
3056 breakpoints_inserted = 0;
3057
3058 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3059 Delete any breakpoint that is to be deleted at the next stop. */
3060
3061 breakpoint_auto_delete (stop_bpstat);
3062
3063 /* If an auto-display called a function and that got a signal,
3064 delete that auto-display to avoid an infinite recursion. */
3065
3066 if (stopped_by_random_signal)
3067 disable_current_display ();
3068
3069 /* Don't print a message if in the middle of doing a "step n"
3070 operation for n > 1 */
3071 if (step_multi && stop_step)
3072 goto done;
3073
3074 target_terminal_ours ();
3075
3076 /* Look up the hook_stop and run it (CLI internally handles problem
3077 of stop_command's pre-hook not existing). */
3078 if (stop_command)
3079 catch_errors (hook_stop_stub, stop_command,
3080 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3081
3082 if (!target_has_stack)
3083 {
3084
3085 goto done;
3086 }
3087
3088 /* Select innermost stack frame - i.e., current frame is frame 0,
3089 and current location is based on that.
3090 Don't do this on return from a stack dummy routine,
3091 or if the program has exited. */
3092
3093 if (!stop_stack_dummy)
3094 {
3095 select_frame (get_current_frame ());
3096
3097 /* Print current location without a level number, if
3098 we have changed functions or hit a breakpoint.
3099 Print source line if we have one.
3100 bpstat_print() contains the logic deciding in detail
3101 what to print, based on the event(s) that just occurred. */
3102
3103 if (stop_print_frame && deprecated_selected_frame)
3104 {
3105 int bpstat_ret;
3106 int source_flag;
3107 int do_frame_printing = 1;
3108
3109 bpstat_ret = bpstat_print (stop_bpstat);
3110 switch (bpstat_ret)
3111 {
3112 case PRINT_UNKNOWN:
3113 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3114 (or should) carry around the function and does (or
3115 should) use that when doing a frame comparison. */
3116 if (stop_step
3117 && frame_id_eq (step_frame_id,
3118 get_frame_id (get_current_frame ()))
3119 && step_start_function == find_pc_function (stop_pc))
3120 source_flag = SRC_LINE; /* finished step, just print source line */
3121 else
3122 source_flag = SRC_AND_LOC; /* print location and source line */
3123 break;
3124 case PRINT_SRC_AND_LOC:
3125 source_flag = SRC_AND_LOC; /* print location and source line */
3126 break;
3127 case PRINT_SRC_ONLY:
3128 source_flag = SRC_LINE;
3129 break;
3130 case PRINT_NOTHING:
3131 source_flag = SRC_LINE; /* something bogus */
3132 do_frame_printing = 0;
3133 break;
3134 default:
3135 internal_error (__FILE__, __LINE__, "Unknown value.");
3136 }
3137 /* For mi, have the same behavior every time we stop:
3138 print everything but the source line. */
3139 if (ui_out_is_mi_like_p (uiout))
3140 source_flag = LOC_AND_ADDRESS;
3141
3142 if (ui_out_is_mi_like_p (uiout))
3143 ui_out_field_int (uiout, "thread-id",
3144 pid_to_thread_id (inferior_ptid));
3145 /* The behavior of this routine with respect to the source
3146 flag is:
3147 SRC_LINE: Print only source line
3148 LOCATION: Print only location
3149 SRC_AND_LOC: Print location and source line */
3150 if (do_frame_printing)
3151 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3152
3153 /* Display the auto-display expressions. */
3154 do_displays ();
3155 }
3156 }
3157
3158 /* Save the function value return registers, if we care.
3159 We might be about to restore their previous contents. */
3160 if (proceed_to_finish)
3161 /* NB: The copy goes through to the target picking up the value of
3162 all the registers. */
3163 regcache_cpy (stop_registers, current_regcache);
3164
3165 if (stop_stack_dummy)
3166 {
3167 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3168 ends with a setting of the current frame, so we can use that
3169 next. */
3170 frame_pop (get_current_frame ());
3171 /* Set stop_pc to what it was before we called the function.
3172 Can't rely on restore_inferior_status because that only gets
3173 called if we don't stop in the called function. */
3174 stop_pc = read_pc ();
3175 select_frame (get_current_frame ());
3176 }
3177
3178 done:
3179 annotate_stopped ();
3180 observer_notify_normal_stop (stop_bpstat);
3181 }
3182
3183 static int
3184 hook_stop_stub (void *cmd)
3185 {
3186 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3187 return (0);
3188 }
3189 \f
3190 int
3191 signal_stop_state (int signo)
3192 {
3193 return signal_stop[signo];
3194 }
3195
3196 int
3197 signal_print_state (int signo)
3198 {
3199 return signal_print[signo];
3200 }
3201
3202 int
3203 signal_pass_state (int signo)
3204 {
3205 return signal_program[signo];
3206 }
3207
3208 int
3209 signal_stop_update (int signo, int state)
3210 {
3211 int ret = signal_stop[signo];
3212 signal_stop[signo] = state;
3213 return ret;
3214 }
3215
3216 int
3217 signal_print_update (int signo, int state)
3218 {
3219 int ret = signal_print[signo];
3220 signal_print[signo] = state;
3221 return ret;
3222 }
3223
3224 int
3225 signal_pass_update (int signo, int state)
3226 {
3227 int ret = signal_program[signo];
3228 signal_program[signo] = state;
3229 return ret;
3230 }
3231
3232 static void
3233 sig_print_header (void)
3234 {
3235 printf_filtered ("\
3236 Signal Stop\tPrint\tPass to program\tDescription\n");
3237 }
3238
3239 static void
3240 sig_print_info (enum target_signal oursig)
3241 {
3242 char *name = target_signal_to_name (oursig);
3243 int name_padding = 13 - strlen (name);
3244
3245 if (name_padding <= 0)
3246 name_padding = 0;
3247
3248 printf_filtered ("%s", name);
3249 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3250 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3251 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3252 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3253 printf_filtered ("%s\n", target_signal_to_string (oursig));
3254 }
3255
3256 /* Specify how various signals in the inferior should be handled. */
3257
3258 static void
3259 handle_command (char *args, int from_tty)
3260 {
3261 char **argv;
3262 int digits, wordlen;
3263 int sigfirst, signum, siglast;
3264 enum target_signal oursig;
3265 int allsigs;
3266 int nsigs;
3267 unsigned char *sigs;
3268 struct cleanup *old_chain;
3269
3270 if (args == NULL)
3271 {
3272 error_no_arg ("signal to handle");
3273 }
3274
3275 /* Allocate and zero an array of flags for which signals to handle. */
3276
3277 nsigs = (int) TARGET_SIGNAL_LAST;
3278 sigs = (unsigned char *) alloca (nsigs);
3279 memset (sigs, 0, nsigs);
3280
3281 /* Break the command line up into args. */
3282
3283 argv = buildargv (args);
3284 if (argv == NULL)
3285 {
3286 nomem (0);
3287 }
3288 old_chain = make_cleanup_freeargv (argv);
3289
3290 /* Walk through the args, looking for signal oursigs, signal names, and
3291 actions. Signal numbers and signal names may be interspersed with
3292 actions, with the actions being performed for all signals cumulatively
3293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3294
3295 while (*argv != NULL)
3296 {
3297 wordlen = strlen (*argv);
3298 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3299 {;
3300 }
3301 allsigs = 0;
3302 sigfirst = siglast = -1;
3303
3304 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3305 {
3306 /* Apply action to all signals except those used by the
3307 debugger. Silently skip those. */
3308 allsigs = 1;
3309 sigfirst = 0;
3310 siglast = nsigs - 1;
3311 }
3312 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3313 {
3314 SET_SIGS (nsigs, sigs, signal_stop);
3315 SET_SIGS (nsigs, sigs, signal_print);
3316 }
3317 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3318 {
3319 UNSET_SIGS (nsigs, sigs, signal_program);
3320 }
3321 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3322 {
3323 SET_SIGS (nsigs, sigs, signal_print);
3324 }
3325 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3326 {
3327 SET_SIGS (nsigs, sigs, signal_program);
3328 }
3329 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3330 {
3331 UNSET_SIGS (nsigs, sigs, signal_stop);
3332 }
3333 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3334 {
3335 SET_SIGS (nsigs, sigs, signal_program);
3336 }
3337 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3338 {
3339 UNSET_SIGS (nsigs, sigs, signal_print);
3340 UNSET_SIGS (nsigs, sigs, signal_stop);
3341 }
3342 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3343 {
3344 UNSET_SIGS (nsigs, sigs, signal_program);
3345 }
3346 else if (digits > 0)
3347 {
3348 /* It is numeric. The numeric signal refers to our own
3349 internal signal numbering from target.h, not to host/target
3350 signal number. This is a feature; users really should be
3351 using symbolic names anyway, and the common ones like
3352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3353
3354 sigfirst = siglast = (int)
3355 target_signal_from_command (atoi (*argv));
3356 if ((*argv)[digits] == '-')
3357 {
3358 siglast = (int)
3359 target_signal_from_command (atoi ((*argv) + digits + 1));
3360 }
3361 if (sigfirst > siglast)
3362 {
3363 /* Bet he didn't figure we'd think of this case... */
3364 signum = sigfirst;
3365 sigfirst = siglast;
3366 siglast = signum;
3367 }
3368 }
3369 else
3370 {
3371 oursig = target_signal_from_name (*argv);
3372 if (oursig != TARGET_SIGNAL_UNKNOWN)
3373 {
3374 sigfirst = siglast = (int) oursig;
3375 }
3376 else
3377 {
3378 /* Not a number and not a recognized flag word => complain. */
3379 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3380 }
3381 }
3382
3383 /* If any signal numbers or symbol names were found, set flags for
3384 which signals to apply actions to. */
3385
3386 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3387 {
3388 switch ((enum target_signal) signum)
3389 {
3390 case TARGET_SIGNAL_TRAP:
3391 case TARGET_SIGNAL_INT:
3392 if (!allsigs && !sigs[signum])
3393 {
3394 if (query ("%s is used by the debugger.\n\
3395 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3396 {
3397 sigs[signum] = 1;
3398 }
3399 else
3400 {
3401 printf_unfiltered ("Not confirmed, unchanged.\n");
3402 gdb_flush (gdb_stdout);
3403 }
3404 }
3405 break;
3406 case TARGET_SIGNAL_0:
3407 case TARGET_SIGNAL_DEFAULT:
3408 case TARGET_SIGNAL_UNKNOWN:
3409 /* Make sure that "all" doesn't print these. */
3410 break;
3411 default:
3412 sigs[signum] = 1;
3413 break;
3414 }
3415 }
3416
3417 argv++;
3418 }
3419
3420 target_notice_signals (inferior_ptid);
3421
3422 if (from_tty)
3423 {
3424 /* Show the results. */
3425 sig_print_header ();
3426 for (signum = 0; signum < nsigs; signum++)
3427 {
3428 if (sigs[signum])
3429 {
3430 sig_print_info (signum);
3431 }
3432 }
3433 }
3434
3435 do_cleanups (old_chain);
3436 }
3437
3438 static void
3439 xdb_handle_command (char *args, int from_tty)
3440 {
3441 char **argv;
3442 struct cleanup *old_chain;
3443
3444 /* Break the command line up into args. */
3445
3446 argv = buildargv (args);
3447 if (argv == NULL)
3448 {
3449 nomem (0);
3450 }
3451 old_chain = make_cleanup_freeargv (argv);
3452 if (argv[1] != (char *) NULL)
3453 {
3454 char *argBuf;
3455 int bufLen;
3456
3457 bufLen = strlen (argv[0]) + 20;
3458 argBuf = (char *) xmalloc (bufLen);
3459 if (argBuf)
3460 {
3461 int validFlag = 1;
3462 enum target_signal oursig;
3463
3464 oursig = target_signal_from_name (argv[0]);
3465 memset (argBuf, 0, bufLen);
3466 if (strcmp (argv[1], "Q") == 0)
3467 sprintf (argBuf, "%s %s", argv[0], "noprint");
3468 else
3469 {
3470 if (strcmp (argv[1], "s") == 0)
3471 {
3472 if (!signal_stop[oursig])
3473 sprintf (argBuf, "%s %s", argv[0], "stop");
3474 else
3475 sprintf (argBuf, "%s %s", argv[0], "nostop");
3476 }
3477 else if (strcmp (argv[1], "i") == 0)
3478 {
3479 if (!signal_program[oursig])
3480 sprintf (argBuf, "%s %s", argv[0], "pass");
3481 else
3482 sprintf (argBuf, "%s %s", argv[0], "nopass");
3483 }
3484 else if (strcmp (argv[1], "r") == 0)
3485 {
3486 if (!signal_print[oursig])
3487 sprintf (argBuf, "%s %s", argv[0], "print");
3488 else
3489 sprintf (argBuf, "%s %s", argv[0], "noprint");
3490 }
3491 else
3492 validFlag = 0;
3493 }
3494 if (validFlag)
3495 handle_command (argBuf, from_tty);
3496 else
3497 printf_filtered ("Invalid signal handling flag.\n");
3498 if (argBuf)
3499 xfree (argBuf);
3500 }
3501 }
3502 do_cleanups (old_chain);
3503 }
3504
3505 /* Print current contents of the tables set by the handle command.
3506 It is possible we should just be printing signals actually used
3507 by the current target (but for things to work right when switching
3508 targets, all signals should be in the signal tables). */
3509
3510 static void
3511 signals_info (char *signum_exp, int from_tty)
3512 {
3513 enum target_signal oursig;
3514 sig_print_header ();
3515
3516 if (signum_exp)
3517 {
3518 /* First see if this is a symbol name. */
3519 oursig = target_signal_from_name (signum_exp);
3520 if (oursig == TARGET_SIGNAL_UNKNOWN)
3521 {
3522 /* No, try numeric. */
3523 oursig =
3524 target_signal_from_command (parse_and_eval_long (signum_exp));
3525 }
3526 sig_print_info (oursig);
3527 return;
3528 }
3529
3530 printf_filtered ("\n");
3531 /* These ugly casts brought to you by the native VAX compiler. */
3532 for (oursig = TARGET_SIGNAL_FIRST;
3533 (int) oursig < (int) TARGET_SIGNAL_LAST;
3534 oursig = (enum target_signal) ((int) oursig + 1))
3535 {
3536 QUIT;
3537
3538 if (oursig != TARGET_SIGNAL_UNKNOWN
3539 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3540 sig_print_info (oursig);
3541 }
3542
3543 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3544 }
3545 \f
3546 struct inferior_status
3547 {
3548 enum target_signal stop_signal;
3549 CORE_ADDR stop_pc;
3550 bpstat stop_bpstat;
3551 int stop_step;
3552 int stop_stack_dummy;
3553 int stopped_by_random_signal;
3554 int trap_expected;
3555 CORE_ADDR step_range_start;
3556 CORE_ADDR step_range_end;
3557 struct frame_id step_frame_id;
3558 enum step_over_calls_kind step_over_calls;
3559 CORE_ADDR step_resume_break_address;
3560 int stop_after_trap;
3561 int stop_soon;
3562 struct regcache *stop_registers;
3563
3564 /* These are here because if call_function_by_hand has written some
3565 registers and then decides to call error(), we better not have changed
3566 any registers. */
3567 struct regcache *registers;
3568
3569 /* A frame unique identifier. */
3570 struct frame_id selected_frame_id;
3571
3572 int breakpoint_proceeded;
3573 int restore_stack_info;
3574 int proceed_to_finish;
3575 };
3576
3577 void
3578 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3579 LONGEST val)
3580 {
3581 int size = register_size (current_gdbarch, regno);
3582 void *buf = alloca (size);
3583 store_signed_integer (buf, size, val);
3584 regcache_raw_write (inf_status->registers, regno, buf);
3585 }
3586
3587 /* Save all of the information associated with the inferior<==>gdb
3588 connection. INF_STATUS is a pointer to a "struct inferior_status"
3589 (defined in inferior.h). */
3590
3591 struct inferior_status *
3592 save_inferior_status (int restore_stack_info)
3593 {
3594 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3595
3596 inf_status->stop_signal = stop_signal;
3597 inf_status->stop_pc = stop_pc;
3598 inf_status->stop_step = stop_step;
3599 inf_status->stop_stack_dummy = stop_stack_dummy;
3600 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3601 inf_status->trap_expected = trap_expected;
3602 inf_status->step_range_start = step_range_start;
3603 inf_status->step_range_end = step_range_end;
3604 inf_status->step_frame_id = step_frame_id;
3605 inf_status->step_over_calls = step_over_calls;
3606 inf_status->stop_after_trap = stop_after_trap;
3607 inf_status->stop_soon = stop_soon;
3608 /* Save original bpstat chain here; replace it with copy of chain.
3609 If caller's caller is walking the chain, they'll be happier if we
3610 hand them back the original chain when restore_inferior_status is
3611 called. */
3612 inf_status->stop_bpstat = stop_bpstat;
3613 stop_bpstat = bpstat_copy (stop_bpstat);
3614 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3615 inf_status->restore_stack_info = restore_stack_info;
3616 inf_status->proceed_to_finish = proceed_to_finish;
3617
3618 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3619
3620 inf_status->registers = regcache_dup (current_regcache);
3621
3622 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3623 return inf_status;
3624 }
3625
3626 static int
3627 restore_selected_frame (void *args)
3628 {
3629 struct frame_id *fid = (struct frame_id *) args;
3630 struct frame_info *frame;
3631
3632 frame = frame_find_by_id (*fid);
3633
3634 /* If inf_status->selected_frame_id is NULL, there was no previously
3635 selected frame. */
3636 if (frame == NULL)
3637 {
3638 warning ("Unable to restore previously selected frame.\n");
3639 return 0;
3640 }
3641
3642 select_frame (frame);
3643
3644 return (1);
3645 }
3646
3647 void
3648 restore_inferior_status (struct inferior_status *inf_status)
3649 {
3650 stop_signal = inf_status->stop_signal;
3651 stop_pc = inf_status->stop_pc;
3652 stop_step = inf_status->stop_step;
3653 stop_stack_dummy = inf_status->stop_stack_dummy;
3654 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3655 trap_expected = inf_status->trap_expected;
3656 step_range_start = inf_status->step_range_start;
3657 step_range_end = inf_status->step_range_end;
3658 step_frame_id = inf_status->step_frame_id;
3659 step_over_calls = inf_status->step_over_calls;
3660 stop_after_trap = inf_status->stop_after_trap;
3661 stop_soon = inf_status->stop_soon;
3662 bpstat_clear (&stop_bpstat);
3663 stop_bpstat = inf_status->stop_bpstat;
3664 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3665 proceed_to_finish = inf_status->proceed_to_finish;
3666
3667 /* FIXME: Is the restore of stop_registers always needed. */
3668 regcache_xfree (stop_registers);
3669 stop_registers = inf_status->stop_registers;
3670
3671 /* The inferior can be gone if the user types "print exit(0)"
3672 (and perhaps other times). */
3673 if (target_has_execution)
3674 /* NB: The register write goes through to the target. */
3675 regcache_cpy (current_regcache, inf_status->registers);
3676 regcache_xfree (inf_status->registers);
3677
3678 /* FIXME: If we are being called after stopping in a function which
3679 is called from gdb, we should not be trying to restore the
3680 selected frame; it just prints a spurious error message (The
3681 message is useful, however, in detecting bugs in gdb (like if gdb
3682 clobbers the stack)). In fact, should we be restoring the
3683 inferior status at all in that case? . */
3684
3685 if (target_has_stack && inf_status->restore_stack_info)
3686 {
3687 /* The point of catch_errors is that if the stack is clobbered,
3688 walking the stack might encounter a garbage pointer and
3689 error() trying to dereference it. */
3690 if (catch_errors
3691 (restore_selected_frame, &inf_status->selected_frame_id,
3692 "Unable to restore previously selected frame:\n",
3693 RETURN_MASK_ERROR) == 0)
3694 /* Error in restoring the selected frame. Select the innermost
3695 frame. */
3696 select_frame (get_current_frame ());
3697
3698 }
3699
3700 xfree (inf_status);
3701 }
3702
3703 static void
3704 do_restore_inferior_status_cleanup (void *sts)
3705 {
3706 restore_inferior_status (sts);
3707 }
3708
3709 struct cleanup *
3710 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3711 {
3712 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3713 }
3714
3715 void
3716 discard_inferior_status (struct inferior_status *inf_status)
3717 {
3718 /* See save_inferior_status for info on stop_bpstat. */
3719 bpstat_clear (&inf_status->stop_bpstat);
3720 regcache_xfree (inf_status->registers);
3721 regcache_xfree (inf_status->stop_registers);
3722 xfree (inf_status);
3723 }
3724
3725 int
3726 inferior_has_forked (int pid, int *child_pid)
3727 {
3728 struct target_waitstatus last;
3729 ptid_t last_ptid;
3730
3731 get_last_target_status (&last_ptid, &last);
3732
3733 if (last.kind != TARGET_WAITKIND_FORKED)
3734 return 0;
3735
3736 if (ptid_get_pid (last_ptid) != pid)
3737 return 0;
3738
3739 *child_pid = last.value.related_pid;
3740 return 1;
3741 }
3742
3743 int
3744 inferior_has_vforked (int pid, int *child_pid)
3745 {
3746 struct target_waitstatus last;
3747 ptid_t last_ptid;
3748
3749 get_last_target_status (&last_ptid, &last);
3750
3751 if (last.kind != TARGET_WAITKIND_VFORKED)
3752 return 0;
3753
3754 if (ptid_get_pid (last_ptid) != pid)
3755 return 0;
3756
3757 *child_pid = last.value.related_pid;
3758 return 1;
3759 }
3760
3761 int
3762 inferior_has_execd (int pid, char **execd_pathname)
3763 {
3764 struct target_waitstatus last;
3765 ptid_t last_ptid;
3766
3767 get_last_target_status (&last_ptid, &last);
3768
3769 if (last.kind != TARGET_WAITKIND_EXECD)
3770 return 0;
3771
3772 if (ptid_get_pid (last_ptid) != pid)
3773 return 0;
3774
3775 *execd_pathname = xstrdup (last.value.execd_pathname);
3776 return 1;
3777 }
3778
3779 /* Oft used ptids */
3780 ptid_t null_ptid;
3781 ptid_t minus_one_ptid;
3782
3783 /* Create a ptid given the necessary PID, LWP, and TID components. */
3784
3785 ptid_t
3786 ptid_build (int pid, long lwp, long tid)
3787 {
3788 ptid_t ptid;
3789
3790 ptid.pid = pid;
3791 ptid.lwp = lwp;
3792 ptid.tid = tid;
3793 return ptid;
3794 }
3795
3796 /* Create a ptid from just a pid. */
3797
3798 ptid_t
3799 pid_to_ptid (int pid)
3800 {
3801 return ptid_build (pid, 0, 0);
3802 }
3803
3804 /* Fetch the pid (process id) component from a ptid. */
3805
3806 int
3807 ptid_get_pid (ptid_t ptid)
3808 {
3809 return ptid.pid;
3810 }
3811
3812 /* Fetch the lwp (lightweight process) component from a ptid. */
3813
3814 long
3815 ptid_get_lwp (ptid_t ptid)
3816 {
3817 return ptid.lwp;
3818 }
3819
3820 /* Fetch the tid (thread id) component from a ptid. */
3821
3822 long
3823 ptid_get_tid (ptid_t ptid)
3824 {
3825 return ptid.tid;
3826 }
3827
3828 /* ptid_equal() is used to test equality of two ptids. */
3829
3830 int
3831 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3832 {
3833 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3834 && ptid1.tid == ptid2.tid);
3835 }
3836
3837 /* restore_inferior_ptid() will be used by the cleanup machinery
3838 to restore the inferior_ptid value saved in a call to
3839 save_inferior_ptid(). */
3840
3841 static void
3842 restore_inferior_ptid (void *arg)
3843 {
3844 ptid_t *saved_ptid_ptr = arg;
3845 inferior_ptid = *saved_ptid_ptr;
3846 xfree (arg);
3847 }
3848
3849 /* Save the value of inferior_ptid so that it may be restored by a
3850 later call to do_cleanups(). Returns the struct cleanup pointer
3851 needed for later doing the cleanup. */
3852
3853 struct cleanup *
3854 save_inferior_ptid (void)
3855 {
3856 ptid_t *saved_ptid_ptr;
3857
3858 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3859 *saved_ptid_ptr = inferior_ptid;
3860 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3861 }
3862 \f
3863
3864 static void
3865 build_infrun (void)
3866 {
3867 stop_registers = regcache_xmalloc (current_gdbarch);
3868 }
3869
3870 void
3871 _initialize_infrun (void)
3872 {
3873 int i;
3874 int numsigs;
3875 struct cmd_list_element *c;
3876
3877 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3878 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3879
3880 add_info ("signals", signals_info,
3881 "What debugger does when program gets various signals.\n\
3882 Specify a signal as argument to print info on that signal only.");
3883 add_info_alias ("handle", "signals", 0);
3884
3885 add_com ("handle", class_run, handle_command,
3886 concat ("Specify how to handle a signal.\n\
3887 Args are signals and actions to apply to those signals.\n\
3888 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3889 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3890 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3891 The special arg \"all\" is recognized to mean all signals except those\n\
3892 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3893 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3894 Stop means reenter debugger if this signal happens (implies print).\n\
3895 Print means print a message if this signal happens.\n\
3896 Pass means let program see this signal; otherwise program doesn't know.\n\
3897 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3898 Pass and Stop may be combined.", NULL));
3899 if (xdb_commands)
3900 {
3901 add_com ("lz", class_info, signals_info,
3902 "What debugger does when program gets various signals.\n\
3903 Specify a signal as argument to print info on that signal only.");
3904 add_com ("z", class_run, xdb_handle_command,
3905 concat ("Specify how to handle a signal.\n\
3906 Args are signals and actions to apply to those signals.\n\
3907 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3908 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3909 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3910 The special arg \"all\" is recognized to mean all signals except those\n\
3911 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3912 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3913 nopass), \"Q\" (noprint)\n\
3914 Stop means reenter debugger if this signal happens (implies print).\n\
3915 Print means print a message if this signal happens.\n\
3916 Pass means let program see this signal; otherwise program doesn't know.\n\
3917 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3918 Pass and Stop may be combined.", NULL));
3919 }
3920
3921 if (!dbx_commands)
3922 stop_command =
3923 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3924 This allows you to set a list of commands to be run each time execution\n\
3925 of the program stops.", &cmdlist);
3926
3927 add_set_cmd ("infrun", class_maintenance, var_zinteger,
3928 &debug_infrun, "Set inferior debugging.\n\
3929 When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3930
3931 numsigs = (int) TARGET_SIGNAL_LAST;
3932 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3933 signal_print = (unsigned char *)
3934 xmalloc (sizeof (signal_print[0]) * numsigs);
3935 signal_program = (unsigned char *)
3936 xmalloc (sizeof (signal_program[0]) * numsigs);
3937 for (i = 0; i < numsigs; i++)
3938 {
3939 signal_stop[i] = 1;
3940 signal_print[i] = 1;
3941 signal_program[i] = 1;
3942 }
3943
3944 /* Signals caused by debugger's own actions
3945 should not be given to the program afterwards. */
3946 signal_program[TARGET_SIGNAL_TRAP] = 0;
3947 signal_program[TARGET_SIGNAL_INT] = 0;
3948
3949 /* Signals that are not errors should not normally enter the debugger. */
3950 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3951 signal_print[TARGET_SIGNAL_ALRM] = 0;
3952 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3953 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3954 signal_stop[TARGET_SIGNAL_PROF] = 0;
3955 signal_print[TARGET_SIGNAL_PROF] = 0;
3956 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3957 signal_print[TARGET_SIGNAL_CHLD] = 0;
3958 signal_stop[TARGET_SIGNAL_IO] = 0;
3959 signal_print[TARGET_SIGNAL_IO] = 0;
3960 signal_stop[TARGET_SIGNAL_POLL] = 0;
3961 signal_print[TARGET_SIGNAL_POLL] = 0;
3962 signal_stop[TARGET_SIGNAL_URG] = 0;
3963 signal_print[TARGET_SIGNAL_URG] = 0;
3964 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3965 signal_print[TARGET_SIGNAL_WINCH] = 0;
3966
3967 /* These signals are used internally by user-level thread
3968 implementations. (See signal(5) on Solaris.) Like the above
3969 signals, a healthy program receives and handles them as part of
3970 its normal operation. */
3971 signal_stop[TARGET_SIGNAL_LWP] = 0;
3972 signal_print[TARGET_SIGNAL_LWP] = 0;
3973 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3974 signal_print[TARGET_SIGNAL_WAITING] = 0;
3975 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3976 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3977
3978 #ifdef SOLIB_ADD
3979 deprecated_add_show_from_set
3980 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3981 (char *) &stop_on_solib_events,
3982 "Set stopping for shared library events.\n\
3983 If nonzero, gdb will give control to the user when the dynamic linker\n\
3984 notifies gdb of shared library events. The most common event of interest\n\
3985 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3986 #endif
3987
3988 c = add_set_enum_cmd ("follow-fork-mode",
3989 class_run,
3990 follow_fork_mode_kind_names, &follow_fork_mode_string,
3991 "Set debugger response to a program call of fork \
3992 or vfork.\n\
3993 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3994 parent - the original process is debugged after a fork\n\
3995 child - the new process is debugged after a fork\n\
3996 The unfollowed process will continue to run.\n\
3997 By default, the debugger will follow the parent process.", &setlist);
3998 deprecated_add_show_from_set (c, &showlist);
3999
4000 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
4001 &scheduler_mode, /* current mode */
4002 "Set mode for locking scheduler during execution.\n\
4003 off == no locking (threads may preempt at any time)\n\
4004 on == full locking (no thread except the current thread may run)\n\
4005 step == scheduler locked during every single-step operation.\n\
4006 In this mode, no other thread may run during a step command.\n\
4007 Other threads may run while stepping over a function call ('next').", &setlist);
4008
4009 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
4010 deprecated_add_show_from_set (c, &showlist);
4011
4012 c = add_set_cmd ("step-mode", class_run,
4013 var_boolean, (char *) &step_stop_if_no_debug,
4014 "Set mode of the step operation. When set, doing a step over a\n\
4015 function without debug line information will stop at the first\n\
4016 instruction of that function. Otherwise, the function is skipped and\n\
4017 the step command stops at a different source line.", &setlist);
4018 deprecated_add_show_from_set (c, &showlist);
4019
4020 /* ptid initializations */
4021 null_ptid = ptid_build (0, 0, 0);
4022 minus_one_ptid = ptid_build (-1, 0, 0);
4023 inferior_ptid = null_ptid;
4024 target_last_wait_ptid = minus_one_ptid;
4025 }
This page took 0.113956 seconds and 4 git commands to generate.