e36e42e874160ac8f090bdd914e3d8105fd66ba9
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum gdb_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum gdb_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum gdb_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Function inferior was in as of last step command. */
358
359 static struct symbol *step_start_function;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375 int stop_after_trap;
376
377 /* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
382 struct regcache *stop_registers;
383
384 /* Nonzero after stop if current stack frame should be printed. */
385
386 static int stop_print_frame;
387
388 /* This is a cached copy of the pid/waitstatus of the last event
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 static void context_switch (ptid_t ptid);
395
396 void init_thread_stepping_state (struct thread_info *tss);
397
398 void init_infwait_state (void);
399
400 static const char follow_fork_mode_child[] = "child";
401 static const char follow_fork_mode_parent[] = "parent";
402
403 static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407 };
408
409 static const char *follow_fork_mode_string = follow_fork_mode_parent;
410 static void
411 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413 {
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418 }
419 \f
420
421 /* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
425 static int
426 follow_fork (void)
427 {
428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *exception_resume_breakpoint = NULL;
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
502 delete_exception_resume_breakpoint (tp);
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
522 tp = find_thread_ptid (parent);
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
530 /* If we followed the child, switch to it... */
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
577
578 return should_resume;
579 }
580
581 void
582 follow_inferior_reset_breakpoints (void)
583 {
584 struct thread_info *tp = inferior_thread ();
585
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
599
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
610 }
611
612 /* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615 static int
616 proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618 {
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
635 }
636
637 return 0;
638 }
639
640 /* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643 static void
644 handle_vfork_child_exec_or_exit (int exec)
645 {
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
663 /* follow-fork child, detach-on-fork on. */
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
753 inf->symfile_flags = SYMFILE_NO_READ;
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
759 inferior. */
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787 }
788
789 /* Enum strings for "set|show displaced-stepping". */
790
791 static const char follow_exec_mode_new[] = "new";
792 static const char follow_exec_mode_same[] = "same";
793 static const char *const follow_exec_mode_names[] =
794 {
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798 };
799
800 static const char *follow_exec_mode_string = follow_exec_mode_same;
801 static void
802 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804 {
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 }
807
808 /* EXECD_PATHNAME is assumed to be non-NULL. */
809
810 static void
811 follow_exec (ptid_t pid, char *execd_pathname)
812 {
813 struct thread_info *th = inferior_thread ();
814 struct inferior *inf = current_inferior ();
815
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
835 we now have a new a.out, those shadow contents aren't valid. */
836
837 mark_breakpoints_out ();
838
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
842 statement through an exec(). */
843 th->control.step_resume_breakpoint = NULL;
844 th->control.exception_resume_breakpoint = NULL;
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
847
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
856 /* What is this a.out's name? */
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
860
861 /* We've followed the inferior through an exec. Therefore, the
862 inferior has essentially been killed & reborn. */
863
864 gdb_flush (gdb_stdout);
865
866 breakpoint_init_inferior (inf_execd);
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
873
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
878
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
907 /* That a.out is now the one to use. */
908 exec_file_attach (execd_pathname, 0);
909
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 NULL, 0);
919
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
922
923 #ifdef SOLIB_CREATE_INFERIOR_HOOK
924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
925 #else
926 solib_create_inferior_hook (0);
927 #endif
928
929 jit_inferior_created_hook ();
930
931 breakpoint_re_set ();
932
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
935 to symbol_file_command...). */
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
941 matically get reset there in the new process.). */
942 }
943
944 /* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947 static int singlestep_breakpoints_inserted_p = 0;
948
949 /* The thread we inserted single-step breakpoints for. */
950 static ptid_t singlestep_ptid;
951
952 /* PC when we started this single-step. */
953 static CORE_ADDR singlestep_pc;
954
955 /* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957 static ptid_t saved_singlestep_ptid;
958 static int stepping_past_singlestep_breakpoint;
959
960 /* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
964 has switched to another thread and issued 'step'. We need to step over
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967 static ptid_t deferred_step_ptid;
968 \f
969 /* Displaced stepping. */
970
971 /* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
1057 struct displaced_step_request
1058 {
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061 };
1062
1063 /* Per-inferior displaced stepping state. */
1064 struct displaced_step_inferior_state
1065 {
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094 };
1095
1096 /* The list of states of processes involved in displaced stepping
1097 presently. */
1098 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100 /* Get the displaced stepping state of process PID. */
1101
1102 static struct displaced_step_inferior_state *
1103 get_displaced_stepping_state (int pid)
1104 {
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114 }
1115
1116 /* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120 static struct displaced_step_inferior_state *
1121 add_displaced_stepping_state (int pid)
1122 {
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
1130
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
1135
1136 return state;
1137 }
1138
1139 /* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143 struct displaced_step_closure*
1144 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145 {
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155 }
1156
1157 /* Remove the displaced stepping state of process PID. */
1158
1159 static void
1160 remove_displaced_stepping_state (int pid)
1161 {
1162 struct displaced_step_inferior_state *it, **prev_next_p;
1163
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180 }
1181
1182 static void
1183 infrun_inferior_exit (struct inferior *inf)
1184 {
1185 remove_displaced_stepping_state (inf->pid);
1186 }
1187
1188 /* Enum strings for "set|show displaced-stepping". */
1189
1190 static const char can_use_displaced_stepping_auto[] = "auto";
1191 static const char can_use_displaced_stepping_on[] = "on";
1192 static const char can_use_displaced_stepping_off[] = "off";
1193 static const char *const can_use_displaced_stepping_enum[] =
1194 {
1195 can_use_displaced_stepping_auto,
1196 can_use_displaced_stepping_on,
1197 can_use_displaced_stepping_off,
1198 NULL,
1199 };
1200
1201 /* If ON, and the architecture supports it, GDB will use displaced
1202 stepping to step over breakpoints. If OFF, or if the architecture
1203 doesn't support it, GDB will instead use the traditional
1204 hold-and-step approach. If AUTO (which is the default), GDB will
1205 decide which technique to use to step over breakpoints depending on
1206 which of all-stop or non-stop mode is active --- displaced stepping
1207 in non-stop mode; hold-and-step in all-stop mode. */
1208
1209 static const char *can_use_displaced_stepping =
1210 can_use_displaced_stepping_auto;
1211
1212 static void
1213 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1214 struct cmd_list_element *c,
1215 const char *value)
1216 {
1217 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1218 fprintf_filtered (file,
1219 _("Debugger's willingness to use displaced stepping "
1220 "to step over breakpoints is %s (currently %s).\n"),
1221 value, non_stop ? "on" : "off");
1222 else
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s.\n"), value);
1226 }
1227
1228 /* Return non-zero if displaced stepping can/should be used to step
1229 over breakpoints. */
1230
1231 static int
1232 use_displaced_stepping (struct gdbarch *gdbarch)
1233 {
1234 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1235 && non_stop)
1236 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1237 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1238 && !RECORD_IS_USED);
1239 }
1240
1241 /* Clean out any stray displaced stepping state. */
1242 static void
1243 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1244 {
1245 /* Indicate that there is no cleanup pending. */
1246 displaced->step_ptid = null_ptid;
1247
1248 if (displaced->step_closure)
1249 {
1250 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1251 displaced->step_closure);
1252 displaced->step_closure = NULL;
1253 }
1254 }
1255
1256 static void
1257 displaced_step_clear_cleanup (void *arg)
1258 {
1259 struct displaced_step_inferior_state *state = arg;
1260
1261 displaced_step_clear (state);
1262 }
1263
1264 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1265 void
1266 displaced_step_dump_bytes (struct ui_file *file,
1267 const gdb_byte *buf,
1268 size_t len)
1269 {
1270 int i;
1271
1272 for (i = 0; i < len; i++)
1273 fprintf_unfiltered (file, "%02x ", buf[i]);
1274 fputs_unfiltered ("\n", file);
1275 }
1276
1277 /* Prepare to single-step, using displaced stepping.
1278
1279 Note that we cannot use displaced stepping when we have a signal to
1280 deliver. If we have a signal to deliver and an instruction to step
1281 over, then after the step, there will be no indication from the
1282 target whether the thread entered a signal handler or ignored the
1283 signal and stepped over the instruction successfully --- both cases
1284 result in a simple SIGTRAP. In the first case we mustn't do a
1285 fixup, and in the second case we must --- but we can't tell which.
1286 Comments in the code for 'random signals' in handle_inferior_event
1287 explain how we handle this case instead.
1288
1289 Returns 1 if preparing was successful -- this thread is going to be
1290 stepped now; or 0 if displaced stepping this thread got queued. */
1291 static int
1292 displaced_step_prepare (ptid_t ptid)
1293 {
1294 struct cleanup *old_cleanups, *ignore_cleanups;
1295 struct regcache *regcache = get_thread_regcache (ptid);
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 CORE_ADDR original, copy;
1298 ULONGEST len;
1299 struct displaced_step_closure *closure;
1300 struct displaced_step_inferior_state *displaced;
1301 int status;
1302
1303 /* We should never reach this function if the architecture does not
1304 support displaced stepping. */
1305 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1306
1307 /* We have to displaced step one thread at a time, as we only have
1308 access to a single scratch space per inferior. */
1309
1310 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1311
1312 if (!ptid_equal (displaced->step_ptid, null_ptid))
1313 {
1314 /* Already waiting for a displaced step to finish. Defer this
1315 request and place in queue. */
1316 struct displaced_step_request *req, *new_req;
1317
1318 if (debug_displaced)
1319 fprintf_unfiltered (gdb_stdlog,
1320 "displaced: defering step of %s\n",
1321 target_pid_to_str (ptid));
1322
1323 new_req = xmalloc (sizeof (*new_req));
1324 new_req->ptid = ptid;
1325 new_req->next = NULL;
1326
1327 if (displaced->step_request_queue)
1328 {
1329 for (req = displaced->step_request_queue;
1330 req && req->next;
1331 req = req->next)
1332 ;
1333 req->next = new_req;
1334 }
1335 else
1336 displaced->step_request_queue = new_req;
1337
1338 return 0;
1339 }
1340 else
1341 {
1342 if (debug_displaced)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "displaced: stepping %s now\n",
1345 target_pid_to_str (ptid));
1346 }
1347
1348 displaced_step_clear (displaced);
1349
1350 old_cleanups = save_inferior_ptid ();
1351 inferior_ptid = ptid;
1352
1353 original = regcache_read_pc (regcache);
1354
1355 copy = gdbarch_displaced_step_location (gdbarch);
1356 len = gdbarch_max_insn_length (gdbarch);
1357
1358 /* Save the original contents of the copy area. */
1359 displaced->step_saved_copy = xmalloc (len);
1360 ignore_cleanups = make_cleanup (free_current_contents,
1361 &displaced->step_saved_copy);
1362 status = target_read_memory (copy, displaced->step_saved_copy, len);
1363 if (status != 0)
1364 throw_error (MEMORY_ERROR,
1365 _("Error accessing memory address %s (%s) for "
1366 "displaced-stepping scratch space."),
1367 paddress (gdbarch, copy), safe_strerror (status));
1368 if (debug_displaced)
1369 {
1370 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1371 paddress (gdbarch, copy));
1372 displaced_step_dump_bytes (gdb_stdlog,
1373 displaced->step_saved_copy,
1374 len);
1375 };
1376
1377 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1378 original, copy, regcache);
1379
1380 /* We don't support the fully-simulated case at present. */
1381 gdb_assert (closure);
1382
1383 /* Save the information we need to fix things up if the step
1384 succeeds. */
1385 displaced->step_ptid = ptid;
1386 displaced->step_gdbarch = gdbarch;
1387 displaced->step_closure = closure;
1388 displaced->step_original = original;
1389 displaced->step_copy = copy;
1390
1391 make_cleanup (displaced_step_clear_cleanup, displaced);
1392
1393 /* Resume execution at the copy. */
1394 regcache_write_pc (regcache, copy);
1395
1396 discard_cleanups (ignore_cleanups);
1397
1398 do_cleanups (old_cleanups);
1399
1400 if (debug_displaced)
1401 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1402 paddress (gdbarch, copy));
1403
1404 return 1;
1405 }
1406
1407 static void
1408 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1409 const gdb_byte *myaddr, int len)
1410 {
1411 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1412
1413 inferior_ptid = ptid;
1414 write_memory (memaddr, myaddr, len);
1415 do_cleanups (ptid_cleanup);
1416 }
1417
1418 /* Restore the contents of the copy area for thread PTID. */
1419
1420 static void
1421 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1422 ptid_t ptid)
1423 {
1424 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1425
1426 write_memory_ptid (ptid, displaced->step_copy,
1427 displaced->step_saved_copy, len);
1428 if (debug_displaced)
1429 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1430 target_pid_to_str (ptid),
1431 paddress (displaced->step_gdbarch,
1432 displaced->step_copy));
1433 }
1434
1435 static void
1436 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1437 {
1438 struct cleanup *old_cleanups;
1439 struct displaced_step_inferior_state *displaced
1440 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1441
1442 /* Was any thread of this process doing a displaced step? */
1443 if (displaced == NULL)
1444 return;
1445
1446 /* Was this event for the pid we displaced? */
1447 if (ptid_equal (displaced->step_ptid, null_ptid)
1448 || ! ptid_equal (displaced->step_ptid, event_ptid))
1449 return;
1450
1451 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1452
1453 displaced_step_restore (displaced, displaced->step_ptid);
1454
1455 /* Did the instruction complete successfully? */
1456 if (signal == GDB_SIGNAL_TRAP)
1457 {
1458 /* Fix up the resulting state. */
1459 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1460 displaced->step_closure,
1461 displaced->step_original,
1462 displaced->step_copy,
1463 get_thread_regcache (displaced->step_ptid));
1464 }
1465 else
1466 {
1467 /* Since the instruction didn't complete, all we can do is
1468 relocate the PC. */
1469 struct regcache *regcache = get_thread_regcache (event_ptid);
1470 CORE_ADDR pc = regcache_read_pc (regcache);
1471
1472 pc = displaced->step_original + (pc - displaced->step_copy);
1473 regcache_write_pc (regcache, pc);
1474 }
1475
1476 do_cleanups (old_cleanups);
1477
1478 displaced->step_ptid = null_ptid;
1479
1480 /* Are there any pending displaced stepping requests? If so, run
1481 one now. Leave the state object around, since we're likely to
1482 need it again soon. */
1483 while (displaced->step_request_queue)
1484 {
1485 struct displaced_step_request *head;
1486 ptid_t ptid;
1487 struct regcache *regcache;
1488 struct gdbarch *gdbarch;
1489 CORE_ADDR actual_pc;
1490 struct address_space *aspace;
1491
1492 head = displaced->step_request_queue;
1493 ptid = head->ptid;
1494 displaced->step_request_queue = head->next;
1495 xfree (head);
1496
1497 context_switch (ptid);
1498
1499 regcache = get_thread_regcache (ptid);
1500 actual_pc = regcache_read_pc (regcache);
1501 aspace = get_regcache_aspace (regcache);
1502
1503 if (breakpoint_here_p (aspace, actual_pc))
1504 {
1505 if (debug_displaced)
1506 fprintf_unfiltered (gdb_stdlog,
1507 "displaced: stepping queued %s now\n",
1508 target_pid_to_str (ptid));
1509
1510 displaced_step_prepare (ptid);
1511
1512 gdbarch = get_regcache_arch (regcache);
1513
1514 if (debug_displaced)
1515 {
1516 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1517 gdb_byte buf[4];
1518
1519 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1520 paddress (gdbarch, actual_pc));
1521 read_memory (actual_pc, buf, sizeof (buf));
1522 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1523 }
1524
1525 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1526 displaced->step_closure))
1527 target_resume (ptid, 1, GDB_SIGNAL_0);
1528 else
1529 target_resume (ptid, 0, GDB_SIGNAL_0);
1530
1531 /* Done, we're stepping a thread. */
1532 break;
1533 }
1534 else
1535 {
1536 int step;
1537 struct thread_info *tp = inferior_thread ();
1538
1539 /* The breakpoint we were sitting under has since been
1540 removed. */
1541 tp->control.trap_expected = 0;
1542
1543 /* Go back to what we were trying to do. */
1544 step = currently_stepping (tp);
1545
1546 if (debug_displaced)
1547 fprintf_unfiltered (gdb_stdlog,
1548 "displaced: breakpoint is gone: %s, step(%d)\n",
1549 target_pid_to_str (tp->ptid), step);
1550
1551 target_resume (ptid, step, GDB_SIGNAL_0);
1552 tp->suspend.stop_signal = GDB_SIGNAL_0;
1553
1554 /* This request was discarded. See if there's any other
1555 thread waiting for its turn. */
1556 }
1557 }
1558 }
1559
1560 /* Update global variables holding ptids to hold NEW_PTID if they were
1561 holding OLD_PTID. */
1562 static void
1563 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1564 {
1565 struct displaced_step_request *it;
1566 struct displaced_step_inferior_state *displaced;
1567
1568 if (ptid_equal (inferior_ptid, old_ptid))
1569 inferior_ptid = new_ptid;
1570
1571 if (ptid_equal (singlestep_ptid, old_ptid))
1572 singlestep_ptid = new_ptid;
1573
1574 if (ptid_equal (deferred_step_ptid, old_ptid))
1575 deferred_step_ptid = new_ptid;
1576
1577 for (displaced = displaced_step_inferior_states;
1578 displaced;
1579 displaced = displaced->next)
1580 {
1581 if (ptid_equal (displaced->step_ptid, old_ptid))
1582 displaced->step_ptid = new_ptid;
1583
1584 for (it = displaced->step_request_queue; it; it = it->next)
1585 if (ptid_equal (it->ptid, old_ptid))
1586 it->ptid = new_ptid;
1587 }
1588 }
1589
1590 \f
1591 /* Resuming. */
1592
1593 /* Things to clean up if we QUIT out of resume (). */
1594 static void
1595 resume_cleanups (void *ignore)
1596 {
1597 normal_stop ();
1598 }
1599
1600 static const char schedlock_off[] = "off";
1601 static const char schedlock_on[] = "on";
1602 static const char schedlock_step[] = "step";
1603 static const char *const scheduler_enums[] = {
1604 schedlock_off,
1605 schedlock_on,
1606 schedlock_step,
1607 NULL
1608 };
1609 static const char *scheduler_mode = schedlock_off;
1610 static void
1611 show_scheduler_mode (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1613 {
1614 fprintf_filtered (file,
1615 _("Mode for locking scheduler "
1616 "during execution is \"%s\".\n"),
1617 value);
1618 }
1619
1620 static void
1621 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1622 {
1623 if (!target_can_lock_scheduler)
1624 {
1625 scheduler_mode = schedlock_off;
1626 error (_("Target '%s' cannot support this command."), target_shortname);
1627 }
1628 }
1629
1630 /* True if execution commands resume all threads of all processes by
1631 default; otherwise, resume only threads of the current inferior
1632 process. */
1633 int sched_multi = 0;
1634
1635 /* Try to setup for software single stepping over the specified location.
1636 Return 1 if target_resume() should use hardware single step.
1637
1638 GDBARCH the current gdbarch.
1639 PC the location to step over. */
1640
1641 static int
1642 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1643 {
1644 int hw_step = 1;
1645
1646 if (execution_direction == EXEC_FORWARD
1647 && gdbarch_software_single_step_p (gdbarch)
1648 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1649 {
1650 hw_step = 0;
1651 /* Do not pull these breakpoints until after a `wait' in
1652 `wait_for_inferior'. */
1653 singlestep_breakpoints_inserted_p = 1;
1654 singlestep_ptid = inferior_ptid;
1655 singlestep_pc = pc;
1656 }
1657 return hw_step;
1658 }
1659
1660 /* Return a ptid representing the set of threads that we will proceed,
1661 in the perspective of the user/frontend. We may actually resume
1662 fewer threads at first, e.g., if a thread is stopped at a
1663 breakpoint that needs stepping-off, but that should not be visible
1664 to the user/frontend, and neither should the frontend/user be
1665 allowed to proceed any of the threads that happen to be stopped for
1666 internal run control handling, if a previous command wanted them
1667 resumed. */
1668
1669 ptid_t
1670 user_visible_resume_ptid (int step)
1671 {
1672 /* By default, resume all threads of all processes. */
1673 ptid_t resume_ptid = RESUME_ALL;
1674
1675 /* Maybe resume only all threads of the current process. */
1676 if (!sched_multi && target_supports_multi_process ())
1677 {
1678 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1679 }
1680
1681 /* Maybe resume a single thread after all. */
1682 if (non_stop)
1683 {
1684 /* With non-stop mode on, threads are always handled
1685 individually. */
1686 resume_ptid = inferior_ptid;
1687 }
1688 else if ((scheduler_mode == schedlock_on)
1689 || (scheduler_mode == schedlock_step
1690 && (step || singlestep_breakpoints_inserted_p)))
1691 {
1692 /* User-settable 'scheduler' mode requires solo thread resume. */
1693 resume_ptid = inferior_ptid;
1694 }
1695
1696 return resume_ptid;
1697 }
1698
1699 /* Resume the inferior, but allow a QUIT. This is useful if the user
1700 wants to interrupt some lengthy single-stepping operation
1701 (for child processes, the SIGINT goes to the inferior, and so
1702 we get a SIGINT random_signal, but for remote debugging and perhaps
1703 other targets, that's not true).
1704
1705 STEP nonzero if we should step (zero to continue instead).
1706 SIG is the signal to give the inferior (zero for none). */
1707 void
1708 resume (int step, enum gdb_signal sig)
1709 {
1710 int should_resume = 1;
1711 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1712 struct regcache *regcache = get_current_regcache ();
1713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1714 struct thread_info *tp = inferior_thread ();
1715 CORE_ADDR pc = regcache_read_pc (regcache);
1716 struct address_space *aspace = get_regcache_aspace (regcache);
1717
1718 QUIT;
1719
1720 if (current_inferior ()->waiting_for_vfork_done)
1721 {
1722 /* Don't try to single-step a vfork parent that is waiting for
1723 the child to get out of the shared memory region (by exec'ing
1724 or exiting). This is particularly important on software
1725 single-step archs, as the child process would trip on the
1726 software single step breakpoint inserted for the parent
1727 process. Since the parent will not actually execute any
1728 instruction until the child is out of the shared region (such
1729 are vfork's semantics), it is safe to simply continue it.
1730 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1731 the parent, and tell it to `keep_going', which automatically
1732 re-sets it stepping. */
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "infrun: resume : clear step\n");
1736 step = 0;
1737 }
1738
1739 if (debug_infrun)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "infrun: resume (step=%d, signal=%d), "
1742 "trap_expected=%d, current thread [%s] at %s\n",
1743 step, sig, tp->control.trap_expected,
1744 target_pid_to_str (inferior_ptid),
1745 paddress (gdbarch, pc));
1746
1747 /* Normally, by the time we reach `resume', the breakpoints are either
1748 removed or inserted, as appropriate. The exception is if we're sitting
1749 at a permanent breakpoint; we need to step over it, but permanent
1750 breakpoints can't be removed. So we have to test for it here. */
1751 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1752 {
1753 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1754 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1755 else
1756 error (_("\
1757 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1758 how to step past a permanent breakpoint on this architecture. Try using\n\
1759 a command like `return' or `jump' to continue execution."));
1760 }
1761
1762 /* If enabled, step over breakpoints by executing a copy of the
1763 instruction at a different address.
1764
1765 We can't use displaced stepping when we have a signal to deliver;
1766 the comments for displaced_step_prepare explain why. The
1767 comments in the handle_inferior event for dealing with 'random
1768 signals' explain what we do instead.
1769
1770 We can't use displaced stepping when we are waiting for vfork_done
1771 event, displaced stepping breaks the vfork child similarly as single
1772 step software breakpoint. */
1773 if (use_displaced_stepping (gdbarch)
1774 && (tp->control.trap_expected
1775 || (step && gdbarch_software_single_step_p (gdbarch)))
1776 && sig == GDB_SIGNAL_0
1777 && !current_inferior ()->waiting_for_vfork_done)
1778 {
1779 struct displaced_step_inferior_state *displaced;
1780
1781 if (!displaced_step_prepare (inferior_ptid))
1782 {
1783 /* Got placed in displaced stepping queue. Will be resumed
1784 later when all the currently queued displaced stepping
1785 requests finish. The thread is not executing at this point,
1786 and the call to set_executing will be made later. But we
1787 need to call set_running here, since from frontend point of view,
1788 the thread is running. */
1789 set_running (inferior_ptid, 1);
1790 discard_cleanups (old_cleanups);
1791 return;
1792 }
1793
1794 /* Update pc to reflect the new address from which we will execute
1795 instructions due to displaced stepping. */
1796 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1797
1798 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1799 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1800 displaced->step_closure);
1801 }
1802
1803 /* Do we need to do it the hard way, w/temp breakpoints? */
1804 else if (step)
1805 step = maybe_software_singlestep (gdbarch, pc);
1806
1807 /* Currently, our software single-step implementation leads to different
1808 results than hardware single-stepping in one situation: when stepping
1809 into delivering a signal which has an associated signal handler,
1810 hardware single-step will stop at the first instruction of the handler,
1811 while software single-step will simply skip execution of the handler.
1812
1813 For now, this difference in behavior is accepted since there is no
1814 easy way to actually implement single-stepping into a signal handler
1815 without kernel support.
1816
1817 However, there is one scenario where this difference leads to follow-on
1818 problems: if we're stepping off a breakpoint by removing all breakpoints
1819 and then single-stepping. In this case, the software single-step
1820 behavior means that even if there is a *breakpoint* in the signal
1821 handler, GDB still would not stop.
1822
1823 Fortunately, we can at least fix this particular issue. We detect
1824 here the case where we are about to deliver a signal while software
1825 single-stepping with breakpoints removed. In this situation, we
1826 revert the decisions to remove all breakpoints and insert single-
1827 step breakpoints, and instead we install a step-resume breakpoint
1828 at the current address, deliver the signal without stepping, and
1829 once we arrive back at the step-resume breakpoint, actually step
1830 over the breakpoint we originally wanted to step over. */
1831 if (singlestep_breakpoints_inserted_p
1832 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1833 {
1834 /* If we have nested signals or a pending signal is delivered
1835 immediately after a handler returns, might might already have
1836 a step-resume breakpoint set on the earlier handler. We cannot
1837 set another step-resume breakpoint; just continue on until the
1838 original breakpoint is hit. */
1839 if (tp->control.step_resume_breakpoint == NULL)
1840 {
1841 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1842 tp->step_after_step_resume_breakpoint = 1;
1843 }
1844
1845 remove_single_step_breakpoints ();
1846 singlestep_breakpoints_inserted_p = 0;
1847
1848 insert_breakpoints ();
1849 tp->control.trap_expected = 0;
1850 }
1851
1852 if (should_resume)
1853 {
1854 ptid_t resume_ptid;
1855
1856 /* If STEP is set, it's a request to use hardware stepping
1857 facilities. But in that case, we should never
1858 use singlestep breakpoint. */
1859 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1860
1861 /* Decide the set of threads to ask the target to resume. Start
1862 by assuming everything will be resumed, than narrow the set
1863 by applying increasingly restricting conditions. */
1864 resume_ptid = user_visible_resume_ptid (step);
1865
1866 /* Maybe resume a single thread after all. */
1867 if (singlestep_breakpoints_inserted_p
1868 && stepping_past_singlestep_breakpoint)
1869 {
1870 /* The situation here is as follows. In thread T1 we wanted to
1871 single-step. Lacking hardware single-stepping we've
1872 set breakpoint at the PC of the next instruction -- call it
1873 P. After resuming, we've hit that breakpoint in thread T2.
1874 Now we've removed original breakpoint, inserted breakpoint
1875 at P+1, and try to step to advance T2 past breakpoint.
1876 We need to step only T2, as if T1 is allowed to freely run,
1877 it can run past P, and if other threads are allowed to run,
1878 they can hit breakpoint at P+1, and nested hits of single-step
1879 breakpoints is not something we'd want -- that's complicated
1880 to support, and has no value. */
1881 resume_ptid = inferior_ptid;
1882 }
1883 else if ((step || singlestep_breakpoints_inserted_p)
1884 && tp->control.trap_expected)
1885 {
1886 /* We're allowing a thread to run past a breakpoint it has
1887 hit, by single-stepping the thread with the breakpoint
1888 removed. In which case, we need to single-step only this
1889 thread, and keep others stopped, as they can miss this
1890 breakpoint if allowed to run.
1891
1892 The current code actually removes all breakpoints when
1893 doing this, not just the one being stepped over, so if we
1894 let other threads run, we can actually miss any
1895 breakpoint, not just the one at PC. */
1896 resume_ptid = inferior_ptid;
1897 }
1898
1899 if (gdbarch_cannot_step_breakpoint (gdbarch))
1900 {
1901 /* Most targets can step a breakpoint instruction, thus
1902 executing it normally. But if this one cannot, just
1903 continue and we will hit it anyway. */
1904 if (step && breakpoint_inserted_here_p (aspace, pc))
1905 step = 0;
1906 }
1907
1908 if (debug_displaced
1909 && use_displaced_stepping (gdbarch)
1910 && tp->control.trap_expected)
1911 {
1912 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1913 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1914 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1915 gdb_byte buf[4];
1916
1917 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1918 paddress (resume_gdbarch, actual_pc));
1919 read_memory (actual_pc, buf, sizeof (buf));
1920 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1921 }
1922
1923 /* Install inferior's terminal modes. */
1924 target_terminal_inferior ();
1925
1926 /* Avoid confusing the next resume, if the next stop/resume
1927 happens to apply to another thread. */
1928 tp->suspend.stop_signal = GDB_SIGNAL_0;
1929
1930 /* Advise target which signals may be handled silently. If we have
1931 removed breakpoints because we are stepping over one (which can
1932 happen only if we are not using displaced stepping), we need to
1933 receive all signals to avoid accidentally skipping a breakpoint
1934 during execution of a signal handler. */
1935 if ((step || singlestep_breakpoints_inserted_p)
1936 && tp->control.trap_expected
1937 && !use_displaced_stepping (gdbarch))
1938 target_pass_signals (0, NULL);
1939 else
1940 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1941
1942 target_resume (resume_ptid, step, sig);
1943 }
1944
1945 discard_cleanups (old_cleanups);
1946 }
1947 \f
1948 /* Proceeding. */
1949
1950 /* Clear out all variables saying what to do when inferior is continued.
1951 First do this, then set the ones you want, then call `proceed'. */
1952
1953 static void
1954 clear_proceed_status_thread (struct thread_info *tp)
1955 {
1956 if (debug_infrun)
1957 fprintf_unfiltered (gdb_stdlog,
1958 "infrun: clear_proceed_status_thread (%s)\n",
1959 target_pid_to_str (tp->ptid));
1960
1961 tp->control.trap_expected = 0;
1962 tp->control.step_range_start = 0;
1963 tp->control.step_range_end = 0;
1964 tp->control.step_frame_id = null_frame_id;
1965 tp->control.step_stack_frame_id = null_frame_id;
1966 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1967 tp->stop_requested = 0;
1968
1969 tp->control.stop_step = 0;
1970
1971 tp->control.proceed_to_finish = 0;
1972
1973 /* Discard any remaining commands or status from previous stop. */
1974 bpstat_clear (&tp->control.stop_bpstat);
1975 }
1976
1977 static int
1978 clear_proceed_status_callback (struct thread_info *tp, void *data)
1979 {
1980 if (is_exited (tp->ptid))
1981 return 0;
1982
1983 clear_proceed_status_thread (tp);
1984 return 0;
1985 }
1986
1987 void
1988 clear_proceed_status (void)
1989 {
1990 if (!non_stop)
1991 {
1992 /* In all-stop mode, delete the per-thread status of all
1993 threads, even if inferior_ptid is null_ptid, there may be
1994 threads on the list. E.g., we may be launching a new
1995 process, while selecting the executable. */
1996 iterate_over_threads (clear_proceed_status_callback, NULL);
1997 }
1998
1999 if (!ptid_equal (inferior_ptid, null_ptid))
2000 {
2001 struct inferior *inferior;
2002
2003 if (non_stop)
2004 {
2005 /* If in non-stop mode, only delete the per-thread status of
2006 the current thread. */
2007 clear_proceed_status_thread (inferior_thread ());
2008 }
2009
2010 inferior = current_inferior ();
2011 inferior->control.stop_soon = NO_STOP_QUIETLY;
2012 }
2013
2014 stop_after_trap = 0;
2015
2016 observer_notify_about_to_proceed ();
2017
2018 if (stop_registers)
2019 {
2020 regcache_xfree (stop_registers);
2021 stop_registers = NULL;
2022 }
2023 }
2024
2025 /* Check the current thread against the thread that reported the most recent
2026 event. If a step-over is required return TRUE and set the current thread
2027 to the old thread. Otherwise return FALSE.
2028
2029 This should be suitable for any targets that support threads. */
2030
2031 static int
2032 prepare_to_proceed (int step)
2033 {
2034 ptid_t wait_ptid;
2035 struct target_waitstatus wait_status;
2036 int schedlock_enabled;
2037
2038 /* With non-stop mode on, threads are always handled individually. */
2039 gdb_assert (! non_stop);
2040
2041 /* Get the last target status returned by target_wait(). */
2042 get_last_target_status (&wait_ptid, &wait_status);
2043
2044 /* Make sure we were stopped at a breakpoint. */
2045 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2046 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2047 && wait_status.value.sig != GDB_SIGNAL_ILL
2048 && wait_status.value.sig != GDB_SIGNAL_SEGV
2049 && wait_status.value.sig != GDB_SIGNAL_EMT))
2050 {
2051 return 0;
2052 }
2053
2054 schedlock_enabled = (scheduler_mode == schedlock_on
2055 || (scheduler_mode == schedlock_step
2056 && step));
2057
2058 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2059 if (schedlock_enabled)
2060 return 0;
2061
2062 /* Don't switch over if we're about to resume some other process
2063 other than WAIT_PTID's, and schedule-multiple is off. */
2064 if (!sched_multi
2065 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2066 return 0;
2067
2068 /* Switched over from WAIT_PID. */
2069 if (!ptid_equal (wait_ptid, minus_one_ptid)
2070 && !ptid_equal (inferior_ptid, wait_ptid))
2071 {
2072 struct regcache *regcache = get_thread_regcache (wait_ptid);
2073
2074 if (breakpoint_here_p (get_regcache_aspace (regcache),
2075 regcache_read_pc (regcache)))
2076 {
2077 /* If stepping, remember current thread to switch back to. */
2078 if (step)
2079 deferred_step_ptid = inferior_ptid;
2080
2081 /* Switch back to WAIT_PID thread. */
2082 switch_to_thread (wait_ptid);
2083
2084 if (debug_infrun)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "infrun: prepare_to_proceed (step=%d), "
2087 "switched to [%s]\n",
2088 step, target_pid_to_str (inferior_ptid));
2089
2090 /* We return 1 to indicate that there is a breakpoint here,
2091 so we need to step over it before continuing to avoid
2092 hitting it straight away. */
2093 return 1;
2094 }
2095 }
2096
2097 return 0;
2098 }
2099
2100 /* Basic routine for continuing the program in various fashions.
2101
2102 ADDR is the address to resume at, or -1 for resume where stopped.
2103 SIGGNAL is the signal to give it, or 0 for none,
2104 or -1 for act according to how it stopped.
2105 STEP is nonzero if should trap after one instruction.
2106 -1 means return after that and print nothing.
2107 You should probably set various step_... variables
2108 before calling here, if you are stepping.
2109
2110 You should call clear_proceed_status before calling proceed. */
2111
2112 void
2113 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2114 {
2115 struct regcache *regcache;
2116 struct gdbarch *gdbarch;
2117 struct thread_info *tp;
2118 CORE_ADDR pc;
2119 struct address_space *aspace;
2120 int oneproc = 0;
2121
2122 /* If we're stopped at a fork/vfork, follow the branch set by the
2123 "set follow-fork-mode" command; otherwise, we'll just proceed
2124 resuming the current thread. */
2125 if (!follow_fork ())
2126 {
2127 /* The target for some reason decided not to resume. */
2128 normal_stop ();
2129 if (target_can_async_p ())
2130 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2131 return;
2132 }
2133
2134 /* We'll update this if & when we switch to a new thread. */
2135 previous_inferior_ptid = inferior_ptid;
2136
2137 regcache = get_current_regcache ();
2138 gdbarch = get_regcache_arch (regcache);
2139 aspace = get_regcache_aspace (regcache);
2140 pc = regcache_read_pc (regcache);
2141
2142 if (step > 0)
2143 step_start_function = find_pc_function (pc);
2144 if (step < 0)
2145 stop_after_trap = 1;
2146
2147 if (addr == (CORE_ADDR) -1)
2148 {
2149 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2150 && execution_direction != EXEC_REVERSE)
2151 /* There is a breakpoint at the address we will resume at,
2152 step one instruction before inserting breakpoints so that
2153 we do not stop right away (and report a second hit at this
2154 breakpoint).
2155
2156 Note, we don't do this in reverse, because we won't
2157 actually be executing the breakpoint insn anyway.
2158 We'll be (un-)executing the previous instruction. */
2159
2160 oneproc = 1;
2161 else if (gdbarch_single_step_through_delay_p (gdbarch)
2162 && gdbarch_single_step_through_delay (gdbarch,
2163 get_current_frame ()))
2164 /* We stepped onto an instruction that needs to be stepped
2165 again before re-inserting the breakpoint, do so. */
2166 oneproc = 1;
2167 }
2168 else
2169 {
2170 regcache_write_pc (regcache, addr);
2171 }
2172
2173 if (debug_infrun)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2176 paddress (gdbarch, addr), siggnal, step);
2177
2178 if (non_stop)
2179 /* In non-stop, each thread is handled individually. The context
2180 must already be set to the right thread here. */
2181 ;
2182 else
2183 {
2184 /* In a multi-threaded task we may select another thread and
2185 then continue or step.
2186
2187 But if the old thread was stopped at a breakpoint, it will
2188 immediately cause another breakpoint stop without any
2189 execution (i.e. it will report a breakpoint hit incorrectly).
2190 So we must step over it first.
2191
2192 prepare_to_proceed checks the current thread against the
2193 thread that reported the most recent event. If a step-over
2194 is required it returns TRUE and sets the current thread to
2195 the old thread. */
2196 if (prepare_to_proceed (step))
2197 oneproc = 1;
2198 }
2199
2200 /* prepare_to_proceed may change the current thread. */
2201 tp = inferior_thread ();
2202
2203 if (oneproc)
2204 {
2205 tp->control.trap_expected = 1;
2206 /* If displaced stepping is enabled, we can step over the
2207 breakpoint without hitting it, so leave all breakpoints
2208 inserted. Otherwise we need to disable all breakpoints, step
2209 one instruction, and then re-add them when that step is
2210 finished. */
2211 if (!use_displaced_stepping (gdbarch))
2212 remove_breakpoints ();
2213 }
2214
2215 /* We can insert breakpoints if we're not trying to step over one,
2216 or if we are stepping over one but we're using displaced stepping
2217 to do so. */
2218 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2219 insert_breakpoints ();
2220
2221 if (!non_stop)
2222 {
2223 /* Pass the last stop signal to the thread we're resuming,
2224 irrespective of whether the current thread is the thread that
2225 got the last event or not. This was historically GDB's
2226 behaviour before keeping a stop_signal per thread. */
2227
2228 struct thread_info *last_thread;
2229 ptid_t last_ptid;
2230 struct target_waitstatus last_status;
2231
2232 get_last_target_status (&last_ptid, &last_status);
2233 if (!ptid_equal (inferior_ptid, last_ptid)
2234 && !ptid_equal (last_ptid, null_ptid)
2235 && !ptid_equal (last_ptid, minus_one_ptid))
2236 {
2237 last_thread = find_thread_ptid (last_ptid);
2238 if (last_thread)
2239 {
2240 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2241 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2242 }
2243 }
2244 }
2245
2246 if (siggnal != GDB_SIGNAL_DEFAULT)
2247 tp->suspend.stop_signal = siggnal;
2248 /* If this signal should not be seen by program,
2249 give it zero. Used for debugging signals. */
2250 else if (!signal_program[tp->suspend.stop_signal])
2251 tp->suspend.stop_signal = GDB_SIGNAL_0;
2252
2253 annotate_starting ();
2254
2255 /* Make sure that output from GDB appears before output from the
2256 inferior. */
2257 gdb_flush (gdb_stdout);
2258
2259 /* Refresh prev_pc value just prior to resuming. This used to be
2260 done in stop_stepping, however, setting prev_pc there did not handle
2261 scenarios such as inferior function calls or returning from
2262 a function via the return command. In those cases, the prev_pc
2263 value was not set properly for subsequent commands. The prev_pc value
2264 is used to initialize the starting line number in the ecs. With an
2265 invalid value, the gdb next command ends up stopping at the position
2266 represented by the next line table entry past our start position.
2267 On platforms that generate one line table entry per line, this
2268 is not a problem. However, on the ia64, the compiler generates
2269 extraneous line table entries that do not increase the line number.
2270 When we issue the gdb next command on the ia64 after an inferior call
2271 or a return command, we often end up a few instructions forward, still
2272 within the original line we started.
2273
2274 An attempt was made to refresh the prev_pc at the same time the
2275 execution_control_state is initialized (for instance, just before
2276 waiting for an inferior event). But this approach did not work
2277 because of platforms that use ptrace, where the pc register cannot
2278 be read unless the inferior is stopped. At that point, we are not
2279 guaranteed the inferior is stopped and so the regcache_read_pc() call
2280 can fail. Setting the prev_pc value here ensures the value is updated
2281 correctly when the inferior is stopped. */
2282 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2283
2284 /* Fill in with reasonable starting values. */
2285 init_thread_stepping_state (tp);
2286
2287 /* Reset to normal state. */
2288 init_infwait_state ();
2289
2290 /* Resume inferior. */
2291 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2292
2293 /* Wait for it to stop (if not standalone)
2294 and in any case decode why it stopped, and act accordingly. */
2295 /* Do this only if we are not using the event loop, or if the target
2296 does not support asynchronous execution. */
2297 if (!target_can_async_p ())
2298 {
2299 wait_for_inferior ();
2300 normal_stop ();
2301 }
2302 }
2303 \f
2304
2305 /* Start remote-debugging of a machine over a serial link. */
2306
2307 void
2308 start_remote (int from_tty)
2309 {
2310 struct inferior *inferior;
2311
2312 inferior = current_inferior ();
2313 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2314
2315 /* Always go on waiting for the target, regardless of the mode. */
2316 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2317 indicate to wait_for_inferior that a target should timeout if
2318 nothing is returned (instead of just blocking). Because of this,
2319 targets expecting an immediate response need to, internally, set
2320 things up so that the target_wait() is forced to eventually
2321 timeout. */
2322 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2323 differentiate to its caller what the state of the target is after
2324 the initial open has been performed. Here we're assuming that
2325 the target has stopped. It should be possible to eventually have
2326 target_open() return to the caller an indication that the target
2327 is currently running and GDB state should be set to the same as
2328 for an async run. */
2329 wait_for_inferior ();
2330
2331 /* Now that the inferior has stopped, do any bookkeeping like
2332 loading shared libraries. We want to do this before normal_stop,
2333 so that the displayed frame is up to date. */
2334 post_create_inferior (&current_target, from_tty);
2335
2336 normal_stop ();
2337 }
2338
2339 /* Initialize static vars when a new inferior begins. */
2340
2341 void
2342 init_wait_for_inferior (void)
2343 {
2344 /* These are meaningless until the first time through wait_for_inferior. */
2345
2346 breakpoint_init_inferior (inf_starting);
2347
2348 clear_proceed_status ();
2349
2350 stepping_past_singlestep_breakpoint = 0;
2351 deferred_step_ptid = null_ptid;
2352
2353 target_last_wait_ptid = minus_one_ptid;
2354
2355 previous_inferior_ptid = inferior_ptid;
2356 init_infwait_state ();
2357
2358 /* Discard any skipped inlined frames. */
2359 clear_inline_frame_state (minus_one_ptid);
2360 }
2361
2362 \f
2363 /* This enum encodes possible reasons for doing a target_wait, so that
2364 wfi can call target_wait in one place. (Ultimately the call will be
2365 moved out of the infinite loop entirely.) */
2366
2367 enum infwait_states
2368 {
2369 infwait_normal_state,
2370 infwait_thread_hop_state,
2371 infwait_step_watch_state,
2372 infwait_nonstep_watch_state
2373 };
2374
2375 /* The PTID we'll do a target_wait on.*/
2376 ptid_t waiton_ptid;
2377
2378 /* Current inferior wait state. */
2379 enum infwait_states infwait_state;
2380
2381 /* Data to be passed around while handling an event. This data is
2382 discarded between events. */
2383 struct execution_control_state
2384 {
2385 ptid_t ptid;
2386 /* The thread that got the event, if this was a thread event; NULL
2387 otherwise. */
2388 struct thread_info *event_thread;
2389
2390 struct target_waitstatus ws;
2391 int random_signal;
2392 int stop_func_filled_in;
2393 CORE_ADDR stop_func_start;
2394 CORE_ADDR stop_func_end;
2395 const char *stop_func_name;
2396 int wait_some_more;
2397 };
2398
2399 static void handle_inferior_event (struct execution_control_state *ecs);
2400
2401 static void handle_step_into_function (struct gdbarch *gdbarch,
2402 struct execution_control_state *ecs);
2403 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2404 struct execution_control_state *ecs);
2405 static void check_exception_resume (struct execution_control_state *,
2406 struct frame_info *);
2407
2408 static void stop_stepping (struct execution_control_state *ecs);
2409 static void prepare_to_wait (struct execution_control_state *ecs);
2410 static void keep_going (struct execution_control_state *ecs);
2411
2412 /* Callback for iterate over threads. If the thread is stopped, but
2413 the user/frontend doesn't know about that yet, go through
2414 normal_stop, as if the thread had just stopped now. ARG points at
2415 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2416 ptid_is_pid(PTID) is true, applies to all threads of the process
2417 pointed at by PTID. Otherwise, apply only to the thread pointed by
2418 PTID. */
2419
2420 static int
2421 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2422 {
2423 ptid_t ptid = * (ptid_t *) arg;
2424
2425 if ((ptid_equal (info->ptid, ptid)
2426 || ptid_equal (minus_one_ptid, ptid)
2427 || (ptid_is_pid (ptid)
2428 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2429 && is_running (info->ptid)
2430 && !is_executing (info->ptid))
2431 {
2432 struct cleanup *old_chain;
2433 struct execution_control_state ecss;
2434 struct execution_control_state *ecs = &ecss;
2435
2436 memset (ecs, 0, sizeof (*ecs));
2437
2438 old_chain = make_cleanup_restore_current_thread ();
2439
2440 /* Go through handle_inferior_event/normal_stop, so we always
2441 have consistent output as if the stop event had been
2442 reported. */
2443 ecs->ptid = info->ptid;
2444 ecs->event_thread = find_thread_ptid (info->ptid);
2445 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2446 ecs->ws.value.sig = GDB_SIGNAL_0;
2447
2448 handle_inferior_event (ecs);
2449
2450 if (!ecs->wait_some_more)
2451 {
2452 struct thread_info *tp;
2453
2454 normal_stop ();
2455
2456 /* Finish off the continuations. */
2457 tp = inferior_thread ();
2458 do_all_intermediate_continuations_thread (tp, 1);
2459 do_all_continuations_thread (tp, 1);
2460 }
2461
2462 do_cleanups (old_chain);
2463 }
2464
2465 return 0;
2466 }
2467
2468 /* This function is attached as a "thread_stop_requested" observer.
2469 Cleanup local state that assumed the PTID was to be resumed, and
2470 report the stop to the frontend. */
2471
2472 static void
2473 infrun_thread_stop_requested (ptid_t ptid)
2474 {
2475 struct displaced_step_inferior_state *displaced;
2476
2477 /* PTID was requested to stop. Remove it from the displaced
2478 stepping queue, so we don't try to resume it automatically. */
2479
2480 for (displaced = displaced_step_inferior_states;
2481 displaced;
2482 displaced = displaced->next)
2483 {
2484 struct displaced_step_request *it, **prev_next_p;
2485
2486 it = displaced->step_request_queue;
2487 prev_next_p = &displaced->step_request_queue;
2488 while (it)
2489 {
2490 if (ptid_match (it->ptid, ptid))
2491 {
2492 *prev_next_p = it->next;
2493 it->next = NULL;
2494 xfree (it);
2495 }
2496 else
2497 {
2498 prev_next_p = &it->next;
2499 }
2500
2501 it = *prev_next_p;
2502 }
2503 }
2504
2505 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2506 }
2507
2508 static void
2509 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2510 {
2511 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2512 nullify_last_target_wait_ptid ();
2513 }
2514
2515 /* Callback for iterate_over_threads. */
2516
2517 static int
2518 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2519 {
2520 if (is_exited (info->ptid))
2521 return 0;
2522
2523 delete_step_resume_breakpoint (info);
2524 delete_exception_resume_breakpoint (info);
2525 return 0;
2526 }
2527
2528 /* In all-stop, delete the step resume breakpoint of any thread that
2529 had one. In non-stop, delete the step resume breakpoint of the
2530 thread that just stopped. */
2531
2532 static void
2533 delete_step_thread_step_resume_breakpoint (void)
2534 {
2535 if (!target_has_execution
2536 || ptid_equal (inferior_ptid, null_ptid))
2537 /* If the inferior has exited, we have already deleted the step
2538 resume breakpoints out of GDB's lists. */
2539 return;
2540
2541 if (non_stop)
2542 {
2543 /* If in non-stop mode, only delete the step-resume or
2544 longjmp-resume breakpoint of the thread that just stopped
2545 stepping. */
2546 struct thread_info *tp = inferior_thread ();
2547
2548 delete_step_resume_breakpoint (tp);
2549 delete_exception_resume_breakpoint (tp);
2550 }
2551 else
2552 /* In all-stop mode, delete all step-resume and longjmp-resume
2553 breakpoints of any thread that had them. */
2554 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2555 }
2556
2557 /* A cleanup wrapper. */
2558
2559 static void
2560 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2561 {
2562 delete_step_thread_step_resume_breakpoint ();
2563 }
2564
2565 /* Pretty print the results of target_wait, for debugging purposes. */
2566
2567 static void
2568 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2569 const struct target_waitstatus *ws)
2570 {
2571 char *status_string = target_waitstatus_to_string (ws);
2572 struct ui_file *tmp_stream = mem_fileopen ();
2573 char *text;
2574
2575 /* The text is split over several lines because it was getting too long.
2576 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2577 output as a unit; we want only one timestamp printed if debug_timestamp
2578 is set. */
2579
2580 fprintf_unfiltered (tmp_stream,
2581 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2582 if (PIDGET (waiton_ptid) != -1)
2583 fprintf_unfiltered (tmp_stream,
2584 " [%s]", target_pid_to_str (waiton_ptid));
2585 fprintf_unfiltered (tmp_stream, ", status) =\n");
2586 fprintf_unfiltered (tmp_stream,
2587 "infrun: %d [%s],\n",
2588 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2589 fprintf_unfiltered (tmp_stream,
2590 "infrun: %s\n",
2591 status_string);
2592
2593 text = ui_file_xstrdup (tmp_stream, NULL);
2594
2595 /* This uses %s in part to handle %'s in the text, but also to avoid
2596 a gcc error: the format attribute requires a string literal. */
2597 fprintf_unfiltered (gdb_stdlog, "%s", text);
2598
2599 xfree (status_string);
2600 xfree (text);
2601 ui_file_delete (tmp_stream);
2602 }
2603
2604 /* Prepare and stabilize the inferior for detaching it. E.g.,
2605 detaching while a thread is displaced stepping is a recipe for
2606 crashing it, as nothing would readjust the PC out of the scratch
2607 pad. */
2608
2609 void
2610 prepare_for_detach (void)
2611 {
2612 struct inferior *inf = current_inferior ();
2613 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2614 struct cleanup *old_chain_1;
2615 struct displaced_step_inferior_state *displaced;
2616
2617 displaced = get_displaced_stepping_state (inf->pid);
2618
2619 /* Is any thread of this process displaced stepping? If not,
2620 there's nothing else to do. */
2621 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2622 return;
2623
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "displaced-stepping in-process while detaching");
2627
2628 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2629 inf->detaching = 1;
2630
2631 while (!ptid_equal (displaced->step_ptid, null_ptid))
2632 {
2633 struct cleanup *old_chain_2;
2634 struct execution_control_state ecss;
2635 struct execution_control_state *ecs;
2636
2637 ecs = &ecss;
2638 memset (ecs, 0, sizeof (*ecs));
2639
2640 overlay_cache_invalid = 1;
2641
2642 if (deprecated_target_wait_hook)
2643 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2644 else
2645 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2646
2647 if (debug_infrun)
2648 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2649
2650 /* If an error happens while handling the event, propagate GDB's
2651 knowledge of the executing state to the frontend/user running
2652 state. */
2653 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2654 &minus_one_ptid);
2655
2656 /* Now figure out what to do with the result of the result. */
2657 handle_inferior_event (ecs);
2658
2659 /* No error, don't finish the state yet. */
2660 discard_cleanups (old_chain_2);
2661
2662 /* Breakpoints and watchpoints are not installed on the target
2663 at this point, and signals are passed directly to the
2664 inferior, so this must mean the process is gone. */
2665 if (!ecs->wait_some_more)
2666 {
2667 discard_cleanups (old_chain_1);
2668 error (_("Program exited while detaching"));
2669 }
2670 }
2671
2672 discard_cleanups (old_chain_1);
2673 }
2674
2675 /* Wait for control to return from inferior to debugger.
2676
2677 If inferior gets a signal, we may decide to start it up again
2678 instead of returning. That is why there is a loop in this function.
2679 When this function actually returns it means the inferior
2680 should be left stopped and GDB should read more commands. */
2681
2682 void
2683 wait_for_inferior (void)
2684 {
2685 struct cleanup *old_cleanups;
2686
2687 if (debug_infrun)
2688 fprintf_unfiltered
2689 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2690
2691 old_cleanups =
2692 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2693
2694 while (1)
2695 {
2696 struct execution_control_state ecss;
2697 struct execution_control_state *ecs = &ecss;
2698 struct cleanup *old_chain;
2699
2700 memset (ecs, 0, sizeof (*ecs));
2701
2702 overlay_cache_invalid = 1;
2703
2704 if (deprecated_target_wait_hook)
2705 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2706 else
2707 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2708
2709 if (debug_infrun)
2710 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2711
2712 /* If an error happens while handling the event, propagate GDB's
2713 knowledge of the executing state to the frontend/user running
2714 state. */
2715 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2716
2717 /* Now figure out what to do with the result of the result. */
2718 handle_inferior_event (ecs);
2719
2720 /* No error, don't finish the state yet. */
2721 discard_cleanups (old_chain);
2722
2723 if (!ecs->wait_some_more)
2724 break;
2725 }
2726
2727 do_cleanups (old_cleanups);
2728 }
2729
2730 /* Asynchronous version of wait_for_inferior. It is called by the
2731 event loop whenever a change of state is detected on the file
2732 descriptor corresponding to the target. It can be called more than
2733 once to complete a single execution command. In such cases we need
2734 to keep the state in a global variable ECSS. If it is the last time
2735 that this function is called for a single execution command, then
2736 report to the user that the inferior has stopped, and do the
2737 necessary cleanups. */
2738
2739 void
2740 fetch_inferior_event (void *client_data)
2741 {
2742 struct execution_control_state ecss;
2743 struct execution_control_state *ecs = &ecss;
2744 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2745 struct cleanup *ts_old_chain;
2746 int was_sync = sync_execution;
2747 int cmd_done = 0;
2748
2749 memset (ecs, 0, sizeof (*ecs));
2750
2751 /* We're handling a live event, so make sure we're doing live
2752 debugging. If we're looking at traceframes while the target is
2753 running, we're going to need to get back to that mode after
2754 handling the event. */
2755 if (non_stop)
2756 {
2757 make_cleanup_restore_current_traceframe ();
2758 set_current_traceframe (-1);
2759 }
2760
2761 if (non_stop)
2762 /* In non-stop mode, the user/frontend should not notice a thread
2763 switch due to internal events. Make sure we reverse to the
2764 user selected thread and frame after handling the event and
2765 running any breakpoint commands. */
2766 make_cleanup_restore_current_thread ();
2767
2768 overlay_cache_invalid = 1;
2769
2770 make_cleanup_restore_integer (&execution_direction);
2771 execution_direction = target_execution_direction ();
2772
2773 if (deprecated_target_wait_hook)
2774 ecs->ptid =
2775 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2776 else
2777 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2778
2779 if (debug_infrun)
2780 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2781
2782 /* If an error happens while handling the event, propagate GDB's
2783 knowledge of the executing state to the frontend/user running
2784 state. */
2785 if (!non_stop)
2786 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2787 else
2788 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2789
2790 /* Get executed before make_cleanup_restore_current_thread above to apply
2791 still for the thread which has thrown the exception. */
2792 make_bpstat_clear_actions_cleanup ();
2793
2794 /* Now figure out what to do with the result of the result. */
2795 handle_inferior_event (ecs);
2796
2797 if (!ecs->wait_some_more)
2798 {
2799 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2800
2801 delete_step_thread_step_resume_breakpoint ();
2802
2803 /* We may not find an inferior if this was a process exit. */
2804 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2805 normal_stop ();
2806
2807 if (target_has_execution
2808 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2809 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2810 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2811 && ecs->event_thread->step_multi
2812 && ecs->event_thread->control.stop_step)
2813 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2814 else
2815 {
2816 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2817 cmd_done = 1;
2818 }
2819 }
2820
2821 /* No error, don't finish the thread states yet. */
2822 discard_cleanups (ts_old_chain);
2823
2824 /* Revert thread and frame. */
2825 do_cleanups (old_chain);
2826
2827 /* If the inferior was in sync execution mode, and now isn't,
2828 restore the prompt (a synchronous execution command has finished,
2829 and we're ready for input). */
2830 if (interpreter_async && was_sync && !sync_execution)
2831 display_gdb_prompt (0);
2832
2833 if (cmd_done
2834 && !was_sync
2835 && exec_done_display_p
2836 && (ptid_equal (inferior_ptid, null_ptid)
2837 || !is_running (inferior_ptid)))
2838 printf_unfiltered (_("completed.\n"));
2839 }
2840
2841 /* Record the frame and location we're currently stepping through. */
2842 void
2843 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2844 {
2845 struct thread_info *tp = inferior_thread ();
2846
2847 tp->control.step_frame_id = get_frame_id (frame);
2848 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2849
2850 tp->current_symtab = sal.symtab;
2851 tp->current_line = sal.line;
2852 }
2853
2854 /* Clear context switchable stepping state. */
2855
2856 void
2857 init_thread_stepping_state (struct thread_info *tss)
2858 {
2859 tss->stepping_over_breakpoint = 0;
2860 tss->step_after_step_resume_breakpoint = 0;
2861 }
2862
2863 /* Return the cached copy of the last pid/waitstatus returned by
2864 target_wait()/deprecated_target_wait_hook(). The data is actually
2865 cached by handle_inferior_event(), which gets called immediately
2866 after target_wait()/deprecated_target_wait_hook(). */
2867
2868 void
2869 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2870 {
2871 *ptidp = target_last_wait_ptid;
2872 *status = target_last_waitstatus;
2873 }
2874
2875 void
2876 nullify_last_target_wait_ptid (void)
2877 {
2878 target_last_wait_ptid = minus_one_ptid;
2879 }
2880
2881 /* Switch thread contexts. */
2882
2883 static void
2884 context_switch (ptid_t ptid)
2885 {
2886 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2887 {
2888 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2889 target_pid_to_str (inferior_ptid));
2890 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2891 target_pid_to_str (ptid));
2892 }
2893
2894 switch_to_thread (ptid);
2895 }
2896
2897 static void
2898 adjust_pc_after_break (struct execution_control_state *ecs)
2899 {
2900 struct regcache *regcache;
2901 struct gdbarch *gdbarch;
2902 struct address_space *aspace;
2903 CORE_ADDR breakpoint_pc;
2904
2905 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2906 we aren't, just return.
2907
2908 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2909 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2910 implemented by software breakpoints should be handled through the normal
2911 breakpoint layer.
2912
2913 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2914 different signals (SIGILL or SIGEMT for instance), but it is less
2915 clear where the PC is pointing afterwards. It may not match
2916 gdbarch_decr_pc_after_break. I don't know any specific target that
2917 generates these signals at breakpoints (the code has been in GDB since at
2918 least 1992) so I can not guess how to handle them here.
2919
2920 In earlier versions of GDB, a target with
2921 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2922 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2923 target with both of these set in GDB history, and it seems unlikely to be
2924 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2925
2926 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2927 return;
2928
2929 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2930 return;
2931
2932 /* In reverse execution, when a breakpoint is hit, the instruction
2933 under it has already been de-executed. The reported PC always
2934 points at the breakpoint address, so adjusting it further would
2935 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2936 architecture:
2937
2938 B1 0x08000000 : INSN1
2939 B2 0x08000001 : INSN2
2940 0x08000002 : INSN3
2941 PC -> 0x08000003 : INSN4
2942
2943 Say you're stopped at 0x08000003 as above. Reverse continuing
2944 from that point should hit B2 as below. Reading the PC when the
2945 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2946 been de-executed already.
2947
2948 B1 0x08000000 : INSN1
2949 B2 PC -> 0x08000001 : INSN2
2950 0x08000002 : INSN3
2951 0x08000003 : INSN4
2952
2953 We can't apply the same logic as for forward execution, because
2954 we would wrongly adjust the PC to 0x08000000, since there's a
2955 breakpoint at PC - 1. We'd then report a hit on B1, although
2956 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2957 behaviour. */
2958 if (execution_direction == EXEC_REVERSE)
2959 return;
2960
2961 /* If this target does not decrement the PC after breakpoints, then
2962 we have nothing to do. */
2963 regcache = get_thread_regcache (ecs->ptid);
2964 gdbarch = get_regcache_arch (regcache);
2965 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2966 return;
2967
2968 aspace = get_regcache_aspace (regcache);
2969
2970 /* Find the location where (if we've hit a breakpoint) the
2971 breakpoint would be. */
2972 breakpoint_pc = regcache_read_pc (regcache)
2973 - gdbarch_decr_pc_after_break (gdbarch);
2974
2975 /* Check whether there actually is a software breakpoint inserted at
2976 that location.
2977
2978 If in non-stop mode, a race condition is possible where we've
2979 removed a breakpoint, but stop events for that breakpoint were
2980 already queued and arrive later. To suppress those spurious
2981 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2982 and retire them after a number of stop events are reported. */
2983 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2984 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2985 {
2986 struct cleanup *old_cleanups = NULL;
2987
2988 if (RECORD_IS_USED)
2989 old_cleanups = record_gdb_operation_disable_set ();
2990
2991 /* When using hardware single-step, a SIGTRAP is reported for both
2992 a completed single-step and a software breakpoint. Need to
2993 differentiate between the two, as the latter needs adjusting
2994 but the former does not.
2995
2996 The SIGTRAP can be due to a completed hardware single-step only if
2997 - we didn't insert software single-step breakpoints
2998 - the thread to be examined is still the current thread
2999 - this thread is currently being stepped
3000
3001 If any of these events did not occur, we must have stopped due
3002 to hitting a software breakpoint, and have to back up to the
3003 breakpoint address.
3004
3005 As a special case, we could have hardware single-stepped a
3006 software breakpoint. In this case (prev_pc == breakpoint_pc),
3007 we also need to back up to the breakpoint address. */
3008
3009 if (singlestep_breakpoints_inserted_p
3010 || !ptid_equal (ecs->ptid, inferior_ptid)
3011 || !currently_stepping (ecs->event_thread)
3012 || ecs->event_thread->prev_pc == breakpoint_pc)
3013 regcache_write_pc (regcache, breakpoint_pc);
3014
3015 if (RECORD_IS_USED)
3016 do_cleanups (old_cleanups);
3017 }
3018 }
3019
3020 void
3021 init_infwait_state (void)
3022 {
3023 waiton_ptid = pid_to_ptid (-1);
3024 infwait_state = infwait_normal_state;
3025 }
3026
3027 void
3028 error_is_running (void)
3029 {
3030 error (_("Cannot execute this command while "
3031 "the selected thread is running."));
3032 }
3033
3034 void
3035 ensure_not_running (void)
3036 {
3037 if (is_running (inferior_ptid))
3038 error_is_running ();
3039 }
3040
3041 static int
3042 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3043 {
3044 for (frame = get_prev_frame (frame);
3045 frame != NULL;
3046 frame = get_prev_frame (frame))
3047 {
3048 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3049 return 1;
3050 if (get_frame_type (frame) != INLINE_FRAME)
3051 break;
3052 }
3053
3054 return 0;
3055 }
3056
3057 /* Auxiliary function that handles syscall entry/return events.
3058 It returns 1 if the inferior should keep going (and GDB
3059 should ignore the event), or 0 if the event deserves to be
3060 processed. */
3061
3062 static int
3063 handle_syscall_event (struct execution_control_state *ecs)
3064 {
3065 struct regcache *regcache;
3066 struct gdbarch *gdbarch;
3067 int syscall_number;
3068
3069 if (!ptid_equal (ecs->ptid, inferior_ptid))
3070 context_switch (ecs->ptid);
3071
3072 regcache = get_thread_regcache (ecs->ptid);
3073 gdbarch = get_regcache_arch (regcache);
3074 syscall_number = ecs->ws.value.syscall_number;
3075 stop_pc = regcache_read_pc (regcache);
3076
3077 if (catch_syscall_enabled () > 0
3078 && catching_syscall_number (syscall_number) > 0)
3079 {
3080 if (debug_infrun)
3081 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3082 syscall_number);
3083
3084 ecs->event_thread->control.stop_bpstat
3085 = bpstat_stop_status (get_regcache_aspace (regcache),
3086 stop_pc, ecs->ptid, &ecs->ws);
3087 ecs->random_signal
3088 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3089
3090 if (!ecs->random_signal)
3091 {
3092 /* Catchpoint hit. */
3093 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3094 return 0;
3095 }
3096 }
3097
3098 /* If no catchpoint triggered for this, then keep going. */
3099 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3100 keep_going (ecs);
3101 return 1;
3102 }
3103
3104 /* Clear the supplied execution_control_state's stop_func_* fields. */
3105
3106 static void
3107 clear_stop_func (struct execution_control_state *ecs)
3108 {
3109 ecs->stop_func_filled_in = 0;
3110 ecs->stop_func_start = 0;
3111 ecs->stop_func_end = 0;
3112 ecs->stop_func_name = NULL;
3113 }
3114
3115 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3116
3117 static void
3118 fill_in_stop_func (struct gdbarch *gdbarch,
3119 struct execution_control_state *ecs)
3120 {
3121 if (!ecs->stop_func_filled_in)
3122 {
3123 /* Don't care about return value; stop_func_start and stop_func_name
3124 will both be 0 if it doesn't work. */
3125 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3126 &ecs->stop_func_start, &ecs->stop_func_end);
3127 ecs->stop_func_start
3128 += gdbarch_deprecated_function_start_offset (gdbarch);
3129
3130 ecs->stop_func_filled_in = 1;
3131 }
3132 }
3133
3134 /* Given an execution control state that has been freshly filled in
3135 by an event from the inferior, figure out what it means and take
3136 appropriate action. */
3137
3138 static void
3139 handle_inferior_event (struct execution_control_state *ecs)
3140 {
3141 struct frame_info *frame;
3142 struct gdbarch *gdbarch;
3143 int stopped_by_watchpoint;
3144 int stepped_after_stopped_by_watchpoint = 0;
3145 struct symtab_and_line stop_pc_sal;
3146 enum stop_kind stop_soon;
3147
3148 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3149 {
3150 /* We had an event in the inferior, but we are not interested in
3151 handling it at this level. The lower layers have already
3152 done what needs to be done, if anything.
3153
3154 One of the possible circumstances for this is when the
3155 inferior produces output for the console. The inferior has
3156 not stopped, and we are ignoring the event. Another possible
3157 circumstance is any event which the lower level knows will be
3158 reported multiple times without an intervening resume. */
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3161 prepare_to_wait (ecs);
3162 return;
3163 }
3164
3165 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3166 && target_can_async_p () && !sync_execution)
3167 {
3168 /* There were no unwaited-for children left in the target, but,
3169 we're not synchronously waiting for events either. Just
3170 ignore. Otherwise, if we were running a synchronous
3171 execution command, we need to cancel it and give the user
3172 back the terminal. */
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3176 prepare_to_wait (ecs);
3177 return;
3178 }
3179
3180 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3181 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3182 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3183 {
3184 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3185
3186 gdb_assert (inf);
3187 stop_soon = inf->control.stop_soon;
3188 }
3189 else
3190 stop_soon = NO_STOP_QUIETLY;
3191
3192 /* Cache the last pid/waitstatus. */
3193 target_last_wait_ptid = ecs->ptid;
3194 target_last_waitstatus = ecs->ws;
3195
3196 /* Always clear state belonging to the previous time we stopped. */
3197 stop_stack_dummy = STOP_NONE;
3198
3199 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3200 {
3201 /* No unwaited-for children left. IOW, all resumed children
3202 have exited. */
3203 if (debug_infrun)
3204 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3205
3206 stop_print_frame = 0;
3207 stop_stepping (ecs);
3208 return;
3209 }
3210
3211 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3212 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3213 && !ptid_equal (ecs->ptid, minus_one_ptid))
3214 {
3215 ecs->event_thread = find_thread_ptid (ecs->ptid);
3216 /* If it's a new thread, add it to the thread database. */
3217 if (ecs->event_thread == NULL)
3218 ecs->event_thread = add_thread (ecs->ptid);
3219 }
3220
3221 /* Dependent on valid ECS->EVENT_THREAD. */
3222 adjust_pc_after_break (ecs);
3223
3224 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3225 reinit_frame_cache ();
3226
3227 breakpoint_retire_moribund ();
3228
3229 /* First, distinguish signals caused by the debugger from signals
3230 that have to do with the program's own actions. Note that
3231 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3232 on the operating system version. Here we detect when a SIGILL or
3233 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3234 something similar for SIGSEGV, since a SIGSEGV will be generated
3235 when we're trying to execute a breakpoint instruction on a
3236 non-executable stack. This happens for call dummy breakpoints
3237 for architectures like SPARC that place call dummies on the
3238 stack. */
3239 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3240 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3241 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3242 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3243 {
3244 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3245
3246 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3247 regcache_read_pc (regcache)))
3248 {
3249 if (debug_infrun)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "infrun: Treating signal as SIGTRAP\n");
3252 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3253 }
3254 }
3255
3256 /* Mark the non-executing threads accordingly. In all-stop, all
3257 threads of all processes are stopped when we get any event
3258 reported. In non-stop mode, only the event thread stops. If
3259 we're handling a process exit in non-stop mode, there's nothing
3260 to do, as threads of the dead process are gone, and threads of
3261 any other process were left running. */
3262 if (!non_stop)
3263 set_executing (minus_one_ptid, 0);
3264 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3265 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3266 set_executing (ecs->ptid, 0);
3267
3268 switch (infwait_state)
3269 {
3270 case infwait_thread_hop_state:
3271 if (debug_infrun)
3272 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3273 break;
3274
3275 case infwait_normal_state:
3276 if (debug_infrun)
3277 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3278 break;
3279
3280 case infwait_step_watch_state:
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog,
3283 "infrun: infwait_step_watch_state\n");
3284
3285 stepped_after_stopped_by_watchpoint = 1;
3286 break;
3287
3288 case infwait_nonstep_watch_state:
3289 if (debug_infrun)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "infrun: infwait_nonstep_watch_state\n");
3292 insert_breakpoints ();
3293
3294 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3295 handle things like signals arriving and other things happening
3296 in combination correctly? */
3297 stepped_after_stopped_by_watchpoint = 1;
3298 break;
3299
3300 default:
3301 internal_error (__FILE__, __LINE__, _("bad switch"));
3302 }
3303
3304 infwait_state = infwait_normal_state;
3305 waiton_ptid = pid_to_ptid (-1);
3306
3307 switch (ecs->ws.kind)
3308 {
3309 case TARGET_WAITKIND_LOADED:
3310 if (debug_infrun)
3311 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3312 /* Ignore gracefully during startup of the inferior, as it might
3313 be the shell which has just loaded some objects, otherwise
3314 add the symbols for the newly loaded objects. Also ignore at
3315 the beginning of an attach or remote session; we will query
3316 the full list of libraries once the connection is
3317 established. */
3318 if (stop_soon == NO_STOP_QUIETLY)
3319 {
3320 struct regcache *regcache;
3321
3322 if (!ptid_equal (ecs->ptid, inferior_ptid))
3323 context_switch (ecs->ptid);
3324 regcache = get_thread_regcache (ecs->ptid);
3325
3326 handle_solib_event ();
3327
3328 ecs->event_thread->control.stop_bpstat
3329 = bpstat_stop_status (get_regcache_aspace (regcache),
3330 stop_pc, ecs->ptid, &ecs->ws);
3331 ecs->random_signal
3332 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3333
3334 if (!ecs->random_signal)
3335 {
3336 /* A catchpoint triggered. */
3337 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3338 goto process_event_stop_test;
3339 }
3340
3341 /* If requested, stop when the dynamic linker notifies
3342 gdb of events. This allows the user to get control
3343 and place breakpoints in initializer routines for
3344 dynamically loaded objects (among other things). */
3345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3346 if (stop_on_solib_events)
3347 {
3348 /* Make sure we print "Stopped due to solib-event" in
3349 normal_stop. */
3350 stop_print_frame = 1;
3351
3352 stop_stepping (ecs);
3353 return;
3354 }
3355 }
3356
3357 /* If we are skipping through a shell, or through shared library
3358 loading that we aren't interested in, resume the program. If
3359 we're running the program normally, also resume. But stop if
3360 we're attaching or setting up a remote connection. */
3361 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3362 {
3363 if (!ptid_equal (ecs->ptid, inferior_ptid))
3364 context_switch (ecs->ptid);
3365
3366 /* Loading of shared libraries might have changed breakpoint
3367 addresses. Make sure new breakpoints are inserted. */
3368 if (stop_soon == NO_STOP_QUIETLY
3369 && !breakpoints_always_inserted_mode ())
3370 insert_breakpoints ();
3371 resume (0, GDB_SIGNAL_0);
3372 prepare_to_wait (ecs);
3373 return;
3374 }
3375
3376 break;
3377
3378 case TARGET_WAITKIND_SPURIOUS:
3379 if (debug_infrun)
3380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3381 if (!ptid_equal (ecs->ptid, inferior_ptid)
3382 && !ptid_equal (ecs->ptid, minus_one_ptid))
3383 context_switch (ecs->ptid);
3384 resume (0, GDB_SIGNAL_0);
3385 prepare_to_wait (ecs);
3386 return;
3387
3388 case TARGET_WAITKIND_EXITED:
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3391 inferior_ptid = ecs->ptid;
3392 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3393 set_current_program_space (current_inferior ()->pspace);
3394 handle_vfork_child_exec_or_exit (0);
3395 target_terminal_ours (); /* Must do this before mourn anyway. */
3396 print_exited_reason (ecs->ws.value.integer);
3397
3398 /* Record the exit code in the convenience variable $_exitcode, so
3399 that the user can inspect this again later. */
3400 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3401 (LONGEST) ecs->ws.value.integer);
3402
3403 /* Also record this in the inferior itself. */
3404 current_inferior ()->has_exit_code = 1;
3405 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3406
3407 gdb_flush (gdb_stdout);
3408 target_mourn_inferior ();
3409 singlestep_breakpoints_inserted_p = 0;
3410 cancel_single_step_breakpoints ();
3411 stop_print_frame = 0;
3412 stop_stepping (ecs);
3413 return;
3414
3415 case TARGET_WAITKIND_SIGNALLED:
3416 if (debug_infrun)
3417 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3418 inferior_ptid = ecs->ptid;
3419 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3420 set_current_program_space (current_inferior ()->pspace);
3421 handle_vfork_child_exec_or_exit (0);
3422 stop_print_frame = 0;
3423 target_terminal_ours (); /* Must do this before mourn anyway. */
3424
3425 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3426 reach here unless the inferior is dead. However, for years
3427 target_kill() was called here, which hints that fatal signals aren't
3428 really fatal on some systems. If that's true, then some changes
3429 may be needed. */
3430 target_mourn_inferior ();
3431
3432 print_signal_exited_reason (ecs->ws.value.sig);
3433 singlestep_breakpoints_inserted_p = 0;
3434 cancel_single_step_breakpoints ();
3435 stop_stepping (ecs);
3436 return;
3437
3438 /* The following are the only cases in which we keep going;
3439 the above cases end in a continue or goto. */
3440 case TARGET_WAITKIND_FORKED:
3441 case TARGET_WAITKIND_VFORKED:
3442 if (debug_infrun)
3443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3444
3445 /* Check whether the inferior is displaced stepping. */
3446 {
3447 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449 struct displaced_step_inferior_state *displaced
3450 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3451
3452 /* If checking displaced stepping is supported, and thread
3453 ecs->ptid is displaced stepping. */
3454 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3455 {
3456 struct inferior *parent_inf
3457 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3458 struct regcache *child_regcache;
3459 CORE_ADDR parent_pc;
3460
3461 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3462 indicating that the displaced stepping of syscall instruction
3463 has been done. Perform cleanup for parent process here. Note
3464 that this operation also cleans up the child process for vfork,
3465 because their pages are shared. */
3466 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3467
3468 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3469 {
3470 /* Restore scratch pad for child process. */
3471 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3472 }
3473
3474 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3475 the child's PC is also within the scratchpad. Set the child's PC
3476 to the parent's PC value, which has already been fixed up.
3477 FIXME: we use the parent's aspace here, although we're touching
3478 the child, because the child hasn't been added to the inferior
3479 list yet at this point. */
3480
3481 child_regcache
3482 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3483 gdbarch,
3484 parent_inf->aspace);
3485 /* Read PC value of parent process. */
3486 parent_pc = regcache_read_pc (regcache);
3487
3488 if (debug_displaced)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "displaced: write child pc from %s to %s\n",
3491 paddress (gdbarch,
3492 regcache_read_pc (child_regcache)),
3493 paddress (gdbarch, parent_pc));
3494
3495 regcache_write_pc (child_regcache, parent_pc);
3496 }
3497 }
3498
3499 if (!ptid_equal (ecs->ptid, inferior_ptid))
3500 context_switch (ecs->ptid);
3501
3502 /* Immediately detach breakpoints from the child before there's
3503 any chance of letting the user delete breakpoints from the
3504 breakpoint lists. If we don't do this early, it's easy to
3505 leave left over traps in the child, vis: "break foo; catch
3506 fork; c; <fork>; del; c; <child calls foo>". We only follow
3507 the fork on the last `continue', and by that time the
3508 breakpoint at "foo" is long gone from the breakpoint table.
3509 If we vforked, then we don't need to unpatch here, since both
3510 parent and child are sharing the same memory pages; we'll
3511 need to unpatch at follow/detach time instead to be certain
3512 that new breakpoints added between catchpoint hit time and
3513 vfork follow are detached. */
3514 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3515 {
3516 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3517
3518 /* This won't actually modify the breakpoint list, but will
3519 physically remove the breakpoints from the child. */
3520 detach_breakpoints (child_pid);
3521 }
3522
3523 if (singlestep_breakpoints_inserted_p)
3524 {
3525 /* Pull the single step breakpoints out of the target. */
3526 remove_single_step_breakpoints ();
3527 singlestep_breakpoints_inserted_p = 0;
3528 }
3529
3530 /* In case the event is caught by a catchpoint, remember that
3531 the event is to be followed at the next resume of the thread,
3532 and not immediately. */
3533 ecs->event_thread->pending_follow = ecs->ws;
3534
3535 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3536
3537 ecs->event_thread->control.stop_bpstat
3538 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3539 stop_pc, ecs->ptid, &ecs->ws);
3540
3541 /* Note that we're interested in knowing the bpstat actually
3542 causes a stop, not just if it may explain the signal.
3543 Software watchpoints, for example, always appear in the
3544 bpstat. */
3545 ecs->random_signal
3546 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3547
3548 /* If no catchpoint triggered for this, then keep going. */
3549 if (ecs->random_signal)
3550 {
3551 ptid_t parent;
3552 ptid_t child;
3553 int should_resume;
3554 int follow_child
3555 = (follow_fork_mode_string == follow_fork_mode_child);
3556
3557 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3558
3559 should_resume = follow_fork ();
3560
3561 parent = ecs->ptid;
3562 child = ecs->ws.value.related_pid;
3563
3564 /* In non-stop mode, also resume the other branch. */
3565 if (non_stop && !detach_fork)
3566 {
3567 if (follow_child)
3568 switch_to_thread (parent);
3569 else
3570 switch_to_thread (child);
3571
3572 ecs->event_thread = inferior_thread ();
3573 ecs->ptid = inferior_ptid;
3574 keep_going (ecs);
3575 }
3576
3577 if (follow_child)
3578 switch_to_thread (child);
3579 else
3580 switch_to_thread (parent);
3581
3582 ecs->event_thread = inferior_thread ();
3583 ecs->ptid = inferior_ptid;
3584
3585 if (should_resume)
3586 keep_going (ecs);
3587 else
3588 stop_stepping (ecs);
3589 return;
3590 }
3591 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3592 goto process_event_stop_test;
3593
3594 case TARGET_WAITKIND_VFORK_DONE:
3595 /* Done with the shared memory region. Re-insert breakpoints in
3596 the parent, and keep going. */
3597
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3601
3602 if (!ptid_equal (ecs->ptid, inferior_ptid))
3603 context_switch (ecs->ptid);
3604
3605 current_inferior ()->waiting_for_vfork_done = 0;
3606 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3607 /* This also takes care of reinserting breakpoints in the
3608 previously locked inferior. */
3609 keep_going (ecs);
3610 return;
3611
3612 case TARGET_WAITKIND_EXECD:
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3615
3616 if (!ptid_equal (ecs->ptid, inferior_ptid))
3617 context_switch (ecs->ptid);
3618
3619 singlestep_breakpoints_inserted_p = 0;
3620 cancel_single_step_breakpoints ();
3621
3622 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3623
3624 /* Do whatever is necessary to the parent branch of the vfork. */
3625 handle_vfork_child_exec_or_exit (1);
3626
3627 /* This causes the eventpoints and symbol table to be reset.
3628 Must do this now, before trying to determine whether to
3629 stop. */
3630 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3631
3632 ecs->event_thread->control.stop_bpstat
3633 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3634 stop_pc, ecs->ptid, &ecs->ws);
3635 ecs->random_signal
3636 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3637
3638 /* Note that this may be referenced from inside
3639 bpstat_stop_status above, through inferior_has_execd. */
3640 xfree (ecs->ws.value.execd_pathname);
3641 ecs->ws.value.execd_pathname = NULL;
3642
3643 /* If no catchpoint triggered for this, then keep going. */
3644 if (ecs->random_signal)
3645 {
3646 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3647 keep_going (ecs);
3648 return;
3649 }
3650 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3651 goto process_event_stop_test;
3652
3653 /* Be careful not to try to gather much state about a thread
3654 that's in a syscall. It's frequently a losing proposition. */
3655 case TARGET_WAITKIND_SYSCALL_ENTRY:
3656 if (debug_infrun)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3659 /* Getting the current syscall number. */
3660 if (handle_syscall_event (ecs) != 0)
3661 return;
3662 goto process_event_stop_test;
3663
3664 /* Before examining the threads further, step this thread to
3665 get it entirely out of the syscall. (We get notice of the
3666 event when the thread is just on the verge of exiting a
3667 syscall. Stepping one instruction seems to get it back
3668 into user code.) */
3669 case TARGET_WAITKIND_SYSCALL_RETURN:
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3673 if (handle_syscall_event (ecs) != 0)
3674 return;
3675 goto process_event_stop_test;
3676
3677 case TARGET_WAITKIND_STOPPED:
3678 if (debug_infrun)
3679 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3680 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3681 break;
3682
3683 case TARGET_WAITKIND_NO_HISTORY:
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3686 /* Reverse execution: target ran out of history info. */
3687 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3688 print_no_history_reason ();
3689 stop_stepping (ecs);
3690 return;
3691 }
3692
3693 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3694 {
3695 /* Do we need to clean up the state of a thread that has
3696 completed a displaced single-step? (Doing so usually affects
3697 the PC, so do it here, before we set stop_pc.) */
3698 displaced_step_fixup (ecs->ptid,
3699 ecs->event_thread->suspend.stop_signal);
3700
3701 /* If we either finished a single-step or hit a breakpoint, but
3702 the user wanted this thread to be stopped, pretend we got a
3703 SIG0 (generic unsignaled stop). */
3704
3705 if (ecs->event_thread->stop_requested
3706 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3707 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3708 }
3709
3710 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3711
3712 if (debug_infrun)
3713 {
3714 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3715 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3716 struct cleanup *old_chain = save_inferior_ptid ();
3717
3718 inferior_ptid = ecs->ptid;
3719
3720 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3721 paddress (gdbarch, stop_pc));
3722 if (target_stopped_by_watchpoint ())
3723 {
3724 CORE_ADDR addr;
3725
3726 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3727
3728 if (target_stopped_data_address (&current_target, &addr))
3729 fprintf_unfiltered (gdb_stdlog,
3730 "infrun: stopped data address = %s\n",
3731 paddress (gdbarch, addr));
3732 else
3733 fprintf_unfiltered (gdb_stdlog,
3734 "infrun: (no data address available)\n");
3735 }
3736
3737 do_cleanups (old_chain);
3738 }
3739
3740 if (stepping_past_singlestep_breakpoint)
3741 {
3742 gdb_assert (singlestep_breakpoints_inserted_p);
3743 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3744 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3745
3746 stepping_past_singlestep_breakpoint = 0;
3747
3748 /* We've either finished single-stepping past the single-step
3749 breakpoint, or stopped for some other reason. It would be nice if
3750 we could tell, but we can't reliably. */
3751 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3752 {
3753 if (debug_infrun)
3754 fprintf_unfiltered (gdb_stdlog,
3755 "infrun: stepping_past_"
3756 "singlestep_breakpoint\n");
3757 /* Pull the single step breakpoints out of the target. */
3758 if (!ptid_equal (ecs->ptid, inferior_ptid))
3759 context_switch (ecs->ptid);
3760 remove_single_step_breakpoints ();
3761 singlestep_breakpoints_inserted_p = 0;
3762
3763 ecs->random_signal = 0;
3764 ecs->event_thread->control.trap_expected = 0;
3765
3766 context_switch (saved_singlestep_ptid);
3767 if (deprecated_context_hook)
3768 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3769
3770 resume (1, GDB_SIGNAL_0);
3771 prepare_to_wait (ecs);
3772 return;
3773 }
3774 }
3775
3776 if (!ptid_equal (deferred_step_ptid, null_ptid))
3777 {
3778 /* In non-stop mode, there's never a deferred_step_ptid set. */
3779 gdb_assert (!non_stop);
3780
3781 /* If we stopped for some other reason than single-stepping, ignore
3782 the fact that we were supposed to switch back. */
3783 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3784 {
3785 if (debug_infrun)
3786 fprintf_unfiltered (gdb_stdlog,
3787 "infrun: handling deferred step\n");
3788
3789 /* Pull the single step breakpoints out of the target. */
3790 if (singlestep_breakpoints_inserted_p)
3791 {
3792 if (!ptid_equal (ecs->ptid, inferior_ptid))
3793 context_switch (ecs->ptid);
3794 remove_single_step_breakpoints ();
3795 singlestep_breakpoints_inserted_p = 0;
3796 }
3797
3798 ecs->event_thread->control.trap_expected = 0;
3799
3800 context_switch (deferred_step_ptid);
3801 deferred_step_ptid = null_ptid;
3802 /* Suppress spurious "Switching to ..." message. */
3803 previous_inferior_ptid = inferior_ptid;
3804
3805 resume (1, GDB_SIGNAL_0);
3806 prepare_to_wait (ecs);
3807 return;
3808 }
3809
3810 deferred_step_ptid = null_ptid;
3811 }
3812
3813 /* See if a thread hit a thread-specific breakpoint that was meant for
3814 another thread. If so, then step that thread past the breakpoint,
3815 and continue it. */
3816
3817 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3818 {
3819 int thread_hop_needed = 0;
3820 struct address_space *aspace =
3821 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3822
3823 /* Check if a regular breakpoint has been hit before checking
3824 for a potential single step breakpoint. Otherwise, GDB will
3825 not see this breakpoint hit when stepping onto breakpoints. */
3826 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3827 {
3828 ecs->random_signal = 0;
3829 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3830 thread_hop_needed = 1;
3831 }
3832 else if (singlestep_breakpoints_inserted_p)
3833 {
3834 /* We have not context switched yet, so this should be true
3835 no matter which thread hit the singlestep breakpoint. */
3836 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3837 if (debug_infrun)
3838 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3839 "trap for %s\n",
3840 target_pid_to_str (ecs->ptid));
3841
3842 ecs->random_signal = 0;
3843 /* The call to in_thread_list is necessary because PTIDs sometimes
3844 change when we go from single-threaded to multi-threaded. If
3845 the singlestep_ptid is still in the list, assume that it is
3846 really different from ecs->ptid. */
3847 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3848 && in_thread_list (singlestep_ptid))
3849 {
3850 /* If the PC of the thread we were trying to single-step
3851 has changed, discard this event (which we were going
3852 to ignore anyway), and pretend we saw that thread
3853 trap. This prevents us continuously moving the
3854 single-step breakpoint forward, one instruction at a
3855 time. If the PC has changed, then the thread we were
3856 trying to single-step has trapped or been signalled,
3857 but the event has not been reported to GDB yet.
3858
3859 There might be some cases where this loses signal
3860 information, if a signal has arrived at exactly the
3861 same time that the PC changed, but this is the best
3862 we can do with the information available. Perhaps we
3863 should arrange to report all events for all threads
3864 when they stop, or to re-poll the remote looking for
3865 this particular thread (i.e. temporarily enable
3866 schedlock). */
3867
3868 CORE_ADDR new_singlestep_pc
3869 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3870
3871 if (new_singlestep_pc != singlestep_pc)
3872 {
3873 enum gdb_signal stop_signal;
3874
3875 if (debug_infrun)
3876 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3877 " but expected thread advanced also\n");
3878
3879 /* The current context still belongs to
3880 singlestep_ptid. Don't swap here, since that's
3881 the context we want to use. Just fudge our
3882 state and continue. */
3883 stop_signal = ecs->event_thread->suspend.stop_signal;
3884 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3885 ecs->ptid = singlestep_ptid;
3886 ecs->event_thread = find_thread_ptid (ecs->ptid);
3887 ecs->event_thread->suspend.stop_signal = stop_signal;
3888 stop_pc = new_singlestep_pc;
3889 }
3890 else
3891 {
3892 if (debug_infrun)
3893 fprintf_unfiltered (gdb_stdlog,
3894 "infrun: unexpected thread\n");
3895
3896 thread_hop_needed = 1;
3897 stepping_past_singlestep_breakpoint = 1;
3898 saved_singlestep_ptid = singlestep_ptid;
3899 }
3900 }
3901 }
3902
3903 if (thread_hop_needed)
3904 {
3905 struct regcache *thread_regcache;
3906 int remove_status = 0;
3907
3908 if (debug_infrun)
3909 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3910
3911 /* Switch context before touching inferior memory, the
3912 previous thread may have exited. */
3913 if (!ptid_equal (inferior_ptid, ecs->ptid))
3914 context_switch (ecs->ptid);
3915
3916 /* Saw a breakpoint, but it was hit by the wrong thread.
3917 Just continue. */
3918
3919 if (singlestep_breakpoints_inserted_p)
3920 {
3921 /* Pull the single step breakpoints out of the target. */
3922 remove_single_step_breakpoints ();
3923 singlestep_breakpoints_inserted_p = 0;
3924 }
3925
3926 /* If the arch can displace step, don't remove the
3927 breakpoints. */
3928 thread_regcache = get_thread_regcache (ecs->ptid);
3929 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3930 remove_status = remove_breakpoints ();
3931
3932 /* Did we fail to remove breakpoints? If so, try
3933 to set the PC past the bp. (There's at least
3934 one situation in which we can fail to remove
3935 the bp's: On HP-UX's that use ttrace, we can't
3936 change the address space of a vforking child
3937 process until the child exits (well, okay, not
3938 then either :-) or execs. */
3939 if (remove_status != 0)
3940 error (_("Cannot step over breakpoint hit in wrong thread"));
3941 else
3942 { /* Single step */
3943 if (!non_stop)
3944 {
3945 /* Only need to require the next event from this
3946 thread in all-stop mode. */
3947 waiton_ptid = ecs->ptid;
3948 infwait_state = infwait_thread_hop_state;
3949 }
3950
3951 ecs->event_thread->stepping_over_breakpoint = 1;
3952 keep_going (ecs);
3953 return;
3954 }
3955 }
3956 else if (singlestep_breakpoints_inserted_p)
3957 {
3958 ecs->random_signal = 0;
3959 }
3960 }
3961 else
3962 ecs->random_signal = 1;
3963
3964 /* See if something interesting happened to the non-current thread. If
3965 so, then switch to that thread. */
3966 if (!ptid_equal (ecs->ptid, inferior_ptid))
3967 {
3968 if (debug_infrun)
3969 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3970
3971 context_switch (ecs->ptid);
3972
3973 if (deprecated_context_hook)
3974 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3975 }
3976
3977 /* At this point, get hold of the now-current thread's frame. */
3978 frame = get_current_frame ();
3979 gdbarch = get_frame_arch (frame);
3980
3981 if (singlestep_breakpoints_inserted_p)
3982 {
3983 /* Pull the single step breakpoints out of the target. */
3984 remove_single_step_breakpoints ();
3985 singlestep_breakpoints_inserted_p = 0;
3986 }
3987
3988 if (stepped_after_stopped_by_watchpoint)
3989 stopped_by_watchpoint = 0;
3990 else
3991 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3992
3993 /* If necessary, step over this watchpoint. We'll be back to display
3994 it in a moment. */
3995 if (stopped_by_watchpoint
3996 && (target_have_steppable_watchpoint
3997 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3998 {
3999 /* At this point, we are stopped at an instruction which has
4000 attempted to write to a piece of memory under control of
4001 a watchpoint. The instruction hasn't actually executed
4002 yet. If we were to evaluate the watchpoint expression
4003 now, we would get the old value, and therefore no change
4004 would seem to have occurred.
4005
4006 In order to make watchpoints work `right', we really need
4007 to complete the memory write, and then evaluate the
4008 watchpoint expression. We do this by single-stepping the
4009 target.
4010
4011 It may not be necessary to disable the watchpoint to stop over
4012 it. For example, the PA can (with some kernel cooperation)
4013 single step over a watchpoint without disabling the watchpoint.
4014
4015 It is far more common to need to disable a watchpoint to step
4016 the inferior over it. If we have non-steppable watchpoints,
4017 we must disable the current watchpoint; it's simplest to
4018 disable all watchpoints and breakpoints. */
4019 int hw_step = 1;
4020
4021 if (!target_have_steppable_watchpoint)
4022 {
4023 remove_breakpoints ();
4024 /* See comment in resume why we need to stop bypassing signals
4025 while breakpoints have been removed. */
4026 target_pass_signals (0, NULL);
4027 }
4028 /* Single step */
4029 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4030 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4031 waiton_ptid = ecs->ptid;
4032 if (target_have_steppable_watchpoint)
4033 infwait_state = infwait_step_watch_state;
4034 else
4035 infwait_state = infwait_nonstep_watch_state;
4036 prepare_to_wait (ecs);
4037 return;
4038 }
4039
4040 clear_stop_func (ecs);
4041 ecs->event_thread->stepping_over_breakpoint = 0;
4042 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4043 ecs->event_thread->control.stop_step = 0;
4044 stop_print_frame = 1;
4045 ecs->random_signal = 0;
4046 stopped_by_random_signal = 0;
4047
4048 /* Hide inlined functions starting here, unless we just performed stepi or
4049 nexti. After stepi and nexti, always show the innermost frame (not any
4050 inline function call sites). */
4051 if (ecs->event_thread->control.step_range_end != 1)
4052 {
4053 struct address_space *aspace =
4054 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4055
4056 /* skip_inline_frames is expensive, so we avoid it if we can
4057 determine that the address is one where functions cannot have
4058 been inlined. This improves performance with inferiors that
4059 load a lot of shared libraries, because the solib event
4060 breakpoint is defined as the address of a function (i.e. not
4061 inline). Note that we have to check the previous PC as well
4062 as the current one to catch cases when we have just
4063 single-stepped off a breakpoint prior to reinstating it.
4064 Note that we're assuming that the code we single-step to is
4065 not inline, but that's not definitive: there's nothing
4066 preventing the event breakpoint function from containing
4067 inlined code, and the single-step ending up there. If the
4068 user had set a breakpoint on that inlined code, the missing
4069 skip_inline_frames call would break things. Fortunately
4070 that's an extremely unlikely scenario. */
4071 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4072 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4073 && ecs->event_thread->control.trap_expected
4074 && pc_at_non_inline_function (aspace,
4075 ecs->event_thread->prev_pc,
4076 &ecs->ws)))
4077 skip_inline_frames (ecs->ptid);
4078 }
4079
4080 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4081 && ecs->event_thread->control.trap_expected
4082 && gdbarch_single_step_through_delay_p (gdbarch)
4083 && currently_stepping (ecs->event_thread))
4084 {
4085 /* We're trying to step off a breakpoint. Turns out that we're
4086 also on an instruction that needs to be stepped multiple
4087 times before it's been fully executing. E.g., architectures
4088 with a delay slot. It needs to be stepped twice, once for
4089 the instruction and once for the delay slot. */
4090 int step_through_delay
4091 = gdbarch_single_step_through_delay (gdbarch, frame);
4092
4093 if (debug_infrun && step_through_delay)
4094 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4095 if (ecs->event_thread->control.step_range_end == 0
4096 && step_through_delay)
4097 {
4098 /* The user issued a continue when stopped at a breakpoint.
4099 Set up for another trap and get out of here. */
4100 ecs->event_thread->stepping_over_breakpoint = 1;
4101 keep_going (ecs);
4102 return;
4103 }
4104 else if (step_through_delay)
4105 {
4106 /* The user issued a step when stopped at a breakpoint.
4107 Maybe we should stop, maybe we should not - the delay
4108 slot *might* correspond to a line of source. In any
4109 case, don't decide that here, just set
4110 ecs->stepping_over_breakpoint, making sure we
4111 single-step again before breakpoints are re-inserted. */
4112 ecs->event_thread->stepping_over_breakpoint = 1;
4113 }
4114 }
4115
4116 /* Look at the cause of the stop, and decide what to do.
4117 The alternatives are:
4118 1) stop_stepping and return; to really stop and return to the debugger,
4119 2) keep_going and return to start up again
4120 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4121 3) set ecs->random_signal to 1, and the decision between 1 and 2
4122 will be made according to the signal handling tables. */
4123
4124 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4125 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4126 || stop_soon == STOP_QUIETLY_REMOTE)
4127 {
4128 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4129 && stop_after_trap)
4130 {
4131 if (debug_infrun)
4132 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4133 stop_print_frame = 0;
4134 stop_stepping (ecs);
4135 return;
4136 }
4137
4138 /* This is originated from start_remote(), start_inferior() and
4139 shared libraries hook functions. */
4140 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4141 {
4142 if (debug_infrun)
4143 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4144 stop_stepping (ecs);
4145 return;
4146 }
4147
4148 /* This originates from attach_command(). We need to overwrite
4149 the stop_signal here, because some kernels don't ignore a
4150 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4151 See more comments in inferior.h. On the other hand, if we
4152 get a non-SIGSTOP, report it to the user - assume the backend
4153 will handle the SIGSTOP if it should show up later.
4154
4155 Also consider that the attach is complete when we see a
4156 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4157 target extended-remote report it instead of a SIGSTOP
4158 (e.g. gdbserver). We already rely on SIGTRAP being our
4159 signal, so this is no exception.
4160
4161 Also consider that the attach is complete when we see a
4162 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4163 the target to stop all threads of the inferior, in case the
4164 low level attach operation doesn't stop them implicitly. If
4165 they weren't stopped implicitly, then the stub will report a
4166 GDB_SIGNAL_0, meaning: stopped for no particular reason
4167 other than GDB's request. */
4168 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4169 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4170 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4171 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4172 {
4173 stop_stepping (ecs);
4174 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4175 return;
4176 }
4177
4178 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4179 handles this event. */
4180 ecs->event_thread->control.stop_bpstat
4181 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4182 stop_pc, ecs->ptid, &ecs->ws);
4183
4184 /* Following in case break condition called a
4185 function. */
4186 stop_print_frame = 1;
4187
4188 /* This is where we handle "moribund" watchpoints. Unlike
4189 software breakpoints traps, hardware watchpoint traps are
4190 always distinguishable from random traps. If no high-level
4191 watchpoint is associated with the reported stop data address
4192 anymore, then the bpstat does not explain the signal ---
4193 simply make sure to ignore it if `stopped_by_watchpoint' is
4194 set. */
4195
4196 if (debug_infrun
4197 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4198 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4199 && stopped_by_watchpoint)
4200 fprintf_unfiltered (gdb_stdlog,
4201 "infrun: no user watchpoint explains "
4202 "watchpoint SIGTRAP, ignoring\n");
4203
4204 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4205 at one stage in the past included checks for an inferior
4206 function call's call dummy's return breakpoint. The original
4207 comment, that went with the test, read:
4208
4209 ``End of a stack dummy. Some systems (e.g. Sony news) give
4210 another signal besides SIGTRAP, so check here as well as
4211 above.''
4212
4213 If someone ever tries to get call dummys on a
4214 non-executable stack to work (where the target would stop
4215 with something like a SIGSEGV), then those tests might need
4216 to be re-instated. Given, however, that the tests were only
4217 enabled when momentary breakpoints were not being used, I
4218 suspect that it won't be the case.
4219
4220 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4221 be necessary for call dummies on a non-executable stack on
4222 SPARC. */
4223
4224 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4225 ecs->random_signal
4226 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4227 || stopped_by_watchpoint
4228 || ecs->event_thread->control.trap_expected
4229 || (ecs->event_thread->control.step_range_end
4230 && (ecs->event_thread->control.step_resume_breakpoint
4231 == NULL)));
4232 else
4233 {
4234 ecs->random_signal = !bpstat_explains_signal
4235 (ecs->event_thread->control.stop_bpstat);
4236 if (!ecs->random_signal)
4237 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4238 }
4239 }
4240
4241 /* When we reach this point, we've pretty much decided
4242 that the reason for stopping must've been a random
4243 (unexpected) signal. */
4244
4245 else
4246 ecs->random_signal = 1;
4247
4248 process_event_stop_test:
4249
4250 /* Re-fetch current thread's frame in case we did a
4251 "goto process_event_stop_test" above. */
4252 frame = get_current_frame ();
4253 gdbarch = get_frame_arch (frame);
4254
4255 /* For the program's own signals, act according to
4256 the signal handling tables. */
4257
4258 if (ecs->random_signal)
4259 {
4260 /* Signal not for debugging purposes. */
4261 int printed = 0;
4262 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4263
4264 if (debug_infrun)
4265 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4266 ecs->event_thread->suspend.stop_signal);
4267
4268 stopped_by_random_signal = 1;
4269
4270 if (signal_print[ecs->event_thread->suspend.stop_signal])
4271 {
4272 printed = 1;
4273 target_terminal_ours_for_output ();
4274 print_signal_received_reason
4275 (ecs->event_thread->suspend.stop_signal);
4276 }
4277 /* Always stop on signals if we're either just gaining control
4278 of the program, or the user explicitly requested this thread
4279 to remain stopped. */
4280 if (stop_soon != NO_STOP_QUIETLY
4281 || ecs->event_thread->stop_requested
4282 || (!inf->detaching
4283 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4284 {
4285 stop_stepping (ecs);
4286 return;
4287 }
4288 /* If not going to stop, give terminal back
4289 if we took it away. */
4290 else if (printed)
4291 target_terminal_inferior ();
4292
4293 /* Clear the signal if it should not be passed. */
4294 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4295 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4296
4297 if (ecs->event_thread->prev_pc == stop_pc
4298 && ecs->event_thread->control.trap_expected
4299 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4300 {
4301 /* We were just starting a new sequence, attempting to
4302 single-step off of a breakpoint and expecting a SIGTRAP.
4303 Instead this signal arrives. This signal will take us out
4304 of the stepping range so GDB needs to remember to, when
4305 the signal handler returns, resume stepping off that
4306 breakpoint. */
4307 /* To simplify things, "continue" is forced to use the same
4308 code paths as single-step - set a breakpoint at the
4309 signal return address and then, once hit, step off that
4310 breakpoint. */
4311 if (debug_infrun)
4312 fprintf_unfiltered (gdb_stdlog,
4313 "infrun: signal arrived while stepping over "
4314 "breakpoint\n");
4315
4316 insert_hp_step_resume_breakpoint_at_frame (frame);
4317 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4318 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4319 ecs->event_thread->control.trap_expected = 0;
4320 keep_going (ecs);
4321 return;
4322 }
4323
4324 if (ecs->event_thread->control.step_range_end != 0
4325 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4326 && (ecs->event_thread->control.step_range_start <= stop_pc
4327 && stop_pc < ecs->event_thread->control.step_range_end)
4328 && frame_id_eq (get_stack_frame_id (frame),
4329 ecs->event_thread->control.step_stack_frame_id)
4330 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4331 {
4332 /* The inferior is about to take a signal that will take it
4333 out of the single step range. Set a breakpoint at the
4334 current PC (which is presumably where the signal handler
4335 will eventually return) and then allow the inferior to
4336 run free.
4337
4338 Note that this is only needed for a signal delivered
4339 while in the single-step range. Nested signals aren't a
4340 problem as they eventually all return. */
4341 if (debug_infrun)
4342 fprintf_unfiltered (gdb_stdlog,
4343 "infrun: signal may take us out of "
4344 "single-step range\n");
4345
4346 insert_hp_step_resume_breakpoint_at_frame (frame);
4347 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4348 ecs->event_thread->control.trap_expected = 0;
4349 keep_going (ecs);
4350 return;
4351 }
4352
4353 /* Note: step_resume_breakpoint may be non-NULL. This occures
4354 when either there's a nested signal, or when there's a
4355 pending signal enabled just as the signal handler returns
4356 (leaving the inferior at the step-resume-breakpoint without
4357 actually executing it). Either way continue until the
4358 breakpoint is really hit. */
4359 keep_going (ecs);
4360 return;
4361 }
4362
4363 /* Handle cases caused by hitting a breakpoint. */
4364 {
4365 CORE_ADDR jmp_buf_pc;
4366 struct bpstat_what what;
4367
4368 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4369
4370 if (what.call_dummy)
4371 {
4372 stop_stack_dummy = what.call_dummy;
4373 }
4374
4375 /* If we hit an internal event that triggers symbol changes, the
4376 current frame will be invalidated within bpstat_what (e.g., if
4377 we hit an internal solib event). Re-fetch it. */
4378 frame = get_current_frame ();
4379 gdbarch = get_frame_arch (frame);
4380
4381 switch (what.main_action)
4382 {
4383 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4384 /* If we hit the breakpoint at longjmp while stepping, we
4385 install a momentary breakpoint at the target of the
4386 jmp_buf. */
4387
4388 if (debug_infrun)
4389 fprintf_unfiltered (gdb_stdlog,
4390 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4391
4392 ecs->event_thread->stepping_over_breakpoint = 1;
4393
4394 if (what.is_longjmp)
4395 {
4396 struct value *arg_value;
4397
4398 /* If we set the longjmp breakpoint via a SystemTap probe,
4399 then use it to extract the arguments. The destination
4400 PC is the third argument to the probe. */
4401 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4402 if (arg_value)
4403 jmp_buf_pc = value_as_address (arg_value);
4404 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4405 || !gdbarch_get_longjmp_target (gdbarch,
4406 frame, &jmp_buf_pc))
4407 {
4408 if (debug_infrun)
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4411 "(!gdbarch_get_longjmp_target)\n");
4412 keep_going (ecs);
4413 return;
4414 }
4415
4416 /* Insert a breakpoint at resume address. */
4417 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4418 }
4419 else
4420 check_exception_resume (ecs, frame);
4421 keep_going (ecs);
4422 return;
4423
4424 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4425 {
4426 struct frame_info *init_frame;
4427
4428 /* There are several cases to consider.
4429
4430 1. The initiating frame no longer exists. In this case
4431 we must stop, because the exception or longjmp has gone
4432 too far.
4433
4434 2. The initiating frame exists, and is the same as the
4435 current frame. We stop, because the exception or longjmp
4436 has been caught.
4437
4438 3. The initiating frame exists and is different from the
4439 current frame. This means the exception or longjmp has
4440 been caught beneath the initiating frame, so keep
4441 going. */
4442
4443 if (debug_infrun)
4444 fprintf_unfiltered (gdb_stdlog,
4445 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4446
4447 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4448
4449 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4450 != NULL);
4451 delete_exception_resume_breakpoint (ecs->event_thread);
4452
4453 if (init_frame)
4454 {
4455 struct frame_id current_id
4456 = get_frame_id (get_current_frame ());
4457 if (frame_id_eq (current_id,
4458 ecs->event_thread->initiating_frame))
4459 {
4460 /* Case 2. Fall through. */
4461 }
4462 else
4463 {
4464 /* Case 3. */
4465 keep_going (ecs);
4466 return;
4467 }
4468 }
4469
4470 /* For Cases 1 and 2, remove the step-resume breakpoint,
4471 if it exists. */
4472 delete_step_resume_breakpoint (ecs->event_thread);
4473
4474 ecs->event_thread->control.stop_step = 1;
4475 print_end_stepping_range_reason ();
4476 stop_stepping (ecs);
4477 }
4478 return;
4479
4480 case BPSTAT_WHAT_SINGLE:
4481 if (debug_infrun)
4482 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4483 ecs->event_thread->stepping_over_breakpoint = 1;
4484 /* Still need to check other stuff, at least the case
4485 where we are stepping and step out of the right range. */
4486 break;
4487
4488 case BPSTAT_WHAT_STEP_RESUME:
4489 if (debug_infrun)
4490 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4491
4492 delete_step_resume_breakpoint (ecs->event_thread);
4493 if (ecs->event_thread->control.proceed_to_finish
4494 && execution_direction == EXEC_REVERSE)
4495 {
4496 struct thread_info *tp = ecs->event_thread;
4497
4498 /* We are finishing a function in reverse, and just hit
4499 the step-resume breakpoint at the start address of the
4500 function, and we're almost there -- just need to back
4501 up by one more single-step, which should take us back
4502 to the function call. */
4503 tp->control.step_range_start = tp->control.step_range_end = 1;
4504 keep_going (ecs);
4505 return;
4506 }
4507 fill_in_stop_func (gdbarch, ecs);
4508 if (stop_pc == ecs->stop_func_start
4509 && execution_direction == EXEC_REVERSE)
4510 {
4511 /* We are stepping over a function call in reverse, and
4512 just hit the step-resume breakpoint at the start
4513 address of the function. Go back to single-stepping,
4514 which should take us back to the function call. */
4515 ecs->event_thread->stepping_over_breakpoint = 1;
4516 keep_going (ecs);
4517 return;
4518 }
4519 break;
4520
4521 case BPSTAT_WHAT_STOP_NOISY:
4522 if (debug_infrun)
4523 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4524 stop_print_frame = 1;
4525
4526 /* We are about to nuke the step_resume_breakpointt via the
4527 cleanup chain, so no need to worry about it here. */
4528
4529 stop_stepping (ecs);
4530 return;
4531
4532 case BPSTAT_WHAT_STOP_SILENT:
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4535 stop_print_frame = 0;
4536
4537 /* We are about to nuke the step_resume_breakpoin via the
4538 cleanup chain, so no need to worry about it here. */
4539
4540 stop_stepping (ecs);
4541 return;
4542
4543 case BPSTAT_WHAT_HP_STEP_RESUME:
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4546
4547 delete_step_resume_breakpoint (ecs->event_thread);
4548 if (ecs->event_thread->step_after_step_resume_breakpoint)
4549 {
4550 /* Back when the step-resume breakpoint was inserted, we
4551 were trying to single-step off a breakpoint. Go back
4552 to doing that. */
4553 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4554 ecs->event_thread->stepping_over_breakpoint = 1;
4555 keep_going (ecs);
4556 return;
4557 }
4558 break;
4559
4560 case BPSTAT_WHAT_KEEP_CHECKING:
4561 break;
4562 }
4563 }
4564
4565 /* We come here if we hit a breakpoint but should not
4566 stop for it. Possibly we also were stepping
4567 and should stop for that. So fall through and
4568 test for stepping. But, if not stepping,
4569 do not stop. */
4570
4571 /* In all-stop mode, if we're currently stepping but have stopped in
4572 some other thread, we need to switch back to the stepped thread. */
4573 if (!non_stop)
4574 {
4575 struct thread_info *tp;
4576
4577 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4578 ecs->event_thread);
4579 if (tp)
4580 {
4581 /* However, if the current thread is blocked on some internal
4582 breakpoint, and we simply need to step over that breakpoint
4583 to get it going again, do that first. */
4584 if ((ecs->event_thread->control.trap_expected
4585 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4586 || ecs->event_thread->stepping_over_breakpoint)
4587 {
4588 keep_going (ecs);
4589 return;
4590 }
4591
4592 /* If the stepping thread exited, then don't try to switch
4593 back and resume it, which could fail in several different
4594 ways depending on the target. Instead, just keep going.
4595
4596 We can find a stepping dead thread in the thread list in
4597 two cases:
4598
4599 - The target supports thread exit events, and when the
4600 target tries to delete the thread from the thread list,
4601 inferior_ptid pointed at the exiting thread. In such
4602 case, calling delete_thread does not really remove the
4603 thread from the list; instead, the thread is left listed,
4604 with 'exited' state.
4605
4606 - The target's debug interface does not support thread
4607 exit events, and so we have no idea whatsoever if the
4608 previously stepping thread is still alive. For that
4609 reason, we need to synchronously query the target
4610 now. */
4611 if (is_exited (tp->ptid)
4612 || !target_thread_alive (tp->ptid))
4613 {
4614 if (debug_infrun)
4615 fprintf_unfiltered (gdb_stdlog,
4616 "infrun: not switching back to "
4617 "stepped thread, it has vanished\n");
4618
4619 delete_thread (tp->ptid);
4620 keep_going (ecs);
4621 return;
4622 }
4623
4624 /* Otherwise, we no longer expect a trap in the current thread.
4625 Clear the trap_expected flag before switching back -- this is
4626 what keep_going would do as well, if we called it. */
4627 ecs->event_thread->control.trap_expected = 0;
4628
4629 if (debug_infrun)
4630 fprintf_unfiltered (gdb_stdlog,
4631 "infrun: switching back to stepped thread\n");
4632
4633 ecs->event_thread = tp;
4634 ecs->ptid = tp->ptid;
4635 context_switch (ecs->ptid);
4636 keep_going (ecs);
4637 return;
4638 }
4639 }
4640
4641 if (ecs->event_thread->control.step_resume_breakpoint)
4642 {
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: step-resume breakpoint is inserted\n");
4646
4647 /* Having a step-resume breakpoint overrides anything
4648 else having to do with stepping commands until
4649 that breakpoint is reached. */
4650 keep_going (ecs);
4651 return;
4652 }
4653
4654 if (ecs->event_thread->control.step_range_end == 0)
4655 {
4656 if (debug_infrun)
4657 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4658 /* Likewise if we aren't even stepping. */
4659 keep_going (ecs);
4660 return;
4661 }
4662
4663 /* Re-fetch current thread's frame in case the code above caused
4664 the frame cache to be re-initialized, making our FRAME variable
4665 a dangling pointer. */
4666 frame = get_current_frame ();
4667 gdbarch = get_frame_arch (frame);
4668 fill_in_stop_func (gdbarch, ecs);
4669
4670 /* If stepping through a line, keep going if still within it.
4671
4672 Note that step_range_end is the address of the first instruction
4673 beyond the step range, and NOT the address of the last instruction
4674 within it!
4675
4676 Note also that during reverse execution, we may be stepping
4677 through a function epilogue and therefore must detect when
4678 the current-frame changes in the middle of a line. */
4679
4680 if (stop_pc >= ecs->event_thread->control.step_range_start
4681 && stop_pc < ecs->event_thread->control.step_range_end
4682 && (execution_direction != EXEC_REVERSE
4683 || frame_id_eq (get_frame_id (frame),
4684 ecs->event_thread->control.step_frame_id)))
4685 {
4686 if (debug_infrun)
4687 fprintf_unfiltered
4688 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4689 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4690 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4691
4692 /* When stepping backward, stop at beginning of line range
4693 (unless it's the function entry point, in which case
4694 keep going back to the call point). */
4695 if (stop_pc == ecs->event_thread->control.step_range_start
4696 && stop_pc != ecs->stop_func_start
4697 && execution_direction == EXEC_REVERSE)
4698 {
4699 ecs->event_thread->control.stop_step = 1;
4700 print_end_stepping_range_reason ();
4701 stop_stepping (ecs);
4702 }
4703 else
4704 keep_going (ecs);
4705
4706 return;
4707 }
4708
4709 /* We stepped out of the stepping range. */
4710
4711 /* If we are stepping at the source level and entered the runtime
4712 loader dynamic symbol resolution code...
4713
4714 EXEC_FORWARD: we keep on single stepping until we exit the run
4715 time loader code and reach the callee's address.
4716
4717 EXEC_REVERSE: we've already executed the callee (backward), and
4718 the runtime loader code is handled just like any other
4719 undebuggable function call. Now we need only keep stepping
4720 backward through the trampoline code, and that's handled further
4721 down, so there is nothing for us to do here. */
4722
4723 if (execution_direction != EXEC_REVERSE
4724 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4725 && in_solib_dynsym_resolve_code (stop_pc))
4726 {
4727 CORE_ADDR pc_after_resolver =
4728 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4729
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: stepped into dynsym resolve code\n");
4733
4734 if (pc_after_resolver)
4735 {
4736 /* Set up a step-resume breakpoint at the address
4737 indicated by SKIP_SOLIB_RESOLVER. */
4738 struct symtab_and_line sr_sal;
4739
4740 init_sal (&sr_sal);
4741 sr_sal.pc = pc_after_resolver;
4742 sr_sal.pspace = get_frame_program_space (frame);
4743
4744 insert_step_resume_breakpoint_at_sal (gdbarch,
4745 sr_sal, null_frame_id);
4746 }
4747
4748 keep_going (ecs);
4749 return;
4750 }
4751
4752 if (ecs->event_thread->control.step_range_end != 1
4753 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4754 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4755 && get_frame_type (frame) == SIGTRAMP_FRAME)
4756 {
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog,
4759 "infrun: stepped into signal trampoline\n");
4760 /* The inferior, while doing a "step" or "next", has ended up in
4761 a signal trampoline (either by a signal being delivered or by
4762 the signal handler returning). Just single-step until the
4763 inferior leaves the trampoline (either by calling the handler
4764 or returning). */
4765 keep_going (ecs);
4766 return;
4767 }
4768
4769 /* If we're in the return path from a shared library trampoline,
4770 we want to proceed through the trampoline when stepping. */
4771 /* macro/2012-04-25: This needs to come before the subroutine
4772 call check below as on some targets return trampolines look
4773 like subroutine calls (MIPS16 return thunks). */
4774 if (gdbarch_in_solib_return_trampoline (gdbarch,
4775 stop_pc, ecs->stop_func_name)
4776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4777 {
4778 /* Determine where this trampoline returns. */
4779 CORE_ADDR real_stop_pc;
4780
4781 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4782
4783 if (debug_infrun)
4784 fprintf_unfiltered (gdb_stdlog,
4785 "infrun: stepped into solib return tramp\n");
4786
4787 /* Only proceed through if we know where it's going. */
4788 if (real_stop_pc)
4789 {
4790 /* And put the step-breakpoint there and go until there. */
4791 struct symtab_and_line sr_sal;
4792
4793 init_sal (&sr_sal); /* initialize to zeroes */
4794 sr_sal.pc = real_stop_pc;
4795 sr_sal.section = find_pc_overlay (sr_sal.pc);
4796 sr_sal.pspace = get_frame_program_space (frame);
4797
4798 /* Do not specify what the fp should be when we stop since
4799 on some machines the prologue is where the new fp value
4800 is established. */
4801 insert_step_resume_breakpoint_at_sal (gdbarch,
4802 sr_sal, null_frame_id);
4803
4804 /* Restart without fiddling with the step ranges or
4805 other state. */
4806 keep_going (ecs);
4807 return;
4808 }
4809 }
4810
4811 /* Check for subroutine calls. The check for the current frame
4812 equalling the step ID is not necessary - the check of the
4813 previous frame's ID is sufficient - but it is a common case and
4814 cheaper than checking the previous frame's ID.
4815
4816 NOTE: frame_id_eq will never report two invalid frame IDs as
4817 being equal, so to get into this block, both the current and
4818 previous frame must have valid frame IDs. */
4819 /* The outer_frame_id check is a heuristic to detect stepping
4820 through startup code. If we step over an instruction which
4821 sets the stack pointer from an invalid value to a valid value,
4822 we may detect that as a subroutine call from the mythical
4823 "outermost" function. This could be fixed by marking
4824 outermost frames as !stack_p,code_p,special_p. Then the
4825 initial outermost frame, before sp was valid, would
4826 have code_addr == &_start. See the comment in frame_id_eq
4827 for more. */
4828 if (!frame_id_eq (get_stack_frame_id (frame),
4829 ecs->event_thread->control.step_stack_frame_id)
4830 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4831 ecs->event_thread->control.step_stack_frame_id)
4832 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4833 outer_frame_id)
4834 || step_start_function != find_pc_function (stop_pc))))
4835 {
4836 CORE_ADDR real_stop_pc;
4837
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4840
4841 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4842 || ((ecs->event_thread->control.step_range_end == 1)
4843 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4844 ecs->stop_func_start)))
4845 {
4846 /* I presume that step_over_calls is only 0 when we're
4847 supposed to be stepping at the assembly language level
4848 ("stepi"). Just stop. */
4849 /* Also, maybe we just did a "nexti" inside a prolog, so we
4850 thought it was a subroutine call but it was not. Stop as
4851 well. FENN */
4852 /* And this works the same backward as frontward. MVS */
4853 ecs->event_thread->control.stop_step = 1;
4854 print_end_stepping_range_reason ();
4855 stop_stepping (ecs);
4856 return;
4857 }
4858
4859 /* Reverse stepping through solib trampolines. */
4860
4861 if (execution_direction == EXEC_REVERSE
4862 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4863 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4864 || (ecs->stop_func_start == 0
4865 && in_solib_dynsym_resolve_code (stop_pc))))
4866 {
4867 /* Any solib trampoline code can be handled in reverse
4868 by simply continuing to single-step. We have already
4869 executed the solib function (backwards), and a few
4870 steps will take us back through the trampoline to the
4871 caller. */
4872 keep_going (ecs);
4873 return;
4874 }
4875
4876 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4877 {
4878 /* We're doing a "next".
4879
4880 Normal (forward) execution: set a breakpoint at the
4881 callee's return address (the address at which the caller
4882 will resume).
4883
4884 Reverse (backward) execution. set the step-resume
4885 breakpoint at the start of the function that we just
4886 stepped into (backwards), and continue to there. When we
4887 get there, we'll need to single-step back to the caller. */
4888
4889 if (execution_direction == EXEC_REVERSE)
4890 {
4891 struct symtab_and_line sr_sal;
4892
4893 /* Normal function call return (static or dynamic). */
4894 init_sal (&sr_sal);
4895 sr_sal.pc = ecs->stop_func_start;
4896 sr_sal.pspace = get_frame_program_space (frame);
4897 insert_step_resume_breakpoint_at_sal (gdbarch,
4898 sr_sal, null_frame_id);
4899 }
4900 else
4901 insert_step_resume_breakpoint_at_caller (frame);
4902
4903 keep_going (ecs);
4904 return;
4905 }
4906
4907 /* If we are in a function call trampoline (a stub between the
4908 calling routine and the real function), locate the real
4909 function. That's what tells us (a) whether we want to step
4910 into it at all, and (b) what prologue we want to run to the
4911 end of, if we do step into it. */
4912 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4913 if (real_stop_pc == 0)
4914 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4915 if (real_stop_pc != 0)
4916 ecs->stop_func_start = real_stop_pc;
4917
4918 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4919 {
4920 struct symtab_and_line sr_sal;
4921
4922 init_sal (&sr_sal);
4923 sr_sal.pc = ecs->stop_func_start;
4924 sr_sal.pspace = get_frame_program_space (frame);
4925
4926 insert_step_resume_breakpoint_at_sal (gdbarch,
4927 sr_sal, null_frame_id);
4928 keep_going (ecs);
4929 return;
4930 }
4931
4932 /* If we have line number information for the function we are
4933 thinking of stepping into and the function isn't on the skip
4934 list, step into it.
4935
4936 If there are several symtabs at that PC (e.g. with include
4937 files), just want to know whether *any* of them have line
4938 numbers. find_pc_line handles this. */
4939 {
4940 struct symtab_and_line tmp_sal;
4941
4942 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4943 if (tmp_sal.line != 0
4944 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4945 {
4946 if (execution_direction == EXEC_REVERSE)
4947 handle_step_into_function_backward (gdbarch, ecs);
4948 else
4949 handle_step_into_function (gdbarch, ecs);
4950 return;
4951 }
4952 }
4953
4954 /* If we have no line number and the step-stop-if-no-debug is
4955 set, we stop the step so that the user has a chance to switch
4956 in assembly mode. */
4957 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4958 && step_stop_if_no_debug)
4959 {
4960 ecs->event_thread->control.stop_step = 1;
4961 print_end_stepping_range_reason ();
4962 stop_stepping (ecs);
4963 return;
4964 }
4965
4966 if (execution_direction == EXEC_REVERSE)
4967 {
4968 /* Set a breakpoint at callee's start address.
4969 From there we can step once and be back in the caller. */
4970 struct symtab_and_line sr_sal;
4971
4972 init_sal (&sr_sal);
4973 sr_sal.pc = ecs->stop_func_start;
4974 sr_sal.pspace = get_frame_program_space (frame);
4975 insert_step_resume_breakpoint_at_sal (gdbarch,
4976 sr_sal, null_frame_id);
4977 }
4978 else
4979 /* Set a breakpoint at callee's return address (the address
4980 at which the caller will resume). */
4981 insert_step_resume_breakpoint_at_caller (frame);
4982
4983 keep_going (ecs);
4984 return;
4985 }
4986
4987 /* Reverse stepping through solib trampolines. */
4988
4989 if (execution_direction == EXEC_REVERSE
4990 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4991 {
4992 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4993 || (ecs->stop_func_start == 0
4994 && in_solib_dynsym_resolve_code (stop_pc)))
4995 {
4996 /* Any solib trampoline code can be handled in reverse
4997 by simply continuing to single-step. We have already
4998 executed the solib function (backwards), and a few
4999 steps will take us back through the trampoline to the
5000 caller. */
5001 keep_going (ecs);
5002 return;
5003 }
5004 else if (in_solib_dynsym_resolve_code (stop_pc))
5005 {
5006 /* Stepped backward into the solib dynsym resolver.
5007 Set a breakpoint at its start and continue, then
5008 one more step will take us out. */
5009 struct symtab_and_line sr_sal;
5010
5011 init_sal (&sr_sal);
5012 sr_sal.pc = ecs->stop_func_start;
5013 sr_sal.pspace = get_frame_program_space (frame);
5014 insert_step_resume_breakpoint_at_sal (gdbarch,
5015 sr_sal, null_frame_id);
5016 keep_going (ecs);
5017 return;
5018 }
5019 }
5020
5021 stop_pc_sal = find_pc_line (stop_pc, 0);
5022
5023 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5024 the trampoline processing logic, however, there are some trampolines
5025 that have no names, so we should do trampoline handling first. */
5026 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5027 && ecs->stop_func_name == NULL
5028 && stop_pc_sal.line == 0)
5029 {
5030 if (debug_infrun)
5031 fprintf_unfiltered (gdb_stdlog,
5032 "infrun: stepped into undebuggable function\n");
5033
5034 /* The inferior just stepped into, or returned to, an
5035 undebuggable function (where there is no debugging information
5036 and no line number corresponding to the address where the
5037 inferior stopped). Since we want to skip this kind of code,
5038 we keep going until the inferior returns from this
5039 function - unless the user has asked us not to (via
5040 set step-mode) or we no longer know how to get back
5041 to the call site. */
5042 if (step_stop_if_no_debug
5043 || !frame_id_p (frame_unwind_caller_id (frame)))
5044 {
5045 /* If we have no line number and the step-stop-if-no-debug
5046 is set, we stop the step so that the user has a chance to
5047 switch in assembly mode. */
5048 ecs->event_thread->control.stop_step = 1;
5049 print_end_stepping_range_reason ();
5050 stop_stepping (ecs);
5051 return;
5052 }
5053 else
5054 {
5055 /* Set a breakpoint at callee's return address (the address
5056 at which the caller will resume). */
5057 insert_step_resume_breakpoint_at_caller (frame);
5058 keep_going (ecs);
5059 return;
5060 }
5061 }
5062
5063 if (ecs->event_thread->control.step_range_end == 1)
5064 {
5065 /* It is stepi or nexti. We always want to stop stepping after
5066 one instruction. */
5067 if (debug_infrun)
5068 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5069 ecs->event_thread->control.stop_step = 1;
5070 print_end_stepping_range_reason ();
5071 stop_stepping (ecs);
5072 return;
5073 }
5074
5075 if (stop_pc_sal.line == 0)
5076 {
5077 /* We have no line number information. That means to stop
5078 stepping (does this always happen right after one instruction,
5079 when we do "s" in a function with no line numbers,
5080 or can this happen as a result of a return or longjmp?). */
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5083 ecs->event_thread->control.stop_step = 1;
5084 print_end_stepping_range_reason ();
5085 stop_stepping (ecs);
5086 return;
5087 }
5088
5089 /* Look for "calls" to inlined functions, part one. If the inline
5090 frame machinery detected some skipped call sites, we have entered
5091 a new inline function. */
5092
5093 if (frame_id_eq (get_frame_id (get_current_frame ()),
5094 ecs->event_thread->control.step_frame_id)
5095 && inline_skipped_frames (ecs->ptid))
5096 {
5097 struct symtab_and_line call_sal;
5098
5099 if (debug_infrun)
5100 fprintf_unfiltered (gdb_stdlog,
5101 "infrun: stepped into inlined function\n");
5102
5103 find_frame_sal (get_current_frame (), &call_sal);
5104
5105 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5106 {
5107 /* For "step", we're going to stop. But if the call site
5108 for this inlined function is on the same source line as
5109 we were previously stepping, go down into the function
5110 first. Otherwise stop at the call site. */
5111
5112 if (call_sal.line == ecs->event_thread->current_line
5113 && call_sal.symtab == ecs->event_thread->current_symtab)
5114 step_into_inline_frame (ecs->ptid);
5115
5116 ecs->event_thread->control.stop_step = 1;
5117 print_end_stepping_range_reason ();
5118 stop_stepping (ecs);
5119 return;
5120 }
5121 else
5122 {
5123 /* For "next", we should stop at the call site if it is on a
5124 different source line. Otherwise continue through the
5125 inlined function. */
5126 if (call_sal.line == ecs->event_thread->current_line
5127 && call_sal.symtab == ecs->event_thread->current_symtab)
5128 keep_going (ecs);
5129 else
5130 {
5131 ecs->event_thread->control.stop_step = 1;
5132 print_end_stepping_range_reason ();
5133 stop_stepping (ecs);
5134 }
5135 return;
5136 }
5137 }
5138
5139 /* Look for "calls" to inlined functions, part two. If we are still
5140 in the same real function we were stepping through, but we have
5141 to go further up to find the exact frame ID, we are stepping
5142 through a more inlined call beyond its call site. */
5143
5144 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5145 && !frame_id_eq (get_frame_id (get_current_frame ()),
5146 ecs->event_thread->control.step_frame_id)
5147 && stepped_in_from (get_current_frame (),
5148 ecs->event_thread->control.step_frame_id))
5149 {
5150 if (debug_infrun)
5151 fprintf_unfiltered (gdb_stdlog,
5152 "infrun: stepping through inlined function\n");
5153
5154 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5155 keep_going (ecs);
5156 else
5157 {
5158 ecs->event_thread->control.stop_step = 1;
5159 print_end_stepping_range_reason ();
5160 stop_stepping (ecs);
5161 }
5162 return;
5163 }
5164
5165 if ((stop_pc == stop_pc_sal.pc)
5166 && (ecs->event_thread->current_line != stop_pc_sal.line
5167 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5168 {
5169 /* We are at the start of a different line. So stop. Note that
5170 we don't stop if we step into the middle of a different line.
5171 That is said to make things like for (;;) statements work
5172 better. */
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: stepped to a different line\n");
5176 ecs->event_thread->control.stop_step = 1;
5177 print_end_stepping_range_reason ();
5178 stop_stepping (ecs);
5179 return;
5180 }
5181
5182 /* We aren't done stepping.
5183
5184 Optimize by setting the stepping range to the line.
5185 (We might not be in the original line, but if we entered a
5186 new line in mid-statement, we continue stepping. This makes
5187 things like for(;;) statements work better.) */
5188
5189 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5190 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5191 set_step_info (frame, stop_pc_sal);
5192
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5195 keep_going (ecs);
5196 }
5197
5198 /* Is thread TP in the middle of single-stepping? */
5199
5200 static int
5201 currently_stepping (struct thread_info *tp)
5202 {
5203 return ((tp->control.step_range_end
5204 && tp->control.step_resume_breakpoint == NULL)
5205 || tp->control.trap_expected
5206 || bpstat_should_step ());
5207 }
5208
5209 /* Returns true if any thread *but* the one passed in "data" is in the
5210 middle of stepping or of handling a "next". */
5211
5212 static int
5213 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5214 {
5215 if (tp == data)
5216 return 0;
5217
5218 return (tp->control.step_range_end
5219 || tp->control.trap_expected);
5220 }
5221
5222 /* Inferior has stepped into a subroutine call with source code that
5223 we should not step over. Do step to the first line of code in
5224 it. */
5225
5226 static void
5227 handle_step_into_function (struct gdbarch *gdbarch,
5228 struct execution_control_state *ecs)
5229 {
5230 struct symtab *s;
5231 struct symtab_and_line stop_func_sal, sr_sal;
5232
5233 fill_in_stop_func (gdbarch, ecs);
5234
5235 s = find_pc_symtab (stop_pc);
5236 if (s && s->language != language_asm)
5237 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5238 ecs->stop_func_start);
5239
5240 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5241 /* Use the step_resume_break to step until the end of the prologue,
5242 even if that involves jumps (as it seems to on the vax under
5243 4.2). */
5244 /* If the prologue ends in the middle of a source line, continue to
5245 the end of that source line (if it is still within the function).
5246 Otherwise, just go to end of prologue. */
5247 if (stop_func_sal.end
5248 && stop_func_sal.pc != ecs->stop_func_start
5249 && stop_func_sal.end < ecs->stop_func_end)
5250 ecs->stop_func_start = stop_func_sal.end;
5251
5252 /* Architectures which require breakpoint adjustment might not be able
5253 to place a breakpoint at the computed address. If so, the test
5254 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5255 ecs->stop_func_start to an address at which a breakpoint may be
5256 legitimately placed.
5257
5258 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5259 made, GDB will enter an infinite loop when stepping through
5260 optimized code consisting of VLIW instructions which contain
5261 subinstructions corresponding to different source lines. On
5262 FR-V, it's not permitted to place a breakpoint on any but the
5263 first subinstruction of a VLIW instruction. When a breakpoint is
5264 set, GDB will adjust the breakpoint address to the beginning of
5265 the VLIW instruction. Thus, we need to make the corresponding
5266 adjustment here when computing the stop address. */
5267
5268 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5269 {
5270 ecs->stop_func_start
5271 = gdbarch_adjust_breakpoint_address (gdbarch,
5272 ecs->stop_func_start);
5273 }
5274
5275 if (ecs->stop_func_start == stop_pc)
5276 {
5277 /* We are already there: stop now. */
5278 ecs->event_thread->control.stop_step = 1;
5279 print_end_stepping_range_reason ();
5280 stop_stepping (ecs);
5281 return;
5282 }
5283 else
5284 {
5285 /* Put the step-breakpoint there and go until there. */
5286 init_sal (&sr_sal); /* initialize to zeroes */
5287 sr_sal.pc = ecs->stop_func_start;
5288 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5289 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5290
5291 /* Do not specify what the fp should be when we stop since on
5292 some machines the prologue is where the new fp value is
5293 established. */
5294 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5295
5296 /* And make sure stepping stops right away then. */
5297 ecs->event_thread->control.step_range_end
5298 = ecs->event_thread->control.step_range_start;
5299 }
5300 keep_going (ecs);
5301 }
5302
5303 /* Inferior has stepped backward into a subroutine call with source
5304 code that we should not step over. Do step to the beginning of the
5305 last line of code in it. */
5306
5307 static void
5308 handle_step_into_function_backward (struct gdbarch *gdbarch,
5309 struct execution_control_state *ecs)
5310 {
5311 struct symtab *s;
5312 struct symtab_and_line stop_func_sal;
5313
5314 fill_in_stop_func (gdbarch, ecs);
5315
5316 s = find_pc_symtab (stop_pc);
5317 if (s && s->language != language_asm)
5318 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5319 ecs->stop_func_start);
5320
5321 stop_func_sal = find_pc_line (stop_pc, 0);
5322
5323 /* OK, we're just going to keep stepping here. */
5324 if (stop_func_sal.pc == stop_pc)
5325 {
5326 /* We're there already. Just stop stepping now. */
5327 ecs->event_thread->control.stop_step = 1;
5328 print_end_stepping_range_reason ();
5329 stop_stepping (ecs);
5330 }
5331 else
5332 {
5333 /* Else just reset the step range and keep going.
5334 No step-resume breakpoint, they don't work for
5335 epilogues, which can have multiple entry paths. */
5336 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5337 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5338 keep_going (ecs);
5339 }
5340 return;
5341 }
5342
5343 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5344 This is used to both functions and to skip over code. */
5345
5346 static void
5347 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5348 struct symtab_and_line sr_sal,
5349 struct frame_id sr_id,
5350 enum bptype sr_type)
5351 {
5352 /* There should never be more than one step-resume or longjmp-resume
5353 breakpoint per thread, so we should never be setting a new
5354 step_resume_breakpoint when one is already active. */
5355 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5356 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5357
5358 if (debug_infrun)
5359 fprintf_unfiltered (gdb_stdlog,
5360 "infrun: inserting step-resume breakpoint at %s\n",
5361 paddress (gdbarch, sr_sal.pc));
5362
5363 inferior_thread ()->control.step_resume_breakpoint
5364 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5365 }
5366
5367 void
5368 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5369 struct symtab_and_line sr_sal,
5370 struct frame_id sr_id)
5371 {
5372 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5373 sr_sal, sr_id,
5374 bp_step_resume);
5375 }
5376
5377 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5378 This is used to skip a potential signal handler.
5379
5380 This is called with the interrupted function's frame. The signal
5381 handler, when it returns, will resume the interrupted function at
5382 RETURN_FRAME.pc. */
5383
5384 static void
5385 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5386 {
5387 struct symtab_and_line sr_sal;
5388 struct gdbarch *gdbarch;
5389
5390 gdb_assert (return_frame != NULL);
5391 init_sal (&sr_sal); /* initialize to zeros */
5392
5393 gdbarch = get_frame_arch (return_frame);
5394 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5395 sr_sal.section = find_pc_overlay (sr_sal.pc);
5396 sr_sal.pspace = get_frame_program_space (return_frame);
5397
5398 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5399 get_stack_frame_id (return_frame),
5400 bp_hp_step_resume);
5401 }
5402
5403 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5404 is used to skip a function after stepping into it (for "next" or if
5405 the called function has no debugging information).
5406
5407 The current function has almost always been reached by single
5408 stepping a call or return instruction. NEXT_FRAME belongs to the
5409 current function, and the breakpoint will be set at the caller's
5410 resume address.
5411
5412 This is a separate function rather than reusing
5413 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5414 get_prev_frame, which may stop prematurely (see the implementation
5415 of frame_unwind_caller_id for an example). */
5416
5417 static void
5418 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5419 {
5420 struct symtab_and_line sr_sal;
5421 struct gdbarch *gdbarch;
5422
5423 /* We shouldn't have gotten here if we don't know where the call site
5424 is. */
5425 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5426
5427 init_sal (&sr_sal); /* initialize to zeros */
5428
5429 gdbarch = frame_unwind_caller_arch (next_frame);
5430 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5431 frame_unwind_caller_pc (next_frame));
5432 sr_sal.section = find_pc_overlay (sr_sal.pc);
5433 sr_sal.pspace = frame_unwind_program_space (next_frame);
5434
5435 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5436 frame_unwind_caller_id (next_frame));
5437 }
5438
5439 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5440 new breakpoint at the target of a jmp_buf. The handling of
5441 longjmp-resume uses the same mechanisms used for handling
5442 "step-resume" breakpoints. */
5443
5444 static void
5445 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5446 {
5447 /* There should never be more than one longjmp-resume breakpoint per
5448 thread, so we should never be setting a new
5449 longjmp_resume_breakpoint when one is already active. */
5450 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5451
5452 if (debug_infrun)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: inserting longjmp-resume breakpoint at %s\n",
5455 paddress (gdbarch, pc));
5456
5457 inferior_thread ()->control.exception_resume_breakpoint =
5458 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5459 }
5460
5461 /* Insert an exception resume breakpoint. TP is the thread throwing
5462 the exception. The block B is the block of the unwinder debug hook
5463 function. FRAME is the frame corresponding to the call to this
5464 function. SYM is the symbol of the function argument holding the
5465 target PC of the exception. */
5466
5467 static void
5468 insert_exception_resume_breakpoint (struct thread_info *tp,
5469 struct block *b,
5470 struct frame_info *frame,
5471 struct symbol *sym)
5472 {
5473 volatile struct gdb_exception e;
5474
5475 /* We want to ignore errors here. */
5476 TRY_CATCH (e, RETURN_MASK_ERROR)
5477 {
5478 struct symbol *vsym;
5479 struct value *value;
5480 CORE_ADDR handler;
5481 struct breakpoint *bp;
5482
5483 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5484 value = read_var_value (vsym, frame);
5485 /* If the value was optimized out, revert to the old behavior. */
5486 if (! value_optimized_out (value))
5487 {
5488 handler = value_as_address (value);
5489
5490 if (debug_infrun)
5491 fprintf_unfiltered (gdb_stdlog,
5492 "infrun: exception resume at %lx\n",
5493 (unsigned long) handler);
5494
5495 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5496 handler, bp_exception_resume);
5497
5498 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5499 frame = NULL;
5500
5501 bp->thread = tp->num;
5502 inferior_thread ()->control.exception_resume_breakpoint = bp;
5503 }
5504 }
5505 }
5506
5507 /* A helper for check_exception_resume that sets an
5508 exception-breakpoint based on a SystemTap probe. */
5509
5510 static void
5511 insert_exception_resume_from_probe (struct thread_info *tp,
5512 const struct probe *probe,
5513 struct objfile *objfile,
5514 struct frame_info *frame)
5515 {
5516 struct value *arg_value;
5517 CORE_ADDR handler;
5518 struct breakpoint *bp;
5519
5520 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5521 if (!arg_value)
5522 return;
5523
5524 handler = value_as_address (arg_value);
5525
5526 if (debug_infrun)
5527 fprintf_unfiltered (gdb_stdlog,
5528 "infrun: exception resume at %s\n",
5529 paddress (get_objfile_arch (objfile),
5530 handler));
5531
5532 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5533 handler, bp_exception_resume);
5534 bp->thread = tp->num;
5535 inferior_thread ()->control.exception_resume_breakpoint = bp;
5536 }
5537
5538 /* This is called when an exception has been intercepted. Check to
5539 see whether the exception's destination is of interest, and if so,
5540 set an exception resume breakpoint there. */
5541
5542 static void
5543 check_exception_resume (struct execution_control_state *ecs,
5544 struct frame_info *frame)
5545 {
5546 volatile struct gdb_exception e;
5547 struct objfile *objfile;
5548 const struct probe *probe;
5549 struct symbol *func;
5550
5551 /* First see if this exception unwinding breakpoint was set via a
5552 SystemTap probe point. If so, the probe has two arguments: the
5553 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5554 set a breakpoint there. */
5555 probe = find_probe_by_pc (get_frame_pc (frame), &objfile);
5556 if (probe)
5557 {
5558 insert_exception_resume_from_probe (ecs->event_thread, probe,
5559 objfile, frame);
5560 return;
5561 }
5562
5563 func = get_frame_function (frame);
5564 if (!func)
5565 return;
5566
5567 TRY_CATCH (e, RETURN_MASK_ERROR)
5568 {
5569 struct block *b;
5570 struct block_iterator iter;
5571 struct symbol *sym;
5572 int argno = 0;
5573
5574 /* The exception breakpoint is a thread-specific breakpoint on
5575 the unwinder's debug hook, declared as:
5576
5577 void _Unwind_DebugHook (void *cfa, void *handler);
5578
5579 The CFA argument indicates the frame to which control is
5580 about to be transferred. HANDLER is the destination PC.
5581
5582 We ignore the CFA and set a temporary breakpoint at HANDLER.
5583 This is not extremely efficient but it avoids issues in gdb
5584 with computing the DWARF CFA, and it also works even in weird
5585 cases such as throwing an exception from inside a signal
5586 handler. */
5587
5588 b = SYMBOL_BLOCK_VALUE (func);
5589 ALL_BLOCK_SYMBOLS (b, iter, sym)
5590 {
5591 if (!SYMBOL_IS_ARGUMENT (sym))
5592 continue;
5593
5594 if (argno == 0)
5595 ++argno;
5596 else
5597 {
5598 insert_exception_resume_breakpoint (ecs->event_thread,
5599 b, frame, sym);
5600 break;
5601 }
5602 }
5603 }
5604 }
5605
5606 static void
5607 stop_stepping (struct execution_control_state *ecs)
5608 {
5609 if (debug_infrun)
5610 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5611
5612 /* Let callers know we don't want to wait for the inferior anymore. */
5613 ecs->wait_some_more = 0;
5614 }
5615
5616 /* This function handles various cases where we need to continue
5617 waiting for the inferior. */
5618 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5619
5620 static void
5621 keep_going (struct execution_control_state *ecs)
5622 {
5623 /* Make sure normal_stop is called if we get a QUIT handled before
5624 reaching resume. */
5625 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5626
5627 /* Save the pc before execution, to compare with pc after stop. */
5628 ecs->event_thread->prev_pc
5629 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5630
5631 /* If we did not do break;, it means we should keep running the
5632 inferior and not return to debugger. */
5633
5634 if (ecs->event_thread->control.trap_expected
5635 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5636 {
5637 /* We took a signal (which we are supposed to pass through to
5638 the inferior, else we'd not get here) and we haven't yet
5639 gotten our trap. Simply continue. */
5640
5641 discard_cleanups (old_cleanups);
5642 resume (currently_stepping (ecs->event_thread),
5643 ecs->event_thread->suspend.stop_signal);
5644 }
5645 else
5646 {
5647 /* Either the trap was not expected, but we are continuing
5648 anyway (the user asked that this signal be passed to the
5649 child)
5650 -- or --
5651 The signal was SIGTRAP, e.g. it was our signal, but we
5652 decided we should resume from it.
5653
5654 We're going to run this baby now!
5655
5656 Note that insert_breakpoints won't try to re-insert
5657 already inserted breakpoints. Therefore, we don't
5658 care if breakpoints were already inserted, or not. */
5659
5660 if (ecs->event_thread->stepping_over_breakpoint)
5661 {
5662 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5663
5664 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5665 /* Since we can't do a displaced step, we have to remove
5666 the breakpoint while we step it. To keep things
5667 simple, we remove them all. */
5668 remove_breakpoints ();
5669 }
5670 else
5671 {
5672 volatile struct gdb_exception e;
5673
5674 /* Stop stepping when inserting breakpoints
5675 has failed. */
5676 TRY_CATCH (e, RETURN_MASK_ERROR)
5677 {
5678 insert_breakpoints ();
5679 }
5680 if (e.reason < 0)
5681 {
5682 exception_print (gdb_stderr, e);
5683 stop_stepping (ecs);
5684 return;
5685 }
5686 }
5687
5688 ecs->event_thread->control.trap_expected
5689 = ecs->event_thread->stepping_over_breakpoint;
5690
5691 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5692 specifies that such a signal should be delivered to the
5693 target program).
5694
5695 Typically, this would occure when a user is debugging a
5696 target monitor on a simulator: the target monitor sets a
5697 breakpoint; the simulator encounters this break-point and
5698 halts the simulation handing control to GDB; GDB, noteing
5699 that the break-point isn't valid, returns control back to the
5700 simulator; the simulator then delivers the hardware
5701 equivalent of a SIGNAL_TRAP to the program being debugged. */
5702
5703 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5704 && !signal_program[ecs->event_thread->suspend.stop_signal])
5705 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5706
5707 discard_cleanups (old_cleanups);
5708 resume (currently_stepping (ecs->event_thread),
5709 ecs->event_thread->suspend.stop_signal);
5710 }
5711
5712 prepare_to_wait (ecs);
5713 }
5714
5715 /* This function normally comes after a resume, before
5716 handle_inferior_event exits. It takes care of any last bits of
5717 housekeeping, and sets the all-important wait_some_more flag. */
5718
5719 static void
5720 prepare_to_wait (struct execution_control_state *ecs)
5721 {
5722 if (debug_infrun)
5723 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5724
5725 /* This is the old end of the while loop. Let everybody know we
5726 want to wait for the inferior some more and get called again
5727 soon. */
5728 ecs->wait_some_more = 1;
5729 }
5730
5731 /* Several print_*_reason functions to print why the inferior has stopped.
5732 We always print something when the inferior exits, or receives a signal.
5733 The rest of the cases are dealt with later on in normal_stop and
5734 print_it_typical. Ideally there should be a call to one of these
5735 print_*_reason functions functions from handle_inferior_event each time
5736 stop_stepping is called. */
5737
5738 /* Print why the inferior has stopped.
5739 We are done with a step/next/si/ni command, print why the inferior has
5740 stopped. For now print nothing. Print a message only if not in the middle
5741 of doing a "step n" operation for n > 1. */
5742
5743 static void
5744 print_end_stepping_range_reason (void)
5745 {
5746 if ((!inferior_thread ()->step_multi
5747 || !inferior_thread ()->control.stop_step)
5748 && ui_out_is_mi_like_p (current_uiout))
5749 ui_out_field_string (current_uiout, "reason",
5750 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5751 }
5752
5753 /* The inferior was terminated by a signal, print why it stopped. */
5754
5755 static void
5756 print_signal_exited_reason (enum gdb_signal siggnal)
5757 {
5758 struct ui_out *uiout = current_uiout;
5759
5760 annotate_signalled ();
5761 if (ui_out_is_mi_like_p (uiout))
5762 ui_out_field_string
5763 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5764 ui_out_text (uiout, "\nProgram terminated with signal ");
5765 annotate_signal_name ();
5766 ui_out_field_string (uiout, "signal-name",
5767 gdb_signal_to_name (siggnal));
5768 annotate_signal_name_end ();
5769 ui_out_text (uiout, ", ");
5770 annotate_signal_string ();
5771 ui_out_field_string (uiout, "signal-meaning",
5772 gdb_signal_to_string (siggnal));
5773 annotate_signal_string_end ();
5774 ui_out_text (uiout, ".\n");
5775 ui_out_text (uiout, "The program no longer exists.\n");
5776 }
5777
5778 /* The inferior program is finished, print why it stopped. */
5779
5780 static void
5781 print_exited_reason (int exitstatus)
5782 {
5783 struct inferior *inf = current_inferior ();
5784 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5785 struct ui_out *uiout = current_uiout;
5786
5787 annotate_exited (exitstatus);
5788 if (exitstatus)
5789 {
5790 if (ui_out_is_mi_like_p (uiout))
5791 ui_out_field_string (uiout, "reason",
5792 async_reason_lookup (EXEC_ASYNC_EXITED));
5793 ui_out_text (uiout, "[Inferior ");
5794 ui_out_text (uiout, plongest (inf->num));
5795 ui_out_text (uiout, " (");
5796 ui_out_text (uiout, pidstr);
5797 ui_out_text (uiout, ") exited with code ");
5798 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5799 ui_out_text (uiout, "]\n");
5800 }
5801 else
5802 {
5803 if (ui_out_is_mi_like_p (uiout))
5804 ui_out_field_string
5805 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5806 ui_out_text (uiout, "[Inferior ");
5807 ui_out_text (uiout, plongest (inf->num));
5808 ui_out_text (uiout, " (");
5809 ui_out_text (uiout, pidstr);
5810 ui_out_text (uiout, ") exited normally]\n");
5811 }
5812 /* Support the --return-child-result option. */
5813 return_child_result_value = exitstatus;
5814 }
5815
5816 /* Signal received, print why the inferior has stopped. The signal table
5817 tells us to print about it. */
5818
5819 static void
5820 print_signal_received_reason (enum gdb_signal siggnal)
5821 {
5822 struct ui_out *uiout = current_uiout;
5823
5824 annotate_signal ();
5825
5826 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5827 {
5828 struct thread_info *t = inferior_thread ();
5829
5830 ui_out_text (uiout, "\n[");
5831 ui_out_field_string (uiout, "thread-name",
5832 target_pid_to_str (t->ptid));
5833 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5834 ui_out_text (uiout, " stopped");
5835 }
5836 else
5837 {
5838 ui_out_text (uiout, "\nProgram received signal ");
5839 annotate_signal_name ();
5840 if (ui_out_is_mi_like_p (uiout))
5841 ui_out_field_string
5842 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5843 ui_out_field_string (uiout, "signal-name",
5844 gdb_signal_to_name (siggnal));
5845 annotate_signal_name_end ();
5846 ui_out_text (uiout, ", ");
5847 annotate_signal_string ();
5848 ui_out_field_string (uiout, "signal-meaning",
5849 gdb_signal_to_string (siggnal));
5850 annotate_signal_string_end ();
5851 }
5852 ui_out_text (uiout, ".\n");
5853 }
5854
5855 /* Reverse execution: target ran out of history info, print why the inferior
5856 has stopped. */
5857
5858 static void
5859 print_no_history_reason (void)
5860 {
5861 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5862 }
5863
5864 /* Here to return control to GDB when the inferior stops for real.
5865 Print appropriate messages, remove breakpoints, give terminal our modes.
5866
5867 STOP_PRINT_FRAME nonzero means print the executing frame
5868 (pc, function, args, file, line number and line text).
5869 BREAKPOINTS_FAILED nonzero means stop was due to error
5870 attempting to insert breakpoints. */
5871
5872 void
5873 normal_stop (void)
5874 {
5875 struct target_waitstatus last;
5876 ptid_t last_ptid;
5877 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5878
5879 get_last_target_status (&last_ptid, &last);
5880
5881 /* If an exception is thrown from this point on, make sure to
5882 propagate GDB's knowledge of the executing state to the
5883 frontend/user running state. A QUIT is an easy exception to see
5884 here, so do this before any filtered output. */
5885 if (!non_stop)
5886 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5887 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5888 && last.kind != TARGET_WAITKIND_EXITED
5889 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5890 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5891
5892 /* In non-stop mode, we don't want GDB to switch threads behind the
5893 user's back, to avoid races where the user is typing a command to
5894 apply to thread x, but GDB switches to thread y before the user
5895 finishes entering the command. */
5896
5897 /* As with the notification of thread events, we want to delay
5898 notifying the user that we've switched thread context until
5899 the inferior actually stops.
5900
5901 There's no point in saying anything if the inferior has exited.
5902 Note that SIGNALLED here means "exited with a signal", not
5903 "received a signal". */
5904 if (!non_stop
5905 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5906 && target_has_execution
5907 && last.kind != TARGET_WAITKIND_SIGNALLED
5908 && last.kind != TARGET_WAITKIND_EXITED
5909 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5910 {
5911 target_terminal_ours_for_output ();
5912 printf_filtered (_("[Switching to %s]\n"),
5913 target_pid_to_str (inferior_ptid));
5914 annotate_thread_changed ();
5915 previous_inferior_ptid = inferior_ptid;
5916 }
5917
5918 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5919 {
5920 gdb_assert (sync_execution || !target_can_async_p ());
5921
5922 target_terminal_ours_for_output ();
5923 printf_filtered (_("No unwaited-for children left.\n"));
5924 }
5925
5926 if (!breakpoints_always_inserted_mode () && target_has_execution)
5927 {
5928 if (remove_breakpoints ())
5929 {
5930 target_terminal_ours_for_output ();
5931 printf_filtered (_("Cannot remove breakpoints because "
5932 "program is no longer writable.\nFurther "
5933 "execution is probably impossible.\n"));
5934 }
5935 }
5936
5937 /* If an auto-display called a function and that got a signal,
5938 delete that auto-display to avoid an infinite recursion. */
5939
5940 if (stopped_by_random_signal)
5941 disable_current_display ();
5942
5943 /* Don't print a message if in the middle of doing a "step n"
5944 operation for n > 1 */
5945 if (target_has_execution
5946 && last.kind != TARGET_WAITKIND_SIGNALLED
5947 && last.kind != TARGET_WAITKIND_EXITED
5948 && inferior_thread ()->step_multi
5949 && inferior_thread ()->control.stop_step)
5950 goto done;
5951
5952 target_terminal_ours ();
5953 async_enable_stdin ();
5954
5955 /* Set the current source location. This will also happen if we
5956 display the frame below, but the current SAL will be incorrect
5957 during a user hook-stop function. */
5958 if (has_stack_frames () && !stop_stack_dummy)
5959 set_current_sal_from_frame (get_current_frame (), 1);
5960
5961 /* Let the user/frontend see the threads as stopped. */
5962 do_cleanups (old_chain);
5963
5964 /* Look up the hook_stop and run it (CLI internally handles problem
5965 of stop_command's pre-hook not existing). */
5966 if (stop_command)
5967 catch_errors (hook_stop_stub, stop_command,
5968 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5969
5970 if (!has_stack_frames ())
5971 goto done;
5972
5973 if (last.kind == TARGET_WAITKIND_SIGNALLED
5974 || last.kind == TARGET_WAITKIND_EXITED)
5975 goto done;
5976
5977 /* Select innermost stack frame - i.e., current frame is frame 0,
5978 and current location is based on that.
5979 Don't do this on return from a stack dummy routine,
5980 or if the program has exited. */
5981
5982 if (!stop_stack_dummy)
5983 {
5984 select_frame (get_current_frame ());
5985
5986 /* Print current location without a level number, if
5987 we have changed functions or hit a breakpoint.
5988 Print source line if we have one.
5989 bpstat_print() contains the logic deciding in detail
5990 what to print, based on the event(s) that just occurred. */
5991
5992 /* If --batch-silent is enabled then there's no need to print the current
5993 source location, and to try risks causing an error message about
5994 missing source files. */
5995 if (stop_print_frame && !batch_silent)
5996 {
5997 int bpstat_ret;
5998 int source_flag;
5999 int do_frame_printing = 1;
6000 struct thread_info *tp = inferior_thread ();
6001
6002 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6003 switch (bpstat_ret)
6004 {
6005 case PRINT_UNKNOWN:
6006 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6007 (or should) carry around the function and does (or
6008 should) use that when doing a frame comparison. */
6009 if (tp->control.stop_step
6010 && frame_id_eq (tp->control.step_frame_id,
6011 get_frame_id (get_current_frame ()))
6012 && step_start_function == find_pc_function (stop_pc))
6013 source_flag = SRC_LINE; /* Finished step, just
6014 print source line. */
6015 else
6016 source_flag = SRC_AND_LOC; /* Print location and
6017 source line. */
6018 break;
6019 case PRINT_SRC_AND_LOC:
6020 source_flag = SRC_AND_LOC; /* Print location and
6021 source line. */
6022 break;
6023 case PRINT_SRC_ONLY:
6024 source_flag = SRC_LINE;
6025 break;
6026 case PRINT_NOTHING:
6027 source_flag = SRC_LINE; /* something bogus */
6028 do_frame_printing = 0;
6029 break;
6030 default:
6031 internal_error (__FILE__, __LINE__, _("Unknown value."));
6032 }
6033
6034 /* The behavior of this routine with respect to the source
6035 flag is:
6036 SRC_LINE: Print only source line
6037 LOCATION: Print only location
6038 SRC_AND_LOC: Print location and source line. */
6039 if (do_frame_printing)
6040 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6041
6042 /* Display the auto-display expressions. */
6043 do_displays ();
6044 }
6045 }
6046
6047 /* Save the function value return registers, if we care.
6048 We might be about to restore their previous contents. */
6049 if (inferior_thread ()->control.proceed_to_finish
6050 && execution_direction != EXEC_REVERSE)
6051 {
6052 /* This should not be necessary. */
6053 if (stop_registers)
6054 regcache_xfree (stop_registers);
6055
6056 /* NB: The copy goes through to the target picking up the value of
6057 all the registers. */
6058 stop_registers = regcache_dup (get_current_regcache ());
6059 }
6060
6061 if (stop_stack_dummy == STOP_STACK_DUMMY)
6062 {
6063 /* Pop the empty frame that contains the stack dummy.
6064 This also restores inferior state prior to the call
6065 (struct infcall_suspend_state). */
6066 struct frame_info *frame = get_current_frame ();
6067
6068 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6069 frame_pop (frame);
6070 /* frame_pop() calls reinit_frame_cache as the last thing it
6071 does which means there's currently no selected frame. We
6072 don't need to re-establish a selected frame if the dummy call
6073 returns normally, that will be done by
6074 restore_infcall_control_state. However, we do have to handle
6075 the case where the dummy call is returning after being
6076 stopped (e.g. the dummy call previously hit a breakpoint).
6077 We can't know which case we have so just always re-establish
6078 a selected frame here. */
6079 select_frame (get_current_frame ());
6080 }
6081
6082 done:
6083 annotate_stopped ();
6084
6085 /* Suppress the stop observer if we're in the middle of:
6086
6087 - a step n (n > 1), as there still more steps to be done.
6088
6089 - a "finish" command, as the observer will be called in
6090 finish_command_continuation, so it can include the inferior
6091 function's return value.
6092
6093 - calling an inferior function, as we pretend we inferior didn't
6094 run at all. The return value of the call is handled by the
6095 expression evaluator, through call_function_by_hand. */
6096
6097 if (!target_has_execution
6098 || last.kind == TARGET_WAITKIND_SIGNALLED
6099 || last.kind == TARGET_WAITKIND_EXITED
6100 || last.kind == TARGET_WAITKIND_NO_RESUMED
6101 || (!(inferior_thread ()->step_multi
6102 && inferior_thread ()->control.stop_step)
6103 && !(inferior_thread ()->control.stop_bpstat
6104 && inferior_thread ()->control.proceed_to_finish)
6105 && !inferior_thread ()->control.in_infcall))
6106 {
6107 if (!ptid_equal (inferior_ptid, null_ptid))
6108 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6109 stop_print_frame);
6110 else
6111 observer_notify_normal_stop (NULL, stop_print_frame);
6112 }
6113
6114 if (target_has_execution)
6115 {
6116 if (last.kind != TARGET_WAITKIND_SIGNALLED
6117 && last.kind != TARGET_WAITKIND_EXITED)
6118 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6119 Delete any breakpoint that is to be deleted at the next stop. */
6120 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6121 }
6122
6123 /* Try to get rid of automatically added inferiors that are no
6124 longer needed. Keeping those around slows down things linearly.
6125 Note that this never removes the current inferior. */
6126 prune_inferiors ();
6127 }
6128
6129 static int
6130 hook_stop_stub (void *cmd)
6131 {
6132 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6133 return (0);
6134 }
6135 \f
6136 int
6137 signal_stop_state (int signo)
6138 {
6139 return signal_stop[signo];
6140 }
6141
6142 int
6143 signal_print_state (int signo)
6144 {
6145 return signal_print[signo];
6146 }
6147
6148 int
6149 signal_pass_state (int signo)
6150 {
6151 return signal_program[signo];
6152 }
6153
6154 static void
6155 signal_cache_update (int signo)
6156 {
6157 if (signo == -1)
6158 {
6159 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6160 signal_cache_update (signo);
6161
6162 return;
6163 }
6164
6165 signal_pass[signo] = (signal_stop[signo] == 0
6166 && signal_print[signo] == 0
6167 && signal_program[signo] == 1);
6168 }
6169
6170 int
6171 signal_stop_update (int signo, int state)
6172 {
6173 int ret = signal_stop[signo];
6174
6175 signal_stop[signo] = state;
6176 signal_cache_update (signo);
6177 return ret;
6178 }
6179
6180 int
6181 signal_print_update (int signo, int state)
6182 {
6183 int ret = signal_print[signo];
6184
6185 signal_print[signo] = state;
6186 signal_cache_update (signo);
6187 return ret;
6188 }
6189
6190 int
6191 signal_pass_update (int signo, int state)
6192 {
6193 int ret = signal_program[signo];
6194
6195 signal_program[signo] = state;
6196 signal_cache_update (signo);
6197 return ret;
6198 }
6199
6200 static void
6201 sig_print_header (void)
6202 {
6203 printf_filtered (_("Signal Stop\tPrint\tPass "
6204 "to program\tDescription\n"));
6205 }
6206
6207 static void
6208 sig_print_info (enum gdb_signal oursig)
6209 {
6210 const char *name = gdb_signal_to_name (oursig);
6211 int name_padding = 13 - strlen (name);
6212
6213 if (name_padding <= 0)
6214 name_padding = 0;
6215
6216 printf_filtered ("%s", name);
6217 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6218 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6219 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6220 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6221 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6222 }
6223
6224 /* Specify how various signals in the inferior should be handled. */
6225
6226 static void
6227 handle_command (char *args, int from_tty)
6228 {
6229 char **argv;
6230 int digits, wordlen;
6231 int sigfirst, signum, siglast;
6232 enum gdb_signal oursig;
6233 int allsigs;
6234 int nsigs;
6235 unsigned char *sigs;
6236 struct cleanup *old_chain;
6237
6238 if (args == NULL)
6239 {
6240 error_no_arg (_("signal to handle"));
6241 }
6242
6243 /* Allocate and zero an array of flags for which signals to handle. */
6244
6245 nsigs = (int) GDB_SIGNAL_LAST;
6246 sigs = (unsigned char *) alloca (nsigs);
6247 memset (sigs, 0, nsigs);
6248
6249 /* Break the command line up into args. */
6250
6251 argv = gdb_buildargv (args);
6252 old_chain = make_cleanup_freeargv (argv);
6253
6254 /* Walk through the args, looking for signal oursigs, signal names, and
6255 actions. Signal numbers and signal names may be interspersed with
6256 actions, with the actions being performed for all signals cumulatively
6257 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6258
6259 while (*argv != NULL)
6260 {
6261 wordlen = strlen (*argv);
6262 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6263 {;
6264 }
6265 allsigs = 0;
6266 sigfirst = siglast = -1;
6267
6268 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6269 {
6270 /* Apply action to all signals except those used by the
6271 debugger. Silently skip those. */
6272 allsigs = 1;
6273 sigfirst = 0;
6274 siglast = nsigs - 1;
6275 }
6276 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6277 {
6278 SET_SIGS (nsigs, sigs, signal_stop);
6279 SET_SIGS (nsigs, sigs, signal_print);
6280 }
6281 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6282 {
6283 UNSET_SIGS (nsigs, sigs, signal_program);
6284 }
6285 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6286 {
6287 SET_SIGS (nsigs, sigs, signal_print);
6288 }
6289 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6290 {
6291 SET_SIGS (nsigs, sigs, signal_program);
6292 }
6293 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6294 {
6295 UNSET_SIGS (nsigs, sigs, signal_stop);
6296 }
6297 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6298 {
6299 SET_SIGS (nsigs, sigs, signal_program);
6300 }
6301 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6302 {
6303 UNSET_SIGS (nsigs, sigs, signal_print);
6304 UNSET_SIGS (nsigs, sigs, signal_stop);
6305 }
6306 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6307 {
6308 UNSET_SIGS (nsigs, sigs, signal_program);
6309 }
6310 else if (digits > 0)
6311 {
6312 /* It is numeric. The numeric signal refers to our own
6313 internal signal numbering from target.h, not to host/target
6314 signal number. This is a feature; users really should be
6315 using symbolic names anyway, and the common ones like
6316 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6317
6318 sigfirst = siglast = (int)
6319 gdb_signal_from_command (atoi (*argv));
6320 if ((*argv)[digits] == '-')
6321 {
6322 siglast = (int)
6323 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6324 }
6325 if (sigfirst > siglast)
6326 {
6327 /* Bet he didn't figure we'd think of this case... */
6328 signum = sigfirst;
6329 sigfirst = siglast;
6330 siglast = signum;
6331 }
6332 }
6333 else
6334 {
6335 oursig = gdb_signal_from_name (*argv);
6336 if (oursig != GDB_SIGNAL_UNKNOWN)
6337 {
6338 sigfirst = siglast = (int) oursig;
6339 }
6340 else
6341 {
6342 /* Not a number and not a recognized flag word => complain. */
6343 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6344 }
6345 }
6346
6347 /* If any signal numbers or symbol names were found, set flags for
6348 which signals to apply actions to. */
6349
6350 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6351 {
6352 switch ((enum gdb_signal) signum)
6353 {
6354 case GDB_SIGNAL_TRAP:
6355 case GDB_SIGNAL_INT:
6356 if (!allsigs && !sigs[signum])
6357 {
6358 if (query (_("%s is used by the debugger.\n\
6359 Are you sure you want to change it? "),
6360 gdb_signal_to_name ((enum gdb_signal) signum)))
6361 {
6362 sigs[signum] = 1;
6363 }
6364 else
6365 {
6366 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6367 gdb_flush (gdb_stdout);
6368 }
6369 }
6370 break;
6371 case GDB_SIGNAL_0:
6372 case GDB_SIGNAL_DEFAULT:
6373 case GDB_SIGNAL_UNKNOWN:
6374 /* Make sure that "all" doesn't print these. */
6375 break;
6376 default:
6377 sigs[signum] = 1;
6378 break;
6379 }
6380 }
6381
6382 argv++;
6383 }
6384
6385 for (signum = 0; signum < nsigs; signum++)
6386 if (sigs[signum])
6387 {
6388 signal_cache_update (-1);
6389 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6390 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6391
6392 if (from_tty)
6393 {
6394 /* Show the results. */
6395 sig_print_header ();
6396 for (; signum < nsigs; signum++)
6397 if (sigs[signum])
6398 sig_print_info (signum);
6399 }
6400
6401 break;
6402 }
6403
6404 do_cleanups (old_chain);
6405 }
6406
6407 static void
6408 xdb_handle_command (char *args, int from_tty)
6409 {
6410 char **argv;
6411 struct cleanup *old_chain;
6412
6413 if (args == NULL)
6414 error_no_arg (_("xdb command"));
6415
6416 /* Break the command line up into args. */
6417
6418 argv = gdb_buildargv (args);
6419 old_chain = make_cleanup_freeargv (argv);
6420 if (argv[1] != (char *) NULL)
6421 {
6422 char *argBuf;
6423 int bufLen;
6424
6425 bufLen = strlen (argv[0]) + 20;
6426 argBuf = (char *) xmalloc (bufLen);
6427 if (argBuf)
6428 {
6429 int validFlag = 1;
6430 enum gdb_signal oursig;
6431
6432 oursig = gdb_signal_from_name (argv[0]);
6433 memset (argBuf, 0, bufLen);
6434 if (strcmp (argv[1], "Q") == 0)
6435 sprintf (argBuf, "%s %s", argv[0], "noprint");
6436 else
6437 {
6438 if (strcmp (argv[1], "s") == 0)
6439 {
6440 if (!signal_stop[oursig])
6441 sprintf (argBuf, "%s %s", argv[0], "stop");
6442 else
6443 sprintf (argBuf, "%s %s", argv[0], "nostop");
6444 }
6445 else if (strcmp (argv[1], "i") == 0)
6446 {
6447 if (!signal_program[oursig])
6448 sprintf (argBuf, "%s %s", argv[0], "pass");
6449 else
6450 sprintf (argBuf, "%s %s", argv[0], "nopass");
6451 }
6452 else if (strcmp (argv[1], "r") == 0)
6453 {
6454 if (!signal_print[oursig])
6455 sprintf (argBuf, "%s %s", argv[0], "print");
6456 else
6457 sprintf (argBuf, "%s %s", argv[0], "noprint");
6458 }
6459 else
6460 validFlag = 0;
6461 }
6462 if (validFlag)
6463 handle_command (argBuf, from_tty);
6464 else
6465 printf_filtered (_("Invalid signal handling flag.\n"));
6466 if (argBuf)
6467 xfree (argBuf);
6468 }
6469 }
6470 do_cleanups (old_chain);
6471 }
6472
6473 enum gdb_signal
6474 gdb_signal_from_command (int num)
6475 {
6476 if (num >= 1 && num <= 15)
6477 return (enum gdb_signal) num;
6478 error (_("Only signals 1-15 are valid as numeric signals.\n\
6479 Use \"info signals\" for a list of symbolic signals."));
6480 }
6481
6482 /* Print current contents of the tables set by the handle command.
6483 It is possible we should just be printing signals actually used
6484 by the current target (but for things to work right when switching
6485 targets, all signals should be in the signal tables). */
6486
6487 static void
6488 signals_info (char *signum_exp, int from_tty)
6489 {
6490 enum gdb_signal oursig;
6491
6492 sig_print_header ();
6493
6494 if (signum_exp)
6495 {
6496 /* First see if this is a symbol name. */
6497 oursig = gdb_signal_from_name (signum_exp);
6498 if (oursig == GDB_SIGNAL_UNKNOWN)
6499 {
6500 /* No, try numeric. */
6501 oursig =
6502 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6503 }
6504 sig_print_info (oursig);
6505 return;
6506 }
6507
6508 printf_filtered ("\n");
6509 /* These ugly casts brought to you by the native VAX compiler. */
6510 for (oursig = GDB_SIGNAL_FIRST;
6511 (int) oursig < (int) GDB_SIGNAL_LAST;
6512 oursig = (enum gdb_signal) ((int) oursig + 1))
6513 {
6514 QUIT;
6515
6516 if (oursig != GDB_SIGNAL_UNKNOWN
6517 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6518 sig_print_info (oursig);
6519 }
6520
6521 printf_filtered (_("\nUse the \"handle\" command "
6522 "to change these tables.\n"));
6523 }
6524
6525 /* Check if it makes sense to read $_siginfo from the current thread
6526 at this point. If not, throw an error. */
6527
6528 static void
6529 validate_siginfo_access (void)
6530 {
6531 /* No current inferior, no siginfo. */
6532 if (ptid_equal (inferior_ptid, null_ptid))
6533 error (_("No thread selected."));
6534
6535 /* Don't try to read from a dead thread. */
6536 if (is_exited (inferior_ptid))
6537 error (_("The current thread has terminated"));
6538
6539 /* ... or from a spinning thread. */
6540 if (is_running (inferior_ptid))
6541 error (_("Selected thread is running."));
6542 }
6543
6544 /* The $_siginfo convenience variable is a bit special. We don't know
6545 for sure the type of the value until we actually have a chance to
6546 fetch the data. The type can change depending on gdbarch, so it is
6547 also dependent on which thread you have selected.
6548
6549 1. making $_siginfo be an internalvar that creates a new value on
6550 access.
6551
6552 2. making the value of $_siginfo be an lval_computed value. */
6553
6554 /* This function implements the lval_computed support for reading a
6555 $_siginfo value. */
6556
6557 static void
6558 siginfo_value_read (struct value *v)
6559 {
6560 LONGEST transferred;
6561
6562 validate_siginfo_access ();
6563
6564 transferred =
6565 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6566 NULL,
6567 value_contents_all_raw (v),
6568 value_offset (v),
6569 TYPE_LENGTH (value_type (v)));
6570
6571 if (transferred != TYPE_LENGTH (value_type (v)))
6572 error (_("Unable to read siginfo"));
6573 }
6574
6575 /* This function implements the lval_computed support for writing a
6576 $_siginfo value. */
6577
6578 static void
6579 siginfo_value_write (struct value *v, struct value *fromval)
6580 {
6581 LONGEST transferred;
6582
6583 validate_siginfo_access ();
6584
6585 transferred = target_write (&current_target,
6586 TARGET_OBJECT_SIGNAL_INFO,
6587 NULL,
6588 value_contents_all_raw (fromval),
6589 value_offset (v),
6590 TYPE_LENGTH (value_type (fromval)));
6591
6592 if (transferred != TYPE_LENGTH (value_type (fromval)))
6593 error (_("Unable to write siginfo"));
6594 }
6595
6596 static const struct lval_funcs siginfo_value_funcs =
6597 {
6598 siginfo_value_read,
6599 siginfo_value_write
6600 };
6601
6602 /* Return a new value with the correct type for the siginfo object of
6603 the current thread using architecture GDBARCH. Return a void value
6604 if there's no object available. */
6605
6606 static struct value *
6607 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6608 void *ignore)
6609 {
6610 if (target_has_stack
6611 && !ptid_equal (inferior_ptid, null_ptid)
6612 && gdbarch_get_siginfo_type_p (gdbarch))
6613 {
6614 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6615
6616 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6617 }
6618
6619 return allocate_value (builtin_type (gdbarch)->builtin_void);
6620 }
6621
6622 \f
6623 /* infcall_suspend_state contains state about the program itself like its
6624 registers and any signal it received when it last stopped.
6625 This state must be restored regardless of how the inferior function call
6626 ends (either successfully, or after it hits a breakpoint or signal)
6627 if the program is to properly continue where it left off. */
6628
6629 struct infcall_suspend_state
6630 {
6631 struct thread_suspend_state thread_suspend;
6632 struct inferior_suspend_state inferior_suspend;
6633
6634 /* Other fields: */
6635 CORE_ADDR stop_pc;
6636 struct regcache *registers;
6637
6638 /* Format of SIGINFO_DATA or NULL if it is not present. */
6639 struct gdbarch *siginfo_gdbarch;
6640
6641 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6642 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6643 content would be invalid. */
6644 gdb_byte *siginfo_data;
6645 };
6646
6647 struct infcall_suspend_state *
6648 save_infcall_suspend_state (void)
6649 {
6650 struct infcall_suspend_state *inf_state;
6651 struct thread_info *tp = inferior_thread ();
6652 struct inferior *inf = current_inferior ();
6653 struct regcache *regcache = get_current_regcache ();
6654 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6655 gdb_byte *siginfo_data = NULL;
6656
6657 if (gdbarch_get_siginfo_type_p (gdbarch))
6658 {
6659 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6660 size_t len = TYPE_LENGTH (type);
6661 struct cleanup *back_to;
6662
6663 siginfo_data = xmalloc (len);
6664 back_to = make_cleanup (xfree, siginfo_data);
6665
6666 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6667 siginfo_data, 0, len) == len)
6668 discard_cleanups (back_to);
6669 else
6670 {
6671 /* Errors ignored. */
6672 do_cleanups (back_to);
6673 siginfo_data = NULL;
6674 }
6675 }
6676
6677 inf_state = XZALLOC (struct infcall_suspend_state);
6678
6679 if (siginfo_data)
6680 {
6681 inf_state->siginfo_gdbarch = gdbarch;
6682 inf_state->siginfo_data = siginfo_data;
6683 }
6684
6685 inf_state->thread_suspend = tp->suspend;
6686 inf_state->inferior_suspend = inf->suspend;
6687
6688 /* run_inferior_call will not use the signal due to its `proceed' call with
6689 GDB_SIGNAL_0 anyway. */
6690 tp->suspend.stop_signal = GDB_SIGNAL_0;
6691
6692 inf_state->stop_pc = stop_pc;
6693
6694 inf_state->registers = regcache_dup (regcache);
6695
6696 return inf_state;
6697 }
6698
6699 /* Restore inferior session state to INF_STATE. */
6700
6701 void
6702 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6703 {
6704 struct thread_info *tp = inferior_thread ();
6705 struct inferior *inf = current_inferior ();
6706 struct regcache *regcache = get_current_regcache ();
6707 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6708
6709 tp->suspend = inf_state->thread_suspend;
6710 inf->suspend = inf_state->inferior_suspend;
6711
6712 stop_pc = inf_state->stop_pc;
6713
6714 if (inf_state->siginfo_gdbarch == gdbarch)
6715 {
6716 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6717 size_t len = TYPE_LENGTH (type);
6718
6719 /* Errors ignored. */
6720 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6721 inf_state->siginfo_data, 0, len);
6722 }
6723
6724 /* The inferior can be gone if the user types "print exit(0)"
6725 (and perhaps other times). */
6726 if (target_has_execution)
6727 /* NB: The register write goes through to the target. */
6728 regcache_cpy (regcache, inf_state->registers);
6729
6730 discard_infcall_suspend_state (inf_state);
6731 }
6732
6733 static void
6734 do_restore_infcall_suspend_state_cleanup (void *state)
6735 {
6736 restore_infcall_suspend_state (state);
6737 }
6738
6739 struct cleanup *
6740 make_cleanup_restore_infcall_suspend_state
6741 (struct infcall_suspend_state *inf_state)
6742 {
6743 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6744 }
6745
6746 void
6747 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6748 {
6749 regcache_xfree (inf_state->registers);
6750 xfree (inf_state->siginfo_data);
6751 xfree (inf_state);
6752 }
6753
6754 struct regcache *
6755 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6756 {
6757 return inf_state->registers;
6758 }
6759
6760 /* infcall_control_state contains state regarding gdb's control of the
6761 inferior itself like stepping control. It also contains session state like
6762 the user's currently selected frame. */
6763
6764 struct infcall_control_state
6765 {
6766 struct thread_control_state thread_control;
6767 struct inferior_control_state inferior_control;
6768
6769 /* Other fields: */
6770 enum stop_stack_kind stop_stack_dummy;
6771 int stopped_by_random_signal;
6772 int stop_after_trap;
6773
6774 /* ID if the selected frame when the inferior function call was made. */
6775 struct frame_id selected_frame_id;
6776 };
6777
6778 /* Save all of the information associated with the inferior<==>gdb
6779 connection. */
6780
6781 struct infcall_control_state *
6782 save_infcall_control_state (void)
6783 {
6784 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6785 struct thread_info *tp = inferior_thread ();
6786 struct inferior *inf = current_inferior ();
6787
6788 inf_status->thread_control = tp->control;
6789 inf_status->inferior_control = inf->control;
6790
6791 tp->control.step_resume_breakpoint = NULL;
6792 tp->control.exception_resume_breakpoint = NULL;
6793
6794 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6795 chain. If caller's caller is walking the chain, they'll be happier if we
6796 hand them back the original chain when restore_infcall_control_state is
6797 called. */
6798 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6799
6800 /* Other fields: */
6801 inf_status->stop_stack_dummy = stop_stack_dummy;
6802 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6803 inf_status->stop_after_trap = stop_after_trap;
6804
6805 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6806
6807 return inf_status;
6808 }
6809
6810 static int
6811 restore_selected_frame (void *args)
6812 {
6813 struct frame_id *fid = (struct frame_id *) args;
6814 struct frame_info *frame;
6815
6816 frame = frame_find_by_id (*fid);
6817
6818 /* If inf_status->selected_frame_id is NULL, there was no previously
6819 selected frame. */
6820 if (frame == NULL)
6821 {
6822 warning (_("Unable to restore previously selected frame."));
6823 return 0;
6824 }
6825
6826 select_frame (frame);
6827
6828 return (1);
6829 }
6830
6831 /* Restore inferior session state to INF_STATUS. */
6832
6833 void
6834 restore_infcall_control_state (struct infcall_control_state *inf_status)
6835 {
6836 struct thread_info *tp = inferior_thread ();
6837 struct inferior *inf = current_inferior ();
6838
6839 if (tp->control.step_resume_breakpoint)
6840 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6841
6842 if (tp->control.exception_resume_breakpoint)
6843 tp->control.exception_resume_breakpoint->disposition
6844 = disp_del_at_next_stop;
6845
6846 /* Handle the bpstat_copy of the chain. */
6847 bpstat_clear (&tp->control.stop_bpstat);
6848
6849 tp->control = inf_status->thread_control;
6850 inf->control = inf_status->inferior_control;
6851
6852 /* Other fields: */
6853 stop_stack_dummy = inf_status->stop_stack_dummy;
6854 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6855 stop_after_trap = inf_status->stop_after_trap;
6856
6857 if (target_has_stack)
6858 {
6859 /* The point of catch_errors is that if the stack is clobbered,
6860 walking the stack might encounter a garbage pointer and
6861 error() trying to dereference it. */
6862 if (catch_errors
6863 (restore_selected_frame, &inf_status->selected_frame_id,
6864 "Unable to restore previously selected frame:\n",
6865 RETURN_MASK_ERROR) == 0)
6866 /* Error in restoring the selected frame. Select the innermost
6867 frame. */
6868 select_frame (get_current_frame ());
6869 }
6870
6871 xfree (inf_status);
6872 }
6873
6874 static void
6875 do_restore_infcall_control_state_cleanup (void *sts)
6876 {
6877 restore_infcall_control_state (sts);
6878 }
6879
6880 struct cleanup *
6881 make_cleanup_restore_infcall_control_state
6882 (struct infcall_control_state *inf_status)
6883 {
6884 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6885 }
6886
6887 void
6888 discard_infcall_control_state (struct infcall_control_state *inf_status)
6889 {
6890 if (inf_status->thread_control.step_resume_breakpoint)
6891 inf_status->thread_control.step_resume_breakpoint->disposition
6892 = disp_del_at_next_stop;
6893
6894 if (inf_status->thread_control.exception_resume_breakpoint)
6895 inf_status->thread_control.exception_resume_breakpoint->disposition
6896 = disp_del_at_next_stop;
6897
6898 /* See save_infcall_control_state for info on stop_bpstat. */
6899 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6900
6901 xfree (inf_status);
6902 }
6903 \f
6904 int
6905 ptid_match (ptid_t ptid, ptid_t filter)
6906 {
6907 if (ptid_equal (filter, minus_one_ptid))
6908 return 1;
6909 if (ptid_is_pid (filter)
6910 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6911 return 1;
6912 else if (ptid_equal (ptid, filter))
6913 return 1;
6914
6915 return 0;
6916 }
6917
6918 /* restore_inferior_ptid() will be used by the cleanup machinery
6919 to restore the inferior_ptid value saved in a call to
6920 save_inferior_ptid(). */
6921
6922 static void
6923 restore_inferior_ptid (void *arg)
6924 {
6925 ptid_t *saved_ptid_ptr = arg;
6926
6927 inferior_ptid = *saved_ptid_ptr;
6928 xfree (arg);
6929 }
6930
6931 /* Save the value of inferior_ptid so that it may be restored by a
6932 later call to do_cleanups(). Returns the struct cleanup pointer
6933 needed for later doing the cleanup. */
6934
6935 struct cleanup *
6936 save_inferior_ptid (void)
6937 {
6938 ptid_t *saved_ptid_ptr;
6939
6940 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6941 *saved_ptid_ptr = inferior_ptid;
6942 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6943 }
6944 \f
6945
6946 /* User interface for reverse debugging:
6947 Set exec-direction / show exec-direction commands
6948 (returns error unless target implements to_set_exec_direction method). */
6949
6950 int execution_direction = EXEC_FORWARD;
6951 static const char exec_forward[] = "forward";
6952 static const char exec_reverse[] = "reverse";
6953 static const char *exec_direction = exec_forward;
6954 static const char *const exec_direction_names[] = {
6955 exec_forward,
6956 exec_reverse,
6957 NULL
6958 };
6959
6960 static void
6961 set_exec_direction_func (char *args, int from_tty,
6962 struct cmd_list_element *cmd)
6963 {
6964 if (target_can_execute_reverse)
6965 {
6966 if (!strcmp (exec_direction, exec_forward))
6967 execution_direction = EXEC_FORWARD;
6968 else if (!strcmp (exec_direction, exec_reverse))
6969 execution_direction = EXEC_REVERSE;
6970 }
6971 else
6972 {
6973 exec_direction = exec_forward;
6974 error (_("Target does not support this operation."));
6975 }
6976 }
6977
6978 static void
6979 show_exec_direction_func (struct ui_file *out, int from_tty,
6980 struct cmd_list_element *cmd, const char *value)
6981 {
6982 switch (execution_direction) {
6983 case EXEC_FORWARD:
6984 fprintf_filtered (out, _("Forward.\n"));
6985 break;
6986 case EXEC_REVERSE:
6987 fprintf_filtered (out, _("Reverse.\n"));
6988 break;
6989 default:
6990 internal_error (__FILE__, __LINE__,
6991 _("bogus execution_direction value: %d"),
6992 (int) execution_direction);
6993 }
6994 }
6995
6996 /* User interface for non-stop mode. */
6997
6998 int non_stop = 0;
6999
7000 static void
7001 set_non_stop (char *args, int from_tty,
7002 struct cmd_list_element *c)
7003 {
7004 if (target_has_execution)
7005 {
7006 non_stop_1 = non_stop;
7007 error (_("Cannot change this setting while the inferior is running."));
7008 }
7009
7010 non_stop = non_stop_1;
7011 }
7012
7013 static void
7014 show_non_stop (struct ui_file *file, int from_tty,
7015 struct cmd_list_element *c, const char *value)
7016 {
7017 fprintf_filtered (file,
7018 _("Controlling the inferior in non-stop mode is %s.\n"),
7019 value);
7020 }
7021
7022 static void
7023 show_schedule_multiple (struct ui_file *file, int from_tty,
7024 struct cmd_list_element *c, const char *value)
7025 {
7026 fprintf_filtered (file, _("Resuming the execution of threads "
7027 "of all processes is %s.\n"), value);
7028 }
7029
7030 /* Implementation of `siginfo' variable. */
7031
7032 static const struct internalvar_funcs siginfo_funcs =
7033 {
7034 siginfo_make_value,
7035 NULL,
7036 NULL
7037 };
7038
7039 void
7040 _initialize_infrun (void)
7041 {
7042 int i;
7043 int numsigs;
7044
7045 add_info ("signals", signals_info, _("\
7046 What debugger does when program gets various signals.\n\
7047 Specify a signal as argument to print info on that signal only."));
7048 add_info_alias ("handle", "signals", 0);
7049
7050 add_com ("handle", class_run, handle_command, _("\
7051 Specify how to handle a signal.\n\
7052 Args are signals and actions to apply to those signals.\n\
7053 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7054 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7055 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7056 The special arg \"all\" is recognized to mean all signals except those\n\
7057 used by the debugger, typically SIGTRAP and SIGINT.\n\
7058 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7059 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7060 Stop means reenter debugger if this signal happens (implies print).\n\
7061 Print means print a message if this signal happens.\n\
7062 Pass means let program see this signal; otherwise program doesn't know.\n\
7063 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7064 Pass and Stop may be combined."));
7065 if (xdb_commands)
7066 {
7067 add_com ("lz", class_info, signals_info, _("\
7068 What debugger does when program gets various signals.\n\
7069 Specify a signal as argument to print info on that signal only."));
7070 add_com ("z", class_run, xdb_handle_command, _("\
7071 Specify how to handle a signal.\n\
7072 Args are signals and actions to apply to those signals.\n\
7073 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7074 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7075 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7076 The special arg \"all\" is recognized to mean all signals except those\n\
7077 used by the debugger, typically SIGTRAP and SIGINT.\n\
7078 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7079 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7080 nopass), \"Q\" (noprint)\n\
7081 Stop means reenter debugger if this signal happens (implies print).\n\
7082 Print means print a message if this signal happens.\n\
7083 Pass means let program see this signal; otherwise program doesn't know.\n\
7084 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7085 Pass and Stop may be combined."));
7086 }
7087
7088 if (!dbx_commands)
7089 stop_command = add_cmd ("stop", class_obscure,
7090 not_just_help_class_command, _("\
7091 There is no `stop' command, but you can set a hook on `stop'.\n\
7092 This allows you to set a list of commands to be run each time execution\n\
7093 of the program stops."), &cmdlist);
7094
7095 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7096 Set inferior debugging."), _("\
7097 Show inferior debugging."), _("\
7098 When non-zero, inferior specific debugging is enabled."),
7099 NULL,
7100 show_debug_infrun,
7101 &setdebuglist, &showdebuglist);
7102
7103 add_setshow_boolean_cmd ("displaced", class_maintenance,
7104 &debug_displaced, _("\
7105 Set displaced stepping debugging."), _("\
7106 Show displaced stepping debugging."), _("\
7107 When non-zero, displaced stepping specific debugging is enabled."),
7108 NULL,
7109 show_debug_displaced,
7110 &setdebuglist, &showdebuglist);
7111
7112 add_setshow_boolean_cmd ("non-stop", no_class,
7113 &non_stop_1, _("\
7114 Set whether gdb controls the inferior in non-stop mode."), _("\
7115 Show whether gdb controls the inferior in non-stop mode."), _("\
7116 When debugging a multi-threaded program and this setting is\n\
7117 off (the default, also called all-stop mode), when one thread stops\n\
7118 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7119 all other threads in the program while you interact with the thread of\n\
7120 interest. When you continue or step a thread, you can allow the other\n\
7121 threads to run, or have them remain stopped, but while you inspect any\n\
7122 thread's state, all threads stop.\n\
7123 \n\
7124 In non-stop mode, when one thread stops, other threads can continue\n\
7125 to run freely. You'll be able to step each thread independently,\n\
7126 leave it stopped or free to run as needed."),
7127 set_non_stop,
7128 show_non_stop,
7129 &setlist,
7130 &showlist);
7131
7132 numsigs = (int) GDB_SIGNAL_LAST;
7133 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7134 signal_print = (unsigned char *)
7135 xmalloc (sizeof (signal_print[0]) * numsigs);
7136 signal_program = (unsigned char *)
7137 xmalloc (sizeof (signal_program[0]) * numsigs);
7138 signal_pass = (unsigned char *)
7139 xmalloc (sizeof (signal_program[0]) * numsigs);
7140 for (i = 0; i < numsigs; i++)
7141 {
7142 signal_stop[i] = 1;
7143 signal_print[i] = 1;
7144 signal_program[i] = 1;
7145 }
7146
7147 /* Signals caused by debugger's own actions
7148 should not be given to the program afterwards. */
7149 signal_program[GDB_SIGNAL_TRAP] = 0;
7150 signal_program[GDB_SIGNAL_INT] = 0;
7151
7152 /* Signals that are not errors should not normally enter the debugger. */
7153 signal_stop[GDB_SIGNAL_ALRM] = 0;
7154 signal_print[GDB_SIGNAL_ALRM] = 0;
7155 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7156 signal_print[GDB_SIGNAL_VTALRM] = 0;
7157 signal_stop[GDB_SIGNAL_PROF] = 0;
7158 signal_print[GDB_SIGNAL_PROF] = 0;
7159 signal_stop[GDB_SIGNAL_CHLD] = 0;
7160 signal_print[GDB_SIGNAL_CHLD] = 0;
7161 signal_stop[GDB_SIGNAL_IO] = 0;
7162 signal_print[GDB_SIGNAL_IO] = 0;
7163 signal_stop[GDB_SIGNAL_POLL] = 0;
7164 signal_print[GDB_SIGNAL_POLL] = 0;
7165 signal_stop[GDB_SIGNAL_URG] = 0;
7166 signal_print[GDB_SIGNAL_URG] = 0;
7167 signal_stop[GDB_SIGNAL_WINCH] = 0;
7168 signal_print[GDB_SIGNAL_WINCH] = 0;
7169 signal_stop[GDB_SIGNAL_PRIO] = 0;
7170 signal_print[GDB_SIGNAL_PRIO] = 0;
7171
7172 /* These signals are used internally by user-level thread
7173 implementations. (See signal(5) on Solaris.) Like the above
7174 signals, a healthy program receives and handles them as part of
7175 its normal operation. */
7176 signal_stop[GDB_SIGNAL_LWP] = 0;
7177 signal_print[GDB_SIGNAL_LWP] = 0;
7178 signal_stop[GDB_SIGNAL_WAITING] = 0;
7179 signal_print[GDB_SIGNAL_WAITING] = 0;
7180 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7181 signal_print[GDB_SIGNAL_CANCEL] = 0;
7182
7183 /* Update cached state. */
7184 signal_cache_update (-1);
7185
7186 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7187 &stop_on_solib_events, _("\
7188 Set stopping for shared library events."), _("\
7189 Show stopping for shared library events."), _("\
7190 If nonzero, gdb will give control to the user when the dynamic linker\n\
7191 notifies gdb of shared library events. The most common event of interest\n\
7192 to the user would be loading/unloading of a new library."),
7193 NULL,
7194 show_stop_on_solib_events,
7195 &setlist, &showlist);
7196
7197 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7198 follow_fork_mode_kind_names,
7199 &follow_fork_mode_string, _("\
7200 Set debugger response to a program call of fork or vfork."), _("\
7201 Show debugger response to a program call of fork or vfork."), _("\
7202 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7203 parent - the original process is debugged after a fork\n\
7204 child - the new process is debugged after a fork\n\
7205 The unfollowed process will continue to run.\n\
7206 By default, the debugger will follow the parent process."),
7207 NULL,
7208 show_follow_fork_mode_string,
7209 &setlist, &showlist);
7210
7211 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7212 follow_exec_mode_names,
7213 &follow_exec_mode_string, _("\
7214 Set debugger response to a program call of exec."), _("\
7215 Show debugger response to a program call of exec."), _("\
7216 An exec call replaces the program image of a process.\n\
7217 \n\
7218 follow-exec-mode can be:\n\
7219 \n\
7220 new - the debugger creates a new inferior and rebinds the process\n\
7221 to this new inferior. The program the process was running before\n\
7222 the exec call can be restarted afterwards by restarting the original\n\
7223 inferior.\n\
7224 \n\
7225 same - the debugger keeps the process bound to the same inferior.\n\
7226 The new executable image replaces the previous executable loaded in\n\
7227 the inferior. Restarting the inferior after the exec call restarts\n\
7228 the executable the process was running after the exec call.\n\
7229 \n\
7230 By default, the debugger will use the same inferior."),
7231 NULL,
7232 show_follow_exec_mode_string,
7233 &setlist, &showlist);
7234
7235 add_setshow_enum_cmd ("scheduler-locking", class_run,
7236 scheduler_enums, &scheduler_mode, _("\
7237 Set mode for locking scheduler during execution."), _("\
7238 Show mode for locking scheduler during execution."), _("\
7239 off == no locking (threads may preempt at any time)\n\
7240 on == full locking (no thread except the current thread may run)\n\
7241 step == scheduler locked during every single-step operation.\n\
7242 In this mode, no other thread may run during a step command.\n\
7243 Other threads may run while stepping over a function call ('next')."),
7244 set_schedlock_func, /* traps on target vector */
7245 show_scheduler_mode,
7246 &setlist, &showlist);
7247
7248 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7249 Set mode for resuming threads of all processes."), _("\
7250 Show mode for resuming threads of all processes."), _("\
7251 When on, execution commands (such as 'continue' or 'next') resume all\n\
7252 threads of all processes. When off (which is the default), execution\n\
7253 commands only resume the threads of the current process. The set of\n\
7254 threads that are resumed is further refined by the scheduler-locking\n\
7255 mode (see help set scheduler-locking)."),
7256 NULL,
7257 show_schedule_multiple,
7258 &setlist, &showlist);
7259
7260 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7261 Set mode of the step operation."), _("\
7262 Show mode of the step operation."), _("\
7263 When set, doing a step over a function without debug line information\n\
7264 will stop at the first instruction of that function. Otherwise, the\n\
7265 function is skipped and the step command stops at a different source line."),
7266 NULL,
7267 show_step_stop_if_no_debug,
7268 &setlist, &showlist);
7269
7270 add_setshow_enum_cmd ("displaced-stepping", class_run,
7271 can_use_displaced_stepping_enum,
7272 &can_use_displaced_stepping, _("\
7273 Set debugger's willingness to use displaced stepping."), _("\
7274 Show debugger's willingness to use displaced stepping."), _("\
7275 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7276 supported by the target architecture. If off, gdb will not use displaced\n\
7277 stepping to step over breakpoints, even if such is supported by the target\n\
7278 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7279 if the target architecture supports it and non-stop mode is active, but will not\n\
7280 use it in all-stop mode (see help set non-stop)."),
7281 NULL,
7282 show_can_use_displaced_stepping,
7283 &setlist, &showlist);
7284
7285 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7286 &exec_direction, _("Set direction of execution.\n\
7287 Options are 'forward' or 'reverse'."),
7288 _("Show direction of execution (forward/reverse)."),
7289 _("Tells gdb whether to execute forward or backward."),
7290 set_exec_direction_func, show_exec_direction_func,
7291 &setlist, &showlist);
7292
7293 /* Set/show detach-on-fork: user-settable mode. */
7294
7295 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7296 Set whether gdb will detach the child of a fork."), _("\
7297 Show whether gdb will detach the child of a fork."), _("\
7298 Tells gdb whether to detach the child of a fork."),
7299 NULL, NULL, &setlist, &showlist);
7300
7301 /* Set/show disable address space randomization mode. */
7302
7303 add_setshow_boolean_cmd ("disable-randomization", class_support,
7304 &disable_randomization, _("\
7305 Set disabling of debuggee's virtual address space randomization."), _("\
7306 Show disabling of debuggee's virtual address space randomization."), _("\
7307 When this mode is on (which is the default), randomization of the virtual\n\
7308 address space is disabled. Standalone programs run with the randomization\n\
7309 enabled by default on some platforms."),
7310 &set_disable_randomization,
7311 &show_disable_randomization,
7312 &setlist, &showlist);
7313
7314 /* ptid initializations */
7315 inferior_ptid = null_ptid;
7316 target_last_wait_ptid = minus_one_ptid;
7317
7318 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7319 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7320 observer_attach_thread_exit (infrun_thread_thread_exit);
7321 observer_attach_inferior_exit (infrun_inferior_exit);
7322
7323 /* Explicitly create without lookup, since that tries to create a
7324 value with a void typed value, and when we get here, gdbarch
7325 isn't initialized yet. At this point, we're quite sure there
7326 isn't another convenience variable of the same name. */
7327 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7328
7329 add_setshow_boolean_cmd ("observer", no_class,
7330 &observer_mode_1, _("\
7331 Set whether gdb controls the inferior in observer mode."), _("\
7332 Show whether gdb controls the inferior in observer mode."), _("\
7333 In observer mode, GDB can get data from the inferior, but not\n\
7334 affect its execution. Registers and memory may not be changed,\n\
7335 breakpoints may not be set, and the program cannot be interrupted\n\
7336 or signalled."),
7337 set_observer_mode,
7338 show_observer_mode,
7339 &setlist,
7340 &showlist);
7341 }
This page took 0.180524 seconds and 4 git commands to generate.