e58b623954d1609991524a4f61aeffead179de69
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89 static void resume (gdb_signal sig);
90
91 static void wait_for_inferior (inferior *inf);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = new program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
558 if (print_inferior_events)
559 {
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
563 target_terminal::ours_for_output ();
564 fprintf_filtered (gdb_stdlog,
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
567 has_vforked ? "vfork" : "fork",
568 child_pid.c_str ());
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
574 child_inf = add_inferior (child_ptid.pid ());
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
584 process_stratum_target *target = parent_inf->process_target ();
585
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
625
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
639
640 thread_info *child_thr = add_thread_silent (target, child_ptid);
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
649
650 exec_on_vfork ();
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = new program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668
669 switch_to_thread (child_thr);
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
907 target_pid_to_str (thread->ptid).c_str ());
908
909 switch_to_thread (thread);
910 clear_proceed_status (0);
911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
912 }
913
914 return 0;
915 }
916
917 /* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920 static void
921 handle_vfork_child_exec_or_exit (int exec)
922 {
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
934
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
938 {
939 struct program_space *pspace;
940 struct address_space *aspace;
941
942 /* follow-fork child, detach-on-fork on. */
943
944 vfork_parent->pending_detach = 0;
945
946 scoped_restore_current_pspace_and_thread restore_thread;
947
948 /* We're letting loose of the parent. */
949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
950 switch_to_thread (tp);
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
969 if (print_inferior_events)
970 {
971 std::string pidstr
972 = target_pid_to_str (ptid_t (vfork_parent->pid));
973
974 target_terminal::ours_for_output ();
975
976 if (exec)
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("[Detaching vfork parent %s "
980 "after child exec]\n"), pidstr.c_str ());
981 }
982 else
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("[Detaching vfork parent %s "
986 "after child exit]\n"), pidstr.c_str ());
987 }
988 }
989
990 target_detach (vfork_parent, 0);
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
1000 inf->pspace = new program_space (maybe_new_address_space ());
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
1005 resume_parent = vfork_parent->pid;
1006 }
1007 else
1008 {
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to no-thread while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
1023
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
1027 inf->removable = 1;
1028 inf->symfile_flags = SYMFILE_NO_READ;
1029 clone_program_space (inf->pspace, vfork_parent->pspace);
1030
1031 resume_parent = vfork_parent->pid;
1032 }
1033
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
1040 scoped_restore_current_thread restore_thread;
1041
1042 if (debug_infrun)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1048 }
1049 }
1050 }
1051
1052 /* Enum strings for "set|show follow-exec-mode". */
1053
1054 static const char follow_exec_mode_new[] = "new";
1055 static const char follow_exec_mode_same[] = "same";
1056 static const char *const follow_exec_mode_names[] =
1057 {
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061 };
1062
1063 static const char *follow_exec_mode_string = follow_exec_mode_same;
1064 static void
1065 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067 {
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069 }
1070
1071 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1072
1073 static void
1074 follow_exec (ptid_t ptid, const char *exec_file_target)
1075 {
1076 struct inferior *inf = current_inferior ();
1077 int pid = ptid.pid ();
1078 ptid_t process_ptid;
1079
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
1102 value that was overwritten with a TRAP instruction). Since
1103 we now have a new a.out, those shadow contents aren't valid. */
1104
1105 mark_breakpoints_out ();
1106
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
1126 for (thread_info *th : all_threads_safe ())
1127 if (th->ptid.pid () == pid && th->ptid != ptid)
1128 delete_thread (th);
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
1134 thread_info *th = inferior_thread ();
1135 th->control.step_resume_breakpoint = NULL;
1136 th->control.exception_resume_breakpoint = NULL;
1137 th->control.single_step_breakpoints = NULL;
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
1140
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
1144 th->stop_requested = 0;
1145
1146 update_breakpoints_after_exec ();
1147
1148 /* What is this a.out's name? */
1149 process_ptid = ptid_t (pid);
1150 printf_unfiltered (_("%s is executing new program: %s\n"),
1151 target_pid_to_str (process_ptid).c_str (),
1152 exec_file_target);
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1155 inferior has essentially been killed & reborn. */
1156
1157 breakpoint_init_inferior (inf_execd);
1158
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
1161
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
1170
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
1190 exit_inferior_silent (current_inferior ());
1191
1192 inf->pid = pid;
1193 target_follow_exec (inf, exec_file_target);
1194
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
1200 }
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1220
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
1229 solib_create_inferior_hook (0);
1230
1231 jit_inferior_created_hook ();
1232
1233 breakpoint_re_set ();
1234
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1237 to symbol_file_command...). */
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1243 matically get reset there in the new process.). */
1244 }
1245
1246 /* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253 struct thread_info *step_over_queue_head;
1254
1255 /* Bit flags indicating what the thread needs to step over. */
1256
1257 enum step_over_what_flag
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
1267 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1268
1269 /* Info about an instruction that is being stepped over. */
1270
1271 struct step_over_info
1272 {
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
1277 const address_space *aspace;
1278 CORE_ADDR address;
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
1283
1284 /* The thread's global number. */
1285 int thread;
1286 };
1287
1288 /* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312 static struct step_over_info step_over_info;
1313
1314 /* Record the address of the breakpoint/instruction we're currently
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
1318
1319 static void
1320 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1321 int nonsteppable_watchpoint_p,
1322 int thread)
1323 {
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1327 step_over_info.thread = thread;
1328 }
1329
1330 /* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333 static void
1334 clear_step_over_info (void)
1335 {
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
1341 step_over_info.nonsteppable_watchpoint_p = 0;
1342 step_over_info.thread = -1;
1343 }
1344
1345 /* See infrun.h. */
1346
1347 int
1348 stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350 {
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355 }
1356
1357 /* See infrun.h. */
1358
1359 int
1360 thread_is_stepping_over_breakpoint (int thread)
1361 {
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364 }
1365
1366 /* See infrun.h. */
1367
1368 int
1369 stepping_past_nonsteppable_watchpoint (void)
1370 {
1371 return step_over_info.nonsteppable_watchpoint_p;
1372 }
1373
1374 /* Returns true if step-over info is valid. */
1375
1376 static int
1377 step_over_info_valid_p (void)
1378 {
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
1381 }
1382
1383 \f
1384 /* Displaced stepping. */
1385
1386 /* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
1429 we have successfully single-stepped the instruction, to yield the
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
1470 /* Default destructor for displaced_step_closure. */
1471
1472 displaced_step_closure::~displaced_step_closure () = default;
1473
1474 /* Get the displaced stepping state of process PID. */
1475
1476 static displaced_step_inferior_state *
1477 get_displaced_stepping_state (inferior *inf)
1478 {
1479 return &inf->displaced_step_state;
1480 }
1481
1482 /* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
1485 static bool
1486 displaced_step_in_progress_any_inferior ()
1487 {
1488 for (inferior *i : all_inferiors ())
1489 {
1490 if (i->displaced_step_state.step_thread != nullptr)
1491 return true;
1492 }
1493
1494 return false;
1495 }
1496
1497 /* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500 static int
1501 displaced_step_in_progress_thread (thread_info *thread)
1502 {
1503 gdb_assert (thread != NULL);
1504
1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1506 }
1507
1508 /* Return true if process PID has a thread doing a displaced step. */
1509
1510 static int
1511 displaced_step_in_progress (inferior *inf)
1512 {
1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1514 }
1515
1516 /* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520 struct displaced_step_closure*
1521 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522 {
1523 displaced_step_inferior_state *displaced
1524 = get_displaced_stepping_state (current_inferior ());
1525
1526 /* If checking the mode of displaced instruction in copy area. */
1527 if (displaced->step_thread != nullptr
1528 && displaced->step_copy == addr)
1529 return displaced->step_closure.get ();
1530
1531 return NULL;
1532 }
1533
1534 static void
1535 infrun_inferior_exit (struct inferior *inf)
1536 {
1537 inf->displaced_step_state.reset ();
1538 }
1539
1540 /* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 whether the target works in a non-stop way (see use_displaced_stepping). */
1546
1547 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1548
1549 static void
1550 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553 {
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
1558 value, target_is_non_stop_p () ? "on" : "off");
1559 else
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
1563 }
1564
1565 /* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568 static bool
1569 gdbarch_supports_displaced_stepping (gdbarch *arch)
1570 {
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574 }
1575
1576 /* Return non-zero if displaced stepping can/should be used to step
1577 over breakpoints of thread TP. */
1578
1579 static bool
1580 use_displaced_stepping (thread_info *tp)
1581 {
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
1605
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
1612 }
1613
1614 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
1616 static void
1617 displaced_step_reset (displaced_step_inferior_state *displaced)
1618 {
1619 displaced->reset ();
1620 }
1621
1622 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1626
1627 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628 void
1629 displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632 {
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638 }
1639
1640 /* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
1656 static int
1657 displaced_step_prepare_throw (thread_info *tp)
1658 {
1659 regcache *regcache = get_thread_regcache (tp);
1660 struct gdbarch *gdbarch = regcache->arch ();
1661 const address_space *aspace = regcache->aspace ();
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
1664 int status;
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1669
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
1681
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
1684
1685 if (displaced->step_thread != nullptr)
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "displaced: deferring step of %s\n",
1693 target_pid_to_str (tp->ptid).c_str ());
1694
1695 thread_step_over_chain_enqueue (tp);
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
1703 target_pid_to_str (tp->ptid).c_str ());
1704 }
1705
1706 displaced_step_reset (displaced);
1707
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
1711
1712 original = regcache_read_pc (regcache);
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
1735 return -1;
1736 }
1737
1738 /* Save the original contents of the copy area. */
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
1746 if (debug_displaced)
1747 {
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
1750 displaced_step_dump_bytes (gdb_stdlog,
1751 displaced->step_saved_copy.data (),
1752 len);
1753 };
1754
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
1762 return -1;
1763 }
1764
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
1767 displaced->step_thread = tp;
1768 displaced->step_gdbarch = gdbarch;
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
1771
1772 {
1773 displaced_step_reset_cleanup cleanup (displaced);
1774
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
1777
1778 cleanup.release ();
1779 }
1780
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
1784
1785 return 1;
1786 }
1787
1788 /* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791 static int
1792 displaced_step_prepare (thread_info *thread)
1793 {
1794 int prepared = -1;
1795
1796 try
1797 {
1798 prepared = displaced_step_prepare_throw (thread);
1799 }
1800 catch (const gdb_exception_error &ex)
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
1806 throw;
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
1812 ex.what ());
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
1819 warning (_("disabling displaced stepping: %s"),
1820 ex.what ());
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
1825 = get_displaced_stepping_state (thread->inf);
1826 displaced_state->failed_before = 1;
1827 }
1828
1829 return prepared;
1830 }
1831
1832 static void
1833 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
1835 {
1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1837
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
1840 }
1841
1842 /* Restore the contents of the copy area for thread PTID. */
1843
1844 static void
1845 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847 {
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
1851 displaced->step_saved_copy.data (), len);
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1854 target_pid_to_str (ptid).c_str (),
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857 }
1858
1859 /* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865 static int
1866 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1867 {
1868 struct displaced_step_inferior_state *displaced
1869 = get_displaced_stepping_state (event_thread->inf);
1870 int ret;
1871
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
1874 return 0;
1875
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
1880 switch_to_thread (event_thread);
1881
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
1886 /* Did the instruction complete successfully? */
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
1891 {
1892 /* Fix up the resulting state. */
1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1894 displaced->step_closure.get (),
1895 displaced->step_original,
1896 displaced->step_copy,
1897 get_thread_regcache (displaced->step_thread));
1898 ret = 1;
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
1904 struct regcache *regcache = get_thread_regcache (event_thread);
1905 CORE_ADDR pc = regcache_read_pc (regcache);
1906
1907 pc = displaced->step_original + (pc - displaced->step_copy);
1908 regcache_write_pc (regcache, pc);
1909 ret = -1;
1910 }
1911
1912 return ret;
1913 }
1914
1915 /* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917 struct execution_control_state
1918 {
1919 process_stratum_target *target;
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937 };
1938
1939 /* Clear ECS and set it to point at TP. */
1940
1941 static void
1942 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943 {
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947 }
1948
1949 static void keep_going_pass_signal (struct execution_control_state *ecs);
1950 static void prepare_to_wait (struct execution_control_state *ecs);
1951 static int keep_going_stepped_thread (struct thread_info *tp);
1952 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1953
1954 /* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957 static int
1958 start_step_over (void)
1959 {
1960 struct thread_info *tp, *next;
1961
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
1968 {
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
1971 step_over_what step_what;
1972 int must_be_in_line;
1973
1974 gdb_assert (!tp->stop_requested);
1975
1976 next = thread_step_over_chain_next (tp);
1977
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
1980 if (displaced_step_in_progress (tp->inf))
1981 continue;
1982
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
1986 && !use_displaced_stepping (tp)));
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
2006 {
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
2009 "trap_expected=%d, resumed=%d, executing=%d\n",
2010 target_pid_to_str (tp->ptid).c_str (),
2011 tp->control.trap_expected,
2012 tp->resumed,
2013 tp->executing);
2014 }
2015
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
2019 target_pid_to_str (tp->ptid).c_str ());
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
2027 if (!target_is_non_stop_p () && !step_what)
2028 continue;
2029
2030 switch_to_thread (tp);
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
2033
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
2036
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
2046 if (!target_is_non_stop_p ())
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
2057 }
2058
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070 static void
2071 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072 {
2073 if (inferior_ptid == old_ptid)
2074 inferior_ptid = new_ptid;
2075 }
2076
2077 \f
2078
2079 static const char schedlock_off[] = "off";
2080 static const char schedlock_on[] = "on";
2081 static const char schedlock_step[] = "step";
2082 static const char schedlock_replay[] = "replay";
2083 static const char *const scheduler_enums[] = {
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
2087 schedlock_replay,
2088 NULL
2089 };
2090 static const char *scheduler_mode = schedlock_replay;
2091 static void
2092 show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094 {
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
2098 value);
2099 }
2100
2101 static void
2102 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2103 {
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
2109 }
2110
2111 /* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
2114 bool sched_multi = false;
2115
2116 /* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122 static int
2123 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124 {
2125 int hw_step = 1;
2126
2127 if (execution_direction == EXEC_FORWARD
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2131 return hw_step;
2132 }
2133
2134 /* See infrun.h. */
2135
2136 ptid_t
2137 user_visible_resume_ptid (int step)
2138 {
2139 ptid_t resume_ptid;
2140
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
2148 || (scheduler_mode == schedlock_step && step))
2149 {
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
2152 resume_ptid = inferior_ptid;
2153 }
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
2165 resume_ptid = ptid_t (inferior_ptid.pid ());
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
2172
2173 return resume_ptid;
2174 }
2175
2176 /* See infrun.h. */
2177
2178 process_stratum_target *
2179 user_visible_resume_target (ptid_t resume_ptid)
2180 {
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184 }
2185
2186 /* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192 static ptid_t
2193 internal_resume_ptid (int user_step)
2194 {
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203 }
2204
2205 /* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208 static void
2209 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210 {
2211 struct thread_info *tp = inferior_thread ();
2212
2213 gdb_assert (!tp->stop_requested);
2214
2215 /* Install inferior's terminal modes. */
2216 target_terminal::inferior ();
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
2242 || displaced_step_in_progress (tp->inf))
2243 target_pass_signals ({});
2244 else
2245 target_pass_signals (signal_pass);
2246
2247 target_resume (resume_ptid, step, sig);
2248
2249 target_commit_resume ();
2250
2251 if (target_can_async_p ())
2252 target_async (1);
2253 }
2254
2255 /* Resume the inferior. SIG is the signal to give the inferior
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
2258
2259 static void
2260 resume_1 (enum gdb_signal sig)
2261 {
2262 struct regcache *regcache = get_current_regcache ();
2263 struct gdbarch *gdbarch = regcache->arch ();
2264 struct thread_info *tp = inferior_thread ();
2265 const address_space *aspace = regcache->aspace ();
2266 ptid_t resume_ptid;
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
2275 int step;
2276
2277 gdb_assert (!tp->stop_requested);
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2286
2287 fprintf_unfiltered (gdb_stdlog,
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
2292 currently_stepping (tp));
2293 }
2294
2295 tp->inf->process_target ()->threads_executing = true;
2296 tp->resumed = true;
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
2303 warning (_("Couldn't deliver signal %s to %s."),
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
2309
2310 if (target_can_async_p ())
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
2340 step = 0;
2341 }
2342
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog,
2347 "infrun: resume (step=%d, signal=%s), "
2348 "trap_expected=%d, current thread [%s] at %s\n",
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
2351 target_pid_to_str (inferior_ptid).c_str (),
2352 paddress (gdbarch, pc));
2353
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2359 {
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
2419 (overstep). */
2420 gdb_assert (!step_over_info_valid_p ());
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
2424 resume_ptid = internal_resume_ptid (user_step);
2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2426 tp->resumed = true;
2427 return;
2428 }
2429 }
2430 }
2431
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
2450 && !step_over_info_valid_p ()
2451 && sig == GDB_SIGNAL_0
2452 && !current_inferior ()->waiting_for_vfork_done)
2453 {
2454 int prepared = displaced_step_prepare (tp);
2455
2456 if (prepared == 0)
2457 {
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
2463 return;
2464 }
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
2472 set_step_over_info (regcache->aspace (),
2473 regcache_read_pc (regcache), 0, tp->global_num);
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
2482
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
2485 pc = regcache_read_pc (get_thread_regcache (tp));
2486
2487 displaced = get_displaced_stepping_state (tp->inf);
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
2490 }
2491 }
2492
2493 /* Do we need to do it the hard way, w/temp breakpoints? */
2494 else if (step)
2495 step = maybe_software_singlestep (gdbarch, pc);
2496
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
2521 if (thread_has_single_step_breakpoints_set (tp)
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
2524 {
2525 /* If we have nested signals or a pending signal is delivered
2526 immediately after a handler returns, might already have
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
2536 delete_single_step_breakpoints (tp);
2537
2538 clear_step_over_info ();
2539 tp->control.trap_expected = 0;
2540
2541 insert_breakpoints ();
2542 }
2543
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2548
2549 /* Decide the set of threads to ask the target to resume. */
2550 if (tp->control.trap_expected)
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
2561 resume_ptid = inferior_ptid;
2562 }
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
2565
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
2568 {
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
2600 target_pid_to_str (tp->ptid).c_str ());
2601
2602 tp->stepped_breakpoint = 1;
2603
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
2608 step = 0;
2609 }
2610
2611 if (debug_displaced
2612 && tp->control.trap_expected
2613 && use_displaced_stepping (tp)
2614 && !step_over_info_valid_p ())
2615 {
2616 struct regcache *resume_regcache = get_thread_regcache (tp);
2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
2626
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
2636
2637 do_target_resume (resume_ptid, step, sig);
2638 tp->resumed = true;
2639 }
2640
2641 /* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
2645 static void
2646 resume (gdb_signal sig)
2647 {
2648 try
2649 {
2650 resume_1 (sig);
2651 }
2652 catch (const gdb_exception &ex)
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
2661 throw;
2662 }
2663 }
2664
2665 \f
2666 /* Proceeding. */
2667
2668 /* See infrun.h. */
2669
2670 /* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677 static ULONGEST current_stop_id;
2678
2679 /* See infrun.h. */
2680
2681 ULONGEST
2682 get_stop_id (void)
2683 {
2684 return current_stop_id;
2685 }
2686
2687 /* Called when we report a user visible stop. */
2688
2689 static void
2690 new_stop_id (void)
2691 {
2692 current_stop_id++;
2693 }
2694
2695 /* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
2698 static void
2699 clear_proceed_status_thread (struct thread_info *tp)
2700 {
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
2704 target_pid_to_str (tp->ptid).c_str ());
2705
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
2717 target_pid_to_str (tp->ptid).c_str ());
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2726
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
2733 currently_stepping (tp));
2734 }
2735 }
2736
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
2742 delete tp->thread_fsm;
2743 tp->thread_fsm = NULL;
2744
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
2748 tp->control.may_range_step = 0;
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2752 tp->control.step_start_function = NULL;
2753 tp->stop_requested = 0;
2754
2755 tp->control.stop_step = 0;
2756
2757 tp->control.proceed_to_finish = 0;
2758
2759 tp->control.stepping_command = 0;
2760
2761 /* Discard any remaining commands or status from previous stop. */
2762 bpstat_clear (&tp->control.stop_bpstat);
2763 }
2764
2765 void
2766 clear_proceed_status (int step)
2767 {
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
2780 if (!non_stop && inferior_ptid != null_ptid)
2781 {
2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2789 clear_proceed_status_thread (tp);
2790 }
2791
2792 if (inferior_ptid != null_ptid)
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
2802
2803 inferior = current_inferior ();
2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
2805 }
2806
2807 gdb::observers::about_to_proceed.notify ();
2808 }
2809
2810 /* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
2813
2814 static int
2815 thread_still_needs_step_over_bp (struct thread_info *tp)
2816 {
2817 if (tp->stepping_over_breakpoint)
2818 {
2819 struct regcache *regcache = get_thread_regcache (tp);
2820
2821 if (breakpoint_here_p (regcache->aspace (),
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830 }
2831
2832 /* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
2836 static step_over_what
2837 thread_still_needs_step_over (struct thread_info *tp)
2838 {
2839 step_over_what what = 0;
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849 }
2850
2851 /* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854 static int
2855 schedlock_applies (struct thread_info *tp)
2856 {
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
2863 }
2864
2865 /* Calls target_commit_resume on all targets. */
2866
2867 static void
2868 commit_resume_all_targets ()
2869 {
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888 }
2889
2890 /* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899 static void
2900 check_multi_target_resumption (process_stratum_target *resume_target)
2901 {
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943 }
2944
2945 /* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953 void
2954 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2955 {
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
2958 CORE_ADDR pc;
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
2961 int started;
2962
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE);
2972 return;
2973 }
2974
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
2978 regcache = get_current_regcache ();
2979 gdbarch = regcache->arch ();
2980 const address_space *aspace = regcache->aspace ();
2981
2982 pc = regcache_read_pc_protected (regcache);
2983
2984 thread_info *cur_thr = inferior_thread ();
2985
2986 /* Fill in with reasonable starting values. */
2987 init_thread_stepping_state (cur_thr);
2988
2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2990
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2996 check_multi_target_resumption (resume_target);
2997
2998 if (addr == (CORE_ADDR) -1)
2999 {
3000 if (pc == cur_thr->suspend.stop_pc
3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3002 && execution_direction != EXEC_REVERSE)
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
3011 cur_thr->stepping_over_breakpoint = 1;
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
3017 cur_thr->stepping_over_breakpoint = 1;
3018 }
3019 else
3020 {
3021 regcache_write_pc (regcache, addr);
3022 }
3023
3024 if (siggnal != GDB_SIGNAL_DEFAULT)
3025 cur_thr->suspend.stop_signal = siggnal;
3026
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
3038 if (!cur_thr->control.in_infcall)
3039 set_running (resume_target, resume_ptid, true);
3040
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "infrun: proceed (addr=%s, signal=%s)\n",
3044 paddress (gdbarch, addr),
3045 gdb_signal_to_symbol_string (siggnal));
3046
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
3072 if (!non_stop && !schedlock_applies (cur_thr))
3073 {
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
3076 {
3077 switch_to_thread_no_regs (tp);
3078
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
3081 if (tp == cur_thr)
3082 continue;
3083
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
3088
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
3092 target_pid_to_str (tp->ptid).c_str ());
3093
3094 thread_step_over_chain_enqueue (tp);
3095 }
3096
3097 switch_to_thread (cur_thr);
3098 }
3099
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
3104
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3111
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3114
3115 started = start_step_over ();
3116
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
3146
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
3156
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
3165
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
3170
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
3177 }
3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
3188
3189 commit_resume_all_targets ();
3190
3191 finish_state.release ();
3192
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
3201 if (!target_can_async_p ())
3202 mark_async_event_handler (infrun_async_inferior_event_token);
3203 }
3204 \f
3205
3206 /* Start remote-debugging of a machine over a serial link. */
3207
3208 void
3209 start_remote (int from_tty)
3210 {
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3213
3214 /* Always go on waiting for the target, regardless of the mode. */
3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3216 indicate to wait_for_inferior that a target should timeout if
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
3220 timeout. */
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
3227 for an async run. */
3228 wait_for_inferior (inf);
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
3233 post_create_inferior (current_top_target (), from_tty);
3234
3235 normal_stop ();
3236 }
3237
3238 /* Initialize static vars when a new inferior begins. */
3239
3240 void
3241 init_wait_for_inferior (void)
3242 {
3243 /* These are meaningless until the first time through wait_for_inferior. */
3244
3245 breakpoint_init_inferior (inf_starting);
3246
3247 clear_proceed_status (0);
3248
3249 nullify_last_target_wait_ptid ();
3250
3251 previous_inferior_ptid = inferior_ptid;
3252 }
3253
3254 \f
3255
3256 static void handle_inferior_event (struct execution_control_state *ecs);
3257
3258 static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262 static void handle_signal_stop (struct execution_control_state *ecs);
3263 static void check_exception_resume (struct execution_control_state *,
3264 struct frame_info *);
3265
3266 static void end_stepping_range (struct execution_control_state *ecs);
3267 static void stop_waiting (struct execution_control_state *ecs);
3268 static void keep_going (struct execution_control_state *ecs);
3269 static void process_event_stop_test (struct execution_control_state *ecs);
3270 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3271
3272 /* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
3276 static void
3277 infrun_thread_stop_requested (ptid_t ptid)
3278 {
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
3285 for (thread_info *tp : all_threads (curr_target, ptid))
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
3291
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
3297
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
3308
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
3311 clear_inline_frame_state (tp);
3312
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
3323 tp->resumed = true;
3324 }
3325 }
3326
3327 static void
3328 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329 {
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
3332 nullify_last_target_wait_ptid ();
3333 }
3334
3335 /* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
3337
3338 static void
3339 delete_thread_infrun_breakpoints (struct thread_info *tp)
3340 {
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
3343 delete_single_step_breakpoints (tp);
3344 }
3345
3346 /* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350 typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
3352
3353 static void
3354 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3355 {
3356 if (!target_has_execution || inferior_ptid == null_ptid)
3357 return;
3358
3359 if (target_is_non_stop_p ())
3360 {
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
3363 }
3364 else
3365 {
3366 /* In all-stop mode, all threads have stopped. */
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
3369 }
3370 }
3371
3372 /* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375 static void
3376 delete_just_stopped_threads_infrun_breakpoints (void)
3377 {
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3379 }
3380
3381 /* Delete the single-step breakpoints of the threads that just
3382 stopped. */
3383
3384 static void
3385 delete_just_stopped_threads_single_step_breakpoints (void)
3386 {
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
3388 }
3389
3390 /* See infrun.h. */
3391
3392 void
3393 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395 {
3396 std::string status_string = target_waitstatus_to_string (ws);
3397 string_file stb;
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3405 waiton_ptid.pid (),
3406 waiton_ptid.lwp (),
3407 waiton_ptid.tid ());
3408 if (waiton_ptid.pid () != -1)
3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3412 result_ptid.pid (),
3413 result_ptid.lwp (),
3414 result_ptid.tid (),
3415 target_pid_to_str (result_ptid).c_str ());
3416 stb.printf ("infrun: %s\n", status_string.c_str ());
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3421 }
3422
3423 /* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426 static struct thread_info *
3427 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3428 {
3429 int num_events = 0;
3430
3431 auto has_event = [&] (thread_info *tp)
3432 {
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
3435 && tp->suspend.waitstatus_pending_p);
3436 };
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
3440 for (thread_info *tp : inf->non_exited_threads ())
3441 if (has_event (tp))
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
3457 for (thread_info *tp : inf->non_exited_threads ())
3458 if (has_event (tp))
3459 if (random_selector-- == 0)
3460 return tp;
3461
3462 gdb_assert_not_reached ("event thread not found");
3463 }
3464
3465 /* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
3469
3470 static ptid_t
3471 do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
3473 {
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
3485 if (ptid == minus_one_ptid || ptid.is_pid ())
3486 {
3487 tp = random_pending_event_thread (inf, ptid);
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
3494 target_pid_to_str (ptid).c_str ());
3495
3496 /* We have a specific thread to check. */
3497 tp = find_thread_ptid (inf, ptid);
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
3507 struct regcache *regcache = get_thread_regcache (tp);
3508 struct gdbarch *gdbarch = regcache->arch ();
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
3519 target_pid_to_str (tp->ptid).c_str (),
3520 paddress (gdbarch, tp->suspend.stop_pc),
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
3529 target_pid_to_str (tp->ptid).c_str (),
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
3540 target_pid_to_str (tp->ptid).c_str ());
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3553
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
3556 statstr.c_str (),
3557 target_pid_to_str (tp->ptid).c_str ());
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
3570 regcache = get_thread_regcache (tp);
3571 gdbarch = regcache->arch ();
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602 }
3603
3604 /* Wrapper for target_wait that first checks whether threads have
3605 pending statuses to report before actually asking the target for
3606 more events. Polls for events from all inferiors/targets. */
3607
3608 static bool
3609 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3610 {
3611 int num_inferiors = 0;
3612 int random_selector;
3613
3614 /* For fairness, we pick the first inferior/target to poll at random
3615 out of all inferiors that may report events, and then continue
3616 polling the rest of the inferior list starting from that one in a
3617 circular fashion until the whole list is polled once. */
3618
3619 auto inferior_matches = [&wait_ptid] (inferior *inf)
3620 {
3621 return (inf->process_target () != NULL
3622 && ptid_t (inf->pid).matches (wait_ptid));
3623 };
3624
3625 /* First see how many matching inferiors we have. */
3626 for (inferior *inf : all_inferiors ())
3627 if (inferior_matches (inf))
3628 num_inferiors++;
3629
3630 if (num_inferiors == 0)
3631 {
3632 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3633 return false;
3634 }
3635
3636 /* Now randomly pick an inferior out of those that matched. */
3637 random_selector = (int)
3638 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3639
3640 if (debug_infrun && num_inferiors > 1)
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: Found %d inferiors, starting at #%d\n",
3643 num_inferiors, random_selector);
3644
3645 /* Select the Nth inferior that matched. */
3646
3647 inferior *selected = nullptr;
3648
3649 for (inferior *inf : all_inferiors ())
3650 if (inferior_matches (inf))
3651 if (random_selector-- == 0)
3652 {
3653 selected = inf;
3654 break;
3655 }
3656
3657 /* Now poll for events out of each of the matching inferior's
3658 targets, starting from the selected one. */
3659
3660 auto do_wait = [&] (inferior *inf)
3661 {
3662 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3663 ecs->target = inf->process_target ();
3664 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3665 };
3666
3667 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3668 here spuriously after the target is all stopped and we've already
3669 reported the stop to the user, polling for events. */
3670 scoped_restore_current_thread restore_thread;
3671
3672 int inf_num = selected->num;
3673 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3674 if (inferior_matches (inf))
3675 if (do_wait (inf))
3676 return true;
3677
3678 for (inferior *inf = inferior_list;
3679 inf != NULL && inf->num < inf_num;
3680 inf = inf->next)
3681 if (inferior_matches (inf))
3682 if (do_wait (inf))
3683 return true;
3684
3685 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3686 return false;
3687 }
3688
3689 /* Prepare and stabilize the inferior for detaching it. E.g.,
3690 detaching while a thread is displaced stepping is a recipe for
3691 crashing it, as nothing would readjust the PC out of the scratch
3692 pad. */
3693
3694 void
3695 prepare_for_detach (void)
3696 {
3697 struct inferior *inf = current_inferior ();
3698 ptid_t pid_ptid = ptid_t (inf->pid);
3699
3700 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3701
3702 /* Is any thread of this process displaced stepping? If not,
3703 there's nothing else to do. */
3704 if (displaced->step_thread == nullptr)
3705 return;
3706
3707 if (debug_infrun)
3708 fprintf_unfiltered (gdb_stdlog,
3709 "displaced-stepping in-process while detaching");
3710
3711 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3712
3713 while (displaced->step_thread != nullptr)
3714 {
3715 struct execution_control_state ecss;
3716 struct execution_control_state *ecs;
3717
3718 ecs = &ecss;
3719 memset (ecs, 0, sizeof (*ecs));
3720
3721 overlay_cache_invalid = 1;
3722 /* Flush target cache before starting to handle each event.
3723 Target was running and cache could be stale. This is just a
3724 heuristic. Running threads may modify target memory, but we
3725 don't get any event. */
3726 target_dcache_invalidate ();
3727
3728 do_target_wait (pid_ptid, ecs, 0);
3729
3730 if (debug_infrun)
3731 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3732
3733 /* If an error happens while handling the event, propagate GDB's
3734 knowledge of the executing state to the frontend/user running
3735 state. */
3736 scoped_finish_thread_state finish_state (inf->process_target (),
3737 minus_one_ptid);
3738
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
3741
3742 /* No error, don't finish the state yet. */
3743 finish_state.release ();
3744
3745 /* Breakpoints and watchpoints are not installed on the target
3746 at this point, and signals are passed directly to the
3747 inferior, so this must mean the process is gone. */
3748 if (!ecs->wait_some_more)
3749 {
3750 restore_detaching.release ();
3751 error (_("Program exited while detaching"));
3752 }
3753 }
3754
3755 restore_detaching.release ();
3756 }
3757
3758 /* Wait for control to return from inferior to debugger.
3759
3760 If inferior gets a signal, we may decide to start it up again
3761 instead of returning. That is why there is a loop in this function.
3762 When this function actually returns it means the inferior
3763 should be left stopped and GDB should read more commands. */
3764
3765 static void
3766 wait_for_inferior (inferior *inf)
3767 {
3768 if (debug_infrun)
3769 fprintf_unfiltered
3770 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3771
3772 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3773
3774 /* If an error happens while handling the event, propagate GDB's
3775 knowledge of the executing state to the frontend/user running
3776 state. */
3777 scoped_finish_thread_state finish_state
3778 (inf->process_target (), minus_one_ptid);
3779
3780 while (1)
3781 {
3782 struct execution_control_state ecss;
3783 struct execution_control_state *ecs = &ecss;
3784
3785 memset (ecs, 0, sizeof (*ecs));
3786
3787 overlay_cache_invalid = 1;
3788
3789 /* Flush target cache before starting to handle each event.
3790 Target was running and cache could be stale. This is just a
3791 heuristic. Running threads may modify target memory, but we
3792 don't get any event. */
3793 target_dcache_invalidate ();
3794
3795 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3796 ecs->target = inf->process_target ();
3797
3798 if (debug_infrun)
3799 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3800
3801 /* Now figure out what to do with the result of the result. */
3802 handle_inferior_event (ecs);
3803
3804 if (!ecs->wait_some_more)
3805 break;
3806 }
3807
3808 /* No error, don't finish the state yet. */
3809 finish_state.release ();
3810 }
3811
3812 /* Cleanup that reinstalls the readline callback handler, if the
3813 target is running in the background. If while handling the target
3814 event something triggered a secondary prompt, like e.g., a
3815 pagination prompt, we'll have removed the callback handler (see
3816 gdb_readline_wrapper_line). Need to do this as we go back to the
3817 event loop, ready to process further input. Note this has no
3818 effect if the handler hasn't actually been removed, because calling
3819 rl_callback_handler_install resets the line buffer, thus losing
3820 input. */
3821
3822 static void
3823 reinstall_readline_callback_handler_cleanup ()
3824 {
3825 struct ui *ui = current_ui;
3826
3827 if (!ui->async)
3828 {
3829 /* We're not going back to the top level event loop yet. Don't
3830 install the readline callback, as it'd prep the terminal,
3831 readline-style (raw, noecho) (e.g., --batch). We'll install
3832 it the next time the prompt is displayed, when we're ready
3833 for input. */
3834 return;
3835 }
3836
3837 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3838 gdb_rl_callback_handler_reinstall ();
3839 }
3840
3841 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3842 that's just the event thread. In all-stop, that's all threads. */
3843
3844 static void
3845 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3846 {
3847 if (ecs->event_thread != NULL
3848 && ecs->event_thread->thread_fsm != NULL)
3849 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3850
3851 if (!non_stop)
3852 {
3853 for (thread_info *thr : all_non_exited_threads ())
3854 {
3855 if (thr->thread_fsm == NULL)
3856 continue;
3857 if (thr == ecs->event_thread)
3858 continue;
3859
3860 switch_to_thread (thr);
3861 thr->thread_fsm->clean_up (thr);
3862 }
3863
3864 if (ecs->event_thread != NULL)
3865 switch_to_thread (ecs->event_thread);
3866 }
3867 }
3868
3869 /* Helper for all_uis_check_sync_execution_done that works on the
3870 current UI. */
3871
3872 static void
3873 check_curr_ui_sync_execution_done (void)
3874 {
3875 struct ui *ui = current_ui;
3876
3877 if (ui->prompt_state == PROMPT_NEEDED
3878 && ui->async
3879 && !gdb_in_secondary_prompt_p (ui))
3880 {
3881 target_terminal::ours ();
3882 gdb::observers::sync_execution_done.notify ();
3883 ui_register_input_event_handler (ui);
3884 }
3885 }
3886
3887 /* See infrun.h. */
3888
3889 void
3890 all_uis_check_sync_execution_done (void)
3891 {
3892 SWITCH_THRU_ALL_UIS ()
3893 {
3894 check_curr_ui_sync_execution_done ();
3895 }
3896 }
3897
3898 /* See infrun.h. */
3899
3900 void
3901 all_uis_on_sync_execution_starting (void)
3902 {
3903 SWITCH_THRU_ALL_UIS ()
3904 {
3905 if (current_ui->prompt_state == PROMPT_NEEDED)
3906 async_disable_stdin ();
3907 }
3908 }
3909
3910 /* Asynchronous version of wait_for_inferior. It is called by the
3911 event loop whenever a change of state is detected on the file
3912 descriptor corresponding to the target. It can be called more than
3913 once to complete a single execution command. In such cases we need
3914 to keep the state in a global variable ECSS. If it is the last time
3915 that this function is called for a single execution command, then
3916 report to the user that the inferior has stopped, and do the
3917 necessary cleanups. */
3918
3919 void
3920 fetch_inferior_event ()
3921 {
3922 struct execution_control_state ecss;
3923 struct execution_control_state *ecs = &ecss;
3924 int cmd_done = 0;
3925
3926 memset (ecs, 0, sizeof (*ecs));
3927
3928 /* Events are always processed with the main UI as current UI. This
3929 way, warnings, debug output, etc. are always consistently sent to
3930 the main console. */
3931 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3932
3933 /* End up with readline processing input, if necessary. */
3934 {
3935 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3936
3937 /* We're handling a live event, so make sure we're doing live
3938 debugging. If we're looking at traceframes while the target is
3939 running, we're going to need to get back to that mode after
3940 handling the event. */
3941 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3942 if (non_stop)
3943 {
3944 maybe_restore_traceframe.emplace ();
3945 set_current_traceframe (-1);
3946 }
3947
3948 /* The user/frontend should not notice a thread switch due to
3949 internal events. Make sure we revert to the user selected
3950 thread and frame after handling the event and running any
3951 breakpoint commands. */
3952 scoped_restore_current_thread restore_thread;
3953
3954 overlay_cache_invalid = 1;
3955 /* Flush target cache before starting to handle each event. Target
3956 was running and cache could be stale. This is just a heuristic.
3957 Running threads may modify target memory, but we don't get any
3958 event. */
3959 target_dcache_invalidate ();
3960
3961 scoped_restore save_exec_dir
3962 = make_scoped_restore (&execution_direction,
3963 target_execution_direction ());
3964
3965 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3966 return;
3967
3968 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3969
3970 /* Switch to the target that generated the event, so we can do
3971 target calls. Any inferior bound to the target will do, so we
3972 just switch to the first we find. */
3973 for (inferior *inf : all_inferiors (ecs->target))
3974 {
3975 switch_to_inferior_no_thread (inf);
3976 break;
3977 }
3978
3979 if (debug_infrun)
3980 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3981
3982 /* If an error happens while handling the event, propagate GDB's
3983 knowledge of the executing state to the frontend/user running
3984 state. */
3985 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3986 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3987
3988 /* Get executed before scoped_restore_current_thread above to apply
3989 still for the thread which has thrown the exception. */
3990 auto defer_bpstat_clear
3991 = make_scope_exit (bpstat_clear_actions);
3992 auto defer_delete_threads
3993 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3994
3995 /* Now figure out what to do with the result of the result. */
3996 handle_inferior_event (ecs);
3997
3998 if (!ecs->wait_some_more)
3999 {
4000 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4001 int should_stop = 1;
4002 struct thread_info *thr = ecs->event_thread;
4003
4004 delete_just_stopped_threads_infrun_breakpoints ();
4005
4006 if (thr != NULL)
4007 {
4008 struct thread_fsm *thread_fsm = thr->thread_fsm;
4009
4010 if (thread_fsm != NULL)
4011 should_stop = thread_fsm->should_stop (thr);
4012 }
4013
4014 if (!should_stop)
4015 {
4016 keep_going (ecs);
4017 }
4018 else
4019 {
4020 bool should_notify_stop = true;
4021 int proceeded = 0;
4022
4023 clean_up_just_stopped_threads_fsms (ecs);
4024
4025 if (thr != NULL && thr->thread_fsm != NULL)
4026 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4027
4028 if (should_notify_stop)
4029 {
4030 /* We may not find an inferior if this was a process exit. */
4031 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4032 proceeded = normal_stop ();
4033 }
4034
4035 if (!proceeded)
4036 {
4037 inferior_event_handler (INF_EXEC_COMPLETE);
4038 cmd_done = 1;
4039 }
4040
4041 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4042 previously selected thread is gone. We have two
4043 choices - switch to no thread selected, or restore the
4044 previously selected thread (now exited). We chose the
4045 later, just because that's what GDB used to do. After
4046 this, "info threads" says "The current thread <Thread
4047 ID 2> has terminated." instead of "No thread
4048 selected.". */
4049 if (!non_stop
4050 && cmd_done
4051 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4052 restore_thread.dont_restore ();
4053 }
4054 }
4055
4056 defer_delete_threads.release ();
4057 defer_bpstat_clear.release ();
4058
4059 /* No error, don't finish the thread states yet. */
4060 finish_state.release ();
4061
4062 /* This scope is used to ensure that readline callbacks are
4063 reinstalled here. */
4064 }
4065
4066 /* If a UI was in sync execution mode, and now isn't, restore its
4067 prompt (a synchronous execution command has finished, and we're
4068 ready for input). */
4069 all_uis_check_sync_execution_done ();
4070
4071 if (cmd_done
4072 && exec_done_display_p
4073 && (inferior_ptid == null_ptid
4074 || inferior_thread ()->state != THREAD_RUNNING))
4075 printf_unfiltered (_("completed.\n"));
4076 }
4077
4078 /* See infrun.h. */
4079
4080 void
4081 set_step_info (thread_info *tp, struct frame_info *frame,
4082 struct symtab_and_line sal)
4083 {
4084 /* This can be removed once this function no longer implicitly relies on the
4085 inferior_ptid value. */
4086 gdb_assert (inferior_ptid == tp->ptid);
4087
4088 tp->control.step_frame_id = get_frame_id (frame);
4089 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4090
4091 tp->current_symtab = sal.symtab;
4092 tp->current_line = sal.line;
4093 }
4094
4095 /* Clear context switchable stepping state. */
4096
4097 void
4098 init_thread_stepping_state (struct thread_info *tss)
4099 {
4100 tss->stepped_breakpoint = 0;
4101 tss->stepping_over_breakpoint = 0;
4102 tss->stepping_over_watchpoint = 0;
4103 tss->step_after_step_resume_breakpoint = 0;
4104 }
4105
4106 /* See infrun.h. */
4107
4108 void
4109 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4110 target_waitstatus status)
4111 {
4112 target_last_proc_target = target;
4113 target_last_wait_ptid = ptid;
4114 target_last_waitstatus = status;
4115 }
4116
4117 /* See infrun.h. */
4118
4119 void
4120 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4121 target_waitstatus *status)
4122 {
4123 if (target != nullptr)
4124 *target = target_last_proc_target;
4125 if (ptid != nullptr)
4126 *ptid = target_last_wait_ptid;
4127 if (status != nullptr)
4128 *status = target_last_waitstatus;
4129 }
4130
4131 /* See infrun.h. */
4132
4133 void
4134 nullify_last_target_wait_ptid (void)
4135 {
4136 target_last_proc_target = nullptr;
4137 target_last_wait_ptid = minus_one_ptid;
4138 target_last_waitstatus = {};
4139 }
4140
4141 /* Switch thread contexts. */
4142
4143 static void
4144 context_switch (execution_control_state *ecs)
4145 {
4146 if (debug_infrun
4147 && ecs->ptid != inferior_ptid
4148 && (inferior_ptid == null_ptid
4149 || ecs->event_thread != inferior_thread ()))
4150 {
4151 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4152 target_pid_to_str (inferior_ptid).c_str ());
4153 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4154 target_pid_to_str (ecs->ptid).c_str ());
4155 }
4156
4157 switch_to_thread (ecs->event_thread);
4158 }
4159
4160 /* If the target can't tell whether we've hit breakpoints
4161 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4162 check whether that could have been caused by a breakpoint. If so,
4163 adjust the PC, per gdbarch_decr_pc_after_break. */
4164
4165 static void
4166 adjust_pc_after_break (struct thread_info *thread,
4167 struct target_waitstatus *ws)
4168 {
4169 struct regcache *regcache;
4170 struct gdbarch *gdbarch;
4171 CORE_ADDR breakpoint_pc, decr_pc;
4172
4173 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4174 we aren't, just return.
4175
4176 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4177 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4178 implemented by software breakpoints should be handled through the normal
4179 breakpoint layer.
4180
4181 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4182 different signals (SIGILL or SIGEMT for instance), but it is less
4183 clear where the PC is pointing afterwards. It may not match
4184 gdbarch_decr_pc_after_break. I don't know any specific target that
4185 generates these signals at breakpoints (the code has been in GDB since at
4186 least 1992) so I can not guess how to handle them here.
4187
4188 In earlier versions of GDB, a target with
4189 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4190 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4191 target with both of these set in GDB history, and it seems unlikely to be
4192 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4193
4194 if (ws->kind != TARGET_WAITKIND_STOPPED)
4195 return;
4196
4197 if (ws->value.sig != GDB_SIGNAL_TRAP)
4198 return;
4199
4200 /* In reverse execution, when a breakpoint is hit, the instruction
4201 under it has already been de-executed. The reported PC always
4202 points at the breakpoint address, so adjusting it further would
4203 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4204 architecture:
4205
4206 B1 0x08000000 : INSN1
4207 B2 0x08000001 : INSN2
4208 0x08000002 : INSN3
4209 PC -> 0x08000003 : INSN4
4210
4211 Say you're stopped at 0x08000003 as above. Reverse continuing
4212 from that point should hit B2 as below. Reading the PC when the
4213 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4214 been de-executed already.
4215
4216 B1 0x08000000 : INSN1
4217 B2 PC -> 0x08000001 : INSN2
4218 0x08000002 : INSN3
4219 0x08000003 : INSN4
4220
4221 We can't apply the same logic as for forward execution, because
4222 we would wrongly adjust the PC to 0x08000000, since there's a
4223 breakpoint at PC - 1. We'd then report a hit on B1, although
4224 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4225 behaviour. */
4226 if (execution_direction == EXEC_REVERSE)
4227 return;
4228
4229 /* If the target can tell whether the thread hit a SW breakpoint,
4230 trust it. Targets that can tell also adjust the PC
4231 themselves. */
4232 if (target_supports_stopped_by_sw_breakpoint ())
4233 return;
4234
4235 /* Note that relying on whether a breakpoint is planted in memory to
4236 determine this can fail. E.g,. the breakpoint could have been
4237 removed since. Or the thread could have been told to step an
4238 instruction the size of a breakpoint instruction, and only
4239 _after_ was a breakpoint inserted at its address. */
4240
4241 /* If this target does not decrement the PC after breakpoints, then
4242 we have nothing to do. */
4243 regcache = get_thread_regcache (thread);
4244 gdbarch = regcache->arch ();
4245
4246 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4247 if (decr_pc == 0)
4248 return;
4249
4250 const address_space *aspace = regcache->aspace ();
4251
4252 /* Find the location where (if we've hit a breakpoint) the
4253 breakpoint would be. */
4254 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4255
4256 /* If the target can't tell whether a software breakpoint triggered,
4257 fallback to figuring it out based on breakpoints we think were
4258 inserted in the target, and on whether the thread was stepped or
4259 continued. */
4260
4261 /* Check whether there actually is a software breakpoint inserted at
4262 that location.
4263
4264 If in non-stop mode, a race condition is possible where we've
4265 removed a breakpoint, but stop events for that breakpoint were
4266 already queued and arrive later. To suppress those spurious
4267 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4268 and retire them after a number of stop events are reported. Note
4269 this is an heuristic and can thus get confused. The real fix is
4270 to get the "stopped by SW BP and needs adjustment" info out of
4271 the target/kernel (and thus never reach here; see above). */
4272 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4273 || (target_is_non_stop_p ()
4274 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4275 {
4276 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4277
4278 if (record_full_is_used ())
4279 restore_operation_disable.emplace
4280 (record_full_gdb_operation_disable_set ());
4281
4282 /* When using hardware single-step, a SIGTRAP is reported for both
4283 a completed single-step and a software breakpoint. Need to
4284 differentiate between the two, as the latter needs adjusting
4285 but the former does not.
4286
4287 The SIGTRAP can be due to a completed hardware single-step only if
4288 - we didn't insert software single-step breakpoints
4289 - this thread is currently being stepped
4290
4291 If any of these events did not occur, we must have stopped due
4292 to hitting a software breakpoint, and have to back up to the
4293 breakpoint address.
4294
4295 As a special case, we could have hardware single-stepped a
4296 software breakpoint. In this case (prev_pc == breakpoint_pc),
4297 we also need to back up to the breakpoint address. */
4298
4299 if (thread_has_single_step_breakpoints_set (thread)
4300 || !currently_stepping (thread)
4301 || (thread->stepped_breakpoint
4302 && thread->prev_pc == breakpoint_pc))
4303 regcache_write_pc (regcache, breakpoint_pc);
4304 }
4305 }
4306
4307 static int
4308 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4309 {
4310 for (frame = get_prev_frame (frame);
4311 frame != NULL;
4312 frame = get_prev_frame (frame))
4313 {
4314 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4315 return 1;
4316 if (get_frame_type (frame) != INLINE_FRAME)
4317 break;
4318 }
4319
4320 return 0;
4321 }
4322
4323 /* Look for an inline frame that is marked for skip.
4324 If PREV_FRAME is TRUE start at the previous frame,
4325 otherwise start at the current frame. Stop at the
4326 first non-inline frame, or at the frame where the
4327 step started. */
4328
4329 static bool
4330 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4331 {
4332 struct frame_info *frame = get_current_frame ();
4333
4334 if (prev_frame)
4335 frame = get_prev_frame (frame);
4336
4337 for (; frame != NULL; frame = get_prev_frame (frame))
4338 {
4339 const char *fn = NULL;
4340 symtab_and_line sal;
4341 struct symbol *sym;
4342
4343 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4344 break;
4345 if (get_frame_type (frame) != INLINE_FRAME)
4346 break;
4347
4348 sal = find_frame_sal (frame);
4349 sym = get_frame_function (frame);
4350
4351 if (sym != NULL)
4352 fn = sym->print_name ();
4353
4354 if (sal.line != 0
4355 && function_name_is_marked_for_skip (fn, sal))
4356 return true;
4357 }
4358
4359 return false;
4360 }
4361
4362 /* If the event thread has the stop requested flag set, pretend it
4363 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4364 target_stop). */
4365
4366 static bool
4367 handle_stop_requested (struct execution_control_state *ecs)
4368 {
4369 if (ecs->event_thread->stop_requested)
4370 {
4371 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4372 ecs->ws.value.sig = GDB_SIGNAL_0;
4373 handle_signal_stop (ecs);
4374 return true;
4375 }
4376 return false;
4377 }
4378
4379 /* Auxiliary function that handles syscall entry/return events.
4380 It returns 1 if the inferior should keep going (and GDB
4381 should ignore the event), or 0 if the event deserves to be
4382 processed. */
4383
4384 static int
4385 handle_syscall_event (struct execution_control_state *ecs)
4386 {
4387 struct regcache *regcache;
4388 int syscall_number;
4389
4390 context_switch (ecs);
4391
4392 regcache = get_thread_regcache (ecs->event_thread);
4393 syscall_number = ecs->ws.value.syscall_number;
4394 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4395
4396 if (catch_syscall_enabled () > 0
4397 && catching_syscall_number (syscall_number) > 0)
4398 {
4399 if (debug_infrun)
4400 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4401 syscall_number);
4402
4403 ecs->event_thread->control.stop_bpstat
4404 = bpstat_stop_status (regcache->aspace (),
4405 ecs->event_thread->suspend.stop_pc,
4406 ecs->event_thread, &ecs->ws);
4407
4408 if (handle_stop_requested (ecs))
4409 return 0;
4410
4411 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4412 {
4413 /* Catchpoint hit. */
4414 return 0;
4415 }
4416 }
4417
4418 if (handle_stop_requested (ecs))
4419 return 0;
4420
4421 /* If no catchpoint triggered for this, then keep going. */
4422 keep_going (ecs);
4423 return 1;
4424 }
4425
4426 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4427
4428 static void
4429 fill_in_stop_func (struct gdbarch *gdbarch,
4430 struct execution_control_state *ecs)
4431 {
4432 if (!ecs->stop_func_filled_in)
4433 {
4434 const block *block;
4435
4436 /* Don't care about return value; stop_func_start and stop_func_name
4437 will both be 0 if it doesn't work. */
4438 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4439 &ecs->stop_func_name,
4440 &ecs->stop_func_start,
4441 &ecs->stop_func_end,
4442 &block);
4443
4444 /* The call to find_pc_partial_function, above, will set
4445 stop_func_start and stop_func_end to the start and end
4446 of the range containing the stop pc. If this range
4447 contains the entry pc for the block (which is always the
4448 case for contiguous blocks), advance stop_func_start past
4449 the function's start offset and entrypoint. Note that
4450 stop_func_start is NOT advanced when in a range of a
4451 non-contiguous block that does not contain the entry pc. */
4452 if (block != nullptr
4453 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4454 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4455 {
4456 ecs->stop_func_start
4457 += gdbarch_deprecated_function_start_offset (gdbarch);
4458
4459 if (gdbarch_skip_entrypoint_p (gdbarch))
4460 ecs->stop_func_start
4461 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4462 }
4463
4464 ecs->stop_func_filled_in = 1;
4465 }
4466 }
4467
4468
4469 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4470
4471 static enum stop_kind
4472 get_inferior_stop_soon (execution_control_state *ecs)
4473 {
4474 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4475
4476 gdb_assert (inf != NULL);
4477 return inf->control.stop_soon;
4478 }
4479
4480 /* Poll for one event out of the current target. Store the resulting
4481 waitstatus in WS, and return the event ptid. Does not block. */
4482
4483 static ptid_t
4484 poll_one_curr_target (struct target_waitstatus *ws)
4485 {
4486 ptid_t event_ptid;
4487
4488 overlay_cache_invalid = 1;
4489
4490 /* Flush target cache before starting to handle each event.
4491 Target was running and cache could be stale. This is just a
4492 heuristic. Running threads may modify target memory, but we
4493 don't get any event. */
4494 target_dcache_invalidate ();
4495
4496 if (deprecated_target_wait_hook)
4497 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4498 else
4499 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4500
4501 if (debug_infrun)
4502 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4503
4504 return event_ptid;
4505 }
4506
4507 /* An event reported by wait_one. */
4508
4509 struct wait_one_event
4510 {
4511 /* The target the event came out of. */
4512 process_stratum_target *target;
4513
4514 /* The PTID the event was for. */
4515 ptid_t ptid;
4516
4517 /* The waitstatus. */
4518 target_waitstatus ws;
4519 };
4520
4521 /* Wait for one event out of any target. */
4522
4523 static wait_one_event
4524 wait_one ()
4525 {
4526 while (1)
4527 {
4528 for (inferior *inf : all_inferiors ())
4529 {
4530 process_stratum_target *target = inf->process_target ();
4531 if (target == NULL
4532 || !target->is_async_p ()
4533 || !target->threads_executing)
4534 continue;
4535
4536 switch_to_inferior_no_thread (inf);
4537
4538 wait_one_event event;
4539 event.target = target;
4540 event.ptid = poll_one_curr_target (&event.ws);
4541
4542 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4543 {
4544 /* If nothing is resumed, remove the target from the
4545 event loop. */
4546 target_async (0);
4547 }
4548 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4549 return event;
4550 }
4551
4552 /* Block waiting for some event. */
4553
4554 fd_set readfds;
4555 int nfds = 0;
4556
4557 FD_ZERO (&readfds);
4558
4559 for (inferior *inf : all_inferiors ())
4560 {
4561 process_stratum_target *target = inf->process_target ();
4562 if (target == NULL
4563 || !target->is_async_p ()
4564 || !target->threads_executing)
4565 continue;
4566
4567 int fd = target->async_wait_fd ();
4568 FD_SET (fd, &readfds);
4569 if (nfds <= fd)
4570 nfds = fd + 1;
4571 }
4572
4573 if (nfds == 0)
4574 {
4575 /* No waitable targets left. All must be stopped. */
4576 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4577 }
4578
4579 QUIT;
4580
4581 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4582 if (numfds < 0)
4583 {
4584 if (errno == EINTR)
4585 continue;
4586 else
4587 perror_with_name ("interruptible_select");
4588 }
4589 }
4590 }
4591
4592 /* Save the thread's event and stop reason to process it later. */
4593
4594 static void
4595 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4596 {
4597 if (debug_infrun)
4598 {
4599 std::string statstr = target_waitstatus_to_string (ws);
4600
4601 fprintf_unfiltered (gdb_stdlog,
4602 "infrun: saving status %s for %d.%ld.%ld\n",
4603 statstr.c_str (),
4604 tp->ptid.pid (),
4605 tp->ptid.lwp (),
4606 tp->ptid.tid ());
4607 }
4608
4609 /* Record for later. */
4610 tp->suspend.waitstatus = *ws;
4611 tp->suspend.waitstatus_pending_p = 1;
4612
4613 struct regcache *regcache = get_thread_regcache (tp);
4614 const address_space *aspace = regcache->aspace ();
4615
4616 if (ws->kind == TARGET_WAITKIND_STOPPED
4617 && ws->value.sig == GDB_SIGNAL_TRAP)
4618 {
4619 CORE_ADDR pc = regcache_read_pc (regcache);
4620
4621 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4622
4623 scoped_restore_current_thread restore_thread;
4624 switch_to_thread (tp);
4625
4626 if (target_stopped_by_watchpoint ())
4627 {
4628 tp->suspend.stop_reason
4629 = TARGET_STOPPED_BY_WATCHPOINT;
4630 }
4631 else if (target_supports_stopped_by_sw_breakpoint ()
4632 && target_stopped_by_sw_breakpoint ())
4633 {
4634 tp->suspend.stop_reason
4635 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4636 }
4637 else if (target_supports_stopped_by_hw_breakpoint ()
4638 && target_stopped_by_hw_breakpoint ())
4639 {
4640 tp->suspend.stop_reason
4641 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4642 }
4643 else if (!target_supports_stopped_by_hw_breakpoint ()
4644 && hardware_breakpoint_inserted_here_p (aspace,
4645 pc))
4646 {
4647 tp->suspend.stop_reason
4648 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4649 }
4650 else if (!target_supports_stopped_by_sw_breakpoint ()
4651 && software_breakpoint_inserted_here_p (aspace,
4652 pc))
4653 {
4654 tp->suspend.stop_reason
4655 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4656 }
4657 else if (!thread_has_single_step_breakpoints_set (tp)
4658 && currently_stepping (tp))
4659 {
4660 tp->suspend.stop_reason
4661 = TARGET_STOPPED_BY_SINGLE_STEP;
4662 }
4663 }
4664 }
4665
4666 /* Mark the non-executing threads accordingly. In all-stop, all
4667 threads of all processes are stopped when we get any event
4668 reported. In non-stop mode, only the event thread stops. */
4669
4670 static void
4671 mark_non_executing_threads (process_stratum_target *target,
4672 ptid_t event_ptid,
4673 struct target_waitstatus ws)
4674 {
4675 ptid_t mark_ptid;
4676
4677 if (!target_is_non_stop_p ())
4678 mark_ptid = minus_one_ptid;
4679 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4680 || ws.kind == TARGET_WAITKIND_EXITED)
4681 {
4682 /* If we're handling a process exit in non-stop mode, even
4683 though threads haven't been deleted yet, one would think
4684 that there is nothing to do, as threads of the dead process
4685 will be soon deleted, and threads of any other process were
4686 left running. However, on some targets, threads survive a
4687 process exit event. E.g., for the "checkpoint" command,
4688 when the current checkpoint/fork exits, linux-fork.c
4689 automatically switches to another fork from within
4690 target_mourn_inferior, by associating the same
4691 inferior/thread to another fork. We haven't mourned yet at
4692 this point, but we must mark any threads left in the
4693 process as not-executing so that finish_thread_state marks
4694 them stopped (in the user's perspective) if/when we present
4695 the stop to the user. */
4696 mark_ptid = ptid_t (event_ptid.pid ());
4697 }
4698 else
4699 mark_ptid = event_ptid;
4700
4701 set_executing (target, mark_ptid, false);
4702
4703 /* Likewise the resumed flag. */
4704 set_resumed (target, mark_ptid, false);
4705 }
4706
4707 /* See infrun.h. */
4708
4709 void
4710 stop_all_threads (void)
4711 {
4712 /* We may need multiple passes to discover all threads. */
4713 int pass;
4714 int iterations = 0;
4715
4716 gdb_assert (exists_non_stop_target ());
4717
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4720
4721 scoped_restore_current_thread restore_thread;
4722
4723 /* Enable thread events of all targets. */
4724 for (auto *target : all_non_exited_process_targets ())
4725 {
4726 switch_to_target_no_thread (target);
4727 target_thread_events (true);
4728 }
4729
4730 SCOPE_EXIT
4731 {
4732 /* Disable thread events of all targets. */
4733 for (auto *target : all_non_exited_process_targets ())
4734 {
4735 switch_to_target_no_thread (target);
4736 target_thread_events (false);
4737 }
4738
4739 if (debug_infrun)
4740 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4741 };
4742
4743 /* Request threads to stop, and then wait for the stops. Because
4744 threads we already know about can spawn more threads while we're
4745 trying to stop them, and we only learn about new threads when we
4746 update the thread list, do this in a loop, and keep iterating
4747 until two passes find no threads that need to be stopped. */
4748 for (pass = 0; pass < 2; pass++, iterations++)
4749 {
4750 if (debug_infrun)
4751 fprintf_unfiltered (gdb_stdlog,
4752 "infrun: stop_all_threads, pass=%d, "
4753 "iterations=%d\n", pass, iterations);
4754 while (1)
4755 {
4756 int waits_needed = 0;
4757
4758 for (auto *target : all_non_exited_process_targets ())
4759 {
4760 switch_to_target_no_thread (target);
4761 update_thread_list ();
4762 }
4763
4764 /* Go through all threads looking for threads that we need
4765 to tell the target to stop. */
4766 for (thread_info *t : all_non_exited_threads ())
4767 {
4768 /* For a single-target setting with an all-stop target,
4769 we would not even arrive here. For a multi-target
4770 setting, until GDB is able to handle a mixture of
4771 all-stop and non-stop targets, simply skip all-stop
4772 targets' threads. This should be fine due to the
4773 protection of 'check_multi_target_resumption'. */
4774
4775 switch_to_thread_no_regs (t);
4776 if (!target_is_non_stop_p ())
4777 continue;
4778
4779 if (t->executing)
4780 {
4781 /* If already stopping, don't request a stop again.
4782 We just haven't seen the notification yet. */
4783 if (!t->stop_requested)
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: %s executing, "
4788 "need stop\n",
4789 target_pid_to_str (t->ptid).c_str ());
4790 target_stop (t->ptid);
4791 t->stop_requested = 1;
4792 }
4793 else
4794 {
4795 if (debug_infrun)
4796 fprintf_unfiltered (gdb_stdlog,
4797 "infrun: %s executing, "
4798 "already stopping\n",
4799 target_pid_to_str (t->ptid).c_str ());
4800 }
4801
4802 if (t->stop_requested)
4803 waits_needed++;
4804 }
4805 else
4806 {
4807 if (debug_infrun)
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: %s not executing\n",
4810 target_pid_to_str (t->ptid).c_str ());
4811
4812 /* The thread may be not executing, but still be
4813 resumed with a pending status to process. */
4814 t->resumed = false;
4815 }
4816 }
4817
4818 if (waits_needed == 0)
4819 break;
4820
4821 /* If we find new threads on the second iteration, restart
4822 over. We want to see two iterations in a row with all
4823 threads stopped. */
4824 if (pass > 0)
4825 pass = -1;
4826
4827 for (int i = 0; i < waits_needed; i++)
4828 {
4829 wait_one_event event = wait_one ();
4830
4831 if (debug_infrun)
4832 {
4833 fprintf_unfiltered (gdb_stdlog,
4834 "infrun: stop_all_threads %s %s\n",
4835 target_waitstatus_to_string (&event.ws).c_str (),
4836 target_pid_to_str (event.ptid).c_str ());
4837 }
4838
4839 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4840 {
4841 /* All resumed threads exited. */
4842 break;
4843 }
4844 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4845 || event.ws.kind == TARGET_WAITKIND_EXITED
4846 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4847 {
4848 /* One thread/process exited/signalled. */
4849
4850 thread_info *t = nullptr;
4851
4852 /* The target may have reported just a pid. If so, try
4853 the first non-exited thread. */
4854 if (event.ptid.is_pid ())
4855 {
4856 int pid = event.ptid.pid ();
4857 inferior *inf = find_inferior_pid (event.target, pid);
4858 for (thread_info *tp : inf->non_exited_threads ())
4859 {
4860 t = tp;
4861 break;
4862 }
4863
4864 /* If there is no available thread, the event would
4865 have to be appended to a per-inferior event list,
4866 which does not exist (and if it did, we'd have
4867 to adjust run control command to be able to
4868 resume such an inferior). We assert here instead
4869 of going into an infinite loop. */
4870 gdb_assert (t != nullptr);
4871
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog,
4874 "infrun: stop_all_threads, using %s\n",
4875 target_pid_to_str (t->ptid).c_str ());
4876 }
4877 else
4878 {
4879 t = find_thread_ptid (event.target, event.ptid);
4880 /* Check if this is the first time we see this thread.
4881 Don't bother adding if it individually exited. */
4882 if (t == nullptr
4883 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4884 t = add_thread (event.target, event.ptid);
4885 }
4886
4887 if (t != nullptr)
4888 {
4889 /* Set the threads as non-executing to avoid
4890 another stop attempt on them. */
4891 switch_to_thread_no_regs (t);
4892 mark_non_executing_threads (event.target, event.ptid,
4893 event.ws);
4894 save_waitstatus (t, &event.ws);
4895 t->stop_requested = false;
4896 }
4897 }
4898 else
4899 {
4900 thread_info *t = find_thread_ptid (event.target, event.ptid);
4901 if (t == NULL)
4902 t = add_thread (event.target, event.ptid);
4903
4904 t->stop_requested = 0;
4905 t->executing = 0;
4906 t->resumed = false;
4907 t->control.may_range_step = 0;
4908
4909 /* This may be the first time we see the inferior report
4910 a stop. */
4911 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4912 if (inf->needs_setup)
4913 {
4914 switch_to_thread_no_regs (t);
4915 setup_inferior (0);
4916 }
4917
4918 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4919 && event.ws.value.sig == GDB_SIGNAL_0)
4920 {
4921 /* We caught the event that we intended to catch, so
4922 there's no event pending. */
4923 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4924 t->suspend.waitstatus_pending_p = 0;
4925
4926 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4927 {
4928 /* Add it back to the step-over queue. */
4929 if (debug_infrun)
4930 {
4931 fprintf_unfiltered (gdb_stdlog,
4932 "infrun: displaced-step of %s "
4933 "canceled: adding back to the "
4934 "step-over queue\n",
4935 target_pid_to_str (t->ptid).c_str ());
4936 }
4937 t->control.trap_expected = 0;
4938 thread_step_over_chain_enqueue (t);
4939 }
4940 }
4941 else
4942 {
4943 enum gdb_signal sig;
4944 struct regcache *regcache;
4945
4946 if (debug_infrun)
4947 {
4948 std::string statstr = target_waitstatus_to_string (&event.ws);
4949
4950 fprintf_unfiltered (gdb_stdlog,
4951 "infrun: target_wait %s, saving "
4952 "status for %d.%ld.%ld\n",
4953 statstr.c_str (),
4954 t->ptid.pid (),
4955 t->ptid.lwp (),
4956 t->ptid.tid ());
4957 }
4958
4959 /* Record for later. */
4960 save_waitstatus (t, &event.ws);
4961
4962 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4963 ? event.ws.value.sig : GDB_SIGNAL_0);
4964
4965 if (displaced_step_fixup (t, sig) < 0)
4966 {
4967 /* Add it back to the step-over queue. */
4968 t->control.trap_expected = 0;
4969 thread_step_over_chain_enqueue (t);
4970 }
4971
4972 regcache = get_thread_regcache (t);
4973 t->suspend.stop_pc = regcache_read_pc (regcache);
4974
4975 if (debug_infrun)
4976 {
4977 fprintf_unfiltered (gdb_stdlog,
4978 "infrun: saved stop_pc=%s for %s "
4979 "(currently_stepping=%d)\n",
4980 paddress (target_gdbarch (),
4981 t->suspend.stop_pc),
4982 target_pid_to_str (t->ptid).c_str (),
4983 currently_stepping (t));
4984 }
4985 }
4986 }
4987 }
4988 }
4989 }
4990 }
4991
4992 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4993
4994 static int
4995 handle_no_resumed (struct execution_control_state *ecs)
4996 {
4997 if (target_can_async_p ())
4998 {
4999 int any_sync = 0;
5000
5001 for (ui *ui : all_uis ())
5002 {
5003 if (ui->prompt_state == PROMPT_BLOCKED)
5004 {
5005 any_sync = 1;
5006 break;
5007 }
5008 }
5009 if (!any_sync)
5010 {
5011 /* There were no unwaited-for children left in the target, but,
5012 we're not synchronously waiting for events either. Just
5013 ignore. */
5014
5015 if (debug_infrun)
5016 fprintf_unfiltered (gdb_stdlog,
5017 "infrun: TARGET_WAITKIND_NO_RESUMED "
5018 "(ignoring: bg)\n");
5019 prepare_to_wait (ecs);
5020 return 1;
5021 }
5022 }
5023
5024 /* Otherwise, if we were running a synchronous execution command, we
5025 may need to cancel it and give the user back the terminal.
5026
5027 In non-stop mode, the target can't tell whether we've already
5028 consumed previous stop events, so it can end up sending us a
5029 no-resumed event like so:
5030
5031 #0 - thread 1 is left stopped
5032
5033 #1 - thread 2 is resumed and hits breakpoint
5034 -> TARGET_WAITKIND_STOPPED
5035
5036 #2 - thread 3 is resumed and exits
5037 this is the last resumed thread, so
5038 -> TARGET_WAITKIND_NO_RESUMED
5039
5040 #3 - gdb processes stop for thread 2 and decides to re-resume
5041 it.
5042
5043 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5044 thread 2 is now resumed, so the event should be ignored.
5045
5046 IOW, if the stop for thread 2 doesn't end a foreground command,
5047 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5048 event. But it could be that the event meant that thread 2 itself
5049 (or whatever other thread was the last resumed thread) exited.
5050
5051 To address this we refresh the thread list and check whether we
5052 have resumed threads _now_. In the example above, this removes
5053 thread 3 from the thread list. If thread 2 was re-resumed, we
5054 ignore this event. If we find no thread resumed, then we cancel
5055 the synchronous command and show "no unwaited-for " to the
5056 user. */
5057
5058 inferior *curr_inf = current_inferior ();
5059
5060 scoped_restore_current_thread restore_thread;
5061
5062 for (auto *target : all_non_exited_process_targets ())
5063 {
5064 switch_to_target_no_thread (target);
5065 update_thread_list ();
5066 }
5067
5068 /* If:
5069
5070 - the current target has no thread executing, and
5071 - the current inferior is native, and
5072 - the current inferior is the one which has the terminal, and
5073 - we did nothing,
5074
5075 then a Ctrl-C from this point on would remain stuck in the
5076 kernel, until a thread resumes and dequeues it. That would
5077 result in the GDB CLI not reacting to Ctrl-C, not able to
5078 interrupt the program. To address this, if the current inferior
5079 no longer has any thread executing, we give the terminal to some
5080 other inferior that has at least one thread executing. */
5081 bool swap_terminal = true;
5082
5083 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5084 whether to report it to the user. */
5085 bool ignore_event = false;
5086
5087 for (thread_info *thread : all_non_exited_threads ())
5088 {
5089 if (swap_terminal && thread->executing)
5090 {
5091 if (thread->inf != curr_inf)
5092 {
5093 target_terminal::ours ();
5094
5095 switch_to_thread (thread);
5096 target_terminal::inferior ();
5097 }
5098 swap_terminal = false;
5099 }
5100
5101 if (!ignore_event
5102 && (thread->executing
5103 || thread->suspend.waitstatus_pending_p))
5104 {
5105 /* Either there were no unwaited-for children left in the
5106 target at some point, but there are now, or some target
5107 other than the eventing one has unwaited-for children
5108 left. Just ignore. */
5109 if (debug_infrun)
5110 fprintf_unfiltered (gdb_stdlog,
5111 "infrun: TARGET_WAITKIND_NO_RESUMED "
5112 "(ignoring: found resumed)\n");
5113
5114 ignore_event = true;
5115 }
5116
5117 if (ignore_event && !swap_terminal)
5118 break;
5119 }
5120
5121 if (ignore_event)
5122 {
5123 switch_to_inferior_no_thread (curr_inf);
5124 prepare_to_wait (ecs);
5125 return 1;
5126 }
5127
5128 /* Go ahead and report the event. */
5129 return 0;
5130 }
5131
5132 /* Given an execution control state that has been freshly filled in by
5133 an event from the inferior, figure out what it means and take
5134 appropriate action.
5135
5136 The alternatives are:
5137
5138 1) stop_waiting and return; to really stop and return to the
5139 debugger.
5140
5141 2) keep_going and return; to wait for the next event (set
5142 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5143 once). */
5144
5145 static void
5146 handle_inferior_event (struct execution_control_state *ecs)
5147 {
5148 /* Make sure that all temporary struct value objects that were
5149 created during the handling of the event get deleted at the
5150 end. */
5151 scoped_value_mark free_values;
5152
5153 enum stop_kind stop_soon;
5154
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5157 target_waitstatus_to_string (&ecs->ws).c_str ());
5158
5159 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5160 {
5161 /* We had an event in the inferior, but we are not interested in
5162 handling it at this level. The lower layers have already
5163 done what needs to be done, if anything.
5164
5165 One of the possible circumstances for this is when the
5166 inferior produces output for the console. The inferior has
5167 not stopped, and we are ignoring the event. Another possible
5168 circumstance is any event which the lower level knows will be
5169 reported multiple times without an intervening resume. */
5170 prepare_to_wait (ecs);
5171 return;
5172 }
5173
5174 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5175 {
5176 prepare_to_wait (ecs);
5177 return;
5178 }
5179
5180 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5181 && handle_no_resumed (ecs))
5182 return;
5183
5184 /* Cache the last target/ptid/waitstatus. */
5185 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5186
5187 /* Always clear state belonging to the previous time we stopped. */
5188 stop_stack_dummy = STOP_NONE;
5189
5190 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5191 {
5192 /* No unwaited-for children left. IOW, all resumed children
5193 have exited. */
5194 stop_print_frame = 0;
5195 stop_waiting (ecs);
5196 return;
5197 }
5198
5199 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5200 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5201 {
5202 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5203 /* If it's a new thread, add it to the thread database. */
5204 if (ecs->event_thread == NULL)
5205 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5206
5207 /* Disable range stepping. If the next step request could use a
5208 range, this will be end up re-enabled then. */
5209 ecs->event_thread->control.may_range_step = 0;
5210 }
5211
5212 /* Dependent on valid ECS->EVENT_THREAD. */
5213 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5214
5215 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5216 reinit_frame_cache ();
5217
5218 breakpoint_retire_moribund ();
5219
5220 /* First, distinguish signals caused by the debugger from signals
5221 that have to do with the program's own actions. Note that
5222 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5223 on the operating system version. Here we detect when a SIGILL or
5224 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5225 something similar for SIGSEGV, since a SIGSEGV will be generated
5226 when we're trying to execute a breakpoint instruction on a
5227 non-executable stack. This happens for call dummy breakpoints
5228 for architectures like SPARC that place call dummies on the
5229 stack. */
5230 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5231 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5232 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5233 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5234 {
5235 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5236
5237 if (breakpoint_inserted_here_p (regcache->aspace (),
5238 regcache_read_pc (regcache)))
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: Treating signal as SIGTRAP\n");
5243 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5244 }
5245 }
5246
5247 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5248
5249 switch (ecs->ws.kind)
5250 {
5251 case TARGET_WAITKIND_LOADED:
5252 context_switch (ecs);
5253 /* Ignore gracefully during startup of the inferior, as it might
5254 be the shell which has just loaded some objects, otherwise
5255 add the symbols for the newly loaded objects. Also ignore at
5256 the beginning of an attach or remote session; we will query
5257 the full list of libraries once the connection is
5258 established. */
5259
5260 stop_soon = get_inferior_stop_soon (ecs);
5261 if (stop_soon == NO_STOP_QUIETLY)
5262 {
5263 struct regcache *regcache;
5264
5265 regcache = get_thread_regcache (ecs->event_thread);
5266
5267 handle_solib_event ();
5268
5269 ecs->event_thread->control.stop_bpstat
5270 = bpstat_stop_status (regcache->aspace (),
5271 ecs->event_thread->suspend.stop_pc,
5272 ecs->event_thread, &ecs->ws);
5273
5274 if (handle_stop_requested (ecs))
5275 return;
5276
5277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5278 {
5279 /* A catchpoint triggered. */
5280 process_event_stop_test (ecs);
5281 return;
5282 }
5283
5284 /* If requested, stop when the dynamic linker notifies
5285 gdb of events. This allows the user to get control
5286 and place breakpoints in initializer routines for
5287 dynamically loaded objects (among other things). */
5288 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5289 if (stop_on_solib_events)
5290 {
5291 /* Make sure we print "Stopped due to solib-event" in
5292 normal_stop. */
5293 stop_print_frame = 1;
5294
5295 stop_waiting (ecs);
5296 return;
5297 }
5298 }
5299
5300 /* If we are skipping through a shell, or through shared library
5301 loading that we aren't interested in, resume the program. If
5302 we're running the program normally, also resume. */
5303 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5304 {
5305 /* Loading of shared libraries might have changed breakpoint
5306 addresses. Make sure new breakpoints are inserted. */
5307 if (stop_soon == NO_STOP_QUIETLY)
5308 insert_breakpoints ();
5309 resume (GDB_SIGNAL_0);
5310 prepare_to_wait (ecs);
5311 return;
5312 }
5313
5314 /* But stop if we're attaching or setting up a remote
5315 connection. */
5316 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5317 || stop_soon == STOP_QUIETLY_REMOTE)
5318 {
5319 if (debug_infrun)
5320 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5321 stop_waiting (ecs);
5322 return;
5323 }
5324
5325 internal_error (__FILE__, __LINE__,
5326 _("unhandled stop_soon: %d"), (int) stop_soon);
5327
5328 case TARGET_WAITKIND_SPURIOUS:
5329 if (handle_stop_requested (ecs))
5330 return;
5331 context_switch (ecs);
5332 resume (GDB_SIGNAL_0);
5333 prepare_to_wait (ecs);
5334 return;
5335
5336 case TARGET_WAITKIND_THREAD_CREATED:
5337 if (handle_stop_requested (ecs))
5338 return;
5339 context_switch (ecs);
5340 if (!switch_back_to_stepped_thread (ecs))
5341 keep_going (ecs);
5342 return;
5343
5344 case TARGET_WAITKIND_EXITED:
5345 case TARGET_WAITKIND_SIGNALLED:
5346 {
5347 /* Depending on the system, ecs->ptid may point to a thread or
5348 to a process. On some targets, target_mourn_inferior may
5349 need to have access to the just-exited thread. That is the
5350 case of GNU/Linux's "checkpoint" support, for example.
5351 Call the switch_to_xxx routine as appropriate. */
5352 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5353 if (thr != nullptr)
5354 switch_to_thread (thr);
5355 else
5356 {
5357 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5358 switch_to_inferior_no_thread (inf);
5359 }
5360 }
5361 handle_vfork_child_exec_or_exit (0);
5362 target_terminal::ours (); /* Must do this before mourn anyway. */
5363
5364 /* Clearing any previous state of convenience variables. */
5365 clear_exit_convenience_vars ();
5366
5367 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5368 {
5369 /* Record the exit code in the convenience variable $_exitcode, so
5370 that the user can inspect this again later. */
5371 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5372 (LONGEST) ecs->ws.value.integer);
5373
5374 /* Also record this in the inferior itself. */
5375 current_inferior ()->has_exit_code = 1;
5376 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5377
5378 /* Support the --return-child-result option. */
5379 return_child_result_value = ecs->ws.value.integer;
5380
5381 gdb::observers::exited.notify (ecs->ws.value.integer);
5382 }
5383 else
5384 {
5385 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5386
5387 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5388 {
5389 /* Set the value of the internal variable $_exitsignal,
5390 which holds the signal uncaught by the inferior. */
5391 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5392 gdbarch_gdb_signal_to_target (gdbarch,
5393 ecs->ws.value.sig));
5394 }
5395 else
5396 {
5397 /* We don't have access to the target's method used for
5398 converting between signal numbers (GDB's internal
5399 representation <-> target's representation).
5400 Therefore, we cannot do a good job at displaying this
5401 information to the user. It's better to just warn
5402 her about it (if infrun debugging is enabled), and
5403 give up. */
5404 if (debug_infrun)
5405 fprintf_filtered (gdb_stdlog, _("\
5406 Cannot fill $_exitsignal with the correct signal number.\n"));
5407 }
5408
5409 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5410 }
5411
5412 gdb_flush (gdb_stdout);
5413 target_mourn_inferior (inferior_ptid);
5414 stop_print_frame = 0;
5415 stop_waiting (ecs);
5416 return;
5417
5418 case TARGET_WAITKIND_FORKED:
5419 case TARGET_WAITKIND_VFORKED:
5420 /* Check whether the inferior is displaced stepping. */
5421 {
5422 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5423 struct gdbarch *gdbarch = regcache->arch ();
5424
5425 /* If checking displaced stepping is supported, and thread
5426 ecs->ptid is displaced stepping. */
5427 if (displaced_step_in_progress_thread (ecs->event_thread))
5428 {
5429 struct inferior *parent_inf
5430 = find_inferior_ptid (ecs->target, ecs->ptid);
5431 struct regcache *child_regcache;
5432 CORE_ADDR parent_pc;
5433
5434 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5435 {
5436 struct displaced_step_inferior_state *displaced
5437 = get_displaced_stepping_state (parent_inf);
5438
5439 /* Restore scratch pad for child process. */
5440 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5441 }
5442
5443 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5444 indicating that the displaced stepping of syscall instruction
5445 has been done. Perform cleanup for parent process here. Note
5446 that this operation also cleans up the child process for vfork,
5447 because their pages are shared. */
5448 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5449 /* Start a new step-over in another thread if there's one
5450 that needs it. */
5451 start_step_over ();
5452
5453 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5454 the child's PC is also within the scratchpad. Set the child's PC
5455 to the parent's PC value, which has already been fixed up.
5456 FIXME: we use the parent's aspace here, although we're touching
5457 the child, because the child hasn't been added to the inferior
5458 list yet at this point. */
5459
5460 child_regcache
5461 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5462 ecs->ws.value.related_pid,
5463 gdbarch,
5464 parent_inf->aspace);
5465 /* Read PC value of parent process. */
5466 parent_pc = regcache_read_pc (regcache);
5467
5468 if (debug_displaced)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "displaced: write child pc from %s to %s\n",
5471 paddress (gdbarch,
5472 regcache_read_pc (child_regcache)),
5473 paddress (gdbarch, parent_pc));
5474
5475 regcache_write_pc (child_regcache, parent_pc);
5476 }
5477 }
5478
5479 context_switch (ecs);
5480
5481 /* Immediately detach breakpoints from the child before there's
5482 any chance of letting the user delete breakpoints from the
5483 breakpoint lists. If we don't do this early, it's easy to
5484 leave left over traps in the child, vis: "break foo; catch
5485 fork; c; <fork>; del; c; <child calls foo>". We only follow
5486 the fork on the last `continue', and by that time the
5487 breakpoint at "foo" is long gone from the breakpoint table.
5488 If we vforked, then we don't need to unpatch here, since both
5489 parent and child are sharing the same memory pages; we'll
5490 need to unpatch at follow/detach time instead to be certain
5491 that new breakpoints added between catchpoint hit time and
5492 vfork follow are detached. */
5493 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5494 {
5495 /* This won't actually modify the breakpoint list, but will
5496 physically remove the breakpoints from the child. */
5497 detach_breakpoints (ecs->ws.value.related_pid);
5498 }
5499
5500 delete_just_stopped_threads_single_step_breakpoints ();
5501
5502 /* In case the event is caught by a catchpoint, remember that
5503 the event is to be followed at the next resume of the thread,
5504 and not immediately. */
5505 ecs->event_thread->pending_follow = ecs->ws;
5506
5507 ecs->event_thread->suspend.stop_pc
5508 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5509
5510 ecs->event_thread->control.stop_bpstat
5511 = bpstat_stop_status (get_current_regcache ()->aspace (),
5512 ecs->event_thread->suspend.stop_pc,
5513 ecs->event_thread, &ecs->ws);
5514
5515 if (handle_stop_requested (ecs))
5516 return;
5517
5518 /* If no catchpoint triggered for this, then keep going. Note
5519 that we're interested in knowing the bpstat actually causes a
5520 stop, not just if it may explain the signal. Software
5521 watchpoints, for example, always appear in the bpstat. */
5522 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5523 {
5524 bool follow_child
5525 = (follow_fork_mode_string == follow_fork_mode_child);
5526
5527 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5528
5529 process_stratum_target *targ
5530 = ecs->event_thread->inf->process_target ();
5531
5532 bool should_resume = follow_fork ();
5533
5534 /* Note that one of these may be an invalid pointer,
5535 depending on detach_fork. */
5536 thread_info *parent = ecs->event_thread;
5537 thread_info *child
5538 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5539
5540 /* At this point, the parent is marked running, and the
5541 child is marked stopped. */
5542
5543 /* If not resuming the parent, mark it stopped. */
5544 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5545 parent->set_running (false);
5546
5547 /* If resuming the child, mark it running. */
5548 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5549 child->set_running (true);
5550
5551 /* In non-stop mode, also resume the other branch. */
5552 if (!detach_fork && (non_stop
5553 || (sched_multi && target_is_non_stop_p ())))
5554 {
5555 if (follow_child)
5556 switch_to_thread (parent);
5557 else
5558 switch_to_thread (child);
5559
5560 ecs->event_thread = inferior_thread ();
5561 ecs->ptid = inferior_ptid;
5562 keep_going (ecs);
5563 }
5564
5565 if (follow_child)
5566 switch_to_thread (child);
5567 else
5568 switch_to_thread (parent);
5569
5570 ecs->event_thread = inferior_thread ();
5571 ecs->ptid = inferior_ptid;
5572
5573 if (should_resume)
5574 keep_going (ecs);
5575 else
5576 stop_waiting (ecs);
5577 return;
5578 }
5579 process_event_stop_test (ecs);
5580 return;
5581
5582 case TARGET_WAITKIND_VFORK_DONE:
5583 /* Done with the shared memory region. Re-insert breakpoints in
5584 the parent, and keep going. */
5585
5586 context_switch (ecs);
5587
5588 current_inferior ()->waiting_for_vfork_done = 0;
5589 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5590
5591 if (handle_stop_requested (ecs))
5592 return;
5593
5594 /* This also takes care of reinserting breakpoints in the
5595 previously locked inferior. */
5596 keep_going (ecs);
5597 return;
5598
5599 case TARGET_WAITKIND_EXECD:
5600
5601 /* Note we can't read registers yet (the stop_pc), because we
5602 don't yet know the inferior's post-exec architecture.
5603 'stop_pc' is explicitly read below instead. */
5604 switch_to_thread_no_regs (ecs->event_thread);
5605
5606 /* Do whatever is necessary to the parent branch of the vfork. */
5607 handle_vfork_child_exec_or_exit (1);
5608
5609 /* This causes the eventpoints and symbol table to be reset.
5610 Must do this now, before trying to determine whether to
5611 stop. */
5612 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5613
5614 /* In follow_exec we may have deleted the original thread and
5615 created a new one. Make sure that the event thread is the
5616 execd thread for that case (this is a nop otherwise). */
5617 ecs->event_thread = inferior_thread ();
5618
5619 ecs->event_thread->suspend.stop_pc
5620 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5621
5622 ecs->event_thread->control.stop_bpstat
5623 = bpstat_stop_status (get_current_regcache ()->aspace (),
5624 ecs->event_thread->suspend.stop_pc,
5625 ecs->event_thread, &ecs->ws);
5626
5627 /* Note that this may be referenced from inside
5628 bpstat_stop_status above, through inferior_has_execd. */
5629 xfree (ecs->ws.value.execd_pathname);
5630 ecs->ws.value.execd_pathname = NULL;
5631
5632 if (handle_stop_requested (ecs))
5633 return;
5634
5635 /* If no catchpoint triggered for this, then keep going. */
5636 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5637 {
5638 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5639 keep_going (ecs);
5640 return;
5641 }
5642 process_event_stop_test (ecs);
5643 return;
5644
5645 /* Be careful not to try to gather much state about a thread
5646 that's in a syscall. It's frequently a losing proposition. */
5647 case TARGET_WAITKIND_SYSCALL_ENTRY:
5648 /* Getting the current syscall number. */
5649 if (handle_syscall_event (ecs) == 0)
5650 process_event_stop_test (ecs);
5651 return;
5652
5653 /* Before examining the threads further, step this thread to
5654 get it entirely out of the syscall. (We get notice of the
5655 event when the thread is just on the verge of exiting a
5656 syscall. Stepping one instruction seems to get it back
5657 into user code.) */
5658 case TARGET_WAITKIND_SYSCALL_RETURN:
5659 if (handle_syscall_event (ecs) == 0)
5660 process_event_stop_test (ecs);
5661 return;
5662
5663 case TARGET_WAITKIND_STOPPED:
5664 handle_signal_stop (ecs);
5665 return;
5666
5667 case TARGET_WAITKIND_NO_HISTORY:
5668 /* Reverse execution: target ran out of history info. */
5669
5670 /* Switch to the stopped thread. */
5671 context_switch (ecs);
5672 if (debug_infrun)
5673 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5674
5675 delete_just_stopped_threads_single_step_breakpoints ();
5676 ecs->event_thread->suspend.stop_pc
5677 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5678
5679 if (handle_stop_requested (ecs))
5680 return;
5681
5682 gdb::observers::no_history.notify ();
5683 stop_waiting (ecs);
5684 return;
5685 }
5686 }
5687
5688 /* Restart threads back to what they were trying to do back when we
5689 paused them for an in-line step-over. The EVENT_THREAD thread is
5690 ignored. */
5691
5692 static void
5693 restart_threads (struct thread_info *event_thread)
5694 {
5695 /* In case the instruction just stepped spawned a new thread. */
5696 update_thread_list ();
5697
5698 for (thread_info *tp : all_non_exited_threads ())
5699 {
5700 switch_to_thread_no_regs (tp);
5701
5702 if (tp == event_thread)
5703 {
5704 if (debug_infrun)
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: restart threads: "
5707 "[%s] is event thread\n",
5708 target_pid_to_str (tp->ptid).c_str ());
5709 continue;
5710 }
5711
5712 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5713 {
5714 if (debug_infrun)
5715 fprintf_unfiltered (gdb_stdlog,
5716 "infrun: restart threads: "
5717 "[%s] not meant to be running\n",
5718 target_pid_to_str (tp->ptid).c_str ());
5719 continue;
5720 }
5721
5722 if (tp->resumed)
5723 {
5724 if (debug_infrun)
5725 fprintf_unfiltered (gdb_stdlog,
5726 "infrun: restart threads: [%s] resumed\n",
5727 target_pid_to_str (tp->ptid).c_str ());
5728 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5729 continue;
5730 }
5731
5732 if (thread_is_in_step_over_chain (tp))
5733 {
5734 if (debug_infrun)
5735 fprintf_unfiltered (gdb_stdlog,
5736 "infrun: restart threads: "
5737 "[%s] needs step-over\n",
5738 target_pid_to_str (tp->ptid).c_str ());
5739 gdb_assert (!tp->resumed);
5740 continue;
5741 }
5742
5743
5744 if (tp->suspend.waitstatus_pending_p)
5745 {
5746 if (debug_infrun)
5747 fprintf_unfiltered (gdb_stdlog,
5748 "infrun: restart threads: "
5749 "[%s] has pending status\n",
5750 target_pid_to_str (tp->ptid).c_str ());
5751 tp->resumed = true;
5752 continue;
5753 }
5754
5755 gdb_assert (!tp->stop_requested);
5756
5757 /* If some thread needs to start a step-over at this point, it
5758 should still be in the step-over queue, and thus skipped
5759 above. */
5760 if (thread_still_needs_step_over (tp))
5761 {
5762 internal_error (__FILE__, __LINE__,
5763 "thread [%s] needs a step-over, but not in "
5764 "step-over queue\n",
5765 target_pid_to_str (tp->ptid).c_str ());
5766 }
5767
5768 if (currently_stepping (tp))
5769 {
5770 if (debug_infrun)
5771 fprintf_unfiltered (gdb_stdlog,
5772 "infrun: restart threads: [%s] was stepping\n",
5773 target_pid_to_str (tp->ptid).c_str ());
5774 keep_going_stepped_thread (tp);
5775 }
5776 else
5777 {
5778 struct execution_control_state ecss;
5779 struct execution_control_state *ecs = &ecss;
5780
5781 if (debug_infrun)
5782 fprintf_unfiltered (gdb_stdlog,
5783 "infrun: restart threads: [%s] continuing\n",
5784 target_pid_to_str (tp->ptid).c_str ());
5785 reset_ecs (ecs, tp);
5786 switch_to_thread (tp);
5787 keep_going_pass_signal (ecs);
5788 }
5789 }
5790 }
5791
5792 /* Callback for iterate_over_threads. Find a resumed thread that has
5793 a pending waitstatus. */
5794
5795 static int
5796 resumed_thread_with_pending_status (struct thread_info *tp,
5797 void *arg)
5798 {
5799 return (tp->resumed
5800 && tp->suspend.waitstatus_pending_p);
5801 }
5802
5803 /* Called when we get an event that may finish an in-line or
5804 out-of-line (displaced stepping) step-over started previously.
5805 Return true if the event is processed and we should go back to the
5806 event loop; false if the caller should continue processing the
5807 event. */
5808
5809 static int
5810 finish_step_over (struct execution_control_state *ecs)
5811 {
5812 int had_step_over_info;
5813
5814 displaced_step_fixup (ecs->event_thread,
5815 ecs->event_thread->suspend.stop_signal);
5816
5817 had_step_over_info = step_over_info_valid_p ();
5818
5819 if (had_step_over_info)
5820 {
5821 /* If we're stepping over a breakpoint with all threads locked,
5822 then only the thread that was stepped should be reporting
5823 back an event. */
5824 gdb_assert (ecs->event_thread->control.trap_expected);
5825
5826 clear_step_over_info ();
5827 }
5828
5829 if (!target_is_non_stop_p ())
5830 return 0;
5831
5832 /* Start a new step-over in another thread if there's one that
5833 needs it. */
5834 start_step_over ();
5835
5836 /* If we were stepping over a breakpoint before, and haven't started
5837 a new in-line step-over sequence, then restart all other threads
5838 (except the event thread). We can't do this in all-stop, as then
5839 e.g., we wouldn't be able to issue any other remote packet until
5840 these other threads stop. */
5841 if (had_step_over_info && !step_over_info_valid_p ())
5842 {
5843 struct thread_info *pending;
5844
5845 /* If we only have threads with pending statuses, the restart
5846 below won't restart any thread and so nothing re-inserts the
5847 breakpoint we just stepped over. But we need it inserted
5848 when we later process the pending events, otherwise if
5849 another thread has a pending event for this breakpoint too,
5850 we'd discard its event (because the breakpoint that
5851 originally caused the event was no longer inserted). */
5852 context_switch (ecs);
5853 insert_breakpoints ();
5854
5855 restart_threads (ecs->event_thread);
5856
5857 /* If we have events pending, go through handle_inferior_event
5858 again, picking up a pending event at random. This avoids
5859 thread starvation. */
5860
5861 /* But not if we just stepped over a watchpoint in order to let
5862 the instruction execute so we can evaluate its expression.
5863 The set of watchpoints that triggered is recorded in the
5864 breakpoint objects themselves (see bp->watchpoint_triggered).
5865 If we processed another event first, that other event could
5866 clobber this info. */
5867 if (ecs->event_thread->stepping_over_watchpoint)
5868 return 0;
5869
5870 pending = iterate_over_threads (resumed_thread_with_pending_status,
5871 NULL);
5872 if (pending != NULL)
5873 {
5874 struct thread_info *tp = ecs->event_thread;
5875 struct regcache *regcache;
5876
5877 if (debug_infrun)
5878 {
5879 fprintf_unfiltered (gdb_stdlog,
5880 "infrun: found resumed threads with "
5881 "pending events, saving status\n");
5882 }
5883
5884 gdb_assert (pending != tp);
5885
5886 /* Record the event thread's event for later. */
5887 save_waitstatus (tp, &ecs->ws);
5888 /* This was cleared early, by handle_inferior_event. Set it
5889 so this pending event is considered by
5890 do_target_wait. */
5891 tp->resumed = true;
5892
5893 gdb_assert (!tp->executing);
5894
5895 regcache = get_thread_regcache (tp);
5896 tp->suspend.stop_pc = regcache_read_pc (regcache);
5897
5898 if (debug_infrun)
5899 {
5900 fprintf_unfiltered (gdb_stdlog,
5901 "infrun: saved stop_pc=%s for %s "
5902 "(currently_stepping=%d)\n",
5903 paddress (target_gdbarch (),
5904 tp->suspend.stop_pc),
5905 target_pid_to_str (tp->ptid).c_str (),
5906 currently_stepping (tp));
5907 }
5908
5909 /* This in-line step-over finished; clear this so we won't
5910 start a new one. This is what handle_signal_stop would
5911 do, if we returned false. */
5912 tp->stepping_over_breakpoint = 0;
5913
5914 /* Wake up the event loop again. */
5915 mark_async_event_handler (infrun_async_inferior_event_token);
5916
5917 prepare_to_wait (ecs);
5918 return 1;
5919 }
5920 }
5921
5922 return 0;
5923 }
5924
5925 /* Come here when the program has stopped with a signal. */
5926
5927 static void
5928 handle_signal_stop (struct execution_control_state *ecs)
5929 {
5930 struct frame_info *frame;
5931 struct gdbarch *gdbarch;
5932 int stopped_by_watchpoint;
5933 enum stop_kind stop_soon;
5934 int random_signal;
5935
5936 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5937
5938 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5939
5940 /* Do we need to clean up the state of a thread that has
5941 completed a displaced single-step? (Doing so usually affects
5942 the PC, so do it here, before we set stop_pc.) */
5943 if (finish_step_over (ecs))
5944 return;
5945
5946 /* If we either finished a single-step or hit a breakpoint, but
5947 the user wanted this thread to be stopped, pretend we got a
5948 SIG0 (generic unsignaled stop). */
5949 if (ecs->event_thread->stop_requested
5950 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5951 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5952
5953 ecs->event_thread->suspend.stop_pc
5954 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5955
5956 if (debug_infrun)
5957 {
5958 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5959 struct gdbarch *reg_gdbarch = regcache->arch ();
5960
5961 switch_to_thread (ecs->event_thread);
5962
5963 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5964 paddress (reg_gdbarch,
5965 ecs->event_thread->suspend.stop_pc));
5966 if (target_stopped_by_watchpoint ())
5967 {
5968 CORE_ADDR addr;
5969
5970 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5971
5972 if (target_stopped_data_address (current_top_target (), &addr))
5973 fprintf_unfiltered (gdb_stdlog,
5974 "infrun: stopped data address = %s\n",
5975 paddress (reg_gdbarch, addr));
5976 else
5977 fprintf_unfiltered (gdb_stdlog,
5978 "infrun: (no data address available)\n");
5979 }
5980 }
5981
5982 /* This is originated from start_remote(), start_inferior() and
5983 shared libraries hook functions. */
5984 stop_soon = get_inferior_stop_soon (ecs);
5985 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5986 {
5987 context_switch (ecs);
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5990 stop_print_frame = 1;
5991 stop_waiting (ecs);
5992 return;
5993 }
5994
5995 /* This originates from attach_command(). We need to overwrite
5996 the stop_signal here, because some kernels don't ignore a
5997 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5998 See more comments in inferior.h. On the other hand, if we
5999 get a non-SIGSTOP, report it to the user - assume the backend
6000 will handle the SIGSTOP if it should show up later.
6001
6002 Also consider that the attach is complete when we see a
6003 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6004 target extended-remote report it instead of a SIGSTOP
6005 (e.g. gdbserver). We already rely on SIGTRAP being our
6006 signal, so this is no exception.
6007
6008 Also consider that the attach is complete when we see a
6009 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6010 the target to stop all threads of the inferior, in case the
6011 low level attach operation doesn't stop them implicitly. If
6012 they weren't stopped implicitly, then the stub will report a
6013 GDB_SIGNAL_0, meaning: stopped for no particular reason
6014 other than GDB's request. */
6015 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6016 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6017 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6018 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6019 {
6020 stop_print_frame = 1;
6021 stop_waiting (ecs);
6022 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6023 return;
6024 }
6025
6026 /* See if something interesting happened to the non-current thread. If
6027 so, then switch to that thread. */
6028 if (ecs->ptid != inferior_ptid)
6029 {
6030 if (debug_infrun)
6031 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
6032
6033 context_switch (ecs);
6034
6035 if (deprecated_context_hook)
6036 deprecated_context_hook (ecs->event_thread->global_num);
6037 }
6038
6039 /* At this point, get hold of the now-current thread's frame. */
6040 frame = get_current_frame ();
6041 gdbarch = get_frame_arch (frame);
6042
6043 /* Pull the single step breakpoints out of the target. */
6044 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6045 {
6046 struct regcache *regcache;
6047 CORE_ADDR pc;
6048
6049 regcache = get_thread_regcache (ecs->event_thread);
6050 const address_space *aspace = regcache->aspace ();
6051
6052 pc = regcache_read_pc (regcache);
6053
6054 /* However, before doing so, if this single-step breakpoint was
6055 actually for another thread, set this thread up for moving
6056 past it. */
6057 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6058 aspace, pc))
6059 {
6060 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6061 {
6062 if (debug_infrun)
6063 {
6064 fprintf_unfiltered (gdb_stdlog,
6065 "infrun: [%s] hit another thread's "
6066 "single-step breakpoint\n",
6067 target_pid_to_str (ecs->ptid).c_str ());
6068 }
6069 ecs->hit_singlestep_breakpoint = 1;
6070 }
6071 }
6072 else
6073 {
6074 if (debug_infrun)
6075 {
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: [%s] hit its "
6078 "single-step breakpoint\n",
6079 target_pid_to_str (ecs->ptid).c_str ());
6080 }
6081 }
6082 }
6083 delete_just_stopped_threads_single_step_breakpoints ();
6084
6085 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6086 && ecs->event_thread->control.trap_expected
6087 && ecs->event_thread->stepping_over_watchpoint)
6088 stopped_by_watchpoint = 0;
6089 else
6090 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6091
6092 /* If necessary, step over this watchpoint. We'll be back to display
6093 it in a moment. */
6094 if (stopped_by_watchpoint
6095 && (target_have_steppable_watchpoint
6096 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6097 {
6098 /* At this point, we are stopped at an instruction which has
6099 attempted to write to a piece of memory under control of
6100 a watchpoint. The instruction hasn't actually executed
6101 yet. If we were to evaluate the watchpoint expression
6102 now, we would get the old value, and therefore no change
6103 would seem to have occurred.
6104
6105 In order to make watchpoints work `right', we really need
6106 to complete the memory write, and then evaluate the
6107 watchpoint expression. We do this by single-stepping the
6108 target.
6109
6110 It may not be necessary to disable the watchpoint to step over
6111 it. For example, the PA can (with some kernel cooperation)
6112 single step over a watchpoint without disabling the watchpoint.
6113
6114 It is far more common to need to disable a watchpoint to step
6115 the inferior over it. If we have non-steppable watchpoints,
6116 we must disable the current watchpoint; it's simplest to
6117 disable all watchpoints.
6118
6119 Any breakpoint at PC must also be stepped over -- if there's
6120 one, it will have already triggered before the watchpoint
6121 triggered, and we either already reported it to the user, or
6122 it didn't cause a stop and we called keep_going. In either
6123 case, if there was a breakpoint at PC, we must be trying to
6124 step past it. */
6125 ecs->event_thread->stepping_over_watchpoint = 1;
6126 keep_going (ecs);
6127 return;
6128 }
6129
6130 ecs->event_thread->stepping_over_breakpoint = 0;
6131 ecs->event_thread->stepping_over_watchpoint = 0;
6132 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6133 ecs->event_thread->control.stop_step = 0;
6134 stop_print_frame = 1;
6135 stopped_by_random_signal = 0;
6136 bpstat stop_chain = NULL;
6137
6138 /* Hide inlined functions starting here, unless we just performed stepi or
6139 nexti. After stepi and nexti, always show the innermost frame (not any
6140 inline function call sites). */
6141 if (ecs->event_thread->control.step_range_end != 1)
6142 {
6143 const address_space *aspace
6144 = get_thread_regcache (ecs->event_thread)->aspace ();
6145
6146 /* skip_inline_frames is expensive, so we avoid it if we can
6147 determine that the address is one where functions cannot have
6148 been inlined. This improves performance with inferiors that
6149 load a lot of shared libraries, because the solib event
6150 breakpoint is defined as the address of a function (i.e. not
6151 inline). Note that we have to check the previous PC as well
6152 as the current one to catch cases when we have just
6153 single-stepped off a breakpoint prior to reinstating it.
6154 Note that we're assuming that the code we single-step to is
6155 not inline, but that's not definitive: there's nothing
6156 preventing the event breakpoint function from containing
6157 inlined code, and the single-step ending up there. If the
6158 user had set a breakpoint on that inlined code, the missing
6159 skip_inline_frames call would break things. Fortunately
6160 that's an extremely unlikely scenario. */
6161 if (!pc_at_non_inline_function (aspace,
6162 ecs->event_thread->suspend.stop_pc,
6163 &ecs->ws)
6164 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6165 && ecs->event_thread->control.trap_expected
6166 && pc_at_non_inline_function (aspace,
6167 ecs->event_thread->prev_pc,
6168 &ecs->ws)))
6169 {
6170 stop_chain = build_bpstat_chain (aspace,
6171 ecs->event_thread->suspend.stop_pc,
6172 &ecs->ws);
6173 skip_inline_frames (ecs->event_thread, stop_chain);
6174
6175 /* Re-fetch current thread's frame in case that invalidated
6176 the frame cache. */
6177 frame = get_current_frame ();
6178 gdbarch = get_frame_arch (frame);
6179 }
6180 }
6181
6182 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6183 && ecs->event_thread->control.trap_expected
6184 && gdbarch_single_step_through_delay_p (gdbarch)
6185 && currently_stepping (ecs->event_thread))
6186 {
6187 /* We're trying to step off a breakpoint. Turns out that we're
6188 also on an instruction that needs to be stepped multiple
6189 times before it's been fully executing. E.g., architectures
6190 with a delay slot. It needs to be stepped twice, once for
6191 the instruction and once for the delay slot. */
6192 int step_through_delay
6193 = gdbarch_single_step_through_delay (gdbarch, frame);
6194
6195 if (debug_infrun && step_through_delay)
6196 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6197 if (ecs->event_thread->control.step_range_end == 0
6198 && step_through_delay)
6199 {
6200 /* The user issued a continue when stopped at a breakpoint.
6201 Set up for another trap and get out of here. */
6202 ecs->event_thread->stepping_over_breakpoint = 1;
6203 keep_going (ecs);
6204 return;
6205 }
6206 else if (step_through_delay)
6207 {
6208 /* The user issued a step when stopped at a breakpoint.
6209 Maybe we should stop, maybe we should not - the delay
6210 slot *might* correspond to a line of source. In any
6211 case, don't decide that here, just set
6212 ecs->stepping_over_breakpoint, making sure we
6213 single-step again before breakpoints are re-inserted. */
6214 ecs->event_thread->stepping_over_breakpoint = 1;
6215 }
6216 }
6217
6218 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6219 handles this event. */
6220 ecs->event_thread->control.stop_bpstat
6221 = bpstat_stop_status (get_current_regcache ()->aspace (),
6222 ecs->event_thread->suspend.stop_pc,
6223 ecs->event_thread, &ecs->ws, stop_chain);
6224
6225 /* Following in case break condition called a
6226 function. */
6227 stop_print_frame = 1;
6228
6229 /* This is where we handle "moribund" watchpoints. Unlike
6230 software breakpoints traps, hardware watchpoint traps are
6231 always distinguishable from random traps. If no high-level
6232 watchpoint is associated with the reported stop data address
6233 anymore, then the bpstat does not explain the signal ---
6234 simply make sure to ignore it if `stopped_by_watchpoint' is
6235 set. */
6236
6237 if (debug_infrun
6238 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6239 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6240 GDB_SIGNAL_TRAP)
6241 && stopped_by_watchpoint)
6242 fprintf_unfiltered (gdb_stdlog,
6243 "infrun: no user watchpoint explains "
6244 "watchpoint SIGTRAP, ignoring\n");
6245
6246 /* NOTE: cagney/2003-03-29: These checks for a random signal
6247 at one stage in the past included checks for an inferior
6248 function call's call dummy's return breakpoint. The original
6249 comment, that went with the test, read:
6250
6251 ``End of a stack dummy. Some systems (e.g. Sony news) give
6252 another signal besides SIGTRAP, so check here as well as
6253 above.''
6254
6255 If someone ever tries to get call dummys on a
6256 non-executable stack to work (where the target would stop
6257 with something like a SIGSEGV), then those tests might need
6258 to be re-instated. Given, however, that the tests were only
6259 enabled when momentary breakpoints were not being used, I
6260 suspect that it won't be the case.
6261
6262 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6263 be necessary for call dummies on a non-executable stack on
6264 SPARC. */
6265
6266 /* See if the breakpoints module can explain the signal. */
6267 random_signal
6268 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6269 ecs->event_thread->suspend.stop_signal);
6270
6271 /* Maybe this was a trap for a software breakpoint that has since
6272 been removed. */
6273 if (random_signal && target_stopped_by_sw_breakpoint ())
6274 {
6275 if (gdbarch_program_breakpoint_here_p (gdbarch,
6276 ecs->event_thread->suspend.stop_pc))
6277 {
6278 struct regcache *regcache;
6279 int decr_pc;
6280
6281 /* Re-adjust PC to what the program would see if GDB was not
6282 debugging it. */
6283 regcache = get_thread_regcache (ecs->event_thread);
6284 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6285 if (decr_pc != 0)
6286 {
6287 gdb::optional<scoped_restore_tmpl<int>>
6288 restore_operation_disable;
6289
6290 if (record_full_is_used ())
6291 restore_operation_disable.emplace
6292 (record_full_gdb_operation_disable_set ());
6293
6294 regcache_write_pc (regcache,
6295 ecs->event_thread->suspend.stop_pc + decr_pc);
6296 }
6297 }
6298 else
6299 {
6300 /* A delayed software breakpoint event. Ignore the trap. */
6301 if (debug_infrun)
6302 fprintf_unfiltered (gdb_stdlog,
6303 "infrun: delayed software breakpoint "
6304 "trap, ignoring\n");
6305 random_signal = 0;
6306 }
6307 }
6308
6309 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6310 has since been removed. */
6311 if (random_signal && target_stopped_by_hw_breakpoint ())
6312 {
6313 /* A delayed hardware breakpoint event. Ignore the trap. */
6314 if (debug_infrun)
6315 fprintf_unfiltered (gdb_stdlog,
6316 "infrun: delayed hardware breakpoint/watchpoint "
6317 "trap, ignoring\n");
6318 random_signal = 0;
6319 }
6320
6321 /* If not, perhaps stepping/nexting can. */
6322 if (random_signal)
6323 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6324 && currently_stepping (ecs->event_thread));
6325
6326 /* Perhaps the thread hit a single-step breakpoint of _another_
6327 thread. Single-step breakpoints are transparent to the
6328 breakpoints module. */
6329 if (random_signal)
6330 random_signal = !ecs->hit_singlestep_breakpoint;
6331
6332 /* No? Perhaps we got a moribund watchpoint. */
6333 if (random_signal)
6334 random_signal = !stopped_by_watchpoint;
6335
6336 /* Always stop if the user explicitly requested this thread to
6337 remain stopped. */
6338 if (ecs->event_thread->stop_requested)
6339 {
6340 random_signal = 1;
6341 if (debug_infrun)
6342 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6343 }
6344
6345 /* For the program's own signals, act according to
6346 the signal handling tables. */
6347
6348 if (random_signal)
6349 {
6350 /* Signal not for debugging purposes. */
6351 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6352 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6353
6354 if (debug_infrun)
6355 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6356 gdb_signal_to_symbol_string (stop_signal));
6357
6358 stopped_by_random_signal = 1;
6359
6360 /* Always stop on signals if we're either just gaining control
6361 of the program, or the user explicitly requested this thread
6362 to remain stopped. */
6363 if (stop_soon != NO_STOP_QUIETLY
6364 || ecs->event_thread->stop_requested
6365 || (!inf->detaching
6366 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6367 {
6368 stop_waiting (ecs);
6369 return;
6370 }
6371
6372 /* Notify observers the signal has "handle print" set. Note we
6373 returned early above if stopping; normal_stop handles the
6374 printing in that case. */
6375 if (signal_print[ecs->event_thread->suspend.stop_signal])
6376 {
6377 /* The signal table tells us to print about this signal. */
6378 target_terminal::ours_for_output ();
6379 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6380 target_terminal::inferior ();
6381 }
6382
6383 /* Clear the signal if it should not be passed. */
6384 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6385 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6386
6387 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6388 && ecs->event_thread->control.trap_expected
6389 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6390 {
6391 /* We were just starting a new sequence, attempting to
6392 single-step off of a breakpoint and expecting a SIGTRAP.
6393 Instead this signal arrives. This signal will take us out
6394 of the stepping range so GDB needs to remember to, when
6395 the signal handler returns, resume stepping off that
6396 breakpoint. */
6397 /* To simplify things, "continue" is forced to use the same
6398 code paths as single-step - set a breakpoint at the
6399 signal return address and then, once hit, step off that
6400 breakpoint. */
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog,
6403 "infrun: signal arrived while stepping over "
6404 "breakpoint\n");
6405
6406 insert_hp_step_resume_breakpoint_at_frame (frame);
6407 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6408 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6409 ecs->event_thread->control.trap_expected = 0;
6410
6411 /* If we were nexting/stepping some other thread, switch to
6412 it, so that we don't continue it, losing control. */
6413 if (!switch_back_to_stepped_thread (ecs))
6414 keep_going (ecs);
6415 return;
6416 }
6417
6418 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6419 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6420 ecs->event_thread)
6421 || ecs->event_thread->control.step_range_end == 1)
6422 && frame_id_eq (get_stack_frame_id (frame),
6423 ecs->event_thread->control.step_stack_frame_id)
6424 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6425 {
6426 /* The inferior is about to take a signal that will take it
6427 out of the single step range. Set a breakpoint at the
6428 current PC (which is presumably where the signal handler
6429 will eventually return) and then allow the inferior to
6430 run free.
6431
6432 Note that this is only needed for a signal delivered
6433 while in the single-step range. Nested signals aren't a
6434 problem as they eventually all return. */
6435 if (debug_infrun)
6436 fprintf_unfiltered (gdb_stdlog,
6437 "infrun: signal may take us out of "
6438 "single-step range\n");
6439
6440 clear_step_over_info ();
6441 insert_hp_step_resume_breakpoint_at_frame (frame);
6442 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6443 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6444 ecs->event_thread->control.trap_expected = 0;
6445 keep_going (ecs);
6446 return;
6447 }
6448
6449 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6450 when either there's a nested signal, or when there's a
6451 pending signal enabled just as the signal handler returns
6452 (leaving the inferior at the step-resume-breakpoint without
6453 actually executing it). Either way continue until the
6454 breakpoint is really hit. */
6455
6456 if (!switch_back_to_stepped_thread (ecs))
6457 {
6458 if (debug_infrun)
6459 fprintf_unfiltered (gdb_stdlog,
6460 "infrun: random signal, keep going\n");
6461
6462 keep_going (ecs);
6463 }
6464 return;
6465 }
6466
6467 process_event_stop_test (ecs);
6468 }
6469
6470 /* Come here when we've got some debug event / signal we can explain
6471 (IOW, not a random signal), and test whether it should cause a
6472 stop, or whether we should resume the inferior (transparently).
6473 E.g., could be a breakpoint whose condition evaluates false; we
6474 could be still stepping within the line; etc. */
6475
6476 static void
6477 process_event_stop_test (struct execution_control_state *ecs)
6478 {
6479 struct symtab_and_line stop_pc_sal;
6480 struct frame_info *frame;
6481 struct gdbarch *gdbarch;
6482 CORE_ADDR jmp_buf_pc;
6483 struct bpstat_what what;
6484
6485 /* Handle cases caused by hitting a breakpoint. */
6486
6487 frame = get_current_frame ();
6488 gdbarch = get_frame_arch (frame);
6489
6490 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6491
6492 if (what.call_dummy)
6493 {
6494 stop_stack_dummy = what.call_dummy;
6495 }
6496
6497 /* A few breakpoint types have callbacks associated (e.g.,
6498 bp_jit_event). Run them now. */
6499 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6500
6501 /* If we hit an internal event that triggers symbol changes, the
6502 current frame will be invalidated within bpstat_what (e.g., if we
6503 hit an internal solib event). Re-fetch it. */
6504 frame = get_current_frame ();
6505 gdbarch = get_frame_arch (frame);
6506
6507 switch (what.main_action)
6508 {
6509 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6510 /* If we hit the breakpoint at longjmp while stepping, we
6511 install a momentary breakpoint at the target of the
6512 jmp_buf. */
6513
6514 if (debug_infrun)
6515 fprintf_unfiltered (gdb_stdlog,
6516 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6517
6518 ecs->event_thread->stepping_over_breakpoint = 1;
6519
6520 if (what.is_longjmp)
6521 {
6522 struct value *arg_value;
6523
6524 /* If we set the longjmp breakpoint via a SystemTap probe,
6525 then use it to extract the arguments. The destination PC
6526 is the third argument to the probe. */
6527 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6528 if (arg_value)
6529 {
6530 jmp_buf_pc = value_as_address (arg_value);
6531 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6532 }
6533 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6534 || !gdbarch_get_longjmp_target (gdbarch,
6535 frame, &jmp_buf_pc))
6536 {
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog,
6539 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6540 "(!gdbarch_get_longjmp_target)\n");
6541 keep_going (ecs);
6542 return;
6543 }
6544
6545 /* Insert a breakpoint at resume address. */
6546 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6547 }
6548 else
6549 check_exception_resume (ecs, frame);
6550 keep_going (ecs);
6551 return;
6552
6553 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6554 {
6555 struct frame_info *init_frame;
6556
6557 /* There are several cases to consider.
6558
6559 1. The initiating frame no longer exists. In this case we
6560 must stop, because the exception or longjmp has gone too
6561 far.
6562
6563 2. The initiating frame exists, and is the same as the
6564 current frame. We stop, because the exception or longjmp
6565 has been caught.
6566
6567 3. The initiating frame exists and is different from the
6568 current frame. This means the exception or longjmp has
6569 been caught beneath the initiating frame, so keep going.
6570
6571 4. longjmp breakpoint has been placed just to protect
6572 against stale dummy frames and user is not interested in
6573 stopping around longjmps. */
6574
6575 if (debug_infrun)
6576 fprintf_unfiltered (gdb_stdlog,
6577 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6578
6579 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6580 != NULL);
6581 delete_exception_resume_breakpoint (ecs->event_thread);
6582
6583 if (what.is_longjmp)
6584 {
6585 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6586
6587 if (!frame_id_p (ecs->event_thread->initiating_frame))
6588 {
6589 /* Case 4. */
6590 keep_going (ecs);
6591 return;
6592 }
6593 }
6594
6595 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6596
6597 if (init_frame)
6598 {
6599 struct frame_id current_id
6600 = get_frame_id (get_current_frame ());
6601 if (frame_id_eq (current_id,
6602 ecs->event_thread->initiating_frame))
6603 {
6604 /* Case 2. Fall through. */
6605 }
6606 else
6607 {
6608 /* Case 3. */
6609 keep_going (ecs);
6610 return;
6611 }
6612 }
6613
6614 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6615 exists. */
6616 delete_step_resume_breakpoint (ecs->event_thread);
6617
6618 end_stepping_range (ecs);
6619 }
6620 return;
6621
6622 case BPSTAT_WHAT_SINGLE:
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6625 ecs->event_thread->stepping_over_breakpoint = 1;
6626 /* Still need to check other stuff, at least the case where we
6627 are stepping and step out of the right range. */
6628 break;
6629
6630 case BPSTAT_WHAT_STEP_RESUME:
6631 if (debug_infrun)
6632 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6633
6634 delete_step_resume_breakpoint (ecs->event_thread);
6635 if (ecs->event_thread->control.proceed_to_finish
6636 && execution_direction == EXEC_REVERSE)
6637 {
6638 struct thread_info *tp = ecs->event_thread;
6639
6640 /* We are finishing a function in reverse, and just hit the
6641 step-resume breakpoint at the start address of the
6642 function, and we're almost there -- just need to back up
6643 by one more single-step, which should take us back to the
6644 function call. */
6645 tp->control.step_range_start = tp->control.step_range_end = 1;
6646 keep_going (ecs);
6647 return;
6648 }
6649 fill_in_stop_func (gdbarch, ecs);
6650 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6651 && execution_direction == EXEC_REVERSE)
6652 {
6653 /* We are stepping over a function call in reverse, and just
6654 hit the step-resume breakpoint at the start address of
6655 the function. Go back to single-stepping, which should
6656 take us back to the function call. */
6657 ecs->event_thread->stepping_over_breakpoint = 1;
6658 keep_going (ecs);
6659 return;
6660 }
6661 break;
6662
6663 case BPSTAT_WHAT_STOP_NOISY:
6664 if (debug_infrun)
6665 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6666 stop_print_frame = 1;
6667
6668 /* Assume the thread stopped for a breapoint. We'll still check
6669 whether a/the breakpoint is there when the thread is next
6670 resumed. */
6671 ecs->event_thread->stepping_over_breakpoint = 1;
6672
6673 stop_waiting (ecs);
6674 return;
6675
6676 case BPSTAT_WHAT_STOP_SILENT:
6677 if (debug_infrun)
6678 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6679 stop_print_frame = 0;
6680
6681 /* Assume the thread stopped for a breapoint. We'll still check
6682 whether a/the breakpoint is there when the thread is next
6683 resumed. */
6684 ecs->event_thread->stepping_over_breakpoint = 1;
6685 stop_waiting (ecs);
6686 return;
6687
6688 case BPSTAT_WHAT_HP_STEP_RESUME:
6689 if (debug_infrun)
6690 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6691
6692 delete_step_resume_breakpoint (ecs->event_thread);
6693 if (ecs->event_thread->step_after_step_resume_breakpoint)
6694 {
6695 /* Back when the step-resume breakpoint was inserted, we
6696 were trying to single-step off a breakpoint. Go back to
6697 doing that. */
6698 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6699 ecs->event_thread->stepping_over_breakpoint = 1;
6700 keep_going (ecs);
6701 return;
6702 }
6703 break;
6704
6705 case BPSTAT_WHAT_KEEP_CHECKING:
6706 break;
6707 }
6708
6709 /* If we stepped a permanent breakpoint and we had a high priority
6710 step-resume breakpoint for the address we stepped, but we didn't
6711 hit it, then we must have stepped into the signal handler. The
6712 step-resume was only necessary to catch the case of _not_
6713 stepping into the handler, so delete it, and fall through to
6714 checking whether the step finished. */
6715 if (ecs->event_thread->stepped_breakpoint)
6716 {
6717 struct breakpoint *sr_bp
6718 = ecs->event_thread->control.step_resume_breakpoint;
6719
6720 if (sr_bp != NULL
6721 && sr_bp->loc->permanent
6722 && sr_bp->type == bp_hp_step_resume
6723 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6724 {
6725 if (debug_infrun)
6726 fprintf_unfiltered (gdb_stdlog,
6727 "infrun: stepped permanent breakpoint, stopped in "
6728 "handler\n");
6729 delete_step_resume_breakpoint (ecs->event_thread);
6730 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6731 }
6732 }
6733
6734 /* We come here if we hit a breakpoint but should not stop for it.
6735 Possibly we also were stepping and should stop for that. So fall
6736 through and test for stepping. But, if not stepping, do not
6737 stop. */
6738
6739 /* In all-stop mode, if we're currently stepping but have stopped in
6740 some other thread, we need to switch back to the stepped thread. */
6741 if (switch_back_to_stepped_thread (ecs))
6742 return;
6743
6744 if (ecs->event_thread->control.step_resume_breakpoint)
6745 {
6746 if (debug_infrun)
6747 fprintf_unfiltered (gdb_stdlog,
6748 "infrun: step-resume breakpoint is inserted\n");
6749
6750 /* Having a step-resume breakpoint overrides anything
6751 else having to do with stepping commands until
6752 that breakpoint is reached. */
6753 keep_going (ecs);
6754 return;
6755 }
6756
6757 if (ecs->event_thread->control.step_range_end == 0)
6758 {
6759 if (debug_infrun)
6760 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6761 /* Likewise if we aren't even stepping. */
6762 keep_going (ecs);
6763 return;
6764 }
6765
6766 /* Re-fetch current thread's frame in case the code above caused
6767 the frame cache to be re-initialized, making our FRAME variable
6768 a dangling pointer. */
6769 frame = get_current_frame ();
6770 gdbarch = get_frame_arch (frame);
6771 fill_in_stop_func (gdbarch, ecs);
6772
6773 /* If stepping through a line, keep going if still within it.
6774
6775 Note that step_range_end is the address of the first instruction
6776 beyond the step range, and NOT the address of the last instruction
6777 within it!
6778
6779 Note also that during reverse execution, we may be stepping
6780 through a function epilogue and therefore must detect when
6781 the current-frame changes in the middle of a line. */
6782
6783 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6784 ecs->event_thread)
6785 && (execution_direction != EXEC_REVERSE
6786 || frame_id_eq (get_frame_id (frame),
6787 ecs->event_thread->control.step_frame_id)))
6788 {
6789 if (debug_infrun)
6790 fprintf_unfiltered
6791 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6792 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6793 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6794
6795 /* Tentatively re-enable range stepping; `resume' disables it if
6796 necessary (e.g., if we're stepping over a breakpoint or we
6797 have software watchpoints). */
6798 ecs->event_thread->control.may_range_step = 1;
6799
6800 /* When stepping backward, stop at beginning of line range
6801 (unless it's the function entry point, in which case
6802 keep going back to the call point). */
6803 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6804 if (stop_pc == ecs->event_thread->control.step_range_start
6805 && stop_pc != ecs->stop_func_start
6806 && execution_direction == EXEC_REVERSE)
6807 end_stepping_range (ecs);
6808 else
6809 keep_going (ecs);
6810
6811 return;
6812 }
6813
6814 /* We stepped out of the stepping range. */
6815
6816 /* If we are stepping at the source level and entered the runtime
6817 loader dynamic symbol resolution code...
6818
6819 EXEC_FORWARD: we keep on single stepping until we exit the run
6820 time loader code and reach the callee's address.
6821
6822 EXEC_REVERSE: we've already executed the callee (backward), and
6823 the runtime loader code is handled just like any other
6824 undebuggable function call. Now we need only keep stepping
6825 backward through the trampoline code, and that's handled further
6826 down, so there is nothing for us to do here. */
6827
6828 if (execution_direction != EXEC_REVERSE
6829 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6830 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6831 {
6832 CORE_ADDR pc_after_resolver =
6833 gdbarch_skip_solib_resolver (gdbarch,
6834 ecs->event_thread->suspend.stop_pc);
6835
6836 if (debug_infrun)
6837 fprintf_unfiltered (gdb_stdlog,
6838 "infrun: stepped into dynsym resolve code\n");
6839
6840 if (pc_after_resolver)
6841 {
6842 /* Set up a step-resume breakpoint at the address
6843 indicated by SKIP_SOLIB_RESOLVER. */
6844 symtab_and_line sr_sal;
6845 sr_sal.pc = pc_after_resolver;
6846 sr_sal.pspace = get_frame_program_space (frame);
6847
6848 insert_step_resume_breakpoint_at_sal (gdbarch,
6849 sr_sal, null_frame_id);
6850 }
6851
6852 keep_going (ecs);
6853 return;
6854 }
6855
6856 /* Step through an indirect branch thunk. */
6857 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6858 && gdbarch_in_indirect_branch_thunk (gdbarch,
6859 ecs->event_thread->suspend.stop_pc))
6860 {
6861 if (debug_infrun)
6862 fprintf_unfiltered (gdb_stdlog,
6863 "infrun: stepped into indirect branch thunk\n");
6864 keep_going (ecs);
6865 return;
6866 }
6867
6868 if (ecs->event_thread->control.step_range_end != 1
6869 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6870 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6871 && get_frame_type (frame) == SIGTRAMP_FRAME)
6872 {
6873 if (debug_infrun)
6874 fprintf_unfiltered (gdb_stdlog,
6875 "infrun: stepped into signal trampoline\n");
6876 /* The inferior, while doing a "step" or "next", has ended up in
6877 a signal trampoline (either by a signal being delivered or by
6878 the signal handler returning). Just single-step until the
6879 inferior leaves the trampoline (either by calling the handler
6880 or returning). */
6881 keep_going (ecs);
6882 return;
6883 }
6884
6885 /* If we're in the return path from a shared library trampoline,
6886 we want to proceed through the trampoline when stepping. */
6887 /* macro/2012-04-25: This needs to come before the subroutine
6888 call check below as on some targets return trampolines look
6889 like subroutine calls (MIPS16 return thunks). */
6890 if (gdbarch_in_solib_return_trampoline (gdbarch,
6891 ecs->event_thread->suspend.stop_pc,
6892 ecs->stop_func_name)
6893 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6894 {
6895 /* Determine where this trampoline returns. */
6896 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6897 CORE_ADDR real_stop_pc
6898 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6899
6900 if (debug_infrun)
6901 fprintf_unfiltered (gdb_stdlog,
6902 "infrun: stepped into solib return tramp\n");
6903
6904 /* Only proceed through if we know where it's going. */
6905 if (real_stop_pc)
6906 {
6907 /* And put the step-breakpoint there and go until there. */
6908 symtab_and_line sr_sal;
6909 sr_sal.pc = real_stop_pc;
6910 sr_sal.section = find_pc_overlay (sr_sal.pc);
6911 sr_sal.pspace = get_frame_program_space (frame);
6912
6913 /* Do not specify what the fp should be when we stop since
6914 on some machines the prologue is where the new fp value
6915 is established. */
6916 insert_step_resume_breakpoint_at_sal (gdbarch,
6917 sr_sal, null_frame_id);
6918
6919 /* Restart without fiddling with the step ranges or
6920 other state. */
6921 keep_going (ecs);
6922 return;
6923 }
6924 }
6925
6926 /* Check for subroutine calls. The check for the current frame
6927 equalling the step ID is not necessary - the check of the
6928 previous frame's ID is sufficient - but it is a common case and
6929 cheaper than checking the previous frame's ID.
6930
6931 NOTE: frame_id_eq will never report two invalid frame IDs as
6932 being equal, so to get into this block, both the current and
6933 previous frame must have valid frame IDs. */
6934 /* The outer_frame_id check is a heuristic to detect stepping
6935 through startup code. If we step over an instruction which
6936 sets the stack pointer from an invalid value to a valid value,
6937 we may detect that as a subroutine call from the mythical
6938 "outermost" function. This could be fixed by marking
6939 outermost frames as !stack_p,code_p,special_p. Then the
6940 initial outermost frame, before sp was valid, would
6941 have code_addr == &_start. See the comment in frame_id_eq
6942 for more. */
6943 if (!frame_id_eq (get_stack_frame_id (frame),
6944 ecs->event_thread->control.step_stack_frame_id)
6945 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6946 ecs->event_thread->control.step_stack_frame_id)
6947 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6948 outer_frame_id)
6949 || (ecs->event_thread->control.step_start_function
6950 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6951 {
6952 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6953 CORE_ADDR real_stop_pc;
6954
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6957
6958 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6959 {
6960 /* I presume that step_over_calls is only 0 when we're
6961 supposed to be stepping at the assembly language level
6962 ("stepi"). Just stop. */
6963 /* And this works the same backward as frontward. MVS */
6964 end_stepping_range (ecs);
6965 return;
6966 }
6967
6968 /* Reverse stepping through solib trampolines. */
6969
6970 if (execution_direction == EXEC_REVERSE
6971 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6972 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6973 || (ecs->stop_func_start == 0
6974 && in_solib_dynsym_resolve_code (stop_pc))))
6975 {
6976 /* Any solib trampoline code can be handled in reverse
6977 by simply continuing to single-step. We have already
6978 executed the solib function (backwards), and a few
6979 steps will take us back through the trampoline to the
6980 caller. */
6981 keep_going (ecs);
6982 return;
6983 }
6984
6985 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6986 {
6987 /* We're doing a "next".
6988
6989 Normal (forward) execution: set a breakpoint at the
6990 callee's return address (the address at which the caller
6991 will resume).
6992
6993 Reverse (backward) execution. set the step-resume
6994 breakpoint at the start of the function that we just
6995 stepped into (backwards), and continue to there. When we
6996 get there, we'll need to single-step back to the caller. */
6997
6998 if (execution_direction == EXEC_REVERSE)
6999 {
7000 /* If we're already at the start of the function, we've either
7001 just stepped backward into a single instruction function,
7002 or stepped back out of a signal handler to the first instruction
7003 of the function. Just keep going, which will single-step back
7004 to the caller. */
7005 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
7006 {
7007 /* Normal function call return (static or dynamic). */
7008 symtab_and_line sr_sal;
7009 sr_sal.pc = ecs->stop_func_start;
7010 sr_sal.pspace = get_frame_program_space (frame);
7011 insert_step_resume_breakpoint_at_sal (gdbarch,
7012 sr_sal, null_frame_id);
7013 }
7014 }
7015 else
7016 insert_step_resume_breakpoint_at_caller (frame);
7017
7018 keep_going (ecs);
7019 return;
7020 }
7021
7022 /* If we are in a function call trampoline (a stub between the
7023 calling routine and the real function), locate the real
7024 function. That's what tells us (a) whether we want to step
7025 into it at all, and (b) what prologue we want to run to the
7026 end of, if we do step into it. */
7027 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7028 if (real_stop_pc == 0)
7029 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7030 if (real_stop_pc != 0)
7031 ecs->stop_func_start = real_stop_pc;
7032
7033 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7034 {
7035 symtab_and_line sr_sal;
7036 sr_sal.pc = ecs->stop_func_start;
7037 sr_sal.pspace = get_frame_program_space (frame);
7038
7039 insert_step_resume_breakpoint_at_sal (gdbarch,
7040 sr_sal, null_frame_id);
7041 keep_going (ecs);
7042 return;
7043 }
7044
7045 /* If we have line number information for the function we are
7046 thinking of stepping into and the function isn't on the skip
7047 list, step into it.
7048
7049 If there are several symtabs at that PC (e.g. with include
7050 files), just want to know whether *any* of them have line
7051 numbers. find_pc_line handles this. */
7052 {
7053 struct symtab_and_line tmp_sal;
7054
7055 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7056 if (tmp_sal.line != 0
7057 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7058 tmp_sal)
7059 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7060 {
7061 if (execution_direction == EXEC_REVERSE)
7062 handle_step_into_function_backward (gdbarch, ecs);
7063 else
7064 handle_step_into_function (gdbarch, ecs);
7065 return;
7066 }
7067 }
7068
7069 /* If we have no line number and the step-stop-if-no-debug is
7070 set, we stop the step so that the user has a chance to switch
7071 in assembly mode. */
7072 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7073 && step_stop_if_no_debug)
7074 {
7075 end_stepping_range (ecs);
7076 return;
7077 }
7078
7079 if (execution_direction == EXEC_REVERSE)
7080 {
7081 /* If we're already at the start of the function, we've either just
7082 stepped backward into a single instruction function without line
7083 number info, or stepped back out of a signal handler to the first
7084 instruction of the function without line number info. Just keep
7085 going, which will single-step back to the caller. */
7086 if (ecs->stop_func_start != stop_pc)
7087 {
7088 /* Set a breakpoint at callee's start address.
7089 From there we can step once and be back in the caller. */
7090 symtab_and_line sr_sal;
7091 sr_sal.pc = ecs->stop_func_start;
7092 sr_sal.pspace = get_frame_program_space (frame);
7093 insert_step_resume_breakpoint_at_sal (gdbarch,
7094 sr_sal, null_frame_id);
7095 }
7096 }
7097 else
7098 /* Set a breakpoint at callee's return address (the address
7099 at which the caller will resume). */
7100 insert_step_resume_breakpoint_at_caller (frame);
7101
7102 keep_going (ecs);
7103 return;
7104 }
7105
7106 /* Reverse stepping through solib trampolines. */
7107
7108 if (execution_direction == EXEC_REVERSE
7109 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7110 {
7111 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7112
7113 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7114 || (ecs->stop_func_start == 0
7115 && in_solib_dynsym_resolve_code (stop_pc)))
7116 {
7117 /* Any solib trampoline code can be handled in reverse
7118 by simply continuing to single-step. We have already
7119 executed the solib function (backwards), and a few
7120 steps will take us back through the trampoline to the
7121 caller. */
7122 keep_going (ecs);
7123 return;
7124 }
7125 else if (in_solib_dynsym_resolve_code (stop_pc))
7126 {
7127 /* Stepped backward into the solib dynsym resolver.
7128 Set a breakpoint at its start and continue, then
7129 one more step will take us out. */
7130 symtab_and_line sr_sal;
7131 sr_sal.pc = ecs->stop_func_start;
7132 sr_sal.pspace = get_frame_program_space (frame);
7133 insert_step_resume_breakpoint_at_sal (gdbarch,
7134 sr_sal, null_frame_id);
7135 keep_going (ecs);
7136 return;
7137 }
7138 }
7139
7140 /* This always returns the sal for the inner-most frame when we are in a
7141 stack of inlined frames, even if GDB actually believes that it is in a
7142 more outer frame. This is checked for below by calls to
7143 inline_skipped_frames. */
7144 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7145
7146 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7147 the trampoline processing logic, however, there are some trampolines
7148 that have no names, so we should do trampoline handling first. */
7149 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7150 && ecs->stop_func_name == NULL
7151 && stop_pc_sal.line == 0)
7152 {
7153 if (debug_infrun)
7154 fprintf_unfiltered (gdb_stdlog,
7155 "infrun: stepped into undebuggable function\n");
7156
7157 /* The inferior just stepped into, or returned to, an
7158 undebuggable function (where there is no debugging information
7159 and no line number corresponding to the address where the
7160 inferior stopped). Since we want to skip this kind of code,
7161 we keep going until the inferior returns from this
7162 function - unless the user has asked us not to (via
7163 set step-mode) or we no longer know how to get back
7164 to the call site. */
7165 if (step_stop_if_no_debug
7166 || !frame_id_p (frame_unwind_caller_id (frame)))
7167 {
7168 /* If we have no line number and the step-stop-if-no-debug
7169 is set, we stop the step so that the user has a chance to
7170 switch in assembly mode. */
7171 end_stepping_range (ecs);
7172 return;
7173 }
7174 else
7175 {
7176 /* Set a breakpoint at callee's return address (the address
7177 at which the caller will resume). */
7178 insert_step_resume_breakpoint_at_caller (frame);
7179 keep_going (ecs);
7180 return;
7181 }
7182 }
7183
7184 if (ecs->event_thread->control.step_range_end == 1)
7185 {
7186 /* It is stepi or nexti. We always want to stop stepping after
7187 one instruction. */
7188 if (debug_infrun)
7189 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7190 end_stepping_range (ecs);
7191 return;
7192 }
7193
7194 if (stop_pc_sal.line == 0)
7195 {
7196 /* We have no line number information. That means to stop
7197 stepping (does this always happen right after one instruction,
7198 when we do "s" in a function with no line numbers,
7199 or can this happen as a result of a return or longjmp?). */
7200 if (debug_infrun)
7201 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7202 end_stepping_range (ecs);
7203 return;
7204 }
7205
7206 /* Look for "calls" to inlined functions, part one. If the inline
7207 frame machinery detected some skipped call sites, we have entered
7208 a new inline function. */
7209
7210 if (frame_id_eq (get_frame_id (get_current_frame ()),
7211 ecs->event_thread->control.step_frame_id)
7212 && inline_skipped_frames (ecs->event_thread))
7213 {
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
7216 "infrun: stepped into inlined function\n");
7217
7218 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7219
7220 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7221 {
7222 /* For "step", we're going to stop. But if the call site
7223 for this inlined function is on the same source line as
7224 we were previously stepping, go down into the function
7225 first. Otherwise stop at the call site. */
7226
7227 if (call_sal.line == ecs->event_thread->current_line
7228 && call_sal.symtab == ecs->event_thread->current_symtab)
7229 {
7230 step_into_inline_frame (ecs->event_thread);
7231 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7232 {
7233 keep_going (ecs);
7234 return;
7235 }
7236 }
7237
7238 end_stepping_range (ecs);
7239 return;
7240 }
7241 else
7242 {
7243 /* For "next", we should stop at the call site if it is on a
7244 different source line. Otherwise continue through the
7245 inlined function. */
7246 if (call_sal.line == ecs->event_thread->current_line
7247 && call_sal.symtab == ecs->event_thread->current_symtab)
7248 keep_going (ecs);
7249 else
7250 end_stepping_range (ecs);
7251 return;
7252 }
7253 }
7254
7255 /* Look for "calls" to inlined functions, part two. If we are still
7256 in the same real function we were stepping through, but we have
7257 to go further up to find the exact frame ID, we are stepping
7258 through a more inlined call beyond its call site. */
7259
7260 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7261 && !frame_id_eq (get_frame_id (get_current_frame ()),
7262 ecs->event_thread->control.step_frame_id)
7263 && stepped_in_from (get_current_frame (),
7264 ecs->event_thread->control.step_frame_id))
7265 {
7266 if (debug_infrun)
7267 fprintf_unfiltered (gdb_stdlog,
7268 "infrun: stepping through inlined function\n");
7269
7270 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7271 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7272 keep_going (ecs);
7273 else
7274 end_stepping_range (ecs);
7275 return;
7276 }
7277
7278 bool refresh_step_info = true;
7279 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7280 && (ecs->event_thread->current_line != stop_pc_sal.line
7281 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7282 {
7283 if (stop_pc_sal.is_stmt)
7284 {
7285 /* We are at the start of a different line. So stop. Note that
7286 we don't stop if we step into the middle of a different line.
7287 That is said to make things like for (;;) statements work
7288 better. */
7289 if (debug_infrun)
7290 fprintf_unfiltered (gdb_stdlog,
7291 "infrun: stepped to a different line\n");
7292 end_stepping_range (ecs);
7293 return;
7294 }
7295 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7296 ecs->event_thread->control.step_frame_id))
7297 {
7298 /* We are at the start of a different line, however, this line is
7299 not marked as a statement, and we have not changed frame. We
7300 ignore this line table entry, and continue stepping forward,
7301 looking for a better place to stop. */
7302 refresh_step_info = false;
7303 if (debug_infrun)
7304 fprintf_unfiltered (gdb_stdlog,
7305 "infrun: stepped to a different line, but "
7306 "it's not the start of a statement\n");
7307 }
7308 }
7309
7310 /* We aren't done stepping.
7311
7312 Optimize by setting the stepping range to the line.
7313 (We might not be in the original line, but if we entered a
7314 new line in mid-statement, we continue stepping. This makes
7315 things like for(;;) statements work better.)
7316
7317 If we entered a SAL that indicates a non-statement line table entry,
7318 then we update the stepping range, but we don't update the step info,
7319 which includes things like the line number we are stepping away from.
7320 This means we will stop when we find a line table entry that is marked
7321 as is-statement, even if it matches the non-statement one we just
7322 stepped into. */
7323
7324 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7325 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7326 ecs->event_thread->control.may_range_step = 1;
7327 if (refresh_step_info)
7328 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7329
7330 if (debug_infrun)
7331 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7332 keep_going (ecs);
7333 }
7334
7335 /* In all-stop mode, if we're currently stepping but have stopped in
7336 some other thread, we may need to switch back to the stepped
7337 thread. Returns true we set the inferior running, false if we left
7338 it stopped (and the event needs further processing). */
7339
7340 static int
7341 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7342 {
7343 if (!target_is_non_stop_p ())
7344 {
7345 struct thread_info *stepping_thread;
7346
7347 /* If any thread is blocked on some internal breakpoint, and we
7348 simply need to step over that breakpoint to get it going
7349 again, do that first. */
7350
7351 /* However, if we see an event for the stepping thread, then we
7352 know all other threads have been moved past their breakpoints
7353 already. Let the caller check whether the step is finished,
7354 etc., before deciding to move it past a breakpoint. */
7355 if (ecs->event_thread->control.step_range_end != 0)
7356 return 0;
7357
7358 /* Check if the current thread is blocked on an incomplete
7359 step-over, interrupted by a random signal. */
7360 if (ecs->event_thread->control.trap_expected
7361 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7362 {
7363 if (debug_infrun)
7364 {
7365 fprintf_unfiltered (gdb_stdlog,
7366 "infrun: need to finish step-over of [%s]\n",
7367 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7368 }
7369 keep_going (ecs);
7370 return 1;
7371 }
7372
7373 /* Check if the current thread is blocked by a single-step
7374 breakpoint of another thread. */
7375 if (ecs->hit_singlestep_breakpoint)
7376 {
7377 if (debug_infrun)
7378 {
7379 fprintf_unfiltered (gdb_stdlog,
7380 "infrun: need to step [%s] over single-step "
7381 "breakpoint\n",
7382 target_pid_to_str (ecs->ptid).c_str ());
7383 }
7384 keep_going (ecs);
7385 return 1;
7386 }
7387
7388 /* If this thread needs yet another step-over (e.g., stepping
7389 through a delay slot), do it first before moving on to
7390 another thread. */
7391 if (thread_still_needs_step_over (ecs->event_thread))
7392 {
7393 if (debug_infrun)
7394 {
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: thread [%s] still needs step-over\n",
7397 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7398 }
7399 keep_going (ecs);
7400 return 1;
7401 }
7402
7403 /* If scheduler locking applies even if not stepping, there's no
7404 need to walk over threads. Above we've checked whether the
7405 current thread is stepping. If some other thread not the
7406 event thread is stepping, then it must be that scheduler
7407 locking is not in effect. */
7408 if (schedlock_applies (ecs->event_thread))
7409 return 0;
7410
7411 /* Otherwise, we no longer expect a trap in the current thread.
7412 Clear the trap_expected flag before switching back -- this is
7413 what keep_going does as well, if we call it. */
7414 ecs->event_thread->control.trap_expected = 0;
7415
7416 /* Likewise, clear the signal if it should not be passed. */
7417 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7418 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7419
7420 /* Do all pending step-overs before actually proceeding with
7421 step/next/etc. */
7422 if (start_step_over ())
7423 {
7424 prepare_to_wait (ecs);
7425 return 1;
7426 }
7427
7428 /* Look for the stepping/nexting thread. */
7429 stepping_thread = NULL;
7430
7431 for (thread_info *tp : all_non_exited_threads ())
7432 {
7433 switch_to_thread_no_regs (tp);
7434
7435 /* Ignore threads of processes the caller is not
7436 resuming. */
7437 if (!sched_multi
7438 && (tp->inf->process_target () != ecs->target
7439 || tp->inf->pid != ecs->ptid.pid ()))
7440 continue;
7441
7442 /* When stepping over a breakpoint, we lock all threads
7443 except the one that needs to move past the breakpoint.
7444 If a non-event thread has this set, the "incomplete
7445 step-over" check above should have caught it earlier. */
7446 if (tp->control.trap_expected)
7447 {
7448 internal_error (__FILE__, __LINE__,
7449 "[%s] has inconsistent state: "
7450 "trap_expected=%d\n",
7451 target_pid_to_str (tp->ptid).c_str (),
7452 tp->control.trap_expected);
7453 }
7454
7455 /* Did we find the stepping thread? */
7456 if (tp->control.step_range_end)
7457 {
7458 /* Yep. There should only one though. */
7459 gdb_assert (stepping_thread == NULL);
7460
7461 /* The event thread is handled at the top, before we
7462 enter this loop. */
7463 gdb_assert (tp != ecs->event_thread);
7464
7465 /* If some thread other than the event thread is
7466 stepping, then scheduler locking can't be in effect,
7467 otherwise we wouldn't have resumed the current event
7468 thread in the first place. */
7469 gdb_assert (!schedlock_applies (tp));
7470
7471 stepping_thread = tp;
7472 }
7473 }
7474
7475 if (stepping_thread != NULL)
7476 {
7477 if (debug_infrun)
7478 fprintf_unfiltered (gdb_stdlog,
7479 "infrun: switching back to stepped thread\n");
7480
7481 if (keep_going_stepped_thread (stepping_thread))
7482 {
7483 prepare_to_wait (ecs);
7484 return 1;
7485 }
7486 }
7487
7488 switch_to_thread (ecs->event_thread);
7489 }
7490
7491 return 0;
7492 }
7493
7494 /* Set a previously stepped thread back to stepping. Returns true on
7495 success, false if the resume is not possible (e.g., the thread
7496 vanished). */
7497
7498 static int
7499 keep_going_stepped_thread (struct thread_info *tp)
7500 {
7501 struct frame_info *frame;
7502 struct execution_control_state ecss;
7503 struct execution_control_state *ecs = &ecss;
7504
7505 /* If the stepping thread exited, then don't try to switch back and
7506 resume it, which could fail in several different ways depending
7507 on the target. Instead, just keep going.
7508
7509 We can find a stepping dead thread in the thread list in two
7510 cases:
7511
7512 - The target supports thread exit events, and when the target
7513 tries to delete the thread from the thread list, inferior_ptid
7514 pointed at the exiting thread. In such case, calling
7515 delete_thread does not really remove the thread from the list;
7516 instead, the thread is left listed, with 'exited' state.
7517
7518 - The target's debug interface does not support thread exit
7519 events, and so we have no idea whatsoever if the previously
7520 stepping thread is still alive. For that reason, we need to
7521 synchronously query the target now. */
7522
7523 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7524 {
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: not resuming previously "
7528 "stepped thread, it has vanished\n");
7529
7530 delete_thread (tp);
7531 return 0;
7532 }
7533
7534 if (debug_infrun)
7535 fprintf_unfiltered (gdb_stdlog,
7536 "infrun: resuming previously stepped thread\n");
7537
7538 reset_ecs (ecs, tp);
7539 switch_to_thread (tp);
7540
7541 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7542 frame = get_current_frame ();
7543
7544 /* If the PC of the thread we were trying to single-step has
7545 changed, then that thread has trapped or been signaled, but the
7546 event has not been reported to GDB yet. Re-poll the target
7547 looking for this particular thread's event (i.e. temporarily
7548 enable schedlock) by:
7549
7550 - setting a break at the current PC
7551 - resuming that particular thread, only (by setting trap
7552 expected)
7553
7554 This prevents us continuously moving the single-step breakpoint
7555 forward, one instruction at a time, overstepping. */
7556
7557 if (tp->suspend.stop_pc != tp->prev_pc)
7558 {
7559 ptid_t resume_ptid;
7560
7561 if (debug_infrun)
7562 fprintf_unfiltered (gdb_stdlog,
7563 "infrun: expected thread advanced also (%s -> %s)\n",
7564 paddress (target_gdbarch (), tp->prev_pc),
7565 paddress (target_gdbarch (), tp->suspend.stop_pc));
7566
7567 /* Clear the info of the previous step-over, as it's no longer
7568 valid (if the thread was trying to step over a breakpoint, it
7569 has already succeeded). It's what keep_going would do too,
7570 if we called it. Do this before trying to insert the sss
7571 breakpoint, otherwise if we were previously trying to step
7572 over this exact address in another thread, the breakpoint is
7573 skipped. */
7574 clear_step_over_info ();
7575 tp->control.trap_expected = 0;
7576
7577 insert_single_step_breakpoint (get_frame_arch (frame),
7578 get_frame_address_space (frame),
7579 tp->suspend.stop_pc);
7580
7581 tp->resumed = true;
7582 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7583 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7584 }
7585 else
7586 {
7587 if (debug_infrun)
7588 fprintf_unfiltered (gdb_stdlog,
7589 "infrun: expected thread still hasn't advanced\n");
7590
7591 keep_going_pass_signal (ecs);
7592 }
7593 return 1;
7594 }
7595
7596 /* Is thread TP in the middle of (software or hardware)
7597 single-stepping? (Note the result of this function must never be
7598 passed directly as target_resume's STEP parameter.) */
7599
7600 static int
7601 currently_stepping (struct thread_info *tp)
7602 {
7603 return ((tp->control.step_range_end
7604 && tp->control.step_resume_breakpoint == NULL)
7605 || tp->control.trap_expected
7606 || tp->stepped_breakpoint
7607 || bpstat_should_step ());
7608 }
7609
7610 /* Inferior has stepped into a subroutine call with source code that
7611 we should not step over. Do step to the first line of code in
7612 it. */
7613
7614 static void
7615 handle_step_into_function (struct gdbarch *gdbarch,
7616 struct execution_control_state *ecs)
7617 {
7618 fill_in_stop_func (gdbarch, ecs);
7619
7620 compunit_symtab *cust
7621 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7622 if (cust != NULL && compunit_language (cust) != language_asm)
7623 ecs->stop_func_start
7624 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7625
7626 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7627 /* Use the step_resume_break to step until the end of the prologue,
7628 even if that involves jumps (as it seems to on the vax under
7629 4.2). */
7630 /* If the prologue ends in the middle of a source line, continue to
7631 the end of that source line (if it is still within the function).
7632 Otherwise, just go to end of prologue. */
7633 if (stop_func_sal.end
7634 && stop_func_sal.pc != ecs->stop_func_start
7635 && stop_func_sal.end < ecs->stop_func_end)
7636 ecs->stop_func_start = stop_func_sal.end;
7637
7638 /* Architectures which require breakpoint adjustment might not be able
7639 to place a breakpoint at the computed address. If so, the test
7640 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7641 ecs->stop_func_start to an address at which a breakpoint may be
7642 legitimately placed.
7643
7644 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7645 made, GDB will enter an infinite loop when stepping through
7646 optimized code consisting of VLIW instructions which contain
7647 subinstructions corresponding to different source lines. On
7648 FR-V, it's not permitted to place a breakpoint on any but the
7649 first subinstruction of a VLIW instruction. When a breakpoint is
7650 set, GDB will adjust the breakpoint address to the beginning of
7651 the VLIW instruction. Thus, we need to make the corresponding
7652 adjustment here when computing the stop address. */
7653
7654 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7655 {
7656 ecs->stop_func_start
7657 = gdbarch_adjust_breakpoint_address (gdbarch,
7658 ecs->stop_func_start);
7659 }
7660
7661 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7662 {
7663 /* We are already there: stop now. */
7664 end_stepping_range (ecs);
7665 return;
7666 }
7667 else
7668 {
7669 /* Put the step-breakpoint there and go until there. */
7670 symtab_and_line sr_sal;
7671 sr_sal.pc = ecs->stop_func_start;
7672 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7673 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7674
7675 /* Do not specify what the fp should be when we stop since on
7676 some machines the prologue is where the new fp value is
7677 established. */
7678 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7679
7680 /* And make sure stepping stops right away then. */
7681 ecs->event_thread->control.step_range_end
7682 = ecs->event_thread->control.step_range_start;
7683 }
7684 keep_going (ecs);
7685 }
7686
7687 /* Inferior has stepped backward into a subroutine call with source
7688 code that we should not step over. Do step to the beginning of the
7689 last line of code in it. */
7690
7691 static void
7692 handle_step_into_function_backward (struct gdbarch *gdbarch,
7693 struct execution_control_state *ecs)
7694 {
7695 struct compunit_symtab *cust;
7696 struct symtab_and_line stop_func_sal;
7697
7698 fill_in_stop_func (gdbarch, ecs);
7699
7700 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7701 if (cust != NULL && compunit_language (cust) != language_asm)
7702 ecs->stop_func_start
7703 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7704
7705 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7706
7707 /* OK, we're just going to keep stepping here. */
7708 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7709 {
7710 /* We're there already. Just stop stepping now. */
7711 end_stepping_range (ecs);
7712 }
7713 else
7714 {
7715 /* Else just reset the step range and keep going.
7716 No step-resume breakpoint, they don't work for
7717 epilogues, which can have multiple entry paths. */
7718 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7719 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7720 keep_going (ecs);
7721 }
7722 return;
7723 }
7724
7725 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7726 This is used to both functions and to skip over code. */
7727
7728 static void
7729 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7730 struct symtab_and_line sr_sal,
7731 struct frame_id sr_id,
7732 enum bptype sr_type)
7733 {
7734 /* There should never be more than one step-resume or longjmp-resume
7735 breakpoint per thread, so we should never be setting a new
7736 step_resume_breakpoint when one is already active. */
7737 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7738 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7739
7740 if (debug_infrun)
7741 fprintf_unfiltered (gdb_stdlog,
7742 "infrun: inserting step-resume breakpoint at %s\n",
7743 paddress (gdbarch, sr_sal.pc));
7744
7745 inferior_thread ()->control.step_resume_breakpoint
7746 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7747 }
7748
7749 void
7750 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7751 struct symtab_and_line sr_sal,
7752 struct frame_id sr_id)
7753 {
7754 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7755 sr_sal, sr_id,
7756 bp_step_resume);
7757 }
7758
7759 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7760 This is used to skip a potential signal handler.
7761
7762 This is called with the interrupted function's frame. The signal
7763 handler, when it returns, will resume the interrupted function at
7764 RETURN_FRAME.pc. */
7765
7766 static void
7767 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7768 {
7769 gdb_assert (return_frame != NULL);
7770
7771 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7772
7773 symtab_and_line sr_sal;
7774 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7775 sr_sal.section = find_pc_overlay (sr_sal.pc);
7776 sr_sal.pspace = get_frame_program_space (return_frame);
7777
7778 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7779 get_stack_frame_id (return_frame),
7780 bp_hp_step_resume);
7781 }
7782
7783 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7784 is used to skip a function after stepping into it (for "next" or if
7785 the called function has no debugging information).
7786
7787 The current function has almost always been reached by single
7788 stepping a call or return instruction. NEXT_FRAME belongs to the
7789 current function, and the breakpoint will be set at the caller's
7790 resume address.
7791
7792 This is a separate function rather than reusing
7793 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7794 get_prev_frame, which may stop prematurely (see the implementation
7795 of frame_unwind_caller_id for an example). */
7796
7797 static void
7798 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7799 {
7800 /* We shouldn't have gotten here if we don't know where the call site
7801 is. */
7802 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7803
7804 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7805
7806 symtab_and_line sr_sal;
7807 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7808 frame_unwind_caller_pc (next_frame));
7809 sr_sal.section = find_pc_overlay (sr_sal.pc);
7810 sr_sal.pspace = frame_unwind_program_space (next_frame);
7811
7812 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7813 frame_unwind_caller_id (next_frame));
7814 }
7815
7816 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7817 new breakpoint at the target of a jmp_buf. The handling of
7818 longjmp-resume uses the same mechanisms used for handling
7819 "step-resume" breakpoints. */
7820
7821 static void
7822 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7823 {
7824 /* There should never be more than one longjmp-resume breakpoint per
7825 thread, so we should never be setting a new
7826 longjmp_resume_breakpoint when one is already active. */
7827 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7828
7829 if (debug_infrun)
7830 fprintf_unfiltered (gdb_stdlog,
7831 "infrun: inserting longjmp-resume breakpoint at %s\n",
7832 paddress (gdbarch, pc));
7833
7834 inferior_thread ()->control.exception_resume_breakpoint =
7835 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7836 }
7837
7838 /* Insert an exception resume breakpoint. TP is the thread throwing
7839 the exception. The block B is the block of the unwinder debug hook
7840 function. FRAME is the frame corresponding to the call to this
7841 function. SYM is the symbol of the function argument holding the
7842 target PC of the exception. */
7843
7844 static void
7845 insert_exception_resume_breakpoint (struct thread_info *tp,
7846 const struct block *b,
7847 struct frame_info *frame,
7848 struct symbol *sym)
7849 {
7850 try
7851 {
7852 struct block_symbol vsym;
7853 struct value *value;
7854 CORE_ADDR handler;
7855 struct breakpoint *bp;
7856
7857 vsym = lookup_symbol_search_name (sym->search_name (),
7858 b, VAR_DOMAIN);
7859 value = read_var_value (vsym.symbol, vsym.block, frame);
7860 /* If the value was optimized out, revert to the old behavior. */
7861 if (! value_optimized_out (value))
7862 {
7863 handler = value_as_address (value);
7864
7865 if (debug_infrun)
7866 fprintf_unfiltered (gdb_stdlog,
7867 "infrun: exception resume at %lx\n",
7868 (unsigned long) handler);
7869
7870 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7871 handler,
7872 bp_exception_resume).release ();
7873
7874 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7875 frame = NULL;
7876
7877 bp->thread = tp->global_num;
7878 inferior_thread ()->control.exception_resume_breakpoint = bp;
7879 }
7880 }
7881 catch (const gdb_exception_error &e)
7882 {
7883 /* We want to ignore errors here. */
7884 }
7885 }
7886
7887 /* A helper for check_exception_resume that sets an
7888 exception-breakpoint based on a SystemTap probe. */
7889
7890 static void
7891 insert_exception_resume_from_probe (struct thread_info *tp,
7892 const struct bound_probe *probe,
7893 struct frame_info *frame)
7894 {
7895 struct value *arg_value;
7896 CORE_ADDR handler;
7897 struct breakpoint *bp;
7898
7899 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7900 if (!arg_value)
7901 return;
7902
7903 handler = value_as_address (arg_value);
7904
7905 if (debug_infrun)
7906 fprintf_unfiltered (gdb_stdlog,
7907 "infrun: exception resume at %s\n",
7908 paddress (probe->objfile->arch (),
7909 handler));
7910
7911 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7912 handler, bp_exception_resume).release ();
7913 bp->thread = tp->global_num;
7914 inferior_thread ()->control.exception_resume_breakpoint = bp;
7915 }
7916
7917 /* This is called when an exception has been intercepted. Check to
7918 see whether the exception's destination is of interest, and if so,
7919 set an exception resume breakpoint there. */
7920
7921 static void
7922 check_exception_resume (struct execution_control_state *ecs,
7923 struct frame_info *frame)
7924 {
7925 struct bound_probe probe;
7926 struct symbol *func;
7927
7928 /* First see if this exception unwinding breakpoint was set via a
7929 SystemTap probe point. If so, the probe has two arguments: the
7930 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7931 set a breakpoint there. */
7932 probe = find_probe_by_pc (get_frame_pc (frame));
7933 if (probe.prob)
7934 {
7935 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7936 return;
7937 }
7938
7939 func = get_frame_function (frame);
7940 if (!func)
7941 return;
7942
7943 try
7944 {
7945 const struct block *b;
7946 struct block_iterator iter;
7947 struct symbol *sym;
7948 int argno = 0;
7949
7950 /* The exception breakpoint is a thread-specific breakpoint on
7951 the unwinder's debug hook, declared as:
7952
7953 void _Unwind_DebugHook (void *cfa, void *handler);
7954
7955 The CFA argument indicates the frame to which control is
7956 about to be transferred. HANDLER is the destination PC.
7957
7958 We ignore the CFA and set a temporary breakpoint at HANDLER.
7959 This is not extremely efficient but it avoids issues in gdb
7960 with computing the DWARF CFA, and it also works even in weird
7961 cases such as throwing an exception from inside a signal
7962 handler. */
7963
7964 b = SYMBOL_BLOCK_VALUE (func);
7965 ALL_BLOCK_SYMBOLS (b, iter, sym)
7966 {
7967 if (!SYMBOL_IS_ARGUMENT (sym))
7968 continue;
7969
7970 if (argno == 0)
7971 ++argno;
7972 else
7973 {
7974 insert_exception_resume_breakpoint (ecs->event_thread,
7975 b, frame, sym);
7976 break;
7977 }
7978 }
7979 }
7980 catch (const gdb_exception_error &e)
7981 {
7982 }
7983 }
7984
7985 static void
7986 stop_waiting (struct execution_control_state *ecs)
7987 {
7988 if (debug_infrun)
7989 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7990
7991 /* Let callers know we don't want to wait for the inferior anymore. */
7992 ecs->wait_some_more = 0;
7993
7994 /* If all-stop, but there exists a non-stop target, stop all
7995 threads now that we're presenting the stop to the user. */
7996 if (!non_stop && exists_non_stop_target ())
7997 stop_all_threads ();
7998 }
7999
8000 /* Like keep_going, but passes the signal to the inferior, even if the
8001 signal is set to nopass. */
8002
8003 static void
8004 keep_going_pass_signal (struct execution_control_state *ecs)
8005 {
8006 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8007 gdb_assert (!ecs->event_thread->resumed);
8008
8009 /* Save the pc before execution, to compare with pc after stop. */
8010 ecs->event_thread->prev_pc
8011 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8012
8013 if (ecs->event_thread->control.trap_expected)
8014 {
8015 struct thread_info *tp = ecs->event_thread;
8016
8017 if (debug_infrun)
8018 fprintf_unfiltered (gdb_stdlog,
8019 "infrun: %s has trap_expected set, "
8020 "resuming to collect trap\n",
8021 target_pid_to_str (tp->ptid).c_str ());
8022
8023 /* We haven't yet gotten our trap, and either: intercepted a
8024 non-signal event (e.g., a fork); or took a signal which we
8025 are supposed to pass through to the inferior. Simply
8026 continue. */
8027 resume (ecs->event_thread->suspend.stop_signal);
8028 }
8029 else if (step_over_info_valid_p ())
8030 {
8031 /* Another thread is stepping over a breakpoint in-line. If
8032 this thread needs a step-over too, queue the request. In
8033 either case, this resume must be deferred for later. */
8034 struct thread_info *tp = ecs->event_thread;
8035
8036 if (ecs->hit_singlestep_breakpoint
8037 || thread_still_needs_step_over (tp))
8038 {
8039 if (debug_infrun)
8040 fprintf_unfiltered (gdb_stdlog,
8041 "infrun: step-over already in progress: "
8042 "step-over for %s deferred\n",
8043 target_pid_to_str (tp->ptid).c_str ());
8044 thread_step_over_chain_enqueue (tp);
8045 }
8046 else
8047 {
8048 if (debug_infrun)
8049 fprintf_unfiltered (gdb_stdlog,
8050 "infrun: step-over in progress: "
8051 "resume of %s deferred\n",
8052 target_pid_to_str (tp->ptid).c_str ());
8053 }
8054 }
8055 else
8056 {
8057 struct regcache *regcache = get_current_regcache ();
8058 int remove_bp;
8059 int remove_wps;
8060 step_over_what step_what;
8061
8062 /* Either the trap was not expected, but we are continuing
8063 anyway (if we got a signal, the user asked it be passed to
8064 the child)
8065 -- or --
8066 We got our expected trap, but decided we should resume from
8067 it.
8068
8069 We're going to run this baby now!
8070
8071 Note that insert_breakpoints won't try to re-insert
8072 already inserted breakpoints. Therefore, we don't
8073 care if breakpoints were already inserted, or not. */
8074
8075 /* If we need to step over a breakpoint, and we're not using
8076 displaced stepping to do so, insert all breakpoints
8077 (watchpoints, etc.) but the one we're stepping over, step one
8078 instruction, and then re-insert the breakpoint when that step
8079 is finished. */
8080
8081 step_what = thread_still_needs_step_over (ecs->event_thread);
8082
8083 remove_bp = (ecs->hit_singlestep_breakpoint
8084 || (step_what & STEP_OVER_BREAKPOINT));
8085 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8086
8087 /* We can't use displaced stepping if we need to step past a
8088 watchpoint. The instruction copied to the scratch pad would
8089 still trigger the watchpoint. */
8090 if (remove_bp
8091 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8092 {
8093 set_step_over_info (regcache->aspace (),
8094 regcache_read_pc (regcache), remove_wps,
8095 ecs->event_thread->global_num);
8096 }
8097 else if (remove_wps)
8098 set_step_over_info (NULL, 0, remove_wps, -1);
8099
8100 /* If we now need to do an in-line step-over, we need to stop
8101 all other threads. Note this must be done before
8102 insert_breakpoints below, because that removes the breakpoint
8103 we're about to step over, otherwise other threads could miss
8104 it. */
8105 if (step_over_info_valid_p () && target_is_non_stop_p ())
8106 stop_all_threads ();
8107
8108 /* Stop stepping if inserting breakpoints fails. */
8109 try
8110 {
8111 insert_breakpoints ();
8112 }
8113 catch (const gdb_exception_error &e)
8114 {
8115 exception_print (gdb_stderr, e);
8116 stop_waiting (ecs);
8117 clear_step_over_info ();
8118 return;
8119 }
8120
8121 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8122
8123 resume (ecs->event_thread->suspend.stop_signal);
8124 }
8125
8126 prepare_to_wait (ecs);
8127 }
8128
8129 /* Called when we should continue running the inferior, because the
8130 current event doesn't cause a user visible stop. This does the
8131 resuming part; waiting for the next event is done elsewhere. */
8132
8133 static void
8134 keep_going (struct execution_control_state *ecs)
8135 {
8136 if (ecs->event_thread->control.trap_expected
8137 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8138 ecs->event_thread->control.trap_expected = 0;
8139
8140 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8141 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8142 keep_going_pass_signal (ecs);
8143 }
8144
8145 /* This function normally comes after a resume, before
8146 handle_inferior_event exits. It takes care of any last bits of
8147 housekeeping, and sets the all-important wait_some_more flag. */
8148
8149 static void
8150 prepare_to_wait (struct execution_control_state *ecs)
8151 {
8152 if (debug_infrun)
8153 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8154
8155 ecs->wait_some_more = 1;
8156
8157 /* If the target can't async, emulate it by marking the infrun event
8158 handler such that as soon as we get back to the event-loop, we
8159 immediately end up in fetch_inferior_event again calling
8160 target_wait. */
8161 if (!target_can_async_p ())
8162 mark_infrun_async_event_handler ();
8163 }
8164
8165 /* We are done with the step range of a step/next/si/ni command.
8166 Called once for each n of a "step n" operation. */
8167
8168 static void
8169 end_stepping_range (struct execution_control_state *ecs)
8170 {
8171 ecs->event_thread->control.stop_step = 1;
8172 stop_waiting (ecs);
8173 }
8174
8175 /* Several print_*_reason functions to print why the inferior has stopped.
8176 We always print something when the inferior exits, or receives a signal.
8177 The rest of the cases are dealt with later on in normal_stop and
8178 print_it_typical. Ideally there should be a call to one of these
8179 print_*_reason functions functions from handle_inferior_event each time
8180 stop_waiting is called.
8181
8182 Note that we don't call these directly, instead we delegate that to
8183 the interpreters, through observers. Interpreters then call these
8184 with whatever uiout is right. */
8185
8186 void
8187 print_end_stepping_range_reason (struct ui_out *uiout)
8188 {
8189 /* For CLI-like interpreters, print nothing. */
8190
8191 if (uiout->is_mi_like_p ())
8192 {
8193 uiout->field_string ("reason",
8194 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8195 }
8196 }
8197
8198 void
8199 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8200 {
8201 annotate_signalled ();
8202 if (uiout->is_mi_like_p ())
8203 uiout->field_string
8204 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8205 uiout->text ("\nProgram terminated with signal ");
8206 annotate_signal_name ();
8207 uiout->field_string ("signal-name",
8208 gdb_signal_to_name (siggnal));
8209 annotate_signal_name_end ();
8210 uiout->text (", ");
8211 annotate_signal_string ();
8212 uiout->field_string ("signal-meaning",
8213 gdb_signal_to_string (siggnal));
8214 annotate_signal_string_end ();
8215 uiout->text (".\n");
8216 uiout->text ("The program no longer exists.\n");
8217 }
8218
8219 void
8220 print_exited_reason (struct ui_out *uiout, int exitstatus)
8221 {
8222 struct inferior *inf = current_inferior ();
8223 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8224
8225 annotate_exited (exitstatus);
8226 if (exitstatus)
8227 {
8228 if (uiout->is_mi_like_p ())
8229 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8230 std::string exit_code_str
8231 = string_printf ("0%o", (unsigned int) exitstatus);
8232 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8233 plongest (inf->num), pidstr.c_str (),
8234 string_field ("exit-code", exit_code_str.c_str ()));
8235 }
8236 else
8237 {
8238 if (uiout->is_mi_like_p ())
8239 uiout->field_string
8240 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8241 uiout->message ("[Inferior %s (%s) exited normally]\n",
8242 plongest (inf->num), pidstr.c_str ());
8243 }
8244 }
8245
8246 /* Some targets/architectures can do extra processing/display of
8247 segmentation faults. E.g., Intel MPX boundary faults.
8248 Call the architecture dependent function to handle the fault. */
8249
8250 static void
8251 handle_segmentation_fault (struct ui_out *uiout)
8252 {
8253 struct regcache *regcache = get_current_regcache ();
8254 struct gdbarch *gdbarch = regcache->arch ();
8255
8256 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8257 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8258 }
8259
8260 void
8261 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8262 {
8263 struct thread_info *thr = inferior_thread ();
8264
8265 annotate_signal ();
8266
8267 if (uiout->is_mi_like_p ())
8268 ;
8269 else if (show_thread_that_caused_stop ())
8270 {
8271 const char *name;
8272
8273 uiout->text ("\nThread ");
8274 uiout->field_string ("thread-id", print_thread_id (thr));
8275
8276 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8277 if (name != NULL)
8278 {
8279 uiout->text (" \"");
8280 uiout->field_string ("name", name);
8281 uiout->text ("\"");
8282 }
8283 }
8284 else
8285 uiout->text ("\nProgram");
8286
8287 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8288 uiout->text (" stopped");
8289 else
8290 {
8291 uiout->text (" received signal ");
8292 annotate_signal_name ();
8293 if (uiout->is_mi_like_p ())
8294 uiout->field_string
8295 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8296 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8297 annotate_signal_name_end ();
8298 uiout->text (", ");
8299 annotate_signal_string ();
8300 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8301
8302 struct regcache *regcache = get_current_regcache ();
8303 struct gdbarch *gdbarch = regcache->arch ();
8304 if (gdbarch_report_signal_info_p (gdbarch))
8305 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8306
8307 if (siggnal == GDB_SIGNAL_SEGV)
8308 handle_segmentation_fault (uiout);
8309
8310 annotate_signal_string_end ();
8311 }
8312 uiout->text (".\n");
8313 }
8314
8315 void
8316 print_no_history_reason (struct ui_out *uiout)
8317 {
8318 uiout->text ("\nNo more reverse-execution history.\n");
8319 }
8320
8321 /* Print current location without a level number, if we have changed
8322 functions or hit a breakpoint. Print source line if we have one.
8323 bpstat_print contains the logic deciding in detail what to print,
8324 based on the event(s) that just occurred. */
8325
8326 static void
8327 print_stop_location (struct target_waitstatus *ws)
8328 {
8329 int bpstat_ret;
8330 enum print_what source_flag;
8331 int do_frame_printing = 1;
8332 struct thread_info *tp = inferior_thread ();
8333
8334 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8335 switch (bpstat_ret)
8336 {
8337 case PRINT_UNKNOWN:
8338 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8339 should) carry around the function and does (or should) use
8340 that when doing a frame comparison. */
8341 if (tp->control.stop_step
8342 && frame_id_eq (tp->control.step_frame_id,
8343 get_frame_id (get_current_frame ()))
8344 && (tp->control.step_start_function
8345 == find_pc_function (tp->suspend.stop_pc)))
8346 {
8347 /* Finished step, just print source line. */
8348 source_flag = SRC_LINE;
8349 }
8350 else
8351 {
8352 /* Print location and source line. */
8353 source_flag = SRC_AND_LOC;
8354 }
8355 break;
8356 case PRINT_SRC_AND_LOC:
8357 /* Print location and source line. */
8358 source_flag = SRC_AND_LOC;
8359 break;
8360 case PRINT_SRC_ONLY:
8361 source_flag = SRC_LINE;
8362 break;
8363 case PRINT_NOTHING:
8364 /* Something bogus. */
8365 source_flag = SRC_LINE;
8366 do_frame_printing = 0;
8367 break;
8368 default:
8369 internal_error (__FILE__, __LINE__, _("Unknown value."));
8370 }
8371
8372 /* The behavior of this routine with respect to the source
8373 flag is:
8374 SRC_LINE: Print only source line
8375 LOCATION: Print only location
8376 SRC_AND_LOC: Print location and source line. */
8377 if (do_frame_printing)
8378 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8379 }
8380
8381 /* See infrun.h. */
8382
8383 void
8384 print_stop_event (struct ui_out *uiout, bool displays)
8385 {
8386 struct target_waitstatus last;
8387 struct thread_info *tp;
8388
8389 get_last_target_status (nullptr, nullptr, &last);
8390
8391 {
8392 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8393
8394 print_stop_location (&last);
8395
8396 /* Display the auto-display expressions. */
8397 if (displays)
8398 do_displays ();
8399 }
8400
8401 tp = inferior_thread ();
8402 if (tp->thread_fsm != NULL
8403 && tp->thread_fsm->finished_p ())
8404 {
8405 struct return_value_info *rv;
8406
8407 rv = tp->thread_fsm->return_value ();
8408 if (rv != NULL)
8409 print_return_value (uiout, rv);
8410 }
8411 }
8412
8413 /* See infrun.h. */
8414
8415 void
8416 maybe_remove_breakpoints (void)
8417 {
8418 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8419 {
8420 if (remove_breakpoints ())
8421 {
8422 target_terminal::ours_for_output ();
8423 printf_filtered (_("Cannot remove breakpoints because "
8424 "program is no longer writable.\nFurther "
8425 "execution is probably impossible.\n"));
8426 }
8427 }
8428 }
8429
8430 /* The execution context that just caused a normal stop. */
8431
8432 struct stop_context
8433 {
8434 stop_context ();
8435 ~stop_context ();
8436
8437 DISABLE_COPY_AND_ASSIGN (stop_context);
8438
8439 bool changed () const;
8440
8441 /* The stop ID. */
8442 ULONGEST stop_id;
8443
8444 /* The event PTID. */
8445
8446 ptid_t ptid;
8447
8448 /* If stopp for a thread event, this is the thread that caused the
8449 stop. */
8450 struct thread_info *thread;
8451
8452 /* The inferior that caused the stop. */
8453 int inf_num;
8454 };
8455
8456 /* Initializes a new stop context. If stopped for a thread event, this
8457 takes a strong reference to the thread. */
8458
8459 stop_context::stop_context ()
8460 {
8461 stop_id = get_stop_id ();
8462 ptid = inferior_ptid;
8463 inf_num = current_inferior ()->num;
8464
8465 if (inferior_ptid != null_ptid)
8466 {
8467 /* Take a strong reference so that the thread can't be deleted
8468 yet. */
8469 thread = inferior_thread ();
8470 thread->incref ();
8471 }
8472 else
8473 thread = NULL;
8474 }
8475
8476 /* Release a stop context previously created with save_stop_context.
8477 Releases the strong reference to the thread as well. */
8478
8479 stop_context::~stop_context ()
8480 {
8481 if (thread != NULL)
8482 thread->decref ();
8483 }
8484
8485 /* Return true if the current context no longer matches the saved stop
8486 context. */
8487
8488 bool
8489 stop_context::changed () const
8490 {
8491 if (ptid != inferior_ptid)
8492 return true;
8493 if (inf_num != current_inferior ()->num)
8494 return true;
8495 if (thread != NULL && thread->state != THREAD_STOPPED)
8496 return true;
8497 if (get_stop_id () != stop_id)
8498 return true;
8499 return false;
8500 }
8501
8502 /* See infrun.h. */
8503
8504 int
8505 normal_stop (void)
8506 {
8507 struct target_waitstatus last;
8508
8509 get_last_target_status (nullptr, nullptr, &last);
8510
8511 new_stop_id ();
8512
8513 /* If an exception is thrown from this point on, make sure to
8514 propagate GDB's knowledge of the executing state to the
8515 frontend/user running state. A QUIT is an easy exception to see
8516 here, so do this before any filtered output. */
8517
8518 ptid_t finish_ptid = null_ptid;
8519
8520 if (!non_stop)
8521 finish_ptid = minus_one_ptid;
8522 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8523 || last.kind == TARGET_WAITKIND_EXITED)
8524 {
8525 /* On some targets, we may still have live threads in the
8526 inferior when we get a process exit event. E.g., for
8527 "checkpoint", when the current checkpoint/fork exits,
8528 linux-fork.c automatically switches to another fork from
8529 within target_mourn_inferior. */
8530 if (inferior_ptid != null_ptid)
8531 finish_ptid = ptid_t (inferior_ptid.pid ());
8532 }
8533 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8534 finish_ptid = inferior_ptid;
8535
8536 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8537 if (finish_ptid != null_ptid)
8538 {
8539 maybe_finish_thread_state.emplace
8540 (user_visible_resume_target (finish_ptid), finish_ptid);
8541 }
8542
8543 /* As we're presenting a stop, and potentially removing breakpoints,
8544 update the thread list so we can tell whether there are threads
8545 running on the target. With target remote, for example, we can
8546 only learn about new threads when we explicitly update the thread
8547 list. Do this before notifying the interpreters about signal
8548 stops, end of stepping ranges, etc., so that the "new thread"
8549 output is emitted before e.g., "Program received signal FOO",
8550 instead of after. */
8551 update_thread_list ();
8552
8553 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8554 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8555
8556 /* As with the notification of thread events, we want to delay
8557 notifying the user that we've switched thread context until
8558 the inferior actually stops.
8559
8560 There's no point in saying anything if the inferior has exited.
8561 Note that SIGNALLED here means "exited with a signal", not
8562 "received a signal".
8563
8564 Also skip saying anything in non-stop mode. In that mode, as we
8565 don't want GDB to switch threads behind the user's back, to avoid
8566 races where the user is typing a command to apply to thread x,
8567 but GDB switches to thread y before the user finishes entering
8568 the command, fetch_inferior_event installs a cleanup to restore
8569 the current thread back to the thread the user had selected right
8570 after this event is handled, so we're not really switching, only
8571 informing of a stop. */
8572 if (!non_stop
8573 && previous_inferior_ptid != inferior_ptid
8574 && target_has_execution
8575 && last.kind != TARGET_WAITKIND_SIGNALLED
8576 && last.kind != TARGET_WAITKIND_EXITED
8577 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8578 {
8579 SWITCH_THRU_ALL_UIS ()
8580 {
8581 target_terminal::ours_for_output ();
8582 printf_filtered (_("[Switching to %s]\n"),
8583 target_pid_to_str (inferior_ptid).c_str ());
8584 annotate_thread_changed ();
8585 }
8586 previous_inferior_ptid = inferior_ptid;
8587 }
8588
8589 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8590 {
8591 SWITCH_THRU_ALL_UIS ()
8592 if (current_ui->prompt_state == PROMPT_BLOCKED)
8593 {
8594 target_terminal::ours_for_output ();
8595 printf_filtered (_("No unwaited-for children left.\n"));
8596 }
8597 }
8598
8599 /* Note: this depends on the update_thread_list call above. */
8600 maybe_remove_breakpoints ();
8601
8602 /* If an auto-display called a function and that got a signal,
8603 delete that auto-display to avoid an infinite recursion. */
8604
8605 if (stopped_by_random_signal)
8606 disable_current_display ();
8607
8608 SWITCH_THRU_ALL_UIS ()
8609 {
8610 async_enable_stdin ();
8611 }
8612
8613 /* Let the user/frontend see the threads as stopped. */
8614 maybe_finish_thread_state.reset ();
8615
8616 /* Select innermost stack frame - i.e., current frame is frame 0,
8617 and current location is based on that. Handle the case where the
8618 dummy call is returning after being stopped. E.g. the dummy call
8619 previously hit a breakpoint. (If the dummy call returns
8620 normally, we won't reach here.) Do this before the stop hook is
8621 run, so that it doesn't get to see the temporary dummy frame,
8622 which is not where we'll present the stop. */
8623 if (has_stack_frames ())
8624 {
8625 if (stop_stack_dummy == STOP_STACK_DUMMY)
8626 {
8627 /* Pop the empty frame that contains the stack dummy. This
8628 also restores inferior state prior to the call (struct
8629 infcall_suspend_state). */
8630 struct frame_info *frame = get_current_frame ();
8631
8632 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8633 frame_pop (frame);
8634 /* frame_pop calls reinit_frame_cache as the last thing it
8635 does which means there's now no selected frame. */
8636 }
8637
8638 select_frame (get_current_frame ());
8639
8640 /* Set the current source location. */
8641 set_current_sal_from_frame (get_current_frame ());
8642 }
8643
8644 /* Look up the hook_stop and run it (CLI internally handles problem
8645 of stop_command's pre-hook not existing). */
8646 if (stop_command != NULL)
8647 {
8648 stop_context saved_context;
8649
8650 try
8651 {
8652 execute_cmd_pre_hook (stop_command);
8653 }
8654 catch (const gdb_exception &ex)
8655 {
8656 exception_fprintf (gdb_stderr, ex,
8657 "Error while running hook_stop:\n");
8658 }
8659
8660 /* If the stop hook resumes the target, then there's no point in
8661 trying to notify about the previous stop; its context is
8662 gone. Likewise if the command switches thread or inferior --
8663 the observers would print a stop for the wrong
8664 thread/inferior. */
8665 if (saved_context.changed ())
8666 return 1;
8667 }
8668
8669 /* Notify observers about the stop. This is where the interpreters
8670 print the stop event. */
8671 if (inferior_ptid != null_ptid)
8672 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8673 stop_print_frame);
8674 else
8675 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8676
8677 annotate_stopped ();
8678
8679 if (target_has_execution)
8680 {
8681 if (last.kind != TARGET_WAITKIND_SIGNALLED
8682 && last.kind != TARGET_WAITKIND_EXITED
8683 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8684 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8685 Delete any breakpoint that is to be deleted at the next stop. */
8686 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8687 }
8688
8689 /* Try to get rid of automatically added inferiors that are no
8690 longer needed. Keeping those around slows down things linearly.
8691 Note that this never removes the current inferior. */
8692 prune_inferiors ();
8693
8694 return 0;
8695 }
8696 \f
8697 int
8698 signal_stop_state (int signo)
8699 {
8700 return signal_stop[signo];
8701 }
8702
8703 int
8704 signal_print_state (int signo)
8705 {
8706 return signal_print[signo];
8707 }
8708
8709 int
8710 signal_pass_state (int signo)
8711 {
8712 return signal_program[signo];
8713 }
8714
8715 static void
8716 signal_cache_update (int signo)
8717 {
8718 if (signo == -1)
8719 {
8720 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8721 signal_cache_update (signo);
8722
8723 return;
8724 }
8725
8726 signal_pass[signo] = (signal_stop[signo] == 0
8727 && signal_print[signo] == 0
8728 && signal_program[signo] == 1
8729 && signal_catch[signo] == 0);
8730 }
8731
8732 int
8733 signal_stop_update (int signo, int state)
8734 {
8735 int ret = signal_stop[signo];
8736
8737 signal_stop[signo] = state;
8738 signal_cache_update (signo);
8739 return ret;
8740 }
8741
8742 int
8743 signal_print_update (int signo, int state)
8744 {
8745 int ret = signal_print[signo];
8746
8747 signal_print[signo] = state;
8748 signal_cache_update (signo);
8749 return ret;
8750 }
8751
8752 int
8753 signal_pass_update (int signo, int state)
8754 {
8755 int ret = signal_program[signo];
8756
8757 signal_program[signo] = state;
8758 signal_cache_update (signo);
8759 return ret;
8760 }
8761
8762 /* Update the global 'signal_catch' from INFO and notify the
8763 target. */
8764
8765 void
8766 signal_catch_update (const unsigned int *info)
8767 {
8768 int i;
8769
8770 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8771 signal_catch[i] = info[i] > 0;
8772 signal_cache_update (-1);
8773 target_pass_signals (signal_pass);
8774 }
8775
8776 static void
8777 sig_print_header (void)
8778 {
8779 printf_filtered (_("Signal Stop\tPrint\tPass "
8780 "to program\tDescription\n"));
8781 }
8782
8783 static void
8784 sig_print_info (enum gdb_signal oursig)
8785 {
8786 const char *name = gdb_signal_to_name (oursig);
8787 int name_padding = 13 - strlen (name);
8788
8789 if (name_padding <= 0)
8790 name_padding = 0;
8791
8792 printf_filtered ("%s", name);
8793 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8794 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8795 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8796 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8797 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8798 }
8799
8800 /* Specify how various signals in the inferior should be handled. */
8801
8802 static void
8803 handle_command (const char *args, int from_tty)
8804 {
8805 int digits, wordlen;
8806 int sigfirst, siglast;
8807 enum gdb_signal oursig;
8808 int allsigs;
8809
8810 if (args == NULL)
8811 {
8812 error_no_arg (_("signal to handle"));
8813 }
8814
8815 /* Allocate and zero an array of flags for which signals to handle. */
8816
8817 const size_t nsigs = GDB_SIGNAL_LAST;
8818 unsigned char sigs[nsigs] {};
8819
8820 /* Break the command line up into args. */
8821
8822 gdb_argv built_argv (args);
8823
8824 /* Walk through the args, looking for signal oursigs, signal names, and
8825 actions. Signal numbers and signal names may be interspersed with
8826 actions, with the actions being performed for all signals cumulatively
8827 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8828
8829 for (char *arg : built_argv)
8830 {
8831 wordlen = strlen (arg);
8832 for (digits = 0; isdigit (arg[digits]); digits++)
8833 {;
8834 }
8835 allsigs = 0;
8836 sigfirst = siglast = -1;
8837
8838 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8839 {
8840 /* Apply action to all signals except those used by the
8841 debugger. Silently skip those. */
8842 allsigs = 1;
8843 sigfirst = 0;
8844 siglast = nsigs - 1;
8845 }
8846 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8847 {
8848 SET_SIGS (nsigs, sigs, signal_stop);
8849 SET_SIGS (nsigs, sigs, signal_print);
8850 }
8851 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8852 {
8853 UNSET_SIGS (nsigs, sigs, signal_program);
8854 }
8855 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8856 {
8857 SET_SIGS (nsigs, sigs, signal_print);
8858 }
8859 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8860 {
8861 SET_SIGS (nsigs, sigs, signal_program);
8862 }
8863 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8864 {
8865 UNSET_SIGS (nsigs, sigs, signal_stop);
8866 }
8867 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8868 {
8869 SET_SIGS (nsigs, sigs, signal_program);
8870 }
8871 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8872 {
8873 UNSET_SIGS (nsigs, sigs, signal_print);
8874 UNSET_SIGS (nsigs, sigs, signal_stop);
8875 }
8876 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8877 {
8878 UNSET_SIGS (nsigs, sigs, signal_program);
8879 }
8880 else if (digits > 0)
8881 {
8882 /* It is numeric. The numeric signal refers to our own
8883 internal signal numbering from target.h, not to host/target
8884 signal number. This is a feature; users really should be
8885 using symbolic names anyway, and the common ones like
8886 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8887
8888 sigfirst = siglast = (int)
8889 gdb_signal_from_command (atoi (arg));
8890 if (arg[digits] == '-')
8891 {
8892 siglast = (int)
8893 gdb_signal_from_command (atoi (arg + digits + 1));
8894 }
8895 if (sigfirst > siglast)
8896 {
8897 /* Bet he didn't figure we'd think of this case... */
8898 std::swap (sigfirst, siglast);
8899 }
8900 }
8901 else
8902 {
8903 oursig = gdb_signal_from_name (arg);
8904 if (oursig != GDB_SIGNAL_UNKNOWN)
8905 {
8906 sigfirst = siglast = (int) oursig;
8907 }
8908 else
8909 {
8910 /* Not a number and not a recognized flag word => complain. */
8911 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8912 }
8913 }
8914
8915 /* If any signal numbers or symbol names were found, set flags for
8916 which signals to apply actions to. */
8917
8918 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8919 {
8920 switch ((enum gdb_signal) signum)
8921 {
8922 case GDB_SIGNAL_TRAP:
8923 case GDB_SIGNAL_INT:
8924 if (!allsigs && !sigs[signum])
8925 {
8926 if (query (_("%s is used by the debugger.\n\
8927 Are you sure you want to change it? "),
8928 gdb_signal_to_name ((enum gdb_signal) signum)))
8929 {
8930 sigs[signum] = 1;
8931 }
8932 else
8933 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8934 }
8935 break;
8936 case GDB_SIGNAL_0:
8937 case GDB_SIGNAL_DEFAULT:
8938 case GDB_SIGNAL_UNKNOWN:
8939 /* Make sure that "all" doesn't print these. */
8940 break;
8941 default:
8942 sigs[signum] = 1;
8943 break;
8944 }
8945 }
8946 }
8947
8948 for (int signum = 0; signum < nsigs; signum++)
8949 if (sigs[signum])
8950 {
8951 signal_cache_update (-1);
8952 target_pass_signals (signal_pass);
8953 target_program_signals (signal_program);
8954
8955 if (from_tty)
8956 {
8957 /* Show the results. */
8958 sig_print_header ();
8959 for (; signum < nsigs; signum++)
8960 if (sigs[signum])
8961 sig_print_info ((enum gdb_signal) signum);
8962 }
8963
8964 break;
8965 }
8966 }
8967
8968 /* Complete the "handle" command. */
8969
8970 static void
8971 handle_completer (struct cmd_list_element *ignore,
8972 completion_tracker &tracker,
8973 const char *text, const char *word)
8974 {
8975 static const char * const keywords[] =
8976 {
8977 "all",
8978 "stop",
8979 "ignore",
8980 "print",
8981 "pass",
8982 "nostop",
8983 "noignore",
8984 "noprint",
8985 "nopass",
8986 NULL,
8987 };
8988
8989 signal_completer (ignore, tracker, text, word);
8990 complete_on_enum (tracker, keywords, word, word);
8991 }
8992
8993 enum gdb_signal
8994 gdb_signal_from_command (int num)
8995 {
8996 if (num >= 1 && num <= 15)
8997 return (enum gdb_signal) num;
8998 error (_("Only signals 1-15 are valid as numeric signals.\n\
8999 Use \"info signals\" for a list of symbolic signals."));
9000 }
9001
9002 /* Print current contents of the tables set by the handle command.
9003 It is possible we should just be printing signals actually used
9004 by the current target (but for things to work right when switching
9005 targets, all signals should be in the signal tables). */
9006
9007 static void
9008 info_signals_command (const char *signum_exp, int from_tty)
9009 {
9010 enum gdb_signal oursig;
9011
9012 sig_print_header ();
9013
9014 if (signum_exp)
9015 {
9016 /* First see if this is a symbol name. */
9017 oursig = gdb_signal_from_name (signum_exp);
9018 if (oursig == GDB_SIGNAL_UNKNOWN)
9019 {
9020 /* No, try numeric. */
9021 oursig =
9022 gdb_signal_from_command (parse_and_eval_long (signum_exp));
9023 }
9024 sig_print_info (oursig);
9025 return;
9026 }
9027
9028 printf_filtered ("\n");
9029 /* These ugly casts brought to you by the native VAX compiler. */
9030 for (oursig = GDB_SIGNAL_FIRST;
9031 (int) oursig < (int) GDB_SIGNAL_LAST;
9032 oursig = (enum gdb_signal) ((int) oursig + 1))
9033 {
9034 QUIT;
9035
9036 if (oursig != GDB_SIGNAL_UNKNOWN
9037 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9038 sig_print_info (oursig);
9039 }
9040
9041 printf_filtered (_("\nUse the \"handle\" command "
9042 "to change these tables.\n"));
9043 }
9044
9045 /* The $_siginfo convenience variable is a bit special. We don't know
9046 for sure the type of the value until we actually have a chance to
9047 fetch the data. The type can change depending on gdbarch, so it is
9048 also dependent on which thread you have selected.
9049
9050 1. making $_siginfo be an internalvar that creates a new value on
9051 access.
9052
9053 2. making the value of $_siginfo be an lval_computed value. */
9054
9055 /* This function implements the lval_computed support for reading a
9056 $_siginfo value. */
9057
9058 static void
9059 siginfo_value_read (struct value *v)
9060 {
9061 LONGEST transferred;
9062
9063 /* If we can access registers, so can we access $_siginfo. Likewise
9064 vice versa. */
9065 validate_registers_access ();
9066
9067 transferred =
9068 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
9069 NULL,
9070 value_contents_all_raw (v),
9071 value_offset (v),
9072 TYPE_LENGTH (value_type (v)));
9073
9074 if (transferred != TYPE_LENGTH (value_type (v)))
9075 error (_("Unable to read siginfo"));
9076 }
9077
9078 /* This function implements the lval_computed support for writing a
9079 $_siginfo value. */
9080
9081 static void
9082 siginfo_value_write (struct value *v, struct value *fromval)
9083 {
9084 LONGEST transferred;
9085
9086 /* If we can access registers, so can we access $_siginfo. Likewise
9087 vice versa. */
9088 validate_registers_access ();
9089
9090 transferred = target_write (current_top_target (),
9091 TARGET_OBJECT_SIGNAL_INFO,
9092 NULL,
9093 value_contents_all_raw (fromval),
9094 value_offset (v),
9095 TYPE_LENGTH (value_type (fromval)));
9096
9097 if (transferred != TYPE_LENGTH (value_type (fromval)))
9098 error (_("Unable to write siginfo"));
9099 }
9100
9101 static const struct lval_funcs siginfo_value_funcs =
9102 {
9103 siginfo_value_read,
9104 siginfo_value_write
9105 };
9106
9107 /* Return a new value with the correct type for the siginfo object of
9108 the current thread using architecture GDBARCH. Return a void value
9109 if there's no object available. */
9110
9111 static struct value *
9112 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9113 void *ignore)
9114 {
9115 if (target_has_stack
9116 && inferior_ptid != null_ptid
9117 && gdbarch_get_siginfo_type_p (gdbarch))
9118 {
9119 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9120
9121 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9122 }
9123
9124 return allocate_value (builtin_type (gdbarch)->builtin_void);
9125 }
9126
9127 \f
9128 /* infcall_suspend_state contains state about the program itself like its
9129 registers and any signal it received when it last stopped.
9130 This state must be restored regardless of how the inferior function call
9131 ends (either successfully, or after it hits a breakpoint or signal)
9132 if the program is to properly continue where it left off. */
9133
9134 class infcall_suspend_state
9135 {
9136 public:
9137 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9138 once the inferior function call has finished. */
9139 infcall_suspend_state (struct gdbarch *gdbarch,
9140 const struct thread_info *tp,
9141 struct regcache *regcache)
9142 : m_thread_suspend (tp->suspend),
9143 m_registers (new readonly_detached_regcache (*regcache))
9144 {
9145 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9146
9147 if (gdbarch_get_siginfo_type_p (gdbarch))
9148 {
9149 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9150 size_t len = TYPE_LENGTH (type);
9151
9152 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9153
9154 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9155 siginfo_data.get (), 0, len) != len)
9156 {
9157 /* Errors ignored. */
9158 siginfo_data.reset (nullptr);
9159 }
9160 }
9161
9162 if (siginfo_data)
9163 {
9164 m_siginfo_gdbarch = gdbarch;
9165 m_siginfo_data = std::move (siginfo_data);
9166 }
9167 }
9168
9169 /* Return a pointer to the stored register state. */
9170
9171 readonly_detached_regcache *registers () const
9172 {
9173 return m_registers.get ();
9174 }
9175
9176 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9177
9178 void restore (struct gdbarch *gdbarch,
9179 struct thread_info *tp,
9180 struct regcache *regcache) const
9181 {
9182 tp->suspend = m_thread_suspend;
9183
9184 if (m_siginfo_gdbarch == gdbarch)
9185 {
9186 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9187
9188 /* Errors ignored. */
9189 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9190 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9191 }
9192
9193 /* The inferior can be gone if the user types "print exit(0)"
9194 (and perhaps other times). */
9195 if (target_has_execution)
9196 /* NB: The register write goes through to the target. */
9197 regcache->restore (registers ());
9198 }
9199
9200 private:
9201 /* How the current thread stopped before the inferior function call was
9202 executed. */
9203 struct thread_suspend_state m_thread_suspend;
9204
9205 /* The registers before the inferior function call was executed. */
9206 std::unique_ptr<readonly_detached_regcache> m_registers;
9207
9208 /* Format of SIGINFO_DATA or NULL if it is not present. */
9209 struct gdbarch *m_siginfo_gdbarch = nullptr;
9210
9211 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9212 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9213 content would be invalid. */
9214 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9215 };
9216
9217 infcall_suspend_state_up
9218 save_infcall_suspend_state ()
9219 {
9220 struct thread_info *tp = inferior_thread ();
9221 struct regcache *regcache = get_current_regcache ();
9222 struct gdbarch *gdbarch = regcache->arch ();
9223
9224 infcall_suspend_state_up inf_state
9225 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9226
9227 /* Having saved the current state, adjust the thread state, discarding
9228 any stop signal information. The stop signal is not useful when
9229 starting an inferior function call, and run_inferior_call will not use
9230 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9231 tp->suspend.stop_signal = GDB_SIGNAL_0;
9232
9233 return inf_state;
9234 }
9235
9236 /* Restore inferior session state to INF_STATE. */
9237
9238 void
9239 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9240 {
9241 struct thread_info *tp = inferior_thread ();
9242 struct regcache *regcache = get_current_regcache ();
9243 struct gdbarch *gdbarch = regcache->arch ();
9244
9245 inf_state->restore (gdbarch, tp, regcache);
9246 discard_infcall_suspend_state (inf_state);
9247 }
9248
9249 void
9250 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9251 {
9252 delete inf_state;
9253 }
9254
9255 readonly_detached_regcache *
9256 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9257 {
9258 return inf_state->registers ();
9259 }
9260
9261 /* infcall_control_state contains state regarding gdb's control of the
9262 inferior itself like stepping control. It also contains session state like
9263 the user's currently selected frame. */
9264
9265 struct infcall_control_state
9266 {
9267 struct thread_control_state thread_control;
9268 struct inferior_control_state inferior_control;
9269
9270 /* Other fields: */
9271 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9272 int stopped_by_random_signal = 0;
9273
9274 /* ID if the selected frame when the inferior function call was made. */
9275 struct frame_id selected_frame_id {};
9276 };
9277
9278 /* Save all of the information associated with the inferior<==>gdb
9279 connection. */
9280
9281 infcall_control_state_up
9282 save_infcall_control_state ()
9283 {
9284 infcall_control_state_up inf_status (new struct infcall_control_state);
9285 struct thread_info *tp = inferior_thread ();
9286 struct inferior *inf = current_inferior ();
9287
9288 inf_status->thread_control = tp->control;
9289 inf_status->inferior_control = inf->control;
9290
9291 tp->control.step_resume_breakpoint = NULL;
9292 tp->control.exception_resume_breakpoint = NULL;
9293
9294 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9295 chain. If caller's caller is walking the chain, they'll be happier if we
9296 hand them back the original chain when restore_infcall_control_state is
9297 called. */
9298 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9299
9300 /* Other fields: */
9301 inf_status->stop_stack_dummy = stop_stack_dummy;
9302 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9303
9304 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9305
9306 return inf_status;
9307 }
9308
9309 static void
9310 restore_selected_frame (const frame_id &fid)
9311 {
9312 frame_info *frame = frame_find_by_id (fid);
9313
9314 /* If inf_status->selected_frame_id is NULL, there was no previously
9315 selected frame. */
9316 if (frame == NULL)
9317 {
9318 warning (_("Unable to restore previously selected frame."));
9319 return;
9320 }
9321
9322 select_frame (frame);
9323 }
9324
9325 /* Restore inferior session state to INF_STATUS. */
9326
9327 void
9328 restore_infcall_control_state (struct infcall_control_state *inf_status)
9329 {
9330 struct thread_info *tp = inferior_thread ();
9331 struct inferior *inf = current_inferior ();
9332
9333 if (tp->control.step_resume_breakpoint)
9334 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9335
9336 if (tp->control.exception_resume_breakpoint)
9337 tp->control.exception_resume_breakpoint->disposition
9338 = disp_del_at_next_stop;
9339
9340 /* Handle the bpstat_copy of the chain. */
9341 bpstat_clear (&tp->control.stop_bpstat);
9342
9343 tp->control = inf_status->thread_control;
9344 inf->control = inf_status->inferior_control;
9345
9346 /* Other fields: */
9347 stop_stack_dummy = inf_status->stop_stack_dummy;
9348 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9349
9350 if (target_has_stack)
9351 {
9352 /* The point of the try/catch is that if the stack is clobbered,
9353 walking the stack might encounter a garbage pointer and
9354 error() trying to dereference it. */
9355 try
9356 {
9357 restore_selected_frame (inf_status->selected_frame_id);
9358 }
9359 catch (const gdb_exception_error &ex)
9360 {
9361 exception_fprintf (gdb_stderr, ex,
9362 "Unable to restore previously selected frame:\n");
9363 /* Error in restoring the selected frame. Select the
9364 innermost frame. */
9365 select_frame (get_current_frame ());
9366 }
9367 }
9368
9369 delete inf_status;
9370 }
9371
9372 void
9373 discard_infcall_control_state (struct infcall_control_state *inf_status)
9374 {
9375 if (inf_status->thread_control.step_resume_breakpoint)
9376 inf_status->thread_control.step_resume_breakpoint->disposition
9377 = disp_del_at_next_stop;
9378
9379 if (inf_status->thread_control.exception_resume_breakpoint)
9380 inf_status->thread_control.exception_resume_breakpoint->disposition
9381 = disp_del_at_next_stop;
9382
9383 /* See save_infcall_control_state for info on stop_bpstat. */
9384 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9385
9386 delete inf_status;
9387 }
9388 \f
9389 /* See infrun.h. */
9390
9391 void
9392 clear_exit_convenience_vars (void)
9393 {
9394 clear_internalvar (lookup_internalvar ("_exitsignal"));
9395 clear_internalvar (lookup_internalvar ("_exitcode"));
9396 }
9397 \f
9398
9399 /* User interface for reverse debugging:
9400 Set exec-direction / show exec-direction commands
9401 (returns error unless target implements to_set_exec_direction method). */
9402
9403 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9404 static const char exec_forward[] = "forward";
9405 static const char exec_reverse[] = "reverse";
9406 static const char *exec_direction = exec_forward;
9407 static const char *const exec_direction_names[] = {
9408 exec_forward,
9409 exec_reverse,
9410 NULL
9411 };
9412
9413 static void
9414 set_exec_direction_func (const char *args, int from_tty,
9415 struct cmd_list_element *cmd)
9416 {
9417 if (target_can_execute_reverse)
9418 {
9419 if (!strcmp (exec_direction, exec_forward))
9420 execution_direction = EXEC_FORWARD;
9421 else if (!strcmp (exec_direction, exec_reverse))
9422 execution_direction = EXEC_REVERSE;
9423 }
9424 else
9425 {
9426 exec_direction = exec_forward;
9427 error (_("Target does not support this operation."));
9428 }
9429 }
9430
9431 static void
9432 show_exec_direction_func (struct ui_file *out, int from_tty,
9433 struct cmd_list_element *cmd, const char *value)
9434 {
9435 switch (execution_direction) {
9436 case EXEC_FORWARD:
9437 fprintf_filtered (out, _("Forward.\n"));
9438 break;
9439 case EXEC_REVERSE:
9440 fprintf_filtered (out, _("Reverse.\n"));
9441 break;
9442 default:
9443 internal_error (__FILE__, __LINE__,
9444 _("bogus execution_direction value: %d"),
9445 (int) execution_direction);
9446 }
9447 }
9448
9449 static void
9450 show_schedule_multiple (struct ui_file *file, int from_tty,
9451 struct cmd_list_element *c, const char *value)
9452 {
9453 fprintf_filtered (file, _("Resuming the execution of threads "
9454 "of all processes is %s.\n"), value);
9455 }
9456
9457 /* Implementation of `siginfo' variable. */
9458
9459 static const struct internalvar_funcs siginfo_funcs =
9460 {
9461 siginfo_make_value,
9462 NULL,
9463 NULL
9464 };
9465
9466 /* Callback for infrun's target events source. This is marked when a
9467 thread has a pending status to process. */
9468
9469 static void
9470 infrun_async_inferior_event_handler (gdb_client_data data)
9471 {
9472 inferior_event_handler (INF_REG_EVENT);
9473 }
9474
9475 void _initialize_infrun ();
9476 void
9477 _initialize_infrun ()
9478 {
9479 struct cmd_list_element *c;
9480
9481 /* Register extra event sources in the event loop. */
9482 infrun_async_inferior_event_token
9483 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9484
9485 add_info ("signals", info_signals_command, _("\
9486 What debugger does when program gets various signals.\n\
9487 Specify a signal as argument to print info on that signal only."));
9488 add_info_alias ("handle", "signals", 0);
9489
9490 c = add_com ("handle", class_run, handle_command, _("\
9491 Specify how to handle signals.\n\
9492 Usage: handle SIGNAL [ACTIONS]\n\
9493 Args are signals and actions to apply to those signals.\n\
9494 If no actions are specified, the current settings for the specified signals\n\
9495 will be displayed instead.\n\
9496 \n\
9497 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9498 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9499 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9500 The special arg \"all\" is recognized to mean all signals except those\n\
9501 used by the debugger, typically SIGTRAP and SIGINT.\n\
9502 \n\
9503 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9504 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9505 Stop means reenter debugger if this signal happens (implies print).\n\
9506 Print means print a message if this signal happens.\n\
9507 Pass means let program see this signal; otherwise program doesn't know.\n\
9508 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9509 Pass and Stop may be combined.\n\
9510 \n\
9511 Multiple signals may be specified. Signal numbers and signal names\n\
9512 may be interspersed with actions, with the actions being performed for\n\
9513 all signals cumulatively specified."));
9514 set_cmd_completer (c, handle_completer);
9515
9516 if (!dbx_commands)
9517 stop_command = add_cmd ("stop", class_obscure,
9518 not_just_help_class_command, _("\
9519 There is no `stop' command, but you can set a hook on `stop'.\n\
9520 This allows you to set a list of commands to be run each time execution\n\
9521 of the program stops."), &cmdlist);
9522
9523 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9524 Set inferior debugging."), _("\
9525 Show inferior debugging."), _("\
9526 When non-zero, inferior specific debugging is enabled."),
9527 NULL,
9528 show_debug_infrun,
9529 &setdebuglist, &showdebuglist);
9530
9531 add_setshow_boolean_cmd ("displaced", class_maintenance,
9532 &debug_displaced, _("\
9533 Set displaced stepping debugging."), _("\
9534 Show displaced stepping debugging."), _("\
9535 When non-zero, displaced stepping specific debugging is enabled."),
9536 NULL,
9537 show_debug_displaced,
9538 &setdebuglist, &showdebuglist);
9539
9540 add_setshow_boolean_cmd ("non-stop", no_class,
9541 &non_stop_1, _("\
9542 Set whether gdb controls the inferior in non-stop mode."), _("\
9543 Show whether gdb controls the inferior in non-stop mode."), _("\
9544 When debugging a multi-threaded program and this setting is\n\
9545 off (the default, also called all-stop mode), when one thread stops\n\
9546 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9547 all other threads in the program while you interact with the thread of\n\
9548 interest. When you continue or step a thread, you can allow the other\n\
9549 threads to run, or have them remain stopped, but while you inspect any\n\
9550 thread's state, all threads stop.\n\
9551 \n\
9552 In non-stop mode, when one thread stops, other threads can continue\n\
9553 to run freely. You'll be able to step each thread independently,\n\
9554 leave it stopped or free to run as needed."),
9555 set_non_stop,
9556 show_non_stop,
9557 &setlist,
9558 &showlist);
9559
9560 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9561 {
9562 signal_stop[i] = 1;
9563 signal_print[i] = 1;
9564 signal_program[i] = 1;
9565 signal_catch[i] = 0;
9566 }
9567
9568 /* Signals caused by debugger's own actions should not be given to
9569 the program afterwards.
9570
9571 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9572 explicitly specifies that it should be delivered to the target
9573 program. Typically, that would occur when a user is debugging a
9574 target monitor on a simulator: the target monitor sets a
9575 breakpoint; the simulator encounters this breakpoint and halts
9576 the simulation handing control to GDB; GDB, noting that the stop
9577 address doesn't map to any known breakpoint, returns control back
9578 to the simulator; the simulator then delivers the hardware
9579 equivalent of a GDB_SIGNAL_TRAP to the program being
9580 debugged. */
9581 signal_program[GDB_SIGNAL_TRAP] = 0;
9582 signal_program[GDB_SIGNAL_INT] = 0;
9583
9584 /* Signals that are not errors should not normally enter the debugger. */
9585 signal_stop[GDB_SIGNAL_ALRM] = 0;
9586 signal_print[GDB_SIGNAL_ALRM] = 0;
9587 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9588 signal_print[GDB_SIGNAL_VTALRM] = 0;
9589 signal_stop[GDB_SIGNAL_PROF] = 0;
9590 signal_print[GDB_SIGNAL_PROF] = 0;
9591 signal_stop[GDB_SIGNAL_CHLD] = 0;
9592 signal_print[GDB_SIGNAL_CHLD] = 0;
9593 signal_stop[GDB_SIGNAL_IO] = 0;
9594 signal_print[GDB_SIGNAL_IO] = 0;
9595 signal_stop[GDB_SIGNAL_POLL] = 0;
9596 signal_print[GDB_SIGNAL_POLL] = 0;
9597 signal_stop[GDB_SIGNAL_URG] = 0;
9598 signal_print[GDB_SIGNAL_URG] = 0;
9599 signal_stop[GDB_SIGNAL_WINCH] = 0;
9600 signal_print[GDB_SIGNAL_WINCH] = 0;
9601 signal_stop[GDB_SIGNAL_PRIO] = 0;
9602 signal_print[GDB_SIGNAL_PRIO] = 0;
9603
9604 /* These signals are used internally by user-level thread
9605 implementations. (See signal(5) on Solaris.) Like the above
9606 signals, a healthy program receives and handles them as part of
9607 its normal operation. */
9608 signal_stop[GDB_SIGNAL_LWP] = 0;
9609 signal_print[GDB_SIGNAL_LWP] = 0;
9610 signal_stop[GDB_SIGNAL_WAITING] = 0;
9611 signal_print[GDB_SIGNAL_WAITING] = 0;
9612 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9613 signal_print[GDB_SIGNAL_CANCEL] = 0;
9614 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9615 signal_print[GDB_SIGNAL_LIBRT] = 0;
9616
9617 /* Update cached state. */
9618 signal_cache_update (-1);
9619
9620 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9621 &stop_on_solib_events, _("\
9622 Set stopping for shared library events."), _("\
9623 Show stopping for shared library events."), _("\
9624 If nonzero, gdb will give control to the user when the dynamic linker\n\
9625 notifies gdb of shared library events. The most common event of interest\n\
9626 to the user would be loading/unloading of a new library."),
9627 set_stop_on_solib_events,
9628 show_stop_on_solib_events,
9629 &setlist, &showlist);
9630
9631 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9632 follow_fork_mode_kind_names,
9633 &follow_fork_mode_string, _("\
9634 Set debugger response to a program call of fork or vfork."), _("\
9635 Show debugger response to a program call of fork or vfork."), _("\
9636 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9637 parent - the original process is debugged after a fork\n\
9638 child - the new process is debugged after a fork\n\
9639 The unfollowed process will continue to run.\n\
9640 By default, the debugger will follow the parent process."),
9641 NULL,
9642 show_follow_fork_mode_string,
9643 &setlist, &showlist);
9644
9645 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9646 follow_exec_mode_names,
9647 &follow_exec_mode_string, _("\
9648 Set debugger response to a program call of exec."), _("\
9649 Show debugger response to a program call of exec."), _("\
9650 An exec call replaces the program image of a process.\n\
9651 \n\
9652 follow-exec-mode can be:\n\
9653 \n\
9654 new - the debugger creates a new inferior and rebinds the process\n\
9655 to this new inferior. The program the process was running before\n\
9656 the exec call can be restarted afterwards by restarting the original\n\
9657 inferior.\n\
9658 \n\
9659 same - the debugger keeps the process bound to the same inferior.\n\
9660 The new executable image replaces the previous executable loaded in\n\
9661 the inferior. Restarting the inferior after the exec call restarts\n\
9662 the executable the process was running after the exec call.\n\
9663 \n\
9664 By default, the debugger will use the same inferior."),
9665 NULL,
9666 show_follow_exec_mode_string,
9667 &setlist, &showlist);
9668
9669 add_setshow_enum_cmd ("scheduler-locking", class_run,
9670 scheduler_enums, &scheduler_mode, _("\
9671 Set mode for locking scheduler during execution."), _("\
9672 Show mode for locking scheduler during execution."), _("\
9673 off == no locking (threads may preempt at any time)\n\
9674 on == full locking (no thread except the current thread may run)\n\
9675 This applies to both normal execution and replay mode.\n\
9676 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9677 In this mode, other threads may run during other commands.\n\
9678 This applies to both normal execution and replay mode.\n\
9679 replay == scheduler locked in replay mode and unlocked during normal execution."),
9680 set_schedlock_func, /* traps on target vector */
9681 show_scheduler_mode,
9682 &setlist, &showlist);
9683
9684 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9685 Set mode for resuming threads of all processes."), _("\
9686 Show mode for resuming threads of all processes."), _("\
9687 When on, execution commands (such as 'continue' or 'next') resume all\n\
9688 threads of all processes. When off (which is the default), execution\n\
9689 commands only resume the threads of the current process. The set of\n\
9690 threads that are resumed is further refined by the scheduler-locking\n\
9691 mode (see help set scheduler-locking)."),
9692 NULL,
9693 show_schedule_multiple,
9694 &setlist, &showlist);
9695
9696 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9697 Set mode of the step operation."), _("\
9698 Show mode of the step operation."), _("\
9699 When set, doing a step over a function without debug line information\n\
9700 will stop at the first instruction of that function. Otherwise, the\n\
9701 function is skipped and the step command stops at a different source line."),
9702 NULL,
9703 show_step_stop_if_no_debug,
9704 &setlist, &showlist);
9705
9706 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9707 &can_use_displaced_stepping, _("\
9708 Set debugger's willingness to use displaced stepping."), _("\
9709 Show debugger's willingness to use displaced stepping."), _("\
9710 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9711 supported by the target architecture. If off, gdb will not use displaced\n\
9712 stepping to step over breakpoints, even if such is supported by the target\n\
9713 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9714 if the target architecture supports it and non-stop mode is active, but will not\n\
9715 use it in all-stop mode (see help set non-stop)."),
9716 NULL,
9717 show_can_use_displaced_stepping,
9718 &setlist, &showlist);
9719
9720 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9721 &exec_direction, _("Set direction of execution.\n\
9722 Options are 'forward' or 'reverse'."),
9723 _("Show direction of execution (forward/reverse)."),
9724 _("Tells gdb whether to execute forward or backward."),
9725 set_exec_direction_func, show_exec_direction_func,
9726 &setlist, &showlist);
9727
9728 /* Set/show detach-on-fork: user-settable mode. */
9729
9730 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9731 Set whether gdb will detach the child of a fork."), _("\
9732 Show whether gdb will detach the child of a fork."), _("\
9733 Tells gdb whether to detach the child of a fork."),
9734 NULL, NULL, &setlist, &showlist);
9735
9736 /* Set/show disable address space randomization mode. */
9737
9738 add_setshow_boolean_cmd ("disable-randomization", class_support,
9739 &disable_randomization, _("\
9740 Set disabling of debuggee's virtual address space randomization."), _("\
9741 Show disabling of debuggee's virtual address space randomization."), _("\
9742 When this mode is on (which is the default), randomization of the virtual\n\
9743 address space is disabled. Standalone programs run with the randomization\n\
9744 enabled by default on some platforms."),
9745 &set_disable_randomization,
9746 &show_disable_randomization,
9747 &setlist, &showlist);
9748
9749 /* ptid initializations */
9750 inferior_ptid = null_ptid;
9751 target_last_wait_ptid = minus_one_ptid;
9752
9753 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9754 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9755 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9756 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9757
9758 /* Explicitly create without lookup, since that tries to create a
9759 value with a void typed value, and when we get here, gdbarch
9760 isn't initialized yet. At this point, we're quite sure there
9761 isn't another convenience variable of the same name. */
9762 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9763
9764 add_setshow_boolean_cmd ("observer", no_class,
9765 &observer_mode_1, _("\
9766 Set whether gdb controls the inferior in observer mode."), _("\
9767 Show whether gdb controls the inferior in observer mode."), _("\
9768 In observer mode, GDB can get data from the inferior, but not\n\
9769 affect its execution. Registers and memory may not be changed,\n\
9770 breakpoints may not be set, and the program cannot be interrupted\n\
9771 or signalled."),
9772 set_observer_mode,
9773 show_observer_mode,
9774 &setlist,
9775 &showlist);
9776 }
This page took 0.231129 seconds and 4 git commands to generate.