edaf17a40b47ed26abd076ace54d224442fbe2be
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct execution_control_state;
77
78 static int currently_stepping (struct execution_control_state *ecs);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (void);
83
84 void _initialize_infrun (void);
85
86 int inferior_ignoring_startup_exec_events = 0;
87 int inferior_ignoring_leading_exec_events = 0;
88
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
93 static void
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98 }
99
100 /* In asynchronous mode, but simulating synchronous execution. */
101
102 int sync_execution = 0;
103
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
106 running in. */
107
108 static ptid_t previous_inferior_ptid;
109
110 /* This is true for configurations that may follow through execl() and
111 similar functions. At present this is only true for HP-UX native. */
112
113 #ifndef MAY_FOLLOW_EXEC
114 #define MAY_FOLLOW_EXEC (0)
115 #endif
116
117 static int may_follow_exec = MAY_FOLLOW_EXEC;
118
119 static int debug_infrun = 0;
120 static void
121 show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125 }
126
127 /* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
146
147 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
165
166 /* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174 #ifndef SOLIB_IN_DYNAMIC_LINKER
175 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176 #endif
177
178 /* We can't step off a permanent breakpoint in the ordinary way, because we
179 can't remove it. Instead, we have to advance the PC to the next
180 instruction. This macro should expand to a pointer to a function that
181 does that, or zero if we have no such function. If we don't have a
182 definition for it, we have to report an error. */
183 #ifndef SKIP_PERMANENT_BREAKPOINT
184 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
185 static void
186 default_skip_permanent_breakpoint (void)
187 {
188 error (_("\
189 The program is stopped at a permanent breakpoint, but GDB does not know\n\
190 how to step past a permanent breakpoint on this architecture. Try using\n\
191 a command like `return' or `jump' to continue execution."));
192 }
193 #endif
194
195
196 /* Convert the #defines into values. This is temporary until wfi control
197 flow is completely sorted out. */
198
199 #ifndef HAVE_STEPPABLE_WATCHPOINT
200 #define HAVE_STEPPABLE_WATCHPOINT 0
201 #else
202 #undef HAVE_STEPPABLE_WATCHPOINT
203 #define HAVE_STEPPABLE_WATCHPOINT 1
204 #endif
205
206 #ifndef CANNOT_STEP_HW_WATCHPOINTS
207 #define CANNOT_STEP_HW_WATCHPOINTS 0
208 #else
209 #undef CANNOT_STEP_HW_WATCHPOINTS
210 #define CANNOT_STEP_HW_WATCHPOINTS 1
211 #endif
212
213 /* Tables of how to react to signals; the user sets them. */
214
215 static unsigned char *signal_stop;
216 static unsigned char *signal_print;
217 static unsigned char *signal_program;
218
219 #define SET_SIGS(nsigs,sigs,flags) \
220 do { \
221 int signum = (nsigs); \
222 while (signum-- > 0) \
223 if ((sigs)[signum]) \
224 (flags)[signum] = 1; \
225 } while (0)
226
227 #define UNSET_SIGS(nsigs,sigs,flags) \
228 do { \
229 int signum = (nsigs); \
230 while (signum-- > 0) \
231 if ((sigs)[signum]) \
232 (flags)[signum] = 0; \
233 } while (0)
234
235 /* Value to pass to target_resume() to cause all threads to resume */
236
237 #define RESUME_ALL (pid_to_ptid (-1))
238
239 /* Command list pointer for the "stop" placeholder. */
240
241 static struct cmd_list_element *stop_command;
242
243 /* Nonzero if breakpoints are now inserted in the inferior. */
244
245 static int breakpoints_inserted;
246
247 /* Function inferior was in as of last step command. */
248
249 static struct symbol *step_start_function;
250
251 /* Nonzero if we are expecting a trace trap and should proceed from it. */
252
253 static int trap_expected;
254
255 /* Nonzero if we want to give control to the user when we're notified
256 of shared library events by the dynamic linker. */
257 static int stop_on_solib_events;
258 static void
259 show_stop_on_solib_events (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261 {
262 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
263 value);
264 }
265
266 /* Nonzero means expecting a trace trap
267 and should stop the inferior and return silently when it happens. */
268
269 int stop_after_trap;
270
271 /* Nonzero means expecting a trap and caller will handle it themselves.
272 It is used after attach, due to attaching to a process;
273 when running in the shell before the child program has been exec'd;
274 and when running some kinds of remote stuff (FIXME?). */
275
276 enum stop_kind stop_soon;
277
278 /* Nonzero if proceed is being used for a "finish" command or a similar
279 situation when stop_registers should be saved. */
280
281 int proceed_to_finish;
282
283 /* Save register contents here when about to pop a stack dummy frame,
284 if-and-only-if proceed_to_finish is set.
285 Thus this contains the return value from the called function (assuming
286 values are returned in a register). */
287
288 struct regcache *stop_registers;
289
290 /* Nonzero if program stopped due to error trying to insert breakpoints. */
291
292 static int breakpoints_failed;
293
294 /* Nonzero after stop if current stack frame should be printed. */
295
296 static int stop_print_frame;
297
298 static struct breakpoint *step_resume_breakpoint = NULL;
299
300 /* This is a cached copy of the pid/waitstatus of the last event
301 returned by target_wait()/deprecated_target_wait_hook(). This
302 information is returned by get_last_target_status(). */
303 static ptid_t target_last_wait_ptid;
304 static struct target_waitstatus target_last_waitstatus;
305
306 /* This is used to remember when a fork, vfork or exec event
307 was caught by a catchpoint, and thus the event is to be
308 followed at the next resume of the inferior, and not
309 immediately. */
310 static struct
311 {
312 enum target_waitkind kind;
313 struct
314 {
315 int parent_pid;
316 int child_pid;
317 }
318 fork_event;
319 char *execd_pathname;
320 }
321 pending_follow;
322
323 static const char follow_fork_mode_child[] = "child";
324 static const char follow_fork_mode_parent[] = "parent";
325
326 static const char *follow_fork_mode_kind_names[] = {
327 follow_fork_mode_child,
328 follow_fork_mode_parent,
329 NULL
330 };
331
332 static const char *follow_fork_mode_string = follow_fork_mode_parent;
333 static void
334 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
335 struct cmd_list_element *c, const char *value)
336 {
337 fprintf_filtered (file, _("\
338 Debugger response to a program call of fork or vfork is \"%s\".\n"),
339 value);
340 }
341 \f
342
343 static int
344 follow_fork (void)
345 {
346 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
347
348 return target_follow_fork (follow_child);
349 }
350
351 void
352 follow_inferior_reset_breakpoints (void)
353 {
354 /* Was there a step_resume breakpoint? (There was if the user
355 did a "next" at the fork() call.) If so, explicitly reset its
356 thread number.
357
358 step_resumes are a form of bp that are made to be per-thread.
359 Since we created the step_resume bp when the parent process
360 was being debugged, and now are switching to the child process,
361 from the breakpoint package's viewpoint, that's a switch of
362 "threads". We must update the bp's notion of which thread
363 it is for, or it'll be ignored when it triggers. */
364
365 if (step_resume_breakpoint)
366 breakpoint_re_set_thread (step_resume_breakpoint);
367
368 /* Reinsert all breakpoints in the child. The user may have set
369 breakpoints after catching the fork, in which case those
370 were never set in the child, but only in the parent. This makes
371 sure the inserted breakpoints match the breakpoint list. */
372
373 breakpoint_re_set ();
374 insert_breakpoints ();
375 }
376
377 /* EXECD_PATHNAME is assumed to be non-NULL. */
378
379 static void
380 follow_exec (int pid, char *execd_pathname)
381 {
382 int saved_pid = pid;
383 struct target_ops *tgt;
384
385 if (!may_follow_exec)
386 return;
387
388 /* This is an exec event that we actually wish to pay attention to.
389 Refresh our symbol table to the newly exec'd program, remove any
390 momentary bp's, etc.
391
392 If there are breakpoints, they aren't really inserted now,
393 since the exec() transformed our inferior into a fresh set
394 of instructions.
395
396 We want to preserve symbolic breakpoints on the list, since
397 we have hopes that they can be reset after the new a.out's
398 symbol table is read.
399
400 However, any "raw" breakpoints must be removed from the list
401 (e.g., the solib bp's), since their address is probably invalid
402 now.
403
404 And, we DON'T want to call delete_breakpoints() here, since
405 that may write the bp's "shadow contents" (the instruction
406 value that was overwritten witha TRAP instruction). Since
407 we now have a new a.out, those shadow contents aren't valid. */
408 update_breakpoints_after_exec ();
409
410 /* If there was one, it's gone now. We cannot truly step-to-next
411 statement through an exec(). */
412 step_resume_breakpoint = NULL;
413 step_range_start = 0;
414 step_range_end = 0;
415
416 /* What is this a.out's name? */
417 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
418
419 /* We've followed the inferior through an exec. Therefore, the
420 inferior has essentially been killed & reborn. */
421
422 /* First collect the run target in effect. */
423 tgt = find_run_target ();
424 /* If we can't find one, things are in a very strange state... */
425 if (tgt == NULL)
426 error (_("Could find run target to save before following exec"));
427
428 gdb_flush (gdb_stdout);
429 target_mourn_inferior ();
430 inferior_ptid = pid_to_ptid (saved_pid);
431 /* Because mourn_inferior resets inferior_ptid. */
432 push_target (tgt);
433
434 /* That a.out is now the one to use. */
435 exec_file_attach (execd_pathname, 0);
436
437 /* And also is where symbols can be found. */
438 symbol_file_add_main (execd_pathname, 0);
439
440 /* Reset the shared library package. This ensures that we get
441 a shlib event when the child reaches "_start", at which point
442 the dld will have had a chance to initialize the child. */
443 #if defined(SOLIB_RESTART)
444 SOLIB_RESTART ();
445 #endif
446 #ifdef SOLIB_CREATE_INFERIOR_HOOK
447 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
448 #else
449 solib_create_inferior_hook ();
450 #endif
451
452 /* Reinsert all breakpoints. (Those which were symbolic have
453 been reset to the proper address in the new a.out, thanks
454 to symbol_file_command...) */
455 insert_breakpoints ();
456
457 /* The next resume of this inferior should bring it to the shlib
458 startup breakpoints. (If the user had also set bp's on
459 "main" from the old (parent) process, then they'll auto-
460 matically get reset there in the new process.) */
461 }
462
463 /* Non-zero if we just simulating a single-step. This is needed
464 because we cannot remove the breakpoints in the inferior process
465 until after the `wait' in `wait_for_inferior'. */
466 static int singlestep_breakpoints_inserted_p = 0;
467
468 /* The thread we inserted single-step breakpoints for. */
469 static ptid_t singlestep_ptid;
470
471 /* If another thread hit the singlestep breakpoint, we save the original
472 thread here so that we can resume single-stepping it later. */
473 static ptid_t saved_singlestep_ptid;
474 static int stepping_past_singlestep_breakpoint;
475 \f
476
477 /* Things to clean up if we QUIT out of resume (). */
478 static void
479 resume_cleanups (void *ignore)
480 {
481 normal_stop ();
482 }
483
484 static const char schedlock_off[] = "off";
485 static const char schedlock_on[] = "on";
486 static const char schedlock_step[] = "step";
487 static const char *scheduler_enums[] = {
488 schedlock_off,
489 schedlock_on,
490 schedlock_step,
491 NULL
492 };
493 static const char *scheduler_mode = schedlock_off;
494 static void
495 show_scheduler_mode (struct ui_file *file, int from_tty,
496 struct cmd_list_element *c, const char *value)
497 {
498 fprintf_filtered (file, _("\
499 Mode for locking scheduler during execution is \"%s\".\n"),
500 value);
501 }
502
503 static void
504 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
505 {
506 if (!target_can_lock_scheduler)
507 {
508 scheduler_mode = schedlock_off;
509 error (_("Target '%s' cannot support this command."), target_shortname);
510 }
511 }
512
513
514 /* Resume the inferior, but allow a QUIT. This is useful if the user
515 wants to interrupt some lengthy single-stepping operation
516 (for child processes, the SIGINT goes to the inferior, and so
517 we get a SIGINT random_signal, but for remote debugging and perhaps
518 other targets, that's not true).
519
520 STEP nonzero if we should step (zero to continue instead).
521 SIG is the signal to give the inferior (zero for none). */
522 void
523 resume (int step, enum target_signal sig)
524 {
525 int should_resume = 1;
526 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
527 QUIT;
528
529 if (debug_infrun)
530 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
531 step, sig);
532
533 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
534
535
536 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
537 over an instruction that causes a page fault without triggering
538 a hardware watchpoint. The kernel properly notices that it shouldn't
539 stop, because the hardware watchpoint is not triggered, but it forgets
540 the step request and continues the program normally.
541 Work around the problem by removing hardware watchpoints if a step is
542 requested, GDB will check for a hardware watchpoint trigger after the
543 step anyway. */
544 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
545 remove_hw_watchpoints ();
546
547
548 /* Normally, by the time we reach `resume', the breakpoints are either
549 removed or inserted, as appropriate. The exception is if we're sitting
550 at a permanent breakpoint; we need to step over it, but permanent
551 breakpoints can't be removed. So we have to test for it here. */
552 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
553 SKIP_PERMANENT_BREAKPOINT ();
554
555 if (SOFTWARE_SINGLE_STEP_P () && step)
556 {
557 /* Do it the hard way, w/temp breakpoints */
558 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
559 /* ...and don't ask hardware to do it. */
560 step = 0;
561 /* and do not pull these breakpoints until after a `wait' in
562 `wait_for_inferior' */
563 singlestep_breakpoints_inserted_p = 1;
564 singlestep_ptid = inferior_ptid;
565 }
566
567 /* If there were any forks/vforks/execs that were caught and are
568 now to be followed, then do so. */
569 switch (pending_follow.kind)
570 {
571 case TARGET_WAITKIND_FORKED:
572 case TARGET_WAITKIND_VFORKED:
573 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
574 if (follow_fork ())
575 should_resume = 0;
576 break;
577
578 case TARGET_WAITKIND_EXECD:
579 /* follow_exec is called as soon as the exec event is seen. */
580 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
581 break;
582
583 default:
584 break;
585 }
586
587 /* Install inferior's terminal modes. */
588 target_terminal_inferior ();
589
590 if (should_resume)
591 {
592 ptid_t resume_ptid;
593
594 resume_ptid = RESUME_ALL; /* Default */
595
596 if ((step || singlestep_breakpoints_inserted_p)
597 && (stepping_past_singlestep_breakpoint
598 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
599 {
600 /* Stepping past a breakpoint without inserting breakpoints.
601 Make sure only the current thread gets to step, so that
602 other threads don't sneak past breakpoints while they are
603 not inserted. */
604
605 resume_ptid = inferior_ptid;
606 }
607
608 if ((scheduler_mode == schedlock_on)
609 || (scheduler_mode == schedlock_step
610 && (step || singlestep_breakpoints_inserted_p)))
611 {
612 /* User-settable 'scheduler' mode requires solo thread resume. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if (CANNOT_STEP_BREAKPOINT)
617 {
618 /* Most targets can step a breakpoint instruction, thus
619 executing it normally. But if this one cannot, just
620 continue and we will hit it anyway. */
621 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
622 step = 0;
623 }
624 target_resume (resume_ptid, step, sig);
625 }
626
627 discard_cleanups (old_cleanups);
628 }
629 \f
630
631 /* Clear out all variables saying what to do when inferior is continued.
632 First do this, then set the ones you want, then call `proceed'. */
633
634 void
635 clear_proceed_status (void)
636 {
637 trap_expected = 0;
638 step_range_start = 0;
639 step_range_end = 0;
640 step_frame_id = null_frame_id;
641 step_over_calls = STEP_OVER_UNDEBUGGABLE;
642 stop_after_trap = 0;
643 stop_soon = NO_STOP_QUIETLY;
644 proceed_to_finish = 0;
645 breakpoint_proceeded = 1; /* We're about to proceed... */
646
647 /* Discard any remaining commands or status from previous stop. */
648 bpstat_clear (&stop_bpstat);
649 }
650
651 /* This should be suitable for any targets that support threads. */
652
653 static int
654 prepare_to_proceed (void)
655 {
656 ptid_t wait_ptid;
657 struct target_waitstatus wait_status;
658
659 /* Get the last target status returned by target_wait(). */
660 get_last_target_status (&wait_ptid, &wait_status);
661
662 /* Make sure we were stopped either at a breakpoint, or because
663 of a Ctrl-C. */
664 if (wait_status.kind != TARGET_WAITKIND_STOPPED
665 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
666 && wait_status.value.sig != TARGET_SIGNAL_INT))
667 {
668 return 0;
669 }
670
671 if (!ptid_equal (wait_ptid, minus_one_ptid)
672 && !ptid_equal (inferior_ptid, wait_ptid))
673 {
674 /* Switched over from WAIT_PID. */
675 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
676
677 if (wait_pc != read_pc ())
678 {
679 /* Switch back to WAIT_PID thread. */
680 inferior_ptid = wait_ptid;
681
682 /* FIXME: This stuff came from switch_to_thread() in
683 thread.c (which should probably be a public function). */
684 flush_cached_frames ();
685 registers_changed ();
686 stop_pc = wait_pc;
687 select_frame (get_current_frame ());
688 }
689
690 /* We return 1 to indicate that there is a breakpoint here,
691 so we need to step over it before continuing to avoid
692 hitting it straight away. */
693 if (breakpoint_here_p (wait_pc))
694 return 1;
695 }
696
697 return 0;
698
699 }
700
701 /* Record the pc of the program the last time it stopped. This is
702 just used internally by wait_for_inferior, but need to be preserved
703 over calls to it and cleared when the inferior is started. */
704 static CORE_ADDR prev_pc;
705
706 /* Basic routine for continuing the program in various fashions.
707
708 ADDR is the address to resume at, or -1 for resume where stopped.
709 SIGGNAL is the signal to give it, or 0 for none,
710 or -1 for act according to how it stopped.
711 STEP is nonzero if should trap after one instruction.
712 -1 means return after that and print nothing.
713 You should probably set various step_... variables
714 before calling here, if you are stepping.
715
716 You should call clear_proceed_status before calling proceed. */
717
718 void
719 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
720 {
721 int oneproc = 0;
722
723 if (step > 0)
724 step_start_function = find_pc_function (read_pc ());
725 if (step < 0)
726 stop_after_trap = 1;
727
728 if (addr == (CORE_ADDR) -1)
729 {
730 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
731 /* There is a breakpoint at the address we will resume at,
732 step one instruction before inserting breakpoints so that
733 we do not stop right away (and report a second hit at this
734 breakpoint). */
735 oneproc = 1;
736 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
737 && gdbarch_single_step_through_delay (current_gdbarch,
738 get_current_frame ()))
739 /* We stepped onto an instruction that needs to be stepped
740 again before re-inserting the breakpoint, do so. */
741 oneproc = 1;
742 }
743 else
744 {
745 write_pc (addr);
746 }
747
748 if (debug_infrun)
749 fprintf_unfiltered (gdb_stdlog,
750 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
751 paddr_nz (addr), siggnal, step);
752
753 /* In a multi-threaded task we may select another thread
754 and then continue or step.
755
756 But if the old thread was stopped at a breakpoint, it
757 will immediately cause another breakpoint stop without
758 any execution (i.e. it will report a breakpoint hit
759 incorrectly). So we must step over it first.
760
761 prepare_to_proceed checks the current thread against the thread
762 that reported the most recent event. If a step-over is required
763 it returns TRUE and sets the current thread to the old thread. */
764 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
765 oneproc = 1;
766
767 if (oneproc)
768 /* We will get a trace trap after one instruction.
769 Continue it automatically and insert breakpoints then. */
770 trap_expected = 1;
771 else
772 {
773 insert_breakpoints ();
774 /* If we get here there was no call to error() in
775 insert breakpoints -- so they were inserted. */
776 breakpoints_inserted = 1;
777 }
778
779 if (siggnal != TARGET_SIGNAL_DEFAULT)
780 stop_signal = siggnal;
781 /* If this signal should not be seen by program,
782 give it zero. Used for debugging signals. */
783 else if (!signal_program[stop_signal])
784 stop_signal = TARGET_SIGNAL_0;
785
786 annotate_starting ();
787
788 /* Make sure that output from GDB appears before output from the
789 inferior. */
790 gdb_flush (gdb_stdout);
791
792 /* Refresh prev_pc value just prior to resuming. This used to be
793 done in stop_stepping, however, setting prev_pc there did not handle
794 scenarios such as inferior function calls or returning from
795 a function via the return command. In those cases, the prev_pc
796 value was not set properly for subsequent commands. The prev_pc value
797 is used to initialize the starting line number in the ecs. With an
798 invalid value, the gdb next command ends up stopping at the position
799 represented by the next line table entry past our start position.
800 On platforms that generate one line table entry per line, this
801 is not a problem. However, on the ia64, the compiler generates
802 extraneous line table entries that do not increase the line number.
803 When we issue the gdb next command on the ia64 after an inferior call
804 or a return command, we often end up a few instructions forward, still
805 within the original line we started.
806
807 An attempt was made to have init_execution_control_state () refresh
808 the prev_pc value before calculating the line number. This approach
809 did not work because on platforms that use ptrace, the pc register
810 cannot be read unless the inferior is stopped. At that point, we
811 are not guaranteed the inferior is stopped and so the read_pc ()
812 call can fail. Setting the prev_pc value here ensures the value is
813 updated correctly when the inferior is stopped. */
814 prev_pc = read_pc ();
815
816 /* Resume inferior. */
817 resume (oneproc || step || bpstat_should_step (), stop_signal);
818
819 /* Wait for it to stop (if not standalone)
820 and in any case decode why it stopped, and act accordingly. */
821 /* Do this only if we are not using the event loop, or if the target
822 does not support asynchronous execution. */
823 if (!target_can_async_p ())
824 {
825 wait_for_inferior ();
826 normal_stop ();
827 }
828 }
829 \f
830
831 /* Start remote-debugging of a machine over a serial link. */
832
833 void
834 start_remote (void)
835 {
836 init_thread_list ();
837 init_wait_for_inferior ();
838 stop_soon = STOP_QUIETLY;
839 trap_expected = 0;
840
841 /* Always go on waiting for the target, regardless of the mode. */
842 /* FIXME: cagney/1999-09-23: At present it isn't possible to
843 indicate to wait_for_inferior that a target should timeout if
844 nothing is returned (instead of just blocking). Because of this,
845 targets expecting an immediate response need to, internally, set
846 things up so that the target_wait() is forced to eventually
847 timeout. */
848 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
849 differentiate to its caller what the state of the target is after
850 the initial open has been performed. Here we're assuming that
851 the target has stopped. It should be possible to eventually have
852 target_open() return to the caller an indication that the target
853 is currently running and GDB state should be set to the same as
854 for an async run. */
855 wait_for_inferior ();
856 normal_stop ();
857 }
858
859 /* Initialize static vars when a new inferior begins. */
860
861 void
862 init_wait_for_inferior (void)
863 {
864 /* These are meaningless until the first time through wait_for_inferior. */
865 prev_pc = 0;
866
867 breakpoints_inserted = 0;
868 breakpoint_init_inferior (inf_starting);
869
870 /* Don't confuse first call to proceed(). */
871 stop_signal = TARGET_SIGNAL_0;
872
873 /* The first resume is not following a fork/vfork/exec. */
874 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
875
876 clear_proceed_status ();
877
878 stepping_past_singlestep_breakpoint = 0;
879 }
880 \f
881 /* This enum encodes possible reasons for doing a target_wait, so that
882 wfi can call target_wait in one place. (Ultimately the call will be
883 moved out of the infinite loop entirely.) */
884
885 enum infwait_states
886 {
887 infwait_normal_state,
888 infwait_thread_hop_state,
889 infwait_nonstep_watch_state
890 };
891
892 /* Why did the inferior stop? Used to print the appropriate messages
893 to the interface from within handle_inferior_event(). */
894 enum inferior_stop_reason
895 {
896 /* We don't know why. */
897 STOP_UNKNOWN,
898 /* Step, next, nexti, stepi finished. */
899 END_STEPPING_RANGE,
900 /* Found breakpoint. */
901 BREAKPOINT_HIT,
902 /* Inferior terminated by signal. */
903 SIGNAL_EXITED,
904 /* Inferior exited. */
905 EXITED,
906 /* Inferior received signal, and user asked to be notified. */
907 SIGNAL_RECEIVED
908 };
909
910 /* This structure contains what used to be local variables in
911 wait_for_inferior. Probably many of them can return to being
912 locals in handle_inferior_event. */
913
914 struct execution_control_state
915 {
916 struct target_waitstatus ws;
917 struct target_waitstatus *wp;
918 int another_trap;
919 int random_signal;
920 CORE_ADDR stop_func_start;
921 CORE_ADDR stop_func_end;
922 char *stop_func_name;
923 struct symtab_and_line sal;
924 int current_line;
925 struct symtab *current_symtab;
926 int handling_longjmp; /* FIXME */
927 ptid_t ptid;
928 ptid_t saved_inferior_ptid;
929 int step_after_step_resume_breakpoint;
930 int stepping_through_solib_after_catch;
931 bpstat stepping_through_solib_catchpoints;
932 int new_thread_event;
933 struct target_waitstatus tmpstatus;
934 enum infwait_states infwait_state;
935 ptid_t waiton_ptid;
936 int wait_some_more;
937 };
938
939 void init_execution_control_state (struct execution_control_state *ecs);
940
941 void handle_inferior_event (struct execution_control_state *ecs);
942
943 static void step_into_function (struct execution_control_state *ecs);
944 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
945 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
946 struct frame_id sr_id);
947 static void stop_stepping (struct execution_control_state *ecs);
948 static void prepare_to_wait (struct execution_control_state *ecs);
949 static void keep_going (struct execution_control_state *ecs);
950 static void print_stop_reason (enum inferior_stop_reason stop_reason,
951 int stop_info);
952
953 /* Wait for control to return from inferior to debugger.
954 If inferior gets a signal, we may decide to start it up again
955 instead of returning. That is why there is a loop in this function.
956 When this function actually returns it means the inferior
957 should be left stopped and GDB should read more commands. */
958
959 void
960 wait_for_inferior (void)
961 {
962 struct cleanup *old_cleanups;
963 struct execution_control_state ecss;
964 struct execution_control_state *ecs;
965
966 if (debug_infrun)
967 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
968
969 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
970 &step_resume_breakpoint);
971
972 /* wfi still stays in a loop, so it's OK just to take the address of
973 a local to get the ecs pointer. */
974 ecs = &ecss;
975
976 /* Fill in with reasonable starting values. */
977 init_execution_control_state (ecs);
978
979 /* We'll update this if & when we switch to a new thread. */
980 previous_inferior_ptid = inferior_ptid;
981
982 overlay_cache_invalid = 1;
983
984 /* We have to invalidate the registers BEFORE calling target_wait
985 because they can be loaded from the target while in target_wait.
986 This makes remote debugging a bit more efficient for those
987 targets that provide critical registers as part of their normal
988 status mechanism. */
989
990 registers_changed ();
991
992 while (1)
993 {
994 if (deprecated_target_wait_hook)
995 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
996 else
997 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
998
999 /* Now figure out what to do with the result of the result. */
1000 handle_inferior_event (ecs);
1001
1002 if (!ecs->wait_some_more)
1003 break;
1004 }
1005 do_cleanups (old_cleanups);
1006 }
1007
1008 /* Asynchronous version of wait_for_inferior. It is called by the
1009 event loop whenever a change of state is detected on the file
1010 descriptor corresponding to the target. It can be called more than
1011 once to complete a single execution command. In such cases we need
1012 to keep the state in a global variable ASYNC_ECSS. If it is the
1013 last time that this function is called for a single execution
1014 command, then report to the user that the inferior has stopped, and
1015 do the necessary cleanups. */
1016
1017 struct execution_control_state async_ecss;
1018 struct execution_control_state *async_ecs;
1019
1020 void
1021 fetch_inferior_event (void *client_data)
1022 {
1023 static struct cleanup *old_cleanups;
1024
1025 async_ecs = &async_ecss;
1026
1027 if (!async_ecs->wait_some_more)
1028 {
1029 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1030 &step_resume_breakpoint);
1031
1032 /* Fill in with reasonable starting values. */
1033 init_execution_control_state (async_ecs);
1034
1035 /* We'll update this if & when we switch to a new thread. */
1036 previous_inferior_ptid = inferior_ptid;
1037
1038 overlay_cache_invalid = 1;
1039
1040 /* We have to invalidate the registers BEFORE calling target_wait
1041 because they can be loaded from the target while in target_wait.
1042 This makes remote debugging a bit more efficient for those
1043 targets that provide critical registers as part of their normal
1044 status mechanism. */
1045
1046 registers_changed ();
1047 }
1048
1049 if (deprecated_target_wait_hook)
1050 async_ecs->ptid =
1051 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1052 else
1053 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1054
1055 /* Now figure out what to do with the result of the result. */
1056 handle_inferior_event (async_ecs);
1057
1058 if (!async_ecs->wait_some_more)
1059 {
1060 /* Do only the cleanups that have been added by this
1061 function. Let the continuations for the commands do the rest,
1062 if there are any. */
1063 do_exec_cleanups (old_cleanups);
1064 normal_stop ();
1065 if (step_multi && stop_step)
1066 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1067 else
1068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1069 }
1070 }
1071
1072 /* Prepare an execution control state for looping through a
1073 wait_for_inferior-type loop. */
1074
1075 void
1076 init_execution_control_state (struct execution_control_state *ecs)
1077 {
1078 /* ecs->another_trap? */
1079 ecs->random_signal = 0;
1080 ecs->step_after_step_resume_breakpoint = 0;
1081 ecs->handling_longjmp = 0; /* FIXME */
1082 ecs->stepping_through_solib_after_catch = 0;
1083 ecs->stepping_through_solib_catchpoints = NULL;
1084 ecs->sal = find_pc_line (prev_pc, 0);
1085 ecs->current_line = ecs->sal.line;
1086 ecs->current_symtab = ecs->sal.symtab;
1087 ecs->infwait_state = infwait_normal_state;
1088 ecs->waiton_ptid = pid_to_ptid (-1);
1089 ecs->wp = &(ecs->ws);
1090 }
1091
1092 /* Return the cached copy of the last pid/waitstatus returned by
1093 target_wait()/deprecated_target_wait_hook(). The data is actually
1094 cached by handle_inferior_event(), which gets called immediately
1095 after target_wait()/deprecated_target_wait_hook(). */
1096
1097 void
1098 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1099 {
1100 *ptidp = target_last_wait_ptid;
1101 *status = target_last_waitstatus;
1102 }
1103
1104 /* Switch thread contexts, maintaining "infrun state". */
1105
1106 static void
1107 context_switch (struct execution_control_state *ecs)
1108 {
1109 /* Caution: it may happen that the new thread (or the old one!)
1110 is not in the thread list. In this case we must not attempt
1111 to "switch context", or we run the risk that our context may
1112 be lost. This may happen as a result of the target module
1113 mishandling thread creation. */
1114
1115 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1116 { /* Perform infrun state context switch: */
1117 /* Save infrun state for the old thread. */
1118 save_infrun_state (inferior_ptid, prev_pc,
1119 trap_expected, step_resume_breakpoint,
1120 step_range_start,
1121 step_range_end, &step_frame_id,
1122 ecs->handling_longjmp, ecs->another_trap,
1123 ecs->stepping_through_solib_after_catch,
1124 ecs->stepping_through_solib_catchpoints,
1125 ecs->current_line, ecs->current_symtab);
1126
1127 /* Load infrun state for the new thread. */
1128 load_infrun_state (ecs->ptid, &prev_pc,
1129 &trap_expected, &step_resume_breakpoint,
1130 &step_range_start,
1131 &step_range_end, &step_frame_id,
1132 &ecs->handling_longjmp, &ecs->another_trap,
1133 &ecs->stepping_through_solib_after_catch,
1134 &ecs->stepping_through_solib_catchpoints,
1135 &ecs->current_line, &ecs->current_symtab);
1136 }
1137 inferior_ptid = ecs->ptid;
1138 }
1139
1140 static void
1141 adjust_pc_after_break (struct execution_control_state *ecs)
1142 {
1143 CORE_ADDR breakpoint_pc;
1144
1145 /* If this target does not decrement the PC after breakpoints, then
1146 we have nothing to do. */
1147 if (DECR_PC_AFTER_BREAK == 0)
1148 return;
1149
1150 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1151 we aren't, just return.
1152
1153 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1154 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1155 by software breakpoints should be handled through the normal breakpoint
1156 layer.
1157
1158 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1159 different signals (SIGILL or SIGEMT for instance), but it is less
1160 clear where the PC is pointing afterwards. It may not match
1161 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1162 these signals at breakpoints (the code has been in GDB since at least
1163 1992) so I can not guess how to handle them here.
1164
1165 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1166 would have the PC after hitting a watchpoint affected by
1167 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1168 in GDB history, and it seems unlikely to be correct, so
1169 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1170
1171 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1172 return;
1173
1174 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1175 return;
1176
1177 /* Find the location where (if we've hit a breakpoint) the
1178 breakpoint would be. */
1179 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1180
1181 if (SOFTWARE_SINGLE_STEP_P ())
1182 {
1183 /* When using software single-step, a SIGTRAP can only indicate
1184 an inserted breakpoint. This actually makes things
1185 easier. */
1186 if (singlestep_breakpoints_inserted_p)
1187 /* When software single stepping, the instruction at [prev_pc]
1188 is never a breakpoint, but the instruction following
1189 [prev_pc] (in program execution order) always is. Assume
1190 that following instruction was reached and hence a software
1191 breakpoint was hit. */
1192 write_pc_pid (breakpoint_pc, ecs->ptid);
1193 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no single-step
1195 breakpoints inserted) and it hit a software breakpoint. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 }
1198 else
1199 {
1200 /* When using hardware single-step, a SIGTRAP is reported for
1201 both a completed single-step and a software breakpoint. Need
1202 to differentiate between the two as the latter needs
1203 adjusting but the former does not. */
1204 if (currently_stepping (ecs))
1205 {
1206 if (prev_pc == breakpoint_pc
1207 && software_breakpoint_inserted_here_p (breakpoint_pc))
1208 /* Hardware single-stepped a software breakpoint (as
1209 occures when the inferior is resumed with PC pointing
1210 at not-yet-hit software breakpoint). Since the
1211 breakpoint really is executed, the inferior needs to be
1212 backed up to the breakpoint address. */
1213 write_pc_pid (breakpoint_pc, ecs->ptid);
1214 }
1215 else
1216 {
1217 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1218 /* The inferior was free running (i.e., no hardware
1219 single-step and no possibility of a false SIGTRAP) and
1220 hit a software breakpoint. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 }
1224 }
1225
1226 /* Given an execution control state that has been freshly filled in
1227 by an event from the inferior, figure out what it means and take
1228 appropriate action. */
1229
1230 int stepped_after_stopped_by_watchpoint;
1231
1232 void
1233 handle_inferior_event (struct execution_control_state *ecs)
1234 {
1235 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1236 that the variable stepped_after_stopped_by_watchpoint isn't used,
1237 then you're wrong! See remote.c:remote_stopped_data_address. */
1238
1239 int sw_single_step_trap_p = 0;
1240 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1241
1242 /* Cache the last pid/waitstatus. */
1243 target_last_wait_ptid = ecs->ptid;
1244 target_last_waitstatus = *ecs->wp;
1245
1246 adjust_pc_after_break (ecs);
1247
1248 switch (ecs->infwait_state)
1249 {
1250 case infwait_thread_hop_state:
1251 if (debug_infrun)
1252 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1253 /* Cancel the waiton_ptid. */
1254 ecs->waiton_ptid = pid_to_ptid (-1);
1255 break;
1256
1257 case infwait_normal_state:
1258 if (debug_infrun)
1259 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1260 stepped_after_stopped_by_watchpoint = 0;
1261 break;
1262
1263 case infwait_nonstep_watch_state:
1264 if (debug_infrun)
1265 fprintf_unfiltered (gdb_stdlog,
1266 "infrun: infwait_nonstep_watch_state\n");
1267 insert_breakpoints ();
1268
1269 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1270 handle things like signals arriving and other things happening
1271 in combination correctly? */
1272 stepped_after_stopped_by_watchpoint = 1;
1273 break;
1274
1275 default:
1276 internal_error (__FILE__, __LINE__, _("bad switch"));
1277 }
1278 ecs->infwait_state = infwait_normal_state;
1279
1280 flush_cached_frames ();
1281
1282 /* If it's a new process, add it to the thread database */
1283
1284 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1285 && !ptid_equal (ecs->ptid, minus_one_ptid)
1286 && !in_thread_list (ecs->ptid));
1287
1288 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1289 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1290 {
1291 add_thread (ecs->ptid);
1292
1293 ui_out_text (uiout, "[New ");
1294 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1295 ui_out_text (uiout, "]\n");
1296 }
1297
1298 switch (ecs->ws.kind)
1299 {
1300 case TARGET_WAITKIND_LOADED:
1301 if (debug_infrun)
1302 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1303 /* Ignore gracefully during startup of the inferior, as it
1304 might be the shell which has just loaded some objects,
1305 otherwise add the symbols for the newly loaded objects. */
1306 #ifdef SOLIB_ADD
1307 if (stop_soon == NO_STOP_QUIETLY)
1308 {
1309 /* Remove breakpoints, SOLIB_ADD might adjust
1310 breakpoint addresses via breakpoint_re_set. */
1311 if (breakpoints_inserted)
1312 remove_breakpoints ();
1313
1314 /* Check for any newly added shared libraries if we're
1315 supposed to be adding them automatically. Switch
1316 terminal for any messages produced by
1317 breakpoint_re_set. */
1318 target_terminal_ours_for_output ();
1319 /* NOTE: cagney/2003-11-25: Make certain that the target
1320 stack's section table is kept up-to-date. Architectures,
1321 (e.g., PPC64), use the section table to perform
1322 operations such as address => section name and hence
1323 require the table to contain all sections (including
1324 those found in shared libraries). */
1325 /* NOTE: cagney/2003-11-25: Pass current_target and not
1326 exec_ops to SOLIB_ADD. This is because current GDB is
1327 only tooled to propagate section_table changes out from
1328 the "current_target" (see target_resize_to_sections), and
1329 not up from the exec stratum. This, of course, isn't
1330 right. "infrun.c" should only interact with the
1331 exec/process stratum, instead relying on the target stack
1332 to propagate relevant changes (stop, section table
1333 changed, ...) up to other layers. */
1334 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1335 target_terminal_inferior ();
1336
1337 /* Reinsert breakpoints and continue. */
1338 if (breakpoints_inserted)
1339 insert_breakpoints ();
1340 }
1341 #endif
1342 resume (0, TARGET_SIGNAL_0);
1343 prepare_to_wait (ecs);
1344 return;
1345
1346 case TARGET_WAITKIND_SPURIOUS:
1347 if (debug_infrun)
1348 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1349 resume (0, TARGET_SIGNAL_0);
1350 prepare_to_wait (ecs);
1351 return;
1352
1353 case TARGET_WAITKIND_EXITED:
1354 if (debug_infrun)
1355 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1356 target_terminal_ours (); /* Must do this before mourn anyway */
1357 print_stop_reason (EXITED, ecs->ws.value.integer);
1358
1359 /* Record the exit code in the convenience variable $_exitcode, so
1360 that the user can inspect this again later. */
1361 set_internalvar (lookup_internalvar ("_exitcode"),
1362 value_from_longest (builtin_type_int,
1363 (LONGEST) ecs->ws.value.integer));
1364 gdb_flush (gdb_stdout);
1365 target_mourn_inferior ();
1366 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1367 stop_print_frame = 0;
1368 stop_stepping (ecs);
1369 return;
1370
1371 case TARGET_WAITKIND_SIGNALLED:
1372 if (debug_infrun)
1373 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1374 stop_print_frame = 0;
1375 stop_signal = ecs->ws.value.sig;
1376 target_terminal_ours (); /* Must do this before mourn anyway */
1377
1378 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1379 reach here unless the inferior is dead. However, for years
1380 target_kill() was called here, which hints that fatal signals aren't
1381 really fatal on some systems. If that's true, then some changes
1382 may be needed. */
1383 target_mourn_inferior ();
1384
1385 print_stop_reason (SIGNAL_EXITED, stop_signal);
1386 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1387 stop_stepping (ecs);
1388 return;
1389
1390 /* The following are the only cases in which we keep going;
1391 the above cases end in a continue or goto. */
1392 case TARGET_WAITKIND_FORKED:
1393 case TARGET_WAITKIND_VFORKED:
1394 if (debug_infrun)
1395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1396 stop_signal = TARGET_SIGNAL_TRAP;
1397 pending_follow.kind = ecs->ws.kind;
1398
1399 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1400 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1401
1402 stop_pc = read_pc ();
1403
1404 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1405
1406 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1407
1408 /* If no catchpoint triggered for this, then keep going. */
1409 if (ecs->random_signal)
1410 {
1411 stop_signal = TARGET_SIGNAL_0;
1412 keep_going (ecs);
1413 return;
1414 }
1415 goto process_event_stop_test;
1416
1417 case TARGET_WAITKIND_EXECD:
1418 if (debug_infrun)
1419 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1420 stop_signal = TARGET_SIGNAL_TRAP;
1421
1422 /* NOTE drow/2002-12-05: This code should be pushed down into the
1423 target_wait function. Until then following vfork on HP/UX 10.20
1424 is probably broken by this. Of course, it's broken anyway. */
1425 /* Is this a target which reports multiple exec events per actual
1426 call to exec()? (HP-UX using ptrace does, for example.) If so,
1427 ignore all but the last one. Just resume the exec'r, and wait
1428 for the next exec event. */
1429 if (inferior_ignoring_leading_exec_events)
1430 {
1431 inferior_ignoring_leading_exec_events--;
1432 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1433 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1434 parent_pid);
1435 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1436 prepare_to_wait (ecs);
1437 return;
1438 }
1439 inferior_ignoring_leading_exec_events =
1440 target_reported_exec_events_per_exec_call () - 1;
1441
1442 pending_follow.execd_pathname =
1443 savestring (ecs->ws.value.execd_pathname,
1444 strlen (ecs->ws.value.execd_pathname));
1445
1446 /* This causes the eventpoints and symbol table to be reset. Must
1447 do this now, before trying to determine whether to stop. */
1448 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1449 xfree (pending_follow.execd_pathname);
1450
1451 stop_pc = read_pc_pid (ecs->ptid);
1452 ecs->saved_inferior_ptid = inferior_ptid;
1453 inferior_ptid = ecs->ptid;
1454
1455 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1456
1457 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1458 inferior_ptid = ecs->saved_inferior_ptid;
1459
1460 /* If no catchpoint triggered for this, then keep going. */
1461 if (ecs->random_signal)
1462 {
1463 stop_signal = TARGET_SIGNAL_0;
1464 keep_going (ecs);
1465 return;
1466 }
1467 goto process_event_stop_test;
1468
1469 /* Be careful not to try to gather much state about a thread
1470 that's in a syscall. It's frequently a losing proposition. */
1471 case TARGET_WAITKIND_SYSCALL_ENTRY:
1472 if (debug_infrun)
1473 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1474 resume (0, TARGET_SIGNAL_0);
1475 prepare_to_wait (ecs);
1476 return;
1477
1478 /* Before examining the threads further, step this thread to
1479 get it entirely out of the syscall. (We get notice of the
1480 event when the thread is just on the verge of exiting a
1481 syscall. Stepping one instruction seems to get it back
1482 into user code.) */
1483 case TARGET_WAITKIND_SYSCALL_RETURN:
1484 if (debug_infrun)
1485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1486 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1487 prepare_to_wait (ecs);
1488 return;
1489
1490 case TARGET_WAITKIND_STOPPED:
1491 if (debug_infrun)
1492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1493 stop_signal = ecs->ws.value.sig;
1494 break;
1495
1496 /* We had an event in the inferior, but we are not interested
1497 in handling it at this level. The lower layers have already
1498 done what needs to be done, if anything.
1499
1500 One of the possible circumstances for this is when the
1501 inferior produces output for the console. The inferior has
1502 not stopped, and we are ignoring the event. Another possible
1503 circumstance is any event which the lower level knows will be
1504 reported multiple times without an intervening resume. */
1505 case TARGET_WAITKIND_IGNORE:
1506 if (debug_infrun)
1507 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1508 prepare_to_wait (ecs);
1509 return;
1510 }
1511
1512 /* We may want to consider not doing a resume here in order to give
1513 the user a chance to play with the new thread. It might be good
1514 to make that a user-settable option. */
1515
1516 /* At this point, all threads are stopped (happens automatically in
1517 either the OS or the native code). Therefore we need to continue
1518 all threads in order to make progress. */
1519 if (ecs->new_thread_event)
1520 {
1521 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1522 prepare_to_wait (ecs);
1523 return;
1524 }
1525
1526 stop_pc = read_pc_pid (ecs->ptid);
1527
1528 if (debug_infrun)
1529 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1530
1531 if (stepping_past_singlestep_breakpoint)
1532 {
1533 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1534 && singlestep_breakpoints_inserted_p);
1535 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1536 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1537
1538 stepping_past_singlestep_breakpoint = 0;
1539
1540 /* We've either finished single-stepping past the single-step
1541 breakpoint, or stopped for some other reason. It would be nice if
1542 we could tell, but we can't reliably. */
1543 if (stop_signal == TARGET_SIGNAL_TRAP)
1544 {
1545 if (debug_infrun)
1546 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1547 /* Pull the single step breakpoints out of the target. */
1548 SOFTWARE_SINGLE_STEP (0, 0);
1549 singlestep_breakpoints_inserted_p = 0;
1550
1551 ecs->random_signal = 0;
1552
1553 ecs->ptid = saved_singlestep_ptid;
1554 context_switch (ecs);
1555 if (deprecated_context_hook)
1556 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1557
1558 resume (1, TARGET_SIGNAL_0);
1559 prepare_to_wait (ecs);
1560 return;
1561 }
1562 }
1563
1564 stepping_past_singlestep_breakpoint = 0;
1565
1566 /* See if a thread hit a thread-specific breakpoint that was meant for
1567 another thread. If so, then step that thread past the breakpoint,
1568 and continue it. */
1569
1570 if (stop_signal == TARGET_SIGNAL_TRAP)
1571 {
1572 int thread_hop_needed = 0;
1573
1574 /* Check if a regular breakpoint has been hit before checking
1575 for a potential single step breakpoint. Otherwise, GDB will
1576 not see this breakpoint hit when stepping onto breakpoints. */
1577 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1578 {
1579 ecs->random_signal = 0;
1580 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1581 thread_hop_needed = 1;
1582 }
1583 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1584 {
1585 ecs->random_signal = 0;
1586 /* The call to in_thread_list is necessary because PTIDs sometimes
1587 change when we go from single-threaded to multi-threaded. If
1588 the singlestep_ptid is still in the list, assume that it is
1589 really different from ecs->ptid. */
1590 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1591 && in_thread_list (singlestep_ptid))
1592 {
1593 thread_hop_needed = 1;
1594 stepping_past_singlestep_breakpoint = 1;
1595 saved_singlestep_ptid = singlestep_ptid;
1596 }
1597 }
1598
1599 if (thread_hop_needed)
1600 {
1601 int remove_status;
1602
1603 if (debug_infrun)
1604 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1605
1606 /* Saw a breakpoint, but it was hit by the wrong thread.
1607 Just continue. */
1608
1609 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1610 {
1611 /* Pull the single step breakpoints out of the target. */
1612 SOFTWARE_SINGLE_STEP (0, 0);
1613 singlestep_breakpoints_inserted_p = 0;
1614 }
1615
1616 remove_status = remove_breakpoints ();
1617 /* Did we fail to remove breakpoints? If so, try
1618 to set the PC past the bp. (There's at least
1619 one situation in which we can fail to remove
1620 the bp's: On HP-UX's that use ttrace, we can't
1621 change the address space of a vforking child
1622 process until the child exits (well, okay, not
1623 then either :-) or execs. */
1624 if (remove_status != 0)
1625 {
1626 /* FIXME! This is obviously non-portable! */
1627 write_pc_pid (stop_pc + 4, ecs->ptid);
1628 /* We need to restart all the threads now,
1629 * unles we're running in scheduler-locked mode.
1630 * Use currently_stepping to determine whether to
1631 * step or continue.
1632 */
1633 /* FIXME MVS: is there any reason not to call resume()? */
1634 if (scheduler_mode == schedlock_on)
1635 target_resume (ecs->ptid,
1636 currently_stepping (ecs), TARGET_SIGNAL_0);
1637 else
1638 target_resume (RESUME_ALL,
1639 currently_stepping (ecs), TARGET_SIGNAL_0);
1640 prepare_to_wait (ecs);
1641 return;
1642 }
1643 else
1644 { /* Single step */
1645 breakpoints_inserted = 0;
1646 if (!ptid_equal (inferior_ptid, ecs->ptid))
1647 context_switch (ecs);
1648 ecs->waiton_ptid = ecs->ptid;
1649 ecs->wp = &(ecs->ws);
1650 ecs->another_trap = 1;
1651
1652 ecs->infwait_state = infwait_thread_hop_state;
1653 keep_going (ecs);
1654 registers_changed ();
1655 return;
1656 }
1657 }
1658 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1659 {
1660 sw_single_step_trap_p = 1;
1661 ecs->random_signal = 0;
1662 }
1663 }
1664 else
1665 ecs->random_signal = 1;
1666
1667 /* See if something interesting happened to the non-current thread. If
1668 so, then switch to that thread. */
1669 if (!ptid_equal (ecs->ptid, inferior_ptid))
1670 {
1671 if (debug_infrun)
1672 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1673
1674 context_switch (ecs);
1675
1676 if (deprecated_context_hook)
1677 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1678
1679 flush_cached_frames ();
1680 }
1681
1682 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1683 {
1684 /* Pull the single step breakpoints out of the target. */
1685 SOFTWARE_SINGLE_STEP (0, 0);
1686 singlestep_breakpoints_inserted_p = 0;
1687 }
1688
1689 /* It may not be necessary to disable the watchpoint to stop over
1690 it. For example, the PA can (with some kernel cooperation)
1691 single step over a watchpoint without disabling the watchpoint. */
1692 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1693 {
1694 if (debug_infrun)
1695 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1696 resume (1, 0);
1697 prepare_to_wait (ecs);
1698 return;
1699 }
1700
1701 /* It is far more common to need to disable a watchpoint to step
1702 the inferior over it. FIXME. What else might a debug
1703 register or page protection watchpoint scheme need here? */
1704 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1705 {
1706 /* At this point, we are stopped at an instruction which has
1707 attempted to write to a piece of memory under control of
1708 a watchpoint. The instruction hasn't actually executed
1709 yet. If we were to evaluate the watchpoint expression
1710 now, we would get the old value, and therefore no change
1711 would seem to have occurred.
1712
1713 In order to make watchpoints work `right', we really need
1714 to complete the memory write, and then evaluate the
1715 watchpoint expression. The following code does that by
1716 removing the watchpoint (actually, all watchpoints and
1717 breakpoints), single-stepping the target, re-inserting
1718 watchpoints, and then falling through to let normal
1719 single-step processing handle proceed. Since this
1720 includes evaluating watchpoints, things will come to a
1721 stop in the correct manner. */
1722
1723 if (debug_infrun)
1724 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1725 remove_breakpoints ();
1726 registers_changed ();
1727 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1728
1729 ecs->waiton_ptid = ecs->ptid;
1730 ecs->wp = &(ecs->ws);
1731 ecs->infwait_state = infwait_nonstep_watch_state;
1732 prepare_to_wait (ecs);
1733 return;
1734 }
1735
1736 /* It may be possible to simply continue after a watchpoint. */
1737 if (HAVE_CONTINUABLE_WATCHPOINT)
1738 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1739
1740 ecs->stop_func_start = 0;
1741 ecs->stop_func_end = 0;
1742 ecs->stop_func_name = 0;
1743 /* Don't care about return value; stop_func_start and stop_func_name
1744 will both be 0 if it doesn't work. */
1745 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1746 &ecs->stop_func_start, &ecs->stop_func_end);
1747 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1748 ecs->another_trap = 0;
1749 bpstat_clear (&stop_bpstat);
1750 stop_step = 0;
1751 stop_stack_dummy = 0;
1752 stop_print_frame = 1;
1753 ecs->random_signal = 0;
1754 stopped_by_random_signal = 0;
1755 breakpoints_failed = 0;
1756
1757 if (stop_signal == TARGET_SIGNAL_TRAP
1758 && trap_expected
1759 && gdbarch_single_step_through_delay_p (current_gdbarch)
1760 && currently_stepping (ecs))
1761 {
1762 /* We're trying to step of a breakpoint. Turns out that we're
1763 also on an instruction that needs to be stepped multiple
1764 times before it's been fully executing. E.g., architectures
1765 with a delay slot. It needs to be stepped twice, once for
1766 the instruction and once for the delay slot. */
1767 int step_through_delay
1768 = gdbarch_single_step_through_delay (current_gdbarch,
1769 get_current_frame ());
1770 if (debug_infrun && step_through_delay)
1771 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1772 if (step_range_end == 0 && step_through_delay)
1773 {
1774 /* The user issued a continue when stopped at a breakpoint.
1775 Set up for another trap and get out of here. */
1776 ecs->another_trap = 1;
1777 keep_going (ecs);
1778 return;
1779 }
1780 else if (step_through_delay)
1781 {
1782 /* The user issued a step when stopped at a breakpoint.
1783 Maybe we should stop, maybe we should not - the delay
1784 slot *might* correspond to a line of source. In any
1785 case, don't decide that here, just set ecs->another_trap,
1786 making sure we single-step again before breakpoints are
1787 re-inserted. */
1788 ecs->another_trap = 1;
1789 }
1790 }
1791
1792 /* Look at the cause of the stop, and decide what to do.
1793 The alternatives are:
1794 1) break; to really stop and return to the debugger,
1795 2) drop through to start up again
1796 (set ecs->another_trap to 1 to single step once)
1797 3) set ecs->random_signal to 1, and the decision between 1 and 2
1798 will be made according to the signal handling tables. */
1799
1800 /* First, distinguish signals caused by the debugger from signals
1801 that have to do with the program's own actions. Note that
1802 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1803 on the operating system version. Here we detect when a SIGILL or
1804 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1805 something similar for SIGSEGV, since a SIGSEGV will be generated
1806 when we're trying to execute a breakpoint instruction on a
1807 non-executable stack. This happens for call dummy breakpoints
1808 for architectures like SPARC that place call dummies on the
1809 stack. */
1810
1811 if (stop_signal == TARGET_SIGNAL_TRAP
1812 || (breakpoints_inserted
1813 && (stop_signal == TARGET_SIGNAL_ILL
1814 || stop_signal == TARGET_SIGNAL_SEGV
1815 || stop_signal == TARGET_SIGNAL_EMT))
1816 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1817 {
1818 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1819 {
1820 if (debug_infrun)
1821 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1822 stop_print_frame = 0;
1823 stop_stepping (ecs);
1824 return;
1825 }
1826
1827 /* This is originated from start_remote(), start_inferior() and
1828 shared libraries hook functions. */
1829 if (stop_soon == STOP_QUIETLY)
1830 {
1831 if (debug_infrun)
1832 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1833 stop_stepping (ecs);
1834 return;
1835 }
1836
1837 /* This originates from attach_command(). We need to overwrite
1838 the stop_signal here, because some kernels don't ignore a
1839 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1840 See more comments in inferior.h. */
1841 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1842 {
1843 stop_stepping (ecs);
1844 if (stop_signal == TARGET_SIGNAL_STOP)
1845 stop_signal = TARGET_SIGNAL_0;
1846 return;
1847 }
1848
1849 /* Don't even think about breakpoints if just proceeded over a
1850 breakpoint. */
1851 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1852 {
1853 if (debug_infrun)
1854 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1855 bpstat_clear (&stop_bpstat);
1856 }
1857 else
1858 {
1859 /* See if there is a breakpoint at the current PC. */
1860 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1861 stopped_by_watchpoint);
1862
1863 /* Following in case break condition called a
1864 function. */
1865 stop_print_frame = 1;
1866 }
1867
1868 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1869 at one stage in the past included checks for an inferior
1870 function call's call dummy's return breakpoint. The original
1871 comment, that went with the test, read:
1872
1873 ``End of a stack dummy. Some systems (e.g. Sony news) give
1874 another signal besides SIGTRAP, so check here as well as
1875 above.''
1876
1877 If someone ever tries to get get call dummys on a
1878 non-executable stack to work (where the target would stop
1879 with something like a SIGSEGV), then those tests might need
1880 to be re-instated. Given, however, that the tests were only
1881 enabled when momentary breakpoints were not being used, I
1882 suspect that it won't be the case.
1883
1884 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1885 be necessary for call dummies on a non-executable stack on
1886 SPARC. */
1887
1888 if (stop_signal == TARGET_SIGNAL_TRAP)
1889 ecs->random_signal
1890 = !(bpstat_explains_signal (stop_bpstat)
1891 || trap_expected
1892 || (step_range_end && step_resume_breakpoint == NULL));
1893 else
1894 {
1895 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1896 if (!ecs->random_signal)
1897 stop_signal = TARGET_SIGNAL_TRAP;
1898 }
1899 }
1900
1901 /* When we reach this point, we've pretty much decided
1902 that the reason for stopping must've been a random
1903 (unexpected) signal. */
1904
1905 else
1906 ecs->random_signal = 1;
1907
1908 process_event_stop_test:
1909 /* For the program's own signals, act according to
1910 the signal handling tables. */
1911
1912 if (ecs->random_signal)
1913 {
1914 /* Signal not for debugging purposes. */
1915 int printed = 0;
1916
1917 if (debug_infrun)
1918 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1919
1920 stopped_by_random_signal = 1;
1921
1922 if (signal_print[stop_signal])
1923 {
1924 printed = 1;
1925 target_terminal_ours_for_output ();
1926 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1927 }
1928 if (signal_stop[stop_signal])
1929 {
1930 stop_stepping (ecs);
1931 return;
1932 }
1933 /* If not going to stop, give terminal back
1934 if we took it away. */
1935 else if (printed)
1936 target_terminal_inferior ();
1937
1938 /* Clear the signal if it should not be passed. */
1939 if (signal_program[stop_signal] == 0)
1940 stop_signal = TARGET_SIGNAL_0;
1941
1942 if (prev_pc == read_pc ()
1943 && !breakpoints_inserted
1944 && breakpoint_here_p (read_pc ())
1945 && step_resume_breakpoint == NULL)
1946 {
1947 /* We were just starting a new sequence, attempting to
1948 single-step off of a breakpoint and expecting a SIGTRAP.
1949 Intead this signal arrives. This signal will take us out
1950 of the stepping range so GDB needs to remember to, when
1951 the signal handler returns, resume stepping off that
1952 breakpoint. */
1953 /* To simplify things, "continue" is forced to use the same
1954 code paths as single-step - set a breakpoint at the
1955 signal return address and then, once hit, step off that
1956 breakpoint. */
1957 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1958 ecs->step_after_step_resume_breakpoint = 1;
1959 keep_going (ecs);
1960 return;
1961 }
1962
1963 if (step_range_end != 0
1964 && stop_signal != TARGET_SIGNAL_0
1965 && stop_pc >= step_range_start && stop_pc < step_range_end
1966 && frame_id_eq (get_frame_id (get_current_frame ()),
1967 step_frame_id)
1968 && step_resume_breakpoint == NULL)
1969 {
1970 /* The inferior is about to take a signal that will take it
1971 out of the single step range. Set a breakpoint at the
1972 current PC (which is presumably where the signal handler
1973 will eventually return) and then allow the inferior to
1974 run free.
1975
1976 Note that this is only needed for a signal delivered
1977 while in the single-step range. Nested signals aren't a
1978 problem as they eventually all return. */
1979 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1980 keep_going (ecs);
1981 return;
1982 }
1983
1984 /* Note: step_resume_breakpoint may be non-NULL. This occures
1985 when either there's a nested signal, or when there's a
1986 pending signal enabled just as the signal handler returns
1987 (leaving the inferior at the step-resume-breakpoint without
1988 actually executing it). Either way continue until the
1989 breakpoint is really hit. */
1990 keep_going (ecs);
1991 return;
1992 }
1993
1994 /* Handle cases caused by hitting a breakpoint. */
1995 {
1996 CORE_ADDR jmp_buf_pc;
1997 struct bpstat_what what;
1998
1999 what = bpstat_what (stop_bpstat);
2000
2001 if (what.call_dummy)
2002 {
2003 stop_stack_dummy = 1;
2004 }
2005
2006 switch (what.main_action)
2007 {
2008 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2009 /* If we hit the breakpoint at longjmp, disable it for the
2010 duration of this command. Then, install a temporary
2011 breakpoint at the target of the jmp_buf. */
2012 if (debug_infrun)
2013 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2014 disable_longjmp_breakpoint ();
2015 remove_breakpoints ();
2016 breakpoints_inserted = 0;
2017 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2018 {
2019 keep_going (ecs);
2020 return;
2021 }
2022
2023 /* Need to blow away step-resume breakpoint, as it
2024 interferes with us */
2025 if (step_resume_breakpoint != NULL)
2026 {
2027 delete_step_resume_breakpoint (&step_resume_breakpoint);
2028 }
2029
2030 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2031 ecs->handling_longjmp = 1; /* FIXME */
2032 keep_going (ecs);
2033 return;
2034
2035 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2036 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2037 if (debug_infrun)
2038 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2039 remove_breakpoints ();
2040 breakpoints_inserted = 0;
2041 disable_longjmp_breakpoint ();
2042 ecs->handling_longjmp = 0; /* FIXME */
2043 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2044 break;
2045 /* else fallthrough */
2046
2047 case BPSTAT_WHAT_SINGLE:
2048 if (debug_infrun)
2049 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2050 if (breakpoints_inserted)
2051 {
2052 remove_breakpoints ();
2053 }
2054 breakpoints_inserted = 0;
2055 ecs->another_trap = 1;
2056 /* Still need to check other stuff, at least the case
2057 where we are stepping and step out of the right range. */
2058 break;
2059
2060 case BPSTAT_WHAT_STOP_NOISY:
2061 if (debug_infrun)
2062 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2063 stop_print_frame = 1;
2064
2065 /* We are about to nuke the step_resume_breakpointt via the
2066 cleanup chain, so no need to worry about it here. */
2067
2068 stop_stepping (ecs);
2069 return;
2070
2071 case BPSTAT_WHAT_STOP_SILENT:
2072 if (debug_infrun)
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2074 stop_print_frame = 0;
2075
2076 /* We are about to nuke the step_resume_breakpoin via the
2077 cleanup chain, so no need to worry about it here. */
2078
2079 stop_stepping (ecs);
2080 return;
2081
2082 case BPSTAT_WHAT_STEP_RESUME:
2083 /* This proably demands a more elegant solution, but, yeah
2084 right...
2085
2086 This function's use of the simple variable
2087 step_resume_breakpoint doesn't seem to accomodate
2088 simultaneously active step-resume bp's, although the
2089 breakpoint list certainly can.
2090
2091 If we reach here and step_resume_breakpoint is already
2092 NULL, then apparently we have multiple active
2093 step-resume bp's. We'll just delete the breakpoint we
2094 stopped at, and carry on.
2095
2096 Correction: what the code currently does is delete a
2097 step-resume bp, but it makes no effort to ensure that
2098 the one deleted is the one currently stopped at. MVS */
2099
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2102
2103 if (step_resume_breakpoint == NULL)
2104 {
2105 step_resume_breakpoint =
2106 bpstat_find_step_resume_breakpoint (stop_bpstat);
2107 }
2108 delete_step_resume_breakpoint (&step_resume_breakpoint);
2109 if (ecs->step_after_step_resume_breakpoint)
2110 {
2111 /* Back when the step-resume breakpoint was inserted, we
2112 were trying to single-step off a breakpoint. Go back
2113 to doing that. */
2114 ecs->step_after_step_resume_breakpoint = 0;
2115 remove_breakpoints ();
2116 breakpoints_inserted = 0;
2117 ecs->another_trap = 1;
2118 keep_going (ecs);
2119 return;
2120 }
2121 break;
2122
2123 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2126 /* If were waiting for a trap, hitting the step_resume_break
2127 doesn't count as getting it. */
2128 if (trap_expected)
2129 ecs->another_trap = 1;
2130 break;
2131
2132 case BPSTAT_WHAT_CHECK_SHLIBS:
2133 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2134 {
2135 if (debug_infrun)
2136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2137 /* Remove breakpoints, we eventually want to step over the
2138 shlib event breakpoint, and SOLIB_ADD might adjust
2139 breakpoint addresses via breakpoint_re_set. */
2140 if (breakpoints_inserted)
2141 remove_breakpoints ();
2142 breakpoints_inserted = 0;
2143
2144 /* Check for any newly added shared libraries if we're
2145 supposed to be adding them automatically. Switch
2146 terminal for any messages produced by
2147 breakpoint_re_set. */
2148 target_terminal_ours_for_output ();
2149 /* NOTE: cagney/2003-11-25: Make certain that the target
2150 stack's section table is kept up-to-date. Architectures,
2151 (e.g., PPC64), use the section table to perform
2152 operations such as address => section name and hence
2153 require the table to contain all sections (including
2154 those found in shared libraries). */
2155 /* NOTE: cagney/2003-11-25: Pass current_target and not
2156 exec_ops to SOLIB_ADD. This is because current GDB is
2157 only tooled to propagate section_table changes out from
2158 the "current_target" (see target_resize_to_sections), and
2159 not up from the exec stratum. This, of course, isn't
2160 right. "infrun.c" should only interact with the
2161 exec/process stratum, instead relying on the target stack
2162 to propagate relevant changes (stop, section table
2163 changed, ...) up to other layers. */
2164 #ifdef SOLIB_ADD
2165 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2166 #else
2167 solib_add (NULL, 0, &current_target, auto_solib_add);
2168 #endif
2169 target_terminal_inferior ();
2170
2171 /* Try to reenable shared library breakpoints, additional
2172 code segments in shared libraries might be mapped in now. */
2173 re_enable_breakpoints_in_shlibs ();
2174
2175 /* If requested, stop when the dynamic linker notifies
2176 gdb of events. This allows the user to get control
2177 and place breakpoints in initializer routines for
2178 dynamically loaded objects (among other things). */
2179 if (stop_on_solib_events || stop_stack_dummy)
2180 {
2181 stop_stepping (ecs);
2182 return;
2183 }
2184
2185 /* If we stopped due to an explicit catchpoint, then the
2186 (see above) call to SOLIB_ADD pulled in any symbols
2187 from a newly-loaded library, if appropriate.
2188
2189 We do want the inferior to stop, but not where it is
2190 now, which is in the dynamic linker callback. Rather,
2191 we would like it stop in the user's program, just after
2192 the call that caused this catchpoint to trigger. That
2193 gives the user a more useful vantage from which to
2194 examine their program's state. */
2195 else if (what.main_action
2196 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2197 {
2198 /* ??rehrauer: If I could figure out how to get the
2199 right return PC from here, we could just set a temp
2200 breakpoint and resume. I'm not sure we can without
2201 cracking open the dld's shared libraries and sniffing
2202 their unwind tables and text/data ranges, and that's
2203 not a terribly portable notion.
2204
2205 Until that time, we must step the inferior out of the
2206 dld callback, and also out of the dld itself (and any
2207 code or stubs in libdld.sl, such as "shl_load" and
2208 friends) until we reach non-dld code. At that point,
2209 we can stop stepping. */
2210 bpstat_get_triggered_catchpoints (stop_bpstat,
2211 &ecs->
2212 stepping_through_solib_catchpoints);
2213 ecs->stepping_through_solib_after_catch = 1;
2214
2215 /* Be sure to lift all breakpoints, so the inferior does
2216 actually step past this point... */
2217 ecs->another_trap = 1;
2218 break;
2219 }
2220 else
2221 {
2222 /* We want to step over this breakpoint, then keep going. */
2223 ecs->another_trap = 1;
2224 break;
2225 }
2226 }
2227 break;
2228
2229 case BPSTAT_WHAT_LAST:
2230 /* Not a real code, but listed here to shut up gcc -Wall. */
2231
2232 case BPSTAT_WHAT_KEEP_CHECKING:
2233 break;
2234 }
2235 }
2236
2237 /* We come here if we hit a breakpoint but should not
2238 stop for it. Possibly we also were stepping
2239 and should stop for that. So fall through and
2240 test for stepping. But, if not stepping,
2241 do not stop. */
2242
2243 /* Are we stepping to get the inferior out of the dynamic linker's
2244 hook (and possibly the dld itself) after catching a shlib
2245 event? */
2246 if (ecs->stepping_through_solib_after_catch)
2247 {
2248 #if defined(SOLIB_ADD)
2249 /* Have we reached our destination? If not, keep going. */
2250 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2251 {
2252 if (debug_infrun)
2253 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2254 ecs->another_trap = 1;
2255 keep_going (ecs);
2256 return;
2257 }
2258 #endif
2259 if (debug_infrun)
2260 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2261 /* Else, stop and report the catchpoint(s) whose triggering
2262 caused us to begin stepping. */
2263 ecs->stepping_through_solib_after_catch = 0;
2264 bpstat_clear (&stop_bpstat);
2265 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2266 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2267 stop_print_frame = 1;
2268 stop_stepping (ecs);
2269 return;
2270 }
2271
2272 if (step_resume_breakpoint)
2273 {
2274 if (debug_infrun)
2275 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2276
2277 /* Having a step-resume breakpoint overrides anything
2278 else having to do with stepping commands until
2279 that breakpoint is reached. */
2280 keep_going (ecs);
2281 return;
2282 }
2283
2284 if (step_range_end == 0)
2285 {
2286 if (debug_infrun)
2287 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2288 /* Likewise if we aren't even stepping. */
2289 keep_going (ecs);
2290 return;
2291 }
2292
2293 /* If stepping through a line, keep going if still within it.
2294
2295 Note that step_range_end is the address of the first instruction
2296 beyond the step range, and NOT the address of the last instruction
2297 within it! */
2298 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2299 {
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2302 paddr_nz (step_range_start),
2303 paddr_nz (step_range_end));
2304 keep_going (ecs);
2305 return;
2306 }
2307
2308 /* We stepped out of the stepping range. */
2309
2310 /* If we are stepping at the source level and entered the runtime
2311 loader dynamic symbol resolution code, we keep on single stepping
2312 until we exit the run time loader code and reach the callee's
2313 address. */
2314 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2315 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2316 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2317 #else
2318 && in_solib_dynsym_resolve_code (stop_pc)
2319 #endif
2320 )
2321 {
2322 CORE_ADDR pc_after_resolver =
2323 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2324
2325 if (debug_infrun)
2326 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2327
2328 if (pc_after_resolver)
2329 {
2330 /* Set up a step-resume breakpoint at the address
2331 indicated by SKIP_SOLIB_RESOLVER. */
2332 struct symtab_and_line sr_sal;
2333 init_sal (&sr_sal);
2334 sr_sal.pc = pc_after_resolver;
2335
2336 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2337 }
2338
2339 keep_going (ecs);
2340 return;
2341 }
2342
2343 if (step_range_end != 1
2344 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2345 || step_over_calls == STEP_OVER_ALL)
2346 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2347 {
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2350 /* The inferior, while doing a "step" or "next", has ended up in
2351 a signal trampoline (either by a signal being delivered or by
2352 the signal handler returning). Just single-step until the
2353 inferior leaves the trampoline (either by calling the handler
2354 or returning). */
2355 keep_going (ecs);
2356 return;
2357 }
2358
2359 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2360 {
2361 /* It's a subroutine call. */
2362 CORE_ADDR real_stop_pc;
2363
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2366
2367 if ((step_over_calls == STEP_OVER_NONE)
2368 || ((step_range_end == 1)
2369 && in_prologue (prev_pc, ecs->stop_func_start)))
2370 {
2371 /* I presume that step_over_calls is only 0 when we're
2372 supposed to be stepping at the assembly language level
2373 ("stepi"). Just stop. */
2374 /* Also, maybe we just did a "nexti" inside a prolog, so we
2375 thought it was a subroutine call but it was not. Stop as
2376 well. FENN */
2377 stop_step = 1;
2378 print_stop_reason (END_STEPPING_RANGE, 0);
2379 stop_stepping (ecs);
2380 return;
2381 }
2382
2383 if (step_over_calls == STEP_OVER_ALL)
2384 {
2385 /* We're doing a "next", set a breakpoint at callee's return
2386 address (the address at which the caller will
2387 resume). */
2388 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2389 keep_going (ecs);
2390 return;
2391 }
2392
2393 /* If we are in a function call trampoline (a stub between the
2394 calling routine and the real function), locate the real
2395 function. That's what tells us (a) whether we want to step
2396 into it at all, and (b) what prologue we want to run to the
2397 end of, if we do step into it. */
2398 real_stop_pc = skip_language_trampoline (stop_pc);
2399 if (real_stop_pc == 0)
2400 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2401 if (real_stop_pc != 0)
2402 ecs->stop_func_start = real_stop_pc;
2403
2404 if (
2405 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2406 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2407 #else
2408 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2409 #endif
2410 )
2411 {
2412 struct symtab_and_line sr_sal;
2413 init_sal (&sr_sal);
2414 sr_sal.pc = ecs->stop_func_start;
2415
2416 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2417 keep_going (ecs);
2418 return;
2419 }
2420
2421 /* If we have line number information for the function we are
2422 thinking of stepping into, step into it.
2423
2424 If there are several symtabs at that PC (e.g. with include
2425 files), just want to know whether *any* of them have line
2426 numbers. find_pc_line handles this. */
2427 {
2428 struct symtab_and_line tmp_sal;
2429
2430 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2431 if (tmp_sal.line != 0)
2432 {
2433 step_into_function (ecs);
2434 return;
2435 }
2436 }
2437
2438 /* If we have no line number and the step-stop-if-no-debug is
2439 set, we stop the step so that the user has a chance to switch
2440 in assembly mode. */
2441 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2442 {
2443 stop_step = 1;
2444 print_stop_reason (END_STEPPING_RANGE, 0);
2445 stop_stepping (ecs);
2446 return;
2447 }
2448
2449 /* Set a breakpoint at callee's return address (the address at
2450 which the caller will resume). */
2451 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2452 keep_going (ecs);
2453 return;
2454 }
2455
2456 /* If we're in the return path from a shared library trampoline,
2457 we want to proceed through the trampoline when stepping. */
2458 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2459 {
2460 /* Determine where this trampoline returns. */
2461 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2462
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2465
2466 /* Only proceed through if we know where it's going. */
2467 if (real_stop_pc)
2468 {
2469 /* And put the step-breakpoint there and go until there. */
2470 struct symtab_and_line sr_sal;
2471
2472 init_sal (&sr_sal); /* initialize to zeroes */
2473 sr_sal.pc = real_stop_pc;
2474 sr_sal.section = find_pc_overlay (sr_sal.pc);
2475
2476 /* Do not specify what the fp should be when we stop since
2477 on some machines the prologue is where the new fp value
2478 is established. */
2479 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2480
2481 /* Restart without fiddling with the step ranges or
2482 other state. */
2483 keep_going (ecs);
2484 return;
2485 }
2486 }
2487
2488 ecs->sal = find_pc_line (stop_pc, 0);
2489
2490 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2491 the trampoline processing logic, however, there are some trampolines
2492 that have no names, so we should do trampoline handling first. */
2493 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2494 && ecs->stop_func_name == NULL
2495 && ecs->sal.line == 0)
2496 {
2497 if (debug_infrun)
2498 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2499
2500 /* The inferior just stepped into, or returned to, an
2501 undebuggable function (where there is no debugging information
2502 and no line number corresponding to the address where the
2503 inferior stopped). Since we want to skip this kind of code,
2504 we keep going until the inferior returns from this
2505 function. */
2506 if (step_stop_if_no_debug)
2507 {
2508 /* If we have no line number and the step-stop-if-no-debug
2509 is set, we stop the step so that the user has a chance to
2510 switch in assembly mode. */
2511 stop_step = 1;
2512 print_stop_reason (END_STEPPING_RANGE, 0);
2513 stop_stepping (ecs);
2514 return;
2515 }
2516 else
2517 {
2518 /* Set a breakpoint at callee's return address (the address
2519 at which the caller will resume). */
2520 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2521 keep_going (ecs);
2522 return;
2523 }
2524 }
2525
2526 if (step_range_end == 1)
2527 {
2528 /* It is stepi or nexti. We always want to stop stepping after
2529 one instruction. */
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2532 stop_step = 1;
2533 print_stop_reason (END_STEPPING_RANGE, 0);
2534 stop_stepping (ecs);
2535 return;
2536 }
2537
2538 if (ecs->sal.line == 0)
2539 {
2540 /* We have no line number information. That means to stop
2541 stepping (does this always happen right after one instruction,
2542 when we do "s" in a function with no line numbers,
2543 or can this happen as a result of a return or longjmp?). */
2544 if (debug_infrun)
2545 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2546 stop_step = 1;
2547 print_stop_reason (END_STEPPING_RANGE, 0);
2548 stop_stepping (ecs);
2549 return;
2550 }
2551
2552 if ((stop_pc == ecs->sal.pc)
2553 && (ecs->current_line != ecs->sal.line
2554 || ecs->current_symtab != ecs->sal.symtab))
2555 {
2556 /* We are at the start of a different line. So stop. Note that
2557 we don't stop if we step into the middle of a different line.
2558 That is said to make things like for (;;) statements work
2559 better. */
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2562 stop_step = 1;
2563 print_stop_reason (END_STEPPING_RANGE, 0);
2564 stop_stepping (ecs);
2565 return;
2566 }
2567
2568 /* We aren't done stepping.
2569
2570 Optimize by setting the stepping range to the line.
2571 (We might not be in the original line, but if we entered a
2572 new line in mid-statement, we continue stepping. This makes
2573 things like for(;;) statements work better.) */
2574
2575 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2576 {
2577 /* If this is the last line of the function, don't keep stepping
2578 (it would probably step us out of the function).
2579 This is particularly necessary for a one-line function,
2580 in which after skipping the prologue we better stop even though
2581 we will be in mid-line. */
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2584 stop_step = 1;
2585 print_stop_reason (END_STEPPING_RANGE, 0);
2586 stop_stepping (ecs);
2587 return;
2588 }
2589 step_range_start = ecs->sal.pc;
2590 step_range_end = ecs->sal.end;
2591 step_frame_id = get_frame_id (get_current_frame ());
2592 ecs->current_line = ecs->sal.line;
2593 ecs->current_symtab = ecs->sal.symtab;
2594
2595 /* In the case where we just stepped out of a function into the
2596 middle of a line of the caller, continue stepping, but
2597 step_frame_id must be modified to current frame */
2598 #if 0
2599 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2600 generous. It will trigger on things like a step into a frameless
2601 stackless leaf function. I think the logic should instead look
2602 at the unwound frame ID has that should give a more robust
2603 indication of what happened. */
2604 if (step - ID == current - ID)
2605 still stepping in same function;
2606 else if (step - ID == unwind (current - ID))
2607 stepped into a function;
2608 else
2609 stepped out of a function;
2610 /* Of course this assumes that the frame ID unwind code is robust
2611 and we're willing to introduce frame unwind logic into this
2612 function. Fortunately, those days are nearly upon us. */
2613 #endif
2614 {
2615 struct frame_id current_frame = get_frame_id (get_current_frame ());
2616 if (!(frame_id_inner (current_frame, step_frame_id)))
2617 step_frame_id = current_frame;
2618 }
2619
2620 if (debug_infrun)
2621 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2622 keep_going (ecs);
2623 }
2624
2625 /* Are we in the middle of stepping? */
2626
2627 static int
2628 currently_stepping (struct execution_control_state *ecs)
2629 {
2630 return ((!ecs->handling_longjmp
2631 && ((step_range_end && step_resume_breakpoint == NULL)
2632 || trap_expected))
2633 || ecs->stepping_through_solib_after_catch
2634 || bpstat_should_step ());
2635 }
2636
2637 /* Subroutine call with source code we should not step over. Do step
2638 to the first line of code in it. */
2639
2640 static void
2641 step_into_function (struct execution_control_state *ecs)
2642 {
2643 struct symtab *s;
2644 struct symtab_and_line sr_sal;
2645
2646 s = find_pc_symtab (stop_pc);
2647 if (s && s->language != language_asm)
2648 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2649
2650 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2651 /* Use the step_resume_break to step until the end of the prologue,
2652 even if that involves jumps (as it seems to on the vax under
2653 4.2). */
2654 /* If the prologue ends in the middle of a source line, continue to
2655 the end of that source line (if it is still within the function).
2656 Otherwise, just go to end of prologue. */
2657 if (ecs->sal.end
2658 && ecs->sal.pc != ecs->stop_func_start
2659 && ecs->sal.end < ecs->stop_func_end)
2660 ecs->stop_func_start = ecs->sal.end;
2661
2662 /* Architectures which require breakpoint adjustment might not be able
2663 to place a breakpoint at the computed address. If so, the test
2664 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2665 ecs->stop_func_start to an address at which a breakpoint may be
2666 legitimately placed.
2667
2668 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2669 made, GDB will enter an infinite loop when stepping through
2670 optimized code consisting of VLIW instructions which contain
2671 subinstructions corresponding to different source lines. On
2672 FR-V, it's not permitted to place a breakpoint on any but the
2673 first subinstruction of a VLIW instruction. When a breakpoint is
2674 set, GDB will adjust the breakpoint address to the beginning of
2675 the VLIW instruction. Thus, we need to make the corresponding
2676 adjustment here when computing the stop address. */
2677
2678 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2679 {
2680 ecs->stop_func_start
2681 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2682 ecs->stop_func_start);
2683 }
2684
2685 if (ecs->stop_func_start == stop_pc)
2686 {
2687 /* We are already there: stop now. */
2688 stop_step = 1;
2689 print_stop_reason (END_STEPPING_RANGE, 0);
2690 stop_stepping (ecs);
2691 return;
2692 }
2693 else
2694 {
2695 /* Put the step-breakpoint there and go until there. */
2696 init_sal (&sr_sal); /* initialize to zeroes */
2697 sr_sal.pc = ecs->stop_func_start;
2698 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2699
2700 /* Do not specify what the fp should be when we stop since on
2701 some machines the prologue is where the new fp value is
2702 established. */
2703 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2704
2705 /* And make sure stepping stops right away then. */
2706 step_range_end = step_range_start;
2707 }
2708 keep_going (ecs);
2709 }
2710
2711 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2712 This is used to both functions and to skip over code. */
2713
2714 static void
2715 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2716 struct frame_id sr_id)
2717 {
2718 /* There should never be more than one step-resume breakpoint per
2719 thread, so we should never be setting a new
2720 step_resume_breakpoint when one is already active. */
2721 gdb_assert (step_resume_breakpoint == NULL);
2722 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2723 bp_step_resume);
2724 if (breakpoints_inserted)
2725 insert_breakpoints ();
2726 }
2727
2728 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2729 to skip a function (next, skip-no-debug) or signal. It's assumed
2730 that the function/signal handler being skipped eventually returns
2731 to the breakpoint inserted at RETURN_FRAME.pc.
2732
2733 For the skip-function case, the function may have been reached by
2734 either single stepping a call / return / signal-return instruction,
2735 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2736 to the skip-function's caller.
2737
2738 For the signals case, this is called with the interrupted
2739 function's frame. The signal handler, when it returns, will resume
2740 the interrupted function at RETURN_FRAME.pc. */
2741
2742 static void
2743 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2744 {
2745 struct symtab_and_line sr_sal;
2746
2747 init_sal (&sr_sal); /* initialize to zeros */
2748
2749 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2750 sr_sal.section = find_pc_overlay (sr_sal.pc);
2751
2752 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2753 }
2754
2755 static void
2756 stop_stepping (struct execution_control_state *ecs)
2757 {
2758 if (debug_infrun)
2759 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2760
2761 /* Let callers know we don't want to wait for the inferior anymore. */
2762 ecs->wait_some_more = 0;
2763 }
2764
2765 /* This function handles various cases where we need to continue
2766 waiting for the inferior. */
2767 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2768
2769 static void
2770 keep_going (struct execution_control_state *ecs)
2771 {
2772 /* Save the pc before execution, to compare with pc after stop. */
2773 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2774
2775 /* If we did not do break;, it means we should keep running the
2776 inferior and not return to debugger. */
2777
2778 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2779 {
2780 /* We took a signal (which we are supposed to pass through to
2781 the inferior, else we'd have done a break above) and we
2782 haven't yet gotten our trap. Simply continue. */
2783 resume (currently_stepping (ecs), stop_signal);
2784 }
2785 else
2786 {
2787 /* Either the trap was not expected, but we are continuing
2788 anyway (the user asked that this signal be passed to the
2789 child)
2790 -- or --
2791 The signal was SIGTRAP, e.g. it was our signal, but we
2792 decided we should resume from it.
2793
2794 We're going to run this baby now! */
2795
2796 if (!breakpoints_inserted && !ecs->another_trap)
2797 {
2798 breakpoints_failed = insert_breakpoints ();
2799 if (breakpoints_failed)
2800 {
2801 stop_stepping (ecs);
2802 return;
2803 }
2804 breakpoints_inserted = 1;
2805 }
2806
2807 trap_expected = ecs->another_trap;
2808
2809 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2810 specifies that such a signal should be delivered to the
2811 target program).
2812
2813 Typically, this would occure when a user is debugging a
2814 target monitor on a simulator: the target monitor sets a
2815 breakpoint; the simulator encounters this break-point and
2816 halts the simulation handing control to GDB; GDB, noteing
2817 that the break-point isn't valid, returns control back to the
2818 simulator; the simulator then delivers the hardware
2819 equivalent of a SIGNAL_TRAP to the program being debugged. */
2820
2821 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2822 stop_signal = TARGET_SIGNAL_0;
2823
2824
2825 resume (currently_stepping (ecs), stop_signal);
2826 }
2827
2828 prepare_to_wait (ecs);
2829 }
2830
2831 /* This function normally comes after a resume, before
2832 handle_inferior_event exits. It takes care of any last bits of
2833 housekeeping, and sets the all-important wait_some_more flag. */
2834
2835 static void
2836 prepare_to_wait (struct execution_control_state *ecs)
2837 {
2838 if (debug_infrun)
2839 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2840 if (ecs->infwait_state == infwait_normal_state)
2841 {
2842 overlay_cache_invalid = 1;
2843
2844 /* We have to invalidate the registers BEFORE calling
2845 target_wait because they can be loaded from the target while
2846 in target_wait. This makes remote debugging a bit more
2847 efficient for those targets that provide critical registers
2848 as part of their normal status mechanism. */
2849
2850 registers_changed ();
2851 ecs->waiton_ptid = pid_to_ptid (-1);
2852 ecs->wp = &(ecs->ws);
2853 }
2854 /* This is the old end of the while loop. Let everybody know we
2855 want to wait for the inferior some more and get called again
2856 soon. */
2857 ecs->wait_some_more = 1;
2858 }
2859
2860 /* Print why the inferior has stopped. We always print something when
2861 the inferior exits, or receives a signal. The rest of the cases are
2862 dealt with later on in normal_stop() and print_it_typical(). Ideally
2863 there should be a call to this function from handle_inferior_event()
2864 each time stop_stepping() is called.*/
2865 static void
2866 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2867 {
2868 switch (stop_reason)
2869 {
2870 case STOP_UNKNOWN:
2871 /* We don't deal with these cases from handle_inferior_event()
2872 yet. */
2873 break;
2874 case END_STEPPING_RANGE:
2875 /* We are done with a step/next/si/ni command. */
2876 /* For now print nothing. */
2877 /* Print a message only if not in the middle of doing a "step n"
2878 operation for n > 1 */
2879 if (!step_multi || !stop_step)
2880 if (ui_out_is_mi_like_p (uiout))
2881 ui_out_field_string
2882 (uiout, "reason",
2883 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2884 break;
2885 case BREAKPOINT_HIT:
2886 /* We found a breakpoint. */
2887 /* For now print nothing. */
2888 break;
2889 case SIGNAL_EXITED:
2890 /* The inferior was terminated by a signal. */
2891 annotate_signalled ();
2892 if (ui_out_is_mi_like_p (uiout))
2893 ui_out_field_string
2894 (uiout, "reason",
2895 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2896 ui_out_text (uiout, "\nProgram terminated with signal ");
2897 annotate_signal_name ();
2898 ui_out_field_string (uiout, "signal-name",
2899 target_signal_to_name (stop_info));
2900 annotate_signal_name_end ();
2901 ui_out_text (uiout, ", ");
2902 annotate_signal_string ();
2903 ui_out_field_string (uiout, "signal-meaning",
2904 target_signal_to_string (stop_info));
2905 annotate_signal_string_end ();
2906 ui_out_text (uiout, ".\n");
2907 ui_out_text (uiout, "The program no longer exists.\n");
2908 break;
2909 case EXITED:
2910 /* The inferior program is finished. */
2911 annotate_exited (stop_info);
2912 if (stop_info)
2913 {
2914 if (ui_out_is_mi_like_p (uiout))
2915 ui_out_field_string (uiout, "reason",
2916 async_reason_lookup (EXEC_ASYNC_EXITED));
2917 ui_out_text (uiout, "\nProgram exited with code ");
2918 ui_out_field_fmt (uiout, "exit-code", "0%o",
2919 (unsigned int) stop_info);
2920 ui_out_text (uiout, ".\n");
2921 }
2922 else
2923 {
2924 if (ui_out_is_mi_like_p (uiout))
2925 ui_out_field_string
2926 (uiout, "reason",
2927 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2928 ui_out_text (uiout, "\nProgram exited normally.\n");
2929 }
2930 break;
2931 case SIGNAL_RECEIVED:
2932 /* Signal received. The signal table tells us to print about
2933 it. */
2934 annotate_signal ();
2935 ui_out_text (uiout, "\nProgram received signal ");
2936 annotate_signal_name ();
2937 if (ui_out_is_mi_like_p (uiout))
2938 ui_out_field_string
2939 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
2940 ui_out_field_string (uiout, "signal-name",
2941 target_signal_to_name (stop_info));
2942 annotate_signal_name_end ();
2943 ui_out_text (uiout, ", ");
2944 annotate_signal_string ();
2945 ui_out_field_string (uiout, "signal-meaning",
2946 target_signal_to_string (stop_info));
2947 annotate_signal_string_end ();
2948 ui_out_text (uiout, ".\n");
2949 break;
2950 default:
2951 internal_error (__FILE__, __LINE__,
2952 _("print_stop_reason: unrecognized enum value"));
2953 break;
2954 }
2955 }
2956 \f
2957
2958 /* Here to return control to GDB when the inferior stops for real.
2959 Print appropriate messages, remove breakpoints, give terminal our modes.
2960
2961 STOP_PRINT_FRAME nonzero means print the executing frame
2962 (pc, function, args, file, line number and line text).
2963 BREAKPOINTS_FAILED nonzero means stop was due to error
2964 attempting to insert breakpoints. */
2965
2966 void
2967 normal_stop (void)
2968 {
2969 struct target_waitstatus last;
2970 ptid_t last_ptid;
2971
2972 get_last_target_status (&last_ptid, &last);
2973
2974 /* As with the notification of thread events, we want to delay
2975 notifying the user that we've switched thread context until
2976 the inferior actually stops.
2977
2978 There's no point in saying anything if the inferior has exited.
2979 Note that SIGNALLED here means "exited with a signal", not
2980 "received a signal". */
2981 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2982 && target_has_execution
2983 && last.kind != TARGET_WAITKIND_SIGNALLED
2984 && last.kind != TARGET_WAITKIND_EXITED)
2985 {
2986 target_terminal_ours_for_output ();
2987 printf_filtered (_("[Switching to %s]\n"),
2988 target_pid_or_tid_to_str (inferior_ptid));
2989 previous_inferior_ptid = inferior_ptid;
2990 }
2991
2992 /* NOTE drow/2004-01-17: Is this still necessary? */
2993 /* Make sure that the current_frame's pc is correct. This
2994 is a correction for setting up the frame info before doing
2995 DECR_PC_AFTER_BREAK */
2996 if (target_has_execution)
2997 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2998 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2999 frame code to check for this and sort out any resultant mess.
3000 DECR_PC_AFTER_BREAK needs to just go away. */
3001 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3002
3003 if (target_has_execution && breakpoints_inserted)
3004 {
3005 if (remove_breakpoints ())
3006 {
3007 target_terminal_ours_for_output ();
3008 printf_filtered (_("\
3009 Cannot remove breakpoints because program is no longer writable.\n\
3010 It might be running in another process.\n\
3011 Further execution is probably impossible.\n"));
3012 }
3013 }
3014 breakpoints_inserted = 0;
3015
3016 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3017 Delete any breakpoint that is to be deleted at the next stop. */
3018
3019 breakpoint_auto_delete (stop_bpstat);
3020
3021 /* If an auto-display called a function and that got a signal,
3022 delete that auto-display to avoid an infinite recursion. */
3023
3024 if (stopped_by_random_signal)
3025 disable_current_display ();
3026
3027 /* Don't print a message if in the middle of doing a "step n"
3028 operation for n > 1 */
3029 if (step_multi && stop_step)
3030 goto done;
3031
3032 target_terminal_ours ();
3033
3034 /* Look up the hook_stop and run it (CLI internally handles problem
3035 of stop_command's pre-hook not existing). */
3036 if (stop_command)
3037 catch_errors (hook_stop_stub, stop_command,
3038 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3039
3040 if (!target_has_stack)
3041 {
3042
3043 goto done;
3044 }
3045
3046 /* Select innermost stack frame - i.e., current frame is frame 0,
3047 and current location is based on that.
3048 Don't do this on return from a stack dummy routine,
3049 or if the program has exited. */
3050
3051 if (!stop_stack_dummy)
3052 {
3053 select_frame (get_current_frame ());
3054
3055 /* Print current location without a level number, if
3056 we have changed functions or hit a breakpoint.
3057 Print source line if we have one.
3058 bpstat_print() contains the logic deciding in detail
3059 what to print, based on the event(s) that just occurred. */
3060
3061 if (stop_print_frame && deprecated_selected_frame)
3062 {
3063 int bpstat_ret;
3064 int source_flag;
3065 int do_frame_printing = 1;
3066
3067 bpstat_ret = bpstat_print (stop_bpstat);
3068 switch (bpstat_ret)
3069 {
3070 case PRINT_UNKNOWN:
3071 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3072 (or should) carry around the function and does (or
3073 should) use that when doing a frame comparison. */
3074 if (stop_step
3075 && frame_id_eq (step_frame_id,
3076 get_frame_id (get_current_frame ()))
3077 && step_start_function == find_pc_function (stop_pc))
3078 source_flag = SRC_LINE; /* finished step, just print source line */
3079 else
3080 source_flag = SRC_AND_LOC; /* print location and source line */
3081 break;
3082 case PRINT_SRC_AND_LOC:
3083 source_flag = SRC_AND_LOC; /* print location and source line */
3084 break;
3085 case PRINT_SRC_ONLY:
3086 source_flag = SRC_LINE;
3087 break;
3088 case PRINT_NOTHING:
3089 source_flag = SRC_LINE; /* something bogus */
3090 do_frame_printing = 0;
3091 break;
3092 default:
3093 internal_error (__FILE__, __LINE__, _("Unknown value."));
3094 }
3095 /* For mi, have the same behavior every time we stop:
3096 print everything but the source line. */
3097 if (ui_out_is_mi_like_p (uiout))
3098 source_flag = LOC_AND_ADDRESS;
3099
3100 if (ui_out_is_mi_like_p (uiout))
3101 ui_out_field_int (uiout, "thread-id",
3102 pid_to_thread_id (inferior_ptid));
3103 /* The behavior of this routine with respect to the source
3104 flag is:
3105 SRC_LINE: Print only source line
3106 LOCATION: Print only location
3107 SRC_AND_LOC: Print location and source line */
3108 if (do_frame_printing)
3109 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3110
3111 /* Display the auto-display expressions. */
3112 do_displays ();
3113 }
3114 }
3115
3116 /* Save the function value return registers, if we care.
3117 We might be about to restore their previous contents. */
3118 if (proceed_to_finish)
3119 /* NB: The copy goes through to the target picking up the value of
3120 all the registers. */
3121 regcache_cpy (stop_registers, current_regcache);
3122
3123 if (stop_stack_dummy)
3124 {
3125 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3126 ends with a setting of the current frame, so we can use that
3127 next. */
3128 frame_pop (get_current_frame ());
3129 /* Set stop_pc to what it was before we called the function.
3130 Can't rely on restore_inferior_status because that only gets
3131 called if we don't stop in the called function. */
3132 stop_pc = read_pc ();
3133 select_frame (get_current_frame ());
3134 }
3135
3136 done:
3137 annotate_stopped ();
3138 observer_notify_normal_stop (stop_bpstat);
3139 }
3140
3141 static int
3142 hook_stop_stub (void *cmd)
3143 {
3144 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3145 return (0);
3146 }
3147 \f
3148 int
3149 signal_stop_state (int signo)
3150 {
3151 return signal_stop[signo];
3152 }
3153
3154 int
3155 signal_print_state (int signo)
3156 {
3157 return signal_print[signo];
3158 }
3159
3160 int
3161 signal_pass_state (int signo)
3162 {
3163 return signal_program[signo];
3164 }
3165
3166 int
3167 signal_stop_update (int signo, int state)
3168 {
3169 int ret = signal_stop[signo];
3170 signal_stop[signo] = state;
3171 return ret;
3172 }
3173
3174 int
3175 signal_print_update (int signo, int state)
3176 {
3177 int ret = signal_print[signo];
3178 signal_print[signo] = state;
3179 return ret;
3180 }
3181
3182 int
3183 signal_pass_update (int signo, int state)
3184 {
3185 int ret = signal_program[signo];
3186 signal_program[signo] = state;
3187 return ret;
3188 }
3189
3190 static void
3191 sig_print_header (void)
3192 {
3193 printf_filtered (_("\
3194 Signal Stop\tPrint\tPass to program\tDescription\n"));
3195 }
3196
3197 static void
3198 sig_print_info (enum target_signal oursig)
3199 {
3200 char *name = target_signal_to_name (oursig);
3201 int name_padding = 13 - strlen (name);
3202
3203 if (name_padding <= 0)
3204 name_padding = 0;
3205
3206 printf_filtered ("%s", name);
3207 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3208 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3209 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3210 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3211 printf_filtered ("%s\n", target_signal_to_string (oursig));
3212 }
3213
3214 /* Specify how various signals in the inferior should be handled. */
3215
3216 static void
3217 handle_command (char *args, int from_tty)
3218 {
3219 char **argv;
3220 int digits, wordlen;
3221 int sigfirst, signum, siglast;
3222 enum target_signal oursig;
3223 int allsigs;
3224 int nsigs;
3225 unsigned char *sigs;
3226 struct cleanup *old_chain;
3227
3228 if (args == NULL)
3229 {
3230 error_no_arg (_("signal to handle"));
3231 }
3232
3233 /* Allocate and zero an array of flags for which signals to handle. */
3234
3235 nsigs = (int) TARGET_SIGNAL_LAST;
3236 sigs = (unsigned char *) alloca (nsigs);
3237 memset (sigs, 0, nsigs);
3238
3239 /* Break the command line up into args. */
3240
3241 argv = buildargv (args);
3242 if (argv == NULL)
3243 {
3244 nomem (0);
3245 }
3246 old_chain = make_cleanup_freeargv (argv);
3247
3248 /* Walk through the args, looking for signal oursigs, signal names, and
3249 actions. Signal numbers and signal names may be interspersed with
3250 actions, with the actions being performed for all signals cumulatively
3251 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3252
3253 while (*argv != NULL)
3254 {
3255 wordlen = strlen (*argv);
3256 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3257 {;
3258 }
3259 allsigs = 0;
3260 sigfirst = siglast = -1;
3261
3262 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3263 {
3264 /* Apply action to all signals except those used by the
3265 debugger. Silently skip those. */
3266 allsigs = 1;
3267 sigfirst = 0;
3268 siglast = nsigs - 1;
3269 }
3270 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3271 {
3272 SET_SIGS (nsigs, sigs, signal_stop);
3273 SET_SIGS (nsigs, sigs, signal_print);
3274 }
3275 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3276 {
3277 UNSET_SIGS (nsigs, sigs, signal_program);
3278 }
3279 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3280 {
3281 SET_SIGS (nsigs, sigs, signal_print);
3282 }
3283 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3284 {
3285 SET_SIGS (nsigs, sigs, signal_program);
3286 }
3287 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3288 {
3289 UNSET_SIGS (nsigs, sigs, signal_stop);
3290 }
3291 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3292 {
3293 SET_SIGS (nsigs, sigs, signal_program);
3294 }
3295 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3296 {
3297 UNSET_SIGS (nsigs, sigs, signal_print);
3298 UNSET_SIGS (nsigs, sigs, signal_stop);
3299 }
3300 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3301 {
3302 UNSET_SIGS (nsigs, sigs, signal_program);
3303 }
3304 else if (digits > 0)
3305 {
3306 /* It is numeric. The numeric signal refers to our own
3307 internal signal numbering from target.h, not to host/target
3308 signal number. This is a feature; users really should be
3309 using symbolic names anyway, and the common ones like
3310 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3311
3312 sigfirst = siglast = (int)
3313 target_signal_from_command (atoi (*argv));
3314 if ((*argv)[digits] == '-')
3315 {
3316 siglast = (int)
3317 target_signal_from_command (atoi ((*argv) + digits + 1));
3318 }
3319 if (sigfirst > siglast)
3320 {
3321 /* Bet he didn't figure we'd think of this case... */
3322 signum = sigfirst;
3323 sigfirst = siglast;
3324 siglast = signum;
3325 }
3326 }
3327 else
3328 {
3329 oursig = target_signal_from_name (*argv);
3330 if (oursig != TARGET_SIGNAL_UNKNOWN)
3331 {
3332 sigfirst = siglast = (int) oursig;
3333 }
3334 else
3335 {
3336 /* Not a number and not a recognized flag word => complain. */
3337 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3338 }
3339 }
3340
3341 /* If any signal numbers or symbol names were found, set flags for
3342 which signals to apply actions to. */
3343
3344 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3345 {
3346 switch ((enum target_signal) signum)
3347 {
3348 case TARGET_SIGNAL_TRAP:
3349 case TARGET_SIGNAL_INT:
3350 if (!allsigs && !sigs[signum])
3351 {
3352 if (query ("%s is used by the debugger.\n\
3353 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3354 {
3355 sigs[signum] = 1;
3356 }
3357 else
3358 {
3359 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3360 gdb_flush (gdb_stdout);
3361 }
3362 }
3363 break;
3364 case TARGET_SIGNAL_0:
3365 case TARGET_SIGNAL_DEFAULT:
3366 case TARGET_SIGNAL_UNKNOWN:
3367 /* Make sure that "all" doesn't print these. */
3368 break;
3369 default:
3370 sigs[signum] = 1;
3371 break;
3372 }
3373 }
3374
3375 argv++;
3376 }
3377
3378 target_notice_signals (inferior_ptid);
3379
3380 if (from_tty)
3381 {
3382 /* Show the results. */
3383 sig_print_header ();
3384 for (signum = 0; signum < nsigs; signum++)
3385 {
3386 if (sigs[signum])
3387 {
3388 sig_print_info (signum);
3389 }
3390 }
3391 }
3392
3393 do_cleanups (old_chain);
3394 }
3395
3396 static void
3397 xdb_handle_command (char *args, int from_tty)
3398 {
3399 char **argv;
3400 struct cleanup *old_chain;
3401
3402 /* Break the command line up into args. */
3403
3404 argv = buildargv (args);
3405 if (argv == NULL)
3406 {
3407 nomem (0);
3408 }
3409 old_chain = make_cleanup_freeargv (argv);
3410 if (argv[1] != (char *) NULL)
3411 {
3412 char *argBuf;
3413 int bufLen;
3414
3415 bufLen = strlen (argv[0]) + 20;
3416 argBuf = (char *) xmalloc (bufLen);
3417 if (argBuf)
3418 {
3419 int validFlag = 1;
3420 enum target_signal oursig;
3421
3422 oursig = target_signal_from_name (argv[0]);
3423 memset (argBuf, 0, bufLen);
3424 if (strcmp (argv[1], "Q") == 0)
3425 sprintf (argBuf, "%s %s", argv[0], "noprint");
3426 else
3427 {
3428 if (strcmp (argv[1], "s") == 0)
3429 {
3430 if (!signal_stop[oursig])
3431 sprintf (argBuf, "%s %s", argv[0], "stop");
3432 else
3433 sprintf (argBuf, "%s %s", argv[0], "nostop");
3434 }
3435 else if (strcmp (argv[1], "i") == 0)
3436 {
3437 if (!signal_program[oursig])
3438 sprintf (argBuf, "%s %s", argv[0], "pass");
3439 else
3440 sprintf (argBuf, "%s %s", argv[0], "nopass");
3441 }
3442 else if (strcmp (argv[1], "r") == 0)
3443 {
3444 if (!signal_print[oursig])
3445 sprintf (argBuf, "%s %s", argv[0], "print");
3446 else
3447 sprintf (argBuf, "%s %s", argv[0], "noprint");
3448 }
3449 else
3450 validFlag = 0;
3451 }
3452 if (validFlag)
3453 handle_command (argBuf, from_tty);
3454 else
3455 printf_filtered (_("Invalid signal handling flag.\n"));
3456 if (argBuf)
3457 xfree (argBuf);
3458 }
3459 }
3460 do_cleanups (old_chain);
3461 }
3462
3463 /* Print current contents of the tables set by the handle command.
3464 It is possible we should just be printing signals actually used
3465 by the current target (but for things to work right when switching
3466 targets, all signals should be in the signal tables). */
3467
3468 static void
3469 signals_info (char *signum_exp, int from_tty)
3470 {
3471 enum target_signal oursig;
3472 sig_print_header ();
3473
3474 if (signum_exp)
3475 {
3476 /* First see if this is a symbol name. */
3477 oursig = target_signal_from_name (signum_exp);
3478 if (oursig == TARGET_SIGNAL_UNKNOWN)
3479 {
3480 /* No, try numeric. */
3481 oursig =
3482 target_signal_from_command (parse_and_eval_long (signum_exp));
3483 }
3484 sig_print_info (oursig);
3485 return;
3486 }
3487
3488 printf_filtered ("\n");
3489 /* These ugly casts brought to you by the native VAX compiler. */
3490 for (oursig = TARGET_SIGNAL_FIRST;
3491 (int) oursig < (int) TARGET_SIGNAL_LAST;
3492 oursig = (enum target_signal) ((int) oursig + 1))
3493 {
3494 QUIT;
3495
3496 if (oursig != TARGET_SIGNAL_UNKNOWN
3497 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3498 sig_print_info (oursig);
3499 }
3500
3501 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3502 }
3503 \f
3504 struct inferior_status
3505 {
3506 enum target_signal stop_signal;
3507 CORE_ADDR stop_pc;
3508 bpstat stop_bpstat;
3509 int stop_step;
3510 int stop_stack_dummy;
3511 int stopped_by_random_signal;
3512 int trap_expected;
3513 CORE_ADDR step_range_start;
3514 CORE_ADDR step_range_end;
3515 struct frame_id step_frame_id;
3516 enum step_over_calls_kind step_over_calls;
3517 CORE_ADDR step_resume_break_address;
3518 int stop_after_trap;
3519 int stop_soon;
3520 struct regcache *stop_registers;
3521
3522 /* These are here because if call_function_by_hand has written some
3523 registers and then decides to call error(), we better not have changed
3524 any registers. */
3525 struct regcache *registers;
3526
3527 /* A frame unique identifier. */
3528 struct frame_id selected_frame_id;
3529
3530 int breakpoint_proceeded;
3531 int restore_stack_info;
3532 int proceed_to_finish;
3533 };
3534
3535 void
3536 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3537 LONGEST val)
3538 {
3539 int size = register_size (current_gdbarch, regno);
3540 void *buf = alloca (size);
3541 store_signed_integer (buf, size, val);
3542 regcache_raw_write (inf_status->registers, regno, buf);
3543 }
3544
3545 /* Save all of the information associated with the inferior<==>gdb
3546 connection. INF_STATUS is a pointer to a "struct inferior_status"
3547 (defined in inferior.h). */
3548
3549 struct inferior_status *
3550 save_inferior_status (int restore_stack_info)
3551 {
3552 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3553
3554 inf_status->stop_signal = stop_signal;
3555 inf_status->stop_pc = stop_pc;
3556 inf_status->stop_step = stop_step;
3557 inf_status->stop_stack_dummy = stop_stack_dummy;
3558 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3559 inf_status->trap_expected = trap_expected;
3560 inf_status->step_range_start = step_range_start;
3561 inf_status->step_range_end = step_range_end;
3562 inf_status->step_frame_id = step_frame_id;
3563 inf_status->step_over_calls = step_over_calls;
3564 inf_status->stop_after_trap = stop_after_trap;
3565 inf_status->stop_soon = stop_soon;
3566 /* Save original bpstat chain here; replace it with copy of chain.
3567 If caller's caller is walking the chain, they'll be happier if we
3568 hand them back the original chain when restore_inferior_status is
3569 called. */
3570 inf_status->stop_bpstat = stop_bpstat;
3571 stop_bpstat = bpstat_copy (stop_bpstat);
3572 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3573 inf_status->restore_stack_info = restore_stack_info;
3574 inf_status->proceed_to_finish = proceed_to_finish;
3575
3576 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3577
3578 inf_status->registers = regcache_dup (current_regcache);
3579
3580 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3581 return inf_status;
3582 }
3583
3584 static int
3585 restore_selected_frame (void *args)
3586 {
3587 struct frame_id *fid = (struct frame_id *) args;
3588 struct frame_info *frame;
3589
3590 frame = frame_find_by_id (*fid);
3591
3592 /* If inf_status->selected_frame_id is NULL, there was no previously
3593 selected frame. */
3594 if (frame == NULL)
3595 {
3596 warning (_("Unable to restore previously selected frame."));
3597 return 0;
3598 }
3599
3600 select_frame (frame);
3601
3602 return (1);
3603 }
3604
3605 void
3606 restore_inferior_status (struct inferior_status *inf_status)
3607 {
3608 stop_signal = inf_status->stop_signal;
3609 stop_pc = inf_status->stop_pc;
3610 stop_step = inf_status->stop_step;
3611 stop_stack_dummy = inf_status->stop_stack_dummy;
3612 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3613 trap_expected = inf_status->trap_expected;
3614 step_range_start = inf_status->step_range_start;
3615 step_range_end = inf_status->step_range_end;
3616 step_frame_id = inf_status->step_frame_id;
3617 step_over_calls = inf_status->step_over_calls;
3618 stop_after_trap = inf_status->stop_after_trap;
3619 stop_soon = inf_status->stop_soon;
3620 bpstat_clear (&stop_bpstat);
3621 stop_bpstat = inf_status->stop_bpstat;
3622 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3623 proceed_to_finish = inf_status->proceed_to_finish;
3624
3625 /* FIXME: Is the restore of stop_registers always needed. */
3626 regcache_xfree (stop_registers);
3627 stop_registers = inf_status->stop_registers;
3628
3629 /* The inferior can be gone if the user types "print exit(0)"
3630 (and perhaps other times). */
3631 if (target_has_execution)
3632 /* NB: The register write goes through to the target. */
3633 regcache_cpy (current_regcache, inf_status->registers);
3634 regcache_xfree (inf_status->registers);
3635
3636 /* FIXME: If we are being called after stopping in a function which
3637 is called from gdb, we should not be trying to restore the
3638 selected frame; it just prints a spurious error message (The
3639 message is useful, however, in detecting bugs in gdb (like if gdb
3640 clobbers the stack)). In fact, should we be restoring the
3641 inferior status at all in that case? . */
3642
3643 if (target_has_stack && inf_status->restore_stack_info)
3644 {
3645 /* The point of catch_errors is that if the stack is clobbered,
3646 walking the stack might encounter a garbage pointer and
3647 error() trying to dereference it. */
3648 if (catch_errors
3649 (restore_selected_frame, &inf_status->selected_frame_id,
3650 "Unable to restore previously selected frame:\n",
3651 RETURN_MASK_ERROR) == 0)
3652 /* Error in restoring the selected frame. Select the innermost
3653 frame. */
3654 select_frame (get_current_frame ());
3655
3656 }
3657
3658 xfree (inf_status);
3659 }
3660
3661 static void
3662 do_restore_inferior_status_cleanup (void *sts)
3663 {
3664 restore_inferior_status (sts);
3665 }
3666
3667 struct cleanup *
3668 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3669 {
3670 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3671 }
3672
3673 void
3674 discard_inferior_status (struct inferior_status *inf_status)
3675 {
3676 /* See save_inferior_status for info on stop_bpstat. */
3677 bpstat_clear (&inf_status->stop_bpstat);
3678 regcache_xfree (inf_status->registers);
3679 regcache_xfree (inf_status->stop_registers);
3680 xfree (inf_status);
3681 }
3682
3683 int
3684 inferior_has_forked (int pid, int *child_pid)
3685 {
3686 struct target_waitstatus last;
3687 ptid_t last_ptid;
3688
3689 get_last_target_status (&last_ptid, &last);
3690
3691 if (last.kind != TARGET_WAITKIND_FORKED)
3692 return 0;
3693
3694 if (ptid_get_pid (last_ptid) != pid)
3695 return 0;
3696
3697 *child_pid = last.value.related_pid;
3698 return 1;
3699 }
3700
3701 int
3702 inferior_has_vforked (int pid, int *child_pid)
3703 {
3704 struct target_waitstatus last;
3705 ptid_t last_ptid;
3706
3707 get_last_target_status (&last_ptid, &last);
3708
3709 if (last.kind != TARGET_WAITKIND_VFORKED)
3710 return 0;
3711
3712 if (ptid_get_pid (last_ptid) != pid)
3713 return 0;
3714
3715 *child_pid = last.value.related_pid;
3716 return 1;
3717 }
3718
3719 int
3720 inferior_has_execd (int pid, char **execd_pathname)
3721 {
3722 struct target_waitstatus last;
3723 ptid_t last_ptid;
3724
3725 get_last_target_status (&last_ptid, &last);
3726
3727 if (last.kind != TARGET_WAITKIND_EXECD)
3728 return 0;
3729
3730 if (ptid_get_pid (last_ptid) != pid)
3731 return 0;
3732
3733 *execd_pathname = xstrdup (last.value.execd_pathname);
3734 return 1;
3735 }
3736
3737 /* Oft used ptids */
3738 ptid_t null_ptid;
3739 ptid_t minus_one_ptid;
3740
3741 /* Create a ptid given the necessary PID, LWP, and TID components. */
3742
3743 ptid_t
3744 ptid_build (int pid, long lwp, long tid)
3745 {
3746 ptid_t ptid;
3747
3748 ptid.pid = pid;
3749 ptid.lwp = lwp;
3750 ptid.tid = tid;
3751 return ptid;
3752 }
3753
3754 /* Create a ptid from just a pid. */
3755
3756 ptid_t
3757 pid_to_ptid (int pid)
3758 {
3759 return ptid_build (pid, 0, 0);
3760 }
3761
3762 /* Fetch the pid (process id) component from a ptid. */
3763
3764 int
3765 ptid_get_pid (ptid_t ptid)
3766 {
3767 return ptid.pid;
3768 }
3769
3770 /* Fetch the lwp (lightweight process) component from a ptid. */
3771
3772 long
3773 ptid_get_lwp (ptid_t ptid)
3774 {
3775 return ptid.lwp;
3776 }
3777
3778 /* Fetch the tid (thread id) component from a ptid. */
3779
3780 long
3781 ptid_get_tid (ptid_t ptid)
3782 {
3783 return ptid.tid;
3784 }
3785
3786 /* ptid_equal() is used to test equality of two ptids. */
3787
3788 int
3789 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3790 {
3791 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3792 && ptid1.tid == ptid2.tid);
3793 }
3794
3795 /* restore_inferior_ptid() will be used by the cleanup machinery
3796 to restore the inferior_ptid value saved in a call to
3797 save_inferior_ptid(). */
3798
3799 static void
3800 restore_inferior_ptid (void *arg)
3801 {
3802 ptid_t *saved_ptid_ptr = arg;
3803 inferior_ptid = *saved_ptid_ptr;
3804 xfree (arg);
3805 }
3806
3807 /* Save the value of inferior_ptid so that it may be restored by a
3808 later call to do_cleanups(). Returns the struct cleanup pointer
3809 needed for later doing the cleanup. */
3810
3811 struct cleanup *
3812 save_inferior_ptid (void)
3813 {
3814 ptid_t *saved_ptid_ptr;
3815
3816 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3817 *saved_ptid_ptr = inferior_ptid;
3818 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3819 }
3820 \f
3821
3822 static void
3823 build_infrun (void)
3824 {
3825 stop_registers = regcache_xmalloc (current_gdbarch);
3826 }
3827
3828 void
3829 _initialize_infrun (void)
3830 {
3831 int i;
3832 int numsigs;
3833 struct cmd_list_element *c;
3834
3835 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3836 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3837
3838 add_info ("signals", signals_info, _("\
3839 What debugger does when program gets various signals.\n\
3840 Specify a signal as argument to print info on that signal only."));
3841 add_info_alias ("handle", "signals", 0);
3842
3843 add_com ("handle", class_run, handle_command, _("\
3844 Specify how to handle a signal.\n\
3845 Args are signals and actions to apply to those signals.\n\
3846 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3847 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3848 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3849 The special arg \"all\" is recognized to mean all signals except those\n\
3850 used by the debugger, typically SIGTRAP and SIGINT.\n\
3851 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3852 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3853 Stop means reenter debugger if this signal happens (implies print).\n\
3854 Print means print a message if this signal happens.\n\
3855 Pass means let program see this signal; otherwise program doesn't know.\n\
3856 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3857 Pass and Stop may be combined."));
3858 if (xdb_commands)
3859 {
3860 add_com ("lz", class_info, signals_info, _("\
3861 What debugger does when program gets various signals.\n\
3862 Specify a signal as argument to print info on that signal only."));
3863 add_com ("z", class_run, xdb_handle_command, _("\
3864 Specify how to handle a signal.\n\
3865 Args are signals and actions to apply to those signals.\n\
3866 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3867 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3868 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3869 The special arg \"all\" is recognized to mean all signals except those\n\
3870 used by the debugger, typically SIGTRAP and SIGINT.\n\
3871 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3872 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3873 nopass), \"Q\" (noprint)\n\
3874 Stop means reenter debugger if this signal happens (implies print).\n\
3875 Print means print a message if this signal happens.\n\
3876 Pass means let program see this signal; otherwise program doesn't know.\n\
3877 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3878 Pass and Stop may be combined."));
3879 }
3880
3881 if (!dbx_commands)
3882 stop_command = add_cmd ("stop", class_obscure,
3883 not_just_help_class_command, _("\
3884 There is no `stop' command, but you can set a hook on `stop'.\n\
3885 This allows you to set a list of commands to be run each time execution\n\
3886 of the program stops."), &cmdlist);
3887
3888 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3889 Set inferior debugging."), _("\
3890 Show inferior debugging."), _("\
3891 When non-zero, inferior specific debugging is enabled."),
3892 NULL,
3893 show_debug_infrun,
3894 &setdebuglist, &showdebuglist);
3895
3896 numsigs = (int) TARGET_SIGNAL_LAST;
3897 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3898 signal_print = (unsigned char *)
3899 xmalloc (sizeof (signal_print[0]) * numsigs);
3900 signal_program = (unsigned char *)
3901 xmalloc (sizeof (signal_program[0]) * numsigs);
3902 for (i = 0; i < numsigs; i++)
3903 {
3904 signal_stop[i] = 1;
3905 signal_print[i] = 1;
3906 signal_program[i] = 1;
3907 }
3908
3909 /* Signals caused by debugger's own actions
3910 should not be given to the program afterwards. */
3911 signal_program[TARGET_SIGNAL_TRAP] = 0;
3912 signal_program[TARGET_SIGNAL_INT] = 0;
3913
3914 /* Signals that are not errors should not normally enter the debugger. */
3915 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3916 signal_print[TARGET_SIGNAL_ALRM] = 0;
3917 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3918 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3919 signal_stop[TARGET_SIGNAL_PROF] = 0;
3920 signal_print[TARGET_SIGNAL_PROF] = 0;
3921 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3922 signal_print[TARGET_SIGNAL_CHLD] = 0;
3923 signal_stop[TARGET_SIGNAL_IO] = 0;
3924 signal_print[TARGET_SIGNAL_IO] = 0;
3925 signal_stop[TARGET_SIGNAL_POLL] = 0;
3926 signal_print[TARGET_SIGNAL_POLL] = 0;
3927 signal_stop[TARGET_SIGNAL_URG] = 0;
3928 signal_print[TARGET_SIGNAL_URG] = 0;
3929 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3930 signal_print[TARGET_SIGNAL_WINCH] = 0;
3931
3932 /* These signals are used internally by user-level thread
3933 implementations. (See signal(5) on Solaris.) Like the above
3934 signals, a healthy program receives and handles them as part of
3935 its normal operation. */
3936 signal_stop[TARGET_SIGNAL_LWP] = 0;
3937 signal_print[TARGET_SIGNAL_LWP] = 0;
3938 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3939 signal_print[TARGET_SIGNAL_WAITING] = 0;
3940 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3941 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3942
3943 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3944 &stop_on_solib_events, _("\
3945 Set stopping for shared library events."), _("\
3946 Show stopping for shared library events."), _("\
3947 If nonzero, gdb will give control to the user when the dynamic linker\n\
3948 notifies gdb of shared library events. The most common event of interest\n\
3949 to the user would be loading/unloading of a new library."),
3950 NULL,
3951 show_stop_on_solib_events,
3952 &setlist, &showlist);
3953
3954 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3955 follow_fork_mode_kind_names,
3956 &follow_fork_mode_string, _("\
3957 Set debugger response to a program call of fork or vfork."), _("\
3958 Show debugger response to a program call of fork or vfork."), _("\
3959 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3960 parent - the original process is debugged after a fork\n\
3961 child - the new process is debugged after a fork\n\
3962 The unfollowed process will continue to run.\n\
3963 By default, the debugger will follow the parent process."),
3964 NULL,
3965 show_follow_fork_mode_string,
3966 &setlist, &showlist);
3967
3968 add_setshow_enum_cmd ("scheduler-locking", class_run,
3969 scheduler_enums, &scheduler_mode, _("\
3970 Set mode for locking scheduler during execution."), _("\
3971 Show mode for locking scheduler during execution."), _("\
3972 off == no locking (threads may preempt at any time)\n\
3973 on == full locking (no thread except the current thread may run)\n\
3974 step == scheduler locked during every single-step operation.\n\
3975 In this mode, no other thread may run during a step command.\n\
3976 Other threads may run while stepping over a function call ('next')."),
3977 set_schedlock_func, /* traps on target vector */
3978 show_scheduler_mode,
3979 &setlist, &showlist);
3980
3981 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3982 Set mode of the step operation."), _("\
3983 Show mode of the step operation."), _("\
3984 When set, doing a step over a function without debug line information\n\
3985 will stop at the first instruction of that function. Otherwise, the\n\
3986 function is skipped and the step command stops at a different source line."),
3987 NULL,
3988 show_step_stop_if_no_debug,
3989 &setlist, &showlist);
3990
3991 /* ptid initializations */
3992 null_ptid = ptid_build (0, 0, 0);
3993 minus_one_ptid = ptid_build (-1, 0, 0);
3994 inferior_ptid = null_ptid;
3995 target_last_wait_ptid = minus_one_ptid;
3996 }
This page took 0.114582 seconds and 4 git commands to generate.