*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Nonzero if breakpoints are now inserted in the inferior. */
218
219 static int breakpoints_inserted;
220
221 /* Function inferior was in as of last step command. */
222
223 static struct symbol *step_start_function;
224
225 /* Nonzero if we are expecting a trace trap and should proceed from it. */
226
227 static int trap_expected;
228
229 /* Nonzero if we want to give control to the user when we're notified
230 of shared library events by the dynamic linker. */
231 static int stop_on_solib_events;
232 static void
233 show_stop_on_solib_events (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237 value);
238 }
239
240 /* Nonzero means expecting a trace trap
241 and should stop the inferior and return silently when it happens. */
242
243 int stop_after_trap;
244
245 /* Nonzero means expecting a trap and caller will handle it themselves.
246 It is used after attach, due to attaching to a process;
247 when running in the shell before the child program has been exec'd;
248 and when running some kinds of remote stuff (FIXME?). */
249
250 enum stop_kind stop_soon;
251
252 /* Nonzero if proceed is being used for a "finish" command or a similar
253 situation when stop_registers should be saved. */
254
255 int proceed_to_finish;
256
257 /* Save register contents here when about to pop a stack dummy frame,
258 if-and-only-if proceed_to_finish is set.
259 Thus this contains the return value from the called function (assuming
260 values are returned in a register). */
261
262 struct regcache *stop_registers;
263
264 /* Nonzero after stop if current stack frame should be printed. */
265
266 static int stop_print_frame;
267
268 static struct breakpoint *step_resume_breakpoint = NULL;
269
270 /* This is a cached copy of the pid/waitstatus of the last event
271 returned by target_wait()/deprecated_target_wait_hook(). This
272 information is returned by get_last_target_status(). */
273 static ptid_t target_last_wait_ptid;
274 static struct target_waitstatus target_last_waitstatus;
275
276 /* This is used to remember when a fork, vfork or exec event
277 was caught by a catchpoint, and thus the event is to be
278 followed at the next resume of the inferior, and not
279 immediately. */
280 static struct
281 {
282 enum target_waitkind kind;
283 struct
284 {
285 int parent_pid;
286 int child_pid;
287 }
288 fork_event;
289 char *execd_pathname;
290 }
291 pending_follow;
292
293 static const char follow_fork_mode_child[] = "child";
294 static const char follow_fork_mode_parent[] = "parent";
295
296 static const char *follow_fork_mode_kind_names[] = {
297 follow_fork_mode_child,
298 follow_fork_mode_parent,
299 NULL
300 };
301
302 static const char *follow_fork_mode_string = follow_fork_mode_parent;
303 static void
304 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306 {
307 fprintf_filtered (file, _("\
308 Debugger response to a program call of fork or vfork is \"%s\".\n"),
309 value);
310 }
311 \f
312
313 static int
314 follow_fork (void)
315 {
316 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
317
318 return target_follow_fork (follow_child);
319 }
320
321 void
322 follow_inferior_reset_breakpoints (void)
323 {
324 /* Was there a step_resume breakpoint? (There was if the user
325 did a "next" at the fork() call.) If so, explicitly reset its
326 thread number.
327
328 step_resumes are a form of bp that are made to be per-thread.
329 Since we created the step_resume bp when the parent process
330 was being debugged, and now are switching to the child process,
331 from the breakpoint package's viewpoint, that's a switch of
332 "threads". We must update the bp's notion of which thread
333 it is for, or it'll be ignored when it triggers. */
334
335 if (step_resume_breakpoint)
336 breakpoint_re_set_thread (step_resume_breakpoint);
337
338 /* Reinsert all breakpoints in the child. The user may have set
339 breakpoints after catching the fork, in which case those
340 were never set in the child, but only in the parent. This makes
341 sure the inserted breakpoints match the breakpoint list. */
342
343 breakpoint_re_set ();
344 insert_breakpoints ();
345 }
346
347 /* EXECD_PATHNAME is assumed to be non-NULL. */
348
349 static void
350 follow_exec (int pid, char *execd_pathname)
351 {
352 int saved_pid = pid;
353 struct target_ops *tgt;
354
355 if (!may_follow_exec)
356 return;
357
358 /* This is an exec event that we actually wish to pay attention to.
359 Refresh our symbol table to the newly exec'd program, remove any
360 momentary bp's, etc.
361
362 If there are breakpoints, they aren't really inserted now,
363 since the exec() transformed our inferior into a fresh set
364 of instructions.
365
366 We want to preserve symbolic breakpoints on the list, since
367 we have hopes that they can be reset after the new a.out's
368 symbol table is read.
369
370 However, any "raw" breakpoints must be removed from the list
371 (e.g., the solib bp's), since their address is probably invalid
372 now.
373
374 And, we DON'T want to call delete_breakpoints() here, since
375 that may write the bp's "shadow contents" (the instruction
376 value that was overwritten witha TRAP instruction). Since
377 we now have a new a.out, those shadow contents aren't valid. */
378 update_breakpoints_after_exec ();
379
380 /* If there was one, it's gone now. We cannot truly step-to-next
381 statement through an exec(). */
382 step_resume_breakpoint = NULL;
383 step_range_start = 0;
384 step_range_end = 0;
385
386 /* What is this a.out's name? */
387 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
388
389 /* We've followed the inferior through an exec. Therefore, the
390 inferior has essentially been killed & reborn. */
391
392 /* First collect the run target in effect. */
393 tgt = find_run_target ();
394 /* If we can't find one, things are in a very strange state... */
395 if (tgt == NULL)
396 error (_("Could find run target to save before following exec"));
397
398 gdb_flush (gdb_stdout);
399 target_mourn_inferior ();
400 inferior_ptid = pid_to_ptid (saved_pid);
401 /* Because mourn_inferior resets inferior_ptid. */
402 push_target (tgt);
403
404 /* That a.out is now the one to use. */
405 exec_file_attach (execd_pathname, 0);
406
407 /* And also is where symbols can be found. */
408 symbol_file_add_main (execd_pathname, 0);
409
410 /* Reset the shared library package. This ensures that we get
411 a shlib event when the child reaches "_start", at which point
412 the dld will have had a chance to initialize the child. */
413 #if defined(SOLIB_RESTART)
414 SOLIB_RESTART ();
415 #endif
416 #ifdef SOLIB_CREATE_INFERIOR_HOOK
417 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
418 #else
419 solib_create_inferior_hook ();
420 #endif
421
422 /* Reinsert all breakpoints. (Those which were symbolic have
423 been reset to the proper address in the new a.out, thanks
424 to symbol_file_command...) */
425 insert_breakpoints ();
426
427 /* The next resume of this inferior should bring it to the shlib
428 startup breakpoints. (If the user had also set bp's on
429 "main" from the old (parent) process, then they'll auto-
430 matically get reset there in the new process.) */
431 }
432
433 /* Non-zero if we just simulating a single-step. This is needed
434 because we cannot remove the breakpoints in the inferior process
435 until after the `wait' in `wait_for_inferior'. */
436 static int singlestep_breakpoints_inserted_p = 0;
437
438 /* The thread we inserted single-step breakpoints for. */
439 static ptid_t singlestep_ptid;
440
441 /* PC when we started this single-step. */
442 static CORE_ADDR singlestep_pc;
443
444 /* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446 static ptid_t saved_singlestep_ptid;
447 static int stepping_past_singlestep_breakpoint;
448
449 /* Similarly, if we are stepping another thread past a breakpoint,
450 save the original thread here so that we can resume stepping it later. */
451 static ptid_t stepping_past_breakpoint_ptid;
452 static int stepping_past_breakpoint;
453 \f
454
455 /* Things to clean up if we QUIT out of resume (). */
456 static void
457 resume_cleanups (void *ignore)
458 {
459 normal_stop ();
460 }
461
462 static const char schedlock_off[] = "off";
463 static const char schedlock_on[] = "on";
464 static const char schedlock_step[] = "step";
465 static const char *scheduler_enums[] = {
466 schedlock_off,
467 schedlock_on,
468 schedlock_step,
469 NULL
470 };
471 static const char *scheduler_mode = schedlock_off;
472 static void
473 show_scheduler_mode (struct ui_file *file, int from_tty,
474 struct cmd_list_element *c, const char *value)
475 {
476 fprintf_filtered (file, _("\
477 Mode for locking scheduler during execution is \"%s\".\n"),
478 value);
479 }
480
481 static void
482 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
483 {
484 if (!target_can_lock_scheduler)
485 {
486 scheduler_mode = schedlock_off;
487 error (_("Target '%s' cannot support this command."), target_shortname);
488 }
489 }
490
491
492 /* Resume the inferior, but allow a QUIT. This is useful if the user
493 wants to interrupt some lengthy single-stepping operation
494 (for child processes, the SIGINT goes to the inferior, and so
495 we get a SIGINT random_signal, but for remote debugging and perhaps
496 other targets, that's not true).
497
498 STEP nonzero if we should step (zero to continue instead).
499 SIG is the signal to give the inferior (zero for none). */
500 void
501 resume (int step, enum target_signal sig)
502 {
503 int should_resume = 1;
504 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
505 QUIT;
506
507 if (debug_infrun)
508 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
509 step, sig);
510
511 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
512
513
514 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
515 over an instruction that causes a page fault without triggering
516 a hardware watchpoint. The kernel properly notices that it shouldn't
517 stop, because the hardware watchpoint is not triggered, but it forgets
518 the step request and continues the program normally.
519 Work around the problem by removing hardware watchpoints if a step is
520 requested, GDB will check for a hardware watchpoint trigger after the
521 step anyway. */
522 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
523 remove_hw_watchpoints ();
524
525
526 /* Normally, by the time we reach `resume', the breakpoints are either
527 removed or inserted, as appropriate. The exception is if we're sitting
528 at a permanent breakpoint; we need to step over it, but permanent
529 breakpoints can't be removed. So we have to test for it here. */
530 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
531 {
532 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
533 gdbarch_skip_permanent_breakpoint (current_gdbarch,
534 get_current_regcache ());
535 else
536 error (_("\
537 The program is stopped at a permanent breakpoint, but GDB does not know\n\
538 how to step past a permanent breakpoint on this architecture. Try using\n\
539 a command like `return' or `jump' to continue execution."));
540 }
541
542 if (step && gdbarch_software_single_step_p (current_gdbarch))
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
546 {
547 /* ...and don't ask hardware to do it. */
548 step = 0;
549 /* and do not pull these breakpoints until after a `wait' in
550 `wait_for_inferior' */
551 singlestep_breakpoints_inserted_p = 1;
552 singlestep_ptid = inferior_ptid;
553 singlestep_pc = read_pc ();
554 }
555 }
556
557 /* If there were any forks/vforks/execs that were caught and are
558 now to be followed, then do so. */
559 switch (pending_follow.kind)
560 {
561 case TARGET_WAITKIND_FORKED:
562 case TARGET_WAITKIND_VFORKED:
563 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
564 if (follow_fork ())
565 should_resume = 0;
566 break;
567
568 case TARGET_WAITKIND_EXECD:
569 /* follow_exec is called as soon as the exec event is seen. */
570 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
571 break;
572
573 default:
574 break;
575 }
576
577 /* Install inferior's terminal modes. */
578 target_terminal_inferior ();
579
580 if (should_resume)
581 {
582 ptid_t resume_ptid;
583
584 resume_ptid = RESUME_ALL; /* Default */
585
586 if ((step || singlestep_breakpoints_inserted_p)
587 && (stepping_past_singlestep_breakpoint
588 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
589 {
590 /* Stepping past a breakpoint without inserting breakpoints.
591 Make sure only the current thread gets to step, so that
592 other threads don't sneak past breakpoints while they are
593 not inserted. */
594
595 resume_ptid = inferior_ptid;
596 }
597
598 if ((scheduler_mode == schedlock_on)
599 || (scheduler_mode == schedlock_step
600 && (step || singlestep_breakpoints_inserted_p)))
601 {
602 /* User-settable 'scheduler' mode requires solo thread resume. */
603 resume_ptid = inferior_ptid;
604 }
605
606 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
607 {
608 /* Most targets can step a breakpoint instruction, thus
609 executing it normally. But if this one cannot, just
610 continue and we will hit it anyway. */
611 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
612 step = 0;
613 }
614 target_resume (resume_ptid, step, sig);
615 }
616
617 discard_cleanups (old_cleanups);
618 }
619 \f
620
621 /* Clear out all variables saying what to do when inferior is continued.
622 First do this, then set the ones you want, then call `proceed'. */
623
624 void
625 clear_proceed_status (void)
626 {
627 trap_expected = 0;
628 step_range_start = 0;
629 step_range_end = 0;
630 step_frame_id = null_frame_id;
631 step_over_calls = STEP_OVER_UNDEBUGGABLE;
632 stop_after_trap = 0;
633 stop_soon = NO_STOP_QUIETLY;
634 proceed_to_finish = 0;
635 breakpoint_proceeded = 1; /* We're about to proceed... */
636
637 if (stop_registers)
638 {
639 regcache_xfree (stop_registers);
640 stop_registers = NULL;
641 }
642
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645 }
646
647 /* This should be suitable for any targets that support threads. */
648
649 static int
650 prepare_to_proceed (int step)
651 {
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
658 /* Make sure we were stopped at a breakpoint. */
659 if (wait_status.kind != TARGET_WAITKIND_STOPPED
660 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
661 {
662 return 0;
663 }
664
665 /* Switched over from WAIT_PID. */
666 if (!ptid_equal (wait_ptid, minus_one_ptid)
667 && !ptid_equal (inferior_ptid, wait_ptid)
668 && breakpoint_here_p (read_pc_pid (wait_ptid)))
669 {
670 /* If stepping, remember current thread to switch back to. */
671 if (step)
672 {
673 stepping_past_breakpoint = 1;
674 stepping_past_breakpoint_ptid = inferior_ptid;
675 }
676
677 /* Switch back to WAIT_PID thread. */
678 switch_to_thread (wait_ptid);
679
680 /* We return 1 to indicate that there is a breakpoint here,
681 so we need to step over it before continuing to avoid
682 hitting it straight away. */
683 return 1;
684 }
685
686 return 0;
687 }
688
689 /* Record the pc of the program the last time it stopped. This is
690 just used internally by wait_for_inferior, but need to be preserved
691 over calls to it and cleared when the inferior is started. */
692 static CORE_ADDR prev_pc;
693
694 /* Basic routine for continuing the program in various fashions.
695
696 ADDR is the address to resume at, or -1 for resume where stopped.
697 SIGGNAL is the signal to give it, or 0 for none,
698 or -1 for act according to how it stopped.
699 STEP is nonzero if should trap after one instruction.
700 -1 means return after that and print nothing.
701 You should probably set various step_... variables
702 before calling here, if you are stepping.
703
704 You should call clear_proceed_status before calling proceed. */
705
706 void
707 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
708 {
709 int oneproc = 0;
710
711 if (step > 0)
712 step_start_function = find_pc_function (read_pc ());
713 if (step < 0)
714 stop_after_trap = 1;
715
716 if (addr == (CORE_ADDR) -1)
717 {
718 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
719 /* There is a breakpoint at the address we will resume at,
720 step one instruction before inserting breakpoints so that
721 we do not stop right away (and report a second hit at this
722 breakpoint). */
723 oneproc = 1;
724 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
725 && gdbarch_single_step_through_delay (current_gdbarch,
726 get_current_frame ()))
727 /* We stepped onto an instruction that needs to be stepped
728 again before re-inserting the breakpoint, do so. */
729 oneproc = 1;
730 }
731 else
732 {
733 write_pc (addr);
734 }
735
736 if (debug_infrun)
737 fprintf_unfiltered (gdb_stdlog,
738 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
739 paddr_nz (addr), siggnal, step);
740
741 /* In a multi-threaded task we may select another thread
742 and then continue or step.
743
744 But if the old thread was stopped at a breakpoint, it
745 will immediately cause another breakpoint stop without
746 any execution (i.e. it will report a breakpoint hit
747 incorrectly). So we must step over it first.
748
749 prepare_to_proceed checks the current thread against the thread
750 that reported the most recent event. If a step-over is required
751 it returns TRUE and sets the current thread to the old thread. */
752 if (prepare_to_proceed (step))
753 oneproc = 1;
754
755 if (oneproc)
756 /* We will get a trace trap after one instruction.
757 Continue it automatically and insert breakpoints then. */
758 trap_expected = 1;
759 else
760 {
761 insert_breakpoints ();
762 /* If we get here there was no call to error() in
763 insert breakpoints -- so they were inserted. */
764 breakpoints_inserted = 1;
765 }
766
767 if (siggnal != TARGET_SIGNAL_DEFAULT)
768 stop_signal = siggnal;
769 /* If this signal should not be seen by program,
770 give it zero. Used for debugging signals. */
771 else if (!signal_program[stop_signal])
772 stop_signal = TARGET_SIGNAL_0;
773
774 annotate_starting ();
775
776 /* Make sure that output from GDB appears before output from the
777 inferior. */
778 gdb_flush (gdb_stdout);
779
780 /* Refresh prev_pc value just prior to resuming. This used to be
781 done in stop_stepping, however, setting prev_pc there did not handle
782 scenarios such as inferior function calls or returning from
783 a function via the return command. In those cases, the prev_pc
784 value was not set properly for subsequent commands. The prev_pc value
785 is used to initialize the starting line number in the ecs. With an
786 invalid value, the gdb next command ends up stopping at the position
787 represented by the next line table entry past our start position.
788 On platforms that generate one line table entry per line, this
789 is not a problem. However, on the ia64, the compiler generates
790 extraneous line table entries that do not increase the line number.
791 When we issue the gdb next command on the ia64 after an inferior call
792 or a return command, we often end up a few instructions forward, still
793 within the original line we started.
794
795 An attempt was made to have init_execution_control_state () refresh
796 the prev_pc value before calculating the line number. This approach
797 did not work because on platforms that use ptrace, the pc register
798 cannot be read unless the inferior is stopped. At that point, we
799 are not guaranteed the inferior is stopped and so the read_pc ()
800 call can fail. Setting the prev_pc value here ensures the value is
801 updated correctly when the inferior is stopped. */
802 prev_pc = read_pc ();
803
804 /* Resume inferior. */
805 resume (oneproc || step || bpstat_should_step (), stop_signal);
806
807 /* Wait for it to stop (if not standalone)
808 and in any case decode why it stopped, and act accordingly. */
809 /* Do this only if we are not using the event loop, or if the target
810 does not support asynchronous execution. */
811 if (!target_can_async_p ())
812 {
813 wait_for_inferior ();
814 normal_stop ();
815 }
816 }
817 \f
818
819 /* Start remote-debugging of a machine over a serial link. */
820
821 void
822 start_remote (int from_tty)
823 {
824 init_thread_list ();
825 init_wait_for_inferior ();
826 stop_soon = STOP_QUIETLY_REMOTE;
827 trap_expected = 0;
828
829 /* Always go on waiting for the target, regardless of the mode. */
830 /* FIXME: cagney/1999-09-23: At present it isn't possible to
831 indicate to wait_for_inferior that a target should timeout if
832 nothing is returned (instead of just blocking). Because of this,
833 targets expecting an immediate response need to, internally, set
834 things up so that the target_wait() is forced to eventually
835 timeout. */
836 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
837 differentiate to its caller what the state of the target is after
838 the initial open has been performed. Here we're assuming that
839 the target has stopped. It should be possible to eventually have
840 target_open() return to the caller an indication that the target
841 is currently running and GDB state should be set to the same as
842 for an async run. */
843 wait_for_inferior ();
844
845 /* Now that the inferior has stopped, do any bookkeeping like
846 loading shared libraries. We want to do this before normal_stop,
847 so that the displayed frame is up to date. */
848 post_create_inferior (&current_target, from_tty);
849
850 normal_stop ();
851 }
852
853 /* Initialize static vars when a new inferior begins. */
854
855 void
856 init_wait_for_inferior (void)
857 {
858 /* These are meaningless until the first time through wait_for_inferior. */
859 prev_pc = 0;
860
861 breakpoints_inserted = 0;
862 breakpoint_init_inferior (inf_starting);
863
864 /* Don't confuse first call to proceed(). */
865 stop_signal = TARGET_SIGNAL_0;
866
867 /* The first resume is not following a fork/vfork/exec. */
868 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
869
870 clear_proceed_status ();
871
872 stepping_past_singlestep_breakpoint = 0;
873 stepping_past_breakpoint = 0;
874 }
875 \f
876 /* This enum encodes possible reasons for doing a target_wait, so that
877 wfi can call target_wait in one place. (Ultimately the call will be
878 moved out of the infinite loop entirely.) */
879
880 enum infwait_states
881 {
882 infwait_normal_state,
883 infwait_thread_hop_state,
884 infwait_step_watch_state,
885 infwait_nonstep_watch_state
886 };
887
888 /* Why did the inferior stop? Used to print the appropriate messages
889 to the interface from within handle_inferior_event(). */
890 enum inferior_stop_reason
891 {
892 /* Step, next, nexti, stepi finished. */
893 END_STEPPING_RANGE,
894 /* Inferior terminated by signal. */
895 SIGNAL_EXITED,
896 /* Inferior exited. */
897 EXITED,
898 /* Inferior received signal, and user asked to be notified. */
899 SIGNAL_RECEIVED
900 };
901
902 /* This structure contains what used to be local variables in
903 wait_for_inferior. Probably many of them can return to being
904 locals in handle_inferior_event. */
905
906 struct execution_control_state
907 {
908 struct target_waitstatus ws;
909 struct target_waitstatus *wp;
910 int another_trap;
911 int random_signal;
912 CORE_ADDR stop_func_start;
913 CORE_ADDR stop_func_end;
914 char *stop_func_name;
915 struct symtab_and_line sal;
916 int current_line;
917 struct symtab *current_symtab;
918 int handling_longjmp; /* FIXME */
919 ptid_t ptid;
920 ptid_t saved_inferior_ptid;
921 int step_after_step_resume_breakpoint;
922 int stepping_through_solib_after_catch;
923 bpstat stepping_through_solib_catchpoints;
924 int new_thread_event;
925 struct target_waitstatus tmpstatus;
926 enum infwait_states infwait_state;
927 ptid_t waiton_ptid;
928 int wait_some_more;
929 };
930
931 void init_execution_control_state (struct execution_control_state *ecs);
932
933 void handle_inferior_event (struct execution_control_state *ecs);
934
935 static void step_into_function (struct execution_control_state *ecs);
936 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
937 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
938 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
939 struct frame_id sr_id);
940 static void stop_stepping (struct execution_control_state *ecs);
941 static void prepare_to_wait (struct execution_control_state *ecs);
942 static void keep_going (struct execution_control_state *ecs);
943 static void print_stop_reason (enum inferior_stop_reason stop_reason,
944 int stop_info);
945
946 /* Wait for control to return from inferior to debugger.
947 If inferior gets a signal, we may decide to start it up again
948 instead of returning. That is why there is a loop in this function.
949 When this function actually returns it means the inferior
950 should be left stopped and GDB should read more commands. */
951
952 void
953 wait_for_inferior (void)
954 {
955 struct cleanup *old_cleanups;
956 struct execution_control_state ecss;
957 struct execution_control_state *ecs;
958
959 if (debug_infrun)
960 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
961
962 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
963 &step_resume_breakpoint);
964
965 /* wfi still stays in a loop, so it's OK just to take the address of
966 a local to get the ecs pointer. */
967 ecs = &ecss;
968
969 /* Fill in with reasonable starting values. */
970 init_execution_control_state (ecs);
971
972 /* We'll update this if & when we switch to a new thread. */
973 previous_inferior_ptid = inferior_ptid;
974
975 overlay_cache_invalid = 1;
976
977 /* We have to invalidate the registers BEFORE calling target_wait
978 because they can be loaded from the target while in target_wait.
979 This makes remote debugging a bit more efficient for those
980 targets that provide critical registers as part of their normal
981 status mechanism. */
982
983 registers_changed ();
984
985 while (1)
986 {
987 if (deprecated_target_wait_hook)
988 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
989 else
990 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
991
992 /* Now figure out what to do with the result of the result. */
993 handle_inferior_event (ecs);
994
995 if (!ecs->wait_some_more)
996 break;
997 }
998 do_cleanups (old_cleanups);
999 }
1000
1001 /* Asynchronous version of wait_for_inferior. It is called by the
1002 event loop whenever a change of state is detected on the file
1003 descriptor corresponding to the target. It can be called more than
1004 once to complete a single execution command. In such cases we need
1005 to keep the state in a global variable ASYNC_ECSS. If it is the
1006 last time that this function is called for a single execution
1007 command, then report to the user that the inferior has stopped, and
1008 do the necessary cleanups. */
1009
1010 struct execution_control_state async_ecss;
1011 struct execution_control_state *async_ecs;
1012
1013 void
1014 fetch_inferior_event (void *client_data)
1015 {
1016 static struct cleanup *old_cleanups;
1017
1018 async_ecs = &async_ecss;
1019
1020 if (!async_ecs->wait_some_more)
1021 {
1022 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1023 &step_resume_breakpoint);
1024
1025 /* Fill in with reasonable starting values. */
1026 init_execution_control_state (async_ecs);
1027
1028 /* We'll update this if & when we switch to a new thread. */
1029 previous_inferior_ptid = inferior_ptid;
1030
1031 overlay_cache_invalid = 1;
1032
1033 /* We have to invalidate the registers BEFORE calling target_wait
1034 because they can be loaded from the target while in target_wait.
1035 This makes remote debugging a bit more efficient for those
1036 targets that provide critical registers as part of their normal
1037 status mechanism. */
1038
1039 registers_changed ();
1040 }
1041
1042 if (deprecated_target_wait_hook)
1043 async_ecs->ptid =
1044 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1045 else
1046 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1047
1048 /* Now figure out what to do with the result of the result. */
1049 handle_inferior_event (async_ecs);
1050
1051 if (!async_ecs->wait_some_more)
1052 {
1053 /* Do only the cleanups that have been added by this
1054 function. Let the continuations for the commands do the rest,
1055 if there are any. */
1056 do_exec_cleanups (old_cleanups);
1057 normal_stop ();
1058 if (step_multi && stop_step)
1059 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1060 else
1061 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1062 }
1063 }
1064
1065 /* Prepare an execution control state for looping through a
1066 wait_for_inferior-type loop. */
1067
1068 void
1069 init_execution_control_state (struct execution_control_state *ecs)
1070 {
1071 ecs->another_trap = 0;
1072 ecs->random_signal = 0;
1073 ecs->step_after_step_resume_breakpoint = 0;
1074 ecs->handling_longjmp = 0; /* FIXME */
1075 ecs->stepping_through_solib_after_catch = 0;
1076 ecs->stepping_through_solib_catchpoints = NULL;
1077 ecs->sal = find_pc_line (prev_pc, 0);
1078 ecs->current_line = ecs->sal.line;
1079 ecs->current_symtab = ecs->sal.symtab;
1080 ecs->infwait_state = infwait_normal_state;
1081 ecs->waiton_ptid = pid_to_ptid (-1);
1082 ecs->wp = &(ecs->ws);
1083 }
1084
1085 /* Return the cached copy of the last pid/waitstatus returned by
1086 target_wait()/deprecated_target_wait_hook(). The data is actually
1087 cached by handle_inferior_event(), which gets called immediately
1088 after target_wait()/deprecated_target_wait_hook(). */
1089
1090 void
1091 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1092 {
1093 *ptidp = target_last_wait_ptid;
1094 *status = target_last_waitstatus;
1095 }
1096
1097 void
1098 nullify_last_target_wait_ptid (void)
1099 {
1100 target_last_wait_ptid = minus_one_ptid;
1101 }
1102
1103 /* Switch thread contexts, maintaining "infrun state". */
1104
1105 static void
1106 context_switch (struct execution_control_state *ecs)
1107 {
1108 /* Caution: it may happen that the new thread (or the old one!)
1109 is not in the thread list. In this case we must not attempt
1110 to "switch context", or we run the risk that our context may
1111 be lost. This may happen as a result of the target module
1112 mishandling thread creation. */
1113
1114 if (debug_infrun)
1115 {
1116 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1117 target_pid_to_str (inferior_ptid));
1118 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1119 target_pid_to_str (ecs->ptid));
1120 }
1121
1122 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1123 { /* Perform infrun state context switch: */
1124 /* Save infrun state for the old thread. */
1125 save_infrun_state (inferior_ptid, prev_pc,
1126 trap_expected, step_resume_breakpoint,
1127 step_range_start,
1128 step_range_end, &step_frame_id,
1129 ecs->handling_longjmp, ecs->another_trap,
1130 ecs->stepping_through_solib_after_catch,
1131 ecs->stepping_through_solib_catchpoints,
1132 ecs->current_line, ecs->current_symtab);
1133
1134 /* Load infrun state for the new thread. */
1135 load_infrun_state (ecs->ptid, &prev_pc,
1136 &trap_expected, &step_resume_breakpoint,
1137 &step_range_start,
1138 &step_range_end, &step_frame_id,
1139 &ecs->handling_longjmp, &ecs->another_trap,
1140 &ecs->stepping_through_solib_after_catch,
1141 &ecs->stepping_through_solib_catchpoints,
1142 &ecs->current_line, &ecs->current_symtab);
1143 }
1144
1145 switch_to_thread (ecs->ptid);
1146 }
1147
1148 static void
1149 adjust_pc_after_break (struct execution_control_state *ecs)
1150 {
1151 CORE_ADDR breakpoint_pc;
1152
1153 /* If this target does not decrement the PC after breakpoints, then
1154 we have nothing to do. */
1155 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1156 return;
1157
1158 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1159 we aren't, just return.
1160
1161 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1162 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1163 implemented by software breakpoints should be handled through the normal
1164 breakpoint layer.
1165
1166 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167 different signals (SIGILL or SIGEMT for instance), but it is less
1168 clear where the PC is pointing afterwards. It may not match
1169 gdbarch_decr_pc_after_break. I don't know any specific target that
1170 generates these signals at breakpoints (the code has been in GDB since at
1171 least 1992) so I can not guess how to handle them here.
1172
1173 In earlier versions of GDB, a target with
1174 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1175 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1176 target with both of these set in GDB history, and it seems unlikely to be
1177 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1178
1179 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180 return;
1181
1182 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183 return;
1184
1185 /* Find the location where (if we've hit a breakpoint) the
1186 breakpoint would be. */
1187 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1188 (current_gdbarch);
1189
1190 /* Check whether there actually is a software breakpoint inserted
1191 at that location. */
1192 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1193 {
1194 /* When using hardware single-step, a SIGTRAP is reported for both
1195 a completed single-step and a software breakpoint. Need to
1196 differentiate between the two, as the latter needs adjusting
1197 but the former does not.
1198
1199 The SIGTRAP can be due to a completed hardware single-step only if
1200 - we didn't insert software single-step breakpoints
1201 - the thread to be examined is still the current thread
1202 - this thread is currently being stepped
1203
1204 If any of these events did not occur, we must have stopped due
1205 to hitting a software breakpoint, and have to back up to the
1206 breakpoint address.
1207
1208 As a special case, we could have hardware single-stepped a
1209 software breakpoint. In this case (prev_pc == breakpoint_pc),
1210 we also need to back up to the breakpoint address. */
1211
1212 if (singlestep_breakpoints_inserted_p
1213 || !ptid_equal (ecs->ptid, inferior_ptid)
1214 || !currently_stepping (ecs)
1215 || prev_pc == breakpoint_pc)
1216 write_pc_pid (breakpoint_pc, ecs->ptid);
1217 }
1218 }
1219
1220 /* Given an execution control state that has been freshly filled in
1221 by an event from the inferior, figure out what it means and take
1222 appropriate action. */
1223
1224 void
1225 handle_inferior_event (struct execution_control_state *ecs)
1226 {
1227 int sw_single_step_trap_p = 0;
1228 int stopped_by_watchpoint;
1229 int stepped_after_stopped_by_watchpoint = 0;
1230
1231 /* Cache the last pid/waitstatus. */
1232 target_last_wait_ptid = ecs->ptid;
1233 target_last_waitstatus = *ecs->wp;
1234
1235 adjust_pc_after_break (ecs);
1236
1237 switch (ecs->infwait_state)
1238 {
1239 case infwait_thread_hop_state:
1240 if (debug_infrun)
1241 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1242 /* Cancel the waiton_ptid. */
1243 ecs->waiton_ptid = pid_to_ptid (-1);
1244 break;
1245
1246 case infwait_normal_state:
1247 if (debug_infrun)
1248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1249 break;
1250
1251 case infwait_step_watch_state:
1252 if (debug_infrun)
1253 fprintf_unfiltered (gdb_stdlog,
1254 "infrun: infwait_step_watch_state\n");
1255
1256 stepped_after_stopped_by_watchpoint = 1;
1257 break;
1258
1259 case infwait_nonstep_watch_state:
1260 if (debug_infrun)
1261 fprintf_unfiltered (gdb_stdlog,
1262 "infrun: infwait_nonstep_watch_state\n");
1263 insert_breakpoints ();
1264
1265 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1266 handle things like signals arriving and other things happening
1267 in combination correctly? */
1268 stepped_after_stopped_by_watchpoint = 1;
1269 break;
1270
1271 default:
1272 internal_error (__FILE__, __LINE__, _("bad switch"));
1273 }
1274 ecs->infwait_state = infwait_normal_state;
1275
1276 reinit_frame_cache ();
1277
1278 /* If it's a new process, add it to the thread database */
1279
1280 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1281 && !ptid_equal (ecs->ptid, minus_one_ptid)
1282 && !in_thread_list (ecs->ptid));
1283
1284 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1285 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1286 {
1287 add_thread (ecs->ptid);
1288
1289 ui_out_text (uiout, "[New ");
1290 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1291 ui_out_text (uiout, "]\n");
1292 }
1293
1294 switch (ecs->ws.kind)
1295 {
1296 case TARGET_WAITKIND_LOADED:
1297 if (debug_infrun)
1298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1299 /* Ignore gracefully during startup of the inferior, as it might
1300 be the shell which has just loaded some objects, otherwise
1301 add the symbols for the newly loaded objects. Also ignore at
1302 the beginning of an attach or remote session; we will query
1303 the full list of libraries once the connection is
1304 established. */
1305 if (stop_soon == NO_STOP_QUIETLY)
1306 {
1307 int breakpoints_were_inserted;
1308
1309 /* Remove breakpoints, SOLIB_ADD might adjust
1310 breakpoint addresses via breakpoint_re_set. */
1311 breakpoints_were_inserted = breakpoints_inserted;
1312 if (breakpoints_inserted)
1313 remove_breakpoints ();
1314 breakpoints_inserted = 0;
1315
1316 /* Check for any newly added shared libraries if we're
1317 supposed to be adding them automatically. Switch
1318 terminal for any messages produced by
1319 breakpoint_re_set. */
1320 target_terminal_ours_for_output ();
1321 /* NOTE: cagney/2003-11-25: Make certain that the target
1322 stack's section table is kept up-to-date. Architectures,
1323 (e.g., PPC64), use the section table to perform
1324 operations such as address => section name and hence
1325 require the table to contain all sections (including
1326 those found in shared libraries). */
1327 /* NOTE: cagney/2003-11-25: Pass current_target and not
1328 exec_ops to SOLIB_ADD. This is because current GDB is
1329 only tooled to propagate section_table changes out from
1330 the "current_target" (see target_resize_to_sections), and
1331 not up from the exec stratum. This, of course, isn't
1332 right. "infrun.c" should only interact with the
1333 exec/process stratum, instead relying on the target stack
1334 to propagate relevant changes (stop, section table
1335 changed, ...) up to other layers. */
1336 #ifdef SOLIB_ADD
1337 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1338 #else
1339 solib_add (NULL, 0, &current_target, auto_solib_add);
1340 #endif
1341 target_terminal_inferior ();
1342
1343 /* If requested, stop when the dynamic linker notifies
1344 gdb of events. This allows the user to get control
1345 and place breakpoints in initializer routines for
1346 dynamically loaded objects (among other things). */
1347 if (stop_on_solib_events)
1348 {
1349 stop_stepping (ecs);
1350 return;
1351 }
1352
1353 /* NOTE drow/2007-05-11: This might be a good place to check
1354 for "catch load". */
1355
1356 /* Reinsert breakpoints and continue. */
1357 if (breakpoints_were_inserted)
1358 {
1359 insert_breakpoints ();
1360 breakpoints_inserted = 1;
1361 }
1362 }
1363
1364 /* If we are skipping through a shell, or through shared library
1365 loading that we aren't interested in, resume the program. If
1366 we're running the program normally, also resume. But stop if
1367 we're attaching or setting up a remote connection. */
1368 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1369 {
1370 resume (0, TARGET_SIGNAL_0);
1371 prepare_to_wait (ecs);
1372 return;
1373 }
1374
1375 break;
1376
1377 case TARGET_WAITKIND_SPURIOUS:
1378 if (debug_infrun)
1379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1380 resume (0, TARGET_SIGNAL_0);
1381 prepare_to_wait (ecs);
1382 return;
1383
1384 case TARGET_WAITKIND_EXITED:
1385 if (debug_infrun)
1386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1387 target_terminal_ours (); /* Must do this before mourn anyway */
1388 print_stop_reason (EXITED, ecs->ws.value.integer);
1389
1390 /* Record the exit code in the convenience variable $_exitcode, so
1391 that the user can inspect this again later. */
1392 set_internalvar (lookup_internalvar ("_exitcode"),
1393 value_from_longest (builtin_type_int,
1394 (LONGEST) ecs->ws.value.integer));
1395 gdb_flush (gdb_stdout);
1396 target_mourn_inferior ();
1397 singlestep_breakpoints_inserted_p = 0;
1398 stop_print_frame = 0;
1399 stop_stepping (ecs);
1400 return;
1401
1402 case TARGET_WAITKIND_SIGNALLED:
1403 if (debug_infrun)
1404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1405 stop_print_frame = 0;
1406 stop_signal = ecs->ws.value.sig;
1407 target_terminal_ours (); /* Must do this before mourn anyway */
1408
1409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1410 reach here unless the inferior is dead. However, for years
1411 target_kill() was called here, which hints that fatal signals aren't
1412 really fatal on some systems. If that's true, then some changes
1413 may be needed. */
1414 target_mourn_inferior ();
1415
1416 print_stop_reason (SIGNAL_EXITED, stop_signal);
1417 singlestep_breakpoints_inserted_p = 0;
1418 stop_stepping (ecs);
1419 return;
1420
1421 /* The following are the only cases in which we keep going;
1422 the above cases end in a continue or goto. */
1423 case TARGET_WAITKIND_FORKED:
1424 case TARGET_WAITKIND_VFORKED:
1425 if (debug_infrun)
1426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1427 stop_signal = TARGET_SIGNAL_TRAP;
1428 pending_follow.kind = ecs->ws.kind;
1429
1430 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1431 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1432
1433 if (!ptid_equal (ecs->ptid, inferior_ptid))
1434 {
1435 context_switch (ecs);
1436 reinit_frame_cache ();
1437 }
1438
1439 stop_pc = read_pc ();
1440
1441 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1442
1443 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1444
1445 /* If no catchpoint triggered for this, then keep going. */
1446 if (ecs->random_signal)
1447 {
1448 stop_signal = TARGET_SIGNAL_0;
1449 keep_going (ecs);
1450 return;
1451 }
1452 goto process_event_stop_test;
1453
1454 case TARGET_WAITKIND_EXECD:
1455 if (debug_infrun)
1456 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1457 stop_signal = TARGET_SIGNAL_TRAP;
1458
1459 /* NOTE drow/2002-12-05: This code should be pushed down into the
1460 target_wait function. Until then following vfork on HP/UX 10.20
1461 is probably broken by this. Of course, it's broken anyway. */
1462 /* Is this a target which reports multiple exec events per actual
1463 call to exec()? (HP-UX using ptrace does, for example.) If so,
1464 ignore all but the last one. Just resume the exec'r, and wait
1465 for the next exec event. */
1466 if (inferior_ignoring_leading_exec_events)
1467 {
1468 inferior_ignoring_leading_exec_events--;
1469 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1470 prepare_to_wait (ecs);
1471 return;
1472 }
1473 inferior_ignoring_leading_exec_events =
1474 target_reported_exec_events_per_exec_call () - 1;
1475
1476 pending_follow.execd_pathname =
1477 savestring (ecs->ws.value.execd_pathname,
1478 strlen (ecs->ws.value.execd_pathname));
1479
1480 /* This causes the eventpoints and symbol table to be reset. Must
1481 do this now, before trying to determine whether to stop. */
1482 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1483 xfree (pending_follow.execd_pathname);
1484
1485 stop_pc = read_pc_pid (ecs->ptid);
1486 ecs->saved_inferior_ptid = inferior_ptid;
1487 inferior_ptid = ecs->ptid;
1488
1489 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1490
1491 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1492 inferior_ptid = ecs->saved_inferior_ptid;
1493
1494 if (!ptid_equal (ecs->ptid, inferior_ptid))
1495 {
1496 context_switch (ecs);
1497 reinit_frame_cache ();
1498 }
1499
1500 /* If no catchpoint triggered for this, then keep going. */
1501 if (ecs->random_signal)
1502 {
1503 stop_signal = TARGET_SIGNAL_0;
1504 keep_going (ecs);
1505 return;
1506 }
1507 goto process_event_stop_test;
1508
1509 /* Be careful not to try to gather much state about a thread
1510 that's in a syscall. It's frequently a losing proposition. */
1511 case TARGET_WAITKIND_SYSCALL_ENTRY:
1512 if (debug_infrun)
1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1514 resume (0, TARGET_SIGNAL_0);
1515 prepare_to_wait (ecs);
1516 return;
1517
1518 /* Before examining the threads further, step this thread to
1519 get it entirely out of the syscall. (We get notice of the
1520 event when the thread is just on the verge of exiting a
1521 syscall. Stepping one instruction seems to get it back
1522 into user code.) */
1523 case TARGET_WAITKIND_SYSCALL_RETURN:
1524 if (debug_infrun)
1525 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1526 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1527 prepare_to_wait (ecs);
1528 return;
1529
1530 case TARGET_WAITKIND_STOPPED:
1531 if (debug_infrun)
1532 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1533 stop_signal = ecs->ws.value.sig;
1534 break;
1535
1536 /* We had an event in the inferior, but we are not interested
1537 in handling it at this level. The lower layers have already
1538 done what needs to be done, if anything.
1539
1540 One of the possible circumstances for this is when the
1541 inferior produces output for the console. The inferior has
1542 not stopped, and we are ignoring the event. Another possible
1543 circumstance is any event which the lower level knows will be
1544 reported multiple times without an intervening resume. */
1545 case TARGET_WAITKIND_IGNORE:
1546 if (debug_infrun)
1547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1548 prepare_to_wait (ecs);
1549 return;
1550 }
1551
1552 /* We may want to consider not doing a resume here in order to give
1553 the user a chance to play with the new thread. It might be good
1554 to make that a user-settable option. */
1555
1556 /* At this point, all threads are stopped (happens automatically in
1557 either the OS or the native code). Therefore we need to continue
1558 all threads in order to make progress. */
1559 if (ecs->new_thread_event)
1560 {
1561 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1562 prepare_to_wait (ecs);
1563 return;
1564 }
1565
1566 stop_pc = read_pc_pid (ecs->ptid);
1567
1568 if (debug_infrun)
1569 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1570
1571 if (stepping_past_singlestep_breakpoint)
1572 {
1573 gdb_assert (singlestep_breakpoints_inserted_p);
1574 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1575 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1576
1577 stepping_past_singlestep_breakpoint = 0;
1578
1579 /* We've either finished single-stepping past the single-step
1580 breakpoint, or stopped for some other reason. It would be nice if
1581 we could tell, but we can't reliably. */
1582 if (stop_signal == TARGET_SIGNAL_TRAP)
1583 {
1584 if (debug_infrun)
1585 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1586 /* Pull the single step breakpoints out of the target. */
1587 remove_single_step_breakpoints ();
1588 singlestep_breakpoints_inserted_p = 0;
1589
1590 ecs->random_signal = 0;
1591
1592 ecs->ptid = saved_singlestep_ptid;
1593 context_switch (ecs);
1594 if (deprecated_context_hook)
1595 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1596
1597 resume (1, TARGET_SIGNAL_0);
1598 prepare_to_wait (ecs);
1599 return;
1600 }
1601 }
1602
1603 stepping_past_singlestep_breakpoint = 0;
1604
1605 if (stepping_past_breakpoint)
1606 {
1607 stepping_past_breakpoint = 0;
1608
1609 /* If we stopped for some other reason than single-stepping, ignore
1610 the fact that we were supposed to switch back. */
1611 if (stop_signal == TARGET_SIGNAL_TRAP)
1612 {
1613 if (debug_infrun)
1614 fprintf_unfiltered (gdb_stdlog,
1615 "infrun: stepping_past_breakpoint\n");
1616
1617 /* Pull the single step breakpoints out of the target. */
1618 if (singlestep_breakpoints_inserted_p)
1619 {
1620 remove_single_step_breakpoints ();
1621 singlestep_breakpoints_inserted_p = 0;
1622 }
1623
1624 /* Note: We do not call context_switch at this point, as the
1625 context is already set up for stepping the original thread. */
1626 switch_to_thread (stepping_past_breakpoint_ptid);
1627 /* Suppress spurious "Switching to ..." message. */
1628 previous_inferior_ptid = inferior_ptid;
1629
1630 resume (1, TARGET_SIGNAL_0);
1631 prepare_to_wait (ecs);
1632 return;
1633 }
1634 }
1635
1636 /* See if a thread hit a thread-specific breakpoint that was meant for
1637 another thread. If so, then step that thread past the breakpoint,
1638 and continue it. */
1639
1640 if (stop_signal == TARGET_SIGNAL_TRAP)
1641 {
1642 int thread_hop_needed = 0;
1643
1644 /* Check if a regular breakpoint has been hit before checking
1645 for a potential single step breakpoint. Otherwise, GDB will
1646 not see this breakpoint hit when stepping onto breakpoints. */
1647 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1648 {
1649 ecs->random_signal = 0;
1650 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1651 thread_hop_needed = 1;
1652 }
1653 else if (singlestep_breakpoints_inserted_p)
1654 {
1655 /* We have not context switched yet, so this should be true
1656 no matter which thread hit the singlestep breakpoint. */
1657 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1658 if (debug_infrun)
1659 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1660 "trap for %s\n",
1661 target_pid_to_str (ecs->ptid));
1662
1663 ecs->random_signal = 0;
1664 /* The call to in_thread_list is necessary because PTIDs sometimes
1665 change when we go from single-threaded to multi-threaded. If
1666 the singlestep_ptid is still in the list, assume that it is
1667 really different from ecs->ptid. */
1668 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1669 && in_thread_list (singlestep_ptid))
1670 {
1671 /* If the PC of the thread we were trying to single-step
1672 has changed, discard this event (which we were going
1673 to ignore anyway), and pretend we saw that thread
1674 trap. This prevents us continuously moving the
1675 single-step breakpoint forward, one instruction at a
1676 time. If the PC has changed, then the thread we were
1677 trying to single-step has trapped or been signalled,
1678 but the event has not been reported to GDB yet.
1679
1680 There might be some cases where this loses signal
1681 information, if a signal has arrived at exactly the
1682 same time that the PC changed, but this is the best
1683 we can do with the information available. Perhaps we
1684 should arrange to report all events for all threads
1685 when they stop, or to re-poll the remote looking for
1686 this particular thread (i.e. temporarily enable
1687 schedlock). */
1688 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1689 {
1690 if (debug_infrun)
1691 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1692 " but expected thread advanced also\n");
1693
1694 /* The current context still belongs to
1695 singlestep_ptid. Don't swap here, since that's
1696 the context we want to use. Just fudge our
1697 state and continue. */
1698 ecs->ptid = singlestep_ptid;
1699 stop_pc = read_pc_pid (ecs->ptid);
1700 }
1701 else
1702 {
1703 if (debug_infrun)
1704 fprintf_unfiltered (gdb_stdlog,
1705 "infrun: unexpected thread\n");
1706
1707 thread_hop_needed = 1;
1708 stepping_past_singlestep_breakpoint = 1;
1709 saved_singlestep_ptid = singlestep_ptid;
1710 }
1711 }
1712 }
1713
1714 if (thread_hop_needed)
1715 {
1716 int remove_status;
1717
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1720
1721 /* Saw a breakpoint, but it was hit by the wrong thread.
1722 Just continue. */
1723
1724 if (singlestep_breakpoints_inserted_p)
1725 {
1726 /* Pull the single step breakpoints out of the target. */
1727 remove_single_step_breakpoints ();
1728 singlestep_breakpoints_inserted_p = 0;
1729 }
1730
1731 remove_status = remove_breakpoints ();
1732 /* Did we fail to remove breakpoints? If so, try
1733 to set the PC past the bp. (There's at least
1734 one situation in which we can fail to remove
1735 the bp's: On HP-UX's that use ttrace, we can't
1736 change the address space of a vforking child
1737 process until the child exits (well, okay, not
1738 then either :-) or execs. */
1739 if (remove_status != 0)
1740 {
1741 /* FIXME! This is obviously non-portable! */
1742 write_pc_pid (stop_pc + 4, ecs->ptid);
1743 /* We need to restart all the threads now,
1744 * unles we're running in scheduler-locked mode.
1745 * Use currently_stepping to determine whether to
1746 * step or continue.
1747 */
1748 /* FIXME MVS: is there any reason not to call resume()? */
1749 if (scheduler_mode == schedlock_on)
1750 target_resume (ecs->ptid,
1751 currently_stepping (ecs), TARGET_SIGNAL_0);
1752 else
1753 target_resume (RESUME_ALL,
1754 currently_stepping (ecs), TARGET_SIGNAL_0);
1755 prepare_to_wait (ecs);
1756 return;
1757 }
1758 else
1759 { /* Single step */
1760 breakpoints_inserted = 0;
1761 if (!ptid_equal (inferior_ptid, ecs->ptid))
1762 context_switch (ecs);
1763 ecs->waiton_ptid = ecs->ptid;
1764 ecs->wp = &(ecs->ws);
1765 ecs->another_trap = 1;
1766
1767 ecs->infwait_state = infwait_thread_hop_state;
1768 keep_going (ecs);
1769 registers_changed ();
1770 return;
1771 }
1772 }
1773 else if (singlestep_breakpoints_inserted_p)
1774 {
1775 sw_single_step_trap_p = 1;
1776 ecs->random_signal = 0;
1777 }
1778 }
1779 else
1780 ecs->random_signal = 1;
1781
1782 /* See if something interesting happened to the non-current thread. If
1783 so, then switch to that thread. */
1784 if (!ptid_equal (ecs->ptid, inferior_ptid))
1785 {
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1788
1789 context_switch (ecs);
1790
1791 if (deprecated_context_hook)
1792 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1793 }
1794
1795 if (singlestep_breakpoints_inserted_p)
1796 {
1797 /* Pull the single step breakpoints out of the target. */
1798 remove_single_step_breakpoints ();
1799 singlestep_breakpoints_inserted_p = 0;
1800 }
1801
1802 if (stepped_after_stopped_by_watchpoint)
1803 stopped_by_watchpoint = 0;
1804 else
1805 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1806
1807 /* If necessary, step over this watchpoint. We'll be back to display
1808 it in a moment. */
1809 if (stopped_by_watchpoint
1810 && (HAVE_STEPPABLE_WATCHPOINT
1811 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1812 {
1813 if (debug_infrun)
1814 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1815
1816 /* At this point, we are stopped at an instruction which has
1817 attempted to write to a piece of memory under control of
1818 a watchpoint. The instruction hasn't actually executed
1819 yet. If we were to evaluate the watchpoint expression
1820 now, we would get the old value, and therefore no change
1821 would seem to have occurred.
1822
1823 In order to make watchpoints work `right', we really need
1824 to complete the memory write, and then evaluate the
1825 watchpoint expression. We do this by single-stepping the
1826 target.
1827
1828 It may not be necessary to disable the watchpoint to stop over
1829 it. For example, the PA can (with some kernel cooperation)
1830 single step over a watchpoint without disabling the watchpoint.
1831
1832 It is far more common to need to disable a watchpoint to step
1833 the inferior over it. If we have non-steppable watchpoints,
1834 we must disable the current watchpoint; it's simplest to
1835 disable all watchpoints and breakpoints. */
1836
1837 if (!HAVE_STEPPABLE_WATCHPOINT)
1838 remove_breakpoints ();
1839 registers_changed ();
1840 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1841 ecs->waiton_ptid = ecs->ptid;
1842 if (HAVE_STEPPABLE_WATCHPOINT)
1843 ecs->infwait_state = infwait_step_watch_state;
1844 else
1845 ecs->infwait_state = infwait_nonstep_watch_state;
1846 prepare_to_wait (ecs);
1847 return;
1848 }
1849
1850 ecs->stop_func_start = 0;
1851 ecs->stop_func_end = 0;
1852 ecs->stop_func_name = 0;
1853 /* Don't care about return value; stop_func_start and stop_func_name
1854 will both be 0 if it doesn't work. */
1855 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1856 &ecs->stop_func_start, &ecs->stop_func_end);
1857 ecs->stop_func_start
1858 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1859 ecs->another_trap = 0;
1860 bpstat_clear (&stop_bpstat);
1861 stop_step = 0;
1862 stop_stack_dummy = 0;
1863 stop_print_frame = 1;
1864 ecs->random_signal = 0;
1865 stopped_by_random_signal = 0;
1866
1867 if (stop_signal == TARGET_SIGNAL_TRAP
1868 && trap_expected
1869 && gdbarch_single_step_through_delay_p (current_gdbarch)
1870 && currently_stepping (ecs))
1871 {
1872 /* We're trying to step of a breakpoint. Turns out that we're
1873 also on an instruction that needs to be stepped multiple
1874 times before it's been fully executing. E.g., architectures
1875 with a delay slot. It needs to be stepped twice, once for
1876 the instruction and once for the delay slot. */
1877 int step_through_delay
1878 = gdbarch_single_step_through_delay (current_gdbarch,
1879 get_current_frame ());
1880 if (debug_infrun && step_through_delay)
1881 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1882 if (step_range_end == 0 && step_through_delay)
1883 {
1884 /* The user issued a continue when stopped at a breakpoint.
1885 Set up for another trap and get out of here. */
1886 ecs->another_trap = 1;
1887 keep_going (ecs);
1888 return;
1889 }
1890 else if (step_through_delay)
1891 {
1892 /* The user issued a step when stopped at a breakpoint.
1893 Maybe we should stop, maybe we should not - the delay
1894 slot *might* correspond to a line of source. In any
1895 case, don't decide that here, just set ecs->another_trap,
1896 making sure we single-step again before breakpoints are
1897 re-inserted. */
1898 ecs->another_trap = 1;
1899 }
1900 }
1901
1902 /* Look at the cause of the stop, and decide what to do.
1903 The alternatives are:
1904 1) break; to really stop and return to the debugger,
1905 2) drop through to start up again
1906 (set ecs->another_trap to 1 to single step once)
1907 3) set ecs->random_signal to 1, and the decision between 1 and 2
1908 will be made according to the signal handling tables. */
1909
1910 /* First, distinguish signals caused by the debugger from signals
1911 that have to do with the program's own actions. Note that
1912 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1913 on the operating system version. Here we detect when a SIGILL or
1914 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1915 something similar for SIGSEGV, since a SIGSEGV will be generated
1916 when we're trying to execute a breakpoint instruction on a
1917 non-executable stack. This happens for call dummy breakpoints
1918 for architectures like SPARC that place call dummies on the
1919 stack. */
1920
1921 if (stop_signal == TARGET_SIGNAL_TRAP
1922 || (breakpoints_inserted
1923 && (stop_signal == TARGET_SIGNAL_ILL
1924 || stop_signal == TARGET_SIGNAL_SEGV
1925 || stop_signal == TARGET_SIGNAL_EMT))
1926 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1927 || stop_soon == STOP_QUIETLY_REMOTE)
1928 {
1929 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1930 {
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1933 stop_print_frame = 0;
1934 stop_stepping (ecs);
1935 return;
1936 }
1937
1938 /* This is originated from start_remote(), start_inferior() and
1939 shared libraries hook functions. */
1940 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1941 {
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1944 stop_stepping (ecs);
1945 return;
1946 }
1947
1948 /* This originates from attach_command(). We need to overwrite
1949 the stop_signal here, because some kernels don't ignore a
1950 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1951 See more comments in inferior.h. */
1952 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1953 {
1954 stop_stepping (ecs);
1955 if (stop_signal == TARGET_SIGNAL_STOP)
1956 stop_signal = TARGET_SIGNAL_0;
1957 return;
1958 }
1959
1960 /* Don't even think about breakpoints if just proceeded over a
1961 breakpoint. */
1962 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1963 {
1964 if (debug_infrun)
1965 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1966 bpstat_clear (&stop_bpstat);
1967 }
1968 else
1969 {
1970 /* See if there is a breakpoint at the current PC. */
1971 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1972
1973 /* Following in case break condition called a
1974 function. */
1975 stop_print_frame = 1;
1976 }
1977
1978 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1979 at one stage in the past included checks for an inferior
1980 function call's call dummy's return breakpoint. The original
1981 comment, that went with the test, read:
1982
1983 ``End of a stack dummy. Some systems (e.g. Sony news) give
1984 another signal besides SIGTRAP, so check here as well as
1985 above.''
1986
1987 If someone ever tries to get get call dummys on a
1988 non-executable stack to work (where the target would stop
1989 with something like a SIGSEGV), then those tests might need
1990 to be re-instated. Given, however, that the tests were only
1991 enabled when momentary breakpoints were not being used, I
1992 suspect that it won't be the case.
1993
1994 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1995 be necessary for call dummies on a non-executable stack on
1996 SPARC. */
1997
1998 if (stop_signal == TARGET_SIGNAL_TRAP)
1999 ecs->random_signal
2000 = !(bpstat_explains_signal (stop_bpstat)
2001 || trap_expected
2002 || (step_range_end && step_resume_breakpoint == NULL));
2003 else
2004 {
2005 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2006 if (!ecs->random_signal)
2007 stop_signal = TARGET_SIGNAL_TRAP;
2008 }
2009 }
2010
2011 /* When we reach this point, we've pretty much decided
2012 that the reason for stopping must've been a random
2013 (unexpected) signal. */
2014
2015 else
2016 ecs->random_signal = 1;
2017
2018 process_event_stop_test:
2019 /* For the program's own signals, act according to
2020 the signal handling tables. */
2021
2022 if (ecs->random_signal)
2023 {
2024 /* Signal not for debugging purposes. */
2025 int printed = 0;
2026
2027 if (debug_infrun)
2028 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2029
2030 stopped_by_random_signal = 1;
2031
2032 if (signal_print[stop_signal])
2033 {
2034 printed = 1;
2035 target_terminal_ours_for_output ();
2036 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2037 }
2038 if (signal_stop[stop_signal])
2039 {
2040 stop_stepping (ecs);
2041 return;
2042 }
2043 /* If not going to stop, give terminal back
2044 if we took it away. */
2045 else if (printed)
2046 target_terminal_inferior ();
2047
2048 /* Clear the signal if it should not be passed. */
2049 if (signal_program[stop_signal] == 0)
2050 stop_signal = TARGET_SIGNAL_0;
2051
2052 if (prev_pc == read_pc ()
2053 && !breakpoints_inserted
2054 && breakpoint_here_p (read_pc ())
2055 && step_resume_breakpoint == NULL)
2056 {
2057 /* We were just starting a new sequence, attempting to
2058 single-step off of a breakpoint and expecting a SIGTRAP.
2059 Intead this signal arrives. This signal will take us out
2060 of the stepping range so GDB needs to remember to, when
2061 the signal handler returns, resume stepping off that
2062 breakpoint. */
2063 /* To simplify things, "continue" is forced to use the same
2064 code paths as single-step - set a breakpoint at the
2065 signal return address and then, once hit, step off that
2066 breakpoint. */
2067
2068 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2069 ecs->step_after_step_resume_breakpoint = 1;
2070 keep_going (ecs);
2071 return;
2072 }
2073
2074 if (step_range_end != 0
2075 && stop_signal != TARGET_SIGNAL_0
2076 && stop_pc >= step_range_start && stop_pc < step_range_end
2077 && frame_id_eq (get_frame_id (get_current_frame ()),
2078 step_frame_id)
2079 && step_resume_breakpoint == NULL)
2080 {
2081 /* The inferior is about to take a signal that will take it
2082 out of the single step range. Set a breakpoint at the
2083 current PC (which is presumably where the signal handler
2084 will eventually return) and then allow the inferior to
2085 run free.
2086
2087 Note that this is only needed for a signal delivered
2088 while in the single-step range. Nested signals aren't a
2089 problem as they eventually all return. */
2090 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2091 keep_going (ecs);
2092 return;
2093 }
2094
2095 /* Note: step_resume_breakpoint may be non-NULL. This occures
2096 when either there's a nested signal, or when there's a
2097 pending signal enabled just as the signal handler returns
2098 (leaving the inferior at the step-resume-breakpoint without
2099 actually executing it). Either way continue until the
2100 breakpoint is really hit. */
2101 keep_going (ecs);
2102 return;
2103 }
2104
2105 /* Handle cases caused by hitting a breakpoint. */
2106 {
2107 CORE_ADDR jmp_buf_pc;
2108 struct bpstat_what what;
2109
2110 what = bpstat_what (stop_bpstat);
2111
2112 if (what.call_dummy)
2113 {
2114 stop_stack_dummy = 1;
2115 }
2116
2117 switch (what.main_action)
2118 {
2119 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2120 /* If we hit the breakpoint at longjmp, disable it for the
2121 duration of this command. Then, install a temporary
2122 breakpoint at the target of the jmp_buf. */
2123 if (debug_infrun)
2124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2125 disable_longjmp_breakpoint ();
2126 remove_breakpoints ();
2127 breakpoints_inserted = 0;
2128 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2129 || !gdbarch_get_longjmp_target (current_gdbarch,
2130 get_current_frame (), &jmp_buf_pc))
2131 {
2132 keep_going (ecs);
2133 return;
2134 }
2135
2136 /* Need to blow away step-resume breakpoint, as it
2137 interferes with us */
2138 if (step_resume_breakpoint != NULL)
2139 {
2140 delete_step_resume_breakpoint (&step_resume_breakpoint);
2141 }
2142
2143 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2144 ecs->handling_longjmp = 1; /* FIXME */
2145 keep_going (ecs);
2146 return;
2147
2148 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2149 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2150 if (debug_infrun)
2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2152 remove_breakpoints ();
2153 breakpoints_inserted = 0;
2154 disable_longjmp_breakpoint ();
2155 ecs->handling_longjmp = 0; /* FIXME */
2156 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2157 break;
2158 /* else fallthrough */
2159
2160 case BPSTAT_WHAT_SINGLE:
2161 if (debug_infrun)
2162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2163 if (breakpoints_inserted)
2164 remove_breakpoints ();
2165 breakpoints_inserted = 0;
2166 ecs->another_trap = 1;
2167 /* Still need to check other stuff, at least the case
2168 where we are stepping and step out of the right range. */
2169 break;
2170
2171 case BPSTAT_WHAT_STOP_NOISY:
2172 if (debug_infrun)
2173 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2174 stop_print_frame = 1;
2175
2176 /* We are about to nuke the step_resume_breakpointt via the
2177 cleanup chain, so no need to worry about it here. */
2178
2179 stop_stepping (ecs);
2180 return;
2181
2182 case BPSTAT_WHAT_STOP_SILENT:
2183 if (debug_infrun)
2184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2185 stop_print_frame = 0;
2186
2187 /* We are about to nuke the step_resume_breakpoin via the
2188 cleanup chain, so no need to worry about it here. */
2189
2190 stop_stepping (ecs);
2191 return;
2192
2193 case BPSTAT_WHAT_STEP_RESUME:
2194 /* This proably demands a more elegant solution, but, yeah
2195 right...
2196
2197 This function's use of the simple variable
2198 step_resume_breakpoint doesn't seem to accomodate
2199 simultaneously active step-resume bp's, although the
2200 breakpoint list certainly can.
2201
2202 If we reach here and step_resume_breakpoint is already
2203 NULL, then apparently we have multiple active
2204 step-resume bp's. We'll just delete the breakpoint we
2205 stopped at, and carry on.
2206
2207 Correction: what the code currently does is delete a
2208 step-resume bp, but it makes no effort to ensure that
2209 the one deleted is the one currently stopped at. MVS */
2210
2211 if (debug_infrun)
2212 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2213
2214 if (step_resume_breakpoint == NULL)
2215 {
2216 step_resume_breakpoint =
2217 bpstat_find_step_resume_breakpoint (stop_bpstat);
2218 }
2219 delete_step_resume_breakpoint (&step_resume_breakpoint);
2220 if (ecs->step_after_step_resume_breakpoint)
2221 {
2222 /* Back when the step-resume breakpoint was inserted, we
2223 were trying to single-step off a breakpoint. Go back
2224 to doing that. */
2225 ecs->step_after_step_resume_breakpoint = 0;
2226 remove_breakpoints ();
2227 breakpoints_inserted = 0;
2228 ecs->another_trap = 1;
2229 keep_going (ecs);
2230 return;
2231 }
2232 break;
2233
2234 case BPSTAT_WHAT_CHECK_SHLIBS:
2235 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2236 {
2237 if (debug_infrun)
2238 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2239 /* Remove breakpoints, we eventually want to step over the
2240 shlib event breakpoint, and SOLIB_ADD might adjust
2241 breakpoint addresses via breakpoint_re_set. */
2242 if (breakpoints_inserted)
2243 remove_breakpoints ();
2244 breakpoints_inserted = 0;
2245
2246 /* Check for any newly added shared libraries if we're
2247 supposed to be adding them automatically. Switch
2248 terminal for any messages produced by
2249 breakpoint_re_set. */
2250 target_terminal_ours_for_output ();
2251 /* NOTE: cagney/2003-11-25: Make certain that the target
2252 stack's section table is kept up-to-date. Architectures,
2253 (e.g., PPC64), use the section table to perform
2254 operations such as address => section name and hence
2255 require the table to contain all sections (including
2256 those found in shared libraries). */
2257 /* NOTE: cagney/2003-11-25: Pass current_target and not
2258 exec_ops to SOLIB_ADD. This is because current GDB is
2259 only tooled to propagate section_table changes out from
2260 the "current_target" (see target_resize_to_sections), and
2261 not up from the exec stratum. This, of course, isn't
2262 right. "infrun.c" should only interact with the
2263 exec/process stratum, instead relying on the target stack
2264 to propagate relevant changes (stop, section table
2265 changed, ...) up to other layers. */
2266 #ifdef SOLIB_ADD
2267 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2268 #else
2269 solib_add (NULL, 0, &current_target, auto_solib_add);
2270 #endif
2271 target_terminal_inferior ();
2272
2273 /* If requested, stop when the dynamic linker notifies
2274 gdb of events. This allows the user to get control
2275 and place breakpoints in initializer routines for
2276 dynamically loaded objects (among other things). */
2277 if (stop_on_solib_events || stop_stack_dummy)
2278 {
2279 stop_stepping (ecs);
2280 return;
2281 }
2282
2283 /* If we stopped due to an explicit catchpoint, then the
2284 (see above) call to SOLIB_ADD pulled in any symbols
2285 from a newly-loaded library, if appropriate.
2286
2287 We do want the inferior to stop, but not where it is
2288 now, which is in the dynamic linker callback. Rather,
2289 we would like it stop in the user's program, just after
2290 the call that caused this catchpoint to trigger. That
2291 gives the user a more useful vantage from which to
2292 examine their program's state. */
2293 else if (what.main_action
2294 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2295 {
2296 /* ??rehrauer: If I could figure out how to get the
2297 right return PC from here, we could just set a temp
2298 breakpoint and resume. I'm not sure we can without
2299 cracking open the dld's shared libraries and sniffing
2300 their unwind tables and text/data ranges, and that's
2301 not a terribly portable notion.
2302
2303 Until that time, we must step the inferior out of the
2304 dld callback, and also out of the dld itself (and any
2305 code or stubs in libdld.sl, such as "shl_load" and
2306 friends) until we reach non-dld code. At that point,
2307 we can stop stepping. */
2308 bpstat_get_triggered_catchpoints (stop_bpstat,
2309 &ecs->
2310 stepping_through_solib_catchpoints);
2311 ecs->stepping_through_solib_after_catch = 1;
2312
2313 /* Be sure to lift all breakpoints, so the inferior does
2314 actually step past this point... */
2315 ecs->another_trap = 1;
2316 break;
2317 }
2318 else
2319 {
2320 /* We want to step over this breakpoint, then keep going. */
2321 ecs->another_trap = 1;
2322 break;
2323 }
2324 }
2325 break;
2326
2327 case BPSTAT_WHAT_LAST:
2328 /* Not a real code, but listed here to shut up gcc -Wall. */
2329
2330 case BPSTAT_WHAT_KEEP_CHECKING:
2331 break;
2332 }
2333 }
2334
2335 /* We come here if we hit a breakpoint but should not
2336 stop for it. Possibly we also were stepping
2337 and should stop for that. So fall through and
2338 test for stepping. But, if not stepping,
2339 do not stop. */
2340
2341 /* Are we stepping to get the inferior out of the dynamic linker's
2342 hook (and possibly the dld itself) after catching a shlib
2343 event? */
2344 if (ecs->stepping_through_solib_after_catch)
2345 {
2346 #if defined(SOLIB_ADD)
2347 /* Have we reached our destination? If not, keep going. */
2348 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2352 ecs->another_trap = 1;
2353 keep_going (ecs);
2354 return;
2355 }
2356 #endif
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2359 /* Else, stop and report the catchpoint(s) whose triggering
2360 caused us to begin stepping. */
2361 ecs->stepping_through_solib_after_catch = 0;
2362 bpstat_clear (&stop_bpstat);
2363 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2364 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2365 stop_print_frame = 1;
2366 stop_stepping (ecs);
2367 return;
2368 }
2369
2370 if (step_resume_breakpoint)
2371 {
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: step-resume breakpoint is inserted\n");
2375
2376 /* Having a step-resume breakpoint overrides anything
2377 else having to do with stepping commands until
2378 that breakpoint is reached. */
2379 keep_going (ecs);
2380 return;
2381 }
2382
2383 if (step_range_end == 0)
2384 {
2385 if (debug_infrun)
2386 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2387 /* Likewise if we aren't even stepping. */
2388 keep_going (ecs);
2389 return;
2390 }
2391
2392 /* If stepping through a line, keep going if still within it.
2393
2394 Note that step_range_end is the address of the first instruction
2395 beyond the step range, and NOT the address of the last instruction
2396 within it! */
2397 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2398 {
2399 if (debug_infrun)
2400 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2401 paddr_nz (step_range_start),
2402 paddr_nz (step_range_end));
2403 keep_going (ecs);
2404 return;
2405 }
2406
2407 /* We stepped out of the stepping range. */
2408
2409 /* If we are stepping at the source level and entered the runtime
2410 loader dynamic symbol resolution code, we keep on single stepping
2411 until we exit the run time loader code and reach the callee's
2412 address. */
2413 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2414 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2415 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2416 #else
2417 && in_solib_dynsym_resolve_code (stop_pc)
2418 #endif
2419 )
2420 {
2421 CORE_ADDR pc_after_resolver =
2422 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2423
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2426
2427 if (pc_after_resolver)
2428 {
2429 /* Set up a step-resume breakpoint at the address
2430 indicated by SKIP_SOLIB_RESOLVER. */
2431 struct symtab_and_line sr_sal;
2432 init_sal (&sr_sal);
2433 sr_sal.pc = pc_after_resolver;
2434
2435 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2436 }
2437
2438 keep_going (ecs);
2439 return;
2440 }
2441
2442 if (step_range_end != 1
2443 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2444 || step_over_calls == STEP_OVER_ALL)
2445 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2446 {
2447 if (debug_infrun)
2448 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2449 /* The inferior, while doing a "step" or "next", has ended up in
2450 a signal trampoline (either by a signal being delivered or by
2451 the signal handler returning). Just single-step until the
2452 inferior leaves the trampoline (either by calling the handler
2453 or returning). */
2454 keep_going (ecs);
2455 return;
2456 }
2457
2458 /* Check for subroutine calls. The check for the current frame
2459 equalling the step ID is not necessary - the check of the
2460 previous frame's ID is sufficient - but it is a common case and
2461 cheaper than checking the previous frame's ID.
2462
2463 NOTE: frame_id_eq will never report two invalid frame IDs as
2464 being equal, so to get into this block, both the current and
2465 previous frame must have valid frame IDs. */
2466 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2467 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2468 {
2469 CORE_ADDR real_stop_pc;
2470
2471 if (debug_infrun)
2472 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2473
2474 if ((step_over_calls == STEP_OVER_NONE)
2475 || ((step_range_end == 1)
2476 && in_prologue (prev_pc, ecs->stop_func_start)))
2477 {
2478 /* I presume that step_over_calls is only 0 when we're
2479 supposed to be stepping at the assembly language level
2480 ("stepi"). Just stop. */
2481 /* Also, maybe we just did a "nexti" inside a prolog, so we
2482 thought it was a subroutine call but it was not. Stop as
2483 well. FENN */
2484 stop_step = 1;
2485 print_stop_reason (END_STEPPING_RANGE, 0);
2486 stop_stepping (ecs);
2487 return;
2488 }
2489
2490 if (step_over_calls == STEP_OVER_ALL)
2491 {
2492 /* We're doing a "next", set a breakpoint at callee's return
2493 address (the address at which the caller will
2494 resume). */
2495 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2496 keep_going (ecs);
2497 return;
2498 }
2499
2500 /* If we are in a function call trampoline (a stub between the
2501 calling routine and the real function), locate the real
2502 function. That's what tells us (a) whether we want to step
2503 into it at all, and (b) what prologue we want to run to the
2504 end of, if we do step into it. */
2505 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2506 if (real_stop_pc == 0)
2507 real_stop_pc = gdbarch_skip_trampoline_code
2508 (current_gdbarch, get_current_frame (), stop_pc);
2509 if (real_stop_pc != 0)
2510 ecs->stop_func_start = real_stop_pc;
2511
2512 if (
2513 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2514 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2515 #else
2516 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2517 #endif
2518 )
2519 {
2520 struct symtab_and_line sr_sal;
2521 init_sal (&sr_sal);
2522 sr_sal.pc = ecs->stop_func_start;
2523
2524 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2525 keep_going (ecs);
2526 return;
2527 }
2528
2529 /* If we have line number information for the function we are
2530 thinking of stepping into, step into it.
2531
2532 If there are several symtabs at that PC (e.g. with include
2533 files), just want to know whether *any* of them have line
2534 numbers. find_pc_line handles this. */
2535 {
2536 struct symtab_and_line tmp_sal;
2537
2538 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2539 if (tmp_sal.line != 0)
2540 {
2541 step_into_function (ecs);
2542 return;
2543 }
2544 }
2545
2546 /* If we have no line number and the step-stop-if-no-debug is
2547 set, we stop the step so that the user has a chance to switch
2548 in assembly mode. */
2549 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2550 {
2551 stop_step = 1;
2552 print_stop_reason (END_STEPPING_RANGE, 0);
2553 stop_stepping (ecs);
2554 return;
2555 }
2556
2557 /* Set a breakpoint at callee's return address (the address at
2558 which the caller will resume). */
2559 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2560 keep_going (ecs);
2561 return;
2562 }
2563
2564 /* If we're in the return path from a shared library trampoline,
2565 we want to proceed through the trampoline when stepping. */
2566 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2567 stop_pc, ecs->stop_func_name))
2568 {
2569 /* Determine where this trampoline returns. */
2570 CORE_ADDR real_stop_pc;
2571 real_stop_pc = gdbarch_skip_trampoline_code
2572 (current_gdbarch, get_current_frame (), stop_pc);
2573
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2576
2577 /* Only proceed through if we know where it's going. */
2578 if (real_stop_pc)
2579 {
2580 /* And put the step-breakpoint there and go until there. */
2581 struct symtab_and_line sr_sal;
2582
2583 init_sal (&sr_sal); /* initialize to zeroes */
2584 sr_sal.pc = real_stop_pc;
2585 sr_sal.section = find_pc_overlay (sr_sal.pc);
2586
2587 /* Do not specify what the fp should be when we stop since
2588 on some machines the prologue is where the new fp value
2589 is established. */
2590 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2591
2592 /* Restart without fiddling with the step ranges or
2593 other state. */
2594 keep_going (ecs);
2595 return;
2596 }
2597 }
2598
2599 ecs->sal = find_pc_line (stop_pc, 0);
2600
2601 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2602 the trampoline processing logic, however, there are some trampolines
2603 that have no names, so we should do trampoline handling first. */
2604 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2605 && ecs->stop_func_name == NULL
2606 && ecs->sal.line == 0)
2607 {
2608 if (debug_infrun)
2609 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2610
2611 /* The inferior just stepped into, or returned to, an
2612 undebuggable function (where there is no debugging information
2613 and no line number corresponding to the address where the
2614 inferior stopped). Since we want to skip this kind of code,
2615 we keep going until the inferior returns from this
2616 function - unless the user has asked us not to (via
2617 set step-mode) or we no longer know how to get back
2618 to the call site. */
2619 if (step_stop_if_no_debug
2620 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2621 {
2622 /* If we have no line number and the step-stop-if-no-debug
2623 is set, we stop the step so that the user has a chance to
2624 switch in assembly mode. */
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630 else
2631 {
2632 /* Set a breakpoint at callee's return address (the address
2633 at which the caller will resume). */
2634 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2635 keep_going (ecs);
2636 return;
2637 }
2638 }
2639
2640 if (step_range_end == 1)
2641 {
2642 /* It is stepi or nexti. We always want to stop stepping after
2643 one instruction. */
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2646 stop_step = 1;
2647 print_stop_reason (END_STEPPING_RANGE, 0);
2648 stop_stepping (ecs);
2649 return;
2650 }
2651
2652 if (ecs->sal.line == 0)
2653 {
2654 /* We have no line number information. That means to stop
2655 stepping (does this always happen right after one instruction,
2656 when we do "s" in a function with no line numbers,
2657 or can this happen as a result of a return or longjmp?). */
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2660 stop_step = 1;
2661 print_stop_reason (END_STEPPING_RANGE, 0);
2662 stop_stepping (ecs);
2663 return;
2664 }
2665
2666 if ((stop_pc == ecs->sal.pc)
2667 && (ecs->current_line != ecs->sal.line
2668 || ecs->current_symtab != ecs->sal.symtab))
2669 {
2670 /* We are at the start of a different line. So stop. Note that
2671 we don't stop if we step into the middle of a different line.
2672 That is said to make things like for (;;) statements work
2673 better. */
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
2681
2682 /* We aren't done stepping.
2683
2684 Optimize by setting the stepping range to the line.
2685 (We might not be in the original line, but if we entered a
2686 new line in mid-statement, we continue stepping. This makes
2687 things like for(;;) statements work better.) */
2688
2689 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2690 {
2691 /* If this is the last line of the function, don't keep stepping
2692 (it would probably step us out of the function).
2693 This is particularly necessary for a one-line function,
2694 in which after skipping the prologue we better stop even though
2695 we will be in mid-line. */
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2698 stop_step = 1;
2699 print_stop_reason (END_STEPPING_RANGE, 0);
2700 stop_stepping (ecs);
2701 return;
2702 }
2703 step_range_start = ecs->sal.pc;
2704 step_range_end = ecs->sal.end;
2705 step_frame_id = get_frame_id (get_current_frame ());
2706 ecs->current_line = ecs->sal.line;
2707 ecs->current_symtab = ecs->sal.symtab;
2708
2709 /* In the case where we just stepped out of a function into the
2710 middle of a line of the caller, continue stepping, but
2711 step_frame_id must be modified to current frame */
2712 #if 0
2713 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2714 generous. It will trigger on things like a step into a frameless
2715 stackless leaf function. I think the logic should instead look
2716 at the unwound frame ID has that should give a more robust
2717 indication of what happened. */
2718 if (step - ID == current - ID)
2719 still stepping in same function;
2720 else if (step - ID == unwind (current - ID))
2721 stepped into a function;
2722 else
2723 stepped out of a function;
2724 /* Of course this assumes that the frame ID unwind code is robust
2725 and we're willing to introduce frame unwind logic into this
2726 function. Fortunately, those days are nearly upon us. */
2727 #endif
2728 {
2729 struct frame_id current_frame = get_frame_id (get_current_frame ());
2730 if (!(frame_id_inner (current_frame, step_frame_id)))
2731 step_frame_id = current_frame;
2732 }
2733
2734 if (debug_infrun)
2735 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2736 keep_going (ecs);
2737 }
2738
2739 /* Are we in the middle of stepping? */
2740
2741 static int
2742 currently_stepping (struct execution_control_state *ecs)
2743 {
2744 return ((!ecs->handling_longjmp
2745 && ((step_range_end && step_resume_breakpoint == NULL)
2746 || trap_expected))
2747 || ecs->stepping_through_solib_after_catch
2748 || bpstat_should_step ());
2749 }
2750
2751 /* Subroutine call with source code we should not step over. Do step
2752 to the first line of code in it. */
2753
2754 static void
2755 step_into_function (struct execution_control_state *ecs)
2756 {
2757 struct symtab *s;
2758 struct symtab_and_line sr_sal;
2759
2760 s = find_pc_symtab (stop_pc);
2761 if (s && s->language != language_asm)
2762 ecs->stop_func_start = gdbarch_skip_prologue
2763 (current_gdbarch, ecs->stop_func_start);
2764
2765 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2766 /* Use the step_resume_break to step until the end of the prologue,
2767 even if that involves jumps (as it seems to on the vax under
2768 4.2). */
2769 /* If the prologue ends in the middle of a source line, continue to
2770 the end of that source line (if it is still within the function).
2771 Otherwise, just go to end of prologue. */
2772 if (ecs->sal.end
2773 && ecs->sal.pc != ecs->stop_func_start
2774 && ecs->sal.end < ecs->stop_func_end)
2775 ecs->stop_func_start = ecs->sal.end;
2776
2777 /* Architectures which require breakpoint adjustment might not be able
2778 to place a breakpoint at the computed address. If so, the test
2779 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2780 ecs->stop_func_start to an address at which a breakpoint may be
2781 legitimately placed.
2782
2783 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2784 made, GDB will enter an infinite loop when stepping through
2785 optimized code consisting of VLIW instructions which contain
2786 subinstructions corresponding to different source lines. On
2787 FR-V, it's not permitted to place a breakpoint on any but the
2788 first subinstruction of a VLIW instruction. When a breakpoint is
2789 set, GDB will adjust the breakpoint address to the beginning of
2790 the VLIW instruction. Thus, we need to make the corresponding
2791 adjustment here when computing the stop address. */
2792
2793 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2794 {
2795 ecs->stop_func_start
2796 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2797 ecs->stop_func_start);
2798 }
2799
2800 if (ecs->stop_func_start == stop_pc)
2801 {
2802 /* We are already there: stop now. */
2803 stop_step = 1;
2804 print_stop_reason (END_STEPPING_RANGE, 0);
2805 stop_stepping (ecs);
2806 return;
2807 }
2808 else
2809 {
2810 /* Put the step-breakpoint there and go until there. */
2811 init_sal (&sr_sal); /* initialize to zeroes */
2812 sr_sal.pc = ecs->stop_func_start;
2813 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2814
2815 /* Do not specify what the fp should be when we stop since on
2816 some machines the prologue is where the new fp value is
2817 established. */
2818 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2819
2820 /* And make sure stepping stops right away then. */
2821 step_range_end = step_range_start;
2822 }
2823 keep_going (ecs);
2824 }
2825
2826 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2827 This is used to both functions and to skip over code. */
2828
2829 static void
2830 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2831 struct frame_id sr_id)
2832 {
2833 /* There should never be more than one step-resume breakpoint per
2834 thread, so we should never be setting a new
2835 step_resume_breakpoint when one is already active. */
2836 gdb_assert (step_resume_breakpoint == NULL);
2837
2838 if (debug_infrun)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "infrun: inserting step-resume breakpoint at 0x%s\n",
2841 paddr_nz (sr_sal.pc));
2842
2843 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2844 bp_step_resume);
2845 if (breakpoints_inserted)
2846 insert_breakpoints ();
2847 }
2848
2849 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2850 to skip a potential signal handler.
2851
2852 This is called with the interrupted function's frame. The signal
2853 handler, when it returns, will resume the interrupted function at
2854 RETURN_FRAME.pc. */
2855
2856 static void
2857 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2858 {
2859 struct symtab_and_line sr_sal;
2860
2861 gdb_assert (return_frame != NULL);
2862 init_sal (&sr_sal); /* initialize to zeros */
2863
2864 sr_sal.pc = gdbarch_addr_bits_remove
2865 (current_gdbarch, get_frame_pc (return_frame));
2866 sr_sal.section = find_pc_overlay (sr_sal.pc);
2867
2868 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2869 }
2870
2871 /* Similar to insert_step_resume_breakpoint_at_frame, except
2872 but a breakpoint at the previous frame's PC. This is used to
2873 skip a function after stepping into it (for "next" or if the called
2874 function has no debugging information).
2875
2876 The current function has almost always been reached by single
2877 stepping a call or return instruction. NEXT_FRAME belongs to the
2878 current function, and the breakpoint will be set at the caller's
2879 resume address.
2880
2881 This is a separate function rather than reusing
2882 insert_step_resume_breakpoint_at_frame in order to avoid
2883 get_prev_frame, which may stop prematurely (see the implementation
2884 of frame_unwind_id for an example). */
2885
2886 static void
2887 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2888 {
2889 struct symtab_and_line sr_sal;
2890
2891 /* We shouldn't have gotten here if we don't know where the call site
2892 is. */
2893 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2894
2895 init_sal (&sr_sal); /* initialize to zeros */
2896
2897 sr_sal.pc = gdbarch_addr_bits_remove
2898 (current_gdbarch, frame_pc_unwind (next_frame));
2899 sr_sal.section = find_pc_overlay (sr_sal.pc);
2900
2901 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2902 }
2903
2904 static void
2905 stop_stepping (struct execution_control_state *ecs)
2906 {
2907 if (debug_infrun)
2908 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2909
2910 /* Let callers know we don't want to wait for the inferior anymore. */
2911 ecs->wait_some_more = 0;
2912 }
2913
2914 /* This function handles various cases where we need to continue
2915 waiting for the inferior. */
2916 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2917
2918 static void
2919 keep_going (struct execution_control_state *ecs)
2920 {
2921 /* Save the pc before execution, to compare with pc after stop. */
2922 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2923
2924 /* If we did not do break;, it means we should keep running the
2925 inferior and not return to debugger. */
2926
2927 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2928 {
2929 /* We took a signal (which we are supposed to pass through to
2930 the inferior, else we'd have done a break above) and we
2931 haven't yet gotten our trap. Simply continue. */
2932 resume (currently_stepping (ecs), stop_signal);
2933 }
2934 else
2935 {
2936 /* Either the trap was not expected, but we are continuing
2937 anyway (the user asked that this signal be passed to the
2938 child)
2939 -- or --
2940 The signal was SIGTRAP, e.g. it was our signal, but we
2941 decided we should resume from it.
2942
2943 We're going to run this baby now! */
2944
2945 if (!breakpoints_inserted && !ecs->another_trap)
2946 {
2947 /* Stop stepping when inserting breakpoints
2948 has failed. */
2949 if (insert_breakpoints () != 0)
2950 {
2951 stop_stepping (ecs);
2952 return;
2953 }
2954 breakpoints_inserted = 1;
2955 }
2956
2957 trap_expected = ecs->another_trap;
2958
2959 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2960 specifies that such a signal should be delivered to the
2961 target program).
2962
2963 Typically, this would occure when a user is debugging a
2964 target monitor on a simulator: the target monitor sets a
2965 breakpoint; the simulator encounters this break-point and
2966 halts the simulation handing control to GDB; GDB, noteing
2967 that the break-point isn't valid, returns control back to the
2968 simulator; the simulator then delivers the hardware
2969 equivalent of a SIGNAL_TRAP to the program being debugged. */
2970
2971 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2972 stop_signal = TARGET_SIGNAL_0;
2973
2974
2975 resume (currently_stepping (ecs), stop_signal);
2976 }
2977
2978 prepare_to_wait (ecs);
2979 }
2980
2981 /* This function normally comes after a resume, before
2982 handle_inferior_event exits. It takes care of any last bits of
2983 housekeeping, and sets the all-important wait_some_more flag. */
2984
2985 static void
2986 prepare_to_wait (struct execution_control_state *ecs)
2987 {
2988 if (debug_infrun)
2989 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2990 if (ecs->infwait_state == infwait_normal_state)
2991 {
2992 overlay_cache_invalid = 1;
2993
2994 /* We have to invalidate the registers BEFORE calling
2995 target_wait because they can be loaded from the target while
2996 in target_wait. This makes remote debugging a bit more
2997 efficient for those targets that provide critical registers
2998 as part of their normal status mechanism. */
2999
3000 registers_changed ();
3001 ecs->waiton_ptid = pid_to_ptid (-1);
3002 ecs->wp = &(ecs->ws);
3003 }
3004 /* This is the old end of the while loop. Let everybody know we
3005 want to wait for the inferior some more and get called again
3006 soon. */
3007 ecs->wait_some_more = 1;
3008 }
3009
3010 /* Print why the inferior has stopped. We always print something when
3011 the inferior exits, or receives a signal. The rest of the cases are
3012 dealt with later on in normal_stop() and print_it_typical(). Ideally
3013 there should be a call to this function from handle_inferior_event()
3014 each time stop_stepping() is called.*/
3015 static void
3016 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3017 {
3018 switch (stop_reason)
3019 {
3020 case END_STEPPING_RANGE:
3021 /* We are done with a step/next/si/ni command. */
3022 /* For now print nothing. */
3023 /* Print a message only if not in the middle of doing a "step n"
3024 operation for n > 1 */
3025 if (!step_multi || !stop_step)
3026 if (ui_out_is_mi_like_p (uiout))
3027 ui_out_field_string
3028 (uiout, "reason",
3029 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3030 break;
3031 case SIGNAL_EXITED:
3032 /* The inferior was terminated by a signal. */
3033 annotate_signalled ();
3034 if (ui_out_is_mi_like_p (uiout))
3035 ui_out_field_string
3036 (uiout, "reason",
3037 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3038 ui_out_text (uiout, "\nProgram terminated with signal ");
3039 annotate_signal_name ();
3040 ui_out_field_string (uiout, "signal-name",
3041 target_signal_to_name (stop_info));
3042 annotate_signal_name_end ();
3043 ui_out_text (uiout, ", ");
3044 annotate_signal_string ();
3045 ui_out_field_string (uiout, "signal-meaning",
3046 target_signal_to_string (stop_info));
3047 annotate_signal_string_end ();
3048 ui_out_text (uiout, ".\n");
3049 ui_out_text (uiout, "The program no longer exists.\n");
3050 break;
3051 case EXITED:
3052 /* The inferior program is finished. */
3053 annotate_exited (stop_info);
3054 if (stop_info)
3055 {
3056 if (ui_out_is_mi_like_p (uiout))
3057 ui_out_field_string (uiout, "reason",
3058 async_reason_lookup (EXEC_ASYNC_EXITED));
3059 ui_out_text (uiout, "\nProgram exited with code ");
3060 ui_out_field_fmt (uiout, "exit-code", "0%o",
3061 (unsigned int) stop_info);
3062 ui_out_text (uiout, ".\n");
3063 }
3064 else
3065 {
3066 if (ui_out_is_mi_like_p (uiout))
3067 ui_out_field_string
3068 (uiout, "reason",
3069 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3070 ui_out_text (uiout, "\nProgram exited normally.\n");
3071 }
3072 /* Support the --return-child-result option. */
3073 return_child_result_value = stop_info;
3074 break;
3075 case SIGNAL_RECEIVED:
3076 /* Signal received. The signal table tells us to print about
3077 it. */
3078 annotate_signal ();
3079 ui_out_text (uiout, "\nProgram received signal ");
3080 annotate_signal_name ();
3081 if (ui_out_is_mi_like_p (uiout))
3082 ui_out_field_string
3083 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3084 ui_out_field_string (uiout, "signal-name",
3085 target_signal_to_name (stop_info));
3086 annotate_signal_name_end ();
3087 ui_out_text (uiout, ", ");
3088 annotate_signal_string ();
3089 ui_out_field_string (uiout, "signal-meaning",
3090 target_signal_to_string (stop_info));
3091 annotate_signal_string_end ();
3092 ui_out_text (uiout, ".\n");
3093 break;
3094 default:
3095 internal_error (__FILE__, __LINE__,
3096 _("print_stop_reason: unrecognized enum value"));
3097 break;
3098 }
3099 }
3100 \f
3101
3102 /* Here to return control to GDB when the inferior stops for real.
3103 Print appropriate messages, remove breakpoints, give terminal our modes.
3104
3105 STOP_PRINT_FRAME nonzero means print the executing frame
3106 (pc, function, args, file, line number and line text).
3107 BREAKPOINTS_FAILED nonzero means stop was due to error
3108 attempting to insert breakpoints. */
3109
3110 void
3111 normal_stop (void)
3112 {
3113 struct target_waitstatus last;
3114 ptid_t last_ptid;
3115
3116 get_last_target_status (&last_ptid, &last);
3117
3118 /* As with the notification of thread events, we want to delay
3119 notifying the user that we've switched thread context until
3120 the inferior actually stops.
3121
3122 There's no point in saying anything if the inferior has exited.
3123 Note that SIGNALLED here means "exited with a signal", not
3124 "received a signal". */
3125 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3126 && target_has_execution
3127 && last.kind != TARGET_WAITKIND_SIGNALLED
3128 && last.kind != TARGET_WAITKIND_EXITED)
3129 {
3130 target_terminal_ours_for_output ();
3131 printf_filtered (_("[Switching to %s]\n"),
3132 target_pid_or_tid_to_str (inferior_ptid));
3133 previous_inferior_ptid = inferior_ptid;
3134 }
3135
3136 /* NOTE drow/2004-01-17: Is this still necessary? */
3137 /* Make sure that the current_frame's pc is correct. This
3138 is a correction for setting up the frame info before doing
3139 gdbarch_decr_pc_after_break */
3140 if (target_has_execution)
3141 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3142 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3143 frame code to check for this and sort out any resultant mess.
3144 gdbarch_decr_pc_after_break needs to just go away. */
3145 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3146
3147 if (target_has_execution && breakpoints_inserted)
3148 {
3149 if (remove_breakpoints ())
3150 {
3151 target_terminal_ours_for_output ();
3152 printf_filtered (_("\
3153 Cannot remove breakpoints because program is no longer writable.\n\
3154 It might be running in another process.\n\
3155 Further execution is probably impossible.\n"));
3156 }
3157 }
3158 breakpoints_inserted = 0;
3159
3160 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3161 Delete any breakpoint that is to be deleted at the next stop. */
3162
3163 breakpoint_auto_delete (stop_bpstat);
3164
3165 /* If an auto-display called a function and that got a signal,
3166 delete that auto-display to avoid an infinite recursion. */
3167
3168 if (stopped_by_random_signal)
3169 disable_current_display ();
3170
3171 /* Don't print a message if in the middle of doing a "step n"
3172 operation for n > 1 */
3173 if (step_multi && stop_step)
3174 goto done;
3175
3176 target_terminal_ours ();
3177
3178 /* Set the current source location. This will also happen if we
3179 display the frame below, but the current SAL will be incorrect
3180 during a user hook-stop function. */
3181 if (target_has_stack && !stop_stack_dummy)
3182 set_current_sal_from_frame (get_current_frame (), 1);
3183
3184 /* Look up the hook_stop and run it (CLI internally handles problem
3185 of stop_command's pre-hook not existing). */
3186 if (stop_command)
3187 catch_errors (hook_stop_stub, stop_command,
3188 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3189
3190 if (!target_has_stack)
3191 {
3192
3193 goto done;
3194 }
3195
3196 /* Select innermost stack frame - i.e., current frame is frame 0,
3197 and current location is based on that.
3198 Don't do this on return from a stack dummy routine,
3199 or if the program has exited. */
3200
3201 if (!stop_stack_dummy)
3202 {
3203 select_frame (get_current_frame ());
3204
3205 /* Print current location without a level number, if
3206 we have changed functions or hit a breakpoint.
3207 Print source line if we have one.
3208 bpstat_print() contains the logic deciding in detail
3209 what to print, based on the event(s) that just occurred. */
3210
3211 if (stop_print_frame)
3212 {
3213 int bpstat_ret;
3214 int source_flag;
3215 int do_frame_printing = 1;
3216
3217 bpstat_ret = bpstat_print (stop_bpstat);
3218 switch (bpstat_ret)
3219 {
3220 case PRINT_UNKNOWN:
3221 /* If we had hit a shared library event breakpoint,
3222 bpstat_print would print out this message. If we hit
3223 an OS-level shared library event, do the same
3224 thing. */
3225 if (last.kind == TARGET_WAITKIND_LOADED)
3226 {
3227 printf_filtered (_("Stopped due to shared library event\n"));
3228 source_flag = SRC_LINE; /* something bogus */
3229 do_frame_printing = 0;
3230 break;
3231 }
3232
3233 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3234 (or should) carry around the function and does (or
3235 should) use that when doing a frame comparison. */
3236 if (stop_step
3237 && frame_id_eq (step_frame_id,
3238 get_frame_id (get_current_frame ()))
3239 && step_start_function == find_pc_function (stop_pc))
3240 source_flag = SRC_LINE; /* finished step, just print source line */
3241 else
3242 source_flag = SRC_AND_LOC; /* print location and source line */
3243 break;
3244 case PRINT_SRC_AND_LOC:
3245 source_flag = SRC_AND_LOC; /* print location and source line */
3246 break;
3247 case PRINT_SRC_ONLY:
3248 source_flag = SRC_LINE;
3249 break;
3250 case PRINT_NOTHING:
3251 source_flag = SRC_LINE; /* something bogus */
3252 do_frame_printing = 0;
3253 break;
3254 default:
3255 internal_error (__FILE__, __LINE__, _("Unknown value."));
3256 }
3257
3258 if (ui_out_is_mi_like_p (uiout))
3259 ui_out_field_int (uiout, "thread-id",
3260 pid_to_thread_id (inferior_ptid));
3261 /* The behavior of this routine with respect to the source
3262 flag is:
3263 SRC_LINE: Print only source line
3264 LOCATION: Print only location
3265 SRC_AND_LOC: Print location and source line */
3266 if (do_frame_printing)
3267 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3268
3269 /* Display the auto-display expressions. */
3270 do_displays ();
3271 }
3272 }
3273
3274 /* Save the function value return registers, if we care.
3275 We might be about to restore their previous contents. */
3276 if (proceed_to_finish)
3277 {
3278 /* This should not be necessary. */
3279 if (stop_registers)
3280 regcache_xfree (stop_registers);
3281
3282 /* NB: The copy goes through to the target picking up the value of
3283 all the registers. */
3284 stop_registers = regcache_dup (get_current_regcache ());
3285 }
3286
3287 if (stop_stack_dummy)
3288 {
3289 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3290 ends with a setting of the current frame, so we can use that
3291 next. */
3292 frame_pop (get_current_frame ());
3293 /* Set stop_pc to what it was before we called the function.
3294 Can't rely on restore_inferior_status because that only gets
3295 called if we don't stop in the called function. */
3296 stop_pc = read_pc ();
3297 select_frame (get_current_frame ());
3298 }
3299
3300 done:
3301 annotate_stopped ();
3302 observer_notify_normal_stop (stop_bpstat);
3303 }
3304
3305 static int
3306 hook_stop_stub (void *cmd)
3307 {
3308 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3309 return (0);
3310 }
3311 \f
3312 int
3313 signal_stop_state (int signo)
3314 {
3315 return signal_stop[signo];
3316 }
3317
3318 int
3319 signal_print_state (int signo)
3320 {
3321 return signal_print[signo];
3322 }
3323
3324 int
3325 signal_pass_state (int signo)
3326 {
3327 return signal_program[signo];
3328 }
3329
3330 int
3331 signal_stop_update (int signo, int state)
3332 {
3333 int ret = signal_stop[signo];
3334 signal_stop[signo] = state;
3335 return ret;
3336 }
3337
3338 int
3339 signal_print_update (int signo, int state)
3340 {
3341 int ret = signal_print[signo];
3342 signal_print[signo] = state;
3343 return ret;
3344 }
3345
3346 int
3347 signal_pass_update (int signo, int state)
3348 {
3349 int ret = signal_program[signo];
3350 signal_program[signo] = state;
3351 return ret;
3352 }
3353
3354 static void
3355 sig_print_header (void)
3356 {
3357 printf_filtered (_("\
3358 Signal Stop\tPrint\tPass to program\tDescription\n"));
3359 }
3360
3361 static void
3362 sig_print_info (enum target_signal oursig)
3363 {
3364 char *name = target_signal_to_name (oursig);
3365 int name_padding = 13 - strlen (name);
3366
3367 if (name_padding <= 0)
3368 name_padding = 0;
3369
3370 printf_filtered ("%s", name);
3371 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3372 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3373 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3374 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3375 printf_filtered ("%s\n", target_signal_to_string (oursig));
3376 }
3377
3378 /* Specify how various signals in the inferior should be handled. */
3379
3380 static void
3381 handle_command (char *args, int from_tty)
3382 {
3383 char **argv;
3384 int digits, wordlen;
3385 int sigfirst, signum, siglast;
3386 enum target_signal oursig;
3387 int allsigs;
3388 int nsigs;
3389 unsigned char *sigs;
3390 struct cleanup *old_chain;
3391
3392 if (args == NULL)
3393 {
3394 error_no_arg (_("signal to handle"));
3395 }
3396
3397 /* Allocate and zero an array of flags for which signals to handle. */
3398
3399 nsigs = (int) TARGET_SIGNAL_LAST;
3400 sigs = (unsigned char *) alloca (nsigs);
3401 memset (sigs, 0, nsigs);
3402
3403 /* Break the command line up into args. */
3404
3405 argv = buildargv (args);
3406 if (argv == NULL)
3407 {
3408 nomem (0);
3409 }
3410 old_chain = make_cleanup_freeargv (argv);
3411
3412 /* Walk through the args, looking for signal oursigs, signal names, and
3413 actions. Signal numbers and signal names may be interspersed with
3414 actions, with the actions being performed for all signals cumulatively
3415 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3416
3417 while (*argv != NULL)
3418 {
3419 wordlen = strlen (*argv);
3420 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3421 {;
3422 }
3423 allsigs = 0;
3424 sigfirst = siglast = -1;
3425
3426 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3427 {
3428 /* Apply action to all signals except those used by the
3429 debugger. Silently skip those. */
3430 allsigs = 1;
3431 sigfirst = 0;
3432 siglast = nsigs - 1;
3433 }
3434 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3435 {
3436 SET_SIGS (nsigs, sigs, signal_stop);
3437 SET_SIGS (nsigs, sigs, signal_print);
3438 }
3439 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3440 {
3441 UNSET_SIGS (nsigs, sigs, signal_program);
3442 }
3443 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3444 {
3445 SET_SIGS (nsigs, sigs, signal_print);
3446 }
3447 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3448 {
3449 SET_SIGS (nsigs, sigs, signal_program);
3450 }
3451 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3452 {
3453 UNSET_SIGS (nsigs, sigs, signal_stop);
3454 }
3455 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3456 {
3457 SET_SIGS (nsigs, sigs, signal_program);
3458 }
3459 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3460 {
3461 UNSET_SIGS (nsigs, sigs, signal_print);
3462 UNSET_SIGS (nsigs, sigs, signal_stop);
3463 }
3464 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3465 {
3466 UNSET_SIGS (nsigs, sigs, signal_program);
3467 }
3468 else if (digits > 0)
3469 {
3470 /* It is numeric. The numeric signal refers to our own
3471 internal signal numbering from target.h, not to host/target
3472 signal number. This is a feature; users really should be
3473 using symbolic names anyway, and the common ones like
3474 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3475
3476 sigfirst = siglast = (int)
3477 target_signal_from_command (atoi (*argv));
3478 if ((*argv)[digits] == '-')
3479 {
3480 siglast = (int)
3481 target_signal_from_command (atoi ((*argv) + digits + 1));
3482 }
3483 if (sigfirst > siglast)
3484 {
3485 /* Bet he didn't figure we'd think of this case... */
3486 signum = sigfirst;
3487 sigfirst = siglast;
3488 siglast = signum;
3489 }
3490 }
3491 else
3492 {
3493 oursig = target_signal_from_name (*argv);
3494 if (oursig != TARGET_SIGNAL_UNKNOWN)
3495 {
3496 sigfirst = siglast = (int) oursig;
3497 }
3498 else
3499 {
3500 /* Not a number and not a recognized flag word => complain. */
3501 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3502 }
3503 }
3504
3505 /* If any signal numbers or symbol names were found, set flags for
3506 which signals to apply actions to. */
3507
3508 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3509 {
3510 switch ((enum target_signal) signum)
3511 {
3512 case TARGET_SIGNAL_TRAP:
3513 case TARGET_SIGNAL_INT:
3514 if (!allsigs && !sigs[signum])
3515 {
3516 if (query ("%s is used by the debugger.\n\
3517 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3518 {
3519 sigs[signum] = 1;
3520 }
3521 else
3522 {
3523 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3524 gdb_flush (gdb_stdout);
3525 }
3526 }
3527 break;
3528 case TARGET_SIGNAL_0:
3529 case TARGET_SIGNAL_DEFAULT:
3530 case TARGET_SIGNAL_UNKNOWN:
3531 /* Make sure that "all" doesn't print these. */
3532 break;
3533 default:
3534 sigs[signum] = 1;
3535 break;
3536 }
3537 }
3538
3539 argv++;
3540 }
3541
3542 target_notice_signals (inferior_ptid);
3543
3544 if (from_tty)
3545 {
3546 /* Show the results. */
3547 sig_print_header ();
3548 for (signum = 0; signum < nsigs; signum++)
3549 {
3550 if (sigs[signum])
3551 {
3552 sig_print_info (signum);
3553 }
3554 }
3555 }
3556
3557 do_cleanups (old_chain);
3558 }
3559
3560 static void
3561 xdb_handle_command (char *args, int from_tty)
3562 {
3563 char **argv;
3564 struct cleanup *old_chain;
3565
3566 /* Break the command line up into args. */
3567
3568 argv = buildargv (args);
3569 if (argv == NULL)
3570 {
3571 nomem (0);
3572 }
3573 old_chain = make_cleanup_freeargv (argv);
3574 if (argv[1] != (char *) NULL)
3575 {
3576 char *argBuf;
3577 int bufLen;
3578
3579 bufLen = strlen (argv[0]) + 20;
3580 argBuf = (char *) xmalloc (bufLen);
3581 if (argBuf)
3582 {
3583 int validFlag = 1;
3584 enum target_signal oursig;
3585
3586 oursig = target_signal_from_name (argv[0]);
3587 memset (argBuf, 0, bufLen);
3588 if (strcmp (argv[1], "Q") == 0)
3589 sprintf (argBuf, "%s %s", argv[0], "noprint");
3590 else
3591 {
3592 if (strcmp (argv[1], "s") == 0)
3593 {
3594 if (!signal_stop[oursig])
3595 sprintf (argBuf, "%s %s", argv[0], "stop");
3596 else
3597 sprintf (argBuf, "%s %s", argv[0], "nostop");
3598 }
3599 else if (strcmp (argv[1], "i") == 0)
3600 {
3601 if (!signal_program[oursig])
3602 sprintf (argBuf, "%s %s", argv[0], "pass");
3603 else
3604 sprintf (argBuf, "%s %s", argv[0], "nopass");
3605 }
3606 else if (strcmp (argv[1], "r") == 0)
3607 {
3608 if (!signal_print[oursig])
3609 sprintf (argBuf, "%s %s", argv[0], "print");
3610 else
3611 sprintf (argBuf, "%s %s", argv[0], "noprint");
3612 }
3613 else
3614 validFlag = 0;
3615 }
3616 if (validFlag)
3617 handle_command (argBuf, from_tty);
3618 else
3619 printf_filtered (_("Invalid signal handling flag.\n"));
3620 if (argBuf)
3621 xfree (argBuf);
3622 }
3623 }
3624 do_cleanups (old_chain);
3625 }
3626
3627 /* Print current contents of the tables set by the handle command.
3628 It is possible we should just be printing signals actually used
3629 by the current target (but for things to work right when switching
3630 targets, all signals should be in the signal tables). */
3631
3632 static void
3633 signals_info (char *signum_exp, int from_tty)
3634 {
3635 enum target_signal oursig;
3636 sig_print_header ();
3637
3638 if (signum_exp)
3639 {
3640 /* First see if this is a symbol name. */
3641 oursig = target_signal_from_name (signum_exp);
3642 if (oursig == TARGET_SIGNAL_UNKNOWN)
3643 {
3644 /* No, try numeric. */
3645 oursig =
3646 target_signal_from_command (parse_and_eval_long (signum_exp));
3647 }
3648 sig_print_info (oursig);
3649 return;
3650 }
3651
3652 printf_filtered ("\n");
3653 /* These ugly casts brought to you by the native VAX compiler. */
3654 for (oursig = TARGET_SIGNAL_FIRST;
3655 (int) oursig < (int) TARGET_SIGNAL_LAST;
3656 oursig = (enum target_signal) ((int) oursig + 1))
3657 {
3658 QUIT;
3659
3660 if (oursig != TARGET_SIGNAL_UNKNOWN
3661 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3662 sig_print_info (oursig);
3663 }
3664
3665 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3666 }
3667 \f
3668 struct inferior_status
3669 {
3670 enum target_signal stop_signal;
3671 CORE_ADDR stop_pc;
3672 bpstat stop_bpstat;
3673 int stop_step;
3674 int stop_stack_dummy;
3675 int stopped_by_random_signal;
3676 int trap_expected;
3677 CORE_ADDR step_range_start;
3678 CORE_ADDR step_range_end;
3679 struct frame_id step_frame_id;
3680 enum step_over_calls_kind step_over_calls;
3681 CORE_ADDR step_resume_break_address;
3682 int stop_after_trap;
3683 int stop_soon;
3684
3685 /* These are here because if call_function_by_hand has written some
3686 registers and then decides to call error(), we better not have changed
3687 any registers. */
3688 struct regcache *registers;
3689
3690 /* A frame unique identifier. */
3691 struct frame_id selected_frame_id;
3692
3693 int breakpoint_proceeded;
3694 int restore_stack_info;
3695 int proceed_to_finish;
3696 };
3697
3698 void
3699 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3700 LONGEST val)
3701 {
3702 int size = register_size (current_gdbarch, regno);
3703 void *buf = alloca (size);
3704 store_signed_integer (buf, size, val);
3705 regcache_raw_write (inf_status->registers, regno, buf);
3706 }
3707
3708 /* Save all of the information associated with the inferior<==>gdb
3709 connection. INF_STATUS is a pointer to a "struct inferior_status"
3710 (defined in inferior.h). */
3711
3712 struct inferior_status *
3713 save_inferior_status (int restore_stack_info)
3714 {
3715 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3716
3717 inf_status->stop_signal = stop_signal;
3718 inf_status->stop_pc = stop_pc;
3719 inf_status->stop_step = stop_step;
3720 inf_status->stop_stack_dummy = stop_stack_dummy;
3721 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3722 inf_status->trap_expected = trap_expected;
3723 inf_status->step_range_start = step_range_start;
3724 inf_status->step_range_end = step_range_end;
3725 inf_status->step_frame_id = step_frame_id;
3726 inf_status->step_over_calls = step_over_calls;
3727 inf_status->stop_after_trap = stop_after_trap;
3728 inf_status->stop_soon = stop_soon;
3729 /* Save original bpstat chain here; replace it with copy of chain.
3730 If caller's caller is walking the chain, they'll be happier if we
3731 hand them back the original chain when restore_inferior_status is
3732 called. */
3733 inf_status->stop_bpstat = stop_bpstat;
3734 stop_bpstat = bpstat_copy (stop_bpstat);
3735 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3736 inf_status->restore_stack_info = restore_stack_info;
3737 inf_status->proceed_to_finish = proceed_to_finish;
3738
3739 inf_status->registers = regcache_dup (get_current_regcache ());
3740
3741 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3742 return inf_status;
3743 }
3744
3745 static int
3746 restore_selected_frame (void *args)
3747 {
3748 struct frame_id *fid = (struct frame_id *) args;
3749 struct frame_info *frame;
3750
3751 frame = frame_find_by_id (*fid);
3752
3753 /* If inf_status->selected_frame_id is NULL, there was no previously
3754 selected frame. */
3755 if (frame == NULL)
3756 {
3757 warning (_("Unable to restore previously selected frame."));
3758 return 0;
3759 }
3760
3761 select_frame (frame);
3762
3763 return (1);
3764 }
3765
3766 void
3767 restore_inferior_status (struct inferior_status *inf_status)
3768 {
3769 stop_signal = inf_status->stop_signal;
3770 stop_pc = inf_status->stop_pc;
3771 stop_step = inf_status->stop_step;
3772 stop_stack_dummy = inf_status->stop_stack_dummy;
3773 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3774 trap_expected = inf_status->trap_expected;
3775 step_range_start = inf_status->step_range_start;
3776 step_range_end = inf_status->step_range_end;
3777 step_frame_id = inf_status->step_frame_id;
3778 step_over_calls = inf_status->step_over_calls;
3779 stop_after_trap = inf_status->stop_after_trap;
3780 stop_soon = inf_status->stop_soon;
3781 bpstat_clear (&stop_bpstat);
3782 stop_bpstat = inf_status->stop_bpstat;
3783 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3784 proceed_to_finish = inf_status->proceed_to_finish;
3785
3786 /* The inferior can be gone if the user types "print exit(0)"
3787 (and perhaps other times). */
3788 if (target_has_execution)
3789 /* NB: The register write goes through to the target. */
3790 regcache_cpy (get_current_regcache (), inf_status->registers);
3791 regcache_xfree (inf_status->registers);
3792
3793 /* FIXME: If we are being called after stopping in a function which
3794 is called from gdb, we should not be trying to restore the
3795 selected frame; it just prints a spurious error message (The
3796 message is useful, however, in detecting bugs in gdb (like if gdb
3797 clobbers the stack)). In fact, should we be restoring the
3798 inferior status at all in that case? . */
3799
3800 if (target_has_stack && inf_status->restore_stack_info)
3801 {
3802 /* The point of catch_errors is that if the stack is clobbered,
3803 walking the stack might encounter a garbage pointer and
3804 error() trying to dereference it. */
3805 if (catch_errors
3806 (restore_selected_frame, &inf_status->selected_frame_id,
3807 "Unable to restore previously selected frame:\n",
3808 RETURN_MASK_ERROR) == 0)
3809 /* Error in restoring the selected frame. Select the innermost
3810 frame. */
3811 select_frame (get_current_frame ());
3812
3813 }
3814
3815 xfree (inf_status);
3816 }
3817
3818 static void
3819 do_restore_inferior_status_cleanup (void *sts)
3820 {
3821 restore_inferior_status (sts);
3822 }
3823
3824 struct cleanup *
3825 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3826 {
3827 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3828 }
3829
3830 void
3831 discard_inferior_status (struct inferior_status *inf_status)
3832 {
3833 /* See save_inferior_status for info on stop_bpstat. */
3834 bpstat_clear (&inf_status->stop_bpstat);
3835 regcache_xfree (inf_status->registers);
3836 xfree (inf_status);
3837 }
3838
3839 int
3840 inferior_has_forked (int pid, int *child_pid)
3841 {
3842 struct target_waitstatus last;
3843 ptid_t last_ptid;
3844
3845 get_last_target_status (&last_ptid, &last);
3846
3847 if (last.kind != TARGET_WAITKIND_FORKED)
3848 return 0;
3849
3850 if (ptid_get_pid (last_ptid) != pid)
3851 return 0;
3852
3853 *child_pid = last.value.related_pid;
3854 return 1;
3855 }
3856
3857 int
3858 inferior_has_vforked (int pid, int *child_pid)
3859 {
3860 struct target_waitstatus last;
3861 ptid_t last_ptid;
3862
3863 get_last_target_status (&last_ptid, &last);
3864
3865 if (last.kind != TARGET_WAITKIND_VFORKED)
3866 return 0;
3867
3868 if (ptid_get_pid (last_ptid) != pid)
3869 return 0;
3870
3871 *child_pid = last.value.related_pid;
3872 return 1;
3873 }
3874
3875 int
3876 inferior_has_execd (int pid, char **execd_pathname)
3877 {
3878 struct target_waitstatus last;
3879 ptid_t last_ptid;
3880
3881 get_last_target_status (&last_ptid, &last);
3882
3883 if (last.kind != TARGET_WAITKIND_EXECD)
3884 return 0;
3885
3886 if (ptid_get_pid (last_ptid) != pid)
3887 return 0;
3888
3889 *execd_pathname = xstrdup (last.value.execd_pathname);
3890 return 1;
3891 }
3892
3893 /* Oft used ptids */
3894 ptid_t null_ptid;
3895 ptid_t minus_one_ptid;
3896
3897 /* Create a ptid given the necessary PID, LWP, and TID components. */
3898
3899 ptid_t
3900 ptid_build (int pid, long lwp, long tid)
3901 {
3902 ptid_t ptid;
3903
3904 ptid.pid = pid;
3905 ptid.lwp = lwp;
3906 ptid.tid = tid;
3907 return ptid;
3908 }
3909
3910 /* Create a ptid from just a pid. */
3911
3912 ptid_t
3913 pid_to_ptid (int pid)
3914 {
3915 return ptid_build (pid, 0, 0);
3916 }
3917
3918 /* Fetch the pid (process id) component from a ptid. */
3919
3920 int
3921 ptid_get_pid (ptid_t ptid)
3922 {
3923 return ptid.pid;
3924 }
3925
3926 /* Fetch the lwp (lightweight process) component from a ptid. */
3927
3928 long
3929 ptid_get_lwp (ptid_t ptid)
3930 {
3931 return ptid.lwp;
3932 }
3933
3934 /* Fetch the tid (thread id) component from a ptid. */
3935
3936 long
3937 ptid_get_tid (ptid_t ptid)
3938 {
3939 return ptid.tid;
3940 }
3941
3942 /* ptid_equal() is used to test equality of two ptids. */
3943
3944 int
3945 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3946 {
3947 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3948 && ptid1.tid == ptid2.tid);
3949 }
3950
3951 /* restore_inferior_ptid() will be used by the cleanup machinery
3952 to restore the inferior_ptid value saved in a call to
3953 save_inferior_ptid(). */
3954
3955 static void
3956 restore_inferior_ptid (void *arg)
3957 {
3958 ptid_t *saved_ptid_ptr = arg;
3959 inferior_ptid = *saved_ptid_ptr;
3960 xfree (arg);
3961 }
3962
3963 /* Save the value of inferior_ptid so that it may be restored by a
3964 later call to do_cleanups(). Returns the struct cleanup pointer
3965 needed for later doing the cleanup. */
3966
3967 struct cleanup *
3968 save_inferior_ptid (void)
3969 {
3970 ptid_t *saved_ptid_ptr;
3971
3972 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3973 *saved_ptid_ptr = inferior_ptid;
3974 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3975 }
3976 \f
3977
3978 void
3979 _initialize_infrun (void)
3980 {
3981 int i;
3982 int numsigs;
3983 struct cmd_list_element *c;
3984
3985 add_info ("signals", signals_info, _("\
3986 What debugger does when program gets various signals.\n\
3987 Specify a signal as argument to print info on that signal only."));
3988 add_info_alias ("handle", "signals", 0);
3989
3990 add_com ("handle", class_run, handle_command, _("\
3991 Specify how to handle a signal.\n\
3992 Args are signals and actions to apply to those signals.\n\
3993 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3994 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3995 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3996 The special arg \"all\" is recognized to mean all signals except those\n\
3997 used by the debugger, typically SIGTRAP and SIGINT.\n\
3998 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3999 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4000 Stop means reenter debugger if this signal happens (implies print).\n\
4001 Print means print a message if this signal happens.\n\
4002 Pass means let program see this signal; otherwise program doesn't know.\n\
4003 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4004 Pass and Stop may be combined."));
4005 if (xdb_commands)
4006 {
4007 add_com ("lz", class_info, signals_info, _("\
4008 What debugger does when program gets various signals.\n\
4009 Specify a signal as argument to print info on that signal only."));
4010 add_com ("z", class_run, xdb_handle_command, _("\
4011 Specify how to handle a signal.\n\
4012 Args are signals and actions to apply to those signals.\n\
4013 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4014 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4015 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4016 The special arg \"all\" is recognized to mean all signals except those\n\
4017 used by the debugger, typically SIGTRAP and SIGINT.\n\
4018 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4019 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4020 nopass), \"Q\" (noprint)\n\
4021 Stop means reenter debugger if this signal happens (implies print).\n\
4022 Print means print a message if this signal happens.\n\
4023 Pass means let program see this signal; otherwise program doesn't know.\n\
4024 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4025 Pass and Stop may be combined."));
4026 }
4027
4028 if (!dbx_commands)
4029 stop_command = add_cmd ("stop", class_obscure,
4030 not_just_help_class_command, _("\
4031 There is no `stop' command, but you can set a hook on `stop'.\n\
4032 This allows you to set a list of commands to be run each time execution\n\
4033 of the program stops."), &cmdlist);
4034
4035 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4036 Set inferior debugging."), _("\
4037 Show inferior debugging."), _("\
4038 When non-zero, inferior specific debugging is enabled."),
4039 NULL,
4040 show_debug_infrun,
4041 &setdebuglist, &showdebuglist);
4042
4043 numsigs = (int) TARGET_SIGNAL_LAST;
4044 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4045 signal_print = (unsigned char *)
4046 xmalloc (sizeof (signal_print[0]) * numsigs);
4047 signal_program = (unsigned char *)
4048 xmalloc (sizeof (signal_program[0]) * numsigs);
4049 for (i = 0; i < numsigs; i++)
4050 {
4051 signal_stop[i] = 1;
4052 signal_print[i] = 1;
4053 signal_program[i] = 1;
4054 }
4055
4056 /* Signals caused by debugger's own actions
4057 should not be given to the program afterwards. */
4058 signal_program[TARGET_SIGNAL_TRAP] = 0;
4059 signal_program[TARGET_SIGNAL_INT] = 0;
4060
4061 /* Signals that are not errors should not normally enter the debugger. */
4062 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4063 signal_print[TARGET_SIGNAL_ALRM] = 0;
4064 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4065 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4066 signal_stop[TARGET_SIGNAL_PROF] = 0;
4067 signal_print[TARGET_SIGNAL_PROF] = 0;
4068 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4069 signal_print[TARGET_SIGNAL_CHLD] = 0;
4070 signal_stop[TARGET_SIGNAL_IO] = 0;
4071 signal_print[TARGET_SIGNAL_IO] = 0;
4072 signal_stop[TARGET_SIGNAL_POLL] = 0;
4073 signal_print[TARGET_SIGNAL_POLL] = 0;
4074 signal_stop[TARGET_SIGNAL_URG] = 0;
4075 signal_print[TARGET_SIGNAL_URG] = 0;
4076 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4077 signal_print[TARGET_SIGNAL_WINCH] = 0;
4078
4079 /* These signals are used internally by user-level thread
4080 implementations. (See signal(5) on Solaris.) Like the above
4081 signals, a healthy program receives and handles them as part of
4082 its normal operation. */
4083 signal_stop[TARGET_SIGNAL_LWP] = 0;
4084 signal_print[TARGET_SIGNAL_LWP] = 0;
4085 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4086 signal_print[TARGET_SIGNAL_WAITING] = 0;
4087 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4088 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4089
4090 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4091 &stop_on_solib_events, _("\
4092 Set stopping for shared library events."), _("\
4093 Show stopping for shared library events."), _("\
4094 If nonzero, gdb will give control to the user when the dynamic linker\n\
4095 notifies gdb of shared library events. The most common event of interest\n\
4096 to the user would be loading/unloading of a new library."),
4097 NULL,
4098 show_stop_on_solib_events,
4099 &setlist, &showlist);
4100
4101 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4102 follow_fork_mode_kind_names,
4103 &follow_fork_mode_string, _("\
4104 Set debugger response to a program call of fork or vfork."), _("\
4105 Show debugger response to a program call of fork or vfork."), _("\
4106 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4107 parent - the original process is debugged after a fork\n\
4108 child - the new process is debugged after a fork\n\
4109 The unfollowed process will continue to run.\n\
4110 By default, the debugger will follow the parent process."),
4111 NULL,
4112 show_follow_fork_mode_string,
4113 &setlist, &showlist);
4114
4115 add_setshow_enum_cmd ("scheduler-locking", class_run,
4116 scheduler_enums, &scheduler_mode, _("\
4117 Set mode for locking scheduler during execution."), _("\
4118 Show mode for locking scheduler during execution."), _("\
4119 off == no locking (threads may preempt at any time)\n\
4120 on == full locking (no thread except the current thread may run)\n\
4121 step == scheduler locked during every single-step operation.\n\
4122 In this mode, no other thread may run during a step command.\n\
4123 Other threads may run while stepping over a function call ('next')."),
4124 set_schedlock_func, /* traps on target vector */
4125 show_scheduler_mode,
4126 &setlist, &showlist);
4127
4128 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4129 Set mode of the step operation."), _("\
4130 Show mode of the step operation."), _("\
4131 When set, doing a step over a function without debug line information\n\
4132 will stop at the first instruction of that function. Otherwise, the\n\
4133 function is skipped and the step command stops at a different source line."),
4134 NULL,
4135 show_step_stop_if_no_debug,
4136 &setlist, &showlist);
4137
4138 /* ptid initializations */
4139 null_ptid = ptid_build (0, 0, 0);
4140 minus_one_ptid = ptid_build (-1, 0, 0);
4141 inferior_ptid = null_ptid;
4142 target_last_wait_ptid = minus_one_ptid;
4143 }
This page took 0.119201 seconds and 4 git commands to generate.