* arm-linux-tdep.c (arm_linux_software_single_step): New.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Nonzero if breakpoints are now inserted in the inferior. */
218
219 static int breakpoints_inserted;
220
221 /* Function inferior was in as of last step command. */
222
223 static struct symbol *step_start_function;
224
225 /* Nonzero if we are expecting a trace trap and should proceed from it. */
226
227 static int trap_expected;
228
229 /* Nonzero if we want to give control to the user when we're notified
230 of shared library events by the dynamic linker. */
231 static int stop_on_solib_events;
232 static void
233 show_stop_on_solib_events (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237 value);
238 }
239
240 /* Nonzero means expecting a trace trap
241 and should stop the inferior and return silently when it happens. */
242
243 int stop_after_trap;
244
245 /* Nonzero means expecting a trap and caller will handle it themselves.
246 It is used after attach, due to attaching to a process;
247 when running in the shell before the child program has been exec'd;
248 and when running some kinds of remote stuff (FIXME?). */
249
250 enum stop_kind stop_soon;
251
252 /* Nonzero if proceed is being used for a "finish" command or a similar
253 situation when stop_registers should be saved. */
254
255 int proceed_to_finish;
256
257 /* Save register contents here when about to pop a stack dummy frame,
258 if-and-only-if proceed_to_finish is set.
259 Thus this contains the return value from the called function (assuming
260 values are returned in a register). */
261
262 struct regcache *stop_registers;
263
264 /* Nonzero after stop if current stack frame should be printed. */
265
266 static int stop_print_frame;
267
268 static struct breakpoint *step_resume_breakpoint = NULL;
269
270 /* This is a cached copy of the pid/waitstatus of the last event
271 returned by target_wait()/deprecated_target_wait_hook(). This
272 information is returned by get_last_target_status(). */
273 static ptid_t target_last_wait_ptid;
274 static struct target_waitstatus target_last_waitstatus;
275
276 /* This is used to remember when a fork, vfork or exec event
277 was caught by a catchpoint, and thus the event is to be
278 followed at the next resume of the inferior, and not
279 immediately. */
280 static struct
281 {
282 enum target_waitkind kind;
283 struct
284 {
285 int parent_pid;
286 int child_pid;
287 }
288 fork_event;
289 char *execd_pathname;
290 }
291 pending_follow;
292
293 static const char follow_fork_mode_child[] = "child";
294 static const char follow_fork_mode_parent[] = "parent";
295
296 static const char *follow_fork_mode_kind_names[] = {
297 follow_fork_mode_child,
298 follow_fork_mode_parent,
299 NULL
300 };
301
302 static const char *follow_fork_mode_string = follow_fork_mode_parent;
303 static void
304 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306 {
307 fprintf_filtered (file, _("\
308 Debugger response to a program call of fork or vfork is \"%s\".\n"),
309 value);
310 }
311 \f
312
313 static int
314 follow_fork (void)
315 {
316 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
317
318 return target_follow_fork (follow_child);
319 }
320
321 void
322 follow_inferior_reset_breakpoints (void)
323 {
324 /* Was there a step_resume breakpoint? (There was if the user
325 did a "next" at the fork() call.) If so, explicitly reset its
326 thread number.
327
328 step_resumes are a form of bp that are made to be per-thread.
329 Since we created the step_resume bp when the parent process
330 was being debugged, and now are switching to the child process,
331 from the breakpoint package's viewpoint, that's a switch of
332 "threads". We must update the bp's notion of which thread
333 it is for, or it'll be ignored when it triggers. */
334
335 if (step_resume_breakpoint)
336 breakpoint_re_set_thread (step_resume_breakpoint);
337
338 /* Reinsert all breakpoints in the child. The user may have set
339 breakpoints after catching the fork, in which case those
340 were never set in the child, but only in the parent. This makes
341 sure the inserted breakpoints match the breakpoint list. */
342
343 breakpoint_re_set ();
344 insert_breakpoints ();
345 }
346
347 /* EXECD_PATHNAME is assumed to be non-NULL. */
348
349 static void
350 follow_exec (int pid, char *execd_pathname)
351 {
352 int saved_pid = pid;
353 struct target_ops *tgt;
354
355 if (!may_follow_exec)
356 return;
357
358 /* This is an exec event that we actually wish to pay attention to.
359 Refresh our symbol table to the newly exec'd program, remove any
360 momentary bp's, etc.
361
362 If there are breakpoints, they aren't really inserted now,
363 since the exec() transformed our inferior into a fresh set
364 of instructions.
365
366 We want to preserve symbolic breakpoints on the list, since
367 we have hopes that they can be reset after the new a.out's
368 symbol table is read.
369
370 However, any "raw" breakpoints must be removed from the list
371 (e.g., the solib bp's), since their address is probably invalid
372 now.
373
374 And, we DON'T want to call delete_breakpoints() here, since
375 that may write the bp's "shadow contents" (the instruction
376 value that was overwritten witha TRAP instruction). Since
377 we now have a new a.out, those shadow contents aren't valid. */
378 update_breakpoints_after_exec ();
379
380 /* If there was one, it's gone now. We cannot truly step-to-next
381 statement through an exec(). */
382 step_resume_breakpoint = NULL;
383 step_range_start = 0;
384 step_range_end = 0;
385
386 /* What is this a.out's name? */
387 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
388
389 /* We've followed the inferior through an exec. Therefore, the
390 inferior has essentially been killed & reborn. */
391
392 /* First collect the run target in effect. */
393 tgt = find_run_target ();
394 /* If we can't find one, things are in a very strange state... */
395 if (tgt == NULL)
396 error (_("Could find run target to save before following exec"));
397
398 gdb_flush (gdb_stdout);
399 target_mourn_inferior ();
400 inferior_ptid = pid_to_ptid (saved_pid);
401 /* Because mourn_inferior resets inferior_ptid. */
402 push_target (tgt);
403
404 /* That a.out is now the one to use. */
405 exec_file_attach (execd_pathname, 0);
406
407 /* And also is where symbols can be found. */
408 symbol_file_add_main (execd_pathname, 0);
409
410 /* Reset the shared library package. This ensures that we get
411 a shlib event when the child reaches "_start", at which point
412 the dld will have had a chance to initialize the child. */
413 #if defined(SOLIB_RESTART)
414 SOLIB_RESTART ();
415 #endif
416 #ifdef SOLIB_CREATE_INFERIOR_HOOK
417 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
418 #else
419 solib_create_inferior_hook ();
420 #endif
421
422 /* Reinsert all breakpoints. (Those which were symbolic have
423 been reset to the proper address in the new a.out, thanks
424 to symbol_file_command...) */
425 insert_breakpoints ();
426
427 /* The next resume of this inferior should bring it to the shlib
428 startup breakpoints. (If the user had also set bp's on
429 "main" from the old (parent) process, then they'll auto-
430 matically get reset there in the new process.) */
431 }
432
433 /* Non-zero if we just simulating a single-step. This is needed
434 because we cannot remove the breakpoints in the inferior process
435 until after the `wait' in `wait_for_inferior'. */
436 static int singlestep_breakpoints_inserted_p = 0;
437
438 /* The thread we inserted single-step breakpoints for. */
439 static ptid_t singlestep_ptid;
440
441 /* PC when we started this single-step. */
442 static CORE_ADDR singlestep_pc;
443
444 /* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446 static ptid_t saved_singlestep_ptid;
447 static int stepping_past_singlestep_breakpoint;
448
449 /* Similarly, if we are stepping another thread past a breakpoint,
450 save the original thread here so that we can resume stepping it later. */
451 static ptid_t stepping_past_breakpoint_ptid;
452 static int stepping_past_breakpoint;
453 \f
454
455 /* Things to clean up if we QUIT out of resume (). */
456 static void
457 resume_cleanups (void *ignore)
458 {
459 normal_stop ();
460 }
461
462 static const char schedlock_off[] = "off";
463 static const char schedlock_on[] = "on";
464 static const char schedlock_step[] = "step";
465 static const char *scheduler_enums[] = {
466 schedlock_off,
467 schedlock_on,
468 schedlock_step,
469 NULL
470 };
471 static const char *scheduler_mode = schedlock_off;
472 static void
473 show_scheduler_mode (struct ui_file *file, int from_tty,
474 struct cmd_list_element *c, const char *value)
475 {
476 fprintf_filtered (file, _("\
477 Mode for locking scheduler during execution is \"%s\".\n"),
478 value);
479 }
480
481 static void
482 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
483 {
484 if (!target_can_lock_scheduler)
485 {
486 scheduler_mode = schedlock_off;
487 error (_("Target '%s' cannot support this command."), target_shortname);
488 }
489 }
490
491
492 /* Resume the inferior, but allow a QUIT. This is useful if the user
493 wants to interrupt some lengthy single-stepping operation
494 (for child processes, the SIGINT goes to the inferior, and so
495 we get a SIGINT random_signal, but for remote debugging and perhaps
496 other targets, that's not true).
497
498 STEP nonzero if we should step (zero to continue instead).
499 SIG is the signal to give the inferior (zero for none). */
500 void
501 resume (int step, enum target_signal sig)
502 {
503 int should_resume = 1;
504 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
505 QUIT;
506
507 if (debug_infrun)
508 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
509 step, sig);
510
511 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
512
513
514 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
515 over an instruction that causes a page fault without triggering
516 a hardware watchpoint. The kernel properly notices that it shouldn't
517 stop, because the hardware watchpoint is not triggered, but it forgets
518 the step request and continues the program normally.
519 Work around the problem by removing hardware watchpoints if a step is
520 requested, GDB will check for a hardware watchpoint trigger after the
521 step anyway. */
522 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
523 remove_hw_watchpoints ();
524
525
526 /* Normally, by the time we reach `resume', the breakpoints are either
527 removed or inserted, as appropriate. The exception is if we're sitting
528 at a permanent breakpoint; we need to step over it, but permanent
529 breakpoints can't be removed. So we have to test for it here. */
530 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
531 {
532 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
533 gdbarch_skip_permanent_breakpoint (current_gdbarch,
534 get_current_regcache ());
535 else
536 error (_("\
537 The program is stopped at a permanent breakpoint, but GDB does not know\n\
538 how to step past a permanent breakpoint on this architecture. Try using\n\
539 a command like `return' or `jump' to continue execution."));
540 }
541
542 if (step && gdbarch_software_single_step_p (current_gdbarch))
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
546 {
547 /* ...and don't ask hardware to do it. */
548 step = 0;
549 /* and do not pull these breakpoints until after a `wait' in
550 `wait_for_inferior' */
551 singlestep_breakpoints_inserted_p = 1;
552 singlestep_ptid = inferior_ptid;
553 singlestep_pc = read_pc ();
554 }
555 }
556
557 /* If there were any forks/vforks/execs that were caught and are
558 now to be followed, then do so. */
559 switch (pending_follow.kind)
560 {
561 case TARGET_WAITKIND_FORKED:
562 case TARGET_WAITKIND_VFORKED:
563 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
564 if (follow_fork ())
565 should_resume = 0;
566 break;
567
568 case TARGET_WAITKIND_EXECD:
569 /* follow_exec is called as soon as the exec event is seen. */
570 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
571 break;
572
573 default:
574 break;
575 }
576
577 /* Install inferior's terminal modes. */
578 target_terminal_inferior ();
579
580 if (should_resume)
581 {
582 ptid_t resume_ptid;
583
584 resume_ptid = RESUME_ALL; /* Default */
585
586 if ((step || singlestep_breakpoints_inserted_p)
587 && (stepping_past_singlestep_breakpoint
588 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
589 {
590 /* Stepping past a breakpoint without inserting breakpoints.
591 Make sure only the current thread gets to step, so that
592 other threads don't sneak past breakpoints while they are
593 not inserted. */
594
595 resume_ptid = inferior_ptid;
596 }
597
598 if ((scheduler_mode == schedlock_on)
599 || (scheduler_mode == schedlock_step
600 && (step || singlestep_breakpoints_inserted_p)))
601 {
602 /* User-settable 'scheduler' mode requires solo thread resume. */
603 resume_ptid = inferior_ptid;
604 }
605
606 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
607 {
608 /* Most targets can step a breakpoint instruction, thus
609 executing it normally. But if this one cannot, just
610 continue and we will hit it anyway. */
611 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
612 step = 0;
613 }
614 target_resume (resume_ptid, step, sig);
615 }
616
617 discard_cleanups (old_cleanups);
618 }
619 \f
620
621 /* Clear out all variables saying what to do when inferior is continued.
622 First do this, then set the ones you want, then call `proceed'. */
623
624 void
625 clear_proceed_status (void)
626 {
627 trap_expected = 0;
628 step_range_start = 0;
629 step_range_end = 0;
630 step_frame_id = null_frame_id;
631 step_over_calls = STEP_OVER_UNDEBUGGABLE;
632 stop_after_trap = 0;
633 stop_soon = NO_STOP_QUIETLY;
634 proceed_to_finish = 0;
635 breakpoint_proceeded = 1; /* We're about to proceed... */
636
637 if (stop_registers)
638 {
639 regcache_xfree (stop_registers);
640 stop_registers = NULL;
641 }
642
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645 }
646
647 /* This should be suitable for any targets that support threads. */
648
649 static int
650 prepare_to_proceed (int step)
651 {
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
658 /* Make sure we were stopped at a breakpoint. */
659 if (wait_status.kind != TARGET_WAITKIND_STOPPED
660 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
661 {
662 return 0;
663 }
664
665 /* Switched over from WAIT_PID. */
666 if (!ptid_equal (wait_ptid, minus_one_ptid)
667 && !ptid_equal (inferior_ptid, wait_ptid)
668 && breakpoint_here_p (read_pc_pid (wait_ptid)))
669 {
670 /* If stepping, remember current thread to switch back to. */
671 if (step)
672 {
673 stepping_past_breakpoint = 1;
674 stepping_past_breakpoint_ptid = inferior_ptid;
675 }
676
677 /* Switch back to WAIT_PID thread. */
678 switch_to_thread (wait_ptid);
679
680 /* We return 1 to indicate that there is a breakpoint here,
681 so we need to step over it before continuing to avoid
682 hitting it straight away. */
683 return 1;
684 }
685
686 return 0;
687 }
688
689 /* Record the pc of the program the last time it stopped. This is
690 just used internally by wait_for_inferior, but need to be preserved
691 over calls to it and cleared when the inferior is started. */
692 static CORE_ADDR prev_pc;
693
694 /* Basic routine for continuing the program in various fashions.
695
696 ADDR is the address to resume at, or -1 for resume where stopped.
697 SIGGNAL is the signal to give it, or 0 for none,
698 or -1 for act according to how it stopped.
699 STEP is nonzero if should trap after one instruction.
700 -1 means return after that and print nothing.
701 You should probably set various step_... variables
702 before calling here, if you are stepping.
703
704 You should call clear_proceed_status before calling proceed. */
705
706 void
707 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
708 {
709 int oneproc = 0;
710
711 if (step > 0)
712 step_start_function = find_pc_function (read_pc ());
713 if (step < 0)
714 stop_after_trap = 1;
715
716 if (addr == (CORE_ADDR) -1)
717 {
718 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
719 /* There is a breakpoint at the address we will resume at,
720 step one instruction before inserting breakpoints so that
721 we do not stop right away (and report a second hit at this
722 breakpoint). */
723 oneproc = 1;
724 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
725 && gdbarch_single_step_through_delay (current_gdbarch,
726 get_current_frame ()))
727 /* We stepped onto an instruction that needs to be stepped
728 again before re-inserting the breakpoint, do so. */
729 oneproc = 1;
730 }
731 else
732 {
733 write_pc (addr);
734 }
735
736 if (debug_infrun)
737 fprintf_unfiltered (gdb_stdlog,
738 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
739 paddr_nz (addr), siggnal, step);
740
741 /* In a multi-threaded task we may select another thread
742 and then continue or step.
743
744 But if the old thread was stopped at a breakpoint, it
745 will immediately cause another breakpoint stop without
746 any execution (i.e. it will report a breakpoint hit
747 incorrectly). So we must step over it first.
748
749 prepare_to_proceed checks the current thread against the thread
750 that reported the most recent event. If a step-over is required
751 it returns TRUE and sets the current thread to the old thread. */
752 if (prepare_to_proceed (step))
753 oneproc = 1;
754
755 if (oneproc)
756 /* We will get a trace trap after one instruction.
757 Continue it automatically and insert breakpoints then. */
758 trap_expected = 1;
759 else
760 {
761 insert_breakpoints ();
762 /* If we get here there was no call to error() in
763 insert breakpoints -- so they were inserted. */
764 breakpoints_inserted = 1;
765 }
766
767 if (siggnal != TARGET_SIGNAL_DEFAULT)
768 stop_signal = siggnal;
769 /* If this signal should not be seen by program,
770 give it zero. Used for debugging signals. */
771 else if (!signal_program[stop_signal])
772 stop_signal = TARGET_SIGNAL_0;
773
774 annotate_starting ();
775
776 /* Make sure that output from GDB appears before output from the
777 inferior. */
778 gdb_flush (gdb_stdout);
779
780 /* Refresh prev_pc value just prior to resuming. This used to be
781 done in stop_stepping, however, setting prev_pc there did not handle
782 scenarios such as inferior function calls or returning from
783 a function via the return command. In those cases, the prev_pc
784 value was not set properly for subsequent commands. The prev_pc value
785 is used to initialize the starting line number in the ecs. With an
786 invalid value, the gdb next command ends up stopping at the position
787 represented by the next line table entry past our start position.
788 On platforms that generate one line table entry per line, this
789 is not a problem. However, on the ia64, the compiler generates
790 extraneous line table entries that do not increase the line number.
791 When we issue the gdb next command on the ia64 after an inferior call
792 or a return command, we often end up a few instructions forward, still
793 within the original line we started.
794
795 An attempt was made to have init_execution_control_state () refresh
796 the prev_pc value before calculating the line number. This approach
797 did not work because on platforms that use ptrace, the pc register
798 cannot be read unless the inferior is stopped. At that point, we
799 are not guaranteed the inferior is stopped and so the read_pc ()
800 call can fail. Setting the prev_pc value here ensures the value is
801 updated correctly when the inferior is stopped. */
802 prev_pc = read_pc ();
803
804 /* Resume inferior. */
805 resume (oneproc || step || bpstat_should_step (), stop_signal);
806
807 /* Wait for it to stop (if not standalone)
808 and in any case decode why it stopped, and act accordingly. */
809 /* Do this only if we are not using the event loop, or if the target
810 does not support asynchronous execution. */
811 if (!target_can_async_p ())
812 {
813 wait_for_inferior ();
814 normal_stop ();
815 }
816 }
817 \f
818
819 /* Start remote-debugging of a machine over a serial link. */
820
821 void
822 start_remote (int from_tty)
823 {
824 init_thread_list ();
825 init_wait_for_inferior ();
826 stop_soon = STOP_QUIETLY_REMOTE;
827 trap_expected = 0;
828
829 /* Always go on waiting for the target, regardless of the mode. */
830 /* FIXME: cagney/1999-09-23: At present it isn't possible to
831 indicate to wait_for_inferior that a target should timeout if
832 nothing is returned (instead of just blocking). Because of this,
833 targets expecting an immediate response need to, internally, set
834 things up so that the target_wait() is forced to eventually
835 timeout. */
836 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
837 differentiate to its caller what the state of the target is after
838 the initial open has been performed. Here we're assuming that
839 the target has stopped. It should be possible to eventually have
840 target_open() return to the caller an indication that the target
841 is currently running and GDB state should be set to the same as
842 for an async run. */
843 wait_for_inferior ();
844
845 /* Now that the inferior has stopped, do any bookkeeping like
846 loading shared libraries. We want to do this before normal_stop,
847 so that the displayed frame is up to date. */
848 post_create_inferior (&current_target, from_tty);
849
850 normal_stop ();
851 }
852
853 /* Initialize static vars when a new inferior begins. */
854
855 void
856 init_wait_for_inferior (void)
857 {
858 /* These are meaningless until the first time through wait_for_inferior. */
859 prev_pc = 0;
860
861 breakpoints_inserted = 0;
862 breakpoint_init_inferior (inf_starting);
863
864 /* Don't confuse first call to proceed(). */
865 stop_signal = TARGET_SIGNAL_0;
866
867 /* The first resume is not following a fork/vfork/exec. */
868 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
869
870 clear_proceed_status ();
871
872 stepping_past_singlestep_breakpoint = 0;
873 stepping_past_breakpoint = 0;
874 }
875 \f
876 /* This enum encodes possible reasons for doing a target_wait, so that
877 wfi can call target_wait in one place. (Ultimately the call will be
878 moved out of the infinite loop entirely.) */
879
880 enum infwait_states
881 {
882 infwait_normal_state,
883 infwait_thread_hop_state,
884 infwait_nonstep_watch_state
885 };
886
887 /* Why did the inferior stop? Used to print the appropriate messages
888 to the interface from within handle_inferior_event(). */
889 enum inferior_stop_reason
890 {
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
893 /* Inferior terminated by signal. */
894 SIGNAL_EXITED,
895 /* Inferior exited. */
896 EXITED,
897 /* Inferior received signal, and user asked to be notified. */
898 SIGNAL_RECEIVED
899 };
900
901 /* This structure contains what used to be local variables in
902 wait_for_inferior. Probably many of them can return to being
903 locals in handle_inferior_event. */
904
905 struct execution_control_state
906 {
907 struct target_waitstatus ws;
908 struct target_waitstatus *wp;
909 int another_trap;
910 int random_signal;
911 CORE_ADDR stop_func_start;
912 CORE_ADDR stop_func_end;
913 char *stop_func_name;
914 struct symtab_and_line sal;
915 int current_line;
916 struct symtab *current_symtab;
917 int handling_longjmp; /* FIXME */
918 ptid_t ptid;
919 ptid_t saved_inferior_ptid;
920 int step_after_step_resume_breakpoint;
921 int stepping_through_solib_after_catch;
922 bpstat stepping_through_solib_catchpoints;
923 int new_thread_event;
924 struct target_waitstatus tmpstatus;
925 enum infwait_states infwait_state;
926 ptid_t waiton_ptid;
927 int wait_some_more;
928 };
929
930 void init_execution_control_state (struct execution_control_state *ecs);
931
932 void handle_inferior_event (struct execution_control_state *ecs);
933
934 static void step_into_function (struct execution_control_state *ecs);
935 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
936 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
937 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
938 struct frame_id sr_id);
939 static void stop_stepping (struct execution_control_state *ecs);
940 static void prepare_to_wait (struct execution_control_state *ecs);
941 static void keep_going (struct execution_control_state *ecs);
942 static void print_stop_reason (enum inferior_stop_reason stop_reason,
943 int stop_info);
944
945 /* Wait for control to return from inferior to debugger.
946 If inferior gets a signal, we may decide to start it up again
947 instead of returning. That is why there is a loop in this function.
948 When this function actually returns it means the inferior
949 should be left stopped and GDB should read more commands. */
950
951 void
952 wait_for_inferior (void)
953 {
954 struct cleanup *old_cleanups;
955 struct execution_control_state ecss;
956 struct execution_control_state *ecs;
957
958 if (debug_infrun)
959 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
960
961 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
962 &step_resume_breakpoint);
963
964 /* wfi still stays in a loop, so it's OK just to take the address of
965 a local to get the ecs pointer. */
966 ecs = &ecss;
967
968 /* Fill in with reasonable starting values. */
969 init_execution_control_state (ecs);
970
971 /* We'll update this if & when we switch to a new thread. */
972 previous_inferior_ptid = inferior_ptid;
973
974 overlay_cache_invalid = 1;
975
976 /* We have to invalidate the registers BEFORE calling target_wait
977 because they can be loaded from the target while in target_wait.
978 This makes remote debugging a bit more efficient for those
979 targets that provide critical registers as part of their normal
980 status mechanism. */
981
982 registers_changed ();
983
984 while (1)
985 {
986 if (deprecated_target_wait_hook)
987 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
988 else
989 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
990
991 /* Now figure out what to do with the result of the result. */
992 handle_inferior_event (ecs);
993
994 if (!ecs->wait_some_more)
995 break;
996 }
997 do_cleanups (old_cleanups);
998 }
999
1000 /* Asynchronous version of wait_for_inferior. It is called by the
1001 event loop whenever a change of state is detected on the file
1002 descriptor corresponding to the target. It can be called more than
1003 once to complete a single execution command. In such cases we need
1004 to keep the state in a global variable ASYNC_ECSS. If it is the
1005 last time that this function is called for a single execution
1006 command, then report to the user that the inferior has stopped, and
1007 do the necessary cleanups. */
1008
1009 struct execution_control_state async_ecss;
1010 struct execution_control_state *async_ecs;
1011
1012 void
1013 fetch_inferior_event (void *client_data)
1014 {
1015 static struct cleanup *old_cleanups;
1016
1017 async_ecs = &async_ecss;
1018
1019 if (!async_ecs->wait_some_more)
1020 {
1021 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1022 &step_resume_breakpoint);
1023
1024 /* Fill in with reasonable starting values. */
1025 init_execution_control_state (async_ecs);
1026
1027 /* We'll update this if & when we switch to a new thread. */
1028 previous_inferior_ptid = inferior_ptid;
1029
1030 overlay_cache_invalid = 1;
1031
1032 /* We have to invalidate the registers BEFORE calling target_wait
1033 because they can be loaded from the target while in target_wait.
1034 This makes remote debugging a bit more efficient for those
1035 targets that provide critical registers as part of their normal
1036 status mechanism. */
1037
1038 registers_changed ();
1039 }
1040
1041 if (deprecated_target_wait_hook)
1042 async_ecs->ptid =
1043 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1044 else
1045 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1046
1047 /* Now figure out what to do with the result of the result. */
1048 handle_inferior_event (async_ecs);
1049
1050 if (!async_ecs->wait_some_more)
1051 {
1052 /* Do only the cleanups that have been added by this
1053 function. Let the continuations for the commands do the rest,
1054 if there are any. */
1055 do_exec_cleanups (old_cleanups);
1056 normal_stop ();
1057 if (step_multi && stop_step)
1058 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1059 else
1060 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1061 }
1062 }
1063
1064 /* Prepare an execution control state for looping through a
1065 wait_for_inferior-type loop. */
1066
1067 void
1068 init_execution_control_state (struct execution_control_state *ecs)
1069 {
1070 ecs->another_trap = 0;
1071 ecs->random_signal = 0;
1072 ecs->step_after_step_resume_breakpoint = 0;
1073 ecs->handling_longjmp = 0; /* FIXME */
1074 ecs->stepping_through_solib_after_catch = 0;
1075 ecs->stepping_through_solib_catchpoints = NULL;
1076 ecs->sal = find_pc_line (prev_pc, 0);
1077 ecs->current_line = ecs->sal.line;
1078 ecs->current_symtab = ecs->sal.symtab;
1079 ecs->infwait_state = infwait_normal_state;
1080 ecs->waiton_ptid = pid_to_ptid (-1);
1081 ecs->wp = &(ecs->ws);
1082 }
1083
1084 /* Return the cached copy of the last pid/waitstatus returned by
1085 target_wait()/deprecated_target_wait_hook(). The data is actually
1086 cached by handle_inferior_event(), which gets called immediately
1087 after target_wait()/deprecated_target_wait_hook(). */
1088
1089 void
1090 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1091 {
1092 *ptidp = target_last_wait_ptid;
1093 *status = target_last_waitstatus;
1094 }
1095
1096 void
1097 nullify_last_target_wait_ptid (void)
1098 {
1099 target_last_wait_ptid = minus_one_ptid;
1100 }
1101
1102 /* Switch thread contexts, maintaining "infrun state". */
1103
1104 static void
1105 context_switch (struct execution_control_state *ecs)
1106 {
1107 /* Caution: it may happen that the new thread (or the old one!)
1108 is not in the thread list. In this case we must not attempt
1109 to "switch context", or we run the risk that our context may
1110 be lost. This may happen as a result of the target module
1111 mishandling thread creation. */
1112
1113 if (debug_infrun)
1114 {
1115 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1116 target_pid_to_str (inferior_ptid));
1117 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1118 target_pid_to_str (ecs->ptid));
1119 }
1120
1121 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1122 { /* Perform infrun state context switch: */
1123 /* Save infrun state for the old thread. */
1124 save_infrun_state (inferior_ptid, prev_pc,
1125 trap_expected, step_resume_breakpoint,
1126 step_range_start,
1127 step_range_end, &step_frame_id,
1128 ecs->handling_longjmp, ecs->another_trap,
1129 ecs->stepping_through_solib_after_catch,
1130 ecs->stepping_through_solib_catchpoints,
1131 ecs->current_line, ecs->current_symtab);
1132
1133 /* Load infrun state for the new thread. */
1134 load_infrun_state (ecs->ptid, &prev_pc,
1135 &trap_expected, &step_resume_breakpoint,
1136 &step_range_start,
1137 &step_range_end, &step_frame_id,
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
1141 &ecs->current_line, &ecs->current_symtab);
1142 }
1143
1144 switch_to_thread (ecs->ptid);
1145 }
1146
1147 static void
1148 adjust_pc_after_break (struct execution_control_state *ecs)
1149 {
1150 CORE_ADDR breakpoint_pc;
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
1154 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1161 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1162 implemented by software breakpoints should be handled through the normal
1163 breakpoint layer.
1164
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
1168 gdbarch_decr_pc_after_break. I don't know any specific target that
1169 generates these signals at breakpoints (the code has been in GDB since at
1170 least 1992) so I can not guess how to handle them here.
1171
1172 In earlier versions of GDB, a target with
1173 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1174 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1175 target with both of these set in GDB history, and it seems unlikely to be
1176 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1187 (current_gdbarch);
1188
1189 /* Check whether there actually is a software breakpoint inserted
1190 at that location. */
1191 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1192 {
1193 /* When using hardware single-step, a SIGTRAP is reported for both
1194 a completed single-step and a software breakpoint. Need to
1195 differentiate between the two, as the latter needs adjusting
1196 but the former does not.
1197
1198 The SIGTRAP can be due to a completed hardware single-step only if
1199 - we didn't insert software single-step breakpoints
1200 - the thread to be examined is still the current thread
1201 - this thread is currently being stepped
1202
1203 If any of these events did not occur, we must have stopped due
1204 to hitting a software breakpoint, and have to back up to the
1205 breakpoint address.
1206
1207 As a special case, we could have hardware single-stepped a
1208 software breakpoint. In this case (prev_pc == breakpoint_pc),
1209 we also need to back up to the breakpoint address. */
1210
1211 if (singlestep_breakpoints_inserted_p
1212 || !ptid_equal (ecs->ptid, inferior_ptid)
1213 || !currently_stepping (ecs)
1214 || prev_pc == breakpoint_pc)
1215 write_pc_pid (breakpoint_pc, ecs->ptid);
1216 }
1217 }
1218
1219 /* Given an execution control state that has been freshly filled in
1220 by an event from the inferior, figure out what it means and take
1221 appropriate action. */
1222
1223 int stepped_after_stopped_by_watchpoint;
1224
1225 void
1226 handle_inferior_event (struct execution_control_state *ecs)
1227 {
1228 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1229 that the variable stepped_after_stopped_by_watchpoint isn't used,
1230 then you're wrong! See remote.c:remote_stopped_data_address. */
1231
1232 int sw_single_step_trap_p = 0;
1233 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1234
1235 /* Cache the last pid/waitstatus. */
1236 target_last_wait_ptid = ecs->ptid;
1237 target_last_waitstatus = *ecs->wp;
1238
1239 adjust_pc_after_break (ecs);
1240
1241 switch (ecs->infwait_state)
1242 {
1243 case infwait_thread_hop_state:
1244 if (debug_infrun)
1245 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1246 /* Cancel the waiton_ptid. */
1247 ecs->waiton_ptid = pid_to_ptid (-1);
1248 break;
1249
1250 case infwait_normal_state:
1251 if (debug_infrun)
1252 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1253 stepped_after_stopped_by_watchpoint = 0;
1254 break;
1255
1256 case infwait_nonstep_watch_state:
1257 if (debug_infrun)
1258 fprintf_unfiltered (gdb_stdlog,
1259 "infrun: infwait_nonstep_watch_state\n");
1260 insert_breakpoints ();
1261
1262 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1263 handle things like signals arriving and other things happening
1264 in combination correctly? */
1265 stepped_after_stopped_by_watchpoint = 1;
1266 break;
1267
1268 default:
1269 internal_error (__FILE__, __LINE__, _("bad switch"));
1270 }
1271 ecs->infwait_state = infwait_normal_state;
1272
1273 reinit_frame_cache ();
1274
1275 /* If it's a new process, add it to the thread database */
1276
1277 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1278 && !ptid_equal (ecs->ptid, minus_one_ptid)
1279 && !in_thread_list (ecs->ptid));
1280
1281 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1282 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1283 {
1284 add_thread (ecs->ptid);
1285
1286 ui_out_text (uiout, "[New ");
1287 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1288 ui_out_text (uiout, "]\n");
1289 }
1290
1291 switch (ecs->ws.kind)
1292 {
1293 case TARGET_WAITKIND_LOADED:
1294 if (debug_infrun)
1295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1296 /* Ignore gracefully during startup of the inferior, as it might
1297 be the shell which has just loaded some objects, otherwise
1298 add the symbols for the newly loaded objects. Also ignore at
1299 the beginning of an attach or remote session; we will query
1300 the full list of libraries once the connection is
1301 established. */
1302 if (stop_soon == NO_STOP_QUIETLY)
1303 {
1304 int breakpoints_were_inserted;
1305
1306 /* Remove breakpoints, SOLIB_ADD might adjust
1307 breakpoint addresses via breakpoint_re_set. */
1308 breakpoints_were_inserted = breakpoints_inserted;
1309 if (breakpoints_inserted)
1310 remove_breakpoints ();
1311 breakpoints_inserted = 0;
1312
1313 /* Check for any newly added shared libraries if we're
1314 supposed to be adding them automatically. Switch
1315 terminal for any messages produced by
1316 breakpoint_re_set. */
1317 target_terminal_ours_for_output ();
1318 /* NOTE: cagney/2003-11-25: Make certain that the target
1319 stack's section table is kept up-to-date. Architectures,
1320 (e.g., PPC64), use the section table to perform
1321 operations such as address => section name and hence
1322 require the table to contain all sections (including
1323 those found in shared libraries). */
1324 /* NOTE: cagney/2003-11-25: Pass current_target and not
1325 exec_ops to SOLIB_ADD. This is because current GDB is
1326 only tooled to propagate section_table changes out from
1327 the "current_target" (see target_resize_to_sections), and
1328 not up from the exec stratum. This, of course, isn't
1329 right. "infrun.c" should only interact with the
1330 exec/process stratum, instead relying on the target stack
1331 to propagate relevant changes (stop, section table
1332 changed, ...) up to other layers. */
1333 #ifdef SOLIB_ADD
1334 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1335 #else
1336 solib_add (NULL, 0, &current_target, auto_solib_add);
1337 #endif
1338 target_terminal_inferior ();
1339
1340 /* If requested, stop when the dynamic linker notifies
1341 gdb of events. This allows the user to get control
1342 and place breakpoints in initializer routines for
1343 dynamically loaded objects (among other things). */
1344 if (stop_on_solib_events)
1345 {
1346 stop_stepping (ecs);
1347 return;
1348 }
1349
1350 /* NOTE drow/2007-05-11: This might be a good place to check
1351 for "catch load". */
1352
1353 /* Reinsert breakpoints and continue. */
1354 if (breakpoints_were_inserted)
1355 {
1356 insert_breakpoints ();
1357 breakpoints_inserted = 1;
1358 }
1359 }
1360
1361 /* If we are skipping through a shell, or through shared library
1362 loading that we aren't interested in, resume the program. If
1363 we're running the program normally, also resume. But stop if
1364 we're attaching or setting up a remote connection. */
1365 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1366 {
1367 resume (0, TARGET_SIGNAL_0);
1368 prepare_to_wait (ecs);
1369 return;
1370 }
1371
1372 break;
1373
1374 case TARGET_WAITKIND_SPURIOUS:
1375 if (debug_infrun)
1376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1377 resume (0, TARGET_SIGNAL_0);
1378 prepare_to_wait (ecs);
1379 return;
1380
1381 case TARGET_WAITKIND_EXITED:
1382 if (debug_infrun)
1383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1385 print_stop_reason (EXITED, ecs->ws.value.integer);
1386
1387 /* Record the exit code in the convenience variable $_exitcode, so
1388 that the user can inspect this again later. */
1389 set_internalvar (lookup_internalvar ("_exitcode"),
1390 value_from_longest (builtin_type_int,
1391 (LONGEST) ecs->ws.value.integer));
1392 gdb_flush (gdb_stdout);
1393 target_mourn_inferior ();
1394 singlestep_breakpoints_inserted_p = 0;
1395 stop_print_frame = 0;
1396 stop_stepping (ecs);
1397 return;
1398
1399 case TARGET_WAITKIND_SIGNALLED:
1400 if (debug_infrun)
1401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1402 stop_print_frame = 0;
1403 stop_signal = ecs->ws.value.sig;
1404 target_terminal_ours (); /* Must do this before mourn anyway */
1405
1406 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1407 reach here unless the inferior is dead. However, for years
1408 target_kill() was called here, which hints that fatal signals aren't
1409 really fatal on some systems. If that's true, then some changes
1410 may be needed. */
1411 target_mourn_inferior ();
1412
1413 print_stop_reason (SIGNAL_EXITED, stop_signal);
1414 singlestep_breakpoints_inserted_p = 0;
1415 stop_stepping (ecs);
1416 return;
1417
1418 /* The following are the only cases in which we keep going;
1419 the above cases end in a continue or goto. */
1420 case TARGET_WAITKIND_FORKED:
1421 case TARGET_WAITKIND_VFORKED:
1422 if (debug_infrun)
1423 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1424 stop_signal = TARGET_SIGNAL_TRAP;
1425 pending_follow.kind = ecs->ws.kind;
1426
1427 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1428 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1429
1430 if (!ptid_equal (ecs->ptid, inferior_ptid))
1431 {
1432 context_switch (ecs);
1433 reinit_frame_cache ();
1434 }
1435
1436 stop_pc = read_pc ();
1437
1438 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1439
1440 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1441
1442 /* If no catchpoint triggered for this, then keep going. */
1443 if (ecs->random_signal)
1444 {
1445 stop_signal = TARGET_SIGNAL_0;
1446 keep_going (ecs);
1447 return;
1448 }
1449 goto process_event_stop_test;
1450
1451 case TARGET_WAITKIND_EXECD:
1452 if (debug_infrun)
1453 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1454 stop_signal = TARGET_SIGNAL_TRAP;
1455
1456 /* NOTE drow/2002-12-05: This code should be pushed down into the
1457 target_wait function. Until then following vfork on HP/UX 10.20
1458 is probably broken by this. Of course, it's broken anyway. */
1459 /* Is this a target which reports multiple exec events per actual
1460 call to exec()? (HP-UX using ptrace does, for example.) If so,
1461 ignore all but the last one. Just resume the exec'r, and wait
1462 for the next exec event. */
1463 if (inferior_ignoring_leading_exec_events)
1464 {
1465 inferior_ignoring_leading_exec_events--;
1466 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1467 prepare_to_wait (ecs);
1468 return;
1469 }
1470 inferior_ignoring_leading_exec_events =
1471 target_reported_exec_events_per_exec_call () - 1;
1472
1473 pending_follow.execd_pathname =
1474 savestring (ecs->ws.value.execd_pathname,
1475 strlen (ecs->ws.value.execd_pathname));
1476
1477 /* This causes the eventpoints and symbol table to be reset. Must
1478 do this now, before trying to determine whether to stop. */
1479 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1480 xfree (pending_follow.execd_pathname);
1481
1482 stop_pc = read_pc_pid (ecs->ptid);
1483 ecs->saved_inferior_ptid = inferior_ptid;
1484 inferior_ptid = ecs->ptid;
1485
1486 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1487
1488 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1489 inferior_ptid = ecs->saved_inferior_ptid;
1490
1491 if (!ptid_equal (ecs->ptid, inferior_ptid))
1492 {
1493 context_switch (ecs);
1494 reinit_frame_cache ();
1495 }
1496
1497 /* If no catchpoint triggered for this, then keep going. */
1498 if (ecs->random_signal)
1499 {
1500 stop_signal = TARGET_SIGNAL_0;
1501 keep_going (ecs);
1502 return;
1503 }
1504 goto process_event_stop_test;
1505
1506 /* Be careful not to try to gather much state about a thread
1507 that's in a syscall. It's frequently a losing proposition. */
1508 case TARGET_WAITKIND_SYSCALL_ENTRY:
1509 if (debug_infrun)
1510 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1511 resume (0, TARGET_SIGNAL_0);
1512 prepare_to_wait (ecs);
1513 return;
1514
1515 /* Before examining the threads further, step this thread to
1516 get it entirely out of the syscall. (We get notice of the
1517 event when the thread is just on the verge of exiting a
1518 syscall. Stepping one instruction seems to get it back
1519 into user code.) */
1520 case TARGET_WAITKIND_SYSCALL_RETURN:
1521 if (debug_infrun)
1522 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1523 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1524 prepare_to_wait (ecs);
1525 return;
1526
1527 case TARGET_WAITKIND_STOPPED:
1528 if (debug_infrun)
1529 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1530 stop_signal = ecs->ws.value.sig;
1531 break;
1532
1533 /* We had an event in the inferior, but we are not interested
1534 in handling it at this level. The lower layers have already
1535 done what needs to be done, if anything.
1536
1537 One of the possible circumstances for this is when the
1538 inferior produces output for the console. The inferior has
1539 not stopped, and we are ignoring the event. Another possible
1540 circumstance is any event which the lower level knows will be
1541 reported multiple times without an intervening resume. */
1542 case TARGET_WAITKIND_IGNORE:
1543 if (debug_infrun)
1544 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1545 prepare_to_wait (ecs);
1546 return;
1547 }
1548
1549 /* We may want to consider not doing a resume here in order to give
1550 the user a chance to play with the new thread. It might be good
1551 to make that a user-settable option. */
1552
1553 /* At this point, all threads are stopped (happens automatically in
1554 either the OS or the native code). Therefore we need to continue
1555 all threads in order to make progress. */
1556 if (ecs->new_thread_event)
1557 {
1558 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1559 prepare_to_wait (ecs);
1560 return;
1561 }
1562
1563 stop_pc = read_pc_pid (ecs->ptid);
1564
1565 if (debug_infrun)
1566 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1567
1568 if (stepping_past_singlestep_breakpoint)
1569 {
1570 gdb_assert (singlestep_breakpoints_inserted_p);
1571 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1572 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1573
1574 stepping_past_singlestep_breakpoint = 0;
1575
1576 /* We've either finished single-stepping past the single-step
1577 breakpoint, or stopped for some other reason. It would be nice if
1578 we could tell, but we can't reliably. */
1579 if (stop_signal == TARGET_SIGNAL_TRAP)
1580 {
1581 if (debug_infrun)
1582 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1583 /* Pull the single step breakpoints out of the target. */
1584 remove_single_step_breakpoints ();
1585 singlestep_breakpoints_inserted_p = 0;
1586
1587 ecs->random_signal = 0;
1588
1589 ecs->ptid = saved_singlestep_ptid;
1590 context_switch (ecs);
1591 if (deprecated_context_hook)
1592 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1593
1594 resume (1, TARGET_SIGNAL_0);
1595 prepare_to_wait (ecs);
1596 return;
1597 }
1598 }
1599
1600 stepping_past_singlestep_breakpoint = 0;
1601
1602 if (stepping_past_breakpoint)
1603 {
1604 stepping_past_breakpoint = 0;
1605
1606 /* If we stopped for some other reason than single-stepping, ignore
1607 the fact that we were supposed to switch back. */
1608 if (stop_signal == TARGET_SIGNAL_TRAP)
1609 {
1610 if (debug_infrun)
1611 fprintf_unfiltered (gdb_stdlog,
1612 "infrun: stepping_past_breakpoint\n");
1613
1614 /* Pull the single step breakpoints out of the target. */
1615 if (singlestep_breakpoints_inserted_p)
1616 {
1617 remove_single_step_breakpoints ();
1618 singlestep_breakpoints_inserted_p = 0;
1619 }
1620
1621 /* Note: We do not call context_switch at this point, as the
1622 context is already set up for stepping the original thread. */
1623 switch_to_thread (stepping_past_breakpoint_ptid);
1624 /* Suppress spurious "Switching to ..." message. */
1625 previous_inferior_ptid = inferior_ptid;
1626
1627 resume (1, TARGET_SIGNAL_0);
1628 prepare_to_wait (ecs);
1629 return;
1630 }
1631 }
1632
1633 /* See if a thread hit a thread-specific breakpoint that was meant for
1634 another thread. If so, then step that thread past the breakpoint,
1635 and continue it. */
1636
1637 if (stop_signal == TARGET_SIGNAL_TRAP)
1638 {
1639 int thread_hop_needed = 0;
1640
1641 /* Check if a regular breakpoint has been hit before checking
1642 for a potential single step breakpoint. Otherwise, GDB will
1643 not see this breakpoint hit when stepping onto breakpoints. */
1644 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1645 {
1646 ecs->random_signal = 0;
1647 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1648 thread_hop_needed = 1;
1649 }
1650 else if (singlestep_breakpoints_inserted_p)
1651 {
1652 /* We have not context switched yet, so this should be true
1653 no matter which thread hit the singlestep breakpoint. */
1654 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1655 if (debug_infrun)
1656 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1657 "trap for %s\n",
1658 target_pid_to_str (ecs->ptid));
1659
1660 ecs->random_signal = 0;
1661 /* The call to in_thread_list is necessary because PTIDs sometimes
1662 change when we go from single-threaded to multi-threaded. If
1663 the singlestep_ptid is still in the list, assume that it is
1664 really different from ecs->ptid. */
1665 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1666 && in_thread_list (singlestep_ptid))
1667 {
1668 /* If the PC of the thread we were trying to single-step
1669 has changed, discard this event (which we were going
1670 to ignore anyway), and pretend we saw that thread
1671 trap. This prevents us continuously moving the
1672 single-step breakpoint forward, one instruction at a
1673 time. If the PC has changed, then the thread we were
1674 trying to single-step has trapped or been signalled,
1675 but the event has not been reported to GDB yet.
1676
1677 There might be some cases where this loses signal
1678 information, if a signal has arrived at exactly the
1679 same time that the PC changed, but this is the best
1680 we can do with the information available. Perhaps we
1681 should arrange to report all events for all threads
1682 when they stop, or to re-poll the remote looking for
1683 this particular thread (i.e. temporarily enable
1684 schedlock). */
1685 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1686 {
1687 if (debug_infrun)
1688 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1689 " but expected thread advanced also\n");
1690
1691 /* The current context still belongs to
1692 singlestep_ptid. Don't swap here, since that's
1693 the context we want to use. Just fudge our
1694 state and continue. */
1695 ecs->ptid = singlestep_ptid;
1696 stop_pc = read_pc_pid (ecs->ptid);
1697 }
1698 else
1699 {
1700 if (debug_infrun)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "infrun: unexpected thread\n");
1703
1704 thread_hop_needed = 1;
1705 stepping_past_singlestep_breakpoint = 1;
1706 saved_singlestep_ptid = singlestep_ptid;
1707 }
1708 }
1709 }
1710
1711 if (thread_hop_needed)
1712 {
1713 int remove_status;
1714
1715 if (debug_infrun)
1716 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1717
1718 /* Saw a breakpoint, but it was hit by the wrong thread.
1719 Just continue. */
1720
1721 if (singlestep_breakpoints_inserted_p)
1722 {
1723 /* Pull the single step breakpoints out of the target. */
1724 remove_single_step_breakpoints ();
1725 singlestep_breakpoints_inserted_p = 0;
1726 }
1727
1728 remove_status = remove_breakpoints ();
1729 /* Did we fail to remove breakpoints? If so, try
1730 to set the PC past the bp. (There's at least
1731 one situation in which we can fail to remove
1732 the bp's: On HP-UX's that use ttrace, we can't
1733 change the address space of a vforking child
1734 process until the child exits (well, okay, not
1735 then either :-) or execs. */
1736 if (remove_status != 0)
1737 {
1738 /* FIXME! This is obviously non-portable! */
1739 write_pc_pid (stop_pc + 4, ecs->ptid);
1740 /* We need to restart all the threads now,
1741 * unles we're running in scheduler-locked mode.
1742 * Use currently_stepping to determine whether to
1743 * step or continue.
1744 */
1745 /* FIXME MVS: is there any reason not to call resume()? */
1746 if (scheduler_mode == schedlock_on)
1747 target_resume (ecs->ptid,
1748 currently_stepping (ecs), TARGET_SIGNAL_0);
1749 else
1750 target_resume (RESUME_ALL,
1751 currently_stepping (ecs), TARGET_SIGNAL_0);
1752 prepare_to_wait (ecs);
1753 return;
1754 }
1755 else
1756 { /* Single step */
1757 breakpoints_inserted = 0;
1758 if (!ptid_equal (inferior_ptid, ecs->ptid))
1759 context_switch (ecs);
1760 ecs->waiton_ptid = ecs->ptid;
1761 ecs->wp = &(ecs->ws);
1762 ecs->another_trap = 1;
1763
1764 ecs->infwait_state = infwait_thread_hop_state;
1765 keep_going (ecs);
1766 registers_changed ();
1767 return;
1768 }
1769 }
1770 else if (singlestep_breakpoints_inserted_p)
1771 {
1772 sw_single_step_trap_p = 1;
1773 ecs->random_signal = 0;
1774 }
1775 }
1776 else
1777 ecs->random_signal = 1;
1778
1779 /* See if something interesting happened to the non-current thread. If
1780 so, then switch to that thread. */
1781 if (!ptid_equal (ecs->ptid, inferior_ptid))
1782 {
1783 if (debug_infrun)
1784 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1785
1786 context_switch (ecs);
1787
1788 if (deprecated_context_hook)
1789 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1790 }
1791
1792 if (singlestep_breakpoints_inserted_p)
1793 {
1794 /* Pull the single step breakpoints out of the target. */
1795 remove_single_step_breakpoints ();
1796 singlestep_breakpoints_inserted_p = 0;
1797 }
1798
1799 /* It may not be necessary to disable the watchpoint to stop over
1800 it. For example, the PA can (with some kernel cooperation)
1801 single step over a watchpoint without disabling the watchpoint. */
1802 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1803 {
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1806 resume (1, 0);
1807 prepare_to_wait (ecs);
1808 return;
1809 }
1810
1811 /* It is far more common to need to disable a watchpoint to step
1812 the inferior over it. FIXME. What else might a debug
1813 register or page protection watchpoint scheme need here? */
1814 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1815 && STOPPED_BY_WATCHPOINT (ecs->ws))
1816 {
1817 /* At this point, we are stopped at an instruction which has
1818 attempted to write to a piece of memory under control of
1819 a watchpoint. The instruction hasn't actually executed
1820 yet. If we were to evaluate the watchpoint expression
1821 now, we would get the old value, and therefore no change
1822 would seem to have occurred.
1823
1824 In order to make watchpoints work `right', we really need
1825 to complete the memory write, and then evaluate the
1826 watchpoint expression. The following code does that by
1827 removing the watchpoint (actually, all watchpoints and
1828 breakpoints), single-stepping the target, re-inserting
1829 watchpoints, and then falling through to let normal
1830 single-step processing handle proceed. Since this
1831 includes evaluating watchpoints, things will come to a
1832 stop in the correct manner. */
1833
1834 if (debug_infrun)
1835 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1836 remove_breakpoints ();
1837 registers_changed ();
1838 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1839
1840 ecs->waiton_ptid = ecs->ptid;
1841 ecs->wp = &(ecs->ws);
1842 ecs->infwait_state = infwait_nonstep_watch_state;
1843 prepare_to_wait (ecs);
1844 return;
1845 }
1846
1847 /* It may be possible to simply continue after a watchpoint. */
1848 if (HAVE_CONTINUABLE_WATCHPOINT)
1849 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1850
1851 ecs->stop_func_start = 0;
1852 ecs->stop_func_end = 0;
1853 ecs->stop_func_name = 0;
1854 /* Don't care about return value; stop_func_start and stop_func_name
1855 will both be 0 if it doesn't work. */
1856 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1857 &ecs->stop_func_start, &ecs->stop_func_end);
1858 ecs->stop_func_start
1859 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1860 ecs->another_trap = 0;
1861 bpstat_clear (&stop_bpstat);
1862 stop_step = 0;
1863 stop_stack_dummy = 0;
1864 stop_print_frame = 1;
1865 ecs->random_signal = 0;
1866 stopped_by_random_signal = 0;
1867
1868 if (stop_signal == TARGET_SIGNAL_TRAP
1869 && trap_expected
1870 && gdbarch_single_step_through_delay_p (current_gdbarch)
1871 && currently_stepping (ecs))
1872 {
1873 /* We're trying to step of a breakpoint. Turns out that we're
1874 also on an instruction that needs to be stepped multiple
1875 times before it's been fully executing. E.g., architectures
1876 with a delay slot. It needs to be stepped twice, once for
1877 the instruction and once for the delay slot. */
1878 int step_through_delay
1879 = gdbarch_single_step_through_delay (current_gdbarch,
1880 get_current_frame ());
1881 if (debug_infrun && step_through_delay)
1882 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1883 if (step_range_end == 0 && step_through_delay)
1884 {
1885 /* The user issued a continue when stopped at a breakpoint.
1886 Set up for another trap and get out of here. */
1887 ecs->another_trap = 1;
1888 keep_going (ecs);
1889 return;
1890 }
1891 else if (step_through_delay)
1892 {
1893 /* The user issued a step when stopped at a breakpoint.
1894 Maybe we should stop, maybe we should not - the delay
1895 slot *might* correspond to a line of source. In any
1896 case, don't decide that here, just set ecs->another_trap,
1897 making sure we single-step again before breakpoints are
1898 re-inserted. */
1899 ecs->another_trap = 1;
1900 }
1901 }
1902
1903 /* Look at the cause of the stop, and decide what to do.
1904 The alternatives are:
1905 1) break; to really stop and return to the debugger,
1906 2) drop through to start up again
1907 (set ecs->another_trap to 1 to single step once)
1908 3) set ecs->random_signal to 1, and the decision between 1 and 2
1909 will be made according to the signal handling tables. */
1910
1911 /* First, distinguish signals caused by the debugger from signals
1912 that have to do with the program's own actions. Note that
1913 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1914 on the operating system version. Here we detect when a SIGILL or
1915 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1916 something similar for SIGSEGV, since a SIGSEGV will be generated
1917 when we're trying to execute a breakpoint instruction on a
1918 non-executable stack. This happens for call dummy breakpoints
1919 for architectures like SPARC that place call dummies on the
1920 stack. */
1921
1922 if (stop_signal == TARGET_SIGNAL_TRAP
1923 || (breakpoints_inserted
1924 && (stop_signal == TARGET_SIGNAL_ILL
1925 || stop_signal == TARGET_SIGNAL_SEGV
1926 || stop_signal == TARGET_SIGNAL_EMT))
1927 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1928 || stop_soon == STOP_QUIETLY_REMOTE)
1929 {
1930 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1931 {
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1934 stop_print_frame = 0;
1935 stop_stepping (ecs);
1936 return;
1937 }
1938
1939 /* This is originated from start_remote(), start_inferior() and
1940 shared libraries hook functions. */
1941 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1942 {
1943 if (debug_infrun)
1944 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1945 stop_stepping (ecs);
1946 return;
1947 }
1948
1949 /* This originates from attach_command(). We need to overwrite
1950 the stop_signal here, because some kernels don't ignore a
1951 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1952 See more comments in inferior.h. */
1953 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1954 {
1955 stop_stepping (ecs);
1956 if (stop_signal == TARGET_SIGNAL_STOP)
1957 stop_signal = TARGET_SIGNAL_0;
1958 return;
1959 }
1960
1961 /* Don't even think about breakpoints if just proceeded over a
1962 breakpoint. */
1963 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1964 {
1965 if (debug_infrun)
1966 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1967 bpstat_clear (&stop_bpstat);
1968 }
1969 else
1970 {
1971 /* See if there is a breakpoint at the current PC. */
1972 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1973 stopped_by_watchpoint);
1974
1975 /* Following in case break condition called a
1976 function. */
1977 stop_print_frame = 1;
1978 }
1979
1980 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1981 at one stage in the past included checks for an inferior
1982 function call's call dummy's return breakpoint. The original
1983 comment, that went with the test, read:
1984
1985 ``End of a stack dummy. Some systems (e.g. Sony news) give
1986 another signal besides SIGTRAP, so check here as well as
1987 above.''
1988
1989 If someone ever tries to get get call dummys on a
1990 non-executable stack to work (where the target would stop
1991 with something like a SIGSEGV), then those tests might need
1992 to be re-instated. Given, however, that the tests were only
1993 enabled when momentary breakpoints were not being used, I
1994 suspect that it won't be the case.
1995
1996 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1997 be necessary for call dummies on a non-executable stack on
1998 SPARC. */
1999
2000 if (stop_signal == TARGET_SIGNAL_TRAP)
2001 ecs->random_signal
2002 = !(bpstat_explains_signal (stop_bpstat)
2003 || trap_expected
2004 || (step_range_end && step_resume_breakpoint == NULL));
2005 else
2006 {
2007 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2008 if (!ecs->random_signal)
2009 stop_signal = TARGET_SIGNAL_TRAP;
2010 }
2011 }
2012
2013 /* When we reach this point, we've pretty much decided
2014 that the reason for stopping must've been a random
2015 (unexpected) signal. */
2016
2017 else
2018 ecs->random_signal = 1;
2019
2020 process_event_stop_test:
2021 /* For the program's own signals, act according to
2022 the signal handling tables. */
2023
2024 if (ecs->random_signal)
2025 {
2026 /* Signal not for debugging purposes. */
2027 int printed = 0;
2028
2029 if (debug_infrun)
2030 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2031
2032 stopped_by_random_signal = 1;
2033
2034 if (signal_print[stop_signal])
2035 {
2036 printed = 1;
2037 target_terminal_ours_for_output ();
2038 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2039 }
2040 if (signal_stop[stop_signal])
2041 {
2042 stop_stepping (ecs);
2043 return;
2044 }
2045 /* If not going to stop, give terminal back
2046 if we took it away. */
2047 else if (printed)
2048 target_terminal_inferior ();
2049
2050 /* Clear the signal if it should not be passed. */
2051 if (signal_program[stop_signal] == 0)
2052 stop_signal = TARGET_SIGNAL_0;
2053
2054 if (prev_pc == read_pc ()
2055 && !breakpoints_inserted
2056 && breakpoint_here_p (read_pc ())
2057 && step_resume_breakpoint == NULL)
2058 {
2059 /* We were just starting a new sequence, attempting to
2060 single-step off of a breakpoint and expecting a SIGTRAP.
2061 Intead this signal arrives. This signal will take us out
2062 of the stepping range so GDB needs to remember to, when
2063 the signal handler returns, resume stepping off that
2064 breakpoint. */
2065 /* To simplify things, "continue" is forced to use the same
2066 code paths as single-step - set a breakpoint at the
2067 signal return address and then, once hit, step off that
2068 breakpoint. */
2069
2070 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2071 ecs->step_after_step_resume_breakpoint = 1;
2072 keep_going (ecs);
2073 return;
2074 }
2075
2076 if (step_range_end != 0
2077 && stop_signal != TARGET_SIGNAL_0
2078 && stop_pc >= step_range_start && stop_pc < step_range_end
2079 && frame_id_eq (get_frame_id (get_current_frame ()),
2080 step_frame_id)
2081 && step_resume_breakpoint == NULL)
2082 {
2083 /* The inferior is about to take a signal that will take it
2084 out of the single step range. Set a breakpoint at the
2085 current PC (which is presumably where the signal handler
2086 will eventually return) and then allow the inferior to
2087 run free.
2088
2089 Note that this is only needed for a signal delivered
2090 while in the single-step range. Nested signals aren't a
2091 problem as they eventually all return. */
2092 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2093 keep_going (ecs);
2094 return;
2095 }
2096
2097 /* Note: step_resume_breakpoint may be non-NULL. This occures
2098 when either there's a nested signal, or when there's a
2099 pending signal enabled just as the signal handler returns
2100 (leaving the inferior at the step-resume-breakpoint without
2101 actually executing it). Either way continue until the
2102 breakpoint is really hit. */
2103 keep_going (ecs);
2104 return;
2105 }
2106
2107 /* Handle cases caused by hitting a breakpoint. */
2108 {
2109 CORE_ADDR jmp_buf_pc;
2110 struct bpstat_what what;
2111
2112 what = bpstat_what (stop_bpstat);
2113
2114 if (what.call_dummy)
2115 {
2116 stop_stack_dummy = 1;
2117 }
2118
2119 switch (what.main_action)
2120 {
2121 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2122 /* If we hit the breakpoint at longjmp, disable it for the
2123 duration of this command. Then, install a temporary
2124 breakpoint at the target of the jmp_buf. */
2125 if (debug_infrun)
2126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2127 disable_longjmp_breakpoint ();
2128 remove_breakpoints ();
2129 breakpoints_inserted = 0;
2130 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2131 || !gdbarch_get_longjmp_target (current_gdbarch,
2132 get_current_frame (), &jmp_buf_pc))
2133 {
2134 keep_going (ecs);
2135 return;
2136 }
2137
2138 /* Need to blow away step-resume breakpoint, as it
2139 interferes with us */
2140 if (step_resume_breakpoint != NULL)
2141 {
2142 delete_step_resume_breakpoint (&step_resume_breakpoint);
2143 }
2144
2145 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2146 ecs->handling_longjmp = 1; /* FIXME */
2147 keep_going (ecs);
2148 return;
2149
2150 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2151 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2154 remove_breakpoints ();
2155 breakpoints_inserted = 0;
2156 disable_longjmp_breakpoint ();
2157 ecs->handling_longjmp = 0; /* FIXME */
2158 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2159 break;
2160 /* else fallthrough */
2161
2162 case BPSTAT_WHAT_SINGLE:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2165 if (breakpoints_inserted)
2166 remove_breakpoints ();
2167 breakpoints_inserted = 0;
2168 ecs->another_trap = 1;
2169 /* Still need to check other stuff, at least the case
2170 where we are stepping and step out of the right range. */
2171 break;
2172
2173 case BPSTAT_WHAT_STOP_NOISY:
2174 if (debug_infrun)
2175 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2176 stop_print_frame = 1;
2177
2178 /* We are about to nuke the step_resume_breakpointt via the
2179 cleanup chain, so no need to worry about it here. */
2180
2181 stop_stepping (ecs);
2182 return;
2183
2184 case BPSTAT_WHAT_STOP_SILENT:
2185 if (debug_infrun)
2186 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2187 stop_print_frame = 0;
2188
2189 /* We are about to nuke the step_resume_breakpoin via the
2190 cleanup chain, so no need to worry about it here. */
2191
2192 stop_stepping (ecs);
2193 return;
2194
2195 case BPSTAT_WHAT_STEP_RESUME:
2196 /* This proably demands a more elegant solution, but, yeah
2197 right...
2198
2199 This function's use of the simple variable
2200 step_resume_breakpoint doesn't seem to accomodate
2201 simultaneously active step-resume bp's, although the
2202 breakpoint list certainly can.
2203
2204 If we reach here and step_resume_breakpoint is already
2205 NULL, then apparently we have multiple active
2206 step-resume bp's. We'll just delete the breakpoint we
2207 stopped at, and carry on.
2208
2209 Correction: what the code currently does is delete a
2210 step-resume bp, but it makes no effort to ensure that
2211 the one deleted is the one currently stopped at. MVS */
2212
2213 if (debug_infrun)
2214 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2215
2216 if (step_resume_breakpoint == NULL)
2217 {
2218 step_resume_breakpoint =
2219 bpstat_find_step_resume_breakpoint (stop_bpstat);
2220 }
2221 delete_step_resume_breakpoint (&step_resume_breakpoint);
2222 if (ecs->step_after_step_resume_breakpoint)
2223 {
2224 /* Back when the step-resume breakpoint was inserted, we
2225 were trying to single-step off a breakpoint. Go back
2226 to doing that. */
2227 ecs->step_after_step_resume_breakpoint = 0;
2228 remove_breakpoints ();
2229 breakpoints_inserted = 0;
2230 ecs->another_trap = 1;
2231 keep_going (ecs);
2232 return;
2233 }
2234 break;
2235
2236 case BPSTAT_WHAT_CHECK_SHLIBS:
2237 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2238 {
2239 if (debug_infrun)
2240 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2241 /* Remove breakpoints, we eventually want to step over the
2242 shlib event breakpoint, and SOLIB_ADD might adjust
2243 breakpoint addresses via breakpoint_re_set. */
2244 if (breakpoints_inserted)
2245 remove_breakpoints ();
2246 breakpoints_inserted = 0;
2247
2248 /* Check for any newly added shared libraries if we're
2249 supposed to be adding them automatically. Switch
2250 terminal for any messages produced by
2251 breakpoint_re_set. */
2252 target_terminal_ours_for_output ();
2253 /* NOTE: cagney/2003-11-25: Make certain that the target
2254 stack's section table is kept up-to-date. Architectures,
2255 (e.g., PPC64), use the section table to perform
2256 operations such as address => section name and hence
2257 require the table to contain all sections (including
2258 those found in shared libraries). */
2259 /* NOTE: cagney/2003-11-25: Pass current_target and not
2260 exec_ops to SOLIB_ADD. This is because current GDB is
2261 only tooled to propagate section_table changes out from
2262 the "current_target" (see target_resize_to_sections), and
2263 not up from the exec stratum. This, of course, isn't
2264 right. "infrun.c" should only interact with the
2265 exec/process stratum, instead relying on the target stack
2266 to propagate relevant changes (stop, section table
2267 changed, ...) up to other layers. */
2268 #ifdef SOLIB_ADD
2269 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2270 #else
2271 solib_add (NULL, 0, &current_target, auto_solib_add);
2272 #endif
2273 target_terminal_inferior ();
2274
2275 /* If requested, stop when the dynamic linker notifies
2276 gdb of events. This allows the user to get control
2277 and place breakpoints in initializer routines for
2278 dynamically loaded objects (among other things). */
2279 if (stop_on_solib_events || stop_stack_dummy)
2280 {
2281 stop_stepping (ecs);
2282 return;
2283 }
2284
2285 /* If we stopped due to an explicit catchpoint, then the
2286 (see above) call to SOLIB_ADD pulled in any symbols
2287 from a newly-loaded library, if appropriate.
2288
2289 We do want the inferior to stop, but not where it is
2290 now, which is in the dynamic linker callback. Rather,
2291 we would like it stop in the user's program, just after
2292 the call that caused this catchpoint to trigger. That
2293 gives the user a more useful vantage from which to
2294 examine their program's state. */
2295 else if (what.main_action
2296 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2297 {
2298 /* ??rehrauer: If I could figure out how to get the
2299 right return PC from here, we could just set a temp
2300 breakpoint and resume. I'm not sure we can without
2301 cracking open the dld's shared libraries and sniffing
2302 their unwind tables and text/data ranges, and that's
2303 not a terribly portable notion.
2304
2305 Until that time, we must step the inferior out of the
2306 dld callback, and also out of the dld itself (and any
2307 code or stubs in libdld.sl, such as "shl_load" and
2308 friends) until we reach non-dld code. At that point,
2309 we can stop stepping. */
2310 bpstat_get_triggered_catchpoints (stop_bpstat,
2311 &ecs->
2312 stepping_through_solib_catchpoints);
2313 ecs->stepping_through_solib_after_catch = 1;
2314
2315 /* Be sure to lift all breakpoints, so the inferior does
2316 actually step past this point... */
2317 ecs->another_trap = 1;
2318 break;
2319 }
2320 else
2321 {
2322 /* We want to step over this breakpoint, then keep going. */
2323 ecs->another_trap = 1;
2324 break;
2325 }
2326 }
2327 break;
2328
2329 case BPSTAT_WHAT_LAST:
2330 /* Not a real code, but listed here to shut up gcc -Wall. */
2331
2332 case BPSTAT_WHAT_KEEP_CHECKING:
2333 break;
2334 }
2335 }
2336
2337 /* We come here if we hit a breakpoint but should not
2338 stop for it. Possibly we also were stepping
2339 and should stop for that. So fall through and
2340 test for stepping. But, if not stepping,
2341 do not stop. */
2342
2343 /* Are we stepping to get the inferior out of the dynamic linker's
2344 hook (and possibly the dld itself) after catching a shlib
2345 event? */
2346 if (ecs->stepping_through_solib_after_catch)
2347 {
2348 #if defined(SOLIB_ADD)
2349 /* Have we reached our destination? If not, keep going. */
2350 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2351 {
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2354 ecs->another_trap = 1;
2355 keep_going (ecs);
2356 return;
2357 }
2358 #endif
2359 if (debug_infrun)
2360 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2361 /* Else, stop and report the catchpoint(s) whose triggering
2362 caused us to begin stepping. */
2363 ecs->stepping_through_solib_after_catch = 0;
2364 bpstat_clear (&stop_bpstat);
2365 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2366 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2367 stop_print_frame = 1;
2368 stop_stepping (ecs);
2369 return;
2370 }
2371
2372 if (step_resume_breakpoint)
2373 {
2374 if (debug_infrun)
2375 fprintf_unfiltered (gdb_stdlog,
2376 "infrun: step-resume breakpoint is inserted\n");
2377
2378 /* Having a step-resume breakpoint overrides anything
2379 else having to do with stepping commands until
2380 that breakpoint is reached. */
2381 keep_going (ecs);
2382 return;
2383 }
2384
2385 if (step_range_end == 0)
2386 {
2387 if (debug_infrun)
2388 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2389 /* Likewise if we aren't even stepping. */
2390 keep_going (ecs);
2391 return;
2392 }
2393
2394 /* If stepping through a line, keep going if still within it.
2395
2396 Note that step_range_end is the address of the first instruction
2397 beyond the step range, and NOT the address of the last instruction
2398 within it! */
2399 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2400 {
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2403 paddr_nz (step_range_start),
2404 paddr_nz (step_range_end));
2405 keep_going (ecs);
2406 return;
2407 }
2408
2409 /* We stepped out of the stepping range. */
2410
2411 /* If we are stepping at the source level and entered the runtime
2412 loader dynamic symbol resolution code, we keep on single stepping
2413 until we exit the run time loader code and reach the callee's
2414 address. */
2415 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2416 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2417 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2418 #else
2419 && in_solib_dynsym_resolve_code (stop_pc)
2420 #endif
2421 )
2422 {
2423 CORE_ADDR pc_after_resolver =
2424 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2425
2426 if (debug_infrun)
2427 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2428
2429 if (pc_after_resolver)
2430 {
2431 /* Set up a step-resume breakpoint at the address
2432 indicated by SKIP_SOLIB_RESOLVER. */
2433 struct symtab_and_line sr_sal;
2434 init_sal (&sr_sal);
2435 sr_sal.pc = pc_after_resolver;
2436
2437 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2438 }
2439
2440 keep_going (ecs);
2441 return;
2442 }
2443
2444 if (step_range_end != 1
2445 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2446 || step_over_calls == STEP_OVER_ALL)
2447 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2448 {
2449 if (debug_infrun)
2450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2451 /* The inferior, while doing a "step" or "next", has ended up in
2452 a signal trampoline (either by a signal being delivered or by
2453 the signal handler returning). Just single-step until the
2454 inferior leaves the trampoline (either by calling the handler
2455 or returning). */
2456 keep_going (ecs);
2457 return;
2458 }
2459
2460 /* Check for subroutine calls. The check for the current frame
2461 equalling the step ID is not necessary - the check of the
2462 previous frame's ID is sufficient - but it is a common case and
2463 cheaper than checking the previous frame's ID.
2464
2465 NOTE: frame_id_eq will never report two invalid frame IDs as
2466 being equal, so to get into this block, both the current and
2467 previous frame must have valid frame IDs. */
2468 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2469 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2470 {
2471 CORE_ADDR real_stop_pc;
2472
2473 if (debug_infrun)
2474 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2475
2476 if ((step_over_calls == STEP_OVER_NONE)
2477 || ((step_range_end == 1)
2478 && in_prologue (prev_pc, ecs->stop_func_start)))
2479 {
2480 /* I presume that step_over_calls is only 0 when we're
2481 supposed to be stepping at the assembly language level
2482 ("stepi"). Just stop. */
2483 /* Also, maybe we just did a "nexti" inside a prolog, so we
2484 thought it was a subroutine call but it was not. Stop as
2485 well. FENN */
2486 stop_step = 1;
2487 print_stop_reason (END_STEPPING_RANGE, 0);
2488 stop_stepping (ecs);
2489 return;
2490 }
2491
2492 if (step_over_calls == STEP_OVER_ALL)
2493 {
2494 /* We're doing a "next", set a breakpoint at callee's return
2495 address (the address at which the caller will
2496 resume). */
2497 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2498 keep_going (ecs);
2499 return;
2500 }
2501
2502 /* If we are in a function call trampoline (a stub between the
2503 calling routine and the real function), locate the real
2504 function. That's what tells us (a) whether we want to step
2505 into it at all, and (b) what prologue we want to run to the
2506 end of, if we do step into it. */
2507 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2508 if (real_stop_pc == 0)
2509 real_stop_pc = gdbarch_skip_trampoline_code
2510 (current_gdbarch, get_current_frame (), stop_pc);
2511 if (real_stop_pc != 0)
2512 ecs->stop_func_start = real_stop_pc;
2513
2514 if (
2515 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2516 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2517 #else
2518 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2519 #endif
2520 )
2521 {
2522 struct symtab_and_line sr_sal;
2523 init_sal (&sr_sal);
2524 sr_sal.pc = ecs->stop_func_start;
2525
2526 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2527 keep_going (ecs);
2528 return;
2529 }
2530
2531 /* If we have line number information for the function we are
2532 thinking of stepping into, step into it.
2533
2534 If there are several symtabs at that PC (e.g. with include
2535 files), just want to know whether *any* of them have line
2536 numbers. find_pc_line handles this. */
2537 {
2538 struct symtab_and_line tmp_sal;
2539
2540 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2541 if (tmp_sal.line != 0)
2542 {
2543 step_into_function (ecs);
2544 return;
2545 }
2546 }
2547
2548 /* If we have no line number and the step-stop-if-no-debug is
2549 set, we stop the step so that the user has a chance to switch
2550 in assembly mode. */
2551 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2552 {
2553 stop_step = 1;
2554 print_stop_reason (END_STEPPING_RANGE, 0);
2555 stop_stepping (ecs);
2556 return;
2557 }
2558
2559 /* Set a breakpoint at callee's return address (the address at
2560 which the caller will resume). */
2561 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2562 keep_going (ecs);
2563 return;
2564 }
2565
2566 /* If we're in the return path from a shared library trampoline,
2567 we want to proceed through the trampoline when stepping. */
2568 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2569 stop_pc, ecs->stop_func_name))
2570 {
2571 /* Determine where this trampoline returns. */
2572 CORE_ADDR real_stop_pc;
2573 real_stop_pc = gdbarch_skip_trampoline_code
2574 (current_gdbarch, get_current_frame (), stop_pc);
2575
2576 if (debug_infrun)
2577 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2578
2579 /* Only proceed through if we know where it's going. */
2580 if (real_stop_pc)
2581 {
2582 /* And put the step-breakpoint there and go until there. */
2583 struct symtab_and_line sr_sal;
2584
2585 init_sal (&sr_sal); /* initialize to zeroes */
2586 sr_sal.pc = real_stop_pc;
2587 sr_sal.section = find_pc_overlay (sr_sal.pc);
2588
2589 /* Do not specify what the fp should be when we stop since
2590 on some machines the prologue is where the new fp value
2591 is established. */
2592 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2593
2594 /* Restart without fiddling with the step ranges or
2595 other state. */
2596 keep_going (ecs);
2597 return;
2598 }
2599 }
2600
2601 ecs->sal = find_pc_line (stop_pc, 0);
2602
2603 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2604 the trampoline processing logic, however, there are some trampolines
2605 that have no names, so we should do trampoline handling first. */
2606 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2607 && ecs->stop_func_name == NULL
2608 && ecs->sal.line == 0)
2609 {
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2612
2613 /* The inferior just stepped into, or returned to, an
2614 undebuggable function (where there is no debugging information
2615 and no line number corresponding to the address where the
2616 inferior stopped). Since we want to skip this kind of code,
2617 we keep going until the inferior returns from this
2618 function - unless the user has asked us not to (via
2619 set step-mode) or we no longer know how to get back
2620 to the call site. */
2621 if (step_stop_if_no_debug
2622 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2623 {
2624 /* If we have no line number and the step-stop-if-no-debug
2625 is set, we stop the step so that the user has a chance to
2626 switch in assembly mode. */
2627 stop_step = 1;
2628 print_stop_reason (END_STEPPING_RANGE, 0);
2629 stop_stepping (ecs);
2630 return;
2631 }
2632 else
2633 {
2634 /* Set a breakpoint at callee's return address (the address
2635 at which the caller will resume). */
2636 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2637 keep_going (ecs);
2638 return;
2639 }
2640 }
2641
2642 if (step_range_end == 1)
2643 {
2644 /* It is stepi or nexti. We always want to stop stepping after
2645 one instruction. */
2646 if (debug_infrun)
2647 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2648 stop_step = 1;
2649 print_stop_reason (END_STEPPING_RANGE, 0);
2650 stop_stepping (ecs);
2651 return;
2652 }
2653
2654 if (ecs->sal.line == 0)
2655 {
2656 /* We have no line number information. That means to stop
2657 stepping (does this always happen right after one instruction,
2658 when we do "s" in a function with no line numbers,
2659 or can this happen as a result of a return or longjmp?). */
2660 if (debug_infrun)
2661 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2662 stop_step = 1;
2663 print_stop_reason (END_STEPPING_RANGE, 0);
2664 stop_stepping (ecs);
2665 return;
2666 }
2667
2668 if ((stop_pc == ecs->sal.pc)
2669 && (ecs->current_line != ecs->sal.line
2670 || ecs->current_symtab != ecs->sal.symtab))
2671 {
2672 /* We are at the start of a different line. So stop. Note that
2673 we don't stop if we step into the middle of a different line.
2674 That is said to make things like for (;;) statements work
2675 better. */
2676 if (debug_infrun)
2677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2678 stop_step = 1;
2679 print_stop_reason (END_STEPPING_RANGE, 0);
2680 stop_stepping (ecs);
2681 return;
2682 }
2683
2684 /* We aren't done stepping.
2685
2686 Optimize by setting the stepping range to the line.
2687 (We might not be in the original line, but if we entered a
2688 new line in mid-statement, we continue stepping. This makes
2689 things like for(;;) statements work better.) */
2690
2691 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2692 {
2693 /* If this is the last line of the function, don't keep stepping
2694 (it would probably step us out of the function).
2695 This is particularly necessary for a one-line function,
2696 in which after skipping the prologue we better stop even though
2697 we will be in mid-line. */
2698 if (debug_infrun)
2699 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2700 stop_step = 1;
2701 print_stop_reason (END_STEPPING_RANGE, 0);
2702 stop_stepping (ecs);
2703 return;
2704 }
2705 step_range_start = ecs->sal.pc;
2706 step_range_end = ecs->sal.end;
2707 step_frame_id = get_frame_id (get_current_frame ());
2708 ecs->current_line = ecs->sal.line;
2709 ecs->current_symtab = ecs->sal.symtab;
2710
2711 /* In the case where we just stepped out of a function into the
2712 middle of a line of the caller, continue stepping, but
2713 step_frame_id must be modified to current frame */
2714 #if 0
2715 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2716 generous. It will trigger on things like a step into a frameless
2717 stackless leaf function. I think the logic should instead look
2718 at the unwound frame ID has that should give a more robust
2719 indication of what happened. */
2720 if (step - ID == current - ID)
2721 still stepping in same function;
2722 else if (step - ID == unwind (current - ID))
2723 stepped into a function;
2724 else
2725 stepped out of a function;
2726 /* Of course this assumes that the frame ID unwind code is robust
2727 and we're willing to introduce frame unwind logic into this
2728 function. Fortunately, those days are nearly upon us. */
2729 #endif
2730 {
2731 struct frame_id current_frame = get_frame_id (get_current_frame ());
2732 if (!(frame_id_inner (current_frame, step_frame_id)))
2733 step_frame_id = current_frame;
2734 }
2735
2736 if (debug_infrun)
2737 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2738 keep_going (ecs);
2739 }
2740
2741 /* Are we in the middle of stepping? */
2742
2743 static int
2744 currently_stepping (struct execution_control_state *ecs)
2745 {
2746 return ((!ecs->handling_longjmp
2747 && ((step_range_end && step_resume_breakpoint == NULL)
2748 || trap_expected))
2749 || ecs->stepping_through_solib_after_catch
2750 || bpstat_should_step ());
2751 }
2752
2753 /* Subroutine call with source code we should not step over. Do step
2754 to the first line of code in it. */
2755
2756 static void
2757 step_into_function (struct execution_control_state *ecs)
2758 {
2759 struct symtab *s;
2760 struct symtab_and_line sr_sal;
2761
2762 s = find_pc_symtab (stop_pc);
2763 if (s && s->language != language_asm)
2764 ecs->stop_func_start = gdbarch_skip_prologue
2765 (current_gdbarch, ecs->stop_func_start);
2766
2767 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2768 /* Use the step_resume_break to step until the end of the prologue,
2769 even if that involves jumps (as it seems to on the vax under
2770 4.2). */
2771 /* If the prologue ends in the middle of a source line, continue to
2772 the end of that source line (if it is still within the function).
2773 Otherwise, just go to end of prologue. */
2774 if (ecs->sal.end
2775 && ecs->sal.pc != ecs->stop_func_start
2776 && ecs->sal.end < ecs->stop_func_end)
2777 ecs->stop_func_start = ecs->sal.end;
2778
2779 /* Architectures which require breakpoint adjustment might not be able
2780 to place a breakpoint at the computed address. If so, the test
2781 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2782 ecs->stop_func_start to an address at which a breakpoint may be
2783 legitimately placed.
2784
2785 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2786 made, GDB will enter an infinite loop when stepping through
2787 optimized code consisting of VLIW instructions which contain
2788 subinstructions corresponding to different source lines. On
2789 FR-V, it's not permitted to place a breakpoint on any but the
2790 first subinstruction of a VLIW instruction. When a breakpoint is
2791 set, GDB will adjust the breakpoint address to the beginning of
2792 the VLIW instruction. Thus, we need to make the corresponding
2793 adjustment here when computing the stop address. */
2794
2795 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2796 {
2797 ecs->stop_func_start
2798 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2799 ecs->stop_func_start);
2800 }
2801
2802 if (ecs->stop_func_start == stop_pc)
2803 {
2804 /* We are already there: stop now. */
2805 stop_step = 1;
2806 print_stop_reason (END_STEPPING_RANGE, 0);
2807 stop_stepping (ecs);
2808 return;
2809 }
2810 else
2811 {
2812 /* Put the step-breakpoint there and go until there. */
2813 init_sal (&sr_sal); /* initialize to zeroes */
2814 sr_sal.pc = ecs->stop_func_start;
2815 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2816
2817 /* Do not specify what the fp should be when we stop since on
2818 some machines the prologue is where the new fp value is
2819 established. */
2820 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2821
2822 /* And make sure stepping stops right away then. */
2823 step_range_end = step_range_start;
2824 }
2825 keep_going (ecs);
2826 }
2827
2828 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2829 This is used to both functions and to skip over code. */
2830
2831 static void
2832 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2833 struct frame_id sr_id)
2834 {
2835 /* There should never be more than one step-resume breakpoint per
2836 thread, so we should never be setting a new
2837 step_resume_breakpoint when one is already active. */
2838 gdb_assert (step_resume_breakpoint == NULL);
2839
2840 if (debug_infrun)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "infrun: inserting step-resume breakpoint at 0x%s\n",
2843 paddr_nz (sr_sal.pc));
2844
2845 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2846 bp_step_resume);
2847 if (breakpoints_inserted)
2848 insert_breakpoints ();
2849 }
2850
2851 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2852 to skip a potential signal handler.
2853
2854 This is called with the interrupted function's frame. The signal
2855 handler, when it returns, will resume the interrupted function at
2856 RETURN_FRAME.pc. */
2857
2858 static void
2859 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2860 {
2861 struct symtab_and_line sr_sal;
2862
2863 gdb_assert (return_frame != NULL);
2864 init_sal (&sr_sal); /* initialize to zeros */
2865
2866 sr_sal.pc = gdbarch_addr_bits_remove
2867 (current_gdbarch, get_frame_pc (return_frame));
2868 sr_sal.section = find_pc_overlay (sr_sal.pc);
2869
2870 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2871 }
2872
2873 /* Similar to insert_step_resume_breakpoint_at_frame, except
2874 but a breakpoint at the previous frame's PC. This is used to
2875 skip a function after stepping into it (for "next" or if the called
2876 function has no debugging information).
2877
2878 The current function has almost always been reached by single
2879 stepping a call or return instruction. NEXT_FRAME belongs to the
2880 current function, and the breakpoint will be set at the caller's
2881 resume address.
2882
2883 This is a separate function rather than reusing
2884 insert_step_resume_breakpoint_at_frame in order to avoid
2885 get_prev_frame, which may stop prematurely (see the implementation
2886 of frame_unwind_id for an example). */
2887
2888 static void
2889 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2890 {
2891 struct symtab_and_line sr_sal;
2892
2893 /* We shouldn't have gotten here if we don't know where the call site
2894 is. */
2895 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2896
2897 init_sal (&sr_sal); /* initialize to zeros */
2898
2899 sr_sal.pc = gdbarch_addr_bits_remove
2900 (current_gdbarch, frame_pc_unwind (next_frame));
2901 sr_sal.section = find_pc_overlay (sr_sal.pc);
2902
2903 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2904 }
2905
2906 static void
2907 stop_stepping (struct execution_control_state *ecs)
2908 {
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2911
2912 /* Let callers know we don't want to wait for the inferior anymore. */
2913 ecs->wait_some_more = 0;
2914 }
2915
2916 /* This function handles various cases where we need to continue
2917 waiting for the inferior. */
2918 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2919
2920 static void
2921 keep_going (struct execution_control_state *ecs)
2922 {
2923 /* Save the pc before execution, to compare with pc after stop. */
2924 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2925
2926 /* If we did not do break;, it means we should keep running the
2927 inferior and not return to debugger. */
2928
2929 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2930 {
2931 /* We took a signal (which we are supposed to pass through to
2932 the inferior, else we'd have done a break above) and we
2933 haven't yet gotten our trap. Simply continue. */
2934 resume (currently_stepping (ecs), stop_signal);
2935 }
2936 else
2937 {
2938 /* Either the trap was not expected, but we are continuing
2939 anyway (the user asked that this signal be passed to the
2940 child)
2941 -- or --
2942 The signal was SIGTRAP, e.g. it was our signal, but we
2943 decided we should resume from it.
2944
2945 We're going to run this baby now! */
2946
2947 if (!breakpoints_inserted && !ecs->another_trap)
2948 {
2949 /* Stop stepping when inserting breakpoints
2950 has failed. */
2951 if (insert_breakpoints () != 0)
2952 {
2953 stop_stepping (ecs);
2954 return;
2955 }
2956 breakpoints_inserted = 1;
2957 }
2958
2959 trap_expected = ecs->another_trap;
2960
2961 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2962 specifies that such a signal should be delivered to the
2963 target program).
2964
2965 Typically, this would occure when a user is debugging a
2966 target monitor on a simulator: the target monitor sets a
2967 breakpoint; the simulator encounters this break-point and
2968 halts the simulation handing control to GDB; GDB, noteing
2969 that the break-point isn't valid, returns control back to the
2970 simulator; the simulator then delivers the hardware
2971 equivalent of a SIGNAL_TRAP to the program being debugged. */
2972
2973 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2974 stop_signal = TARGET_SIGNAL_0;
2975
2976
2977 resume (currently_stepping (ecs), stop_signal);
2978 }
2979
2980 prepare_to_wait (ecs);
2981 }
2982
2983 /* This function normally comes after a resume, before
2984 handle_inferior_event exits. It takes care of any last bits of
2985 housekeeping, and sets the all-important wait_some_more flag. */
2986
2987 static void
2988 prepare_to_wait (struct execution_control_state *ecs)
2989 {
2990 if (debug_infrun)
2991 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2992 if (ecs->infwait_state == infwait_normal_state)
2993 {
2994 overlay_cache_invalid = 1;
2995
2996 /* We have to invalidate the registers BEFORE calling
2997 target_wait because they can be loaded from the target while
2998 in target_wait. This makes remote debugging a bit more
2999 efficient for those targets that provide critical registers
3000 as part of their normal status mechanism. */
3001
3002 registers_changed ();
3003 ecs->waiton_ptid = pid_to_ptid (-1);
3004 ecs->wp = &(ecs->ws);
3005 }
3006 /* This is the old end of the while loop. Let everybody know we
3007 want to wait for the inferior some more and get called again
3008 soon. */
3009 ecs->wait_some_more = 1;
3010 }
3011
3012 /* Print why the inferior has stopped. We always print something when
3013 the inferior exits, or receives a signal. The rest of the cases are
3014 dealt with later on in normal_stop() and print_it_typical(). Ideally
3015 there should be a call to this function from handle_inferior_event()
3016 each time stop_stepping() is called.*/
3017 static void
3018 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3019 {
3020 switch (stop_reason)
3021 {
3022 case END_STEPPING_RANGE:
3023 /* We are done with a step/next/si/ni command. */
3024 /* For now print nothing. */
3025 /* Print a message only if not in the middle of doing a "step n"
3026 operation for n > 1 */
3027 if (!step_multi || !stop_step)
3028 if (ui_out_is_mi_like_p (uiout))
3029 ui_out_field_string
3030 (uiout, "reason",
3031 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3032 break;
3033 case SIGNAL_EXITED:
3034 /* The inferior was terminated by a signal. */
3035 annotate_signalled ();
3036 if (ui_out_is_mi_like_p (uiout))
3037 ui_out_field_string
3038 (uiout, "reason",
3039 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3040 ui_out_text (uiout, "\nProgram terminated with signal ");
3041 annotate_signal_name ();
3042 ui_out_field_string (uiout, "signal-name",
3043 target_signal_to_name (stop_info));
3044 annotate_signal_name_end ();
3045 ui_out_text (uiout, ", ");
3046 annotate_signal_string ();
3047 ui_out_field_string (uiout, "signal-meaning",
3048 target_signal_to_string (stop_info));
3049 annotate_signal_string_end ();
3050 ui_out_text (uiout, ".\n");
3051 ui_out_text (uiout, "The program no longer exists.\n");
3052 break;
3053 case EXITED:
3054 /* The inferior program is finished. */
3055 annotate_exited (stop_info);
3056 if (stop_info)
3057 {
3058 if (ui_out_is_mi_like_p (uiout))
3059 ui_out_field_string (uiout, "reason",
3060 async_reason_lookup (EXEC_ASYNC_EXITED));
3061 ui_out_text (uiout, "\nProgram exited with code ");
3062 ui_out_field_fmt (uiout, "exit-code", "0%o",
3063 (unsigned int) stop_info);
3064 ui_out_text (uiout, ".\n");
3065 }
3066 else
3067 {
3068 if (ui_out_is_mi_like_p (uiout))
3069 ui_out_field_string
3070 (uiout, "reason",
3071 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3072 ui_out_text (uiout, "\nProgram exited normally.\n");
3073 }
3074 /* Support the --return-child-result option. */
3075 return_child_result_value = stop_info;
3076 break;
3077 case SIGNAL_RECEIVED:
3078 /* Signal received. The signal table tells us to print about
3079 it. */
3080 annotate_signal ();
3081 ui_out_text (uiout, "\nProgram received signal ");
3082 annotate_signal_name ();
3083 if (ui_out_is_mi_like_p (uiout))
3084 ui_out_field_string
3085 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3086 ui_out_field_string (uiout, "signal-name",
3087 target_signal_to_name (stop_info));
3088 annotate_signal_name_end ();
3089 ui_out_text (uiout, ", ");
3090 annotate_signal_string ();
3091 ui_out_field_string (uiout, "signal-meaning",
3092 target_signal_to_string (stop_info));
3093 annotate_signal_string_end ();
3094 ui_out_text (uiout, ".\n");
3095 break;
3096 default:
3097 internal_error (__FILE__, __LINE__,
3098 _("print_stop_reason: unrecognized enum value"));
3099 break;
3100 }
3101 }
3102 \f
3103
3104 /* Here to return control to GDB when the inferior stops for real.
3105 Print appropriate messages, remove breakpoints, give terminal our modes.
3106
3107 STOP_PRINT_FRAME nonzero means print the executing frame
3108 (pc, function, args, file, line number and line text).
3109 BREAKPOINTS_FAILED nonzero means stop was due to error
3110 attempting to insert breakpoints. */
3111
3112 void
3113 normal_stop (void)
3114 {
3115 struct target_waitstatus last;
3116 ptid_t last_ptid;
3117
3118 get_last_target_status (&last_ptid, &last);
3119
3120 /* As with the notification of thread events, we want to delay
3121 notifying the user that we've switched thread context until
3122 the inferior actually stops.
3123
3124 There's no point in saying anything if the inferior has exited.
3125 Note that SIGNALLED here means "exited with a signal", not
3126 "received a signal". */
3127 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3128 && target_has_execution
3129 && last.kind != TARGET_WAITKIND_SIGNALLED
3130 && last.kind != TARGET_WAITKIND_EXITED)
3131 {
3132 target_terminal_ours_for_output ();
3133 printf_filtered (_("[Switching to %s]\n"),
3134 target_pid_or_tid_to_str (inferior_ptid));
3135 previous_inferior_ptid = inferior_ptid;
3136 }
3137
3138 /* NOTE drow/2004-01-17: Is this still necessary? */
3139 /* Make sure that the current_frame's pc is correct. This
3140 is a correction for setting up the frame info before doing
3141 gdbarch_decr_pc_after_break */
3142 if (target_has_execution)
3143 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3144 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3145 frame code to check for this and sort out any resultant mess.
3146 gdbarch_decr_pc_after_break needs to just go away. */
3147 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3148
3149 if (target_has_execution && breakpoints_inserted)
3150 {
3151 if (remove_breakpoints ())
3152 {
3153 target_terminal_ours_for_output ();
3154 printf_filtered (_("\
3155 Cannot remove breakpoints because program is no longer writable.\n\
3156 It might be running in another process.\n\
3157 Further execution is probably impossible.\n"));
3158 }
3159 }
3160 breakpoints_inserted = 0;
3161
3162 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3163 Delete any breakpoint that is to be deleted at the next stop. */
3164
3165 breakpoint_auto_delete (stop_bpstat);
3166
3167 /* If an auto-display called a function and that got a signal,
3168 delete that auto-display to avoid an infinite recursion. */
3169
3170 if (stopped_by_random_signal)
3171 disable_current_display ();
3172
3173 /* Don't print a message if in the middle of doing a "step n"
3174 operation for n > 1 */
3175 if (step_multi && stop_step)
3176 goto done;
3177
3178 target_terminal_ours ();
3179
3180 /* Set the current source location. This will also happen if we
3181 display the frame below, but the current SAL will be incorrect
3182 during a user hook-stop function. */
3183 if (target_has_stack && !stop_stack_dummy)
3184 set_current_sal_from_frame (get_current_frame (), 1);
3185
3186 /* Look up the hook_stop and run it (CLI internally handles problem
3187 of stop_command's pre-hook not existing). */
3188 if (stop_command)
3189 catch_errors (hook_stop_stub, stop_command,
3190 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3191
3192 if (!target_has_stack)
3193 {
3194
3195 goto done;
3196 }
3197
3198 /* Select innermost stack frame - i.e., current frame is frame 0,
3199 and current location is based on that.
3200 Don't do this on return from a stack dummy routine,
3201 or if the program has exited. */
3202
3203 if (!stop_stack_dummy)
3204 {
3205 select_frame (get_current_frame ());
3206
3207 /* Print current location without a level number, if
3208 we have changed functions or hit a breakpoint.
3209 Print source line if we have one.
3210 bpstat_print() contains the logic deciding in detail
3211 what to print, based on the event(s) that just occurred. */
3212
3213 if (stop_print_frame)
3214 {
3215 int bpstat_ret;
3216 int source_flag;
3217 int do_frame_printing = 1;
3218
3219 bpstat_ret = bpstat_print (stop_bpstat);
3220 switch (bpstat_ret)
3221 {
3222 case PRINT_UNKNOWN:
3223 /* If we had hit a shared library event breakpoint,
3224 bpstat_print would print out this message. If we hit
3225 an OS-level shared library event, do the same
3226 thing. */
3227 if (last.kind == TARGET_WAITKIND_LOADED)
3228 {
3229 printf_filtered (_("Stopped due to shared library event\n"));
3230 source_flag = SRC_LINE; /* something bogus */
3231 do_frame_printing = 0;
3232 break;
3233 }
3234
3235 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3236 (or should) carry around the function and does (or
3237 should) use that when doing a frame comparison. */
3238 if (stop_step
3239 && frame_id_eq (step_frame_id,
3240 get_frame_id (get_current_frame ()))
3241 && step_start_function == find_pc_function (stop_pc))
3242 source_flag = SRC_LINE; /* finished step, just print source line */
3243 else
3244 source_flag = SRC_AND_LOC; /* print location and source line */
3245 break;
3246 case PRINT_SRC_AND_LOC:
3247 source_flag = SRC_AND_LOC; /* print location and source line */
3248 break;
3249 case PRINT_SRC_ONLY:
3250 source_flag = SRC_LINE;
3251 break;
3252 case PRINT_NOTHING:
3253 source_flag = SRC_LINE; /* something bogus */
3254 do_frame_printing = 0;
3255 break;
3256 default:
3257 internal_error (__FILE__, __LINE__, _("Unknown value."));
3258 }
3259
3260 if (ui_out_is_mi_like_p (uiout))
3261 ui_out_field_int (uiout, "thread-id",
3262 pid_to_thread_id (inferior_ptid));
3263 /* The behavior of this routine with respect to the source
3264 flag is:
3265 SRC_LINE: Print only source line
3266 LOCATION: Print only location
3267 SRC_AND_LOC: Print location and source line */
3268 if (do_frame_printing)
3269 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3270
3271 /* Display the auto-display expressions. */
3272 do_displays ();
3273 }
3274 }
3275
3276 /* Save the function value return registers, if we care.
3277 We might be about to restore their previous contents. */
3278 if (proceed_to_finish)
3279 {
3280 /* This should not be necessary. */
3281 if (stop_registers)
3282 regcache_xfree (stop_registers);
3283
3284 /* NB: The copy goes through to the target picking up the value of
3285 all the registers. */
3286 stop_registers = regcache_dup (get_current_regcache ());
3287 }
3288
3289 if (stop_stack_dummy)
3290 {
3291 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3292 ends with a setting of the current frame, so we can use that
3293 next. */
3294 frame_pop (get_current_frame ());
3295 /* Set stop_pc to what it was before we called the function.
3296 Can't rely on restore_inferior_status because that only gets
3297 called if we don't stop in the called function. */
3298 stop_pc = read_pc ();
3299 select_frame (get_current_frame ());
3300 }
3301
3302 done:
3303 annotate_stopped ();
3304 observer_notify_normal_stop (stop_bpstat);
3305 }
3306
3307 static int
3308 hook_stop_stub (void *cmd)
3309 {
3310 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3311 return (0);
3312 }
3313 \f
3314 int
3315 signal_stop_state (int signo)
3316 {
3317 return signal_stop[signo];
3318 }
3319
3320 int
3321 signal_print_state (int signo)
3322 {
3323 return signal_print[signo];
3324 }
3325
3326 int
3327 signal_pass_state (int signo)
3328 {
3329 return signal_program[signo];
3330 }
3331
3332 int
3333 signal_stop_update (int signo, int state)
3334 {
3335 int ret = signal_stop[signo];
3336 signal_stop[signo] = state;
3337 return ret;
3338 }
3339
3340 int
3341 signal_print_update (int signo, int state)
3342 {
3343 int ret = signal_print[signo];
3344 signal_print[signo] = state;
3345 return ret;
3346 }
3347
3348 int
3349 signal_pass_update (int signo, int state)
3350 {
3351 int ret = signal_program[signo];
3352 signal_program[signo] = state;
3353 return ret;
3354 }
3355
3356 static void
3357 sig_print_header (void)
3358 {
3359 printf_filtered (_("\
3360 Signal Stop\tPrint\tPass to program\tDescription\n"));
3361 }
3362
3363 static void
3364 sig_print_info (enum target_signal oursig)
3365 {
3366 char *name = target_signal_to_name (oursig);
3367 int name_padding = 13 - strlen (name);
3368
3369 if (name_padding <= 0)
3370 name_padding = 0;
3371
3372 printf_filtered ("%s", name);
3373 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3374 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3375 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3376 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3377 printf_filtered ("%s\n", target_signal_to_string (oursig));
3378 }
3379
3380 /* Specify how various signals in the inferior should be handled. */
3381
3382 static void
3383 handle_command (char *args, int from_tty)
3384 {
3385 char **argv;
3386 int digits, wordlen;
3387 int sigfirst, signum, siglast;
3388 enum target_signal oursig;
3389 int allsigs;
3390 int nsigs;
3391 unsigned char *sigs;
3392 struct cleanup *old_chain;
3393
3394 if (args == NULL)
3395 {
3396 error_no_arg (_("signal to handle"));
3397 }
3398
3399 /* Allocate and zero an array of flags for which signals to handle. */
3400
3401 nsigs = (int) TARGET_SIGNAL_LAST;
3402 sigs = (unsigned char *) alloca (nsigs);
3403 memset (sigs, 0, nsigs);
3404
3405 /* Break the command line up into args. */
3406
3407 argv = buildargv (args);
3408 if (argv == NULL)
3409 {
3410 nomem (0);
3411 }
3412 old_chain = make_cleanup_freeargv (argv);
3413
3414 /* Walk through the args, looking for signal oursigs, signal names, and
3415 actions. Signal numbers and signal names may be interspersed with
3416 actions, with the actions being performed for all signals cumulatively
3417 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3418
3419 while (*argv != NULL)
3420 {
3421 wordlen = strlen (*argv);
3422 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3423 {;
3424 }
3425 allsigs = 0;
3426 sigfirst = siglast = -1;
3427
3428 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3429 {
3430 /* Apply action to all signals except those used by the
3431 debugger. Silently skip those. */
3432 allsigs = 1;
3433 sigfirst = 0;
3434 siglast = nsigs - 1;
3435 }
3436 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3437 {
3438 SET_SIGS (nsigs, sigs, signal_stop);
3439 SET_SIGS (nsigs, sigs, signal_print);
3440 }
3441 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3442 {
3443 UNSET_SIGS (nsigs, sigs, signal_program);
3444 }
3445 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3446 {
3447 SET_SIGS (nsigs, sigs, signal_print);
3448 }
3449 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3450 {
3451 SET_SIGS (nsigs, sigs, signal_program);
3452 }
3453 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3454 {
3455 UNSET_SIGS (nsigs, sigs, signal_stop);
3456 }
3457 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3458 {
3459 SET_SIGS (nsigs, sigs, signal_program);
3460 }
3461 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3462 {
3463 UNSET_SIGS (nsigs, sigs, signal_print);
3464 UNSET_SIGS (nsigs, sigs, signal_stop);
3465 }
3466 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3467 {
3468 UNSET_SIGS (nsigs, sigs, signal_program);
3469 }
3470 else if (digits > 0)
3471 {
3472 /* It is numeric. The numeric signal refers to our own
3473 internal signal numbering from target.h, not to host/target
3474 signal number. This is a feature; users really should be
3475 using symbolic names anyway, and the common ones like
3476 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3477
3478 sigfirst = siglast = (int)
3479 target_signal_from_command (atoi (*argv));
3480 if ((*argv)[digits] == '-')
3481 {
3482 siglast = (int)
3483 target_signal_from_command (atoi ((*argv) + digits + 1));
3484 }
3485 if (sigfirst > siglast)
3486 {
3487 /* Bet he didn't figure we'd think of this case... */
3488 signum = sigfirst;
3489 sigfirst = siglast;
3490 siglast = signum;
3491 }
3492 }
3493 else
3494 {
3495 oursig = target_signal_from_name (*argv);
3496 if (oursig != TARGET_SIGNAL_UNKNOWN)
3497 {
3498 sigfirst = siglast = (int) oursig;
3499 }
3500 else
3501 {
3502 /* Not a number and not a recognized flag word => complain. */
3503 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3504 }
3505 }
3506
3507 /* If any signal numbers or symbol names were found, set flags for
3508 which signals to apply actions to. */
3509
3510 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3511 {
3512 switch ((enum target_signal) signum)
3513 {
3514 case TARGET_SIGNAL_TRAP:
3515 case TARGET_SIGNAL_INT:
3516 if (!allsigs && !sigs[signum])
3517 {
3518 if (query ("%s is used by the debugger.\n\
3519 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3520 {
3521 sigs[signum] = 1;
3522 }
3523 else
3524 {
3525 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3526 gdb_flush (gdb_stdout);
3527 }
3528 }
3529 break;
3530 case TARGET_SIGNAL_0:
3531 case TARGET_SIGNAL_DEFAULT:
3532 case TARGET_SIGNAL_UNKNOWN:
3533 /* Make sure that "all" doesn't print these. */
3534 break;
3535 default:
3536 sigs[signum] = 1;
3537 break;
3538 }
3539 }
3540
3541 argv++;
3542 }
3543
3544 target_notice_signals (inferior_ptid);
3545
3546 if (from_tty)
3547 {
3548 /* Show the results. */
3549 sig_print_header ();
3550 for (signum = 0; signum < nsigs; signum++)
3551 {
3552 if (sigs[signum])
3553 {
3554 sig_print_info (signum);
3555 }
3556 }
3557 }
3558
3559 do_cleanups (old_chain);
3560 }
3561
3562 static void
3563 xdb_handle_command (char *args, int from_tty)
3564 {
3565 char **argv;
3566 struct cleanup *old_chain;
3567
3568 /* Break the command line up into args. */
3569
3570 argv = buildargv (args);
3571 if (argv == NULL)
3572 {
3573 nomem (0);
3574 }
3575 old_chain = make_cleanup_freeargv (argv);
3576 if (argv[1] != (char *) NULL)
3577 {
3578 char *argBuf;
3579 int bufLen;
3580
3581 bufLen = strlen (argv[0]) + 20;
3582 argBuf = (char *) xmalloc (bufLen);
3583 if (argBuf)
3584 {
3585 int validFlag = 1;
3586 enum target_signal oursig;
3587
3588 oursig = target_signal_from_name (argv[0]);
3589 memset (argBuf, 0, bufLen);
3590 if (strcmp (argv[1], "Q") == 0)
3591 sprintf (argBuf, "%s %s", argv[0], "noprint");
3592 else
3593 {
3594 if (strcmp (argv[1], "s") == 0)
3595 {
3596 if (!signal_stop[oursig])
3597 sprintf (argBuf, "%s %s", argv[0], "stop");
3598 else
3599 sprintf (argBuf, "%s %s", argv[0], "nostop");
3600 }
3601 else if (strcmp (argv[1], "i") == 0)
3602 {
3603 if (!signal_program[oursig])
3604 sprintf (argBuf, "%s %s", argv[0], "pass");
3605 else
3606 sprintf (argBuf, "%s %s", argv[0], "nopass");
3607 }
3608 else if (strcmp (argv[1], "r") == 0)
3609 {
3610 if (!signal_print[oursig])
3611 sprintf (argBuf, "%s %s", argv[0], "print");
3612 else
3613 sprintf (argBuf, "%s %s", argv[0], "noprint");
3614 }
3615 else
3616 validFlag = 0;
3617 }
3618 if (validFlag)
3619 handle_command (argBuf, from_tty);
3620 else
3621 printf_filtered (_("Invalid signal handling flag.\n"));
3622 if (argBuf)
3623 xfree (argBuf);
3624 }
3625 }
3626 do_cleanups (old_chain);
3627 }
3628
3629 /* Print current contents of the tables set by the handle command.
3630 It is possible we should just be printing signals actually used
3631 by the current target (but for things to work right when switching
3632 targets, all signals should be in the signal tables). */
3633
3634 static void
3635 signals_info (char *signum_exp, int from_tty)
3636 {
3637 enum target_signal oursig;
3638 sig_print_header ();
3639
3640 if (signum_exp)
3641 {
3642 /* First see if this is a symbol name. */
3643 oursig = target_signal_from_name (signum_exp);
3644 if (oursig == TARGET_SIGNAL_UNKNOWN)
3645 {
3646 /* No, try numeric. */
3647 oursig =
3648 target_signal_from_command (parse_and_eval_long (signum_exp));
3649 }
3650 sig_print_info (oursig);
3651 return;
3652 }
3653
3654 printf_filtered ("\n");
3655 /* These ugly casts brought to you by the native VAX compiler. */
3656 for (oursig = TARGET_SIGNAL_FIRST;
3657 (int) oursig < (int) TARGET_SIGNAL_LAST;
3658 oursig = (enum target_signal) ((int) oursig + 1))
3659 {
3660 QUIT;
3661
3662 if (oursig != TARGET_SIGNAL_UNKNOWN
3663 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3664 sig_print_info (oursig);
3665 }
3666
3667 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3668 }
3669 \f
3670 struct inferior_status
3671 {
3672 enum target_signal stop_signal;
3673 CORE_ADDR stop_pc;
3674 bpstat stop_bpstat;
3675 int stop_step;
3676 int stop_stack_dummy;
3677 int stopped_by_random_signal;
3678 int trap_expected;
3679 CORE_ADDR step_range_start;
3680 CORE_ADDR step_range_end;
3681 struct frame_id step_frame_id;
3682 enum step_over_calls_kind step_over_calls;
3683 CORE_ADDR step_resume_break_address;
3684 int stop_after_trap;
3685 int stop_soon;
3686
3687 /* These are here because if call_function_by_hand has written some
3688 registers and then decides to call error(), we better not have changed
3689 any registers. */
3690 struct regcache *registers;
3691
3692 /* A frame unique identifier. */
3693 struct frame_id selected_frame_id;
3694
3695 int breakpoint_proceeded;
3696 int restore_stack_info;
3697 int proceed_to_finish;
3698 };
3699
3700 void
3701 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3702 LONGEST val)
3703 {
3704 int size = register_size (current_gdbarch, regno);
3705 void *buf = alloca (size);
3706 store_signed_integer (buf, size, val);
3707 regcache_raw_write (inf_status->registers, regno, buf);
3708 }
3709
3710 /* Save all of the information associated with the inferior<==>gdb
3711 connection. INF_STATUS is a pointer to a "struct inferior_status"
3712 (defined in inferior.h). */
3713
3714 struct inferior_status *
3715 save_inferior_status (int restore_stack_info)
3716 {
3717 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3718
3719 inf_status->stop_signal = stop_signal;
3720 inf_status->stop_pc = stop_pc;
3721 inf_status->stop_step = stop_step;
3722 inf_status->stop_stack_dummy = stop_stack_dummy;
3723 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3724 inf_status->trap_expected = trap_expected;
3725 inf_status->step_range_start = step_range_start;
3726 inf_status->step_range_end = step_range_end;
3727 inf_status->step_frame_id = step_frame_id;
3728 inf_status->step_over_calls = step_over_calls;
3729 inf_status->stop_after_trap = stop_after_trap;
3730 inf_status->stop_soon = stop_soon;
3731 /* Save original bpstat chain here; replace it with copy of chain.
3732 If caller's caller is walking the chain, they'll be happier if we
3733 hand them back the original chain when restore_inferior_status is
3734 called. */
3735 inf_status->stop_bpstat = stop_bpstat;
3736 stop_bpstat = bpstat_copy (stop_bpstat);
3737 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3738 inf_status->restore_stack_info = restore_stack_info;
3739 inf_status->proceed_to_finish = proceed_to_finish;
3740
3741 inf_status->registers = regcache_dup (get_current_regcache ());
3742
3743 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3744 return inf_status;
3745 }
3746
3747 static int
3748 restore_selected_frame (void *args)
3749 {
3750 struct frame_id *fid = (struct frame_id *) args;
3751 struct frame_info *frame;
3752
3753 frame = frame_find_by_id (*fid);
3754
3755 /* If inf_status->selected_frame_id is NULL, there was no previously
3756 selected frame. */
3757 if (frame == NULL)
3758 {
3759 warning (_("Unable to restore previously selected frame."));
3760 return 0;
3761 }
3762
3763 select_frame (frame);
3764
3765 return (1);
3766 }
3767
3768 void
3769 restore_inferior_status (struct inferior_status *inf_status)
3770 {
3771 stop_signal = inf_status->stop_signal;
3772 stop_pc = inf_status->stop_pc;
3773 stop_step = inf_status->stop_step;
3774 stop_stack_dummy = inf_status->stop_stack_dummy;
3775 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3776 trap_expected = inf_status->trap_expected;
3777 step_range_start = inf_status->step_range_start;
3778 step_range_end = inf_status->step_range_end;
3779 step_frame_id = inf_status->step_frame_id;
3780 step_over_calls = inf_status->step_over_calls;
3781 stop_after_trap = inf_status->stop_after_trap;
3782 stop_soon = inf_status->stop_soon;
3783 bpstat_clear (&stop_bpstat);
3784 stop_bpstat = inf_status->stop_bpstat;
3785 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3786 proceed_to_finish = inf_status->proceed_to_finish;
3787
3788 /* The inferior can be gone if the user types "print exit(0)"
3789 (and perhaps other times). */
3790 if (target_has_execution)
3791 /* NB: The register write goes through to the target. */
3792 regcache_cpy (get_current_regcache (), inf_status->registers);
3793 regcache_xfree (inf_status->registers);
3794
3795 /* FIXME: If we are being called after stopping in a function which
3796 is called from gdb, we should not be trying to restore the
3797 selected frame; it just prints a spurious error message (The
3798 message is useful, however, in detecting bugs in gdb (like if gdb
3799 clobbers the stack)). In fact, should we be restoring the
3800 inferior status at all in that case? . */
3801
3802 if (target_has_stack && inf_status->restore_stack_info)
3803 {
3804 /* The point of catch_errors is that if the stack is clobbered,
3805 walking the stack might encounter a garbage pointer and
3806 error() trying to dereference it. */
3807 if (catch_errors
3808 (restore_selected_frame, &inf_status->selected_frame_id,
3809 "Unable to restore previously selected frame:\n",
3810 RETURN_MASK_ERROR) == 0)
3811 /* Error in restoring the selected frame. Select the innermost
3812 frame. */
3813 select_frame (get_current_frame ());
3814
3815 }
3816
3817 xfree (inf_status);
3818 }
3819
3820 static void
3821 do_restore_inferior_status_cleanup (void *sts)
3822 {
3823 restore_inferior_status (sts);
3824 }
3825
3826 struct cleanup *
3827 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3828 {
3829 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3830 }
3831
3832 void
3833 discard_inferior_status (struct inferior_status *inf_status)
3834 {
3835 /* See save_inferior_status for info on stop_bpstat. */
3836 bpstat_clear (&inf_status->stop_bpstat);
3837 regcache_xfree (inf_status->registers);
3838 xfree (inf_status);
3839 }
3840
3841 int
3842 inferior_has_forked (int pid, int *child_pid)
3843 {
3844 struct target_waitstatus last;
3845 ptid_t last_ptid;
3846
3847 get_last_target_status (&last_ptid, &last);
3848
3849 if (last.kind != TARGET_WAITKIND_FORKED)
3850 return 0;
3851
3852 if (ptid_get_pid (last_ptid) != pid)
3853 return 0;
3854
3855 *child_pid = last.value.related_pid;
3856 return 1;
3857 }
3858
3859 int
3860 inferior_has_vforked (int pid, int *child_pid)
3861 {
3862 struct target_waitstatus last;
3863 ptid_t last_ptid;
3864
3865 get_last_target_status (&last_ptid, &last);
3866
3867 if (last.kind != TARGET_WAITKIND_VFORKED)
3868 return 0;
3869
3870 if (ptid_get_pid (last_ptid) != pid)
3871 return 0;
3872
3873 *child_pid = last.value.related_pid;
3874 return 1;
3875 }
3876
3877 int
3878 inferior_has_execd (int pid, char **execd_pathname)
3879 {
3880 struct target_waitstatus last;
3881 ptid_t last_ptid;
3882
3883 get_last_target_status (&last_ptid, &last);
3884
3885 if (last.kind != TARGET_WAITKIND_EXECD)
3886 return 0;
3887
3888 if (ptid_get_pid (last_ptid) != pid)
3889 return 0;
3890
3891 *execd_pathname = xstrdup (last.value.execd_pathname);
3892 return 1;
3893 }
3894
3895 /* Oft used ptids */
3896 ptid_t null_ptid;
3897 ptid_t minus_one_ptid;
3898
3899 /* Create a ptid given the necessary PID, LWP, and TID components. */
3900
3901 ptid_t
3902 ptid_build (int pid, long lwp, long tid)
3903 {
3904 ptid_t ptid;
3905
3906 ptid.pid = pid;
3907 ptid.lwp = lwp;
3908 ptid.tid = tid;
3909 return ptid;
3910 }
3911
3912 /* Create a ptid from just a pid. */
3913
3914 ptid_t
3915 pid_to_ptid (int pid)
3916 {
3917 return ptid_build (pid, 0, 0);
3918 }
3919
3920 /* Fetch the pid (process id) component from a ptid. */
3921
3922 int
3923 ptid_get_pid (ptid_t ptid)
3924 {
3925 return ptid.pid;
3926 }
3927
3928 /* Fetch the lwp (lightweight process) component from a ptid. */
3929
3930 long
3931 ptid_get_lwp (ptid_t ptid)
3932 {
3933 return ptid.lwp;
3934 }
3935
3936 /* Fetch the tid (thread id) component from a ptid. */
3937
3938 long
3939 ptid_get_tid (ptid_t ptid)
3940 {
3941 return ptid.tid;
3942 }
3943
3944 /* ptid_equal() is used to test equality of two ptids. */
3945
3946 int
3947 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3948 {
3949 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3950 && ptid1.tid == ptid2.tid);
3951 }
3952
3953 /* restore_inferior_ptid() will be used by the cleanup machinery
3954 to restore the inferior_ptid value saved in a call to
3955 save_inferior_ptid(). */
3956
3957 static void
3958 restore_inferior_ptid (void *arg)
3959 {
3960 ptid_t *saved_ptid_ptr = arg;
3961 inferior_ptid = *saved_ptid_ptr;
3962 xfree (arg);
3963 }
3964
3965 /* Save the value of inferior_ptid so that it may be restored by a
3966 later call to do_cleanups(). Returns the struct cleanup pointer
3967 needed for later doing the cleanup. */
3968
3969 struct cleanup *
3970 save_inferior_ptid (void)
3971 {
3972 ptid_t *saved_ptid_ptr;
3973
3974 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3975 *saved_ptid_ptr = inferior_ptid;
3976 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3977 }
3978 \f
3979
3980 void
3981 _initialize_infrun (void)
3982 {
3983 int i;
3984 int numsigs;
3985 struct cmd_list_element *c;
3986
3987 add_info ("signals", signals_info, _("\
3988 What debugger does when program gets various signals.\n\
3989 Specify a signal as argument to print info on that signal only."));
3990 add_info_alias ("handle", "signals", 0);
3991
3992 add_com ("handle", class_run, handle_command, _("\
3993 Specify how to handle a signal.\n\
3994 Args are signals and actions to apply to those signals.\n\
3995 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3996 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3997 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3998 The special arg \"all\" is recognized to mean all signals except those\n\
3999 used by the debugger, typically SIGTRAP and SIGINT.\n\
4000 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4001 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4002 Stop means reenter debugger if this signal happens (implies print).\n\
4003 Print means print a message if this signal happens.\n\
4004 Pass means let program see this signal; otherwise program doesn't know.\n\
4005 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4006 Pass and Stop may be combined."));
4007 if (xdb_commands)
4008 {
4009 add_com ("lz", class_info, signals_info, _("\
4010 What debugger does when program gets various signals.\n\
4011 Specify a signal as argument to print info on that signal only."));
4012 add_com ("z", class_run, xdb_handle_command, _("\
4013 Specify how to handle a signal.\n\
4014 Args are signals and actions to apply to those signals.\n\
4015 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4016 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4017 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4018 The special arg \"all\" is recognized to mean all signals except those\n\
4019 used by the debugger, typically SIGTRAP and SIGINT.\n\
4020 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4021 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4022 nopass), \"Q\" (noprint)\n\
4023 Stop means reenter debugger if this signal happens (implies print).\n\
4024 Print means print a message if this signal happens.\n\
4025 Pass means let program see this signal; otherwise program doesn't know.\n\
4026 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4027 Pass and Stop may be combined."));
4028 }
4029
4030 if (!dbx_commands)
4031 stop_command = add_cmd ("stop", class_obscure,
4032 not_just_help_class_command, _("\
4033 There is no `stop' command, but you can set a hook on `stop'.\n\
4034 This allows you to set a list of commands to be run each time execution\n\
4035 of the program stops."), &cmdlist);
4036
4037 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4038 Set inferior debugging."), _("\
4039 Show inferior debugging."), _("\
4040 When non-zero, inferior specific debugging is enabled."),
4041 NULL,
4042 show_debug_infrun,
4043 &setdebuglist, &showdebuglist);
4044
4045 numsigs = (int) TARGET_SIGNAL_LAST;
4046 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4047 signal_print = (unsigned char *)
4048 xmalloc (sizeof (signal_print[0]) * numsigs);
4049 signal_program = (unsigned char *)
4050 xmalloc (sizeof (signal_program[0]) * numsigs);
4051 for (i = 0; i < numsigs; i++)
4052 {
4053 signal_stop[i] = 1;
4054 signal_print[i] = 1;
4055 signal_program[i] = 1;
4056 }
4057
4058 /* Signals caused by debugger's own actions
4059 should not be given to the program afterwards. */
4060 signal_program[TARGET_SIGNAL_TRAP] = 0;
4061 signal_program[TARGET_SIGNAL_INT] = 0;
4062
4063 /* Signals that are not errors should not normally enter the debugger. */
4064 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4065 signal_print[TARGET_SIGNAL_ALRM] = 0;
4066 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4067 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4068 signal_stop[TARGET_SIGNAL_PROF] = 0;
4069 signal_print[TARGET_SIGNAL_PROF] = 0;
4070 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4071 signal_print[TARGET_SIGNAL_CHLD] = 0;
4072 signal_stop[TARGET_SIGNAL_IO] = 0;
4073 signal_print[TARGET_SIGNAL_IO] = 0;
4074 signal_stop[TARGET_SIGNAL_POLL] = 0;
4075 signal_print[TARGET_SIGNAL_POLL] = 0;
4076 signal_stop[TARGET_SIGNAL_URG] = 0;
4077 signal_print[TARGET_SIGNAL_URG] = 0;
4078 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4079 signal_print[TARGET_SIGNAL_WINCH] = 0;
4080
4081 /* These signals are used internally by user-level thread
4082 implementations. (See signal(5) on Solaris.) Like the above
4083 signals, a healthy program receives and handles them as part of
4084 its normal operation. */
4085 signal_stop[TARGET_SIGNAL_LWP] = 0;
4086 signal_print[TARGET_SIGNAL_LWP] = 0;
4087 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4088 signal_print[TARGET_SIGNAL_WAITING] = 0;
4089 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4090 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4091
4092 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4093 &stop_on_solib_events, _("\
4094 Set stopping for shared library events."), _("\
4095 Show stopping for shared library events."), _("\
4096 If nonzero, gdb will give control to the user when the dynamic linker\n\
4097 notifies gdb of shared library events. The most common event of interest\n\
4098 to the user would be loading/unloading of a new library."),
4099 NULL,
4100 show_stop_on_solib_events,
4101 &setlist, &showlist);
4102
4103 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4104 follow_fork_mode_kind_names,
4105 &follow_fork_mode_string, _("\
4106 Set debugger response to a program call of fork or vfork."), _("\
4107 Show debugger response to a program call of fork or vfork."), _("\
4108 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4109 parent - the original process is debugged after a fork\n\
4110 child - the new process is debugged after a fork\n\
4111 The unfollowed process will continue to run.\n\
4112 By default, the debugger will follow the parent process."),
4113 NULL,
4114 show_follow_fork_mode_string,
4115 &setlist, &showlist);
4116
4117 add_setshow_enum_cmd ("scheduler-locking", class_run,
4118 scheduler_enums, &scheduler_mode, _("\
4119 Set mode for locking scheduler during execution."), _("\
4120 Show mode for locking scheduler during execution."), _("\
4121 off == no locking (threads may preempt at any time)\n\
4122 on == full locking (no thread except the current thread may run)\n\
4123 step == scheduler locked during every single-step operation.\n\
4124 In this mode, no other thread may run during a step command.\n\
4125 Other threads may run while stepping over a function call ('next')."),
4126 set_schedlock_func, /* traps on target vector */
4127 show_scheduler_mode,
4128 &setlist, &showlist);
4129
4130 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4131 Set mode of the step operation."), _("\
4132 Show mode of the step operation."), _("\
4133 When set, doing a step over a function without debug line information\n\
4134 will stop at the first instruction of that function. Otherwise, the\n\
4135 function is skipped and the step command stops at a different source line."),
4136 NULL,
4137 show_step_stop_if_no_debug,
4138 &setlist, &showlist);
4139
4140 /* ptid initializations */
4141 null_ptid = ptid_build (0, 0, 0);
4142 minus_one_ptid = ptid_build (-1, 0, 0);
4143 inferior_ptid = null_ptid;
4144 target_last_wait_ptid = minus_one_ptid;
4145 }
This page took 0.166033 seconds and 4 git commands to generate.