Revert accidental push of "Inline breakpoints" commit
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 /* See infrun.h. */
104
105 void
106 infrun_async (int enable)
107 {
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 int step_stop_if_no_debug = 0;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static int detach_fork = 1;
155
156 int debug_displaced = 0;
157 static void
158 show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162 }
163
164 unsigned int debug_infrun = 0;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172
173 /* Support for disabling address space randomization. */
174
175 int disable_randomization = 1;
176
177 static void
178 show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190 }
191
192 static void
193 set_disable_randomization (const char *args, int from_tty,
194 struct cmd_list_element *c)
195 {
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200 }
201
202 /* User interface for non-stop mode. */
203
204 int non_stop = 0;
205 static int non_stop_1 = 0;
206
207 static void
208 set_non_stop (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218 }
219
220 static void
221 show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227 }
228
229 /* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
233 int observer_mode = 0;
234 static int observer_mode_1 = 0;
235
236 static void
237 set_observer_mode (const char *args, int from_tty,
238 struct cmd_list_element *c)
239 {
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270 }
271
272 static void
273 show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277 }
278
279 /* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285 void
286 update_observer_mode (void)
287 {
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302 }
303
304 /* Tables of how to react to signals; the user sets them. */
305
306 static unsigned char *signal_stop;
307 static unsigned char *signal_print;
308 static unsigned char *signal_program;
309
310 /* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314 static unsigned char *signal_catch;
315
316 /* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319 static unsigned char *signal_pass;
320
321 #define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329 #define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
337 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340 void
341 update_signals_program_target (void)
342 {
343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
344 }
345
346 /* Value to pass to target_resume() to cause all threads to resume. */
347
348 #define RESUME_ALL minus_one_ptid
349
350 /* Command list pointer for the "stop" placeholder. */
351
352 static struct cmd_list_element *stop_command;
353
354 /* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
356 int stop_on_solib_events;
357
358 /* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361 static void
362 set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
364 {
365 update_solib_breakpoints ();
366 }
367
368 static void
369 show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374 }
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 static void context_switch (ptid_t ptid);
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (print_inferior_events)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("[Detaching after %s from child %s]\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (ptid_get_pid (child_ptid));
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread_silent (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (ptid_get_pid (child_ptid));
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
599 {
600 if (print_inferior_events)
601 {
602 /* Ensure that we have a process ptid. */
603 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (parent_ptid));
604
605 target_terminal::ours_for_output ();
606 fprintf_filtered (gdb_stdlog,
607 _("[Detaching after fork from "
608 "parent %s]\n"),
609 target_pid_to_str (process_ptid));
610 }
611
612 target_detach (parent_inf, 0);
613 }
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
621 inferior_ptid = child_ptid;
622 add_thread_silent (inferior_ptid);
623 set_current_inferior (child_inf);
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
636 child_inf->pspace = new program_space (child_inf->aspace);
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652 }
653
654 /* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
658 static int
659 follow_fork (void)
660 {
661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
670 struct breakpoint *exception_resume_breakpoint = NULL;
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
674 struct thread_fsm *thread_fsm = NULL;
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
692 if (!ptid_equal (wait_ptid, minus_one_ptid)
693 && !ptid_equal (inferior_ptid, wait_ptid))
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
699 switch_to_thread (wait_ptid);
700 should_resume = 0;
701 }
702 }
703
704 tp = inferior_thread ();
705
706 /* If there were any forks/vforks that were caught and are now to be
707 followed, then do so now. */
708 switch (tp->pending_follow.kind)
709 {
710 case TARGET_WAITKIND_FORKED:
711 case TARGET_WAITKIND_VFORKED:
712 {
713 ptid_t parent, child;
714
715 /* If the user did a next/step, etc, over a fork call,
716 preserve the stepping state in the fork child. */
717 if (follow_child && should_resume)
718 {
719 step_resume_breakpoint = clone_momentary_breakpoint
720 (tp->control.step_resume_breakpoint);
721 step_range_start = tp->control.step_range_start;
722 step_range_end = tp->control.step_range_end;
723 step_frame_id = tp->control.step_frame_id;
724 exception_resume_breakpoint
725 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
726 thread_fsm = tp->thread_fsm;
727
728 /* For now, delete the parent's sr breakpoint, otherwise,
729 parent/child sr breakpoints are considered duplicates,
730 and the child version will not be installed. Remove
731 this when the breakpoints module becomes aware of
732 inferiors and address spaces. */
733 delete_step_resume_breakpoint (tp);
734 tp->control.step_range_start = 0;
735 tp->control.step_range_end = 0;
736 tp->control.step_frame_id = null_frame_id;
737 delete_exception_resume_breakpoint (tp);
738 tp->thread_fsm = NULL;
739 }
740
741 parent = inferior_ptid;
742 child = tp->pending_follow.value.related_pid;
743
744 /* Set up inferior(s) as specified by the caller, and tell the
745 target to do whatever is necessary to follow either parent
746 or child. */
747 if (follow_fork_inferior (follow_child, detach_fork))
748 {
749 /* Target refused to follow, or there's some other reason
750 we shouldn't resume. */
751 should_resume = 0;
752 }
753 else
754 {
755 /* This pending follow fork event is now handled, one way
756 or another. The previous selected thread may be gone
757 from the lists by now, but if it is still around, need
758 to clear the pending follow request. */
759 tp = find_thread_ptid (parent);
760 if (tp)
761 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
762
763 /* This makes sure we don't try to apply the "Switched
764 over from WAIT_PID" logic above. */
765 nullify_last_target_wait_ptid ();
766
767 /* If we followed the child, switch to it... */
768 if (follow_child)
769 {
770 switch_to_thread (child);
771
772 /* ... and preserve the stepping state, in case the
773 user was stepping over the fork call. */
774 if (should_resume)
775 {
776 tp = inferior_thread ();
777 tp->control.step_resume_breakpoint
778 = step_resume_breakpoint;
779 tp->control.step_range_start = step_range_start;
780 tp->control.step_range_end = step_range_end;
781 tp->control.step_frame_id = step_frame_id;
782 tp->control.exception_resume_breakpoint
783 = exception_resume_breakpoint;
784 tp->thread_fsm = thread_fsm;
785 }
786 else
787 {
788 /* If we get here, it was because we're trying to
789 resume from a fork catchpoint, but, the user
790 has switched threads away from the thread that
791 forked. In that case, the resume command
792 issued is most likely not applicable to the
793 child, so just warn, and refuse to resume. */
794 warning (_("Not resuming: switched threads "
795 "before following fork child."));
796 }
797
798 /* Reset breakpoints in the child as appropriate. */
799 follow_inferior_reset_breakpoints ();
800 }
801 else
802 switch_to_thread (parent);
803 }
804 }
805 break;
806 case TARGET_WAITKIND_SPURIOUS:
807 /* Nothing to follow. */
808 break;
809 default:
810 internal_error (__FILE__, __LINE__,
811 "Unexpected pending_follow.kind %d\n",
812 tp->pending_follow.kind);
813 break;
814 }
815
816 return should_resume;
817 }
818
819 static void
820 follow_inferior_reset_breakpoints (void)
821 {
822 struct thread_info *tp = inferior_thread ();
823
824 /* Was there a step_resume breakpoint? (There was if the user
825 did a "next" at the fork() call.) If so, explicitly reset its
826 thread number. Cloned step_resume breakpoints are disabled on
827 creation, so enable it here now that it is associated with the
828 correct thread.
829
830 step_resumes are a form of bp that are made to be per-thread.
831 Since we created the step_resume bp when the parent process
832 was being debugged, and now are switching to the child process,
833 from the breakpoint package's viewpoint, that's a switch of
834 "threads". We must update the bp's notion of which thread
835 it is for, or it'll be ignored when it triggers. */
836
837 if (tp->control.step_resume_breakpoint)
838 {
839 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
840 tp->control.step_resume_breakpoint->loc->enabled = 1;
841 }
842
843 /* Treat exception_resume breakpoints like step_resume breakpoints. */
844 if (tp->control.exception_resume_breakpoint)
845 {
846 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
847 tp->control.exception_resume_breakpoint->loc->enabled = 1;
848 }
849
850 /* Reinsert all breakpoints in the child. The user may have set
851 breakpoints after catching the fork, in which case those
852 were never set in the child, but only in the parent. This makes
853 sure the inserted breakpoints match the breakpoint list. */
854
855 breakpoint_re_set ();
856 insert_breakpoints ();
857 }
858
859 /* The child has exited or execed: resume threads of the parent the
860 user wanted to be executing. */
861
862 static int
863 proceed_after_vfork_done (struct thread_info *thread,
864 void *arg)
865 {
866 int pid = * (int *) arg;
867
868 if (ptid_get_pid (thread->ptid) == pid
869 && is_running (thread->ptid)
870 && !is_executing (thread->ptid)
871 && !thread->stop_requested
872 && thread->suspend.stop_signal == GDB_SIGNAL_0)
873 {
874 if (debug_infrun)
875 fprintf_unfiltered (gdb_stdlog,
876 "infrun: resuming vfork parent thread %s\n",
877 target_pid_to_str (thread->ptid));
878
879 switch_to_thread (thread->ptid);
880 clear_proceed_status (0);
881 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
882 }
883
884 return 0;
885 }
886
887 /* Save/restore inferior_ptid, current program space and current
888 inferior. Only use this if the current context points at an exited
889 inferior (and therefore there's no current thread to save). */
890 class scoped_restore_exited_inferior
891 {
892 public:
893 scoped_restore_exited_inferior ()
894 : m_saved_ptid (&inferior_ptid)
895 {}
896
897 private:
898 scoped_restore_tmpl<ptid_t> m_saved_ptid;
899 scoped_restore_current_program_space m_pspace;
900 scoped_restore_current_inferior m_inferior;
901 };
902
903 /* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906 static void
907 handle_vfork_child_exec_or_exit (int exec)
908 {
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
925 /* follow-fork child, detach-on-fork on. */
926
927 inf->vfork_parent->pending_detach = 0;
928
929 gdb::optional<scoped_restore_exited_inferior>
930 maybe_restore_inferior;
931 gdb::optional<scoped_restore_current_pspace_and_thread>
932 maybe_restore_thread;
933
934 /* If we're handling a child exit, then inferior_ptid points
935 at the inferior's pid, not to a thread. */
936 if (!exec)
937 maybe_restore_inferior.emplace ();
938 else
939 maybe_restore_thread.emplace ();
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (print_inferior_events)
963 {
964 const char *pidstr
965 = target_pid_to_str (pid_to_ptid (inf->vfork_parent->pid));
966
967 target_terminal::ours_for_output ();
968
969 if (exec)
970 {
971 fprintf_filtered (gdb_stdlog,
972 _("[Detaching vfork parent %s "
973 "after child exec]\n"), pidstr);
974 }
975 else
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("[Detaching vfork parent %s "
979 "after child exit]\n"), pidstr);
980 }
981 }
982
983 target_detach (inf->vfork_parent, 0);
984
985 /* Put it back. */
986 inf->pspace = pspace;
987 inf->aspace = aspace;
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = new program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct program_space *pspace;
1006
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to null_ptid while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore restore_ptid
1020 = make_scoped_restore (&inferior_ptid, null_ptid);
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = new program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
1030 inf->symfile_flags = SYMFILE_NO_READ;
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
1048 scoped_restore_current_thread restore_thread;
1049
1050 if (debug_infrun)
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, char *exec_file_target)
1083 {
1084 struct thread_info *th, *tmp;
1085 struct inferior *inf = current_inferior ();
1086 int pid = ptid_get_pid (ptid);
1087 ptid_t process_ptid;
1088
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1108 we now have a new a.out, those shadow contents aren't valid. */
1109
1110 mark_breakpoints_out ();
1111
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
1131 ALL_THREADS_SAFE (th, tmp)
1132 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1133 delete_thread (th->ptid);
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
1139 th = inferior_thread ();
1140 th->control.step_resume_breakpoint = NULL;
1141 th->control.exception_resume_breakpoint = NULL;
1142 th->control.single_step_breakpoints = NULL;
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
1145
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
1149 th->stop_requested = 0;
1150
1151 update_breakpoints_after_exec ();
1152
1153 /* What is this a.out's name? */
1154 process_ptid = pid_to_ptid (pid);
1155 printf_unfiltered (_("%s is executing new program: %s\n"),
1156 target_pid_to_str (process_ptid),
1157 exec_file_target);
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1160 inferior has essentially been killed & reborn. */
1161
1162 gdb_flush (gdb_stdout);
1163
1164 breakpoint_init_inferior (inf_execd);
1165
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
1168
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
1177
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
1191 /* Do exit processing for the original inferior before adding
1192 the new inferior so we don't have two active inferiors with
1193 the same ptid, which can confuse find_inferior_ptid. */
1194 exit_inferior_num_silent (current_inferior ()->num);
1195
1196 inf = add_inferior_with_spaces ();
1197 inf->pid = pid;
1198 target_follow_exec (inf, exec_file_target);
1199
1200 set_current_inferior (inf);
1201 set_current_program_space (inf->pspace);
1202 }
1203 else
1204 {
1205 /* The old description may no longer be fit for the new image.
1206 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1207 old description; we'll read a new one below. No need to do
1208 this on "follow-exec-mode new", as the old inferior stays
1209 around (its description is later cleared/refetched on
1210 restart). */
1211 target_clear_description ();
1212 }
1213
1214 gdb_assert (current_program_space == inf->pspace);
1215
1216 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1217 because the proper displacement for a PIE (Position Independent
1218 Executable) main symbol file will only be computed by
1219 solib_create_inferior_hook below. breakpoint_re_set would fail
1220 to insert the breakpoints with the zero displacement. */
1221 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1222
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
1236 solib_create_inferior_hook (0);
1237
1238 jit_inferior_created_hook ();
1239
1240 breakpoint_re_set ();
1241
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1244 to symbol_file_command...). */
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1250 matically get reset there in the new process.). */
1251 }
1252
1253 /* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260 struct thread_info *step_over_queue_head;
1261
1262 /* Bit flags indicating what the thread needs to step over. */
1263
1264 enum step_over_what_flag
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
1274 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1275
1276 /* Info about an instruction that is being stepped over. */
1277
1278 struct step_over_info
1279 {
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
1284 const address_space *aspace;
1285 CORE_ADDR address;
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
1290
1291 /* The thread's global number. */
1292 int thread;
1293 };
1294
1295 /* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319 static struct step_over_info step_over_info;
1320
1321 /* Record the address of the breakpoint/instruction we're currently
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
1325
1326 static void
1327 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1328 int nonsteppable_watchpoint_p,
1329 int thread)
1330 {
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1334 step_over_info.thread = thread;
1335 }
1336
1337 /* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340 static void
1341 clear_step_over_info (void)
1342 {
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349 step_over_info.thread = -1;
1350 }
1351
1352 /* See infrun.h. */
1353
1354 int
1355 stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357 {
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362 }
1363
1364 /* See infrun.h. */
1365
1366 int
1367 thread_is_stepping_over_breakpoint (int thread)
1368 {
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371 }
1372
1373 /* See infrun.h. */
1374
1375 int
1376 stepping_past_nonsteppable_watchpoint (void)
1377 {
1378 return step_over_info.nonsteppable_watchpoint_p;
1379 }
1380
1381 /* Returns true if step-over info is valid. */
1382
1383 static int
1384 step_over_info_valid_p (void)
1385 {
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
1388 }
1389
1390 \f
1391 /* Displaced stepping. */
1392
1393 /* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
1477 /* Default destructor for displaced_step_closure. */
1478
1479 displaced_step_closure::~displaced_step_closure () = default;
1480
1481 /* Per-inferior displaced stepping state. */
1482 struct displaced_step_inferior_state
1483 {
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512 };
1513
1514 /* The list of states of processes involved in displaced stepping
1515 presently. */
1516 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518 /* Get the displaced stepping state of process PID. */
1519
1520 static struct displaced_step_inferior_state *
1521 get_displaced_stepping_state (int pid)
1522 {
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532 }
1533
1534 /* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537 static int
1538 displaced_step_in_progress_any_inferior (void)
1539 {
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 /* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554 static int
1555 displaced_step_in_progress_thread (ptid_t ptid)
1556 {
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564 }
1565
1566 /* Return true if process PID has a thread doing a displaced step. */
1567
1568 static int
1569 displaced_step_in_progress (int pid)
1570 {
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578 }
1579
1580 /* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584 static struct displaced_step_inferior_state *
1585 add_displaced_stepping_state (int pid)
1586 {
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
1594
1595 state = XCNEW (struct displaced_step_inferior_state);
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
1599
1600 return state;
1601 }
1602
1603 /* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607 struct displaced_step_closure*
1608 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609 {
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619 }
1620
1621 /* Remove the displaced stepping state of process PID. */
1622
1623 static void
1624 remove_displaced_stepping_state (int pid)
1625 {
1626 struct displaced_step_inferior_state *it, **prev_next_p;
1627
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644 }
1645
1646 static void
1647 infrun_inferior_exit (struct inferior *inf)
1648 {
1649 remove_displaced_stepping_state (inf->pid);
1650 }
1651
1652 /* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
1660 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1661
1662 static void
1663 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666 {
1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
1671 value, target_is_non_stop_p () ? "on" : "off");
1672 else
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
1676 }
1677
1678 /* Return non-zero if displaced stepping can/should be used to step
1679 over breakpoints of thread TP. */
1680
1681 static int
1682 use_displaced_stepping (struct thread_info *tp)
1683 {
1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
1685 struct gdbarch *gdbarch = regcache->arch ();
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
1697 }
1698
1699 /* Clean out any stray displaced stepping state. */
1700 static void
1701 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1702 {
1703 /* Indicate that there is no cleanup pending. */
1704 displaced->step_ptid = null_ptid;
1705
1706 delete displaced->step_closure;
1707 displaced->step_closure = NULL;
1708 }
1709
1710 static void
1711 displaced_step_clear_cleanup (void *arg)
1712 {
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
1715
1716 displaced_step_clear (state);
1717 }
1718
1719 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720 void
1721 displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724 {
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730 }
1731
1732 /* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
1748 static int
1749 displaced_step_prepare_throw (ptid_t ptid)
1750 {
1751 struct cleanup *ignore_cleanups;
1752 struct thread_info *tp = find_thread_ptid (ptid);
1753 struct regcache *regcache = get_thread_regcache (ptid);
1754 struct gdbarch *gdbarch = regcache->arch ();
1755 const address_space *aspace = regcache->aspace ();
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
1759 struct displaced_step_inferior_state *displaced;
1760 int status;
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
1777
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "displaced: deferring step of %s\n",
1788 target_pid_to_str (ptid));
1789
1790 thread_step_over_chain_enqueue (tp);
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
1801 displaced_step_clear (displaced);
1802
1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1804 inferior_ptid = ptid;
1805
1806 original = regcache_read_pc (regcache);
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
1829 return -1;
1830 }
1831
1832 /* Save the original contents of the copy area. */
1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1834 ignore_cleanups = make_cleanup (free_current_contents,
1835 &displaced->step_saved_copy);
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
1842 if (debug_displaced)
1843 {
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1852 original, copy, regcache);
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
1858 do_cleanups (ignore_cleanups);
1859 return -1;
1860 }
1861
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
1869
1870 make_cleanup (displaced_step_clear_cleanup, displaced);
1871
1872 /* Resume execution at the copy. */
1873 regcache_write_pc (regcache, copy);
1874
1875 discard_cleanups (ignore_cleanups);
1876
1877 if (debug_displaced)
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
1880
1881 return 1;
1882 }
1883
1884 /* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887 static int
1888 displaced_step_prepare (ptid_t ptid)
1889 {
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
1915 warning (_("disabling displaced stepping: %s"),
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927 }
1928
1929 static void
1930 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
1932 {
1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1934
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
1937 }
1938
1939 /* Restore the contents of the copy area for thread PTID. */
1940
1941 static void
1942 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944 {
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954 }
1955
1956 /* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962 static int
1963 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1964 {
1965 struct cleanup *old_cleanups;
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1968 int ret;
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
1972 return 0;
1973
1974 /* Was this event for the pid we displaced? */
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
1977 return 0;
1978
1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1980
1981 displaced_step_restore (displaced, displaced->step_ptid);
1982
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
1988 /* Did the instruction complete successfully? */
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
1993 {
1994 /* Fix up the resulting state. */
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
2000 ret = 1;
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
2008
2009 pc = displaced->step_original + (pc - displaced->step_copy);
2010 regcache_write_pc (regcache, pc);
2011 ret = -1;
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
2016 displaced->step_ptid = null_ptid;
2017
2018 return ret;
2019 }
2020
2021 /* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023 struct execution_control_state
2024 {
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042 };
2043
2044 /* Clear ECS and set it to point at TP. */
2045
2046 static void
2047 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048 {
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052 }
2053
2054 static void keep_going_pass_signal (struct execution_control_state *ecs);
2055 static void prepare_to_wait (struct execution_control_state *ecs);
2056 static int keep_going_stepped_thread (struct thread_info *tp);
2057 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2058
2059 /* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062 static int
2063 start_step_over (void)
2064 {
2065 struct thread_info *tp, *next;
2066
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
2073 {
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
2076 step_over_what step_what;
2077 int must_be_in_line;
2078
2079 gdb_assert (!tp->stop_requested);
2080
2081 next = thread_step_over_chain_next (tp);
2082
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2086 continue;
2087
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
2091 && !use_displaced_stepping (tp)));
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
2111 {
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
2114 "trap_expected=%d, resumed=%d, executing=%d\n",
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
2117 tp->resumed,
2118 tp->executing);
2119 }
2120
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
2132 if (!target_is_non_stop_p () && !step_what)
2133 continue;
2134
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
2138
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
2141
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
2151 if (!target_is_non_stop_p ())
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
2162 }
2163
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
2168 }
2169
2170 return 0;
2171 }
2172
2173 /* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175 static void
2176 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177 {
2178 struct displaced_step_inferior_state *displaced;
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
2189 }
2190 }
2191
2192 \f
2193
2194 static const char schedlock_off[] = "off";
2195 static const char schedlock_on[] = "on";
2196 static const char schedlock_step[] = "step";
2197 static const char schedlock_replay[] = "replay";
2198 static const char *const scheduler_enums[] = {
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
2202 schedlock_replay,
2203 NULL
2204 };
2205 static const char *scheduler_mode = schedlock_replay;
2206 static void
2207 show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209 {
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
2213 value);
2214 }
2215
2216 static void
2217 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2218 {
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
2224 }
2225
2226 /* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229 int sched_multi = 0;
2230
2231 /* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237 static int
2238 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239 {
2240 int hw_step = 1;
2241
2242 if (execution_direction == EXEC_FORWARD
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2246 return hw_step;
2247 }
2248
2249 /* See infrun.h. */
2250
2251 ptid_t
2252 user_visible_resume_ptid (int step)
2253 {
2254 ptid_t resume_ptid;
2255
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
2263 || (scheduler_mode == schedlock_step && step))
2264 {
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
2267 resume_ptid = inferior_ptid;
2268 }
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
2287
2288 return resume_ptid;
2289 }
2290
2291 /* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297 static ptid_t
2298 internal_resume_ptid (int user_step)
2299 {
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308 }
2309
2310 /* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313 static void
2314 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315 {
2316 struct thread_info *tp = inferior_thread ();
2317
2318 gdb_assert (!tp->stop_requested);
2319
2320 /* Install inferior's terminal modes. */
2321 target_terminal::inferior ();
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
2353
2354 target_commit_resume ();
2355 }
2356
2357 /* Resume the inferior. SIG is the signal to give the inferior
2358 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2359 call 'resume', which handles exceptions. */
2360
2361 static void
2362 resume_1 (enum gdb_signal sig)
2363 {
2364 struct regcache *regcache = get_current_regcache ();
2365 struct gdbarch *gdbarch = regcache->arch ();
2366 struct thread_info *tp = inferior_thread ();
2367 CORE_ADDR pc = regcache_read_pc (regcache);
2368 const address_space *aspace = regcache->aspace ();
2369 ptid_t resume_ptid;
2370 /* This represents the user's step vs continue request. When
2371 deciding whether "set scheduler-locking step" applies, it's the
2372 user's intention that counts. */
2373 const int user_step = tp->control.stepping_command;
2374 /* This represents what we'll actually request the target to do.
2375 This can decay from a step to a continue, if e.g., we need to
2376 implement single-stepping with breakpoints (software
2377 single-step). */
2378 int step;
2379
2380 gdb_assert (!tp->stop_requested);
2381 gdb_assert (!thread_is_in_step_over_chain (tp));
2382
2383 if (tp->suspend.waitstatus_pending_p)
2384 {
2385 if (debug_infrun)
2386 {
2387 std::string statstr
2388 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2389
2390 fprintf_unfiltered (gdb_stdlog,
2391 "infrun: resume: thread %s has pending wait "
2392 "status %s (currently_stepping=%d).\n",
2393 target_pid_to_str (tp->ptid), statstr.c_str (),
2394 currently_stepping (tp));
2395 }
2396
2397 tp->resumed = 1;
2398
2399 /* FIXME: What should we do if we are supposed to resume this
2400 thread with a signal? Maybe we should maintain a queue of
2401 pending signals to deliver. */
2402 if (sig != GDB_SIGNAL_0)
2403 {
2404 warning (_("Couldn't deliver signal %s to %s."),
2405 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2406 }
2407
2408 tp->suspend.stop_signal = GDB_SIGNAL_0;
2409
2410 if (target_can_async_p ())
2411 {
2412 target_async (1);
2413 /* Tell the event loop we have an event to process. */
2414 mark_async_event_handler (infrun_async_inferior_event_token);
2415 }
2416 return;
2417 }
2418
2419 tp->stepped_breakpoint = 0;
2420
2421 /* Depends on stepped_breakpoint. */
2422 step = currently_stepping (tp);
2423
2424 if (current_inferior ()->waiting_for_vfork_done)
2425 {
2426 /* Don't try to single-step a vfork parent that is waiting for
2427 the child to get out of the shared memory region (by exec'ing
2428 or exiting). This is particularly important on software
2429 single-step archs, as the child process would trip on the
2430 software single step breakpoint inserted for the parent
2431 process. Since the parent will not actually execute any
2432 instruction until the child is out of the shared region (such
2433 are vfork's semantics), it is safe to simply continue it.
2434 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2435 the parent, and tell it to `keep_going', which automatically
2436 re-sets it stepping. */
2437 if (debug_infrun)
2438 fprintf_unfiltered (gdb_stdlog,
2439 "infrun: resume : clear step\n");
2440 step = 0;
2441 }
2442
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "infrun: resume (step=%d, signal=%s), "
2446 "trap_expected=%d, current thread [%s] at %s\n",
2447 step, gdb_signal_to_symbol_string (sig),
2448 tp->control.trap_expected,
2449 target_pid_to_str (inferior_ptid),
2450 paddress (gdbarch, pc));
2451
2452 /* Normally, by the time we reach `resume', the breakpoints are either
2453 removed or inserted, as appropriate. The exception is if we're sitting
2454 at a permanent breakpoint; we need to step over it, but permanent
2455 breakpoints can't be removed. So we have to test for it here. */
2456 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2457 {
2458 if (sig != GDB_SIGNAL_0)
2459 {
2460 /* We have a signal to pass to the inferior. The resume
2461 may, or may not take us to the signal handler. If this
2462 is a step, we'll need to stop in the signal handler, if
2463 there's one, (if the target supports stepping into
2464 handlers), or in the next mainline instruction, if
2465 there's no handler. If this is a continue, we need to be
2466 sure to run the handler with all breakpoints inserted.
2467 In all cases, set a breakpoint at the current address
2468 (where the handler returns to), and once that breakpoint
2469 is hit, resume skipping the permanent breakpoint. If
2470 that breakpoint isn't hit, then we've stepped into the
2471 signal handler (or hit some other event). We'll delete
2472 the step-resume breakpoint then. */
2473
2474 if (debug_infrun)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "infrun: resume: skipping permanent breakpoint, "
2477 "deliver signal first\n");
2478
2479 clear_step_over_info ();
2480 tp->control.trap_expected = 0;
2481
2482 if (tp->control.step_resume_breakpoint == NULL)
2483 {
2484 /* Set a "high-priority" step-resume, as we don't want
2485 user breakpoints at PC to trigger (again) when this
2486 hits. */
2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2488 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2489
2490 tp->step_after_step_resume_breakpoint = step;
2491 }
2492
2493 insert_breakpoints ();
2494 }
2495 else
2496 {
2497 /* There's no signal to pass, we can go ahead and skip the
2498 permanent breakpoint manually. */
2499 if (debug_infrun)
2500 fprintf_unfiltered (gdb_stdlog,
2501 "infrun: resume: skipping permanent breakpoint\n");
2502 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2503 /* Update pc to reflect the new address from which we will
2504 execute instructions. */
2505 pc = regcache_read_pc (regcache);
2506
2507 if (step)
2508 {
2509 /* We've already advanced the PC, so the stepping part
2510 is done. Now we need to arrange for a trap to be
2511 reported to handle_inferior_event. Set a breakpoint
2512 at the current PC, and run to it. Don't update
2513 prev_pc, because if we end in
2514 switch_back_to_stepped_thread, we want the "expected
2515 thread advanced also" branch to be taken. IOW, we
2516 don't want this thread to step further from PC
2517 (overstep). */
2518 gdb_assert (!step_over_info_valid_p ());
2519 insert_single_step_breakpoint (gdbarch, aspace, pc);
2520 insert_breakpoints ();
2521
2522 resume_ptid = internal_resume_ptid (user_step);
2523 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2524 tp->resumed = 1;
2525 return;
2526 }
2527 }
2528 }
2529
2530 /* If we have a breakpoint to step over, make sure to do a single
2531 step only. Same if we have software watchpoints. */
2532 if (tp->control.trap_expected || bpstat_should_step ())
2533 tp->control.may_range_step = 0;
2534
2535 /* If enabled, step over breakpoints by executing a copy of the
2536 instruction at a different address.
2537
2538 We can't use displaced stepping when we have a signal to deliver;
2539 the comments for displaced_step_prepare explain why. The
2540 comments in the handle_inferior event for dealing with 'random
2541 signals' explain what we do instead.
2542
2543 We can't use displaced stepping when we are waiting for vfork_done
2544 event, displaced stepping breaks the vfork child similarly as single
2545 step software breakpoint. */
2546 if (tp->control.trap_expected
2547 && use_displaced_stepping (tp)
2548 && !step_over_info_valid_p ()
2549 && sig == GDB_SIGNAL_0
2550 && !current_inferior ()->waiting_for_vfork_done)
2551 {
2552 int prepared = displaced_step_prepare (inferior_ptid);
2553
2554 if (prepared == 0)
2555 {
2556 if (debug_infrun)
2557 fprintf_unfiltered (gdb_stdlog,
2558 "Got placed in step-over queue\n");
2559
2560 tp->control.trap_expected = 0;
2561 return;
2562 }
2563 else if (prepared < 0)
2564 {
2565 /* Fallback to stepping over the breakpoint in-line. */
2566
2567 if (target_is_non_stop_p ())
2568 stop_all_threads ();
2569
2570 set_step_over_info (regcache->aspace (),
2571 regcache_read_pc (regcache), 0, tp->global_num);
2572
2573 step = maybe_software_singlestep (gdbarch, pc);
2574
2575 insert_breakpoints ();
2576 }
2577 else if (prepared > 0)
2578 {
2579 struct displaced_step_inferior_state *displaced;
2580
2581 /* Update pc to reflect the new address from which we will
2582 execute instructions due to displaced stepping. */
2583 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2584
2585 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2586 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2587 displaced->step_closure);
2588 }
2589 }
2590
2591 /* Do we need to do it the hard way, w/temp breakpoints? */
2592 else if (step)
2593 step = maybe_software_singlestep (gdbarch, pc);
2594
2595 /* Currently, our software single-step implementation leads to different
2596 results than hardware single-stepping in one situation: when stepping
2597 into delivering a signal which has an associated signal handler,
2598 hardware single-step will stop at the first instruction of the handler,
2599 while software single-step will simply skip execution of the handler.
2600
2601 For now, this difference in behavior is accepted since there is no
2602 easy way to actually implement single-stepping into a signal handler
2603 without kernel support.
2604
2605 However, there is one scenario where this difference leads to follow-on
2606 problems: if we're stepping off a breakpoint by removing all breakpoints
2607 and then single-stepping. In this case, the software single-step
2608 behavior means that even if there is a *breakpoint* in the signal
2609 handler, GDB still would not stop.
2610
2611 Fortunately, we can at least fix this particular issue. We detect
2612 here the case where we are about to deliver a signal while software
2613 single-stepping with breakpoints removed. In this situation, we
2614 revert the decisions to remove all breakpoints and insert single-
2615 step breakpoints, and instead we install a step-resume breakpoint
2616 at the current address, deliver the signal without stepping, and
2617 once we arrive back at the step-resume breakpoint, actually step
2618 over the breakpoint we originally wanted to step over. */
2619 if (thread_has_single_step_breakpoints_set (tp)
2620 && sig != GDB_SIGNAL_0
2621 && step_over_info_valid_p ())
2622 {
2623 /* If we have nested signals or a pending signal is delivered
2624 immediately after a handler returns, might might already have
2625 a step-resume breakpoint set on the earlier handler. We cannot
2626 set another step-resume breakpoint; just continue on until the
2627 original breakpoint is hit. */
2628 if (tp->control.step_resume_breakpoint == NULL)
2629 {
2630 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2631 tp->step_after_step_resume_breakpoint = 1;
2632 }
2633
2634 delete_single_step_breakpoints (tp);
2635
2636 clear_step_over_info ();
2637 tp->control.trap_expected = 0;
2638
2639 insert_breakpoints ();
2640 }
2641
2642 /* If STEP is set, it's a request to use hardware stepping
2643 facilities. But in that case, we should never
2644 use singlestep breakpoint. */
2645 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2646
2647 /* Decide the set of threads to ask the target to resume. */
2648 if (tp->control.trap_expected)
2649 {
2650 /* We're allowing a thread to run past a breakpoint it has
2651 hit, either by single-stepping the thread with the breakpoint
2652 removed, or by displaced stepping, with the breakpoint inserted.
2653 In the former case, we need to single-step only this thread,
2654 and keep others stopped, as they can miss this breakpoint if
2655 allowed to run. That's not really a problem for displaced
2656 stepping, but, we still keep other threads stopped, in case
2657 another thread is also stopped for a breakpoint waiting for
2658 its turn in the displaced stepping queue. */
2659 resume_ptid = inferior_ptid;
2660 }
2661 else
2662 resume_ptid = internal_resume_ptid (user_step);
2663
2664 if (execution_direction != EXEC_REVERSE
2665 && step && breakpoint_inserted_here_p (aspace, pc))
2666 {
2667 /* There are two cases where we currently need to step a
2668 breakpoint instruction when we have a signal to deliver:
2669
2670 - See handle_signal_stop where we handle random signals that
2671 could take out us out of the stepping range. Normally, in
2672 that case we end up continuing (instead of stepping) over the
2673 signal handler with a breakpoint at PC, but there are cases
2674 where we should _always_ single-step, even if we have a
2675 step-resume breakpoint, like when a software watchpoint is
2676 set. Assuming single-stepping and delivering a signal at the
2677 same time would takes us to the signal handler, then we could
2678 have removed the breakpoint at PC to step over it. However,
2679 some hardware step targets (like e.g., Mac OS) can't step
2680 into signal handlers, and for those, we need to leave the
2681 breakpoint at PC inserted, as otherwise if the handler
2682 recurses and executes PC again, it'll miss the breakpoint.
2683 So we leave the breakpoint inserted anyway, but we need to
2684 record that we tried to step a breakpoint instruction, so
2685 that adjust_pc_after_break doesn't end up confused.
2686
2687 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2688 in one thread after another thread that was stepping had been
2689 momentarily paused for a step-over. When we re-resume the
2690 stepping thread, it may be resumed from that address with a
2691 breakpoint that hasn't trapped yet. Seen with
2692 gdb.threads/non-stop-fair-events.exp, on targets that don't
2693 do displaced stepping. */
2694
2695 if (debug_infrun)
2696 fprintf_unfiltered (gdb_stdlog,
2697 "infrun: resume: [%s] stepped breakpoint\n",
2698 target_pid_to_str (tp->ptid));
2699
2700 tp->stepped_breakpoint = 1;
2701
2702 /* Most targets can step a breakpoint instruction, thus
2703 executing it normally. But if this one cannot, just
2704 continue and we will hit it anyway. */
2705 if (gdbarch_cannot_step_breakpoint (gdbarch))
2706 step = 0;
2707 }
2708
2709 if (debug_displaced
2710 && tp->control.trap_expected
2711 && use_displaced_stepping (tp)
2712 && !step_over_info_valid_p ())
2713 {
2714 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2715 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2716 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2717 gdb_byte buf[4];
2718
2719 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2720 paddress (resume_gdbarch, actual_pc));
2721 read_memory (actual_pc, buf, sizeof (buf));
2722 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2723 }
2724
2725 if (tp->control.may_range_step)
2726 {
2727 /* If we're resuming a thread with the PC out of the step
2728 range, then we're doing some nested/finer run control
2729 operation, like stepping the thread out of the dynamic
2730 linker or the displaced stepping scratch pad. We
2731 shouldn't have allowed a range step then. */
2732 gdb_assert (pc_in_thread_step_range (pc, tp));
2733 }
2734
2735 do_target_resume (resume_ptid, step, sig);
2736 tp->resumed = 1;
2737 }
2738
2739 /* Resume the inferior. SIG is the signal to give the inferior
2740 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2741 rolls back state on error. */
2742
2743 void
2744 resume (gdb_signal sig)
2745 {
2746 TRY
2747 {
2748 resume_1 (sig);
2749 }
2750 CATCH (ex, RETURN_MASK_ALL)
2751 {
2752 /* If resuming is being aborted for any reason, delete any
2753 single-step breakpoint resume_1 may have created, to avoid
2754 confusing the following resumption, and to avoid leaving
2755 single-step breakpoints perturbing other threads, in case
2756 we're running in non-stop mode. */
2757 if (inferior_ptid != null_ptid)
2758 delete_single_step_breakpoints (inferior_thread ());
2759 throw_exception (ex);
2760 }
2761 END_CATCH
2762 }
2763
2764 \f
2765 /* Proceeding. */
2766
2767 /* See infrun.h. */
2768
2769 /* Counter that tracks number of user visible stops. This can be used
2770 to tell whether a command has proceeded the inferior past the
2771 current location. This allows e.g., inferior function calls in
2772 breakpoint commands to not interrupt the command list. When the
2773 call finishes successfully, the inferior is standing at the same
2774 breakpoint as if nothing happened (and so we don't call
2775 normal_stop). */
2776 static ULONGEST current_stop_id;
2777
2778 /* See infrun.h. */
2779
2780 ULONGEST
2781 get_stop_id (void)
2782 {
2783 return current_stop_id;
2784 }
2785
2786 /* Called when we report a user visible stop. */
2787
2788 static void
2789 new_stop_id (void)
2790 {
2791 current_stop_id++;
2792 }
2793
2794 /* Clear out all variables saying what to do when inferior is continued.
2795 First do this, then set the ones you want, then call `proceed'. */
2796
2797 static void
2798 clear_proceed_status_thread (struct thread_info *tp)
2799 {
2800 if (debug_infrun)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "infrun: clear_proceed_status_thread (%s)\n",
2803 target_pid_to_str (tp->ptid));
2804
2805 /* If we're starting a new sequence, then the previous finished
2806 single-step is no longer relevant. */
2807 if (tp->suspend.waitstatus_pending_p)
2808 {
2809 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2810 {
2811 if (debug_infrun)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "infrun: clear_proceed_status: pending "
2814 "event of %s was a finished step. "
2815 "Discarding.\n",
2816 target_pid_to_str (tp->ptid));
2817
2818 tp->suspend.waitstatus_pending_p = 0;
2819 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2820 }
2821 else if (debug_infrun)
2822 {
2823 std::string statstr
2824 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2825
2826 fprintf_unfiltered (gdb_stdlog,
2827 "infrun: clear_proceed_status_thread: thread %s "
2828 "has pending wait status %s "
2829 "(currently_stepping=%d).\n",
2830 target_pid_to_str (tp->ptid), statstr.c_str (),
2831 currently_stepping (tp));
2832 }
2833 }
2834
2835 /* If this signal should not be seen by program, give it zero.
2836 Used for debugging signals. */
2837 if (!signal_pass_state (tp->suspend.stop_signal))
2838 tp->suspend.stop_signal = GDB_SIGNAL_0;
2839
2840 thread_fsm_delete (tp->thread_fsm);
2841 tp->thread_fsm = NULL;
2842
2843 tp->control.trap_expected = 0;
2844 tp->control.step_range_start = 0;
2845 tp->control.step_range_end = 0;
2846 tp->control.may_range_step = 0;
2847 tp->control.step_frame_id = null_frame_id;
2848 tp->control.step_stack_frame_id = null_frame_id;
2849 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2850 tp->control.step_start_function = NULL;
2851 tp->stop_requested = 0;
2852
2853 tp->control.stop_step = 0;
2854
2855 tp->control.proceed_to_finish = 0;
2856
2857 tp->control.stepping_command = 0;
2858
2859 /* Discard any remaining commands or status from previous stop. */
2860 bpstat_clear (&tp->control.stop_bpstat);
2861 }
2862
2863 void
2864 clear_proceed_status (int step)
2865 {
2866 /* With scheduler-locking replay, stop replaying other threads if we're
2867 not replaying the user-visible resume ptid.
2868
2869 This is a convenience feature to not require the user to explicitly
2870 stop replaying the other threads. We're assuming that the user's
2871 intent is to resume tracing the recorded process. */
2872 if (!non_stop && scheduler_mode == schedlock_replay
2873 && target_record_is_replaying (minus_one_ptid)
2874 && !target_record_will_replay (user_visible_resume_ptid (step),
2875 execution_direction))
2876 target_record_stop_replaying ();
2877
2878 if (!non_stop)
2879 {
2880 struct thread_info *tp;
2881 ptid_t resume_ptid;
2882
2883 resume_ptid = user_visible_resume_ptid (step);
2884
2885 /* In all-stop mode, delete the per-thread status of all threads
2886 we're about to resume, implicitly and explicitly. */
2887 ALL_NON_EXITED_THREADS (tp)
2888 {
2889 if (!ptid_match (tp->ptid, resume_ptid))
2890 continue;
2891 clear_proceed_status_thread (tp);
2892 }
2893 }
2894
2895 if (!ptid_equal (inferior_ptid, null_ptid))
2896 {
2897 struct inferior *inferior;
2898
2899 if (non_stop)
2900 {
2901 /* If in non-stop mode, only delete the per-thread status of
2902 the current thread. */
2903 clear_proceed_status_thread (inferior_thread ());
2904 }
2905
2906 inferior = current_inferior ();
2907 inferior->control.stop_soon = NO_STOP_QUIETLY;
2908 }
2909
2910 gdb::observers::about_to_proceed.notify ();
2911 }
2912
2913 /* Returns true if TP is still stopped at a breakpoint that needs
2914 stepping-over in order to make progress. If the breakpoint is gone
2915 meanwhile, we can skip the whole step-over dance. */
2916
2917 static int
2918 thread_still_needs_step_over_bp (struct thread_info *tp)
2919 {
2920 if (tp->stepping_over_breakpoint)
2921 {
2922 struct regcache *regcache = get_thread_regcache (tp->ptid);
2923
2924 if (breakpoint_here_p (regcache->aspace (),
2925 regcache_read_pc (regcache))
2926 == ordinary_breakpoint_here)
2927 return 1;
2928
2929 tp->stepping_over_breakpoint = 0;
2930 }
2931
2932 return 0;
2933 }
2934
2935 /* Check whether thread TP still needs to start a step-over in order
2936 to make progress when resumed. Returns an bitwise or of enum
2937 step_over_what bits, indicating what needs to be stepped over. */
2938
2939 static step_over_what
2940 thread_still_needs_step_over (struct thread_info *tp)
2941 {
2942 step_over_what what = 0;
2943
2944 if (thread_still_needs_step_over_bp (tp))
2945 what |= STEP_OVER_BREAKPOINT;
2946
2947 if (tp->stepping_over_watchpoint
2948 && !target_have_steppable_watchpoint)
2949 what |= STEP_OVER_WATCHPOINT;
2950
2951 return what;
2952 }
2953
2954 /* Returns true if scheduler locking applies. STEP indicates whether
2955 we're about to do a step/next-like command to a thread. */
2956
2957 static int
2958 schedlock_applies (struct thread_info *tp)
2959 {
2960 return (scheduler_mode == schedlock_on
2961 || (scheduler_mode == schedlock_step
2962 && tp->control.stepping_command)
2963 || (scheduler_mode == schedlock_replay
2964 && target_record_will_replay (minus_one_ptid,
2965 execution_direction)));
2966 }
2967
2968 /* Basic routine for continuing the program in various fashions.
2969
2970 ADDR is the address to resume at, or -1 for resume where stopped.
2971 SIGGNAL is the signal to give it, or 0 for none,
2972 or -1 for act according to how it stopped.
2973 STEP is nonzero if should trap after one instruction.
2974 -1 means return after that and print nothing.
2975 You should probably set various step_... variables
2976 before calling here, if you are stepping.
2977
2978 You should call clear_proceed_status before calling proceed. */
2979
2980 void
2981 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2982 {
2983 struct regcache *regcache;
2984 struct gdbarch *gdbarch;
2985 struct thread_info *tp;
2986 CORE_ADDR pc;
2987 ptid_t resume_ptid;
2988 struct execution_control_state ecss;
2989 struct execution_control_state *ecs = &ecss;
2990 int started;
2991
2992 /* If we're stopped at a fork/vfork, follow the branch set by the
2993 "set follow-fork-mode" command; otherwise, we'll just proceed
2994 resuming the current thread. */
2995 if (!follow_fork ())
2996 {
2997 /* The target for some reason decided not to resume. */
2998 normal_stop ();
2999 if (target_can_async_p ())
3000 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3001 return;
3002 }
3003
3004 /* We'll update this if & when we switch to a new thread. */
3005 previous_inferior_ptid = inferior_ptid;
3006
3007 regcache = get_current_regcache ();
3008 gdbarch = regcache->arch ();
3009 const address_space *aspace = regcache->aspace ();
3010
3011 pc = regcache_read_pc (regcache);
3012 tp = inferior_thread ();
3013
3014 /* Fill in with reasonable starting values. */
3015 init_thread_stepping_state (tp);
3016
3017 gdb_assert (!thread_is_in_step_over_chain (tp));
3018
3019 if (addr == (CORE_ADDR) -1)
3020 {
3021 if (pc == stop_pc
3022 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3023 && execution_direction != EXEC_REVERSE)
3024 /* There is a breakpoint at the address we will resume at,
3025 step one instruction before inserting breakpoints so that
3026 we do not stop right away (and report a second hit at this
3027 breakpoint).
3028
3029 Note, we don't do this in reverse, because we won't
3030 actually be executing the breakpoint insn anyway.
3031 We'll be (un-)executing the previous instruction. */
3032 tp->stepping_over_breakpoint = 1;
3033 else if (gdbarch_single_step_through_delay_p (gdbarch)
3034 && gdbarch_single_step_through_delay (gdbarch,
3035 get_current_frame ()))
3036 /* We stepped onto an instruction that needs to be stepped
3037 again before re-inserting the breakpoint, do so. */
3038 tp->stepping_over_breakpoint = 1;
3039 }
3040 else
3041 {
3042 regcache_write_pc (regcache, addr);
3043 }
3044
3045 if (siggnal != GDB_SIGNAL_DEFAULT)
3046 tp->suspend.stop_signal = siggnal;
3047
3048 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3049
3050 /* If an exception is thrown from this point on, make sure to
3051 propagate GDB's knowledge of the executing state to the
3052 frontend/user running state. */
3053 scoped_finish_thread_state finish_state (resume_ptid);
3054
3055 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3056 threads (e.g., we might need to set threads stepping over
3057 breakpoints first), from the user/frontend's point of view, all
3058 threads in RESUME_PTID are now running. Unless we're calling an
3059 inferior function, as in that case we pretend the inferior
3060 doesn't run at all. */
3061 if (!tp->control.in_infcall)
3062 set_running (resume_ptid, 1);
3063
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "infrun: proceed (addr=%s, signal=%s)\n",
3067 paddress (gdbarch, addr),
3068 gdb_signal_to_symbol_string (siggnal));
3069
3070 annotate_starting ();
3071
3072 /* Make sure that output from GDB appears before output from the
3073 inferior. */
3074 gdb_flush (gdb_stdout);
3075
3076 /* Since we've marked the inferior running, give it the terminal. A
3077 QUIT/Ctrl-C from here on is forwarded to the target (which can
3078 still detect attempts to unblock a stuck connection with repeated
3079 Ctrl-C from within target_pass_ctrlc). */
3080 target_terminal::inferior ();
3081
3082 /* In a multi-threaded task we may select another thread and
3083 then continue or step.
3084
3085 But if a thread that we're resuming had stopped at a breakpoint,
3086 it will immediately cause another breakpoint stop without any
3087 execution (i.e. it will report a breakpoint hit incorrectly). So
3088 we must step over it first.
3089
3090 Look for threads other than the current (TP) that reported a
3091 breakpoint hit and haven't been resumed yet since. */
3092
3093 /* If scheduler locking applies, we can avoid iterating over all
3094 threads. */
3095 if (!non_stop && !schedlock_applies (tp))
3096 {
3097 struct thread_info *current = tp;
3098
3099 ALL_NON_EXITED_THREADS (tp)
3100 {
3101 /* Ignore the current thread here. It's handled
3102 afterwards. */
3103 if (tp == current)
3104 continue;
3105
3106 /* Ignore threads of processes we're not resuming. */
3107 if (!ptid_match (tp->ptid, resume_ptid))
3108 continue;
3109
3110 if (!thread_still_needs_step_over (tp))
3111 continue;
3112
3113 gdb_assert (!thread_is_in_step_over_chain (tp));
3114
3115 if (debug_infrun)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "infrun: need to step-over [%s] first\n",
3118 target_pid_to_str (tp->ptid));
3119
3120 thread_step_over_chain_enqueue (tp);
3121 }
3122
3123 tp = current;
3124 }
3125
3126 /* Enqueue the current thread last, so that we move all other
3127 threads over their breakpoints first. */
3128 if (tp->stepping_over_breakpoint)
3129 thread_step_over_chain_enqueue (tp);
3130
3131 /* If the thread isn't started, we'll still need to set its prev_pc,
3132 so that switch_back_to_stepped_thread knows the thread hasn't
3133 advanced. Must do this before resuming any thread, as in
3134 all-stop/remote, once we resume we can't send any other packet
3135 until the target stops again. */
3136 tp->prev_pc = regcache_read_pc (regcache);
3137
3138 {
3139 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3140
3141 started = start_step_over ();
3142
3143 if (step_over_info_valid_p ())
3144 {
3145 /* Either this thread started a new in-line step over, or some
3146 other thread was already doing one. In either case, don't
3147 resume anything else until the step-over is finished. */
3148 }
3149 else if (started && !target_is_non_stop_p ())
3150 {
3151 /* A new displaced stepping sequence was started. In all-stop,
3152 we can't talk to the target anymore until it next stops. */
3153 }
3154 else if (!non_stop && target_is_non_stop_p ())
3155 {
3156 /* In all-stop, but the target is always in non-stop mode.
3157 Start all other threads that are implicitly resumed too. */
3158 ALL_NON_EXITED_THREADS (tp)
3159 {
3160 /* Ignore threads of processes we're not resuming. */
3161 if (!ptid_match (tp->ptid, resume_ptid))
3162 continue;
3163
3164 if (tp->resumed)
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] resumed\n",
3169 target_pid_to_str (tp->ptid));
3170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3171 continue;
3172 }
3173
3174 if (thread_is_in_step_over_chain (tp))
3175 {
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: [%s] needs step-over\n",
3179 target_pid_to_str (tp->ptid));
3180 continue;
3181 }
3182
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "infrun: proceed: resuming %s\n",
3186 target_pid_to_str (tp->ptid));
3187
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194 }
3195 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3196 {
3197 /* The thread wasn't started, and isn't queued, run it now. */
3198 reset_ecs (ecs, tp);
3199 switch_to_thread (tp->ptid);
3200 keep_going_pass_signal (ecs);
3201 if (!ecs->wait_some_more)
3202 error (_("Command aborted."));
3203 }
3204 }
3205
3206 target_commit_resume ();
3207
3208 finish_state.release ();
3209
3210 /* Tell the event loop to wait for it to stop. If the target
3211 supports asynchronous execution, it'll do this from within
3212 target_resume. */
3213 if (!target_can_async_p ())
3214 mark_async_event_handler (infrun_async_inferior_event_token);
3215 }
3216 \f
3217
3218 /* Start remote-debugging of a machine over a serial link. */
3219
3220 void
3221 start_remote (int from_tty)
3222 {
3223 struct inferior *inferior;
3224
3225 inferior = current_inferior ();
3226 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3227
3228 /* Always go on waiting for the target, regardless of the mode. */
3229 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3230 indicate to wait_for_inferior that a target should timeout if
3231 nothing is returned (instead of just blocking). Because of this,
3232 targets expecting an immediate response need to, internally, set
3233 things up so that the target_wait() is forced to eventually
3234 timeout. */
3235 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3236 differentiate to its caller what the state of the target is after
3237 the initial open has been performed. Here we're assuming that
3238 the target has stopped. It should be possible to eventually have
3239 target_open() return to the caller an indication that the target
3240 is currently running and GDB state should be set to the same as
3241 for an async run. */
3242 wait_for_inferior ();
3243
3244 /* Now that the inferior has stopped, do any bookkeeping like
3245 loading shared libraries. We want to do this before normal_stop,
3246 so that the displayed frame is up to date. */
3247 post_create_inferior (current_top_target (), from_tty);
3248
3249 normal_stop ();
3250 }
3251
3252 /* Initialize static vars when a new inferior begins. */
3253
3254 void
3255 init_wait_for_inferior (void)
3256 {
3257 /* These are meaningless until the first time through wait_for_inferior. */
3258
3259 breakpoint_init_inferior (inf_starting);
3260
3261 clear_proceed_status (0);
3262
3263 target_last_wait_ptid = minus_one_ptid;
3264
3265 previous_inferior_ptid = inferior_ptid;
3266
3267 /* Discard any skipped inlined frames. */
3268 clear_inline_frame_state (minus_one_ptid);
3269 }
3270
3271 \f
3272
3273 static void handle_inferior_event (struct execution_control_state *ecs);
3274
3275 static void handle_step_into_function (struct gdbarch *gdbarch,
3276 struct execution_control_state *ecs);
3277 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3278 struct execution_control_state *ecs);
3279 static void handle_signal_stop (struct execution_control_state *ecs);
3280 static void check_exception_resume (struct execution_control_state *,
3281 struct frame_info *);
3282
3283 static void end_stepping_range (struct execution_control_state *ecs);
3284 static void stop_waiting (struct execution_control_state *ecs);
3285 static void keep_going (struct execution_control_state *ecs);
3286 static void process_event_stop_test (struct execution_control_state *ecs);
3287 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3288
3289 /* This function is attached as a "thread_stop_requested" observer.
3290 Cleanup local state that assumed the PTID was to be resumed, and
3291 report the stop to the frontend. */
3292
3293 static void
3294 infrun_thread_stop_requested (ptid_t ptid)
3295 {
3296 struct thread_info *tp;
3297
3298 /* PTID was requested to stop. If the thread was already stopped,
3299 but the user/frontend doesn't know about that yet (e.g., the
3300 thread had been temporarily paused for some step-over), set up
3301 for reporting the stop now. */
3302 ALL_NON_EXITED_THREADS (tp)
3303 if (ptid_match (tp->ptid, ptid))
3304 {
3305 if (tp->state != THREAD_RUNNING)
3306 continue;
3307 if (tp->executing)
3308 continue;
3309
3310 /* Remove matching threads from the step-over queue, so
3311 start_step_over doesn't try to resume them
3312 automatically. */
3313 if (thread_is_in_step_over_chain (tp))
3314 thread_step_over_chain_remove (tp);
3315
3316 /* If the thread is stopped, but the user/frontend doesn't
3317 know about that yet, queue a pending event, as if the
3318 thread had just stopped now. Unless the thread already had
3319 a pending event. */
3320 if (!tp->suspend.waitstatus_pending_p)
3321 {
3322 tp->suspend.waitstatus_pending_p = 1;
3323 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3324 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3325 }
3326
3327 /* Clear the inline-frame state, since we're re-processing the
3328 stop. */
3329 clear_inline_frame_state (tp->ptid);
3330
3331 /* If this thread was paused because some other thread was
3332 doing an inline-step over, let that finish first. Once
3333 that happens, we'll restart all threads and consume pending
3334 stop events then. */
3335 if (step_over_info_valid_p ())
3336 continue;
3337
3338 /* Otherwise we can process the (new) pending event now. Set
3339 it so this pending event is considered by
3340 do_target_wait. */
3341 tp->resumed = 1;
3342 }
3343 }
3344
3345 static void
3346 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3347 {
3348 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3349 nullify_last_target_wait_ptid ();
3350 }
3351
3352 /* Delete the step resume, single-step and longjmp/exception resume
3353 breakpoints of TP. */
3354
3355 static void
3356 delete_thread_infrun_breakpoints (struct thread_info *tp)
3357 {
3358 delete_step_resume_breakpoint (tp);
3359 delete_exception_resume_breakpoint (tp);
3360 delete_single_step_breakpoints (tp);
3361 }
3362
3363 /* If the target still has execution, call FUNC for each thread that
3364 just stopped. In all-stop, that's all the non-exited threads; in
3365 non-stop, that's the current thread, only. */
3366
3367 typedef void (*for_each_just_stopped_thread_callback_func)
3368 (struct thread_info *tp);
3369
3370 static void
3371 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3372 {
3373 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3374 return;
3375
3376 if (target_is_non_stop_p ())
3377 {
3378 /* If in non-stop mode, only the current thread stopped. */
3379 func (inferior_thread ());
3380 }
3381 else
3382 {
3383 struct thread_info *tp;
3384
3385 /* In all-stop mode, all threads have stopped. */
3386 ALL_NON_EXITED_THREADS (tp)
3387 {
3388 func (tp);
3389 }
3390 }
3391 }
3392
3393 /* Delete the step resume and longjmp/exception resume breakpoints of
3394 the threads that just stopped. */
3395
3396 static void
3397 delete_just_stopped_threads_infrun_breakpoints (void)
3398 {
3399 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3400 }
3401
3402 /* Delete the single-step breakpoints of the threads that just
3403 stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_single_step_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_single_step_breakpoints);
3409 }
3410
3411 /* A cleanup wrapper. */
3412
3413 static void
3414 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3415 {
3416 delete_just_stopped_threads_infrun_breakpoints ();
3417 }
3418
3419 /* See infrun.h. */
3420
3421 void
3422 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3423 const struct target_waitstatus *ws)
3424 {
3425 std::string status_string = target_waitstatus_to_string (ws);
3426 string_file stb;
3427
3428 /* The text is split over several lines because it was getting too long.
3429 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3430 output as a unit; we want only one timestamp printed if debug_timestamp
3431 is set. */
3432
3433 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3434 ptid_get_pid (waiton_ptid),
3435 ptid_get_lwp (waiton_ptid),
3436 ptid_get_tid (waiton_ptid));
3437 if (ptid_get_pid (waiton_ptid) != -1)
3438 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3439 stb.printf (", status) =\n");
3440 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3441 ptid_get_pid (result_ptid),
3442 ptid_get_lwp (result_ptid),
3443 ptid_get_tid (result_ptid),
3444 target_pid_to_str (result_ptid));
3445 stb.printf ("infrun: %s\n", status_string.c_str ());
3446
3447 /* This uses %s in part to handle %'s in the text, but also to avoid
3448 a gcc error: the format attribute requires a string literal. */
3449 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3450 }
3451
3452 /* Select a thread at random, out of those which are resumed and have
3453 had events. */
3454
3455 static struct thread_info *
3456 random_pending_event_thread (ptid_t waiton_ptid)
3457 {
3458 struct thread_info *event_tp;
3459 int num_events = 0;
3460 int random_selector;
3461
3462 /* First see how many events we have. Count only resumed threads
3463 that have an event pending. */
3464 ALL_NON_EXITED_THREADS (event_tp)
3465 if (ptid_match (event_tp->ptid, waiton_ptid)
3466 && event_tp->resumed
3467 && event_tp->suspend.waitstatus_pending_p)
3468 num_events++;
3469
3470 if (num_events == 0)
3471 return NULL;
3472
3473 /* Now randomly pick a thread out of those that have had events. */
3474 random_selector = (int)
3475 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3476
3477 if (debug_infrun && num_events > 1)
3478 fprintf_unfiltered (gdb_stdlog,
3479 "infrun: Found %d events, selecting #%d\n",
3480 num_events, random_selector);
3481
3482 /* Select the Nth thread that has had an event. */
3483 ALL_NON_EXITED_THREADS (event_tp)
3484 if (ptid_match (event_tp->ptid, waiton_ptid)
3485 && event_tp->resumed
3486 && event_tp->suspend.waitstatus_pending_p)
3487 if (random_selector-- == 0)
3488 break;
3489
3490 return event_tp;
3491 }
3492
3493 /* Wrapper for target_wait that first checks whether threads have
3494 pending statuses to report before actually asking the target for
3495 more events. */
3496
3497 static ptid_t
3498 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3499 {
3500 ptid_t event_ptid;
3501 struct thread_info *tp;
3502
3503 /* First check if there is a resumed thread with a wait status
3504 pending. */
3505 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3506 {
3507 tp = random_pending_event_thread (ptid);
3508 }
3509 else
3510 {
3511 if (debug_infrun)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: Waiting for specific thread %s.\n",
3514 target_pid_to_str (ptid));
3515
3516 /* We have a specific thread to check. */
3517 tp = find_thread_ptid (ptid);
3518 gdb_assert (tp != NULL);
3519 if (!tp->suspend.waitstatus_pending_p)
3520 tp = NULL;
3521 }
3522
3523 if (tp != NULL
3524 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3525 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3526 {
3527 struct regcache *regcache = get_thread_regcache (tp->ptid);
3528 struct gdbarch *gdbarch = regcache->arch ();
3529 CORE_ADDR pc;
3530 int discard = 0;
3531
3532 pc = regcache_read_pc (regcache);
3533
3534 if (pc != tp->suspend.stop_pc)
3535 {
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "infrun: PC of %s changed. was=%s, now=%s\n",
3539 target_pid_to_str (tp->ptid),
3540 paddress (gdbarch, tp->suspend.stop_pc),
3541 paddress (gdbarch, pc));
3542 discard = 1;
3543 }
3544 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3545 {
3546 if (debug_infrun)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "infrun: previous breakpoint of %s, at %s gone\n",
3549 target_pid_to_str (tp->ptid),
3550 paddress (gdbarch, pc));
3551
3552 discard = 1;
3553 }
3554
3555 if (discard)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: pending event of %s cancelled.\n",
3560 target_pid_to_str (tp->ptid));
3561
3562 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3563 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3564 }
3565 }
3566
3567 if (tp != NULL)
3568 {
3569 if (debug_infrun)
3570 {
3571 std::string statstr
3572 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3573
3574 fprintf_unfiltered (gdb_stdlog,
3575 "infrun: Using pending wait status %s for %s.\n",
3576 statstr.c_str (),
3577 target_pid_to_str (tp->ptid));
3578 }
3579
3580 /* Now that we've selected our final event LWP, un-adjust its PC
3581 if it was a software breakpoint (and the target doesn't
3582 always adjust the PC itself). */
3583 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3584 && !target_supports_stopped_by_sw_breakpoint ())
3585 {
3586 struct regcache *regcache;
3587 struct gdbarch *gdbarch;
3588 int decr_pc;
3589
3590 regcache = get_thread_regcache (tp->ptid);
3591 gdbarch = regcache->arch ();
3592
3593 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3594 if (decr_pc != 0)
3595 {
3596 CORE_ADDR pc;
3597
3598 pc = regcache_read_pc (regcache);
3599 regcache_write_pc (regcache, pc + decr_pc);
3600 }
3601 }
3602
3603 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3604 *status = tp->suspend.waitstatus;
3605 tp->suspend.waitstatus_pending_p = 0;
3606
3607 /* Wake up the event loop again, until all pending events are
3608 processed. */
3609 if (target_is_async_p ())
3610 mark_async_event_handler (infrun_async_inferior_event_token);
3611 return tp->ptid;
3612 }
3613
3614 /* But if we don't find one, we'll have to wait. */
3615
3616 if (deprecated_target_wait_hook)
3617 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3618 else
3619 event_ptid = target_wait (ptid, status, options);
3620
3621 return event_ptid;
3622 }
3623
3624 /* Prepare and stabilize the inferior for detaching it. E.g.,
3625 detaching while a thread is displaced stepping is a recipe for
3626 crashing it, as nothing would readjust the PC out of the scratch
3627 pad. */
3628
3629 void
3630 prepare_for_detach (void)
3631 {
3632 struct inferior *inf = current_inferior ();
3633 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3634 struct displaced_step_inferior_state *displaced;
3635
3636 displaced = get_displaced_stepping_state (inf->pid);
3637
3638 /* Is any thread of this process displaced stepping? If not,
3639 there's nothing else to do. */
3640 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3641 return;
3642
3643 if (debug_infrun)
3644 fprintf_unfiltered (gdb_stdlog,
3645 "displaced-stepping in-process while detaching");
3646
3647 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3648
3649 while (!ptid_equal (displaced->step_ptid, null_ptid))
3650 {
3651 struct execution_control_state ecss;
3652 struct execution_control_state *ecs;
3653
3654 ecs = &ecss;
3655 memset (ecs, 0, sizeof (*ecs));
3656
3657 overlay_cache_invalid = 1;
3658 /* Flush target cache before starting to handle each event.
3659 Target was running and cache could be stale. This is just a
3660 heuristic. Running threads may modify target memory, but we
3661 don't get any event. */
3662 target_dcache_invalidate ();
3663
3664 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3665
3666 if (debug_infrun)
3667 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3668
3669 /* If an error happens while handling the event, propagate GDB's
3670 knowledge of the executing state to the frontend/user running
3671 state. */
3672 scoped_finish_thread_state finish_state (minus_one_ptid);
3673
3674 /* Now figure out what to do with the result of the result. */
3675 handle_inferior_event (ecs);
3676
3677 /* No error, don't finish the state yet. */
3678 finish_state.release ();
3679
3680 /* Breakpoints and watchpoints are not installed on the target
3681 at this point, and signals are passed directly to the
3682 inferior, so this must mean the process is gone. */
3683 if (!ecs->wait_some_more)
3684 {
3685 restore_detaching.release ();
3686 error (_("Program exited while detaching"));
3687 }
3688 }
3689
3690 restore_detaching.release ();
3691 }
3692
3693 /* Wait for control to return from inferior to debugger.
3694
3695 If inferior gets a signal, we may decide to start it up again
3696 instead of returning. That is why there is a loop in this function.
3697 When this function actually returns it means the inferior
3698 should be left stopped and GDB should read more commands. */
3699
3700 void
3701 wait_for_inferior (void)
3702 {
3703 struct cleanup *old_cleanups;
3704
3705 if (debug_infrun)
3706 fprintf_unfiltered
3707 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3708
3709 old_cleanups
3710 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3711 NULL);
3712
3713 /* If an error happens while handling the event, propagate GDB's
3714 knowledge of the executing state to the frontend/user running
3715 state. */
3716 scoped_finish_thread_state finish_state (minus_one_ptid);
3717
3718 while (1)
3719 {
3720 struct execution_control_state ecss;
3721 struct execution_control_state *ecs = &ecss;
3722 ptid_t waiton_ptid = minus_one_ptid;
3723
3724 memset (ecs, 0, sizeof (*ecs));
3725
3726 overlay_cache_invalid = 1;
3727
3728 /* Flush target cache before starting to handle each event.
3729 Target was running and cache could be stale. This is just a
3730 heuristic. Running threads may modify target memory, but we
3731 don't get any event. */
3732 target_dcache_invalidate ();
3733
3734 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3735
3736 if (debug_infrun)
3737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
3741
3742 if (!ecs->wait_some_more)
3743 break;
3744 }
3745
3746 /* No error, don't finish the state yet. */
3747 finish_state.release ();
3748
3749 do_cleanups (old_cleanups);
3750 }
3751
3752 /* Cleanup that reinstalls the readline callback handler, if the
3753 target is running in the background. If while handling the target
3754 event something triggered a secondary prompt, like e.g., a
3755 pagination prompt, we'll have removed the callback handler (see
3756 gdb_readline_wrapper_line). Need to do this as we go back to the
3757 event loop, ready to process further input. Note this has no
3758 effect if the handler hasn't actually been removed, because calling
3759 rl_callback_handler_install resets the line buffer, thus losing
3760 input. */
3761
3762 static void
3763 reinstall_readline_callback_handler_cleanup (void *arg)
3764 {
3765 struct ui *ui = current_ui;
3766
3767 if (!ui->async)
3768 {
3769 /* We're not going back to the top level event loop yet. Don't
3770 install the readline callback, as it'd prep the terminal,
3771 readline-style (raw, noecho) (e.g., --batch). We'll install
3772 it the next time the prompt is displayed, when we're ready
3773 for input. */
3774 return;
3775 }
3776
3777 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3778 gdb_rl_callback_handler_reinstall ();
3779 }
3780
3781 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3782 that's just the event thread. In all-stop, that's all threads. */
3783
3784 static void
3785 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3786 {
3787 struct thread_info *thr = ecs->event_thread;
3788
3789 if (thr != NULL && thr->thread_fsm != NULL)
3790 thread_fsm_clean_up (thr->thread_fsm, thr);
3791
3792 if (!non_stop)
3793 {
3794 ALL_NON_EXITED_THREADS (thr)
3795 {
3796 if (thr->thread_fsm == NULL)
3797 continue;
3798 if (thr == ecs->event_thread)
3799 continue;
3800
3801 switch_to_thread (thr->ptid);
3802 thread_fsm_clean_up (thr->thread_fsm, thr);
3803 }
3804
3805 if (ecs->event_thread != NULL)
3806 switch_to_thread (ecs->event_thread->ptid);
3807 }
3808 }
3809
3810 /* Helper for all_uis_check_sync_execution_done that works on the
3811 current UI. */
3812
3813 static void
3814 check_curr_ui_sync_execution_done (void)
3815 {
3816 struct ui *ui = current_ui;
3817
3818 if (ui->prompt_state == PROMPT_NEEDED
3819 && ui->async
3820 && !gdb_in_secondary_prompt_p (ui))
3821 {
3822 target_terminal::ours ();
3823 gdb::observers::sync_execution_done.notify ();
3824 ui_register_input_event_handler (ui);
3825 }
3826 }
3827
3828 /* See infrun.h. */
3829
3830 void
3831 all_uis_check_sync_execution_done (void)
3832 {
3833 SWITCH_THRU_ALL_UIS ()
3834 {
3835 check_curr_ui_sync_execution_done ();
3836 }
3837 }
3838
3839 /* See infrun.h. */
3840
3841 void
3842 all_uis_on_sync_execution_starting (void)
3843 {
3844 SWITCH_THRU_ALL_UIS ()
3845 {
3846 if (current_ui->prompt_state == PROMPT_NEEDED)
3847 async_disable_stdin ();
3848 }
3849 }
3850
3851 /* Asynchronous version of wait_for_inferior. It is called by the
3852 event loop whenever a change of state is detected on the file
3853 descriptor corresponding to the target. It can be called more than
3854 once to complete a single execution command. In such cases we need
3855 to keep the state in a global variable ECSS. If it is the last time
3856 that this function is called for a single execution command, then
3857 report to the user that the inferior has stopped, and do the
3858 necessary cleanups. */
3859
3860 void
3861 fetch_inferior_event (void *client_data)
3862 {
3863 struct execution_control_state ecss;
3864 struct execution_control_state *ecs = &ecss;
3865 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3866 int cmd_done = 0;
3867 ptid_t waiton_ptid = minus_one_ptid;
3868
3869 memset (ecs, 0, sizeof (*ecs));
3870
3871 /* Events are always processed with the main UI as current UI. This
3872 way, warnings, debug output, etc. are always consistently sent to
3873 the main console. */
3874 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3875
3876 /* End up with readline processing input, if necessary. */
3877 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3878
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3884 if (non_stop)
3885 {
3886 maybe_restore_traceframe.emplace ();
3887 set_current_traceframe (-1);
3888 }
3889
3890 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3891
3892 if (non_stop)
3893 /* In non-stop mode, the user/frontend should not notice a thread
3894 switch due to internal events. Make sure we reverse to the
3895 user selected thread and frame after handling the event and
3896 running any breakpoint commands. */
3897 maybe_restore_thread.emplace ();
3898
3899 overlay_cache_invalid = 1;
3900 /* Flush target cache before starting to handle each event. Target
3901 was running and cache could be stale. This is just a heuristic.
3902 Running threads may modify target memory, but we don't get any
3903 event. */
3904 target_dcache_invalidate ();
3905
3906 scoped_restore save_exec_dir
3907 = make_scoped_restore (&execution_direction, target_execution_direction ());
3908
3909 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3910 target_can_async_p () ? TARGET_WNOHANG : 0);
3911
3912 if (debug_infrun)
3913 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3914
3915 /* If an error happens while handling the event, propagate GDB's
3916 knowledge of the executing state to the frontend/user running
3917 state. */
3918 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3919 scoped_finish_thread_state finish_state (finish_ptid);
3920
3921 /* Get executed before make_cleanup_restore_current_thread above to apply
3922 still for the thread which has thrown the exception. */
3923 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
3924
3925 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3926
3927 /* Now figure out what to do with the result of the result. */
3928 handle_inferior_event (ecs);
3929
3930 if (!ecs->wait_some_more)
3931 {
3932 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3933 int should_stop = 1;
3934 struct thread_info *thr = ecs->event_thread;
3935
3936 delete_just_stopped_threads_infrun_breakpoints ();
3937
3938 if (thr != NULL)
3939 {
3940 struct thread_fsm *thread_fsm = thr->thread_fsm;
3941
3942 if (thread_fsm != NULL)
3943 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3944 }
3945
3946 if (!should_stop)
3947 {
3948 keep_going (ecs);
3949 }
3950 else
3951 {
3952 int should_notify_stop = 1;
3953 int proceeded = 0;
3954
3955 clean_up_just_stopped_threads_fsms (ecs);
3956
3957 if (thr != NULL && thr->thread_fsm != NULL)
3958 {
3959 should_notify_stop
3960 = thread_fsm_should_notify_stop (thr->thread_fsm);
3961 }
3962
3963 if (should_notify_stop)
3964 {
3965 /* We may not find an inferior if this was a process exit. */
3966 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3967 proceeded = normal_stop ();
3968 }
3969
3970 if (!proceeded)
3971 {
3972 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3973 cmd_done = 1;
3974 }
3975 }
3976 }
3977
3978 discard_cleanups (ts_old_chain);
3979
3980 /* No error, don't finish the thread states yet. */
3981 finish_state.release ();
3982
3983 /* Revert thread and frame. */
3984 do_cleanups (old_chain);
3985
3986 /* If a UI was in sync execution mode, and now isn't, restore its
3987 prompt (a synchronous execution command has finished, and we're
3988 ready for input). */
3989 all_uis_check_sync_execution_done ();
3990
3991 if (cmd_done
3992 && exec_done_display_p
3993 && (ptid_equal (inferior_ptid, null_ptid)
3994 || !is_running (inferior_ptid)))
3995 printf_unfiltered (_("completed.\n"));
3996 }
3997
3998 /* Record the frame and location we're currently stepping through. */
3999 void
4000 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4001 {
4002 struct thread_info *tp = inferior_thread ();
4003
4004 tp->control.step_frame_id = get_frame_id (frame);
4005 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4006
4007 tp->current_symtab = sal.symtab;
4008 tp->current_line = sal.line;
4009 }
4010
4011 /* Clear context switchable stepping state. */
4012
4013 void
4014 init_thread_stepping_state (struct thread_info *tss)
4015 {
4016 tss->stepped_breakpoint = 0;
4017 tss->stepping_over_breakpoint = 0;
4018 tss->stepping_over_watchpoint = 0;
4019 tss->step_after_step_resume_breakpoint = 0;
4020 }
4021
4022 /* Set the cached copy of the last ptid/waitstatus. */
4023
4024 void
4025 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4026 {
4027 target_last_wait_ptid = ptid;
4028 target_last_waitstatus = status;
4029 }
4030
4031 /* Return the cached copy of the last pid/waitstatus returned by
4032 target_wait()/deprecated_target_wait_hook(). The data is actually
4033 cached by handle_inferior_event(), which gets called immediately
4034 after target_wait()/deprecated_target_wait_hook(). */
4035
4036 void
4037 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4038 {
4039 *ptidp = target_last_wait_ptid;
4040 *status = target_last_waitstatus;
4041 }
4042
4043 void
4044 nullify_last_target_wait_ptid (void)
4045 {
4046 target_last_wait_ptid = minus_one_ptid;
4047 }
4048
4049 /* Switch thread contexts. */
4050
4051 static void
4052 context_switch (ptid_t ptid)
4053 {
4054 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4055 {
4056 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4057 target_pid_to_str (inferior_ptid));
4058 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4059 target_pid_to_str (ptid));
4060 }
4061
4062 switch_to_thread (ptid);
4063 }
4064
4065 /* If the target can't tell whether we've hit breakpoints
4066 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4067 check whether that could have been caused by a breakpoint. If so,
4068 adjust the PC, per gdbarch_decr_pc_after_break. */
4069
4070 static void
4071 adjust_pc_after_break (struct thread_info *thread,
4072 struct target_waitstatus *ws)
4073 {
4074 struct regcache *regcache;
4075 struct gdbarch *gdbarch;
4076 CORE_ADDR breakpoint_pc, decr_pc;
4077
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
4085
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
4092
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4098
4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4100 return;
4101
4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4103 return;
4104
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
4148 regcache = get_thread_regcache (thread->ptid);
4149 gdbarch = regcache->arch ();
4150
4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4152 if (decr_pc == 0)
4153 return;
4154
4155 const address_space *aspace = regcache->aspace ();
4156
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4160
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4180 {
4181 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4182
4183 if (record_full_is_used ())
4184 restore_operation_disable.emplace
4185 (record_full_gdb_operation_disable_set ());
4186
4187 /* When using hardware single-step, a SIGTRAP is reported for both
4188 a completed single-step and a software breakpoint. Need to
4189 differentiate between the two, as the latter needs adjusting
4190 but the former does not.
4191
4192 The SIGTRAP can be due to a completed hardware single-step only if
4193 - we didn't insert software single-step breakpoints
4194 - this thread is currently being stepped
4195
4196 If any of these events did not occur, we must have stopped due
4197 to hitting a software breakpoint, and have to back up to the
4198 breakpoint address.
4199
4200 As a special case, we could have hardware single-stepped a
4201 software breakpoint. In this case (prev_pc == breakpoint_pc),
4202 we also need to back up to the breakpoint address. */
4203
4204 if (thread_has_single_step_breakpoints_set (thread)
4205 || !currently_stepping (thread)
4206 || (thread->stepped_breakpoint
4207 && thread->prev_pc == breakpoint_pc))
4208 regcache_write_pc (regcache, breakpoint_pc);
4209 }
4210 }
4211
4212 static int
4213 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4214 {
4215 for (frame = get_prev_frame (frame);
4216 frame != NULL;
4217 frame = get_prev_frame (frame))
4218 {
4219 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4220 return 1;
4221 if (get_frame_type (frame) != INLINE_FRAME)
4222 break;
4223 }
4224
4225 return 0;
4226 }
4227
4228 /* If the event thread has the stop requested flag set, pretend it
4229 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4230 target_stop). */
4231
4232 static bool
4233 handle_stop_requested (struct execution_control_state *ecs)
4234 {
4235 if (ecs->event_thread->stop_requested)
4236 {
4237 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4238 ecs->ws.value.sig = GDB_SIGNAL_0;
4239 handle_signal_stop (ecs);
4240 return true;
4241 }
4242 return false;
4243 }
4244
4245 /* Auxiliary function that handles syscall entry/return events.
4246 It returns 1 if the inferior should keep going (and GDB
4247 should ignore the event), or 0 if the event deserves to be
4248 processed. */
4249
4250 static int
4251 handle_syscall_event (struct execution_control_state *ecs)
4252 {
4253 struct regcache *regcache;
4254 int syscall_number;
4255
4256 if (!ptid_equal (ecs->ptid, inferior_ptid))
4257 context_switch (ecs->ptid);
4258
4259 regcache = get_thread_regcache (ecs->ptid);
4260 syscall_number = ecs->ws.value.syscall_number;
4261 stop_pc = regcache_read_pc (regcache);
4262
4263 if (catch_syscall_enabled () > 0
4264 && catching_syscall_number (syscall_number) > 0)
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4268 syscall_number);
4269
4270 ecs->event_thread->control.stop_bpstat
4271 = bpstat_stop_status (regcache->aspace (),
4272 stop_pc, ecs->ptid, &ecs->ws);
4273
4274 if (handle_stop_requested (ecs))
4275 return 0;
4276
4277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4278 {
4279 /* Catchpoint hit. */
4280 return 0;
4281 }
4282 }
4283
4284 if (handle_stop_requested (ecs))
4285 return 0;
4286
4287 /* If no catchpoint triggered for this, then keep going. */
4288 keep_going (ecs);
4289 return 1;
4290 }
4291
4292 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294 static void
4295 fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297 {
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
4311 ecs->stop_func_filled_in = 1;
4312 }
4313 }
4314
4315
4316 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318 static enum stop_kind
4319 get_inferior_stop_soon (ptid_t ptid)
4320 {
4321 struct inferior *inf = find_inferior_ptid (ptid);
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325 }
4326
4327 /* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330 static ptid_t
4331 wait_one (struct target_waitstatus *ws)
4332 {
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353 }
4354
4355 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357 #define THREAD_STOPPED_BY(REASON) \
4358 static int \
4359 thread_stopped_by_ ## REASON (ptid_t ptid) \
4360 { \
4361 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4362 inferior_ptid = ptid; \
4363 \
4364 return target_stopped_by_ ## REASON (); \
4365 }
4366
4367 /* Generate thread_stopped_by_watchpoint. */
4368 THREAD_STOPPED_BY (watchpoint)
4369 /* Generate thread_stopped_by_sw_breakpoint. */
4370 THREAD_STOPPED_BY (sw_breakpoint)
4371 /* Generate thread_stopped_by_hw_breakpoint. */
4372 THREAD_STOPPED_BY (hw_breakpoint)
4373
4374 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4375
4376 static void
4377 switch_to_thread_cleanup (void *ptid_p)
4378 {
4379 ptid_t ptid = *(ptid_t *) ptid_p;
4380
4381 switch_to_thread (ptid);
4382 }
4383
4384 /* Save the thread's event and stop reason to process it later. */
4385
4386 static void
4387 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4388 {
4389 struct regcache *regcache;
4390
4391 if (debug_infrun)
4392 {
4393 std::string statstr = target_waitstatus_to_string (ws);
4394
4395 fprintf_unfiltered (gdb_stdlog,
4396 "infrun: saving status %s for %d.%ld.%ld\n",
4397 statstr.c_str (),
4398 ptid_get_pid (tp->ptid),
4399 ptid_get_lwp (tp->ptid),
4400 ptid_get_tid (tp->ptid));
4401 }
4402
4403 /* Record for later. */
4404 tp->suspend.waitstatus = *ws;
4405 tp->suspend.waitstatus_pending_p = 1;
4406
4407 regcache = get_thread_regcache (tp->ptid);
4408 const address_space *aspace = regcache->aspace ();
4409
4410 if (ws->kind == TARGET_WAITKIND_STOPPED
4411 && ws->value.sig == GDB_SIGNAL_TRAP)
4412 {
4413 CORE_ADDR pc = regcache_read_pc (regcache);
4414
4415 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4416
4417 if (thread_stopped_by_watchpoint (tp->ptid))
4418 {
4419 tp->suspend.stop_reason
4420 = TARGET_STOPPED_BY_WATCHPOINT;
4421 }
4422 else if (target_supports_stopped_by_sw_breakpoint ()
4423 && thread_stopped_by_sw_breakpoint (tp->ptid))
4424 {
4425 tp->suspend.stop_reason
4426 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4427 }
4428 else if (target_supports_stopped_by_hw_breakpoint ()
4429 && thread_stopped_by_hw_breakpoint (tp->ptid))
4430 {
4431 tp->suspend.stop_reason
4432 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4433 }
4434 else if (!target_supports_stopped_by_hw_breakpoint ()
4435 && hardware_breakpoint_inserted_here_p (aspace,
4436 pc))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4440 }
4441 else if (!target_supports_stopped_by_sw_breakpoint ()
4442 && software_breakpoint_inserted_here_p (aspace,
4443 pc))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4447 }
4448 else if (!thread_has_single_step_breakpoints_set (tp)
4449 && currently_stepping (tp))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_SINGLE_STEP;
4453 }
4454 }
4455 }
4456
4457 /* A cleanup that disables thread create/exit events. */
4458
4459 static void
4460 disable_thread_events (void *arg)
4461 {
4462 target_thread_events (0);
4463 }
4464
4465 /* See infrun.h. */
4466
4467 void
4468 stop_all_threads (void)
4469 {
4470 /* We may need multiple passes to discover all threads. */
4471 int pass;
4472 int iterations = 0;
4473 ptid_t entry_ptid;
4474 struct cleanup *old_chain;
4475
4476 gdb_assert (target_is_non_stop_p ());
4477
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4480
4481 entry_ptid = inferior_ptid;
4482 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4483
4484 target_thread_events (1);
4485 make_cleanup (disable_thread_events, NULL);
4486
4487 /* Request threads to stop, and then wait for the stops. Because
4488 threads we already know about can spawn more threads while we're
4489 trying to stop them, and we only learn about new threads when we
4490 update the thread list, do this in a loop, and keep iterating
4491 until two passes find no threads that need to be stopped. */
4492 for (pass = 0; pass < 2; pass++, iterations++)
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: stop_all_threads, pass=%d, "
4497 "iterations=%d\n", pass, iterations);
4498 while (1)
4499 {
4500 ptid_t event_ptid;
4501 struct target_waitstatus ws;
4502 int need_wait = 0;
4503 struct thread_info *t;
4504
4505 update_thread_list ();
4506
4507 /* Go through all threads looking for threads that we need
4508 to tell the target to stop. */
4509 ALL_NON_EXITED_THREADS (t)
4510 {
4511 if (t->executing)
4512 {
4513 /* If already stopping, don't request a stop again.
4514 We just haven't seen the notification yet. */
4515 if (!t->stop_requested)
4516 {
4517 if (debug_infrun)
4518 fprintf_unfiltered (gdb_stdlog,
4519 "infrun: %s executing, "
4520 "need stop\n",
4521 target_pid_to_str (t->ptid));
4522 target_stop (t->ptid);
4523 t->stop_requested = 1;
4524 }
4525 else
4526 {
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog,
4529 "infrun: %s executing, "
4530 "already stopping\n",
4531 target_pid_to_str (t->ptid));
4532 }
4533
4534 if (t->stop_requested)
4535 need_wait = 1;
4536 }
4537 else
4538 {
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: %s not executing\n",
4542 target_pid_to_str (t->ptid));
4543
4544 /* The thread may be not executing, but still be
4545 resumed with a pending status to process. */
4546 t->resumed = 0;
4547 }
4548 }
4549
4550 if (!need_wait)
4551 break;
4552
4553 /* If we find new threads on the second iteration, restart
4554 over. We want to see two iterations in a row with all
4555 threads stopped. */
4556 if (pass > 0)
4557 pass = -1;
4558
4559 event_ptid = wait_one (&ws);
4560 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4561 {
4562 /* All resumed threads exited. */
4563 }
4564 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4565 || ws.kind == TARGET_WAITKIND_EXITED
4566 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4567 {
4568 if (debug_infrun)
4569 {
4570 ptid_t ptid = pid_to_ptid (ws.value.integer);
4571
4572 fprintf_unfiltered (gdb_stdlog,
4573 "infrun: %s exited while "
4574 "stopping threads\n",
4575 target_pid_to_str (ptid));
4576 }
4577 }
4578 else
4579 {
4580 struct inferior *inf;
4581
4582 t = find_thread_ptid (event_ptid);
4583 if (t == NULL)
4584 t = add_thread (event_ptid);
4585
4586 t->stop_requested = 0;
4587 t->executing = 0;
4588 t->resumed = 0;
4589 t->control.may_range_step = 0;
4590
4591 /* This may be the first time we see the inferior report
4592 a stop. */
4593 inf = find_inferior_ptid (event_ptid);
4594 if (inf->needs_setup)
4595 {
4596 switch_to_thread_no_regs (t);
4597 setup_inferior (0);
4598 }
4599
4600 if (ws.kind == TARGET_WAITKIND_STOPPED
4601 && ws.value.sig == GDB_SIGNAL_0)
4602 {
4603 /* We caught the event that we intended to catch, so
4604 there's no event pending. */
4605 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4606 t->suspend.waitstatus_pending_p = 0;
4607
4608 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4609 {
4610 /* Add it back to the step-over queue. */
4611 if (debug_infrun)
4612 {
4613 fprintf_unfiltered (gdb_stdlog,
4614 "infrun: displaced-step of %s "
4615 "canceled: adding back to the "
4616 "step-over queue\n",
4617 target_pid_to_str (t->ptid));
4618 }
4619 t->control.trap_expected = 0;
4620 thread_step_over_chain_enqueue (t);
4621 }
4622 }
4623 else
4624 {
4625 enum gdb_signal sig;
4626 struct regcache *regcache;
4627
4628 if (debug_infrun)
4629 {
4630 std::string statstr = target_waitstatus_to_string (&ws);
4631
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: target_wait %s, saving "
4634 "status for %d.%ld.%ld\n",
4635 statstr.c_str (),
4636 ptid_get_pid (t->ptid),
4637 ptid_get_lwp (t->ptid),
4638 ptid_get_tid (t->ptid));
4639 }
4640
4641 /* Record for later. */
4642 save_waitstatus (t, &ws);
4643
4644 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4645 ? ws.value.sig : GDB_SIGNAL_0);
4646
4647 if (displaced_step_fixup (t->ptid, sig) < 0)
4648 {
4649 /* Add it back to the step-over queue. */
4650 t->control.trap_expected = 0;
4651 thread_step_over_chain_enqueue (t);
4652 }
4653
4654 regcache = get_thread_regcache (t->ptid);
4655 t->suspend.stop_pc = regcache_read_pc (regcache);
4656
4657 if (debug_infrun)
4658 {
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: saved stop_pc=%s for %s "
4661 "(currently_stepping=%d)\n",
4662 paddress (target_gdbarch (),
4663 t->suspend.stop_pc),
4664 target_pid_to_str (t->ptid),
4665 currently_stepping (t));
4666 }
4667 }
4668 }
4669 }
4670 }
4671
4672 do_cleanups (old_chain);
4673
4674 if (debug_infrun)
4675 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4676 }
4677
4678 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4679
4680 static int
4681 handle_no_resumed (struct execution_control_state *ecs)
4682 {
4683 struct inferior *inf;
4684 struct thread_info *thread;
4685
4686 if (target_can_async_p ())
4687 {
4688 struct ui *ui;
4689 int any_sync = 0;
4690
4691 ALL_UIS (ui)
4692 {
4693 if (ui->prompt_state == PROMPT_BLOCKED)
4694 {
4695 any_sync = 1;
4696 break;
4697 }
4698 }
4699 if (!any_sync)
4700 {
4701 /* There were no unwaited-for children left in the target, but,
4702 we're not synchronously waiting for events either. Just
4703 ignore. */
4704
4705 if (debug_infrun)
4706 fprintf_unfiltered (gdb_stdlog,
4707 "infrun: TARGET_WAITKIND_NO_RESUMED "
4708 "(ignoring: bg)\n");
4709 prepare_to_wait (ecs);
4710 return 1;
4711 }
4712 }
4713
4714 /* Otherwise, if we were running a synchronous execution command, we
4715 may need to cancel it and give the user back the terminal.
4716
4717 In non-stop mode, the target can't tell whether we've already
4718 consumed previous stop events, so it can end up sending us a
4719 no-resumed event like so:
4720
4721 #0 - thread 1 is left stopped
4722
4723 #1 - thread 2 is resumed and hits breakpoint
4724 -> TARGET_WAITKIND_STOPPED
4725
4726 #2 - thread 3 is resumed and exits
4727 this is the last resumed thread, so
4728 -> TARGET_WAITKIND_NO_RESUMED
4729
4730 #3 - gdb processes stop for thread 2 and decides to re-resume
4731 it.
4732
4733 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4734 thread 2 is now resumed, so the event should be ignored.
4735
4736 IOW, if the stop for thread 2 doesn't end a foreground command,
4737 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4738 event. But it could be that the event meant that thread 2 itself
4739 (or whatever other thread was the last resumed thread) exited.
4740
4741 To address this we refresh the thread list and check whether we
4742 have resumed threads _now_. In the example above, this removes
4743 thread 3 from the thread list. If thread 2 was re-resumed, we
4744 ignore this event. If we find no thread resumed, then we cancel
4745 the synchronous command show "no unwaited-for " to the user. */
4746 update_thread_list ();
4747
4748 ALL_NON_EXITED_THREADS (thread)
4749 {
4750 if (thread->executing
4751 || thread->suspend.waitstatus_pending_p)
4752 {
4753 /* There were no unwaited-for children left in the target at
4754 some point, but there are now. Just ignore. */
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: TARGET_WAITKIND_NO_RESUMED "
4758 "(ignoring: found resumed)\n");
4759 prepare_to_wait (ecs);
4760 return 1;
4761 }
4762 }
4763
4764 /* Note however that we may find no resumed thread because the whole
4765 process exited meanwhile (thus updating the thread list results
4766 in an empty thread list). In this case we know we'll be getting
4767 a process exit event shortly. */
4768 ALL_INFERIORS (inf)
4769 {
4770 if (inf->pid == 0)
4771 continue;
4772
4773 thread = any_live_thread_of_process (inf->pid);
4774 if (thread == NULL)
4775 {
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: TARGET_WAITKIND_NO_RESUMED "
4779 "(expect process exit)\n");
4780 prepare_to_wait (ecs);
4781 return 1;
4782 }
4783 }
4784
4785 /* Go ahead and report the event. */
4786 return 0;
4787 }
4788
4789 /* Given an execution control state that has been freshly filled in by
4790 an event from the inferior, figure out what it means and take
4791 appropriate action.
4792
4793 The alternatives are:
4794
4795 1) stop_waiting and return; to really stop and return to the
4796 debugger.
4797
4798 2) keep_going and return; to wait for the next event (set
4799 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4800 once). */
4801
4802 static void
4803 handle_inferior_event_1 (struct execution_control_state *ecs)
4804 {
4805 enum stop_kind stop_soon;
4806
4807 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4808 {
4809 /* We had an event in the inferior, but we are not interested in
4810 handling it at this level. The lower layers have already
4811 done what needs to be done, if anything.
4812
4813 One of the possible circumstances for this is when the
4814 inferior produces output for the console. The inferior has
4815 not stopped, and we are ignoring the event. Another possible
4816 circumstance is any event which the lower level knows will be
4817 reported multiple times without an intervening resume. */
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4820 prepare_to_wait (ecs);
4821 return;
4822 }
4823
4824 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4825 {
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4828 prepare_to_wait (ecs);
4829 return;
4830 }
4831
4832 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4833 && handle_no_resumed (ecs))
4834 return;
4835
4836 /* Cache the last pid/waitstatus. */
4837 set_last_target_status (ecs->ptid, ecs->ws);
4838
4839 /* Always clear state belonging to the previous time we stopped. */
4840 stop_stack_dummy = STOP_NONE;
4841
4842 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4843 {
4844 /* No unwaited-for children left. IOW, all resumed children
4845 have exited. */
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4848
4849 stop_print_frame = 0;
4850 stop_waiting (ecs);
4851 return;
4852 }
4853
4854 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4855 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4856 {
4857 ecs->event_thread = find_thread_ptid (ecs->ptid);
4858 /* If it's a new thread, add it to the thread database. */
4859 if (ecs->event_thread == NULL)
4860 ecs->event_thread = add_thread (ecs->ptid);
4861
4862 /* Disable range stepping. If the next step request could use a
4863 range, this will be end up re-enabled then. */
4864 ecs->event_thread->control.may_range_step = 0;
4865 }
4866
4867 /* Dependent on valid ECS->EVENT_THREAD. */
4868 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4869
4870 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4871 reinit_frame_cache ();
4872
4873 breakpoint_retire_moribund ();
4874
4875 /* First, distinguish signals caused by the debugger from signals
4876 that have to do with the program's own actions. Note that
4877 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4878 on the operating system version. Here we detect when a SIGILL or
4879 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4880 something similar for SIGSEGV, since a SIGSEGV will be generated
4881 when we're trying to execute a breakpoint instruction on a
4882 non-executable stack. This happens for call dummy breakpoints
4883 for architectures like SPARC that place call dummies on the
4884 stack. */
4885 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4886 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4887 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4888 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4889 {
4890 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4891
4892 if (breakpoint_inserted_here_p (regcache->aspace (),
4893 regcache_read_pc (regcache)))
4894 {
4895 if (debug_infrun)
4896 fprintf_unfiltered (gdb_stdlog,
4897 "infrun: Treating signal as SIGTRAP\n");
4898 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4899 }
4900 }
4901
4902 /* Mark the non-executing threads accordingly. In all-stop, all
4903 threads of all processes are stopped when we get any event
4904 reported. In non-stop mode, only the event thread stops. */
4905 {
4906 ptid_t mark_ptid;
4907
4908 if (!target_is_non_stop_p ())
4909 mark_ptid = minus_one_ptid;
4910 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4911 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4912 {
4913 /* If we're handling a process exit in non-stop mode, even
4914 though threads haven't been deleted yet, one would think
4915 that there is nothing to do, as threads of the dead process
4916 will be soon deleted, and threads of any other process were
4917 left running. However, on some targets, threads survive a
4918 process exit event. E.g., for the "checkpoint" command,
4919 when the current checkpoint/fork exits, linux-fork.c
4920 automatically switches to another fork from within
4921 target_mourn_inferior, by associating the same
4922 inferior/thread to another fork. We haven't mourned yet at
4923 this point, but we must mark any threads left in the
4924 process as not-executing so that finish_thread_state marks
4925 them stopped (in the user's perspective) if/when we present
4926 the stop to the user. */
4927 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4928 }
4929 else
4930 mark_ptid = ecs->ptid;
4931
4932 set_executing (mark_ptid, 0);
4933
4934 /* Likewise the resumed flag. */
4935 set_resumed (mark_ptid, 0);
4936 }
4937
4938 switch (ecs->ws.kind)
4939 {
4940 case TARGET_WAITKIND_LOADED:
4941 if (debug_infrun)
4942 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4943 if (!ptid_equal (ecs->ptid, inferior_ptid))
4944 context_switch (ecs->ptid);
4945 /* Ignore gracefully during startup of the inferior, as it might
4946 be the shell which has just loaded some objects, otherwise
4947 add the symbols for the newly loaded objects. Also ignore at
4948 the beginning of an attach or remote session; we will query
4949 the full list of libraries once the connection is
4950 established. */
4951
4952 stop_soon = get_inferior_stop_soon (ecs->ptid);
4953 if (stop_soon == NO_STOP_QUIETLY)
4954 {
4955 struct regcache *regcache;
4956
4957 regcache = get_thread_regcache (ecs->ptid);
4958
4959 handle_solib_event ();
4960
4961 ecs->event_thread->control.stop_bpstat
4962 = bpstat_stop_status (regcache->aspace (),
4963 stop_pc, ecs->ptid, &ecs->ws);
4964
4965 if (handle_stop_requested (ecs))
4966 return;
4967
4968 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4969 {
4970 /* A catchpoint triggered. */
4971 process_event_stop_test (ecs);
4972 return;
4973 }
4974
4975 /* If requested, stop when the dynamic linker notifies
4976 gdb of events. This allows the user to get control
4977 and place breakpoints in initializer routines for
4978 dynamically loaded objects (among other things). */
4979 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4980 if (stop_on_solib_events)
4981 {
4982 /* Make sure we print "Stopped due to solib-event" in
4983 normal_stop. */
4984 stop_print_frame = 1;
4985
4986 stop_waiting (ecs);
4987 return;
4988 }
4989 }
4990
4991 /* If we are skipping through a shell, or through shared library
4992 loading that we aren't interested in, resume the program. If
4993 we're running the program normally, also resume. */
4994 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4995 {
4996 /* Loading of shared libraries might have changed breakpoint
4997 addresses. Make sure new breakpoints are inserted. */
4998 if (stop_soon == NO_STOP_QUIETLY)
4999 insert_breakpoints ();
5000 resume (GDB_SIGNAL_0);
5001 prepare_to_wait (ecs);
5002 return;
5003 }
5004
5005 /* But stop if we're attaching or setting up a remote
5006 connection. */
5007 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5008 || stop_soon == STOP_QUIETLY_REMOTE)
5009 {
5010 if (debug_infrun)
5011 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5012 stop_waiting (ecs);
5013 return;
5014 }
5015
5016 internal_error (__FILE__, __LINE__,
5017 _("unhandled stop_soon: %d"), (int) stop_soon);
5018
5019 case TARGET_WAITKIND_SPURIOUS:
5020 if (debug_infrun)
5021 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5022 if (handle_stop_requested (ecs))
5023 return;
5024 if (!ptid_equal (ecs->ptid, inferior_ptid))
5025 context_switch (ecs->ptid);
5026 resume (GDB_SIGNAL_0);
5027 prepare_to_wait (ecs);
5028 return;
5029
5030 case TARGET_WAITKIND_THREAD_CREATED:
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5033 if (handle_stop_requested (ecs))
5034 return;
5035 if (!ptid_equal (ecs->ptid, inferior_ptid))
5036 context_switch (ecs->ptid);
5037 if (!switch_back_to_stepped_thread (ecs))
5038 keep_going (ecs);
5039 return;
5040
5041 case TARGET_WAITKIND_EXITED:
5042 case TARGET_WAITKIND_SIGNALLED:
5043 if (debug_infrun)
5044 {
5045 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_EXITED\n");
5048 else
5049 fprintf_unfiltered (gdb_stdlog,
5050 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5051 }
5052
5053 inferior_ptid = ecs->ptid;
5054 set_current_inferior (find_inferior_ptid (ecs->ptid));
5055 set_current_program_space (current_inferior ()->pspace);
5056 handle_vfork_child_exec_or_exit (0);
5057 target_terminal::ours (); /* Must do this before mourn anyway. */
5058
5059 /* Clearing any previous state of convenience variables. */
5060 clear_exit_convenience_vars ();
5061
5062 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5063 {
5064 /* Record the exit code in the convenience variable $_exitcode, so
5065 that the user can inspect this again later. */
5066 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5067 (LONGEST) ecs->ws.value.integer);
5068
5069 /* Also record this in the inferior itself. */
5070 current_inferior ()->has_exit_code = 1;
5071 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5072
5073 /* Support the --return-child-result option. */
5074 return_child_result_value = ecs->ws.value.integer;
5075
5076 gdb::observers::exited.notify (ecs->ws.value.integer);
5077 }
5078 else
5079 {
5080 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5081 struct gdbarch *gdbarch = regcache->arch ();
5082
5083 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5084 {
5085 /* Set the value of the internal variable $_exitsignal,
5086 which holds the signal uncaught by the inferior. */
5087 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5088 gdbarch_gdb_signal_to_target (gdbarch,
5089 ecs->ws.value.sig));
5090 }
5091 else
5092 {
5093 /* We don't have access to the target's method used for
5094 converting between signal numbers (GDB's internal
5095 representation <-> target's representation).
5096 Therefore, we cannot do a good job at displaying this
5097 information to the user. It's better to just warn
5098 her about it (if infrun debugging is enabled), and
5099 give up. */
5100 if (debug_infrun)
5101 fprintf_filtered (gdb_stdlog, _("\
5102 Cannot fill $_exitsignal with the correct signal number.\n"));
5103 }
5104
5105 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5106 }
5107
5108 gdb_flush (gdb_stdout);
5109 target_mourn_inferior (inferior_ptid);
5110 stop_print_frame = 0;
5111 stop_waiting (ecs);
5112 return;
5113
5114 /* The following are the only cases in which we keep going;
5115 the above cases end in a continue or goto. */
5116 case TARGET_WAITKIND_FORKED:
5117 case TARGET_WAITKIND_VFORKED:
5118 if (debug_infrun)
5119 {
5120 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5121 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5122 else
5123 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5124 }
5125
5126 /* Check whether the inferior is displaced stepping. */
5127 {
5128 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5129 struct gdbarch *gdbarch = regcache->arch ();
5130
5131 /* If checking displaced stepping is supported, and thread
5132 ecs->ptid is displaced stepping. */
5133 if (displaced_step_in_progress_thread (ecs->ptid))
5134 {
5135 struct inferior *parent_inf
5136 = find_inferior_ptid (ecs->ptid);
5137 struct regcache *child_regcache;
5138 CORE_ADDR parent_pc;
5139
5140 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5141 indicating that the displaced stepping of syscall instruction
5142 has been done. Perform cleanup for parent process here. Note
5143 that this operation also cleans up the child process for vfork,
5144 because their pages are shared. */
5145 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5146 /* Start a new step-over in another thread if there's one
5147 that needs it. */
5148 start_step_over ();
5149
5150 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5151 {
5152 struct displaced_step_inferior_state *displaced
5153 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5154
5155 /* Restore scratch pad for child process. */
5156 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5157 }
5158
5159 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5160 the child's PC is also within the scratchpad. Set the child's PC
5161 to the parent's PC value, which has already been fixed up.
5162 FIXME: we use the parent's aspace here, although we're touching
5163 the child, because the child hasn't been added to the inferior
5164 list yet at this point. */
5165
5166 child_regcache
5167 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5168 gdbarch,
5169 parent_inf->aspace);
5170 /* Read PC value of parent process. */
5171 parent_pc = regcache_read_pc (regcache);
5172
5173 if (debug_displaced)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "displaced: write child pc from %s to %s\n",
5176 paddress (gdbarch,
5177 regcache_read_pc (child_regcache)),
5178 paddress (gdbarch, parent_pc));
5179
5180 regcache_write_pc (child_regcache, parent_pc);
5181 }
5182 }
5183
5184 if (!ptid_equal (ecs->ptid, inferior_ptid))
5185 context_switch (ecs->ptid);
5186
5187 /* Immediately detach breakpoints from the child before there's
5188 any chance of letting the user delete breakpoints from the
5189 breakpoint lists. If we don't do this early, it's easy to
5190 leave left over traps in the child, vis: "break foo; catch
5191 fork; c; <fork>; del; c; <child calls foo>". We only follow
5192 the fork on the last `continue', and by that time the
5193 breakpoint at "foo" is long gone from the breakpoint table.
5194 If we vforked, then we don't need to unpatch here, since both
5195 parent and child are sharing the same memory pages; we'll
5196 need to unpatch at follow/detach time instead to be certain
5197 that new breakpoints added between catchpoint hit time and
5198 vfork follow are detached. */
5199 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5200 {
5201 /* This won't actually modify the breakpoint list, but will
5202 physically remove the breakpoints from the child. */
5203 detach_breakpoints (ecs->ws.value.related_pid);
5204 }
5205
5206 delete_just_stopped_threads_single_step_breakpoints ();
5207
5208 /* In case the event is caught by a catchpoint, remember that
5209 the event is to be followed at the next resume of the thread,
5210 and not immediately. */
5211 ecs->event_thread->pending_follow = ecs->ws;
5212
5213 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5214
5215 ecs->event_thread->control.stop_bpstat
5216 = bpstat_stop_status (get_current_regcache ()->aspace (),
5217 stop_pc, ecs->ptid, &ecs->ws);
5218
5219 if (handle_stop_requested (ecs))
5220 return;
5221
5222 /* If no catchpoint triggered for this, then keep going. Note
5223 that we're interested in knowing the bpstat actually causes a
5224 stop, not just if it may explain the signal. Software
5225 watchpoints, for example, always appear in the bpstat. */
5226 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5227 {
5228 ptid_t parent;
5229 ptid_t child;
5230 int should_resume;
5231 int follow_child
5232 = (follow_fork_mode_string == follow_fork_mode_child);
5233
5234 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5235
5236 should_resume = follow_fork ();
5237
5238 parent = ecs->ptid;
5239 child = ecs->ws.value.related_pid;
5240
5241 /* At this point, the parent is marked running, and the
5242 child is marked stopped. */
5243
5244 /* If not resuming the parent, mark it stopped. */
5245 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5246 set_running (parent, 0);
5247
5248 /* If resuming the child, mark it running. */
5249 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5250 set_running (child, 1);
5251
5252 /* In non-stop mode, also resume the other branch. */
5253 if (!detach_fork && (non_stop
5254 || (sched_multi && target_is_non_stop_p ())))
5255 {
5256 if (follow_child)
5257 switch_to_thread (parent);
5258 else
5259 switch_to_thread (child);
5260
5261 ecs->event_thread = inferior_thread ();
5262 ecs->ptid = inferior_ptid;
5263 keep_going (ecs);
5264 }
5265
5266 if (follow_child)
5267 switch_to_thread (child);
5268 else
5269 switch_to_thread (parent);
5270
5271 ecs->event_thread = inferior_thread ();
5272 ecs->ptid = inferior_ptid;
5273
5274 if (should_resume)
5275 keep_going (ecs);
5276 else
5277 stop_waiting (ecs);
5278 return;
5279 }
5280 process_event_stop_test (ecs);
5281 return;
5282
5283 case TARGET_WAITKIND_VFORK_DONE:
5284 /* Done with the shared memory region. Re-insert breakpoints in
5285 the parent, and keep going. */
5286
5287 if (debug_infrun)
5288 fprintf_unfiltered (gdb_stdlog,
5289 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5290
5291 if (!ptid_equal (ecs->ptid, inferior_ptid))
5292 context_switch (ecs->ptid);
5293
5294 current_inferior ()->waiting_for_vfork_done = 0;
5295 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5296
5297 if (handle_stop_requested (ecs))
5298 return;
5299
5300 /* This also takes care of reinserting breakpoints in the
5301 previously locked inferior. */
5302 keep_going (ecs);
5303 return;
5304
5305 case TARGET_WAITKIND_EXECD:
5306 if (debug_infrun)
5307 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5308
5309 /* Note we can't read registers yet (the stop_pc), because we
5310 don't yet know the inferior's post-exec architecture.
5311 'stop_pc' is explicitly read below instead. */
5312 if (!ptid_equal (ecs->ptid, inferior_ptid))
5313 switch_to_thread_no_regs (ecs->event_thread);
5314
5315 /* Do whatever is necessary to the parent branch of the vfork. */
5316 handle_vfork_child_exec_or_exit (1);
5317
5318 /* This causes the eventpoints and symbol table to be reset.
5319 Must do this now, before trying to determine whether to
5320 stop. */
5321 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5322
5323 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5324
5325 /* In follow_exec we may have deleted the original thread and
5326 created a new one. Make sure that the event thread is the
5327 execd thread for that case (this is a nop otherwise). */
5328 ecs->event_thread = inferior_thread ();
5329
5330 ecs->event_thread->control.stop_bpstat
5331 = bpstat_stop_status (get_current_regcache ()->aspace (),
5332 stop_pc, ecs->ptid, &ecs->ws);
5333
5334 /* Note that this may be referenced from inside
5335 bpstat_stop_status above, through inferior_has_execd. */
5336 xfree (ecs->ws.value.execd_pathname);
5337 ecs->ws.value.execd_pathname = NULL;
5338
5339 if (handle_stop_requested (ecs))
5340 return;
5341
5342 /* If no catchpoint triggered for this, then keep going. */
5343 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5344 {
5345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5346 keep_going (ecs);
5347 return;
5348 }
5349 process_event_stop_test (ecs);
5350 return;
5351
5352 /* Be careful not to try to gather much state about a thread
5353 that's in a syscall. It's frequently a losing proposition. */
5354 case TARGET_WAITKIND_SYSCALL_ENTRY:
5355 if (debug_infrun)
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5358 /* Getting the current syscall number. */
5359 if (handle_syscall_event (ecs) == 0)
5360 process_event_stop_test (ecs);
5361 return;
5362
5363 /* Before examining the threads further, step this thread to
5364 get it entirely out of the syscall. (We get notice of the
5365 event when the thread is just on the verge of exiting a
5366 syscall. Stepping one instruction seems to get it back
5367 into user code.) */
5368 case TARGET_WAITKIND_SYSCALL_RETURN:
5369 if (debug_infrun)
5370 fprintf_unfiltered (gdb_stdlog,
5371 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
5375
5376 case TARGET_WAITKIND_STOPPED:
5377 if (debug_infrun)
5378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5379 handle_signal_stop (ecs);
5380 return;
5381
5382 case TARGET_WAITKIND_NO_HISTORY:
5383 if (debug_infrun)
5384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5385 /* Reverse execution: target ran out of history info. */
5386
5387 /* Switch to the stopped thread. */
5388 if (!ptid_equal (ecs->ptid, inferior_ptid))
5389 context_switch (ecs->ptid);
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5392
5393 delete_just_stopped_threads_single_step_breakpoints ();
5394 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5395
5396 if (handle_stop_requested (ecs))
5397 return;
5398
5399 gdb::observers::no_history.notify ();
5400 stop_waiting (ecs);
5401 return;
5402 }
5403 }
5404
5405 /* A wrapper around handle_inferior_event_1, which also makes sure
5406 that all temporary struct value objects that were created during
5407 the handling of the event get deleted at the end. */
5408
5409 static void
5410 handle_inferior_event (struct execution_control_state *ecs)
5411 {
5412 struct value *mark = value_mark ();
5413
5414 handle_inferior_event_1 (ecs);
5415 /* Purge all temporary values created during the event handling,
5416 as it could be a long time before we return to the command level
5417 where such values would otherwise be purged. */
5418 value_free_to_mark (mark);
5419 }
5420
5421 /* Restart threads back to what they were trying to do back when we
5422 paused them for an in-line step-over. The EVENT_THREAD thread is
5423 ignored. */
5424
5425 static void
5426 restart_threads (struct thread_info *event_thread)
5427 {
5428 struct thread_info *tp;
5429
5430 /* In case the instruction just stepped spawned a new thread. */
5431 update_thread_list ();
5432
5433 ALL_NON_EXITED_THREADS (tp)
5434 {
5435 if (tp == event_thread)
5436 {
5437 if (debug_infrun)
5438 fprintf_unfiltered (gdb_stdlog,
5439 "infrun: restart threads: "
5440 "[%s] is event thread\n",
5441 target_pid_to_str (tp->ptid));
5442 continue;
5443 }
5444
5445 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5446 {
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: restart threads: "
5450 "[%s] not meant to be running\n",
5451 target_pid_to_str (tp->ptid));
5452 continue;
5453 }
5454
5455 if (tp->resumed)
5456 {
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog,
5459 "infrun: restart threads: [%s] resumed\n",
5460 target_pid_to_str (tp->ptid));
5461 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5462 continue;
5463 }
5464
5465 if (thread_is_in_step_over_chain (tp))
5466 {
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: restart threads: "
5470 "[%s] needs step-over\n",
5471 target_pid_to_str (tp->ptid));
5472 gdb_assert (!tp->resumed);
5473 continue;
5474 }
5475
5476
5477 if (tp->suspend.waitstatus_pending_p)
5478 {
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: restart threads: "
5482 "[%s] has pending status\n",
5483 target_pid_to_str (tp->ptid));
5484 tp->resumed = 1;
5485 continue;
5486 }
5487
5488 gdb_assert (!tp->stop_requested);
5489
5490 /* If some thread needs to start a step-over at this point, it
5491 should still be in the step-over queue, and thus skipped
5492 above. */
5493 if (thread_still_needs_step_over (tp))
5494 {
5495 internal_error (__FILE__, __LINE__,
5496 "thread [%s] needs a step-over, but not in "
5497 "step-over queue\n",
5498 target_pid_to_str (tp->ptid));
5499 }
5500
5501 if (currently_stepping (tp))
5502 {
5503 if (debug_infrun)
5504 fprintf_unfiltered (gdb_stdlog,
5505 "infrun: restart threads: [%s] was stepping\n",
5506 target_pid_to_str (tp->ptid));
5507 keep_going_stepped_thread (tp);
5508 }
5509 else
5510 {
5511 struct execution_control_state ecss;
5512 struct execution_control_state *ecs = &ecss;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog,
5516 "infrun: restart threads: [%s] continuing\n",
5517 target_pid_to_str (tp->ptid));
5518 reset_ecs (ecs, tp);
5519 switch_to_thread (tp->ptid);
5520 keep_going_pass_signal (ecs);
5521 }
5522 }
5523 }
5524
5525 /* Callback for iterate_over_threads. Find a resumed thread that has
5526 a pending waitstatus. */
5527
5528 static int
5529 resumed_thread_with_pending_status (struct thread_info *tp,
5530 void *arg)
5531 {
5532 return (tp->resumed
5533 && tp->suspend.waitstatus_pending_p);
5534 }
5535
5536 /* Called when we get an event that may finish an in-line or
5537 out-of-line (displaced stepping) step-over started previously.
5538 Return true if the event is processed and we should go back to the
5539 event loop; false if the caller should continue processing the
5540 event. */
5541
5542 static int
5543 finish_step_over (struct execution_control_state *ecs)
5544 {
5545 int had_step_over_info;
5546
5547 displaced_step_fixup (ecs->ptid,
5548 ecs->event_thread->suspend.stop_signal);
5549
5550 had_step_over_info = step_over_info_valid_p ();
5551
5552 if (had_step_over_info)
5553 {
5554 /* If we're stepping over a breakpoint with all threads locked,
5555 then only the thread that was stepped should be reporting
5556 back an event. */
5557 gdb_assert (ecs->event_thread->control.trap_expected);
5558
5559 clear_step_over_info ();
5560 }
5561
5562 if (!target_is_non_stop_p ())
5563 return 0;
5564
5565 /* Start a new step-over in another thread if there's one that
5566 needs it. */
5567 start_step_over ();
5568
5569 /* If we were stepping over a breakpoint before, and haven't started
5570 a new in-line step-over sequence, then restart all other threads
5571 (except the event thread). We can't do this in all-stop, as then
5572 e.g., we wouldn't be able to issue any other remote packet until
5573 these other threads stop. */
5574 if (had_step_over_info && !step_over_info_valid_p ())
5575 {
5576 struct thread_info *pending;
5577
5578 /* If we only have threads with pending statuses, the restart
5579 below won't restart any thread and so nothing re-inserts the
5580 breakpoint we just stepped over. But we need it inserted
5581 when we later process the pending events, otherwise if
5582 another thread has a pending event for this breakpoint too,
5583 we'd discard its event (because the breakpoint that
5584 originally caused the event was no longer inserted). */
5585 context_switch (ecs->ptid);
5586 insert_breakpoints ();
5587
5588 restart_threads (ecs->event_thread);
5589
5590 /* If we have events pending, go through handle_inferior_event
5591 again, picking up a pending event at random. This avoids
5592 thread starvation. */
5593
5594 /* But not if we just stepped over a watchpoint in order to let
5595 the instruction execute so we can evaluate its expression.
5596 The set of watchpoints that triggered is recorded in the
5597 breakpoint objects themselves (see bp->watchpoint_triggered).
5598 If we processed another event first, that other event could
5599 clobber this info. */
5600 if (ecs->event_thread->stepping_over_watchpoint)
5601 return 0;
5602
5603 pending = iterate_over_threads (resumed_thread_with_pending_status,
5604 NULL);
5605 if (pending != NULL)
5606 {
5607 struct thread_info *tp = ecs->event_thread;
5608 struct regcache *regcache;
5609
5610 if (debug_infrun)
5611 {
5612 fprintf_unfiltered (gdb_stdlog,
5613 "infrun: found resumed threads with "
5614 "pending events, saving status\n");
5615 }
5616
5617 gdb_assert (pending != tp);
5618
5619 /* Record the event thread's event for later. */
5620 save_waitstatus (tp, &ecs->ws);
5621 /* This was cleared early, by handle_inferior_event. Set it
5622 so this pending event is considered by
5623 do_target_wait. */
5624 tp->resumed = 1;
5625
5626 gdb_assert (!tp->executing);
5627
5628 regcache = get_thread_regcache (tp->ptid);
5629 tp->suspend.stop_pc = regcache_read_pc (regcache);
5630
5631 if (debug_infrun)
5632 {
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: saved stop_pc=%s for %s "
5635 "(currently_stepping=%d)\n",
5636 paddress (target_gdbarch (),
5637 tp->suspend.stop_pc),
5638 target_pid_to_str (tp->ptid),
5639 currently_stepping (tp));
5640 }
5641
5642 /* This in-line step-over finished; clear this so we won't
5643 start a new one. This is what handle_signal_stop would
5644 do, if we returned false. */
5645 tp->stepping_over_breakpoint = 0;
5646
5647 /* Wake up the event loop again. */
5648 mark_async_event_handler (infrun_async_inferior_event_token);
5649
5650 prepare_to_wait (ecs);
5651 return 1;
5652 }
5653 }
5654
5655 return 0;
5656 }
5657
5658 /* Come here when the program has stopped with a signal. */
5659
5660 static void
5661 handle_signal_stop (struct execution_control_state *ecs)
5662 {
5663 struct frame_info *frame;
5664 struct gdbarch *gdbarch;
5665 int stopped_by_watchpoint;
5666 enum stop_kind stop_soon;
5667 int random_signal;
5668
5669 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5670
5671 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5672
5673 /* Do we need to clean up the state of a thread that has
5674 completed a displaced single-step? (Doing so usually affects
5675 the PC, so do it here, before we set stop_pc.) */
5676 if (finish_step_over (ecs))
5677 return;
5678
5679 /* If we either finished a single-step or hit a breakpoint, but
5680 the user wanted this thread to be stopped, pretend we got a
5681 SIG0 (generic unsignaled stop). */
5682 if (ecs->event_thread->stop_requested
5683 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5684 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5685
5686 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5687
5688 if (debug_infrun)
5689 {
5690 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5691 struct gdbarch *gdbarch = regcache->arch ();
5692 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5693
5694 inferior_ptid = ecs->ptid;
5695
5696 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5697 paddress (gdbarch, stop_pc));
5698 if (target_stopped_by_watchpoint ())
5699 {
5700 CORE_ADDR addr;
5701
5702 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5703
5704 if (target_stopped_data_address (current_top_target (), &addr))
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: stopped data address = %s\n",
5707 paddress (gdbarch, addr));
5708 else
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: (no data address available)\n");
5711 }
5712 }
5713
5714 /* This is originated from start_remote(), start_inferior() and
5715 shared libraries hook functions. */
5716 stop_soon = get_inferior_stop_soon (ecs->ptid);
5717 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5718 {
5719 if (!ptid_equal (ecs->ptid, inferior_ptid))
5720 context_switch (ecs->ptid);
5721 if (debug_infrun)
5722 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5723 stop_print_frame = 1;
5724 stop_waiting (ecs);
5725 return;
5726 }
5727
5728 /* This originates from attach_command(). We need to overwrite
5729 the stop_signal here, because some kernels don't ignore a
5730 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5731 See more comments in inferior.h. On the other hand, if we
5732 get a non-SIGSTOP, report it to the user - assume the backend
5733 will handle the SIGSTOP if it should show up later.
5734
5735 Also consider that the attach is complete when we see a
5736 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5737 target extended-remote report it instead of a SIGSTOP
5738 (e.g. gdbserver). We already rely on SIGTRAP being our
5739 signal, so this is no exception.
5740
5741 Also consider that the attach is complete when we see a
5742 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5743 the target to stop all threads of the inferior, in case the
5744 low level attach operation doesn't stop them implicitly. If
5745 they weren't stopped implicitly, then the stub will report a
5746 GDB_SIGNAL_0, meaning: stopped for no particular reason
5747 other than GDB's request. */
5748 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5749 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5750 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5751 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5752 {
5753 stop_print_frame = 1;
5754 stop_waiting (ecs);
5755 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5756 return;
5757 }
5758
5759 /* See if something interesting happened to the non-current thread. If
5760 so, then switch to that thread. */
5761 if (!ptid_equal (ecs->ptid, inferior_ptid))
5762 {
5763 if (debug_infrun)
5764 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5765
5766 context_switch (ecs->ptid);
5767
5768 if (deprecated_context_hook)
5769 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5770 }
5771
5772 /* At this point, get hold of the now-current thread's frame. */
5773 frame = get_current_frame ();
5774 gdbarch = get_frame_arch (frame);
5775
5776 /* Pull the single step breakpoints out of the target. */
5777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5778 {
5779 struct regcache *regcache;
5780 CORE_ADDR pc;
5781
5782 regcache = get_thread_regcache (ecs->ptid);
5783 const address_space *aspace = regcache->aspace ();
5784
5785 pc = regcache_read_pc (regcache);
5786
5787 /* However, before doing so, if this single-step breakpoint was
5788 actually for another thread, set this thread up for moving
5789 past it. */
5790 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5791 aspace, pc))
5792 {
5793 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5794 {
5795 if (debug_infrun)
5796 {
5797 fprintf_unfiltered (gdb_stdlog,
5798 "infrun: [%s] hit another thread's "
5799 "single-step breakpoint\n",
5800 target_pid_to_str (ecs->ptid));
5801 }
5802 ecs->hit_singlestep_breakpoint = 1;
5803 }
5804 }
5805 else
5806 {
5807 if (debug_infrun)
5808 {
5809 fprintf_unfiltered (gdb_stdlog,
5810 "infrun: [%s] hit its "
5811 "single-step breakpoint\n",
5812 target_pid_to_str (ecs->ptid));
5813 }
5814 }
5815 }
5816 delete_just_stopped_threads_single_step_breakpoints ();
5817
5818 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5819 && ecs->event_thread->control.trap_expected
5820 && ecs->event_thread->stepping_over_watchpoint)
5821 stopped_by_watchpoint = 0;
5822 else
5823 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5824
5825 /* If necessary, step over this watchpoint. We'll be back to display
5826 it in a moment. */
5827 if (stopped_by_watchpoint
5828 && (target_have_steppable_watchpoint
5829 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5830 {
5831 /* At this point, we are stopped at an instruction which has
5832 attempted to write to a piece of memory under control of
5833 a watchpoint. The instruction hasn't actually executed
5834 yet. If we were to evaluate the watchpoint expression
5835 now, we would get the old value, and therefore no change
5836 would seem to have occurred.
5837
5838 In order to make watchpoints work `right', we really need
5839 to complete the memory write, and then evaluate the
5840 watchpoint expression. We do this by single-stepping the
5841 target.
5842
5843 It may not be necessary to disable the watchpoint to step over
5844 it. For example, the PA can (with some kernel cooperation)
5845 single step over a watchpoint without disabling the watchpoint.
5846
5847 It is far more common to need to disable a watchpoint to step
5848 the inferior over it. If we have non-steppable watchpoints,
5849 we must disable the current watchpoint; it's simplest to
5850 disable all watchpoints.
5851
5852 Any breakpoint at PC must also be stepped over -- if there's
5853 one, it will have already triggered before the watchpoint
5854 triggered, and we either already reported it to the user, or
5855 it didn't cause a stop and we called keep_going. In either
5856 case, if there was a breakpoint at PC, we must be trying to
5857 step past it. */
5858 ecs->event_thread->stepping_over_watchpoint = 1;
5859 keep_going (ecs);
5860 return;
5861 }
5862
5863 ecs->event_thread->stepping_over_breakpoint = 0;
5864 ecs->event_thread->stepping_over_watchpoint = 0;
5865 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5866 ecs->event_thread->control.stop_step = 0;
5867 stop_print_frame = 1;
5868 stopped_by_random_signal = 0;
5869 bpstat stop_chain = NULL;
5870
5871 /* Hide inlined functions starting here, unless we just performed stepi or
5872 nexti. After stepi and nexti, always show the innermost frame (not any
5873 inline function call sites). */
5874 if (ecs->event_thread->control.step_range_end != 1)
5875 {
5876 const address_space *aspace =
5877 get_thread_regcache (ecs->ptid)->aspace ();
5878
5879 /* skip_inline_frames is expensive, so we avoid it if we can
5880 determine that the address is one where functions cannot have
5881 been inlined. This improves performance with inferiors that
5882 load a lot of shared libraries, because the solib event
5883 breakpoint is defined as the address of a function (i.e. not
5884 inline). Note that we have to check the previous PC as well
5885 as the current one to catch cases when we have just
5886 single-stepped off a breakpoint prior to reinstating it.
5887 Note that we're assuming that the code we single-step to is
5888 not inline, but that's not definitive: there's nothing
5889 preventing the event breakpoint function from containing
5890 inlined code, and the single-step ending up there. If the
5891 user had set a breakpoint on that inlined code, the missing
5892 skip_inline_frames call would break things. Fortunately
5893 that's an extremely unlikely scenario. */
5894 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5895 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5896 && ecs->event_thread->control.trap_expected
5897 && pc_at_non_inline_function (aspace,
5898 ecs->event_thread->prev_pc,
5899 &ecs->ws)))
5900 {
5901 stop_chain = build_bpstat_chain (aspace, stop_pc, &ecs->ws);
5902 skip_inline_frames (ecs->ptid, stop_chain);
5903
5904 /* Re-fetch current thread's frame in case that invalidated
5905 the frame cache. */
5906 frame = get_current_frame ();
5907 gdbarch = get_frame_arch (frame);
5908 }
5909 }
5910
5911 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5912 && ecs->event_thread->control.trap_expected
5913 && gdbarch_single_step_through_delay_p (gdbarch)
5914 && currently_stepping (ecs->event_thread))
5915 {
5916 /* We're trying to step off a breakpoint. Turns out that we're
5917 also on an instruction that needs to be stepped multiple
5918 times before it's been fully executing. E.g., architectures
5919 with a delay slot. It needs to be stepped twice, once for
5920 the instruction and once for the delay slot. */
5921 int step_through_delay
5922 = gdbarch_single_step_through_delay (gdbarch, frame);
5923
5924 if (debug_infrun && step_through_delay)
5925 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5926 if (ecs->event_thread->control.step_range_end == 0
5927 && step_through_delay)
5928 {
5929 /* The user issued a continue when stopped at a breakpoint.
5930 Set up for another trap and get out of here. */
5931 ecs->event_thread->stepping_over_breakpoint = 1;
5932 keep_going (ecs);
5933 return;
5934 }
5935 else if (step_through_delay)
5936 {
5937 /* The user issued a step when stopped at a breakpoint.
5938 Maybe we should stop, maybe we should not - the delay
5939 slot *might* correspond to a line of source. In any
5940 case, don't decide that here, just set
5941 ecs->stepping_over_breakpoint, making sure we
5942 single-step again before breakpoints are re-inserted. */
5943 ecs->event_thread->stepping_over_breakpoint = 1;
5944 }
5945 }
5946
5947 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5948 handles this event. */
5949 ecs->event_thread->control.stop_bpstat
5950 = bpstat_stop_status (get_current_regcache ()->aspace (),
5951 stop_pc, ecs->ptid, &ecs->ws, stop_chain);
5952
5953 /* Following in case break condition called a
5954 function. */
5955 stop_print_frame = 1;
5956
5957 /* This is where we handle "moribund" watchpoints. Unlike
5958 software breakpoints traps, hardware watchpoint traps are
5959 always distinguishable from random traps. If no high-level
5960 watchpoint is associated with the reported stop data address
5961 anymore, then the bpstat does not explain the signal ---
5962 simply make sure to ignore it if `stopped_by_watchpoint' is
5963 set. */
5964
5965 if (debug_infrun
5966 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5967 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5968 GDB_SIGNAL_TRAP)
5969 && stopped_by_watchpoint)
5970 fprintf_unfiltered (gdb_stdlog,
5971 "infrun: no user watchpoint explains "
5972 "watchpoint SIGTRAP, ignoring\n");
5973
5974 /* NOTE: cagney/2003-03-29: These checks for a random signal
5975 at one stage in the past included checks for an inferior
5976 function call's call dummy's return breakpoint. The original
5977 comment, that went with the test, read:
5978
5979 ``End of a stack dummy. Some systems (e.g. Sony news) give
5980 another signal besides SIGTRAP, so check here as well as
5981 above.''
5982
5983 If someone ever tries to get call dummys on a
5984 non-executable stack to work (where the target would stop
5985 with something like a SIGSEGV), then those tests might need
5986 to be re-instated. Given, however, that the tests were only
5987 enabled when momentary breakpoints were not being used, I
5988 suspect that it won't be the case.
5989
5990 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5991 be necessary for call dummies on a non-executable stack on
5992 SPARC. */
5993
5994 /* See if the breakpoints module can explain the signal. */
5995 random_signal
5996 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5997 ecs->event_thread->suspend.stop_signal);
5998
5999 /* Maybe this was a trap for a software breakpoint that has since
6000 been removed. */
6001 if (random_signal && target_stopped_by_sw_breakpoint ())
6002 {
6003 if (program_breakpoint_here_p (gdbarch, stop_pc))
6004 {
6005 struct regcache *regcache;
6006 int decr_pc;
6007
6008 /* Re-adjust PC to what the program would see if GDB was not
6009 debugging it. */
6010 regcache = get_thread_regcache (ecs->event_thread->ptid);
6011 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6012 if (decr_pc != 0)
6013 {
6014 gdb::optional<scoped_restore_tmpl<int>>
6015 restore_operation_disable;
6016
6017 if (record_full_is_used ())
6018 restore_operation_disable.emplace
6019 (record_full_gdb_operation_disable_set ());
6020
6021 regcache_write_pc (regcache, stop_pc + decr_pc);
6022 }
6023 }
6024 else
6025 {
6026 /* A delayed software breakpoint event. Ignore the trap. */
6027 if (debug_infrun)
6028 fprintf_unfiltered (gdb_stdlog,
6029 "infrun: delayed software breakpoint "
6030 "trap, ignoring\n");
6031 random_signal = 0;
6032 }
6033 }
6034
6035 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6036 has since been removed. */
6037 if (random_signal && target_stopped_by_hw_breakpoint ())
6038 {
6039 /* A delayed hardware breakpoint event. Ignore the trap. */
6040 if (debug_infrun)
6041 fprintf_unfiltered (gdb_stdlog,
6042 "infrun: delayed hardware breakpoint/watchpoint "
6043 "trap, ignoring\n");
6044 random_signal = 0;
6045 }
6046
6047 /* If not, perhaps stepping/nexting can. */
6048 if (random_signal)
6049 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6050 && currently_stepping (ecs->event_thread));
6051
6052 /* Perhaps the thread hit a single-step breakpoint of _another_
6053 thread. Single-step breakpoints are transparent to the
6054 breakpoints module. */
6055 if (random_signal)
6056 random_signal = !ecs->hit_singlestep_breakpoint;
6057
6058 /* No? Perhaps we got a moribund watchpoint. */
6059 if (random_signal)
6060 random_signal = !stopped_by_watchpoint;
6061
6062 /* Always stop if the user explicitly requested this thread to
6063 remain stopped. */
6064 if (ecs->event_thread->stop_requested)
6065 {
6066 random_signal = 1;
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6069 }
6070
6071 /* For the program's own signals, act according to
6072 the signal handling tables. */
6073
6074 if (random_signal)
6075 {
6076 /* Signal not for debugging purposes. */
6077 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6078 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6079
6080 if (debug_infrun)
6081 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6082 gdb_signal_to_symbol_string (stop_signal));
6083
6084 stopped_by_random_signal = 1;
6085
6086 /* Always stop on signals if we're either just gaining control
6087 of the program, or the user explicitly requested this thread
6088 to remain stopped. */
6089 if (stop_soon != NO_STOP_QUIETLY
6090 || ecs->event_thread->stop_requested
6091 || (!inf->detaching
6092 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6093 {
6094 stop_waiting (ecs);
6095 return;
6096 }
6097
6098 /* Notify observers the signal has "handle print" set. Note we
6099 returned early above if stopping; normal_stop handles the
6100 printing in that case. */
6101 if (signal_print[ecs->event_thread->suspend.stop_signal])
6102 {
6103 /* The signal table tells us to print about this signal. */
6104 target_terminal::ours_for_output ();
6105 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6106 target_terminal::inferior ();
6107 }
6108
6109 /* Clear the signal if it should not be passed. */
6110 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6112
6113 if (ecs->event_thread->prev_pc == stop_pc
6114 && ecs->event_thread->control.trap_expected
6115 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6116 {
6117 /* We were just starting a new sequence, attempting to
6118 single-step off of a breakpoint and expecting a SIGTRAP.
6119 Instead this signal arrives. This signal will take us out
6120 of the stepping range so GDB needs to remember to, when
6121 the signal handler returns, resume stepping off that
6122 breakpoint. */
6123 /* To simplify things, "continue" is forced to use the same
6124 code paths as single-step - set a breakpoint at the
6125 signal return address and then, once hit, step off that
6126 breakpoint. */
6127 if (debug_infrun)
6128 fprintf_unfiltered (gdb_stdlog,
6129 "infrun: signal arrived while stepping over "
6130 "breakpoint\n");
6131
6132 insert_hp_step_resume_breakpoint_at_frame (frame);
6133 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6134 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6135 ecs->event_thread->control.trap_expected = 0;
6136
6137 /* If we were nexting/stepping some other thread, switch to
6138 it, so that we don't continue it, losing control. */
6139 if (!switch_back_to_stepped_thread (ecs))
6140 keep_going (ecs);
6141 return;
6142 }
6143
6144 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6145 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6146 || ecs->event_thread->control.step_range_end == 1)
6147 && frame_id_eq (get_stack_frame_id (frame),
6148 ecs->event_thread->control.step_stack_frame_id)
6149 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6150 {
6151 /* The inferior is about to take a signal that will take it
6152 out of the single step range. Set a breakpoint at the
6153 current PC (which is presumably where the signal handler
6154 will eventually return) and then allow the inferior to
6155 run free.
6156
6157 Note that this is only needed for a signal delivered
6158 while in the single-step range. Nested signals aren't a
6159 problem as they eventually all return. */
6160 if (debug_infrun)
6161 fprintf_unfiltered (gdb_stdlog,
6162 "infrun: signal may take us out of "
6163 "single-step range\n");
6164
6165 clear_step_over_info ();
6166 insert_hp_step_resume_breakpoint_at_frame (frame);
6167 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6168 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6169 ecs->event_thread->control.trap_expected = 0;
6170 keep_going (ecs);
6171 return;
6172 }
6173
6174 /* Note: step_resume_breakpoint may be non-NULL. This occures
6175 when either there's a nested signal, or when there's a
6176 pending signal enabled just as the signal handler returns
6177 (leaving the inferior at the step-resume-breakpoint without
6178 actually executing it). Either way continue until the
6179 breakpoint is really hit. */
6180
6181 if (!switch_back_to_stepped_thread (ecs))
6182 {
6183 if (debug_infrun)
6184 fprintf_unfiltered (gdb_stdlog,
6185 "infrun: random signal, keep going\n");
6186
6187 keep_going (ecs);
6188 }
6189 return;
6190 }
6191
6192 process_event_stop_test (ecs);
6193 }
6194
6195 /* Come here when we've got some debug event / signal we can explain
6196 (IOW, not a random signal), and test whether it should cause a
6197 stop, or whether we should resume the inferior (transparently).
6198 E.g., could be a breakpoint whose condition evaluates false; we
6199 could be still stepping within the line; etc. */
6200
6201 static void
6202 process_event_stop_test (struct execution_control_state *ecs)
6203 {
6204 struct symtab_and_line stop_pc_sal;
6205 struct frame_info *frame;
6206 struct gdbarch *gdbarch;
6207 CORE_ADDR jmp_buf_pc;
6208 struct bpstat_what what;
6209
6210 /* Handle cases caused by hitting a breakpoint. */
6211
6212 frame = get_current_frame ();
6213 gdbarch = get_frame_arch (frame);
6214
6215 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6216
6217 if (what.call_dummy)
6218 {
6219 stop_stack_dummy = what.call_dummy;
6220 }
6221
6222 /* A few breakpoint types have callbacks associated (e.g.,
6223 bp_jit_event). Run them now. */
6224 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6225
6226 /* If we hit an internal event that triggers symbol changes, the
6227 current frame will be invalidated within bpstat_what (e.g., if we
6228 hit an internal solib event). Re-fetch it. */
6229 frame = get_current_frame ();
6230 gdbarch = get_frame_arch (frame);
6231
6232 switch (what.main_action)
6233 {
6234 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6235 /* If we hit the breakpoint at longjmp while stepping, we
6236 install a momentary breakpoint at the target of the
6237 jmp_buf. */
6238
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6242
6243 ecs->event_thread->stepping_over_breakpoint = 1;
6244
6245 if (what.is_longjmp)
6246 {
6247 struct value *arg_value;
6248
6249 /* If we set the longjmp breakpoint via a SystemTap probe,
6250 then use it to extract the arguments. The destination PC
6251 is the third argument to the probe. */
6252 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6253 if (arg_value)
6254 {
6255 jmp_buf_pc = value_as_address (arg_value);
6256 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6257 }
6258 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6259 || !gdbarch_get_longjmp_target (gdbarch,
6260 frame, &jmp_buf_pc))
6261 {
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog,
6264 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6265 "(!gdbarch_get_longjmp_target)\n");
6266 keep_going (ecs);
6267 return;
6268 }
6269
6270 /* Insert a breakpoint at resume address. */
6271 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6272 }
6273 else
6274 check_exception_resume (ecs, frame);
6275 keep_going (ecs);
6276 return;
6277
6278 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6279 {
6280 struct frame_info *init_frame;
6281
6282 /* There are several cases to consider.
6283
6284 1. The initiating frame no longer exists. In this case we
6285 must stop, because the exception or longjmp has gone too
6286 far.
6287
6288 2. The initiating frame exists, and is the same as the
6289 current frame. We stop, because the exception or longjmp
6290 has been caught.
6291
6292 3. The initiating frame exists and is different from the
6293 current frame. This means the exception or longjmp has
6294 been caught beneath the initiating frame, so keep going.
6295
6296 4. longjmp breakpoint has been placed just to protect
6297 against stale dummy frames and user is not interested in
6298 stopping around longjmps. */
6299
6300 if (debug_infrun)
6301 fprintf_unfiltered (gdb_stdlog,
6302 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6303
6304 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6305 != NULL);
6306 delete_exception_resume_breakpoint (ecs->event_thread);
6307
6308 if (what.is_longjmp)
6309 {
6310 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6311
6312 if (!frame_id_p (ecs->event_thread->initiating_frame))
6313 {
6314 /* Case 4. */
6315 keep_going (ecs);
6316 return;
6317 }
6318 }
6319
6320 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6321
6322 if (init_frame)
6323 {
6324 struct frame_id current_id
6325 = get_frame_id (get_current_frame ());
6326 if (frame_id_eq (current_id,
6327 ecs->event_thread->initiating_frame))
6328 {
6329 /* Case 2. Fall through. */
6330 }
6331 else
6332 {
6333 /* Case 3. */
6334 keep_going (ecs);
6335 return;
6336 }
6337 }
6338
6339 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6340 exists. */
6341 delete_step_resume_breakpoint (ecs->event_thread);
6342
6343 end_stepping_range (ecs);
6344 }
6345 return;
6346
6347 case BPSTAT_WHAT_SINGLE:
6348 if (debug_infrun)
6349 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6350 ecs->event_thread->stepping_over_breakpoint = 1;
6351 /* Still need to check other stuff, at least the case where we
6352 are stepping and step out of the right range. */
6353 break;
6354
6355 case BPSTAT_WHAT_STEP_RESUME:
6356 if (debug_infrun)
6357 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6358
6359 delete_step_resume_breakpoint (ecs->event_thread);
6360 if (ecs->event_thread->control.proceed_to_finish
6361 && execution_direction == EXEC_REVERSE)
6362 {
6363 struct thread_info *tp = ecs->event_thread;
6364
6365 /* We are finishing a function in reverse, and just hit the
6366 step-resume breakpoint at the start address of the
6367 function, and we're almost there -- just need to back up
6368 by one more single-step, which should take us back to the
6369 function call. */
6370 tp->control.step_range_start = tp->control.step_range_end = 1;
6371 keep_going (ecs);
6372 return;
6373 }
6374 fill_in_stop_func (gdbarch, ecs);
6375 if (stop_pc == ecs->stop_func_start
6376 && execution_direction == EXEC_REVERSE)
6377 {
6378 /* We are stepping over a function call in reverse, and just
6379 hit the step-resume breakpoint at the start address of
6380 the function. Go back to single-stepping, which should
6381 take us back to the function call. */
6382 ecs->event_thread->stepping_over_breakpoint = 1;
6383 keep_going (ecs);
6384 return;
6385 }
6386 break;
6387
6388 case BPSTAT_WHAT_STOP_NOISY:
6389 if (debug_infrun)
6390 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6391 stop_print_frame = 1;
6392
6393 /* Assume the thread stopped for a breapoint. We'll still check
6394 whether a/the breakpoint is there when the thread is next
6395 resumed. */
6396 ecs->event_thread->stepping_over_breakpoint = 1;
6397
6398 stop_waiting (ecs);
6399 return;
6400
6401 case BPSTAT_WHAT_STOP_SILENT:
6402 if (debug_infrun)
6403 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6404 stop_print_frame = 0;
6405
6406 /* Assume the thread stopped for a breapoint. We'll still check
6407 whether a/the breakpoint is there when the thread is next
6408 resumed. */
6409 ecs->event_thread->stepping_over_breakpoint = 1;
6410 stop_waiting (ecs);
6411 return;
6412
6413 case BPSTAT_WHAT_HP_STEP_RESUME:
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6416
6417 delete_step_resume_breakpoint (ecs->event_thread);
6418 if (ecs->event_thread->step_after_step_resume_breakpoint)
6419 {
6420 /* Back when the step-resume breakpoint was inserted, we
6421 were trying to single-step off a breakpoint. Go back to
6422 doing that. */
6423 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6424 ecs->event_thread->stepping_over_breakpoint = 1;
6425 keep_going (ecs);
6426 return;
6427 }
6428 break;
6429
6430 case BPSTAT_WHAT_KEEP_CHECKING:
6431 break;
6432 }
6433
6434 /* If we stepped a permanent breakpoint and we had a high priority
6435 step-resume breakpoint for the address we stepped, but we didn't
6436 hit it, then we must have stepped into the signal handler. The
6437 step-resume was only necessary to catch the case of _not_
6438 stepping into the handler, so delete it, and fall through to
6439 checking whether the step finished. */
6440 if (ecs->event_thread->stepped_breakpoint)
6441 {
6442 struct breakpoint *sr_bp
6443 = ecs->event_thread->control.step_resume_breakpoint;
6444
6445 if (sr_bp != NULL
6446 && sr_bp->loc->permanent
6447 && sr_bp->type == bp_hp_step_resume
6448 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6449 {
6450 if (debug_infrun)
6451 fprintf_unfiltered (gdb_stdlog,
6452 "infrun: stepped permanent breakpoint, stopped in "
6453 "handler\n");
6454 delete_step_resume_breakpoint (ecs->event_thread);
6455 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6456 }
6457 }
6458
6459 /* We come here if we hit a breakpoint but should not stop for it.
6460 Possibly we also were stepping and should stop for that. So fall
6461 through and test for stepping. But, if not stepping, do not
6462 stop. */
6463
6464 /* In all-stop mode, if we're currently stepping but have stopped in
6465 some other thread, we need to switch back to the stepped thread. */
6466 if (switch_back_to_stepped_thread (ecs))
6467 return;
6468
6469 if (ecs->event_thread->control.step_resume_breakpoint)
6470 {
6471 if (debug_infrun)
6472 fprintf_unfiltered (gdb_stdlog,
6473 "infrun: step-resume breakpoint is inserted\n");
6474
6475 /* Having a step-resume breakpoint overrides anything
6476 else having to do with stepping commands until
6477 that breakpoint is reached. */
6478 keep_going (ecs);
6479 return;
6480 }
6481
6482 if (ecs->event_thread->control.step_range_end == 0)
6483 {
6484 if (debug_infrun)
6485 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6486 /* Likewise if we aren't even stepping. */
6487 keep_going (ecs);
6488 return;
6489 }
6490
6491 /* Re-fetch current thread's frame in case the code above caused
6492 the frame cache to be re-initialized, making our FRAME variable
6493 a dangling pointer. */
6494 frame = get_current_frame ();
6495 gdbarch = get_frame_arch (frame);
6496 fill_in_stop_func (gdbarch, ecs);
6497
6498 /* If stepping through a line, keep going if still within it.
6499
6500 Note that step_range_end is the address of the first instruction
6501 beyond the step range, and NOT the address of the last instruction
6502 within it!
6503
6504 Note also that during reverse execution, we may be stepping
6505 through a function epilogue and therefore must detect when
6506 the current-frame changes in the middle of a line. */
6507
6508 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6509 && (execution_direction != EXEC_REVERSE
6510 || frame_id_eq (get_frame_id (frame),
6511 ecs->event_thread->control.step_frame_id)))
6512 {
6513 if (debug_infrun)
6514 fprintf_unfiltered
6515 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6516 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6517 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6518
6519 /* Tentatively re-enable range stepping; `resume' disables it if
6520 necessary (e.g., if we're stepping over a breakpoint or we
6521 have software watchpoints). */
6522 ecs->event_thread->control.may_range_step = 1;
6523
6524 /* When stepping backward, stop at beginning of line range
6525 (unless it's the function entry point, in which case
6526 keep going back to the call point). */
6527 if (stop_pc == ecs->event_thread->control.step_range_start
6528 && stop_pc != ecs->stop_func_start
6529 && execution_direction == EXEC_REVERSE)
6530 end_stepping_range (ecs);
6531 else
6532 keep_going (ecs);
6533
6534 return;
6535 }
6536
6537 /* We stepped out of the stepping range. */
6538
6539 /* If we are stepping at the source level and entered the runtime
6540 loader dynamic symbol resolution code...
6541
6542 EXEC_FORWARD: we keep on single stepping until we exit the run
6543 time loader code and reach the callee's address.
6544
6545 EXEC_REVERSE: we've already executed the callee (backward), and
6546 the runtime loader code is handled just like any other
6547 undebuggable function call. Now we need only keep stepping
6548 backward through the trampoline code, and that's handled further
6549 down, so there is nothing for us to do here. */
6550
6551 if (execution_direction != EXEC_REVERSE
6552 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6553 && in_solib_dynsym_resolve_code (stop_pc))
6554 {
6555 CORE_ADDR pc_after_resolver =
6556 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6557
6558 if (debug_infrun)
6559 fprintf_unfiltered (gdb_stdlog,
6560 "infrun: stepped into dynsym resolve code\n");
6561
6562 if (pc_after_resolver)
6563 {
6564 /* Set up a step-resume breakpoint at the address
6565 indicated by SKIP_SOLIB_RESOLVER. */
6566 symtab_and_line sr_sal;
6567 sr_sal.pc = pc_after_resolver;
6568 sr_sal.pspace = get_frame_program_space (frame);
6569
6570 insert_step_resume_breakpoint_at_sal (gdbarch,
6571 sr_sal, null_frame_id);
6572 }
6573
6574 keep_going (ecs);
6575 return;
6576 }
6577
6578 /* Step through an indirect branch thunk. */
6579 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6580 && gdbarch_in_indirect_branch_thunk (gdbarch, stop_pc))
6581 {
6582 if (debug_infrun)
6583 fprintf_unfiltered (gdb_stdlog,
6584 "infrun: stepped into indirect branch thunk\n");
6585 keep_going (ecs);
6586 return;
6587 }
6588
6589 if (ecs->event_thread->control.step_range_end != 1
6590 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6591 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6592 && get_frame_type (frame) == SIGTRAMP_FRAME)
6593 {
6594 if (debug_infrun)
6595 fprintf_unfiltered (gdb_stdlog,
6596 "infrun: stepped into signal trampoline\n");
6597 /* The inferior, while doing a "step" or "next", has ended up in
6598 a signal trampoline (either by a signal being delivered or by
6599 the signal handler returning). Just single-step until the
6600 inferior leaves the trampoline (either by calling the handler
6601 or returning). */
6602 keep_going (ecs);
6603 return;
6604 }
6605
6606 /* If we're in the return path from a shared library trampoline,
6607 we want to proceed through the trampoline when stepping. */
6608 /* macro/2012-04-25: This needs to come before the subroutine
6609 call check below as on some targets return trampolines look
6610 like subroutine calls (MIPS16 return thunks). */
6611 if (gdbarch_in_solib_return_trampoline (gdbarch,
6612 stop_pc, ecs->stop_func_name)
6613 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6614 {
6615 /* Determine where this trampoline returns. */
6616 CORE_ADDR real_stop_pc;
6617
6618 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6619
6620 if (debug_infrun)
6621 fprintf_unfiltered (gdb_stdlog,
6622 "infrun: stepped into solib return tramp\n");
6623
6624 /* Only proceed through if we know where it's going. */
6625 if (real_stop_pc)
6626 {
6627 /* And put the step-breakpoint there and go until there. */
6628 symtab_and_line sr_sal;
6629 sr_sal.pc = real_stop_pc;
6630 sr_sal.section = find_pc_overlay (sr_sal.pc);
6631 sr_sal.pspace = get_frame_program_space (frame);
6632
6633 /* Do not specify what the fp should be when we stop since
6634 on some machines the prologue is where the new fp value
6635 is established. */
6636 insert_step_resume_breakpoint_at_sal (gdbarch,
6637 sr_sal, null_frame_id);
6638
6639 /* Restart without fiddling with the step ranges or
6640 other state. */
6641 keep_going (ecs);
6642 return;
6643 }
6644 }
6645
6646 /* Check for subroutine calls. The check for the current frame
6647 equalling the step ID is not necessary - the check of the
6648 previous frame's ID is sufficient - but it is a common case and
6649 cheaper than checking the previous frame's ID.
6650
6651 NOTE: frame_id_eq will never report two invalid frame IDs as
6652 being equal, so to get into this block, both the current and
6653 previous frame must have valid frame IDs. */
6654 /* The outer_frame_id check is a heuristic to detect stepping
6655 through startup code. If we step over an instruction which
6656 sets the stack pointer from an invalid value to a valid value,
6657 we may detect that as a subroutine call from the mythical
6658 "outermost" function. This could be fixed by marking
6659 outermost frames as !stack_p,code_p,special_p. Then the
6660 initial outermost frame, before sp was valid, would
6661 have code_addr == &_start. See the comment in frame_id_eq
6662 for more. */
6663 if (!frame_id_eq (get_stack_frame_id (frame),
6664 ecs->event_thread->control.step_stack_frame_id)
6665 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6666 ecs->event_thread->control.step_stack_frame_id)
6667 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6668 outer_frame_id)
6669 || (ecs->event_thread->control.step_start_function
6670 != find_pc_function (stop_pc)))))
6671 {
6672 CORE_ADDR real_stop_pc;
6673
6674 if (debug_infrun)
6675 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6676
6677 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6678 {
6679 /* I presume that step_over_calls is only 0 when we're
6680 supposed to be stepping at the assembly language level
6681 ("stepi"). Just stop. */
6682 /* And this works the same backward as frontward. MVS */
6683 end_stepping_range (ecs);
6684 return;
6685 }
6686
6687 /* Reverse stepping through solib trampolines. */
6688
6689 if (execution_direction == EXEC_REVERSE
6690 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6691 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6692 || (ecs->stop_func_start == 0
6693 && in_solib_dynsym_resolve_code (stop_pc))))
6694 {
6695 /* Any solib trampoline code can be handled in reverse
6696 by simply continuing to single-step. We have already
6697 executed the solib function (backwards), and a few
6698 steps will take us back through the trampoline to the
6699 caller. */
6700 keep_going (ecs);
6701 return;
6702 }
6703
6704 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6705 {
6706 /* We're doing a "next".
6707
6708 Normal (forward) execution: set a breakpoint at the
6709 callee's return address (the address at which the caller
6710 will resume).
6711
6712 Reverse (backward) execution. set the step-resume
6713 breakpoint at the start of the function that we just
6714 stepped into (backwards), and continue to there. When we
6715 get there, we'll need to single-step back to the caller. */
6716
6717 if (execution_direction == EXEC_REVERSE)
6718 {
6719 /* If we're already at the start of the function, we've either
6720 just stepped backward into a single instruction function,
6721 or stepped back out of a signal handler to the first instruction
6722 of the function. Just keep going, which will single-step back
6723 to the caller. */
6724 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6725 {
6726 /* Normal function call return (static or dynamic). */
6727 symtab_and_line sr_sal;
6728 sr_sal.pc = ecs->stop_func_start;
6729 sr_sal.pspace = get_frame_program_space (frame);
6730 insert_step_resume_breakpoint_at_sal (gdbarch,
6731 sr_sal, null_frame_id);
6732 }
6733 }
6734 else
6735 insert_step_resume_breakpoint_at_caller (frame);
6736
6737 keep_going (ecs);
6738 return;
6739 }
6740
6741 /* If we are in a function call trampoline (a stub between the
6742 calling routine and the real function), locate the real
6743 function. That's what tells us (a) whether we want to step
6744 into it at all, and (b) what prologue we want to run to the
6745 end of, if we do step into it. */
6746 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6747 if (real_stop_pc == 0)
6748 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6749 if (real_stop_pc != 0)
6750 ecs->stop_func_start = real_stop_pc;
6751
6752 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6753 {
6754 symtab_and_line sr_sal;
6755 sr_sal.pc = ecs->stop_func_start;
6756 sr_sal.pspace = get_frame_program_space (frame);
6757
6758 insert_step_resume_breakpoint_at_sal (gdbarch,
6759 sr_sal, null_frame_id);
6760 keep_going (ecs);
6761 return;
6762 }
6763
6764 /* If we have line number information for the function we are
6765 thinking of stepping into and the function isn't on the skip
6766 list, step into it.
6767
6768 If there are several symtabs at that PC (e.g. with include
6769 files), just want to know whether *any* of them have line
6770 numbers. find_pc_line handles this. */
6771 {
6772 struct symtab_and_line tmp_sal;
6773
6774 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6775 if (tmp_sal.line != 0
6776 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6777 tmp_sal))
6778 {
6779 if (execution_direction == EXEC_REVERSE)
6780 handle_step_into_function_backward (gdbarch, ecs);
6781 else
6782 handle_step_into_function (gdbarch, ecs);
6783 return;
6784 }
6785 }
6786
6787 /* If we have no line number and the step-stop-if-no-debug is
6788 set, we stop the step so that the user has a chance to switch
6789 in assembly mode. */
6790 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6791 && step_stop_if_no_debug)
6792 {
6793 end_stepping_range (ecs);
6794 return;
6795 }
6796
6797 if (execution_direction == EXEC_REVERSE)
6798 {
6799 /* If we're already at the start of the function, we've either just
6800 stepped backward into a single instruction function without line
6801 number info, or stepped back out of a signal handler to the first
6802 instruction of the function without line number info. Just keep
6803 going, which will single-step back to the caller. */
6804 if (ecs->stop_func_start != stop_pc)
6805 {
6806 /* Set a breakpoint at callee's start address.
6807 From there we can step once and be back in the caller. */
6808 symtab_and_line sr_sal;
6809 sr_sal.pc = ecs->stop_func_start;
6810 sr_sal.pspace = get_frame_program_space (frame);
6811 insert_step_resume_breakpoint_at_sal (gdbarch,
6812 sr_sal, null_frame_id);
6813 }
6814 }
6815 else
6816 /* Set a breakpoint at callee's return address (the address
6817 at which the caller will resume). */
6818 insert_step_resume_breakpoint_at_caller (frame);
6819
6820 keep_going (ecs);
6821 return;
6822 }
6823
6824 /* Reverse stepping through solib trampolines. */
6825
6826 if (execution_direction == EXEC_REVERSE
6827 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6828 {
6829 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6830 || (ecs->stop_func_start == 0
6831 && in_solib_dynsym_resolve_code (stop_pc)))
6832 {
6833 /* Any solib trampoline code can be handled in reverse
6834 by simply continuing to single-step. We have already
6835 executed the solib function (backwards), and a few
6836 steps will take us back through the trampoline to the
6837 caller. */
6838 keep_going (ecs);
6839 return;
6840 }
6841 else if (in_solib_dynsym_resolve_code (stop_pc))
6842 {
6843 /* Stepped backward into the solib dynsym resolver.
6844 Set a breakpoint at its start and continue, then
6845 one more step will take us out. */
6846 symtab_and_line sr_sal;
6847 sr_sal.pc = ecs->stop_func_start;
6848 sr_sal.pspace = get_frame_program_space (frame);
6849 insert_step_resume_breakpoint_at_sal (gdbarch,
6850 sr_sal, null_frame_id);
6851 keep_going (ecs);
6852 return;
6853 }
6854 }
6855
6856 stop_pc_sal = find_pc_line (stop_pc, 0);
6857
6858 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6859 the trampoline processing logic, however, there are some trampolines
6860 that have no names, so we should do trampoline handling first. */
6861 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6862 && ecs->stop_func_name == NULL
6863 && stop_pc_sal.line == 0)
6864 {
6865 if (debug_infrun)
6866 fprintf_unfiltered (gdb_stdlog,
6867 "infrun: stepped into undebuggable function\n");
6868
6869 /* The inferior just stepped into, or returned to, an
6870 undebuggable function (where there is no debugging information
6871 and no line number corresponding to the address where the
6872 inferior stopped). Since we want to skip this kind of code,
6873 we keep going until the inferior returns from this
6874 function - unless the user has asked us not to (via
6875 set step-mode) or we no longer know how to get back
6876 to the call site. */
6877 if (step_stop_if_no_debug
6878 || !frame_id_p (frame_unwind_caller_id (frame)))
6879 {
6880 /* If we have no line number and the step-stop-if-no-debug
6881 is set, we stop the step so that the user has a chance to
6882 switch in assembly mode. */
6883 end_stepping_range (ecs);
6884 return;
6885 }
6886 else
6887 {
6888 /* Set a breakpoint at callee's return address (the address
6889 at which the caller will resume). */
6890 insert_step_resume_breakpoint_at_caller (frame);
6891 keep_going (ecs);
6892 return;
6893 }
6894 }
6895
6896 if (ecs->event_thread->control.step_range_end == 1)
6897 {
6898 /* It is stepi or nexti. We always want to stop stepping after
6899 one instruction. */
6900 if (debug_infrun)
6901 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6902 end_stepping_range (ecs);
6903 return;
6904 }
6905
6906 if (stop_pc_sal.line == 0)
6907 {
6908 /* We have no line number information. That means to stop
6909 stepping (does this always happen right after one instruction,
6910 when we do "s" in a function with no line numbers,
6911 or can this happen as a result of a return or longjmp?). */
6912 if (debug_infrun)
6913 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6914 end_stepping_range (ecs);
6915 return;
6916 }
6917
6918 /* Look for "calls" to inlined functions, part one. If the inline
6919 frame machinery detected some skipped call sites, we have entered
6920 a new inline function. */
6921
6922 if (frame_id_eq (get_frame_id (get_current_frame ()),
6923 ecs->event_thread->control.step_frame_id)
6924 && inline_skipped_frames (ecs->ptid))
6925 {
6926 if (debug_infrun)
6927 fprintf_unfiltered (gdb_stdlog,
6928 "infrun: stepped into inlined function\n");
6929
6930 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6931
6932 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6933 {
6934 /* For "step", we're going to stop. But if the call site
6935 for this inlined function is on the same source line as
6936 we were previously stepping, go down into the function
6937 first. Otherwise stop at the call site. */
6938
6939 if (call_sal.line == ecs->event_thread->current_line
6940 && call_sal.symtab == ecs->event_thread->current_symtab)
6941 step_into_inline_frame (ecs->ptid);
6942
6943 end_stepping_range (ecs);
6944 return;
6945 }
6946 else
6947 {
6948 /* For "next", we should stop at the call site if it is on a
6949 different source line. Otherwise continue through the
6950 inlined function. */
6951 if (call_sal.line == ecs->event_thread->current_line
6952 && call_sal.symtab == ecs->event_thread->current_symtab)
6953 keep_going (ecs);
6954 else
6955 end_stepping_range (ecs);
6956 return;
6957 }
6958 }
6959
6960 /* Look for "calls" to inlined functions, part two. If we are still
6961 in the same real function we were stepping through, but we have
6962 to go further up to find the exact frame ID, we are stepping
6963 through a more inlined call beyond its call site. */
6964
6965 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6966 && !frame_id_eq (get_frame_id (get_current_frame ()),
6967 ecs->event_thread->control.step_frame_id)
6968 && stepped_in_from (get_current_frame (),
6969 ecs->event_thread->control.step_frame_id))
6970 {
6971 if (debug_infrun)
6972 fprintf_unfiltered (gdb_stdlog,
6973 "infrun: stepping through inlined function\n");
6974
6975 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6976 keep_going (ecs);
6977 else
6978 end_stepping_range (ecs);
6979 return;
6980 }
6981
6982 if ((stop_pc == stop_pc_sal.pc)
6983 && (ecs->event_thread->current_line != stop_pc_sal.line
6984 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6985 {
6986 /* We are at the start of a different line. So stop. Note that
6987 we don't stop if we step into the middle of a different line.
6988 That is said to make things like for (;;) statements work
6989 better. */
6990 if (debug_infrun)
6991 fprintf_unfiltered (gdb_stdlog,
6992 "infrun: stepped to a different line\n");
6993 end_stepping_range (ecs);
6994 return;
6995 }
6996
6997 /* We aren't done stepping.
6998
6999 Optimize by setting the stepping range to the line.
7000 (We might not be in the original line, but if we entered a
7001 new line in mid-statement, we continue stepping. This makes
7002 things like for(;;) statements work better.) */
7003
7004 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7005 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7006 ecs->event_thread->control.may_range_step = 1;
7007 set_step_info (frame, stop_pc_sal);
7008
7009 if (debug_infrun)
7010 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7011 keep_going (ecs);
7012 }
7013
7014 /* In all-stop mode, if we're currently stepping but have stopped in
7015 some other thread, we may need to switch back to the stepped
7016 thread. Returns true we set the inferior running, false if we left
7017 it stopped (and the event needs further processing). */
7018
7019 static int
7020 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7021 {
7022 if (!target_is_non_stop_p ())
7023 {
7024 struct thread_info *tp;
7025 struct thread_info *stepping_thread;
7026
7027 /* If any thread is blocked on some internal breakpoint, and we
7028 simply need to step over that breakpoint to get it going
7029 again, do that first. */
7030
7031 /* However, if we see an event for the stepping thread, then we
7032 know all other threads have been moved past their breakpoints
7033 already. Let the caller check whether the step is finished,
7034 etc., before deciding to move it past a breakpoint. */
7035 if (ecs->event_thread->control.step_range_end != 0)
7036 return 0;
7037
7038 /* Check if the current thread is blocked on an incomplete
7039 step-over, interrupted by a random signal. */
7040 if (ecs->event_thread->control.trap_expected
7041 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7042 {
7043 if (debug_infrun)
7044 {
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: need to finish step-over of [%s]\n",
7047 target_pid_to_str (ecs->event_thread->ptid));
7048 }
7049 keep_going (ecs);
7050 return 1;
7051 }
7052
7053 /* Check if the current thread is blocked by a single-step
7054 breakpoint of another thread. */
7055 if (ecs->hit_singlestep_breakpoint)
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: need to step [%s] over single-step "
7061 "breakpoint\n",
7062 target_pid_to_str (ecs->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
7067
7068 /* If this thread needs yet another step-over (e.g., stepping
7069 through a delay slot), do it first before moving on to
7070 another thread. */
7071 if (thread_still_needs_step_over (ecs->event_thread))
7072 {
7073 if (debug_infrun)
7074 {
7075 fprintf_unfiltered (gdb_stdlog,
7076 "infrun: thread [%s] still needs step-over\n",
7077 target_pid_to_str (ecs->event_thread->ptid));
7078 }
7079 keep_going (ecs);
7080 return 1;
7081 }
7082
7083 /* If scheduler locking applies even if not stepping, there's no
7084 need to walk over threads. Above we've checked whether the
7085 current thread is stepping. If some other thread not the
7086 event thread is stepping, then it must be that scheduler
7087 locking is not in effect. */
7088 if (schedlock_applies (ecs->event_thread))
7089 return 0;
7090
7091 /* Otherwise, we no longer expect a trap in the current thread.
7092 Clear the trap_expected flag before switching back -- this is
7093 what keep_going does as well, if we call it. */
7094 ecs->event_thread->control.trap_expected = 0;
7095
7096 /* Likewise, clear the signal if it should not be passed. */
7097 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7098 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7099
7100 /* Do all pending step-overs before actually proceeding with
7101 step/next/etc. */
7102 if (start_step_over ())
7103 {
7104 prepare_to_wait (ecs);
7105 return 1;
7106 }
7107
7108 /* Look for the stepping/nexting thread. */
7109 stepping_thread = NULL;
7110
7111 ALL_NON_EXITED_THREADS (tp)
7112 {
7113 /* Ignore threads of processes the caller is not
7114 resuming. */
7115 if (!sched_multi
7116 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7117 continue;
7118
7119 /* When stepping over a breakpoint, we lock all threads
7120 except the one that needs to move past the breakpoint.
7121 If a non-event thread has this set, the "incomplete
7122 step-over" check above should have caught it earlier. */
7123 if (tp->control.trap_expected)
7124 {
7125 internal_error (__FILE__, __LINE__,
7126 "[%s] has inconsistent state: "
7127 "trap_expected=%d\n",
7128 target_pid_to_str (tp->ptid),
7129 tp->control.trap_expected);
7130 }
7131
7132 /* Did we find the stepping thread? */
7133 if (tp->control.step_range_end)
7134 {
7135 /* Yep. There should only one though. */
7136 gdb_assert (stepping_thread == NULL);
7137
7138 /* The event thread is handled at the top, before we
7139 enter this loop. */
7140 gdb_assert (tp != ecs->event_thread);
7141
7142 /* If some thread other than the event thread is
7143 stepping, then scheduler locking can't be in effect,
7144 otherwise we wouldn't have resumed the current event
7145 thread in the first place. */
7146 gdb_assert (!schedlock_applies (tp));
7147
7148 stepping_thread = tp;
7149 }
7150 }
7151
7152 if (stepping_thread != NULL)
7153 {
7154 if (debug_infrun)
7155 fprintf_unfiltered (gdb_stdlog,
7156 "infrun: switching back to stepped thread\n");
7157
7158 if (keep_going_stepped_thread (stepping_thread))
7159 {
7160 prepare_to_wait (ecs);
7161 return 1;
7162 }
7163 }
7164 }
7165
7166 return 0;
7167 }
7168
7169 /* Set a previously stepped thread back to stepping. Returns true on
7170 success, false if the resume is not possible (e.g., the thread
7171 vanished). */
7172
7173 static int
7174 keep_going_stepped_thread (struct thread_info *tp)
7175 {
7176 struct frame_info *frame;
7177 struct execution_control_state ecss;
7178 struct execution_control_state *ecs = &ecss;
7179
7180 /* If the stepping thread exited, then don't try to switch back and
7181 resume it, which could fail in several different ways depending
7182 on the target. Instead, just keep going.
7183
7184 We can find a stepping dead thread in the thread list in two
7185 cases:
7186
7187 - The target supports thread exit events, and when the target
7188 tries to delete the thread from the thread list, inferior_ptid
7189 pointed at the exiting thread. In such case, calling
7190 delete_thread does not really remove the thread from the list;
7191 instead, the thread is left listed, with 'exited' state.
7192
7193 - The target's debug interface does not support thread exit
7194 events, and so we have no idea whatsoever if the previously
7195 stepping thread is still alive. For that reason, we need to
7196 synchronously query the target now. */
7197
7198 if (is_exited (tp->ptid)
7199 || !target_thread_alive (tp->ptid))
7200 {
7201 if (debug_infrun)
7202 fprintf_unfiltered (gdb_stdlog,
7203 "infrun: not resuming previously "
7204 "stepped thread, it has vanished\n");
7205
7206 delete_thread (tp->ptid);
7207 return 0;
7208 }
7209
7210 if (debug_infrun)
7211 fprintf_unfiltered (gdb_stdlog,
7212 "infrun: resuming previously stepped thread\n");
7213
7214 reset_ecs (ecs, tp);
7215 switch_to_thread (tp->ptid);
7216
7217 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7218 frame = get_current_frame ();
7219
7220 /* If the PC of the thread we were trying to single-step has
7221 changed, then that thread has trapped or been signaled, but the
7222 event has not been reported to GDB yet. Re-poll the target
7223 looking for this particular thread's event (i.e. temporarily
7224 enable schedlock) by:
7225
7226 - setting a break at the current PC
7227 - resuming that particular thread, only (by setting trap
7228 expected)
7229
7230 This prevents us continuously moving the single-step breakpoint
7231 forward, one instruction at a time, overstepping. */
7232
7233 if (stop_pc != tp->prev_pc)
7234 {
7235 ptid_t resume_ptid;
7236
7237 if (debug_infrun)
7238 fprintf_unfiltered (gdb_stdlog,
7239 "infrun: expected thread advanced also (%s -> %s)\n",
7240 paddress (target_gdbarch (), tp->prev_pc),
7241 paddress (target_gdbarch (), stop_pc));
7242
7243 /* Clear the info of the previous step-over, as it's no longer
7244 valid (if the thread was trying to step over a breakpoint, it
7245 has already succeeded). It's what keep_going would do too,
7246 if we called it. Do this before trying to insert the sss
7247 breakpoint, otherwise if we were previously trying to step
7248 over this exact address in another thread, the breakpoint is
7249 skipped. */
7250 clear_step_over_info ();
7251 tp->control.trap_expected = 0;
7252
7253 insert_single_step_breakpoint (get_frame_arch (frame),
7254 get_frame_address_space (frame),
7255 stop_pc);
7256
7257 tp->resumed = 1;
7258 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7259 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7260 }
7261 else
7262 {
7263 if (debug_infrun)
7264 fprintf_unfiltered (gdb_stdlog,
7265 "infrun: expected thread still hasn't advanced\n");
7266
7267 keep_going_pass_signal (ecs);
7268 }
7269 return 1;
7270 }
7271
7272 /* Is thread TP in the middle of (software or hardware)
7273 single-stepping? (Note the result of this function must never be
7274 passed directly as target_resume's STEP parameter.) */
7275
7276 static int
7277 currently_stepping (struct thread_info *tp)
7278 {
7279 return ((tp->control.step_range_end
7280 && tp->control.step_resume_breakpoint == NULL)
7281 || tp->control.trap_expected
7282 || tp->stepped_breakpoint
7283 || bpstat_should_step ());
7284 }
7285
7286 /* Inferior has stepped into a subroutine call with source code that
7287 we should not step over. Do step to the first line of code in
7288 it. */
7289
7290 static void
7291 handle_step_into_function (struct gdbarch *gdbarch,
7292 struct execution_control_state *ecs)
7293 {
7294 fill_in_stop_func (gdbarch, ecs);
7295
7296 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7297 if (cust != NULL && compunit_language (cust) != language_asm)
7298 ecs->stop_func_start
7299 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7300
7301 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7302 /* Use the step_resume_break to step until the end of the prologue,
7303 even if that involves jumps (as it seems to on the vax under
7304 4.2). */
7305 /* If the prologue ends in the middle of a source line, continue to
7306 the end of that source line (if it is still within the function).
7307 Otherwise, just go to end of prologue. */
7308 if (stop_func_sal.end
7309 && stop_func_sal.pc != ecs->stop_func_start
7310 && stop_func_sal.end < ecs->stop_func_end)
7311 ecs->stop_func_start = stop_func_sal.end;
7312
7313 /* Architectures which require breakpoint adjustment might not be able
7314 to place a breakpoint at the computed address. If so, the test
7315 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7316 ecs->stop_func_start to an address at which a breakpoint may be
7317 legitimately placed.
7318
7319 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7320 made, GDB will enter an infinite loop when stepping through
7321 optimized code consisting of VLIW instructions which contain
7322 subinstructions corresponding to different source lines. On
7323 FR-V, it's not permitted to place a breakpoint on any but the
7324 first subinstruction of a VLIW instruction. When a breakpoint is
7325 set, GDB will adjust the breakpoint address to the beginning of
7326 the VLIW instruction. Thus, we need to make the corresponding
7327 adjustment here when computing the stop address. */
7328
7329 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7330 {
7331 ecs->stop_func_start
7332 = gdbarch_adjust_breakpoint_address (gdbarch,
7333 ecs->stop_func_start);
7334 }
7335
7336 if (ecs->stop_func_start == stop_pc)
7337 {
7338 /* We are already there: stop now. */
7339 end_stepping_range (ecs);
7340 return;
7341 }
7342 else
7343 {
7344 /* Put the step-breakpoint there and go until there. */
7345 symtab_and_line sr_sal;
7346 sr_sal.pc = ecs->stop_func_start;
7347 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7348 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7349
7350 /* Do not specify what the fp should be when we stop since on
7351 some machines the prologue is where the new fp value is
7352 established. */
7353 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7354
7355 /* And make sure stepping stops right away then. */
7356 ecs->event_thread->control.step_range_end
7357 = ecs->event_thread->control.step_range_start;
7358 }
7359 keep_going (ecs);
7360 }
7361
7362 /* Inferior has stepped backward into a subroutine call with source
7363 code that we should not step over. Do step to the beginning of the
7364 last line of code in it. */
7365
7366 static void
7367 handle_step_into_function_backward (struct gdbarch *gdbarch,
7368 struct execution_control_state *ecs)
7369 {
7370 struct compunit_symtab *cust;
7371 struct symtab_and_line stop_func_sal;
7372
7373 fill_in_stop_func (gdbarch, ecs);
7374
7375 cust = find_pc_compunit_symtab (stop_pc);
7376 if (cust != NULL && compunit_language (cust) != language_asm)
7377 ecs->stop_func_start
7378 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7379
7380 stop_func_sal = find_pc_line (stop_pc, 0);
7381
7382 /* OK, we're just going to keep stepping here. */
7383 if (stop_func_sal.pc == stop_pc)
7384 {
7385 /* We're there already. Just stop stepping now. */
7386 end_stepping_range (ecs);
7387 }
7388 else
7389 {
7390 /* Else just reset the step range and keep going.
7391 No step-resume breakpoint, they don't work for
7392 epilogues, which can have multiple entry paths. */
7393 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7394 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7395 keep_going (ecs);
7396 }
7397 return;
7398 }
7399
7400 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7401 This is used to both functions and to skip over code. */
7402
7403 static void
7404 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7405 struct symtab_and_line sr_sal,
7406 struct frame_id sr_id,
7407 enum bptype sr_type)
7408 {
7409 /* There should never be more than one step-resume or longjmp-resume
7410 breakpoint per thread, so we should never be setting a new
7411 step_resume_breakpoint when one is already active. */
7412 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7413 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7414
7415 if (debug_infrun)
7416 fprintf_unfiltered (gdb_stdlog,
7417 "infrun: inserting step-resume breakpoint at %s\n",
7418 paddress (gdbarch, sr_sal.pc));
7419
7420 inferior_thread ()->control.step_resume_breakpoint
7421 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7422 }
7423
7424 void
7425 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7426 struct symtab_and_line sr_sal,
7427 struct frame_id sr_id)
7428 {
7429 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7430 sr_sal, sr_id,
7431 bp_step_resume);
7432 }
7433
7434 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7435 This is used to skip a potential signal handler.
7436
7437 This is called with the interrupted function's frame. The signal
7438 handler, when it returns, will resume the interrupted function at
7439 RETURN_FRAME.pc. */
7440
7441 static void
7442 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7443 {
7444 gdb_assert (return_frame != NULL);
7445
7446 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7447
7448 symtab_and_line sr_sal;
7449 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7450 sr_sal.section = find_pc_overlay (sr_sal.pc);
7451 sr_sal.pspace = get_frame_program_space (return_frame);
7452
7453 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7454 get_stack_frame_id (return_frame),
7455 bp_hp_step_resume);
7456 }
7457
7458 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7459 is used to skip a function after stepping into it (for "next" or if
7460 the called function has no debugging information).
7461
7462 The current function has almost always been reached by single
7463 stepping a call or return instruction. NEXT_FRAME belongs to the
7464 current function, and the breakpoint will be set at the caller's
7465 resume address.
7466
7467 This is a separate function rather than reusing
7468 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7469 get_prev_frame, which may stop prematurely (see the implementation
7470 of frame_unwind_caller_id for an example). */
7471
7472 static void
7473 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7474 {
7475 /* We shouldn't have gotten here if we don't know where the call site
7476 is. */
7477 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7478
7479 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7480
7481 symtab_and_line sr_sal;
7482 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7483 frame_unwind_caller_pc (next_frame));
7484 sr_sal.section = find_pc_overlay (sr_sal.pc);
7485 sr_sal.pspace = frame_unwind_program_space (next_frame);
7486
7487 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7488 frame_unwind_caller_id (next_frame));
7489 }
7490
7491 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7492 new breakpoint at the target of a jmp_buf. The handling of
7493 longjmp-resume uses the same mechanisms used for handling
7494 "step-resume" breakpoints. */
7495
7496 static void
7497 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7498 {
7499 /* There should never be more than one longjmp-resume breakpoint per
7500 thread, so we should never be setting a new
7501 longjmp_resume_breakpoint when one is already active. */
7502 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7503
7504 if (debug_infrun)
7505 fprintf_unfiltered (gdb_stdlog,
7506 "infrun: inserting longjmp-resume breakpoint at %s\n",
7507 paddress (gdbarch, pc));
7508
7509 inferior_thread ()->control.exception_resume_breakpoint =
7510 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7511 }
7512
7513 /* Insert an exception resume breakpoint. TP is the thread throwing
7514 the exception. The block B is the block of the unwinder debug hook
7515 function. FRAME is the frame corresponding to the call to this
7516 function. SYM is the symbol of the function argument holding the
7517 target PC of the exception. */
7518
7519 static void
7520 insert_exception_resume_breakpoint (struct thread_info *tp,
7521 const struct block *b,
7522 struct frame_info *frame,
7523 struct symbol *sym)
7524 {
7525 TRY
7526 {
7527 struct block_symbol vsym;
7528 struct value *value;
7529 CORE_ADDR handler;
7530 struct breakpoint *bp;
7531
7532 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7533 b, VAR_DOMAIN);
7534 value = read_var_value (vsym.symbol, vsym.block, frame);
7535 /* If the value was optimized out, revert to the old behavior. */
7536 if (! value_optimized_out (value))
7537 {
7538 handler = value_as_address (value);
7539
7540 if (debug_infrun)
7541 fprintf_unfiltered (gdb_stdlog,
7542 "infrun: exception resume at %lx\n",
7543 (unsigned long) handler);
7544
7545 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7546 handler,
7547 bp_exception_resume).release ();
7548
7549 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7550 frame = NULL;
7551
7552 bp->thread = tp->global_num;
7553 inferior_thread ()->control.exception_resume_breakpoint = bp;
7554 }
7555 }
7556 CATCH (e, RETURN_MASK_ERROR)
7557 {
7558 /* We want to ignore errors here. */
7559 }
7560 END_CATCH
7561 }
7562
7563 /* A helper for check_exception_resume that sets an
7564 exception-breakpoint based on a SystemTap probe. */
7565
7566 static void
7567 insert_exception_resume_from_probe (struct thread_info *tp,
7568 const struct bound_probe *probe,
7569 struct frame_info *frame)
7570 {
7571 struct value *arg_value;
7572 CORE_ADDR handler;
7573 struct breakpoint *bp;
7574
7575 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7576 if (!arg_value)
7577 return;
7578
7579 handler = value_as_address (arg_value);
7580
7581 if (debug_infrun)
7582 fprintf_unfiltered (gdb_stdlog,
7583 "infrun: exception resume at %s\n",
7584 paddress (get_objfile_arch (probe->objfile),
7585 handler));
7586
7587 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7588 handler, bp_exception_resume).release ();
7589 bp->thread = tp->global_num;
7590 inferior_thread ()->control.exception_resume_breakpoint = bp;
7591 }
7592
7593 /* This is called when an exception has been intercepted. Check to
7594 see whether the exception's destination is of interest, and if so,
7595 set an exception resume breakpoint there. */
7596
7597 static void
7598 check_exception_resume (struct execution_control_state *ecs,
7599 struct frame_info *frame)
7600 {
7601 struct bound_probe probe;
7602 struct symbol *func;
7603
7604 /* First see if this exception unwinding breakpoint was set via a
7605 SystemTap probe point. If so, the probe has two arguments: the
7606 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7607 set a breakpoint there. */
7608 probe = find_probe_by_pc (get_frame_pc (frame));
7609 if (probe.prob)
7610 {
7611 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7612 return;
7613 }
7614
7615 func = get_frame_function (frame);
7616 if (!func)
7617 return;
7618
7619 TRY
7620 {
7621 const struct block *b;
7622 struct block_iterator iter;
7623 struct symbol *sym;
7624 int argno = 0;
7625
7626 /* The exception breakpoint is a thread-specific breakpoint on
7627 the unwinder's debug hook, declared as:
7628
7629 void _Unwind_DebugHook (void *cfa, void *handler);
7630
7631 The CFA argument indicates the frame to which control is
7632 about to be transferred. HANDLER is the destination PC.
7633
7634 We ignore the CFA and set a temporary breakpoint at HANDLER.
7635 This is not extremely efficient but it avoids issues in gdb
7636 with computing the DWARF CFA, and it also works even in weird
7637 cases such as throwing an exception from inside a signal
7638 handler. */
7639
7640 b = SYMBOL_BLOCK_VALUE (func);
7641 ALL_BLOCK_SYMBOLS (b, iter, sym)
7642 {
7643 if (!SYMBOL_IS_ARGUMENT (sym))
7644 continue;
7645
7646 if (argno == 0)
7647 ++argno;
7648 else
7649 {
7650 insert_exception_resume_breakpoint (ecs->event_thread,
7651 b, frame, sym);
7652 break;
7653 }
7654 }
7655 }
7656 CATCH (e, RETURN_MASK_ERROR)
7657 {
7658 }
7659 END_CATCH
7660 }
7661
7662 static void
7663 stop_waiting (struct execution_control_state *ecs)
7664 {
7665 if (debug_infrun)
7666 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7667
7668 /* Let callers know we don't want to wait for the inferior anymore. */
7669 ecs->wait_some_more = 0;
7670
7671 /* If all-stop, but the target is always in non-stop mode, stop all
7672 threads now that we're presenting the stop to the user. */
7673 if (!non_stop && target_is_non_stop_p ())
7674 stop_all_threads ();
7675 }
7676
7677 /* Like keep_going, but passes the signal to the inferior, even if the
7678 signal is set to nopass. */
7679
7680 static void
7681 keep_going_pass_signal (struct execution_control_state *ecs)
7682 {
7683 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7684 gdb_assert (!ecs->event_thread->resumed);
7685
7686 /* Save the pc before execution, to compare with pc after stop. */
7687 ecs->event_thread->prev_pc
7688 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7689
7690 if (ecs->event_thread->control.trap_expected)
7691 {
7692 struct thread_info *tp = ecs->event_thread;
7693
7694 if (debug_infrun)
7695 fprintf_unfiltered (gdb_stdlog,
7696 "infrun: %s has trap_expected set, "
7697 "resuming to collect trap\n",
7698 target_pid_to_str (tp->ptid));
7699
7700 /* We haven't yet gotten our trap, and either: intercepted a
7701 non-signal event (e.g., a fork); or took a signal which we
7702 are supposed to pass through to the inferior. Simply
7703 continue. */
7704 resume (ecs->event_thread->suspend.stop_signal);
7705 }
7706 else if (step_over_info_valid_p ())
7707 {
7708 /* Another thread is stepping over a breakpoint in-line. If
7709 this thread needs a step-over too, queue the request. In
7710 either case, this resume must be deferred for later. */
7711 struct thread_info *tp = ecs->event_thread;
7712
7713 if (ecs->hit_singlestep_breakpoint
7714 || thread_still_needs_step_over (tp))
7715 {
7716 if (debug_infrun)
7717 fprintf_unfiltered (gdb_stdlog,
7718 "infrun: step-over already in progress: "
7719 "step-over for %s deferred\n",
7720 target_pid_to_str (tp->ptid));
7721 thread_step_over_chain_enqueue (tp);
7722 }
7723 else
7724 {
7725 if (debug_infrun)
7726 fprintf_unfiltered (gdb_stdlog,
7727 "infrun: step-over in progress: "
7728 "resume of %s deferred\n",
7729 target_pid_to_str (tp->ptid));
7730 }
7731 }
7732 else
7733 {
7734 struct regcache *regcache = get_current_regcache ();
7735 int remove_bp;
7736 int remove_wps;
7737 step_over_what step_what;
7738
7739 /* Either the trap was not expected, but we are continuing
7740 anyway (if we got a signal, the user asked it be passed to
7741 the child)
7742 -- or --
7743 We got our expected trap, but decided we should resume from
7744 it.
7745
7746 We're going to run this baby now!
7747
7748 Note that insert_breakpoints won't try to re-insert
7749 already inserted breakpoints. Therefore, we don't
7750 care if breakpoints were already inserted, or not. */
7751
7752 /* If we need to step over a breakpoint, and we're not using
7753 displaced stepping to do so, insert all breakpoints
7754 (watchpoints, etc.) but the one we're stepping over, step one
7755 instruction, and then re-insert the breakpoint when that step
7756 is finished. */
7757
7758 step_what = thread_still_needs_step_over (ecs->event_thread);
7759
7760 remove_bp = (ecs->hit_singlestep_breakpoint
7761 || (step_what & STEP_OVER_BREAKPOINT));
7762 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7763
7764 /* We can't use displaced stepping if we need to step past a
7765 watchpoint. The instruction copied to the scratch pad would
7766 still trigger the watchpoint. */
7767 if (remove_bp
7768 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7769 {
7770 set_step_over_info (regcache->aspace (),
7771 regcache_read_pc (regcache), remove_wps,
7772 ecs->event_thread->global_num);
7773 }
7774 else if (remove_wps)
7775 set_step_over_info (NULL, 0, remove_wps, -1);
7776
7777 /* If we now need to do an in-line step-over, we need to stop
7778 all other threads. Note this must be done before
7779 insert_breakpoints below, because that removes the breakpoint
7780 we're about to step over, otherwise other threads could miss
7781 it. */
7782 if (step_over_info_valid_p () && target_is_non_stop_p ())
7783 stop_all_threads ();
7784
7785 /* Stop stepping if inserting breakpoints fails. */
7786 TRY
7787 {
7788 insert_breakpoints ();
7789 }
7790 CATCH (e, RETURN_MASK_ERROR)
7791 {
7792 exception_print (gdb_stderr, e);
7793 stop_waiting (ecs);
7794 clear_step_over_info ();
7795 return;
7796 }
7797 END_CATCH
7798
7799 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7800
7801 resume (ecs->event_thread->suspend.stop_signal);
7802 }
7803
7804 prepare_to_wait (ecs);
7805 }
7806
7807 /* Called when we should continue running the inferior, because the
7808 current event doesn't cause a user visible stop. This does the
7809 resuming part; waiting for the next event is done elsewhere. */
7810
7811 static void
7812 keep_going (struct execution_control_state *ecs)
7813 {
7814 if (ecs->event_thread->control.trap_expected
7815 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7816 ecs->event_thread->control.trap_expected = 0;
7817
7818 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7819 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7820 keep_going_pass_signal (ecs);
7821 }
7822
7823 /* This function normally comes after a resume, before
7824 handle_inferior_event exits. It takes care of any last bits of
7825 housekeeping, and sets the all-important wait_some_more flag. */
7826
7827 static void
7828 prepare_to_wait (struct execution_control_state *ecs)
7829 {
7830 if (debug_infrun)
7831 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7832
7833 ecs->wait_some_more = 1;
7834
7835 if (!target_is_async_p ())
7836 mark_infrun_async_event_handler ();
7837 }
7838
7839 /* We are done with the step range of a step/next/si/ni command.
7840 Called once for each n of a "step n" operation. */
7841
7842 static void
7843 end_stepping_range (struct execution_control_state *ecs)
7844 {
7845 ecs->event_thread->control.stop_step = 1;
7846 stop_waiting (ecs);
7847 }
7848
7849 /* Several print_*_reason functions to print why the inferior has stopped.
7850 We always print something when the inferior exits, or receives a signal.
7851 The rest of the cases are dealt with later on in normal_stop and
7852 print_it_typical. Ideally there should be a call to one of these
7853 print_*_reason functions functions from handle_inferior_event each time
7854 stop_waiting is called.
7855
7856 Note that we don't call these directly, instead we delegate that to
7857 the interpreters, through observers. Interpreters then call these
7858 with whatever uiout is right. */
7859
7860 void
7861 print_end_stepping_range_reason (struct ui_out *uiout)
7862 {
7863 /* For CLI-like interpreters, print nothing. */
7864
7865 if (uiout->is_mi_like_p ())
7866 {
7867 uiout->field_string ("reason",
7868 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7869 }
7870 }
7871
7872 void
7873 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7874 {
7875 annotate_signalled ();
7876 if (uiout->is_mi_like_p ())
7877 uiout->field_string
7878 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7879 uiout->text ("\nProgram terminated with signal ");
7880 annotate_signal_name ();
7881 uiout->field_string ("signal-name",
7882 gdb_signal_to_name (siggnal));
7883 annotate_signal_name_end ();
7884 uiout->text (", ");
7885 annotate_signal_string ();
7886 uiout->field_string ("signal-meaning",
7887 gdb_signal_to_string (siggnal));
7888 annotate_signal_string_end ();
7889 uiout->text (".\n");
7890 uiout->text ("The program no longer exists.\n");
7891 }
7892
7893 void
7894 print_exited_reason (struct ui_out *uiout, int exitstatus)
7895 {
7896 struct inferior *inf = current_inferior ();
7897 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7898
7899 annotate_exited (exitstatus);
7900 if (exitstatus)
7901 {
7902 if (uiout->is_mi_like_p ())
7903 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7904 uiout->text ("[Inferior ");
7905 uiout->text (plongest (inf->num));
7906 uiout->text (" (");
7907 uiout->text (pidstr);
7908 uiout->text (") exited with code ");
7909 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7910 uiout->text ("]\n");
7911 }
7912 else
7913 {
7914 if (uiout->is_mi_like_p ())
7915 uiout->field_string
7916 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7917 uiout->text ("[Inferior ");
7918 uiout->text (plongest (inf->num));
7919 uiout->text (" (");
7920 uiout->text (pidstr);
7921 uiout->text (") exited normally]\n");
7922 }
7923 }
7924
7925 /* Some targets/architectures can do extra processing/display of
7926 segmentation faults. E.g., Intel MPX boundary faults.
7927 Call the architecture dependent function to handle the fault. */
7928
7929 static void
7930 handle_segmentation_fault (struct ui_out *uiout)
7931 {
7932 struct regcache *regcache = get_current_regcache ();
7933 struct gdbarch *gdbarch = regcache->arch ();
7934
7935 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7936 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7937 }
7938
7939 void
7940 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7941 {
7942 struct thread_info *thr = inferior_thread ();
7943
7944 annotate_signal ();
7945
7946 if (uiout->is_mi_like_p ())
7947 ;
7948 else if (show_thread_that_caused_stop ())
7949 {
7950 const char *name;
7951
7952 uiout->text ("\nThread ");
7953 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7954
7955 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7956 if (name != NULL)
7957 {
7958 uiout->text (" \"");
7959 uiout->field_fmt ("name", "%s", name);
7960 uiout->text ("\"");
7961 }
7962 }
7963 else
7964 uiout->text ("\nProgram");
7965
7966 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7967 uiout->text (" stopped");
7968 else
7969 {
7970 uiout->text (" received signal ");
7971 annotate_signal_name ();
7972 if (uiout->is_mi_like_p ())
7973 uiout->field_string
7974 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7975 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7976 annotate_signal_name_end ();
7977 uiout->text (", ");
7978 annotate_signal_string ();
7979 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7980
7981 if (siggnal == GDB_SIGNAL_SEGV)
7982 handle_segmentation_fault (uiout);
7983
7984 annotate_signal_string_end ();
7985 }
7986 uiout->text (".\n");
7987 }
7988
7989 void
7990 print_no_history_reason (struct ui_out *uiout)
7991 {
7992 uiout->text ("\nNo more reverse-execution history.\n");
7993 }
7994
7995 /* Print current location without a level number, if we have changed
7996 functions or hit a breakpoint. Print source line if we have one.
7997 bpstat_print contains the logic deciding in detail what to print,
7998 based on the event(s) that just occurred. */
7999
8000 static void
8001 print_stop_location (struct target_waitstatus *ws)
8002 {
8003 int bpstat_ret;
8004 enum print_what source_flag;
8005 int do_frame_printing = 1;
8006 struct thread_info *tp = inferior_thread ();
8007
8008 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8009 switch (bpstat_ret)
8010 {
8011 case PRINT_UNKNOWN:
8012 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8013 should) carry around the function and does (or should) use
8014 that when doing a frame comparison. */
8015 if (tp->control.stop_step
8016 && frame_id_eq (tp->control.step_frame_id,
8017 get_frame_id (get_current_frame ()))
8018 && tp->control.step_start_function == find_pc_function (stop_pc))
8019 {
8020 /* Finished step, just print source line. */
8021 source_flag = SRC_LINE;
8022 }
8023 else
8024 {
8025 /* Print location and source line. */
8026 source_flag = SRC_AND_LOC;
8027 }
8028 break;
8029 case PRINT_SRC_AND_LOC:
8030 /* Print location and source line. */
8031 source_flag = SRC_AND_LOC;
8032 break;
8033 case PRINT_SRC_ONLY:
8034 source_flag = SRC_LINE;
8035 break;
8036 case PRINT_NOTHING:
8037 /* Something bogus. */
8038 source_flag = SRC_LINE;
8039 do_frame_printing = 0;
8040 break;
8041 default:
8042 internal_error (__FILE__, __LINE__, _("Unknown value."));
8043 }
8044
8045 /* The behavior of this routine with respect to the source
8046 flag is:
8047 SRC_LINE: Print only source line
8048 LOCATION: Print only location
8049 SRC_AND_LOC: Print location and source line. */
8050 if (do_frame_printing)
8051 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8052 }
8053
8054 /* See infrun.h. */
8055
8056 void
8057 print_stop_event (struct ui_out *uiout)
8058 {
8059 struct target_waitstatus last;
8060 ptid_t last_ptid;
8061 struct thread_info *tp;
8062
8063 get_last_target_status (&last_ptid, &last);
8064
8065 {
8066 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8067
8068 print_stop_location (&last);
8069
8070 /* Display the auto-display expressions. */
8071 do_displays ();
8072 }
8073
8074 tp = inferior_thread ();
8075 if (tp->thread_fsm != NULL
8076 && thread_fsm_finished_p (tp->thread_fsm))
8077 {
8078 struct return_value_info *rv;
8079
8080 rv = thread_fsm_return_value (tp->thread_fsm);
8081 if (rv != NULL)
8082 print_return_value (uiout, rv);
8083 }
8084 }
8085
8086 /* See infrun.h. */
8087
8088 void
8089 maybe_remove_breakpoints (void)
8090 {
8091 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8092 {
8093 if (remove_breakpoints ())
8094 {
8095 target_terminal::ours_for_output ();
8096 printf_filtered (_("Cannot remove breakpoints because "
8097 "program is no longer writable.\nFurther "
8098 "execution is probably impossible.\n"));
8099 }
8100 }
8101 }
8102
8103 /* The execution context that just caused a normal stop. */
8104
8105 struct stop_context
8106 {
8107 /* The stop ID. */
8108 ULONGEST stop_id;
8109
8110 /* The event PTID. */
8111
8112 ptid_t ptid;
8113
8114 /* If stopp for a thread event, this is the thread that caused the
8115 stop. */
8116 struct thread_info *thread;
8117
8118 /* The inferior that caused the stop. */
8119 int inf_num;
8120 };
8121
8122 /* Returns a new stop context. If stopped for a thread event, this
8123 takes a strong reference to the thread. */
8124
8125 static struct stop_context *
8126 save_stop_context (void)
8127 {
8128 struct stop_context *sc = XNEW (struct stop_context);
8129
8130 sc->stop_id = get_stop_id ();
8131 sc->ptid = inferior_ptid;
8132 sc->inf_num = current_inferior ()->num;
8133
8134 if (!ptid_equal (inferior_ptid, null_ptid))
8135 {
8136 /* Take a strong reference so that the thread can't be deleted
8137 yet. */
8138 sc->thread = inferior_thread ();
8139 sc->thread->incref ();
8140 }
8141 else
8142 sc->thread = NULL;
8143
8144 return sc;
8145 }
8146
8147 /* Release a stop context previously created with save_stop_context.
8148 Releases the strong reference to the thread as well. */
8149
8150 static void
8151 release_stop_context_cleanup (void *arg)
8152 {
8153 struct stop_context *sc = (struct stop_context *) arg;
8154
8155 if (sc->thread != NULL)
8156 sc->thread->decref ();
8157 xfree (sc);
8158 }
8159
8160 /* Return true if the current context no longer matches the saved stop
8161 context. */
8162
8163 static int
8164 stop_context_changed (struct stop_context *prev)
8165 {
8166 if (!ptid_equal (prev->ptid, inferior_ptid))
8167 return 1;
8168 if (prev->inf_num != current_inferior ()->num)
8169 return 1;
8170 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8171 return 1;
8172 if (get_stop_id () != prev->stop_id)
8173 return 1;
8174 return 0;
8175 }
8176
8177 /* See infrun.h. */
8178
8179 int
8180 normal_stop (void)
8181 {
8182 struct target_waitstatus last;
8183 ptid_t last_ptid;
8184
8185 get_last_target_status (&last_ptid, &last);
8186
8187 new_stop_id ();
8188
8189 /* If an exception is thrown from this point on, make sure to
8190 propagate GDB's knowledge of the executing state to the
8191 frontend/user running state. A QUIT is an easy exception to see
8192 here, so do this before any filtered output. */
8193
8194 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8195
8196 if (!non_stop)
8197 maybe_finish_thread_state.emplace (minus_one_ptid);
8198 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8199 || last.kind == TARGET_WAITKIND_EXITED)
8200 {
8201 /* On some targets, we may still have live threads in the
8202 inferior when we get a process exit event. E.g., for
8203 "checkpoint", when the current checkpoint/fork exits,
8204 linux-fork.c automatically switches to another fork from
8205 within target_mourn_inferior. */
8206 if (inferior_ptid != null_ptid)
8207 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8208 }
8209 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8210 maybe_finish_thread_state.emplace (inferior_ptid);
8211
8212 /* As we're presenting a stop, and potentially removing breakpoints,
8213 update the thread list so we can tell whether there are threads
8214 running on the target. With target remote, for example, we can
8215 only learn about new threads when we explicitly update the thread
8216 list. Do this before notifying the interpreters about signal
8217 stops, end of stepping ranges, etc., so that the "new thread"
8218 output is emitted before e.g., "Program received signal FOO",
8219 instead of after. */
8220 update_thread_list ();
8221
8222 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8223 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8224
8225 /* As with the notification of thread events, we want to delay
8226 notifying the user that we've switched thread context until
8227 the inferior actually stops.
8228
8229 There's no point in saying anything if the inferior has exited.
8230 Note that SIGNALLED here means "exited with a signal", not
8231 "received a signal".
8232
8233 Also skip saying anything in non-stop mode. In that mode, as we
8234 don't want GDB to switch threads behind the user's back, to avoid
8235 races where the user is typing a command to apply to thread x,
8236 but GDB switches to thread y before the user finishes entering
8237 the command, fetch_inferior_event installs a cleanup to restore
8238 the current thread back to the thread the user had selected right
8239 after this event is handled, so we're not really switching, only
8240 informing of a stop. */
8241 if (!non_stop
8242 && previous_inferior_ptid != inferior_ptid
8243 && target_has_execution
8244 && last.kind != TARGET_WAITKIND_SIGNALLED
8245 && last.kind != TARGET_WAITKIND_EXITED
8246 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8247 {
8248 SWITCH_THRU_ALL_UIS ()
8249 {
8250 target_terminal::ours_for_output ();
8251 printf_filtered (_("[Switching to %s]\n"),
8252 target_pid_to_str (inferior_ptid));
8253 annotate_thread_changed ();
8254 }
8255 previous_inferior_ptid = inferior_ptid;
8256 }
8257
8258 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8259 {
8260 SWITCH_THRU_ALL_UIS ()
8261 if (current_ui->prompt_state == PROMPT_BLOCKED)
8262 {
8263 target_terminal::ours_for_output ();
8264 printf_filtered (_("No unwaited-for children left.\n"));
8265 }
8266 }
8267
8268 /* Note: this depends on the update_thread_list call above. */
8269 maybe_remove_breakpoints ();
8270
8271 /* If an auto-display called a function and that got a signal,
8272 delete that auto-display to avoid an infinite recursion. */
8273
8274 if (stopped_by_random_signal)
8275 disable_current_display ();
8276
8277 SWITCH_THRU_ALL_UIS ()
8278 {
8279 async_enable_stdin ();
8280 }
8281
8282 /* Let the user/frontend see the threads as stopped. */
8283 maybe_finish_thread_state.reset ();
8284
8285 /* Select innermost stack frame - i.e., current frame is frame 0,
8286 and current location is based on that. Handle the case where the
8287 dummy call is returning after being stopped. E.g. the dummy call
8288 previously hit a breakpoint. (If the dummy call returns
8289 normally, we won't reach here.) Do this before the stop hook is
8290 run, so that it doesn't get to see the temporary dummy frame,
8291 which is not where we'll present the stop. */
8292 if (has_stack_frames ())
8293 {
8294 if (stop_stack_dummy == STOP_STACK_DUMMY)
8295 {
8296 /* Pop the empty frame that contains the stack dummy. This
8297 also restores inferior state prior to the call (struct
8298 infcall_suspend_state). */
8299 struct frame_info *frame = get_current_frame ();
8300
8301 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8302 frame_pop (frame);
8303 /* frame_pop calls reinit_frame_cache as the last thing it
8304 does which means there's now no selected frame. */
8305 }
8306
8307 select_frame (get_current_frame ());
8308
8309 /* Set the current source location. */
8310 set_current_sal_from_frame (get_current_frame ());
8311 }
8312
8313 /* Look up the hook_stop and run it (CLI internally handles problem
8314 of stop_command's pre-hook not existing). */
8315 if (stop_command != NULL)
8316 {
8317 struct stop_context *saved_context = save_stop_context ();
8318 struct cleanup *old_chain
8319 = make_cleanup (release_stop_context_cleanup, saved_context);
8320
8321 TRY
8322 {
8323 execute_cmd_pre_hook (stop_command);
8324 }
8325 CATCH (ex, RETURN_MASK_ALL)
8326 {
8327 exception_fprintf (gdb_stderr, ex,
8328 "Error while running hook_stop:\n");
8329 }
8330 END_CATCH
8331
8332 /* If the stop hook resumes the target, then there's no point in
8333 trying to notify about the previous stop; its context is
8334 gone. Likewise if the command switches thread or inferior --
8335 the observers would print a stop for the wrong
8336 thread/inferior. */
8337 if (stop_context_changed (saved_context))
8338 {
8339 do_cleanups (old_chain);
8340 return 1;
8341 }
8342 do_cleanups (old_chain);
8343 }
8344
8345 /* Notify observers about the stop. This is where the interpreters
8346 print the stop event. */
8347 if (!ptid_equal (inferior_ptid, null_ptid))
8348 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8349 stop_print_frame);
8350 else
8351 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8352
8353 annotate_stopped ();
8354
8355 if (target_has_execution)
8356 {
8357 if (last.kind != TARGET_WAITKIND_SIGNALLED
8358 && last.kind != TARGET_WAITKIND_EXITED)
8359 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8360 Delete any breakpoint that is to be deleted at the next stop. */
8361 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8362 }
8363
8364 /* Try to get rid of automatically added inferiors that are no
8365 longer needed. Keeping those around slows down things linearly.
8366 Note that this never removes the current inferior. */
8367 prune_inferiors ();
8368
8369 return 0;
8370 }
8371 \f
8372 int
8373 signal_stop_state (int signo)
8374 {
8375 return signal_stop[signo];
8376 }
8377
8378 int
8379 signal_print_state (int signo)
8380 {
8381 return signal_print[signo];
8382 }
8383
8384 int
8385 signal_pass_state (int signo)
8386 {
8387 return signal_program[signo];
8388 }
8389
8390 static void
8391 signal_cache_update (int signo)
8392 {
8393 if (signo == -1)
8394 {
8395 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8396 signal_cache_update (signo);
8397
8398 return;
8399 }
8400
8401 signal_pass[signo] = (signal_stop[signo] == 0
8402 && signal_print[signo] == 0
8403 && signal_program[signo] == 1
8404 && signal_catch[signo] == 0);
8405 }
8406
8407 int
8408 signal_stop_update (int signo, int state)
8409 {
8410 int ret = signal_stop[signo];
8411
8412 signal_stop[signo] = state;
8413 signal_cache_update (signo);
8414 return ret;
8415 }
8416
8417 int
8418 signal_print_update (int signo, int state)
8419 {
8420 int ret = signal_print[signo];
8421
8422 signal_print[signo] = state;
8423 signal_cache_update (signo);
8424 return ret;
8425 }
8426
8427 int
8428 signal_pass_update (int signo, int state)
8429 {
8430 int ret = signal_program[signo];
8431
8432 signal_program[signo] = state;
8433 signal_cache_update (signo);
8434 return ret;
8435 }
8436
8437 /* Update the global 'signal_catch' from INFO and notify the
8438 target. */
8439
8440 void
8441 signal_catch_update (const unsigned int *info)
8442 {
8443 int i;
8444
8445 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8446 signal_catch[i] = info[i] > 0;
8447 signal_cache_update (-1);
8448 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8449 }
8450
8451 static void
8452 sig_print_header (void)
8453 {
8454 printf_filtered (_("Signal Stop\tPrint\tPass "
8455 "to program\tDescription\n"));
8456 }
8457
8458 static void
8459 sig_print_info (enum gdb_signal oursig)
8460 {
8461 const char *name = gdb_signal_to_name (oursig);
8462 int name_padding = 13 - strlen (name);
8463
8464 if (name_padding <= 0)
8465 name_padding = 0;
8466
8467 printf_filtered ("%s", name);
8468 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8469 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8470 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8471 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8472 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8473 }
8474
8475 /* Specify how various signals in the inferior should be handled. */
8476
8477 static void
8478 handle_command (const char *args, int from_tty)
8479 {
8480 int digits, wordlen;
8481 int sigfirst, signum, siglast;
8482 enum gdb_signal oursig;
8483 int allsigs;
8484 int nsigs;
8485 unsigned char *sigs;
8486
8487 if (args == NULL)
8488 {
8489 error_no_arg (_("signal to handle"));
8490 }
8491
8492 /* Allocate and zero an array of flags for which signals to handle. */
8493
8494 nsigs = (int) GDB_SIGNAL_LAST;
8495 sigs = (unsigned char *) alloca (nsigs);
8496 memset (sigs, 0, nsigs);
8497
8498 /* Break the command line up into args. */
8499
8500 gdb_argv built_argv (args);
8501
8502 /* Walk through the args, looking for signal oursigs, signal names, and
8503 actions. Signal numbers and signal names may be interspersed with
8504 actions, with the actions being performed for all signals cumulatively
8505 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8506
8507 for (char *arg : built_argv)
8508 {
8509 wordlen = strlen (arg);
8510 for (digits = 0; isdigit (arg[digits]); digits++)
8511 {;
8512 }
8513 allsigs = 0;
8514 sigfirst = siglast = -1;
8515
8516 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8517 {
8518 /* Apply action to all signals except those used by the
8519 debugger. Silently skip those. */
8520 allsigs = 1;
8521 sigfirst = 0;
8522 siglast = nsigs - 1;
8523 }
8524 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8525 {
8526 SET_SIGS (nsigs, sigs, signal_stop);
8527 SET_SIGS (nsigs, sigs, signal_print);
8528 }
8529 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8530 {
8531 UNSET_SIGS (nsigs, sigs, signal_program);
8532 }
8533 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8534 {
8535 SET_SIGS (nsigs, sigs, signal_print);
8536 }
8537 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8538 {
8539 SET_SIGS (nsigs, sigs, signal_program);
8540 }
8541 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8542 {
8543 UNSET_SIGS (nsigs, sigs, signal_stop);
8544 }
8545 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8546 {
8547 SET_SIGS (nsigs, sigs, signal_program);
8548 }
8549 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8550 {
8551 UNSET_SIGS (nsigs, sigs, signal_print);
8552 UNSET_SIGS (nsigs, sigs, signal_stop);
8553 }
8554 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8555 {
8556 UNSET_SIGS (nsigs, sigs, signal_program);
8557 }
8558 else if (digits > 0)
8559 {
8560 /* It is numeric. The numeric signal refers to our own
8561 internal signal numbering from target.h, not to host/target
8562 signal number. This is a feature; users really should be
8563 using symbolic names anyway, and the common ones like
8564 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8565
8566 sigfirst = siglast = (int)
8567 gdb_signal_from_command (atoi (arg));
8568 if (arg[digits] == '-')
8569 {
8570 siglast = (int)
8571 gdb_signal_from_command (atoi (arg + digits + 1));
8572 }
8573 if (sigfirst > siglast)
8574 {
8575 /* Bet he didn't figure we'd think of this case... */
8576 signum = sigfirst;
8577 sigfirst = siglast;
8578 siglast = signum;
8579 }
8580 }
8581 else
8582 {
8583 oursig = gdb_signal_from_name (arg);
8584 if (oursig != GDB_SIGNAL_UNKNOWN)
8585 {
8586 sigfirst = siglast = (int) oursig;
8587 }
8588 else
8589 {
8590 /* Not a number and not a recognized flag word => complain. */
8591 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8592 }
8593 }
8594
8595 /* If any signal numbers or symbol names were found, set flags for
8596 which signals to apply actions to. */
8597
8598 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8599 {
8600 switch ((enum gdb_signal) signum)
8601 {
8602 case GDB_SIGNAL_TRAP:
8603 case GDB_SIGNAL_INT:
8604 if (!allsigs && !sigs[signum])
8605 {
8606 if (query (_("%s is used by the debugger.\n\
8607 Are you sure you want to change it? "),
8608 gdb_signal_to_name ((enum gdb_signal) signum)))
8609 {
8610 sigs[signum] = 1;
8611 }
8612 else
8613 {
8614 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8615 gdb_flush (gdb_stdout);
8616 }
8617 }
8618 break;
8619 case GDB_SIGNAL_0:
8620 case GDB_SIGNAL_DEFAULT:
8621 case GDB_SIGNAL_UNKNOWN:
8622 /* Make sure that "all" doesn't print these. */
8623 break;
8624 default:
8625 sigs[signum] = 1;
8626 break;
8627 }
8628 }
8629 }
8630
8631 for (signum = 0; signum < nsigs; signum++)
8632 if (sigs[signum])
8633 {
8634 signal_cache_update (-1);
8635 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8636 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8637
8638 if (from_tty)
8639 {
8640 /* Show the results. */
8641 sig_print_header ();
8642 for (; signum < nsigs; signum++)
8643 if (sigs[signum])
8644 sig_print_info ((enum gdb_signal) signum);
8645 }
8646
8647 break;
8648 }
8649 }
8650
8651 /* Complete the "handle" command. */
8652
8653 static void
8654 handle_completer (struct cmd_list_element *ignore,
8655 completion_tracker &tracker,
8656 const char *text, const char *word)
8657 {
8658 static const char * const keywords[] =
8659 {
8660 "all",
8661 "stop",
8662 "ignore",
8663 "print",
8664 "pass",
8665 "nostop",
8666 "noignore",
8667 "noprint",
8668 "nopass",
8669 NULL,
8670 };
8671
8672 signal_completer (ignore, tracker, text, word);
8673 complete_on_enum (tracker, keywords, word, word);
8674 }
8675
8676 enum gdb_signal
8677 gdb_signal_from_command (int num)
8678 {
8679 if (num >= 1 && num <= 15)
8680 return (enum gdb_signal) num;
8681 error (_("Only signals 1-15 are valid as numeric signals.\n\
8682 Use \"info signals\" for a list of symbolic signals."));
8683 }
8684
8685 /* Print current contents of the tables set by the handle command.
8686 It is possible we should just be printing signals actually used
8687 by the current target (but for things to work right when switching
8688 targets, all signals should be in the signal tables). */
8689
8690 static void
8691 info_signals_command (const char *signum_exp, int from_tty)
8692 {
8693 enum gdb_signal oursig;
8694
8695 sig_print_header ();
8696
8697 if (signum_exp)
8698 {
8699 /* First see if this is a symbol name. */
8700 oursig = gdb_signal_from_name (signum_exp);
8701 if (oursig == GDB_SIGNAL_UNKNOWN)
8702 {
8703 /* No, try numeric. */
8704 oursig =
8705 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8706 }
8707 sig_print_info (oursig);
8708 return;
8709 }
8710
8711 printf_filtered ("\n");
8712 /* These ugly casts brought to you by the native VAX compiler. */
8713 for (oursig = GDB_SIGNAL_FIRST;
8714 (int) oursig < (int) GDB_SIGNAL_LAST;
8715 oursig = (enum gdb_signal) ((int) oursig + 1))
8716 {
8717 QUIT;
8718
8719 if (oursig != GDB_SIGNAL_UNKNOWN
8720 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8721 sig_print_info (oursig);
8722 }
8723
8724 printf_filtered (_("\nUse the \"handle\" command "
8725 "to change these tables.\n"));
8726 }
8727
8728 /* The $_siginfo convenience variable is a bit special. We don't know
8729 for sure the type of the value until we actually have a chance to
8730 fetch the data. The type can change depending on gdbarch, so it is
8731 also dependent on which thread you have selected.
8732
8733 1. making $_siginfo be an internalvar that creates a new value on
8734 access.
8735
8736 2. making the value of $_siginfo be an lval_computed value. */
8737
8738 /* This function implements the lval_computed support for reading a
8739 $_siginfo value. */
8740
8741 static void
8742 siginfo_value_read (struct value *v)
8743 {
8744 LONGEST transferred;
8745
8746 /* If we can access registers, so can we access $_siginfo. Likewise
8747 vice versa. */
8748 validate_registers_access ();
8749
8750 transferred =
8751 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8752 NULL,
8753 value_contents_all_raw (v),
8754 value_offset (v),
8755 TYPE_LENGTH (value_type (v)));
8756
8757 if (transferred != TYPE_LENGTH (value_type (v)))
8758 error (_("Unable to read siginfo"));
8759 }
8760
8761 /* This function implements the lval_computed support for writing a
8762 $_siginfo value. */
8763
8764 static void
8765 siginfo_value_write (struct value *v, struct value *fromval)
8766 {
8767 LONGEST transferred;
8768
8769 /* If we can access registers, so can we access $_siginfo. Likewise
8770 vice versa. */
8771 validate_registers_access ();
8772
8773 transferred = target_write (current_top_target (),
8774 TARGET_OBJECT_SIGNAL_INFO,
8775 NULL,
8776 value_contents_all_raw (fromval),
8777 value_offset (v),
8778 TYPE_LENGTH (value_type (fromval)));
8779
8780 if (transferred != TYPE_LENGTH (value_type (fromval)))
8781 error (_("Unable to write siginfo"));
8782 }
8783
8784 static const struct lval_funcs siginfo_value_funcs =
8785 {
8786 siginfo_value_read,
8787 siginfo_value_write
8788 };
8789
8790 /* Return a new value with the correct type for the siginfo object of
8791 the current thread using architecture GDBARCH. Return a void value
8792 if there's no object available. */
8793
8794 static struct value *
8795 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8796 void *ignore)
8797 {
8798 if (target_has_stack
8799 && !ptid_equal (inferior_ptid, null_ptid)
8800 && gdbarch_get_siginfo_type_p (gdbarch))
8801 {
8802 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8803
8804 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8805 }
8806
8807 return allocate_value (builtin_type (gdbarch)->builtin_void);
8808 }
8809
8810 \f
8811 /* infcall_suspend_state contains state about the program itself like its
8812 registers and any signal it received when it last stopped.
8813 This state must be restored regardless of how the inferior function call
8814 ends (either successfully, or after it hits a breakpoint or signal)
8815 if the program is to properly continue where it left off. */
8816
8817 struct infcall_suspend_state
8818 {
8819 struct thread_suspend_state thread_suspend;
8820
8821 /* Other fields: */
8822 CORE_ADDR stop_pc;
8823 readonly_detached_regcache *registers;
8824
8825 /* Format of SIGINFO_DATA or NULL if it is not present. */
8826 struct gdbarch *siginfo_gdbarch;
8827
8828 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8829 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8830 content would be invalid. */
8831 gdb_byte *siginfo_data;
8832 };
8833
8834 struct infcall_suspend_state *
8835 save_infcall_suspend_state (void)
8836 {
8837 struct infcall_suspend_state *inf_state;
8838 struct thread_info *tp = inferior_thread ();
8839 struct regcache *regcache = get_current_regcache ();
8840 struct gdbarch *gdbarch = regcache->arch ();
8841 gdb_byte *siginfo_data = NULL;
8842
8843 if (gdbarch_get_siginfo_type_p (gdbarch))
8844 {
8845 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8846 size_t len = TYPE_LENGTH (type);
8847 struct cleanup *back_to;
8848
8849 siginfo_data = (gdb_byte *) xmalloc (len);
8850 back_to = make_cleanup (xfree, siginfo_data);
8851
8852 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8853 siginfo_data, 0, len) == len)
8854 discard_cleanups (back_to);
8855 else
8856 {
8857 /* Errors ignored. */
8858 do_cleanups (back_to);
8859 siginfo_data = NULL;
8860 }
8861 }
8862
8863 inf_state = XCNEW (struct infcall_suspend_state);
8864
8865 if (siginfo_data)
8866 {
8867 inf_state->siginfo_gdbarch = gdbarch;
8868 inf_state->siginfo_data = siginfo_data;
8869 }
8870
8871 inf_state->thread_suspend = tp->suspend;
8872
8873 /* run_inferior_call will not use the signal due to its `proceed' call with
8874 GDB_SIGNAL_0 anyway. */
8875 tp->suspend.stop_signal = GDB_SIGNAL_0;
8876
8877 inf_state->stop_pc = stop_pc;
8878
8879 inf_state->registers = new readonly_detached_regcache (*regcache);
8880
8881 return inf_state;
8882 }
8883
8884 /* Restore inferior session state to INF_STATE. */
8885
8886 void
8887 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8888 {
8889 struct thread_info *tp = inferior_thread ();
8890 struct regcache *regcache = get_current_regcache ();
8891 struct gdbarch *gdbarch = regcache->arch ();
8892
8893 tp->suspend = inf_state->thread_suspend;
8894
8895 stop_pc = inf_state->stop_pc;
8896
8897 if (inf_state->siginfo_gdbarch == gdbarch)
8898 {
8899 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8900
8901 /* Errors ignored. */
8902 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8903 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8904 }
8905
8906 /* The inferior can be gone if the user types "print exit(0)"
8907 (and perhaps other times). */
8908 if (target_has_execution)
8909 /* NB: The register write goes through to the target. */
8910 regcache->restore (inf_state->registers);
8911
8912 discard_infcall_suspend_state (inf_state);
8913 }
8914
8915 static void
8916 do_restore_infcall_suspend_state_cleanup (void *state)
8917 {
8918 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8919 }
8920
8921 struct cleanup *
8922 make_cleanup_restore_infcall_suspend_state
8923 (struct infcall_suspend_state *inf_state)
8924 {
8925 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8926 }
8927
8928 void
8929 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8930 {
8931 delete inf_state->registers;
8932 xfree (inf_state->siginfo_data);
8933 xfree (inf_state);
8934 }
8935
8936 readonly_detached_regcache *
8937 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8938 {
8939 return inf_state->registers;
8940 }
8941
8942 /* infcall_control_state contains state regarding gdb's control of the
8943 inferior itself like stepping control. It also contains session state like
8944 the user's currently selected frame. */
8945
8946 struct infcall_control_state
8947 {
8948 struct thread_control_state thread_control;
8949 struct inferior_control_state inferior_control;
8950
8951 /* Other fields: */
8952 enum stop_stack_kind stop_stack_dummy;
8953 int stopped_by_random_signal;
8954
8955 /* ID if the selected frame when the inferior function call was made. */
8956 struct frame_id selected_frame_id;
8957 };
8958
8959 /* Save all of the information associated with the inferior<==>gdb
8960 connection. */
8961
8962 struct infcall_control_state *
8963 save_infcall_control_state (void)
8964 {
8965 struct infcall_control_state *inf_status =
8966 XNEW (struct infcall_control_state);
8967 struct thread_info *tp = inferior_thread ();
8968 struct inferior *inf = current_inferior ();
8969
8970 inf_status->thread_control = tp->control;
8971 inf_status->inferior_control = inf->control;
8972
8973 tp->control.step_resume_breakpoint = NULL;
8974 tp->control.exception_resume_breakpoint = NULL;
8975
8976 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8977 chain. If caller's caller is walking the chain, they'll be happier if we
8978 hand them back the original chain when restore_infcall_control_state is
8979 called. */
8980 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8981
8982 /* Other fields: */
8983 inf_status->stop_stack_dummy = stop_stack_dummy;
8984 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8985
8986 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8987
8988 return inf_status;
8989 }
8990
8991 static void
8992 restore_selected_frame (const frame_id &fid)
8993 {
8994 frame_info *frame = frame_find_by_id (fid);
8995
8996 /* If inf_status->selected_frame_id is NULL, there was no previously
8997 selected frame. */
8998 if (frame == NULL)
8999 {
9000 warning (_("Unable to restore previously selected frame."));
9001 return;
9002 }
9003
9004 select_frame (frame);
9005 }
9006
9007 /* Restore inferior session state to INF_STATUS. */
9008
9009 void
9010 restore_infcall_control_state (struct infcall_control_state *inf_status)
9011 {
9012 struct thread_info *tp = inferior_thread ();
9013 struct inferior *inf = current_inferior ();
9014
9015 if (tp->control.step_resume_breakpoint)
9016 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9017
9018 if (tp->control.exception_resume_breakpoint)
9019 tp->control.exception_resume_breakpoint->disposition
9020 = disp_del_at_next_stop;
9021
9022 /* Handle the bpstat_copy of the chain. */
9023 bpstat_clear (&tp->control.stop_bpstat);
9024
9025 tp->control = inf_status->thread_control;
9026 inf->control = inf_status->inferior_control;
9027
9028 /* Other fields: */
9029 stop_stack_dummy = inf_status->stop_stack_dummy;
9030 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9031
9032 if (target_has_stack)
9033 {
9034 /* The point of the try/catch is that if the stack is clobbered,
9035 walking the stack might encounter a garbage pointer and
9036 error() trying to dereference it. */
9037 TRY
9038 {
9039 restore_selected_frame (inf_status->selected_frame_id);
9040 }
9041 CATCH (ex, RETURN_MASK_ERROR)
9042 {
9043 exception_fprintf (gdb_stderr, ex,
9044 "Unable to restore previously selected frame:\n");
9045 /* Error in restoring the selected frame. Select the
9046 innermost frame. */
9047 select_frame (get_current_frame ());
9048 }
9049 END_CATCH
9050 }
9051
9052 xfree (inf_status);
9053 }
9054
9055 static void
9056 do_restore_infcall_control_state_cleanup (void *sts)
9057 {
9058 restore_infcall_control_state ((struct infcall_control_state *) sts);
9059 }
9060
9061 struct cleanup *
9062 make_cleanup_restore_infcall_control_state
9063 (struct infcall_control_state *inf_status)
9064 {
9065 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9066 }
9067
9068 void
9069 discard_infcall_control_state (struct infcall_control_state *inf_status)
9070 {
9071 if (inf_status->thread_control.step_resume_breakpoint)
9072 inf_status->thread_control.step_resume_breakpoint->disposition
9073 = disp_del_at_next_stop;
9074
9075 if (inf_status->thread_control.exception_resume_breakpoint)
9076 inf_status->thread_control.exception_resume_breakpoint->disposition
9077 = disp_del_at_next_stop;
9078
9079 /* See save_infcall_control_state for info on stop_bpstat. */
9080 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9081
9082 xfree (inf_status);
9083 }
9084 \f
9085 /* See infrun.h. */
9086
9087 void
9088 clear_exit_convenience_vars (void)
9089 {
9090 clear_internalvar (lookup_internalvar ("_exitsignal"));
9091 clear_internalvar (lookup_internalvar ("_exitcode"));
9092 }
9093 \f
9094
9095 /* User interface for reverse debugging:
9096 Set exec-direction / show exec-direction commands
9097 (returns error unless target implements to_set_exec_direction method). */
9098
9099 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9100 static const char exec_forward[] = "forward";
9101 static const char exec_reverse[] = "reverse";
9102 static const char *exec_direction = exec_forward;
9103 static const char *const exec_direction_names[] = {
9104 exec_forward,
9105 exec_reverse,
9106 NULL
9107 };
9108
9109 static void
9110 set_exec_direction_func (const char *args, int from_tty,
9111 struct cmd_list_element *cmd)
9112 {
9113 if (target_can_execute_reverse)
9114 {
9115 if (!strcmp (exec_direction, exec_forward))
9116 execution_direction = EXEC_FORWARD;
9117 else if (!strcmp (exec_direction, exec_reverse))
9118 execution_direction = EXEC_REVERSE;
9119 }
9120 else
9121 {
9122 exec_direction = exec_forward;
9123 error (_("Target does not support this operation."));
9124 }
9125 }
9126
9127 static void
9128 show_exec_direction_func (struct ui_file *out, int from_tty,
9129 struct cmd_list_element *cmd, const char *value)
9130 {
9131 switch (execution_direction) {
9132 case EXEC_FORWARD:
9133 fprintf_filtered (out, _("Forward.\n"));
9134 break;
9135 case EXEC_REVERSE:
9136 fprintf_filtered (out, _("Reverse.\n"));
9137 break;
9138 default:
9139 internal_error (__FILE__, __LINE__,
9140 _("bogus execution_direction value: %d"),
9141 (int) execution_direction);
9142 }
9143 }
9144
9145 static void
9146 show_schedule_multiple (struct ui_file *file, int from_tty,
9147 struct cmd_list_element *c, const char *value)
9148 {
9149 fprintf_filtered (file, _("Resuming the execution of threads "
9150 "of all processes is %s.\n"), value);
9151 }
9152
9153 /* Implementation of `siginfo' variable. */
9154
9155 static const struct internalvar_funcs siginfo_funcs =
9156 {
9157 siginfo_make_value,
9158 NULL,
9159 NULL
9160 };
9161
9162 /* Callback for infrun's target events source. This is marked when a
9163 thread has a pending status to process. */
9164
9165 static void
9166 infrun_async_inferior_event_handler (gdb_client_data data)
9167 {
9168 inferior_event_handler (INF_REG_EVENT, NULL);
9169 }
9170
9171 void
9172 _initialize_infrun (void)
9173 {
9174 int i;
9175 int numsigs;
9176 struct cmd_list_element *c;
9177
9178 /* Register extra event sources in the event loop. */
9179 infrun_async_inferior_event_token
9180 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9181
9182 add_info ("signals", info_signals_command, _("\
9183 What debugger does when program gets various signals.\n\
9184 Specify a signal as argument to print info on that signal only."));
9185 add_info_alias ("handle", "signals", 0);
9186
9187 c = add_com ("handle", class_run, handle_command, _("\
9188 Specify how to handle signals.\n\
9189 Usage: handle SIGNAL [ACTIONS]\n\
9190 Args are signals and actions to apply to those signals.\n\
9191 If no actions are specified, the current settings for the specified signals\n\
9192 will be displayed instead.\n\
9193 \n\
9194 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9195 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9196 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9197 The special arg \"all\" is recognized to mean all signals except those\n\
9198 used by the debugger, typically SIGTRAP and SIGINT.\n\
9199 \n\
9200 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9201 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9202 Stop means reenter debugger if this signal happens (implies print).\n\
9203 Print means print a message if this signal happens.\n\
9204 Pass means let program see this signal; otherwise program doesn't know.\n\
9205 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9206 Pass and Stop may be combined.\n\
9207 \n\
9208 Multiple signals may be specified. Signal numbers and signal names\n\
9209 may be interspersed with actions, with the actions being performed for\n\
9210 all signals cumulatively specified."));
9211 set_cmd_completer (c, handle_completer);
9212
9213 if (!dbx_commands)
9214 stop_command = add_cmd ("stop", class_obscure,
9215 not_just_help_class_command, _("\
9216 There is no `stop' command, but you can set a hook on `stop'.\n\
9217 This allows you to set a list of commands to be run each time execution\n\
9218 of the program stops."), &cmdlist);
9219
9220 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9221 Set inferior debugging."), _("\
9222 Show inferior debugging."), _("\
9223 When non-zero, inferior specific debugging is enabled."),
9224 NULL,
9225 show_debug_infrun,
9226 &setdebuglist, &showdebuglist);
9227
9228 add_setshow_boolean_cmd ("displaced", class_maintenance,
9229 &debug_displaced, _("\
9230 Set displaced stepping debugging."), _("\
9231 Show displaced stepping debugging."), _("\
9232 When non-zero, displaced stepping specific debugging is enabled."),
9233 NULL,
9234 show_debug_displaced,
9235 &setdebuglist, &showdebuglist);
9236
9237 add_setshow_boolean_cmd ("non-stop", no_class,
9238 &non_stop_1, _("\
9239 Set whether gdb controls the inferior in non-stop mode."), _("\
9240 Show whether gdb controls the inferior in non-stop mode."), _("\
9241 When debugging a multi-threaded program and this setting is\n\
9242 off (the default, also called all-stop mode), when one thread stops\n\
9243 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9244 all other threads in the program while you interact with the thread of\n\
9245 interest. When you continue or step a thread, you can allow the other\n\
9246 threads to run, or have them remain stopped, but while you inspect any\n\
9247 thread's state, all threads stop.\n\
9248 \n\
9249 In non-stop mode, when one thread stops, other threads can continue\n\
9250 to run freely. You'll be able to step each thread independently,\n\
9251 leave it stopped or free to run as needed."),
9252 set_non_stop,
9253 show_non_stop,
9254 &setlist,
9255 &showlist);
9256
9257 numsigs = (int) GDB_SIGNAL_LAST;
9258 signal_stop = XNEWVEC (unsigned char, numsigs);
9259 signal_print = XNEWVEC (unsigned char, numsigs);
9260 signal_program = XNEWVEC (unsigned char, numsigs);
9261 signal_catch = XNEWVEC (unsigned char, numsigs);
9262 signal_pass = XNEWVEC (unsigned char, numsigs);
9263 for (i = 0; i < numsigs; i++)
9264 {
9265 signal_stop[i] = 1;
9266 signal_print[i] = 1;
9267 signal_program[i] = 1;
9268 signal_catch[i] = 0;
9269 }
9270
9271 /* Signals caused by debugger's own actions should not be given to
9272 the program afterwards.
9273
9274 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9275 explicitly specifies that it should be delivered to the target
9276 program. Typically, that would occur when a user is debugging a
9277 target monitor on a simulator: the target monitor sets a
9278 breakpoint; the simulator encounters this breakpoint and halts
9279 the simulation handing control to GDB; GDB, noting that the stop
9280 address doesn't map to any known breakpoint, returns control back
9281 to the simulator; the simulator then delivers the hardware
9282 equivalent of a GDB_SIGNAL_TRAP to the program being
9283 debugged. */
9284 signal_program[GDB_SIGNAL_TRAP] = 0;
9285 signal_program[GDB_SIGNAL_INT] = 0;
9286
9287 /* Signals that are not errors should not normally enter the debugger. */
9288 signal_stop[GDB_SIGNAL_ALRM] = 0;
9289 signal_print[GDB_SIGNAL_ALRM] = 0;
9290 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9291 signal_print[GDB_SIGNAL_VTALRM] = 0;
9292 signal_stop[GDB_SIGNAL_PROF] = 0;
9293 signal_print[GDB_SIGNAL_PROF] = 0;
9294 signal_stop[GDB_SIGNAL_CHLD] = 0;
9295 signal_print[GDB_SIGNAL_CHLD] = 0;
9296 signal_stop[GDB_SIGNAL_IO] = 0;
9297 signal_print[GDB_SIGNAL_IO] = 0;
9298 signal_stop[GDB_SIGNAL_POLL] = 0;
9299 signal_print[GDB_SIGNAL_POLL] = 0;
9300 signal_stop[GDB_SIGNAL_URG] = 0;
9301 signal_print[GDB_SIGNAL_URG] = 0;
9302 signal_stop[GDB_SIGNAL_WINCH] = 0;
9303 signal_print[GDB_SIGNAL_WINCH] = 0;
9304 signal_stop[GDB_SIGNAL_PRIO] = 0;
9305 signal_print[GDB_SIGNAL_PRIO] = 0;
9306
9307 /* These signals are used internally by user-level thread
9308 implementations. (See signal(5) on Solaris.) Like the above
9309 signals, a healthy program receives and handles them as part of
9310 its normal operation. */
9311 signal_stop[GDB_SIGNAL_LWP] = 0;
9312 signal_print[GDB_SIGNAL_LWP] = 0;
9313 signal_stop[GDB_SIGNAL_WAITING] = 0;
9314 signal_print[GDB_SIGNAL_WAITING] = 0;
9315 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9316 signal_print[GDB_SIGNAL_CANCEL] = 0;
9317 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9318 signal_print[GDB_SIGNAL_LIBRT] = 0;
9319
9320 /* Update cached state. */
9321 signal_cache_update (-1);
9322
9323 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9324 &stop_on_solib_events, _("\
9325 Set stopping for shared library events."), _("\
9326 Show stopping for shared library events."), _("\
9327 If nonzero, gdb will give control to the user when the dynamic linker\n\
9328 notifies gdb of shared library events. The most common event of interest\n\
9329 to the user would be loading/unloading of a new library."),
9330 set_stop_on_solib_events,
9331 show_stop_on_solib_events,
9332 &setlist, &showlist);
9333
9334 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9335 follow_fork_mode_kind_names,
9336 &follow_fork_mode_string, _("\
9337 Set debugger response to a program call of fork or vfork."), _("\
9338 Show debugger response to a program call of fork or vfork."), _("\
9339 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9340 parent - the original process is debugged after a fork\n\
9341 child - the new process is debugged after a fork\n\
9342 The unfollowed process will continue to run.\n\
9343 By default, the debugger will follow the parent process."),
9344 NULL,
9345 show_follow_fork_mode_string,
9346 &setlist, &showlist);
9347
9348 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9349 follow_exec_mode_names,
9350 &follow_exec_mode_string, _("\
9351 Set debugger response to a program call of exec."), _("\
9352 Show debugger response to a program call of exec."), _("\
9353 An exec call replaces the program image of a process.\n\
9354 \n\
9355 follow-exec-mode can be:\n\
9356 \n\
9357 new - the debugger creates a new inferior and rebinds the process\n\
9358 to this new inferior. The program the process was running before\n\
9359 the exec call can be restarted afterwards by restarting the original\n\
9360 inferior.\n\
9361 \n\
9362 same - the debugger keeps the process bound to the same inferior.\n\
9363 The new executable image replaces the previous executable loaded in\n\
9364 the inferior. Restarting the inferior after the exec call restarts\n\
9365 the executable the process was running after the exec call.\n\
9366 \n\
9367 By default, the debugger will use the same inferior."),
9368 NULL,
9369 show_follow_exec_mode_string,
9370 &setlist, &showlist);
9371
9372 add_setshow_enum_cmd ("scheduler-locking", class_run,
9373 scheduler_enums, &scheduler_mode, _("\
9374 Set mode for locking scheduler during execution."), _("\
9375 Show mode for locking scheduler during execution."), _("\
9376 off == no locking (threads may preempt at any time)\n\
9377 on == full locking (no thread except the current thread may run)\n\
9378 This applies to both normal execution and replay mode.\n\
9379 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9380 In this mode, other threads may run during other commands.\n\
9381 This applies to both normal execution and replay mode.\n\
9382 replay == scheduler locked in replay mode and unlocked during normal execution."),
9383 set_schedlock_func, /* traps on target vector */
9384 show_scheduler_mode,
9385 &setlist, &showlist);
9386
9387 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9388 Set mode for resuming threads of all processes."), _("\
9389 Show mode for resuming threads of all processes."), _("\
9390 When on, execution commands (such as 'continue' or 'next') resume all\n\
9391 threads of all processes. When off (which is the default), execution\n\
9392 commands only resume the threads of the current process. The set of\n\
9393 threads that are resumed is further refined by the scheduler-locking\n\
9394 mode (see help set scheduler-locking)."),
9395 NULL,
9396 show_schedule_multiple,
9397 &setlist, &showlist);
9398
9399 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9400 Set mode of the step operation."), _("\
9401 Show mode of the step operation."), _("\
9402 When set, doing a step over a function without debug line information\n\
9403 will stop at the first instruction of that function. Otherwise, the\n\
9404 function is skipped and the step command stops at a different source line."),
9405 NULL,
9406 show_step_stop_if_no_debug,
9407 &setlist, &showlist);
9408
9409 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9410 &can_use_displaced_stepping, _("\
9411 Set debugger's willingness to use displaced stepping."), _("\
9412 Show debugger's willingness to use displaced stepping."), _("\
9413 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9414 supported by the target architecture. If off, gdb will not use displaced\n\
9415 stepping to step over breakpoints, even if such is supported by the target\n\
9416 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9417 if the target architecture supports it and non-stop mode is active, but will not\n\
9418 use it in all-stop mode (see help set non-stop)."),
9419 NULL,
9420 show_can_use_displaced_stepping,
9421 &setlist, &showlist);
9422
9423 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9424 &exec_direction, _("Set direction of execution.\n\
9425 Options are 'forward' or 'reverse'."),
9426 _("Show direction of execution (forward/reverse)."),
9427 _("Tells gdb whether to execute forward or backward."),
9428 set_exec_direction_func, show_exec_direction_func,
9429 &setlist, &showlist);
9430
9431 /* Set/show detach-on-fork: user-settable mode. */
9432
9433 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9434 Set whether gdb will detach the child of a fork."), _("\
9435 Show whether gdb will detach the child of a fork."), _("\
9436 Tells gdb whether to detach the child of a fork."),
9437 NULL, NULL, &setlist, &showlist);
9438
9439 /* Set/show disable address space randomization mode. */
9440
9441 add_setshow_boolean_cmd ("disable-randomization", class_support,
9442 &disable_randomization, _("\
9443 Set disabling of debuggee's virtual address space randomization."), _("\
9444 Show disabling of debuggee's virtual address space randomization."), _("\
9445 When this mode is on (which is the default), randomization of the virtual\n\
9446 address space is disabled. Standalone programs run with the randomization\n\
9447 enabled by default on some platforms."),
9448 &set_disable_randomization,
9449 &show_disable_randomization,
9450 &setlist, &showlist);
9451
9452 /* ptid initializations */
9453 inferior_ptid = null_ptid;
9454 target_last_wait_ptid = minus_one_ptid;
9455
9456 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9457 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9458 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9459 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9460
9461 /* Explicitly create without lookup, since that tries to create a
9462 value with a void typed value, and when we get here, gdbarch
9463 isn't initialized yet. At this point, we're quite sure there
9464 isn't another convenience variable of the same name. */
9465 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9466
9467 add_setshow_boolean_cmd ("observer", no_class,
9468 &observer_mode_1, _("\
9469 Set whether gdb controls the inferior in observer mode."), _("\
9470 Show whether gdb controls the inferior in observer mode."), _("\
9471 In observer mode, GDB can get data from the inferior, but not\n\
9472 affect its execution. Registers and memory may not be changed,\n\
9473 breakpoints may not be set, and the program cannot be interrupted\n\
9474 or signalled."),
9475 set_observer_mode,
9476 show_observer_mode,
9477 &setlist,
9478 &showlist);
9479 }
This page took 0.231821 seconds and 4 git commands to generate.