*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 static int debug_infrun = 0;
107 static void
108 show_debug_infrun (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
112 }
113
114 /* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
152
153 /* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161 #ifndef SOLIB_IN_DYNAMIC_LINKER
162 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163 #endif
164
165
166 /* Convert the #defines into values. This is temporary until wfi control
167 flow is completely sorted out. */
168
169 #ifndef CANNOT_STEP_HW_WATCHPOINTS
170 #define CANNOT_STEP_HW_WATCHPOINTS 0
171 #else
172 #undef CANNOT_STEP_HW_WATCHPOINTS
173 #define CANNOT_STEP_HW_WATCHPOINTS 1
174 #endif
175
176 /* Tables of how to react to signals; the user sets them. */
177
178 static unsigned char *signal_stop;
179 static unsigned char *signal_print;
180 static unsigned char *signal_program;
181
182 #define SET_SIGS(nsigs,sigs,flags) \
183 do { \
184 int signum = (nsigs); \
185 while (signum-- > 0) \
186 if ((sigs)[signum]) \
187 (flags)[signum] = 1; \
188 } while (0)
189
190 #define UNSET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 0; \
196 } while (0)
197
198 /* Value to pass to target_resume() to cause all threads to resume */
199
200 #define RESUME_ALL (pid_to_ptid (-1))
201
202 /* Command list pointer for the "stop" placeholder. */
203
204 static struct cmd_list_element *stop_command;
205
206 /* Function inferior was in as of last step command. */
207
208 static struct symbol *step_start_function;
209
210 /* Nonzero if we are presently stepping over a breakpoint.
211
212 If we hit a breakpoint or watchpoint, and then continue,
213 we need to single step the current thread with breakpoints
214 disabled, to avoid hitting the same breakpoint or
215 watchpoint again. And we should step just a single
216 thread and keep other threads stopped, so that
217 other threads don't miss breakpoints while they are removed.
218
219 So, this variable simultaneously means that we need to single
220 step the current thread, keep other threads stopped, and that
221 breakpoints should be removed while we step.
222
223 This variable is set either:
224 - in proceed, when we resume inferior on user's explicit request
225 - in keep_going, if handle_inferior_event decides we need to
226 step over breakpoint.
227
228 The variable is cleared in clear_proceed_status, called every
229 time before we call proceed. The proceed calls wait_for_inferior,
230 which calls handle_inferior_event in a loop, and until
231 wait_for_inferior exits, this variable is changed only by keep_going. */
232
233 static int stepping_over_breakpoint;
234
235 /* Nonzero if we want to give control to the user when we're notified
236 of shared library events by the dynamic linker. */
237 static int stop_on_solib_events;
238 static void
239 show_stop_on_solib_events (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 value);
244 }
245
246 /* Nonzero means expecting a trace trap
247 and should stop the inferior and return silently when it happens. */
248
249 int stop_after_trap;
250
251 /* Nonzero means expecting a trap and caller will handle it themselves.
252 It is used after attach, due to attaching to a process;
253 when running in the shell before the child program has been exec'd;
254 and when running some kinds of remote stuff (FIXME?). */
255
256 enum stop_kind stop_soon;
257
258 /* Nonzero if proceed is being used for a "finish" command or a similar
259 situation when stop_registers should be saved. */
260
261 int proceed_to_finish;
262
263 /* Save register contents here when about to pop a stack dummy frame,
264 if-and-only-if proceed_to_finish is set.
265 Thus this contains the return value from the called function (assuming
266 values are returned in a register). */
267
268 struct regcache *stop_registers;
269
270 /* Nonzero after stop if current stack frame should be printed. */
271
272 static int stop_print_frame;
273
274 static struct breakpoint *step_resume_breakpoint = NULL;
275
276 /* This is a cached copy of the pid/waitstatus of the last event
277 returned by target_wait()/deprecated_target_wait_hook(). This
278 information is returned by get_last_target_status(). */
279 static ptid_t target_last_wait_ptid;
280 static struct target_waitstatus target_last_waitstatus;
281
282 /* This is used to remember when a fork, vfork or exec event
283 was caught by a catchpoint, and thus the event is to be
284 followed at the next resume of the inferior, and not
285 immediately. */
286 static struct
287 {
288 enum target_waitkind kind;
289 struct
290 {
291 int parent_pid;
292 int child_pid;
293 }
294 fork_event;
295 char *execd_pathname;
296 }
297 pending_follow;
298
299 static const char follow_fork_mode_child[] = "child";
300 static const char follow_fork_mode_parent[] = "parent";
301
302 static const char *follow_fork_mode_kind_names[] = {
303 follow_fork_mode_child,
304 follow_fork_mode_parent,
305 NULL
306 };
307
308 static const char *follow_fork_mode_string = follow_fork_mode_parent;
309 static void
310 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
311 struct cmd_list_element *c, const char *value)
312 {
313 fprintf_filtered (file, _("\
314 Debugger response to a program call of fork or vfork is \"%s\".\n"),
315 value);
316 }
317 \f
318
319 static int
320 follow_fork (void)
321 {
322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
323
324 return target_follow_fork (follow_child);
325 }
326
327 void
328 follow_inferior_reset_breakpoints (void)
329 {
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
351 }
352
353 /* EXECD_PATHNAME is assumed to be non-NULL. */
354
355 static void
356 follow_exec (int pid, char *execd_pathname)
357 {
358 int saved_pid = pid;
359 struct target_ops *tgt;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 gdb_flush (gdb_stdout);
396 generic_mourn_inferior ();
397 /* Because mourn_inferior resets inferior_ptid. */
398 inferior_ptid = pid_to_ptid (saved_pid);
399
400 if (gdb_sysroot && *gdb_sysroot)
401 {
402 char *name = alloca (strlen (gdb_sysroot)
403 + strlen (execd_pathname)
404 + 1);
405 strcpy (name, gdb_sysroot);
406 strcat (name, execd_pathname);
407 execd_pathname = name;
408 }
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
414 symbol_file_add_main (execd_pathname, 0);
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
419 no_shared_libraries (NULL, 0);
420 #ifdef SOLIB_CREATE_INFERIOR_HOOK
421 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
422 #else
423 solib_create_inferior_hook ();
424 #endif
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
435 }
436
437 /* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440 static int singlestep_breakpoints_inserted_p = 0;
441
442 /* The thread we inserted single-step breakpoints for. */
443 static ptid_t singlestep_ptid;
444
445 /* PC when we started this single-step. */
446 static CORE_ADDR singlestep_pc;
447
448 /* If another thread hit the singlestep breakpoint, we save the original
449 thread here so that we can resume single-stepping it later. */
450 static ptid_t saved_singlestep_ptid;
451 static int stepping_past_singlestep_breakpoint;
452
453 /* If not equal to null_ptid, this means that after stepping over breakpoint
454 is finished, we need to switch to deferred_step_ptid, and step it.
455
456 The use case is when one thread has hit a breakpoint, and then the user
457 has switched to another thread and issued 'step'. We need to step over
458 breakpoint in the thread which hit the breakpoint, but then continue
459 stepping the thread user has selected. */
460 static ptid_t deferred_step_ptid;
461 \f
462
463 /* Things to clean up if we QUIT out of resume (). */
464 static void
465 resume_cleanups (void *ignore)
466 {
467 normal_stop ();
468 }
469
470 static const char schedlock_off[] = "off";
471 static const char schedlock_on[] = "on";
472 static const char schedlock_step[] = "step";
473 static const char *scheduler_enums[] = {
474 schedlock_off,
475 schedlock_on,
476 schedlock_step,
477 NULL
478 };
479 static const char *scheduler_mode = schedlock_off;
480 static void
481 show_scheduler_mode (struct ui_file *file, int from_tty,
482 struct cmd_list_element *c, const char *value)
483 {
484 fprintf_filtered (file, _("\
485 Mode for locking scheduler during execution is \"%s\".\n"),
486 value);
487 }
488
489 static void
490 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
491 {
492 if (!target_can_lock_scheduler)
493 {
494 scheduler_mode = schedlock_off;
495 error (_("Target '%s' cannot support this command."), target_shortname);
496 }
497 }
498
499
500 /* Resume the inferior, but allow a QUIT. This is useful if the user
501 wants to interrupt some lengthy single-stepping operation
502 (for child processes, the SIGINT goes to the inferior, and so
503 we get a SIGINT random_signal, but for remote debugging and perhaps
504 other targets, that's not true).
505
506 STEP nonzero if we should step (zero to continue instead).
507 SIG is the signal to give the inferior (zero for none). */
508 void
509 resume (int step, enum target_signal sig)
510 {
511 int should_resume = 1;
512 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
513 QUIT;
514
515 if (debug_infrun)
516 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
517 step, sig);
518
519 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
520
521
522 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
523 over an instruction that causes a page fault without triggering
524 a hardware watchpoint. The kernel properly notices that it shouldn't
525 stop, because the hardware watchpoint is not triggered, but it forgets
526 the step request and continues the program normally.
527 Work around the problem by removing hardware watchpoints if a step is
528 requested, GDB will check for a hardware watchpoint trigger after the
529 step anyway. */
530 if (CANNOT_STEP_HW_WATCHPOINTS && step)
531 remove_hw_watchpoints ();
532
533
534 /* Normally, by the time we reach `resume', the breakpoints are either
535 removed or inserted, as appropriate. The exception is if we're sitting
536 at a permanent breakpoint; we need to step over it, but permanent
537 breakpoints can't be removed. So we have to test for it here. */
538 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
539 {
540 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
541 gdbarch_skip_permanent_breakpoint (current_gdbarch,
542 get_current_regcache ());
543 else
544 error (_("\
545 The program is stopped at a permanent breakpoint, but GDB does not know\n\
546 how to step past a permanent breakpoint on this architecture. Try using\n\
547 a command like `return' or `jump' to continue execution."));
548 }
549
550 if (step && gdbarch_software_single_step_p (current_gdbarch))
551 {
552 /* Do it the hard way, w/temp breakpoints */
553 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
554 {
555 /* ...and don't ask hardware to do it. */
556 step = 0;
557 /* and do not pull these breakpoints until after a `wait' in
558 `wait_for_inferior' */
559 singlestep_breakpoints_inserted_p = 1;
560 singlestep_ptid = inferior_ptid;
561 singlestep_pc = read_pc ();
562 }
563 }
564
565 /* If there were any forks/vforks/execs that were caught and are
566 now to be followed, then do so. */
567 switch (pending_follow.kind)
568 {
569 case TARGET_WAITKIND_FORKED:
570 case TARGET_WAITKIND_VFORKED:
571 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
572 if (follow_fork ())
573 should_resume = 0;
574 break;
575
576 case TARGET_WAITKIND_EXECD:
577 /* follow_exec is called as soon as the exec event is seen. */
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 break;
580
581 default:
582 break;
583 }
584
585 /* Install inferior's terminal modes. */
586 target_terminal_inferior ();
587
588 if (should_resume)
589 {
590 ptid_t resume_ptid;
591
592 resume_ptid = RESUME_ALL; /* Default */
593
594 /* If STEP is set, it's a request to use hardware stepping
595 facilities. But in that case, we should never
596 use singlestep breakpoint. */
597 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
598
599 if (singlestep_breakpoints_inserted_p
600 && stepping_past_singlestep_breakpoint)
601 {
602 /* The situation here is as follows. In thread T1 we wanted to
603 single-step. Lacking hardware single-stepping we've
604 set breakpoint at the PC of the next instruction -- call it
605 P. After resuming, we've hit that breakpoint in thread T2.
606 Now we've removed original breakpoint, inserted breakpoint
607 at P+1, and try to step to advance T2 past breakpoint.
608 We need to step only T2, as if T1 is allowed to freely run,
609 it can run past P, and if other threads are allowed to run,
610 they can hit breakpoint at P+1, and nested hits of single-step
611 breakpoints is not something we'd want -- that's complicated
612 to support, and has no value. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if ((step || singlestep_breakpoints_inserted_p)
617 && stepping_over_breakpoint)
618 {
619 /* We're allowing a thread to run past a breakpoint it has
620 hit, by single-stepping the thread with the breakpoint
621 removed. In which case, we need to single-step only this
622 thread, and keep others stopped, as they can miss this
623 breakpoint if allowed to run.
624
625 The current code actually removes all breakpoints when
626 doing this, not just the one being stepped over, so if we
627 let other threads run, we can actually miss any
628 breakpoint, not just the one at PC. */
629 resume_ptid = inferior_ptid;
630 }
631
632 if ((scheduler_mode == schedlock_on)
633 || (scheduler_mode == schedlock_step
634 && (step || singlestep_breakpoints_inserted_p)))
635 {
636 /* User-settable 'scheduler' mode requires solo thread resume. */
637 resume_ptid = inferior_ptid;
638 }
639
640 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
641 {
642 /* Most targets can step a breakpoint instruction, thus
643 executing it normally. But if this one cannot, just
644 continue and we will hit it anyway. */
645 if (step && breakpoint_inserted_here_p (read_pc ()))
646 step = 0;
647 }
648 target_resume (resume_ptid, step, sig);
649 }
650
651 discard_cleanups (old_cleanups);
652 }
653 \f
654
655 /* Clear out all variables saying what to do when inferior is continued.
656 First do this, then set the ones you want, then call `proceed'. */
657
658 void
659 clear_proceed_status (void)
660 {
661 stepping_over_breakpoint = 0;
662 step_range_start = 0;
663 step_range_end = 0;
664 step_frame_id = null_frame_id;
665 step_over_calls = STEP_OVER_UNDEBUGGABLE;
666 stop_after_trap = 0;
667 stop_soon = NO_STOP_QUIETLY;
668 proceed_to_finish = 0;
669 breakpoint_proceeded = 1; /* We're about to proceed... */
670
671 if (stop_registers)
672 {
673 regcache_xfree (stop_registers);
674 stop_registers = NULL;
675 }
676
677 /* Discard any remaining commands or status from previous stop. */
678 bpstat_clear (&stop_bpstat);
679 }
680
681 /* This should be suitable for any targets that support threads. */
682
683 static int
684 prepare_to_proceed (int step)
685 {
686 ptid_t wait_ptid;
687 struct target_waitstatus wait_status;
688
689 /* Get the last target status returned by target_wait(). */
690 get_last_target_status (&wait_ptid, &wait_status);
691
692 /* Make sure we were stopped at a breakpoint. */
693 if (wait_status.kind != TARGET_WAITKIND_STOPPED
694 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
695 {
696 return 0;
697 }
698
699 /* Switched over from WAIT_PID. */
700 if (!ptid_equal (wait_ptid, minus_one_ptid)
701 && !ptid_equal (inferior_ptid, wait_ptid)
702 && breakpoint_here_p (read_pc_pid (wait_ptid)))
703 {
704 /* If stepping, remember current thread to switch back to. */
705 if (step)
706 {
707 deferred_step_ptid = inferior_ptid;
708 }
709
710 /* Switch back to WAIT_PID thread. */
711 switch_to_thread (wait_ptid);
712
713 /* We return 1 to indicate that there is a breakpoint here,
714 so we need to step over it before continuing to avoid
715 hitting it straight away. */
716 return 1;
717 }
718
719 return 0;
720 }
721
722 /* Record the pc of the program the last time it stopped. This is
723 just used internally by wait_for_inferior, but need to be preserved
724 over calls to it and cleared when the inferior is started. */
725 static CORE_ADDR prev_pc;
726
727 /* Basic routine for continuing the program in various fashions.
728
729 ADDR is the address to resume at, or -1 for resume where stopped.
730 SIGGNAL is the signal to give it, or 0 for none,
731 or -1 for act according to how it stopped.
732 STEP is nonzero if should trap after one instruction.
733 -1 means return after that and print nothing.
734 You should probably set various step_... variables
735 before calling here, if you are stepping.
736
737 You should call clear_proceed_status before calling proceed. */
738
739 void
740 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
741 {
742 int oneproc = 0;
743
744 if (step > 0)
745 step_start_function = find_pc_function (read_pc ());
746 if (step < 0)
747 stop_after_trap = 1;
748
749 if (addr == (CORE_ADDR) -1)
750 {
751 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
752 /* There is a breakpoint at the address we will resume at,
753 step one instruction before inserting breakpoints so that
754 we do not stop right away (and report a second hit at this
755 breakpoint). */
756 oneproc = 1;
757 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
758 && gdbarch_single_step_through_delay (current_gdbarch,
759 get_current_frame ()))
760 /* We stepped onto an instruction that needs to be stepped
761 again before re-inserting the breakpoint, do so. */
762 oneproc = 1;
763 }
764 else
765 {
766 write_pc (addr);
767 }
768
769 if (debug_infrun)
770 fprintf_unfiltered (gdb_stdlog,
771 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
772 paddr_nz (addr), siggnal, step);
773
774 /* In a multi-threaded task we may select another thread
775 and then continue or step.
776
777 But if the old thread was stopped at a breakpoint, it
778 will immediately cause another breakpoint stop without
779 any execution (i.e. it will report a breakpoint hit
780 incorrectly). So we must step over it first.
781
782 prepare_to_proceed checks the current thread against the thread
783 that reported the most recent event. If a step-over is required
784 it returns TRUE and sets the current thread to the old thread. */
785 if (prepare_to_proceed (step))
786 oneproc = 1;
787
788 if (oneproc)
789 {
790 /* We will get a trace trap after one instruction.
791 Continue it automatically and insert breakpoints then. */
792 stepping_over_breakpoint = 1;
793 /* FIXME: if breakpoints are always inserted, we'll trap
794 if trying to single-step over breakpoint. Disable
795 all breakpoints. In future, we'd need to invent some
796 smart way of stepping over breakpoint instruction without
797 hitting breakpoint. */
798 remove_breakpoints ();
799 }
800 else
801 insert_breakpoints ();
802
803 if (siggnal != TARGET_SIGNAL_DEFAULT)
804 stop_signal = siggnal;
805 /* If this signal should not be seen by program,
806 give it zero. Used for debugging signals. */
807 else if (!signal_program[stop_signal])
808 stop_signal = TARGET_SIGNAL_0;
809
810 annotate_starting ();
811
812 /* Make sure that output from GDB appears before output from the
813 inferior. */
814 gdb_flush (gdb_stdout);
815
816 /* Refresh prev_pc value just prior to resuming. This used to be
817 done in stop_stepping, however, setting prev_pc there did not handle
818 scenarios such as inferior function calls or returning from
819 a function via the return command. In those cases, the prev_pc
820 value was not set properly for subsequent commands. The prev_pc value
821 is used to initialize the starting line number in the ecs. With an
822 invalid value, the gdb next command ends up stopping at the position
823 represented by the next line table entry past our start position.
824 On platforms that generate one line table entry per line, this
825 is not a problem. However, on the ia64, the compiler generates
826 extraneous line table entries that do not increase the line number.
827 When we issue the gdb next command on the ia64 after an inferior call
828 or a return command, we often end up a few instructions forward, still
829 within the original line we started.
830
831 An attempt was made to have init_execution_control_state () refresh
832 the prev_pc value before calculating the line number. This approach
833 did not work because on platforms that use ptrace, the pc register
834 cannot be read unless the inferior is stopped. At that point, we
835 are not guaranteed the inferior is stopped and so the read_pc ()
836 call can fail. Setting the prev_pc value here ensures the value is
837 updated correctly when the inferior is stopped. */
838 prev_pc = read_pc ();
839
840 /* Resume inferior. */
841 resume (oneproc || step || bpstat_should_step (), stop_signal);
842
843 /* Wait for it to stop (if not standalone)
844 and in any case decode why it stopped, and act accordingly. */
845 /* Do this only if we are not using the event loop, or if the target
846 does not support asynchronous execution. */
847 if (!target_can_async_p ())
848 {
849 wait_for_inferior (0);
850 normal_stop ();
851 }
852 }
853 \f
854
855 /* Start remote-debugging of a machine over a serial link. */
856
857 void
858 start_remote (int from_tty)
859 {
860 init_thread_list ();
861 init_wait_for_inferior ();
862 stop_soon = STOP_QUIETLY_REMOTE;
863 stepping_over_breakpoint = 0;
864
865 /* Always go on waiting for the target, regardless of the mode. */
866 /* FIXME: cagney/1999-09-23: At present it isn't possible to
867 indicate to wait_for_inferior that a target should timeout if
868 nothing is returned (instead of just blocking). Because of this,
869 targets expecting an immediate response need to, internally, set
870 things up so that the target_wait() is forced to eventually
871 timeout. */
872 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
873 differentiate to its caller what the state of the target is after
874 the initial open has been performed. Here we're assuming that
875 the target has stopped. It should be possible to eventually have
876 target_open() return to the caller an indication that the target
877 is currently running and GDB state should be set to the same as
878 for an async run. */
879 wait_for_inferior (0);
880
881 /* Now that the inferior has stopped, do any bookkeeping like
882 loading shared libraries. We want to do this before normal_stop,
883 so that the displayed frame is up to date. */
884 post_create_inferior (&current_target, from_tty);
885
886 normal_stop ();
887 }
888
889 /* Initialize static vars when a new inferior begins. */
890
891 void
892 init_wait_for_inferior (void)
893 {
894 /* These are meaningless until the first time through wait_for_inferior. */
895 prev_pc = 0;
896
897 breakpoint_init_inferior (inf_starting);
898
899 /* Don't confuse first call to proceed(). */
900 stop_signal = TARGET_SIGNAL_0;
901
902 /* The first resume is not following a fork/vfork/exec. */
903 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
904
905 clear_proceed_status ();
906
907 stepping_past_singlestep_breakpoint = 0;
908 deferred_step_ptid = null_ptid;
909
910 target_last_wait_ptid = minus_one_ptid;
911 }
912 \f
913 /* This enum encodes possible reasons for doing a target_wait, so that
914 wfi can call target_wait in one place. (Ultimately the call will be
915 moved out of the infinite loop entirely.) */
916
917 enum infwait_states
918 {
919 infwait_normal_state,
920 infwait_thread_hop_state,
921 infwait_step_watch_state,
922 infwait_nonstep_watch_state
923 };
924
925 /* Why did the inferior stop? Used to print the appropriate messages
926 to the interface from within handle_inferior_event(). */
927 enum inferior_stop_reason
928 {
929 /* Step, next, nexti, stepi finished. */
930 END_STEPPING_RANGE,
931 /* Inferior terminated by signal. */
932 SIGNAL_EXITED,
933 /* Inferior exited. */
934 EXITED,
935 /* Inferior received signal, and user asked to be notified. */
936 SIGNAL_RECEIVED
937 };
938
939 /* This structure contains what used to be local variables in
940 wait_for_inferior. Probably many of them can return to being
941 locals in handle_inferior_event. */
942
943 struct execution_control_state
944 {
945 struct target_waitstatus ws;
946 struct target_waitstatus *wp;
947 /* Should we step over breakpoint next time keep_going
948 is called? */
949 int stepping_over_breakpoint;
950 int random_signal;
951 CORE_ADDR stop_func_start;
952 CORE_ADDR stop_func_end;
953 char *stop_func_name;
954 struct symtab_and_line sal;
955 int current_line;
956 struct symtab *current_symtab;
957 int handling_longjmp; /* FIXME */
958 ptid_t ptid;
959 ptid_t saved_inferior_ptid;
960 int step_after_step_resume_breakpoint;
961 int stepping_through_solib_after_catch;
962 bpstat stepping_through_solib_catchpoints;
963 int new_thread_event;
964 struct target_waitstatus tmpstatus;
965 enum infwait_states infwait_state;
966 ptid_t waiton_ptid;
967 int wait_some_more;
968 };
969
970 void init_execution_control_state (struct execution_control_state *ecs);
971
972 void handle_inferior_event (struct execution_control_state *ecs);
973
974 static void step_into_function (struct execution_control_state *ecs);
975 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
976 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
977 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
978 struct frame_id sr_id);
979 static void stop_stepping (struct execution_control_state *ecs);
980 static void prepare_to_wait (struct execution_control_state *ecs);
981 static void keep_going (struct execution_control_state *ecs);
982 static void print_stop_reason (enum inferior_stop_reason stop_reason,
983 int stop_info);
984
985 /* Wait for control to return from inferior to debugger.
986
987 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
988 as if they were SIGTRAP signals. This can be useful during
989 the startup sequence on some targets such as HP/UX, where
990 we receive an EXEC event instead of the expected SIGTRAP.
991
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (int treat_exec_as_sigtrap)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered
1006 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1007 treat_exec_as_sigtrap);
1008
1009 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1010 &step_resume_breakpoint);
1011
1012 /* wfi still stays in a loop, so it's OK just to take the address of
1013 a local to get the ecs pointer. */
1014 ecs = &ecss;
1015
1016 /* Fill in with reasonable starting values. */
1017 init_execution_control_state (ecs);
1018
1019 /* We'll update this if & when we switch to a new thread. */
1020 previous_inferior_ptid = inferior_ptid;
1021
1022 overlay_cache_invalid = 1;
1023
1024 /* We have to invalidate the registers BEFORE calling target_wait
1025 because they can be loaded from the target while in target_wait.
1026 This makes remote debugging a bit more efficient for those
1027 targets that provide critical registers as part of their normal
1028 status mechanism. */
1029
1030 registers_changed ();
1031
1032 while (1)
1033 {
1034 if (deprecated_target_wait_hook)
1035 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1036 else
1037 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1038
1039 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1040 {
1041 xfree (ecs->ws.value.execd_pathname);
1042 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1043 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1044 }
1045
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (ecs);
1048
1049 if (!ecs->wait_some_more)
1050 break;
1051 }
1052 do_cleanups (old_cleanups);
1053 }
1054
1055 /* Asynchronous version of wait_for_inferior. It is called by the
1056 event loop whenever a change of state is detected on the file
1057 descriptor corresponding to the target. It can be called more than
1058 once to complete a single execution command. In such cases we need
1059 to keep the state in a global variable ASYNC_ECSS. If it is the
1060 last time that this function is called for a single execution
1061 command, then report to the user that the inferior has stopped, and
1062 do the necessary cleanups. */
1063
1064 struct execution_control_state async_ecss;
1065 struct execution_control_state *async_ecs;
1066
1067 void
1068 fetch_inferior_event (void *client_data)
1069 {
1070 static struct cleanup *old_cleanups;
1071
1072 async_ecs = &async_ecss;
1073
1074 if (!async_ecs->wait_some_more)
1075 {
1076 /* Fill in with reasonable starting values. */
1077 init_execution_control_state (async_ecs);
1078
1079 /* We'll update this if & when we switch to a new thread. */
1080 previous_inferior_ptid = inferior_ptid;
1081
1082 overlay_cache_invalid = 1;
1083
1084 /* We have to invalidate the registers BEFORE calling target_wait
1085 because they can be loaded from the target while in target_wait.
1086 This makes remote debugging a bit more efficient for those
1087 targets that provide critical registers as part of their normal
1088 status mechanism. */
1089
1090 registers_changed ();
1091 }
1092
1093 if (deprecated_target_wait_hook)
1094 async_ecs->ptid =
1095 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1096 else
1097 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1098
1099 /* Now figure out what to do with the result of the result. */
1100 handle_inferior_event (async_ecs);
1101
1102 if (!async_ecs->wait_some_more)
1103 {
1104 delete_step_resume_breakpoint (&step_resume_breakpoint);
1105
1106 normal_stop ();
1107 if (step_multi && stop_step)
1108 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1109 else
1110 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1111 }
1112 }
1113
1114 /* Prepare an execution control state for looping through a
1115 wait_for_inferior-type loop. */
1116
1117 void
1118 init_execution_control_state (struct execution_control_state *ecs)
1119 {
1120 ecs->stepping_over_breakpoint = 0;
1121 ecs->random_signal = 0;
1122 ecs->step_after_step_resume_breakpoint = 0;
1123 ecs->handling_longjmp = 0; /* FIXME */
1124 ecs->stepping_through_solib_after_catch = 0;
1125 ecs->stepping_through_solib_catchpoints = NULL;
1126 ecs->sal = find_pc_line (prev_pc, 0);
1127 ecs->current_line = ecs->sal.line;
1128 ecs->current_symtab = ecs->sal.symtab;
1129 ecs->infwait_state = infwait_normal_state;
1130 ecs->waiton_ptid = pid_to_ptid (-1);
1131 ecs->wp = &(ecs->ws);
1132 }
1133
1134 /* Return the cached copy of the last pid/waitstatus returned by
1135 target_wait()/deprecated_target_wait_hook(). The data is actually
1136 cached by handle_inferior_event(), which gets called immediately
1137 after target_wait()/deprecated_target_wait_hook(). */
1138
1139 void
1140 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1141 {
1142 *ptidp = target_last_wait_ptid;
1143 *status = target_last_waitstatus;
1144 }
1145
1146 void
1147 nullify_last_target_wait_ptid (void)
1148 {
1149 target_last_wait_ptid = minus_one_ptid;
1150 }
1151
1152 /* Switch thread contexts, maintaining "infrun state". */
1153
1154 static void
1155 context_switch (struct execution_control_state *ecs)
1156 {
1157 /* Caution: it may happen that the new thread (or the old one!)
1158 is not in the thread list. In this case we must not attempt
1159 to "switch context", or we run the risk that our context may
1160 be lost. This may happen as a result of the target module
1161 mishandling thread creation. */
1162
1163 if (debug_infrun)
1164 {
1165 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1166 target_pid_to_str (inferior_ptid));
1167 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1168 target_pid_to_str (ecs->ptid));
1169 }
1170
1171 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1172 { /* Perform infrun state context switch: */
1173 /* Save infrun state for the old thread. */
1174 save_infrun_state (inferior_ptid, prev_pc,
1175 stepping_over_breakpoint, step_resume_breakpoint,
1176 step_range_start,
1177 step_range_end, &step_frame_id,
1178 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1179 ecs->stepping_through_solib_after_catch,
1180 ecs->stepping_through_solib_catchpoints,
1181 ecs->current_line, ecs->current_symtab);
1182
1183 /* Load infrun state for the new thread. */
1184 load_infrun_state (ecs->ptid, &prev_pc,
1185 &stepping_over_breakpoint, &step_resume_breakpoint,
1186 &step_range_start,
1187 &step_range_end, &step_frame_id,
1188 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1189 &ecs->stepping_through_solib_after_catch,
1190 &ecs->stepping_through_solib_catchpoints,
1191 &ecs->current_line, &ecs->current_symtab);
1192 }
1193
1194 switch_to_thread (ecs->ptid);
1195 }
1196
1197 static void
1198 adjust_pc_after_break (struct execution_control_state *ecs)
1199 {
1200 CORE_ADDR breakpoint_pc;
1201
1202 /* If this target does not decrement the PC after breakpoints, then
1203 we have nothing to do. */
1204 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1205 return;
1206
1207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1208 we aren't, just return.
1209
1210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1212 implemented by software breakpoints should be handled through the normal
1213 breakpoint layer.
1214
1215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1216 different signals (SIGILL or SIGEMT for instance), but it is less
1217 clear where the PC is pointing afterwards. It may not match
1218 gdbarch_decr_pc_after_break. I don't know any specific target that
1219 generates these signals at breakpoints (the code has been in GDB since at
1220 least 1992) so I can not guess how to handle them here.
1221
1222 In earlier versions of GDB, a target with
1223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1225 target with both of these set in GDB history, and it seems unlikely to be
1226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1227
1228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1229 return;
1230
1231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1232 return;
1233
1234 /* Find the location where (if we've hit a breakpoint) the
1235 breakpoint would be. */
1236 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1237 (current_gdbarch);
1238
1239 /* Check whether there actually is a software breakpoint inserted
1240 at that location. */
1241 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1242 {
1243 /* When using hardware single-step, a SIGTRAP is reported for both
1244 a completed single-step and a software breakpoint. Need to
1245 differentiate between the two, as the latter needs adjusting
1246 but the former does not.
1247
1248 The SIGTRAP can be due to a completed hardware single-step only if
1249 - we didn't insert software single-step breakpoints
1250 - the thread to be examined is still the current thread
1251 - this thread is currently being stepped
1252
1253 If any of these events did not occur, we must have stopped due
1254 to hitting a software breakpoint, and have to back up to the
1255 breakpoint address.
1256
1257 As a special case, we could have hardware single-stepped a
1258 software breakpoint. In this case (prev_pc == breakpoint_pc),
1259 we also need to back up to the breakpoint address. */
1260
1261 if (singlestep_breakpoints_inserted_p
1262 || !ptid_equal (ecs->ptid, inferior_ptid)
1263 || !currently_stepping (ecs)
1264 || prev_pc == breakpoint_pc)
1265 write_pc_pid (breakpoint_pc, ecs->ptid);
1266 }
1267 }
1268
1269 /* Given an execution control state that has been freshly filled in
1270 by an event from the inferior, figure out what it means and take
1271 appropriate action. */
1272
1273 void
1274 handle_inferior_event (struct execution_control_state *ecs)
1275 {
1276 int sw_single_step_trap_p = 0;
1277 int stopped_by_watchpoint;
1278 int stepped_after_stopped_by_watchpoint = 0;
1279
1280 /* Cache the last pid/waitstatus. */
1281 target_last_wait_ptid = ecs->ptid;
1282 target_last_waitstatus = *ecs->wp;
1283
1284 /* Always clear state belonging to the previous time we stopped. */
1285 stop_stack_dummy = 0;
1286
1287 adjust_pc_after_break (ecs);
1288
1289 switch (ecs->infwait_state)
1290 {
1291 case infwait_thread_hop_state:
1292 if (debug_infrun)
1293 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1294 /* Cancel the waiton_ptid. */
1295 ecs->waiton_ptid = pid_to_ptid (-1);
1296 break;
1297
1298 case infwait_normal_state:
1299 if (debug_infrun)
1300 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1301 break;
1302
1303 case infwait_step_watch_state:
1304 if (debug_infrun)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "infrun: infwait_step_watch_state\n");
1307
1308 stepped_after_stopped_by_watchpoint = 1;
1309 break;
1310
1311 case infwait_nonstep_watch_state:
1312 if (debug_infrun)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "infrun: infwait_nonstep_watch_state\n");
1315 insert_breakpoints ();
1316
1317 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1318 handle things like signals arriving and other things happening
1319 in combination correctly? */
1320 stepped_after_stopped_by_watchpoint = 1;
1321 break;
1322
1323 default:
1324 internal_error (__FILE__, __LINE__, _("bad switch"));
1325 }
1326 ecs->infwait_state = infwait_normal_state;
1327
1328 reinit_frame_cache ();
1329
1330 /* If it's a new process, add it to the thread database */
1331
1332 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1333 && !ptid_equal (ecs->ptid, minus_one_ptid)
1334 && !in_thread_list (ecs->ptid));
1335
1336 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1337 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1338 add_thread (ecs->ptid);
1339
1340 switch (ecs->ws.kind)
1341 {
1342 case TARGET_WAITKIND_LOADED:
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1345 /* Ignore gracefully during startup of the inferior, as it might
1346 be the shell which has just loaded some objects, otherwise
1347 add the symbols for the newly loaded objects. Also ignore at
1348 the beginning of an attach or remote session; we will query
1349 the full list of libraries once the connection is
1350 established. */
1351 if (stop_soon == NO_STOP_QUIETLY)
1352 {
1353 /* Check for any newly added shared libraries if we're
1354 supposed to be adding them automatically. Switch
1355 terminal for any messages produced by
1356 breakpoint_re_set. */
1357 target_terminal_ours_for_output ();
1358 /* NOTE: cagney/2003-11-25: Make certain that the target
1359 stack's section table is kept up-to-date. Architectures,
1360 (e.g., PPC64), use the section table to perform
1361 operations such as address => section name and hence
1362 require the table to contain all sections (including
1363 those found in shared libraries). */
1364 /* NOTE: cagney/2003-11-25: Pass current_target and not
1365 exec_ops to SOLIB_ADD. This is because current GDB is
1366 only tooled to propagate section_table changes out from
1367 the "current_target" (see target_resize_to_sections), and
1368 not up from the exec stratum. This, of course, isn't
1369 right. "infrun.c" should only interact with the
1370 exec/process stratum, instead relying on the target stack
1371 to propagate relevant changes (stop, section table
1372 changed, ...) up to other layers. */
1373 #ifdef SOLIB_ADD
1374 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1375 #else
1376 solib_add (NULL, 0, &current_target, auto_solib_add);
1377 #endif
1378 target_terminal_inferior ();
1379
1380 /* If requested, stop when the dynamic linker notifies
1381 gdb of events. This allows the user to get control
1382 and place breakpoints in initializer routines for
1383 dynamically loaded objects (among other things). */
1384 if (stop_on_solib_events)
1385 {
1386 stop_stepping (ecs);
1387 return;
1388 }
1389
1390 /* NOTE drow/2007-05-11: This might be a good place to check
1391 for "catch load". */
1392 }
1393
1394 /* If we are skipping through a shell, or through shared library
1395 loading that we aren't interested in, resume the program. If
1396 we're running the program normally, also resume. But stop if
1397 we're attaching or setting up a remote connection. */
1398 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1399 {
1400 /* Loading of shared libraries might have changed breakpoint
1401 addresses. Make sure new breakpoints are inserted. */
1402 if (!breakpoints_always_inserted_mode ())
1403 insert_breakpoints ();
1404 resume (0, TARGET_SIGNAL_0);
1405 prepare_to_wait (ecs);
1406 return;
1407 }
1408
1409 break;
1410
1411 case TARGET_WAITKIND_SPURIOUS:
1412 if (debug_infrun)
1413 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1414 resume (0, TARGET_SIGNAL_0);
1415 prepare_to_wait (ecs);
1416 return;
1417
1418 case TARGET_WAITKIND_EXITED:
1419 if (debug_infrun)
1420 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1421 target_terminal_ours (); /* Must do this before mourn anyway */
1422 print_stop_reason (EXITED, ecs->ws.value.integer);
1423
1424 /* Record the exit code in the convenience variable $_exitcode, so
1425 that the user can inspect this again later. */
1426 set_internalvar (lookup_internalvar ("_exitcode"),
1427 value_from_longest (builtin_type_int,
1428 (LONGEST) ecs->ws.value.integer));
1429 gdb_flush (gdb_stdout);
1430 target_mourn_inferior ();
1431 singlestep_breakpoints_inserted_p = 0;
1432 stop_print_frame = 0;
1433 stop_stepping (ecs);
1434 return;
1435
1436 case TARGET_WAITKIND_SIGNALLED:
1437 if (debug_infrun)
1438 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1439 stop_print_frame = 0;
1440 stop_signal = ecs->ws.value.sig;
1441 target_terminal_ours (); /* Must do this before mourn anyway */
1442
1443 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1444 reach here unless the inferior is dead. However, for years
1445 target_kill() was called here, which hints that fatal signals aren't
1446 really fatal on some systems. If that's true, then some changes
1447 may be needed. */
1448 target_mourn_inferior ();
1449
1450 print_stop_reason (SIGNAL_EXITED, stop_signal);
1451 singlestep_breakpoints_inserted_p = 0;
1452 stop_stepping (ecs);
1453 return;
1454
1455 /* The following are the only cases in which we keep going;
1456 the above cases end in a continue or goto. */
1457 case TARGET_WAITKIND_FORKED:
1458 case TARGET_WAITKIND_VFORKED:
1459 if (debug_infrun)
1460 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1461 stop_signal = TARGET_SIGNAL_TRAP;
1462 pending_follow.kind = ecs->ws.kind;
1463
1464 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1465 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1466
1467 if (!ptid_equal (ecs->ptid, inferior_ptid))
1468 {
1469 context_switch (ecs);
1470 reinit_frame_cache ();
1471 }
1472
1473 stop_pc = read_pc ();
1474
1475 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1476
1477 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1478
1479 /* If no catchpoint triggered for this, then keep going. */
1480 if (ecs->random_signal)
1481 {
1482 stop_signal = TARGET_SIGNAL_0;
1483 keep_going (ecs);
1484 return;
1485 }
1486 goto process_event_stop_test;
1487
1488 case TARGET_WAITKIND_EXECD:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1491 stop_signal = TARGET_SIGNAL_TRAP;
1492
1493 pending_follow.execd_pathname =
1494 savestring (ecs->ws.value.execd_pathname,
1495 strlen (ecs->ws.value.execd_pathname));
1496
1497 /* This causes the eventpoints and symbol table to be reset. Must
1498 do this now, before trying to determine whether to stop. */
1499 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1500 xfree (pending_follow.execd_pathname);
1501
1502 stop_pc = read_pc_pid (ecs->ptid);
1503 ecs->saved_inferior_ptid = inferior_ptid;
1504 inferior_ptid = ecs->ptid;
1505
1506 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1507
1508 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1509 inferior_ptid = ecs->saved_inferior_ptid;
1510
1511 if (!ptid_equal (ecs->ptid, inferior_ptid))
1512 {
1513 context_switch (ecs);
1514 reinit_frame_cache ();
1515 }
1516
1517 /* If no catchpoint triggered for this, then keep going. */
1518 if (ecs->random_signal)
1519 {
1520 stop_signal = TARGET_SIGNAL_0;
1521 keep_going (ecs);
1522 return;
1523 }
1524 goto process_event_stop_test;
1525
1526 /* Be careful not to try to gather much state about a thread
1527 that's in a syscall. It's frequently a losing proposition. */
1528 case TARGET_WAITKIND_SYSCALL_ENTRY:
1529 if (debug_infrun)
1530 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1531 resume (0, TARGET_SIGNAL_0);
1532 prepare_to_wait (ecs);
1533 return;
1534
1535 /* Before examining the threads further, step this thread to
1536 get it entirely out of the syscall. (We get notice of the
1537 event when the thread is just on the verge of exiting a
1538 syscall. Stepping one instruction seems to get it back
1539 into user code.) */
1540 case TARGET_WAITKIND_SYSCALL_RETURN:
1541 if (debug_infrun)
1542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1543 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546
1547 case TARGET_WAITKIND_STOPPED:
1548 if (debug_infrun)
1549 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1550 stop_signal = ecs->ws.value.sig;
1551 break;
1552
1553 /* We had an event in the inferior, but we are not interested
1554 in handling it at this level. The lower layers have already
1555 done what needs to be done, if anything.
1556
1557 One of the possible circumstances for this is when the
1558 inferior produces output for the console. The inferior has
1559 not stopped, and we are ignoring the event. Another possible
1560 circumstance is any event which the lower level knows will be
1561 reported multiple times without an intervening resume. */
1562 case TARGET_WAITKIND_IGNORE:
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1565 prepare_to_wait (ecs);
1566 return;
1567 }
1568
1569 /* We may want to consider not doing a resume here in order to give
1570 the user a chance to play with the new thread. It might be good
1571 to make that a user-settable option. */
1572
1573 /* At this point, all threads are stopped (happens automatically in
1574 either the OS or the native code). Therefore we need to continue
1575 all threads in order to make progress. */
1576 if (ecs->new_thread_event)
1577 {
1578 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1579 prepare_to_wait (ecs);
1580 return;
1581 }
1582
1583 stop_pc = read_pc_pid (ecs->ptid);
1584
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1587
1588 if (stepping_past_singlestep_breakpoint)
1589 {
1590 gdb_assert (singlestep_breakpoints_inserted_p);
1591 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1592 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1593
1594 stepping_past_singlestep_breakpoint = 0;
1595
1596 /* We've either finished single-stepping past the single-step
1597 breakpoint, or stopped for some other reason. It would be nice if
1598 we could tell, but we can't reliably. */
1599 if (stop_signal == TARGET_SIGNAL_TRAP)
1600 {
1601 if (debug_infrun)
1602 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1603 /* Pull the single step breakpoints out of the target. */
1604 remove_single_step_breakpoints ();
1605 singlestep_breakpoints_inserted_p = 0;
1606
1607 ecs->random_signal = 0;
1608
1609 ecs->ptid = saved_singlestep_ptid;
1610 context_switch (ecs);
1611 if (deprecated_context_hook)
1612 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1613
1614 resume (1, TARGET_SIGNAL_0);
1615 prepare_to_wait (ecs);
1616 return;
1617 }
1618 }
1619
1620 stepping_past_singlestep_breakpoint = 0;
1621
1622 if (!ptid_equal (deferred_step_ptid, null_ptid))
1623 {
1624 /* If we stopped for some other reason than single-stepping, ignore
1625 the fact that we were supposed to switch back. */
1626 if (stop_signal == TARGET_SIGNAL_TRAP)
1627 {
1628 if (debug_infrun)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "infrun: handling deferred step\n");
1631
1632 /* Pull the single step breakpoints out of the target. */
1633 if (singlestep_breakpoints_inserted_p)
1634 {
1635 remove_single_step_breakpoints ();
1636 singlestep_breakpoints_inserted_p = 0;
1637 }
1638
1639 /* Note: We do not call context_switch at this point, as the
1640 context is already set up for stepping the original thread. */
1641 switch_to_thread (deferred_step_ptid);
1642 deferred_step_ptid = null_ptid;
1643 /* Suppress spurious "Switching to ..." message. */
1644 previous_inferior_ptid = inferior_ptid;
1645
1646 resume (1, TARGET_SIGNAL_0);
1647 prepare_to_wait (ecs);
1648 return;
1649 }
1650
1651 deferred_step_ptid = null_ptid;
1652 }
1653
1654 /* See if a thread hit a thread-specific breakpoint that was meant for
1655 another thread. If so, then step that thread past the breakpoint,
1656 and continue it. */
1657
1658 if (stop_signal == TARGET_SIGNAL_TRAP)
1659 {
1660 int thread_hop_needed = 0;
1661
1662 /* Check if a regular breakpoint has been hit before checking
1663 for a potential single step breakpoint. Otherwise, GDB will
1664 not see this breakpoint hit when stepping onto breakpoints. */
1665 if (regular_breakpoint_inserted_here_p (stop_pc))
1666 {
1667 ecs->random_signal = 0;
1668 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1669 thread_hop_needed = 1;
1670 }
1671 else if (singlestep_breakpoints_inserted_p)
1672 {
1673 /* We have not context switched yet, so this should be true
1674 no matter which thread hit the singlestep breakpoint. */
1675 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1678 "trap for %s\n",
1679 target_pid_to_str (ecs->ptid));
1680
1681 ecs->random_signal = 0;
1682 /* The call to in_thread_list is necessary because PTIDs sometimes
1683 change when we go from single-threaded to multi-threaded. If
1684 the singlestep_ptid is still in the list, assume that it is
1685 really different from ecs->ptid. */
1686 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1687 && in_thread_list (singlestep_ptid))
1688 {
1689 /* If the PC of the thread we were trying to single-step
1690 has changed, discard this event (which we were going
1691 to ignore anyway), and pretend we saw that thread
1692 trap. This prevents us continuously moving the
1693 single-step breakpoint forward, one instruction at a
1694 time. If the PC has changed, then the thread we were
1695 trying to single-step has trapped or been signalled,
1696 but the event has not been reported to GDB yet.
1697
1698 There might be some cases where this loses signal
1699 information, if a signal has arrived at exactly the
1700 same time that the PC changed, but this is the best
1701 we can do with the information available. Perhaps we
1702 should arrange to report all events for all threads
1703 when they stop, or to re-poll the remote looking for
1704 this particular thread (i.e. temporarily enable
1705 schedlock). */
1706 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1707 {
1708 if (debug_infrun)
1709 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1710 " but expected thread advanced also\n");
1711
1712 /* The current context still belongs to
1713 singlestep_ptid. Don't swap here, since that's
1714 the context we want to use. Just fudge our
1715 state and continue. */
1716 ecs->ptid = singlestep_ptid;
1717 stop_pc = read_pc_pid (ecs->ptid);
1718 }
1719 else
1720 {
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "infrun: unexpected thread\n");
1724
1725 thread_hop_needed = 1;
1726 stepping_past_singlestep_breakpoint = 1;
1727 saved_singlestep_ptid = singlestep_ptid;
1728 }
1729 }
1730 }
1731
1732 if (thread_hop_needed)
1733 {
1734 int remove_status;
1735
1736 if (debug_infrun)
1737 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1738
1739 /* Saw a breakpoint, but it was hit by the wrong thread.
1740 Just continue. */
1741
1742 if (singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 remove_status = remove_breakpoints ();
1750 /* Did we fail to remove breakpoints? If so, try
1751 to set the PC past the bp. (There's at least
1752 one situation in which we can fail to remove
1753 the bp's: On HP-UX's that use ttrace, we can't
1754 change the address space of a vforking child
1755 process until the child exits (well, okay, not
1756 then either :-) or execs. */
1757 if (remove_status != 0)
1758 error (_("Cannot step over breakpoint hit in wrong thread"));
1759 else
1760 { /* Single step */
1761 if (!ptid_equal (inferior_ptid, ecs->ptid))
1762 context_switch (ecs);
1763 ecs->waiton_ptid = ecs->ptid;
1764 ecs->wp = &(ecs->ws);
1765 ecs->stepping_over_breakpoint = 1;
1766
1767 ecs->infwait_state = infwait_thread_hop_state;
1768 keep_going (ecs);
1769 registers_changed ();
1770 return;
1771 }
1772 }
1773 else if (singlestep_breakpoints_inserted_p)
1774 {
1775 sw_single_step_trap_p = 1;
1776 ecs->random_signal = 0;
1777 }
1778 }
1779 else
1780 ecs->random_signal = 1;
1781
1782 /* See if something interesting happened to the non-current thread. If
1783 so, then switch to that thread. */
1784 if (!ptid_equal (ecs->ptid, inferior_ptid))
1785 {
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1788
1789 context_switch (ecs);
1790
1791 if (deprecated_context_hook)
1792 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1793 }
1794
1795 if (singlestep_breakpoints_inserted_p)
1796 {
1797 /* Pull the single step breakpoints out of the target. */
1798 remove_single_step_breakpoints ();
1799 singlestep_breakpoints_inserted_p = 0;
1800 }
1801
1802 if (stepped_after_stopped_by_watchpoint)
1803 stopped_by_watchpoint = 0;
1804 else
1805 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1806
1807 /* If necessary, step over this watchpoint. We'll be back to display
1808 it in a moment. */
1809 if (stopped_by_watchpoint
1810 && (HAVE_STEPPABLE_WATCHPOINT
1811 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1812 {
1813 if (debug_infrun)
1814 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1815
1816 /* At this point, we are stopped at an instruction which has
1817 attempted to write to a piece of memory under control of
1818 a watchpoint. The instruction hasn't actually executed
1819 yet. If we were to evaluate the watchpoint expression
1820 now, we would get the old value, and therefore no change
1821 would seem to have occurred.
1822
1823 In order to make watchpoints work `right', we really need
1824 to complete the memory write, and then evaluate the
1825 watchpoint expression. We do this by single-stepping the
1826 target.
1827
1828 It may not be necessary to disable the watchpoint to stop over
1829 it. For example, the PA can (with some kernel cooperation)
1830 single step over a watchpoint without disabling the watchpoint.
1831
1832 It is far more common to need to disable a watchpoint to step
1833 the inferior over it. If we have non-steppable watchpoints,
1834 we must disable the current watchpoint; it's simplest to
1835 disable all watchpoints and breakpoints. */
1836
1837 if (!HAVE_STEPPABLE_WATCHPOINT)
1838 remove_breakpoints ();
1839 registers_changed ();
1840 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1841 ecs->waiton_ptid = ecs->ptid;
1842 if (HAVE_STEPPABLE_WATCHPOINT)
1843 ecs->infwait_state = infwait_step_watch_state;
1844 else
1845 ecs->infwait_state = infwait_nonstep_watch_state;
1846 prepare_to_wait (ecs);
1847 return;
1848 }
1849
1850 ecs->stop_func_start = 0;
1851 ecs->stop_func_end = 0;
1852 ecs->stop_func_name = 0;
1853 /* Don't care about return value; stop_func_start and stop_func_name
1854 will both be 0 if it doesn't work. */
1855 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1856 &ecs->stop_func_start, &ecs->stop_func_end);
1857 ecs->stop_func_start
1858 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1859 ecs->stepping_over_breakpoint = 0;
1860 bpstat_clear (&stop_bpstat);
1861 stop_step = 0;
1862 stop_print_frame = 1;
1863 ecs->random_signal = 0;
1864 stopped_by_random_signal = 0;
1865
1866 if (stop_signal == TARGET_SIGNAL_TRAP
1867 && stepping_over_breakpoint
1868 && gdbarch_single_step_through_delay_p (current_gdbarch)
1869 && currently_stepping (ecs))
1870 {
1871 /* We're trying to step off a breakpoint. Turns out that we're
1872 also on an instruction that needs to be stepped multiple
1873 times before it's been fully executing. E.g., architectures
1874 with a delay slot. It needs to be stepped twice, once for
1875 the instruction and once for the delay slot. */
1876 int step_through_delay
1877 = gdbarch_single_step_through_delay (current_gdbarch,
1878 get_current_frame ());
1879 if (debug_infrun && step_through_delay)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1881 if (step_range_end == 0 && step_through_delay)
1882 {
1883 /* The user issued a continue when stopped at a breakpoint.
1884 Set up for another trap and get out of here. */
1885 ecs->stepping_over_breakpoint = 1;
1886 keep_going (ecs);
1887 return;
1888 }
1889 else if (step_through_delay)
1890 {
1891 /* The user issued a step when stopped at a breakpoint.
1892 Maybe we should stop, maybe we should not - the delay
1893 slot *might* correspond to a line of source. In any
1894 case, don't decide that here, just set
1895 ecs->stepping_over_breakpoint, making sure we
1896 single-step again before breakpoints are re-inserted. */
1897 ecs->stepping_over_breakpoint = 1;
1898 }
1899 }
1900
1901 /* Look at the cause of the stop, and decide what to do.
1902 The alternatives are:
1903 1) break; to really stop and return to the debugger,
1904 2) drop through to start up again
1905 (set ecs->stepping_over_breakpoint to 1 to single step once)
1906 3) set ecs->random_signal to 1, and the decision between 1 and 2
1907 will be made according to the signal handling tables. */
1908
1909 /* First, distinguish signals caused by the debugger from signals
1910 that have to do with the program's own actions. Note that
1911 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1912 on the operating system version. Here we detect when a SIGILL or
1913 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1914 something similar for SIGSEGV, since a SIGSEGV will be generated
1915 when we're trying to execute a breakpoint instruction on a
1916 non-executable stack. This happens for call dummy breakpoints
1917 for architectures like SPARC that place call dummies on the
1918 stack. */
1919
1920 if (stop_signal == TARGET_SIGNAL_TRAP
1921 || (breakpoint_inserted_here_p (stop_pc)
1922 && (stop_signal == TARGET_SIGNAL_ILL
1923 || stop_signal == TARGET_SIGNAL_SEGV
1924 || stop_signal == TARGET_SIGNAL_EMT))
1925 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1926 || stop_soon == STOP_QUIETLY_REMOTE)
1927 {
1928 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1929 {
1930 if (debug_infrun)
1931 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1932 stop_print_frame = 0;
1933 stop_stepping (ecs);
1934 return;
1935 }
1936
1937 /* This is originated from start_remote(), start_inferior() and
1938 shared libraries hook functions. */
1939 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1943 stop_stepping (ecs);
1944 return;
1945 }
1946
1947 /* This originates from attach_command(). We need to overwrite
1948 the stop_signal here, because some kernels don't ignore a
1949 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1950 See more comments in inferior.h. */
1951 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1952 {
1953 stop_stepping (ecs);
1954 if (stop_signal == TARGET_SIGNAL_STOP)
1955 stop_signal = TARGET_SIGNAL_0;
1956 return;
1957 }
1958
1959 /* See if there is a breakpoint at the current PC. */
1960 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1961
1962 /* Following in case break condition called a
1963 function. */
1964 stop_print_frame = 1;
1965
1966 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1967 at one stage in the past included checks for an inferior
1968 function call's call dummy's return breakpoint. The original
1969 comment, that went with the test, read:
1970
1971 ``End of a stack dummy. Some systems (e.g. Sony news) give
1972 another signal besides SIGTRAP, so check here as well as
1973 above.''
1974
1975 If someone ever tries to get get call dummys on a
1976 non-executable stack to work (where the target would stop
1977 with something like a SIGSEGV), then those tests might need
1978 to be re-instated. Given, however, that the tests were only
1979 enabled when momentary breakpoints were not being used, I
1980 suspect that it won't be the case.
1981
1982 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1983 be necessary for call dummies on a non-executable stack on
1984 SPARC. */
1985
1986 if (stop_signal == TARGET_SIGNAL_TRAP)
1987 ecs->random_signal
1988 = !(bpstat_explains_signal (stop_bpstat)
1989 || stepping_over_breakpoint
1990 || (step_range_end && step_resume_breakpoint == NULL));
1991 else
1992 {
1993 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1994 if (!ecs->random_signal)
1995 stop_signal = TARGET_SIGNAL_TRAP;
1996 }
1997 }
1998
1999 /* When we reach this point, we've pretty much decided
2000 that the reason for stopping must've been a random
2001 (unexpected) signal. */
2002
2003 else
2004 ecs->random_signal = 1;
2005
2006 process_event_stop_test:
2007 /* For the program's own signals, act according to
2008 the signal handling tables. */
2009
2010 if (ecs->random_signal)
2011 {
2012 /* Signal not for debugging purposes. */
2013 int printed = 0;
2014
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2017
2018 stopped_by_random_signal = 1;
2019
2020 if (signal_print[stop_signal])
2021 {
2022 printed = 1;
2023 target_terminal_ours_for_output ();
2024 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2025 }
2026 if (signal_stop[stop_signal])
2027 {
2028 stop_stepping (ecs);
2029 return;
2030 }
2031 /* If not going to stop, give terminal back
2032 if we took it away. */
2033 else if (printed)
2034 target_terminal_inferior ();
2035
2036 /* Clear the signal if it should not be passed. */
2037 if (signal_program[stop_signal] == 0)
2038 stop_signal = TARGET_SIGNAL_0;
2039
2040 if (prev_pc == read_pc ()
2041 && stepping_over_breakpoint
2042 && step_resume_breakpoint == NULL)
2043 {
2044 /* We were just starting a new sequence, attempting to
2045 single-step off of a breakpoint and expecting a SIGTRAP.
2046 Intead this signal arrives. This signal will take us out
2047 of the stepping range so GDB needs to remember to, when
2048 the signal handler returns, resume stepping off that
2049 breakpoint. */
2050 /* To simplify things, "continue" is forced to use the same
2051 code paths as single-step - set a breakpoint at the
2052 signal return address and then, once hit, step off that
2053 breakpoint. */
2054
2055 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2056 ecs->step_after_step_resume_breakpoint = 1;
2057 keep_going (ecs);
2058 return;
2059 }
2060
2061 if (step_range_end != 0
2062 && stop_signal != TARGET_SIGNAL_0
2063 && stop_pc >= step_range_start && stop_pc < step_range_end
2064 && frame_id_eq (get_frame_id (get_current_frame ()),
2065 step_frame_id)
2066 && step_resume_breakpoint == NULL)
2067 {
2068 /* The inferior is about to take a signal that will take it
2069 out of the single step range. Set a breakpoint at the
2070 current PC (which is presumably where the signal handler
2071 will eventually return) and then allow the inferior to
2072 run free.
2073
2074 Note that this is only needed for a signal delivered
2075 while in the single-step range. Nested signals aren't a
2076 problem as they eventually all return. */
2077 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2078 keep_going (ecs);
2079 return;
2080 }
2081
2082 /* Note: step_resume_breakpoint may be non-NULL. This occures
2083 when either there's a nested signal, or when there's a
2084 pending signal enabled just as the signal handler returns
2085 (leaving the inferior at the step-resume-breakpoint without
2086 actually executing it). Either way continue until the
2087 breakpoint is really hit. */
2088 keep_going (ecs);
2089 return;
2090 }
2091
2092 /* Handle cases caused by hitting a breakpoint. */
2093 {
2094 CORE_ADDR jmp_buf_pc;
2095 struct bpstat_what what;
2096
2097 what = bpstat_what (stop_bpstat);
2098
2099 if (what.call_dummy)
2100 {
2101 stop_stack_dummy = 1;
2102 }
2103
2104 switch (what.main_action)
2105 {
2106 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2107 /* If we hit the breakpoint at longjmp, disable it for the
2108 duration of this command. Then, install a temporary
2109 breakpoint at the target of the jmp_buf. */
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2112 disable_longjmp_breakpoint ();
2113 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2114 || !gdbarch_get_longjmp_target (current_gdbarch,
2115 get_current_frame (), &jmp_buf_pc))
2116 {
2117 keep_going (ecs);
2118 return;
2119 }
2120
2121 /* Need to blow away step-resume breakpoint, as it
2122 interferes with us */
2123 if (step_resume_breakpoint != NULL)
2124 {
2125 delete_step_resume_breakpoint (&step_resume_breakpoint);
2126 }
2127
2128 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2129 ecs->handling_longjmp = 1; /* FIXME */
2130 keep_going (ecs);
2131 return;
2132
2133 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2134 if (debug_infrun)
2135 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2136 disable_longjmp_breakpoint ();
2137 ecs->handling_longjmp = 0; /* FIXME */
2138 break;
2139
2140 case BPSTAT_WHAT_SINGLE:
2141 if (debug_infrun)
2142 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2143 ecs->stepping_over_breakpoint = 1;
2144 /* Still need to check other stuff, at least the case
2145 where we are stepping and step out of the right range. */
2146 break;
2147
2148 case BPSTAT_WHAT_STOP_NOISY:
2149 if (debug_infrun)
2150 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2151 stop_print_frame = 1;
2152
2153 /* We are about to nuke the step_resume_breakpointt via the
2154 cleanup chain, so no need to worry about it here. */
2155
2156 stop_stepping (ecs);
2157 return;
2158
2159 case BPSTAT_WHAT_STOP_SILENT:
2160 if (debug_infrun)
2161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2162 stop_print_frame = 0;
2163
2164 /* We are about to nuke the step_resume_breakpoin via the
2165 cleanup chain, so no need to worry about it here. */
2166
2167 stop_stepping (ecs);
2168 return;
2169
2170 case BPSTAT_WHAT_STEP_RESUME:
2171 /* This proably demands a more elegant solution, but, yeah
2172 right...
2173
2174 This function's use of the simple variable
2175 step_resume_breakpoint doesn't seem to accomodate
2176 simultaneously active step-resume bp's, although the
2177 breakpoint list certainly can.
2178
2179 If we reach here and step_resume_breakpoint is already
2180 NULL, then apparently we have multiple active
2181 step-resume bp's. We'll just delete the breakpoint we
2182 stopped at, and carry on.
2183
2184 Correction: what the code currently does is delete a
2185 step-resume bp, but it makes no effort to ensure that
2186 the one deleted is the one currently stopped at. MVS */
2187
2188 if (debug_infrun)
2189 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2190
2191 if (step_resume_breakpoint == NULL)
2192 {
2193 step_resume_breakpoint =
2194 bpstat_find_step_resume_breakpoint (stop_bpstat);
2195 }
2196 delete_step_resume_breakpoint (&step_resume_breakpoint);
2197 if (ecs->step_after_step_resume_breakpoint)
2198 {
2199 /* Back when the step-resume breakpoint was inserted, we
2200 were trying to single-step off a breakpoint. Go back
2201 to doing that. */
2202 ecs->step_after_step_resume_breakpoint = 0;
2203 ecs->stepping_over_breakpoint = 1;
2204 keep_going (ecs);
2205 return;
2206 }
2207 break;
2208
2209 case BPSTAT_WHAT_CHECK_SHLIBS:
2210 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2211 {
2212 if (debug_infrun)
2213 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2214
2215 /* Check for any newly added shared libraries if we're
2216 supposed to be adding them automatically. Switch
2217 terminal for any messages produced by
2218 breakpoint_re_set. */
2219 target_terminal_ours_for_output ();
2220 /* NOTE: cagney/2003-11-25: Make certain that the target
2221 stack's section table is kept up-to-date. Architectures,
2222 (e.g., PPC64), use the section table to perform
2223 operations such as address => section name and hence
2224 require the table to contain all sections (including
2225 those found in shared libraries). */
2226 /* NOTE: cagney/2003-11-25: Pass current_target and not
2227 exec_ops to SOLIB_ADD. This is because current GDB is
2228 only tooled to propagate section_table changes out from
2229 the "current_target" (see target_resize_to_sections), and
2230 not up from the exec stratum. This, of course, isn't
2231 right. "infrun.c" should only interact with the
2232 exec/process stratum, instead relying on the target stack
2233 to propagate relevant changes (stop, section table
2234 changed, ...) up to other layers. */
2235 #ifdef SOLIB_ADD
2236 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2237 #else
2238 solib_add (NULL, 0, &current_target, auto_solib_add);
2239 #endif
2240 target_terminal_inferior ();
2241
2242 /* If requested, stop when the dynamic linker notifies
2243 gdb of events. This allows the user to get control
2244 and place breakpoints in initializer routines for
2245 dynamically loaded objects (among other things). */
2246 if (stop_on_solib_events || stop_stack_dummy)
2247 {
2248 stop_stepping (ecs);
2249 return;
2250 }
2251
2252 /* If we stopped due to an explicit catchpoint, then the
2253 (see above) call to SOLIB_ADD pulled in any symbols
2254 from a newly-loaded library, if appropriate.
2255
2256 We do want the inferior to stop, but not where it is
2257 now, which is in the dynamic linker callback. Rather,
2258 we would like it stop in the user's program, just after
2259 the call that caused this catchpoint to trigger. That
2260 gives the user a more useful vantage from which to
2261 examine their program's state. */
2262 else if (what.main_action
2263 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2264 {
2265 /* ??rehrauer: If I could figure out how to get the
2266 right return PC from here, we could just set a temp
2267 breakpoint and resume. I'm not sure we can without
2268 cracking open the dld's shared libraries and sniffing
2269 their unwind tables and text/data ranges, and that's
2270 not a terribly portable notion.
2271
2272 Until that time, we must step the inferior out of the
2273 dld callback, and also out of the dld itself (and any
2274 code or stubs in libdld.sl, such as "shl_load" and
2275 friends) until we reach non-dld code. At that point,
2276 we can stop stepping. */
2277 bpstat_get_triggered_catchpoints (stop_bpstat,
2278 &ecs->
2279 stepping_through_solib_catchpoints);
2280 ecs->stepping_through_solib_after_catch = 1;
2281
2282 /* Be sure to lift all breakpoints, so the inferior does
2283 actually step past this point... */
2284 ecs->stepping_over_breakpoint = 1;
2285 break;
2286 }
2287 else
2288 {
2289 /* We want to step over this breakpoint, then keep going. */
2290 ecs->stepping_over_breakpoint = 1;
2291 break;
2292 }
2293 }
2294 break;
2295
2296 case BPSTAT_WHAT_LAST:
2297 /* Not a real code, but listed here to shut up gcc -Wall. */
2298
2299 case BPSTAT_WHAT_KEEP_CHECKING:
2300 break;
2301 }
2302 }
2303
2304 /* We come here if we hit a breakpoint but should not
2305 stop for it. Possibly we also were stepping
2306 and should stop for that. So fall through and
2307 test for stepping. But, if not stepping,
2308 do not stop. */
2309
2310 /* Are we stepping to get the inferior out of the dynamic linker's
2311 hook (and possibly the dld itself) after catching a shlib
2312 event? */
2313 if (ecs->stepping_through_solib_after_catch)
2314 {
2315 #if defined(SOLIB_ADD)
2316 /* Have we reached our destination? If not, keep going. */
2317 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2318 {
2319 if (debug_infrun)
2320 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2321 ecs->stepping_over_breakpoint = 1;
2322 keep_going (ecs);
2323 return;
2324 }
2325 #endif
2326 if (debug_infrun)
2327 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2328 /* Else, stop and report the catchpoint(s) whose triggering
2329 caused us to begin stepping. */
2330 ecs->stepping_through_solib_after_catch = 0;
2331 bpstat_clear (&stop_bpstat);
2332 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2333 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2334 stop_print_frame = 1;
2335 stop_stepping (ecs);
2336 return;
2337 }
2338
2339 if (step_resume_breakpoint)
2340 {
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog,
2343 "infrun: step-resume breakpoint is inserted\n");
2344
2345 /* Having a step-resume breakpoint overrides anything
2346 else having to do with stepping commands until
2347 that breakpoint is reached. */
2348 keep_going (ecs);
2349 return;
2350 }
2351
2352 if (step_range_end == 0)
2353 {
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2356 /* Likewise if we aren't even stepping. */
2357 keep_going (ecs);
2358 return;
2359 }
2360
2361 /* If stepping through a line, keep going if still within it.
2362
2363 Note that step_range_end is the address of the first instruction
2364 beyond the step range, and NOT the address of the last instruction
2365 within it! */
2366 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2367 {
2368 if (debug_infrun)
2369 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2370 paddr_nz (step_range_start),
2371 paddr_nz (step_range_end));
2372 keep_going (ecs);
2373 return;
2374 }
2375
2376 /* We stepped out of the stepping range. */
2377
2378 /* If we are stepping at the source level and entered the runtime
2379 loader dynamic symbol resolution code, we keep on single stepping
2380 until we exit the run time loader code and reach the callee's
2381 address. */
2382 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2383 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2384 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2385 #else
2386 && in_solib_dynsym_resolve_code (stop_pc)
2387 #endif
2388 )
2389 {
2390 CORE_ADDR pc_after_resolver =
2391 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2392
2393 if (debug_infrun)
2394 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2395
2396 if (pc_after_resolver)
2397 {
2398 /* Set up a step-resume breakpoint at the address
2399 indicated by SKIP_SOLIB_RESOLVER. */
2400 struct symtab_and_line sr_sal;
2401 init_sal (&sr_sal);
2402 sr_sal.pc = pc_after_resolver;
2403
2404 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2405 }
2406
2407 keep_going (ecs);
2408 return;
2409 }
2410
2411 if (step_range_end != 1
2412 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2413 || step_over_calls == STEP_OVER_ALL)
2414 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2415 {
2416 if (debug_infrun)
2417 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2418 /* The inferior, while doing a "step" or "next", has ended up in
2419 a signal trampoline (either by a signal being delivered or by
2420 the signal handler returning). Just single-step until the
2421 inferior leaves the trampoline (either by calling the handler
2422 or returning). */
2423 keep_going (ecs);
2424 return;
2425 }
2426
2427 /* Check for subroutine calls. The check for the current frame
2428 equalling the step ID is not necessary - the check of the
2429 previous frame's ID is sufficient - but it is a common case and
2430 cheaper than checking the previous frame's ID.
2431
2432 NOTE: frame_id_eq will never report two invalid frame IDs as
2433 being equal, so to get into this block, both the current and
2434 previous frame must have valid frame IDs. */
2435 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2436 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2437 {
2438 CORE_ADDR real_stop_pc;
2439
2440 if (debug_infrun)
2441 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2442
2443 if ((step_over_calls == STEP_OVER_NONE)
2444 || ((step_range_end == 1)
2445 && in_prologue (prev_pc, ecs->stop_func_start)))
2446 {
2447 /* I presume that step_over_calls is only 0 when we're
2448 supposed to be stepping at the assembly language level
2449 ("stepi"). Just stop. */
2450 /* Also, maybe we just did a "nexti" inside a prolog, so we
2451 thought it was a subroutine call but it was not. Stop as
2452 well. FENN */
2453 stop_step = 1;
2454 print_stop_reason (END_STEPPING_RANGE, 0);
2455 stop_stepping (ecs);
2456 return;
2457 }
2458
2459 if (step_over_calls == STEP_OVER_ALL)
2460 {
2461 /* We're doing a "next", set a breakpoint at callee's return
2462 address (the address at which the caller will
2463 resume). */
2464 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2465 keep_going (ecs);
2466 return;
2467 }
2468
2469 /* If we are in a function call trampoline (a stub between the
2470 calling routine and the real function), locate the real
2471 function. That's what tells us (a) whether we want to step
2472 into it at all, and (b) what prologue we want to run to the
2473 end of, if we do step into it. */
2474 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2475 if (real_stop_pc == 0)
2476 real_stop_pc = gdbarch_skip_trampoline_code
2477 (current_gdbarch, get_current_frame (), stop_pc);
2478 if (real_stop_pc != 0)
2479 ecs->stop_func_start = real_stop_pc;
2480
2481 if (
2482 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2483 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2484 #else
2485 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2486 #endif
2487 )
2488 {
2489 struct symtab_and_line sr_sal;
2490 init_sal (&sr_sal);
2491 sr_sal.pc = ecs->stop_func_start;
2492
2493 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2494 keep_going (ecs);
2495 return;
2496 }
2497
2498 /* If we have line number information for the function we are
2499 thinking of stepping into, step into it.
2500
2501 If there are several symtabs at that PC (e.g. with include
2502 files), just want to know whether *any* of them have line
2503 numbers. find_pc_line handles this. */
2504 {
2505 struct symtab_and_line tmp_sal;
2506
2507 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2508 if (tmp_sal.line != 0)
2509 {
2510 step_into_function (ecs);
2511 return;
2512 }
2513 }
2514
2515 /* If we have no line number and the step-stop-if-no-debug is
2516 set, we stop the step so that the user has a chance to switch
2517 in assembly mode. */
2518 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2519 {
2520 stop_step = 1;
2521 print_stop_reason (END_STEPPING_RANGE, 0);
2522 stop_stepping (ecs);
2523 return;
2524 }
2525
2526 /* Set a breakpoint at callee's return address (the address at
2527 which the caller will resume). */
2528 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2529 keep_going (ecs);
2530 return;
2531 }
2532
2533 /* If we're in the return path from a shared library trampoline,
2534 we want to proceed through the trampoline when stepping. */
2535 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2536 stop_pc, ecs->stop_func_name))
2537 {
2538 /* Determine where this trampoline returns. */
2539 CORE_ADDR real_stop_pc;
2540 real_stop_pc = gdbarch_skip_trampoline_code
2541 (current_gdbarch, get_current_frame (), stop_pc);
2542
2543 if (debug_infrun)
2544 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2545
2546 /* Only proceed through if we know where it's going. */
2547 if (real_stop_pc)
2548 {
2549 /* And put the step-breakpoint there and go until there. */
2550 struct symtab_and_line sr_sal;
2551
2552 init_sal (&sr_sal); /* initialize to zeroes */
2553 sr_sal.pc = real_stop_pc;
2554 sr_sal.section = find_pc_overlay (sr_sal.pc);
2555
2556 /* Do not specify what the fp should be when we stop since
2557 on some machines the prologue is where the new fp value
2558 is established. */
2559 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2560
2561 /* Restart without fiddling with the step ranges or
2562 other state. */
2563 keep_going (ecs);
2564 return;
2565 }
2566 }
2567
2568 ecs->sal = find_pc_line (stop_pc, 0);
2569
2570 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2571 the trampoline processing logic, however, there are some trampolines
2572 that have no names, so we should do trampoline handling first. */
2573 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2574 && ecs->stop_func_name == NULL
2575 && ecs->sal.line == 0)
2576 {
2577 if (debug_infrun)
2578 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2579
2580 /* The inferior just stepped into, or returned to, an
2581 undebuggable function (where there is no debugging information
2582 and no line number corresponding to the address where the
2583 inferior stopped). Since we want to skip this kind of code,
2584 we keep going until the inferior returns from this
2585 function - unless the user has asked us not to (via
2586 set step-mode) or we no longer know how to get back
2587 to the call site. */
2588 if (step_stop_if_no_debug
2589 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2590 {
2591 /* If we have no line number and the step-stop-if-no-debug
2592 is set, we stop the step so that the user has a chance to
2593 switch in assembly mode. */
2594 stop_step = 1;
2595 print_stop_reason (END_STEPPING_RANGE, 0);
2596 stop_stepping (ecs);
2597 return;
2598 }
2599 else
2600 {
2601 /* Set a breakpoint at callee's return address (the address
2602 at which the caller will resume). */
2603 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2604 keep_going (ecs);
2605 return;
2606 }
2607 }
2608
2609 if (step_range_end == 1)
2610 {
2611 /* It is stepi or nexti. We always want to stop stepping after
2612 one instruction. */
2613 if (debug_infrun)
2614 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2615 stop_step = 1;
2616 print_stop_reason (END_STEPPING_RANGE, 0);
2617 stop_stepping (ecs);
2618 return;
2619 }
2620
2621 if (ecs->sal.line == 0)
2622 {
2623 /* We have no line number information. That means to stop
2624 stepping (does this always happen right after one instruction,
2625 when we do "s" in a function with no line numbers,
2626 or can this happen as a result of a return or longjmp?). */
2627 if (debug_infrun)
2628 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2629 stop_step = 1;
2630 print_stop_reason (END_STEPPING_RANGE, 0);
2631 stop_stepping (ecs);
2632 return;
2633 }
2634
2635 if ((stop_pc == ecs->sal.pc)
2636 && (ecs->current_line != ecs->sal.line
2637 || ecs->current_symtab != ecs->sal.symtab))
2638 {
2639 /* We are at the start of a different line. So stop. Note that
2640 we don't stop if we step into the middle of a different line.
2641 That is said to make things like for (;;) statements work
2642 better. */
2643 if (debug_infrun)
2644 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2645 stop_step = 1;
2646 print_stop_reason (END_STEPPING_RANGE, 0);
2647 stop_stepping (ecs);
2648 return;
2649 }
2650
2651 /* We aren't done stepping.
2652
2653 Optimize by setting the stepping range to the line.
2654 (We might not be in the original line, but if we entered a
2655 new line in mid-statement, we continue stepping. This makes
2656 things like for(;;) statements work better.) */
2657
2658 step_range_start = ecs->sal.pc;
2659 step_range_end = ecs->sal.end;
2660 step_frame_id = get_frame_id (get_current_frame ());
2661 ecs->current_line = ecs->sal.line;
2662 ecs->current_symtab = ecs->sal.symtab;
2663
2664 /* In the case where we just stepped out of a function into the
2665 middle of a line of the caller, continue stepping, but
2666 step_frame_id must be modified to current frame */
2667 #if 0
2668 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2669 generous. It will trigger on things like a step into a frameless
2670 stackless leaf function. I think the logic should instead look
2671 at the unwound frame ID has that should give a more robust
2672 indication of what happened. */
2673 if (step - ID == current - ID)
2674 still stepping in same function;
2675 else if (step - ID == unwind (current - ID))
2676 stepped into a function;
2677 else
2678 stepped out of a function;
2679 /* Of course this assumes that the frame ID unwind code is robust
2680 and we're willing to introduce frame unwind logic into this
2681 function. Fortunately, those days are nearly upon us. */
2682 #endif
2683 {
2684 struct frame_info *frame = get_current_frame ();
2685 struct frame_id current_frame = get_frame_id (frame);
2686 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2687 step_frame_id)))
2688 step_frame_id = current_frame;
2689 }
2690
2691 if (debug_infrun)
2692 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2693 keep_going (ecs);
2694 }
2695
2696 /* Are we in the middle of stepping? */
2697
2698 static int
2699 currently_stepping (struct execution_control_state *ecs)
2700 {
2701 return ((!ecs->handling_longjmp
2702 && ((step_range_end && step_resume_breakpoint == NULL)
2703 || stepping_over_breakpoint))
2704 || ecs->stepping_through_solib_after_catch
2705 || bpstat_should_step ());
2706 }
2707
2708 /* Subroutine call with source code we should not step over. Do step
2709 to the first line of code in it. */
2710
2711 static void
2712 step_into_function (struct execution_control_state *ecs)
2713 {
2714 struct symtab *s;
2715 struct symtab_and_line sr_sal;
2716
2717 s = find_pc_symtab (stop_pc);
2718 if (s && s->language != language_asm)
2719 ecs->stop_func_start = gdbarch_skip_prologue
2720 (current_gdbarch, ecs->stop_func_start);
2721
2722 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2723 /* Use the step_resume_break to step until the end of the prologue,
2724 even if that involves jumps (as it seems to on the vax under
2725 4.2). */
2726 /* If the prologue ends in the middle of a source line, continue to
2727 the end of that source line (if it is still within the function).
2728 Otherwise, just go to end of prologue. */
2729 if (ecs->sal.end
2730 && ecs->sal.pc != ecs->stop_func_start
2731 && ecs->sal.end < ecs->stop_func_end)
2732 ecs->stop_func_start = ecs->sal.end;
2733
2734 /* Architectures which require breakpoint adjustment might not be able
2735 to place a breakpoint at the computed address. If so, the test
2736 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2737 ecs->stop_func_start to an address at which a breakpoint may be
2738 legitimately placed.
2739
2740 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2741 made, GDB will enter an infinite loop when stepping through
2742 optimized code consisting of VLIW instructions which contain
2743 subinstructions corresponding to different source lines. On
2744 FR-V, it's not permitted to place a breakpoint on any but the
2745 first subinstruction of a VLIW instruction. When a breakpoint is
2746 set, GDB will adjust the breakpoint address to the beginning of
2747 the VLIW instruction. Thus, we need to make the corresponding
2748 adjustment here when computing the stop address. */
2749
2750 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2751 {
2752 ecs->stop_func_start
2753 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2754 ecs->stop_func_start);
2755 }
2756
2757 if (ecs->stop_func_start == stop_pc)
2758 {
2759 /* We are already there: stop now. */
2760 stop_step = 1;
2761 print_stop_reason (END_STEPPING_RANGE, 0);
2762 stop_stepping (ecs);
2763 return;
2764 }
2765 else
2766 {
2767 /* Put the step-breakpoint there and go until there. */
2768 init_sal (&sr_sal); /* initialize to zeroes */
2769 sr_sal.pc = ecs->stop_func_start;
2770 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2771
2772 /* Do not specify what the fp should be when we stop since on
2773 some machines the prologue is where the new fp value is
2774 established. */
2775 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2776
2777 /* And make sure stepping stops right away then. */
2778 step_range_end = step_range_start;
2779 }
2780 keep_going (ecs);
2781 }
2782
2783 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2784 This is used to both functions and to skip over code. */
2785
2786 static void
2787 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2788 struct frame_id sr_id)
2789 {
2790 /* There should never be more than one step-resume breakpoint per
2791 thread, so we should never be setting a new
2792 step_resume_breakpoint when one is already active. */
2793 gdb_assert (step_resume_breakpoint == NULL);
2794
2795 if (debug_infrun)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "infrun: inserting step-resume breakpoint at 0x%s\n",
2798 paddr_nz (sr_sal.pc));
2799
2800 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2801 bp_step_resume);
2802 }
2803
2804 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2805 to skip a potential signal handler.
2806
2807 This is called with the interrupted function's frame. The signal
2808 handler, when it returns, will resume the interrupted function at
2809 RETURN_FRAME.pc. */
2810
2811 static void
2812 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2813 {
2814 struct symtab_and_line sr_sal;
2815
2816 gdb_assert (return_frame != NULL);
2817 init_sal (&sr_sal); /* initialize to zeros */
2818
2819 sr_sal.pc = gdbarch_addr_bits_remove
2820 (current_gdbarch, get_frame_pc (return_frame));
2821 sr_sal.section = find_pc_overlay (sr_sal.pc);
2822
2823 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2824 }
2825
2826 /* Similar to insert_step_resume_breakpoint_at_frame, except
2827 but a breakpoint at the previous frame's PC. This is used to
2828 skip a function after stepping into it (for "next" or if the called
2829 function has no debugging information).
2830
2831 The current function has almost always been reached by single
2832 stepping a call or return instruction. NEXT_FRAME belongs to the
2833 current function, and the breakpoint will be set at the caller's
2834 resume address.
2835
2836 This is a separate function rather than reusing
2837 insert_step_resume_breakpoint_at_frame in order to avoid
2838 get_prev_frame, which may stop prematurely (see the implementation
2839 of frame_unwind_id for an example). */
2840
2841 static void
2842 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2843 {
2844 struct symtab_and_line sr_sal;
2845
2846 /* We shouldn't have gotten here if we don't know where the call site
2847 is. */
2848 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2849
2850 init_sal (&sr_sal); /* initialize to zeros */
2851
2852 sr_sal.pc = gdbarch_addr_bits_remove
2853 (current_gdbarch, frame_pc_unwind (next_frame));
2854 sr_sal.section = find_pc_overlay (sr_sal.pc);
2855
2856 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2857 }
2858
2859 static void
2860 stop_stepping (struct execution_control_state *ecs)
2861 {
2862 if (debug_infrun)
2863 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2864
2865 /* Let callers know we don't want to wait for the inferior anymore. */
2866 ecs->wait_some_more = 0;
2867 }
2868
2869 /* This function handles various cases where we need to continue
2870 waiting for the inferior. */
2871 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2872
2873 static void
2874 keep_going (struct execution_control_state *ecs)
2875 {
2876 /* Save the pc before execution, to compare with pc after stop. */
2877 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2878
2879 /* If we did not do break;, it means we should keep running the
2880 inferior and not return to debugger. */
2881
2882 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2883 {
2884 /* We took a signal (which we are supposed to pass through to
2885 the inferior, else we'd have done a break above) and we
2886 haven't yet gotten our trap. Simply continue. */
2887 resume (currently_stepping (ecs), stop_signal);
2888 }
2889 else
2890 {
2891 /* Either the trap was not expected, but we are continuing
2892 anyway (the user asked that this signal be passed to the
2893 child)
2894 -- or --
2895 The signal was SIGTRAP, e.g. it was our signal, but we
2896 decided we should resume from it.
2897
2898 We're going to run this baby now!
2899
2900 Note that insert_breakpoints won't try to re-insert
2901 already inserted breakpoints. Therefore, we don't
2902 care if breakpoints were already inserted, or not. */
2903
2904 if (ecs->stepping_over_breakpoint)
2905 {
2906 remove_breakpoints ();
2907 }
2908 else
2909 {
2910 struct gdb_exception e;
2911 /* Stop stepping when inserting breakpoints
2912 has failed. */
2913 TRY_CATCH (e, RETURN_MASK_ERROR)
2914 {
2915 insert_breakpoints ();
2916 }
2917 if (e.reason < 0)
2918 {
2919 stop_stepping (ecs);
2920 return;
2921 }
2922 }
2923
2924 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2925
2926 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2927 specifies that such a signal should be delivered to the
2928 target program).
2929
2930 Typically, this would occure when a user is debugging a
2931 target monitor on a simulator: the target monitor sets a
2932 breakpoint; the simulator encounters this break-point and
2933 halts the simulation handing control to GDB; GDB, noteing
2934 that the break-point isn't valid, returns control back to the
2935 simulator; the simulator then delivers the hardware
2936 equivalent of a SIGNAL_TRAP to the program being debugged. */
2937
2938 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2939 stop_signal = TARGET_SIGNAL_0;
2940
2941
2942 resume (currently_stepping (ecs), stop_signal);
2943 }
2944
2945 prepare_to_wait (ecs);
2946 }
2947
2948 /* This function normally comes after a resume, before
2949 handle_inferior_event exits. It takes care of any last bits of
2950 housekeeping, and sets the all-important wait_some_more flag. */
2951
2952 static void
2953 prepare_to_wait (struct execution_control_state *ecs)
2954 {
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2957 if (ecs->infwait_state == infwait_normal_state)
2958 {
2959 overlay_cache_invalid = 1;
2960
2961 /* We have to invalidate the registers BEFORE calling
2962 target_wait because they can be loaded from the target while
2963 in target_wait. This makes remote debugging a bit more
2964 efficient for those targets that provide critical registers
2965 as part of their normal status mechanism. */
2966
2967 registers_changed ();
2968 ecs->waiton_ptid = pid_to_ptid (-1);
2969 ecs->wp = &(ecs->ws);
2970 }
2971 /* This is the old end of the while loop. Let everybody know we
2972 want to wait for the inferior some more and get called again
2973 soon. */
2974 ecs->wait_some_more = 1;
2975 }
2976
2977 /* Print why the inferior has stopped. We always print something when
2978 the inferior exits, or receives a signal. The rest of the cases are
2979 dealt with later on in normal_stop() and print_it_typical(). Ideally
2980 there should be a call to this function from handle_inferior_event()
2981 each time stop_stepping() is called.*/
2982 static void
2983 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2984 {
2985 switch (stop_reason)
2986 {
2987 case END_STEPPING_RANGE:
2988 /* We are done with a step/next/si/ni command. */
2989 /* For now print nothing. */
2990 /* Print a message only if not in the middle of doing a "step n"
2991 operation for n > 1 */
2992 if (!step_multi || !stop_step)
2993 if (ui_out_is_mi_like_p (uiout))
2994 ui_out_field_string
2995 (uiout, "reason",
2996 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2997 break;
2998 case SIGNAL_EXITED:
2999 /* The inferior was terminated by a signal. */
3000 annotate_signalled ();
3001 if (ui_out_is_mi_like_p (uiout))
3002 ui_out_field_string
3003 (uiout, "reason",
3004 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3005 ui_out_text (uiout, "\nProgram terminated with signal ");
3006 annotate_signal_name ();
3007 ui_out_field_string (uiout, "signal-name",
3008 target_signal_to_name (stop_info));
3009 annotate_signal_name_end ();
3010 ui_out_text (uiout, ", ");
3011 annotate_signal_string ();
3012 ui_out_field_string (uiout, "signal-meaning",
3013 target_signal_to_string (stop_info));
3014 annotate_signal_string_end ();
3015 ui_out_text (uiout, ".\n");
3016 ui_out_text (uiout, "The program no longer exists.\n");
3017 break;
3018 case EXITED:
3019 /* The inferior program is finished. */
3020 annotate_exited (stop_info);
3021 if (stop_info)
3022 {
3023 if (ui_out_is_mi_like_p (uiout))
3024 ui_out_field_string (uiout, "reason",
3025 async_reason_lookup (EXEC_ASYNC_EXITED));
3026 ui_out_text (uiout, "\nProgram exited with code ");
3027 ui_out_field_fmt (uiout, "exit-code", "0%o",
3028 (unsigned int) stop_info);
3029 ui_out_text (uiout, ".\n");
3030 }
3031 else
3032 {
3033 if (ui_out_is_mi_like_p (uiout))
3034 ui_out_field_string
3035 (uiout, "reason",
3036 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3037 ui_out_text (uiout, "\nProgram exited normally.\n");
3038 }
3039 /* Support the --return-child-result option. */
3040 return_child_result_value = stop_info;
3041 break;
3042 case SIGNAL_RECEIVED:
3043 /* Signal received. The signal table tells us to print about
3044 it. */
3045 annotate_signal ();
3046 ui_out_text (uiout, "\nProgram received signal ");
3047 annotate_signal_name ();
3048 if (ui_out_is_mi_like_p (uiout))
3049 ui_out_field_string
3050 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3051 ui_out_field_string (uiout, "signal-name",
3052 target_signal_to_name (stop_info));
3053 annotate_signal_name_end ();
3054 ui_out_text (uiout, ", ");
3055 annotate_signal_string ();
3056 ui_out_field_string (uiout, "signal-meaning",
3057 target_signal_to_string (stop_info));
3058 annotate_signal_string_end ();
3059 ui_out_text (uiout, ".\n");
3060 break;
3061 default:
3062 internal_error (__FILE__, __LINE__,
3063 _("print_stop_reason: unrecognized enum value"));
3064 break;
3065 }
3066 }
3067 \f
3068
3069 /* Here to return control to GDB when the inferior stops for real.
3070 Print appropriate messages, remove breakpoints, give terminal our modes.
3071
3072 STOP_PRINT_FRAME nonzero means print the executing frame
3073 (pc, function, args, file, line number and line text).
3074 BREAKPOINTS_FAILED nonzero means stop was due to error
3075 attempting to insert breakpoints. */
3076
3077 void
3078 normal_stop (void)
3079 {
3080 struct target_waitstatus last;
3081 ptid_t last_ptid;
3082
3083 get_last_target_status (&last_ptid, &last);
3084
3085 /* As with the notification of thread events, we want to delay
3086 notifying the user that we've switched thread context until
3087 the inferior actually stops.
3088
3089 There's no point in saying anything if the inferior has exited.
3090 Note that SIGNALLED here means "exited with a signal", not
3091 "received a signal". */
3092 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3093 && target_has_execution
3094 && last.kind != TARGET_WAITKIND_SIGNALLED
3095 && last.kind != TARGET_WAITKIND_EXITED)
3096 {
3097 target_terminal_ours_for_output ();
3098 printf_filtered (_("[Switching to %s]\n"),
3099 target_pid_to_str (inferior_ptid));
3100 previous_inferior_ptid = inferior_ptid;
3101 }
3102
3103 /* NOTE drow/2004-01-17: Is this still necessary? */
3104 /* Make sure that the current_frame's pc is correct. This
3105 is a correction for setting up the frame info before doing
3106 gdbarch_decr_pc_after_break */
3107 if (target_has_execution)
3108 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3109 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3110 frame code to check for this and sort out any resultant mess.
3111 gdbarch_decr_pc_after_break needs to just go away. */
3112 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3113
3114 if (!breakpoints_always_inserted_mode () && target_has_execution)
3115 {
3116 if (remove_breakpoints ())
3117 {
3118 target_terminal_ours_for_output ();
3119 printf_filtered (_("\
3120 Cannot remove breakpoints because program is no longer writable.\n\
3121 It might be running in another process.\n\
3122 Further execution is probably impossible.\n"));
3123 }
3124 }
3125
3126 /* If an auto-display called a function and that got a signal,
3127 delete that auto-display to avoid an infinite recursion. */
3128
3129 if (stopped_by_random_signal)
3130 disable_current_display ();
3131
3132 /* Don't print a message if in the middle of doing a "step n"
3133 operation for n > 1 */
3134 if (step_multi && stop_step)
3135 goto done;
3136
3137 target_terminal_ours ();
3138
3139 /* Set the current source location. This will also happen if we
3140 display the frame below, but the current SAL will be incorrect
3141 during a user hook-stop function. */
3142 if (target_has_stack && !stop_stack_dummy)
3143 set_current_sal_from_frame (get_current_frame (), 1);
3144
3145 /* Look up the hook_stop and run it (CLI internally handles problem
3146 of stop_command's pre-hook not existing). */
3147 if (stop_command)
3148 catch_errors (hook_stop_stub, stop_command,
3149 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3150
3151 if (!target_has_stack)
3152 {
3153
3154 goto done;
3155 }
3156
3157 /* Select innermost stack frame - i.e., current frame is frame 0,
3158 and current location is based on that.
3159 Don't do this on return from a stack dummy routine,
3160 or if the program has exited. */
3161
3162 if (!stop_stack_dummy)
3163 {
3164 select_frame (get_current_frame ());
3165
3166 /* Print current location without a level number, if
3167 we have changed functions or hit a breakpoint.
3168 Print source line if we have one.
3169 bpstat_print() contains the logic deciding in detail
3170 what to print, based on the event(s) that just occurred. */
3171
3172 if (stop_print_frame)
3173 {
3174 int bpstat_ret;
3175 int source_flag;
3176 int do_frame_printing = 1;
3177
3178 bpstat_ret = bpstat_print (stop_bpstat);
3179 switch (bpstat_ret)
3180 {
3181 case PRINT_UNKNOWN:
3182 /* If we had hit a shared library event breakpoint,
3183 bpstat_print would print out this message. If we hit
3184 an OS-level shared library event, do the same
3185 thing. */
3186 if (last.kind == TARGET_WAITKIND_LOADED)
3187 {
3188 printf_filtered (_("Stopped due to shared library event\n"));
3189 source_flag = SRC_LINE; /* something bogus */
3190 do_frame_printing = 0;
3191 break;
3192 }
3193
3194 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3195 (or should) carry around the function and does (or
3196 should) use that when doing a frame comparison. */
3197 if (stop_step
3198 && frame_id_eq (step_frame_id,
3199 get_frame_id (get_current_frame ()))
3200 && step_start_function == find_pc_function (stop_pc))
3201 source_flag = SRC_LINE; /* finished step, just print source line */
3202 else
3203 source_flag = SRC_AND_LOC; /* print location and source line */
3204 break;
3205 case PRINT_SRC_AND_LOC:
3206 source_flag = SRC_AND_LOC; /* print location and source line */
3207 break;
3208 case PRINT_SRC_ONLY:
3209 source_flag = SRC_LINE;
3210 break;
3211 case PRINT_NOTHING:
3212 source_flag = SRC_LINE; /* something bogus */
3213 do_frame_printing = 0;
3214 break;
3215 default:
3216 internal_error (__FILE__, __LINE__, _("Unknown value."));
3217 }
3218
3219 if (ui_out_is_mi_like_p (uiout))
3220 ui_out_field_int (uiout, "thread-id",
3221 pid_to_thread_id (inferior_ptid));
3222 /* The behavior of this routine with respect to the source
3223 flag is:
3224 SRC_LINE: Print only source line
3225 LOCATION: Print only location
3226 SRC_AND_LOC: Print location and source line */
3227 if (do_frame_printing)
3228 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3229
3230 /* Display the auto-display expressions. */
3231 do_displays ();
3232 }
3233 }
3234
3235 /* Save the function value return registers, if we care.
3236 We might be about to restore their previous contents. */
3237 if (proceed_to_finish)
3238 {
3239 /* This should not be necessary. */
3240 if (stop_registers)
3241 regcache_xfree (stop_registers);
3242
3243 /* NB: The copy goes through to the target picking up the value of
3244 all the registers. */
3245 stop_registers = regcache_dup (get_current_regcache ());
3246 }
3247
3248 if (stop_stack_dummy)
3249 {
3250 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3251 ends with a setting of the current frame, so we can use that
3252 next. */
3253 frame_pop (get_current_frame ());
3254 /* Set stop_pc to what it was before we called the function.
3255 Can't rely on restore_inferior_status because that only gets
3256 called if we don't stop in the called function. */
3257 stop_pc = read_pc ();
3258 select_frame (get_current_frame ());
3259 }
3260
3261 done:
3262 annotate_stopped ();
3263 observer_notify_normal_stop (stop_bpstat);
3264 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3265 Delete any breakpoint that is to be deleted at the next stop. */
3266 breakpoint_auto_delete (stop_bpstat);
3267 }
3268
3269 static int
3270 hook_stop_stub (void *cmd)
3271 {
3272 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3273 return (0);
3274 }
3275 \f
3276 int
3277 signal_stop_state (int signo)
3278 {
3279 return signal_stop[signo];
3280 }
3281
3282 int
3283 signal_print_state (int signo)
3284 {
3285 return signal_print[signo];
3286 }
3287
3288 int
3289 signal_pass_state (int signo)
3290 {
3291 return signal_program[signo];
3292 }
3293
3294 int
3295 signal_stop_update (int signo, int state)
3296 {
3297 int ret = signal_stop[signo];
3298 signal_stop[signo] = state;
3299 return ret;
3300 }
3301
3302 int
3303 signal_print_update (int signo, int state)
3304 {
3305 int ret = signal_print[signo];
3306 signal_print[signo] = state;
3307 return ret;
3308 }
3309
3310 int
3311 signal_pass_update (int signo, int state)
3312 {
3313 int ret = signal_program[signo];
3314 signal_program[signo] = state;
3315 return ret;
3316 }
3317
3318 static void
3319 sig_print_header (void)
3320 {
3321 printf_filtered (_("\
3322 Signal Stop\tPrint\tPass to program\tDescription\n"));
3323 }
3324
3325 static void
3326 sig_print_info (enum target_signal oursig)
3327 {
3328 char *name = target_signal_to_name (oursig);
3329 int name_padding = 13 - strlen (name);
3330
3331 if (name_padding <= 0)
3332 name_padding = 0;
3333
3334 printf_filtered ("%s", name);
3335 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3336 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3337 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3338 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3339 printf_filtered ("%s\n", target_signal_to_string (oursig));
3340 }
3341
3342 /* Specify how various signals in the inferior should be handled. */
3343
3344 static void
3345 handle_command (char *args, int from_tty)
3346 {
3347 char **argv;
3348 int digits, wordlen;
3349 int sigfirst, signum, siglast;
3350 enum target_signal oursig;
3351 int allsigs;
3352 int nsigs;
3353 unsigned char *sigs;
3354 struct cleanup *old_chain;
3355
3356 if (args == NULL)
3357 {
3358 error_no_arg (_("signal to handle"));
3359 }
3360
3361 /* Allocate and zero an array of flags for which signals to handle. */
3362
3363 nsigs = (int) TARGET_SIGNAL_LAST;
3364 sigs = (unsigned char *) alloca (nsigs);
3365 memset (sigs, 0, nsigs);
3366
3367 /* Break the command line up into args. */
3368
3369 argv = buildargv (args);
3370 if (argv == NULL)
3371 {
3372 nomem (0);
3373 }
3374 old_chain = make_cleanup_freeargv (argv);
3375
3376 /* Walk through the args, looking for signal oursigs, signal names, and
3377 actions. Signal numbers and signal names may be interspersed with
3378 actions, with the actions being performed for all signals cumulatively
3379 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3380
3381 while (*argv != NULL)
3382 {
3383 wordlen = strlen (*argv);
3384 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3385 {;
3386 }
3387 allsigs = 0;
3388 sigfirst = siglast = -1;
3389
3390 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3391 {
3392 /* Apply action to all signals except those used by the
3393 debugger. Silently skip those. */
3394 allsigs = 1;
3395 sigfirst = 0;
3396 siglast = nsigs - 1;
3397 }
3398 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3399 {
3400 SET_SIGS (nsigs, sigs, signal_stop);
3401 SET_SIGS (nsigs, sigs, signal_print);
3402 }
3403 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3404 {
3405 UNSET_SIGS (nsigs, sigs, signal_program);
3406 }
3407 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3408 {
3409 SET_SIGS (nsigs, sigs, signal_print);
3410 }
3411 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3412 {
3413 SET_SIGS (nsigs, sigs, signal_program);
3414 }
3415 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3416 {
3417 UNSET_SIGS (nsigs, sigs, signal_stop);
3418 }
3419 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3420 {
3421 SET_SIGS (nsigs, sigs, signal_program);
3422 }
3423 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3424 {
3425 UNSET_SIGS (nsigs, sigs, signal_print);
3426 UNSET_SIGS (nsigs, sigs, signal_stop);
3427 }
3428 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3429 {
3430 UNSET_SIGS (nsigs, sigs, signal_program);
3431 }
3432 else if (digits > 0)
3433 {
3434 /* It is numeric. The numeric signal refers to our own
3435 internal signal numbering from target.h, not to host/target
3436 signal number. This is a feature; users really should be
3437 using symbolic names anyway, and the common ones like
3438 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3439
3440 sigfirst = siglast = (int)
3441 target_signal_from_command (atoi (*argv));
3442 if ((*argv)[digits] == '-')
3443 {
3444 siglast = (int)
3445 target_signal_from_command (atoi ((*argv) + digits + 1));
3446 }
3447 if (sigfirst > siglast)
3448 {
3449 /* Bet he didn't figure we'd think of this case... */
3450 signum = sigfirst;
3451 sigfirst = siglast;
3452 siglast = signum;
3453 }
3454 }
3455 else
3456 {
3457 oursig = target_signal_from_name (*argv);
3458 if (oursig != TARGET_SIGNAL_UNKNOWN)
3459 {
3460 sigfirst = siglast = (int) oursig;
3461 }
3462 else
3463 {
3464 /* Not a number and not a recognized flag word => complain. */
3465 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3466 }
3467 }
3468
3469 /* If any signal numbers or symbol names were found, set flags for
3470 which signals to apply actions to. */
3471
3472 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3473 {
3474 switch ((enum target_signal) signum)
3475 {
3476 case TARGET_SIGNAL_TRAP:
3477 case TARGET_SIGNAL_INT:
3478 if (!allsigs && !sigs[signum])
3479 {
3480 if (query ("%s is used by the debugger.\n\
3481 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3482 {
3483 sigs[signum] = 1;
3484 }
3485 else
3486 {
3487 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3488 gdb_flush (gdb_stdout);
3489 }
3490 }
3491 break;
3492 case TARGET_SIGNAL_0:
3493 case TARGET_SIGNAL_DEFAULT:
3494 case TARGET_SIGNAL_UNKNOWN:
3495 /* Make sure that "all" doesn't print these. */
3496 break;
3497 default:
3498 sigs[signum] = 1;
3499 break;
3500 }
3501 }
3502
3503 argv++;
3504 }
3505
3506 target_notice_signals (inferior_ptid);
3507
3508 if (from_tty)
3509 {
3510 /* Show the results. */
3511 sig_print_header ();
3512 for (signum = 0; signum < nsigs; signum++)
3513 {
3514 if (sigs[signum])
3515 {
3516 sig_print_info (signum);
3517 }
3518 }
3519 }
3520
3521 do_cleanups (old_chain);
3522 }
3523
3524 static void
3525 xdb_handle_command (char *args, int from_tty)
3526 {
3527 char **argv;
3528 struct cleanup *old_chain;
3529
3530 /* Break the command line up into args. */
3531
3532 argv = buildargv (args);
3533 if (argv == NULL)
3534 {
3535 nomem (0);
3536 }
3537 old_chain = make_cleanup_freeargv (argv);
3538 if (argv[1] != (char *) NULL)
3539 {
3540 char *argBuf;
3541 int bufLen;
3542
3543 bufLen = strlen (argv[0]) + 20;
3544 argBuf = (char *) xmalloc (bufLen);
3545 if (argBuf)
3546 {
3547 int validFlag = 1;
3548 enum target_signal oursig;
3549
3550 oursig = target_signal_from_name (argv[0]);
3551 memset (argBuf, 0, bufLen);
3552 if (strcmp (argv[1], "Q") == 0)
3553 sprintf (argBuf, "%s %s", argv[0], "noprint");
3554 else
3555 {
3556 if (strcmp (argv[1], "s") == 0)
3557 {
3558 if (!signal_stop[oursig])
3559 sprintf (argBuf, "%s %s", argv[0], "stop");
3560 else
3561 sprintf (argBuf, "%s %s", argv[0], "nostop");
3562 }
3563 else if (strcmp (argv[1], "i") == 0)
3564 {
3565 if (!signal_program[oursig])
3566 sprintf (argBuf, "%s %s", argv[0], "pass");
3567 else
3568 sprintf (argBuf, "%s %s", argv[0], "nopass");
3569 }
3570 else if (strcmp (argv[1], "r") == 0)
3571 {
3572 if (!signal_print[oursig])
3573 sprintf (argBuf, "%s %s", argv[0], "print");
3574 else
3575 sprintf (argBuf, "%s %s", argv[0], "noprint");
3576 }
3577 else
3578 validFlag = 0;
3579 }
3580 if (validFlag)
3581 handle_command (argBuf, from_tty);
3582 else
3583 printf_filtered (_("Invalid signal handling flag.\n"));
3584 if (argBuf)
3585 xfree (argBuf);
3586 }
3587 }
3588 do_cleanups (old_chain);
3589 }
3590
3591 /* Print current contents of the tables set by the handle command.
3592 It is possible we should just be printing signals actually used
3593 by the current target (but for things to work right when switching
3594 targets, all signals should be in the signal tables). */
3595
3596 static void
3597 signals_info (char *signum_exp, int from_tty)
3598 {
3599 enum target_signal oursig;
3600 sig_print_header ();
3601
3602 if (signum_exp)
3603 {
3604 /* First see if this is a symbol name. */
3605 oursig = target_signal_from_name (signum_exp);
3606 if (oursig == TARGET_SIGNAL_UNKNOWN)
3607 {
3608 /* No, try numeric. */
3609 oursig =
3610 target_signal_from_command (parse_and_eval_long (signum_exp));
3611 }
3612 sig_print_info (oursig);
3613 return;
3614 }
3615
3616 printf_filtered ("\n");
3617 /* These ugly casts brought to you by the native VAX compiler. */
3618 for (oursig = TARGET_SIGNAL_FIRST;
3619 (int) oursig < (int) TARGET_SIGNAL_LAST;
3620 oursig = (enum target_signal) ((int) oursig + 1))
3621 {
3622 QUIT;
3623
3624 if (oursig != TARGET_SIGNAL_UNKNOWN
3625 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3626 sig_print_info (oursig);
3627 }
3628
3629 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3630 }
3631 \f
3632 struct inferior_status
3633 {
3634 enum target_signal stop_signal;
3635 CORE_ADDR stop_pc;
3636 bpstat stop_bpstat;
3637 int stop_step;
3638 int stop_stack_dummy;
3639 int stopped_by_random_signal;
3640 int stepping_over_breakpoint;
3641 CORE_ADDR step_range_start;
3642 CORE_ADDR step_range_end;
3643 struct frame_id step_frame_id;
3644 enum step_over_calls_kind step_over_calls;
3645 CORE_ADDR step_resume_break_address;
3646 int stop_after_trap;
3647 int stop_soon;
3648
3649 /* These are here because if call_function_by_hand has written some
3650 registers and then decides to call error(), we better not have changed
3651 any registers. */
3652 struct regcache *registers;
3653
3654 /* A frame unique identifier. */
3655 struct frame_id selected_frame_id;
3656
3657 int breakpoint_proceeded;
3658 int restore_stack_info;
3659 int proceed_to_finish;
3660 };
3661
3662 void
3663 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3664 LONGEST val)
3665 {
3666 int size = register_size (current_gdbarch, regno);
3667 void *buf = alloca (size);
3668 store_signed_integer (buf, size, val);
3669 regcache_raw_write (inf_status->registers, regno, buf);
3670 }
3671
3672 /* Save all of the information associated with the inferior<==>gdb
3673 connection. INF_STATUS is a pointer to a "struct inferior_status"
3674 (defined in inferior.h). */
3675
3676 struct inferior_status *
3677 save_inferior_status (int restore_stack_info)
3678 {
3679 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3680
3681 inf_status->stop_signal = stop_signal;
3682 inf_status->stop_pc = stop_pc;
3683 inf_status->stop_step = stop_step;
3684 inf_status->stop_stack_dummy = stop_stack_dummy;
3685 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3686 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3687 inf_status->step_range_start = step_range_start;
3688 inf_status->step_range_end = step_range_end;
3689 inf_status->step_frame_id = step_frame_id;
3690 inf_status->step_over_calls = step_over_calls;
3691 inf_status->stop_after_trap = stop_after_trap;
3692 inf_status->stop_soon = stop_soon;
3693 /* Save original bpstat chain here; replace it with copy of chain.
3694 If caller's caller is walking the chain, they'll be happier if we
3695 hand them back the original chain when restore_inferior_status is
3696 called. */
3697 inf_status->stop_bpstat = stop_bpstat;
3698 stop_bpstat = bpstat_copy (stop_bpstat);
3699 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3700 inf_status->restore_stack_info = restore_stack_info;
3701 inf_status->proceed_to_finish = proceed_to_finish;
3702
3703 inf_status->registers = regcache_dup (get_current_regcache ());
3704
3705 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3706 return inf_status;
3707 }
3708
3709 static int
3710 restore_selected_frame (void *args)
3711 {
3712 struct frame_id *fid = (struct frame_id *) args;
3713 struct frame_info *frame;
3714
3715 frame = frame_find_by_id (*fid);
3716
3717 /* If inf_status->selected_frame_id is NULL, there was no previously
3718 selected frame. */
3719 if (frame == NULL)
3720 {
3721 warning (_("Unable to restore previously selected frame."));
3722 return 0;
3723 }
3724
3725 select_frame (frame);
3726
3727 return (1);
3728 }
3729
3730 void
3731 restore_inferior_status (struct inferior_status *inf_status)
3732 {
3733 stop_signal = inf_status->stop_signal;
3734 stop_pc = inf_status->stop_pc;
3735 stop_step = inf_status->stop_step;
3736 stop_stack_dummy = inf_status->stop_stack_dummy;
3737 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3738 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3739 step_range_start = inf_status->step_range_start;
3740 step_range_end = inf_status->step_range_end;
3741 step_frame_id = inf_status->step_frame_id;
3742 step_over_calls = inf_status->step_over_calls;
3743 stop_after_trap = inf_status->stop_after_trap;
3744 stop_soon = inf_status->stop_soon;
3745 bpstat_clear (&stop_bpstat);
3746 stop_bpstat = inf_status->stop_bpstat;
3747 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3748 proceed_to_finish = inf_status->proceed_to_finish;
3749
3750 /* The inferior can be gone if the user types "print exit(0)"
3751 (and perhaps other times). */
3752 if (target_has_execution)
3753 /* NB: The register write goes through to the target. */
3754 regcache_cpy (get_current_regcache (), inf_status->registers);
3755 regcache_xfree (inf_status->registers);
3756
3757 /* FIXME: If we are being called after stopping in a function which
3758 is called from gdb, we should not be trying to restore the
3759 selected frame; it just prints a spurious error message (The
3760 message is useful, however, in detecting bugs in gdb (like if gdb
3761 clobbers the stack)). In fact, should we be restoring the
3762 inferior status at all in that case? . */
3763
3764 if (target_has_stack && inf_status->restore_stack_info)
3765 {
3766 /* The point of catch_errors is that if the stack is clobbered,
3767 walking the stack might encounter a garbage pointer and
3768 error() trying to dereference it. */
3769 if (catch_errors
3770 (restore_selected_frame, &inf_status->selected_frame_id,
3771 "Unable to restore previously selected frame:\n",
3772 RETURN_MASK_ERROR) == 0)
3773 /* Error in restoring the selected frame. Select the innermost
3774 frame. */
3775 select_frame (get_current_frame ());
3776
3777 }
3778
3779 xfree (inf_status);
3780 }
3781
3782 static void
3783 do_restore_inferior_status_cleanup (void *sts)
3784 {
3785 restore_inferior_status (sts);
3786 }
3787
3788 struct cleanup *
3789 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3790 {
3791 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3792 }
3793
3794 void
3795 discard_inferior_status (struct inferior_status *inf_status)
3796 {
3797 /* See save_inferior_status for info on stop_bpstat. */
3798 bpstat_clear (&inf_status->stop_bpstat);
3799 regcache_xfree (inf_status->registers);
3800 xfree (inf_status);
3801 }
3802
3803 int
3804 inferior_has_forked (int pid, int *child_pid)
3805 {
3806 struct target_waitstatus last;
3807 ptid_t last_ptid;
3808
3809 get_last_target_status (&last_ptid, &last);
3810
3811 if (last.kind != TARGET_WAITKIND_FORKED)
3812 return 0;
3813
3814 if (ptid_get_pid (last_ptid) != pid)
3815 return 0;
3816
3817 *child_pid = last.value.related_pid;
3818 return 1;
3819 }
3820
3821 int
3822 inferior_has_vforked (int pid, int *child_pid)
3823 {
3824 struct target_waitstatus last;
3825 ptid_t last_ptid;
3826
3827 get_last_target_status (&last_ptid, &last);
3828
3829 if (last.kind != TARGET_WAITKIND_VFORKED)
3830 return 0;
3831
3832 if (ptid_get_pid (last_ptid) != pid)
3833 return 0;
3834
3835 *child_pid = last.value.related_pid;
3836 return 1;
3837 }
3838
3839 int
3840 inferior_has_execd (int pid, char **execd_pathname)
3841 {
3842 struct target_waitstatus last;
3843 ptid_t last_ptid;
3844
3845 get_last_target_status (&last_ptid, &last);
3846
3847 if (last.kind != TARGET_WAITKIND_EXECD)
3848 return 0;
3849
3850 if (ptid_get_pid (last_ptid) != pid)
3851 return 0;
3852
3853 *execd_pathname = xstrdup (last.value.execd_pathname);
3854 return 1;
3855 }
3856
3857 /* Oft used ptids */
3858 ptid_t null_ptid;
3859 ptid_t minus_one_ptid;
3860
3861 /* Create a ptid given the necessary PID, LWP, and TID components. */
3862
3863 ptid_t
3864 ptid_build (int pid, long lwp, long tid)
3865 {
3866 ptid_t ptid;
3867
3868 ptid.pid = pid;
3869 ptid.lwp = lwp;
3870 ptid.tid = tid;
3871 return ptid;
3872 }
3873
3874 /* Create a ptid from just a pid. */
3875
3876 ptid_t
3877 pid_to_ptid (int pid)
3878 {
3879 return ptid_build (pid, 0, 0);
3880 }
3881
3882 /* Fetch the pid (process id) component from a ptid. */
3883
3884 int
3885 ptid_get_pid (ptid_t ptid)
3886 {
3887 return ptid.pid;
3888 }
3889
3890 /* Fetch the lwp (lightweight process) component from a ptid. */
3891
3892 long
3893 ptid_get_lwp (ptid_t ptid)
3894 {
3895 return ptid.lwp;
3896 }
3897
3898 /* Fetch the tid (thread id) component from a ptid. */
3899
3900 long
3901 ptid_get_tid (ptid_t ptid)
3902 {
3903 return ptid.tid;
3904 }
3905
3906 /* ptid_equal() is used to test equality of two ptids. */
3907
3908 int
3909 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3910 {
3911 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3912 && ptid1.tid == ptid2.tid);
3913 }
3914
3915 /* restore_inferior_ptid() will be used by the cleanup machinery
3916 to restore the inferior_ptid value saved in a call to
3917 save_inferior_ptid(). */
3918
3919 static void
3920 restore_inferior_ptid (void *arg)
3921 {
3922 ptid_t *saved_ptid_ptr = arg;
3923 inferior_ptid = *saved_ptid_ptr;
3924 xfree (arg);
3925 }
3926
3927 /* Save the value of inferior_ptid so that it may be restored by a
3928 later call to do_cleanups(). Returns the struct cleanup pointer
3929 needed for later doing the cleanup. */
3930
3931 struct cleanup *
3932 save_inferior_ptid (void)
3933 {
3934 ptid_t *saved_ptid_ptr;
3935
3936 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3937 *saved_ptid_ptr = inferior_ptid;
3938 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3939 }
3940 \f
3941
3942 void
3943 _initialize_infrun (void)
3944 {
3945 int i;
3946 int numsigs;
3947 struct cmd_list_element *c;
3948
3949 add_info ("signals", signals_info, _("\
3950 What debugger does when program gets various signals.\n\
3951 Specify a signal as argument to print info on that signal only."));
3952 add_info_alias ("handle", "signals", 0);
3953
3954 add_com ("handle", class_run, handle_command, _("\
3955 Specify how to handle a signal.\n\
3956 Args are signals and actions to apply to those signals.\n\
3957 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3958 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3959 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3960 The special arg \"all\" is recognized to mean all signals except those\n\
3961 used by the debugger, typically SIGTRAP and SIGINT.\n\
3962 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3963 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3964 Stop means reenter debugger if this signal happens (implies print).\n\
3965 Print means print a message if this signal happens.\n\
3966 Pass means let program see this signal; otherwise program doesn't know.\n\
3967 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3968 Pass and Stop may be combined."));
3969 if (xdb_commands)
3970 {
3971 add_com ("lz", class_info, signals_info, _("\
3972 What debugger does when program gets various signals.\n\
3973 Specify a signal as argument to print info on that signal only."));
3974 add_com ("z", class_run, xdb_handle_command, _("\
3975 Specify how to handle a signal.\n\
3976 Args are signals and actions to apply to those signals.\n\
3977 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3978 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3979 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3980 The special arg \"all\" is recognized to mean all signals except those\n\
3981 used by the debugger, typically SIGTRAP and SIGINT.\n\
3982 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3983 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3984 nopass), \"Q\" (noprint)\n\
3985 Stop means reenter debugger if this signal happens (implies print).\n\
3986 Print means print a message if this signal happens.\n\
3987 Pass means let program see this signal; otherwise program doesn't know.\n\
3988 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3989 Pass and Stop may be combined."));
3990 }
3991
3992 if (!dbx_commands)
3993 stop_command = add_cmd ("stop", class_obscure,
3994 not_just_help_class_command, _("\
3995 There is no `stop' command, but you can set a hook on `stop'.\n\
3996 This allows you to set a list of commands to be run each time execution\n\
3997 of the program stops."), &cmdlist);
3998
3999 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4000 Set inferior debugging."), _("\
4001 Show inferior debugging."), _("\
4002 When non-zero, inferior specific debugging is enabled."),
4003 NULL,
4004 show_debug_infrun,
4005 &setdebuglist, &showdebuglist);
4006
4007 numsigs = (int) TARGET_SIGNAL_LAST;
4008 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4009 signal_print = (unsigned char *)
4010 xmalloc (sizeof (signal_print[0]) * numsigs);
4011 signal_program = (unsigned char *)
4012 xmalloc (sizeof (signal_program[0]) * numsigs);
4013 for (i = 0; i < numsigs; i++)
4014 {
4015 signal_stop[i] = 1;
4016 signal_print[i] = 1;
4017 signal_program[i] = 1;
4018 }
4019
4020 /* Signals caused by debugger's own actions
4021 should not be given to the program afterwards. */
4022 signal_program[TARGET_SIGNAL_TRAP] = 0;
4023 signal_program[TARGET_SIGNAL_INT] = 0;
4024
4025 /* Signals that are not errors should not normally enter the debugger. */
4026 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4027 signal_print[TARGET_SIGNAL_ALRM] = 0;
4028 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4029 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4030 signal_stop[TARGET_SIGNAL_PROF] = 0;
4031 signal_print[TARGET_SIGNAL_PROF] = 0;
4032 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4033 signal_print[TARGET_SIGNAL_CHLD] = 0;
4034 signal_stop[TARGET_SIGNAL_IO] = 0;
4035 signal_print[TARGET_SIGNAL_IO] = 0;
4036 signal_stop[TARGET_SIGNAL_POLL] = 0;
4037 signal_print[TARGET_SIGNAL_POLL] = 0;
4038 signal_stop[TARGET_SIGNAL_URG] = 0;
4039 signal_print[TARGET_SIGNAL_URG] = 0;
4040 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4041 signal_print[TARGET_SIGNAL_WINCH] = 0;
4042
4043 /* These signals are used internally by user-level thread
4044 implementations. (See signal(5) on Solaris.) Like the above
4045 signals, a healthy program receives and handles them as part of
4046 its normal operation. */
4047 signal_stop[TARGET_SIGNAL_LWP] = 0;
4048 signal_print[TARGET_SIGNAL_LWP] = 0;
4049 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4050 signal_print[TARGET_SIGNAL_WAITING] = 0;
4051 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4052 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4053
4054 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4055 &stop_on_solib_events, _("\
4056 Set stopping for shared library events."), _("\
4057 Show stopping for shared library events."), _("\
4058 If nonzero, gdb will give control to the user when the dynamic linker\n\
4059 notifies gdb of shared library events. The most common event of interest\n\
4060 to the user would be loading/unloading of a new library."),
4061 NULL,
4062 show_stop_on_solib_events,
4063 &setlist, &showlist);
4064
4065 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4066 follow_fork_mode_kind_names,
4067 &follow_fork_mode_string, _("\
4068 Set debugger response to a program call of fork or vfork."), _("\
4069 Show debugger response to a program call of fork or vfork."), _("\
4070 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4071 parent - the original process is debugged after a fork\n\
4072 child - the new process is debugged after a fork\n\
4073 The unfollowed process will continue to run.\n\
4074 By default, the debugger will follow the parent process."),
4075 NULL,
4076 show_follow_fork_mode_string,
4077 &setlist, &showlist);
4078
4079 add_setshow_enum_cmd ("scheduler-locking", class_run,
4080 scheduler_enums, &scheduler_mode, _("\
4081 Set mode for locking scheduler during execution."), _("\
4082 Show mode for locking scheduler during execution."), _("\
4083 off == no locking (threads may preempt at any time)\n\
4084 on == full locking (no thread except the current thread may run)\n\
4085 step == scheduler locked during every single-step operation.\n\
4086 In this mode, no other thread may run during a step command.\n\
4087 Other threads may run while stepping over a function call ('next')."),
4088 set_schedlock_func, /* traps on target vector */
4089 show_scheduler_mode,
4090 &setlist, &showlist);
4091
4092 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4093 Set mode of the step operation."), _("\
4094 Show mode of the step operation."), _("\
4095 When set, doing a step over a function without debug line information\n\
4096 will stop at the first instruction of that function. Otherwise, the\n\
4097 function is skipped and the step command stops at a different source line."),
4098 NULL,
4099 show_step_stop_if_no_debug,
4100 &setlist, &showlist);
4101
4102 /* ptid initializations */
4103 null_ptid = ptid_build (0, 0, 0);
4104 minus_one_ptid = ptid_build (-1, 0, 0);
4105 inferior_ptid = null_ptid;
4106 target_last_wait_ptid = minus_one_ptid;
4107 }
This page took 0.116359 seconds and 4 git commands to generate.