PR gdb/15911: "info threads" changes the default source and line (for "break", "list")
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%d), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, sig, tp->control.trap_expected,
1755 target_pid_to_str (inferior_ptid),
1756 paddress (gdbarch, pc));
1757
1758 /* Normally, by the time we reach `resume', the breakpoints are either
1759 removed or inserted, as appropriate. The exception is if we're sitting
1760 at a permanent breakpoint; we need to step over it, but permanent
1761 breakpoints can't be removed. So we have to test for it here. */
1762 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1763 {
1764 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1765 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1766 else
1767 error (_("\
1768 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1769 how to step past a permanent breakpoint on this architecture. Try using\n\
1770 a command like `return' or `jump' to continue execution."));
1771 }
1772
1773 /* If we have a breakpoint to step over, make sure to do a single
1774 step only. Same if we have software watchpoints. */
1775 if (tp->control.trap_expected || bpstat_should_step ())
1776 tp->control.may_range_step = 0;
1777
1778 /* If enabled, step over breakpoints by executing a copy of the
1779 instruction at a different address.
1780
1781 We can't use displaced stepping when we have a signal to deliver;
1782 the comments for displaced_step_prepare explain why. The
1783 comments in the handle_inferior event for dealing with 'random
1784 signals' explain what we do instead.
1785
1786 We can't use displaced stepping when we are waiting for vfork_done
1787 event, displaced stepping breaks the vfork child similarly as single
1788 step software breakpoint. */
1789 if (use_displaced_stepping (gdbarch)
1790 && (tp->control.trap_expected
1791 || (step && gdbarch_software_single_step_p (gdbarch)))
1792 && sig == GDB_SIGNAL_0
1793 && !current_inferior ()->waiting_for_vfork_done)
1794 {
1795 struct displaced_step_inferior_state *displaced;
1796
1797 if (!displaced_step_prepare (inferior_ptid))
1798 {
1799 /* Got placed in displaced stepping queue. Will be resumed
1800 later when all the currently queued displaced stepping
1801 requests finish. The thread is not executing at this point,
1802 and the call to set_executing will be made later. But we
1803 need to call set_running here, since from frontend point of view,
1804 the thread is running. */
1805 set_running (inferior_ptid, 1);
1806 discard_cleanups (old_cleanups);
1807 return;
1808 }
1809
1810 /* Update pc to reflect the new address from which we will execute
1811 instructions due to displaced stepping. */
1812 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1813
1814 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1815 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1816 displaced->step_closure);
1817 }
1818
1819 /* Do we need to do it the hard way, w/temp breakpoints? */
1820 else if (step)
1821 step = maybe_software_singlestep (gdbarch, pc);
1822
1823 /* Currently, our software single-step implementation leads to different
1824 results than hardware single-stepping in one situation: when stepping
1825 into delivering a signal which has an associated signal handler,
1826 hardware single-step will stop at the first instruction of the handler,
1827 while software single-step will simply skip execution of the handler.
1828
1829 For now, this difference in behavior is accepted since there is no
1830 easy way to actually implement single-stepping into a signal handler
1831 without kernel support.
1832
1833 However, there is one scenario where this difference leads to follow-on
1834 problems: if we're stepping off a breakpoint by removing all breakpoints
1835 and then single-stepping. In this case, the software single-step
1836 behavior means that even if there is a *breakpoint* in the signal
1837 handler, GDB still would not stop.
1838
1839 Fortunately, we can at least fix this particular issue. We detect
1840 here the case where we are about to deliver a signal while software
1841 single-stepping with breakpoints removed. In this situation, we
1842 revert the decisions to remove all breakpoints and insert single-
1843 step breakpoints, and instead we install a step-resume breakpoint
1844 at the current address, deliver the signal without stepping, and
1845 once we arrive back at the step-resume breakpoint, actually step
1846 over the breakpoint we originally wanted to step over. */
1847 if (singlestep_breakpoints_inserted_p
1848 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1849 {
1850 /* If we have nested signals or a pending signal is delivered
1851 immediately after a handler returns, might might already have
1852 a step-resume breakpoint set on the earlier handler. We cannot
1853 set another step-resume breakpoint; just continue on until the
1854 original breakpoint is hit. */
1855 if (tp->control.step_resume_breakpoint == NULL)
1856 {
1857 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1858 tp->step_after_step_resume_breakpoint = 1;
1859 }
1860
1861 remove_single_step_breakpoints ();
1862 singlestep_breakpoints_inserted_p = 0;
1863
1864 insert_breakpoints ();
1865 tp->control.trap_expected = 0;
1866 }
1867
1868 if (should_resume)
1869 {
1870 ptid_t resume_ptid;
1871
1872 /* If STEP is set, it's a request to use hardware stepping
1873 facilities. But in that case, we should never
1874 use singlestep breakpoint. */
1875 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1876
1877 /* Decide the set of threads to ask the target to resume. Start
1878 by assuming everything will be resumed, than narrow the set
1879 by applying increasingly restricting conditions. */
1880 resume_ptid = user_visible_resume_ptid (step);
1881
1882 /* Maybe resume a single thread after all. */
1883 if (singlestep_breakpoints_inserted_p
1884 && stepping_past_singlestep_breakpoint)
1885 {
1886 /* The situation here is as follows. In thread T1 we wanted to
1887 single-step. Lacking hardware single-stepping we've
1888 set breakpoint at the PC of the next instruction -- call it
1889 P. After resuming, we've hit that breakpoint in thread T2.
1890 Now we've removed original breakpoint, inserted breakpoint
1891 at P+1, and try to step to advance T2 past breakpoint.
1892 We need to step only T2, as if T1 is allowed to freely run,
1893 it can run past P, and if other threads are allowed to run,
1894 they can hit breakpoint at P+1, and nested hits of single-step
1895 breakpoints is not something we'd want -- that's complicated
1896 to support, and has no value. */
1897 resume_ptid = inferior_ptid;
1898 }
1899 else if ((step || singlestep_breakpoints_inserted_p)
1900 && tp->control.trap_expected)
1901 {
1902 /* We're allowing a thread to run past a breakpoint it has
1903 hit, by single-stepping the thread with the breakpoint
1904 removed. In which case, we need to single-step only this
1905 thread, and keep others stopped, as they can miss this
1906 breakpoint if allowed to run.
1907
1908 The current code actually removes all breakpoints when
1909 doing this, not just the one being stepped over, so if we
1910 let other threads run, we can actually miss any
1911 breakpoint, not just the one at PC. */
1912 resume_ptid = inferior_ptid;
1913 }
1914
1915 if (gdbarch_cannot_step_breakpoint (gdbarch))
1916 {
1917 /* Most targets can step a breakpoint instruction, thus
1918 executing it normally. But if this one cannot, just
1919 continue and we will hit it anyway. */
1920 if (step && breakpoint_inserted_here_p (aspace, pc))
1921 step = 0;
1922 }
1923
1924 if (debug_displaced
1925 && use_displaced_stepping (gdbarch)
1926 && tp->control.trap_expected)
1927 {
1928 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1929 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1930 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1931 gdb_byte buf[4];
1932
1933 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1934 paddress (resume_gdbarch, actual_pc));
1935 read_memory (actual_pc, buf, sizeof (buf));
1936 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1937 }
1938
1939 if (tp->control.may_range_step)
1940 {
1941 /* If we're resuming a thread with the PC out of the step
1942 range, then we're doing some nested/finer run control
1943 operation, like stepping the thread out of the dynamic
1944 linker or the displaced stepping scratch pad. We
1945 shouldn't have allowed a range step then. */
1946 gdb_assert (pc_in_thread_step_range (pc, tp));
1947 }
1948
1949 /* Install inferior's terminal modes. */
1950 target_terminal_inferior ();
1951
1952 /* Avoid confusing the next resume, if the next stop/resume
1953 happens to apply to another thread. */
1954 tp->suspend.stop_signal = GDB_SIGNAL_0;
1955
1956 /* Advise target which signals may be handled silently. If we have
1957 removed breakpoints because we are stepping over one (which can
1958 happen only if we are not using displaced stepping), we need to
1959 receive all signals to avoid accidentally skipping a breakpoint
1960 during execution of a signal handler. */
1961 if ((step || singlestep_breakpoints_inserted_p)
1962 && tp->control.trap_expected
1963 && !use_displaced_stepping (gdbarch))
1964 target_pass_signals (0, NULL);
1965 else
1966 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1967
1968 target_resume (resume_ptid, step, sig);
1969 }
1970
1971 discard_cleanups (old_cleanups);
1972 }
1973 \f
1974 /* Proceeding. */
1975
1976 /* Clear out all variables saying what to do when inferior is continued.
1977 First do this, then set the ones you want, then call `proceed'. */
1978
1979 static void
1980 clear_proceed_status_thread (struct thread_info *tp)
1981 {
1982 if (debug_infrun)
1983 fprintf_unfiltered (gdb_stdlog,
1984 "infrun: clear_proceed_status_thread (%s)\n",
1985 target_pid_to_str (tp->ptid));
1986
1987 tp->control.trap_expected = 0;
1988 tp->control.step_range_start = 0;
1989 tp->control.step_range_end = 0;
1990 tp->control.may_range_step = 0;
1991 tp->control.step_frame_id = null_frame_id;
1992 tp->control.step_stack_frame_id = null_frame_id;
1993 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1994 tp->stop_requested = 0;
1995
1996 tp->control.stop_step = 0;
1997
1998 tp->control.proceed_to_finish = 0;
1999
2000 /* Discard any remaining commands or status from previous stop. */
2001 bpstat_clear (&tp->control.stop_bpstat);
2002 }
2003
2004 static int
2005 clear_proceed_status_callback (struct thread_info *tp, void *data)
2006 {
2007 if (is_exited (tp->ptid))
2008 return 0;
2009
2010 clear_proceed_status_thread (tp);
2011 return 0;
2012 }
2013
2014 void
2015 clear_proceed_status (void)
2016 {
2017 if (!non_stop)
2018 {
2019 /* In all-stop mode, delete the per-thread status of all
2020 threads, even if inferior_ptid is null_ptid, there may be
2021 threads on the list. E.g., we may be launching a new
2022 process, while selecting the executable. */
2023 iterate_over_threads (clear_proceed_status_callback, NULL);
2024 }
2025
2026 if (!ptid_equal (inferior_ptid, null_ptid))
2027 {
2028 struct inferior *inferior;
2029
2030 if (non_stop)
2031 {
2032 /* If in non-stop mode, only delete the per-thread status of
2033 the current thread. */
2034 clear_proceed_status_thread (inferior_thread ());
2035 }
2036
2037 inferior = current_inferior ();
2038 inferior->control.stop_soon = NO_STOP_QUIETLY;
2039 }
2040
2041 stop_after_trap = 0;
2042
2043 observer_notify_about_to_proceed ();
2044
2045 if (stop_registers)
2046 {
2047 regcache_xfree (stop_registers);
2048 stop_registers = NULL;
2049 }
2050 }
2051
2052 /* Check the current thread against the thread that reported the most recent
2053 event. If a step-over is required return TRUE and set the current thread
2054 to the old thread. Otherwise return FALSE.
2055
2056 This should be suitable for any targets that support threads. */
2057
2058 static int
2059 prepare_to_proceed (int step)
2060 {
2061 ptid_t wait_ptid;
2062 struct target_waitstatus wait_status;
2063 int schedlock_enabled;
2064
2065 /* With non-stop mode on, threads are always handled individually. */
2066 gdb_assert (! non_stop);
2067
2068 /* Get the last target status returned by target_wait(). */
2069 get_last_target_status (&wait_ptid, &wait_status);
2070
2071 /* Make sure we were stopped at a breakpoint. */
2072 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2073 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2074 && wait_status.value.sig != GDB_SIGNAL_ILL
2075 && wait_status.value.sig != GDB_SIGNAL_SEGV
2076 && wait_status.value.sig != GDB_SIGNAL_EMT))
2077 {
2078 return 0;
2079 }
2080
2081 schedlock_enabled = (scheduler_mode == schedlock_on
2082 || (scheduler_mode == schedlock_step
2083 && step));
2084
2085 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2086 if (schedlock_enabled)
2087 return 0;
2088
2089 /* Don't switch over if we're about to resume some other process
2090 other than WAIT_PTID's, and schedule-multiple is off. */
2091 if (!sched_multi
2092 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2093 return 0;
2094
2095 /* Switched over from WAIT_PID. */
2096 if (!ptid_equal (wait_ptid, minus_one_ptid)
2097 && !ptid_equal (inferior_ptid, wait_ptid))
2098 {
2099 struct regcache *regcache = get_thread_regcache (wait_ptid);
2100
2101 if (breakpoint_here_p (get_regcache_aspace (regcache),
2102 regcache_read_pc (regcache)))
2103 {
2104 /* If stepping, remember current thread to switch back to. */
2105 if (step)
2106 deferred_step_ptid = inferior_ptid;
2107
2108 /* Switch back to WAIT_PID thread. */
2109 switch_to_thread (wait_ptid);
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: prepare_to_proceed (step=%d), "
2114 "switched to [%s]\n",
2115 step, target_pid_to_str (inferior_ptid));
2116
2117 /* We return 1 to indicate that there is a breakpoint here,
2118 so we need to step over it before continuing to avoid
2119 hitting it straight away. */
2120 return 1;
2121 }
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* Basic routine for continuing the program in various fashions.
2128
2129 ADDR is the address to resume at, or -1 for resume where stopped.
2130 SIGGNAL is the signal to give it, or 0 for none,
2131 or -1 for act according to how it stopped.
2132 STEP is nonzero if should trap after one instruction.
2133 -1 means return after that and print nothing.
2134 You should probably set various step_... variables
2135 before calling here, if you are stepping.
2136
2137 You should call clear_proceed_status before calling proceed. */
2138
2139 void
2140 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2141 {
2142 struct regcache *regcache;
2143 struct gdbarch *gdbarch;
2144 struct thread_info *tp;
2145 CORE_ADDR pc;
2146 struct address_space *aspace;
2147 /* GDB may force the inferior to step due to various reasons. */
2148 int force_step = 0;
2149
2150 /* If we're stopped at a fork/vfork, follow the branch set by the
2151 "set follow-fork-mode" command; otherwise, we'll just proceed
2152 resuming the current thread. */
2153 if (!follow_fork ())
2154 {
2155 /* The target for some reason decided not to resume. */
2156 normal_stop ();
2157 if (target_can_async_p ())
2158 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2159 return;
2160 }
2161
2162 /* We'll update this if & when we switch to a new thread. */
2163 previous_inferior_ptid = inferior_ptid;
2164
2165 regcache = get_current_regcache ();
2166 gdbarch = get_regcache_arch (regcache);
2167 aspace = get_regcache_aspace (regcache);
2168 pc = regcache_read_pc (regcache);
2169
2170 if (step > 0)
2171 step_start_function = find_pc_function (pc);
2172 if (step < 0)
2173 stop_after_trap = 1;
2174
2175 if (addr == (CORE_ADDR) -1)
2176 {
2177 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2178 && execution_direction != EXEC_REVERSE)
2179 /* There is a breakpoint at the address we will resume at,
2180 step one instruction before inserting breakpoints so that
2181 we do not stop right away (and report a second hit at this
2182 breakpoint).
2183
2184 Note, we don't do this in reverse, because we won't
2185 actually be executing the breakpoint insn anyway.
2186 We'll be (un-)executing the previous instruction. */
2187
2188 force_step = 1;
2189 else if (gdbarch_single_step_through_delay_p (gdbarch)
2190 && gdbarch_single_step_through_delay (gdbarch,
2191 get_current_frame ()))
2192 /* We stepped onto an instruction that needs to be stepped
2193 again before re-inserting the breakpoint, do so. */
2194 force_step = 1;
2195 }
2196 else
2197 {
2198 regcache_write_pc (regcache, addr);
2199 }
2200
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2204 paddress (gdbarch, addr), siggnal, step);
2205
2206 if (non_stop)
2207 /* In non-stop, each thread is handled individually. The context
2208 must already be set to the right thread here. */
2209 ;
2210 else
2211 {
2212 /* In a multi-threaded task we may select another thread and
2213 then continue or step.
2214
2215 But if the old thread was stopped at a breakpoint, it will
2216 immediately cause another breakpoint stop without any
2217 execution (i.e. it will report a breakpoint hit incorrectly).
2218 So we must step over it first.
2219
2220 prepare_to_proceed checks the current thread against the
2221 thread that reported the most recent event. If a step-over
2222 is required it returns TRUE and sets the current thread to
2223 the old thread. */
2224 if (prepare_to_proceed (step))
2225 force_step = 1;
2226 }
2227
2228 /* prepare_to_proceed may change the current thread. */
2229 tp = inferior_thread ();
2230
2231 if (force_step)
2232 {
2233 tp->control.trap_expected = 1;
2234 /* If displaced stepping is enabled, we can step over the
2235 breakpoint without hitting it, so leave all breakpoints
2236 inserted. Otherwise we need to disable all breakpoints, step
2237 one instruction, and then re-add them when that step is
2238 finished. */
2239 if (!use_displaced_stepping (gdbarch))
2240 remove_breakpoints ();
2241 }
2242
2243 /* We can insert breakpoints if we're not trying to step over one,
2244 or if we are stepping over one but we're using displaced stepping
2245 to do so. */
2246 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2247 insert_breakpoints ();
2248
2249 if (!non_stop)
2250 {
2251 /* Pass the last stop signal to the thread we're resuming,
2252 irrespective of whether the current thread is the thread that
2253 got the last event or not. This was historically GDB's
2254 behaviour before keeping a stop_signal per thread. */
2255
2256 struct thread_info *last_thread;
2257 ptid_t last_ptid;
2258 struct target_waitstatus last_status;
2259
2260 get_last_target_status (&last_ptid, &last_status);
2261 if (!ptid_equal (inferior_ptid, last_ptid)
2262 && !ptid_equal (last_ptid, null_ptid)
2263 && !ptid_equal (last_ptid, minus_one_ptid))
2264 {
2265 last_thread = find_thread_ptid (last_ptid);
2266 if (last_thread)
2267 {
2268 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2269 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2270 }
2271 }
2272 }
2273
2274 if (siggnal != GDB_SIGNAL_DEFAULT)
2275 tp->suspend.stop_signal = siggnal;
2276 /* If this signal should not be seen by program,
2277 give it zero. Used for debugging signals. */
2278 else if (!signal_program[tp->suspend.stop_signal])
2279 tp->suspend.stop_signal = GDB_SIGNAL_0;
2280
2281 annotate_starting ();
2282
2283 /* Make sure that output from GDB appears before output from the
2284 inferior. */
2285 gdb_flush (gdb_stdout);
2286
2287 /* Refresh prev_pc value just prior to resuming. This used to be
2288 done in stop_stepping, however, setting prev_pc there did not handle
2289 scenarios such as inferior function calls or returning from
2290 a function via the return command. In those cases, the prev_pc
2291 value was not set properly for subsequent commands. The prev_pc value
2292 is used to initialize the starting line number in the ecs. With an
2293 invalid value, the gdb next command ends up stopping at the position
2294 represented by the next line table entry past our start position.
2295 On platforms that generate one line table entry per line, this
2296 is not a problem. However, on the ia64, the compiler generates
2297 extraneous line table entries that do not increase the line number.
2298 When we issue the gdb next command on the ia64 after an inferior call
2299 or a return command, we often end up a few instructions forward, still
2300 within the original line we started.
2301
2302 An attempt was made to refresh the prev_pc at the same time the
2303 execution_control_state is initialized (for instance, just before
2304 waiting for an inferior event). But this approach did not work
2305 because of platforms that use ptrace, where the pc register cannot
2306 be read unless the inferior is stopped. At that point, we are not
2307 guaranteed the inferior is stopped and so the regcache_read_pc() call
2308 can fail. Setting the prev_pc value here ensures the value is updated
2309 correctly when the inferior is stopped. */
2310 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2311
2312 /* Fill in with reasonable starting values. */
2313 init_thread_stepping_state (tp);
2314
2315 /* Reset to normal state. */
2316 init_infwait_state ();
2317
2318 /* Resume inferior. */
2319 resume (force_step || step || bpstat_should_step (),
2320 tp->suspend.stop_signal);
2321
2322 /* Wait for it to stop (if not standalone)
2323 and in any case decode why it stopped, and act accordingly. */
2324 /* Do this only if we are not using the event loop, or if the target
2325 does not support asynchronous execution. */
2326 if (!target_can_async_p ())
2327 {
2328 wait_for_inferior ();
2329 normal_stop ();
2330 }
2331 }
2332 \f
2333
2334 /* Start remote-debugging of a machine over a serial link. */
2335
2336 void
2337 start_remote (int from_tty)
2338 {
2339 struct inferior *inferior;
2340
2341 inferior = current_inferior ();
2342 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2343
2344 /* Always go on waiting for the target, regardless of the mode. */
2345 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2346 indicate to wait_for_inferior that a target should timeout if
2347 nothing is returned (instead of just blocking). Because of this,
2348 targets expecting an immediate response need to, internally, set
2349 things up so that the target_wait() is forced to eventually
2350 timeout. */
2351 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2352 differentiate to its caller what the state of the target is after
2353 the initial open has been performed. Here we're assuming that
2354 the target has stopped. It should be possible to eventually have
2355 target_open() return to the caller an indication that the target
2356 is currently running and GDB state should be set to the same as
2357 for an async run. */
2358 wait_for_inferior ();
2359
2360 /* Now that the inferior has stopped, do any bookkeeping like
2361 loading shared libraries. We want to do this before normal_stop,
2362 so that the displayed frame is up to date. */
2363 post_create_inferior (&current_target, from_tty);
2364
2365 normal_stop ();
2366 }
2367
2368 /* Initialize static vars when a new inferior begins. */
2369
2370 void
2371 init_wait_for_inferior (void)
2372 {
2373 /* These are meaningless until the first time through wait_for_inferior. */
2374
2375 breakpoint_init_inferior (inf_starting);
2376
2377 clear_proceed_status ();
2378
2379 stepping_past_singlestep_breakpoint = 0;
2380 deferred_step_ptid = null_ptid;
2381
2382 target_last_wait_ptid = minus_one_ptid;
2383
2384 previous_inferior_ptid = inferior_ptid;
2385 init_infwait_state ();
2386
2387 /* Discard any skipped inlined frames. */
2388 clear_inline_frame_state (minus_one_ptid);
2389 }
2390
2391 \f
2392 /* This enum encodes possible reasons for doing a target_wait, so that
2393 wfi can call target_wait in one place. (Ultimately the call will be
2394 moved out of the infinite loop entirely.) */
2395
2396 enum infwait_states
2397 {
2398 infwait_normal_state,
2399 infwait_thread_hop_state,
2400 infwait_step_watch_state,
2401 infwait_nonstep_watch_state
2402 };
2403
2404 /* The PTID we'll do a target_wait on.*/
2405 ptid_t waiton_ptid;
2406
2407 /* Current inferior wait state. */
2408 static enum infwait_states infwait_state;
2409
2410 /* Data to be passed around while handling an event. This data is
2411 discarded between events. */
2412 struct execution_control_state
2413 {
2414 ptid_t ptid;
2415 /* The thread that got the event, if this was a thread event; NULL
2416 otherwise. */
2417 struct thread_info *event_thread;
2418
2419 struct target_waitstatus ws;
2420 int random_signal;
2421 int stop_func_filled_in;
2422 CORE_ADDR stop_func_start;
2423 CORE_ADDR stop_func_end;
2424 const char *stop_func_name;
2425 int wait_some_more;
2426 };
2427
2428 static void handle_inferior_event (struct execution_control_state *ecs);
2429
2430 static void handle_step_into_function (struct gdbarch *gdbarch,
2431 struct execution_control_state *ecs);
2432 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void check_exception_resume (struct execution_control_state *,
2435 struct frame_info *);
2436
2437 static void stop_stepping (struct execution_control_state *ecs);
2438 static void prepare_to_wait (struct execution_control_state *ecs);
2439 static void keep_going (struct execution_control_state *ecs);
2440
2441 /* Callback for iterate over threads. If the thread is stopped, but
2442 the user/frontend doesn't know about that yet, go through
2443 normal_stop, as if the thread had just stopped now. ARG points at
2444 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2445 ptid_is_pid(PTID) is true, applies to all threads of the process
2446 pointed at by PTID. Otherwise, apply only to the thread pointed by
2447 PTID. */
2448
2449 static int
2450 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2451 {
2452 ptid_t ptid = * (ptid_t *) arg;
2453
2454 if ((ptid_equal (info->ptid, ptid)
2455 || ptid_equal (minus_one_ptid, ptid)
2456 || (ptid_is_pid (ptid)
2457 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2458 && is_running (info->ptid)
2459 && !is_executing (info->ptid))
2460 {
2461 struct cleanup *old_chain;
2462 struct execution_control_state ecss;
2463 struct execution_control_state *ecs = &ecss;
2464
2465 memset (ecs, 0, sizeof (*ecs));
2466
2467 old_chain = make_cleanup_restore_current_thread ();
2468
2469 /* Go through handle_inferior_event/normal_stop, so we always
2470 have consistent output as if the stop event had been
2471 reported. */
2472 ecs->ptid = info->ptid;
2473 ecs->event_thread = find_thread_ptid (info->ptid);
2474 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2475 ecs->ws.value.sig = GDB_SIGNAL_0;
2476
2477 handle_inferior_event (ecs);
2478
2479 if (!ecs->wait_some_more)
2480 {
2481 struct thread_info *tp;
2482
2483 normal_stop ();
2484
2485 /* Finish off the continuations. */
2486 tp = inferior_thread ();
2487 do_all_intermediate_continuations_thread (tp, 1);
2488 do_all_continuations_thread (tp, 1);
2489 }
2490
2491 do_cleanups (old_chain);
2492 }
2493
2494 return 0;
2495 }
2496
2497 /* This function is attached as a "thread_stop_requested" observer.
2498 Cleanup local state that assumed the PTID was to be resumed, and
2499 report the stop to the frontend. */
2500
2501 static void
2502 infrun_thread_stop_requested (ptid_t ptid)
2503 {
2504 struct displaced_step_inferior_state *displaced;
2505
2506 /* PTID was requested to stop. Remove it from the displaced
2507 stepping queue, so we don't try to resume it automatically. */
2508
2509 for (displaced = displaced_step_inferior_states;
2510 displaced;
2511 displaced = displaced->next)
2512 {
2513 struct displaced_step_request *it, **prev_next_p;
2514
2515 it = displaced->step_request_queue;
2516 prev_next_p = &displaced->step_request_queue;
2517 while (it)
2518 {
2519 if (ptid_match (it->ptid, ptid))
2520 {
2521 *prev_next_p = it->next;
2522 it->next = NULL;
2523 xfree (it);
2524 }
2525 else
2526 {
2527 prev_next_p = &it->next;
2528 }
2529
2530 it = *prev_next_p;
2531 }
2532 }
2533
2534 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2535 }
2536
2537 static void
2538 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2539 {
2540 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2541 nullify_last_target_wait_ptid ();
2542 }
2543
2544 /* Callback for iterate_over_threads. */
2545
2546 static int
2547 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2548 {
2549 if (is_exited (info->ptid))
2550 return 0;
2551
2552 delete_step_resume_breakpoint (info);
2553 delete_exception_resume_breakpoint (info);
2554 return 0;
2555 }
2556
2557 /* In all-stop, delete the step resume breakpoint of any thread that
2558 had one. In non-stop, delete the step resume breakpoint of the
2559 thread that just stopped. */
2560
2561 static void
2562 delete_step_thread_step_resume_breakpoint (void)
2563 {
2564 if (!target_has_execution
2565 || ptid_equal (inferior_ptid, null_ptid))
2566 /* If the inferior has exited, we have already deleted the step
2567 resume breakpoints out of GDB's lists. */
2568 return;
2569
2570 if (non_stop)
2571 {
2572 /* If in non-stop mode, only delete the step-resume or
2573 longjmp-resume breakpoint of the thread that just stopped
2574 stepping. */
2575 struct thread_info *tp = inferior_thread ();
2576
2577 delete_step_resume_breakpoint (tp);
2578 delete_exception_resume_breakpoint (tp);
2579 }
2580 else
2581 /* In all-stop mode, delete all step-resume and longjmp-resume
2582 breakpoints of any thread that had them. */
2583 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2584 }
2585
2586 /* A cleanup wrapper. */
2587
2588 static void
2589 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2590 {
2591 delete_step_thread_step_resume_breakpoint ();
2592 }
2593
2594 /* Pretty print the results of target_wait, for debugging purposes. */
2595
2596 static void
2597 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2598 const struct target_waitstatus *ws)
2599 {
2600 char *status_string = target_waitstatus_to_string (ws);
2601 struct ui_file *tmp_stream = mem_fileopen ();
2602 char *text;
2603
2604 /* The text is split over several lines because it was getting too long.
2605 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2606 output as a unit; we want only one timestamp printed if debug_timestamp
2607 is set. */
2608
2609 fprintf_unfiltered (tmp_stream,
2610 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2611 if (PIDGET (waiton_ptid) != -1)
2612 fprintf_unfiltered (tmp_stream,
2613 " [%s]", target_pid_to_str (waiton_ptid));
2614 fprintf_unfiltered (tmp_stream, ", status) =\n");
2615 fprintf_unfiltered (tmp_stream,
2616 "infrun: %d [%s],\n",
2617 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: %s\n",
2620 status_string);
2621
2622 text = ui_file_xstrdup (tmp_stream, NULL);
2623
2624 /* This uses %s in part to handle %'s in the text, but also to avoid
2625 a gcc error: the format attribute requires a string literal. */
2626 fprintf_unfiltered (gdb_stdlog, "%s", text);
2627
2628 xfree (status_string);
2629 xfree (text);
2630 ui_file_delete (tmp_stream);
2631 }
2632
2633 /* Prepare and stabilize the inferior for detaching it. E.g.,
2634 detaching while a thread is displaced stepping is a recipe for
2635 crashing it, as nothing would readjust the PC out of the scratch
2636 pad. */
2637
2638 void
2639 prepare_for_detach (void)
2640 {
2641 struct inferior *inf = current_inferior ();
2642 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2643 struct cleanup *old_chain_1;
2644 struct displaced_step_inferior_state *displaced;
2645
2646 displaced = get_displaced_stepping_state (inf->pid);
2647
2648 /* Is any thread of this process displaced stepping? If not,
2649 there's nothing else to do. */
2650 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2651 return;
2652
2653 if (debug_infrun)
2654 fprintf_unfiltered (gdb_stdlog,
2655 "displaced-stepping in-process while detaching");
2656
2657 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2658 inf->detaching = 1;
2659
2660 while (!ptid_equal (displaced->step_ptid, null_ptid))
2661 {
2662 struct cleanup *old_chain_2;
2663 struct execution_control_state ecss;
2664 struct execution_control_state *ecs;
2665
2666 ecs = &ecss;
2667 memset (ecs, 0, sizeof (*ecs));
2668
2669 overlay_cache_invalid = 1;
2670
2671 if (deprecated_target_wait_hook)
2672 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2673 else
2674 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2675
2676 if (debug_infrun)
2677 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2678
2679 /* If an error happens while handling the event, propagate GDB's
2680 knowledge of the executing state to the frontend/user running
2681 state. */
2682 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2683 &minus_one_ptid);
2684
2685 /* Now figure out what to do with the result of the result. */
2686 handle_inferior_event (ecs);
2687
2688 /* No error, don't finish the state yet. */
2689 discard_cleanups (old_chain_2);
2690
2691 /* Breakpoints and watchpoints are not installed on the target
2692 at this point, and signals are passed directly to the
2693 inferior, so this must mean the process is gone. */
2694 if (!ecs->wait_some_more)
2695 {
2696 discard_cleanups (old_chain_1);
2697 error (_("Program exited while detaching"));
2698 }
2699 }
2700
2701 discard_cleanups (old_chain_1);
2702 }
2703
2704 /* Wait for control to return from inferior to debugger.
2705
2706 If inferior gets a signal, we may decide to start it up again
2707 instead of returning. That is why there is a loop in this function.
2708 When this function actually returns it means the inferior
2709 should be left stopped and GDB should read more commands. */
2710
2711 void
2712 wait_for_inferior (void)
2713 {
2714 struct cleanup *old_cleanups;
2715
2716 if (debug_infrun)
2717 fprintf_unfiltered
2718 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2719
2720 old_cleanups =
2721 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2722
2723 while (1)
2724 {
2725 struct execution_control_state ecss;
2726 struct execution_control_state *ecs = &ecss;
2727 struct cleanup *old_chain;
2728
2729 memset (ecs, 0, sizeof (*ecs));
2730
2731 overlay_cache_invalid = 1;
2732
2733 if (deprecated_target_wait_hook)
2734 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2735 else
2736 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2737
2738 if (debug_infrun)
2739 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2740
2741 /* If an error happens while handling the event, propagate GDB's
2742 knowledge of the executing state to the frontend/user running
2743 state. */
2744 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2745
2746 /* Now figure out what to do with the result of the result. */
2747 handle_inferior_event (ecs);
2748
2749 /* No error, don't finish the state yet. */
2750 discard_cleanups (old_chain);
2751
2752 if (!ecs->wait_some_more)
2753 break;
2754 }
2755
2756 do_cleanups (old_cleanups);
2757 }
2758
2759 /* Asynchronous version of wait_for_inferior. It is called by the
2760 event loop whenever a change of state is detected on the file
2761 descriptor corresponding to the target. It can be called more than
2762 once to complete a single execution command. In such cases we need
2763 to keep the state in a global variable ECSS. If it is the last time
2764 that this function is called for a single execution command, then
2765 report to the user that the inferior has stopped, and do the
2766 necessary cleanups. */
2767
2768 void
2769 fetch_inferior_event (void *client_data)
2770 {
2771 struct execution_control_state ecss;
2772 struct execution_control_state *ecs = &ecss;
2773 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2774 struct cleanup *ts_old_chain;
2775 int was_sync = sync_execution;
2776 int cmd_done = 0;
2777
2778 memset (ecs, 0, sizeof (*ecs));
2779
2780 /* We're handling a live event, so make sure we're doing live
2781 debugging. If we're looking at traceframes while the target is
2782 running, we're going to need to get back to that mode after
2783 handling the event. */
2784 if (non_stop)
2785 {
2786 make_cleanup_restore_current_traceframe ();
2787 set_current_traceframe (-1);
2788 }
2789
2790 if (non_stop)
2791 /* In non-stop mode, the user/frontend should not notice a thread
2792 switch due to internal events. Make sure we reverse to the
2793 user selected thread and frame after handling the event and
2794 running any breakpoint commands. */
2795 make_cleanup_restore_current_thread ();
2796
2797 overlay_cache_invalid = 1;
2798
2799 make_cleanup_restore_integer (&execution_direction);
2800 execution_direction = target_execution_direction ();
2801
2802 if (deprecated_target_wait_hook)
2803 ecs->ptid =
2804 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2805 else
2806 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2807
2808 if (debug_infrun)
2809 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2810
2811 /* If an error happens while handling the event, propagate GDB's
2812 knowledge of the executing state to the frontend/user running
2813 state. */
2814 if (!non_stop)
2815 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2816 else
2817 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2818
2819 /* Get executed before make_cleanup_restore_current_thread above to apply
2820 still for the thread which has thrown the exception. */
2821 make_bpstat_clear_actions_cleanup ();
2822
2823 /* Now figure out what to do with the result of the result. */
2824 handle_inferior_event (ecs);
2825
2826 if (!ecs->wait_some_more)
2827 {
2828 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2829
2830 delete_step_thread_step_resume_breakpoint ();
2831
2832 /* We may not find an inferior if this was a process exit. */
2833 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2834 normal_stop ();
2835
2836 if (target_has_execution
2837 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2838 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2839 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2840 && ecs->event_thread->step_multi
2841 && ecs->event_thread->control.stop_step)
2842 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2843 else
2844 {
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2846 cmd_done = 1;
2847 }
2848 }
2849
2850 /* No error, don't finish the thread states yet. */
2851 discard_cleanups (ts_old_chain);
2852
2853 /* Revert thread and frame. */
2854 do_cleanups (old_chain);
2855
2856 /* If the inferior was in sync execution mode, and now isn't,
2857 restore the prompt (a synchronous execution command has finished,
2858 and we're ready for input). */
2859 if (interpreter_async && was_sync && !sync_execution)
2860 display_gdb_prompt (0);
2861
2862 if (cmd_done
2863 && !was_sync
2864 && exec_done_display_p
2865 && (ptid_equal (inferior_ptid, null_ptid)
2866 || !is_running (inferior_ptid)))
2867 printf_unfiltered (_("completed.\n"));
2868 }
2869
2870 /* Record the frame and location we're currently stepping through. */
2871 void
2872 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2873 {
2874 struct thread_info *tp = inferior_thread ();
2875
2876 tp->control.step_frame_id = get_frame_id (frame);
2877 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2878
2879 tp->current_symtab = sal.symtab;
2880 tp->current_line = sal.line;
2881 }
2882
2883 /* Clear context switchable stepping state. */
2884
2885 void
2886 init_thread_stepping_state (struct thread_info *tss)
2887 {
2888 tss->stepping_over_breakpoint = 0;
2889 tss->step_after_step_resume_breakpoint = 0;
2890 }
2891
2892 /* Return the cached copy of the last pid/waitstatus returned by
2893 target_wait()/deprecated_target_wait_hook(). The data is actually
2894 cached by handle_inferior_event(), which gets called immediately
2895 after target_wait()/deprecated_target_wait_hook(). */
2896
2897 void
2898 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2899 {
2900 *ptidp = target_last_wait_ptid;
2901 *status = target_last_waitstatus;
2902 }
2903
2904 void
2905 nullify_last_target_wait_ptid (void)
2906 {
2907 target_last_wait_ptid = minus_one_ptid;
2908 }
2909
2910 /* Switch thread contexts. */
2911
2912 static void
2913 context_switch (ptid_t ptid)
2914 {
2915 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2916 {
2917 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2918 target_pid_to_str (inferior_ptid));
2919 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2920 target_pid_to_str (ptid));
2921 }
2922
2923 switch_to_thread (ptid);
2924 }
2925
2926 static void
2927 adjust_pc_after_break (struct execution_control_state *ecs)
2928 {
2929 struct regcache *regcache;
2930 struct gdbarch *gdbarch;
2931 struct address_space *aspace;
2932 CORE_ADDR breakpoint_pc;
2933
2934 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2935 we aren't, just return.
2936
2937 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2938 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2939 implemented by software breakpoints should be handled through the normal
2940 breakpoint layer.
2941
2942 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2943 different signals (SIGILL or SIGEMT for instance), but it is less
2944 clear where the PC is pointing afterwards. It may not match
2945 gdbarch_decr_pc_after_break. I don't know any specific target that
2946 generates these signals at breakpoints (the code has been in GDB since at
2947 least 1992) so I can not guess how to handle them here.
2948
2949 In earlier versions of GDB, a target with
2950 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2951 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2952 target with both of these set in GDB history, and it seems unlikely to be
2953 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2954
2955 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2956 return;
2957
2958 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2959 return;
2960
2961 /* In reverse execution, when a breakpoint is hit, the instruction
2962 under it has already been de-executed. The reported PC always
2963 points at the breakpoint address, so adjusting it further would
2964 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2965 architecture:
2966
2967 B1 0x08000000 : INSN1
2968 B2 0x08000001 : INSN2
2969 0x08000002 : INSN3
2970 PC -> 0x08000003 : INSN4
2971
2972 Say you're stopped at 0x08000003 as above. Reverse continuing
2973 from that point should hit B2 as below. Reading the PC when the
2974 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2975 been de-executed already.
2976
2977 B1 0x08000000 : INSN1
2978 B2 PC -> 0x08000001 : INSN2
2979 0x08000002 : INSN3
2980 0x08000003 : INSN4
2981
2982 We can't apply the same logic as for forward execution, because
2983 we would wrongly adjust the PC to 0x08000000, since there's a
2984 breakpoint at PC - 1. We'd then report a hit on B1, although
2985 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2986 behaviour. */
2987 if (execution_direction == EXEC_REVERSE)
2988 return;
2989
2990 /* If this target does not decrement the PC after breakpoints, then
2991 we have nothing to do. */
2992 regcache = get_thread_regcache (ecs->ptid);
2993 gdbarch = get_regcache_arch (regcache);
2994 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2995 return;
2996
2997 aspace = get_regcache_aspace (regcache);
2998
2999 /* Find the location where (if we've hit a breakpoint) the
3000 breakpoint would be. */
3001 breakpoint_pc = regcache_read_pc (regcache)
3002 - gdbarch_decr_pc_after_break (gdbarch);
3003
3004 /* Check whether there actually is a software breakpoint inserted at
3005 that location.
3006
3007 If in non-stop mode, a race condition is possible where we've
3008 removed a breakpoint, but stop events for that breakpoint were
3009 already queued and arrive later. To suppress those spurious
3010 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3011 and retire them after a number of stop events are reported. */
3012 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3013 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3014 {
3015 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3016
3017 if (RECORD_IS_USED)
3018 record_full_gdb_operation_disable_set ();
3019
3020 /* When using hardware single-step, a SIGTRAP is reported for both
3021 a completed single-step and a software breakpoint. Need to
3022 differentiate between the two, as the latter needs adjusting
3023 but the former does not.
3024
3025 The SIGTRAP can be due to a completed hardware single-step only if
3026 - we didn't insert software single-step breakpoints
3027 - the thread to be examined is still the current thread
3028 - this thread is currently being stepped
3029
3030 If any of these events did not occur, we must have stopped due
3031 to hitting a software breakpoint, and have to back up to the
3032 breakpoint address.
3033
3034 As a special case, we could have hardware single-stepped a
3035 software breakpoint. In this case (prev_pc == breakpoint_pc),
3036 we also need to back up to the breakpoint address. */
3037
3038 if (singlestep_breakpoints_inserted_p
3039 || !ptid_equal (ecs->ptid, inferior_ptid)
3040 || !currently_stepping (ecs->event_thread)
3041 || ecs->event_thread->prev_pc == breakpoint_pc)
3042 regcache_write_pc (regcache, breakpoint_pc);
3043
3044 do_cleanups (old_cleanups);
3045 }
3046 }
3047
3048 static void
3049 init_infwait_state (void)
3050 {
3051 waiton_ptid = pid_to_ptid (-1);
3052 infwait_state = infwait_normal_state;
3053 }
3054
3055 static int
3056 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3057 {
3058 for (frame = get_prev_frame (frame);
3059 frame != NULL;
3060 frame = get_prev_frame (frame))
3061 {
3062 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3063 return 1;
3064 if (get_frame_type (frame) != INLINE_FRAME)
3065 break;
3066 }
3067
3068 return 0;
3069 }
3070
3071 /* Auxiliary function that handles syscall entry/return events.
3072 It returns 1 if the inferior should keep going (and GDB
3073 should ignore the event), or 0 if the event deserves to be
3074 processed. */
3075
3076 static int
3077 handle_syscall_event (struct execution_control_state *ecs)
3078 {
3079 struct regcache *regcache;
3080 int syscall_number;
3081
3082 if (!ptid_equal (ecs->ptid, inferior_ptid))
3083 context_switch (ecs->ptid);
3084
3085 regcache = get_thread_regcache (ecs->ptid);
3086 syscall_number = ecs->ws.value.syscall_number;
3087 stop_pc = regcache_read_pc (regcache);
3088
3089 if (catch_syscall_enabled () > 0
3090 && catching_syscall_number (syscall_number) > 0)
3091 {
3092 enum bpstat_signal_value sval;
3093
3094 if (debug_infrun)
3095 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3096 syscall_number);
3097
3098 ecs->event_thread->control.stop_bpstat
3099 = bpstat_stop_status (get_regcache_aspace (regcache),
3100 stop_pc, ecs->ptid, &ecs->ws);
3101
3102 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3103 GDB_SIGNAL_TRAP);
3104 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3105
3106 if (!ecs->random_signal)
3107 {
3108 /* Catchpoint hit. */
3109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3110 return 0;
3111 }
3112 }
3113
3114 /* If no catchpoint triggered for this, then keep going. */
3115 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3116 keep_going (ecs);
3117 return 1;
3118 }
3119
3120 /* Clear the supplied execution_control_state's stop_func_* fields. */
3121
3122 static void
3123 clear_stop_func (struct execution_control_state *ecs)
3124 {
3125 ecs->stop_func_filled_in = 0;
3126 ecs->stop_func_start = 0;
3127 ecs->stop_func_end = 0;
3128 ecs->stop_func_name = NULL;
3129 }
3130
3131 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3132
3133 static void
3134 fill_in_stop_func (struct gdbarch *gdbarch,
3135 struct execution_control_state *ecs)
3136 {
3137 if (!ecs->stop_func_filled_in)
3138 {
3139 /* Don't care about return value; stop_func_start and stop_func_name
3140 will both be 0 if it doesn't work. */
3141 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3142 &ecs->stop_func_start, &ecs->stop_func_end);
3143 ecs->stop_func_start
3144 += gdbarch_deprecated_function_start_offset (gdbarch);
3145
3146 ecs->stop_func_filled_in = 1;
3147 }
3148 }
3149
3150 /* Given an execution control state that has been freshly filled in
3151 by an event from the inferior, figure out what it means and take
3152 appropriate action. */
3153
3154 static void
3155 handle_inferior_event (struct execution_control_state *ecs)
3156 {
3157 struct frame_info *frame;
3158 struct gdbarch *gdbarch;
3159 int stopped_by_watchpoint;
3160 int stepped_after_stopped_by_watchpoint = 0;
3161 struct symtab_and_line stop_pc_sal;
3162 enum stop_kind stop_soon;
3163
3164 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3165 {
3166 /* We had an event in the inferior, but we are not interested in
3167 handling it at this level. The lower layers have already
3168 done what needs to be done, if anything.
3169
3170 One of the possible circumstances for this is when the
3171 inferior produces output for the console. The inferior has
3172 not stopped, and we are ignoring the event. Another possible
3173 circumstance is any event which the lower level knows will be
3174 reported multiple times without an intervening resume. */
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3177 prepare_to_wait (ecs);
3178 return;
3179 }
3180
3181 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3182 && target_can_async_p () && !sync_execution)
3183 {
3184 /* There were no unwaited-for children left in the target, but,
3185 we're not synchronously waiting for events either. Just
3186 ignore. Otherwise, if we were running a synchronous
3187 execution command, we need to cancel it and give the user
3188 back the terminal. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog,
3191 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3192 prepare_to_wait (ecs);
3193 return;
3194 }
3195
3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3198 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3199 {
3200 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3201
3202 gdb_assert (inf);
3203 stop_soon = inf->control.stop_soon;
3204 }
3205 else
3206 stop_soon = NO_STOP_QUIETLY;
3207
3208 /* Cache the last pid/waitstatus. */
3209 target_last_wait_ptid = ecs->ptid;
3210 target_last_waitstatus = ecs->ws;
3211
3212 /* Always clear state belonging to the previous time we stopped. */
3213 stop_stack_dummy = STOP_NONE;
3214
3215 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3216 {
3217 /* No unwaited-for children left. IOW, all resumed children
3218 have exited. */
3219 if (debug_infrun)
3220 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3221
3222 stop_print_frame = 0;
3223 stop_stepping (ecs);
3224 return;
3225 }
3226
3227 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3228 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3229 {
3230 ecs->event_thread = find_thread_ptid (ecs->ptid);
3231 /* If it's a new thread, add it to the thread database. */
3232 if (ecs->event_thread == NULL)
3233 ecs->event_thread = add_thread (ecs->ptid);
3234
3235 /* Disable range stepping. If the next step request could use a
3236 range, this will be end up re-enabled then. */
3237 ecs->event_thread->control.may_range_step = 0;
3238 }
3239
3240 /* Dependent on valid ECS->EVENT_THREAD. */
3241 adjust_pc_after_break (ecs);
3242
3243 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3244 reinit_frame_cache ();
3245
3246 breakpoint_retire_moribund ();
3247
3248 /* First, distinguish signals caused by the debugger from signals
3249 that have to do with the program's own actions. Note that
3250 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3251 on the operating system version. Here we detect when a SIGILL or
3252 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3253 something similar for SIGSEGV, since a SIGSEGV will be generated
3254 when we're trying to execute a breakpoint instruction on a
3255 non-executable stack. This happens for call dummy breakpoints
3256 for architectures like SPARC that place call dummies on the
3257 stack. */
3258 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3259 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3260 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3261 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3262 {
3263 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3264
3265 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3266 regcache_read_pc (regcache)))
3267 {
3268 if (debug_infrun)
3269 fprintf_unfiltered (gdb_stdlog,
3270 "infrun: Treating signal as SIGTRAP\n");
3271 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3272 }
3273 }
3274
3275 /* Mark the non-executing threads accordingly. In all-stop, all
3276 threads of all processes are stopped when we get any event
3277 reported. In non-stop mode, only the event thread stops. If
3278 we're handling a process exit in non-stop mode, there's nothing
3279 to do, as threads of the dead process are gone, and threads of
3280 any other process were left running. */
3281 if (!non_stop)
3282 set_executing (minus_one_ptid, 0);
3283 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3284 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3285 set_executing (ecs->ptid, 0);
3286
3287 switch (infwait_state)
3288 {
3289 case infwait_thread_hop_state:
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3292 break;
3293
3294 case infwait_normal_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3297 break;
3298
3299 case infwait_step_watch_state:
3300 if (debug_infrun)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "infrun: infwait_step_watch_state\n");
3303
3304 stepped_after_stopped_by_watchpoint = 1;
3305 break;
3306
3307 case infwait_nonstep_watch_state:
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "infrun: infwait_nonstep_watch_state\n");
3311 insert_breakpoints ();
3312
3313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3314 handle things like signals arriving and other things happening
3315 in combination correctly? */
3316 stepped_after_stopped_by_watchpoint = 1;
3317 break;
3318
3319 default:
3320 internal_error (__FILE__, __LINE__, _("bad switch"));
3321 }
3322
3323 infwait_state = infwait_normal_state;
3324 waiton_ptid = pid_to_ptid (-1);
3325
3326 switch (ecs->ws.kind)
3327 {
3328 case TARGET_WAITKIND_LOADED:
3329 if (debug_infrun)
3330 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3331 /* Ignore gracefully during startup of the inferior, as it might
3332 be the shell which has just loaded some objects, otherwise
3333 add the symbols for the newly loaded objects. Also ignore at
3334 the beginning of an attach or remote session; we will query
3335 the full list of libraries once the connection is
3336 established. */
3337 if (stop_soon == NO_STOP_QUIETLY)
3338 {
3339 struct regcache *regcache;
3340 enum bpstat_signal_value sval;
3341
3342 if (!ptid_equal (ecs->ptid, inferior_ptid))
3343 context_switch (ecs->ptid);
3344 regcache = get_thread_regcache (ecs->ptid);
3345
3346 handle_solib_event ();
3347
3348 ecs->event_thread->control.stop_bpstat
3349 = bpstat_stop_status (get_regcache_aspace (regcache),
3350 stop_pc, ecs->ptid, &ecs->ws);
3351
3352 sval
3353 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3354 GDB_SIGNAL_TRAP);
3355 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3356
3357 if (!ecs->random_signal)
3358 {
3359 /* A catchpoint triggered. */
3360 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3361 goto process_event_stop_test;
3362 }
3363
3364 /* If requested, stop when the dynamic linker notifies
3365 gdb of events. This allows the user to get control
3366 and place breakpoints in initializer routines for
3367 dynamically loaded objects (among other things). */
3368 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3369 if (stop_on_solib_events)
3370 {
3371 /* Make sure we print "Stopped due to solib-event" in
3372 normal_stop. */
3373 stop_print_frame = 1;
3374
3375 stop_stepping (ecs);
3376 return;
3377 }
3378 }
3379
3380 /* If we are skipping through a shell, or through shared library
3381 loading that we aren't interested in, resume the program. If
3382 we're running the program normally, also resume. But stop if
3383 we're attaching or setting up a remote connection. */
3384 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3385 {
3386 if (!ptid_equal (ecs->ptid, inferior_ptid))
3387 context_switch (ecs->ptid);
3388
3389 /* Loading of shared libraries might have changed breakpoint
3390 addresses. Make sure new breakpoints are inserted. */
3391 if (stop_soon == NO_STOP_QUIETLY
3392 && !breakpoints_always_inserted_mode ())
3393 insert_breakpoints ();
3394 resume (0, GDB_SIGNAL_0);
3395 prepare_to_wait (ecs);
3396 return;
3397 }
3398
3399 break;
3400
3401 case TARGET_WAITKIND_SPURIOUS:
3402 if (debug_infrun)
3403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3404 if (!ptid_equal (ecs->ptid, inferior_ptid))
3405 context_switch (ecs->ptid);
3406 resume (0, GDB_SIGNAL_0);
3407 prepare_to_wait (ecs);
3408 return;
3409
3410 case TARGET_WAITKIND_EXITED:
3411 case TARGET_WAITKIND_SIGNALLED:
3412 if (debug_infrun)
3413 {
3414 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3415 fprintf_unfiltered (gdb_stdlog,
3416 "infrun: TARGET_WAITKIND_EXITED\n");
3417 else
3418 fprintf_unfiltered (gdb_stdlog,
3419 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3420 }
3421
3422 inferior_ptid = ecs->ptid;
3423 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3424 set_current_program_space (current_inferior ()->pspace);
3425 handle_vfork_child_exec_or_exit (0);
3426 target_terminal_ours (); /* Must do this before mourn anyway. */
3427
3428 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3429 {
3430 /* Record the exit code in the convenience variable $_exitcode, so
3431 that the user can inspect this again later. */
3432 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3433 (LONGEST) ecs->ws.value.integer);
3434
3435 /* Also record this in the inferior itself. */
3436 current_inferior ()->has_exit_code = 1;
3437 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3438
3439 print_exited_reason (ecs->ws.value.integer);
3440 }
3441 else
3442 print_signal_exited_reason (ecs->ws.value.sig);
3443
3444 gdb_flush (gdb_stdout);
3445 target_mourn_inferior ();
3446 singlestep_breakpoints_inserted_p = 0;
3447 cancel_single_step_breakpoints ();
3448 stop_print_frame = 0;
3449 stop_stepping (ecs);
3450 return;
3451
3452 /* The following are the only cases in which we keep going;
3453 the above cases end in a continue or goto. */
3454 case TARGET_WAITKIND_FORKED:
3455 case TARGET_WAITKIND_VFORKED:
3456 if (debug_infrun)
3457 {
3458 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3460 else
3461 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3462 }
3463
3464 /* Check whether the inferior is displaced stepping. */
3465 {
3466 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3467 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3468 struct displaced_step_inferior_state *displaced
3469 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3470
3471 /* If checking displaced stepping is supported, and thread
3472 ecs->ptid is displaced stepping. */
3473 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3474 {
3475 struct inferior *parent_inf
3476 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3477 struct regcache *child_regcache;
3478 CORE_ADDR parent_pc;
3479
3480 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3481 indicating that the displaced stepping of syscall instruction
3482 has been done. Perform cleanup for parent process here. Note
3483 that this operation also cleans up the child process for vfork,
3484 because their pages are shared. */
3485 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3486
3487 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3488 {
3489 /* Restore scratch pad for child process. */
3490 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3491 }
3492
3493 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3494 the child's PC is also within the scratchpad. Set the child's PC
3495 to the parent's PC value, which has already been fixed up.
3496 FIXME: we use the parent's aspace here, although we're touching
3497 the child, because the child hasn't been added to the inferior
3498 list yet at this point. */
3499
3500 child_regcache
3501 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3502 gdbarch,
3503 parent_inf->aspace);
3504 /* Read PC value of parent process. */
3505 parent_pc = regcache_read_pc (regcache);
3506
3507 if (debug_displaced)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "displaced: write child pc from %s to %s\n",
3510 paddress (gdbarch,
3511 regcache_read_pc (child_regcache)),
3512 paddress (gdbarch, parent_pc));
3513
3514 regcache_write_pc (child_regcache, parent_pc);
3515 }
3516 }
3517
3518 if (!ptid_equal (ecs->ptid, inferior_ptid))
3519 context_switch (ecs->ptid);
3520
3521 /* Immediately detach breakpoints from the child before there's
3522 any chance of letting the user delete breakpoints from the
3523 breakpoint lists. If we don't do this early, it's easy to
3524 leave left over traps in the child, vis: "break foo; catch
3525 fork; c; <fork>; del; c; <child calls foo>". We only follow
3526 the fork on the last `continue', and by that time the
3527 breakpoint at "foo" is long gone from the breakpoint table.
3528 If we vforked, then we don't need to unpatch here, since both
3529 parent and child are sharing the same memory pages; we'll
3530 need to unpatch at follow/detach time instead to be certain
3531 that new breakpoints added between catchpoint hit time and
3532 vfork follow are detached. */
3533 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3534 {
3535 /* This won't actually modify the breakpoint list, but will
3536 physically remove the breakpoints from the child. */
3537 detach_breakpoints (ecs->ws.value.related_pid);
3538 }
3539
3540 if (singlestep_breakpoints_inserted_p)
3541 {
3542 /* Pull the single step breakpoints out of the target. */
3543 remove_single_step_breakpoints ();
3544 singlestep_breakpoints_inserted_p = 0;
3545 }
3546
3547 /* In case the event is caught by a catchpoint, remember that
3548 the event is to be followed at the next resume of the thread,
3549 and not immediately. */
3550 ecs->event_thread->pending_follow = ecs->ws;
3551
3552 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3553
3554 ecs->event_thread->control.stop_bpstat
3555 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3556 stop_pc, ecs->ptid, &ecs->ws);
3557
3558 /* Note that we're interested in knowing the bpstat actually
3559 causes a stop, not just if it may explain the signal.
3560 Software watchpoints, for example, always appear in the
3561 bpstat. */
3562 ecs->random_signal
3563 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3564
3565 /* If no catchpoint triggered for this, then keep going. */
3566 if (ecs->random_signal)
3567 {
3568 ptid_t parent;
3569 ptid_t child;
3570 int should_resume;
3571 int follow_child
3572 = (follow_fork_mode_string == follow_fork_mode_child);
3573
3574 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3575
3576 should_resume = follow_fork ();
3577
3578 parent = ecs->ptid;
3579 child = ecs->ws.value.related_pid;
3580
3581 /* In non-stop mode, also resume the other branch. */
3582 if (non_stop && !detach_fork)
3583 {
3584 if (follow_child)
3585 switch_to_thread (parent);
3586 else
3587 switch_to_thread (child);
3588
3589 ecs->event_thread = inferior_thread ();
3590 ecs->ptid = inferior_ptid;
3591 keep_going (ecs);
3592 }
3593
3594 if (follow_child)
3595 switch_to_thread (child);
3596 else
3597 switch_to_thread (parent);
3598
3599 ecs->event_thread = inferior_thread ();
3600 ecs->ptid = inferior_ptid;
3601
3602 if (should_resume)
3603 keep_going (ecs);
3604 else
3605 stop_stepping (ecs);
3606 return;
3607 }
3608 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3609 goto process_event_stop_test;
3610
3611 case TARGET_WAITKIND_VFORK_DONE:
3612 /* Done with the shared memory region. Re-insert breakpoints in
3613 the parent, and keep going. */
3614
3615 if (debug_infrun)
3616 fprintf_unfiltered (gdb_stdlog,
3617 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3618
3619 if (!ptid_equal (ecs->ptid, inferior_ptid))
3620 context_switch (ecs->ptid);
3621
3622 current_inferior ()->waiting_for_vfork_done = 0;
3623 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3624 /* This also takes care of reinserting breakpoints in the
3625 previously locked inferior. */
3626 keep_going (ecs);
3627 return;
3628
3629 case TARGET_WAITKIND_EXECD:
3630 if (debug_infrun)
3631 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3632
3633 if (!ptid_equal (ecs->ptid, inferior_ptid))
3634 context_switch (ecs->ptid);
3635
3636 singlestep_breakpoints_inserted_p = 0;
3637 cancel_single_step_breakpoints ();
3638
3639 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3640
3641 /* Do whatever is necessary to the parent branch of the vfork. */
3642 handle_vfork_child_exec_or_exit (1);
3643
3644 /* This causes the eventpoints and symbol table to be reset.
3645 Must do this now, before trying to determine whether to
3646 stop. */
3647 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3648
3649 ecs->event_thread->control.stop_bpstat
3650 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3651 stop_pc, ecs->ptid, &ecs->ws);
3652 ecs->random_signal
3653 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3654 GDB_SIGNAL_TRAP)
3655 == BPSTAT_SIGNAL_NO);
3656
3657 /* Note that this may be referenced from inside
3658 bpstat_stop_status above, through inferior_has_execd. */
3659 xfree (ecs->ws.value.execd_pathname);
3660 ecs->ws.value.execd_pathname = NULL;
3661
3662 /* If no catchpoint triggered for this, then keep going. */
3663 if (ecs->random_signal)
3664 {
3665 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3666 keep_going (ecs);
3667 return;
3668 }
3669 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3670 goto process_event_stop_test;
3671
3672 /* Be careful not to try to gather much state about a thread
3673 that's in a syscall. It's frequently a losing proposition. */
3674 case TARGET_WAITKIND_SYSCALL_ENTRY:
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3678 /* Getting the current syscall number. */
3679 if (handle_syscall_event (ecs) != 0)
3680 return;
3681 goto process_event_stop_test;
3682
3683 /* Before examining the threads further, step this thread to
3684 get it entirely out of the syscall. (We get notice of the
3685 event when the thread is just on the verge of exiting a
3686 syscall. Stepping one instruction seems to get it back
3687 into user code.) */
3688 case TARGET_WAITKIND_SYSCALL_RETURN:
3689 if (debug_infrun)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3692 if (handle_syscall_event (ecs) != 0)
3693 return;
3694 goto process_event_stop_test;
3695
3696 case TARGET_WAITKIND_STOPPED:
3697 if (debug_infrun)
3698 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3699 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3700 break;
3701
3702 case TARGET_WAITKIND_NO_HISTORY:
3703 if (debug_infrun)
3704 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3705 /* Reverse execution: target ran out of history info. */
3706
3707 /* Pull the single step breakpoints out of the target. */
3708 if (singlestep_breakpoints_inserted_p)
3709 {
3710 if (!ptid_equal (ecs->ptid, inferior_ptid))
3711 context_switch (ecs->ptid);
3712 remove_single_step_breakpoints ();
3713 singlestep_breakpoints_inserted_p = 0;
3714 }
3715 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3716 print_no_history_reason ();
3717 stop_stepping (ecs);
3718 return;
3719 }
3720
3721 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3722 {
3723 /* Do we need to clean up the state of a thread that has
3724 completed a displaced single-step? (Doing so usually affects
3725 the PC, so do it here, before we set stop_pc.) */
3726 displaced_step_fixup (ecs->ptid,
3727 ecs->event_thread->suspend.stop_signal);
3728
3729 /* If we either finished a single-step or hit a breakpoint, but
3730 the user wanted this thread to be stopped, pretend we got a
3731 SIG0 (generic unsignaled stop). */
3732
3733 if (ecs->event_thread->stop_requested
3734 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3735 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3736 }
3737
3738 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3739
3740 if (debug_infrun)
3741 {
3742 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3743 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3744 struct cleanup *old_chain = save_inferior_ptid ();
3745
3746 inferior_ptid = ecs->ptid;
3747
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3749 paddress (gdbarch, stop_pc));
3750 if (target_stopped_by_watchpoint ())
3751 {
3752 CORE_ADDR addr;
3753
3754 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3755
3756 if (target_stopped_data_address (&current_target, &addr))
3757 fprintf_unfiltered (gdb_stdlog,
3758 "infrun: stopped data address = %s\n",
3759 paddress (gdbarch, addr));
3760 else
3761 fprintf_unfiltered (gdb_stdlog,
3762 "infrun: (no data address available)\n");
3763 }
3764
3765 do_cleanups (old_chain);
3766 }
3767
3768 if (stepping_past_singlestep_breakpoint)
3769 {
3770 gdb_assert (singlestep_breakpoints_inserted_p);
3771 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3772 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3773
3774 stepping_past_singlestep_breakpoint = 0;
3775
3776 /* We've either finished single-stepping past the single-step
3777 breakpoint, or stopped for some other reason. It would be nice if
3778 we could tell, but we can't reliably. */
3779 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3780 {
3781 if (debug_infrun)
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: stepping_past_"
3784 "singlestep_breakpoint\n");
3785 /* Pull the single step breakpoints out of the target. */
3786 if (!ptid_equal (ecs->ptid, inferior_ptid))
3787 context_switch (ecs->ptid);
3788 remove_single_step_breakpoints ();
3789 singlestep_breakpoints_inserted_p = 0;
3790
3791 ecs->random_signal = 0;
3792 ecs->event_thread->control.trap_expected = 0;
3793
3794 context_switch (saved_singlestep_ptid);
3795 if (deprecated_context_hook)
3796 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3797
3798 resume (1, GDB_SIGNAL_0);
3799 prepare_to_wait (ecs);
3800 return;
3801 }
3802 }
3803
3804 if (!ptid_equal (deferred_step_ptid, null_ptid))
3805 {
3806 /* In non-stop mode, there's never a deferred_step_ptid set. */
3807 gdb_assert (!non_stop);
3808
3809 /* If we stopped for some other reason than single-stepping, ignore
3810 the fact that we were supposed to switch back. */
3811 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3812 {
3813 if (debug_infrun)
3814 fprintf_unfiltered (gdb_stdlog,
3815 "infrun: handling deferred step\n");
3816
3817 /* Pull the single step breakpoints out of the target. */
3818 if (singlestep_breakpoints_inserted_p)
3819 {
3820 if (!ptid_equal (ecs->ptid, inferior_ptid))
3821 context_switch (ecs->ptid);
3822 remove_single_step_breakpoints ();
3823 singlestep_breakpoints_inserted_p = 0;
3824 }
3825
3826 ecs->event_thread->control.trap_expected = 0;
3827
3828 context_switch (deferred_step_ptid);
3829 deferred_step_ptid = null_ptid;
3830 /* Suppress spurious "Switching to ..." message. */
3831 previous_inferior_ptid = inferior_ptid;
3832
3833 resume (1, GDB_SIGNAL_0);
3834 prepare_to_wait (ecs);
3835 return;
3836 }
3837
3838 deferred_step_ptid = null_ptid;
3839 }
3840
3841 /* See if a thread hit a thread-specific breakpoint that was meant for
3842 another thread. If so, then step that thread past the breakpoint,
3843 and continue it. */
3844
3845 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3846 {
3847 int thread_hop_needed = 0;
3848 struct address_space *aspace =
3849 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3850
3851 /* Check if a regular breakpoint has been hit before checking
3852 for a potential single step breakpoint. Otherwise, GDB will
3853 not see this breakpoint hit when stepping onto breakpoints. */
3854 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3855 {
3856 ecs->random_signal = 0;
3857 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3858 thread_hop_needed = 1;
3859 }
3860 else if (singlestep_breakpoints_inserted_p)
3861 {
3862 /* We have not context switched yet, so this should be true
3863 no matter which thread hit the singlestep breakpoint. */
3864 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3865 if (debug_infrun)
3866 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3867 "trap for %s\n",
3868 target_pid_to_str (ecs->ptid));
3869
3870 ecs->random_signal = 0;
3871 /* The call to in_thread_list is necessary because PTIDs sometimes
3872 change when we go from single-threaded to multi-threaded. If
3873 the singlestep_ptid is still in the list, assume that it is
3874 really different from ecs->ptid. */
3875 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3876 && in_thread_list (singlestep_ptid))
3877 {
3878 /* If the PC of the thread we were trying to single-step
3879 has changed, discard this event (which we were going
3880 to ignore anyway), and pretend we saw that thread
3881 trap. This prevents us continuously moving the
3882 single-step breakpoint forward, one instruction at a
3883 time. If the PC has changed, then the thread we were
3884 trying to single-step has trapped or been signalled,
3885 but the event has not been reported to GDB yet.
3886
3887 There might be some cases where this loses signal
3888 information, if a signal has arrived at exactly the
3889 same time that the PC changed, but this is the best
3890 we can do with the information available. Perhaps we
3891 should arrange to report all events for all threads
3892 when they stop, or to re-poll the remote looking for
3893 this particular thread (i.e. temporarily enable
3894 schedlock). */
3895
3896 CORE_ADDR new_singlestep_pc
3897 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3898
3899 if (new_singlestep_pc != singlestep_pc)
3900 {
3901 enum gdb_signal stop_signal;
3902
3903 if (debug_infrun)
3904 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3905 " but expected thread advanced also\n");
3906
3907 /* The current context still belongs to
3908 singlestep_ptid. Don't swap here, since that's
3909 the context we want to use. Just fudge our
3910 state and continue. */
3911 stop_signal = ecs->event_thread->suspend.stop_signal;
3912 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3913 ecs->ptid = singlestep_ptid;
3914 ecs->event_thread = find_thread_ptid (ecs->ptid);
3915 ecs->event_thread->suspend.stop_signal = stop_signal;
3916 stop_pc = new_singlestep_pc;
3917 }
3918 else
3919 {
3920 if (debug_infrun)
3921 fprintf_unfiltered (gdb_stdlog,
3922 "infrun: unexpected thread\n");
3923
3924 thread_hop_needed = 1;
3925 stepping_past_singlestep_breakpoint = 1;
3926 saved_singlestep_ptid = singlestep_ptid;
3927 }
3928 }
3929 }
3930
3931 if (thread_hop_needed)
3932 {
3933 struct regcache *thread_regcache;
3934 int remove_status = 0;
3935
3936 if (debug_infrun)
3937 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3938
3939 /* Switch context before touching inferior memory, the
3940 previous thread may have exited. */
3941 if (!ptid_equal (inferior_ptid, ecs->ptid))
3942 context_switch (ecs->ptid);
3943
3944 /* Saw a breakpoint, but it was hit by the wrong thread.
3945 Just continue. */
3946
3947 if (singlestep_breakpoints_inserted_p)
3948 {
3949 /* Pull the single step breakpoints out of the target. */
3950 remove_single_step_breakpoints ();
3951 singlestep_breakpoints_inserted_p = 0;
3952 }
3953
3954 /* If the arch can displace step, don't remove the
3955 breakpoints. */
3956 thread_regcache = get_thread_regcache (ecs->ptid);
3957 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3958 remove_status = remove_breakpoints ();
3959
3960 /* Did we fail to remove breakpoints? If so, try
3961 to set the PC past the bp. (There's at least
3962 one situation in which we can fail to remove
3963 the bp's: On HP-UX's that use ttrace, we can't
3964 change the address space of a vforking child
3965 process until the child exits (well, okay, not
3966 then either :-) or execs. */
3967 if (remove_status != 0)
3968 error (_("Cannot step over breakpoint hit in wrong thread"));
3969 else
3970 { /* Single step */
3971 if (!non_stop)
3972 {
3973 /* Only need to require the next event from this
3974 thread in all-stop mode. */
3975 waiton_ptid = ecs->ptid;
3976 infwait_state = infwait_thread_hop_state;
3977 }
3978
3979 ecs->event_thread->stepping_over_breakpoint = 1;
3980 keep_going (ecs);
3981 return;
3982 }
3983 }
3984 else if (singlestep_breakpoints_inserted_p)
3985 {
3986 ecs->random_signal = 0;
3987 }
3988 }
3989 else
3990 ecs->random_signal = 1;
3991
3992 /* See if something interesting happened to the non-current thread. If
3993 so, then switch to that thread. */
3994 if (!ptid_equal (ecs->ptid, inferior_ptid))
3995 {
3996 if (debug_infrun)
3997 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3998
3999 context_switch (ecs->ptid);
4000
4001 if (deprecated_context_hook)
4002 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4003 }
4004
4005 /* At this point, get hold of the now-current thread's frame. */
4006 frame = get_current_frame ();
4007 gdbarch = get_frame_arch (frame);
4008
4009 if (singlestep_breakpoints_inserted_p)
4010 {
4011 /* Pull the single step breakpoints out of the target. */
4012 remove_single_step_breakpoints ();
4013 singlestep_breakpoints_inserted_p = 0;
4014 }
4015
4016 if (stepped_after_stopped_by_watchpoint)
4017 stopped_by_watchpoint = 0;
4018 else
4019 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4020
4021 /* If necessary, step over this watchpoint. We'll be back to display
4022 it in a moment. */
4023 if (stopped_by_watchpoint
4024 && (target_have_steppable_watchpoint
4025 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4026 {
4027 /* At this point, we are stopped at an instruction which has
4028 attempted to write to a piece of memory under control of
4029 a watchpoint. The instruction hasn't actually executed
4030 yet. If we were to evaluate the watchpoint expression
4031 now, we would get the old value, and therefore no change
4032 would seem to have occurred.
4033
4034 In order to make watchpoints work `right', we really need
4035 to complete the memory write, and then evaluate the
4036 watchpoint expression. We do this by single-stepping the
4037 target.
4038
4039 It may not be necessary to disable the watchpoint to stop over
4040 it. For example, the PA can (with some kernel cooperation)
4041 single step over a watchpoint without disabling the watchpoint.
4042
4043 It is far more common to need to disable a watchpoint to step
4044 the inferior over it. If we have non-steppable watchpoints,
4045 we must disable the current watchpoint; it's simplest to
4046 disable all watchpoints and breakpoints. */
4047 int hw_step = 1;
4048
4049 if (!target_have_steppable_watchpoint)
4050 {
4051 remove_breakpoints ();
4052 /* See comment in resume why we need to stop bypassing signals
4053 while breakpoints have been removed. */
4054 target_pass_signals (0, NULL);
4055 }
4056 /* Single step */
4057 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4058 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4059 waiton_ptid = ecs->ptid;
4060 if (target_have_steppable_watchpoint)
4061 infwait_state = infwait_step_watch_state;
4062 else
4063 infwait_state = infwait_nonstep_watch_state;
4064 prepare_to_wait (ecs);
4065 return;
4066 }
4067
4068 clear_stop_func (ecs);
4069 ecs->event_thread->stepping_over_breakpoint = 0;
4070 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4071 ecs->event_thread->control.stop_step = 0;
4072 stop_print_frame = 1;
4073 ecs->random_signal = 0;
4074 stopped_by_random_signal = 0;
4075
4076 /* Hide inlined functions starting here, unless we just performed stepi or
4077 nexti. After stepi and nexti, always show the innermost frame (not any
4078 inline function call sites). */
4079 if (ecs->event_thread->control.step_range_end != 1)
4080 {
4081 struct address_space *aspace =
4082 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4083
4084 /* skip_inline_frames is expensive, so we avoid it if we can
4085 determine that the address is one where functions cannot have
4086 been inlined. This improves performance with inferiors that
4087 load a lot of shared libraries, because the solib event
4088 breakpoint is defined as the address of a function (i.e. not
4089 inline). Note that we have to check the previous PC as well
4090 as the current one to catch cases when we have just
4091 single-stepped off a breakpoint prior to reinstating it.
4092 Note that we're assuming that the code we single-step to is
4093 not inline, but that's not definitive: there's nothing
4094 preventing the event breakpoint function from containing
4095 inlined code, and the single-step ending up there. If the
4096 user had set a breakpoint on that inlined code, the missing
4097 skip_inline_frames call would break things. Fortunately
4098 that's an extremely unlikely scenario. */
4099 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4100 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4101 && ecs->event_thread->control.trap_expected
4102 && pc_at_non_inline_function (aspace,
4103 ecs->event_thread->prev_pc,
4104 &ecs->ws)))
4105 {
4106 skip_inline_frames (ecs->ptid);
4107
4108 /* Re-fetch current thread's frame in case that invalidated
4109 the frame cache. */
4110 frame = get_current_frame ();
4111 gdbarch = get_frame_arch (frame);
4112 }
4113 }
4114
4115 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4116 && ecs->event_thread->control.trap_expected
4117 && gdbarch_single_step_through_delay_p (gdbarch)
4118 && currently_stepping (ecs->event_thread))
4119 {
4120 /* We're trying to step off a breakpoint. Turns out that we're
4121 also on an instruction that needs to be stepped multiple
4122 times before it's been fully executing. E.g., architectures
4123 with a delay slot. It needs to be stepped twice, once for
4124 the instruction and once for the delay slot. */
4125 int step_through_delay
4126 = gdbarch_single_step_through_delay (gdbarch, frame);
4127
4128 if (debug_infrun && step_through_delay)
4129 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4130 if (ecs->event_thread->control.step_range_end == 0
4131 && step_through_delay)
4132 {
4133 /* The user issued a continue when stopped at a breakpoint.
4134 Set up for another trap and get out of here. */
4135 ecs->event_thread->stepping_over_breakpoint = 1;
4136 keep_going (ecs);
4137 return;
4138 }
4139 else if (step_through_delay)
4140 {
4141 /* The user issued a step when stopped at a breakpoint.
4142 Maybe we should stop, maybe we should not - the delay
4143 slot *might* correspond to a line of source. In any
4144 case, don't decide that here, just set
4145 ecs->stepping_over_breakpoint, making sure we
4146 single-step again before breakpoints are re-inserted. */
4147 ecs->event_thread->stepping_over_breakpoint = 1;
4148 }
4149 }
4150
4151 /* Look at the cause of the stop, and decide what to do.
4152 The alternatives are:
4153 1) stop_stepping and return; to really stop and return to the debugger,
4154 2) keep_going and return to start up again
4155 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4156 3) set ecs->random_signal to 1, and the decision between 1 and 2
4157 will be made according to the signal handling tables. */
4158
4159 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4160 && stop_after_trap)
4161 {
4162 if (debug_infrun)
4163 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4164 stop_print_frame = 0;
4165 stop_stepping (ecs);
4166 return;
4167 }
4168
4169 /* This is originated from start_remote(), start_inferior() and
4170 shared libraries hook functions. */
4171 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4172 {
4173 if (debug_infrun)
4174 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4175 stop_stepping (ecs);
4176 return;
4177 }
4178
4179 /* This originates from attach_command(). We need to overwrite
4180 the stop_signal here, because some kernels don't ignore a
4181 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4182 See more comments in inferior.h. On the other hand, if we
4183 get a non-SIGSTOP, report it to the user - assume the backend
4184 will handle the SIGSTOP if it should show up later.
4185
4186 Also consider that the attach is complete when we see a
4187 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4188 target extended-remote report it instead of a SIGSTOP
4189 (e.g. gdbserver). We already rely on SIGTRAP being our
4190 signal, so this is no exception.
4191
4192 Also consider that the attach is complete when we see a
4193 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4194 the target to stop all threads of the inferior, in case the
4195 low level attach operation doesn't stop them implicitly. If
4196 they weren't stopped implicitly, then the stub will report a
4197 GDB_SIGNAL_0, meaning: stopped for no particular reason
4198 other than GDB's request. */
4199 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4200 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4201 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4202 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4203 {
4204 stop_stepping (ecs);
4205 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4206 return;
4207 }
4208
4209 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4210 handles this event. */
4211 ecs->event_thread->control.stop_bpstat
4212 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4213 stop_pc, ecs->ptid, &ecs->ws);
4214
4215 /* Following in case break condition called a
4216 function. */
4217 stop_print_frame = 1;
4218
4219 /* This is where we handle "moribund" watchpoints. Unlike
4220 software breakpoints traps, hardware watchpoint traps are
4221 always distinguishable from random traps. If no high-level
4222 watchpoint is associated with the reported stop data address
4223 anymore, then the bpstat does not explain the signal ---
4224 simply make sure to ignore it if `stopped_by_watchpoint' is
4225 set. */
4226
4227 if (debug_infrun
4228 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4229 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4230 GDB_SIGNAL_TRAP)
4231 == BPSTAT_SIGNAL_NO)
4232 && stopped_by_watchpoint)
4233 fprintf_unfiltered (gdb_stdlog,
4234 "infrun: no user watchpoint explains "
4235 "watchpoint SIGTRAP, ignoring\n");
4236
4237 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4238 at one stage in the past included checks for an inferior
4239 function call's call dummy's return breakpoint. The original
4240 comment, that went with the test, read:
4241
4242 ``End of a stack dummy. Some systems (e.g. Sony news) give
4243 another signal besides SIGTRAP, so check here as well as
4244 above.''
4245
4246 If someone ever tries to get call dummys on a
4247 non-executable stack to work (where the target would stop
4248 with something like a SIGSEGV), then those tests might need
4249 to be re-instated. Given, however, that the tests were only
4250 enabled when momentary breakpoints were not being used, I
4251 suspect that it won't be the case.
4252
4253 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4254 be necessary for call dummies on a non-executable stack on
4255 SPARC. */
4256
4257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4258 ecs->random_signal
4259 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4260 GDB_SIGNAL_TRAP)
4261 != BPSTAT_SIGNAL_NO)
4262 || stopped_by_watchpoint
4263 || ecs->event_thread->control.trap_expected
4264 || (ecs->event_thread->control.step_range_end
4265 && (ecs->event_thread->control.step_resume_breakpoint
4266 == NULL)));
4267 else
4268 {
4269 enum bpstat_signal_value sval;
4270
4271 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4272 ecs->event_thread->suspend.stop_signal);
4273 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4274
4275 if (sval == BPSTAT_SIGNAL_HIDE)
4276 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4277 }
4278
4279 process_event_stop_test:
4280
4281 /* Re-fetch current thread's frame in case we did a
4282 "goto process_event_stop_test" above. */
4283 frame = get_current_frame ();
4284 gdbarch = get_frame_arch (frame);
4285
4286 /* For the program's own signals, act according to
4287 the signal handling tables. */
4288
4289 if (ecs->random_signal)
4290 {
4291 /* Signal not for debugging purposes. */
4292 int printed = 0;
4293 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4294
4295 if (debug_infrun)
4296 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4297 ecs->event_thread->suspend.stop_signal);
4298
4299 stopped_by_random_signal = 1;
4300
4301 if (signal_print[ecs->event_thread->suspend.stop_signal])
4302 {
4303 printed = 1;
4304 target_terminal_ours_for_output ();
4305 print_signal_received_reason
4306 (ecs->event_thread->suspend.stop_signal);
4307 }
4308 /* Always stop on signals if we're either just gaining control
4309 of the program, or the user explicitly requested this thread
4310 to remain stopped. */
4311 if (stop_soon != NO_STOP_QUIETLY
4312 || ecs->event_thread->stop_requested
4313 || (!inf->detaching
4314 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4315 {
4316 stop_stepping (ecs);
4317 return;
4318 }
4319 /* If not going to stop, give terminal back
4320 if we took it away. */
4321 else if (printed)
4322 target_terminal_inferior ();
4323
4324 /* Clear the signal if it should not be passed. */
4325 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4326 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4327
4328 if (ecs->event_thread->prev_pc == stop_pc
4329 && ecs->event_thread->control.trap_expected
4330 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4331 {
4332 /* We were just starting a new sequence, attempting to
4333 single-step off of a breakpoint and expecting a SIGTRAP.
4334 Instead this signal arrives. This signal will take us out
4335 of the stepping range so GDB needs to remember to, when
4336 the signal handler returns, resume stepping off that
4337 breakpoint. */
4338 /* To simplify things, "continue" is forced to use the same
4339 code paths as single-step - set a breakpoint at the
4340 signal return address and then, once hit, step off that
4341 breakpoint. */
4342 if (debug_infrun)
4343 fprintf_unfiltered (gdb_stdlog,
4344 "infrun: signal arrived while stepping over "
4345 "breakpoint\n");
4346
4347 insert_hp_step_resume_breakpoint_at_frame (frame);
4348 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4349 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4350 ecs->event_thread->control.trap_expected = 0;
4351 keep_going (ecs);
4352 return;
4353 }
4354
4355 if (ecs->event_thread->control.step_range_end != 0
4356 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4357 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4358 && frame_id_eq (get_stack_frame_id (frame),
4359 ecs->event_thread->control.step_stack_frame_id)
4360 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4361 {
4362 /* The inferior is about to take a signal that will take it
4363 out of the single step range. Set a breakpoint at the
4364 current PC (which is presumably where the signal handler
4365 will eventually return) and then allow the inferior to
4366 run free.
4367
4368 Note that this is only needed for a signal delivered
4369 while in the single-step range. Nested signals aren't a
4370 problem as they eventually all return. */
4371 if (debug_infrun)
4372 fprintf_unfiltered (gdb_stdlog,
4373 "infrun: signal may take us out of "
4374 "single-step range\n");
4375
4376 insert_hp_step_resume_breakpoint_at_frame (frame);
4377 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4378 ecs->event_thread->control.trap_expected = 0;
4379 keep_going (ecs);
4380 return;
4381 }
4382
4383 /* Note: step_resume_breakpoint may be non-NULL. This occures
4384 when either there's a nested signal, or when there's a
4385 pending signal enabled just as the signal handler returns
4386 (leaving the inferior at the step-resume-breakpoint without
4387 actually executing it). Either way continue until the
4388 breakpoint is really hit. */
4389 }
4390 else
4391 {
4392 /* Handle cases caused by hitting a breakpoint. */
4393
4394 CORE_ADDR jmp_buf_pc;
4395 struct bpstat_what what;
4396
4397 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4398
4399 if (what.call_dummy)
4400 {
4401 stop_stack_dummy = what.call_dummy;
4402 }
4403
4404 /* If we hit an internal event that triggers symbol changes, the
4405 current frame will be invalidated within bpstat_what (e.g.,
4406 if we hit an internal solib event). Re-fetch it. */
4407 frame = get_current_frame ();
4408 gdbarch = get_frame_arch (frame);
4409
4410 switch (what.main_action)
4411 {
4412 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4413 /* If we hit the breakpoint at longjmp while stepping, we
4414 install a momentary breakpoint at the target of the
4415 jmp_buf. */
4416
4417 if (debug_infrun)
4418 fprintf_unfiltered (gdb_stdlog,
4419 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4420
4421 ecs->event_thread->stepping_over_breakpoint = 1;
4422
4423 if (what.is_longjmp)
4424 {
4425 struct value *arg_value;
4426
4427 /* If we set the longjmp breakpoint via a SystemTap
4428 probe, then use it to extract the arguments. The
4429 destination PC is the third argument to the
4430 probe. */
4431 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4432 if (arg_value)
4433 jmp_buf_pc = value_as_address (arg_value);
4434 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4435 || !gdbarch_get_longjmp_target (gdbarch,
4436 frame, &jmp_buf_pc))
4437 {
4438 if (debug_infrun)
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4441 "(!gdbarch_get_longjmp_target)\n");
4442 keep_going (ecs);
4443 return;
4444 }
4445
4446 /* Insert a breakpoint at resume address. */
4447 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4448 }
4449 else
4450 check_exception_resume (ecs, frame);
4451 keep_going (ecs);
4452 return;
4453
4454 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4455 {
4456 struct frame_info *init_frame;
4457
4458 /* There are several cases to consider.
4459
4460 1. The initiating frame no longer exists. In this case
4461 we must stop, because the exception or longjmp has gone
4462 too far.
4463
4464 2. The initiating frame exists, and is the same as the
4465 current frame. We stop, because the exception or
4466 longjmp has been caught.
4467
4468 3. The initiating frame exists and is different from
4469 the current frame. This means the exception or longjmp
4470 has been caught beneath the initiating frame, so keep
4471 going.
4472
4473 4. longjmp breakpoint has been placed just to protect
4474 against stale dummy frames and user is not interested
4475 in stopping around longjmps. */
4476
4477 if (debug_infrun)
4478 fprintf_unfiltered (gdb_stdlog,
4479 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4480
4481 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4482 != NULL);
4483 delete_exception_resume_breakpoint (ecs->event_thread);
4484
4485 if (what.is_longjmp)
4486 {
4487 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4488
4489 if (!frame_id_p (ecs->event_thread->initiating_frame))
4490 {
4491 /* Case 4. */
4492 keep_going (ecs);
4493 return;
4494 }
4495 }
4496
4497 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4498
4499 if (init_frame)
4500 {
4501 struct frame_id current_id
4502 = get_frame_id (get_current_frame ());
4503 if (frame_id_eq (current_id,
4504 ecs->event_thread->initiating_frame))
4505 {
4506 /* Case 2. Fall through. */
4507 }
4508 else
4509 {
4510 /* Case 3. */
4511 keep_going (ecs);
4512 return;
4513 }
4514 }
4515
4516 /* For Cases 1 and 2, remove the step-resume breakpoint,
4517 if it exists. */
4518 delete_step_resume_breakpoint (ecs->event_thread);
4519
4520 ecs->event_thread->control.stop_step = 1;
4521 print_end_stepping_range_reason ();
4522 stop_stepping (ecs);
4523 }
4524 return;
4525
4526 case BPSTAT_WHAT_SINGLE:
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4529 ecs->event_thread->stepping_over_breakpoint = 1;
4530 /* Still need to check other stuff, at least the case where
4531 we are stepping and step out of the right range. */
4532 break;
4533
4534 case BPSTAT_WHAT_STEP_RESUME:
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4537
4538 delete_step_resume_breakpoint (ecs->event_thread);
4539 if (ecs->event_thread->control.proceed_to_finish
4540 && execution_direction == EXEC_REVERSE)
4541 {
4542 struct thread_info *tp = ecs->event_thread;
4543
4544 /* We are finishing a function in reverse, and just hit
4545 the step-resume breakpoint at the start address of
4546 the function, and we're almost there -- just need to
4547 back up by one more single-step, which should take us
4548 back to the function call. */
4549 tp->control.step_range_start = tp->control.step_range_end = 1;
4550 keep_going (ecs);
4551 return;
4552 }
4553 fill_in_stop_func (gdbarch, ecs);
4554 if (stop_pc == ecs->stop_func_start
4555 && execution_direction == EXEC_REVERSE)
4556 {
4557 /* We are stepping over a function call in reverse, and
4558 just hit the step-resume breakpoint at the start
4559 address of the function. Go back to single-stepping,
4560 which should take us back to the function call. */
4561 ecs->event_thread->stepping_over_breakpoint = 1;
4562 keep_going (ecs);
4563 return;
4564 }
4565 break;
4566
4567 case BPSTAT_WHAT_STOP_NOISY:
4568 if (debug_infrun)
4569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4570 stop_print_frame = 1;
4571
4572 /* We are about to nuke the step_resume_breakpointt via the
4573 cleanup chain, so no need to worry about it here. */
4574
4575 stop_stepping (ecs);
4576 return;
4577
4578 case BPSTAT_WHAT_STOP_SILENT:
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4581 stop_print_frame = 0;
4582
4583 /* We are about to nuke the step_resume_breakpoin via the
4584 cleanup chain, so no need to worry about it here. */
4585
4586 stop_stepping (ecs);
4587 return;
4588
4589 case BPSTAT_WHAT_HP_STEP_RESUME:
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4592
4593 delete_step_resume_breakpoint (ecs->event_thread);
4594 if (ecs->event_thread->step_after_step_resume_breakpoint)
4595 {
4596 /* Back when the step-resume breakpoint was inserted, we
4597 were trying to single-step off a breakpoint. Go back
4598 to doing that. */
4599 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4600 ecs->event_thread->stepping_over_breakpoint = 1;
4601 keep_going (ecs);
4602 return;
4603 }
4604 break;
4605
4606 case BPSTAT_WHAT_KEEP_CHECKING:
4607 break;
4608 }
4609 }
4610
4611 /* We come here if we hit a breakpoint but should not
4612 stop for it. Possibly we also were stepping
4613 and should stop for that. So fall through and
4614 test for stepping. But, if not stepping,
4615 do not stop. */
4616
4617 /* In all-stop mode, if we're currently stepping but have stopped in
4618 some other thread, we need to switch back to the stepped thread. */
4619 if (!non_stop)
4620 {
4621 struct thread_info *tp;
4622
4623 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4624 ecs->event_thread);
4625 if (tp)
4626 {
4627 /* However, if the current thread is blocked on some internal
4628 breakpoint, and we simply need to step over that breakpoint
4629 to get it going again, do that first. */
4630 if ((ecs->event_thread->control.trap_expected
4631 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4632 || ecs->event_thread->stepping_over_breakpoint)
4633 {
4634 keep_going (ecs);
4635 return;
4636 }
4637
4638 /* If the stepping thread exited, then don't try to switch
4639 back and resume it, which could fail in several different
4640 ways depending on the target. Instead, just keep going.
4641
4642 We can find a stepping dead thread in the thread list in
4643 two cases:
4644
4645 - The target supports thread exit events, and when the
4646 target tries to delete the thread from the thread list,
4647 inferior_ptid pointed at the exiting thread. In such
4648 case, calling delete_thread does not really remove the
4649 thread from the list; instead, the thread is left listed,
4650 with 'exited' state.
4651
4652 - The target's debug interface does not support thread
4653 exit events, and so we have no idea whatsoever if the
4654 previously stepping thread is still alive. For that
4655 reason, we need to synchronously query the target
4656 now. */
4657 if (is_exited (tp->ptid)
4658 || !target_thread_alive (tp->ptid))
4659 {
4660 if (debug_infrun)
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: not switching back to "
4663 "stepped thread, it has vanished\n");
4664
4665 delete_thread (tp->ptid);
4666 keep_going (ecs);
4667 return;
4668 }
4669
4670 /* Otherwise, we no longer expect a trap in the current thread.
4671 Clear the trap_expected flag before switching back -- this is
4672 what keep_going would do as well, if we called it. */
4673 ecs->event_thread->control.trap_expected = 0;
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog,
4677 "infrun: switching back to stepped thread\n");
4678
4679 ecs->event_thread = tp;
4680 ecs->ptid = tp->ptid;
4681 context_switch (ecs->ptid);
4682 keep_going (ecs);
4683 return;
4684 }
4685 }
4686
4687 if (ecs->event_thread->control.step_resume_breakpoint)
4688 {
4689 if (debug_infrun)
4690 fprintf_unfiltered (gdb_stdlog,
4691 "infrun: step-resume breakpoint is inserted\n");
4692
4693 /* Having a step-resume breakpoint overrides anything
4694 else having to do with stepping commands until
4695 that breakpoint is reached. */
4696 keep_going (ecs);
4697 return;
4698 }
4699
4700 if (ecs->event_thread->control.step_range_end == 0)
4701 {
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4704 /* Likewise if we aren't even stepping. */
4705 keep_going (ecs);
4706 return;
4707 }
4708
4709 /* Re-fetch current thread's frame in case the code above caused
4710 the frame cache to be re-initialized, making our FRAME variable
4711 a dangling pointer. */
4712 frame = get_current_frame ();
4713 gdbarch = get_frame_arch (frame);
4714 fill_in_stop_func (gdbarch, ecs);
4715
4716 /* If stepping through a line, keep going if still within it.
4717
4718 Note that step_range_end is the address of the first instruction
4719 beyond the step range, and NOT the address of the last instruction
4720 within it!
4721
4722 Note also that during reverse execution, we may be stepping
4723 through a function epilogue and therefore must detect when
4724 the current-frame changes in the middle of a line. */
4725
4726 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4727 && (execution_direction != EXEC_REVERSE
4728 || frame_id_eq (get_frame_id (frame),
4729 ecs->event_thread->control.step_frame_id)))
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered
4733 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4734 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4735 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4736
4737 /* Tentatively re-enable range stepping; `resume' disables it if
4738 necessary (e.g., if we're stepping over a breakpoint or we
4739 have software watchpoints). */
4740 ecs->event_thread->control.may_range_step = 1;
4741
4742 /* When stepping backward, stop at beginning of line range
4743 (unless it's the function entry point, in which case
4744 keep going back to the call point). */
4745 if (stop_pc == ecs->event_thread->control.step_range_start
4746 && stop_pc != ecs->stop_func_start
4747 && execution_direction == EXEC_REVERSE)
4748 {
4749 ecs->event_thread->control.stop_step = 1;
4750 print_end_stepping_range_reason ();
4751 stop_stepping (ecs);
4752 }
4753 else
4754 keep_going (ecs);
4755
4756 return;
4757 }
4758
4759 /* We stepped out of the stepping range. */
4760
4761 /* If we are stepping at the source level and entered the runtime
4762 loader dynamic symbol resolution code...
4763
4764 EXEC_FORWARD: we keep on single stepping until we exit the run
4765 time loader code and reach the callee's address.
4766
4767 EXEC_REVERSE: we've already executed the callee (backward), and
4768 the runtime loader code is handled just like any other
4769 undebuggable function call. Now we need only keep stepping
4770 backward through the trampoline code, and that's handled further
4771 down, so there is nothing for us to do here. */
4772
4773 if (execution_direction != EXEC_REVERSE
4774 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4775 && in_solib_dynsym_resolve_code (stop_pc))
4776 {
4777 CORE_ADDR pc_after_resolver =
4778 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4779
4780 if (debug_infrun)
4781 fprintf_unfiltered (gdb_stdlog,
4782 "infrun: stepped into dynsym resolve code\n");
4783
4784 if (pc_after_resolver)
4785 {
4786 /* Set up a step-resume breakpoint at the address
4787 indicated by SKIP_SOLIB_RESOLVER. */
4788 struct symtab_and_line sr_sal;
4789
4790 init_sal (&sr_sal);
4791 sr_sal.pc = pc_after_resolver;
4792 sr_sal.pspace = get_frame_program_space (frame);
4793
4794 insert_step_resume_breakpoint_at_sal (gdbarch,
4795 sr_sal, null_frame_id);
4796 }
4797
4798 keep_going (ecs);
4799 return;
4800 }
4801
4802 if (ecs->event_thread->control.step_range_end != 1
4803 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4804 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4805 && get_frame_type (frame) == SIGTRAMP_FRAME)
4806 {
4807 if (debug_infrun)
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: stepped into signal trampoline\n");
4810 /* The inferior, while doing a "step" or "next", has ended up in
4811 a signal trampoline (either by a signal being delivered or by
4812 the signal handler returning). Just single-step until the
4813 inferior leaves the trampoline (either by calling the handler
4814 or returning). */
4815 keep_going (ecs);
4816 return;
4817 }
4818
4819 /* If we're in the return path from a shared library trampoline,
4820 we want to proceed through the trampoline when stepping. */
4821 /* macro/2012-04-25: This needs to come before the subroutine
4822 call check below as on some targets return trampolines look
4823 like subroutine calls (MIPS16 return thunks). */
4824 if (gdbarch_in_solib_return_trampoline (gdbarch,
4825 stop_pc, ecs->stop_func_name)
4826 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4827 {
4828 /* Determine where this trampoline returns. */
4829 CORE_ADDR real_stop_pc;
4830
4831 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4832
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog,
4835 "infrun: stepped into solib return tramp\n");
4836
4837 /* Only proceed through if we know where it's going. */
4838 if (real_stop_pc)
4839 {
4840 /* And put the step-breakpoint there and go until there. */
4841 struct symtab_and_line sr_sal;
4842
4843 init_sal (&sr_sal); /* initialize to zeroes */
4844 sr_sal.pc = real_stop_pc;
4845 sr_sal.section = find_pc_overlay (sr_sal.pc);
4846 sr_sal.pspace = get_frame_program_space (frame);
4847
4848 /* Do not specify what the fp should be when we stop since
4849 on some machines the prologue is where the new fp value
4850 is established. */
4851 insert_step_resume_breakpoint_at_sal (gdbarch,
4852 sr_sal, null_frame_id);
4853
4854 /* Restart without fiddling with the step ranges or
4855 other state. */
4856 keep_going (ecs);
4857 return;
4858 }
4859 }
4860
4861 /* Check for subroutine calls. The check for the current frame
4862 equalling the step ID is not necessary - the check of the
4863 previous frame's ID is sufficient - but it is a common case and
4864 cheaper than checking the previous frame's ID.
4865
4866 NOTE: frame_id_eq will never report two invalid frame IDs as
4867 being equal, so to get into this block, both the current and
4868 previous frame must have valid frame IDs. */
4869 /* The outer_frame_id check is a heuristic to detect stepping
4870 through startup code. If we step over an instruction which
4871 sets the stack pointer from an invalid value to a valid value,
4872 we may detect that as a subroutine call from the mythical
4873 "outermost" function. This could be fixed by marking
4874 outermost frames as !stack_p,code_p,special_p. Then the
4875 initial outermost frame, before sp was valid, would
4876 have code_addr == &_start. See the comment in frame_id_eq
4877 for more. */
4878 if (!frame_id_eq (get_stack_frame_id (frame),
4879 ecs->event_thread->control.step_stack_frame_id)
4880 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4881 ecs->event_thread->control.step_stack_frame_id)
4882 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4883 outer_frame_id)
4884 || step_start_function != find_pc_function (stop_pc))))
4885 {
4886 CORE_ADDR real_stop_pc;
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4890
4891 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4892 || ((ecs->event_thread->control.step_range_end == 1)
4893 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4894 ecs->stop_func_start)))
4895 {
4896 /* I presume that step_over_calls is only 0 when we're
4897 supposed to be stepping at the assembly language level
4898 ("stepi"). Just stop. */
4899 /* Also, maybe we just did a "nexti" inside a prolog, so we
4900 thought it was a subroutine call but it was not. Stop as
4901 well. FENN */
4902 /* And this works the same backward as frontward. MVS */
4903 ecs->event_thread->control.stop_step = 1;
4904 print_end_stepping_range_reason ();
4905 stop_stepping (ecs);
4906 return;
4907 }
4908
4909 /* Reverse stepping through solib trampolines. */
4910
4911 if (execution_direction == EXEC_REVERSE
4912 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4913 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4914 || (ecs->stop_func_start == 0
4915 && in_solib_dynsym_resolve_code (stop_pc))))
4916 {
4917 /* Any solib trampoline code can be handled in reverse
4918 by simply continuing to single-step. We have already
4919 executed the solib function (backwards), and a few
4920 steps will take us back through the trampoline to the
4921 caller. */
4922 keep_going (ecs);
4923 return;
4924 }
4925
4926 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4927 {
4928 /* We're doing a "next".
4929
4930 Normal (forward) execution: set a breakpoint at the
4931 callee's return address (the address at which the caller
4932 will resume).
4933
4934 Reverse (backward) execution. set the step-resume
4935 breakpoint at the start of the function that we just
4936 stepped into (backwards), and continue to there. When we
4937 get there, we'll need to single-step back to the caller. */
4938
4939 if (execution_direction == EXEC_REVERSE)
4940 {
4941 /* If we're already at the start of the function, we've either
4942 just stepped backward into a single instruction function,
4943 or stepped back out of a signal handler to the first instruction
4944 of the function. Just keep going, which will single-step back
4945 to the caller. */
4946 if (ecs->stop_func_start != stop_pc)
4947 {
4948 struct symtab_and_line sr_sal;
4949
4950 /* Normal function call return (static or dynamic). */
4951 init_sal (&sr_sal);
4952 sr_sal.pc = ecs->stop_func_start;
4953 sr_sal.pspace = get_frame_program_space (frame);
4954 insert_step_resume_breakpoint_at_sal (gdbarch,
4955 sr_sal, null_frame_id);
4956 }
4957 }
4958 else
4959 insert_step_resume_breakpoint_at_caller (frame);
4960
4961 keep_going (ecs);
4962 return;
4963 }
4964
4965 /* If we are in a function call trampoline (a stub between the
4966 calling routine and the real function), locate the real
4967 function. That's what tells us (a) whether we want to step
4968 into it at all, and (b) what prologue we want to run to the
4969 end of, if we do step into it. */
4970 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4971 if (real_stop_pc == 0)
4972 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4973 if (real_stop_pc != 0)
4974 ecs->stop_func_start = real_stop_pc;
4975
4976 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4977 {
4978 struct symtab_and_line sr_sal;
4979
4980 init_sal (&sr_sal);
4981 sr_sal.pc = ecs->stop_func_start;
4982 sr_sal.pspace = get_frame_program_space (frame);
4983
4984 insert_step_resume_breakpoint_at_sal (gdbarch,
4985 sr_sal, null_frame_id);
4986 keep_going (ecs);
4987 return;
4988 }
4989
4990 /* If we have line number information for the function we are
4991 thinking of stepping into and the function isn't on the skip
4992 list, step into it.
4993
4994 If there are several symtabs at that PC (e.g. with include
4995 files), just want to know whether *any* of them have line
4996 numbers. find_pc_line handles this. */
4997 {
4998 struct symtab_and_line tmp_sal;
4999
5000 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5001 if (tmp_sal.line != 0
5002 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5003 &tmp_sal))
5004 {
5005 if (execution_direction == EXEC_REVERSE)
5006 handle_step_into_function_backward (gdbarch, ecs);
5007 else
5008 handle_step_into_function (gdbarch, ecs);
5009 return;
5010 }
5011 }
5012
5013 /* If we have no line number and the step-stop-if-no-debug is
5014 set, we stop the step so that the user has a chance to switch
5015 in assembly mode. */
5016 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5017 && step_stop_if_no_debug)
5018 {
5019 ecs->event_thread->control.stop_step = 1;
5020 print_end_stepping_range_reason ();
5021 stop_stepping (ecs);
5022 return;
5023 }
5024
5025 if (execution_direction == EXEC_REVERSE)
5026 {
5027 /* If we're already at the start of the function, we've either just
5028 stepped backward into a single instruction function without line
5029 number info, or stepped back out of a signal handler to the first
5030 instruction of the function without line number info. Just keep
5031 going, which will single-step back to the caller. */
5032 if (ecs->stop_func_start != stop_pc)
5033 {
5034 /* Set a breakpoint at callee's start address.
5035 From there we can step once and be back in the caller. */
5036 struct symtab_and_line sr_sal;
5037
5038 init_sal (&sr_sal);
5039 sr_sal.pc = ecs->stop_func_start;
5040 sr_sal.pspace = get_frame_program_space (frame);
5041 insert_step_resume_breakpoint_at_sal (gdbarch,
5042 sr_sal, null_frame_id);
5043 }
5044 }
5045 else
5046 /* Set a breakpoint at callee's return address (the address
5047 at which the caller will resume). */
5048 insert_step_resume_breakpoint_at_caller (frame);
5049
5050 keep_going (ecs);
5051 return;
5052 }
5053
5054 /* Reverse stepping through solib trampolines. */
5055
5056 if (execution_direction == EXEC_REVERSE
5057 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5058 {
5059 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5060 || (ecs->stop_func_start == 0
5061 && in_solib_dynsym_resolve_code (stop_pc)))
5062 {
5063 /* Any solib trampoline code can be handled in reverse
5064 by simply continuing to single-step. We have already
5065 executed the solib function (backwards), and a few
5066 steps will take us back through the trampoline to the
5067 caller. */
5068 keep_going (ecs);
5069 return;
5070 }
5071 else if (in_solib_dynsym_resolve_code (stop_pc))
5072 {
5073 /* Stepped backward into the solib dynsym resolver.
5074 Set a breakpoint at its start and continue, then
5075 one more step will take us out. */
5076 struct symtab_and_line sr_sal;
5077
5078 init_sal (&sr_sal);
5079 sr_sal.pc = ecs->stop_func_start;
5080 sr_sal.pspace = get_frame_program_space (frame);
5081 insert_step_resume_breakpoint_at_sal (gdbarch,
5082 sr_sal, null_frame_id);
5083 keep_going (ecs);
5084 return;
5085 }
5086 }
5087
5088 stop_pc_sal = find_pc_line (stop_pc, 0);
5089
5090 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5091 the trampoline processing logic, however, there are some trampolines
5092 that have no names, so we should do trampoline handling first. */
5093 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5094 && ecs->stop_func_name == NULL
5095 && stop_pc_sal.line == 0)
5096 {
5097 if (debug_infrun)
5098 fprintf_unfiltered (gdb_stdlog,
5099 "infrun: stepped into undebuggable function\n");
5100
5101 /* The inferior just stepped into, or returned to, an
5102 undebuggable function (where there is no debugging information
5103 and no line number corresponding to the address where the
5104 inferior stopped). Since we want to skip this kind of code,
5105 we keep going until the inferior returns from this
5106 function - unless the user has asked us not to (via
5107 set step-mode) or we no longer know how to get back
5108 to the call site. */
5109 if (step_stop_if_no_debug
5110 || !frame_id_p (frame_unwind_caller_id (frame)))
5111 {
5112 /* If we have no line number and the step-stop-if-no-debug
5113 is set, we stop the step so that the user has a chance to
5114 switch in assembly mode. */
5115 ecs->event_thread->control.stop_step = 1;
5116 print_end_stepping_range_reason ();
5117 stop_stepping (ecs);
5118 return;
5119 }
5120 else
5121 {
5122 /* Set a breakpoint at callee's return address (the address
5123 at which the caller will resume). */
5124 insert_step_resume_breakpoint_at_caller (frame);
5125 keep_going (ecs);
5126 return;
5127 }
5128 }
5129
5130 if (ecs->event_thread->control.step_range_end == 1)
5131 {
5132 /* It is stepi or nexti. We always want to stop stepping after
5133 one instruction. */
5134 if (debug_infrun)
5135 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5136 ecs->event_thread->control.stop_step = 1;
5137 print_end_stepping_range_reason ();
5138 stop_stepping (ecs);
5139 return;
5140 }
5141
5142 if (stop_pc_sal.line == 0)
5143 {
5144 /* We have no line number information. That means to stop
5145 stepping (does this always happen right after one instruction,
5146 when we do "s" in a function with no line numbers,
5147 or can this happen as a result of a return or longjmp?). */
5148 if (debug_infrun)
5149 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5150 ecs->event_thread->control.stop_step = 1;
5151 print_end_stepping_range_reason ();
5152 stop_stepping (ecs);
5153 return;
5154 }
5155
5156 /* Look for "calls" to inlined functions, part one. If the inline
5157 frame machinery detected some skipped call sites, we have entered
5158 a new inline function. */
5159
5160 if (frame_id_eq (get_frame_id (get_current_frame ()),
5161 ecs->event_thread->control.step_frame_id)
5162 && inline_skipped_frames (ecs->ptid))
5163 {
5164 struct symtab_and_line call_sal;
5165
5166 if (debug_infrun)
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: stepped into inlined function\n");
5169
5170 find_frame_sal (get_current_frame (), &call_sal);
5171
5172 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5173 {
5174 /* For "step", we're going to stop. But if the call site
5175 for this inlined function is on the same source line as
5176 we were previously stepping, go down into the function
5177 first. Otherwise stop at the call site. */
5178
5179 if (call_sal.line == ecs->event_thread->current_line
5180 && call_sal.symtab == ecs->event_thread->current_symtab)
5181 step_into_inline_frame (ecs->ptid);
5182
5183 ecs->event_thread->control.stop_step = 1;
5184 print_end_stepping_range_reason ();
5185 stop_stepping (ecs);
5186 return;
5187 }
5188 else
5189 {
5190 /* For "next", we should stop at the call site if it is on a
5191 different source line. Otherwise continue through the
5192 inlined function. */
5193 if (call_sal.line == ecs->event_thread->current_line
5194 && call_sal.symtab == ecs->event_thread->current_symtab)
5195 keep_going (ecs);
5196 else
5197 {
5198 ecs->event_thread->control.stop_step = 1;
5199 print_end_stepping_range_reason ();
5200 stop_stepping (ecs);
5201 }
5202 return;
5203 }
5204 }
5205
5206 /* Look for "calls" to inlined functions, part two. If we are still
5207 in the same real function we were stepping through, but we have
5208 to go further up to find the exact frame ID, we are stepping
5209 through a more inlined call beyond its call site. */
5210
5211 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5212 && !frame_id_eq (get_frame_id (get_current_frame ()),
5213 ecs->event_thread->control.step_frame_id)
5214 && stepped_in_from (get_current_frame (),
5215 ecs->event_thread->control.step_frame_id))
5216 {
5217 if (debug_infrun)
5218 fprintf_unfiltered (gdb_stdlog,
5219 "infrun: stepping through inlined function\n");
5220
5221 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5222 keep_going (ecs);
5223 else
5224 {
5225 ecs->event_thread->control.stop_step = 1;
5226 print_end_stepping_range_reason ();
5227 stop_stepping (ecs);
5228 }
5229 return;
5230 }
5231
5232 if ((stop_pc == stop_pc_sal.pc)
5233 && (ecs->event_thread->current_line != stop_pc_sal.line
5234 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5235 {
5236 /* We are at the start of a different line. So stop. Note that
5237 we don't stop if we step into the middle of a different line.
5238 That is said to make things like for (;;) statements work
5239 better. */
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: stepped to a different line\n");
5243 ecs->event_thread->control.stop_step = 1;
5244 print_end_stepping_range_reason ();
5245 stop_stepping (ecs);
5246 return;
5247 }
5248
5249 /* We aren't done stepping.
5250
5251 Optimize by setting the stepping range to the line.
5252 (We might not be in the original line, but if we entered a
5253 new line in mid-statement, we continue stepping. This makes
5254 things like for(;;) statements work better.) */
5255
5256 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5257 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5258 ecs->event_thread->control.may_range_step = 1;
5259 set_step_info (frame, stop_pc_sal);
5260
5261 if (debug_infrun)
5262 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5263 keep_going (ecs);
5264 }
5265
5266 /* Is thread TP in the middle of single-stepping? */
5267
5268 static int
5269 currently_stepping (struct thread_info *tp)
5270 {
5271 return ((tp->control.step_range_end
5272 && tp->control.step_resume_breakpoint == NULL)
5273 || tp->control.trap_expected
5274 || bpstat_should_step ());
5275 }
5276
5277 /* Returns true if any thread *but* the one passed in "data" is in the
5278 middle of stepping or of handling a "next". */
5279
5280 static int
5281 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5282 {
5283 if (tp == data)
5284 return 0;
5285
5286 return (tp->control.step_range_end
5287 || tp->control.trap_expected);
5288 }
5289
5290 /* Inferior has stepped into a subroutine call with source code that
5291 we should not step over. Do step to the first line of code in
5292 it. */
5293
5294 static void
5295 handle_step_into_function (struct gdbarch *gdbarch,
5296 struct execution_control_state *ecs)
5297 {
5298 struct symtab *s;
5299 struct symtab_and_line stop_func_sal, sr_sal;
5300
5301 fill_in_stop_func (gdbarch, ecs);
5302
5303 s = find_pc_symtab (stop_pc);
5304 if (s && s->language != language_asm)
5305 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5306 ecs->stop_func_start);
5307
5308 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5309 /* Use the step_resume_break to step until the end of the prologue,
5310 even if that involves jumps (as it seems to on the vax under
5311 4.2). */
5312 /* If the prologue ends in the middle of a source line, continue to
5313 the end of that source line (if it is still within the function).
5314 Otherwise, just go to end of prologue. */
5315 if (stop_func_sal.end
5316 && stop_func_sal.pc != ecs->stop_func_start
5317 && stop_func_sal.end < ecs->stop_func_end)
5318 ecs->stop_func_start = stop_func_sal.end;
5319
5320 /* Architectures which require breakpoint adjustment might not be able
5321 to place a breakpoint at the computed address. If so, the test
5322 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5323 ecs->stop_func_start to an address at which a breakpoint may be
5324 legitimately placed.
5325
5326 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5327 made, GDB will enter an infinite loop when stepping through
5328 optimized code consisting of VLIW instructions which contain
5329 subinstructions corresponding to different source lines. On
5330 FR-V, it's not permitted to place a breakpoint on any but the
5331 first subinstruction of a VLIW instruction. When a breakpoint is
5332 set, GDB will adjust the breakpoint address to the beginning of
5333 the VLIW instruction. Thus, we need to make the corresponding
5334 adjustment here when computing the stop address. */
5335
5336 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5337 {
5338 ecs->stop_func_start
5339 = gdbarch_adjust_breakpoint_address (gdbarch,
5340 ecs->stop_func_start);
5341 }
5342
5343 if (ecs->stop_func_start == stop_pc)
5344 {
5345 /* We are already there: stop now. */
5346 ecs->event_thread->control.stop_step = 1;
5347 print_end_stepping_range_reason ();
5348 stop_stepping (ecs);
5349 return;
5350 }
5351 else
5352 {
5353 /* Put the step-breakpoint there and go until there. */
5354 init_sal (&sr_sal); /* initialize to zeroes */
5355 sr_sal.pc = ecs->stop_func_start;
5356 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5357 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5358
5359 /* Do not specify what the fp should be when we stop since on
5360 some machines the prologue is where the new fp value is
5361 established. */
5362 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5363
5364 /* And make sure stepping stops right away then. */
5365 ecs->event_thread->control.step_range_end
5366 = ecs->event_thread->control.step_range_start;
5367 }
5368 keep_going (ecs);
5369 }
5370
5371 /* Inferior has stepped backward into a subroutine call with source
5372 code that we should not step over. Do step to the beginning of the
5373 last line of code in it. */
5374
5375 static void
5376 handle_step_into_function_backward (struct gdbarch *gdbarch,
5377 struct execution_control_state *ecs)
5378 {
5379 struct symtab *s;
5380 struct symtab_and_line stop_func_sal;
5381
5382 fill_in_stop_func (gdbarch, ecs);
5383
5384 s = find_pc_symtab (stop_pc);
5385 if (s && s->language != language_asm)
5386 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5387 ecs->stop_func_start);
5388
5389 stop_func_sal = find_pc_line (stop_pc, 0);
5390
5391 /* OK, we're just going to keep stepping here. */
5392 if (stop_func_sal.pc == stop_pc)
5393 {
5394 /* We're there already. Just stop stepping now. */
5395 ecs->event_thread->control.stop_step = 1;
5396 print_end_stepping_range_reason ();
5397 stop_stepping (ecs);
5398 }
5399 else
5400 {
5401 /* Else just reset the step range and keep going.
5402 No step-resume breakpoint, they don't work for
5403 epilogues, which can have multiple entry paths. */
5404 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5405 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5406 keep_going (ecs);
5407 }
5408 return;
5409 }
5410
5411 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5412 This is used to both functions and to skip over code. */
5413
5414 static void
5415 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5416 struct symtab_and_line sr_sal,
5417 struct frame_id sr_id,
5418 enum bptype sr_type)
5419 {
5420 /* There should never be more than one step-resume or longjmp-resume
5421 breakpoint per thread, so we should never be setting a new
5422 step_resume_breakpoint when one is already active. */
5423 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5424 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5425
5426 if (debug_infrun)
5427 fprintf_unfiltered (gdb_stdlog,
5428 "infrun: inserting step-resume breakpoint at %s\n",
5429 paddress (gdbarch, sr_sal.pc));
5430
5431 inferior_thread ()->control.step_resume_breakpoint
5432 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5433 }
5434
5435 void
5436 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5437 struct symtab_and_line sr_sal,
5438 struct frame_id sr_id)
5439 {
5440 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5441 sr_sal, sr_id,
5442 bp_step_resume);
5443 }
5444
5445 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5446 This is used to skip a potential signal handler.
5447
5448 This is called with the interrupted function's frame. The signal
5449 handler, when it returns, will resume the interrupted function at
5450 RETURN_FRAME.pc. */
5451
5452 static void
5453 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5454 {
5455 struct symtab_and_line sr_sal;
5456 struct gdbarch *gdbarch;
5457
5458 gdb_assert (return_frame != NULL);
5459 init_sal (&sr_sal); /* initialize to zeros */
5460
5461 gdbarch = get_frame_arch (return_frame);
5462 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5463 sr_sal.section = find_pc_overlay (sr_sal.pc);
5464 sr_sal.pspace = get_frame_program_space (return_frame);
5465
5466 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5467 get_stack_frame_id (return_frame),
5468 bp_hp_step_resume);
5469 }
5470
5471 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5472 is used to skip a function after stepping into it (for "next" or if
5473 the called function has no debugging information).
5474
5475 The current function has almost always been reached by single
5476 stepping a call or return instruction. NEXT_FRAME belongs to the
5477 current function, and the breakpoint will be set at the caller's
5478 resume address.
5479
5480 This is a separate function rather than reusing
5481 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5482 get_prev_frame, which may stop prematurely (see the implementation
5483 of frame_unwind_caller_id for an example). */
5484
5485 static void
5486 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5487 {
5488 struct symtab_and_line sr_sal;
5489 struct gdbarch *gdbarch;
5490
5491 /* We shouldn't have gotten here if we don't know where the call site
5492 is. */
5493 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5494
5495 init_sal (&sr_sal); /* initialize to zeros */
5496
5497 gdbarch = frame_unwind_caller_arch (next_frame);
5498 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5499 frame_unwind_caller_pc (next_frame));
5500 sr_sal.section = find_pc_overlay (sr_sal.pc);
5501 sr_sal.pspace = frame_unwind_program_space (next_frame);
5502
5503 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5504 frame_unwind_caller_id (next_frame));
5505 }
5506
5507 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5508 new breakpoint at the target of a jmp_buf. The handling of
5509 longjmp-resume uses the same mechanisms used for handling
5510 "step-resume" breakpoints. */
5511
5512 static void
5513 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5514 {
5515 /* There should never be more than one longjmp-resume breakpoint per
5516 thread, so we should never be setting a new
5517 longjmp_resume_breakpoint when one is already active. */
5518 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5519
5520 if (debug_infrun)
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: inserting longjmp-resume breakpoint at %s\n",
5523 paddress (gdbarch, pc));
5524
5525 inferior_thread ()->control.exception_resume_breakpoint =
5526 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5527 }
5528
5529 /* Insert an exception resume breakpoint. TP is the thread throwing
5530 the exception. The block B is the block of the unwinder debug hook
5531 function. FRAME is the frame corresponding to the call to this
5532 function. SYM is the symbol of the function argument holding the
5533 target PC of the exception. */
5534
5535 static void
5536 insert_exception_resume_breakpoint (struct thread_info *tp,
5537 struct block *b,
5538 struct frame_info *frame,
5539 struct symbol *sym)
5540 {
5541 volatile struct gdb_exception e;
5542
5543 /* We want to ignore errors here. */
5544 TRY_CATCH (e, RETURN_MASK_ERROR)
5545 {
5546 struct symbol *vsym;
5547 struct value *value;
5548 CORE_ADDR handler;
5549 struct breakpoint *bp;
5550
5551 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5552 value = read_var_value (vsym, frame);
5553 /* If the value was optimized out, revert to the old behavior. */
5554 if (! value_optimized_out (value))
5555 {
5556 handler = value_as_address (value);
5557
5558 if (debug_infrun)
5559 fprintf_unfiltered (gdb_stdlog,
5560 "infrun: exception resume at %lx\n",
5561 (unsigned long) handler);
5562
5563 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5564 handler, bp_exception_resume);
5565
5566 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5567 frame = NULL;
5568
5569 bp->thread = tp->num;
5570 inferior_thread ()->control.exception_resume_breakpoint = bp;
5571 }
5572 }
5573 }
5574
5575 /* A helper for check_exception_resume that sets an
5576 exception-breakpoint based on a SystemTap probe. */
5577
5578 static void
5579 insert_exception_resume_from_probe (struct thread_info *tp,
5580 const struct probe *probe,
5581 struct frame_info *frame)
5582 {
5583 struct value *arg_value;
5584 CORE_ADDR handler;
5585 struct breakpoint *bp;
5586
5587 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5588 if (!arg_value)
5589 return;
5590
5591 handler = value_as_address (arg_value);
5592
5593 if (debug_infrun)
5594 fprintf_unfiltered (gdb_stdlog,
5595 "infrun: exception resume at %s\n",
5596 paddress (get_objfile_arch (probe->objfile),
5597 handler));
5598
5599 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5600 handler, bp_exception_resume);
5601 bp->thread = tp->num;
5602 inferior_thread ()->control.exception_resume_breakpoint = bp;
5603 }
5604
5605 /* This is called when an exception has been intercepted. Check to
5606 see whether the exception's destination is of interest, and if so,
5607 set an exception resume breakpoint there. */
5608
5609 static void
5610 check_exception_resume (struct execution_control_state *ecs,
5611 struct frame_info *frame)
5612 {
5613 volatile struct gdb_exception e;
5614 const struct probe *probe;
5615 struct symbol *func;
5616
5617 /* First see if this exception unwinding breakpoint was set via a
5618 SystemTap probe point. If so, the probe has two arguments: the
5619 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5620 set a breakpoint there. */
5621 probe = find_probe_by_pc (get_frame_pc (frame));
5622 if (probe)
5623 {
5624 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5625 return;
5626 }
5627
5628 func = get_frame_function (frame);
5629 if (!func)
5630 return;
5631
5632 TRY_CATCH (e, RETURN_MASK_ERROR)
5633 {
5634 struct block *b;
5635 struct block_iterator iter;
5636 struct symbol *sym;
5637 int argno = 0;
5638
5639 /* The exception breakpoint is a thread-specific breakpoint on
5640 the unwinder's debug hook, declared as:
5641
5642 void _Unwind_DebugHook (void *cfa, void *handler);
5643
5644 The CFA argument indicates the frame to which control is
5645 about to be transferred. HANDLER is the destination PC.
5646
5647 We ignore the CFA and set a temporary breakpoint at HANDLER.
5648 This is not extremely efficient but it avoids issues in gdb
5649 with computing the DWARF CFA, and it also works even in weird
5650 cases such as throwing an exception from inside a signal
5651 handler. */
5652
5653 b = SYMBOL_BLOCK_VALUE (func);
5654 ALL_BLOCK_SYMBOLS (b, iter, sym)
5655 {
5656 if (!SYMBOL_IS_ARGUMENT (sym))
5657 continue;
5658
5659 if (argno == 0)
5660 ++argno;
5661 else
5662 {
5663 insert_exception_resume_breakpoint (ecs->event_thread,
5664 b, frame, sym);
5665 break;
5666 }
5667 }
5668 }
5669 }
5670
5671 static void
5672 stop_stepping (struct execution_control_state *ecs)
5673 {
5674 if (debug_infrun)
5675 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5676
5677 /* Let callers know we don't want to wait for the inferior anymore. */
5678 ecs->wait_some_more = 0;
5679 }
5680
5681 /* This function handles various cases where we need to continue
5682 waiting for the inferior. */
5683 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5684
5685 static void
5686 keep_going (struct execution_control_state *ecs)
5687 {
5688 /* Make sure normal_stop is called if we get a QUIT handled before
5689 reaching resume. */
5690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5691
5692 /* Save the pc before execution, to compare with pc after stop. */
5693 ecs->event_thread->prev_pc
5694 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5695
5696 /* If we did not do break;, it means we should keep running the
5697 inferior and not return to debugger. */
5698
5699 if (ecs->event_thread->control.trap_expected
5700 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5701 {
5702 /* We took a signal (which we are supposed to pass through to
5703 the inferior, else we'd not get here) and we haven't yet
5704 gotten our trap. Simply continue. */
5705
5706 discard_cleanups (old_cleanups);
5707 resume (currently_stepping (ecs->event_thread),
5708 ecs->event_thread->suspend.stop_signal);
5709 }
5710 else
5711 {
5712 /* Either the trap was not expected, but we are continuing
5713 anyway (the user asked that this signal be passed to the
5714 child)
5715 -- or --
5716 The signal was SIGTRAP, e.g. it was our signal, but we
5717 decided we should resume from it.
5718
5719 We're going to run this baby now!
5720
5721 Note that insert_breakpoints won't try to re-insert
5722 already inserted breakpoints. Therefore, we don't
5723 care if breakpoints were already inserted, or not. */
5724
5725 if (ecs->event_thread->stepping_over_breakpoint)
5726 {
5727 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5728
5729 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5730 /* Since we can't do a displaced step, we have to remove
5731 the breakpoint while we step it. To keep things
5732 simple, we remove them all. */
5733 remove_breakpoints ();
5734 }
5735 else
5736 {
5737 volatile struct gdb_exception e;
5738
5739 /* Stop stepping when inserting breakpoints
5740 has failed. */
5741 TRY_CATCH (e, RETURN_MASK_ERROR)
5742 {
5743 insert_breakpoints ();
5744 }
5745 if (e.reason < 0)
5746 {
5747 exception_print (gdb_stderr, e);
5748 stop_stepping (ecs);
5749 return;
5750 }
5751 }
5752
5753 ecs->event_thread->control.trap_expected
5754 = ecs->event_thread->stepping_over_breakpoint;
5755
5756 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5757 specifies that such a signal should be delivered to the
5758 target program).
5759
5760 Typically, this would occure when a user is debugging a
5761 target monitor on a simulator: the target monitor sets a
5762 breakpoint; the simulator encounters this break-point and
5763 halts the simulation handing control to GDB; GDB, noteing
5764 that the break-point isn't valid, returns control back to the
5765 simulator; the simulator then delivers the hardware
5766 equivalent of a SIGNAL_TRAP to the program being debugged. */
5767
5768 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5769 && !signal_program[ecs->event_thread->suspend.stop_signal])
5770 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5771
5772 discard_cleanups (old_cleanups);
5773 resume (currently_stepping (ecs->event_thread),
5774 ecs->event_thread->suspend.stop_signal);
5775 }
5776
5777 prepare_to_wait (ecs);
5778 }
5779
5780 /* This function normally comes after a resume, before
5781 handle_inferior_event exits. It takes care of any last bits of
5782 housekeeping, and sets the all-important wait_some_more flag. */
5783
5784 static void
5785 prepare_to_wait (struct execution_control_state *ecs)
5786 {
5787 if (debug_infrun)
5788 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5789
5790 /* This is the old end of the while loop. Let everybody know we
5791 want to wait for the inferior some more and get called again
5792 soon. */
5793 ecs->wait_some_more = 1;
5794 }
5795
5796 /* Several print_*_reason functions to print why the inferior has stopped.
5797 We always print something when the inferior exits, or receives a signal.
5798 The rest of the cases are dealt with later on in normal_stop and
5799 print_it_typical. Ideally there should be a call to one of these
5800 print_*_reason functions functions from handle_inferior_event each time
5801 stop_stepping is called. */
5802
5803 /* Print why the inferior has stopped.
5804 We are done with a step/next/si/ni command, print why the inferior has
5805 stopped. For now print nothing. Print a message only if not in the middle
5806 of doing a "step n" operation for n > 1. */
5807
5808 static void
5809 print_end_stepping_range_reason (void)
5810 {
5811 if ((!inferior_thread ()->step_multi
5812 || !inferior_thread ()->control.stop_step)
5813 && ui_out_is_mi_like_p (current_uiout))
5814 ui_out_field_string (current_uiout, "reason",
5815 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5816 }
5817
5818 /* The inferior was terminated by a signal, print why it stopped. */
5819
5820 static void
5821 print_signal_exited_reason (enum gdb_signal siggnal)
5822 {
5823 struct ui_out *uiout = current_uiout;
5824
5825 annotate_signalled ();
5826 if (ui_out_is_mi_like_p (uiout))
5827 ui_out_field_string
5828 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5829 ui_out_text (uiout, "\nProgram terminated with signal ");
5830 annotate_signal_name ();
5831 ui_out_field_string (uiout, "signal-name",
5832 gdb_signal_to_name (siggnal));
5833 annotate_signal_name_end ();
5834 ui_out_text (uiout, ", ");
5835 annotate_signal_string ();
5836 ui_out_field_string (uiout, "signal-meaning",
5837 gdb_signal_to_string (siggnal));
5838 annotate_signal_string_end ();
5839 ui_out_text (uiout, ".\n");
5840 ui_out_text (uiout, "The program no longer exists.\n");
5841 }
5842
5843 /* The inferior program is finished, print why it stopped. */
5844
5845 static void
5846 print_exited_reason (int exitstatus)
5847 {
5848 struct inferior *inf = current_inferior ();
5849 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5850 struct ui_out *uiout = current_uiout;
5851
5852 annotate_exited (exitstatus);
5853 if (exitstatus)
5854 {
5855 if (ui_out_is_mi_like_p (uiout))
5856 ui_out_field_string (uiout, "reason",
5857 async_reason_lookup (EXEC_ASYNC_EXITED));
5858 ui_out_text (uiout, "[Inferior ");
5859 ui_out_text (uiout, plongest (inf->num));
5860 ui_out_text (uiout, " (");
5861 ui_out_text (uiout, pidstr);
5862 ui_out_text (uiout, ") exited with code ");
5863 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5864 ui_out_text (uiout, "]\n");
5865 }
5866 else
5867 {
5868 if (ui_out_is_mi_like_p (uiout))
5869 ui_out_field_string
5870 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5871 ui_out_text (uiout, "[Inferior ");
5872 ui_out_text (uiout, plongest (inf->num));
5873 ui_out_text (uiout, " (");
5874 ui_out_text (uiout, pidstr);
5875 ui_out_text (uiout, ") exited normally]\n");
5876 }
5877 /* Support the --return-child-result option. */
5878 return_child_result_value = exitstatus;
5879 }
5880
5881 /* Signal received, print why the inferior has stopped. The signal table
5882 tells us to print about it. */
5883
5884 static void
5885 print_signal_received_reason (enum gdb_signal siggnal)
5886 {
5887 struct ui_out *uiout = current_uiout;
5888
5889 annotate_signal ();
5890
5891 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5892 {
5893 struct thread_info *t = inferior_thread ();
5894
5895 ui_out_text (uiout, "\n[");
5896 ui_out_field_string (uiout, "thread-name",
5897 target_pid_to_str (t->ptid));
5898 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5899 ui_out_text (uiout, " stopped");
5900 }
5901 else
5902 {
5903 ui_out_text (uiout, "\nProgram received signal ");
5904 annotate_signal_name ();
5905 if (ui_out_is_mi_like_p (uiout))
5906 ui_out_field_string
5907 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5908 ui_out_field_string (uiout, "signal-name",
5909 gdb_signal_to_name (siggnal));
5910 annotate_signal_name_end ();
5911 ui_out_text (uiout, ", ");
5912 annotate_signal_string ();
5913 ui_out_field_string (uiout, "signal-meaning",
5914 gdb_signal_to_string (siggnal));
5915 annotate_signal_string_end ();
5916 }
5917 ui_out_text (uiout, ".\n");
5918 }
5919
5920 /* Reverse execution: target ran out of history info, print why the inferior
5921 has stopped. */
5922
5923 static void
5924 print_no_history_reason (void)
5925 {
5926 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5927 }
5928
5929 /* Here to return control to GDB when the inferior stops for real.
5930 Print appropriate messages, remove breakpoints, give terminal our modes.
5931
5932 STOP_PRINT_FRAME nonzero means print the executing frame
5933 (pc, function, args, file, line number and line text).
5934 BREAKPOINTS_FAILED nonzero means stop was due to error
5935 attempting to insert breakpoints. */
5936
5937 void
5938 normal_stop (void)
5939 {
5940 struct target_waitstatus last;
5941 ptid_t last_ptid;
5942 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5943
5944 get_last_target_status (&last_ptid, &last);
5945
5946 /* If an exception is thrown from this point on, make sure to
5947 propagate GDB's knowledge of the executing state to the
5948 frontend/user running state. A QUIT is an easy exception to see
5949 here, so do this before any filtered output. */
5950 if (!non_stop)
5951 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5952 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5953 && last.kind != TARGET_WAITKIND_EXITED
5954 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5955 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5956
5957 /* In non-stop mode, we don't want GDB to switch threads behind the
5958 user's back, to avoid races where the user is typing a command to
5959 apply to thread x, but GDB switches to thread y before the user
5960 finishes entering the command. */
5961
5962 /* As with the notification of thread events, we want to delay
5963 notifying the user that we've switched thread context until
5964 the inferior actually stops.
5965
5966 There's no point in saying anything if the inferior has exited.
5967 Note that SIGNALLED here means "exited with a signal", not
5968 "received a signal". */
5969 if (!non_stop
5970 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5971 && target_has_execution
5972 && last.kind != TARGET_WAITKIND_SIGNALLED
5973 && last.kind != TARGET_WAITKIND_EXITED
5974 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5975 {
5976 target_terminal_ours_for_output ();
5977 printf_filtered (_("[Switching to %s]\n"),
5978 target_pid_to_str (inferior_ptid));
5979 annotate_thread_changed ();
5980 previous_inferior_ptid = inferior_ptid;
5981 }
5982
5983 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5984 {
5985 gdb_assert (sync_execution || !target_can_async_p ());
5986
5987 target_terminal_ours_for_output ();
5988 printf_filtered (_("No unwaited-for children left.\n"));
5989 }
5990
5991 if (!breakpoints_always_inserted_mode () && target_has_execution)
5992 {
5993 if (remove_breakpoints ())
5994 {
5995 target_terminal_ours_for_output ();
5996 printf_filtered (_("Cannot remove breakpoints because "
5997 "program is no longer writable.\nFurther "
5998 "execution is probably impossible.\n"));
5999 }
6000 }
6001
6002 /* If an auto-display called a function and that got a signal,
6003 delete that auto-display to avoid an infinite recursion. */
6004
6005 if (stopped_by_random_signal)
6006 disable_current_display ();
6007
6008 /* Don't print a message if in the middle of doing a "step n"
6009 operation for n > 1 */
6010 if (target_has_execution
6011 && last.kind != TARGET_WAITKIND_SIGNALLED
6012 && last.kind != TARGET_WAITKIND_EXITED
6013 && inferior_thread ()->step_multi
6014 && inferior_thread ()->control.stop_step)
6015 goto done;
6016
6017 target_terminal_ours ();
6018 async_enable_stdin ();
6019
6020 /* Set the current source location. This will also happen if we
6021 display the frame below, but the current SAL will be incorrect
6022 during a user hook-stop function. */
6023 if (has_stack_frames () && !stop_stack_dummy)
6024 set_current_sal_from_frame (get_current_frame (), 1);
6025
6026 /* Let the user/frontend see the threads as stopped. */
6027 do_cleanups (old_chain);
6028
6029 /* Look up the hook_stop and run it (CLI internally handles problem
6030 of stop_command's pre-hook not existing). */
6031 if (stop_command)
6032 catch_errors (hook_stop_stub, stop_command,
6033 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6034
6035 if (!has_stack_frames ())
6036 goto done;
6037
6038 if (last.kind == TARGET_WAITKIND_SIGNALLED
6039 || last.kind == TARGET_WAITKIND_EXITED)
6040 goto done;
6041
6042 /* Select innermost stack frame - i.e., current frame is frame 0,
6043 and current location is based on that.
6044 Don't do this on return from a stack dummy routine,
6045 or if the program has exited. */
6046
6047 if (!stop_stack_dummy)
6048 {
6049 select_frame (get_current_frame ());
6050
6051 /* Print current location without a level number, if
6052 we have changed functions or hit a breakpoint.
6053 Print source line if we have one.
6054 bpstat_print() contains the logic deciding in detail
6055 what to print, based on the event(s) that just occurred. */
6056
6057 /* If --batch-silent is enabled then there's no need to print the current
6058 source location, and to try risks causing an error message about
6059 missing source files. */
6060 if (stop_print_frame && !batch_silent)
6061 {
6062 int bpstat_ret;
6063 int source_flag;
6064 int do_frame_printing = 1;
6065 struct thread_info *tp = inferior_thread ();
6066
6067 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6068 switch (bpstat_ret)
6069 {
6070 case PRINT_UNKNOWN:
6071 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6072 (or should) carry around the function and does (or
6073 should) use that when doing a frame comparison. */
6074 if (tp->control.stop_step
6075 && frame_id_eq (tp->control.step_frame_id,
6076 get_frame_id (get_current_frame ()))
6077 && step_start_function == find_pc_function (stop_pc))
6078 source_flag = SRC_LINE; /* Finished step, just
6079 print source line. */
6080 else
6081 source_flag = SRC_AND_LOC; /* Print location and
6082 source line. */
6083 break;
6084 case PRINT_SRC_AND_LOC:
6085 source_flag = SRC_AND_LOC; /* Print location and
6086 source line. */
6087 break;
6088 case PRINT_SRC_ONLY:
6089 source_flag = SRC_LINE;
6090 break;
6091 case PRINT_NOTHING:
6092 source_flag = SRC_LINE; /* something bogus */
6093 do_frame_printing = 0;
6094 break;
6095 default:
6096 internal_error (__FILE__, __LINE__, _("Unknown value."));
6097 }
6098
6099 /* The behavior of this routine with respect to the source
6100 flag is:
6101 SRC_LINE: Print only source line
6102 LOCATION: Print only location
6103 SRC_AND_LOC: Print location and source line. */
6104 if (do_frame_printing)
6105 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6106
6107 /* Display the auto-display expressions. */
6108 do_displays ();
6109 }
6110 }
6111
6112 /* Save the function value return registers, if we care.
6113 We might be about to restore their previous contents. */
6114 if (inferior_thread ()->control.proceed_to_finish
6115 && execution_direction != EXEC_REVERSE)
6116 {
6117 /* This should not be necessary. */
6118 if (stop_registers)
6119 regcache_xfree (stop_registers);
6120
6121 /* NB: The copy goes through to the target picking up the value of
6122 all the registers. */
6123 stop_registers = regcache_dup (get_current_regcache ());
6124 }
6125
6126 if (stop_stack_dummy == STOP_STACK_DUMMY)
6127 {
6128 /* Pop the empty frame that contains the stack dummy.
6129 This also restores inferior state prior to the call
6130 (struct infcall_suspend_state). */
6131 struct frame_info *frame = get_current_frame ();
6132
6133 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6134 frame_pop (frame);
6135 /* frame_pop() calls reinit_frame_cache as the last thing it
6136 does which means there's currently no selected frame. We
6137 don't need to re-establish a selected frame if the dummy call
6138 returns normally, that will be done by
6139 restore_infcall_control_state. However, we do have to handle
6140 the case where the dummy call is returning after being
6141 stopped (e.g. the dummy call previously hit a breakpoint).
6142 We can't know which case we have so just always re-establish
6143 a selected frame here. */
6144 select_frame (get_current_frame ());
6145 }
6146
6147 done:
6148 annotate_stopped ();
6149
6150 /* Suppress the stop observer if we're in the middle of:
6151
6152 - a step n (n > 1), as there still more steps to be done.
6153
6154 - a "finish" command, as the observer will be called in
6155 finish_command_continuation, so it can include the inferior
6156 function's return value.
6157
6158 - calling an inferior function, as we pretend we inferior didn't
6159 run at all. The return value of the call is handled by the
6160 expression evaluator, through call_function_by_hand. */
6161
6162 if (!target_has_execution
6163 || last.kind == TARGET_WAITKIND_SIGNALLED
6164 || last.kind == TARGET_WAITKIND_EXITED
6165 || last.kind == TARGET_WAITKIND_NO_RESUMED
6166 || (!(inferior_thread ()->step_multi
6167 && inferior_thread ()->control.stop_step)
6168 && !(inferior_thread ()->control.stop_bpstat
6169 && inferior_thread ()->control.proceed_to_finish)
6170 && !inferior_thread ()->control.in_infcall))
6171 {
6172 if (!ptid_equal (inferior_ptid, null_ptid))
6173 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6174 stop_print_frame);
6175 else
6176 observer_notify_normal_stop (NULL, stop_print_frame);
6177 }
6178
6179 if (target_has_execution)
6180 {
6181 if (last.kind != TARGET_WAITKIND_SIGNALLED
6182 && last.kind != TARGET_WAITKIND_EXITED)
6183 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6184 Delete any breakpoint that is to be deleted at the next stop. */
6185 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6186 }
6187
6188 /* Try to get rid of automatically added inferiors that are no
6189 longer needed. Keeping those around slows down things linearly.
6190 Note that this never removes the current inferior. */
6191 prune_inferiors ();
6192 }
6193
6194 static int
6195 hook_stop_stub (void *cmd)
6196 {
6197 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6198 return (0);
6199 }
6200 \f
6201 int
6202 signal_stop_state (int signo)
6203 {
6204 return signal_stop[signo];
6205 }
6206
6207 int
6208 signal_print_state (int signo)
6209 {
6210 return signal_print[signo];
6211 }
6212
6213 int
6214 signal_pass_state (int signo)
6215 {
6216 return signal_program[signo];
6217 }
6218
6219 static void
6220 signal_cache_update (int signo)
6221 {
6222 if (signo == -1)
6223 {
6224 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6225 signal_cache_update (signo);
6226
6227 return;
6228 }
6229
6230 signal_pass[signo] = (signal_stop[signo] == 0
6231 && signal_print[signo] == 0
6232 && signal_program[signo] == 1
6233 && signal_catch[signo] == 0);
6234 }
6235
6236 int
6237 signal_stop_update (int signo, int state)
6238 {
6239 int ret = signal_stop[signo];
6240
6241 signal_stop[signo] = state;
6242 signal_cache_update (signo);
6243 return ret;
6244 }
6245
6246 int
6247 signal_print_update (int signo, int state)
6248 {
6249 int ret = signal_print[signo];
6250
6251 signal_print[signo] = state;
6252 signal_cache_update (signo);
6253 return ret;
6254 }
6255
6256 int
6257 signal_pass_update (int signo, int state)
6258 {
6259 int ret = signal_program[signo];
6260
6261 signal_program[signo] = state;
6262 signal_cache_update (signo);
6263 return ret;
6264 }
6265
6266 /* Update the global 'signal_catch' from INFO and notify the
6267 target. */
6268
6269 void
6270 signal_catch_update (const unsigned int *info)
6271 {
6272 int i;
6273
6274 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6275 signal_catch[i] = info[i] > 0;
6276 signal_cache_update (-1);
6277 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6278 }
6279
6280 static void
6281 sig_print_header (void)
6282 {
6283 printf_filtered (_("Signal Stop\tPrint\tPass "
6284 "to program\tDescription\n"));
6285 }
6286
6287 static void
6288 sig_print_info (enum gdb_signal oursig)
6289 {
6290 const char *name = gdb_signal_to_name (oursig);
6291 int name_padding = 13 - strlen (name);
6292
6293 if (name_padding <= 0)
6294 name_padding = 0;
6295
6296 printf_filtered ("%s", name);
6297 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6298 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6299 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6300 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6301 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6302 }
6303
6304 /* Specify how various signals in the inferior should be handled. */
6305
6306 static void
6307 handle_command (char *args, int from_tty)
6308 {
6309 char **argv;
6310 int digits, wordlen;
6311 int sigfirst, signum, siglast;
6312 enum gdb_signal oursig;
6313 int allsigs;
6314 int nsigs;
6315 unsigned char *sigs;
6316 struct cleanup *old_chain;
6317
6318 if (args == NULL)
6319 {
6320 error_no_arg (_("signal to handle"));
6321 }
6322
6323 /* Allocate and zero an array of flags for which signals to handle. */
6324
6325 nsigs = (int) GDB_SIGNAL_LAST;
6326 sigs = (unsigned char *) alloca (nsigs);
6327 memset (sigs, 0, nsigs);
6328
6329 /* Break the command line up into args. */
6330
6331 argv = gdb_buildargv (args);
6332 old_chain = make_cleanup_freeargv (argv);
6333
6334 /* Walk through the args, looking for signal oursigs, signal names, and
6335 actions. Signal numbers and signal names may be interspersed with
6336 actions, with the actions being performed for all signals cumulatively
6337 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6338
6339 while (*argv != NULL)
6340 {
6341 wordlen = strlen (*argv);
6342 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6343 {;
6344 }
6345 allsigs = 0;
6346 sigfirst = siglast = -1;
6347
6348 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6349 {
6350 /* Apply action to all signals except those used by the
6351 debugger. Silently skip those. */
6352 allsigs = 1;
6353 sigfirst = 0;
6354 siglast = nsigs - 1;
6355 }
6356 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6357 {
6358 SET_SIGS (nsigs, sigs, signal_stop);
6359 SET_SIGS (nsigs, sigs, signal_print);
6360 }
6361 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6362 {
6363 UNSET_SIGS (nsigs, sigs, signal_program);
6364 }
6365 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6366 {
6367 SET_SIGS (nsigs, sigs, signal_print);
6368 }
6369 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6370 {
6371 SET_SIGS (nsigs, sigs, signal_program);
6372 }
6373 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6374 {
6375 UNSET_SIGS (nsigs, sigs, signal_stop);
6376 }
6377 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6378 {
6379 SET_SIGS (nsigs, sigs, signal_program);
6380 }
6381 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6382 {
6383 UNSET_SIGS (nsigs, sigs, signal_print);
6384 UNSET_SIGS (nsigs, sigs, signal_stop);
6385 }
6386 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6387 {
6388 UNSET_SIGS (nsigs, sigs, signal_program);
6389 }
6390 else if (digits > 0)
6391 {
6392 /* It is numeric. The numeric signal refers to our own
6393 internal signal numbering from target.h, not to host/target
6394 signal number. This is a feature; users really should be
6395 using symbolic names anyway, and the common ones like
6396 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6397
6398 sigfirst = siglast = (int)
6399 gdb_signal_from_command (atoi (*argv));
6400 if ((*argv)[digits] == '-')
6401 {
6402 siglast = (int)
6403 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6404 }
6405 if (sigfirst > siglast)
6406 {
6407 /* Bet he didn't figure we'd think of this case... */
6408 signum = sigfirst;
6409 sigfirst = siglast;
6410 siglast = signum;
6411 }
6412 }
6413 else
6414 {
6415 oursig = gdb_signal_from_name (*argv);
6416 if (oursig != GDB_SIGNAL_UNKNOWN)
6417 {
6418 sigfirst = siglast = (int) oursig;
6419 }
6420 else
6421 {
6422 /* Not a number and not a recognized flag word => complain. */
6423 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6424 }
6425 }
6426
6427 /* If any signal numbers or symbol names were found, set flags for
6428 which signals to apply actions to. */
6429
6430 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6431 {
6432 switch ((enum gdb_signal) signum)
6433 {
6434 case GDB_SIGNAL_TRAP:
6435 case GDB_SIGNAL_INT:
6436 if (!allsigs && !sigs[signum])
6437 {
6438 if (query (_("%s is used by the debugger.\n\
6439 Are you sure you want to change it? "),
6440 gdb_signal_to_name ((enum gdb_signal) signum)))
6441 {
6442 sigs[signum] = 1;
6443 }
6444 else
6445 {
6446 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6447 gdb_flush (gdb_stdout);
6448 }
6449 }
6450 break;
6451 case GDB_SIGNAL_0:
6452 case GDB_SIGNAL_DEFAULT:
6453 case GDB_SIGNAL_UNKNOWN:
6454 /* Make sure that "all" doesn't print these. */
6455 break;
6456 default:
6457 sigs[signum] = 1;
6458 break;
6459 }
6460 }
6461
6462 argv++;
6463 }
6464
6465 for (signum = 0; signum < nsigs; signum++)
6466 if (sigs[signum])
6467 {
6468 signal_cache_update (-1);
6469 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6470 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6471
6472 if (from_tty)
6473 {
6474 /* Show the results. */
6475 sig_print_header ();
6476 for (; signum < nsigs; signum++)
6477 if (sigs[signum])
6478 sig_print_info (signum);
6479 }
6480
6481 break;
6482 }
6483
6484 do_cleanups (old_chain);
6485 }
6486
6487 /* Complete the "handle" command. */
6488
6489 static VEC (char_ptr) *
6490 handle_completer (struct cmd_list_element *ignore,
6491 const char *text, const char *word)
6492 {
6493 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6494 static const char * const keywords[] =
6495 {
6496 "all",
6497 "stop",
6498 "ignore",
6499 "print",
6500 "pass",
6501 "nostop",
6502 "noignore",
6503 "noprint",
6504 "nopass",
6505 NULL,
6506 };
6507
6508 vec_signals = signal_completer (ignore, text, word);
6509 vec_keywords = complete_on_enum (keywords, word, word);
6510
6511 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6512 VEC_free (char_ptr, vec_signals);
6513 VEC_free (char_ptr, vec_keywords);
6514 return return_val;
6515 }
6516
6517 static void
6518 xdb_handle_command (char *args, int from_tty)
6519 {
6520 char **argv;
6521 struct cleanup *old_chain;
6522
6523 if (args == NULL)
6524 error_no_arg (_("xdb command"));
6525
6526 /* Break the command line up into args. */
6527
6528 argv = gdb_buildargv (args);
6529 old_chain = make_cleanup_freeargv (argv);
6530 if (argv[1] != (char *) NULL)
6531 {
6532 char *argBuf;
6533 int bufLen;
6534
6535 bufLen = strlen (argv[0]) + 20;
6536 argBuf = (char *) xmalloc (bufLen);
6537 if (argBuf)
6538 {
6539 int validFlag = 1;
6540 enum gdb_signal oursig;
6541
6542 oursig = gdb_signal_from_name (argv[0]);
6543 memset (argBuf, 0, bufLen);
6544 if (strcmp (argv[1], "Q") == 0)
6545 sprintf (argBuf, "%s %s", argv[0], "noprint");
6546 else
6547 {
6548 if (strcmp (argv[1], "s") == 0)
6549 {
6550 if (!signal_stop[oursig])
6551 sprintf (argBuf, "%s %s", argv[0], "stop");
6552 else
6553 sprintf (argBuf, "%s %s", argv[0], "nostop");
6554 }
6555 else if (strcmp (argv[1], "i") == 0)
6556 {
6557 if (!signal_program[oursig])
6558 sprintf (argBuf, "%s %s", argv[0], "pass");
6559 else
6560 sprintf (argBuf, "%s %s", argv[0], "nopass");
6561 }
6562 else if (strcmp (argv[1], "r") == 0)
6563 {
6564 if (!signal_print[oursig])
6565 sprintf (argBuf, "%s %s", argv[0], "print");
6566 else
6567 sprintf (argBuf, "%s %s", argv[0], "noprint");
6568 }
6569 else
6570 validFlag = 0;
6571 }
6572 if (validFlag)
6573 handle_command (argBuf, from_tty);
6574 else
6575 printf_filtered (_("Invalid signal handling flag.\n"));
6576 if (argBuf)
6577 xfree (argBuf);
6578 }
6579 }
6580 do_cleanups (old_chain);
6581 }
6582
6583 enum gdb_signal
6584 gdb_signal_from_command (int num)
6585 {
6586 if (num >= 1 && num <= 15)
6587 return (enum gdb_signal) num;
6588 error (_("Only signals 1-15 are valid as numeric signals.\n\
6589 Use \"info signals\" for a list of symbolic signals."));
6590 }
6591
6592 /* Print current contents of the tables set by the handle command.
6593 It is possible we should just be printing signals actually used
6594 by the current target (but for things to work right when switching
6595 targets, all signals should be in the signal tables). */
6596
6597 static void
6598 signals_info (char *signum_exp, int from_tty)
6599 {
6600 enum gdb_signal oursig;
6601
6602 sig_print_header ();
6603
6604 if (signum_exp)
6605 {
6606 /* First see if this is a symbol name. */
6607 oursig = gdb_signal_from_name (signum_exp);
6608 if (oursig == GDB_SIGNAL_UNKNOWN)
6609 {
6610 /* No, try numeric. */
6611 oursig =
6612 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6613 }
6614 sig_print_info (oursig);
6615 return;
6616 }
6617
6618 printf_filtered ("\n");
6619 /* These ugly casts brought to you by the native VAX compiler. */
6620 for (oursig = GDB_SIGNAL_FIRST;
6621 (int) oursig < (int) GDB_SIGNAL_LAST;
6622 oursig = (enum gdb_signal) ((int) oursig + 1))
6623 {
6624 QUIT;
6625
6626 if (oursig != GDB_SIGNAL_UNKNOWN
6627 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6628 sig_print_info (oursig);
6629 }
6630
6631 printf_filtered (_("\nUse the \"handle\" command "
6632 "to change these tables.\n"));
6633 }
6634
6635 /* Check if it makes sense to read $_siginfo from the current thread
6636 at this point. If not, throw an error. */
6637
6638 static void
6639 validate_siginfo_access (void)
6640 {
6641 /* No current inferior, no siginfo. */
6642 if (ptid_equal (inferior_ptid, null_ptid))
6643 error (_("No thread selected."));
6644
6645 /* Don't try to read from a dead thread. */
6646 if (is_exited (inferior_ptid))
6647 error (_("The current thread has terminated"));
6648
6649 /* ... or from a spinning thread. */
6650 if (is_running (inferior_ptid))
6651 error (_("Selected thread is running."));
6652 }
6653
6654 /* The $_siginfo convenience variable is a bit special. We don't know
6655 for sure the type of the value until we actually have a chance to
6656 fetch the data. The type can change depending on gdbarch, so it is
6657 also dependent on which thread you have selected.
6658
6659 1. making $_siginfo be an internalvar that creates a new value on
6660 access.
6661
6662 2. making the value of $_siginfo be an lval_computed value. */
6663
6664 /* This function implements the lval_computed support for reading a
6665 $_siginfo value. */
6666
6667 static void
6668 siginfo_value_read (struct value *v)
6669 {
6670 LONGEST transferred;
6671
6672 validate_siginfo_access ();
6673
6674 transferred =
6675 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6676 NULL,
6677 value_contents_all_raw (v),
6678 value_offset (v),
6679 TYPE_LENGTH (value_type (v)));
6680
6681 if (transferred != TYPE_LENGTH (value_type (v)))
6682 error (_("Unable to read siginfo"));
6683 }
6684
6685 /* This function implements the lval_computed support for writing a
6686 $_siginfo value. */
6687
6688 static void
6689 siginfo_value_write (struct value *v, struct value *fromval)
6690 {
6691 LONGEST transferred;
6692
6693 validate_siginfo_access ();
6694
6695 transferred = target_write (&current_target,
6696 TARGET_OBJECT_SIGNAL_INFO,
6697 NULL,
6698 value_contents_all_raw (fromval),
6699 value_offset (v),
6700 TYPE_LENGTH (value_type (fromval)));
6701
6702 if (transferred != TYPE_LENGTH (value_type (fromval)))
6703 error (_("Unable to write siginfo"));
6704 }
6705
6706 static const struct lval_funcs siginfo_value_funcs =
6707 {
6708 siginfo_value_read,
6709 siginfo_value_write
6710 };
6711
6712 /* Return a new value with the correct type for the siginfo object of
6713 the current thread using architecture GDBARCH. Return a void value
6714 if there's no object available. */
6715
6716 static struct value *
6717 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6718 void *ignore)
6719 {
6720 if (target_has_stack
6721 && !ptid_equal (inferior_ptid, null_ptid)
6722 && gdbarch_get_siginfo_type_p (gdbarch))
6723 {
6724 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6725
6726 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6727 }
6728
6729 return allocate_value (builtin_type (gdbarch)->builtin_void);
6730 }
6731
6732 \f
6733 /* infcall_suspend_state contains state about the program itself like its
6734 registers and any signal it received when it last stopped.
6735 This state must be restored regardless of how the inferior function call
6736 ends (either successfully, or after it hits a breakpoint or signal)
6737 if the program is to properly continue where it left off. */
6738
6739 struct infcall_suspend_state
6740 {
6741 struct thread_suspend_state thread_suspend;
6742 #if 0 /* Currently unused and empty structures are not valid C. */
6743 struct inferior_suspend_state inferior_suspend;
6744 #endif
6745
6746 /* Other fields: */
6747 CORE_ADDR stop_pc;
6748 struct regcache *registers;
6749
6750 /* Format of SIGINFO_DATA or NULL if it is not present. */
6751 struct gdbarch *siginfo_gdbarch;
6752
6753 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6754 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6755 content would be invalid. */
6756 gdb_byte *siginfo_data;
6757 };
6758
6759 struct infcall_suspend_state *
6760 save_infcall_suspend_state (void)
6761 {
6762 struct infcall_suspend_state *inf_state;
6763 struct thread_info *tp = inferior_thread ();
6764 #if 0
6765 struct inferior *inf = current_inferior ();
6766 #endif
6767 struct regcache *regcache = get_current_regcache ();
6768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6769 gdb_byte *siginfo_data = NULL;
6770
6771 if (gdbarch_get_siginfo_type_p (gdbarch))
6772 {
6773 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6774 size_t len = TYPE_LENGTH (type);
6775 struct cleanup *back_to;
6776
6777 siginfo_data = xmalloc (len);
6778 back_to = make_cleanup (xfree, siginfo_data);
6779
6780 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6781 siginfo_data, 0, len) == len)
6782 discard_cleanups (back_to);
6783 else
6784 {
6785 /* Errors ignored. */
6786 do_cleanups (back_to);
6787 siginfo_data = NULL;
6788 }
6789 }
6790
6791 inf_state = XZALLOC (struct infcall_suspend_state);
6792
6793 if (siginfo_data)
6794 {
6795 inf_state->siginfo_gdbarch = gdbarch;
6796 inf_state->siginfo_data = siginfo_data;
6797 }
6798
6799 inf_state->thread_suspend = tp->suspend;
6800 #if 0 /* Currently unused and empty structures are not valid C. */
6801 inf_state->inferior_suspend = inf->suspend;
6802 #endif
6803
6804 /* run_inferior_call will not use the signal due to its `proceed' call with
6805 GDB_SIGNAL_0 anyway. */
6806 tp->suspend.stop_signal = GDB_SIGNAL_0;
6807
6808 inf_state->stop_pc = stop_pc;
6809
6810 inf_state->registers = regcache_dup (regcache);
6811
6812 return inf_state;
6813 }
6814
6815 /* Restore inferior session state to INF_STATE. */
6816
6817 void
6818 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6819 {
6820 struct thread_info *tp = inferior_thread ();
6821 #if 0
6822 struct inferior *inf = current_inferior ();
6823 #endif
6824 struct regcache *regcache = get_current_regcache ();
6825 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6826
6827 tp->suspend = inf_state->thread_suspend;
6828 #if 0 /* Currently unused and empty structures are not valid C. */
6829 inf->suspend = inf_state->inferior_suspend;
6830 #endif
6831
6832 stop_pc = inf_state->stop_pc;
6833
6834 if (inf_state->siginfo_gdbarch == gdbarch)
6835 {
6836 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6837
6838 /* Errors ignored. */
6839 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6840 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6841 }
6842
6843 /* The inferior can be gone if the user types "print exit(0)"
6844 (and perhaps other times). */
6845 if (target_has_execution)
6846 /* NB: The register write goes through to the target. */
6847 regcache_cpy (regcache, inf_state->registers);
6848
6849 discard_infcall_suspend_state (inf_state);
6850 }
6851
6852 static void
6853 do_restore_infcall_suspend_state_cleanup (void *state)
6854 {
6855 restore_infcall_suspend_state (state);
6856 }
6857
6858 struct cleanup *
6859 make_cleanup_restore_infcall_suspend_state
6860 (struct infcall_suspend_state *inf_state)
6861 {
6862 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6863 }
6864
6865 void
6866 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6867 {
6868 regcache_xfree (inf_state->registers);
6869 xfree (inf_state->siginfo_data);
6870 xfree (inf_state);
6871 }
6872
6873 struct regcache *
6874 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6875 {
6876 return inf_state->registers;
6877 }
6878
6879 /* infcall_control_state contains state regarding gdb's control of the
6880 inferior itself like stepping control. It also contains session state like
6881 the user's currently selected frame. */
6882
6883 struct infcall_control_state
6884 {
6885 struct thread_control_state thread_control;
6886 struct inferior_control_state inferior_control;
6887
6888 /* Other fields: */
6889 enum stop_stack_kind stop_stack_dummy;
6890 int stopped_by_random_signal;
6891 int stop_after_trap;
6892
6893 /* ID if the selected frame when the inferior function call was made. */
6894 struct frame_id selected_frame_id;
6895 };
6896
6897 /* Save all of the information associated with the inferior<==>gdb
6898 connection. */
6899
6900 struct infcall_control_state *
6901 save_infcall_control_state (void)
6902 {
6903 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6904 struct thread_info *tp = inferior_thread ();
6905 struct inferior *inf = current_inferior ();
6906
6907 inf_status->thread_control = tp->control;
6908 inf_status->inferior_control = inf->control;
6909
6910 tp->control.step_resume_breakpoint = NULL;
6911 tp->control.exception_resume_breakpoint = NULL;
6912
6913 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6914 chain. If caller's caller is walking the chain, they'll be happier if we
6915 hand them back the original chain when restore_infcall_control_state is
6916 called. */
6917 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6918
6919 /* Other fields: */
6920 inf_status->stop_stack_dummy = stop_stack_dummy;
6921 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6922 inf_status->stop_after_trap = stop_after_trap;
6923
6924 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6925
6926 return inf_status;
6927 }
6928
6929 static int
6930 restore_selected_frame (void *args)
6931 {
6932 struct frame_id *fid = (struct frame_id *) args;
6933 struct frame_info *frame;
6934
6935 frame = frame_find_by_id (*fid);
6936
6937 /* If inf_status->selected_frame_id is NULL, there was no previously
6938 selected frame. */
6939 if (frame == NULL)
6940 {
6941 warning (_("Unable to restore previously selected frame."));
6942 return 0;
6943 }
6944
6945 select_frame (frame);
6946
6947 return (1);
6948 }
6949
6950 /* Restore inferior session state to INF_STATUS. */
6951
6952 void
6953 restore_infcall_control_state (struct infcall_control_state *inf_status)
6954 {
6955 struct thread_info *tp = inferior_thread ();
6956 struct inferior *inf = current_inferior ();
6957
6958 if (tp->control.step_resume_breakpoint)
6959 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6960
6961 if (tp->control.exception_resume_breakpoint)
6962 tp->control.exception_resume_breakpoint->disposition
6963 = disp_del_at_next_stop;
6964
6965 /* Handle the bpstat_copy of the chain. */
6966 bpstat_clear (&tp->control.stop_bpstat);
6967
6968 tp->control = inf_status->thread_control;
6969 inf->control = inf_status->inferior_control;
6970
6971 /* Other fields: */
6972 stop_stack_dummy = inf_status->stop_stack_dummy;
6973 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6974 stop_after_trap = inf_status->stop_after_trap;
6975
6976 if (target_has_stack)
6977 {
6978 /* The point of catch_errors is that if the stack is clobbered,
6979 walking the stack might encounter a garbage pointer and
6980 error() trying to dereference it. */
6981 if (catch_errors
6982 (restore_selected_frame, &inf_status->selected_frame_id,
6983 "Unable to restore previously selected frame:\n",
6984 RETURN_MASK_ERROR) == 0)
6985 /* Error in restoring the selected frame. Select the innermost
6986 frame. */
6987 select_frame (get_current_frame ());
6988 }
6989
6990 xfree (inf_status);
6991 }
6992
6993 static void
6994 do_restore_infcall_control_state_cleanup (void *sts)
6995 {
6996 restore_infcall_control_state (sts);
6997 }
6998
6999 struct cleanup *
7000 make_cleanup_restore_infcall_control_state
7001 (struct infcall_control_state *inf_status)
7002 {
7003 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7004 }
7005
7006 void
7007 discard_infcall_control_state (struct infcall_control_state *inf_status)
7008 {
7009 if (inf_status->thread_control.step_resume_breakpoint)
7010 inf_status->thread_control.step_resume_breakpoint->disposition
7011 = disp_del_at_next_stop;
7012
7013 if (inf_status->thread_control.exception_resume_breakpoint)
7014 inf_status->thread_control.exception_resume_breakpoint->disposition
7015 = disp_del_at_next_stop;
7016
7017 /* See save_infcall_control_state for info on stop_bpstat. */
7018 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7019
7020 xfree (inf_status);
7021 }
7022 \f
7023 int
7024 ptid_match (ptid_t ptid, ptid_t filter)
7025 {
7026 if (ptid_equal (filter, minus_one_ptid))
7027 return 1;
7028 if (ptid_is_pid (filter)
7029 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7030 return 1;
7031 else if (ptid_equal (ptid, filter))
7032 return 1;
7033
7034 return 0;
7035 }
7036
7037 /* restore_inferior_ptid() will be used by the cleanup machinery
7038 to restore the inferior_ptid value saved in a call to
7039 save_inferior_ptid(). */
7040
7041 static void
7042 restore_inferior_ptid (void *arg)
7043 {
7044 ptid_t *saved_ptid_ptr = arg;
7045
7046 inferior_ptid = *saved_ptid_ptr;
7047 xfree (arg);
7048 }
7049
7050 /* Save the value of inferior_ptid so that it may be restored by a
7051 later call to do_cleanups(). Returns the struct cleanup pointer
7052 needed for later doing the cleanup. */
7053
7054 struct cleanup *
7055 save_inferior_ptid (void)
7056 {
7057 ptid_t *saved_ptid_ptr;
7058
7059 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7060 *saved_ptid_ptr = inferior_ptid;
7061 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7062 }
7063 \f
7064
7065 /* User interface for reverse debugging:
7066 Set exec-direction / show exec-direction commands
7067 (returns error unless target implements to_set_exec_direction method). */
7068
7069 int execution_direction = EXEC_FORWARD;
7070 static const char exec_forward[] = "forward";
7071 static const char exec_reverse[] = "reverse";
7072 static const char *exec_direction = exec_forward;
7073 static const char *const exec_direction_names[] = {
7074 exec_forward,
7075 exec_reverse,
7076 NULL
7077 };
7078
7079 static void
7080 set_exec_direction_func (char *args, int from_tty,
7081 struct cmd_list_element *cmd)
7082 {
7083 if (target_can_execute_reverse)
7084 {
7085 if (!strcmp (exec_direction, exec_forward))
7086 execution_direction = EXEC_FORWARD;
7087 else if (!strcmp (exec_direction, exec_reverse))
7088 execution_direction = EXEC_REVERSE;
7089 }
7090 else
7091 {
7092 exec_direction = exec_forward;
7093 error (_("Target does not support this operation."));
7094 }
7095 }
7096
7097 static void
7098 show_exec_direction_func (struct ui_file *out, int from_tty,
7099 struct cmd_list_element *cmd, const char *value)
7100 {
7101 switch (execution_direction) {
7102 case EXEC_FORWARD:
7103 fprintf_filtered (out, _("Forward.\n"));
7104 break;
7105 case EXEC_REVERSE:
7106 fprintf_filtered (out, _("Reverse.\n"));
7107 break;
7108 default:
7109 internal_error (__FILE__, __LINE__,
7110 _("bogus execution_direction value: %d"),
7111 (int) execution_direction);
7112 }
7113 }
7114
7115 static void
7116 show_schedule_multiple (struct ui_file *file, int from_tty,
7117 struct cmd_list_element *c, const char *value)
7118 {
7119 fprintf_filtered (file, _("Resuming the execution of threads "
7120 "of all processes is %s.\n"), value);
7121 }
7122
7123 /* Implementation of `siginfo' variable. */
7124
7125 static const struct internalvar_funcs siginfo_funcs =
7126 {
7127 siginfo_make_value,
7128 NULL,
7129 NULL
7130 };
7131
7132 void
7133 _initialize_infrun (void)
7134 {
7135 int i;
7136 int numsigs;
7137 struct cmd_list_element *c;
7138
7139 add_info ("signals", signals_info, _("\
7140 What debugger does when program gets various signals.\n\
7141 Specify a signal as argument to print info on that signal only."));
7142 add_info_alias ("handle", "signals", 0);
7143
7144 c = add_com ("handle", class_run, handle_command, _("\
7145 Specify how to handle signals.\n\
7146 Usage: handle SIGNAL [ACTIONS]\n\
7147 Args are signals and actions to apply to those signals.\n\
7148 If no actions are specified, the current settings for the specified signals\n\
7149 will be displayed instead.\n\
7150 \n\
7151 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7152 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7153 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7154 The special arg \"all\" is recognized to mean all signals except those\n\
7155 used by the debugger, typically SIGTRAP and SIGINT.\n\
7156 \n\
7157 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7158 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7159 Stop means reenter debugger if this signal happens (implies print).\n\
7160 Print means print a message if this signal happens.\n\
7161 Pass means let program see this signal; otherwise program doesn't know.\n\
7162 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7163 Pass and Stop may be combined.\n\
7164 \n\
7165 Multiple signals may be specified. Signal numbers and signal names\n\
7166 may be interspersed with actions, with the actions being performed for\n\
7167 all signals cumulatively specified."));
7168 set_cmd_completer (c, handle_completer);
7169
7170 if (xdb_commands)
7171 {
7172 add_com ("lz", class_info, signals_info, _("\
7173 What debugger does when program gets various signals.\n\
7174 Specify a signal as argument to print info on that signal only."));
7175 add_com ("z", class_run, xdb_handle_command, _("\
7176 Specify how to handle a signal.\n\
7177 Args are signals and actions to apply to those signals.\n\
7178 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7179 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7180 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7181 The special arg \"all\" is recognized to mean all signals except those\n\
7182 used by the debugger, typically SIGTRAP and SIGINT.\n\
7183 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7184 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7185 nopass), \"Q\" (noprint)\n\
7186 Stop means reenter debugger if this signal happens (implies print).\n\
7187 Print means print a message if this signal happens.\n\
7188 Pass means let program see this signal; otherwise program doesn't know.\n\
7189 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7190 Pass and Stop may be combined."));
7191 }
7192
7193 if (!dbx_commands)
7194 stop_command = add_cmd ("stop", class_obscure,
7195 not_just_help_class_command, _("\
7196 There is no `stop' command, but you can set a hook on `stop'.\n\
7197 This allows you to set a list of commands to be run each time execution\n\
7198 of the program stops."), &cmdlist);
7199
7200 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7201 Set inferior debugging."), _("\
7202 Show inferior debugging."), _("\
7203 When non-zero, inferior specific debugging is enabled."),
7204 NULL,
7205 show_debug_infrun,
7206 &setdebuglist, &showdebuglist);
7207
7208 add_setshow_boolean_cmd ("displaced", class_maintenance,
7209 &debug_displaced, _("\
7210 Set displaced stepping debugging."), _("\
7211 Show displaced stepping debugging."), _("\
7212 When non-zero, displaced stepping specific debugging is enabled."),
7213 NULL,
7214 show_debug_displaced,
7215 &setdebuglist, &showdebuglist);
7216
7217 add_setshow_boolean_cmd ("non-stop", no_class,
7218 &non_stop_1, _("\
7219 Set whether gdb controls the inferior in non-stop mode."), _("\
7220 Show whether gdb controls the inferior in non-stop mode."), _("\
7221 When debugging a multi-threaded program and this setting is\n\
7222 off (the default, also called all-stop mode), when one thread stops\n\
7223 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7224 all other threads in the program while you interact with the thread of\n\
7225 interest. When you continue or step a thread, you can allow the other\n\
7226 threads to run, or have them remain stopped, but while you inspect any\n\
7227 thread's state, all threads stop.\n\
7228 \n\
7229 In non-stop mode, when one thread stops, other threads can continue\n\
7230 to run freely. You'll be able to step each thread independently,\n\
7231 leave it stopped or free to run as needed."),
7232 set_non_stop,
7233 show_non_stop,
7234 &setlist,
7235 &showlist);
7236
7237 numsigs = (int) GDB_SIGNAL_LAST;
7238 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7239 signal_print = (unsigned char *)
7240 xmalloc (sizeof (signal_print[0]) * numsigs);
7241 signal_program = (unsigned char *)
7242 xmalloc (sizeof (signal_program[0]) * numsigs);
7243 signal_catch = (unsigned char *)
7244 xmalloc (sizeof (signal_catch[0]) * numsigs);
7245 signal_pass = (unsigned char *)
7246 xmalloc (sizeof (signal_program[0]) * numsigs);
7247 for (i = 0; i < numsigs; i++)
7248 {
7249 signal_stop[i] = 1;
7250 signal_print[i] = 1;
7251 signal_program[i] = 1;
7252 signal_catch[i] = 0;
7253 }
7254
7255 /* Signals caused by debugger's own actions
7256 should not be given to the program afterwards. */
7257 signal_program[GDB_SIGNAL_TRAP] = 0;
7258 signal_program[GDB_SIGNAL_INT] = 0;
7259
7260 /* Signals that are not errors should not normally enter the debugger. */
7261 signal_stop[GDB_SIGNAL_ALRM] = 0;
7262 signal_print[GDB_SIGNAL_ALRM] = 0;
7263 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7264 signal_print[GDB_SIGNAL_VTALRM] = 0;
7265 signal_stop[GDB_SIGNAL_PROF] = 0;
7266 signal_print[GDB_SIGNAL_PROF] = 0;
7267 signal_stop[GDB_SIGNAL_CHLD] = 0;
7268 signal_print[GDB_SIGNAL_CHLD] = 0;
7269 signal_stop[GDB_SIGNAL_IO] = 0;
7270 signal_print[GDB_SIGNAL_IO] = 0;
7271 signal_stop[GDB_SIGNAL_POLL] = 0;
7272 signal_print[GDB_SIGNAL_POLL] = 0;
7273 signal_stop[GDB_SIGNAL_URG] = 0;
7274 signal_print[GDB_SIGNAL_URG] = 0;
7275 signal_stop[GDB_SIGNAL_WINCH] = 0;
7276 signal_print[GDB_SIGNAL_WINCH] = 0;
7277 signal_stop[GDB_SIGNAL_PRIO] = 0;
7278 signal_print[GDB_SIGNAL_PRIO] = 0;
7279
7280 /* These signals are used internally by user-level thread
7281 implementations. (See signal(5) on Solaris.) Like the above
7282 signals, a healthy program receives and handles them as part of
7283 its normal operation. */
7284 signal_stop[GDB_SIGNAL_LWP] = 0;
7285 signal_print[GDB_SIGNAL_LWP] = 0;
7286 signal_stop[GDB_SIGNAL_WAITING] = 0;
7287 signal_print[GDB_SIGNAL_WAITING] = 0;
7288 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7289 signal_print[GDB_SIGNAL_CANCEL] = 0;
7290
7291 /* Update cached state. */
7292 signal_cache_update (-1);
7293
7294 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7295 &stop_on_solib_events, _("\
7296 Set stopping for shared library events."), _("\
7297 Show stopping for shared library events."), _("\
7298 If nonzero, gdb will give control to the user when the dynamic linker\n\
7299 notifies gdb of shared library events. The most common event of interest\n\
7300 to the user would be loading/unloading of a new library."),
7301 set_stop_on_solib_events,
7302 show_stop_on_solib_events,
7303 &setlist, &showlist);
7304
7305 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7306 follow_fork_mode_kind_names,
7307 &follow_fork_mode_string, _("\
7308 Set debugger response to a program call of fork or vfork."), _("\
7309 Show debugger response to a program call of fork or vfork."), _("\
7310 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7311 parent - the original process is debugged after a fork\n\
7312 child - the new process is debugged after a fork\n\
7313 The unfollowed process will continue to run.\n\
7314 By default, the debugger will follow the parent process."),
7315 NULL,
7316 show_follow_fork_mode_string,
7317 &setlist, &showlist);
7318
7319 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7320 follow_exec_mode_names,
7321 &follow_exec_mode_string, _("\
7322 Set debugger response to a program call of exec."), _("\
7323 Show debugger response to a program call of exec."), _("\
7324 An exec call replaces the program image of a process.\n\
7325 \n\
7326 follow-exec-mode can be:\n\
7327 \n\
7328 new - the debugger creates a new inferior and rebinds the process\n\
7329 to this new inferior. The program the process was running before\n\
7330 the exec call can be restarted afterwards by restarting the original\n\
7331 inferior.\n\
7332 \n\
7333 same - the debugger keeps the process bound to the same inferior.\n\
7334 The new executable image replaces the previous executable loaded in\n\
7335 the inferior. Restarting the inferior after the exec call restarts\n\
7336 the executable the process was running after the exec call.\n\
7337 \n\
7338 By default, the debugger will use the same inferior."),
7339 NULL,
7340 show_follow_exec_mode_string,
7341 &setlist, &showlist);
7342
7343 add_setshow_enum_cmd ("scheduler-locking", class_run,
7344 scheduler_enums, &scheduler_mode, _("\
7345 Set mode for locking scheduler during execution."), _("\
7346 Show mode for locking scheduler during execution."), _("\
7347 off == no locking (threads may preempt at any time)\n\
7348 on == full locking (no thread except the current thread may run)\n\
7349 step == scheduler locked during every single-step operation.\n\
7350 In this mode, no other thread may run during a step command.\n\
7351 Other threads may run while stepping over a function call ('next')."),
7352 set_schedlock_func, /* traps on target vector */
7353 show_scheduler_mode,
7354 &setlist, &showlist);
7355
7356 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7357 Set mode for resuming threads of all processes."), _("\
7358 Show mode for resuming threads of all processes."), _("\
7359 When on, execution commands (such as 'continue' or 'next') resume all\n\
7360 threads of all processes. When off (which is the default), execution\n\
7361 commands only resume the threads of the current process. The set of\n\
7362 threads that are resumed is further refined by the scheduler-locking\n\
7363 mode (see help set scheduler-locking)."),
7364 NULL,
7365 show_schedule_multiple,
7366 &setlist, &showlist);
7367
7368 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7369 Set mode of the step operation."), _("\
7370 Show mode of the step operation."), _("\
7371 When set, doing a step over a function without debug line information\n\
7372 will stop at the first instruction of that function. Otherwise, the\n\
7373 function is skipped and the step command stops at a different source line."),
7374 NULL,
7375 show_step_stop_if_no_debug,
7376 &setlist, &showlist);
7377
7378 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7379 &can_use_displaced_stepping, _("\
7380 Set debugger's willingness to use displaced stepping."), _("\
7381 Show debugger's willingness to use displaced stepping."), _("\
7382 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7383 supported by the target architecture. If off, gdb will not use displaced\n\
7384 stepping to step over breakpoints, even if such is supported by the target\n\
7385 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7386 if the target architecture supports it and non-stop mode is active, but will not\n\
7387 use it in all-stop mode (see help set non-stop)."),
7388 NULL,
7389 show_can_use_displaced_stepping,
7390 &setlist, &showlist);
7391
7392 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7393 &exec_direction, _("Set direction of execution.\n\
7394 Options are 'forward' or 'reverse'."),
7395 _("Show direction of execution (forward/reverse)."),
7396 _("Tells gdb whether to execute forward or backward."),
7397 set_exec_direction_func, show_exec_direction_func,
7398 &setlist, &showlist);
7399
7400 /* Set/show detach-on-fork: user-settable mode. */
7401
7402 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7403 Set whether gdb will detach the child of a fork."), _("\
7404 Show whether gdb will detach the child of a fork."), _("\
7405 Tells gdb whether to detach the child of a fork."),
7406 NULL, NULL, &setlist, &showlist);
7407
7408 /* Set/show disable address space randomization mode. */
7409
7410 add_setshow_boolean_cmd ("disable-randomization", class_support,
7411 &disable_randomization, _("\
7412 Set disabling of debuggee's virtual address space randomization."), _("\
7413 Show disabling of debuggee's virtual address space randomization."), _("\
7414 When this mode is on (which is the default), randomization of the virtual\n\
7415 address space is disabled. Standalone programs run with the randomization\n\
7416 enabled by default on some platforms."),
7417 &set_disable_randomization,
7418 &show_disable_randomization,
7419 &setlist, &showlist);
7420
7421 /* ptid initializations */
7422 inferior_ptid = null_ptid;
7423 target_last_wait_ptid = minus_one_ptid;
7424
7425 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7426 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7427 observer_attach_thread_exit (infrun_thread_thread_exit);
7428 observer_attach_inferior_exit (infrun_inferior_exit);
7429
7430 /* Explicitly create without lookup, since that tries to create a
7431 value with a void typed value, and when we get here, gdbarch
7432 isn't initialized yet. At this point, we're quite sure there
7433 isn't another convenience variable of the same name. */
7434 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7435
7436 add_setshow_boolean_cmd ("observer", no_class,
7437 &observer_mode_1, _("\
7438 Set whether gdb controls the inferior in observer mode."), _("\
7439 Show whether gdb controls the inferior in observer mode."), _("\
7440 In observer mode, GDB can get data from the inferior, but not\n\
7441 affect its execution. Registers and memory may not be changed,\n\
7442 breakpoints may not be set, and the program cannot be interrupted\n\
7443 or signalled."),
7444 set_observer_mode,
7445 show_observer_mode,
7446 &setlist,
7447 &showlist);
7448 }
This page took 0.214232 seconds and 5 git commands to generate.