Make print_target_wait_results print the whole ptid
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Nonzero if we want to give control to the user when we're notified
330 of shared library events by the dynamic linker. */
331 int stop_on_solib_events;
332
333 /* Enable or disable optional shared library event breakpoints
334 as appropriate when the above flag is changed. */
335
336 static void
337 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
338 {
339 update_solib_breakpoints ();
340 }
341
342 static void
343 show_stop_on_solib_events (struct ui_file *file, int from_tty,
344 struct cmd_list_element *c, const char *value)
345 {
346 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
347 value);
348 }
349
350 /* Nonzero means expecting a trace trap
351 and should stop the inferior and return silently when it happens. */
352
353 int stop_after_trap;
354
355 /* Save register contents here when executing a "finish" command or are
356 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
357 Thus this contains the return value from the called function (assuming
358 values are returned in a register). */
359
360 struct regcache *stop_registers;
361
362 /* Nonzero after stop if current stack frame should be printed. */
363
364 static int stop_print_frame;
365
366 /* This is a cached copy of the pid/waitstatus of the last event
367 returned by target_wait()/deprecated_target_wait_hook(). This
368 information is returned by get_last_target_status(). */
369 static ptid_t target_last_wait_ptid;
370 static struct target_waitstatus target_last_waitstatus;
371
372 static void context_switch (ptid_t ptid);
373
374 void init_thread_stepping_state (struct thread_info *tss);
375
376 static const char follow_fork_mode_child[] = "child";
377 static const char follow_fork_mode_parent[] = "parent";
378
379 static const char *const follow_fork_mode_kind_names[] = {
380 follow_fork_mode_child,
381 follow_fork_mode_parent,
382 NULL
383 };
384
385 static const char *follow_fork_mode_string = follow_fork_mode_parent;
386 static void
387 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
388 struct cmd_list_element *c, const char *value)
389 {
390 fprintf_filtered (file,
391 _("Debugger response to a program "
392 "call of fork or vfork is \"%s\".\n"),
393 value);
394 }
395 \f
396
397 /* Handle changes to the inferior list based on the type of fork,
398 which process is being followed, and whether the other process
399 should be detached. On entry inferior_ptid must be the ptid of
400 the fork parent. At return inferior_ptid is the ptid of the
401 followed inferior. */
402
403 static int
404 follow_fork_inferior (int follow_child, int detach_fork)
405 {
406 int has_vforked;
407 ptid_t parent_ptid, child_ptid;
408
409 has_vforked = (inferior_thread ()->pending_follow.kind
410 == TARGET_WAITKIND_VFORKED);
411 parent_ptid = inferior_ptid;
412 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
413
414 if (has_vforked
415 && !non_stop /* Non-stop always resumes both branches. */
416 && (!target_is_async_p () || sync_execution)
417 && !(follow_child || detach_fork || sched_multi))
418 {
419 /* The parent stays blocked inside the vfork syscall until the
420 child execs or exits. If we don't let the child run, then
421 the parent stays blocked. If we're telling the parent to run
422 in the foreground, the user will not be able to ctrl-c to get
423 back the terminal, effectively hanging the debug session. */
424 fprintf_filtered (gdb_stderr, _("\
425 Can not resume the parent process over vfork in the foreground while\n\
426 holding the child stopped. Try \"set detach-on-fork\" or \
427 \"set schedule-multiple\".\n"));
428 /* FIXME output string > 80 columns. */
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 struct cleanup *old_chain;
438
439 /* Before detaching from the child, remove all breakpoints
440 from it. If we forked, then this has already been taken
441 care of by infrun.c. If we vforked however, any
442 breakpoint inserted in the parent is visible in the
443 child, even those added while stopped in a vfork
444 catchpoint. This will remove the breakpoints from the
445 parent also, but they'll be reinserted below. */
446 if (has_vforked)
447 {
448 /* Keep breakpoints list in sync. */
449 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
450 }
451
452 if (info_verbose || debug_infrun)
453 {
454 target_terminal_ours_for_output ();
455 fprintf_filtered (gdb_stdlog,
456 _("Detaching after %s from child %s.\n"),
457 has_vforked ? "vfork" : "fork",
458 target_pid_to_str (child_ptid));
459 }
460 }
461 else
462 {
463 struct inferior *parent_inf, *child_inf;
464 struct cleanup *old_chain;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (ptid_get_pid (child_ptid));
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 old_chain = save_inferior_ptid ();
476 save_current_program_space ();
477
478 inferior_ptid = child_ptid;
479 add_thread (inferior_ptid);
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (e.g., solib-svr4) learn
506 about this new process, relocate the cloned exec, pull
507 in shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 do_cleanups (old_chain);
515 }
516
517 if (has_vforked)
518 {
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532 }
533 }
534 else
535 {
536 /* Follow the child. */
537 struct inferior *parent_inf, *child_inf;
538 struct program_space *parent_pspace;
539
540 if (info_verbose || debug_infrun)
541 {
542 target_terminal_ours_for_output ();
543 fprintf_filtered (gdb_stdlog,
544 _("Attaching after %s %s to child %s.\n"),
545 target_pid_to_str (parent_ptid),
546 has_vforked ? "vfork" : "fork",
547 target_pid_to_str (child_ptid));
548 }
549
550 /* Add the new inferior first, so that the target_detach below
551 doesn't unpush the target. */
552
553 child_inf = add_inferior (ptid_get_pid (child_ptid));
554
555 parent_inf = current_inferior ();
556 child_inf->attach_flag = parent_inf->attach_flag;
557 copy_terminal_info (child_inf, parent_inf);
558 child_inf->gdbarch = parent_inf->gdbarch;
559 copy_inferior_target_desc_info (child_inf, parent_inf);
560
561 parent_pspace = parent_inf->pspace;
562
563 /* If we're vforking, we want to hold on to the parent until the
564 child exits or execs. At child exec or exit time we can
565 remove the old breakpoints from the parent and detach or
566 resume debugging it. Otherwise, detach the parent now; we'll
567 want to reuse it's program/address spaces, but we can't set
568 them to the child before removing breakpoints from the
569 parent, otherwise, the breakpoints module could decide to
570 remove breakpoints from the wrong process (since they'd be
571 assigned to the same address space). */
572
573 if (has_vforked)
574 {
575 gdb_assert (child_inf->vfork_parent == NULL);
576 gdb_assert (parent_inf->vfork_child == NULL);
577 child_inf->vfork_parent = parent_inf;
578 child_inf->pending_detach = 0;
579 parent_inf->vfork_child = child_inf;
580 parent_inf->pending_detach = detach_fork;
581 parent_inf->waiting_for_vfork_done = 0;
582 }
583 else if (detach_fork)
584 {
585 if (info_verbose || debug_infrun)
586 {
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
590 "child %s.\n"),
591 target_pid_to_str (child_ptid));
592 }
593
594 target_detach (NULL, 0);
595 }
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
603 inferior_ptid = child_ptid;
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633 }
634
635 /* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
639 static int
640 follow_fork (void)
641 {
642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
651 struct breakpoint *exception_resume_breakpoint = NULL;
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
655 struct interp *command_interp = NULL;
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
707 command_interp = tp->control.command_interp;
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
718 delete_exception_resume_breakpoint (tp);
719 tp->control.command_interp = NULL;
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
740 tp = find_thread_ptid (parent);
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
748 /* If we followed the child, switch to it... */
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
765 tp->control.command_interp = command_interp;
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
796
797 return should_resume;
798 }
799
800 static void
801 follow_inferior_reset_breakpoints (void)
802 {
803 struct thread_info *tp = inferior_thread ();
804
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
818 if (tp->control.step_resume_breakpoint)
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
823
824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
825 if (tp->control.exception_resume_breakpoint)
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
830
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
838 }
839
840 /* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843 static int
844 proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846 {
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
861 clear_proceed_status (0);
862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
863 }
864
865 return 0;
866 }
867
868 /* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871 static void
872 handle_vfork_child_exec_or_exit (int exec)
873 {
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
891 /* follow-fork child, detach-on-fork on. */
892
893 inf->vfork_parent->pending_detach = 0;
894
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
929 target_terminal_ours_for_output ();
930
931 if (exec)
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
938 else
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
996 inf->symfile_flags = SYMFILE_NO_READ;
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1002 inferior. */
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Enum strings for "set|show follow-exec-mode". */
1033
1034 static const char follow_exec_mode_new[] = "new";
1035 static const char follow_exec_mode_same[] = "same";
1036 static const char *const follow_exec_mode_names[] =
1037 {
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041 };
1042
1043 static const char *follow_exec_mode_string = follow_exec_mode_same;
1044 static void
1045 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047 {
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049 }
1050
1051 /* EXECD_PATHNAME is assumed to be non-NULL. */
1052
1053 static void
1054 follow_exec (ptid_t ptid, char *execd_pathname)
1055 {
1056 struct thread_info *th, *tmp;
1057 struct inferior *inf = current_inferior ();
1058 int pid = ptid_get_pid (ptid);
1059
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1079 we now have a new a.out, those shadow contents aren't valid. */
1080
1081 mark_breakpoints_out ();
1082
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
1102 ALL_NON_EXITED_THREADS_SAFE (th, tmp)
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
1111 th->control.step_resume_breakpoint = NULL;
1112 th->control.exception_resume_breakpoint = NULL;
1113 th->control.single_step_breakpoints = NULL;
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
1116
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
1120 th->stop_requested = 0;
1121
1122 update_breakpoints_after_exec ();
1123
1124 /* What is this a.out's name? */
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1130 inferior has essentially been killed & reborn. */
1131
1132 gdb_flush (gdb_stdout);
1133
1134 breakpoint_init_inferior (inf_execd);
1135
1136 if (gdb_sysroot && *gdb_sysroot)
1137 {
1138 char *name = alloca (strlen (gdb_sysroot)
1139 + strlen (execd_pathname)
1140 + 1);
1141
1142 strcpy (name, gdb_sysroot);
1143 strcat (name, execd_pathname);
1144 execd_pathname = name;
1145 }
1146
1147 /* Reset the shared library package. This ensures that we get a
1148 shlib event when the child reaches "_start", at which point the
1149 dld will have had a chance to initialize the child. */
1150 /* Also, loading a symbol file below may trigger symbol lookups, and
1151 we don't want those to be satisfied by the libraries of the
1152 previous incarnation of this process. */
1153 no_shared_libraries (NULL, 0);
1154
1155 if (follow_exec_mode_string == follow_exec_mode_new)
1156 {
1157 struct program_space *pspace;
1158
1159 /* The user wants to keep the old inferior and program spaces
1160 around. Create a new fresh one, and switch to it. */
1161
1162 inf = add_inferior (current_inferior ()->pid);
1163 pspace = add_program_space (maybe_new_address_space ());
1164 inf->pspace = pspace;
1165 inf->aspace = pspace->aspace;
1166
1167 exit_inferior_num_silent (current_inferior ()->num);
1168
1169 set_current_inferior (inf);
1170 set_current_program_space (pspace);
1171 }
1172 else
1173 {
1174 /* The old description may no longer be fit for the new image.
1175 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1176 old description; we'll read a new one below. No need to do
1177 this on "follow-exec-mode new", as the old inferior stays
1178 around (its description is later cleared/refetched on
1179 restart). */
1180 target_clear_description ();
1181 }
1182
1183 gdb_assert (current_program_space == inf->pspace);
1184
1185 /* That a.out is now the one to use. */
1186 exec_file_attach (execd_pathname, 0);
1187
1188 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1189 (Position Independent Executable) main symbol file will get applied by
1190 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1191 the breakpoints with the zero displacement. */
1192
1193 symbol_file_add (execd_pathname,
1194 (inf->symfile_flags
1195 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1196 NULL, 0);
1197
1198 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1199 set_initial_language ();
1200
1201 /* If the target can specify a description, read it. Must do this
1202 after flipping to the new executable (because the target supplied
1203 description must be compatible with the executable's
1204 architecture, and the old executable may e.g., be 32-bit, while
1205 the new one 64-bit), and before anything involving memory or
1206 registers. */
1207 target_find_description ();
1208
1209 solib_create_inferior_hook (0);
1210
1211 jit_inferior_created_hook ();
1212
1213 breakpoint_re_set ();
1214
1215 /* Reinsert all breakpoints. (Those which were symbolic have
1216 been reset to the proper address in the new a.out, thanks
1217 to symbol_file_command...). */
1218 insert_breakpoints ();
1219
1220 /* The next resume of this inferior should bring it to the shlib
1221 startup breakpoints. (If the user had also set bp's on
1222 "main" from the old (parent) process, then they'll auto-
1223 matically get reset there in the new process.). */
1224 }
1225
1226 /* Info about an instruction that is being stepped over. */
1227
1228 struct step_over_info
1229 {
1230 /* If we're stepping past a breakpoint, this is the address space
1231 and address of the instruction the breakpoint is set at. We'll
1232 skip inserting all breakpoints here. Valid iff ASPACE is
1233 non-NULL. */
1234 struct address_space *aspace;
1235 CORE_ADDR address;
1236
1237 /* The instruction being stepped over triggers a nonsteppable
1238 watchpoint. If true, we'll skip inserting watchpoints. */
1239 int nonsteppable_watchpoint_p;
1240 };
1241
1242 /* The step-over info of the location that is being stepped over.
1243
1244 Note that with async/breakpoint always-inserted mode, a user might
1245 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1246 being stepped over. As setting a new breakpoint inserts all
1247 breakpoints, we need to make sure the breakpoint being stepped over
1248 isn't inserted then. We do that by only clearing the step-over
1249 info when the step-over is actually finished (or aborted).
1250
1251 Presently GDB can only step over one breakpoint at any given time.
1252 Given threads that can't run code in the same address space as the
1253 breakpoint's can't really miss the breakpoint, GDB could be taught
1254 to step-over at most one breakpoint per address space (so this info
1255 could move to the address space object if/when GDB is extended).
1256 The set of breakpoints being stepped over will normally be much
1257 smaller than the set of all breakpoints, so a flag in the
1258 breakpoint location structure would be wasteful. A separate list
1259 also saves complexity and run-time, as otherwise we'd have to go
1260 through all breakpoint locations clearing their flag whenever we
1261 start a new sequence. Similar considerations weigh against storing
1262 this info in the thread object. Plus, not all step overs actually
1263 have breakpoint locations -- e.g., stepping past a single-step
1264 breakpoint, or stepping to complete a non-continuable
1265 watchpoint. */
1266 static struct step_over_info step_over_info;
1267
1268 /* Record the address of the breakpoint/instruction we're currently
1269 stepping over. */
1270
1271 static void
1272 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1273 int nonsteppable_watchpoint_p)
1274 {
1275 step_over_info.aspace = aspace;
1276 step_over_info.address = address;
1277 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1278 }
1279
1280 /* Called when we're not longer stepping over a breakpoint / an
1281 instruction, so all breakpoints are free to be (re)inserted. */
1282
1283 static void
1284 clear_step_over_info (void)
1285 {
1286 step_over_info.aspace = NULL;
1287 step_over_info.address = 0;
1288 step_over_info.nonsteppable_watchpoint_p = 0;
1289 }
1290
1291 /* See infrun.h. */
1292
1293 int
1294 stepping_past_instruction_at (struct address_space *aspace,
1295 CORE_ADDR address)
1296 {
1297 return (step_over_info.aspace != NULL
1298 && breakpoint_address_match (aspace, address,
1299 step_over_info.aspace,
1300 step_over_info.address));
1301 }
1302
1303 /* See infrun.h. */
1304
1305 int
1306 stepping_past_nonsteppable_watchpoint (void)
1307 {
1308 return step_over_info.nonsteppable_watchpoint_p;
1309 }
1310
1311 /* Returns true if step-over info is valid. */
1312
1313 static int
1314 step_over_info_valid_p (void)
1315 {
1316 return (step_over_info.aspace != NULL
1317 || stepping_past_nonsteppable_watchpoint ());
1318 }
1319
1320 \f
1321 /* Displaced stepping. */
1322
1323 /* In non-stop debugging mode, we must take special care to manage
1324 breakpoints properly; in particular, the traditional strategy for
1325 stepping a thread past a breakpoint it has hit is unsuitable.
1326 'Displaced stepping' is a tactic for stepping one thread past a
1327 breakpoint it has hit while ensuring that other threads running
1328 concurrently will hit the breakpoint as they should.
1329
1330 The traditional way to step a thread T off a breakpoint in a
1331 multi-threaded program in all-stop mode is as follows:
1332
1333 a0) Initially, all threads are stopped, and breakpoints are not
1334 inserted.
1335 a1) We single-step T, leaving breakpoints uninserted.
1336 a2) We insert breakpoints, and resume all threads.
1337
1338 In non-stop debugging, however, this strategy is unsuitable: we
1339 don't want to have to stop all threads in the system in order to
1340 continue or step T past a breakpoint. Instead, we use displaced
1341 stepping:
1342
1343 n0) Initially, T is stopped, other threads are running, and
1344 breakpoints are inserted.
1345 n1) We copy the instruction "under" the breakpoint to a separate
1346 location, outside the main code stream, making any adjustments
1347 to the instruction, register, and memory state as directed by
1348 T's architecture.
1349 n2) We single-step T over the instruction at its new location.
1350 n3) We adjust the resulting register and memory state as directed
1351 by T's architecture. This includes resetting T's PC to point
1352 back into the main instruction stream.
1353 n4) We resume T.
1354
1355 This approach depends on the following gdbarch methods:
1356
1357 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1358 indicate where to copy the instruction, and how much space must
1359 be reserved there. We use these in step n1.
1360
1361 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1362 address, and makes any necessary adjustments to the instruction,
1363 register contents, and memory. We use this in step n1.
1364
1365 - gdbarch_displaced_step_fixup adjusts registers and memory after
1366 we have successfuly single-stepped the instruction, to yield the
1367 same effect the instruction would have had if we had executed it
1368 at its original address. We use this in step n3.
1369
1370 - gdbarch_displaced_step_free_closure provides cleanup.
1371
1372 The gdbarch_displaced_step_copy_insn and
1373 gdbarch_displaced_step_fixup functions must be written so that
1374 copying an instruction with gdbarch_displaced_step_copy_insn,
1375 single-stepping across the copied instruction, and then applying
1376 gdbarch_displaced_insn_fixup should have the same effects on the
1377 thread's memory and registers as stepping the instruction in place
1378 would have. Exactly which responsibilities fall to the copy and
1379 which fall to the fixup is up to the author of those functions.
1380
1381 See the comments in gdbarch.sh for details.
1382
1383 Note that displaced stepping and software single-step cannot
1384 currently be used in combination, although with some care I think
1385 they could be made to. Software single-step works by placing
1386 breakpoints on all possible subsequent instructions; if the
1387 displaced instruction is a PC-relative jump, those breakpoints
1388 could fall in very strange places --- on pages that aren't
1389 executable, or at addresses that are not proper instruction
1390 boundaries. (We do generally let other threads run while we wait
1391 to hit the software single-step breakpoint, and they might
1392 encounter such a corrupted instruction.) One way to work around
1393 this would be to have gdbarch_displaced_step_copy_insn fully
1394 simulate the effect of PC-relative instructions (and return NULL)
1395 on architectures that use software single-stepping.
1396
1397 In non-stop mode, we can have independent and simultaneous step
1398 requests, so more than one thread may need to simultaneously step
1399 over a breakpoint. The current implementation assumes there is
1400 only one scratch space per process. In this case, we have to
1401 serialize access to the scratch space. If thread A wants to step
1402 over a breakpoint, but we are currently waiting for some other
1403 thread to complete a displaced step, we leave thread A stopped and
1404 place it in the displaced_step_request_queue. Whenever a displaced
1405 step finishes, we pick the next thread in the queue and start a new
1406 displaced step operation on it. See displaced_step_prepare and
1407 displaced_step_fixup for details. */
1408
1409 struct displaced_step_request
1410 {
1411 ptid_t ptid;
1412 struct displaced_step_request *next;
1413 };
1414
1415 /* Per-inferior displaced stepping state. */
1416 struct displaced_step_inferior_state
1417 {
1418 /* Pointer to next in linked list. */
1419 struct displaced_step_inferior_state *next;
1420
1421 /* The process this displaced step state refers to. */
1422 int pid;
1423
1424 /* A queue of pending displaced stepping requests. One entry per
1425 thread that needs to do a displaced step. */
1426 struct displaced_step_request *step_request_queue;
1427
1428 /* If this is not null_ptid, this is the thread carrying out a
1429 displaced single-step in process PID. This thread's state will
1430 require fixing up once it has completed its step. */
1431 ptid_t step_ptid;
1432
1433 /* The architecture the thread had when we stepped it. */
1434 struct gdbarch *step_gdbarch;
1435
1436 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1437 for post-step cleanup. */
1438 struct displaced_step_closure *step_closure;
1439
1440 /* The address of the original instruction, and the copy we
1441 made. */
1442 CORE_ADDR step_original, step_copy;
1443
1444 /* Saved contents of copy area. */
1445 gdb_byte *step_saved_copy;
1446 };
1447
1448 /* The list of states of processes involved in displaced stepping
1449 presently. */
1450 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1451
1452 /* Get the displaced stepping state of process PID. */
1453
1454 static struct displaced_step_inferior_state *
1455 get_displaced_stepping_state (int pid)
1456 {
1457 struct displaced_step_inferior_state *state;
1458
1459 for (state = displaced_step_inferior_states;
1460 state != NULL;
1461 state = state->next)
1462 if (state->pid == pid)
1463 return state;
1464
1465 return NULL;
1466 }
1467
1468 /* Add a new displaced stepping state for process PID to the displaced
1469 stepping state list, or return a pointer to an already existing
1470 entry, if it already exists. Never returns NULL. */
1471
1472 static struct displaced_step_inferior_state *
1473 add_displaced_stepping_state (int pid)
1474 {
1475 struct displaced_step_inferior_state *state;
1476
1477 for (state = displaced_step_inferior_states;
1478 state != NULL;
1479 state = state->next)
1480 if (state->pid == pid)
1481 return state;
1482
1483 state = xcalloc (1, sizeof (*state));
1484 state->pid = pid;
1485 state->next = displaced_step_inferior_states;
1486 displaced_step_inferior_states = state;
1487
1488 return state;
1489 }
1490
1491 /* If inferior is in displaced stepping, and ADDR equals to starting address
1492 of copy area, return corresponding displaced_step_closure. Otherwise,
1493 return NULL. */
1494
1495 struct displaced_step_closure*
1496 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1497 {
1498 struct displaced_step_inferior_state *displaced
1499 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1500
1501 /* If checking the mode of displaced instruction in copy area. */
1502 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1503 && (displaced->step_copy == addr))
1504 return displaced->step_closure;
1505
1506 return NULL;
1507 }
1508
1509 /* Remove the displaced stepping state of process PID. */
1510
1511 static void
1512 remove_displaced_stepping_state (int pid)
1513 {
1514 struct displaced_step_inferior_state *it, **prev_next_p;
1515
1516 gdb_assert (pid != 0);
1517
1518 it = displaced_step_inferior_states;
1519 prev_next_p = &displaced_step_inferior_states;
1520 while (it)
1521 {
1522 if (it->pid == pid)
1523 {
1524 *prev_next_p = it->next;
1525 xfree (it);
1526 return;
1527 }
1528
1529 prev_next_p = &it->next;
1530 it = *prev_next_p;
1531 }
1532 }
1533
1534 static void
1535 infrun_inferior_exit (struct inferior *inf)
1536 {
1537 remove_displaced_stepping_state (inf->pid);
1538 }
1539
1540 /* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 which of all-stop or non-stop mode is active --- displaced stepping
1546 in non-stop mode; hold-and-step in all-stop mode. */
1547
1548 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1549
1550 static void
1551 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1552 struct cmd_list_element *c,
1553 const char *value)
1554 {
1555 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1556 fprintf_filtered (file,
1557 _("Debugger's willingness to use displaced stepping "
1558 "to step over breakpoints is %s (currently %s).\n"),
1559 value, non_stop ? "on" : "off");
1560 else
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s.\n"), value);
1564 }
1565
1566 /* Return non-zero if displaced stepping can/should be used to step
1567 over breakpoints. */
1568
1569 static int
1570 use_displaced_stepping (struct gdbarch *gdbarch)
1571 {
1572 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1573 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1574 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1575 && find_record_target () == NULL);
1576 }
1577
1578 /* Clean out any stray displaced stepping state. */
1579 static void
1580 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1581 {
1582 /* Indicate that there is no cleanup pending. */
1583 displaced->step_ptid = null_ptid;
1584
1585 if (displaced->step_closure)
1586 {
1587 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1588 displaced->step_closure);
1589 displaced->step_closure = NULL;
1590 }
1591 }
1592
1593 static void
1594 displaced_step_clear_cleanup (void *arg)
1595 {
1596 struct displaced_step_inferior_state *state = arg;
1597
1598 displaced_step_clear (state);
1599 }
1600
1601 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1602 void
1603 displaced_step_dump_bytes (struct ui_file *file,
1604 const gdb_byte *buf,
1605 size_t len)
1606 {
1607 int i;
1608
1609 for (i = 0; i < len; i++)
1610 fprintf_unfiltered (file, "%02x ", buf[i]);
1611 fputs_unfiltered ("\n", file);
1612 }
1613
1614 /* Prepare to single-step, using displaced stepping.
1615
1616 Note that we cannot use displaced stepping when we have a signal to
1617 deliver. If we have a signal to deliver and an instruction to step
1618 over, then after the step, there will be no indication from the
1619 target whether the thread entered a signal handler or ignored the
1620 signal and stepped over the instruction successfully --- both cases
1621 result in a simple SIGTRAP. In the first case we mustn't do a
1622 fixup, and in the second case we must --- but we can't tell which.
1623 Comments in the code for 'random signals' in handle_inferior_event
1624 explain how we handle this case instead.
1625
1626 Returns 1 if preparing was successful -- this thread is going to be
1627 stepped now; or 0 if displaced stepping this thread got queued. */
1628 static int
1629 displaced_step_prepare (ptid_t ptid)
1630 {
1631 struct cleanup *old_cleanups, *ignore_cleanups;
1632 struct thread_info *tp = find_thread_ptid (ptid);
1633 struct regcache *regcache = get_thread_regcache (ptid);
1634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1635 CORE_ADDR original, copy;
1636 ULONGEST len;
1637 struct displaced_step_closure *closure;
1638 struct displaced_step_inferior_state *displaced;
1639 int status;
1640
1641 /* We should never reach this function if the architecture does not
1642 support displaced stepping. */
1643 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1644
1645 /* Disable range stepping while executing in the scratch pad. We
1646 want a single-step even if executing the displaced instruction in
1647 the scratch buffer lands within the stepping range (e.g., a
1648 jump/branch). */
1649 tp->control.may_range_step = 0;
1650
1651 /* We have to displaced step one thread at a time, as we only have
1652 access to a single scratch space per inferior. */
1653
1654 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1655
1656 if (!ptid_equal (displaced->step_ptid, null_ptid))
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660 struct displaced_step_request *req, *new_req;
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: defering step of %s\n",
1665 target_pid_to_str (ptid));
1666
1667 new_req = xmalloc (sizeof (*new_req));
1668 new_req->ptid = ptid;
1669 new_req->next = NULL;
1670
1671 if (displaced->step_request_queue)
1672 {
1673 for (req = displaced->step_request_queue;
1674 req && req->next;
1675 req = req->next)
1676 ;
1677 req->next = new_req;
1678 }
1679 else
1680 displaced->step_request_queue = new_req;
1681
1682 return 0;
1683 }
1684 else
1685 {
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: stepping %s now\n",
1689 target_pid_to_str (ptid));
1690 }
1691
1692 displaced_step_clear (displaced);
1693
1694 old_cleanups = save_inferior_ptid ();
1695 inferior_ptid = ptid;
1696
1697 original = regcache_read_pc (regcache);
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
1702 /* Save the original contents of the copy area. */
1703 displaced->step_saved_copy = xmalloc (len);
1704 ignore_cleanups = make_cleanup (free_current_contents,
1705 &displaced->step_saved_copy);
1706 status = target_read_memory (copy, displaced->step_saved_copy, len);
1707 if (status != 0)
1708 throw_error (MEMORY_ERROR,
1709 _("Error accessing memory address %s (%s) for "
1710 "displaced-stepping scratch space."),
1711 paddress (gdbarch, copy), safe_strerror (status));
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1715 paddress (gdbarch, copy));
1716 displaced_step_dump_bytes (gdb_stdlog,
1717 displaced->step_saved_copy,
1718 len);
1719 };
1720
1721 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1722 original, copy, regcache);
1723
1724 /* We don't support the fully-simulated case at present. */
1725 gdb_assert (closure);
1726
1727 /* Save the information we need to fix things up if the step
1728 succeeds. */
1729 displaced->step_ptid = ptid;
1730 displaced->step_gdbarch = gdbarch;
1731 displaced->step_closure = closure;
1732 displaced->step_original = original;
1733 displaced->step_copy = copy;
1734
1735 make_cleanup (displaced_step_clear_cleanup, displaced);
1736
1737 /* Resume execution at the copy. */
1738 regcache_write_pc (regcache, copy);
1739
1740 discard_cleanups (ignore_cleanups);
1741
1742 do_cleanups (old_cleanups);
1743
1744 if (debug_displaced)
1745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1746 paddress (gdbarch, copy));
1747
1748 return 1;
1749 }
1750
1751 static void
1752 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1753 const gdb_byte *myaddr, int len)
1754 {
1755 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1756
1757 inferior_ptid = ptid;
1758 write_memory (memaddr, myaddr, len);
1759 do_cleanups (ptid_cleanup);
1760 }
1761
1762 /* Restore the contents of the copy area for thread PTID. */
1763
1764 static void
1765 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1766 ptid_t ptid)
1767 {
1768 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1769
1770 write_memory_ptid (ptid, displaced->step_copy,
1771 displaced->step_saved_copy, len);
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1774 target_pid_to_str (ptid),
1775 paddress (displaced->step_gdbarch,
1776 displaced->step_copy));
1777 }
1778
1779 static void
1780 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1781 {
1782 struct cleanup *old_cleanups;
1783 struct displaced_step_inferior_state *displaced
1784 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1785
1786 /* Was any thread of this process doing a displaced step? */
1787 if (displaced == NULL)
1788 return;
1789
1790 /* Was this event for the pid we displaced? */
1791 if (ptid_equal (displaced->step_ptid, null_ptid)
1792 || ! ptid_equal (displaced->step_ptid, event_ptid))
1793 return;
1794
1795 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1796
1797 displaced_step_restore (displaced, displaced->step_ptid);
1798
1799 /* Did the instruction complete successfully? */
1800 if (signal == GDB_SIGNAL_TRAP)
1801 {
1802 /* Fixup may need to read memory/registers. Switch to the
1803 thread that we're fixing up. */
1804 switch_to_thread (event_ptid);
1805
1806 /* Fix up the resulting state. */
1807 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1808 displaced->step_closure,
1809 displaced->step_original,
1810 displaced->step_copy,
1811 get_thread_regcache (displaced->step_ptid));
1812 }
1813 else
1814 {
1815 /* Since the instruction didn't complete, all we can do is
1816 relocate the PC. */
1817 struct regcache *regcache = get_thread_regcache (event_ptid);
1818 CORE_ADDR pc = regcache_read_pc (regcache);
1819
1820 pc = displaced->step_original + (pc - displaced->step_copy);
1821 regcache_write_pc (regcache, pc);
1822 }
1823
1824 do_cleanups (old_cleanups);
1825
1826 displaced->step_ptid = null_ptid;
1827
1828 /* Are there any pending displaced stepping requests? If so, run
1829 one now. Leave the state object around, since we're likely to
1830 need it again soon. */
1831 while (displaced->step_request_queue)
1832 {
1833 struct displaced_step_request *head;
1834 ptid_t ptid;
1835 struct regcache *regcache;
1836 struct gdbarch *gdbarch;
1837 CORE_ADDR actual_pc;
1838 struct address_space *aspace;
1839
1840 head = displaced->step_request_queue;
1841 ptid = head->ptid;
1842 displaced->step_request_queue = head->next;
1843 xfree (head);
1844
1845 context_switch (ptid);
1846
1847 regcache = get_thread_regcache (ptid);
1848 actual_pc = regcache_read_pc (regcache);
1849 aspace = get_regcache_aspace (regcache);
1850
1851 if (breakpoint_here_p (aspace, actual_pc))
1852 {
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "displaced: stepping queued %s now\n",
1856 target_pid_to_str (ptid));
1857
1858 displaced_step_prepare (ptid);
1859
1860 gdbarch = get_regcache_arch (regcache);
1861
1862 if (debug_displaced)
1863 {
1864 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1865 gdb_byte buf[4];
1866
1867 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1868 paddress (gdbarch, actual_pc));
1869 read_memory (actual_pc, buf, sizeof (buf));
1870 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1871 }
1872
1873 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1874 displaced->step_closure))
1875 target_resume (ptid, 1, GDB_SIGNAL_0);
1876 else
1877 target_resume (ptid, 0, GDB_SIGNAL_0);
1878
1879 /* Done, we're stepping a thread. */
1880 break;
1881 }
1882 else
1883 {
1884 int step;
1885 struct thread_info *tp = inferior_thread ();
1886
1887 /* The breakpoint we were sitting under has since been
1888 removed. */
1889 tp->control.trap_expected = 0;
1890
1891 /* Go back to what we were trying to do. */
1892 step = currently_stepping (tp);
1893
1894 if (debug_displaced)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "displaced: breakpoint is gone: %s, step(%d)\n",
1897 target_pid_to_str (tp->ptid), step);
1898
1899 target_resume (ptid, step, GDB_SIGNAL_0);
1900 tp->suspend.stop_signal = GDB_SIGNAL_0;
1901
1902 /* This request was discarded. See if there's any other
1903 thread waiting for its turn. */
1904 }
1905 }
1906 }
1907
1908 /* Update global variables holding ptids to hold NEW_PTID if they were
1909 holding OLD_PTID. */
1910 static void
1911 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1912 {
1913 struct displaced_step_request *it;
1914 struct displaced_step_inferior_state *displaced;
1915
1916 if (ptid_equal (inferior_ptid, old_ptid))
1917 inferior_ptid = new_ptid;
1918
1919 for (displaced = displaced_step_inferior_states;
1920 displaced;
1921 displaced = displaced->next)
1922 {
1923 if (ptid_equal (displaced->step_ptid, old_ptid))
1924 displaced->step_ptid = new_ptid;
1925
1926 for (it = displaced->step_request_queue; it; it = it->next)
1927 if (ptid_equal (it->ptid, old_ptid))
1928 it->ptid = new_ptid;
1929 }
1930 }
1931
1932 \f
1933 /* Resuming. */
1934
1935 /* Things to clean up if we QUIT out of resume (). */
1936 static void
1937 resume_cleanups (void *ignore)
1938 {
1939 if (!ptid_equal (inferior_ptid, null_ptid))
1940 delete_single_step_breakpoints (inferior_thread ());
1941
1942 normal_stop ();
1943 }
1944
1945 static const char schedlock_off[] = "off";
1946 static const char schedlock_on[] = "on";
1947 static const char schedlock_step[] = "step";
1948 static const char *const scheduler_enums[] = {
1949 schedlock_off,
1950 schedlock_on,
1951 schedlock_step,
1952 NULL
1953 };
1954 static const char *scheduler_mode = schedlock_off;
1955 static void
1956 show_scheduler_mode (struct ui_file *file, int from_tty,
1957 struct cmd_list_element *c, const char *value)
1958 {
1959 fprintf_filtered (file,
1960 _("Mode for locking scheduler "
1961 "during execution is \"%s\".\n"),
1962 value);
1963 }
1964
1965 static void
1966 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1967 {
1968 if (!target_can_lock_scheduler)
1969 {
1970 scheduler_mode = schedlock_off;
1971 error (_("Target '%s' cannot support this command."), target_shortname);
1972 }
1973 }
1974
1975 /* True if execution commands resume all threads of all processes by
1976 default; otherwise, resume only threads of the current inferior
1977 process. */
1978 int sched_multi = 0;
1979
1980 /* Try to setup for software single stepping over the specified location.
1981 Return 1 if target_resume() should use hardware single step.
1982
1983 GDBARCH the current gdbarch.
1984 PC the location to step over. */
1985
1986 static int
1987 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1988 {
1989 int hw_step = 1;
1990
1991 if (execution_direction == EXEC_FORWARD
1992 && gdbarch_software_single_step_p (gdbarch)
1993 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1994 {
1995 hw_step = 0;
1996 }
1997 return hw_step;
1998 }
1999
2000 /* See infrun.h. */
2001
2002 ptid_t
2003 user_visible_resume_ptid (int step)
2004 {
2005 ptid_t resume_ptid;
2006
2007 if (non_stop)
2008 {
2009 /* With non-stop mode on, threads are always handled
2010 individually. */
2011 resume_ptid = inferior_ptid;
2012 }
2013 else if ((scheduler_mode == schedlock_on)
2014 || (scheduler_mode == schedlock_step && step))
2015 {
2016 /* User-settable 'scheduler' mode requires solo thread
2017 resume. */
2018 resume_ptid = inferior_ptid;
2019 }
2020 else if (!sched_multi && target_supports_multi_process ())
2021 {
2022 /* Resume all threads of the current process (and none of other
2023 processes). */
2024 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2025 }
2026 else
2027 {
2028 /* Resume all threads of all processes. */
2029 resume_ptid = RESUME_ALL;
2030 }
2031
2032 return resume_ptid;
2033 }
2034
2035 /* Wrapper for target_resume, that handles infrun-specific
2036 bookkeeping. */
2037
2038 static void
2039 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2040 {
2041 struct thread_info *tp = inferior_thread ();
2042
2043 /* Install inferior's terminal modes. */
2044 target_terminal_inferior ();
2045
2046 /* Avoid confusing the next resume, if the next stop/resume
2047 happens to apply to another thread. */
2048 tp->suspend.stop_signal = GDB_SIGNAL_0;
2049
2050 /* Advise target which signals may be handled silently. If we have
2051 removed breakpoints because we are stepping over one (in any
2052 thread), we need to receive all signals to avoid accidentally
2053 skipping a breakpoint during execution of a signal handler. */
2054 if (step_over_info_valid_p ())
2055 target_pass_signals (0, NULL);
2056 else
2057 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2058
2059 target_resume (resume_ptid, step, sig);
2060 }
2061
2062 /* Resume the inferior, but allow a QUIT. This is useful if the user
2063 wants to interrupt some lengthy single-stepping operation
2064 (for child processes, the SIGINT goes to the inferior, and so
2065 we get a SIGINT random_signal, but for remote debugging and perhaps
2066 other targets, that's not true).
2067
2068 SIG is the signal to give the inferior (zero for none). */
2069 void
2070 resume (enum gdb_signal sig)
2071 {
2072 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2073 struct regcache *regcache = get_current_regcache ();
2074 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2075 struct thread_info *tp = inferior_thread ();
2076 CORE_ADDR pc = regcache_read_pc (regcache);
2077 struct address_space *aspace = get_regcache_aspace (regcache);
2078 ptid_t resume_ptid;
2079 /* This represents the user's step vs continue request. When
2080 deciding whether "set scheduler-locking step" applies, it's the
2081 user's intention that counts. */
2082 const int user_step = tp->control.stepping_command;
2083 /* This represents what we'll actually request the target to do.
2084 This can decay from a step to a continue, if e.g., we need to
2085 implement single-stepping with breakpoints (software
2086 single-step). */
2087 int step = currently_stepping (tp);
2088
2089 tp->stepped_breakpoint = 0;
2090
2091 QUIT;
2092
2093 if (current_inferior ()->waiting_for_vfork_done)
2094 {
2095 /* Don't try to single-step a vfork parent that is waiting for
2096 the child to get out of the shared memory region (by exec'ing
2097 or exiting). This is particularly important on software
2098 single-step archs, as the child process would trip on the
2099 software single step breakpoint inserted for the parent
2100 process. Since the parent will not actually execute any
2101 instruction until the child is out of the shared region (such
2102 are vfork's semantics), it is safe to simply continue it.
2103 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2104 the parent, and tell it to `keep_going', which automatically
2105 re-sets it stepping. */
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: resume : clear step\n");
2109 step = 0;
2110 }
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: resume (step=%d, signal=%s), "
2115 "trap_expected=%d, current thread [%s] at %s\n",
2116 step, gdb_signal_to_symbol_string (sig),
2117 tp->control.trap_expected,
2118 target_pid_to_str (inferior_ptid),
2119 paddress (gdbarch, pc));
2120
2121 /* Normally, by the time we reach `resume', the breakpoints are either
2122 removed or inserted, as appropriate. The exception is if we're sitting
2123 at a permanent breakpoint; we need to step over it, but permanent
2124 breakpoints can't be removed. So we have to test for it here. */
2125 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2126 {
2127 if (sig != GDB_SIGNAL_0)
2128 {
2129 /* We have a signal to pass to the inferior. The resume
2130 may, or may not take us to the signal handler. If this
2131 is a step, we'll need to stop in the signal handler, if
2132 there's one, (if the target supports stepping into
2133 handlers), or in the next mainline instruction, if
2134 there's no handler. If this is a continue, we need to be
2135 sure to run the handler with all breakpoints inserted.
2136 In all cases, set a breakpoint at the current address
2137 (where the handler returns to), and once that breakpoint
2138 is hit, resume skipping the permanent breakpoint. If
2139 that breakpoint isn't hit, then we've stepped into the
2140 signal handler (or hit some other event). We'll delete
2141 the step-resume breakpoint then. */
2142
2143 if (debug_infrun)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "infrun: resume: skipping permanent breakpoint, "
2146 "deliver signal first\n");
2147
2148 clear_step_over_info ();
2149 tp->control.trap_expected = 0;
2150
2151 if (tp->control.step_resume_breakpoint == NULL)
2152 {
2153 /* Set a "high-priority" step-resume, as we don't want
2154 user breakpoints at PC to trigger (again) when this
2155 hits. */
2156 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2157 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2158
2159 tp->step_after_step_resume_breakpoint = step;
2160 }
2161
2162 insert_breakpoints ();
2163 }
2164 else
2165 {
2166 /* There's no signal to pass, we can go ahead and skip the
2167 permanent breakpoint manually. */
2168 if (debug_infrun)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: resume: skipping permanent breakpoint\n");
2171 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2172 /* Update pc to reflect the new address from which we will
2173 execute instructions. */
2174 pc = regcache_read_pc (regcache);
2175
2176 if (step)
2177 {
2178 /* We've already advanced the PC, so the stepping part
2179 is done. Now we need to arrange for a trap to be
2180 reported to handle_inferior_event. Set a breakpoint
2181 at the current PC, and run to it. Don't update
2182 prev_pc, because if we end in
2183 switch_back_to_stepped_thread, we want the "expected
2184 thread advanced also" branch to be taken. IOW, we
2185 don't want this thread to step further from PC
2186 (overstep). */
2187 gdb_assert (!step_over_info_valid_p ());
2188 insert_single_step_breakpoint (gdbarch, aspace, pc);
2189 insert_breakpoints ();
2190
2191 resume_ptid = user_visible_resume_ptid (user_step);
2192 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2193 discard_cleanups (old_cleanups);
2194 return;
2195 }
2196 }
2197 }
2198
2199 /* If we have a breakpoint to step over, make sure to do a single
2200 step only. Same if we have software watchpoints. */
2201 if (tp->control.trap_expected || bpstat_should_step ())
2202 tp->control.may_range_step = 0;
2203
2204 /* If enabled, step over breakpoints by executing a copy of the
2205 instruction at a different address.
2206
2207 We can't use displaced stepping when we have a signal to deliver;
2208 the comments for displaced_step_prepare explain why. The
2209 comments in the handle_inferior event for dealing with 'random
2210 signals' explain what we do instead.
2211
2212 We can't use displaced stepping when we are waiting for vfork_done
2213 event, displaced stepping breaks the vfork child similarly as single
2214 step software breakpoint. */
2215 if (use_displaced_stepping (gdbarch)
2216 && tp->control.trap_expected
2217 && sig == GDB_SIGNAL_0
2218 && !current_inferior ()->waiting_for_vfork_done)
2219 {
2220 struct displaced_step_inferior_state *displaced;
2221
2222 if (!displaced_step_prepare (inferior_ptid))
2223 {
2224 /* Got placed in displaced stepping queue. Will be resumed
2225 later when all the currently queued displaced stepping
2226 requests finish. The thread is not executing at this
2227 point, and the call to set_executing will be made later.
2228 But we need to call set_running here, since from the
2229 user/frontend's point of view, threads were set running.
2230 Unless we're calling an inferior function, as in that
2231 case we pretend the inferior doesn't run at all. */
2232 if (!tp->control.in_infcall)
2233 set_running (user_visible_resume_ptid (user_step), 1);
2234 discard_cleanups (old_cleanups);
2235 return;
2236 }
2237
2238 /* Update pc to reflect the new address from which we will execute
2239 instructions due to displaced stepping. */
2240 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2241
2242 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2243 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2244 displaced->step_closure);
2245 }
2246
2247 /* Do we need to do it the hard way, w/temp breakpoints? */
2248 else if (step)
2249 step = maybe_software_singlestep (gdbarch, pc);
2250
2251 /* Currently, our software single-step implementation leads to different
2252 results than hardware single-stepping in one situation: when stepping
2253 into delivering a signal which has an associated signal handler,
2254 hardware single-step will stop at the first instruction of the handler,
2255 while software single-step will simply skip execution of the handler.
2256
2257 For now, this difference in behavior is accepted since there is no
2258 easy way to actually implement single-stepping into a signal handler
2259 without kernel support.
2260
2261 However, there is one scenario where this difference leads to follow-on
2262 problems: if we're stepping off a breakpoint by removing all breakpoints
2263 and then single-stepping. In this case, the software single-step
2264 behavior means that even if there is a *breakpoint* in the signal
2265 handler, GDB still would not stop.
2266
2267 Fortunately, we can at least fix this particular issue. We detect
2268 here the case where we are about to deliver a signal while software
2269 single-stepping with breakpoints removed. In this situation, we
2270 revert the decisions to remove all breakpoints and insert single-
2271 step breakpoints, and instead we install a step-resume breakpoint
2272 at the current address, deliver the signal without stepping, and
2273 once we arrive back at the step-resume breakpoint, actually step
2274 over the breakpoint we originally wanted to step over. */
2275 if (thread_has_single_step_breakpoints_set (tp)
2276 && sig != GDB_SIGNAL_0
2277 && step_over_info_valid_p ())
2278 {
2279 /* If we have nested signals or a pending signal is delivered
2280 immediately after a handler returns, might might already have
2281 a step-resume breakpoint set on the earlier handler. We cannot
2282 set another step-resume breakpoint; just continue on until the
2283 original breakpoint is hit. */
2284 if (tp->control.step_resume_breakpoint == NULL)
2285 {
2286 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2287 tp->step_after_step_resume_breakpoint = 1;
2288 }
2289
2290 delete_single_step_breakpoints (tp);
2291
2292 clear_step_over_info ();
2293 tp->control.trap_expected = 0;
2294
2295 insert_breakpoints ();
2296 }
2297
2298 /* If STEP is set, it's a request to use hardware stepping
2299 facilities. But in that case, we should never
2300 use singlestep breakpoint. */
2301 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2302
2303 /* Decide the set of threads to ask the target to resume. Start
2304 by assuming everything will be resumed, than narrow the set
2305 by applying increasingly restricting conditions. */
2306 resume_ptid = user_visible_resume_ptid (user_step);
2307
2308 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2309 (e.g., we might need to step over a breakpoint), from the
2310 user/frontend's point of view, all threads in RESUME_PTID are now
2311 running. Unless we're calling an inferior function, as in that
2312 case pretend we inferior doesn't run at all. */
2313 if (!tp->control.in_infcall)
2314 set_running (resume_ptid, 1);
2315
2316 /* Maybe resume a single thread after all. */
2317 if ((step || thread_has_single_step_breakpoints_set (tp))
2318 && tp->control.trap_expected)
2319 {
2320 /* We're allowing a thread to run past a breakpoint it has
2321 hit, by single-stepping the thread with the breakpoint
2322 removed. In which case, we need to single-step only this
2323 thread, and keep others stopped, as they can miss this
2324 breakpoint if allowed to run. */
2325 resume_ptid = inferior_ptid;
2326 }
2327
2328 if (execution_direction != EXEC_REVERSE
2329 && step && breakpoint_inserted_here_p (aspace, pc))
2330 {
2331 /* The only case we currently need to step a breakpoint
2332 instruction is when we have a signal to deliver. See
2333 handle_signal_stop where we handle random signals that could
2334 take out us out of the stepping range. Normally, in that
2335 case we end up continuing (instead of stepping) over the
2336 signal handler with a breakpoint at PC, but there are cases
2337 where we should _always_ single-step, even if we have a
2338 step-resume breakpoint, like when a software watchpoint is
2339 set. Assuming single-stepping and delivering a signal at the
2340 same time would takes us to the signal handler, then we could
2341 have removed the breakpoint at PC to step over it. However,
2342 some hardware step targets (like e.g., Mac OS) can't step
2343 into signal handlers, and for those, we need to leave the
2344 breakpoint at PC inserted, as otherwise if the handler
2345 recurses and executes PC again, it'll miss the breakpoint.
2346 So we leave the breakpoint inserted anyway, but we need to
2347 record that we tried to step a breakpoint instruction, so
2348 that adjust_pc_after_break doesn't end up confused. */
2349 gdb_assert (sig != GDB_SIGNAL_0);
2350
2351 tp->stepped_breakpoint = 1;
2352
2353 /* Most targets can step a breakpoint instruction, thus
2354 executing it normally. But if this one cannot, just
2355 continue and we will hit it anyway. */
2356 if (gdbarch_cannot_step_breakpoint (gdbarch))
2357 step = 0;
2358 }
2359
2360 if (debug_displaced
2361 && use_displaced_stepping (gdbarch)
2362 && tp->control.trap_expected)
2363 {
2364 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2365 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2366 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2367 gdb_byte buf[4];
2368
2369 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2370 paddress (resume_gdbarch, actual_pc));
2371 read_memory (actual_pc, buf, sizeof (buf));
2372 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2373 }
2374
2375 if (tp->control.may_range_step)
2376 {
2377 /* If we're resuming a thread with the PC out of the step
2378 range, then we're doing some nested/finer run control
2379 operation, like stepping the thread out of the dynamic
2380 linker or the displaced stepping scratch pad. We
2381 shouldn't have allowed a range step then. */
2382 gdb_assert (pc_in_thread_step_range (pc, tp));
2383 }
2384
2385 do_target_resume (resume_ptid, step, sig);
2386 discard_cleanups (old_cleanups);
2387 }
2388 \f
2389 /* Proceeding. */
2390
2391 /* Clear out all variables saying what to do when inferior is continued.
2392 First do this, then set the ones you want, then call `proceed'. */
2393
2394 static void
2395 clear_proceed_status_thread (struct thread_info *tp)
2396 {
2397 if (debug_infrun)
2398 fprintf_unfiltered (gdb_stdlog,
2399 "infrun: clear_proceed_status_thread (%s)\n",
2400 target_pid_to_str (tp->ptid));
2401
2402 /* If this signal should not be seen by program, give it zero.
2403 Used for debugging signals. */
2404 if (!signal_pass_state (tp->suspend.stop_signal))
2405 tp->suspend.stop_signal = GDB_SIGNAL_0;
2406
2407 tp->control.trap_expected = 0;
2408 tp->control.step_range_start = 0;
2409 tp->control.step_range_end = 0;
2410 tp->control.may_range_step = 0;
2411 tp->control.step_frame_id = null_frame_id;
2412 tp->control.step_stack_frame_id = null_frame_id;
2413 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2414 tp->control.step_start_function = NULL;
2415 tp->stop_requested = 0;
2416
2417 tp->control.stop_step = 0;
2418
2419 tp->control.proceed_to_finish = 0;
2420
2421 tp->control.command_interp = NULL;
2422 tp->control.stepping_command = 0;
2423
2424 /* Discard any remaining commands or status from previous stop. */
2425 bpstat_clear (&tp->control.stop_bpstat);
2426 }
2427
2428 void
2429 clear_proceed_status (int step)
2430 {
2431 if (!non_stop)
2432 {
2433 struct thread_info *tp;
2434 ptid_t resume_ptid;
2435
2436 resume_ptid = user_visible_resume_ptid (step);
2437
2438 /* In all-stop mode, delete the per-thread status of all threads
2439 we're about to resume, implicitly and explicitly. */
2440 ALL_NON_EXITED_THREADS (tp)
2441 {
2442 if (!ptid_match (tp->ptid, resume_ptid))
2443 continue;
2444 clear_proceed_status_thread (tp);
2445 }
2446 }
2447
2448 if (!ptid_equal (inferior_ptid, null_ptid))
2449 {
2450 struct inferior *inferior;
2451
2452 if (non_stop)
2453 {
2454 /* If in non-stop mode, only delete the per-thread status of
2455 the current thread. */
2456 clear_proceed_status_thread (inferior_thread ());
2457 }
2458
2459 inferior = current_inferior ();
2460 inferior->control.stop_soon = NO_STOP_QUIETLY;
2461 }
2462
2463 stop_after_trap = 0;
2464
2465 clear_step_over_info ();
2466
2467 observer_notify_about_to_proceed ();
2468
2469 if (stop_registers)
2470 {
2471 regcache_xfree (stop_registers);
2472 stop_registers = NULL;
2473 }
2474 }
2475
2476 /* Returns true if TP is still stopped at a breakpoint that needs
2477 stepping-over in order to make progress. If the breakpoint is gone
2478 meanwhile, we can skip the whole step-over dance. */
2479
2480 static int
2481 thread_still_needs_step_over (struct thread_info *tp)
2482 {
2483 if (tp->stepping_over_breakpoint)
2484 {
2485 struct regcache *regcache = get_thread_regcache (tp->ptid);
2486
2487 if (breakpoint_here_p (get_regcache_aspace (regcache),
2488 regcache_read_pc (regcache))
2489 == ordinary_breakpoint_here)
2490 return 1;
2491
2492 tp->stepping_over_breakpoint = 0;
2493 }
2494
2495 return 0;
2496 }
2497
2498 /* Returns true if scheduler locking applies. STEP indicates whether
2499 we're about to do a step/next-like command to a thread. */
2500
2501 static int
2502 schedlock_applies (struct thread_info *tp)
2503 {
2504 return (scheduler_mode == schedlock_on
2505 || (scheduler_mode == schedlock_step
2506 && tp->control.stepping_command));
2507 }
2508
2509 /* Look a thread other than EXCEPT that has previously reported a
2510 breakpoint event, and thus needs a step-over in order to make
2511 progress. Returns NULL is none is found. */
2512
2513 static struct thread_info *
2514 find_thread_needs_step_over (struct thread_info *except)
2515 {
2516 struct thread_info *tp, *current;
2517
2518 /* With non-stop mode on, threads are always handled individually. */
2519 gdb_assert (! non_stop);
2520
2521 current = inferior_thread ();
2522
2523 /* If scheduler locking applies, we can avoid iterating over all
2524 threads. */
2525 if (schedlock_applies (except))
2526 {
2527 if (except != current
2528 && thread_still_needs_step_over (current))
2529 return current;
2530
2531 return NULL;
2532 }
2533
2534 ALL_NON_EXITED_THREADS (tp)
2535 {
2536 /* Ignore the EXCEPT thread. */
2537 if (tp == except)
2538 continue;
2539 /* Ignore threads of processes we're not resuming. */
2540 if (!sched_multi
2541 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2542 continue;
2543
2544 if (thread_still_needs_step_over (tp))
2545 return tp;
2546 }
2547
2548 return NULL;
2549 }
2550
2551 /* Basic routine for continuing the program in various fashions.
2552
2553 ADDR is the address to resume at, or -1 for resume where stopped.
2554 SIGGNAL is the signal to give it, or 0 for none,
2555 or -1 for act according to how it stopped.
2556 STEP is nonzero if should trap after one instruction.
2557 -1 means return after that and print nothing.
2558 You should probably set various step_... variables
2559 before calling here, if you are stepping.
2560
2561 You should call clear_proceed_status before calling proceed. */
2562
2563 void
2564 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2565 {
2566 struct regcache *regcache;
2567 struct gdbarch *gdbarch;
2568 struct thread_info *tp;
2569 CORE_ADDR pc;
2570 struct address_space *aspace;
2571
2572 /* If we're stopped at a fork/vfork, follow the branch set by the
2573 "set follow-fork-mode" command; otherwise, we'll just proceed
2574 resuming the current thread. */
2575 if (!follow_fork ())
2576 {
2577 /* The target for some reason decided not to resume. */
2578 normal_stop ();
2579 if (target_can_async_p ())
2580 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2581 return;
2582 }
2583
2584 /* We'll update this if & when we switch to a new thread. */
2585 previous_inferior_ptid = inferior_ptid;
2586
2587 regcache = get_current_regcache ();
2588 gdbarch = get_regcache_arch (regcache);
2589 aspace = get_regcache_aspace (regcache);
2590 pc = regcache_read_pc (regcache);
2591 tp = inferior_thread ();
2592
2593 /* Fill in with reasonable starting values. */
2594 init_thread_stepping_state (tp);
2595
2596 if (addr == (CORE_ADDR) -1)
2597 {
2598 if (pc == stop_pc
2599 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2600 && execution_direction != EXEC_REVERSE)
2601 /* There is a breakpoint at the address we will resume at,
2602 step one instruction before inserting breakpoints so that
2603 we do not stop right away (and report a second hit at this
2604 breakpoint).
2605
2606 Note, we don't do this in reverse, because we won't
2607 actually be executing the breakpoint insn anyway.
2608 We'll be (un-)executing the previous instruction. */
2609 tp->stepping_over_breakpoint = 1;
2610 else if (gdbarch_single_step_through_delay_p (gdbarch)
2611 && gdbarch_single_step_through_delay (gdbarch,
2612 get_current_frame ()))
2613 /* We stepped onto an instruction that needs to be stepped
2614 again before re-inserting the breakpoint, do so. */
2615 tp->stepping_over_breakpoint = 1;
2616 }
2617 else
2618 {
2619 regcache_write_pc (regcache, addr);
2620 }
2621
2622 if (siggnal != GDB_SIGNAL_DEFAULT)
2623 tp->suspend.stop_signal = siggnal;
2624
2625 /* Record the interpreter that issued the execution command that
2626 caused this thread to resume. If the top level interpreter is
2627 MI/async, and the execution command was a CLI command
2628 (next/step/etc.), we'll want to print stop event output to the MI
2629 console channel (the stepped-to line, etc.), as if the user
2630 entered the execution command on a real GDB console. */
2631 inferior_thread ()->control.command_interp = command_interp ();
2632
2633 if (debug_infrun)
2634 fprintf_unfiltered (gdb_stdlog,
2635 "infrun: proceed (addr=%s, signal=%s)\n",
2636 paddress (gdbarch, addr),
2637 gdb_signal_to_symbol_string (siggnal));
2638
2639 if (non_stop)
2640 /* In non-stop, each thread is handled individually. The context
2641 must already be set to the right thread here. */
2642 ;
2643 else
2644 {
2645 struct thread_info *step_over;
2646
2647 /* In a multi-threaded task we may select another thread and
2648 then continue or step.
2649
2650 But if the old thread was stopped at a breakpoint, it will
2651 immediately cause another breakpoint stop without any
2652 execution (i.e. it will report a breakpoint hit incorrectly).
2653 So we must step over it first.
2654
2655 Look for a thread other than the current (TP) that reported a
2656 breakpoint hit and hasn't been resumed yet since. */
2657 step_over = find_thread_needs_step_over (tp);
2658 if (step_over != NULL)
2659 {
2660 if (debug_infrun)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "infrun: need to step-over [%s] first\n",
2663 target_pid_to_str (step_over->ptid));
2664
2665 /* Store the prev_pc for the stepping thread too, needed by
2666 switch_back_to_stepped_thread. */
2667 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2668 switch_to_thread (step_over->ptid);
2669 tp = step_over;
2670 }
2671 }
2672
2673 /* If we need to step over a breakpoint, and we're not using
2674 displaced stepping to do so, insert all breakpoints (watchpoints,
2675 etc.) but the one we're stepping over, step one instruction, and
2676 then re-insert the breakpoint when that step is finished. */
2677 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2678 {
2679 struct regcache *regcache = get_current_regcache ();
2680
2681 set_step_over_info (get_regcache_aspace (regcache),
2682 regcache_read_pc (regcache), 0);
2683 }
2684 else
2685 clear_step_over_info ();
2686
2687 insert_breakpoints ();
2688
2689 tp->control.trap_expected = tp->stepping_over_breakpoint;
2690
2691 annotate_starting ();
2692
2693 /* Make sure that output from GDB appears before output from the
2694 inferior. */
2695 gdb_flush (gdb_stdout);
2696
2697 /* Refresh prev_pc value just prior to resuming. This used to be
2698 done in stop_waiting, however, setting prev_pc there did not handle
2699 scenarios such as inferior function calls or returning from
2700 a function via the return command. In those cases, the prev_pc
2701 value was not set properly for subsequent commands. The prev_pc value
2702 is used to initialize the starting line number in the ecs. With an
2703 invalid value, the gdb next command ends up stopping at the position
2704 represented by the next line table entry past our start position.
2705 On platforms that generate one line table entry per line, this
2706 is not a problem. However, on the ia64, the compiler generates
2707 extraneous line table entries that do not increase the line number.
2708 When we issue the gdb next command on the ia64 after an inferior call
2709 or a return command, we often end up a few instructions forward, still
2710 within the original line we started.
2711
2712 An attempt was made to refresh the prev_pc at the same time the
2713 execution_control_state is initialized (for instance, just before
2714 waiting for an inferior event). But this approach did not work
2715 because of platforms that use ptrace, where the pc register cannot
2716 be read unless the inferior is stopped. At that point, we are not
2717 guaranteed the inferior is stopped and so the regcache_read_pc() call
2718 can fail. Setting the prev_pc value here ensures the value is updated
2719 correctly when the inferior is stopped. */
2720 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2721
2722 /* Resume inferior. */
2723 resume (tp->suspend.stop_signal);
2724
2725 /* Wait for it to stop (if not standalone)
2726 and in any case decode why it stopped, and act accordingly. */
2727 /* Do this only if we are not using the event loop, or if the target
2728 does not support asynchronous execution. */
2729 if (!target_can_async_p ())
2730 {
2731 wait_for_inferior ();
2732 normal_stop ();
2733 }
2734 }
2735 \f
2736
2737 /* Start remote-debugging of a machine over a serial link. */
2738
2739 void
2740 start_remote (int from_tty)
2741 {
2742 struct inferior *inferior;
2743
2744 inferior = current_inferior ();
2745 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2746
2747 /* Always go on waiting for the target, regardless of the mode. */
2748 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2749 indicate to wait_for_inferior that a target should timeout if
2750 nothing is returned (instead of just blocking). Because of this,
2751 targets expecting an immediate response need to, internally, set
2752 things up so that the target_wait() is forced to eventually
2753 timeout. */
2754 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2755 differentiate to its caller what the state of the target is after
2756 the initial open has been performed. Here we're assuming that
2757 the target has stopped. It should be possible to eventually have
2758 target_open() return to the caller an indication that the target
2759 is currently running and GDB state should be set to the same as
2760 for an async run. */
2761 wait_for_inferior ();
2762
2763 /* Now that the inferior has stopped, do any bookkeeping like
2764 loading shared libraries. We want to do this before normal_stop,
2765 so that the displayed frame is up to date. */
2766 post_create_inferior (&current_target, from_tty);
2767
2768 normal_stop ();
2769 }
2770
2771 /* Initialize static vars when a new inferior begins. */
2772
2773 void
2774 init_wait_for_inferior (void)
2775 {
2776 /* These are meaningless until the first time through wait_for_inferior. */
2777
2778 breakpoint_init_inferior (inf_starting);
2779
2780 clear_proceed_status (0);
2781
2782 target_last_wait_ptid = minus_one_ptid;
2783
2784 previous_inferior_ptid = inferior_ptid;
2785
2786 /* Discard any skipped inlined frames. */
2787 clear_inline_frame_state (minus_one_ptid);
2788 }
2789
2790 \f
2791 /* Data to be passed around while handling an event. This data is
2792 discarded between events. */
2793 struct execution_control_state
2794 {
2795 ptid_t ptid;
2796 /* The thread that got the event, if this was a thread event; NULL
2797 otherwise. */
2798 struct thread_info *event_thread;
2799
2800 struct target_waitstatus ws;
2801 int stop_func_filled_in;
2802 CORE_ADDR stop_func_start;
2803 CORE_ADDR stop_func_end;
2804 const char *stop_func_name;
2805 int wait_some_more;
2806
2807 /* True if the event thread hit the single-step breakpoint of
2808 another thread. Thus the event doesn't cause a stop, the thread
2809 needs to be single-stepped past the single-step breakpoint before
2810 we can switch back to the original stepping thread. */
2811 int hit_singlestep_breakpoint;
2812 };
2813
2814 static void handle_inferior_event (struct execution_control_state *ecs);
2815
2816 static void handle_step_into_function (struct gdbarch *gdbarch,
2817 struct execution_control_state *ecs);
2818 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2819 struct execution_control_state *ecs);
2820 static void handle_signal_stop (struct execution_control_state *ecs);
2821 static void check_exception_resume (struct execution_control_state *,
2822 struct frame_info *);
2823
2824 static void end_stepping_range (struct execution_control_state *ecs);
2825 static void stop_waiting (struct execution_control_state *ecs);
2826 static void prepare_to_wait (struct execution_control_state *ecs);
2827 static void keep_going (struct execution_control_state *ecs);
2828 static void process_event_stop_test (struct execution_control_state *ecs);
2829 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2830
2831 /* Callback for iterate over threads. If the thread is stopped, but
2832 the user/frontend doesn't know about that yet, go through
2833 normal_stop, as if the thread had just stopped now. ARG points at
2834 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2835 ptid_is_pid(PTID) is true, applies to all threads of the process
2836 pointed at by PTID. Otherwise, apply only to the thread pointed by
2837 PTID. */
2838
2839 static int
2840 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2841 {
2842 ptid_t ptid = * (ptid_t *) arg;
2843
2844 if ((ptid_equal (info->ptid, ptid)
2845 || ptid_equal (minus_one_ptid, ptid)
2846 || (ptid_is_pid (ptid)
2847 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2848 && is_running (info->ptid)
2849 && !is_executing (info->ptid))
2850 {
2851 struct cleanup *old_chain;
2852 struct execution_control_state ecss;
2853 struct execution_control_state *ecs = &ecss;
2854
2855 memset (ecs, 0, sizeof (*ecs));
2856
2857 old_chain = make_cleanup_restore_current_thread ();
2858
2859 overlay_cache_invalid = 1;
2860 /* Flush target cache before starting to handle each event.
2861 Target was running and cache could be stale. This is just a
2862 heuristic. Running threads may modify target memory, but we
2863 don't get any event. */
2864 target_dcache_invalidate ();
2865
2866 /* Go through handle_inferior_event/normal_stop, so we always
2867 have consistent output as if the stop event had been
2868 reported. */
2869 ecs->ptid = info->ptid;
2870 ecs->event_thread = find_thread_ptid (info->ptid);
2871 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2872 ecs->ws.value.sig = GDB_SIGNAL_0;
2873
2874 handle_inferior_event (ecs);
2875
2876 if (!ecs->wait_some_more)
2877 {
2878 struct thread_info *tp;
2879
2880 normal_stop ();
2881
2882 /* Finish off the continuations. */
2883 tp = inferior_thread ();
2884 do_all_intermediate_continuations_thread (tp, 1);
2885 do_all_continuations_thread (tp, 1);
2886 }
2887
2888 do_cleanups (old_chain);
2889 }
2890
2891 return 0;
2892 }
2893
2894 /* This function is attached as a "thread_stop_requested" observer.
2895 Cleanup local state that assumed the PTID was to be resumed, and
2896 report the stop to the frontend. */
2897
2898 static void
2899 infrun_thread_stop_requested (ptid_t ptid)
2900 {
2901 struct displaced_step_inferior_state *displaced;
2902
2903 /* PTID was requested to stop. Remove it from the displaced
2904 stepping queue, so we don't try to resume it automatically. */
2905
2906 for (displaced = displaced_step_inferior_states;
2907 displaced;
2908 displaced = displaced->next)
2909 {
2910 struct displaced_step_request *it, **prev_next_p;
2911
2912 it = displaced->step_request_queue;
2913 prev_next_p = &displaced->step_request_queue;
2914 while (it)
2915 {
2916 if (ptid_match (it->ptid, ptid))
2917 {
2918 *prev_next_p = it->next;
2919 it->next = NULL;
2920 xfree (it);
2921 }
2922 else
2923 {
2924 prev_next_p = &it->next;
2925 }
2926
2927 it = *prev_next_p;
2928 }
2929 }
2930
2931 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2932 }
2933
2934 static void
2935 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2936 {
2937 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2938 nullify_last_target_wait_ptid ();
2939 }
2940
2941 /* Delete the step resume, single-step and longjmp/exception resume
2942 breakpoints of TP. */
2943
2944 static void
2945 delete_thread_infrun_breakpoints (struct thread_info *tp)
2946 {
2947 delete_step_resume_breakpoint (tp);
2948 delete_exception_resume_breakpoint (tp);
2949 delete_single_step_breakpoints (tp);
2950 }
2951
2952 /* If the target still has execution, call FUNC for each thread that
2953 just stopped. In all-stop, that's all the non-exited threads; in
2954 non-stop, that's the current thread, only. */
2955
2956 typedef void (*for_each_just_stopped_thread_callback_func)
2957 (struct thread_info *tp);
2958
2959 static void
2960 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2961 {
2962 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2963 return;
2964
2965 if (non_stop)
2966 {
2967 /* If in non-stop mode, only the current thread stopped. */
2968 func (inferior_thread ());
2969 }
2970 else
2971 {
2972 struct thread_info *tp;
2973
2974 /* In all-stop mode, all threads have stopped. */
2975 ALL_NON_EXITED_THREADS (tp)
2976 {
2977 func (tp);
2978 }
2979 }
2980 }
2981
2982 /* Delete the step resume and longjmp/exception resume breakpoints of
2983 the threads that just stopped. */
2984
2985 static void
2986 delete_just_stopped_threads_infrun_breakpoints (void)
2987 {
2988 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2989 }
2990
2991 /* Delete the single-step breakpoints of the threads that just
2992 stopped. */
2993
2994 static void
2995 delete_just_stopped_threads_single_step_breakpoints (void)
2996 {
2997 for_each_just_stopped_thread (delete_single_step_breakpoints);
2998 }
2999
3000 /* A cleanup wrapper. */
3001
3002 static void
3003 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3004 {
3005 delete_just_stopped_threads_infrun_breakpoints ();
3006 }
3007
3008 /* Pretty print the results of target_wait, for debugging purposes. */
3009
3010 static void
3011 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3012 const struct target_waitstatus *ws)
3013 {
3014 char *status_string = target_waitstatus_to_string (ws);
3015 struct ui_file *tmp_stream = mem_fileopen ();
3016 char *text;
3017
3018 /* The text is split over several lines because it was getting too long.
3019 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3020 output as a unit; we want only one timestamp printed if debug_timestamp
3021 is set. */
3022
3023 fprintf_unfiltered (tmp_stream,
3024 "infrun: target_wait (%d.%ld.%ld",
3025 ptid_get_pid (waiton_ptid),
3026 ptid_get_lwp (waiton_ptid),
3027 ptid_get_tid (waiton_ptid));
3028 if (ptid_get_pid (waiton_ptid) != -1)
3029 fprintf_unfiltered (tmp_stream,
3030 " [%s]", target_pid_to_str (waiton_ptid));
3031 fprintf_unfiltered (tmp_stream, ", status) =\n");
3032 fprintf_unfiltered (tmp_stream,
3033 "infrun: %d.%ld.%ld [%s],\n",
3034 ptid_get_pid (result_ptid),
3035 ptid_get_lwp (result_ptid),
3036 ptid_get_tid (result_ptid),
3037 target_pid_to_str (result_ptid));
3038 fprintf_unfiltered (tmp_stream,
3039 "infrun: %s\n",
3040 status_string);
3041
3042 text = ui_file_xstrdup (tmp_stream, NULL);
3043
3044 /* This uses %s in part to handle %'s in the text, but also to avoid
3045 a gcc error: the format attribute requires a string literal. */
3046 fprintf_unfiltered (gdb_stdlog, "%s", text);
3047
3048 xfree (status_string);
3049 xfree (text);
3050 ui_file_delete (tmp_stream);
3051 }
3052
3053 /* Prepare and stabilize the inferior for detaching it. E.g.,
3054 detaching while a thread is displaced stepping is a recipe for
3055 crashing it, as nothing would readjust the PC out of the scratch
3056 pad. */
3057
3058 void
3059 prepare_for_detach (void)
3060 {
3061 struct inferior *inf = current_inferior ();
3062 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3063 struct cleanup *old_chain_1;
3064 struct displaced_step_inferior_state *displaced;
3065
3066 displaced = get_displaced_stepping_state (inf->pid);
3067
3068 /* Is any thread of this process displaced stepping? If not,
3069 there's nothing else to do. */
3070 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3071 return;
3072
3073 if (debug_infrun)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "displaced-stepping in-process while detaching");
3076
3077 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3078 inf->detaching = 1;
3079
3080 while (!ptid_equal (displaced->step_ptid, null_ptid))
3081 {
3082 struct cleanup *old_chain_2;
3083 struct execution_control_state ecss;
3084 struct execution_control_state *ecs;
3085
3086 ecs = &ecss;
3087 memset (ecs, 0, sizeof (*ecs));
3088
3089 overlay_cache_invalid = 1;
3090 /* Flush target cache before starting to handle each event.
3091 Target was running and cache could be stale. This is just a
3092 heuristic. Running threads may modify target memory, but we
3093 don't get any event. */
3094 target_dcache_invalidate ();
3095
3096 if (deprecated_target_wait_hook)
3097 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3098 else
3099 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3100
3101 if (debug_infrun)
3102 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3103
3104 /* If an error happens while handling the event, propagate GDB's
3105 knowledge of the executing state to the frontend/user running
3106 state. */
3107 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3108 &minus_one_ptid);
3109
3110 /* Now figure out what to do with the result of the result. */
3111 handle_inferior_event (ecs);
3112
3113 /* No error, don't finish the state yet. */
3114 discard_cleanups (old_chain_2);
3115
3116 /* Breakpoints and watchpoints are not installed on the target
3117 at this point, and signals are passed directly to the
3118 inferior, so this must mean the process is gone. */
3119 if (!ecs->wait_some_more)
3120 {
3121 discard_cleanups (old_chain_1);
3122 error (_("Program exited while detaching"));
3123 }
3124 }
3125
3126 discard_cleanups (old_chain_1);
3127 }
3128
3129 /* Wait for control to return from inferior to debugger.
3130
3131 If inferior gets a signal, we may decide to start it up again
3132 instead of returning. That is why there is a loop in this function.
3133 When this function actually returns it means the inferior
3134 should be left stopped and GDB should read more commands. */
3135
3136 void
3137 wait_for_inferior (void)
3138 {
3139 struct cleanup *old_cleanups;
3140 struct cleanup *thread_state_chain;
3141
3142 if (debug_infrun)
3143 fprintf_unfiltered
3144 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3145
3146 old_cleanups
3147 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3148 NULL);
3149
3150 /* If an error happens while handling the event, propagate GDB's
3151 knowledge of the executing state to the frontend/user running
3152 state. */
3153 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3154
3155 while (1)
3156 {
3157 struct execution_control_state ecss;
3158 struct execution_control_state *ecs = &ecss;
3159 ptid_t waiton_ptid = minus_one_ptid;
3160
3161 memset (ecs, 0, sizeof (*ecs));
3162
3163 overlay_cache_invalid = 1;
3164
3165 /* Flush target cache before starting to handle each event.
3166 Target was running and cache could be stale. This is just a
3167 heuristic. Running threads may modify target memory, but we
3168 don't get any event. */
3169 target_dcache_invalidate ();
3170
3171 if (deprecated_target_wait_hook)
3172 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3173 else
3174 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3175
3176 if (debug_infrun)
3177 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3178
3179 /* Now figure out what to do with the result of the result. */
3180 handle_inferior_event (ecs);
3181
3182 if (!ecs->wait_some_more)
3183 break;
3184 }
3185
3186 /* No error, don't finish the state yet. */
3187 discard_cleanups (thread_state_chain);
3188
3189 do_cleanups (old_cleanups);
3190 }
3191
3192 /* Cleanup that reinstalls the readline callback handler, if the
3193 target is running in the background. If while handling the target
3194 event something triggered a secondary prompt, like e.g., a
3195 pagination prompt, we'll have removed the callback handler (see
3196 gdb_readline_wrapper_line). Need to do this as we go back to the
3197 event loop, ready to process further input. Note this has no
3198 effect if the handler hasn't actually been removed, because calling
3199 rl_callback_handler_install resets the line buffer, thus losing
3200 input. */
3201
3202 static void
3203 reinstall_readline_callback_handler_cleanup (void *arg)
3204 {
3205 if (!interpreter_async)
3206 {
3207 /* We're not going back to the top level event loop yet. Don't
3208 install the readline callback, as it'd prep the terminal,
3209 readline-style (raw, noecho) (e.g., --batch). We'll install
3210 it the next time the prompt is displayed, when we're ready
3211 for input. */
3212 return;
3213 }
3214
3215 if (async_command_editing_p && !sync_execution)
3216 gdb_rl_callback_handler_reinstall ();
3217 }
3218
3219 /* Asynchronous version of wait_for_inferior. It is called by the
3220 event loop whenever a change of state is detected on the file
3221 descriptor corresponding to the target. It can be called more than
3222 once to complete a single execution command. In such cases we need
3223 to keep the state in a global variable ECSS. If it is the last time
3224 that this function is called for a single execution command, then
3225 report to the user that the inferior has stopped, and do the
3226 necessary cleanups. */
3227
3228 void
3229 fetch_inferior_event (void *client_data)
3230 {
3231 struct execution_control_state ecss;
3232 struct execution_control_state *ecs = &ecss;
3233 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3234 struct cleanup *ts_old_chain;
3235 int was_sync = sync_execution;
3236 int cmd_done = 0;
3237 ptid_t waiton_ptid = minus_one_ptid;
3238
3239 memset (ecs, 0, sizeof (*ecs));
3240
3241 /* End up with readline processing input, if necessary. */
3242 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3243
3244 /* We're handling a live event, so make sure we're doing live
3245 debugging. If we're looking at traceframes while the target is
3246 running, we're going to need to get back to that mode after
3247 handling the event. */
3248 if (non_stop)
3249 {
3250 make_cleanup_restore_current_traceframe ();
3251 set_current_traceframe (-1);
3252 }
3253
3254 if (non_stop)
3255 /* In non-stop mode, the user/frontend should not notice a thread
3256 switch due to internal events. Make sure we reverse to the
3257 user selected thread and frame after handling the event and
3258 running any breakpoint commands. */
3259 make_cleanup_restore_current_thread ();
3260
3261 overlay_cache_invalid = 1;
3262 /* Flush target cache before starting to handle each event. Target
3263 was running and cache could be stale. This is just a heuristic.
3264 Running threads may modify target memory, but we don't get any
3265 event. */
3266 target_dcache_invalidate ();
3267
3268 make_cleanup_restore_integer (&execution_direction);
3269 execution_direction = target_execution_direction ();
3270
3271 if (deprecated_target_wait_hook)
3272 ecs->ptid =
3273 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3274 else
3275 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3276
3277 if (debug_infrun)
3278 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3279
3280 /* If an error happens while handling the event, propagate GDB's
3281 knowledge of the executing state to the frontend/user running
3282 state. */
3283 if (!non_stop)
3284 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3285 else
3286 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3287
3288 /* Get executed before make_cleanup_restore_current_thread above to apply
3289 still for the thread which has thrown the exception. */
3290 make_bpstat_clear_actions_cleanup ();
3291
3292 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3293
3294 /* Now figure out what to do with the result of the result. */
3295 handle_inferior_event (ecs);
3296
3297 if (!ecs->wait_some_more)
3298 {
3299 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3300
3301 delete_just_stopped_threads_infrun_breakpoints ();
3302
3303 /* We may not find an inferior if this was a process exit. */
3304 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3305 normal_stop ();
3306
3307 if (target_has_execution
3308 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3309 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3310 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3311 && ecs->event_thread->step_multi
3312 && ecs->event_thread->control.stop_step)
3313 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3314 else
3315 {
3316 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3317 cmd_done = 1;
3318 }
3319 }
3320
3321 /* No error, don't finish the thread states yet. */
3322 discard_cleanups (ts_old_chain);
3323
3324 /* Revert thread and frame. */
3325 do_cleanups (old_chain);
3326
3327 /* If the inferior was in sync execution mode, and now isn't,
3328 restore the prompt (a synchronous execution command has finished,
3329 and we're ready for input). */
3330 if (interpreter_async && was_sync && !sync_execution)
3331 observer_notify_sync_execution_done ();
3332
3333 if (cmd_done
3334 && !was_sync
3335 && exec_done_display_p
3336 && (ptid_equal (inferior_ptid, null_ptid)
3337 || !is_running (inferior_ptid)))
3338 printf_unfiltered (_("completed.\n"));
3339 }
3340
3341 /* Record the frame and location we're currently stepping through. */
3342 void
3343 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3344 {
3345 struct thread_info *tp = inferior_thread ();
3346
3347 tp->control.step_frame_id = get_frame_id (frame);
3348 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3349
3350 tp->current_symtab = sal.symtab;
3351 tp->current_line = sal.line;
3352 }
3353
3354 /* Clear context switchable stepping state. */
3355
3356 void
3357 init_thread_stepping_state (struct thread_info *tss)
3358 {
3359 tss->stepped_breakpoint = 0;
3360 tss->stepping_over_breakpoint = 0;
3361 tss->stepping_over_watchpoint = 0;
3362 tss->step_after_step_resume_breakpoint = 0;
3363 }
3364
3365 /* Set the cached copy of the last ptid/waitstatus. */
3366
3367 static void
3368 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3369 {
3370 target_last_wait_ptid = ptid;
3371 target_last_waitstatus = status;
3372 }
3373
3374 /* Return the cached copy of the last pid/waitstatus returned by
3375 target_wait()/deprecated_target_wait_hook(). The data is actually
3376 cached by handle_inferior_event(), which gets called immediately
3377 after target_wait()/deprecated_target_wait_hook(). */
3378
3379 void
3380 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3381 {
3382 *ptidp = target_last_wait_ptid;
3383 *status = target_last_waitstatus;
3384 }
3385
3386 void
3387 nullify_last_target_wait_ptid (void)
3388 {
3389 target_last_wait_ptid = minus_one_ptid;
3390 }
3391
3392 /* Switch thread contexts. */
3393
3394 static void
3395 context_switch (ptid_t ptid)
3396 {
3397 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3398 {
3399 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3400 target_pid_to_str (inferior_ptid));
3401 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3402 target_pid_to_str (ptid));
3403 }
3404
3405 switch_to_thread (ptid);
3406 }
3407
3408 static void
3409 adjust_pc_after_break (struct execution_control_state *ecs)
3410 {
3411 struct regcache *regcache;
3412 struct gdbarch *gdbarch;
3413 struct address_space *aspace;
3414 CORE_ADDR breakpoint_pc, decr_pc;
3415
3416 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3417 we aren't, just return.
3418
3419 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3420 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3421 implemented by software breakpoints should be handled through the normal
3422 breakpoint layer.
3423
3424 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3425 different signals (SIGILL or SIGEMT for instance), but it is less
3426 clear where the PC is pointing afterwards. It may not match
3427 gdbarch_decr_pc_after_break. I don't know any specific target that
3428 generates these signals at breakpoints (the code has been in GDB since at
3429 least 1992) so I can not guess how to handle them here.
3430
3431 In earlier versions of GDB, a target with
3432 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3433 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3434 target with both of these set in GDB history, and it seems unlikely to be
3435 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3436
3437 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3438 return;
3439
3440 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3441 return;
3442
3443 /* In reverse execution, when a breakpoint is hit, the instruction
3444 under it has already been de-executed. The reported PC always
3445 points at the breakpoint address, so adjusting it further would
3446 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3447 architecture:
3448
3449 B1 0x08000000 : INSN1
3450 B2 0x08000001 : INSN2
3451 0x08000002 : INSN3
3452 PC -> 0x08000003 : INSN4
3453
3454 Say you're stopped at 0x08000003 as above. Reverse continuing
3455 from that point should hit B2 as below. Reading the PC when the
3456 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3457 been de-executed already.
3458
3459 B1 0x08000000 : INSN1
3460 B2 PC -> 0x08000001 : INSN2
3461 0x08000002 : INSN3
3462 0x08000003 : INSN4
3463
3464 We can't apply the same logic as for forward execution, because
3465 we would wrongly adjust the PC to 0x08000000, since there's a
3466 breakpoint at PC - 1. We'd then report a hit on B1, although
3467 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3468 behaviour. */
3469 if (execution_direction == EXEC_REVERSE)
3470 return;
3471
3472 /* If the target can tell whether the thread hit a SW breakpoint,
3473 trust it. Targets that can tell also adjust the PC
3474 themselves. */
3475 if (target_supports_stopped_by_sw_breakpoint ())
3476 return;
3477
3478 /* Note that relying on whether a breakpoint is planted in memory to
3479 determine this can fail. E.g,. the breakpoint could have been
3480 removed since. Or the thread could have been told to step an
3481 instruction the size of a breakpoint instruction, and only
3482 _after_ was a breakpoint inserted at its address. */
3483
3484 /* If this target does not decrement the PC after breakpoints, then
3485 we have nothing to do. */
3486 regcache = get_thread_regcache (ecs->ptid);
3487 gdbarch = get_regcache_arch (regcache);
3488
3489 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3490 if (decr_pc == 0)
3491 return;
3492
3493 aspace = get_regcache_aspace (regcache);
3494
3495 /* Find the location where (if we've hit a breakpoint) the
3496 breakpoint would be. */
3497 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3498
3499 /* If the target can't tell whether a software breakpoint triggered,
3500 fallback to figuring it out based on breakpoints we think were
3501 inserted in the target, and on whether the thread was stepped or
3502 continued. */
3503
3504 /* Check whether there actually is a software breakpoint inserted at
3505 that location.
3506
3507 If in non-stop mode, a race condition is possible where we've
3508 removed a breakpoint, but stop events for that breakpoint were
3509 already queued and arrive later. To suppress those spurious
3510 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3511 and retire them after a number of stop events are reported. Note
3512 this is an heuristic and can thus get confused. The real fix is
3513 to get the "stopped by SW BP and needs adjustment" info out of
3514 the target/kernel (and thus never reach here; see above). */
3515 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3516 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3517 {
3518 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3519
3520 if (record_full_is_used ())
3521 record_full_gdb_operation_disable_set ();
3522
3523 /* When using hardware single-step, a SIGTRAP is reported for both
3524 a completed single-step and a software breakpoint. Need to
3525 differentiate between the two, as the latter needs adjusting
3526 but the former does not.
3527
3528 The SIGTRAP can be due to a completed hardware single-step only if
3529 - we didn't insert software single-step breakpoints
3530 - this thread is currently being stepped
3531
3532 If any of these events did not occur, we must have stopped due
3533 to hitting a software breakpoint, and have to back up to the
3534 breakpoint address.
3535
3536 As a special case, we could have hardware single-stepped a
3537 software breakpoint. In this case (prev_pc == breakpoint_pc),
3538 we also need to back up to the breakpoint address. */
3539
3540 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3541 || !currently_stepping (ecs->event_thread)
3542 || (ecs->event_thread->stepped_breakpoint
3543 && ecs->event_thread->prev_pc == breakpoint_pc))
3544 regcache_write_pc (regcache, breakpoint_pc);
3545
3546 do_cleanups (old_cleanups);
3547 }
3548 }
3549
3550 static int
3551 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3552 {
3553 for (frame = get_prev_frame (frame);
3554 frame != NULL;
3555 frame = get_prev_frame (frame))
3556 {
3557 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3558 return 1;
3559 if (get_frame_type (frame) != INLINE_FRAME)
3560 break;
3561 }
3562
3563 return 0;
3564 }
3565
3566 /* Auxiliary function that handles syscall entry/return events.
3567 It returns 1 if the inferior should keep going (and GDB
3568 should ignore the event), or 0 if the event deserves to be
3569 processed. */
3570
3571 static int
3572 handle_syscall_event (struct execution_control_state *ecs)
3573 {
3574 struct regcache *regcache;
3575 int syscall_number;
3576
3577 if (!ptid_equal (ecs->ptid, inferior_ptid))
3578 context_switch (ecs->ptid);
3579
3580 regcache = get_thread_regcache (ecs->ptid);
3581 syscall_number = ecs->ws.value.syscall_number;
3582 stop_pc = regcache_read_pc (regcache);
3583
3584 if (catch_syscall_enabled () > 0
3585 && catching_syscall_number (syscall_number) > 0)
3586 {
3587 if (debug_infrun)
3588 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3589 syscall_number);
3590
3591 ecs->event_thread->control.stop_bpstat
3592 = bpstat_stop_status (get_regcache_aspace (regcache),
3593 stop_pc, ecs->ptid, &ecs->ws);
3594
3595 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3596 {
3597 /* Catchpoint hit. */
3598 return 0;
3599 }
3600 }
3601
3602 /* If no catchpoint triggered for this, then keep going. */
3603 keep_going (ecs);
3604 return 1;
3605 }
3606
3607 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3608
3609 static void
3610 fill_in_stop_func (struct gdbarch *gdbarch,
3611 struct execution_control_state *ecs)
3612 {
3613 if (!ecs->stop_func_filled_in)
3614 {
3615 /* Don't care about return value; stop_func_start and stop_func_name
3616 will both be 0 if it doesn't work. */
3617 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3618 &ecs->stop_func_start, &ecs->stop_func_end);
3619 ecs->stop_func_start
3620 += gdbarch_deprecated_function_start_offset (gdbarch);
3621
3622 if (gdbarch_skip_entrypoint_p (gdbarch))
3623 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3624 ecs->stop_func_start);
3625
3626 ecs->stop_func_filled_in = 1;
3627 }
3628 }
3629
3630
3631 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3632
3633 static enum stop_kind
3634 get_inferior_stop_soon (ptid_t ptid)
3635 {
3636 struct inferior *inf = find_inferior_ptid (ptid);
3637
3638 gdb_assert (inf != NULL);
3639 return inf->control.stop_soon;
3640 }
3641
3642 /* Given an execution control state that has been freshly filled in by
3643 an event from the inferior, figure out what it means and take
3644 appropriate action.
3645
3646 The alternatives are:
3647
3648 1) stop_waiting and return; to really stop and return to the
3649 debugger.
3650
3651 2) keep_going and return; to wait for the next event (set
3652 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3653 once). */
3654
3655 static void
3656 handle_inferior_event (struct execution_control_state *ecs)
3657 {
3658 enum stop_kind stop_soon;
3659
3660 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3661 {
3662 /* We had an event in the inferior, but we are not interested in
3663 handling it at this level. The lower layers have already
3664 done what needs to be done, if anything.
3665
3666 One of the possible circumstances for this is when the
3667 inferior produces output for the console. The inferior has
3668 not stopped, and we are ignoring the event. Another possible
3669 circumstance is any event which the lower level knows will be
3670 reported multiple times without an intervening resume. */
3671 if (debug_infrun)
3672 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3673 prepare_to_wait (ecs);
3674 return;
3675 }
3676
3677 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3678 && target_can_async_p () && !sync_execution)
3679 {
3680 /* There were no unwaited-for children left in the target, but,
3681 we're not synchronously waiting for events either. Just
3682 ignore. Otherwise, if we were running a synchronous
3683 execution command, we need to cancel it and give the user
3684 back the terminal. */
3685 if (debug_infrun)
3686 fprintf_unfiltered (gdb_stdlog,
3687 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3688 prepare_to_wait (ecs);
3689 return;
3690 }
3691
3692 /* Cache the last pid/waitstatus. */
3693 set_last_target_status (ecs->ptid, ecs->ws);
3694
3695 /* Always clear state belonging to the previous time we stopped. */
3696 stop_stack_dummy = STOP_NONE;
3697
3698 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3699 {
3700 /* No unwaited-for children left. IOW, all resumed children
3701 have exited. */
3702 if (debug_infrun)
3703 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3704
3705 stop_print_frame = 0;
3706 stop_waiting (ecs);
3707 return;
3708 }
3709
3710 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3711 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3712 {
3713 ecs->event_thread = find_thread_ptid (ecs->ptid);
3714 /* If it's a new thread, add it to the thread database. */
3715 if (ecs->event_thread == NULL)
3716 ecs->event_thread = add_thread (ecs->ptid);
3717
3718 /* Disable range stepping. If the next step request could use a
3719 range, this will be end up re-enabled then. */
3720 ecs->event_thread->control.may_range_step = 0;
3721 }
3722
3723 /* Dependent on valid ECS->EVENT_THREAD. */
3724 adjust_pc_after_break (ecs);
3725
3726 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3727 reinit_frame_cache ();
3728
3729 breakpoint_retire_moribund ();
3730
3731 /* First, distinguish signals caused by the debugger from signals
3732 that have to do with the program's own actions. Note that
3733 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3734 on the operating system version. Here we detect when a SIGILL or
3735 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3736 something similar for SIGSEGV, since a SIGSEGV will be generated
3737 when we're trying to execute a breakpoint instruction on a
3738 non-executable stack. This happens for call dummy breakpoints
3739 for architectures like SPARC that place call dummies on the
3740 stack. */
3741 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3742 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3743 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3744 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3745 {
3746 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3747
3748 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3749 regcache_read_pc (regcache)))
3750 {
3751 if (debug_infrun)
3752 fprintf_unfiltered (gdb_stdlog,
3753 "infrun: Treating signal as SIGTRAP\n");
3754 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3755 }
3756 }
3757
3758 /* Mark the non-executing threads accordingly. In all-stop, all
3759 threads of all processes are stopped when we get any event
3760 reported. In non-stop mode, only the event thread stops. If
3761 we're handling a process exit in non-stop mode, there's nothing
3762 to do, as threads of the dead process are gone, and threads of
3763 any other process were left running. */
3764 if (!non_stop)
3765 set_executing (minus_one_ptid, 0);
3766 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3767 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3768 set_executing (ecs->ptid, 0);
3769
3770 switch (ecs->ws.kind)
3771 {
3772 case TARGET_WAITKIND_LOADED:
3773 if (debug_infrun)
3774 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3775 if (!ptid_equal (ecs->ptid, inferior_ptid))
3776 context_switch (ecs->ptid);
3777 /* Ignore gracefully during startup of the inferior, as it might
3778 be the shell which has just loaded some objects, otherwise
3779 add the symbols for the newly loaded objects. Also ignore at
3780 the beginning of an attach or remote session; we will query
3781 the full list of libraries once the connection is
3782 established. */
3783
3784 stop_soon = get_inferior_stop_soon (ecs->ptid);
3785 if (stop_soon == NO_STOP_QUIETLY)
3786 {
3787 struct regcache *regcache;
3788
3789 regcache = get_thread_regcache (ecs->ptid);
3790
3791 handle_solib_event ();
3792
3793 ecs->event_thread->control.stop_bpstat
3794 = bpstat_stop_status (get_regcache_aspace (regcache),
3795 stop_pc, ecs->ptid, &ecs->ws);
3796
3797 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3798 {
3799 /* A catchpoint triggered. */
3800 process_event_stop_test (ecs);
3801 return;
3802 }
3803
3804 /* If requested, stop when the dynamic linker notifies
3805 gdb of events. This allows the user to get control
3806 and place breakpoints in initializer routines for
3807 dynamically loaded objects (among other things). */
3808 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3809 if (stop_on_solib_events)
3810 {
3811 /* Make sure we print "Stopped due to solib-event" in
3812 normal_stop. */
3813 stop_print_frame = 1;
3814
3815 stop_waiting (ecs);
3816 return;
3817 }
3818 }
3819
3820 /* If we are skipping through a shell, or through shared library
3821 loading that we aren't interested in, resume the program. If
3822 we're running the program normally, also resume. */
3823 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3824 {
3825 /* Loading of shared libraries might have changed breakpoint
3826 addresses. Make sure new breakpoints are inserted. */
3827 if (stop_soon == NO_STOP_QUIETLY)
3828 insert_breakpoints ();
3829 resume (GDB_SIGNAL_0);
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833
3834 /* But stop if we're attaching or setting up a remote
3835 connection. */
3836 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3837 || stop_soon == STOP_QUIETLY_REMOTE)
3838 {
3839 if (debug_infrun)
3840 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3841 stop_waiting (ecs);
3842 return;
3843 }
3844
3845 internal_error (__FILE__, __LINE__,
3846 _("unhandled stop_soon: %d"), (int) stop_soon);
3847
3848 case TARGET_WAITKIND_SPURIOUS:
3849 if (debug_infrun)
3850 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3851 if (!ptid_equal (ecs->ptid, inferior_ptid))
3852 context_switch (ecs->ptid);
3853 resume (GDB_SIGNAL_0);
3854 prepare_to_wait (ecs);
3855 return;
3856
3857 case TARGET_WAITKIND_EXITED:
3858 case TARGET_WAITKIND_SIGNALLED:
3859 if (debug_infrun)
3860 {
3861 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3862 fprintf_unfiltered (gdb_stdlog,
3863 "infrun: TARGET_WAITKIND_EXITED\n");
3864 else
3865 fprintf_unfiltered (gdb_stdlog,
3866 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3867 }
3868
3869 inferior_ptid = ecs->ptid;
3870 set_current_inferior (find_inferior_ptid (ecs->ptid));
3871 set_current_program_space (current_inferior ()->pspace);
3872 handle_vfork_child_exec_or_exit (0);
3873 target_terminal_ours (); /* Must do this before mourn anyway. */
3874
3875 /* Clearing any previous state of convenience variables. */
3876 clear_exit_convenience_vars ();
3877
3878 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3879 {
3880 /* Record the exit code in the convenience variable $_exitcode, so
3881 that the user can inspect this again later. */
3882 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3883 (LONGEST) ecs->ws.value.integer);
3884
3885 /* Also record this in the inferior itself. */
3886 current_inferior ()->has_exit_code = 1;
3887 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3888
3889 /* Support the --return-child-result option. */
3890 return_child_result_value = ecs->ws.value.integer;
3891
3892 observer_notify_exited (ecs->ws.value.integer);
3893 }
3894 else
3895 {
3896 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3897 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3898
3899 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3900 {
3901 /* Set the value of the internal variable $_exitsignal,
3902 which holds the signal uncaught by the inferior. */
3903 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3904 gdbarch_gdb_signal_to_target (gdbarch,
3905 ecs->ws.value.sig));
3906 }
3907 else
3908 {
3909 /* We don't have access to the target's method used for
3910 converting between signal numbers (GDB's internal
3911 representation <-> target's representation).
3912 Therefore, we cannot do a good job at displaying this
3913 information to the user. It's better to just warn
3914 her about it (if infrun debugging is enabled), and
3915 give up. */
3916 if (debug_infrun)
3917 fprintf_filtered (gdb_stdlog, _("\
3918 Cannot fill $_exitsignal with the correct signal number.\n"));
3919 }
3920
3921 observer_notify_signal_exited (ecs->ws.value.sig);
3922 }
3923
3924 gdb_flush (gdb_stdout);
3925 target_mourn_inferior ();
3926 stop_print_frame = 0;
3927 stop_waiting (ecs);
3928 return;
3929
3930 /* The following are the only cases in which we keep going;
3931 the above cases end in a continue or goto. */
3932 case TARGET_WAITKIND_FORKED:
3933 case TARGET_WAITKIND_VFORKED:
3934 if (debug_infrun)
3935 {
3936 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3937 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3938 else
3939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3940 }
3941
3942 /* Check whether the inferior is displaced stepping. */
3943 {
3944 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3945 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3946 struct displaced_step_inferior_state *displaced
3947 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3948
3949 /* If checking displaced stepping is supported, and thread
3950 ecs->ptid is displaced stepping. */
3951 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3952 {
3953 struct inferior *parent_inf
3954 = find_inferior_ptid (ecs->ptid);
3955 struct regcache *child_regcache;
3956 CORE_ADDR parent_pc;
3957
3958 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3959 indicating that the displaced stepping of syscall instruction
3960 has been done. Perform cleanup for parent process here. Note
3961 that this operation also cleans up the child process for vfork,
3962 because their pages are shared. */
3963 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3964
3965 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3966 {
3967 /* Restore scratch pad for child process. */
3968 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3969 }
3970
3971 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3972 the child's PC is also within the scratchpad. Set the child's PC
3973 to the parent's PC value, which has already been fixed up.
3974 FIXME: we use the parent's aspace here, although we're touching
3975 the child, because the child hasn't been added to the inferior
3976 list yet at this point. */
3977
3978 child_regcache
3979 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3980 gdbarch,
3981 parent_inf->aspace);
3982 /* Read PC value of parent process. */
3983 parent_pc = regcache_read_pc (regcache);
3984
3985 if (debug_displaced)
3986 fprintf_unfiltered (gdb_stdlog,
3987 "displaced: write child pc from %s to %s\n",
3988 paddress (gdbarch,
3989 regcache_read_pc (child_regcache)),
3990 paddress (gdbarch, parent_pc));
3991
3992 regcache_write_pc (child_regcache, parent_pc);
3993 }
3994 }
3995
3996 if (!ptid_equal (ecs->ptid, inferior_ptid))
3997 context_switch (ecs->ptid);
3998
3999 /* Immediately detach breakpoints from the child before there's
4000 any chance of letting the user delete breakpoints from the
4001 breakpoint lists. If we don't do this early, it's easy to
4002 leave left over traps in the child, vis: "break foo; catch
4003 fork; c; <fork>; del; c; <child calls foo>". We only follow
4004 the fork on the last `continue', and by that time the
4005 breakpoint at "foo" is long gone from the breakpoint table.
4006 If we vforked, then we don't need to unpatch here, since both
4007 parent and child are sharing the same memory pages; we'll
4008 need to unpatch at follow/detach time instead to be certain
4009 that new breakpoints added between catchpoint hit time and
4010 vfork follow are detached. */
4011 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4012 {
4013 /* This won't actually modify the breakpoint list, but will
4014 physically remove the breakpoints from the child. */
4015 detach_breakpoints (ecs->ws.value.related_pid);
4016 }
4017
4018 delete_just_stopped_threads_single_step_breakpoints ();
4019
4020 /* In case the event is caught by a catchpoint, remember that
4021 the event is to be followed at the next resume of the thread,
4022 and not immediately. */
4023 ecs->event_thread->pending_follow = ecs->ws;
4024
4025 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4026
4027 ecs->event_thread->control.stop_bpstat
4028 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4029 stop_pc, ecs->ptid, &ecs->ws);
4030
4031 /* If no catchpoint triggered for this, then keep going. Note
4032 that we're interested in knowing the bpstat actually causes a
4033 stop, not just if it may explain the signal. Software
4034 watchpoints, for example, always appear in the bpstat. */
4035 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4036 {
4037 ptid_t parent;
4038 ptid_t child;
4039 int should_resume;
4040 int follow_child
4041 = (follow_fork_mode_string == follow_fork_mode_child);
4042
4043 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4044
4045 should_resume = follow_fork ();
4046
4047 parent = ecs->ptid;
4048 child = ecs->ws.value.related_pid;
4049
4050 /* In non-stop mode, also resume the other branch. */
4051 if (non_stop && !detach_fork)
4052 {
4053 if (follow_child)
4054 switch_to_thread (parent);
4055 else
4056 switch_to_thread (child);
4057
4058 ecs->event_thread = inferior_thread ();
4059 ecs->ptid = inferior_ptid;
4060 keep_going (ecs);
4061 }
4062
4063 if (follow_child)
4064 switch_to_thread (child);
4065 else
4066 switch_to_thread (parent);
4067
4068 ecs->event_thread = inferior_thread ();
4069 ecs->ptid = inferior_ptid;
4070
4071 if (should_resume)
4072 keep_going (ecs);
4073 else
4074 stop_waiting (ecs);
4075 return;
4076 }
4077 process_event_stop_test (ecs);
4078 return;
4079
4080 case TARGET_WAITKIND_VFORK_DONE:
4081 /* Done with the shared memory region. Re-insert breakpoints in
4082 the parent, and keep going. */
4083
4084 if (debug_infrun)
4085 fprintf_unfiltered (gdb_stdlog,
4086 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4087
4088 if (!ptid_equal (ecs->ptid, inferior_ptid))
4089 context_switch (ecs->ptid);
4090
4091 current_inferior ()->waiting_for_vfork_done = 0;
4092 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4093 /* This also takes care of reinserting breakpoints in the
4094 previously locked inferior. */
4095 keep_going (ecs);
4096 return;
4097
4098 case TARGET_WAITKIND_EXECD:
4099 if (debug_infrun)
4100 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4101
4102 if (!ptid_equal (ecs->ptid, inferior_ptid))
4103 context_switch (ecs->ptid);
4104
4105 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4106
4107 /* Do whatever is necessary to the parent branch of the vfork. */
4108 handle_vfork_child_exec_or_exit (1);
4109
4110 /* This causes the eventpoints and symbol table to be reset.
4111 Must do this now, before trying to determine whether to
4112 stop. */
4113 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4114
4115 ecs->event_thread->control.stop_bpstat
4116 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4117 stop_pc, ecs->ptid, &ecs->ws);
4118
4119 /* Note that this may be referenced from inside
4120 bpstat_stop_status above, through inferior_has_execd. */
4121 xfree (ecs->ws.value.execd_pathname);
4122 ecs->ws.value.execd_pathname = NULL;
4123
4124 /* If no catchpoint triggered for this, then keep going. */
4125 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4126 {
4127 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4128 keep_going (ecs);
4129 return;
4130 }
4131 process_event_stop_test (ecs);
4132 return;
4133
4134 /* Be careful not to try to gather much state about a thread
4135 that's in a syscall. It's frequently a losing proposition. */
4136 case TARGET_WAITKIND_SYSCALL_ENTRY:
4137 if (debug_infrun)
4138 fprintf_unfiltered (gdb_stdlog,
4139 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4140 /* Getting the current syscall number. */
4141 if (handle_syscall_event (ecs) == 0)
4142 process_event_stop_test (ecs);
4143 return;
4144
4145 /* Before examining the threads further, step this thread to
4146 get it entirely out of the syscall. (We get notice of the
4147 event when the thread is just on the verge of exiting a
4148 syscall. Stepping one instruction seems to get it back
4149 into user code.) */
4150 case TARGET_WAITKIND_SYSCALL_RETURN:
4151 if (debug_infrun)
4152 fprintf_unfiltered (gdb_stdlog,
4153 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4154 if (handle_syscall_event (ecs) == 0)
4155 process_event_stop_test (ecs);
4156 return;
4157
4158 case TARGET_WAITKIND_STOPPED:
4159 if (debug_infrun)
4160 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4161 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4162 handle_signal_stop (ecs);
4163 return;
4164
4165 case TARGET_WAITKIND_NO_HISTORY:
4166 if (debug_infrun)
4167 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4168 /* Reverse execution: target ran out of history info. */
4169
4170 delete_just_stopped_threads_single_step_breakpoints ();
4171 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4172 observer_notify_no_history ();
4173 stop_waiting (ecs);
4174 return;
4175 }
4176 }
4177
4178 /* Come here when the program has stopped with a signal. */
4179
4180 static void
4181 handle_signal_stop (struct execution_control_state *ecs)
4182 {
4183 struct frame_info *frame;
4184 struct gdbarch *gdbarch;
4185 int stopped_by_watchpoint;
4186 enum stop_kind stop_soon;
4187 int random_signal;
4188
4189 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4190
4191 /* Do we need to clean up the state of a thread that has
4192 completed a displaced single-step? (Doing so usually affects
4193 the PC, so do it here, before we set stop_pc.) */
4194 displaced_step_fixup (ecs->ptid,
4195 ecs->event_thread->suspend.stop_signal);
4196
4197 /* If we either finished a single-step or hit a breakpoint, but
4198 the user wanted this thread to be stopped, pretend we got a
4199 SIG0 (generic unsignaled stop). */
4200 if (ecs->event_thread->stop_requested
4201 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4202 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4203
4204 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4205
4206 if (debug_infrun)
4207 {
4208 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4209 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4210 struct cleanup *old_chain = save_inferior_ptid ();
4211
4212 inferior_ptid = ecs->ptid;
4213
4214 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4215 paddress (gdbarch, stop_pc));
4216 if (target_stopped_by_watchpoint ())
4217 {
4218 CORE_ADDR addr;
4219
4220 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4221
4222 if (target_stopped_data_address (&current_target, &addr))
4223 fprintf_unfiltered (gdb_stdlog,
4224 "infrun: stopped data address = %s\n",
4225 paddress (gdbarch, addr));
4226 else
4227 fprintf_unfiltered (gdb_stdlog,
4228 "infrun: (no data address available)\n");
4229 }
4230
4231 do_cleanups (old_chain);
4232 }
4233
4234 /* This is originated from start_remote(), start_inferior() and
4235 shared libraries hook functions. */
4236 stop_soon = get_inferior_stop_soon (ecs->ptid);
4237 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4238 {
4239 if (!ptid_equal (ecs->ptid, inferior_ptid))
4240 context_switch (ecs->ptid);
4241 if (debug_infrun)
4242 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4243 stop_print_frame = 1;
4244 stop_waiting (ecs);
4245 return;
4246 }
4247
4248 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4249 && stop_after_trap)
4250 {
4251 if (!ptid_equal (ecs->ptid, inferior_ptid))
4252 context_switch (ecs->ptid);
4253 if (debug_infrun)
4254 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4255 stop_print_frame = 0;
4256 stop_waiting (ecs);
4257 return;
4258 }
4259
4260 /* This originates from attach_command(). We need to overwrite
4261 the stop_signal here, because some kernels don't ignore a
4262 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4263 See more comments in inferior.h. On the other hand, if we
4264 get a non-SIGSTOP, report it to the user - assume the backend
4265 will handle the SIGSTOP if it should show up later.
4266
4267 Also consider that the attach is complete when we see a
4268 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4269 target extended-remote report it instead of a SIGSTOP
4270 (e.g. gdbserver). We already rely on SIGTRAP being our
4271 signal, so this is no exception.
4272
4273 Also consider that the attach is complete when we see a
4274 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4275 the target to stop all threads of the inferior, in case the
4276 low level attach operation doesn't stop them implicitly. If
4277 they weren't stopped implicitly, then the stub will report a
4278 GDB_SIGNAL_0, meaning: stopped for no particular reason
4279 other than GDB's request. */
4280 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4281 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4282 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4283 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4284 {
4285 stop_print_frame = 1;
4286 stop_waiting (ecs);
4287 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4288 return;
4289 }
4290
4291 /* See if something interesting happened to the non-current thread. If
4292 so, then switch to that thread. */
4293 if (!ptid_equal (ecs->ptid, inferior_ptid))
4294 {
4295 if (debug_infrun)
4296 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4297
4298 context_switch (ecs->ptid);
4299
4300 if (deprecated_context_hook)
4301 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4302 }
4303
4304 /* At this point, get hold of the now-current thread's frame. */
4305 frame = get_current_frame ();
4306 gdbarch = get_frame_arch (frame);
4307
4308 /* Pull the single step breakpoints out of the target. */
4309 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4310 {
4311 struct regcache *regcache;
4312 struct address_space *aspace;
4313 CORE_ADDR pc;
4314
4315 regcache = get_thread_regcache (ecs->ptid);
4316 aspace = get_regcache_aspace (regcache);
4317 pc = regcache_read_pc (regcache);
4318
4319 /* However, before doing so, if this single-step breakpoint was
4320 actually for another thread, set this thread up for moving
4321 past it. */
4322 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4323 aspace, pc))
4324 {
4325 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4326 {
4327 if (debug_infrun)
4328 {
4329 fprintf_unfiltered (gdb_stdlog,
4330 "infrun: [%s] hit another thread's "
4331 "single-step breakpoint\n",
4332 target_pid_to_str (ecs->ptid));
4333 }
4334 ecs->hit_singlestep_breakpoint = 1;
4335 }
4336 }
4337 else
4338 {
4339 if (debug_infrun)
4340 {
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: [%s] hit its "
4343 "single-step breakpoint\n",
4344 target_pid_to_str (ecs->ptid));
4345 }
4346 }
4347 }
4348 delete_just_stopped_threads_single_step_breakpoints ();
4349
4350 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4351 && ecs->event_thread->control.trap_expected
4352 && ecs->event_thread->stepping_over_watchpoint)
4353 stopped_by_watchpoint = 0;
4354 else
4355 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4356
4357 /* If necessary, step over this watchpoint. We'll be back to display
4358 it in a moment. */
4359 if (stopped_by_watchpoint
4360 && (target_have_steppable_watchpoint
4361 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4362 {
4363 /* At this point, we are stopped at an instruction which has
4364 attempted to write to a piece of memory under control of
4365 a watchpoint. The instruction hasn't actually executed
4366 yet. If we were to evaluate the watchpoint expression
4367 now, we would get the old value, and therefore no change
4368 would seem to have occurred.
4369
4370 In order to make watchpoints work `right', we really need
4371 to complete the memory write, and then evaluate the
4372 watchpoint expression. We do this by single-stepping the
4373 target.
4374
4375 It may not be necessary to disable the watchpoint to step over
4376 it. For example, the PA can (with some kernel cooperation)
4377 single step over a watchpoint without disabling the watchpoint.
4378
4379 It is far more common to need to disable a watchpoint to step
4380 the inferior over it. If we have non-steppable watchpoints,
4381 we must disable the current watchpoint; it's simplest to
4382 disable all watchpoints.
4383
4384 Any breakpoint at PC must also be stepped over -- if there's
4385 one, it will have already triggered before the watchpoint
4386 triggered, and we either already reported it to the user, or
4387 it didn't cause a stop and we called keep_going. In either
4388 case, if there was a breakpoint at PC, we must be trying to
4389 step past it. */
4390 ecs->event_thread->stepping_over_watchpoint = 1;
4391 keep_going (ecs);
4392 return;
4393 }
4394
4395 ecs->event_thread->stepping_over_breakpoint = 0;
4396 ecs->event_thread->stepping_over_watchpoint = 0;
4397 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4398 ecs->event_thread->control.stop_step = 0;
4399 stop_print_frame = 1;
4400 stopped_by_random_signal = 0;
4401
4402 /* Hide inlined functions starting here, unless we just performed stepi or
4403 nexti. After stepi and nexti, always show the innermost frame (not any
4404 inline function call sites). */
4405 if (ecs->event_thread->control.step_range_end != 1)
4406 {
4407 struct address_space *aspace =
4408 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4409
4410 /* skip_inline_frames is expensive, so we avoid it if we can
4411 determine that the address is one where functions cannot have
4412 been inlined. This improves performance with inferiors that
4413 load a lot of shared libraries, because the solib event
4414 breakpoint is defined as the address of a function (i.e. not
4415 inline). Note that we have to check the previous PC as well
4416 as the current one to catch cases when we have just
4417 single-stepped off a breakpoint prior to reinstating it.
4418 Note that we're assuming that the code we single-step to is
4419 not inline, but that's not definitive: there's nothing
4420 preventing the event breakpoint function from containing
4421 inlined code, and the single-step ending up there. If the
4422 user had set a breakpoint on that inlined code, the missing
4423 skip_inline_frames call would break things. Fortunately
4424 that's an extremely unlikely scenario. */
4425 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4426 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4427 && ecs->event_thread->control.trap_expected
4428 && pc_at_non_inline_function (aspace,
4429 ecs->event_thread->prev_pc,
4430 &ecs->ws)))
4431 {
4432 skip_inline_frames (ecs->ptid);
4433
4434 /* Re-fetch current thread's frame in case that invalidated
4435 the frame cache. */
4436 frame = get_current_frame ();
4437 gdbarch = get_frame_arch (frame);
4438 }
4439 }
4440
4441 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4442 && ecs->event_thread->control.trap_expected
4443 && gdbarch_single_step_through_delay_p (gdbarch)
4444 && currently_stepping (ecs->event_thread))
4445 {
4446 /* We're trying to step off a breakpoint. Turns out that we're
4447 also on an instruction that needs to be stepped multiple
4448 times before it's been fully executing. E.g., architectures
4449 with a delay slot. It needs to be stepped twice, once for
4450 the instruction and once for the delay slot. */
4451 int step_through_delay
4452 = gdbarch_single_step_through_delay (gdbarch, frame);
4453
4454 if (debug_infrun && step_through_delay)
4455 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4456 if (ecs->event_thread->control.step_range_end == 0
4457 && step_through_delay)
4458 {
4459 /* The user issued a continue when stopped at a breakpoint.
4460 Set up for another trap and get out of here. */
4461 ecs->event_thread->stepping_over_breakpoint = 1;
4462 keep_going (ecs);
4463 return;
4464 }
4465 else if (step_through_delay)
4466 {
4467 /* The user issued a step when stopped at a breakpoint.
4468 Maybe we should stop, maybe we should not - the delay
4469 slot *might* correspond to a line of source. In any
4470 case, don't decide that here, just set
4471 ecs->stepping_over_breakpoint, making sure we
4472 single-step again before breakpoints are re-inserted. */
4473 ecs->event_thread->stepping_over_breakpoint = 1;
4474 }
4475 }
4476
4477 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4478 handles this event. */
4479 ecs->event_thread->control.stop_bpstat
4480 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4481 stop_pc, ecs->ptid, &ecs->ws);
4482
4483 /* Following in case break condition called a
4484 function. */
4485 stop_print_frame = 1;
4486
4487 /* This is where we handle "moribund" watchpoints. Unlike
4488 software breakpoints traps, hardware watchpoint traps are
4489 always distinguishable from random traps. If no high-level
4490 watchpoint is associated with the reported stop data address
4491 anymore, then the bpstat does not explain the signal ---
4492 simply make sure to ignore it if `stopped_by_watchpoint' is
4493 set. */
4494
4495 if (debug_infrun
4496 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4497 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4498 GDB_SIGNAL_TRAP)
4499 && stopped_by_watchpoint)
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: no user watchpoint explains "
4502 "watchpoint SIGTRAP, ignoring\n");
4503
4504 /* NOTE: cagney/2003-03-29: These checks for a random signal
4505 at one stage in the past included checks for an inferior
4506 function call's call dummy's return breakpoint. The original
4507 comment, that went with the test, read:
4508
4509 ``End of a stack dummy. Some systems (e.g. Sony news) give
4510 another signal besides SIGTRAP, so check here as well as
4511 above.''
4512
4513 If someone ever tries to get call dummys on a
4514 non-executable stack to work (where the target would stop
4515 with something like a SIGSEGV), then those tests might need
4516 to be re-instated. Given, however, that the tests were only
4517 enabled when momentary breakpoints were not being used, I
4518 suspect that it won't be the case.
4519
4520 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4521 be necessary for call dummies on a non-executable stack on
4522 SPARC. */
4523
4524 /* See if the breakpoints module can explain the signal. */
4525 random_signal
4526 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4527 ecs->event_thread->suspend.stop_signal);
4528
4529 /* Maybe this was a trap for a software breakpoint that has since
4530 been removed. */
4531 if (random_signal && target_stopped_by_sw_breakpoint ())
4532 {
4533 if (program_breakpoint_here_p (gdbarch, stop_pc))
4534 {
4535 struct regcache *regcache;
4536 int decr_pc;
4537
4538 /* Re-adjust PC to what the program would see if GDB was not
4539 debugging it. */
4540 regcache = get_thread_regcache (ecs->event_thread->ptid);
4541 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4542 if (decr_pc != 0)
4543 {
4544 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4545
4546 if (record_full_is_used ())
4547 record_full_gdb_operation_disable_set ();
4548
4549 regcache_write_pc (regcache, stop_pc + decr_pc);
4550
4551 do_cleanups (old_cleanups);
4552 }
4553 }
4554 else
4555 {
4556 /* A delayed software breakpoint event. Ignore the trap. */
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: delayed software breakpoint "
4560 "trap, ignoring\n");
4561 random_signal = 0;
4562 }
4563 }
4564
4565 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4566 has since been removed. */
4567 if (random_signal && target_stopped_by_hw_breakpoint ())
4568 {
4569 /* A delayed hardware breakpoint event. Ignore the trap. */
4570 if (debug_infrun)
4571 fprintf_unfiltered (gdb_stdlog,
4572 "infrun: delayed hardware breakpoint/watchpoint "
4573 "trap, ignoring\n");
4574 random_signal = 0;
4575 }
4576
4577 /* If not, perhaps stepping/nexting can. */
4578 if (random_signal)
4579 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4580 && currently_stepping (ecs->event_thread));
4581
4582 /* Perhaps the thread hit a single-step breakpoint of _another_
4583 thread. Single-step breakpoints are transparent to the
4584 breakpoints module. */
4585 if (random_signal)
4586 random_signal = !ecs->hit_singlestep_breakpoint;
4587
4588 /* No? Perhaps we got a moribund watchpoint. */
4589 if (random_signal)
4590 random_signal = !stopped_by_watchpoint;
4591
4592 /* For the program's own signals, act according to
4593 the signal handling tables. */
4594
4595 if (random_signal)
4596 {
4597 /* Signal not for debugging purposes. */
4598 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4599 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4600
4601 if (debug_infrun)
4602 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4603 gdb_signal_to_symbol_string (stop_signal));
4604
4605 stopped_by_random_signal = 1;
4606
4607 /* Always stop on signals if we're either just gaining control
4608 of the program, or the user explicitly requested this thread
4609 to remain stopped. */
4610 if (stop_soon != NO_STOP_QUIETLY
4611 || ecs->event_thread->stop_requested
4612 || (!inf->detaching
4613 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4614 {
4615 stop_waiting (ecs);
4616 return;
4617 }
4618
4619 /* Notify observers the signal has "handle print" set. Note we
4620 returned early above if stopping; normal_stop handles the
4621 printing in that case. */
4622 if (signal_print[ecs->event_thread->suspend.stop_signal])
4623 {
4624 /* The signal table tells us to print about this signal. */
4625 target_terminal_ours_for_output ();
4626 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4627 target_terminal_inferior ();
4628 }
4629
4630 /* Clear the signal if it should not be passed. */
4631 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4633
4634 if (ecs->event_thread->prev_pc == stop_pc
4635 && ecs->event_thread->control.trap_expected
4636 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4637 {
4638 /* We were just starting a new sequence, attempting to
4639 single-step off of a breakpoint and expecting a SIGTRAP.
4640 Instead this signal arrives. This signal will take us out
4641 of the stepping range so GDB needs to remember to, when
4642 the signal handler returns, resume stepping off that
4643 breakpoint. */
4644 /* To simplify things, "continue" is forced to use the same
4645 code paths as single-step - set a breakpoint at the
4646 signal return address and then, once hit, step off that
4647 breakpoint. */
4648 if (debug_infrun)
4649 fprintf_unfiltered (gdb_stdlog,
4650 "infrun: signal arrived while stepping over "
4651 "breakpoint\n");
4652
4653 insert_hp_step_resume_breakpoint_at_frame (frame);
4654 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4655 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4656 ecs->event_thread->control.trap_expected = 0;
4657
4658 /* If we were nexting/stepping some other thread, switch to
4659 it, so that we don't continue it, losing control. */
4660 if (!switch_back_to_stepped_thread (ecs))
4661 keep_going (ecs);
4662 return;
4663 }
4664
4665 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4666 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4667 || ecs->event_thread->control.step_range_end == 1)
4668 && frame_id_eq (get_stack_frame_id (frame),
4669 ecs->event_thread->control.step_stack_frame_id)
4670 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4671 {
4672 /* The inferior is about to take a signal that will take it
4673 out of the single step range. Set a breakpoint at the
4674 current PC (which is presumably where the signal handler
4675 will eventually return) and then allow the inferior to
4676 run free.
4677
4678 Note that this is only needed for a signal delivered
4679 while in the single-step range. Nested signals aren't a
4680 problem as they eventually all return. */
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog,
4683 "infrun: signal may take us out of "
4684 "single-step range\n");
4685
4686 insert_hp_step_resume_breakpoint_at_frame (frame);
4687 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4688 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4689 ecs->event_thread->control.trap_expected = 0;
4690 keep_going (ecs);
4691 return;
4692 }
4693
4694 /* Note: step_resume_breakpoint may be non-NULL. This occures
4695 when either there's a nested signal, or when there's a
4696 pending signal enabled just as the signal handler returns
4697 (leaving the inferior at the step-resume-breakpoint without
4698 actually executing it). Either way continue until the
4699 breakpoint is really hit. */
4700
4701 if (!switch_back_to_stepped_thread (ecs))
4702 {
4703 if (debug_infrun)
4704 fprintf_unfiltered (gdb_stdlog,
4705 "infrun: random signal, keep going\n");
4706
4707 keep_going (ecs);
4708 }
4709 return;
4710 }
4711
4712 process_event_stop_test (ecs);
4713 }
4714
4715 /* Come here when we've got some debug event / signal we can explain
4716 (IOW, not a random signal), and test whether it should cause a
4717 stop, or whether we should resume the inferior (transparently).
4718 E.g., could be a breakpoint whose condition evaluates false; we
4719 could be still stepping within the line; etc. */
4720
4721 static void
4722 process_event_stop_test (struct execution_control_state *ecs)
4723 {
4724 struct symtab_and_line stop_pc_sal;
4725 struct frame_info *frame;
4726 struct gdbarch *gdbarch;
4727 CORE_ADDR jmp_buf_pc;
4728 struct bpstat_what what;
4729
4730 /* Handle cases caused by hitting a breakpoint. */
4731
4732 frame = get_current_frame ();
4733 gdbarch = get_frame_arch (frame);
4734
4735 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4736
4737 if (what.call_dummy)
4738 {
4739 stop_stack_dummy = what.call_dummy;
4740 }
4741
4742 /* If we hit an internal event that triggers symbol changes, the
4743 current frame will be invalidated within bpstat_what (e.g., if we
4744 hit an internal solib event). Re-fetch it. */
4745 frame = get_current_frame ();
4746 gdbarch = get_frame_arch (frame);
4747
4748 switch (what.main_action)
4749 {
4750 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4751 /* If we hit the breakpoint at longjmp while stepping, we
4752 install a momentary breakpoint at the target of the
4753 jmp_buf. */
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4758
4759 ecs->event_thread->stepping_over_breakpoint = 1;
4760
4761 if (what.is_longjmp)
4762 {
4763 struct value *arg_value;
4764
4765 /* If we set the longjmp breakpoint via a SystemTap probe,
4766 then use it to extract the arguments. The destination PC
4767 is the third argument to the probe. */
4768 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4769 if (arg_value)
4770 {
4771 jmp_buf_pc = value_as_address (arg_value);
4772 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4773 }
4774 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4775 || !gdbarch_get_longjmp_target (gdbarch,
4776 frame, &jmp_buf_pc))
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4781 "(!gdbarch_get_longjmp_target)\n");
4782 keep_going (ecs);
4783 return;
4784 }
4785
4786 /* Insert a breakpoint at resume address. */
4787 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4788 }
4789 else
4790 check_exception_resume (ecs, frame);
4791 keep_going (ecs);
4792 return;
4793
4794 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4795 {
4796 struct frame_info *init_frame;
4797
4798 /* There are several cases to consider.
4799
4800 1. The initiating frame no longer exists. In this case we
4801 must stop, because the exception or longjmp has gone too
4802 far.
4803
4804 2. The initiating frame exists, and is the same as the
4805 current frame. We stop, because the exception or longjmp
4806 has been caught.
4807
4808 3. The initiating frame exists and is different from the
4809 current frame. This means the exception or longjmp has
4810 been caught beneath the initiating frame, so keep going.
4811
4812 4. longjmp breakpoint has been placed just to protect
4813 against stale dummy frames and user is not interested in
4814 stopping around longjmps. */
4815
4816 if (debug_infrun)
4817 fprintf_unfiltered (gdb_stdlog,
4818 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4819
4820 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4821 != NULL);
4822 delete_exception_resume_breakpoint (ecs->event_thread);
4823
4824 if (what.is_longjmp)
4825 {
4826 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4827
4828 if (!frame_id_p (ecs->event_thread->initiating_frame))
4829 {
4830 /* Case 4. */
4831 keep_going (ecs);
4832 return;
4833 }
4834 }
4835
4836 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4837
4838 if (init_frame)
4839 {
4840 struct frame_id current_id
4841 = get_frame_id (get_current_frame ());
4842 if (frame_id_eq (current_id,
4843 ecs->event_thread->initiating_frame))
4844 {
4845 /* Case 2. Fall through. */
4846 }
4847 else
4848 {
4849 /* Case 3. */
4850 keep_going (ecs);
4851 return;
4852 }
4853 }
4854
4855 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4856 exists. */
4857 delete_step_resume_breakpoint (ecs->event_thread);
4858
4859 end_stepping_range (ecs);
4860 }
4861 return;
4862
4863 case BPSTAT_WHAT_SINGLE:
4864 if (debug_infrun)
4865 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4866 ecs->event_thread->stepping_over_breakpoint = 1;
4867 /* Still need to check other stuff, at least the case where we
4868 are stepping and step out of the right range. */
4869 break;
4870
4871 case BPSTAT_WHAT_STEP_RESUME:
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4874
4875 delete_step_resume_breakpoint (ecs->event_thread);
4876 if (ecs->event_thread->control.proceed_to_finish
4877 && execution_direction == EXEC_REVERSE)
4878 {
4879 struct thread_info *tp = ecs->event_thread;
4880
4881 /* We are finishing a function in reverse, and just hit the
4882 step-resume breakpoint at the start address of the
4883 function, and we're almost there -- just need to back up
4884 by one more single-step, which should take us back to the
4885 function call. */
4886 tp->control.step_range_start = tp->control.step_range_end = 1;
4887 keep_going (ecs);
4888 return;
4889 }
4890 fill_in_stop_func (gdbarch, ecs);
4891 if (stop_pc == ecs->stop_func_start
4892 && execution_direction == EXEC_REVERSE)
4893 {
4894 /* We are stepping over a function call in reverse, and just
4895 hit the step-resume breakpoint at the start address of
4896 the function. Go back to single-stepping, which should
4897 take us back to the function call. */
4898 ecs->event_thread->stepping_over_breakpoint = 1;
4899 keep_going (ecs);
4900 return;
4901 }
4902 break;
4903
4904 case BPSTAT_WHAT_STOP_NOISY:
4905 if (debug_infrun)
4906 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4907 stop_print_frame = 1;
4908
4909 /* Assume the thread stopped for a breapoint. We'll still check
4910 whether a/the breakpoint is there when the thread is next
4911 resumed. */
4912 ecs->event_thread->stepping_over_breakpoint = 1;
4913
4914 stop_waiting (ecs);
4915 return;
4916
4917 case BPSTAT_WHAT_STOP_SILENT:
4918 if (debug_infrun)
4919 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4920 stop_print_frame = 0;
4921
4922 /* Assume the thread stopped for a breapoint. We'll still check
4923 whether a/the breakpoint is there when the thread is next
4924 resumed. */
4925 ecs->event_thread->stepping_over_breakpoint = 1;
4926 stop_waiting (ecs);
4927 return;
4928
4929 case BPSTAT_WHAT_HP_STEP_RESUME:
4930 if (debug_infrun)
4931 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4932
4933 delete_step_resume_breakpoint (ecs->event_thread);
4934 if (ecs->event_thread->step_after_step_resume_breakpoint)
4935 {
4936 /* Back when the step-resume breakpoint was inserted, we
4937 were trying to single-step off a breakpoint. Go back to
4938 doing that. */
4939 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4940 ecs->event_thread->stepping_over_breakpoint = 1;
4941 keep_going (ecs);
4942 return;
4943 }
4944 break;
4945
4946 case BPSTAT_WHAT_KEEP_CHECKING:
4947 break;
4948 }
4949
4950 /* If we stepped a permanent breakpoint and we had a high priority
4951 step-resume breakpoint for the address we stepped, but we didn't
4952 hit it, then we must have stepped into the signal handler. The
4953 step-resume was only necessary to catch the case of _not_
4954 stepping into the handler, so delete it, and fall through to
4955 checking whether the step finished. */
4956 if (ecs->event_thread->stepped_breakpoint)
4957 {
4958 struct breakpoint *sr_bp
4959 = ecs->event_thread->control.step_resume_breakpoint;
4960
4961 if (sr_bp->loc->permanent
4962 && sr_bp->type == bp_hp_step_resume
4963 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4964 {
4965 if (debug_infrun)
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: stepped permanent breakpoint, stopped in "
4968 "handler\n");
4969 delete_step_resume_breakpoint (ecs->event_thread);
4970 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4971 }
4972 }
4973
4974 /* We come here if we hit a breakpoint but should not stop for it.
4975 Possibly we also were stepping and should stop for that. So fall
4976 through and test for stepping. But, if not stepping, do not
4977 stop. */
4978
4979 /* In all-stop mode, if we're currently stepping but have stopped in
4980 some other thread, we need to switch back to the stepped thread. */
4981 if (switch_back_to_stepped_thread (ecs))
4982 return;
4983
4984 if (ecs->event_thread->control.step_resume_breakpoint)
4985 {
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: step-resume breakpoint is inserted\n");
4989
4990 /* Having a step-resume breakpoint overrides anything
4991 else having to do with stepping commands until
4992 that breakpoint is reached. */
4993 keep_going (ecs);
4994 return;
4995 }
4996
4997 if (ecs->event_thread->control.step_range_end == 0)
4998 {
4999 if (debug_infrun)
5000 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
5001 /* Likewise if we aren't even stepping. */
5002 keep_going (ecs);
5003 return;
5004 }
5005
5006 /* Re-fetch current thread's frame in case the code above caused
5007 the frame cache to be re-initialized, making our FRAME variable
5008 a dangling pointer. */
5009 frame = get_current_frame ();
5010 gdbarch = get_frame_arch (frame);
5011 fill_in_stop_func (gdbarch, ecs);
5012
5013 /* If stepping through a line, keep going if still within it.
5014
5015 Note that step_range_end is the address of the first instruction
5016 beyond the step range, and NOT the address of the last instruction
5017 within it!
5018
5019 Note also that during reverse execution, we may be stepping
5020 through a function epilogue and therefore must detect when
5021 the current-frame changes in the middle of a line. */
5022
5023 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5024 && (execution_direction != EXEC_REVERSE
5025 || frame_id_eq (get_frame_id (frame),
5026 ecs->event_thread->control.step_frame_id)))
5027 {
5028 if (debug_infrun)
5029 fprintf_unfiltered
5030 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
5031 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5032 paddress (gdbarch, ecs->event_thread->control.step_range_end));
5033
5034 /* Tentatively re-enable range stepping; `resume' disables it if
5035 necessary (e.g., if we're stepping over a breakpoint or we
5036 have software watchpoints). */
5037 ecs->event_thread->control.may_range_step = 1;
5038
5039 /* When stepping backward, stop at beginning of line range
5040 (unless it's the function entry point, in which case
5041 keep going back to the call point). */
5042 if (stop_pc == ecs->event_thread->control.step_range_start
5043 && stop_pc != ecs->stop_func_start
5044 && execution_direction == EXEC_REVERSE)
5045 end_stepping_range (ecs);
5046 else
5047 keep_going (ecs);
5048
5049 return;
5050 }
5051
5052 /* We stepped out of the stepping range. */
5053
5054 /* If we are stepping at the source level and entered the runtime
5055 loader dynamic symbol resolution code...
5056
5057 EXEC_FORWARD: we keep on single stepping until we exit the run
5058 time loader code and reach the callee's address.
5059
5060 EXEC_REVERSE: we've already executed the callee (backward), and
5061 the runtime loader code is handled just like any other
5062 undebuggable function call. Now we need only keep stepping
5063 backward through the trampoline code, and that's handled further
5064 down, so there is nothing for us to do here. */
5065
5066 if (execution_direction != EXEC_REVERSE
5067 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5068 && in_solib_dynsym_resolve_code (stop_pc))
5069 {
5070 CORE_ADDR pc_after_resolver =
5071 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
5072
5073 if (debug_infrun)
5074 fprintf_unfiltered (gdb_stdlog,
5075 "infrun: stepped into dynsym resolve code\n");
5076
5077 if (pc_after_resolver)
5078 {
5079 /* Set up a step-resume breakpoint at the address
5080 indicated by SKIP_SOLIB_RESOLVER. */
5081 struct symtab_and_line sr_sal;
5082
5083 init_sal (&sr_sal);
5084 sr_sal.pc = pc_after_resolver;
5085 sr_sal.pspace = get_frame_program_space (frame);
5086
5087 insert_step_resume_breakpoint_at_sal (gdbarch,
5088 sr_sal, null_frame_id);
5089 }
5090
5091 keep_going (ecs);
5092 return;
5093 }
5094
5095 if (ecs->event_thread->control.step_range_end != 1
5096 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5097 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5098 && get_frame_type (frame) == SIGTRAMP_FRAME)
5099 {
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog,
5102 "infrun: stepped into signal trampoline\n");
5103 /* The inferior, while doing a "step" or "next", has ended up in
5104 a signal trampoline (either by a signal being delivered or by
5105 the signal handler returning). Just single-step until the
5106 inferior leaves the trampoline (either by calling the handler
5107 or returning). */
5108 keep_going (ecs);
5109 return;
5110 }
5111
5112 /* If we're in the return path from a shared library trampoline,
5113 we want to proceed through the trampoline when stepping. */
5114 /* macro/2012-04-25: This needs to come before the subroutine
5115 call check below as on some targets return trampolines look
5116 like subroutine calls (MIPS16 return thunks). */
5117 if (gdbarch_in_solib_return_trampoline (gdbarch,
5118 stop_pc, ecs->stop_func_name)
5119 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5120 {
5121 /* Determine where this trampoline returns. */
5122 CORE_ADDR real_stop_pc;
5123
5124 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5125
5126 if (debug_infrun)
5127 fprintf_unfiltered (gdb_stdlog,
5128 "infrun: stepped into solib return tramp\n");
5129
5130 /* Only proceed through if we know where it's going. */
5131 if (real_stop_pc)
5132 {
5133 /* And put the step-breakpoint there and go until there. */
5134 struct symtab_and_line sr_sal;
5135
5136 init_sal (&sr_sal); /* initialize to zeroes */
5137 sr_sal.pc = real_stop_pc;
5138 sr_sal.section = find_pc_overlay (sr_sal.pc);
5139 sr_sal.pspace = get_frame_program_space (frame);
5140
5141 /* Do not specify what the fp should be when we stop since
5142 on some machines the prologue is where the new fp value
5143 is established. */
5144 insert_step_resume_breakpoint_at_sal (gdbarch,
5145 sr_sal, null_frame_id);
5146
5147 /* Restart without fiddling with the step ranges or
5148 other state. */
5149 keep_going (ecs);
5150 return;
5151 }
5152 }
5153
5154 /* Check for subroutine calls. The check for the current frame
5155 equalling the step ID is not necessary - the check of the
5156 previous frame's ID is sufficient - but it is a common case and
5157 cheaper than checking the previous frame's ID.
5158
5159 NOTE: frame_id_eq will never report two invalid frame IDs as
5160 being equal, so to get into this block, both the current and
5161 previous frame must have valid frame IDs. */
5162 /* The outer_frame_id check is a heuristic to detect stepping
5163 through startup code. If we step over an instruction which
5164 sets the stack pointer from an invalid value to a valid value,
5165 we may detect that as a subroutine call from the mythical
5166 "outermost" function. This could be fixed by marking
5167 outermost frames as !stack_p,code_p,special_p. Then the
5168 initial outermost frame, before sp was valid, would
5169 have code_addr == &_start. See the comment in frame_id_eq
5170 for more. */
5171 if (!frame_id_eq (get_stack_frame_id (frame),
5172 ecs->event_thread->control.step_stack_frame_id)
5173 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5174 ecs->event_thread->control.step_stack_frame_id)
5175 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5176 outer_frame_id)
5177 || (ecs->event_thread->control.step_start_function
5178 != find_pc_function (stop_pc)))))
5179 {
5180 CORE_ADDR real_stop_pc;
5181
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5184
5185 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5186 {
5187 /* I presume that step_over_calls is only 0 when we're
5188 supposed to be stepping at the assembly language level
5189 ("stepi"). Just stop. */
5190 /* And this works the same backward as frontward. MVS */
5191 end_stepping_range (ecs);
5192 return;
5193 }
5194
5195 /* Reverse stepping through solib trampolines. */
5196
5197 if (execution_direction == EXEC_REVERSE
5198 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5199 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5200 || (ecs->stop_func_start == 0
5201 && in_solib_dynsym_resolve_code (stop_pc))))
5202 {
5203 /* Any solib trampoline code can be handled in reverse
5204 by simply continuing to single-step. We have already
5205 executed the solib function (backwards), and a few
5206 steps will take us back through the trampoline to the
5207 caller. */
5208 keep_going (ecs);
5209 return;
5210 }
5211
5212 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5213 {
5214 /* We're doing a "next".
5215
5216 Normal (forward) execution: set a breakpoint at the
5217 callee's return address (the address at which the caller
5218 will resume).
5219
5220 Reverse (backward) execution. set the step-resume
5221 breakpoint at the start of the function that we just
5222 stepped into (backwards), and continue to there. When we
5223 get there, we'll need to single-step back to the caller. */
5224
5225 if (execution_direction == EXEC_REVERSE)
5226 {
5227 /* If we're already at the start of the function, we've either
5228 just stepped backward into a single instruction function,
5229 or stepped back out of a signal handler to the first instruction
5230 of the function. Just keep going, which will single-step back
5231 to the caller. */
5232 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5233 {
5234 struct symtab_and_line sr_sal;
5235
5236 /* Normal function call return (static or dynamic). */
5237 init_sal (&sr_sal);
5238 sr_sal.pc = ecs->stop_func_start;
5239 sr_sal.pspace = get_frame_program_space (frame);
5240 insert_step_resume_breakpoint_at_sal (gdbarch,
5241 sr_sal, null_frame_id);
5242 }
5243 }
5244 else
5245 insert_step_resume_breakpoint_at_caller (frame);
5246
5247 keep_going (ecs);
5248 return;
5249 }
5250
5251 /* If we are in a function call trampoline (a stub between the
5252 calling routine and the real function), locate the real
5253 function. That's what tells us (a) whether we want to step
5254 into it at all, and (b) what prologue we want to run to the
5255 end of, if we do step into it. */
5256 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5257 if (real_stop_pc == 0)
5258 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5259 if (real_stop_pc != 0)
5260 ecs->stop_func_start = real_stop_pc;
5261
5262 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5263 {
5264 struct symtab_and_line sr_sal;
5265
5266 init_sal (&sr_sal);
5267 sr_sal.pc = ecs->stop_func_start;
5268 sr_sal.pspace = get_frame_program_space (frame);
5269
5270 insert_step_resume_breakpoint_at_sal (gdbarch,
5271 sr_sal, null_frame_id);
5272 keep_going (ecs);
5273 return;
5274 }
5275
5276 /* If we have line number information for the function we are
5277 thinking of stepping into and the function isn't on the skip
5278 list, step into it.
5279
5280 If there are several symtabs at that PC (e.g. with include
5281 files), just want to know whether *any* of them have line
5282 numbers. find_pc_line handles this. */
5283 {
5284 struct symtab_and_line tmp_sal;
5285
5286 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5287 if (tmp_sal.line != 0
5288 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5289 &tmp_sal))
5290 {
5291 if (execution_direction == EXEC_REVERSE)
5292 handle_step_into_function_backward (gdbarch, ecs);
5293 else
5294 handle_step_into_function (gdbarch, ecs);
5295 return;
5296 }
5297 }
5298
5299 /* If we have no line number and the step-stop-if-no-debug is
5300 set, we stop the step so that the user has a chance to switch
5301 in assembly mode. */
5302 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5303 && step_stop_if_no_debug)
5304 {
5305 end_stepping_range (ecs);
5306 return;
5307 }
5308
5309 if (execution_direction == EXEC_REVERSE)
5310 {
5311 /* If we're already at the start of the function, we've either just
5312 stepped backward into a single instruction function without line
5313 number info, or stepped back out of a signal handler to the first
5314 instruction of the function without line number info. Just keep
5315 going, which will single-step back to the caller. */
5316 if (ecs->stop_func_start != stop_pc)
5317 {
5318 /* Set a breakpoint at callee's start address.
5319 From there we can step once and be back in the caller. */
5320 struct symtab_and_line sr_sal;
5321
5322 init_sal (&sr_sal);
5323 sr_sal.pc = ecs->stop_func_start;
5324 sr_sal.pspace = get_frame_program_space (frame);
5325 insert_step_resume_breakpoint_at_sal (gdbarch,
5326 sr_sal, null_frame_id);
5327 }
5328 }
5329 else
5330 /* Set a breakpoint at callee's return address (the address
5331 at which the caller will resume). */
5332 insert_step_resume_breakpoint_at_caller (frame);
5333
5334 keep_going (ecs);
5335 return;
5336 }
5337
5338 /* Reverse stepping through solib trampolines. */
5339
5340 if (execution_direction == EXEC_REVERSE
5341 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5342 {
5343 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5344 || (ecs->stop_func_start == 0
5345 && in_solib_dynsym_resolve_code (stop_pc)))
5346 {
5347 /* Any solib trampoline code can be handled in reverse
5348 by simply continuing to single-step. We have already
5349 executed the solib function (backwards), and a few
5350 steps will take us back through the trampoline to the
5351 caller. */
5352 keep_going (ecs);
5353 return;
5354 }
5355 else if (in_solib_dynsym_resolve_code (stop_pc))
5356 {
5357 /* Stepped backward into the solib dynsym resolver.
5358 Set a breakpoint at its start and continue, then
5359 one more step will take us out. */
5360 struct symtab_and_line sr_sal;
5361
5362 init_sal (&sr_sal);
5363 sr_sal.pc = ecs->stop_func_start;
5364 sr_sal.pspace = get_frame_program_space (frame);
5365 insert_step_resume_breakpoint_at_sal (gdbarch,
5366 sr_sal, null_frame_id);
5367 keep_going (ecs);
5368 return;
5369 }
5370 }
5371
5372 stop_pc_sal = find_pc_line (stop_pc, 0);
5373
5374 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5375 the trampoline processing logic, however, there are some trampolines
5376 that have no names, so we should do trampoline handling first. */
5377 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5378 && ecs->stop_func_name == NULL
5379 && stop_pc_sal.line == 0)
5380 {
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: stepped into undebuggable function\n");
5384
5385 /* The inferior just stepped into, or returned to, an
5386 undebuggable function (where there is no debugging information
5387 and no line number corresponding to the address where the
5388 inferior stopped). Since we want to skip this kind of code,
5389 we keep going until the inferior returns from this
5390 function - unless the user has asked us not to (via
5391 set step-mode) or we no longer know how to get back
5392 to the call site. */
5393 if (step_stop_if_no_debug
5394 || !frame_id_p (frame_unwind_caller_id (frame)))
5395 {
5396 /* If we have no line number and the step-stop-if-no-debug
5397 is set, we stop the step so that the user has a chance to
5398 switch in assembly mode. */
5399 end_stepping_range (ecs);
5400 return;
5401 }
5402 else
5403 {
5404 /* Set a breakpoint at callee's return address (the address
5405 at which the caller will resume). */
5406 insert_step_resume_breakpoint_at_caller (frame);
5407 keep_going (ecs);
5408 return;
5409 }
5410 }
5411
5412 if (ecs->event_thread->control.step_range_end == 1)
5413 {
5414 /* It is stepi or nexti. We always want to stop stepping after
5415 one instruction. */
5416 if (debug_infrun)
5417 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5418 end_stepping_range (ecs);
5419 return;
5420 }
5421
5422 if (stop_pc_sal.line == 0)
5423 {
5424 /* We have no line number information. That means to stop
5425 stepping (does this always happen right after one instruction,
5426 when we do "s" in a function with no line numbers,
5427 or can this happen as a result of a return or longjmp?). */
5428 if (debug_infrun)
5429 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5430 end_stepping_range (ecs);
5431 return;
5432 }
5433
5434 /* Look for "calls" to inlined functions, part one. If the inline
5435 frame machinery detected some skipped call sites, we have entered
5436 a new inline function. */
5437
5438 if (frame_id_eq (get_frame_id (get_current_frame ()),
5439 ecs->event_thread->control.step_frame_id)
5440 && inline_skipped_frames (ecs->ptid))
5441 {
5442 struct symtab_and_line call_sal;
5443
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: stepped into inlined function\n");
5447
5448 find_frame_sal (get_current_frame (), &call_sal);
5449
5450 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5451 {
5452 /* For "step", we're going to stop. But if the call site
5453 for this inlined function is on the same source line as
5454 we were previously stepping, go down into the function
5455 first. Otherwise stop at the call site. */
5456
5457 if (call_sal.line == ecs->event_thread->current_line
5458 && call_sal.symtab == ecs->event_thread->current_symtab)
5459 step_into_inline_frame (ecs->ptid);
5460
5461 end_stepping_range (ecs);
5462 return;
5463 }
5464 else
5465 {
5466 /* For "next", we should stop at the call site if it is on a
5467 different source line. Otherwise continue through the
5468 inlined function. */
5469 if (call_sal.line == ecs->event_thread->current_line
5470 && call_sal.symtab == ecs->event_thread->current_symtab)
5471 keep_going (ecs);
5472 else
5473 end_stepping_range (ecs);
5474 return;
5475 }
5476 }
5477
5478 /* Look for "calls" to inlined functions, part two. If we are still
5479 in the same real function we were stepping through, but we have
5480 to go further up to find the exact frame ID, we are stepping
5481 through a more inlined call beyond its call site. */
5482
5483 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5484 && !frame_id_eq (get_frame_id (get_current_frame ()),
5485 ecs->event_thread->control.step_frame_id)
5486 && stepped_in_from (get_current_frame (),
5487 ecs->event_thread->control.step_frame_id))
5488 {
5489 if (debug_infrun)
5490 fprintf_unfiltered (gdb_stdlog,
5491 "infrun: stepping through inlined function\n");
5492
5493 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5494 keep_going (ecs);
5495 else
5496 end_stepping_range (ecs);
5497 return;
5498 }
5499
5500 if ((stop_pc == stop_pc_sal.pc)
5501 && (ecs->event_thread->current_line != stop_pc_sal.line
5502 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5503 {
5504 /* We are at the start of a different line. So stop. Note that
5505 we don't stop if we step into the middle of a different line.
5506 That is said to make things like for (;;) statements work
5507 better. */
5508 if (debug_infrun)
5509 fprintf_unfiltered (gdb_stdlog,
5510 "infrun: stepped to a different line\n");
5511 end_stepping_range (ecs);
5512 return;
5513 }
5514
5515 /* We aren't done stepping.
5516
5517 Optimize by setting the stepping range to the line.
5518 (We might not be in the original line, but if we entered a
5519 new line in mid-statement, we continue stepping. This makes
5520 things like for(;;) statements work better.) */
5521
5522 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5523 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5524 ecs->event_thread->control.may_range_step = 1;
5525 set_step_info (frame, stop_pc_sal);
5526
5527 if (debug_infrun)
5528 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5529 keep_going (ecs);
5530 }
5531
5532 /* In all-stop mode, if we're currently stepping but have stopped in
5533 some other thread, we may need to switch back to the stepped
5534 thread. Returns true we set the inferior running, false if we left
5535 it stopped (and the event needs further processing). */
5536
5537 static int
5538 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5539 {
5540 if (!non_stop)
5541 {
5542 struct thread_info *tp;
5543 struct thread_info *stepping_thread;
5544 struct thread_info *step_over;
5545
5546 /* If any thread is blocked on some internal breakpoint, and we
5547 simply need to step over that breakpoint to get it going
5548 again, do that first. */
5549
5550 /* However, if we see an event for the stepping thread, then we
5551 know all other threads have been moved past their breakpoints
5552 already. Let the caller check whether the step is finished,
5553 etc., before deciding to move it past a breakpoint. */
5554 if (ecs->event_thread->control.step_range_end != 0)
5555 return 0;
5556
5557 /* Check if the current thread is blocked on an incomplete
5558 step-over, interrupted by a random signal. */
5559 if (ecs->event_thread->control.trap_expected
5560 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5561 {
5562 if (debug_infrun)
5563 {
5564 fprintf_unfiltered (gdb_stdlog,
5565 "infrun: need to finish step-over of [%s]\n",
5566 target_pid_to_str (ecs->event_thread->ptid));
5567 }
5568 keep_going (ecs);
5569 return 1;
5570 }
5571
5572 /* Check if the current thread is blocked by a single-step
5573 breakpoint of another thread. */
5574 if (ecs->hit_singlestep_breakpoint)
5575 {
5576 if (debug_infrun)
5577 {
5578 fprintf_unfiltered (gdb_stdlog,
5579 "infrun: need to step [%s] over single-step "
5580 "breakpoint\n",
5581 target_pid_to_str (ecs->ptid));
5582 }
5583 keep_going (ecs);
5584 return 1;
5585 }
5586
5587 /* Otherwise, we no longer expect a trap in the current thread.
5588 Clear the trap_expected flag before switching back -- this is
5589 what keep_going does as well, if we call it. */
5590 ecs->event_thread->control.trap_expected = 0;
5591
5592 /* Likewise, clear the signal if it should not be passed. */
5593 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5594 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5595
5596 /* If scheduler locking applies even if not stepping, there's no
5597 need to walk over threads. Above we've checked whether the
5598 current thread is stepping. If some other thread not the
5599 event thread is stepping, then it must be that scheduler
5600 locking is not in effect. */
5601 if (schedlock_applies (ecs->event_thread))
5602 return 0;
5603
5604 /* Look for the stepping/nexting thread, and check if any other
5605 thread other than the stepping thread needs to start a
5606 step-over. Do all step-overs before actually proceeding with
5607 step/next/etc. */
5608 stepping_thread = NULL;
5609 step_over = NULL;
5610 ALL_NON_EXITED_THREADS (tp)
5611 {
5612 /* Ignore threads of processes we're not resuming. */
5613 if (!sched_multi
5614 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5615 continue;
5616
5617 /* When stepping over a breakpoint, we lock all threads
5618 except the one that needs to move past the breakpoint.
5619 If a non-event thread has this set, the "incomplete
5620 step-over" check above should have caught it earlier. */
5621 gdb_assert (!tp->control.trap_expected);
5622
5623 /* Did we find the stepping thread? */
5624 if (tp->control.step_range_end)
5625 {
5626 /* Yep. There should only one though. */
5627 gdb_assert (stepping_thread == NULL);
5628
5629 /* The event thread is handled at the top, before we
5630 enter this loop. */
5631 gdb_assert (tp != ecs->event_thread);
5632
5633 /* If some thread other than the event thread is
5634 stepping, then scheduler locking can't be in effect,
5635 otherwise we wouldn't have resumed the current event
5636 thread in the first place. */
5637 gdb_assert (!schedlock_applies (tp));
5638
5639 stepping_thread = tp;
5640 }
5641 else if (thread_still_needs_step_over (tp))
5642 {
5643 step_over = tp;
5644
5645 /* At the top we've returned early if the event thread
5646 is stepping. If some other thread not the event
5647 thread is stepping, then scheduler locking can't be
5648 in effect, and we can resume this thread. No need to
5649 keep looking for the stepping thread then. */
5650 break;
5651 }
5652 }
5653
5654 if (step_over != NULL)
5655 {
5656 tp = step_over;
5657 if (debug_infrun)
5658 {
5659 fprintf_unfiltered (gdb_stdlog,
5660 "infrun: need to step-over [%s]\n",
5661 target_pid_to_str (tp->ptid));
5662 }
5663
5664 /* Only the stepping thread should have this set. */
5665 gdb_assert (tp->control.step_range_end == 0);
5666
5667 ecs->ptid = tp->ptid;
5668 ecs->event_thread = tp;
5669 switch_to_thread (ecs->ptid);
5670 keep_going (ecs);
5671 return 1;
5672 }
5673
5674 if (stepping_thread != NULL)
5675 {
5676 struct frame_info *frame;
5677 struct gdbarch *gdbarch;
5678
5679 tp = stepping_thread;
5680
5681 /* If the stepping thread exited, then don't try to switch
5682 back and resume it, which could fail in several different
5683 ways depending on the target. Instead, just keep going.
5684
5685 We can find a stepping dead thread in the thread list in
5686 two cases:
5687
5688 - The target supports thread exit events, and when the
5689 target tries to delete the thread from the thread list,
5690 inferior_ptid pointed at the exiting thread. In such
5691 case, calling delete_thread does not really remove the
5692 thread from the list; instead, the thread is left listed,
5693 with 'exited' state.
5694
5695 - The target's debug interface does not support thread
5696 exit events, and so we have no idea whatsoever if the
5697 previously stepping thread is still alive. For that
5698 reason, we need to synchronously query the target
5699 now. */
5700 if (is_exited (tp->ptid)
5701 || !target_thread_alive (tp->ptid))
5702 {
5703 if (debug_infrun)
5704 fprintf_unfiltered (gdb_stdlog,
5705 "infrun: not switching back to "
5706 "stepped thread, it has vanished\n");
5707
5708 delete_thread (tp->ptid);
5709 keep_going (ecs);
5710 return 1;
5711 }
5712
5713 if (debug_infrun)
5714 fprintf_unfiltered (gdb_stdlog,
5715 "infrun: switching back to stepped thread\n");
5716
5717 ecs->event_thread = tp;
5718 ecs->ptid = tp->ptid;
5719 context_switch (ecs->ptid);
5720
5721 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5722 frame = get_current_frame ();
5723 gdbarch = get_frame_arch (frame);
5724
5725 /* If the PC of the thread we were trying to single-step has
5726 changed, then that thread has trapped or been signaled,
5727 but the event has not been reported to GDB yet. Re-poll
5728 the target looking for this particular thread's event
5729 (i.e. temporarily enable schedlock) by:
5730
5731 - setting a break at the current PC
5732 - resuming that particular thread, only (by setting
5733 trap expected)
5734
5735 This prevents us continuously moving the single-step
5736 breakpoint forward, one instruction at a time,
5737 overstepping. */
5738
5739 if (stop_pc != tp->prev_pc)
5740 {
5741 ptid_t resume_ptid;
5742
5743 if (debug_infrun)
5744 fprintf_unfiltered (gdb_stdlog,
5745 "infrun: expected thread advanced also\n");
5746
5747 /* Clear the info of the previous step-over, as it's no
5748 longer valid. It's what keep_going would do too, if
5749 we called it. Must do this before trying to insert
5750 the sss breakpoint, otherwise if we were previously
5751 trying to step over this exact address in another
5752 thread, the breakpoint ends up not installed. */
5753 clear_step_over_info ();
5754
5755 insert_single_step_breakpoint (get_frame_arch (frame),
5756 get_frame_address_space (frame),
5757 stop_pc);
5758
5759 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5760 do_target_resume (resume_ptid,
5761 currently_stepping (tp), GDB_SIGNAL_0);
5762 prepare_to_wait (ecs);
5763 }
5764 else
5765 {
5766 if (debug_infrun)
5767 fprintf_unfiltered (gdb_stdlog,
5768 "infrun: expected thread still "
5769 "hasn't advanced\n");
5770 keep_going (ecs);
5771 }
5772
5773 return 1;
5774 }
5775 }
5776 return 0;
5777 }
5778
5779 /* Is thread TP in the middle of single-stepping? */
5780
5781 static int
5782 currently_stepping (struct thread_info *tp)
5783 {
5784 return ((tp->control.step_range_end
5785 && tp->control.step_resume_breakpoint == NULL)
5786 || tp->control.trap_expected
5787 || tp->stepped_breakpoint
5788 || bpstat_should_step ());
5789 }
5790
5791 /* Inferior has stepped into a subroutine call with source code that
5792 we should not step over. Do step to the first line of code in
5793 it. */
5794
5795 static void
5796 handle_step_into_function (struct gdbarch *gdbarch,
5797 struct execution_control_state *ecs)
5798 {
5799 struct compunit_symtab *cust;
5800 struct symtab_and_line stop_func_sal, sr_sal;
5801
5802 fill_in_stop_func (gdbarch, ecs);
5803
5804 cust = find_pc_compunit_symtab (stop_pc);
5805 if (cust != NULL && compunit_language (cust) != language_asm)
5806 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5807 ecs->stop_func_start);
5808
5809 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5810 /* Use the step_resume_break to step until the end of the prologue,
5811 even if that involves jumps (as it seems to on the vax under
5812 4.2). */
5813 /* If the prologue ends in the middle of a source line, continue to
5814 the end of that source line (if it is still within the function).
5815 Otherwise, just go to end of prologue. */
5816 if (stop_func_sal.end
5817 && stop_func_sal.pc != ecs->stop_func_start
5818 && stop_func_sal.end < ecs->stop_func_end)
5819 ecs->stop_func_start = stop_func_sal.end;
5820
5821 /* Architectures which require breakpoint adjustment might not be able
5822 to place a breakpoint at the computed address. If so, the test
5823 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5824 ecs->stop_func_start to an address at which a breakpoint may be
5825 legitimately placed.
5826
5827 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5828 made, GDB will enter an infinite loop when stepping through
5829 optimized code consisting of VLIW instructions which contain
5830 subinstructions corresponding to different source lines. On
5831 FR-V, it's not permitted to place a breakpoint on any but the
5832 first subinstruction of a VLIW instruction. When a breakpoint is
5833 set, GDB will adjust the breakpoint address to the beginning of
5834 the VLIW instruction. Thus, we need to make the corresponding
5835 adjustment here when computing the stop address. */
5836
5837 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5838 {
5839 ecs->stop_func_start
5840 = gdbarch_adjust_breakpoint_address (gdbarch,
5841 ecs->stop_func_start);
5842 }
5843
5844 if (ecs->stop_func_start == stop_pc)
5845 {
5846 /* We are already there: stop now. */
5847 end_stepping_range (ecs);
5848 return;
5849 }
5850 else
5851 {
5852 /* Put the step-breakpoint there and go until there. */
5853 init_sal (&sr_sal); /* initialize to zeroes */
5854 sr_sal.pc = ecs->stop_func_start;
5855 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5856 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5857
5858 /* Do not specify what the fp should be when we stop since on
5859 some machines the prologue is where the new fp value is
5860 established. */
5861 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5862
5863 /* And make sure stepping stops right away then. */
5864 ecs->event_thread->control.step_range_end
5865 = ecs->event_thread->control.step_range_start;
5866 }
5867 keep_going (ecs);
5868 }
5869
5870 /* Inferior has stepped backward into a subroutine call with source
5871 code that we should not step over. Do step to the beginning of the
5872 last line of code in it. */
5873
5874 static void
5875 handle_step_into_function_backward (struct gdbarch *gdbarch,
5876 struct execution_control_state *ecs)
5877 {
5878 struct compunit_symtab *cust;
5879 struct symtab_and_line stop_func_sal;
5880
5881 fill_in_stop_func (gdbarch, ecs);
5882
5883 cust = find_pc_compunit_symtab (stop_pc);
5884 if (cust != NULL && compunit_language (cust) != language_asm)
5885 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5886 ecs->stop_func_start);
5887
5888 stop_func_sal = find_pc_line (stop_pc, 0);
5889
5890 /* OK, we're just going to keep stepping here. */
5891 if (stop_func_sal.pc == stop_pc)
5892 {
5893 /* We're there already. Just stop stepping now. */
5894 end_stepping_range (ecs);
5895 }
5896 else
5897 {
5898 /* Else just reset the step range and keep going.
5899 No step-resume breakpoint, they don't work for
5900 epilogues, which can have multiple entry paths. */
5901 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5902 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5903 keep_going (ecs);
5904 }
5905 return;
5906 }
5907
5908 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5909 This is used to both functions and to skip over code. */
5910
5911 static void
5912 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5913 struct symtab_and_line sr_sal,
5914 struct frame_id sr_id,
5915 enum bptype sr_type)
5916 {
5917 /* There should never be more than one step-resume or longjmp-resume
5918 breakpoint per thread, so we should never be setting a new
5919 step_resume_breakpoint when one is already active. */
5920 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5921 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5922
5923 if (debug_infrun)
5924 fprintf_unfiltered (gdb_stdlog,
5925 "infrun: inserting step-resume breakpoint at %s\n",
5926 paddress (gdbarch, sr_sal.pc));
5927
5928 inferior_thread ()->control.step_resume_breakpoint
5929 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5930 }
5931
5932 void
5933 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5934 struct symtab_and_line sr_sal,
5935 struct frame_id sr_id)
5936 {
5937 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5938 sr_sal, sr_id,
5939 bp_step_resume);
5940 }
5941
5942 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5943 This is used to skip a potential signal handler.
5944
5945 This is called with the interrupted function's frame. The signal
5946 handler, when it returns, will resume the interrupted function at
5947 RETURN_FRAME.pc. */
5948
5949 static void
5950 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5951 {
5952 struct symtab_and_line sr_sal;
5953 struct gdbarch *gdbarch;
5954
5955 gdb_assert (return_frame != NULL);
5956 init_sal (&sr_sal); /* initialize to zeros */
5957
5958 gdbarch = get_frame_arch (return_frame);
5959 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5960 sr_sal.section = find_pc_overlay (sr_sal.pc);
5961 sr_sal.pspace = get_frame_program_space (return_frame);
5962
5963 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5964 get_stack_frame_id (return_frame),
5965 bp_hp_step_resume);
5966 }
5967
5968 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5969 is used to skip a function after stepping into it (for "next" or if
5970 the called function has no debugging information).
5971
5972 The current function has almost always been reached by single
5973 stepping a call or return instruction. NEXT_FRAME belongs to the
5974 current function, and the breakpoint will be set at the caller's
5975 resume address.
5976
5977 This is a separate function rather than reusing
5978 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5979 get_prev_frame, which may stop prematurely (see the implementation
5980 of frame_unwind_caller_id for an example). */
5981
5982 static void
5983 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5984 {
5985 struct symtab_and_line sr_sal;
5986 struct gdbarch *gdbarch;
5987
5988 /* We shouldn't have gotten here if we don't know where the call site
5989 is. */
5990 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5991
5992 init_sal (&sr_sal); /* initialize to zeros */
5993
5994 gdbarch = frame_unwind_caller_arch (next_frame);
5995 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5996 frame_unwind_caller_pc (next_frame));
5997 sr_sal.section = find_pc_overlay (sr_sal.pc);
5998 sr_sal.pspace = frame_unwind_program_space (next_frame);
5999
6000 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
6001 frame_unwind_caller_id (next_frame));
6002 }
6003
6004 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6005 new breakpoint at the target of a jmp_buf. The handling of
6006 longjmp-resume uses the same mechanisms used for handling
6007 "step-resume" breakpoints. */
6008
6009 static void
6010 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
6011 {
6012 /* There should never be more than one longjmp-resume breakpoint per
6013 thread, so we should never be setting a new
6014 longjmp_resume_breakpoint when one is already active. */
6015 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
6016
6017 if (debug_infrun)
6018 fprintf_unfiltered (gdb_stdlog,
6019 "infrun: inserting longjmp-resume breakpoint at %s\n",
6020 paddress (gdbarch, pc));
6021
6022 inferior_thread ()->control.exception_resume_breakpoint =
6023 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
6024 }
6025
6026 /* Insert an exception resume breakpoint. TP is the thread throwing
6027 the exception. The block B is the block of the unwinder debug hook
6028 function. FRAME is the frame corresponding to the call to this
6029 function. SYM is the symbol of the function argument holding the
6030 target PC of the exception. */
6031
6032 static void
6033 insert_exception_resume_breakpoint (struct thread_info *tp,
6034 const struct block *b,
6035 struct frame_info *frame,
6036 struct symbol *sym)
6037 {
6038 TRY
6039 {
6040 struct symbol *vsym;
6041 struct value *value;
6042 CORE_ADDR handler;
6043 struct breakpoint *bp;
6044
6045 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6046 value = read_var_value (vsym, frame);
6047 /* If the value was optimized out, revert to the old behavior. */
6048 if (! value_optimized_out (value))
6049 {
6050 handler = value_as_address (value);
6051
6052 if (debug_infrun)
6053 fprintf_unfiltered (gdb_stdlog,
6054 "infrun: exception resume at %lx\n",
6055 (unsigned long) handler);
6056
6057 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6058 handler, bp_exception_resume);
6059
6060 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6061 frame = NULL;
6062
6063 bp->thread = tp->num;
6064 inferior_thread ()->control.exception_resume_breakpoint = bp;
6065 }
6066 }
6067 CATCH (e, RETURN_MASK_ERROR)
6068 {
6069 /* We want to ignore errors here. */
6070 }
6071 END_CATCH
6072 }
6073
6074 /* A helper for check_exception_resume that sets an
6075 exception-breakpoint based on a SystemTap probe. */
6076
6077 static void
6078 insert_exception_resume_from_probe (struct thread_info *tp,
6079 const struct bound_probe *probe,
6080 struct frame_info *frame)
6081 {
6082 struct value *arg_value;
6083 CORE_ADDR handler;
6084 struct breakpoint *bp;
6085
6086 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6087 if (!arg_value)
6088 return;
6089
6090 handler = value_as_address (arg_value);
6091
6092 if (debug_infrun)
6093 fprintf_unfiltered (gdb_stdlog,
6094 "infrun: exception resume at %s\n",
6095 paddress (get_objfile_arch (probe->objfile),
6096 handler));
6097
6098 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6099 handler, bp_exception_resume);
6100 bp->thread = tp->num;
6101 inferior_thread ()->control.exception_resume_breakpoint = bp;
6102 }
6103
6104 /* This is called when an exception has been intercepted. Check to
6105 see whether the exception's destination is of interest, and if so,
6106 set an exception resume breakpoint there. */
6107
6108 static void
6109 check_exception_resume (struct execution_control_state *ecs,
6110 struct frame_info *frame)
6111 {
6112 struct bound_probe probe;
6113 struct symbol *func;
6114
6115 /* First see if this exception unwinding breakpoint was set via a
6116 SystemTap probe point. If so, the probe has two arguments: the
6117 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6118 set a breakpoint there. */
6119 probe = find_probe_by_pc (get_frame_pc (frame));
6120 if (probe.probe)
6121 {
6122 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6123 return;
6124 }
6125
6126 func = get_frame_function (frame);
6127 if (!func)
6128 return;
6129
6130 TRY
6131 {
6132 const struct block *b;
6133 struct block_iterator iter;
6134 struct symbol *sym;
6135 int argno = 0;
6136
6137 /* The exception breakpoint is a thread-specific breakpoint on
6138 the unwinder's debug hook, declared as:
6139
6140 void _Unwind_DebugHook (void *cfa, void *handler);
6141
6142 The CFA argument indicates the frame to which control is
6143 about to be transferred. HANDLER is the destination PC.
6144
6145 We ignore the CFA and set a temporary breakpoint at HANDLER.
6146 This is not extremely efficient but it avoids issues in gdb
6147 with computing the DWARF CFA, and it also works even in weird
6148 cases such as throwing an exception from inside a signal
6149 handler. */
6150
6151 b = SYMBOL_BLOCK_VALUE (func);
6152 ALL_BLOCK_SYMBOLS (b, iter, sym)
6153 {
6154 if (!SYMBOL_IS_ARGUMENT (sym))
6155 continue;
6156
6157 if (argno == 0)
6158 ++argno;
6159 else
6160 {
6161 insert_exception_resume_breakpoint (ecs->event_thread,
6162 b, frame, sym);
6163 break;
6164 }
6165 }
6166 }
6167 CATCH (e, RETURN_MASK_ERROR)
6168 {
6169 }
6170 END_CATCH
6171 }
6172
6173 static void
6174 stop_waiting (struct execution_control_state *ecs)
6175 {
6176 if (debug_infrun)
6177 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6178
6179 clear_step_over_info ();
6180
6181 /* Let callers know we don't want to wait for the inferior anymore. */
6182 ecs->wait_some_more = 0;
6183 }
6184
6185 /* Called when we should continue running the inferior, because the
6186 current event doesn't cause a user visible stop. This does the
6187 resuming part; waiting for the next event is done elsewhere. */
6188
6189 static void
6190 keep_going (struct execution_control_state *ecs)
6191 {
6192 /* Make sure normal_stop is called if we get a QUIT handled before
6193 reaching resume. */
6194 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6195
6196 /* Save the pc before execution, to compare with pc after stop. */
6197 ecs->event_thread->prev_pc
6198 = regcache_read_pc (get_thread_regcache (ecs->ptid));
6199
6200 if (ecs->event_thread->control.trap_expected
6201 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6202 {
6203 /* We haven't yet gotten our trap, and either: intercepted a
6204 non-signal event (e.g., a fork); or took a signal which we
6205 are supposed to pass through to the inferior. Simply
6206 continue. */
6207 discard_cleanups (old_cleanups);
6208 resume (ecs->event_thread->suspend.stop_signal);
6209 }
6210 else
6211 {
6212 struct regcache *regcache = get_current_regcache ();
6213 int remove_bp;
6214 int remove_wps;
6215
6216 /* Either the trap was not expected, but we are continuing
6217 anyway (if we got a signal, the user asked it be passed to
6218 the child)
6219 -- or --
6220 We got our expected trap, but decided we should resume from
6221 it.
6222
6223 We're going to run this baby now!
6224
6225 Note that insert_breakpoints won't try to re-insert
6226 already inserted breakpoints. Therefore, we don't
6227 care if breakpoints were already inserted, or not. */
6228
6229 /* If we need to step over a breakpoint, and we're not using
6230 displaced stepping to do so, insert all breakpoints
6231 (watchpoints, etc.) but the one we're stepping over, step one
6232 instruction, and then re-insert the breakpoint when that step
6233 is finished. */
6234
6235 remove_bp = (ecs->hit_singlestep_breakpoint
6236 || thread_still_needs_step_over (ecs->event_thread));
6237 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6238 && !target_have_steppable_watchpoint);
6239
6240 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6241 {
6242 set_step_over_info (get_regcache_aspace (regcache),
6243 regcache_read_pc (regcache), remove_wps);
6244 }
6245 else if (remove_wps)
6246 set_step_over_info (NULL, 0, remove_wps);
6247 else
6248 clear_step_over_info ();
6249
6250 /* Stop stepping if inserting breakpoints fails. */
6251 TRY
6252 {
6253 insert_breakpoints ();
6254 }
6255 CATCH (e, RETURN_MASK_ERROR)
6256 {
6257 exception_print (gdb_stderr, e);
6258 stop_waiting (ecs);
6259 discard_cleanups (old_cleanups);
6260 return;
6261 }
6262 END_CATCH
6263
6264 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6265
6266 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6267 explicitly specifies that such a signal should be delivered
6268 to the target program). Typically, that would occur when a
6269 user is debugging a target monitor on a simulator: the target
6270 monitor sets a breakpoint; the simulator encounters this
6271 breakpoint and halts the simulation handing control to GDB;
6272 GDB, noting that the stop address doesn't map to any known
6273 breakpoint, returns control back to the simulator; the
6274 simulator then delivers the hardware equivalent of a
6275 GDB_SIGNAL_TRAP to the program being debugged. */
6276 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6277 && !signal_program[ecs->event_thread->suspend.stop_signal])
6278 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6279
6280 discard_cleanups (old_cleanups);
6281 resume (ecs->event_thread->suspend.stop_signal);
6282 }
6283
6284 prepare_to_wait (ecs);
6285 }
6286
6287 /* This function normally comes after a resume, before
6288 handle_inferior_event exits. It takes care of any last bits of
6289 housekeeping, and sets the all-important wait_some_more flag. */
6290
6291 static void
6292 prepare_to_wait (struct execution_control_state *ecs)
6293 {
6294 if (debug_infrun)
6295 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6296
6297 /* This is the old end of the while loop. Let everybody know we
6298 want to wait for the inferior some more and get called again
6299 soon. */
6300 ecs->wait_some_more = 1;
6301 }
6302
6303 /* We are done with the step range of a step/next/si/ni command.
6304 Called once for each n of a "step n" operation. */
6305
6306 static void
6307 end_stepping_range (struct execution_control_state *ecs)
6308 {
6309 ecs->event_thread->control.stop_step = 1;
6310 stop_waiting (ecs);
6311 }
6312
6313 /* Several print_*_reason functions to print why the inferior has stopped.
6314 We always print something when the inferior exits, or receives a signal.
6315 The rest of the cases are dealt with later on in normal_stop and
6316 print_it_typical. Ideally there should be a call to one of these
6317 print_*_reason functions functions from handle_inferior_event each time
6318 stop_waiting is called.
6319
6320 Note that we don't call these directly, instead we delegate that to
6321 the interpreters, through observers. Interpreters then call these
6322 with whatever uiout is right. */
6323
6324 void
6325 print_end_stepping_range_reason (struct ui_out *uiout)
6326 {
6327 /* For CLI-like interpreters, print nothing. */
6328
6329 if (ui_out_is_mi_like_p (uiout))
6330 {
6331 ui_out_field_string (uiout, "reason",
6332 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6333 }
6334 }
6335
6336 void
6337 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6338 {
6339 annotate_signalled ();
6340 if (ui_out_is_mi_like_p (uiout))
6341 ui_out_field_string
6342 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6343 ui_out_text (uiout, "\nProgram terminated with signal ");
6344 annotate_signal_name ();
6345 ui_out_field_string (uiout, "signal-name",
6346 gdb_signal_to_name (siggnal));
6347 annotate_signal_name_end ();
6348 ui_out_text (uiout, ", ");
6349 annotate_signal_string ();
6350 ui_out_field_string (uiout, "signal-meaning",
6351 gdb_signal_to_string (siggnal));
6352 annotate_signal_string_end ();
6353 ui_out_text (uiout, ".\n");
6354 ui_out_text (uiout, "The program no longer exists.\n");
6355 }
6356
6357 void
6358 print_exited_reason (struct ui_out *uiout, int exitstatus)
6359 {
6360 struct inferior *inf = current_inferior ();
6361 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6362
6363 annotate_exited (exitstatus);
6364 if (exitstatus)
6365 {
6366 if (ui_out_is_mi_like_p (uiout))
6367 ui_out_field_string (uiout, "reason",
6368 async_reason_lookup (EXEC_ASYNC_EXITED));
6369 ui_out_text (uiout, "[Inferior ");
6370 ui_out_text (uiout, plongest (inf->num));
6371 ui_out_text (uiout, " (");
6372 ui_out_text (uiout, pidstr);
6373 ui_out_text (uiout, ") exited with code ");
6374 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6375 ui_out_text (uiout, "]\n");
6376 }
6377 else
6378 {
6379 if (ui_out_is_mi_like_p (uiout))
6380 ui_out_field_string
6381 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6382 ui_out_text (uiout, "[Inferior ");
6383 ui_out_text (uiout, plongest (inf->num));
6384 ui_out_text (uiout, " (");
6385 ui_out_text (uiout, pidstr);
6386 ui_out_text (uiout, ") exited normally]\n");
6387 }
6388 }
6389
6390 void
6391 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6392 {
6393 annotate_signal ();
6394
6395 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6396 {
6397 struct thread_info *t = inferior_thread ();
6398
6399 ui_out_text (uiout, "\n[");
6400 ui_out_field_string (uiout, "thread-name",
6401 target_pid_to_str (t->ptid));
6402 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6403 ui_out_text (uiout, " stopped");
6404 }
6405 else
6406 {
6407 ui_out_text (uiout, "\nProgram received signal ");
6408 annotate_signal_name ();
6409 if (ui_out_is_mi_like_p (uiout))
6410 ui_out_field_string
6411 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6412 ui_out_field_string (uiout, "signal-name",
6413 gdb_signal_to_name (siggnal));
6414 annotate_signal_name_end ();
6415 ui_out_text (uiout, ", ");
6416 annotate_signal_string ();
6417 ui_out_field_string (uiout, "signal-meaning",
6418 gdb_signal_to_string (siggnal));
6419 annotate_signal_string_end ();
6420 }
6421 ui_out_text (uiout, ".\n");
6422 }
6423
6424 void
6425 print_no_history_reason (struct ui_out *uiout)
6426 {
6427 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6428 }
6429
6430 /* Print current location without a level number, if we have changed
6431 functions or hit a breakpoint. Print source line if we have one.
6432 bpstat_print contains the logic deciding in detail what to print,
6433 based on the event(s) that just occurred. */
6434
6435 void
6436 print_stop_event (struct target_waitstatus *ws)
6437 {
6438 int bpstat_ret;
6439 int source_flag;
6440 int do_frame_printing = 1;
6441 struct thread_info *tp = inferior_thread ();
6442
6443 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6444 switch (bpstat_ret)
6445 {
6446 case PRINT_UNKNOWN:
6447 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6448 should) carry around the function and does (or should) use
6449 that when doing a frame comparison. */
6450 if (tp->control.stop_step
6451 && frame_id_eq (tp->control.step_frame_id,
6452 get_frame_id (get_current_frame ()))
6453 && tp->control.step_start_function == find_pc_function (stop_pc))
6454 {
6455 /* Finished step, just print source line. */
6456 source_flag = SRC_LINE;
6457 }
6458 else
6459 {
6460 /* Print location and source line. */
6461 source_flag = SRC_AND_LOC;
6462 }
6463 break;
6464 case PRINT_SRC_AND_LOC:
6465 /* Print location and source line. */
6466 source_flag = SRC_AND_LOC;
6467 break;
6468 case PRINT_SRC_ONLY:
6469 source_flag = SRC_LINE;
6470 break;
6471 case PRINT_NOTHING:
6472 /* Something bogus. */
6473 source_flag = SRC_LINE;
6474 do_frame_printing = 0;
6475 break;
6476 default:
6477 internal_error (__FILE__, __LINE__, _("Unknown value."));
6478 }
6479
6480 /* The behavior of this routine with respect to the source
6481 flag is:
6482 SRC_LINE: Print only source line
6483 LOCATION: Print only location
6484 SRC_AND_LOC: Print location and source line. */
6485 if (do_frame_printing)
6486 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6487
6488 /* Display the auto-display expressions. */
6489 do_displays ();
6490 }
6491
6492 /* Here to return control to GDB when the inferior stops for real.
6493 Print appropriate messages, remove breakpoints, give terminal our modes.
6494
6495 STOP_PRINT_FRAME nonzero means print the executing frame
6496 (pc, function, args, file, line number and line text).
6497 BREAKPOINTS_FAILED nonzero means stop was due to error
6498 attempting to insert breakpoints. */
6499
6500 void
6501 normal_stop (void)
6502 {
6503 struct target_waitstatus last;
6504 ptid_t last_ptid;
6505 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6506
6507 get_last_target_status (&last_ptid, &last);
6508
6509 /* If an exception is thrown from this point on, make sure to
6510 propagate GDB's knowledge of the executing state to the
6511 frontend/user running state. A QUIT is an easy exception to see
6512 here, so do this before any filtered output. */
6513 if (!non_stop)
6514 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6515 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6516 && last.kind != TARGET_WAITKIND_EXITED
6517 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6518 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6519
6520 /* As we're presenting a stop, and potentially removing breakpoints,
6521 update the thread list so we can tell whether there are threads
6522 running on the target. With target remote, for example, we can
6523 only learn about new threads when we explicitly update the thread
6524 list. Do this before notifying the interpreters about signal
6525 stops, end of stepping ranges, etc., so that the "new thread"
6526 output is emitted before e.g., "Program received signal FOO",
6527 instead of after. */
6528 update_thread_list ();
6529
6530 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6531 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6532
6533 /* As with the notification of thread events, we want to delay
6534 notifying the user that we've switched thread context until
6535 the inferior actually stops.
6536
6537 There's no point in saying anything if the inferior has exited.
6538 Note that SIGNALLED here means "exited with a signal", not
6539 "received a signal".
6540
6541 Also skip saying anything in non-stop mode. In that mode, as we
6542 don't want GDB to switch threads behind the user's back, to avoid
6543 races where the user is typing a command to apply to thread x,
6544 but GDB switches to thread y before the user finishes entering
6545 the command, fetch_inferior_event installs a cleanup to restore
6546 the current thread back to the thread the user had selected right
6547 after this event is handled, so we're not really switching, only
6548 informing of a stop. */
6549 if (!non_stop
6550 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6551 && target_has_execution
6552 && last.kind != TARGET_WAITKIND_SIGNALLED
6553 && last.kind != TARGET_WAITKIND_EXITED
6554 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6555 {
6556 target_terminal_ours_for_output ();
6557 printf_filtered (_("[Switching to %s]\n"),
6558 target_pid_to_str (inferior_ptid));
6559 annotate_thread_changed ();
6560 previous_inferior_ptid = inferior_ptid;
6561 }
6562
6563 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6564 {
6565 gdb_assert (sync_execution || !target_can_async_p ());
6566
6567 target_terminal_ours_for_output ();
6568 printf_filtered (_("No unwaited-for children left.\n"));
6569 }
6570
6571 /* Note: this depends on the update_thread_list call above. */
6572 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6573 {
6574 if (remove_breakpoints ())
6575 {
6576 target_terminal_ours_for_output ();
6577 printf_filtered (_("Cannot remove breakpoints because "
6578 "program is no longer writable.\nFurther "
6579 "execution is probably impossible.\n"));
6580 }
6581 }
6582
6583 /* If an auto-display called a function and that got a signal,
6584 delete that auto-display to avoid an infinite recursion. */
6585
6586 if (stopped_by_random_signal)
6587 disable_current_display ();
6588
6589 /* Notify observers if we finished a "step"-like command, etc. */
6590 if (target_has_execution
6591 && last.kind != TARGET_WAITKIND_SIGNALLED
6592 && last.kind != TARGET_WAITKIND_EXITED
6593 && inferior_thread ()->control.stop_step)
6594 {
6595 /* But not if in the middle of doing a "step n" operation for
6596 n > 1 */
6597 if (inferior_thread ()->step_multi)
6598 goto done;
6599
6600 observer_notify_end_stepping_range ();
6601 }
6602
6603 target_terminal_ours ();
6604 async_enable_stdin ();
6605
6606 /* Set the current source location. This will also happen if we
6607 display the frame below, but the current SAL will be incorrect
6608 during a user hook-stop function. */
6609 if (has_stack_frames () && !stop_stack_dummy)
6610 set_current_sal_from_frame (get_current_frame ());
6611
6612 /* Let the user/frontend see the threads as stopped, but do nothing
6613 if the thread was running an infcall. We may be e.g., evaluating
6614 a breakpoint condition. In that case, the thread had state
6615 THREAD_RUNNING before the infcall, and shall remain set to
6616 running, all without informing the user/frontend about state
6617 transition changes. If this is actually a call command, then the
6618 thread was originally already stopped, so there's no state to
6619 finish either. */
6620 if (target_has_execution && inferior_thread ()->control.in_infcall)
6621 discard_cleanups (old_chain);
6622 else
6623 do_cleanups (old_chain);
6624
6625 /* Look up the hook_stop and run it (CLI internally handles problem
6626 of stop_command's pre-hook not existing). */
6627 if (stop_command)
6628 catch_errors (hook_stop_stub, stop_command,
6629 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6630
6631 if (!has_stack_frames ())
6632 goto done;
6633
6634 if (last.kind == TARGET_WAITKIND_SIGNALLED
6635 || last.kind == TARGET_WAITKIND_EXITED)
6636 goto done;
6637
6638 /* Select innermost stack frame - i.e., current frame is frame 0,
6639 and current location is based on that.
6640 Don't do this on return from a stack dummy routine,
6641 or if the program has exited. */
6642
6643 if (!stop_stack_dummy)
6644 {
6645 select_frame (get_current_frame ());
6646
6647 /* If --batch-silent is enabled then there's no need to print the current
6648 source location, and to try risks causing an error message about
6649 missing source files. */
6650 if (stop_print_frame && !batch_silent)
6651 print_stop_event (&last);
6652 }
6653
6654 /* Save the function value return registers, if we care.
6655 We might be about to restore their previous contents. */
6656 if (inferior_thread ()->control.proceed_to_finish
6657 && execution_direction != EXEC_REVERSE)
6658 {
6659 /* This should not be necessary. */
6660 if (stop_registers)
6661 regcache_xfree (stop_registers);
6662
6663 /* NB: The copy goes through to the target picking up the value of
6664 all the registers. */
6665 stop_registers = regcache_dup (get_current_regcache ());
6666 }
6667
6668 if (stop_stack_dummy == STOP_STACK_DUMMY)
6669 {
6670 /* Pop the empty frame that contains the stack dummy.
6671 This also restores inferior state prior to the call
6672 (struct infcall_suspend_state). */
6673 struct frame_info *frame = get_current_frame ();
6674
6675 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6676 frame_pop (frame);
6677 /* frame_pop() calls reinit_frame_cache as the last thing it
6678 does which means there's currently no selected frame. We
6679 don't need to re-establish a selected frame if the dummy call
6680 returns normally, that will be done by
6681 restore_infcall_control_state. However, we do have to handle
6682 the case where the dummy call is returning after being
6683 stopped (e.g. the dummy call previously hit a breakpoint).
6684 We can't know which case we have so just always re-establish
6685 a selected frame here. */
6686 select_frame (get_current_frame ());
6687 }
6688
6689 done:
6690 annotate_stopped ();
6691
6692 /* Suppress the stop observer if we're in the middle of:
6693
6694 - a step n (n > 1), as there still more steps to be done.
6695
6696 - a "finish" command, as the observer will be called in
6697 finish_command_continuation, so it can include the inferior
6698 function's return value.
6699
6700 - calling an inferior function, as we pretend we inferior didn't
6701 run at all. The return value of the call is handled by the
6702 expression evaluator, through call_function_by_hand. */
6703
6704 if (!target_has_execution
6705 || last.kind == TARGET_WAITKIND_SIGNALLED
6706 || last.kind == TARGET_WAITKIND_EXITED
6707 || last.kind == TARGET_WAITKIND_NO_RESUMED
6708 || (!(inferior_thread ()->step_multi
6709 && inferior_thread ()->control.stop_step)
6710 && !(inferior_thread ()->control.stop_bpstat
6711 && inferior_thread ()->control.proceed_to_finish)
6712 && !inferior_thread ()->control.in_infcall))
6713 {
6714 if (!ptid_equal (inferior_ptid, null_ptid))
6715 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6716 stop_print_frame);
6717 else
6718 observer_notify_normal_stop (NULL, stop_print_frame);
6719 }
6720
6721 if (target_has_execution)
6722 {
6723 if (last.kind != TARGET_WAITKIND_SIGNALLED
6724 && last.kind != TARGET_WAITKIND_EXITED)
6725 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6726 Delete any breakpoint that is to be deleted at the next stop. */
6727 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6728 }
6729
6730 /* Try to get rid of automatically added inferiors that are no
6731 longer needed. Keeping those around slows down things linearly.
6732 Note that this never removes the current inferior. */
6733 prune_inferiors ();
6734 }
6735
6736 static int
6737 hook_stop_stub (void *cmd)
6738 {
6739 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6740 return (0);
6741 }
6742 \f
6743 int
6744 signal_stop_state (int signo)
6745 {
6746 return signal_stop[signo];
6747 }
6748
6749 int
6750 signal_print_state (int signo)
6751 {
6752 return signal_print[signo];
6753 }
6754
6755 int
6756 signal_pass_state (int signo)
6757 {
6758 return signal_program[signo];
6759 }
6760
6761 static void
6762 signal_cache_update (int signo)
6763 {
6764 if (signo == -1)
6765 {
6766 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6767 signal_cache_update (signo);
6768
6769 return;
6770 }
6771
6772 signal_pass[signo] = (signal_stop[signo] == 0
6773 && signal_print[signo] == 0
6774 && signal_program[signo] == 1
6775 && signal_catch[signo] == 0);
6776 }
6777
6778 int
6779 signal_stop_update (int signo, int state)
6780 {
6781 int ret = signal_stop[signo];
6782
6783 signal_stop[signo] = state;
6784 signal_cache_update (signo);
6785 return ret;
6786 }
6787
6788 int
6789 signal_print_update (int signo, int state)
6790 {
6791 int ret = signal_print[signo];
6792
6793 signal_print[signo] = state;
6794 signal_cache_update (signo);
6795 return ret;
6796 }
6797
6798 int
6799 signal_pass_update (int signo, int state)
6800 {
6801 int ret = signal_program[signo];
6802
6803 signal_program[signo] = state;
6804 signal_cache_update (signo);
6805 return ret;
6806 }
6807
6808 /* Update the global 'signal_catch' from INFO and notify the
6809 target. */
6810
6811 void
6812 signal_catch_update (const unsigned int *info)
6813 {
6814 int i;
6815
6816 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6817 signal_catch[i] = info[i] > 0;
6818 signal_cache_update (-1);
6819 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6820 }
6821
6822 static void
6823 sig_print_header (void)
6824 {
6825 printf_filtered (_("Signal Stop\tPrint\tPass "
6826 "to program\tDescription\n"));
6827 }
6828
6829 static void
6830 sig_print_info (enum gdb_signal oursig)
6831 {
6832 const char *name = gdb_signal_to_name (oursig);
6833 int name_padding = 13 - strlen (name);
6834
6835 if (name_padding <= 0)
6836 name_padding = 0;
6837
6838 printf_filtered ("%s", name);
6839 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6840 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6841 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6842 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6843 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6844 }
6845
6846 /* Specify how various signals in the inferior should be handled. */
6847
6848 static void
6849 handle_command (char *args, int from_tty)
6850 {
6851 char **argv;
6852 int digits, wordlen;
6853 int sigfirst, signum, siglast;
6854 enum gdb_signal oursig;
6855 int allsigs;
6856 int nsigs;
6857 unsigned char *sigs;
6858 struct cleanup *old_chain;
6859
6860 if (args == NULL)
6861 {
6862 error_no_arg (_("signal to handle"));
6863 }
6864
6865 /* Allocate and zero an array of flags for which signals to handle. */
6866
6867 nsigs = (int) GDB_SIGNAL_LAST;
6868 sigs = (unsigned char *) alloca (nsigs);
6869 memset (sigs, 0, nsigs);
6870
6871 /* Break the command line up into args. */
6872
6873 argv = gdb_buildargv (args);
6874 old_chain = make_cleanup_freeargv (argv);
6875
6876 /* Walk through the args, looking for signal oursigs, signal names, and
6877 actions. Signal numbers and signal names may be interspersed with
6878 actions, with the actions being performed for all signals cumulatively
6879 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6880
6881 while (*argv != NULL)
6882 {
6883 wordlen = strlen (*argv);
6884 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6885 {;
6886 }
6887 allsigs = 0;
6888 sigfirst = siglast = -1;
6889
6890 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6891 {
6892 /* Apply action to all signals except those used by the
6893 debugger. Silently skip those. */
6894 allsigs = 1;
6895 sigfirst = 0;
6896 siglast = nsigs - 1;
6897 }
6898 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6899 {
6900 SET_SIGS (nsigs, sigs, signal_stop);
6901 SET_SIGS (nsigs, sigs, signal_print);
6902 }
6903 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6904 {
6905 UNSET_SIGS (nsigs, sigs, signal_program);
6906 }
6907 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6908 {
6909 SET_SIGS (nsigs, sigs, signal_print);
6910 }
6911 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6912 {
6913 SET_SIGS (nsigs, sigs, signal_program);
6914 }
6915 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6916 {
6917 UNSET_SIGS (nsigs, sigs, signal_stop);
6918 }
6919 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6920 {
6921 SET_SIGS (nsigs, sigs, signal_program);
6922 }
6923 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6924 {
6925 UNSET_SIGS (nsigs, sigs, signal_print);
6926 UNSET_SIGS (nsigs, sigs, signal_stop);
6927 }
6928 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6929 {
6930 UNSET_SIGS (nsigs, sigs, signal_program);
6931 }
6932 else if (digits > 0)
6933 {
6934 /* It is numeric. The numeric signal refers to our own
6935 internal signal numbering from target.h, not to host/target
6936 signal number. This is a feature; users really should be
6937 using symbolic names anyway, and the common ones like
6938 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6939
6940 sigfirst = siglast = (int)
6941 gdb_signal_from_command (atoi (*argv));
6942 if ((*argv)[digits] == '-')
6943 {
6944 siglast = (int)
6945 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6946 }
6947 if (sigfirst > siglast)
6948 {
6949 /* Bet he didn't figure we'd think of this case... */
6950 signum = sigfirst;
6951 sigfirst = siglast;
6952 siglast = signum;
6953 }
6954 }
6955 else
6956 {
6957 oursig = gdb_signal_from_name (*argv);
6958 if (oursig != GDB_SIGNAL_UNKNOWN)
6959 {
6960 sigfirst = siglast = (int) oursig;
6961 }
6962 else
6963 {
6964 /* Not a number and not a recognized flag word => complain. */
6965 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6966 }
6967 }
6968
6969 /* If any signal numbers or symbol names were found, set flags for
6970 which signals to apply actions to. */
6971
6972 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6973 {
6974 switch ((enum gdb_signal) signum)
6975 {
6976 case GDB_SIGNAL_TRAP:
6977 case GDB_SIGNAL_INT:
6978 if (!allsigs && !sigs[signum])
6979 {
6980 if (query (_("%s is used by the debugger.\n\
6981 Are you sure you want to change it? "),
6982 gdb_signal_to_name ((enum gdb_signal) signum)))
6983 {
6984 sigs[signum] = 1;
6985 }
6986 else
6987 {
6988 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6989 gdb_flush (gdb_stdout);
6990 }
6991 }
6992 break;
6993 case GDB_SIGNAL_0:
6994 case GDB_SIGNAL_DEFAULT:
6995 case GDB_SIGNAL_UNKNOWN:
6996 /* Make sure that "all" doesn't print these. */
6997 break;
6998 default:
6999 sigs[signum] = 1;
7000 break;
7001 }
7002 }
7003
7004 argv++;
7005 }
7006
7007 for (signum = 0; signum < nsigs; signum++)
7008 if (sigs[signum])
7009 {
7010 signal_cache_update (-1);
7011 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7012 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
7013
7014 if (from_tty)
7015 {
7016 /* Show the results. */
7017 sig_print_header ();
7018 for (; signum < nsigs; signum++)
7019 if (sigs[signum])
7020 sig_print_info (signum);
7021 }
7022
7023 break;
7024 }
7025
7026 do_cleanups (old_chain);
7027 }
7028
7029 /* Complete the "handle" command. */
7030
7031 static VEC (char_ptr) *
7032 handle_completer (struct cmd_list_element *ignore,
7033 const char *text, const char *word)
7034 {
7035 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7036 static const char * const keywords[] =
7037 {
7038 "all",
7039 "stop",
7040 "ignore",
7041 "print",
7042 "pass",
7043 "nostop",
7044 "noignore",
7045 "noprint",
7046 "nopass",
7047 NULL,
7048 };
7049
7050 vec_signals = signal_completer (ignore, text, word);
7051 vec_keywords = complete_on_enum (keywords, word, word);
7052
7053 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7054 VEC_free (char_ptr, vec_signals);
7055 VEC_free (char_ptr, vec_keywords);
7056 return return_val;
7057 }
7058
7059 static void
7060 xdb_handle_command (char *args, int from_tty)
7061 {
7062 char **argv;
7063 struct cleanup *old_chain;
7064
7065 if (args == NULL)
7066 error_no_arg (_("xdb command"));
7067
7068 /* Break the command line up into args. */
7069
7070 argv = gdb_buildargv (args);
7071 old_chain = make_cleanup_freeargv (argv);
7072 if (argv[1] != (char *) NULL)
7073 {
7074 char *argBuf;
7075 int bufLen;
7076
7077 bufLen = strlen (argv[0]) + 20;
7078 argBuf = (char *) xmalloc (bufLen);
7079 if (argBuf)
7080 {
7081 int validFlag = 1;
7082 enum gdb_signal oursig;
7083
7084 oursig = gdb_signal_from_name (argv[0]);
7085 memset (argBuf, 0, bufLen);
7086 if (strcmp (argv[1], "Q") == 0)
7087 sprintf (argBuf, "%s %s", argv[0], "noprint");
7088 else
7089 {
7090 if (strcmp (argv[1], "s") == 0)
7091 {
7092 if (!signal_stop[oursig])
7093 sprintf (argBuf, "%s %s", argv[0], "stop");
7094 else
7095 sprintf (argBuf, "%s %s", argv[0], "nostop");
7096 }
7097 else if (strcmp (argv[1], "i") == 0)
7098 {
7099 if (!signal_program[oursig])
7100 sprintf (argBuf, "%s %s", argv[0], "pass");
7101 else
7102 sprintf (argBuf, "%s %s", argv[0], "nopass");
7103 }
7104 else if (strcmp (argv[1], "r") == 0)
7105 {
7106 if (!signal_print[oursig])
7107 sprintf (argBuf, "%s %s", argv[0], "print");
7108 else
7109 sprintf (argBuf, "%s %s", argv[0], "noprint");
7110 }
7111 else
7112 validFlag = 0;
7113 }
7114 if (validFlag)
7115 handle_command (argBuf, from_tty);
7116 else
7117 printf_filtered (_("Invalid signal handling flag.\n"));
7118 if (argBuf)
7119 xfree (argBuf);
7120 }
7121 }
7122 do_cleanups (old_chain);
7123 }
7124
7125 enum gdb_signal
7126 gdb_signal_from_command (int num)
7127 {
7128 if (num >= 1 && num <= 15)
7129 return (enum gdb_signal) num;
7130 error (_("Only signals 1-15 are valid as numeric signals.\n\
7131 Use \"info signals\" for a list of symbolic signals."));
7132 }
7133
7134 /* Print current contents of the tables set by the handle command.
7135 It is possible we should just be printing signals actually used
7136 by the current target (but for things to work right when switching
7137 targets, all signals should be in the signal tables). */
7138
7139 static void
7140 signals_info (char *signum_exp, int from_tty)
7141 {
7142 enum gdb_signal oursig;
7143
7144 sig_print_header ();
7145
7146 if (signum_exp)
7147 {
7148 /* First see if this is a symbol name. */
7149 oursig = gdb_signal_from_name (signum_exp);
7150 if (oursig == GDB_SIGNAL_UNKNOWN)
7151 {
7152 /* No, try numeric. */
7153 oursig =
7154 gdb_signal_from_command (parse_and_eval_long (signum_exp));
7155 }
7156 sig_print_info (oursig);
7157 return;
7158 }
7159
7160 printf_filtered ("\n");
7161 /* These ugly casts brought to you by the native VAX compiler. */
7162 for (oursig = GDB_SIGNAL_FIRST;
7163 (int) oursig < (int) GDB_SIGNAL_LAST;
7164 oursig = (enum gdb_signal) ((int) oursig + 1))
7165 {
7166 QUIT;
7167
7168 if (oursig != GDB_SIGNAL_UNKNOWN
7169 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7170 sig_print_info (oursig);
7171 }
7172
7173 printf_filtered (_("\nUse the \"handle\" command "
7174 "to change these tables.\n"));
7175 }
7176
7177 /* Check if it makes sense to read $_siginfo from the current thread
7178 at this point. If not, throw an error. */
7179
7180 static void
7181 validate_siginfo_access (void)
7182 {
7183 /* No current inferior, no siginfo. */
7184 if (ptid_equal (inferior_ptid, null_ptid))
7185 error (_("No thread selected."));
7186
7187 /* Don't try to read from a dead thread. */
7188 if (is_exited (inferior_ptid))
7189 error (_("The current thread has terminated"));
7190
7191 /* ... or from a spinning thread. */
7192 if (is_running (inferior_ptid))
7193 error (_("Selected thread is running."));
7194 }
7195
7196 /* The $_siginfo convenience variable is a bit special. We don't know
7197 for sure the type of the value until we actually have a chance to
7198 fetch the data. The type can change depending on gdbarch, so it is
7199 also dependent on which thread you have selected.
7200
7201 1. making $_siginfo be an internalvar that creates a new value on
7202 access.
7203
7204 2. making the value of $_siginfo be an lval_computed value. */
7205
7206 /* This function implements the lval_computed support for reading a
7207 $_siginfo value. */
7208
7209 static void
7210 siginfo_value_read (struct value *v)
7211 {
7212 LONGEST transferred;
7213
7214 validate_siginfo_access ();
7215
7216 transferred =
7217 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7218 NULL,
7219 value_contents_all_raw (v),
7220 value_offset (v),
7221 TYPE_LENGTH (value_type (v)));
7222
7223 if (transferred != TYPE_LENGTH (value_type (v)))
7224 error (_("Unable to read siginfo"));
7225 }
7226
7227 /* This function implements the lval_computed support for writing a
7228 $_siginfo value. */
7229
7230 static void
7231 siginfo_value_write (struct value *v, struct value *fromval)
7232 {
7233 LONGEST transferred;
7234
7235 validate_siginfo_access ();
7236
7237 transferred = target_write (&current_target,
7238 TARGET_OBJECT_SIGNAL_INFO,
7239 NULL,
7240 value_contents_all_raw (fromval),
7241 value_offset (v),
7242 TYPE_LENGTH (value_type (fromval)));
7243
7244 if (transferred != TYPE_LENGTH (value_type (fromval)))
7245 error (_("Unable to write siginfo"));
7246 }
7247
7248 static const struct lval_funcs siginfo_value_funcs =
7249 {
7250 siginfo_value_read,
7251 siginfo_value_write
7252 };
7253
7254 /* Return a new value with the correct type for the siginfo object of
7255 the current thread using architecture GDBARCH. Return a void value
7256 if there's no object available. */
7257
7258 static struct value *
7259 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7260 void *ignore)
7261 {
7262 if (target_has_stack
7263 && !ptid_equal (inferior_ptid, null_ptid)
7264 && gdbarch_get_siginfo_type_p (gdbarch))
7265 {
7266 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7267
7268 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7269 }
7270
7271 return allocate_value (builtin_type (gdbarch)->builtin_void);
7272 }
7273
7274 \f
7275 /* infcall_suspend_state contains state about the program itself like its
7276 registers and any signal it received when it last stopped.
7277 This state must be restored regardless of how the inferior function call
7278 ends (either successfully, or after it hits a breakpoint or signal)
7279 if the program is to properly continue where it left off. */
7280
7281 struct infcall_suspend_state
7282 {
7283 struct thread_suspend_state thread_suspend;
7284 #if 0 /* Currently unused and empty structures are not valid C. */
7285 struct inferior_suspend_state inferior_suspend;
7286 #endif
7287
7288 /* Other fields: */
7289 CORE_ADDR stop_pc;
7290 struct regcache *registers;
7291
7292 /* Format of SIGINFO_DATA or NULL if it is not present. */
7293 struct gdbarch *siginfo_gdbarch;
7294
7295 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7296 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7297 content would be invalid. */
7298 gdb_byte *siginfo_data;
7299 };
7300
7301 struct infcall_suspend_state *
7302 save_infcall_suspend_state (void)
7303 {
7304 struct infcall_suspend_state *inf_state;
7305 struct thread_info *tp = inferior_thread ();
7306 #if 0
7307 struct inferior *inf = current_inferior ();
7308 #endif
7309 struct regcache *regcache = get_current_regcache ();
7310 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7311 gdb_byte *siginfo_data = NULL;
7312
7313 if (gdbarch_get_siginfo_type_p (gdbarch))
7314 {
7315 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7316 size_t len = TYPE_LENGTH (type);
7317 struct cleanup *back_to;
7318
7319 siginfo_data = xmalloc (len);
7320 back_to = make_cleanup (xfree, siginfo_data);
7321
7322 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7323 siginfo_data, 0, len) == len)
7324 discard_cleanups (back_to);
7325 else
7326 {
7327 /* Errors ignored. */
7328 do_cleanups (back_to);
7329 siginfo_data = NULL;
7330 }
7331 }
7332
7333 inf_state = XCNEW (struct infcall_suspend_state);
7334
7335 if (siginfo_data)
7336 {
7337 inf_state->siginfo_gdbarch = gdbarch;
7338 inf_state->siginfo_data = siginfo_data;
7339 }
7340
7341 inf_state->thread_suspend = tp->suspend;
7342 #if 0 /* Currently unused and empty structures are not valid C. */
7343 inf_state->inferior_suspend = inf->suspend;
7344 #endif
7345
7346 /* run_inferior_call will not use the signal due to its `proceed' call with
7347 GDB_SIGNAL_0 anyway. */
7348 tp->suspend.stop_signal = GDB_SIGNAL_0;
7349
7350 inf_state->stop_pc = stop_pc;
7351
7352 inf_state->registers = regcache_dup (regcache);
7353
7354 return inf_state;
7355 }
7356
7357 /* Restore inferior session state to INF_STATE. */
7358
7359 void
7360 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7361 {
7362 struct thread_info *tp = inferior_thread ();
7363 #if 0
7364 struct inferior *inf = current_inferior ();
7365 #endif
7366 struct regcache *regcache = get_current_regcache ();
7367 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7368
7369 tp->suspend = inf_state->thread_suspend;
7370 #if 0 /* Currently unused and empty structures are not valid C. */
7371 inf->suspend = inf_state->inferior_suspend;
7372 #endif
7373
7374 stop_pc = inf_state->stop_pc;
7375
7376 if (inf_state->siginfo_gdbarch == gdbarch)
7377 {
7378 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7379
7380 /* Errors ignored. */
7381 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7382 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7383 }
7384
7385 /* The inferior can be gone if the user types "print exit(0)"
7386 (and perhaps other times). */
7387 if (target_has_execution)
7388 /* NB: The register write goes through to the target. */
7389 regcache_cpy (regcache, inf_state->registers);
7390
7391 discard_infcall_suspend_state (inf_state);
7392 }
7393
7394 static void
7395 do_restore_infcall_suspend_state_cleanup (void *state)
7396 {
7397 restore_infcall_suspend_state (state);
7398 }
7399
7400 struct cleanup *
7401 make_cleanup_restore_infcall_suspend_state
7402 (struct infcall_suspend_state *inf_state)
7403 {
7404 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7405 }
7406
7407 void
7408 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7409 {
7410 regcache_xfree (inf_state->registers);
7411 xfree (inf_state->siginfo_data);
7412 xfree (inf_state);
7413 }
7414
7415 struct regcache *
7416 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7417 {
7418 return inf_state->registers;
7419 }
7420
7421 /* infcall_control_state contains state regarding gdb's control of the
7422 inferior itself like stepping control. It also contains session state like
7423 the user's currently selected frame. */
7424
7425 struct infcall_control_state
7426 {
7427 struct thread_control_state thread_control;
7428 struct inferior_control_state inferior_control;
7429
7430 /* Other fields: */
7431 enum stop_stack_kind stop_stack_dummy;
7432 int stopped_by_random_signal;
7433 int stop_after_trap;
7434
7435 /* ID if the selected frame when the inferior function call was made. */
7436 struct frame_id selected_frame_id;
7437 };
7438
7439 /* Save all of the information associated with the inferior<==>gdb
7440 connection. */
7441
7442 struct infcall_control_state *
7443 save_infcall_control_state (void)
7444 {
7445 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7446 struct thread_info *tp = inferior_thread ();
7447 struct inferior *inf = current_inferior ();
7448
7449 inf_status->thread_control = tp->control;
7450 inf_status->inferior_control = inf->control;
7451
7452 tp->control.step_resume_breakpoint = NULL;
7453 tp->control.exception_resume_breakpoint = NULL;
7454
7455 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7456 chain. If caller's caller is walking the chain, they'll be happier if we
7457 hand them back the original chain when restore_infcall_control_state is
7458 called. */
7459 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7460
7461 /* Other fields: */
7462 inf_status->stop_stack_dummy = stop_stack_dummy;
7463 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7464 inf_status->stop_after_trap = stop_after_trap;
7465
7466 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7467
7468 return inf_status;
7469 }
7470
7471 static int
7472 restore_selected_frame (void *args)
7473 {
7474 struct frame_id *fid = (struct frame_id *) args;
7475 struct frame_info *frame;
7476
7477 frame = frame_find_by_id (*fid);
7478
7479 /* If inf_status->selected_frame_id is NULL, there was no previously
7480 selected frame. */
7481 if (frame == NULL)
7482 {
7483 warning (_("Unable to restore previously selected frame."));
7484 return 0;
7485 }
7486
7487 select_frame (frame);
7488
7489 return (1);
7490 }
7491
7492 /* Restore inferior session state to INF_STATUS. */
7493
7494 void
7495 restore_infcall_control_state (struct infcall_control_state *inf_status)
7496 {
7497 struct thread_info *tp = inferior_thread ();
7498 struct inferior *inf = current_inferior ();
7499
7500 if (tp->control.step_resume_breakpoint)
7501 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7502
7503 if (tp->control.exception_resume_breakpoint)
7504 tp->control.exception_resume_breakpoint->disposition
7505 = disp_del_at_next_stop;
7506
7507 /* Handle the bpstat_copy of the chain. */
7508 bpstat_clear (&tp->control.stop_bpstat);
7509
7510 tp->control = inf_status->thread_control;
7511 inf->control = inf_status->inferior_control;
7512
7513 /* Other fields: */
7514 stop_stack_dummy = inf_status->stop_stack_dummy;
7515 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7516 stop_after_trap = inf_status->stop_after_trap;
7517
7518 if (target_has_stack)
7519 {
7520 /* The point of catch_errors is that if the stack is clobbered,
7521 walking the stack might encounter a garbage pointer and
7522 error() trying to dereference it. */
7523 if (catch_errors
7524 (restore_selected_frame, &inf_status->selected_frame_id,
7525 "Unable to restore previously selected frame:\n",
7526 RETURN_MASK_ERROR) == 0)
7527 /* Error in restoring the selected frame. Select the innermost
7528 frame. */
7529 select_frame (get_current_frame ());
7530 }
7531
7532 xfree (inf_status);
7533 }
7534
7535 static void
7536 do_restore_infcall_control_state_cleanup (void *sts)
7537 {
7538 restore_infcall_control_state (sts);
7539 }
7540
7541 struct cleanup *
7542 make_cleanup_restore_infcall_control_state
7543 (struct infcall_control_state *inf_status)
7544 {
7545 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7546 }
7547
7548 void
7549 discard_infcall_control_state (struct infcall_control_state *inf_status)
7550 {
7551 if (inf_status->thread_control.step_resume_breakpoint)
7552 inf_status->thread_control.step_resume_breakpoint->disposition
7553 = disp_del_at_next_stop;
7554
7555 if (inf_status->thread_control.exception_resume_breakpoint)
7556 inf_status->thread_control.exception_resume_breakpoint->disposition
7557 = disp_del_at_next_stop;
7558
7559 /* See save_infcall_control_state for info on stop_bpstat. */
7560 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7561
7562 xfree (inf_status);
7563 }
7564 \f
7565 /* restore_inferior_ptid() will be used by the cleanup machinery
7566 to restore the inferior_ptid value saved in a call to
7567 save_inferior_ptid(). */
7568
7569 static void
7570 restore_inferior_ptid (void *arg)
7571 {
7572 ptid_t *saved_ptid_ptr = arg;
7573
7574 inferior_ptid = *saved_ptid_ptr;
7575 xfree (arg);
7576 }
7577
7578 /* Save the value of inferior_ptid so that it may be restored by a
7579 later call to do_cleanups(). Returns the struct cleanup pointer
7580 needed for later doing the cleanup. */
7581
7582 struct cleanup *
7583 save_inferior_ptid (void)
7584 {
7585 ptid_t *saved_ptid_ptr;
7586
7587 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7588 *saved_ptid_ptr = inferior_ptid;
7589 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7590 }
7591
7592 /* See infrun.h. */
7593
7594 void
7595 clear_exit_convenience_vars (void)
7596 {
7597 clear_internalvar (lookup_internalvar ("_exitsignal"));
7598 clear_internalvar (lookup_internalvar ("_exitcode"));
7599 }
7600 \f
7601
7602 /* User interface for reverse debugging:
7603 Set exec-direction / show exec-direction commands
7604 (returns error unless target implements to_set_exec_direction method). */
7605
7606 int execution_direction = EXEC_FORWARD;
7607 static const char exec_forward[] = "forward";
7608 static const char exec_reverse[] = "reverse";
7609 static const char *exec_direction = exec_forward;
7610 static const char *const exec_direction_names[] = {
7611 exec_forward,
7612 exec_reverse,
7613 NULL
7614 };
7615
7616 static void
7617 set_exec_direction_func (char *args, int from_tty,
7618 struct cmd_list_element *cmd)
7619 {
7620 if (target_can_execute_reverse)
7621 {
7622 if (!strcmp (exec_direction, exec_forward))
7623 execution_direction = EXEC_FORWARD;
7624 else if (!strcmp (exec_direction, exec_reverse))
7625 execution_direction = EXEC_REVERSE;
7626 }
7627 else
7628 {
7629 exec_direction = exec_forward;
7630 error (_("Target does not support this operation."));
7631 }
7632 }
7633
7634 static void
7635 show_exec_direction_func (struct ui_file *out, int from_tty,
7636 struct cmd_list_element *cmd, const char *value)
7637 {
7638 switch (execution_direction) {
7639 case EXEC_FORWARD:
7640 fprintf_filtered (out, _("Forward.\n"));
7641 break;
7642 case EXEC_REVERSE:
7643 fprintf_filtered (out, _("Reverse.\n"));
7644 break;
7645 default:
7646 internal_error (__FILE__, __LINE__,
7647 _("bogus execution_direction value: %d"),
7648 (int) execution_direction);
7649 }
7650 }
7651
7652 static void
7653 show_schedule_multiple (struct ui_file *file, int from_tty,
7654 struct cmd_list_element *c, const char *value)
7655 {
7656 fprintf_filtered (file, _("Resuming the execution of threads "
7657 "of all processes is %s.\n"), value);
7658 }
7659
7660 /* Implementation of `siginfo' variable. */
7661
7662 static const struct internalvar_funcs siginfo_funcs =
7663 {
7664 siginfo_make_value,
7665 NULL,
7666 NULL
7667 };
7668
7669 void
7670 _initialize_infrun (void)
7671 {
7672 int i;
7673 int numsigs;
7674 struct cmd_list_element *c;
7675
7676 add_info ("signals", signals_info, _("\
7677 What debugger does when program gets various signals.\n\
7678 Specify a signal as argument to print info on that signal only."));
7679 add_info_alias ("handle", "signals", 0);
7680
7681 c = add_com ("handle", class_run, handle_command, _("\
7682 Specify how to handle signals.\n\
7683 Usage: handle SIGNAL [ACTIONS]\n\
7684 Args are signals and actions to apply to those signals.\n\
7685 If no actions are specified, the current settings for the specified signals\n\
7686 will be displayed instead.\n\
7687 \n\
7688 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7689 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7690 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7691 The special arg \"all\" is recognized to mean all signals except those\n\
7692 used by the debugger, typically SIGTRAP and SIGINT.\n\
7693 \n\
7694 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7695 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7696 Stop means reenter debugger if this signal happens (implies print).\n\
7697 Print means print a message if this signal happens.\n\
7698 Pass means let program see this signal; otherwise program doesn't know.\n\
7699 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7700 Pass and Stop may be combined.\n\
7701 \n\
7702 Multiple signals may be specified. Signal numbers and signal names\n\
7703 may be interspersed with actions, with the actions being performed for\n\
7704 all signals cumulatively specified."));
7705 set_cmd_completer (c, handle_completer);
7706
7707 if (xdb_commands)
7708 {
7709 add_com ("lz", class_info, signals_info, _("\
7710 What debugger does when program gets various signals.\n\
7711 Specify a signal as argument to print info on that signal only."));
7712 add_com ("z", class_run, xdb_handle_command, _("\
7713 Specify how to handle a signal.\n\
7714 Args are signals and actions to apply to those signals.\n\
7715 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7716 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7717 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7718 The special arg \"all\" is recognized to mean all signals except those\n\
7719 used by the debugger, typically SIGTRAP and SIGINT.\n\
7720 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7721 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7722 nopass), \"Q\" (noprint)\n\
7723 Stop means reenter debugger if this signal happens (implies print).\n\
7724 Print means print a message if this signal happens.\n\
7725 Pass means let program see this signal; otherwise program doesn't know.\n\
7726 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7727 Pass and Stop may be combined."));
7728 }
7729
7730 if (!dbx_commands)
7731 stop_command = add_cmd ("stop", class_obscure,
7732 not_just_help_class_command, _("\
7733 There is no `stop' command, but you can set a hook on `stop'.\n\
7734 This allows you to set a list of commands to be run each time execution\n\
7735 of the program stops."), &cmdlist);
7736
7737 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7738 Set inferior debugging."), _("\
7739 Show inferior debugging."), _("\
7740 When non-zero, inferior specific debugging is enabled."),
7741 NULL,
7742 show_debug_infrun,
7743 &setdebuglist, &showdebuglist);
7744
7745 add_setshow_boolean_cmd ("displaced", class_maintenance,
7746 &debug_displaced, _("\
7747 Set displaced stepping debugging."), _("\
7748 Show displaced stepping debugging."), _("\
7749 When non-zero, displaced stepping specific debugging is enabled."),
7750 NULL,
7751 show_debug_displaced,
7752 &setdebuglist, &showdebuglist);
7753
7754 add_setshow_boolean_cmd ("non-stop", no_class,
7755 &non_stop_1, _("\
7756 Set whether gdb controls the inferior in non-stop mode."), _("\
7757 Show whether gdb controls the inferior in non-stop mode."), _("\
7758 When debugging a multi-threaded program and this setting is\n\
7759 off (the default, also called all-stop mode), when one thread stops\n\
7760 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7761 all other threads in the program while you interact with the thread of\n\
7762 interest. When you continue or step a thread, you can allow the other\n\
7763 threads to run, or have them remain stopped, but while you inspect any\n\
7764 thread's state, all threads stop.\n\
7765 \n\
7766 In non-stop mode, when one thread stops, other threads can continue\n\
7767 to run freely. You'll be able to step each thread independently,\n\
7768 leave it stopped or free to run as needed."),
7769 set_non_stop,
7770 show_non_stop,
7771 &setlist,
7772 &showlist);
7773
7774 numsigs = (int) GDB_SIGNAL_LAST;
7775 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7776 signal_print = (unsigned char *)
7777 xmalloc (sizeof (signal_print[0]) * numsigs);
7778 signal_program = (unsigned char *)
7779 xmalloc (sizeof (signal_program[0]) * numsigs);
7780 signal_catch = (unsigned char *)
7781 xmalloc (sizeof (signal_catch[0]) * numsigs);
7782 signal_pass = (unsigned char *)
7783 xmalloc (sizeof (signal_pass[0]) * numsigs);
7784 for (i = 0; i < numsigs; i++)
7785 {
7786 signal_stop[i] = 1;
7787 signal_print[i] = 1;
7788 signal_program[i] = 1;
7789 signal_catch[i] = 0;
7790 }
7791
7792 /* Signals caused by debugger's own actions
7793 should not be given to the program afterwards. */
7794 signal_program[GDB_SIGNAL_TRAP] = 0;
7795 signal_program[GDB_SIGNAL_INT] = 0;
7796
7797 /* Signals that are not errors should not normally enter the debugger. */
7798 signal_stop[GDB_SIGNAL_ALRM] = 0;
7799 signal_print[GDB_SIGNAL_ALRM] = 0;
7800 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7801 signal_print[GDB_SIGNAL_VTALRM] = 0;
7802 signal_stop[GDB_SIGNAL_PROF] = 0;
7803 signal_print[GDB_SIGNAL_PROF] = 0;
7804 signal_stop[GDB_SIGNAL_CHLD] = 0;
7805 signal_print[GDB_SIGNAL_CHLD] = 0;
7806 signal_stop[GDB_SIGNAL_IO] = 0;
7807 signal_print[GDB_SIGNAL_IO] = 0;
7808 signal_stop[GDB_SIGNAL_POLL] = 0;
7809 signal_print[GDB_SIGNAL_POLL] = 0;
7810 signal_stop[GDB_SIGNAL_URG] = 0;
7811 signal_print[GDB_SIGNAL_URG] = 0;
7812 signal_stop[GDB_SIGNAL_WINCH] = 0;
7813 signal_print[GDB_SIGNAL_WINCH] = 0;
7814 signal_stop[GDB_SIGNAL_PRIO] = 0;
7815 signal_print[GDB_SIGNAL_PRIO] = 0;
7816
7817 /* These signals are used internally by user-level thread
7818 implementations. (See signal(5) on Solaris.) Like the above
7819 signals, a healthy program receives and handles them as part of
7820 its normal operation. */
7821 signal_stop[GDB_SIGNAL_LWP] = 0;
7822 signal_print[GDB_SIGNAL_LWP] = 0;
7823 signal_stop[GDB_SIGNAL_WAITING] = 0;
7824 signal_print[GDB_SIGNAL_WAITING] = 0;
7825 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7826 signal_print[GDB_SIGNAL_CANCEL] = 0;
7827
7828 /* Update cached state. */
7829 signal_cache_update (-1);
7830
7831 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7832 &stop_on_solib_events, _("\
7833 Set stopping for shared library events."), _("\
7834 Show stopping for shared library events."), _("\
7835 If nonzero, gdb will give control to the user when the dynamic linker\n\
7836 notifies gdb of shared library events. The most common event of interest\n\
7837 to the user would be loading/unloading of a new library."),
7838 set_stop_on_solib_events,
7839 show_stop_on_solib_events,
7840 &setlist, &showlist);
7841
7842 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7843 follow_fork_mode_kind_names,
7844 &follow_fork_mode_string, _("\
7845 Set debugger response to a program call of fork or vfork."), _("\
7846 Show debugger response to a program call of fork or vfork."), _("\
7847 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7848 parent - the original process is debugged after a fork\n\
7849 child - the new process is debugged after a fork\n\
7850 The unfollowed process will continue to run.\n\
7851 By default, the debugger will follow the parent process."),
7852 NULL,
7853 show_follow_fork_mode_string,
7854 &setlist, &showlist);
7855
7856 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7857 follow_exec_mode_names,
7858 &follow_exec_mode_string, _("\
7859 Set debugger response to a program call of exec."), _("\
7860 Show debugger response to a program call of exec."), _("\
7861 An exec call replaces the program image of a process.\n\
7862 \n\
7863 follow-exec-mode can be:\n\
7864 \n\
7865 new - the debugger creates a new inferior and rebinds the process\n\
7866 to this new inferior. The program the process was running before\n\
7867 the exec call can be restarted afterwards by restarting the original\n\
7868 inferior.\n\
7869 \n\
7870 same - the debugger keeps the process bound to the same inferior.\n\
7871 The new executable image replaces the previous executable loaded in\n\
7872 the inferior. Restarting the inferior after the exec call restarts\n\
7873 the executable the process was running after the exec call.\n\
7874 \n\
7875 By default, the debugger will use the same inferior."),
7876 NULL,
7877 show_follow_exec_mode_string,
7878 &setlist, &showlist);
7879
7880 add_setshow_enum_cmd ("scheduler-locking", class_run,
7881 scheduler_enums, &scheduler_mode, _("\
7882 Set mode for locking scheduler during execution."), _("\
7883 Show mode for locking scheduler during execution."), _("\
7884 off == no locking (threads may preempt at any time)\n\
7885 on == full locking (no thread except the current thread may run)\n\
7886 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7887 In this mode, other threads may run during other commands."),
7888 set_schedlock_func, /* traps on target vector */
7889 show_scheduler_mode,
7890 &setlist, &showlist);
7891
7892 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7893 Set mode for resuming threads of all processes."), _("\
7894 Show mode for resuming threads of all processes."), _("\
7895 When on, execution commands (such as 'continue' or 'next') resume all\n\
7896 threads of all processes. When off (which is the default), execution\n\
7897 commands only resume the threads of the current process. The set of\n\
7898 threads that are resumed is further refined by the scheduler-locking\n\
7899 mode (see help set scheduler-locking)."),
7900 NULL,
7901 show_schedule_multiple,
7902 &setlist, &showlist);
7903
7904 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7905 Set mode of the step operation."), _("\
7906 Show mode of the step operation."), _("\
7907 When set, doing a step over a function without debug line information\n\
7908 will stop at the first instruction of that function. Otherwise, the\n\
7909 function is skipped and the step command stops at a different source line."),
7910 NULL,
7911 show_step_stop_if_no_debug,
7912 &setlist, &showlist);
7913
7914 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7915 &can_use_displaced_stepping, _("\
7916 Set debugger's willingness to use displaced stepping."), _("\
7917 Show debugger's willingness to use displaced stepping."), _("\
7918 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7919 supported by the target architecture. If off, gdb will not use displaced\n\
7920 stepping to step over breakpoints, even if such is supported by the target\n\
7921 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7922 if the target architecture supports it and non-stop mode is active, but will not\n\
7923 use it in all-stop mode (see help set non-stop)."),
7924 NULL,
7925 show_can_use_displaced_stepping,
7926 &setlist, &showlist);
7927
7928 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7929 &exec_direction, _("Set direction of execution.\n\
7930 Options are 'forward' or 'reverse'."),
7931 _("Show direction of execution (forward/reverse)."),
7932 _("Tells gdb whether to execute forward or backward."),
7933 set_exec_direction_func, show_exec_direction_func,
7934 &setlist, &showlist);
7935
7936 /* Set/show detach-on-fork: user-settable mode. */
7937
7938 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7939 Set whether gdb will detach the child of a fork."), _("\
7940 Show whether gdb will detach the child of a fork."), _("\
7941 Tells gdb whether to detach the child of a fork."),
7942 NULL, NULL, &setlist, &showlist);
7943
7944 /* Set/show disable address space randomization mode. */
7945
7946 add_setshow_boolean_cmd ("disable-randomization", class_support,
7947 &disable_randomization, _("\
7948 Set disabling of debuggee's virtual address space randomization."), _("\
7949 Show disabling of debuggee's virtual address space randomization."), _("\
7950 When this mode is on (which is the default), randomization of the virtual\n\
7951 address space is disabled. Standalone programs run with the randomization\n\
7952 enabled by default on some platforms."),
7953 &set_disable_randomization,
7954 &show_disable_randomization,
7955 &setlist, &showlist);
7956
7957 /* ptid initializations */
7958 inferior_ptid = null_ptid;
7959 target_last_wait_ptid = minus_one_ptid;
7960
7961 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7962 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7963 observer_attach_thread_exit (infrun_thread_thread_exit);
7964 observer_attach_inferior_exit (infrun_inferior_exit);
7965
7966 /* Explicitly create without lookup, since that tries to create a
7967 value with a void typed value, and when we get here, gdbarch
7968 isn't initialized yet. At this point, we're quite sure there
7969 isn't another convenience variable of the same name. */
7970 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7971
7972 add_setshow_boolean_cmd ("observer", no_class,
7973 &observer_mode_1, _("\
7974 Set whether gdb controls the inferior in observer mode."), _("\
7975 Show whether gdb controls the inferior in observer mode."), _("\
7976 In observer mode, GDB can get data from the inferior, but not\n\
7977 affect its execution. Registers and memory may not be changed,\n\
7978 breakpoints may not be set, and the program cannot be interrupted\n\
7979 or signalled."),
7980 set_observer_mode,
7981 show_observer_mode,
7982 &setlist,
7983 &showlist);
7984 }
This page took 0.181127 seconds and 5 git commands to generate.