gdb: introduce displaced_debug_printf
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static bool currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
109 {
110 va_list ap;
111 va_start (ap, fmt);
112 debug_prefixed_vprintf ("infrun", func_name, fmt, ap);
113 va_end (ap);
114 }
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 infrun_debug_printf ("enable=%d", enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 bool step_stop_if_no_debug = false;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* proceed and normal_stop use this to notify the user when the
154 inferior stopped in a different thread than it had been running
155 in. */
156
157 static ptid_t previous_inferior_ptid;
158
159 /* If set (default for legacy reasons), when following a fork, GDB
160 will detach from one of the fork branches, child or parent.
161 Exactly which branch is detached depends on 'set follow-fork-mode'
162 setting. */
163
164 static bool detach_fork = true;
165
166 bool debug_displaced = false;
167 static void
168 show_debug_displaced (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
172 }
173
174 unsigned int debug_infrun = 0;
175 static void
176 show_debug_infrun (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
180 }
181
182 /* See infrun.h. */
183
184 void
185 displaced_debug_printf_1 (const char *func_name, const char *fmt, ...)
186 {
187 va_list ap;
188 va_start (ap, fmt);
189 debug_prefixed_vprintf ("displaced", func_name, fmt, ap);
190 va_end (ap);
191 }
192
193 /* Support for disabling address space randomization. */
194
195 bool disable_randomization = true;
196
197 static void
198 show_disable_randomization (struct ui_file *file, int from_tty,
199 struct cmd_list_element *c, const char *value)
200 {
201 if (target_supports_disable_randomization ())
202 fprintf_filtered (file,
203 _("Disabling randomization of debuggee's "
204 "virtual address space is %s.\n"),
205 value);
206 else
207 fputs_filtered (_("Disabling randomization of debuggee's "
208 "virtual address space is unsupported on\n"
209 "this platform.\n"), file);
210 }
211
212 static void
213 set_disable_randomization (const char *args, int from_tty,
214 struct cmd_list_element *c)
215 {
216 if (!target_supports_disable_randomization ())
217 error (_("Disabling randomization of debuggee's "
218 "virtual address space is unsupported on\n"
219 "this platform."));
220 }
221
222 /* User interface for non-stop mode. */
223
224 bool non_stop = false;
225 static bool non_stop_1 = false;
226
227 static void
228 set_non_stop (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 non_stop_1 = non_stop;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 non_stop = non_stop_1;
238 }
239
240 static void
241 show_non_stop (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file,
245 _("Controlling the inferior in non-stop mode is %s.\n"),
246 value);
247 }
248
249 /* "Observer mode" is somewhat like a more extreme version of
250 non-stop, in which all GDB operations that might affect the
251 target's execution have been disabled. */
252
253 bool observer_mode = false;
254 static bool observer_mode_1 = false;
255
256 static void
257 set_observer_mode (const char *args, int from_tty,
258 struct cmd_list_element *c)
259 {
260 if (target_has_execution ())
261 {
262 observer_mode_1 = observer_mode;
263 error (_("Cannot change this setting while the inferior is running."));
264 }
265
266 observer_mode = observer_mode_1;
267
268 may_write_registers = !observer_mode;
269 may_write_memory = !observer_mode;
270 may_insert_breakpoints = !observer_mode;
271 may_insert_tracepoints = !observer_mode;
272 /* We can insert fast tracepoints in or out of observer mode,
273 but enable them if we're going into this mode. */
274 if (observer_mode)
275 may_insert_fast_tracepoints = true;
276 may_stop = !observer_mode;
277 update_target_permissions ();
278
279 /* Going *into* observer mode we must force non-stop, then
280 going out we leave it that way. */
281 if (observer_mode)
282 {
283 pagination_enabled = 0;
284 non_stop = non_stop_1 = true;
285 }
286
287 if (from_tty)
288 printf_filtered (_("Observer mode is now %s.\n"),
289 (observer_mode ? "on" : "off"));
290 }
291
292 static void
293 show_observer_mode (struct ui_file *file, int from_tty,
294 struct cmd_list_element *c, const char *value)
295 {
296 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
297 }
298
299 /* This updates the value of observer mode based on changes in
300 permissions. Note that we are deliberately ignoring the values of
301 may-write-registers and may-write-memory, since the user may have
302 reason to enable these during a session, for instance to turn on a
303 debugging-related global. */
304
305 void
306 update_observer_mode (void)
307 {
308 bool newval = (!may_insert_breakpoints
309 && !may_insert_tracepoints
310 && may_insert_fast_tracepoints
311 && !may_stop
312 && non_stop);
313
314 /* Let the user know if things change. */
315 if (newval != observer_mode)
316 printf_filtered (_("Observer mode is now %s.\n"),
317 (newval ? "on" : "off"));
318
319 observer_mode = observer_mode_1 = newval;
320 }
321
322 /* Tables of how to react to signals; the user sets them. */
323
324 static unsigned char signal_stop[GDB_SIGNAL_LAST];
325 static unsigned char signal_print[GDB_SIGNAL_LAST];
326 static unsigned char signal_program[GDB_SIGNAL_LAST];
327
328 /* Table of signals that are registered with "catch signal". A
329 non-zero entry indicates that the signal is caught by some "catch
330 signal" command. */
331 static unsigned char signal_catch[GDB_SIGNAL_LAST];
332
333 /* Table of signals that the target may silently handle.
334 This is automatically determined from the flags above,
335 and simply cached here. */
336 static unsigned char signal_pass[GDB_SIGNAL_LAST];
337
338 #define SET_SIGS(nsigs,sigs,flags) \
339 do { \
340 int signum = (nsigs); \
341 while (signum-- > 0) \
342 if ((sigs)[signum]) \
343 (flags)[signum] = 1; \
344 } while (0)
345
346 #define UNSET_SIGS(nsigs,sigs,flags) \
347 do { \
348 int signum = (nsigs); \
349 while (signum-- > 0) \
350 if ((sigs)[signum]) \
351 (flags)[signum] = 0; \
352 } while (0)
353
354 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
355 this function is to avoid exporting `signal_program'. */
356
357 void
358 update_signals_program_target (void)
359 {
360 target_program_signals (signal_program);
361 }
362
363 /* Value to pass to target_resume() to cause all threads to resume. */
364
365 #define RESUME_ALL minus_one_ptid
366
367 /* Command list pointer for the "stop" placeholder. */
368
369 static struct cmd_list_element *stop_command;
370
371 /* Nonzero if we want to give control to the user when we're notified
372 of shared library events by the dynamic linker. */
373 int stop_on_solib_events;
374
375 /* Enable or disable optional shared library event breakpoints
376 as appropriate when the above flag is changed. */
377
378 static void
379 set_stop_on_solib_events (const char *args,
380 int from_tty, struct cmd_list_element *c)
381 {
382 update_solib_breakpoints ();
383 }
384
385 static void
386 show_stop_on_solib_events (struct ui_file *file, int from_tty,
387 struct cmd_list_element *c, const char *value)
388 {
389 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
390 value);
391 }
392
393 /* True after stop if current stack frame should be printed. */
394
395 static bool stop_print_frame;
396
397 /* This is a cached copy of the target/ptid/waitstatus of the last
398 event returned by target_wait()/deprecated_target_wait_hook().
399 This information is returned by get_last_target_status(). */
400 static process_stratum_target *target_last_proc_target;
401 static ptid_t target_last_wait_ptid;
402 static struct target_waitstatus target_last_waitstatus;
403
404 void init_thread_stepping_state (struct thread_info *tss);
405
406 static const char follow_fork_mode_child[] = "child";
407 static const char follow_fork_mode_parent[] = "parent";
408
409 static const char *const follow_fork_mode_kind_names[] = {
410 follow_fork_mode_child,
411 follow_fork_mode_parent,
412 NULL
413 };
414
415 static const char *follow_fork_mode_string = follow_fork_mode_parent;
416 static void
417 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
418 struct cmd_list_element *c, const char *value)
419 {
420 fprintf_filtered (file,
421 _("Debugger response to a program "
422 "call of fork or vfork is \"%s\".\n"),
423 value);
424 }
425 \f
426
427 /* Handle changes to the inferior list based on the type of fork,
428 which process is being followed, and whether the other process
429 should be detached. On entry inferior_ptid must be the ptid of
430 the fork parent. At return inferior_ptid is the ptid of the
431 followed inferior. */
432
433 static bool
434 follow_fork_inferior (bool follow_child, bool detach_fork)
435 {
436 int has_vforked;
437 ptid_t parent_ptid, child_ptid;
438
439 has_vforked = (inferior_thread ()->pending_follow.kind
440 == TARGET_WAITKIND_VFORKED);
441 parent_ptid = inferior_ptid;
442 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
443
444 if (has_vforked
445 && !non_stop /* Non-stop always resumes both branches. */
446 && current_ui->prompt_state == PROMPT_BLOCKED
447 && !(follow_child || detach_fork || sched_multi))
448 {
449 /* The parent stays blocked inside the vfork syscall until the
450 child execs or exits. If we don't let the child run, then
451 the parent stays blocked. If we're telling the parent to run
452 in the foreground, the user will not be able to ctrl-c to get
453 back the terminal, effectively hanging the debug session. */
454 fprintf_filtered (gdb_stderr, _("\
455 Can not resume the parent process over vfork in the foreground while\n\
456 holding the child stopped. Try \"set detach-on-fork\" or \
457 \"set schedule-multiple\".\n"));
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 /* Before detaching from the child, remove all breakpoints
467 from it. If we forked, then this has already been taken
468 care of by infrun.c. If we vforked however, any
469 breakpoint inserted in the parent is visible in the
470 child, even those added while stopped in a vfork
471 catchpoint. This will remove the breakpoints from the
472 parent also, but they'll be reinserted below. */
473 if (has_vforked)
474 {
475 /* Keep breakpoints list in sync. */
476 remove_breakpoints_inf (current_inferior ());
477 }
478
479 if (print_inferior_events)
480 {
481 /* Ensure that we have a process ptid. */
482 ptid_t process_ptid = ptid_t (child_ptid.pid ());
483
484 target_terminal::ours_for_output ();
485 fprintf_filtered (gdb_stdlog,
486 _("[Detaching after %s from child %s]\n"),
487 has_vforked ? "vfork" : "fork",
488 target_pid_to_str (process_ptid).c_str ());
489 }
490 }
491 else
492 {
493 struct inferior *parent_inf, *child_inf;
494
495 /* Add process to GDB's tables. */
496 child_inf = add_inferior (child_ptid.pid ());
497
498 parent_inf = current_inferior ();
499 child_inf->attach_flag = parent_inf->attach_flag;
500 copy_terminal_info (child_inf, parent_inf);
501 child_inf->gdbarch = parent_inf->gdbarch;
502 copy_inferior_target_desc_info (child_inf, parent_inf);
503
504 scoped_restore_current_pspace_and_thread restore_pspace_thread;
505
506 set_current_inferior (child_inf);
507 switch_to_no_thread ();
508 child_inf->symfile_flags = SYMFILE_NO_READ;
509 push_target (parent_inf->process_target ());
510 thread_info *child_thr
511 = add_thread_silent (child_inf->process_target (), child_ptid);
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 exec_on_vfork ();
521
522 /* The parent will be frozen until the child is done
523 with the shared region. Keep track of the
524 parent. */
525 child_inf->vfork_parent = parent_inf;
526 child_inf->pending_detach = 0;
527 parent_inf->vfork_child = child_inf;
528 parent_inf->pending_detach = 0;
529
530 /* Now that the inferiors and program spaces are all
531 wired up, we can switch to the child thread (which
532 switches inferior and program space too). */
533 switch_to_thread (child_thr);
534 }
535 else
536 {
537 child_inf->aspace = new_address_space ();
538 child_inf->pspace = new program_space (child_inf->aspace);
539 child_inf->removable = 1;
540 set_current_program_space (child_inf->pspace);
541 clone_program_space (child_inf->pspace, parent_inf->pspace);
542
543 /* solib_create_inferior_hook relies on the current
544 thread. */
545 switch_to_thread (child_thr);
546
547 /* Let the shared library layer (e.g., solib-svr4) learn
548 about this new process, relocate the cloned exec, pull
549 in shared libraries, and install the solib event
550 breakpoint. If a "cloned-VM" event was propagated
551 better throughout the core, this wouldn't be
552 required. */
553 solib_create_inferior_hook (0);
554 }
555 }
556
557 if (has_vforked)
558 {
559 struct inferior *parent_inf;
560
561 parent_inf = current_inferior ();
562
563 /* If we detached from the child, then we have to be careful
564 to not insert breakpoints in the parent until the child
565 is done with the shared memory region. However, if we're
566 staying attached to the child, then we can and should
567 insert breakpoints, so that we can debug it. A
568 subsequent child exec or exit is enough to know when does
569 the child stops using the parent's address space. */
570 parent_inf->waiting_for_vfork_done = detach_fork;
571 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
572 }
573 }
574 else
575 {
576 /* Follow the child. */
577 struct inferior *parent_inf, *child_inf;
578 struct program_space *parent_pspace;
579
580 if (print_inferior_events)
581 {
582 std::string parent_pid = target_pid_to_str (parent_ptid);
583 std::string child_pid = target_pid_to_str (child_ptid);
584
585 target_terminal::ours_for_output ();
586 fprintf_filtered (gdb_stdlog,
587 _("[Attaching after %s %s to child %s]\n"),
588 parent_pid.c_str (),
589 has_vforked ? "vfork" : "fork",
590 child_pid.c_str ());
591 }
592
593 /* Add the new inferior first, so that the target_detach below
594 doesn't unpush the target. */
595
596 child_inf = add_inferior (child_ptid.pid ());
597
598 parent_inf = current_inferior ();
599 child_inf->attach_flag = parent_inf->attach_flag;
600 copy_terminal_info (child_inf, parent_inf);
601 child_inf->gdbarch = parent_inf->gdbarch;
602 copy_inferior_target_desc_info (child_inf, parent_inf);
603
604 parent_pspace = parent_inf->pspace;
605
606 process_stratum_target *target = parent_inf->process_target ();
607
608 {
609 /* Hold a strong reference to the target while (maybe)
610 detaching the parent. Otherwise detaching could close the
611 target. */
612 auto target_ref = target_ops_ref::new_reference (target);
613
614 /* If we're vforking, we want to hold on to the parent until
615 the child exits or execs. At child exec or exit time we
616 can remove the old breakpoints from the parent and detach
617 or resume debugging it. Otherwise, detach the parent now;
618 we'll want to reuse it's program/address spaces, but we
619 can't set them to the child before removing breakpoints
620 from the parent, otherwise, the breakpoints module could
621 decide to remove breakpoints from the wrong process (since
622 they'd be assigned to the same address space). */
623
624 if (has_vforked)
625 {
626 gdb_assert (child_inf->vfork_parent == NULL);
627 gdb_assert (parent_inf->vfork_child == NULL);
628 child_inf->vfork_parent = parent_inf;
629 child_inf->pending_detach = 0;
630 parent_inf->vfork_child = child_inf;
631 parent_inf->pending_detach = detach_fork;
632 parent_inf->waiting_for_vfork_done = 0;
633 }
634 else if (detach_fork)
635 {
636 if (print_inferior_events)
637 {
638 /* Ensure that we have a process ptid. */
639 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
640
641 target_terminal::ours_for_output ();
642 fprintf_filtered (gdb_stdlog,
643 _("[Detaching after fork from "
644 "parent %s]\n"),
645 target_pid_to_str (process_ptid).c_str ());
646 }
647
648 target_detach (parent_inf, 0);
649 parent_inf = NULL;
650 }
651
652 /* Note that the detach above makes PARENT_INF dangling. */
653
654 /* Add the child thread to the appropriate lists, and switch
655 to this new thread, before cloning the program space, and
656 informing the solib layer about this new process. */
657
658 set_current_inferior (child_inf);
659 push_target (target);
660 }
661
662 thread_info *child_thr = add_thread_silent (target, child_ptid);
663
664 /* If this is a vfork child, then the address-space is shared
665 with the parent. If we detached from the parent, then we can
666 reuse the parent's program/address spaces. */
667 if (has_vforked || detach_fork)
668 {
669 child_inf->pspace = parent_pspace;
670 child_inf->aspace = child_inf->pspace->aspace;
671
672 exec_on_vfork ();
673 }
674 else
675 {
676 child_inf->aspace = new_address_space ();
677 child_inf->pspace = new program_space (child_inf->aspace);
678 child_inf->removable = 1;
679 child_inf->symfile_flags = SYMFILE_NO_READ;
680 set_current_program_space (child_inf->pspace);
681 clone_program_space (child_inf->pspace, parent_pspace);
682
683 /* Let the shared library layer (e.g., solib-svr4) learn
684 about this new process, relocate the cloned exec, pull in
685 shared libraries, and install the solib event breakpoint.
686 If a "cloned-VM" event was propagated better throughout
687 the core, this wouldn't be required. */
688 solib_create_inferior_hook (0);
689 }
690
691 switch_to_thread (child_thr);
692 }
693
694 return target_follow_fork (follow_child, detach_fork);
695 }
696
697 /* Tell the target to follow the fork we're stopped at. Returns true
698 if the inferior should be resumed; false, if the target for some
699 reason decided it's best not to resume. */
700
701 static bool
702 follow_fork ()
703 {
704 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
705 bool should_resume = true;
706 struct thread_info *tp;
707
708 /* Copy user stepping state to the new inferior thread. FIXME: the
709 followed fork child thread should have a copy of most of the
710 parent thread structure's run control related fields, not just these.
711 Initialized to avoid "may be used uninitialized" warnings from gcc. */
712 struct breakpoint *step_resume_breakpoint = NULL;
713 struct breakpoint *exception_resume_breakpoint = NULL;
714 CORE_ADDR step_range_start = 0;
715 CORE_ADDR step_range_end = 0;
716 int current_line = 0;
717 symtab *current_symtab = NULL;
718 struct frame_id step_frame_id = { 0 };
719 struct thread_fsm *thread_fsm = NULL;
720
721 if (!non_stop)
722 {
723 process_stratum_target *wait_target;
724 ptid_t wait_ptid;
725 struct target_waitstatus wait_status;
726
727 /* Get the last target status returned by target_wait(). */
728 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
729
730 /* If not stopped at a fork event, then there's nothing else to
731 do. */
732 if (wait_status.kind != TARGET_WAITKIND_FORKED
733 && wait_status.kind != TARGET_WAITKIND_VFORKED)
734 return 1;
735
736 /* Check if we switched over from WAIT_PTID, since the event was
737 reported. */
738 if (wait_ptid != minus_one_ptid
739 && (current_inferior ()->process_target () != wait_target
740 || inferior_ptid != wait_ptid))
741 {
742 /* We did. Switch back to WAIT_PTID thread, to tell the
743 target to follow it (in either direction). We'll
744 afterwards refuse to resume, and inform the user what
745 happened. */
746 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
747 switch_to_thread (wait_thread);
748 should_resume = false;
749 }
750 }
751
752 tp = inferior_thread ();
753
754 /* If there were any forks/vforks that were caught and are now to be
755 followed, then do so now. */
756 switch (tp->pending_follow.kind)
757 {
758 case TARGET_WAITKIND_FORKED:
759 case TARGET_WAITKIND_VFORKED:
760 {
761 ptid_t parent, child;
762
763 /* If the user did a next/step, etc, over a fork call,
764 preserve the stepping state in the fork child. */
765 if (follow_child && should_resume)
766 {
767 step_resume_breakpoint = clone_momentary_breakpoint
768 (tp->control.step_resume_breakpoint);
769 step_range_start = tp->control.step_range_start;
770 step_range_end = tp->control.step_range_end;
771 current_line = tp->current_line;
772 current_symtab = tp->current_symtab;
773 step_frame_id = tp->control.step_frame_id;
774 exception_resume_breakpoint
775 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
776 thread_fsm = tp->thread_fsm;
777
778 /* For now, delete the parent's sr breakpoint, otherwise,
779 parent/child sr breakpoints are considered duplicates,
780 and the child version will not be installed. Remove
781 this when the breakpoints module becomes aware of
782 inferiors and address spaces. */
783 delete_step_resume_breakpoint (tp);
784 tp->control.step_range_start = 0;
785 tp->control.step_range_end = 0;
786 tp->control.step_frame_id = null_frame_id;
787 delete_exception_resume_breakpoint (tp);
788 tp->thread_fsm = NULL;
789 }
790
791 parent = inferior_ptid;
792 child = tp->pending_follow.value.related_pid;
793
794 process_stratum_target *parent_targ = tp->inf->process_target ();
795 /* Set up inferior(s) as specified by the caller, and tell the
796 target to do whatever is necessary to follow either parent
797 or child. */
798 if (follow_fork_inferior (follow_child, detach_fork))
799 {
800 /* Target refused to follow, or there's some other reason
801 we shouldn't resume. */
802 should_resume = 0;
803 }
804 else
805 {
806 /* This pending follow fork event is now handled, one way
807 or another. The previous selected thread may be gone
808 from the lists by now, but if it is still around, need
809 to clear the pending follow request. */
810 tp = find_thread_ptid (parent_targ, parent);
811 if (tp)
812 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
813
814 /* This makes sure we don't try to apply the "Switched
815 over from WAIT_PID" logic above. */
816 nullify_last_target_wait_ptid ();
817
818 /* If we followed the child, switch to it... */
819 if (follow_child)
820 {
821 thread_info *child_thr = find_thread_ptid (parent_targ, child);
822 switch_to_thread (child_thr);
823
824 /* ... and preserve the stepping state, in case the
825 user was stepping over the fork call. */
826 if (should_resume)
827 {
828 tp = inferior_thread ();
829 tp->control.step_resume_breakpoint
830 = step_resume_breakpoint;
831 tp->control.step_range_start = step_range_start;
832 tp->control.step_range_end = step_range_end;
833 tp->current_line = current_line;
834 tp->current_symtab = current_symtab;
835 tp->control.step_frame_id = step_frame_id;
836 tp->control.exception_resume_breakpoint
837 = exception_resume_breakpoint;
838 tp->thread_fsm = thread_fsm;
839 }
840 else
841 {
842 /* If we get here, it was because we're trying to
843 resume from a fork catchpoint, but, the user
844 has switched threads away from the thread that
845 forked. In that case, the resume command
846 issued is most likely not applicable to the
847 child, so just warn, and refuse to resume. */
848 warning (_("Not resuming: switched threads "
849 "before following fork child."));
850 }
851
852 /* Reset breakpoints in the child as appropriate. */
853 follow_inferior_reset_breakpoints ();
854 }
855 }
856 }
857 break;
858 case TARGET_WAITKIND_SPURIOUS:
859 /* Nothing to follow. */
860 break;
861 default:
862 internal_error (__FILE__, __LINE__,
863 "Unexpected pending_follow.kind %d\n",
864 tp->pending_follow.kind);
865 break;
866 }
867
868 return should_resume;
869 }
870
871 static void
872 follow_inferior_reset_breakpoints (void)
873 {
874 struct thread_info *tp = inferior_thread ();
875
876 /* Was there a step_resume breakpoint? (There was if the user
877 did a "next" at the fork() call.) If so, explicitly reset its
878 thread number. Cloned step_resume breakpoints are disabled on
879 creation, so enable it here now that it is associated with the
880 correct thread.
881
882 step_resumes are a form of bp that are made to be per-thread.
883 Since we created the step_resume bp when the parent process
884 was being debugged, and now are switching to the child process,
885 from the breakpoint package's viewpoint, that's a switch of
886 "threads". We must update the bp's notion of which thread
887 it is for, or it'll be ignored when it triggers. */
888
889 if (tp->control.step_resume_breakpoint)
890 {
891 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
892 tp->control.step_resume_breakpoint->loc->enabled = 1;
893 }
894
895 /* Treat exception_resume breakpoints like step_resume breakpoints. */
896 if (tp->control.exception_resume_breakpoint)
897 {
898 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
899 tp->control.exception_resume_breakpoint->loc->enabled = 1;
900 }
901
902 /* Reinsert all breakpoints in the child. The user may have set
903 breakpoints after catching the fork, in which case those
904 were never set in the child, but only in the parent. This makes
905 sure the inserted breakpoints match the breakpoint list. */
906
907 breakpoint_re_set ();
908 insert_breakpoints ();
909 }
910
911 /* The child has exited or execed: resume threads of the parent the
912 user wanted to be executing. */
913
914 static int
915 proceed_after_vfork_done (struct thread_info *thread,
916 void *arg)
917 {
918 int pid = * (int *) arg;
919
920 if (thread->ptid.pid () == pid
921 && thread->state == THREAD_RUNNING
922 && !thread->executing
923 && !thread->stop_requested
924 && thread->suspend.stop_signal == GDB_SIGNAL_0)
925 {
926 infrun_debug_printf ("resuming vfork parent thread %s",
927 target_pid_to_str (thread->ptid).c_str ());
928
929 switch_to_thread (thread);
930 clear_proceed_status (0);
931 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
932 }
933
934 return 0;
935 }
936
937 /* Called whenever we notice an exec or exit event, to handle
938 detaching or resuming a vfork parent. */
939
940 static void
941 handle_vfork_child_exec_or_exit (int exec)
942 {
943 struct inferior *inf = current_inferior ();
944
945 if (inf->vfork_parent)
946 {
947 int resume_parent = -1;
948
949 /* This exec or exit marks the end of the shared memory region
950 between the parent and the child. Break the bonds. */
951 inferior *vfork_parent = inf->vfork_parent;
952 inf->vfork_parent->vfork_child = NULL;
953 inf->vfork_parent = NULL;
954
955 /* If the user wanted to detach from the parent, now is the
956 time. */
957 if (vfork_parent->pending_detach)
958 {
959 struct program_space *pspace;
960 struct address_space *aspace;
961
962 /* follow-fork child, detach-on-fork on. */
963
964 vfork_parent->pending_detach = 0;
965
966 scoped_restore_current_pspace_and_thread restore_thread;
967
968 /* We're letting loose of the parent. */
969 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
970 switch_to_thread (tp);
971
972 /* We're about to detach from the parent, which implicitly
973 removes breakpoints from its address space. There's a
974 catch here: we want to reuse the spaces for the child,
975 but, parent/child are still sharing the pspace at this
976 point, although the exec in reality makes the kernel give
977 the child a fresh set of new pages. The problem here is
978 that the breakpoints module being unaware of this, would
979 likely chose the child process to write to the parent
980 address space. Swapping the child temporarily away from
981 the spaces has the desired effect. Yes, this is "sort
982 of" a hack. */
983
984 pspace = inf->pspace;
985 aspace = inf->aspace;
986 inf->aspace = NULL;
987 inf->pspace = NULL;
988
989 if (print_inferior_events)
990 {
991 std::string pidstr
992 = target_pid_to_str (ptid_t (vfork_parent->pid));
993
994 target_terminal::ours_for_output ();
995
996 if (exec)
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exec]\n"), pidstr.c_str ());
1001 }
1002 else
1003 {
1004 fprintf_filtered (gdb_stdlog,
1005 _("[Detaching vfork parent %s "
1006 "after child exit]\n"), pidstr.c_str ());
1007 }
1008 }
1009
1010 target_detach (vfork_parent, 0);
1011
1012 /* Put it back. */
1013 inf->pspace = pspace;
1014 inf->aspace = aspace;
1015 }
1016 else if (exec)
1017 {
1018 /* We're staying attached to the parent, so, really give the
1019 child a new address space. */
1020 inf->pspace = new program_space (maybe_new_address_space ());
1021 inf->aspace = inf->pspace->aspace;
1022 inf->removable = 1;
1023 set_current_program_space (inf->pspace);
1024
1025 resume_parent = vfork_parent->pid;
1026 }
1027 else
1028 {
1029 /* If this is a vfork child exiting, then the pspace and
1030 aspaces were shared with the parent. Since we're
1031 reporting the process exit, we'll be mourning all that is
1032 found in the address space, and switching to null_ptid,
1033 preparing to start a new inferior. But, since we don't
1034 want to clobber the parent's address/program spaces, we
1035 go ahead and create a new one for this exiting
1036 inferior. */
1037
1038 /* Switch to no-thread while running clone_program_space, so
1039 that clone_program_space doesn't want to read the
1040 selected frame of a dead process. */
1041 scoped_restore_current_thread restore_thread;
1042 switch_to_no_thread ();
1043
1044 inf->pspace = new program_space (maybe_new_address_space ());
1045 inf->aspace = inf->pspace->aspace;
1046 set_current_program_space (inf->pspace);
1047 inf->removable = 1;
1048 inf->symfile_flags = SYMFILE_NO_READ;
1049 clone_program_space (inf->pspace, vfork_parent->pspace);
1050
1051 resume_parent = vfork_parent->pid;
1052 }
1053
1054 gdb_assert (current_program_space == inf->pspace);
1055
1056 if (non_stop && resume_parent != -1)
1057 {
1058 /* If the user wanted the parent to be running, let it go
1059 free now. */
1060 scoped_restore_current_thread restore_thread;
1061
1062 infrun_debug_printf ("resuming vfork parent process %d",
1063 resume_parent);
1064
1065 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1066 }
1067 }
1068 }
1069
1070 /* Enum strings for "set|show follow-exec-mode". */
1071
1072 static const char follow_exec_mode_new[] = "new";
1073 static const char follow_exec_mode_same[] = "same";
1074 static const char *const follow_exec_mode_names[] =
1075 {
1076 follow_exec_mode_new,
1077 follow_exec_mode_same,
1078 NULL,
1079 };
1080
1081 static const char *follow_exec_mode_string = follow_exec_mode_same;
1082 static void
1083 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085 {
1086 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1087 }
1088
1089 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1090
1091 static void
1092 follow_exec (ptid_t ptid, const char *exec_file_target)
1093 {
1094 struct inferior *inf = current_inferior ();
1095 int pid = ptid.pid ();
1096 ptid_t process_ptid;
1097
1098 /* Switch terminal for any messages produced e.g. by
1099 breakpoint_re_set. */
1100 target_terminal::ours_for_output ();
1101
1102 /* This is an exec event that we actually wish to pay attention to.
1103 Refresh our symbol table to the newly exec'd program, remove any
1104 momentary bp's, etc.
1105
1106 If there are breakpoints, they aren't really inserted now,
1107 since the exec() transformed our inferior into a fresh set
1108 of instructions.
1109
1110 We want to preserve symbolic breakpoints on the list, since
1111 we have hopes that they can be reset after the new a.out's
1112 symbol table is read.
1113
1114 However, any "raw" breakpoints must be removed from the list
1115 (e.g., the solib bp's), since their address is probably invalid
1116 now.
1117
1118 And, we DON'T want to call delete_breakpoints() here, since
1119 that may write the bp's "shadow contents" (the instruction
1120 value that was overwritten with a TRAP instruction). Since
1121 we now have a new a.out, those shadow contents aren't valid. */
1122
1123 mark_breakpoints_out ();
1124
1125 /* The target reports the exec event to the main thread, even if
1126 some other thread does the exec, and even if the main thread was
1127 stopped or already gone. We may still have non-leader threads of
1128 the process on our list. E.g., on targets that don't have thread
1129 exit events (like remote); or on native Linux in non-stop mode if
1130 there were only two threads in the inferior and the non-leader
1131 one is the one that execs (and nothing forces an update of the
1132 thread list up to here). When debugging remotely, it's best to
1133 avoid extra traffic, when possible, so avoid syncing the thread
1134 list with the target, and instead go ahead and delete all threads
1135 of the process but one that reported the event. Note this must
1136 be done before calling update_breakpoints_after_exec, as
1137 otherwise clearing the threads' resources would reference stale
1138 thread breakpoints -- it may have been one of these threads that
1139 stepped across the exec. We could just clear their stepping
1140 states, but as long as we're iterating, might as well delete
1141 them. Deleting them now rather than at the next user-visible
1142 stop provides a nicer sequence of events for user and MI
1143 notifications. */
1144 for (thread_info *th : all_threads_safe ())
1145 if (th->ptid.pid () == pid && th->ptid != ptid)
1146 delete_thread (th);
1147
1148 /* We also need to clear any left over stale state for the
1149 leader/event thread. E.g., if there was any step-resume
1150 breakpoint or similar, it's gone now. We cannot truly
1151 step-to-next statement through an exec(). */
1152 thread_info *th = inferior_thread ();
1153 th->control.step_resume_breakpoint = NULL;
1154 th->control.exception_resume_breakpoint = NULL;
1155 th->control.single_step_breakpoints = NULL;
1156 th->control.step_range_start = 0;
1157 th->control.step_range_end = 0;
1158
1159 /* The user may have had the main thread held stopped in the
1160 previous image (e.g., schedlock on, or non-stop). Release
1161 it now. */
1162 th->stop_requested = 0;
1163
1164 update_breakpoints_after_exec ();
1165
1166 /* What is this a.out's name? */
1167 process_ptid = ptid_t (pid);
1168 printf_unfiltered (_("%s is executing new program: %s\n"),
1169 target_pid_to_str (process_ptid).c_str (),
1170 exec_file_target);
1171
1172 /* We've followed the inferior through an exec. Therefore, the
1173 inferior has essentially been killed & reborn. */
1174
1175 breakpoint_init_inferior (inf_execd);
1176
1177 gdb::unique_xmalloc_ptr<char> exec_file_host
1178 = exec_file_find (exec_file_target, NULL);
1179
1180 /* If we were unable to map the executable target pathname onto a host
1181 pathname, tell the user that. Otherwise GDB's subsequent behavior
1182 is confusing. Maybe it would even be better to stop at this point
1183 so that the user can specify a file manually before continuing. */
1184 if (exec_file_host == NULL)
1185 warning (_("Could not load symbols for executable %s.\n"
1186 "Do you need \"set sysroot\"?"),
1187 exec_file_target);
1188
1189 /* Reset the shared library package. This ensures that we get a
1190 shlib event when the child reaches "_start", at which point the
1191 dld will have had a chance to initialize the child. */
1192 /* Also, loading a symbol file below may trigger symbol lookups, and
1193 we don't want those to be satisfied by the libraries of the
1194 previous incarnation of this process. */
1195 no_shared_libraries (NULL, 0);
1196
1197 if (follow_exec_mode_string == follow_exec_mode_new)
1198 {
1199 /* The user wants to keep the old inferior and program spaces
1200 around. Create a new fresh one, and switch to it. */
1201
1202 /* Do exit processing for the original inferior before setting the new
1203 inferior's pid. Having two inferiors with the same pid would confuse
1204 find_inferior_p(t)id. Transfer the terminal state and info from the
1205 old to the new inferior. */
1206 inf = add_inferior_with_spaces ();
1207 swap_terminal_info (inf, current_inferior ());
1208 exit_inferior_silent (current_inferior ());
1209
1210 inf->pid = pid;
1211 target_follow_exec (inf, exec_file_target);
1212
1213 inferior *org_inferior = current_inferior ();
1214 switch_to_inferior_no_thread (inf);
1215 push_target (org_inferior->process_target ());
1216 thread_info *thr = add_thread (inf->process_target (), ptid);
1217 switch_to_thread (thr);
1218 }
1219 else
1220 {
1221 /* The old description may no longer be fit for the new image.
1222 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1223 old description; we'll read a new one below. No need to do
1224 this on "follow-exec-mode new", as the old inferior stays
1225 around (its description is later cleared/refetched on
1226 restart). */
1227 target_clear_description ();
1228 }
1229
1230 gdb_assert (current_program_space == inf->pspace);
1231
1232 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1233 because the proper displacement for a PIE (Position Independent
1234 Executable) main symbol file will only be computed by
1235 solib_create_inferior_hook below. breakpoint_re_set would fail
1236 to insert the breakpoints with the zero displacement. */
1237 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1238
1239 /* If the target can specify a description, read it. Must do this
1240 after flipping to the new executable (because the target supplied
1241 description must be compatible with the executable's
1242 architecture, and the old executable may e.g., be 32-bit, while
1243 the new one 64-bit), and before anything involving memory or
1244 registers. */
1245 target_find_description ();
1246
1247 solib_create_inferior_hook (0);
1248
1249 jit_inferior_created_hook (inf);
1250
1251 breakpoint_re_set ();
1252
1253 /* Reinsert all breakpoints. (Those which were symbolic have
1254 been reset to the proper address in the new a.out, thanks
1255 to symbol_file_command...). */
1256 insert_breakpoints ();
1257
1258 /* The next resume of this inferior should bring it to the shlib
1259 startup breakpoints. (If the user had also set bp's on
1260 "main" from the old (parent) process, then they'll auto-
1261 matically get reset there in the new process.). */
1262 }
1263
1264 /* The queue of threads that need to do a step-over operation to get
1265 past e.g., a breakpoint. What technique is used to step over the
1266 breakpoint/watchpoint does not matter -- all threads end up in the
1267 same queue, to maintain rough temporal order of execution, in order
1268 to avoid starvation, otherwise, we could e.g., find ourselves
1269 constantly stepping the same couple threads past their breakpoints
1270 over and over, if the single-step finish fast enough. */
1271 struct thread_info *step_over_queue_head;
1272
1273 /* Bit flags indicating what the thread needs to step over. */
1274
1275 enum step_over_what_flag
1276 {
1277 /* Step over a breakpoint. */
1278 STEP_OVER_BREAKPOINT = 1,
1279
1280 /* Step past a non-continuable watchpoint, in order to let the
1281 instruction execute so we can evaluate the watchpoint
1282 expression. */
1283 STEP_OVER_WATCHPOINT = 2
1284 };
1285 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1286
1287 /* Info about an instruction that is being stepped over. */
1288
1289 struct step_over_info
1290 {
1291 /* If we're stepping past a breakpoint, this is the address space
1292 and address of the instruction the breakpoint is set at. We'll
1293 skip inserting all breakpoints here. Valid iff ASPACE is
1294 non-NULL. */
1295 const address_space *aspace;
1296 CORE_ADDR address;
1297
1298 /* The instruction being stepped over triggers a nonsteppable
1299 watchpoint. If true, we'll skip inserting watchpoints. */
1300 int nonsteppable_watchpoint_p;
1301
1302 /* The thread's global number. */
1303 int thread;
1304 };
1305
1306 /* The step-over info of the location that is being stepped over.
1307
1308 Note that with async/breakpoint always-inserted mode, a user might
1309 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1310 being stepped over. As setting a new breakpoint inserts all
1311 breakpoints, we need to make sure the breakpoint being stepped over
1312 isn't inserted then. We do that by only clearing the step-over
1313 info when the step-over is actually finished (or aborted).
1314
1315 Presently GDB can only step over one breakpoint at any given time.
1316 Given threads that can't run code in the same address space as the
1317 breakpoint's can't really miss the breakpoint, GDB could be taught
1318 to step-over at most one breakpoint per address space (so this info
1319 could move to the address space object if/when GDB is extended).
1320 The set of breakpoints being stepped over will normally be much
1321 smaller than the set of all breakpoints, so a flag in the
1322 breakpoint location structure would be wasteful. A separate list
1323 also saves complexity and run-time, as otherwise we'd have to go
1324 through all breakpoint locations clearing their flag whenever we
1325 start a new sequence. Similar considerations weigh against storing
1326 this info in the thread object. Plus, not all step overs actually
1327 have breakpoint locations -- e.g., stepping past a single-step
1328 breakpoint, or stepping to complete a non-continuable
1329 watchpoint. */
1330 static struct step_over_info step_over_info;
1331
1332 /* Record the address of the breakpoint/instruction we're currently
1333 stepping over.
1334 N.B. We record the aspace and address now, instead of say just the thread,
1335 because when we need the info later the thread may be running. */
1336
1337 static void
1338 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1339 int nonsteppable_watchpoint_p,
1340 int thread)
1341 {
1342 step_over_info.aspace = aspace;
1343 step_over_info.address = address;
1344 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1345 step_over_info.thread = thread;
1346 }
1347
1348 /* Called when we're not longer stepping over a breakpoint / an
1349 instruction, so all breakpoints are free to be (re)inserted. */
1350
1351 static void
1352 clear_step_over_info (void)
1353 {
1354 infrun_debug_printf ("clearing step over info");
1355 step_over_info.aspace = NULL;
1356 step_over_info.address = 0;
1357 step_over_info.nonsteppable_watchpoint_p = 0;
1358 step_over_info.thread = -1;
1359 }
1360
1361 /* See infrun.h. */
1362
1363 int
1364 stepping_past_instruction_at (struct address_space *aspace,
1365 CORE_ADDR address)
1366 {
1367 return (step_over_info.aspace != NULL
1368 && breakpoint_address_match (aspace, address,
1369 step_over_info.aspace,
1370 step_over_info.address));
1371 }
1372
1373 /* See infrun.h. */
1374
1375 int
1376 thread_is_stepping_over_breakpoint (int thread)
1377 {
1378 return (step_over_info.thread != -1
1379 && thread == step_over_info.thread);
1380 }
1381
1382 /* See infrun.h. */
1383
1384 int
1385 stepping_past_nonsteppable_watchpoint (void)
1386 {
1387 return step_over_info.nonsteppable_watchpoint_p;
1388 }
1389
1390 /* Returns true if step-over info is valid. */
1391
1392 static bool
1393 step_over_info_valid_p (void)
1394 {
1395 return (step_over_info.aspace != NULL
1396 || stepping_past_nonsteppable_watchpoint ());
1397 }
1398
1399 \f
1400 /* Displaced stepping. */
1401
1402 /* In non-stop debugging mode, we must take special care to manage
1403 breakpoints properly; in particular, the traditional strategy for
1404 stepping a thread past a breakpoint it has hit is unsuitable.
1405 'Displaced stepping' is a tactic for stepping one thread past a
1406 breakpoint it has hit while ensuring that other threads running
1407 concurrently will hit the breakpoint as they should.
1408
1409 The traditional way to step a thread T off a breakpoint in a
1410 multi-threaded program in all-stop mode is as follows:
1411
1412 a0) Initially, all threads are stopped, and breakpoints are not
1413 inserted.
1414 a1) We single-step T, leaving breakpoints uninserted.
1415 a2) We insert breakpoints, and resume all threads.
1416
1417 In non-stop debugging, however, this strategy is unsuitable: we
1418 don't want to have to stop all threads in the system in order to
1419 continue or step T past a breakpoint. Instead, we use displaced
1420 stepping:
1421
1422 n0) Initially, T is stopped, other threads are running, and
1423 breakpoints are inserted.
1424 n1) We copy the instruction "under" the breakpoint to a separate
1425 location, outside the main code stream, making any adjustments
1426 to the instruction, register, and memory state as directed by
1427 T's architecture.
1428 n2) We single-step T over the instruction at its new location.
1429 n3) We adjust the resulting register and memory state as directed
1430 by T's architecture. This includes resetting T's PC to point
1431 back into the main instruction stream.
1432 n4) We resume T.
1433
1434 This approach depends on the following gdbarch methods:
1435
1436 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1437 indicate where to copy the instruction, and how much space must
1438 be reserved there. We use these in step n1.
1439
1440 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1441 address, and makes any necessary adjustments to the instruction,
1442 register contents, and memory. We use this in step n1.
1443
1444 - gdbarch_displaced_step_fixup adjusts registers and memory after
1445 we have successfully single-stepped the instruction, to yield the
1446 same effect the instruction would have had if we had executed it
1447 at its original address. We use this in step n3.
1448
1449 The gdbarch_displaced_step_copy_insn and
1450 gdbarch_displaced_step_fixup functions must be written so that
1451 copying an instruction with gdbarch_displaced_step_copy_insn,
1452 single-stepping across the copied instruction, and then applying
1453 gdbarch_displaced_insn_fixup should have the same effects on the
1454 thread's memory and registers as stepping the instruction in place
1455 would have. Exactly which responsibilities fall to the copy and
1456 which fall to the fixup is up to the author of those functions.
1457
1458 See the comments in gdbarch.sh for details.
1459
1460 Note that displaced stepping and software single-step cannot
1461 currently be used in combination, although with some care I think
1462 they could be made to. Software single-step works by placing
1463 breakpoints on all possible subsequent instructions; if the
1464 displaced instruction is a PC-relative jump, those breakpoints
1465 could fall in very strange places --- on pages that aren't
1466 executable, or at addresses that are not proper instruction
1467 boundaries. (We do generally let other threads run while we wait
1468 to hit the software single-step breakpoint, and they might
1469 encounter such a corrupted instruction.) One way to work around
1470 this would be to have gdbarch_displaced_step_copy_insn fully
1471 simulate the effect of PC-relative instructions (and return NULL)
1472 on architectures that use software single-stepping.
1473
1474 In non-stop mode, we can have independent and simultaneous step
1475 requests, so more than one thread may need to simultaneously step
1476 over a breakpoint. The current implementation assumes there is
1477 only one scratch space per process. In this case, we have to
1478 serialize access to the scratch space. If thread A wants to step
1479 over a breakpoint, but we are currently waiting for some other
1480 thread to complete a displaced step, we leave thread A stopped and
1481 place it in the displaced_step_request_queue. Whenever a displaced
1482 step finishes, we pick the next thread in the queue and start a new
1483 displaced step operation on it. See displaced_step_prepare and
1484 displaced_step_fixup for details. */
1485
1486 /* Default destructor for displaced_step_closure. */
1487
1488 displaced_step_closure::~displaced_step_closure () = default;
1489
1490 /* Get the displaced stepping state of inferior INF. */
1491
1492 static displaced_step_inferior_state *
1493 get_displaced_stepping_state (inferior *inf)
1494 {
1495 return &inf->displaced_step_state;
1496 }
1497
1498 /* Returns true if any inferior has a thread doing a displaced
1499 step. */
1500
1501 static bool
1502 displaced_step_in_progress_any_inferior ()
1503 {
1504 for (inferior *i : all_inferiors ())
1505 {
1506 if (i->displaced_step_state.step_thread != nullptr)
1507 return true;
1508 }
1509
1510 return false;
1511 }
1512
1513 /* Return true if THREAD is doing a displaced step. */
1514
1515 static bool
1516 displaced_step_in_progress_thread (thread_info *thread)
1517 {
1518 gdb_assert (thread != NULL);
1519
1520 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1521 }
1522
1523 /* Return true if INF has a thread doing a displaced step. */
1524
1525 static bool
1526 displaced_step_in_progress (inferior *inf)
1527 {
1528 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1529 }
1530
1531 /* If inferior is in displaced stepping, and ADDR equals to starting address
1532 of copy area, return corresponding displaced_step_closure. Otherwise,
1533 return NULL. */
1534
1535 struct displaced_step_closure*
1536 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1537 {
1538 displaced_step_inferior_state *displaced
1539 = get_displaced_stepping_state (current_inferior ());
1540
1541 /* If checking the mode of displaced instruction in copy area. */
1542 if (displaced->step_thread != nullptr
1543 && displaced->step_copy == addr)
1544 return displaced->step_closure.get ();
1545
1546 return NULL;
1547 }
1548
1549 static void
1550 infrun_inferior_exit (struct inferior *inf)
1551 {
1552 inf->displaced_step_state.reset ();
1553 }
1554
1555 /* If ON, and the architecture supports it, GDB will use displaced
1556 stepping to step over breakpoints. If OFF, or if the architecture
1557 doesn't support it, GDB will instead use the traditional
1558 hold-and-step approach. If AUTO (which is the default), GDB will
1559 decide which technique to use to step over breakpoints depending on
1560 whether the target works in a non-stop way (see use_displaced_stepping). */
1561
1562 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1563
1564 static void
1565 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1566 struct cmd_list_element *c,
1567 const char *value)
1568 {
1569 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1570 fprintf_filtered (file,
1571 _("Debugger's willingness to use displaced stepping "
1572 "to step over breakpoints is %s (currently %s).\n"),
1573 value, target_is_non_stop_p () ? "on" : "off");
1574 else
1575 fprintf_filtered (file,
1576 _("Debugger's willingness to use displaced stepping "
1577 "to step over breakpoints is %s.\n"), value);
1578 }
1579
1580 /* Return true if the gdbarch implements the required methods to use
1581 displaced stepping. */
1582
1583 static bool
1584 gdbarch_supports_displaced_stepping (gdbarch *arch)
1585 {
1586 /* Only check for the presence of step_copy_insn. Other required methods
1587 are checked by the gdbarch validation. */
1588 return gdbarch_displaced_step_copy_insn_p (arch);
1589 }
1590
1591 /* Return non-zero if displaced stepping can/should be used to step
1592 over breakpoints of thread TP. */
1593
1594 static bool
1595 use_displaced_stepping (thread_info *tp)
1596 {
1597 /* If the user disabled it explicitly, don't use displaced stepping. */
1598 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1599 return false;
1600
1601 /* If "auto", only use displaced stepping if the target operates in a non-stop
1602 way. */
1603 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1604 && !target_is_non_stop_p ())
1605 return false;
1606
1607 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1608
1609 /* If the architecture doesn't implement displaced stepping, don't use
1610 it. */
1611 if (!gdbarch_supports_displaced_stepping (gdbarch))
1612 return false;
1613
1614 /* If recording, don't use displaced stepping. */
1615 if (find_record_target () != nullptr)
1616 return false;
1617
1618 displaced_step_inferior_state *displaced_state
1619 = get_displaced_stepping_state (tp->inf);
1620
1621 /* If displaced stepping failed before for this inferior, don't bother trying
1622 again. */
1623 if (displaced_state->failed_before)
1624 return false;
1625
1626 return true;
1627 }
1628
1629 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1630
1631 static void
1632 displaced_step_reset (displaced_step_inferior_state *displaced)
1633 {
1634 displaced->reset ();
1635 }
1636
1637 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1638 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1639
1640 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1641
1642 /* See infrun.h. */
1643
1644 std::string
1645 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1646 {
1647 std::string ret;
1648
1649 for (size_t i = 0; i < len; i++)
1650 {
1651 if (i == 0)
1652 ret += string_printf ("%02x", buf[i]);
1653 else
1654 ret += string_printf (" %02x", buf[i]);
1655 }
1656
1657 return ret;
1658 }
1659
1660 /* Prepare to single-step, using displaced stepping.
1661
1662 Note that we cannot use displaced stepping when we have a signal to
1663 deliver. If we have a signal to deliver and an instruction to step
1664 over, then after the step, there will be no indication from the
1665 target whether the thread entered a signal handler or ignored the
1666 signal and stepped over the instruction successfully --- both cases
1667 result in a simple SIGTRAP. In the first case we mustn't do a
1668 fixup, and in the second case we must --- but we can't tell which.
1669 Comments in the code for 'random signals' in handle_inferior_event
1670 explain how we handle this case instead.
1671
1672 Returns 1 if preparing was successful -- this thread is going to be
1673 stepped now; 0 if displaced stepping this thread got queued; or -1
1674 if this instruction can't be displaced stepped. */
1675
1676 static int
1677 displaced_step_prepare_throw (thread_info *tp)
1678 {
1679 regcache *regcache = get_thread_regcache (tp);
1680 struct gdbarch *gdbarch = regcache->arch ();
1681 const address_space *aspace = regcache->aspace ();
1682 CORE_ADDR original, copy;
1683 ULONGEST len;
1684 int status;
1685
1686 /* We should never reach this function if the architecture does not
1687 support displaced stepping. */
1688 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1689
1690 /* Nor if the thread isn't meant to step over a breakpoint. */
1691 gdb_assert (tp->control.trap_expected);
1692
1693 /* Disable range stepping while executing in the scratch pad. We
1694 want a single-step even if executing the displaced instruction in
1695 the scratch buffer lands within the stepping range (e.g., a
1696 jump/branch). */
1697 tp->control.may_range_step = 0;
1698
1699 /* We have to displaced step one thread at a time, as we only have
1700 access to a single scratch space per inferior. */
1701
1702 displaced_step_inferior_state *displaced
1703 = get_displaced_stepping_state (tp->inf);
1704
1705 if (displaced->step_thread != nullptr)
1706 {
1707 /* Already waiting for a displaced step to finish. Defer this
1708 request and place in queue. */
1709
1710 displaced_debug_printf ("deferring step of %s",
1711 target_pid_to_str (tp->ptid).c_str ());
1712
1713 thread_step_over_chain_enqueue (tp);
1714 return 0;
1715 }
1716 else
1717 displaced_debug_printf ("stepping %s now",
1718 target_pid_to_str (tp->ptid).c_str ());
1719
1720 displaced_step_reset (displaced);
1721
1722 scoped_restore_current_thread restore_thread;
1723
1724 switch_to_thread (tp);
1725
1726 original = regcache_read_pc (regcache);
1727
1728 copy = gdbarch_displaced_step_location (gdbarch);
1729 len = gdbarch_max_insn_length (gdbarch);
1730
1731 if (breakpoint_in_range_p (aspace, copy, len))
1732 {
1733 /* There's a breakpoint set in the scratch pad location range
1734 (which is usually around the entry point). We'd either
1735 install it before resuming, which would overwrite/corrupt the
1736 scratch pad, or if it was already inserted, this displaced
1737 step would overwrite it. The latter is OK in the sense that
1738 we already assume that no thread is going to execute the code
1739 in the scratch pad range (after initial startup) anyway, but
1740 the former is unacceptable. Simply punt and fallback to
1741 stepping over this breakpoint in-line. */
1742 displaced_debug_printf ("breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.");
1744
1745 return -1;
1746 }
1747
1748 /* Save the original contents of the copy area. */
1749 displaced->step_saved_copy.resize (len);
1750 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1751 if (status != 0)
1752 throw_error (MEMORY_ERROR,
1753 _("Error accessing memory address %s (%s) for "
1754 "displaced-stepping scratch space."),
1755 paddress (gdbarch, copy), safe_strerror (status));
1756
1757 displaced_debug_printf ("saved %s: %s",
1758 paddress (gdbarch, copy),
1759 displaced_step_dump_bytes
1760 (displaced->step_saved_copy.data (), len).c_str ());
1761
1762 displaced->step_closure
1763 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1764 if (displaced->step_closure == NULL)
1765 {
1766 /* The architecture doesn't know how or want to displaced step
1767 this instruction or instruction sequence. Fallback to
1768 stepping over the breakpoint in-line. */
1769 return -1;
1770 }
1771
1772 /* Save the information we need to fix things up if the step
1773 succeeds. */
1774 displaced->step_thread = tp;
1775 displaced->step_gdbarch = gdbarch;
1776 displaced->step_original = original;
1777 displaced->step_copy = copy;
1778
1779 {
1780 displaced_step_reset_cleanup cleanup (displaced);
1781
1782 /* Resume execution at the copy. */
1783 regcache_write_pc (regcache, copy);
1784
1785 cleanup.release ();
1786 }
1787
1788 displaced_debug_printf ("displaced pc to %s", paddress (gdbarch, copy));
1789
1790 return 1;
1791 }
1792
1793 /* Wrapper for displaced_step_prepare_throw that disabled further
1794 attempts at displaced stepping if we get a memory error. */
1795
1796 static int
1797 displaced_step_prepare (thread_info *thread)
1798 {
1799 int prepared = -1;
1800
1801 try
1802 {
1803 prepared = displaced_step_prepare_throw (thread);
1804 }
1805 catch (const gdb_exception_error &ex)
1806 {
1807 struct displaced_step_inferior_state *displaced_state;
1808
1809 if (ex.error != MEMORY_ERROR
1810 && ex.error != NOT_SUPPORTED_ERROR)
1811 throw;
1812
1813 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1814 ex.what ());
1815
1816 /* Be verbose if "set displaced-stepping" is "on", silent if
1817 "auto". */
1818 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1819 {
1820 warning (_("disabling displaced stepping: %s"),
1821 ex.what ());
1822 }
1823
1824 /* Disable further displaced stepping attempts. */
1825 displaced_state
1826 = get_displaced_stepping_state (thread->inf);
1827 displaced_state->failed_before = 1;
1828 }
1829
1830 return prepared;
1831 }
1832
1833 static void
1834 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1835 const gdb_byte *myaddr, int len)
1836 {
1837 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1838
1839 inferior_ptid = ptid;
1840 write_memory (memaddr, myaddr, len);
1841 }
1842
1843 /* Restore the contents of the copy area for thread PTID. */
1844
1845 static void
1846 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1847 ptid_t ptid)
1848 {
1849 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1850
1851 write_memory_ptid (ptid, displaced->step_copy,
1852 displaced->step_saved_copy.data (), len);
1853
1854 displaced_debug_printf ("restored %s %s",
1855 target_pid_to_str (ptid).c_str (),
1856 paddress (displaced->step_gdbarch,
1857 displaced->step_copy));
1858 }
1859
1860 /* If we displaced stepped an instruction successfully, adjust
1861 registers and memory to yield the same effect the instruction would
1862 have had if we had executed it at its original address, and return
1863 1. If the instruction didn't complete, relocate the PC and return
1864 -1. If the thread wasn't displaced stepping, return 0. */
1865
1866 static int
1867 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1868 {
1869 struct displaced_step_inferior_state *displaced
1870 = get_displaced_stepping_state (event_thread->inf);
1871 int ret;
1872
1873 /* Was this event for the thread we displaced? */
1874 if (displaced->step_thread != event_thread)
1875 return 0;
1876
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread, and displaced_step_restore performs ptid-dependent
1880 memory accesses using current_inferior() and current_top_target(). */
1881 switch_to_thread (event_thread);
1882
1883 displaced_step_reset_cleanup cleanup (displaced);
1884
1885 displaced_step_restore (displaced, displaced->step_thread->ptid);
1886
1887 /* Did the instruction complete successfully? */
1888 if (signal == GDB_SIGNAL_TRAP
1889 && !(target_stopped_by_watchpoint ()
1890 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1891 || target_have_steppable_watchpoint ())))
1892 {
1893 /* Fix up the resulting state. */
1894 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1895 displaced->step_closure.get (),
1896 displaced->step_original,
1897 displaced->step_copy,
1898 get_thread_regcache (displaced->step_thread));
1899 ret = 1;
1900 }
1901 else
1902 {
1903 /* Since the instruction didn't complete, all we can do is
1904 relocate the PC. */
1905 struct regcache *regcache = get_thread_regcache (event_thread);
1906 CORE_ADDR pc = regcache_read_pc (regcache);
1907
1908 pc = displaced->step_original + (pc - displaced->step_copy);
1909 regcache_write_pc (regcache, pc);
1910 ret = -1;
1911 }
1912
1913 return ret;
1914 }
1915
1916 /* Data to be passed around while handling an event. This data is
1917 discarded between events. */
1918 struct execution_control_state
1919 {
1920 process_stratum_target *target;
1921 ptid_t ptid;
1922 /* The thread that got the event, if this was a thread event; NULL
1923 otherwise. */
1924 struct thread_info *event_thread;
1925
1926 struct target_waitstatus ws;
1927 int stop_func_filled_in;
1928 CORE_ADDR stop_func_start;
1929 CORE_ADDR stop_func_end;
1930 const char *stop_func_name;
1931 int wait_some_more;
1932
1933 /* True if the event thread hit the single-step breakpoint of
1934 another thread. Thus the event doesn't cause a stop, the thread
1935 needs to be single-stepped past the single-step breakpoint before
1936 we can switch back to the original stepping thread. */
1937 int hit_singlestep_breakpoint;
1938 };
1939
1940 /* Clear ECS and set it to point at TP. */
1941
1942 static void
1943 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1944 {
1945 memset (ecs, 0, sizeof (*ecs));
1946 ecs->event_thread = tp;
1947 ecs->ptid = tp->ptid;
1948 }
1949
1950 static void keep_going_pass_signal (struct execution_control_state *ecs);
1951 static void prepare_to_wait (struct execution_control_state *ecs);
1952 static bool keep_going_stepped_thread (struct thread_info *tp);
1953 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1954
1955 /* Are there any pending step-over requests? If so, run all we can
1956 now and return true. Otherwise, return false. */
1957
1958 static bool
1959 start_step_over (void)
1960 {
1961 struct thread_info *tp, *next;
1962
1963 /* Don't start a new step-over if we already have an in-line
1964 step-over operation ongoing. */
1965 if (step_over_info_valid_p ())
1966 return false;
1967
1968 for (tp = step_over_queue_head; tp != NULL; tp = next)
1969 {
1970 struct execution_control_state ecss;
1971 struct execution_control_state *ecs = &ecss;
1972 step_over_what step_what;
1973 int must_be_in_line;
1974
1975 gdb_assert (!tp->stop_requested);
1976
1977 next = thread_step_over_chain_next (tp);
1978
1979 /* If this inferior already has a displaced step in process,
1980 don't start a new one. */
1981 if (displaced_step_in_progress (tp->inf))
1982 continue;
1983
1984 step_what = thread_still_needs_step_over (tp);
1985 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1986 || ((step_what & STEP_OVER_BREAKPOINT)
1987 && !use_displaced_stepping (tp)));
1988
1989 /* We currently stop all threads of all processes to step-over
1990 in-line. If we need to start a new in-line step-over, let
1991 any pending displaced steps finish first. */
1992 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1993 return false;
1994
1995 thread_step_over_chain_remove (tp);
1996
1997 if (step_over_queue_head == NULL)
1998 infrun_debug_printf ("step-over queue now empty");
1999
2000 if (tp->control.trap_expected
2001 || tp->resumed
2002 || tp->executing)
2003 {
2004 internal_error (__FILE__, __LINE__,
2005 "[%s] has inconsistent state: "
2006 "trap_expected=%d, resumed=%d, executing=%d\n",
2007 target_pid_to_str (tp->ptid).c_str (),
2008 tp->control.trap_expected,
2009 tp->resumed,
2010 tp->executing);
2011 }
2012
2013 infrun_debug_printf ("resuming [%s] for step-over",
2014 target_pid_to_str (tp->ptid).c_str ());
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
2022 if (!target_is_non_stop_p () && !step_what)
2023 continue;
2024
2025 switch_to_thread (tp);
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
2028
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
2031
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return true;
2039 }
2040
2041 if (!target_is_non_stop_p ())
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return true;
2052 }
2053
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
2058 }
2059
2060 return false;
2061 }
2062
2063 /* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065 static void
2066 infrun_thread_ptid_changed (process_stratum_target *target,
2067 ptid_t old_ptid, ptid_t new_ptid)
2068 {
2069 if (inferior_ptid == old_ptid
2070 && current_inferior ()->process_target () == target)
2071 inferior_ptid = new_ptid;
2072 }
2073
2074 \f
2075
2076 static const char schedlock_off[] = "off";
2077 static const char schedlock_on[] = "on";
2078 static const char schedlock_step[] = "step";
2079 static const char schedlock_replay[] = "replay";
2080 static const char *const scheduler_enums[] = {
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
2084 schedlock_replay,
2085 NULL
2086 };
2087 static const char *scheduler_mode = schedlock_replay;
2088 static void
2089 show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091 {
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
2095 value);
2096 }
2097
2098 static void
2099 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2100 {
2101 if (!target_can_lock_scheduler ())
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
2106 }
2107
2108 /* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
2111 bool sched_multi = false;
2112
2113 /* Try to setup for software single stepping over the specified location.
2114 Return true if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119 static bool
2120 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121 {
2122 bool hw_step = true;
2123
2124 if (execution_direction == EXEC_FORWARD
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2128 return hw_step;
2129 }
2130
2131 /* See infrun.h. */
2132
2133 ptid_t
2134 user_visible_resume_ptid (int step)
2135 {
2136 ptid_t resume_ptid;
2137
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
2145 || (scheduler_mode == schedlock_step && step))
2146 {
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
2149 resume_ptid = inferior_ptid;
2150 }
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
2162 resume_ptid = ptid_t (inferior_ptid.pid ());
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
2169
2170 return resume_ptid;
2171 }
2172
2173 /* See infrun.h. */
2174
2175 process_stratum_target *
2176 user_visible_resume_target (ptid_t resume_ptid)
2177 {
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181 }
2182
2183 /* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189 static ptid_t
2190 internal_resume_ptid (int user_step)
2191 {
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200 }
2201
2202 /* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205 static void
2206 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2207 {
2208 struct thread_info *tp = inferior_thread ();
2209
2210 gdb_assert (!tp->stop_requested);
2211
2212 /* Install inferior's terminal modes. */
2213 target_terminal::inferior ();
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
2239 || displaced_step_in_progress (tp->inf))
2240 target_pass_signals ({});
2241 else
2242 target_pass_signals (signal_pass);
2243
2244 target_resume (resume_ptid, step, sig);
2245
2246 target_commit_resume ();
2247
2248 if (target_can_async_p ())
2249 target_async (1);
2250 }
2251
2252 /* Resume the inferior. SIG is the signal to give the inferior
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
2255
2256 static void
2257 resume_1 (enum gdb_signal sig)
2258 {
2259 struct regcache *regcache = get_current_regcache ();
2260 struct gdbarch *gdbarch = regcache->arch ();
2261 struct thread_info *tp = inferior_thread ();
2262 const address_space *aspace = regcache->aspace ();
2263 ptid_t resume_ptid;
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
2272 bool step;
2273
2274 gdb_assert (!tp->stop_requested);
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
2279 infrun_debug_printf
2280 ("thread %s has pending wait "
2281 "status %s (currently_stepping=%d).",
2282 target_pid_to_str (tp->ptid).c_str (),
2283 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2284 currently_stepping (tp));
2285
2286 tp->inf->process_target ()->threads_executing = true;
2287 tp->resumed = true;
2288
2289 /* FIXME: What should we do if we are supposed to resume this
2290 thread with a signal? Maybe we should maintain a queue of
2291 pending signals to deliver. */
2292 if (sig != GDB_SIGNAL_0)
2293 {
2294 warning (_("Couldn't deliver signal %s to %s."),
2295 gdb_signal_to_name (sig),
2296 target_pid_to_str (tp->ptid).c_str ());
2297 }
2298
2299 tp->suspend.stop_signal = GDB_SIGNAL_0;
2300
2301 if (target_can_async_p ())
2302 {
2303 target_async (1);
2304 /* Tell the event loop we have an event to process. */
2305 mark_async_event_handler (infrun_async_inferior_event_token);
2306 }
2307 return;
2308 }
2309
2310 tp->stepped_breakpoint = 0;
2311
2312 /* Depends on stepped_breakpoint. */
2313 step = currently_stepping (tp);
2314
2315 if (current_inferior ()->waiting_for_vfork_done)
2316 {
2317 /* Don't try to single-step a vfork parent that is waiting for
2318 the child to get out of the shared memory region (by exec'ing
2319 or exiting). This is particularly important on software
2320 single-step archs, as the child process would trip on the
2321 software single step breakpoint inserted for the parent
2322 process. Since the parent will not actually execute any
2323 instruction until the child is out of the shared region (such
2324 are vfork's semantics), it is safe to simply continue it.
2325 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2326 the parent, and tell it to `keep_going', which automatically
2327 re-sets it stepping. */
2328 infrun_debug_printf ("resume : clear step");
2329 step = false;
2330 }
2331
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333
2334 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2335 "current thread [%s] at %s",
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
2338 target_pid_to_str (inferior_ptid).c_str (),
2339 paddress (gdbarch, pc));
2340
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2346 {
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
2363 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2364 "deliver signal first");
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
2386 infrun_debug_printf ("skipping permanent breakpoint");
2387 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2388 /* Update pc to reflect the new address from which we will
2389 execute instructions. */
2390 pc = regcache_read_pc (regcache);
2391
2392 if (step)
2393 {
2394 /* We've already advanced the PC, so the stepping part
2395 is done. Now we need to arrange for a trap to be
2396 reported to handle_inferior_event. Set a breakpoint
2397 at the current PC, and run to it. Don't update
2398 prev_pc, because if we end in
2399 switch_back_to_stepped_thread, we want the "expected
2400 thread advanced also" branch to be taken. IOW, we
2401 don't want this thread to step further from PC
2402 (overstep). */
2403 gdb_assert (!step_over_info_valid_p ());
2404 insert_single_step_breakpoint (gdbarch, aspace, pc);
2405 insert_breakpoints ();
2406
2407 resume_ptid = internal_resume_ptid (user_step);
2408 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2409 tp->resumed = true;
2410 return;
2411 }
2412 }
2413 }
2414
2415 /* If we have a breakpoint to step over, make sure to do a single
2416 step only. Same if we have software watchpoints. */
2417 if (tp->control.trap_expected || bpstat_should_step ())
2418 tp->control.may_range_step = 0;
2419
2420 /* If displaced stepping is enabled, step over breakpoints by executing a
2421 copy of the instruction at a different address.
2422
2423 We can't use displaced stepping when we have a signal to deliver;
2424 the comments for displaced_step_prepare explain why. The
2425 comments in the handle_inferior event for dealing with 'random
2426 signals' explain what we do instead.
2427
2428 We can't use displaced stepping when we are waiting for vfork_done
2429 event, displaced stepping breaks the vfork child similarly as single
2430 step software breakpoint. */
2431 if (tp->control.trap_expected
2432 && use_displaced_stepping (tp)
2433 && !step_over_info_valid_p ()
2434 && sig == GDB_SIGNAL_0
2435 && !current_inferior ()->waiting_for_vfork_done)
2436 {
2437 int prepared = displaced_step_prepare (tp);
2438
2439 if (prepared == 0)
2440 {
2441 infrun_debug_printf ("Got placed in step-over queue");
2442
2443 tp->control.trap_expected = 0;
2444 return;
2445 }
2446 else if (prepared < 0)
2447 {
2448 /* Fallback to stepping over the breakpoint in-line. */
2449
2450 if (target_is_non_stop_p ())
2451 stop_all_threads ();
2452
2453 set_step_over_info (regcache->aspace (),
2454 regcache_read_pc (regcache), 0, tp->global_num);
2455
2456 step = maybe_software_singlestep (gdbarch, pc);
2457
2458 insert_breakpoints ();
2459 }
2460 else if (prepared > 0)
2461 {
2462 /* Update pc to reflect the new address from which we will
2463 execute instructions due to displaced stepping. */
2464 pc = regcache_read_pc (get_thread_regcache (tp));
2465
2466 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2467 }
2468 }
2469
2470 /* Do we need to do it the hard way, w/temp breakpoints? */
2471 else if (step)
2472 step = maybe_software_singlestep (gdbarch, pc);
2473
2474 /* Currently, our software single-step implementation leads to different
2475 results than hardware single-stepping in one situation: when stepping
2476 into delivering a signal which has an associated signal handler,
2477 hardware single-step will stop at the first instruction of the handler,
2478 while software single-step will simply skip execution of the handler.
2479
2480 For now, this difference in behavior is accepted since there is no
2481 easy way to actually implement single-stepping into a signal handler
2482 without kernel support.
2483
2484 However, there is one scenario where this difference leads to follow-on
2485 problems: if we're stepping off a breakpoint by removing all breakpoints
2486 and then single-stepping. In this case, the software single-step
2487 behavior means that even if there is a *breakpoint* in the signal
2488 handler, GDB still would not stop.
2489
2490 Fortunately, we can at least fix this particular issue. We detect
2491 here the case where we are about to deliver a signal while software
2492 single-stepping with breakpoints removed. In this situation, we
2493 revert the decisions to remove all breakpoints and insert single-
2494 step breakpoints, and instead we install a step-resume breakpoint
2495 at the current address, deliver the signal without stepping, and
2496 once we arrive back at the step-resume breakpoint, actually step
2497 over the breakpoint we originally wanted to step over. */
2498 if (thread_has_single_step_breakpoints_set (tp)
2499 && sig != GDB_SIGNAL_0
2500 && step_over_info_valid_p ())
2501 {
2502 /* If we have nested signals or a pending signal is delivered
2503 immediately after a handler returns, might already have
2504 a step-resume breakpoint set on the earlier handler. We cannot
2505 set another step-resume breakpoint; just continue on until the
2506 original breakpoint is hit. */
2507 if (tp->control.step_resume_breakpoint == NULL)
2508 {
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 tp->step_after_step_resume_breakpoint = 1;
2511 }
2512
2513 delete_single_step_breakpoints (tp);
2514
2515 clear_step_over_info ();
2516 tp->control.trap_expected = 0;
2517
2518 insert_breakpoints ();
2519 }
2520
2521 /* If STEP is set, it's a request to use hardware stepping
2522 facilities. But in that case, we should never
2523 use singlestep breakpoint. */
2524 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2525
2526 /* Decide the set of threads to ask the target to resume. */
2527 if (tp->control.trap_expected)
2528 {
2529 /* We're allowing a thread to run past a breakpoint it has
2530 hit, either by single-stepping the thread with the breakpoint
2531 removed, or by displaced stepping, with the breakpoint inserted.
2532 In the former case, we need to single-step only this thread,
2533 and keep others stopped, as they can miss this breakpoint if
2534 allowed to run. That's not really a problem for displaced
2535 stepping, but, we still keep other threads stopped, in case
2536 another thread is also stopped for a breakpoint waiting for
2537 its turn in the displaced stepping queue. */
2538 resume_ptid = inferior_ptid;
2539 }
2540 else
2541 resume_ptid = internal_resume_ptid (user_step);
2542
2543 if (execution_direction != EXEC_REVERSE
2544 && step && breakpoint_inserted_here_p (aspace, pc))
2545 {
2546 /* There are two cases where we currently need to step a
2547 breakpoint instruction when we have a signal to deliver:
2548
2549 - See handle_signal_stop where we handle random signals that
2550 could take out us out of the stepping range. Normally, in
2551 that case we end up continuing (instead of stepping) over the
2552 signal handler with a breakpoint at PC, but there are cases
2553 where we should _always_ single-step, even if we have a
2554 step-resume breakpoint, like when a software watchpoint is
2555 set. Assuming single-stepping and delivering a signal at the
2556 same time would takes us to the signal handler, then we could
2557 have removed the breakpoint at PC to step over it. However,
2558 some hardware step targets (like e.g., Mac OS) can't step
2559 into signal handlers, and for those, we need to leave the
2560 breakpoint at PC inserted, as otherwise if the handler
2561 recurses and executes PC again, it'll miss the breakpoint.
2562 So we leave the breakpoint inserted anyway, but we need to
2563 record that we tried to step a breakpoint instruction, so
2564 that adjust_pc_after_break doesn't end up confused.
2565
2566 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2567 in one thread after another thread that was stepping had been
2568 momentarily paused for a step-over. When we re-resume the
2569 stepping thread, it may be resumed from that address with a
2570 breakpoint that hasn't trapped yet. Seen with
2571 gdb.threads/non-stop-fair-events.exp, on targets that don't
2572 do displaced stepping. */
2573
2574 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2575 target_pid_to_str (tp->ptid).c_str ());
2576
2577 tp->stepped_breakpoint = 1;
2578
2579 /* Most targets can step a breakpoint instruction, thus
2580 executing it normally. But if this one cannot, just
2581 continue and we will hit it anyway. */
2582 if (gdbarch_cannot_step_breakpoint (gdbarch))
2583 step = false;
2584 }
2585
2586 if (debug_displaced
2587 && tp->control.trap_expected
2588 && use_displaced_stepping (tp)
2589 && !step_over_info_valid_p ())
2590 {
2591 struct regcache *resume_regcache = get_thread_regcache (tp);
2592 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2593 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2594 gdb_byte buf[4];
2595
2596 read_memory (actual_pc, buf, sizeof (buf));
2597 displaced_debug_printf ("run %s: %s",
2598 paddress (resume_gdbarch, actual_pc),
2599 displaced_step_dump_bytes
2600 (buf, sizeof (buf)).c_str ());
2601 }
2602
2603 if (tp->control.may_range_step)
2604 {
2605 /* If we're resuming a thread with the PC out of the step
2606 range, then we're doing some nested/finer run control
2607 operation, like stepping the thread out of the dynamic
2608 linker or the displaced stepping scratch pad. We
2609 shouldn't have allowed a range step then. */
2610 gdb_assert (pc_in_thread_step_range (pc, tp));
2611 }
2612
2613 do_target_resume (resume_ptid, step, sig);
2614 tp->resumed = true;
2615 }
2616
2617 /* Resume the inferior. SIG is the signal to give the inferior
2618 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2619 rolls back state on error. */
2620
2621 static void
2622 resume (gdb_signal sig)
2623 {
2624 try
2625 {
2626 resume_1 (sig);
2627 }
2628 catch (const gdb_exception &ex)
2629 {
2630 /* If resuming is being aborted for any reason, delete any
2631 single-step breakpoint resume_1 may have created, to avoid
2632 confusing the following resumption, and to avoid leaving
2633 single-step breakpoints perturbing other threads, in case
2634 we're running in non-stop mode. */
2635 if (inferior_ptid != null_ptid)
2636 delete_single_step_breakpoints (inferior_thread ());
2637 throw;
2638 }
2639 }
2640
2641 \f
2642 /* Proceeding. */
2643
2644 /* See infrun.h. */
2645
2646 /* Counter that tracks number of user visible stops. This can be used
2647 to tell whether a command has proceeded the inferior past the
2648 current location. This allows e.g., inferior function calls in
2649 breakpoint commands to not interrupt the command list. When the
2650 call finishes successfully, the inferior is standing at the same
2651 breakpoint as if nothing happened (and so we don't call
2652 normal_stop). */
2653 static ULONGEST current_stop_id;
2654
2655 /* See infrun.h. */
2656
2657 ULONGEST
2658 get_stop_id (void)
2659 {
2660 return current_stop_id;
2661 }
2662
2663 /* Called when we report a user visible stop. */
2664
2665 static void
2666 new_stop_id (void)
2667 {
2668 current_stop_id++;
2669 }
2670
2671 /* Clear out all variables saying what to do when inferior is continued.
2672 First do this, then set the ones you want, then call `proceed'. */
2673
2674 static void
2675 clear_proceed_status_thread (struct thread_info *tp)
2676 {
2677 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2678
2679 /* If we're starting a new sequence, then the previous finished
2680 single-step is no longer relevant. */
2681 if (tp->suspend.waitstatus_pending_p)
2682 {
2683 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2684 {
2685 infrun_debug_printf ("pending event of %s was a finished step. "
2686 "Discarding.",
2687 target_pid_to_str (tp->ptid).c_str ());
2688
2689 tp->suspend.waitstatus_pending_p = 0;
2690 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2691 }
2692 else
2693 {
2694 infrun_debug_printf
2695 ("thread %s has pending wait status %s (currently_stepping=%d).",
2696 target_pid_to_str (tp->ptid).c_str (),
2697 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2698 currently_stepping (tp));
2699 }
2700 }
2701
2702 /* If this signal should not be seen by program, give it zero.
2703 Used for debugging signals. */
2704 if (!signal_pass_state (tp->suspend.stop_signal))
2705 tp->suspend.stop_signal = GDB_SIGNAL_0;
2706
2707 delete tp->thread_fsm;
2708 tp->thread_fsm = NULL;
2709
2710 tp->control.trap_expected = 0;
2711 tp->control.step_range_start = 0;
2712 tp->control.step_range_end = 0;
2713 tp->control.may_range_step = 0;
2714 tp->control.step_frame_id = null_frame_id;
2715 tp->control.step_stack_frame_id = null_frame_id;
2716 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2717 tp->control.step_start_function = NULL;
2718 tp->stop_requested = 0;
2719
2720 tp->control.stop_step = 0;
2721
2722 tp->control.proceed_to_finish = 0;
2723
2724 tp->control.stepping_command = 0;
2725
2726 /* Discard any remaining commands or status from previous stop. */
2727 bpstat_clear (&tp->control.stop_bpstat);
2728 }
2729
2730 void
2731 clear_proceed_status (int step)
2732 {
2733 /* With scheduler-locking replay, stop replaying other threads if we're
2734 not replaying the user-visible resume ptid.
2735
2736 This is a convenience feature to not require the user to explicitly
2737 stop replaying the other threads. We're assuming that the user's
2738 intent is to resume tracing the recorded process. */
2739 if (!non_stop && scheduler_mode == schedlock_replay
2740 && target_record_is_replaying (minus_one_ptid)
2741 && !target_record_will_replay (user_visible_resume_ptid (step),
2742 execution_direction))
2743 target_record_stop_replaying ();
2744
2745 if (!non_stop && inferior_ptid != null_ptid)
2746 {
2747 ptid_t resume_ptid = user_visible_resume_ptid (step);
2748 process_stratum_target *resume_target
2749 = user_visible_resume_target (resume_ptid);
2750
2751 /* In all-stop mode, delete the per-thread status of all threads
2752 we're about to resume, implicitly and explicitly. */
2753 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2754 clear_proceed_status_thread (tp);
2755 }
2756
2757 if (inferior_ptid != null_ptid)
2758 {
2759 struct inferior *inferior;
2760
2761 if (non_stop)
2762 {
2763 /* If in non-stop mode, only delete the per-thread status of
2764 the current thread. */
2765 clear_proceed_status_thread (inferior_thread ());
2766 }
2767
2768 inferior = current_inferior ();
2769 inferior->control.stop_soon = NO_STOP_QUIETLY;
2770 }
2771
2772 gdb::observers::about_to_proceed.notify ();
2773 }
2774
2775 /* Returns true if TP is still stopped at a breakpoint that needs
2776 stepping-over in order to make progress. If the breakpoint is gone
2777 meanwhile, we can skip the whole step-over dance. */
2778
2779 static bool
2780 thread_still_needs_step_over_bp (struct thread_info *tp)
2781 {
2782 if (tp->stepping_over_breakpoint)
2783 {
2784 struct regcache *regcache = get_thread_regcache (tp);
2785
2786 if (breakpoint_here_p (regcache->aspace (),
2787 regcache_read_pc (regcache))
2788 == ordinary_breakpoint_here)
2789 return true;
2790
2791 tp->stepping_over_breakpoint = 0;
2792 }
2793
2794 return false;
2795 }
2796
2797 /* Check whether thread TP still needs to start a step-over in order
2798 to make progress when resumed. Returns an bitwise or of enum
2799 step_over_what bits, indicating what needs to be stepped over. */
2800
2801 static step_over_what
2802 thread_still_needs_step_over (struct thread_info *tp)
2803 {
2804 step_over_what what = 0;
2805
2806 if (thread_still_needs_step_over_bp (tp))
2807 what |= STEP_OVER_BREAKPOINT;
2808
2809 if (tp->stepping_over_watchpoint
2810 && !target_have_steppable_watchpoint ())
2811 what |= STEP_OVER_WATCHPOINT;
2812
2813 return what;
2814 }
2815
2816 /* Returns true if scheduler locking applies. STEP indicates whether
2817 we're about to do a step/next-like command to a thread. */
2818
2819 static bool
2820 schedlock_applies (struct thread_info *tp)
2821 {
2822 return (scheduler_mode == schedlock_on
2823 || (scheduler_mode == schedlock_step
2824 && tp->control.stepping_command)
2825 || (scheduler_mode == schedlock_replay
2826 && target_record_will_replay (minus_one_ptid,
2827 execution_direction)));
2828 }
2829
2830 /* Calls target_commit_resume on all targets. */
2831
2832 static void
2833 commit_resume_all_targets ()
2834 {
2835 scoped_restore_current_thread restore_thread;
2836
2837 /* Map between process_target and a representative inferior. This
2838 is to avoid committing a resume in the same target more than
2839 once. Resumptions must be idempotent, so this is an
2840 optimization. */
2841 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2842
2843 for (inferior *inf : all_non_exited_inferiors ())
2844 if (inf->has_execution ())
2845 conn_inf[inf->process_target ()] = inf;
2846
2847 for (const auto &ci : conn_inf)
2848 {
2849 inferior *inf = ci.second;
2850 switch_to_inferior_no_thread (inf);
2851 target_commit_resume ();
2852 }
2853 }
2854
2855 /* Check that all the targets we're about to resume are in non-stop
2856 mode. Ideally, we'd only care whether all targets support
2857 target-async, but we're not there yet. E.g., stop_all_threads
2858 doesn't know how to handle all-stop targets. Also, the remote
2859 protocol in all-stop mode is synchronous, irrespective of
2860 target-async, which means that things like a breakpoint re-set
2861 triggered by one target would try to read memory from all targets
2862 and fail. */
2863
2864 static void
2865 check_multi_target_resumption (process_stratum_target *resume_target)
2866 {
2867 if (!non_stop && resume_target == nullptr)
2868 {
2869 scoped_restore_current_thread restore_thread;
2870
2871 /* This is used to track whether we're resuming more than one
2872 target. */
2873 process_stratum_target *first_connection = nullptr;
2874
2875 /* The first inferior we see with a target that does not work in
2876 always-non-stop mode. */
2877 inferior *first_not_non_stop = nullptr;
2878
2879 for (inferior *inf : all_non_exited_inferiors (resume_target))
2880 {
2881 switch_to_inferior_no_thread (inf);
2882
2883 if (!target_has_execution ())
2884 continue;
2885
2886 process_stratum_target *proc_target
2887 = current_inferior ()->process_target();
2888
2889 if (!target_is_non_stop_p ())
2890 first_not_non_stop = inf;
2891
2892 if (first_connection == nullptr)
2893 first_connection = proc_target;
2894 else if (first_connection != proc_target
2895 && first_not_non_stop != nullptr)
2896 {
2897 switch_to_inferior_no_thread (first_not_non_stop);
2898
2899 proc_target = current_inferior ()->process_target();
2900
2901 error (_("Connection %d (%s) does not support "
2902 "multi-target resumption."),
2903 proc_target->connection_number,
2904 make_target_connection_string (proc_target).c_str ());
2905 }
2906 }
2907 }
2908 }
2909
2910 /* Basic routine for continuing the program in various fashions.
2911
2912 ADDR is the address to resume at, or -1 for resume where stopped.
2913 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2914 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2915
2916 You should call clear_proceed_status before calling proceed. */
2917
2918 void
2919 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2920 {
2921 struct regcache *regcache;
2922 struct gdbarch *gdbarch;
2923 CORE_ADDR pc;
2924 struct execution_control_state ecss;
2925 struct execution_control_state *ecs = &ecss;
2926 bool started;
2927
2928 /* If we're stopped at a fork/vfork, follow the branch set by the
2929 "set follow-fork-mode" command; otherwise, we'll just proceed
2930 resuming the current thread. */
2931 if (!follow_fork ())
2932 {
2933 /* The target for some reason decided not to resume. */
2934 normal_stop ();
2935 if (target_can_async_p ())
2936 inferior_event_handler (INF_EXEC_COMPLETE);
2937 return;
2938 }
2939
2940 /* We'll update this if & when we switch to a new thread. */
2941 previous_inferior_ptid = inferior_ptid;
2942
2943 regcache = get_current_regcache ();
2944 gdbarch = regcache->arch ();
2945 const address_space *aspace = regcache->aspace ();
2946
2947 pc = regcache_read_pc_protected (regcache);
2948
2949 thread_info *cur_thr = inferior_thread ();
2950
2951 /* Fill in with reasonable starting values. */
2952 init_thread_stepping_state (cur_thr);
2953
2954 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2955
2956 ptid_t resume_ptid
2957 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2958 process_stratum_target *resume_target
2959 = user_visible_resume_target (resume_ptid);
2960
2961 check_multi_target_resumption (resume_target);
2962
2963 if (addr == (CORE_ADDR) -1)
2964 {
2965 if (pc == cur_thr->suspend.stop_pc
2966 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2967 && execution_direction != EXEC_REVERSE)
2968 /* There is a breakpoint at the address we will resume at,
2969 step one instruction before inserting breakpoints so that
2970 we do not stop right away (and report a second hit at this
2971 breakpoint).
2972
2973 Note, we don't do this in reverse, because we won't
2974 actually be executing the breakpoint insn anyway.
2975 We'll be (un-)executing the previous instruction. */
2976 cur_thr->stepping_over_breakpoint = 1;
2977 else if (gdbarch_single_step_through_delay_p (gdbarch)
2978 && gdbarch_single_step_through_delay (gdbarch,
2979 get_current_frame ()))
2980 /* We stepped onto an instruction that needs to be stepped
2981 again before re-inserting the breakpoint, do so. */
2982 cur_thr->stepping_over_breakpoint = 1;
2983 }
2984 else
2985 {
2986 regcache_write_pc (regcache, addr);
2987 }
2988
2989 if (siggnal != GDB_SIGNAL_DEFAULT)
2990 cur_thr->suspend.stop_signal = siggnal;
2991
2992 /* If an exception is thrown from this point on, make sure to
2993 propagate GDB's knowledge of the executing state to the
2994 frontend/user running state. */
2995 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2996
2997 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2998 threads (e.g., we might need to set threads stepping over
2999 breakpoints first), from the user/frontend's point of view, all
3000 threads in RESUME_PTID are now running. Unless we're calling an
3001 inferior function, as in that case we pretend the inferior
3002 doesn't run at all. */
3003 if (!cur_thr->control.in_infcall)
3004 set_running (resume_target, resume_ptid, true);
3005
3006 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3007 gdb_signal_to_symbol_string (siggnal));
3008
3009 annotate_starting ();
3010
3011 /* Make sure that output from GDB appears before output from the
3012 inferior. */
3013 gdb_flush (gdb_stdout);
3014
3015 /* Since we've marked the inferior running, give it the terminal. A
3016 QUIT/Ctrl-C from here on is forwarded to the target (which can
3017 still detect attempts to unblock a stuck connection with repeated
3018 Ctrl-C from within target_pass_ctrlc). */
3019 target_terminal::inferior ();
3020
3021 /* In a multi-threaded task we may select another thread and
3022 then continue or step.
3023
3024 But if a thread that we're resuming had stopped at a breakpoint,
3025 it will immediately cause another breakpoint stop without any
3026 execution (i.e. it will report a breakpoint hit incorrectly). So
3027 we must step over it first.
3028
3029 Look for threads other than the current (TP) that reported a
3030 breakpoint hit and haven't been resumed yet since. */
3031
3032 /* If scheduler locking applies, we can avoid iterating over all
3033 threads. */
3034 if (!non_stop && !schedlock_applies (cur_thr))
3035 {
3036 for (thread_info *tp : all_non_exited_threads (resume_target,
3037 resume_ptid))
3038 {
3039 switch_to_thread_no_regs (tp);
3040
3041 /* Ignore the current thread here. It's handled
3042 afterwards. */
3043 if (tp == cur_thr)
3044 continue;
3045
3046 if (!thread_still_needs_step_over (tp))
3047 continue;
3048
3049 gdb_assert (!thread_is_in_step_over_chain (tp));
3050
3051 infrun_debug_printf ("need to step-over [%s] first",
3052 target_pid_to_str (tp->ptid).c_str ());
3053
3054 thread_step_over_chain_enqueue (tp);
3055 }
3056
3057 switch_to_thread (cur_thr);
3058 }
3059
3060 /* Enqueue the current thread last, so that we move all other
3061 threads over their breakpoints first. */
3062 if (cur_thr->stepping_over_breakpoint)
3063 thread_step_over_chain_enqueue (cur_thr);
3064
3065 /* If the thread isn't started, we'll still need to set its prev_pc,
3066 so that switch_back_to_stepped_thread knows the thread hasn't
3067 advanced. Must do this before resuming any thread, as in
3068 all-stop/remote, once we resume we can't send any other packet
3069 until the target stops again. */
3070 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3071
3072 {
3073 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3074
3075 started = start_step_over ();
3076
3077 if (step_over_info_valid_p ())
3078 {
3079 /* Either this thread started a new in-line step over, or some
3080 other thread was already doing one. In either case, don't
3081 resume anything else until the step-over is finished. */
3082 }
3083 else if (started && !target_is_non_stop_p ())
3084 {
3085 /* A new displaced stepping sequence was started. In all-stop,
3086 we can't talk to the target anymore until it next stops. */
3087 }
3088 else if (!non_stop && target_is_non_stop_p ())
3089 {
3090 /* In all-stop, but the target is always in non-stop mode.
3091 Start all other threads that are implicitly resumed too. */
3092 for (thread_info *tp : all_non_exited_threads (resume_target,
3093 resume_ptid))
3094 {
3095 switch_to_thread_no_regs (tp);
3096
3097 if (!tp->inf->has_execution ())
3098 {
3099 infrun_debug_printf ("[%s] target has no execution",
3100 target_pid_to_str (tp->ptid).c_str ());
3101 continue;
3102 }
3103
3104 if (tp->resumed)
3105 {
3106 infrun_debug_printf ("[%s] resumed",
3107 target_pid_to_str (tp->ptid).c_str ());
3108 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3109 continue;
3110 }
3111
3112 if (thread_is_in_step_over_chain (tp))
3113 {
3114 infrun_debug_printf ("[%s] needs step-over",
3115 target_pid_to_str (tp->ptid).c_str ());
3116 continue;
3117 }
3118
3119 infrun_debug_printf ("resuming %s",
3120 target_pid_to_str (tp->ptid).c_str ());
3121
3122 reset_ecs (ecs, tp);
3123 switch_to_thread (tp);
3124 keep_going_pass_signal (ecs);
3125 if (!ecs->wait_some_more)
3126 error (_("Command aborted."));
3127 }
3128 }
3129 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3130 {
3131 /* The thread wasn't started, and isn't queued, run it now. */
3132 reset_ecs (ecs, cur_thr);
3133 switch_to_thread (cur_thr);
3134 keep_going_pass_signal (ecs);
3135 if (!ecs->wait_some_more)
3136 error (_("Command aborted."));
3137 }
3138 }
3139
3140 commit_resume_all_targets ();
3141
3142 finish_state.release ();
3143
3144 /* If we've switched threads above, switch back to the previously
3145 current thread. We don't want the user to see a different
3146 selected thread. */
3147 switch_to_thread (cur_thr);
3148
3149 /* Tell the event loop to wait for it to stop. If the target
3150 supports asynchronous execution, it'll do this from within
3151 target_resume. */
3152 if (!target_can_async_p ())
3153 mark_async_event_handler (infrun_async_inferior_event_token);
3154 }
3155 \f
3156
3157 /* Start remote-debugging of a machine over a serial link. */
3158
3159 void
3160 start_remote (int from_tty)
3161 {
3162 inferior *inf = current_inferior ();
3163 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3164
3165 /* Always go on waiting for the target, regardless of the mode. */
3166 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3167 indicate to wait_for_inferior that a target should timeout if
3168 nothing is returned (instead of just blocking). Because of this,
3169 targets expecting an immediate response need to, internally, set
3170 things up so that the target_wait() is forced to eventually
3171 timeout. */
3172 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3173 differentiate to its caller what the state of the target is after
3174 the initial open has been performed. Here we're assuming that
3175 the target has stopped. It should be possible to eventually have
3176 target_open() return to the caller an indication that the target
3177 is currently running and GDB state should be set to the same as
3178 for an async run. */
3179 wait_for_inferior (inf);
3180
3181 /* Now that the inferior has stopped, do any bookkeeping like
3182 loading shared libraries. We want to do this before normal_stop,
3183 so that the displayed frame is up to date. */
3184 post_create_inferior (from_tty);
3185
3186 normal_stop ();
3187 }
3188
3189 /* Initialize static vars when a new inferior begins. */
3190
3191 void
3192 init_wait_for_inferior (void)
3193 {
3194 /* These are meaningless until the first time through wait_for_inferior. */
3195
3196 breakpoint_init_inferior (inf_starting);
3197
3198 clear_proceed_status (0);
3199
3200 nullify_last_target_wait_ptid ();
3201
3202 previous_inferior_ptid = inferior_ptid;
3203 }
3204
3205 \f
3206
3207 static void handle_inferior_event (struct execution_control_state *ecs);
3208
3209 static void handle_step_into_function (struct gdbarch *gdbarch,
3210 struct execution_control_state *ecs);
3211 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3212 struct execution_control_state *ecs);
3213 static void handle_signal_stop (struct execution_control_state *ecs);
3214 static void check_exception_resume (struct execution_control_state *,
3215 struct frame_info *);
3216
3217 static void end_stepping_range (struct execution_control_state *ecs);
3218 static void stop_waiting (struct execution_control_state *ecs);
3219 static void keep_going (struct execution_control_state *ecs);
3220 static void process_event_stop_test (struct execution_control_state *ecs);
3221 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3222
3223 /* This function is attached as a "thread_stop_requested" observer.
3224 Cleanup local state that assumed the PTID was to be resumed, and
3225 report the stop to the frontend. */
3226
3227 static void
3228 infrun_thread_stop_requested (ptid_t ptid)
3229 {
3230 process_stratum_target *curr_target = current_inferior ()->process_target ();
3231
3232 /* PTID was requested to stop. If the thread was already stopped,
3233 but the user/frontend doesn't know about that yet (e.g., the
3234 thread had been temporarily paused for some step-over), set up
3235 for reporting the stop now. */
3236 for (thread_info *tp : all_threads (curr_target, ptid))
3237 {
3238 if (tp->state != THREAD_RUNNING)
3239 continue;
3240 if (tp->executing)
3241 continue;
3242
3243 /* Remove matching threads from the step-over queue, so
3244 start_step_over doesn't try to resume them
3245 automatically. */
3246 if (thread_is_in_step_over_chain (tp))
3247 thread_step_over_chain_remove (tp);
3248
3249 /* If the thread is stopped, but the user/frontend doesn't
3250 know about that yet, queue a pending event, as if the
3251 thread had just stopped now. Unless the thread already had
3252 a pending event. */
3253 if (!tp->suspend.waitstatus_pending_p)
3254 {
3255 tp->suspend.waitstatus_pending_p = 1;
3256 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3257 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3258 }
3259
3260 /* Clear the inline-frame state, since we're re-processing the
3261 stop. */
3262 clear_inline_frame_state (tp);
3263
3264 /* If this thread was paused because some other thread was
3265 doing an inline-step over, let that finish first. Once
3266 that happens, we'll restart all threads and consume pending
3267 stop events then. */
3268 if (step_over_info_valid_p ())
3269 continue;
3270
3271 /* Otherwise we can process the (new) pending event now. Set
3272 it so this pending event is considered by
3273 do_target_wait. */
3274 tp->resumed = true;
3275 }
3276 }
3277
3278 static void
3279 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3280 {
3281 if (target_last_proc_target == tp->inf->process_target ()
3282 && target_last_wait_ptid == tp->ptid)
3283 nullify_last_target_wait_ptid ();
3284 }
3285
3286 /* Delete the step resume, single-step and longjmp/exception resume
3287 breakpoints of TP. */
3288
3289 static void
3290 delete_thread_infrun_breakpoints (struct thread_info *tp)
3291 {
3292 delete_step_resume_breakpoint (tp);
3293 delete_exception_resume_breakpoint (tp);
3294 delete_single_step_breakpoints (tp);
3295 }
3296
3297 /* If the target still has execution, call FUNC for each thread that
3298 just stopped. In all-stop, that's all the non-exited threads; in
3299 non-stop, that's the current thread, only. */
3300
3301 typedef void (*for_each_just_stopped_thread_callback_func)
3302 (struct thread_info *tp);
3303
3304 static void
3305 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3306 {
3307 if (!target_has_execution () || inferior_ptid == null_ptid)
3308 return;
3309
3310 if (target_is_non_stop_p ())
3311 {
3312 /* If in non-stop mode, only the current thread stopped. */
3313 func (inferior_thread ());
3314 }
3315 else
3316 {
3317 /* In all-stop mode, all threads have stopped. */
3318 for (thread_info *tp : all_non_exited_threads ())
3319 func (tp);
3320 }
3321 }
3322
3323 /* Delete the step resume and longjmp/exception resume breakpoints of
3324 the threads that just stopped. */
3325
3326 static void
3327 delete_just_stopped_threads_infrun_breakpoints (void)
3328 {
3329 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3330 }
3331
3332 /* Delete the single-step breakpoints of the threads that just
3333 stopped. */
3334
3335 static void
3336 delete_just_stopped_threads_single_step_breakpoints (void)
3337 {
3338 for_each_just_stopped_thread (delete_single_step_breakpoints);
3339 }
3340
3341 /* See infrun.h. */
3342
3343 void
3344 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3345 const struct target_waitstatus *ws)
3346 {
3347 std::string status_string = target_waitstatus_to_string (ws);
3348 string_file stb;
3349
3350 /* The text is split over several lines because it was getting too long.
3351 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3352 output as a unit; we want only one timestamp printed if debug_timestamp
3353 is set. */
3354
3355 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3356 waiton_ptid.pid (),
3357 waiton_ptid.lwp (),
3358 waiton_ptid.tid ());
3359 if (waiton_ptid.pid () != -1)
3360 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3361 stb.printf (", status) =\n");
3362 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3363 result_ptid.pid (),
3364 result_ptid.lwp (),
3365 result_ptid.tid (),
3366 target_pid_to_str (result_ptid).c_str ());
3367 stb.printf ("[infrun] %s\n", status_string.c_str ());
3368
3369 /* This uses %s in part to handle %'s in the text, but also to avoid
3370 a gcc error: the format attribute requires a string literal. */
3371 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3372 }
3373
3374 /* Select a thread at random, out of those which are resumed and have
3375 had events. */
3376
3377 static struct thread_info *
3378 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3379 {
3380 int num_events = 0;
3381
3382 auto has_event = [&] (thread_info *tp)
3383 {
3384 return (tp->ptid.matches (waiton_ptid)
3385 && tp->resumed
3386 && tp->suspend.waitstatus_pending_p);
3387 };
3388
3389 /* First see how many events we have. Count only resumed threads
3390 that have an event pending. */
3391 for (thread_info *tp : inf->non_exited_threads ())
3392 if (has_event (tp))
3393 num_events++;
3394
3395 if (num_events == 0)
3396 return NULL;
3397
3398 /* Now randomly pick a thread out of those that have had events. */
3399 int random_selector = (int) ((num_events * (double) rand ())
3400 / (RAND_MAX + 1.0));
3401
3402 if (num_events > 1)
3403 infrun_debug_printf ("Found %d events, selecting #%d",
3404 num_events, random_selector);
3405
3406 /* Select the Nth thread that has had an event. */
3407 for (thread_info *tp : inf->non_exited_threads ())
3408 if (has_event (tp))
3409 if (random_selector-- == 0)
3410 return tp;
3411
3412 gdb_assert_not_reached ("event thread not found");
3413 }
3414
3415 /* Wrapper for target_wait that first checks whether threads have
3416 pending statuses to report before actually asking the target for
3417 more events. INF is the inferior we're using to call target_wait
3418 on. */
3419
3420 static ptid_t
3421 do_target_wait_1 (inferior *inf, ptid_t ptid,
3422 target_waitstatus *status, target_wait_flags options)
3423 {
3424 ptid_t event_ptid;
3425 struct thread_info *tp;
3426
3427 /* We know that we are looking for an event in the target of inferior
3428 INF, but we don't know which thread the event might come from. As
3429 such we want to make sure that INFERIOR_PTID is reset so that none of
3430 the wait code relies on it - doing so is always a mistake. */
3431 switch_to_inferior_no_thread (inf);
3432
3433 /* First check if there is a resumed thread with a wait status
3434 pending. */
3435 if (ptid == minus_one_ptid || ptid.is_pid ())
3436 {
3437 tp = random_pending_event_thread (inf, ptid);
3438 }
3439 else
3440 {
3441 infrun_debug_printf ("Waiting for specific thread %s.",
3442 target_pid_to_str (ptid).c_str ());
3443
3444 /* We have a specific thread to check. */
3445 tp = find_thread_ptid (inf, ptid);
3446 gdb_assert (tp != NULL);
3447 if (!tp->suspend.waitstatus_pending_p)
3448 tp = NULL;
3449 }
3450
3451 if (tp != NULL
3452 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3453 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3454 {
3455 struct regcache *regcache = get_thread_regcache (tp);
3456 struct gdbarch *gdbarch = regcache->arch ();
3457 CORE_ADDR pc;
3458 int discard = 0;
3459
3460 pc = regcache_read_pc (regcache);
3461
3462 if (pc != tp->suspend.stop_pc)
3463 {
3464 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3465 target_pid_to_str (tp->ptid).c_str (),
3466 paddress (gdbarch, tp->suspend.stop_pc),
3467 paddress (gdbarch, pc));
3468 discard = 1;
3469 }
3470 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3471 {
3472 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3473 target_pid_to_str (tp->ptid).c_str (),
3474 paddress (gdbarch, pc));
3475
3476 discard = 1;
3477 }
3478
3479 if (discard)
3480 {
3481 infrun_debug_printf ("pending event of %s cancelled.",
3482 target_pid_to_str (tp->ptid).c_str ());
3483
3484 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3485 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3486 }
3487 }
3488
3489 if (tp != NULL)
3490 {
3491 infrun_debug_printf ("Using pending wait status %s for %s.",
3492 target_waitstatus_to_string
3493 (&tp->suspend.waitstatus).c_str (),
3494 target_pid_to_str (tp->ptid).c_str ());
3495
3496 /* Now that we've selected our final event LWP, un-adjust its PC
3497 if it was a software breakpoint (and the target doesn't
3498 always adjust the PC itself). */
3499 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3500 && !target_supports_stopped_by_sw_breakpoint ())
3501 {
3502 struct regcache *regcache;
3503 struct gdbarch *gdbarch;
3504 int decr_pc;
3505
3506 regcache = get_thread_regcache (tp);
3507 gdbarch = regcache->arch ();
3508
3509 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3510 if (decr_pc != 0)
3511 {
3512 CORE_ADDR pc;
3513
3514 pc = regcache_read_pc (regcache);
3515 regcache_write_pc (regcache, pc + decr_pc);
3516 }
3517 }
3518
3519 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3520 *status = tp->suspend.waitstatus;
3521 tp->suspend.waitstatus_pending_p = 0;
3522
3523 /* Wake up the event loop again, until all pending events are
3524 processed. */
3525 if (target_is_async_p ())
3526 mark_async_event_handler (infrun_async_inferior_event_token);
3527 return tp->ptid;
3528 }
3529
3530 /* But if we don't find one, we'll have to wait. */
3531
3532 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3533 a blocking wait. */
3534 if (!target_can_async_p ())
3535 options &= ~TARGET_WNOHANG;
3536
3537 if (deprecated_target_wait_hook)
3538 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3539 else
3540 event_ptid = target_wait (ptid, status, options);
3541
3542 return event_ptid;
3543 }
3544
3545 /* Wrapper for target_wait that first checks whether threads have
3546 pending statuses to report before actually asking the target for
3547 more events. Polls for events from all inferiors/targets. */
3548
3549 static bool
3550 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3551 target_wait_flags options)
3552 {
3553 int num_inferiors = 0;
3554 int random_selector;
3555
3556 /* For fairness, we pick the first inferior/target to poll at random
3557 out of all inferiors that may report events, and then continue
3558 polling the rest of the inferior list starting from that one in a
3559 circular fashion until the whole list is polled once. */
3560
3561 auto inferior_matches = [&wait_ptid] (inferior *inf)
3562 {
3563 return (inf->process_target () != NULL
3564 && ptid_t (inf->pid).matches (wait_ptid));
3565 };
3566
3567 /* First see how many matching inferiors we have. */
3568 for (inferior *inf : all_inferiors ())
3569 if (inferior_matches (inf))
3570 num_inferiors++;
3571
3572 if (num_inferiors == 0)
3573 {
3574 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3575 return false;
3576 }
3577
3578 /* Now randomly pick an inferior out of those that matched. */
3579 random_selector = (int)
3580 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3581
3582 if (num_inferiors > 1)
3583 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3584 num_inferiors, random_selector);
3585
3586 /* Select the Nth inferior that matched. */
3587
3588 inferior *selected = nullptr;
3589
3590 for (inferior *inf : all_inferiors ())
3591 if (inferior_matches (inf))
3592 if (random_selector-- == 0)
3593 {
3594 selected = inf;
3595 break;
3596 }
3597
3598 /* Now poll for events out of each of the matching inferior's
3599 targets, starting from the selected one. */
3600
3601 auto do_wait = [&] (inferior *inf)
3602 {
3603 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3604 ecs->target = inf->process_target ();
3605 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3606 };
3607
3608 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3609 here spuriously after the target is all stopped and we've already
3610 reported the stop to the user, polling for events. */
3611 scoped_restore_current_thread restore_thread;
3612
3613 int inf_num = selected->num;
3614 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3615 if (inferior_matches (inf))
3616 if (do_wait (inf))
3617 return true;
3618
3619 for (inferior *inf = inferior_list;
3620 inf != NULL && inf->num < inf_num;
3621 inf = inf->next)
3622 if (inferior_matches (inf))
3623 if (do_wait (inf))
3624 return true;
3625
3626 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3627 return false;
3628 }
3629
3630 /* Prepare and stabilize the inferior for detaching it. E.g.,
3631 detaching while a thread is displaced stepping is a recipe for
3632 crashing it, as nothing would readjust the PC out of the scratch
3633 pad. */
3634
3635 void
3636 prepare_for_detach (void)
3637 {
3638 struct inferior *inf = current_inferior ();
3639 ptid_t pid_ptid = ptid_t (inf->pid);
3640
3641 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3642
3643 /* Is any thread of this process displaced stepping? If not,
3644 there's nothing else to do. */
3645 if (displaced->step_thread == nullptr)
3646 return;
3647
3648 infrun_debug_printf ("displaced-stepping in-process while detaching");
3649
3650 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3651
3652 while (displaced->step_thread != nullptr)
3653 {
3654 struct execution_control_state ecss;
3655 struct execution_control_state *ecs;
3656
3657 ecs = &ecss;
3658 memset (ecs, 0, sizeof (*ecs));
3659
3660 overlay_cache_invalid = 1;
3661 /* Flush target cache before starting to handle each event.
3662 Target was running and cache could be stale. This is just a
3663 heuristic. Running threads may modify target memory, but we
3664 don't get any event. */
3665 target_dcache_invalidate ();
3666
3667 do_target_wait (pid_ptid, ecs, 0);
3668
3669 if (debug_infrun)
3670 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3671
3672 /* If an error happens while handling the event, propagate GDB's
3673 knowledge of the executing state to the frontend/user running
3674 state. */
3675 scoped_finish_thread_state finish_state (inf->process_target (),
3676 minus_one_ptid);
3677
3678 /* Now figure out what to do with the result of the result. */
3679 handle_inferior_event (ecs);
3680
3681 /* No error, don't finish the state yet. */
3682 finish_state.release ();
3683
3684 /* Breakpoints and watchpoints are not installed on the target
3685 at this point, and signals are passed directly to the
3686 inferior, so this must mean the process is gone. */
3687 if (!ecs->wait_some_more)
3688 {
3689 restore_detaching.release ();
3690 error (_("Program exited while detaching"));
3691 }
3692 }
3693
3694 restore_detaching.release ();
3695 }
3696
3697 /* Wait for control to return from inferior to debugger.
3698
3699 If inferior gets a signal, we may decide to start it up again
3700 instead of returning. That is why there is a loop in this function.
3701 When this function actually returns it means the inferior
3702 should be left stopped and GDB should read more commands. */
3703
3704 static void
3705 wait_for_inferior (inferior *inf)
3706 {
3707 infrun_debug_printf ("wait_for_inferior ()");
3708
3709 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3710
3711 /* If an error happens while handling the event, propagate GDB's
3712 knowledge of the executing state to the frontend/user running
3713 state. */
3714 scoped_finish_thread_state finish_state
3715 (inf->process_target (), minus_one_ptid);
3716
3717 while (1)
3718 {
3719 struct execution_control_state ecss;
3720 struct execution_control_state *ecs = &ecss;
3721
3722 memset (ecs, 0, sizeof (*ecs));
3723
3724 overlay_cache_invalid = 1;
3725
3726 /* Flush target cache before starting to handle each event.
3727 Target was running and cache could be stale. This is just a
3728 heuristic. Running threads may modify target memory, but we
3729 don't get any event. */
3730 target_dcache_invalidate ();
3731
3732 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3733 ecs->target = inf->process_target ();
3734
3735 if (debug_infrun)
3736 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3737
3738 /* Now figure out what to do with the result of the result. */
3739 handle_inferior_event (ecs);
3740
3741 if (!ecs->wait_some_more)
3742 break;
3743 }
3744
3745 /* No error, don't finish the state yet. */
3746 finish_state.release ();
3747 }
3748
3749 /* Cleanup that reinstalls the readline callback handler, if the
3750 target is running in the background. If while handling the target
3751 event something triggered a secondary prompt, like e.g., a
3752 pagination prompt, we'll have removed the callback handler (see
3753 gdb_readline_wrapper_line). Need to do this as we go back to the
3754 event loop, ready to process further input. Note this has no
3755 effect if the handler hasn't actually been removed, because calling
3756 rl_callback_handler_install resets the line buffer, thus losing
3757 input. */
3758
3759 static void
3760 reinstall_readline_callback_handler_cleanup ()
3761 {
3762 struct ui *ui = current_ui;
3763
3764 if (!ui->async)
3765 {
3766 /* We're not going back to the top level event loop yet. Don't
3767 install the readline callback, as it'd prep the terminal,
3768 readline-style (raw, noecho) (e.g., --batch). We'll install
3769 it the next time the prompt is displayed, when we're ready
3770 for input. */
3771 return;
3772 }
3773
3774 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3775 gdb_rl_callback_handler_reinstall ();
3776 }
3777
3778 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3779 that's just the event thread. In all-stop, that's all threads. */
3780
3781 static void
3782 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3783 {
3784 if (ecs->event_thread != NULL
3785 && ecs->event_thread->thread_fsm != NULL)
3786 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3787
3788 if (!non_stop)
3789 {
3790 for (thread_info *thr : all_non_exited_threads ())
3791 {
3792 if (thr->thread_fsm == NULL)
3793 continue;
3794 if (thr == ecs->event_thread)
3795 continue;
3796
3797 switch_to_thread (thr);
3798 thr->thread_fsm->clean_up (thr);
3799 }
3800
3801 if (ecs->event_thread != NULL)
3802 switch_to_thread (ecs->event_thread);
3803 }
3804 }
3805
3806 /* Helper for all_uis_check_sync_execution_done that works on the
3807 current UI. */
3808
3809 static void
3810 check_curr_ui_sync_execution_done (void)
3811 {
3812 struct ui *ui = current_ui;
3813
3814 if (ui->prompt_state == PROMPT_NEEDED
3815 && ui->async
3816 && !gdb_in_secondary_prompt_p (ui))
3817 {
3818 target_terminal::ours ();
3819 gdb::observers::sync_execution_done.notify ();
3820 ui_register_input_event_handler (ui);
3821 }
3822 }
3823
3824 /* See infrun.h. */
3825
3826 void
3827 all_uis_check_sync_execution_done (void)
3828 {
3829 SWITCH_THRU_ALL_UIS ()
3830 {
3831 check_curr_ui_sync_execution_done ();
3832 }
3833 }
3834
3835 /* See infrun.h. */
3836
3837 void
3838 all_uis_on_sync_execution_starting (void)
3839 {
3840 SWITCH_THRU_ALL_UIS ()
3841 {
3842 if (current_ui->prompt_state == PROMPT_NEEDED)
3843 async_disable_stdin ();
3844 }
3845 }
3846
3847 /* Asynchronous version of wait_for_inferior. It is called by the
3848 event loop whenever a change of state is detected on the file
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
3854 necessary cleanups. */
3855
3856 void
3857 fetch_inferior_event ()
3858 {
3859 struct execution_control_state ecss;
3860 struct execution_control_state *ecs = &ecss;
3861 int cmd_done = 0;
3862
3863 memset (ecs, 0, sizeof (*ecs));
3864
3865 /* Events are always processed with the main UI as current UI. This
3866 way, warnings, debug output, etc. are always consistently sent to
3867 the main console. */
3868 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3869
3870 /* Temporarily disable pagination. Otherwise, the user would be
3871 given an option to press 'q' to quit, which would cause an early
3872 exit and could leave GDB in a half-baked state. */
3873 scoped_restore save_pagination
3874 = make_scoped_restore (&pagination_enabled, false);
3875
3876 /* End up with readline processing input, if necessary. */
3877 {
3878 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3879
3880 /* We're handling a live event, so make sure we're doing live
3881 debugging. If we're looking at traceframes while the target is
3882 running, we're going to need to get back to that mode after
3883 handling the event. */
3884 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3885 if (non_stop)
3886 {
3887 maybe_restore_traceframe.emplace ();
3888 set_current_traceframe (-1);
3889 }
3890
3891 /* The user/frontend should not notice a thread switch due to
3892 internal events. Make sure we revert to the user selected
3893 thread and frame after handling the event and running any
3894 breakpoint commands. */
3895 scoped_restore_current_thread restore_thread;
3896
3897 overlay_cache_invalid = 1;
3898 /* Flush target cache before starting to handle each event. Target
3899 was running and cache could be stale. This is just a heuristic.
3900 Running threads may modify target memory, but we don't get any
3901 event. */
3902 target_dcache_invalidate ();
3903
3904 scoped_restore save_exec_dir
3905 = make_scoped_restore (&execution_direction,
3906 target_execution_direction ());
3907
3908 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3909 return;
3910
3911 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3912
3913 /* Switch to the target that generated the event, so we can do
3914 target calls. */
3915 switch_to_target_no_thread (ecs->target);
3916
3917 if (debug_infrun)
3918 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3919
3920 /* If an error happens while handling the event, propagate GDB's
3921 knowledge of the executing state to the frontend/user running
3922 state. */
3923 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3924 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3925
3926 /* Get executed before scoped_restore_current_thread above to apply
3927 still for the thread which has thrown the exception. */
3928 auto defer_bpstat_clear
3929 = make_scope_exit (bpstat_clear_actions);
3930 auto defer_delete_threads
3931 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3932
3933 /* Now figure out what to do with the result of the result. */
3934 handle_inferior_event (ecs);
3935
3936 if (!ecs->wait_some_more)
3937 {
3938 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3939 int should_stop = 1;
3940 struct thread_info *thr = ecs->event_thread;
3941
3942 delete_just_stopped_threads_infrun_breakpoints ();
3943
3944 if (thr != NULL)
3945 {
3946 struct thread_fsm *thread_fsm = thr->thread_fsm;
3947
3948 if (thread_fsm != NULL)
3949 should_stop = thread_fsm->should_stop (thr);
3950 }
3951
3952 if (!should_stop)
3953 {
3954 keep_going (ecs);
3955 }
3956 else
3957 {
3958 bool should_notify_stop = true;
3959 int proceeded = 0;
3960
3961 clean_up_just_stopped_threads_fsms (ecs);
3962
3963 if (thr != NULL && thr->thread_fsm != NULL)
3964 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3965
3966 if (should_notify_stop)
3967 {
3968 /* We may not find an inferior if this was a process exit. */
3969 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3970 proceeded = normal_stop ();
3971 }
3972
3973 if (!proceeded)
3974 {
3975 inferior_event_handler (INF_EXEC_COMPLETE);
3976 cmd_done = 1;
3977 }
3978
3979 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3980 previously selected thread is gone. We have two
3981 choices - switch to no thread selected, or restore the
3982 previously selected thread (now exited). We chose the
3983 later, just because that's what GDB used to do. After
3984 this, "info threads" says "The current thread <Thread
3985 ID 2> has terminated." instead of "No thread
3986 selected.". */
3987 if (!non_stop
3988 && cmd_done
3989 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3990 restore_thread.dont_restore ();
3991 }
3992 }
3993
3994 defer_delete_threads.release ();
3995 defer_bpstat_clear.release ();
3996
3997 /* No error, don't finish the thread states yet. */
3998 finish_state.release ();
3999
4000 /* This scope is used to ensure that readline callbacks are
4001 reinstalled here. */
4002 }
4003
4004 /* If a UI was in sync execution mode, and now isn't, restore its
4005 prompt (a synchronous execution command has finished, and we're
4006 ready for input). */
4007 all_uis_check_sync_execution_done ();
4008
4009 if (cmd_done
4010 && exec_done_display_p
4011 && (inferior_ptid == null_ptid
4012 || inferior_thread ()->state != THREAD_RUNNING))
4013 printf_unfiltered (_("completed.\n"));
4014 }
4015
4016 /* See infrun.h. */
4017
4018 void
4019 set_step_info (thread_info *tp, struct frame_info *frame,
4020 struct symtab_and_line sal)
4021 {
4022 /* This can be removed once this function no longer implicitly relies on the
4023 inferior_ptid value. */
4024 gdb_assert (inferior_ptid == tp->ptid);
4025
4026 tp->control.step_frame_id = get_frame_id (frame);
4027 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4028
4029 tp->current_symtab = sal.symtab;
4030 tp->current_line = sal.line;
4031 }
4032
4033 /* Clear context switchable stepping state. */
4034
4035 void
4036 init_thread_stepping_state (struct thread_info *tss)
4037 {
4038 tss->stepped_breakpoint = 0;
4039 tss->stepping_over_breakpoint = 0;
4040 tss->stepping_over_watchpoint = 0;
4041 tss->step_after_step_resume_breakpoint = 0;
4042 }
4043
4044 /* See infrun.h. */
4045
4046 void
4047 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4048 target_waitstatus status)
4049 {
4050 target_last_proc_target = target;
4051 target_last_wait_ptid = ptid;
4052 target_last_waitstatus = status;
4053 }
4054
4055 /* See infrun.h. */
4056
4057 void
4058 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4059 target_waitstatus *status)
4060 {
4061 if (target != nullptr)
4062 *target = target_last_proc_target;
4063 if (ptid != nullptr)
4064 *ptid = target_last_wait_ptid;
4065 if (status != nullptr)
4066 *status = target_last_waitstatus;
4067 }
4068
4069 /* See infrun.h. */
4070
4071 void
4072 nullify_last_target_wait_ptid (void)
4073 {
4074 target_last_proc_target = nullptr;
4075 target_last_wait_ptid = minus_one_ptid;
4076 target_last_waitstatus = {};
4077 }
4078
4079 /* Switch thread contexts. */
4080
4081 static void
4082 context_switch (execution_control_state *ecs)
4083 {
4084 if (ecs->ptid != inferior_ptid
4085 && (inferior_ptid == null_ptid
4086 || ecs->event_thread != inferior_thread ()))
4087 {
4088 infrun_debug_printf ("Switching context from %s to %s",
4089 target_pid_to_str (inferior_ptid).c_str (),
4090 target_pid_to_str (ecs->ptid).c_str ());
4091 }
4092
4093 switch_to_thread (ecs->event_thread);
4094 }
4095
4096 /* If the target can't tell whether we've hit breakpoints
4097 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4098 check whether that could have been caused by a breakpoint. If so,
4099 adjust the PC, per gdbarch_decr_pc_after_break. */
4100
4101 static void
4102 adjust_pc_after_break (struct thread_info *thread,
4103 struct target_waitstatus *ws)
4104 {
4105 struct regcache *regcache;
4106 struct gdbarch *gdbarch;
4107 CORE_ADDR breakpoint_pc, decr_pc;
4108
4109 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4110 we aren't, just return.
4111
4112 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4113 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4114 implemented by software breakpoints should be handled through the normal
4115 breakpoint layer.
4116
4117 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4118 different signals (SIGILL or SIGEMT for instance), but it is less
4119 clear where the PC is pointing afterwards. It may not match
4120 gdbarch_decr_pc_after_break. I don't know any specific target that
4121 generates these signals at breakpoints (the code has been in GDB since at
4122 least 1992) so I can not guess how to handle them here.
4123
4124 In earlier versions of GDB, a target with
4125 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4126 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4127 target with both of these set in GDB history, and it seems unlikely to be
4128 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4129
4130 if (ws->kind != TARGET_WAITKIND_STOPPED)
4131 return;
4132
4133 if (ws->value.sig != GDB_SIGNAL_TRAP)
4134 return;
4135
4136 /* In reverse execution, when a breakpoint is hit, the instruction
4137 under it has already been de-executed. The reported PC always
4138 points at the breakpoint address, so adjusting it further would
4139 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4140 architecture:
4141
4142 B1 0x08000000 : INSN1
4143 B2 0x08000001 : INSN2
4144 0x08000002 : INSN3
4145 PC -> 0x08000003 : INSN4
4146
4147 Say you're stopped at 0x08000003 as above. Reverse continuing
4148 from that point should hit B2 as below. Reading the PC when the
4149 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4150 been de-executed already.
4151
4152 B1 0x08000000 : INSN1
4153 B2 PC -> 0x08000001 : INSN2
4154 0x08000002 : INSN3
4155 0x08000003 : INSN4
4156
4157 We can't apply the same logic as for forward execution, because
4158 we would wrongly adjust the PC to 0x08000000, since there's a
4159 breakpoint at PC - 1. We'd then report a hit on B1, although
4160 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4161 behaviour. */
4162 if (execution_direction == EXEC_REVERSE)
4163 return;
4164
4165 /* If the target can tell whether the thread hit a SW breakpoint,
4166 trust it. Targets that can tell also adjust the PC
4167 themselves. */
4168 if (target_supports_stopped_by_sw_breakpoint ())
4169 return;
4170
4171 /* Note that relying on whether a breakpoint is planted in memory to
4172 determine this can fail. E.g,. the breakpoint could have been
4173 removed since. Or the thread could have been told to step an
4174 instruction the size of a breakpoint instruction, and only
4175 _after_ was a breakpoint inserted at its address. */
4176
4177 /* If this target does not decrement the PC after breakpoints, then
4178 we have nothing to do. */
4179 regcache = get_thread_regcache (thread);
4180 gdbarch = regcache->arch ();
4181
4182 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4183 if (decr_pc == 0)
4184 return;
4185
4186 const address_space *aspace = regcache->aspace ();
4187
4188 /* Find the location where (if we've hit a breakpoint) the
4189 breakpoint would be. */
4190 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4191
4192 /* If the target can't tell whether a software breakpoint triggered,
4193 fallback to figuring it out based on breakpoints we think were
4194 inserted in the target, and on whether the thread was stepped or
4195 continued. */
4196
4197 /* Check whether there actually is a software breakpoint inserted at
4198 that location.
4199
4200 If in non-stop mode, a race condition is possible where we've
4201 removed a breakpoint, but stop events for that breakpoint were
4202 already queued and arrive later. To suppress those spurious
4203 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4204 and retire them after a number of stop events are reported. Note
4205 this is an heuristic and can thus get confused. The real fix is
4206 to get the "stopped by SW BP and needs adjustment" info out of
4207 the target/kernel (and thus never reach here; see above). */
4208 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4209 || (target_is_non_stop_p ()
4210 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4211 {
4212 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4213
4214 if (record_full_is_used ())
4215 restore_operation_disable.emplace
4216 (record_full_gdb_operation_disable_set ());
4217
4218 /* When using hardware single-step, a SIGTRAP is reported for both
4219 a completed single-step and a software breakpoint. Need to
4220 differentiate between the two, as the latter needs adjusting
4221 but the former does not.
4222
4223 The SIGTRAP can be due to a completed hardware single-step only if
4224 - we didn't insert software single-step breakpoints
4225 - this thread is currently being stepped
4226
4227 If any of these events did not occur, we must have stopped due
4228 to hitting a software breakpoint, and have to back up to the
4229 breakpoint address.
4230
4231 As a special case, we could have hardware single-stepped a
4232 software breakpoint. In this case (prev_pc == breakpoint_pc),
4233 we also need to back up to the breakpoint address. */
4234
4235 if (thread_has_single_step_breakpoints_set (thread)
4236 || !currently_stepping (thread)
4237 || (thread->stepped_breakpoint
4238 && thread->prev_pc == breakpoint_pc))
4239 regcache_write_pc (regcache, breakpoint_pc);
4240 }
4241 }
4242
4243 static bool
4244 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245 {
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return true;
4252
4253 if (get_frame_type (frame) != INLINE_FRAME)
4254 break;
4255 }
4256
4257 return false;
4258 }
4259
4260 /* Look for an inline frame that is marked for skip.
4261 If PREV_FRAME is TRUE start at the previous frame,
4262 otherwise start at the current frame. Stop at the
4263 first non-inline frame, or at the frame where the
4264 step started. */
4265
4266 static bool
4267 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4268 {
4269 struct frame_info *frame = get_current_frame ();
4270
4271 if (prev_frame)
4272 frame = get_prev_frame (frame);
4273
4274 for (; frame != NULL; frame = get_prev_frame (frame))
4275 {
4276 const char *fn = NULL;
4277 symtab_and_line sal;
4278 struct symbol *sym;
4279
4280 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4281 break;
4282 if (get_frame_type (frame) != INLINE_FRAME)
4283 break;
4284
4285 sal = find_frame_sal (frame);
4286 sym = get_frame_function (frame);
4287
4288 if (sym != NULL)
4289 fn = sym->print_name ();
4290
4291 if (sal.line != 0
4292 && function_name_is_marked_for_skip (fn, sal))
4293 return true;
4294 }
4295
4296 return false;
4297 }
4298
4299 /* If the event thread has the stop requested flag set, pretend it
4300 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4301 target_stop). */
4302
4303 static bool
4304 handle_stop_requested (struct execution_control_state *ecs)
4305 {
4306 if (ecs->event_thread->stop_requested)
4307 {
4308 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4309 ecs->ws.value.sig = GDB_SIGNAL_0;
4310 handle_signal_stop (ecs);
4311 return true;
4312 }
4313 return false;
4314 }
4315
4316 /* Auxiliary function that handles syscall entry/return events.
4317 It returns true if the inferior should keep going (and GDB
4318 should ignore the event), or false if the event deserves to be
4319 processed. */
4320
4321 static bool
4322 handle_syscall_event (struct execution_control_state *ecs)
4323 {
4324 struct regcache *regcache;
4325 int syscall_number;
4326
4327 context_switch (ecs);
4328
4329 regcache = get_thread_regcache (ecs->event_thread);
4330 syscall_number = ecs->ws.value.syscall_number;
4331 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4332
4333 if (catch_syscall_enabled () > 0
4334 && catching_syscall_number (syscall_number) > 0)
4335 {
4336 infrun_debug_printf ("syscall number=%d", syscall_number);
4337
4338 ecs->event_thread->control.stop_bpstat
4339 = bpstat_stop_status (regcache->aspace (),
4340 ecs->event_thread->suspend.stop_pc,
4341 ecs->event_thread, &ecs->ws);
4342
4343 if (handle_stop_requested (ecs))
4344 return false;
4345
4346 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4347 {
4348 /* Catchpoint hit. */
4349 return false;
4350 }
4351 }
4352
4353 if (handle_stop_requested (ecs))
4354 return false;
4355
4356 /* If no catchpoint triggered for this, then keep going. */
4357 keep_going (ecs);
4358
4359 return true;
4360 }
4361
4362 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4363
4364 static void
4365 fill_in_stop_func (struct gdbarch *gdbarch,
4366 struct execution_control_state *ecs)
4367 {
4368 if (!ecs->stop_func_filled_in)
4369 {
4370 const block *block;
4371 const general_symbol_info *gsi;
4372
4373 /* Don't care about return value; stop_func_start and stop_func_name
4374 will both be 0 if it doesn't work. */
4375 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4376 &gsi,
4377 &ecs->stop_func_start,
4378 &ecs->stop_func_end,
4379 &block);
4380 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4381
4382 /* The call to find_pc_partial_function, above, will set
4383 stop_func_start and stop_func_end to the start and end
4384 of the range containing the stop pc. If this range
4385 contains the entry pc for the block (which is always the
4386 case for contiguous blocks), advance stop_func_start past
4387 the function's start offset and entrypoint. Note that
4388 stop_func_start is NOT advanced when in a range of a
4389 non-contiguous block that does not contain the entry pc. */
4390 if (block != nullptr
4391 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4392 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4393 {
4394 ecs->stop_func_start
4395 += gdbarch_deprecated_function_start_offset (gdbarch);
4396
4397 if (gdbarch_skip_entrypoint_p (gdbarch))
4398 ecs->stop_func_start
4399 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4400 }
4401
4402 ecs->stop_func_filled_in = 1;
4403 }
4404 }
4405
4406
4407 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4408
4409 static enum stop_kind
4410 get_inferior_stop_soon (execution_control_state *ecs)
4411 {
4412 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4413
4414 gdb_assert (inf != NULL);
4415 return inf->control.stop_soon;
4416 }
4417
4418 /* Poll for one event out of the current target. Store the resulting
4419 waitstatus in WS, and return the event ptid. Does not block. */
4420
4421 static ptid_t
4422 poll_one_curr_target (struct target_waitstatus *ws)
4423 {
4424 ptid_t event_ptid;
4425
4426 overlay_cache_invalid = 1;
4427
4428 /* Flush target cache before starting to handle each event.
4429 Target was running and cache could be stale. This is just a
4430 heuristic. Running threads may modify target memory, but we
4431 don't get any event. */
4432 target_dcache_invalidate ();
4433
4434 if (deprecated_target_wait_hook)
4435 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4436 else
4437 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4438
4439 if (debug_infrun)
4440 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4441
4442 return event_ptid;
4443 }
4444
4445 /* An event reported by wait_one. */
4446
4447 struct wait_one_event
4448 {
4449 /* The target the event came out of. */
4450 process_stratum_target *target;
4451
4452 /* The PTID the event was for. */
4453 ptid_t ptid;
4454
4455 /* The waitstatus. */
4456 target_waitstatus ws;
4457 };
4458
4459 /* Wait for one event out of any target. */
4460
4461 static wait_one_event
4462 wait_one ()
4463 {
4464 while (1)
4465 {
4466 for (inferior *inf : all_inferiors ())
4467 {
4468 process_stratum_target *target = inf->process_target ();
4469 if (target == NULL
4470 || !target->is_async_p ()
4471 || !target->threads_executing)
4472 continue;
4473
4474 switch_to_inferior_no_thread (inf);
4475
4476 wait_one_event event;
4477 event.target = target;
4478 event.ptid = poll_one_curr_target (&event.ws);
4479
4480 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4481 {
4482 /* If nothing is resumed, remove the target from the
4483 event loop. */
4484 target_async (0);
4485 }
4486 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4487 return event;
4488 }
4489
4490 /* Block waiting for some event. */
4491
4492 fd_set readfds;
4493 int nfds = 0;
4494
4495 FD_ZERO (&readfds);
4496
4497 for (inferior *inf : all_inferiors ())
4498 {
4499 process_stratum_target *target = inf->process_target ();
4500 if (target == NULL
4501 || !target->is_async_p ()
4502 || !target->threads_executing)
4503 continue;
4504
4505 int fd = target->async_wait_fd ();
4506 FD_SET (fd, &readfds);
4507 if (nfds <= fd)
4508 nfds = fd + 1;
4509 }
4510
4511 if (nfds == 0)
4512 {
4513 /* No waitable targets left. All must be stopped. */
4514 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4515 }
4516
4517 QUIT;
4518
4519 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4520 if (numfds < 0)
4521 {
4522 if (errno == EINTR)
4523 continue;
4524 else
4525 perror_with_name ("interruptible_select");
4526 }
4527 }
4528 }
4529
4530 /* Save the thread's event and stop reason to process it later. */
4531
4532 static void
4533 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4534 {
4535 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4536 target_waitstatus_to_string (ws).c_str (),
4537 tp->ptid.pid (),
4538 tp->ptid.lwp (),
4539 tp->ptid.tid ());
4540
4541 /* Record for later. */
4542 tp->suspend.waitstatus = *ws;
4543 tp->suspend.waitstatus_pending_p = 1;
4544
4545 struct regcache *regcache = get_thread_regcache (tp);
4546 const address_space *aspace = regcache->aspace ();
4547
4548 if (ws->kind == TARGET_WAITKIND_STOPPED
4549 && ws->value.sig == GDB_SIGNAL_TRAP)
4550 {
4551 CORE_ADDR pc = regcache_read_pc (regcache);
4552
4553 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4554
4555 scoped_restore_current_thread restore_thread;
4556 switch_to_thread (tp);
4557
4558 if (target_stopped_by_watchpoint ())
4559 {
4560 tp->suspend.stop_reason
4561 = TARGET_STOPPED_BY_WATCHPOINT;
4562 }
4563 else if (target_supports_stopped_by_sw_breakpoint ()
4564 && target_stopped_by_sw_breakpoint ())
4565 {
4566 tp->suspend.stop_reason
4567 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4568 }
4569 else if (target_supports_stopped_by_hw_breakpoint ()
4570 && target_stopped_by_hw_breakpoint ())
4571 {
4572 tp->suspend.stop_reason
4573 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4574 }
4575 else if (!target_supports_stopped_by_hw_breakpoint ()
4576 && hardware_breakpoint_inserted_here_p (aspace,
4577 pc))
4578 {
4579 tp->suspend.stop_reason
4580 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4581 }
4582 else if (!target_supports_stopped_by_sw_breakpoint ()
4583 && software_breakpoint_inserted_here_p (aspace,
4584 pc))
4585 {
4586 tp->suspend.stop_reason
4587 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4588 }
4589 else if (!thread_has_single_step_breakpoints_set (tp)
4590 && currently_stepping (tp))
4591 {
4592 tp->suspend.stop_reason
4593 = TARGET_STOPPED_BY_SINGLE_STEP;
4594 }
4595 }
4596 }
4597
4598 /* Mark the non-executing threads accordingly. In all-stop, all
4599 threads of all processes are stopped when we get any event
4600 reported. In non-stop mode, only the event thread stops. */
4601
4602 static void
4603 mark_non_executing_threads (process_stratum_target *target,
4604 ptid_t event_ptid,
4605 struct target_waitstatus ws)
4606 {
4607 ptid_t mark_ptid;
4608
4609 if (!target_is_non_stop_p ())
4610 mark_ptid = minus_one_ptid;
4611 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4612 || ws.kind == TARGET_WAITKIND_EXITED)
4613 {
4614 /* If we're handling a process exit in non-stop mode, even
4615 though threads haven't been deleted yet, one would think
4616 that there is nothing to do, as threads of the dead process
4617 will be soon deleted, and threads of any other process were
4618 left running. However, on some targets, threads survive a
4619 process exit event. E.g., for the "checkpoint" command,
4620 when the current checkpoint/fork exits, linux-fork.c
4621 automatically switches to another fork from within
4622 target_mourn_inferior, by associating the same
4623 inferior/thread to another fork. We haven't mourned yet at
4624 this point, but we must mark any threads left in the
4625 process as not-executing so that finish_thread_state marks
4626 them stopped (in the user's perspective) if/when we present
4627 the stop to the user. */
4628 mark_ptid = ptid_t (event_ptid.pid ());
4629 }
4630 else
4631 mark_ptid = event_ptid;
4632
4633 set_executing (target, mark_ptid, false);
4634
4635 /* Likewise the resumed flag. */
4636 set_resumed (target, mark_ptid, false);
4637 }
4638
4639 /* See infrun.h. */
4640
4641 void
4642 stop_all_threads (void)
4643 {
4644 /* We may need multiple passes to discover all threads. */
4645 int pass;
4646 int iterations = 0;
4647
4648 gdb_assert (exists_non_stop_target ());
4649
4650 infrun_debug_printf ("starting");
4651
4652 scoped_restore_current_thread restore_thread;
4653
4654 /* Enable thread events of all targets. */
4655 for (auto *target : all_non_exited_process_targets ())
4656 {
4657 switch_to_target_no_thread (target);
4658 target_thread_events (true);
4659 }
4660
4661 SCOPE_EXIT
4662 {
4663 /* Disable thread events of all targets. */
4664 for (auto *target : all_non_exited_process_targets ())
4665 {
4666 switch_to_target_no_thread (target);
4667 target_thread_events (false);
4668 }
4669
4670 /* Use infrun_debug_printf_1 directly to get a meaningful function
4671 name. */
4672 if (debug_infrun)
4673 infrun_debug_printf_1 ("stop_all_threads", "done");
4674 };
4675
4676 /* Request threads to stop, and then wait for the stops. Because
4677 threads we already know about can spawn more threads while we're
4678 trying to stop them, and we only learn about new threads when we
4679 update the thread list, do this in a loop, and keep iterating
4680 until two passes find no threads that need to be stopped. */
4681 for (pass = 0; pass < 2; pass++, iterations++)
4682 {
4683 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4684 while (1)
4685 {
4686 int waits_needed = 0;
4687
4688 for (auto *target : all_non_exited_process_targets ())
4689 {
4690 switch_to_target_no_thread (target);
4691 update_thread_list ();
4692 }
4693
4694 /* Go through all threads looking for threads that we need
4695 to tell the target to stop. */
4696 for (thread_info *t : all_non_exited_threads ())
4697 {
4698 /* For a single-target setting with an all-stop target,
4699 we would not even arrive here. For a multi-target
4700 setting, until GDB is able to handle a mixture of
4701 all-stop and non-stop targets, simply skip all-stop
4702 targets' threads. This should be fine due to the
4703 protection of 'check_multi_target_resumption'. */
4704
4705 switch_to_thread_no_regs (t);
4706 if (!target_is_non_stop_p ())
4707 continue;
4708
4709 if (t->executing)
4710 {
4711 /* If already stopping, don't request a stop again.
4712 We just haven't seen the notification yet. */
4713 if (!t->stop_requested)
4714 {
4715 infrun_debug_printf (" %s executing, need stop",
4716 target_pid_to_str (t->ptid).c_str ());
4717 target_stop (t->ptid);
4718 t->stop_requested = 1;
4719 }
4720 else
4721 {
4722 infrun_debug_printf (" %s executing, already stopping",
4723 target_pid_to_str (t->ptid).c_str ());
4724 }
4725
4726 if (t->stop_requested)
4727 waits_needed++;
4728 }
4729 else
4730 {
4731 infrun_debug_printf (" %s not executing",
4732 target_pid_to_str (t->ptid).c_str ());
4733
4734 /* The thread may be not executing, but still be
4735 resumed with a pending status to process. */
4736 t->resumed = false;
4737 }
4738 }
4739
4740 if (waits_needed == 0)
4741 break;
4742
4743 /* If we find new threads on the second iteration, restart
4744 over. We want to see two iterations in a row with all
4745 threads stopped. */
4746 if (pass > 0)
4747 pass = -1;
4748
4749 for (int i = 0; i < waits_needed; i++)
4750 {
4751 wait_one_event event = wait_one ();
4752
4753 infrun_debug_printf
4754 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4755 target_pid_to_str (event.ptid).c_str ());
4756
4757 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4758 {
4759 /* All resumed threads exited. */
4760 break;
4761 }
4762 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4763 || event.ws.kind == TARGET_WAITKIND_EXITED
4764 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4765 {
4766 /* One thread/process exited/signalled. */
4767
4768 thread_info *t = nullptr;
4769
4770 /* The target may have reported just a pid. If so, try
4771 the first non-exited thread. */
4772 if (event.ptid.is_pid ())
4773 {
4774 int pid = event.ptid.pid ();
4775 inferior *inf = find_inferior_pid (event.target, pid);
4776 for (thread_info *tp : inf->non_exited_threads ())
4777 {
4778 t = tp;
4779 break;
4780 }
4781
4782 /* If there is no available thread, the event would
4783 have to be appended to a per-inferior event list,
4784 which does not exist (and if it did, we'd have
4785 to adjust run control command to be able to
4786 resume such an inferior). We assert here instead
4787 of going into an infinite loop. */
4788 gdb_assert (t != nullptr);
4789
4790 infrun_debug_printf
4791 ("using %s", target_pid_to_str (t->ptid).c_str ());
4792 }
4793 else
4794 {
4795 t = find_thread_ptid (event.target, event.ptid);
4796 /* Check if this is the first time we see this thread.
4797 Don't bother adding if it individually exited. */
4798 if (t == nullptr
4799 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4800 t = add_thread (event.target, event.ptid);
4801 }
4802
4803 if (t != nullptr)
4804 {
4805 /* Set the threads as non-executing to avoid
4806 another stop attempt on them. */
4807 switch_to_thread_no_regs (t);
4808 mark_non_executing_threads (event.target, event.ptid,
4809 event.ws);
4810 save_waitstatus (t, &event.ws);
4811 t->stop_requested = false;
4812 }
4813 }
4814 else
4815 {
4816 thread_info *t = find_thread_ptid (event.target, event.ptid);
4817 if (t == NULL)
4818 t = add_thread (event.target, event.ptid);
4819
4820 t->stop_requested = 0;
4821 t->executing = 0;
4822 t->resumed = false;
4823 t->control.may_range_step = 0;
4824
4825 /* This may be the first time we see the inferior report
4826 a stop. */
4827 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4828 if (inf->needs_setup)
4829 {
4830 switch_to_thread_no_regs (t);
4831 setup_inferior (0);
4832 }
4833
4834 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4835 && event.ws.value.sig == GDB_SIGNAL_0)
4836 {
4837 /* We caught the event that we intended to catch, so
4838 there's no event pending. */
4839 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4840 t->suspend.waitstatus_pending_p = 0;
4841
4842 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4843 {
4844 /* Add it back to the step-over queue. */
4845 infrun_debug_printf
4846 ("displaced-step of %s canceled: adding back to "
4847 "the step-over queue",
4848 target_pid_to_str (t->ptid).c_str ());
4849
4850 t->control.trap_expected = 0;
4851 thread_step_over_chain_enqueue (t);
4852 }
4853 }
4854 else
4855 {
4856 enum gdb_signal sig;
4857 struct regcache *regcache;
4858
4859 infrun_debug_printf
4860 ("target_wait %s, saving status for %d.%ld.%ld",
4861 target_waitstatus_to_string (&event.ws).c_str (),
4862 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4863
4864 /* Record for later. */
4865 save_waitstatus (t, &event.ws);
4866
4867 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4868 ? event.ws.value.sig : GDB_SIGNAL_0);
4869
4870 if (displaced_step_fixup (t, sig) < 0)
4871 {
4872 /* Add it back to the step-over queue. */
4873 t->control.trap_expected = 0;
4874 thread_step_over_chain_enqueue (t);
4875 }
4876
4877 regcache = get_thread_regcache (t);
4878 t->suspend.stop_pc = regcache_read_pc (regcache);
4879
4880 infrun_debug_printf ("saved stop_pc=%s for %s "
4881 "(currently_stepping=%d)",
4882 paddress (target_gdbarch (),
4883 t->suspend.stop_pc),
4884 target_pid_to_str (t->ptid).c_str (),
4885 currently_stepping (t));
4886 }
4887 }
4888 }
4889 }
4890 }
4891 }
4892
4893 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4894
4895 static bool
4896 handle_no_resumed (struct execution_control_state *ecs)
4897 {
4898 if (target_can_async_p ())
4899 {
4900 bool any_sync = false;
4901
4902 for (ui *ui : all_uis ())
4903 {
4904 if (ui->prompt_state == PROMPT_BLOCKED)
4905 {
4906 any_sync = true;
4907 break;
4908 }
4909 }
4910 if (!any_sync)
4911 {
4912 /* There were no unwaited-for children left in the target, but,
4913 we're not synchronously waiting for events either. Just
4914 ignore. */
4915
4916 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4917 prepare_to_wait (ecs);
4918 return true;
4919 }
4920 }
4921
4922 /* Otherwise, if we were running a synchronous execution command, we
4923 may need to cancel it and give the user back the terminal.
4924
4925 In non-stop mode, the target can't tell whether we've already
4926 consumed previous stop events, so it can end up sending us a
4927 no-resumed event like so:
4928
4929 #0 - thread 1 is left stopped
4930
4931 #1 - thread 2 is resumed and hits breakpoint
4932 -> TARGET_WAITKIND_STOPPED
4933
4934 #2 - thread 3 is resumed and exits
4935 this is the last resumed thread, so
4936 -> TARGET_WAITKIND_NO_RESUMED
4937
4938 #3 - gdb processes stop for thread 2 and decides to re-resume
4939 it.
4940
4941 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4942 thread 2 is now resumed, so the event should be ignored.
4943
4944 IOW, if the stop for thread 2 doesn't end a foreground command,
4945 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4946 event. But it could be that the event meant that thread 2 itself
4947 (or whatever other thread was the last resumed thread) exited.
4948
4949 To address this we refresh the thread list and check whether we
4950 have resumed threads _now_. In the example above, this removes
4951 thread 3 from the thread list. If thread 2 was re-resumed, we
4952 ignore this event. If we find no thread resumed, then we cancel
4953 the synchronous command and show "no unwaited-for " to the
4954 user. */
4955
4956 inferior *curr_inf = current_inferior ();
4957
4958 scoped_restore_current_thread restore_thread;
4959
4960 for (auto *target : all_non_exited_process_targets ())
4961 {
4962 switch_to_target_no_thread (target);
4963 update_thread_list ();
4964 }
4965
4966 /* If:
4967
4968 - the current target has no thread executing, and
4969 - the current inferior is native, and
4970 - the current inferior is the one which has the terminal, and
4971 - we did nothing,
4972
4973 then a Ctrl-C from this point on would remain stuck in the
4974 kernel, until a thread resumes and dequeues it. That would
4975 result in the GDB CLI not reacting to Ctrl-C, not able to
4976 interrupt the program. To address this, if the current inferior
4977 no longer has any thread executing, we give the terminal to some
4978 other inferior that has at least one thread executing. */
4979 bool swap_terminal = true;
4980
4981 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4982 whether to report it to the user. */
4983 bool ignore_event = false;
4984
4985 for (thread_info *thread : all_non_exited_threads ())
4986 {
4987 if (swap_terminal && thread->executing)
4988 {
4989 if (thread->inf != curr_inf)
4990 {
4991 target_terminal::ours ();
4992
4993 switch_to_thread (thread);
4994 target_terminal::inferior ();
4995 }
4996 swap_terminal = false;
4997 }
4998
4999 if (!ignore_event
5000 && (thread->executing
5001 || thread->suspend.waitstatus_pending_p))
5002 {
5003 /* Either there were no unwaited-for children left in the
5004 target at some point, but there are now, or some target
5005 other than the eventing one has unwaited-for children
5006 left. Just ignore. */
5007 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5008 "(ignoring: found resumed)");
5009
5010 ignore_event = true;
5011 }
5012
5013 if (ignore_event && !swap_terminal)
5014 break;
5015 }
5016
5017 if (ignore_event)
5018 {
5019 switch_to_inferior_no_thread (curr_inf);
5020 prepare_to_wait (ecs);
5021 return true;
5022 }
5023
5024 /* Go ahead and report the event. */
5025 return false;
5026 }
5027
5028 /* Given an execution control state that has been freshly filled in by
5029 an event from the inferior, figure out what it means and take
5030 appropriate action.
5031
5032 The alternatives are:
5033
5034 1) stop_waiting and return; to really stop and return to the
5035 debugger.
5036
5037 2) keep_going and return; to wait for the next event (set
5038 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5039 once). */
5040
5041 static void
5042 handle_inferior_event (struct execution_control_state *ecs)
5043 {
5044 /* Make sure that all temporary struct value objects that were
5045 created during the handling of the event get deleted at the
5046 end. */
5047 scoped_value_mark free_values;
5048
5049 enum stop_kind stop_soon;
5050
5051 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5052
5053 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5054 {
5055 /* We had an event in the inferior, but we are not interested in
5056 handling it at this level. The lower layers have already
5057 done what needs to be done, if anything.
5058
5059 One of the possible circumstances for this is when the
5060 inferior produces output for the console. The inferior has
5061 not stopped, and we are ignoring the event. Another possible
5062 circumstance is any event which the lower level knows will be
5063 reported multiple times without an intervening resume. */
5064 prepare_to_wait (ecs);
5065 return;
5066 }
5067
5068 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5069 {
5070 prepare_to_wait (ecs);
5071 return;
5072 }
5073
5074 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5075 && handle_no_resumed (ecs))
5076 return;
5077
5078 /* Cache the last target/ptid/waitstatus. */
5079 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5080
5081 /* Always clear state belonging to the previous time we stopped. */
5082 stop_stack_dummy = STOP_NONE;
5083
5084 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5085 {
5086 /* No unwaited-for children left. IOW, all resumed children
5087 have exited. */
5088 stop_print_frame = false;
5089 stop_waiting (ecs);
5090 return;
5091 }
5092
5093 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5094 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5095 {
5096 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5097 /* If it's a new thread, add it to the thread database. */
5098 if (ecs->event_thread == NULL)
5099 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5100
5101 /* Disable range stepping. If the next step request could use a
5102 range, this will be end up re-enabled then. */
5103 ecs->event_thread->control.may_range_step = 0;
5104 }
5105
5106 /* Dependent on valid ECS->EVENT_THREAD. */
5107 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5108
5109 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5110 reinit_frame_cache ();
5111
5112 breakpoint_retire_moribund ();
5113
5114 /* First, distinguish signals caused by the debugger from signals
5115 that have to do with the program's own actions. Note that
5116 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5117 on the operating system version. Here we detect when a SIGILL or
5118 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5119 something similar for SIGSEGV, since a SIGSEGV will be generated
5120 when we're trying to execute a breakpoint instruction on a
5121 non-executable stack. This happens for call dummy breakpoints
5122 for architectures like SPARC that place call dummies on the
5123 stack. */
5124 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5125 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5126 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5127 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5128 {
5129 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5130
5131 if (breakpoint_inserted_here_p (regcache->aspace (),
5132 regcache_read_pc (regcache)))
5133 {
5134 infrun_debug_printf ("Treating signal as SIGTRAP");
5135 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5136 }
5137 }
5138
5139 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5140
5141 switch (ecs->ws.kind)
5142 {
5143 case TARGET_WAITKIND_LOADED:
5144 context_switch (ecs);
5145 /* Ignore gracefully during startup of the inferior, as it might
5146 be the shell which has just loaded some objects, otherwise
5147 add the symbols for the newly loaded objects. Also ignore at
5148 the beginning of an attach or remote session; we will query
5149 the full list of libraries once the connection is
5150 established. */
5151
5152 stop_soon = get_inferior_stop_soon (ecs);
5153 if (stop_soon == NO_STOP_QUIETLY)
5154 {
5155 struct regcache *regcache;
5156
5157 regcache = get_thread_regcache (ecs->event_thread);
5158
5159 handle_solib_event ();
5160
5161 ecs->event_thread->control.stop_bpstat
5162 = bpstat_stop_status (regcache->aspace (),
5163 ecs->event_thread->suspend.stop_pc,
5164 ecs->event_thread, &ecs->ws);
5165
5166 if (handle_stop_requested (ecs))
5167 return;
5168
5169 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5170 {
5171 /* A catchpoint triggered. */
5172 process_event_stop_test (ecs);
5173 return;
5174 }
5175
5176 /* If requested, stop when the dynamic linker notifies
5177 gdb of events. This allows the user to get control
5178 and place breakpoints in initializer routines for
5179 dynamically loaded objects (among other things). */
5180 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5181 if (stop_on_solib_events)
5182 {
5183 /* Make sure we print "Stopped due to solib-event" in
5184 normal_stop. */
5185 stop_print_frame = true;
5186
5187 stop_waiting (ecs);
5188 return;
5189 }
5190 }
5191
5192 /* If we are skipping through a shell, or through shared library
5193 loading that we aren't interested in, resume the program. If
5194 we're running the program normally, also resume. */
5195 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5196 {
5197 /* Loading of shared libraries might have changed breakpoint
5198 addresses. Make sure new breakpoints are inserted. */
5199 if (stop_soon == NO_STOP_QUIETLY)
5200 insert_breakpoints ();
5201 resume (GDB_SIGNAL_0);
5202 prepare_to_wait (ecs);
5203 return;
5204 }
5205
5206 /* But stop if we're attaching or setting up a remote
5207 connection. */
5208 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5209 || stop_soon == STOP_QUIETLY_REMOTE)
5210 {
5211 infrun_debug_printf ("quietly stopped");
5212 stop_waiting (ecs);
5213 return;
5214 }
5215
5216 internal_error (__FILE__, __LINE__,
5217 _("unhandled stop_soon: %d"), (int) stop_soon);
5218
5219 case TARGET_WAITKIND_SPURIOUS:
5220 if (handle_stop_requested (ecs))
5221 return;
5222 context_switch (ecs);
5223 resume (GDB_SIGNAL_0);
5224 prepare_to_wait (ecs);
5225 return;
5226
5227 case TARGET_WAITKIND_THREAD_CREATED:
5228 if (handle_stop_requested (ecs))
5229 return;
5230 context_switch (ecs);
5231 if (!switch_back_to_stepped_thread (ecs))
5232 keep_going (ecs);
5233 return;
5234
5235 case TARGET_WAITKIND_EXITED:
5236 case TARGET_WAITKIND_SIGNALLED:
5237 {
5238 /* Depending on the system, ecs->ptid may point to a thread or
5239 to a process. On some targets, target_mourn_inferior may
5240 need to have access to the just-exited thread. That is the
5241 case of GNU/Linux's "checkpoint" support, for example.
5242 Call the switch_to_xxx routine as appropriate. */
5243 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5244 if (thr != nullptr)
5245 switch_to_thread (thr);
5246 else
5247 {
5248 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5249 switch_to_inferior_no_thread (inf);
5250 }
5251 }
5252 handle_vfork_child_exec_or_exit (0);
5253 target_terminal::ours (); /* Must do this before mourn anyway. */
5254
5255 /* Clearing any previous state of convenience variables. */
5256 clear_exit_convenience_vars ();
5257
5258 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5259 {
5260 /* Record the exit code in the convenience variable $_exitcode, so
5261 that the user can inspect this again later. */
5262 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5263 (LONGEST) ecs->ws.value.integer);
5264
5265 /* Also record this in the inferior itself. */
5266 current_inferior ()->has_exit_code = 1;
5267 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5268
5269 /* Support the --return-child-result option. */
5270 return_child_result_value = ecs->ws.value.integer;
5271
5272 gdb::observers::exited.notify (ecs->ws.value.integer);
5273 }
5274 else
5275 {
5276 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5277
5278 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5279 {
5280 /* Set the value of the internal variable $_exitsignal,
5281 which holds the signal uncaught by the inferior. */
5282 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5283 gdbarch_gdb_signal_to_target (gdbarch,
5284 ecs->ws.value.sig));
5285 }
5286 else
5287 {
5288 /* We don't have access to the target's method used for
5289 converting between signal numbers (GDB's internal
5290 representation <-> target's representation).
5291 Therefore, we cannot do a good job at displaying this
5292 information to the user. It's better to just warn
5293 her about it (if infrun debugging is enabled), and
5294 give up. */
5295 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5296 "signal number.");
5297 }
5298
5299 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5300 }
5301
5302 gdb_flush (gdb_stdout);
5303 target_mourn_inferior (inferior_ptid);
5304 stop_print_frame = false;
5305 stop_waiting (ecs);
5306 return;
5307
5308 case TARGET_WAITKIND_FORKED:
5309 case TARGET_WAITKIND_VFORKED:
5310 /* Check whether the inferior is displaced stepping. */
5311 {
5312 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5313 struct gdbarch *gdbarch = regcache->arch ();
5314
5315 /* If checking displaced stepping is supported, and thread
5316 ecs->ptid is displaced stepping. */
5317 if (displaced_step_in_progress_thread (ecs->event_thread))
5318 {
5319 struct inferior *parent_inf
5320 = find_inferior_ptid (ecs->target, ecs->ptid);
5321 struct regcache *child_regcache;
5322 CORE_ADDR parent_pc;
5323
5324 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5325 {
5326 struct displaced_step_inferior_state *displaced
5327 = get_displaced_stepping_state (parent_inf);
5328
5329 /* Restore scratch pad for child process. */
5330 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5331 }
5332
5333 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5334 indicating that the displaced stepping of syscall instruction
5335 has been done. Perform cleanup for parent process here. Note
5336 that this operation also cleans up the child process for vfork,
5337 because their pages are shared. */
5338 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5339 /* Start a new step-over in another thread if there's one
5340 that needs it. */
5341 start_step_over ();
5342
5343 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5344 the child's PC is also within the scratchpad. Set the child's PC
5345 to the parent's PC value, which has already been fixed up.
5346 FIXME: we use the parent's aspace here, although we're touching
5347 the child, because the child hasn't been added to the inferior
5348 list yet at this point. */
5349
5350 child_regcache
5351 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5352 ecs->ws.value.related_pid,
5353 gdbarch,
5354 parent_inf->aspace);
5355 /* Read PC value of parent process. */
5356 parent_pc = regcache_read_pc (regcache);
5357
5358 displaced_debug_printf ("write child pc from %s to %s",
5359 paddress (gdbarch,
5360 regcache_read_pc (child_regcache)),
5361 paddress (gdbarch, parent_pc));
5362
5363 regcache_write_pc (child_regcache, parent_pc);
5364 }
5365 }
5366
5367 context_switch (ecs);
5368
5369 /* Immediately detach breakpoints from the child before there's
5370 any chance of letting the user delete breakpoints from the
5371 breakpoint lists. If we don't do this early, it's easy to
5372 leave left over traps in the child, vis: "break foo; catch
5373 fork; c; <fork>; del; c; <child calls foo>". We only follow
5374 the fork on the last `continue', and by that time the
5375 breakpoint at "foo" is long gone from the breakpoint table.
5376 If we vforked, then we don't need to unpatch here, since both
5377 parent and child are sharing the same memory pages; we'll
5378 need to unpatch at follow/detach time instead to be certain
5379 that new breakpoints added between catchpoint hit time and
5380 vfork follow are detached. */
5381 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5382 {
5383 /* This won't actually modify the breakpoint list, but will
5384 physically remove the breakpoints from the child. */
5385 detach_breakpoints (ecs->ws.value.related_pid);
5386 }
5387
5388 delete_just_stopped_threads_single_step_breakpoints ();
5389
5390 /* In case the event is caught by a catchpoint, remember that
5391 the event is to be followed at the next resume of the thread,
5392 and not immediately. */
5393 ecs->event_thread->pending_follow = ecs->ws;
5394
5395 ecs->event_thread->suspend.stop_pc
5396 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5397
5398 ecs->event_thread->control.stop_bpstat
5399 = bpstat_stop_status (get_current_regcache ()->aspace (),
5400 ecs->event_thread->suspend.stop_pc,
5401 ecs->event_thread, &ecs->ws);
5402
5403 if (handle_stop_requested (ecs))
5404 return;
5405
5406 /* If no catchpoint triggered for this, then keep going. Note
5407 that we're interested in knowing the bpstat actually causes a
5408 stop, not just if it may explain the signal. Software
5409 watchpoints, for example, always appear in the bpstat. */
5410 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5411 {
5412 bool follow_child
5413 = (follow_fork_mode_string == follow_fork_mode_child);
5414
5415 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5416
5417 process_stratum_target *targ
5418 = ecs->event_thread->inf->process_target ();
5419
5420 bool should_resume = follow_fork ();
5421
5422 /* Note that one of these may be an invalid pointer,
5423 depending on detach_fork. */
5424 thread_info *parent = ecs->event_thread;
5425 thread_info *child
5426 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5427
5428 /* At this point, the parent is marked running, and the
5429 child is marked stopped. */
5430
5431 /* If not resuming the parent, mark it stopped. */
5432 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5433 parent->set_running (false);
5434
5435 /* If resuming the child, mark it running. */
5436 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5437 child->set_running (true);
5438
5439 /* In non-stop mode, also resume the other branch. */
5440 if (!detach_fork && (non_stop
5441 || (sched_multi && target_is_non_stop_p ())))
5442 {
5443 if (follow_child)
5444 switch_to_thread (parent);
5445 else
5446 switch_to_thread (child);
5447
5448 ecs->event_thread = inferior_thread ();
5449 ecs->ptid = inferior_ptid;
5450 keep_going (ecs);
5451 }
5452
5453 if (follow_child)
5454 switch_to_thread (child);
5455 else
5456 switch_to_thread (parent);
5457
5458 ecs->event_thread = inferior_thread ();
5459 ecs->ptid = inferior_ptid;
5460
5461 if (should_resume)
5462 keep_going (ecs);
5463 else
5464 stop_waiting (ecs);
5465 return;
5466 }
5467 process_event_stop_test (ecs);
5468 return;
5469
5470 case TARGET_WAITKIND_VFORK_DONE:
5471 /* Done with the shared memory region. Re-insert breakpoints in
5472 the parent, and keep going. */
5473
5474 context_switch (ecs);
5475
5476 current_inferior ()->waiting_for_vfork_done = 0;
5477 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5478
5479 if (handle_stop_requested (ecs))
5480 return;
5481
5482 /* This also takes care of reinserting breakpoints in the
5483 previously locked inferior. */
5484 keep_going (ecs);
5485 return;
5486
5487 case TARGET_WAITKIND_EXECD:
5488
5489 /* Note we can't read registers yet (the stop_pc), because we
5490 don't yet know the inferior's post-exec architecture.
5491 'stop_pc' is explicitly read below instead. */
5492 switch_to_thread_no_regs (ecs->event_thread);
5493
5494 /* Do whatever is necessary to the parent branch of the vfork. */
5495 handle_vfork_child_exec_or_exit (1);
5496
5497 /* This causes the eventpoints and symbol table to be reset.
5498 Must do this now, before trying to determine whether to
5499 stop. */
5500 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5501
5502 /* In follow_exec we may have deleted the original thread and
5503 created a new one. Make sure that the event thread is the
5504 execd thread for that case (this is a nop otherwise). */
5505 ecs->event_thread = inferior_thread ();
5506
5507 ecs->event_thread->suspend.stop_pc
5508 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5509
5510 ecs->event_thread->control.stop_bpstat
5511 = bpstat_stop_status (get_current_regcache ()->aspace (),
5512 ecs->event_thread->suspend.stop_pc,
5513 ecs->event_thread, &ecs->ws);
5514
5515 /* Note that this may be referenced from inside
5516 bpstat_stop_status above, through inferior_has_execd. */
5517 xfree (ecs->ws.value.execd_pathname);
5518 ecs->ws.value.execd_pathname = NULL;
5519
5520 if (handle_stop_requested (ecs))
5521 return;
5522
5523 /* If no catchpoint triggered for this, then keep going. */
5524 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5525 {
5526 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5527 keep_going (ecs);
5528 return;
5529 }
5530 process_event_stop_test (ecs);
5531 return;
5532
5533 /* Be careful not to try to gather much state about a thread
5534 that's in a syscall. It's frequently a losing proposition. */
5535 case TARGET_WAITKIND_SYSCALL_ENTRY:
5536 /* Getting the current syscall number. */
5537 if (handle_syscall_event (ecs) == 0)
5538 process_event_stop_test (ecs);
5539 return;
5540
5541 /* Before examining the threads further, step this thread to
5542 get it entirely out of the syscall. (We get notice of the
5543 event when the thread is just on the verge of exiting a
5544 syscall. Stepping one instruction seems to get it back
5545 into user code.) */
5546 case TARGET_WAITKIND_SYSCALL_RETURN:
5547 if (handle_syscall_event (ecs) == 0)
5548 process_event_stop_test (ecs);
5549 return;
5550
5551 case TARGET_WAITKIND_STOPPED:
5552 handle_signal_stop (ecs);
5553 return;
5554
5555 case TARGET_WAITKIND_NO_HISTORY:
5556 /* Reverse execution: target ran out of history info. */
5557
5558 /* Switch to the stopped thread. */
5559 context_switch (ecs);
5560 infrun_debug_printf ("stopped");
5561
5562 delete_just_stopped_threads_single_step_breakpoints ();
5563 ecs->event_thread->suspend.stop_pc
5564 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5565
5566 if (handle_stop_requested (ecs))
5567 return;
5568
5569 gdb::observers::no_history.notify ();
5570 stop_waiting (ecs);
5571 return;
5572 }
5573 }
5574
5575 /* Restart threads back to what they were trying to do back when we
5576 paused them for an in-line step-over. The EVENT_THREAD thread is
5577 ignored. */
5578
5579 static void
5580 restart_threads (struct thread_info *event_thread)
5581 {
5582 /* In case the instruction just stepped spawned a new thread. */
5583 update_thread_list ();
5584
5585 for (thread_info *tp : all_non_exited_threads ())
5586 {
5587 switch_to_thread_no_regs (tp);
5588
5589 if (tp == event_thread)
5590 {
5591 infrun_debug_printf ("restart threads: [%s] is event thread",
5592 target_pid_to_str (tp->ptid).c_str ());
5593 continue;
5594 }
5595
5596 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5597 {
5598 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5599 target_pid_to_str (tp->ptid).c_str ());
5600 continue;
5601 }
5602
5603 if (tp->resumed)
5604 {
5605 infrun_debug_printf ("restart threads: [%s] resumed",
5606 target_pid_to_str (tp->ptid).c_str ());
5607 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5608 continue;
5609 }
5610
5611 if (thread_is_in_step_over_chain (tp))
5612 {
5613 infrun_debug_printf ("restart threads: [%s] needs step-over",
5614 target_pid_to_str (tp->ptid).c_str ());
5615 gdb_assert (!tp->resumed);
5616 continue;
5617 }
5618
5619
5620 if (tp->suspend.waitstatus_pending_p)
5621 {
5622 infrun_debug_printf ("restart threads: [%s] has pending status",
5623 target_pid_to_str (tp->ptid).c_str ());
5624 tp->resumed = true;
5625 continue;
5626 }
5627
5628 gdb_assert (!tp->stop_requested);
5629
5630 /* If some thread needs to start a step-over at this point, it
5631 should still be in the step-over queue, and thus skipped
5632 above. */
5633 if (thread_still_needs_step_over (tp))
5634 {
5635 internal_error (__FILE__, __LINE__,
5636 "thread [%s] needs a step-over, but not in "
5637 "step-over queue\n",
5638 target_pid_to_str (tp->ptid).c_str ());
5639 }
5640
5641 if (currently_stepping (tp))
5642 {
5643 infrun_debug_printf ("restart threads: [%s] was stepping",
5644 target_pid_to_str (tp->ptid).c_str ());
5645 keep_going_stepped_thread (tp);
5646 }
5647 else
5648 {
5649 struct execution_control_state ecss;
5650 struct execution_control_state *ecs = &ecss;
5651
5652 infrun_debug_printf ("restart threads: [%s] continuing",
5653 target_pid_to_str (tp->ptid).c_str ());
5654 reset_ecs (ecs, tp);
5655 switch_to_thread (tp);
5656 keep_going_pass_signal (ecs);
5657 }
5658 }
5659 }
5660
5661 /* Callback for iterate_over_threads. Find a resumed thread that has
5662 a pending waitstatus. */
5663
5664 static int
5665 resumed_thread_with_pending_status (struct thread_info *tp,
5666 void *arg)
5667 {
5668 return (tp->resumed
5669 && tp->suspend.waitstatus_pending_p);
5670 }
5671
5672 /* Called when we get an event that may finish an in-line or
5673 out-of-line (displaced stepping) step-over started previously.
5674 Return true if the event is processed and we should go back to the
5675 event loop; false if the caller should continue processing the
5676 event. */
5677
5678 static int
5679 finish_step_over (struct execution_control_state *ecs)
5680 {
5681 displaced_step_fixup (ecs->event_thread,
5682 ecs->event_thread->suspend.stop_signal);
5683
5684 bool had_step_over_info = step_over_info_valid_p ();
5685
5686 if (had_step_over_info)
5687 {
5688 /* If we're stepping over a breakpoint with all threads locked,
5689 then only the thread that was stepped should be reporting
5690 back an event. */
5691 gdb_assert (ecs->event_thread->control.trap_expected);
5692
5693 clear_step_over_info ();
5694 }
5695
5696 if (!target_is_non_stop_p ())
5697 return 0;
5698
5699 /* Start a new step-over in another thread if there's one that
5700 needs it. */
5701 start_step_over ();
5702
5703 /* If we were stepping over a breakpoint before, and haven't started
5704 a new in-line step-over sequence, then restart all other threads
5705 (except the event thread). We can't do this in all-stop, as then
5706 e.g., we wouldn't be able to issue any other remote packet until
5707 these other threads stop. */
5708 if (had_step_over_info && !step_over_info_valid_p ())
5709 {
5710 struct thread_info *pending;
5711
5712 /* If we only have threads with pending statuses, the restart
5713 below won't restart any thread and so nothing re-inserts the
5714 breakpoint we just stepped over. But we need it inserted
5715 when we later process the pending events, otherwise if
5716 another thread has a pending event for this breakpoint too,
5717 we'd discard its event (because the breakpoint that
5718 originally caused the event was no longer inserted). */
5719 context_switch (ecs);
5720 insert_breakpoints ();
5721
5722 restart_threads (ecs->event_thread);
5723
5724 /* If we have events pending, go through handle_inferior_event
5725 again, picking up a pending event at random. This avoids
5726 thread starvation. */
5727
5728 /* But not if we just stepped over a watchpoint in order to let
5729 the instruction execute so we can evaluate its expression.
5730 The set of watchpoints that triggered is recorded in the
5731 breakpoint objects themselves (see bp->watchpoint_triggered).
5732 If we processed another event first, that other event could
5733 clobber this info. */
5734 if (ecs->event_thread->stepping_over_watchpoint)
5735 return 0;
5736
5737 pending = iterate_over_threads (resumed_thread_with_pending_status,
5738 NULL);
5739 if (pending != NULL)
5740 {
5741 struct thread_info *tp = ecs->event_thread;
5742 struct regcache *regcache;
5743
5744 infrun_debug_printf ("found resumed threads with "
5745 "pending events, saving status");
5746
5747 gdb_assert (pending != tp);
5748
5749 /* Record the event thread's event for later. */
5750 save_waitstatus (tp, &ecs->ws);
5751 /* This was cleared early, by handle_inferior_event. Set it
5752 so this pending event is considered by
5753 do_target_wait. */
5754 tp->resumed = true;
5755
5756 gdb_assert (!tp->executing);
5757
5758 regcache = get_thread_regcache (tp);
5759 tp->suspend.stop_pc = regcache_read_pc (regcache);
5760
5761 infrun_debug_printf ("saved stop_pc=%s for %s "
5762 "(currently_stepping=%d)",
5763 paddress (target_gdbarch (),
5764 tp->suspend.stop_pc),
5765 target_pid_to_str (tp->ptid).c_str (),
5766 currently_stepping (tp));
5767
5768 /* This in-line step-over finished; clear this so we won't
5769 start a new one. This is what handle_signal_stop would
5770 do, if we returned false. */
5771 tp->stepping_over_breakpoint = 0;
5772
5773 /* Wake up the event loop again. */
5774 mark_async_event_handler (infrun_async_inferior_event_token);
5775
5776 prepare_to_wait (ecs);
5777 return 1;
5778 }
5779 }
5780
5781 return 0;
5782 }
5783
5784 /* Come here when the program has stopped with a signal. */
5785
5786 static void
5787 handle_signal_stop (struct execution_control_state *ecs)
5788 {
5789 struct frame_info *frame;
5790 struct gdbarch *gdbarch;
5791 int stopped_by_watchpoint;
5792 enum stop_kind stop_soon;
5793 int random_signal;
5794
5795 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5796
5797 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5798
5799 /* Do we need to clean up the state of a thread that has
5800 completed a displaced single-step? (Doing so usually affects
5801 the PC, so do it here, before we set stop_pc.) */
5802 if (finish_step_over (ecs))
5803 return;
5804
5805 /* If we either finished a single-step or hit a breakpoint, but
5806 the user wanted this thread to be stopped, pretend we got a
5807 SIG0 (generic unsignaled stop). */
5808 if (ecs->event_thread->stop_requested
5809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5810 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5811
5812 ecs->event_thread->suspend.stop_pc
5813 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5814
5815 if (debug_infrun)
5816 {
5817 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5818 struct gdbarch *reg_gdbarch = regcache->arch ();
5819
5820 switch_to_thread (ecs->event_thread);
5821
5822 infrun_debug_printf ("stop_pc=%s",
5823 paddress (reg_gdbarch,
5824 ecs->event_thread->suspend.stop_pc));
5825 if (target_stopped_by_watchpoint ())
5826 {
5827 CORE_ADDR addr;
5828
5829 infrun_debug_printf ("stopped by watchpoint");
5830
5831 if (target_stopped_data_address (current_top_target (), &addr))
5832 infrun_debug_printf ("stopped data address=%s",
5833 paddress (reg_gdbarch, addr));
5834 else
5835 infrun_debug_printf ("(no data address available)");
5836 }
5837 }
5838
5839 /* This is originated from start_remote(), start_inferior() and
5840 shared libraries hook functions. */
5841 stop_soon = get_inferior_stop_soon (ecs);
5842 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5843 {
5844 context_switch (ecs);
5845 infrun_debug_printf ("quietly stopped");
5846 stop_print_frame = true;
5847 stop_waiting (ecs);
5848 return;
5849 }
5850
5851 /* This originates from attach_command(). We need to overwrite
5852 the stop_signal here, because some kernels don't ignore a
5853 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5854 See more comments in inferior.h. On the other hand, if we
5855 get a non-SIGSTOP, report it to the user - assume the backend
5856 will handle the SIGSTOP if it should show up later.
5857
5858 Also consider that the attach is complete when we see a
5859 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5860 target extended-remote report it instead of a SIGSTOP
5861 (e.g. gdbserver). We already rely on SIGTRAP being our
5862 signal, so this is no exception.
5863
5864 Also consider that the attach is complete when we see a
5865 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5866 the target to stop all threads of the inferior, in case the
5867 low level attach operation doesn't stop them implicitly. If
5868 they weren't stopped implicitly, then the stub will report a
5869 GDB_SIGNAL_0, meaning: stopped for no particular reason
5870 other than GDB's request. */
5871 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5872 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5873 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5875 {
5876 stop_print_frame = true;
5877 stop_waiting (ecs);
5878 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5879 return;
5880 }
5881
5882 /* See if something interesting happened to the non-current thread. If
5883 so, then switch to that thread. */
5884 if (ecs->ptid != inferior_ptid)
5885 {
5886 infrun_debug_printf ("context switch");
5887
5888 context_switch (ecs);
5889
5890 if (deprecated_context_hook)
5891 deprecated_context_hook (ecs->event_thread->global_num);
5892 }
5893
5894 /* At this point, get hold of the now-current thread's frame. */
5895 frame = get_current_frame ();
5896 gdbarch = get_frame_arch (frame);
5897
5898 /* Pull the single step breakpoints out of the target. */
5899 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5900 {
5901 struct regcache *regcache;
5902 CORE_ADDR pc;
5903
5904 regcache = get_thread_regcache (ecs->event_thread);
5905 const address_space *aspace = regcache->aspace ();
5906
5907 pc = regcache_read_pc (regcache);
5908
5909 /* However, before doing so, if this single-step breakpoint was
5910 actually for another thread, set this thread up for moving
5911 past it. */
5912 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5913 aspace, pc))
5914 {
5915 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5916 {
5917 infrun_debug_printf ("[%s] hit another thread's single-step "
5918 "breakpoint",
5919 target_pid_to_str (ecs->ptid).c_str ());
5920 ecs->hit_singlestep_breakpoint = 1;
5921 }
5922 }
5923 else
5924 {
5925 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5926 target_pid_to_str (ecs->ptid).c_str ());
5927 }
5928 }
5929 delete_just_stopped_threads_single_step_breakpoints ();
5930
5931 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5932 && ecs->event_thread->control.trap_expected
5933 && ecs->event_thread->stepping_over_watchpoint)
5934 stopped_by_watchpoint = 0;
5935 else
5936 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5937
5938 /* If necessary, step over this watchpoint. We'll be back to display
5939 it in a moment. */
5940 if (stopped_by_watchpoint
5941 && (target_have_steppable_watchpoint ()
5942 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5943 {
5944 /* At this point, we are stopped at an instruction which has
5945 attempted to write to a piece of memory under control of
5946 a watchpoint. The instruction hasn't actually executed
5947 yet. If we were to evaluate the watchpoint expression
5948 now, we would get the old value, and therefore no change
5949 would seem to have occurred.
5950
5951 In order to make watchpoints work `right', we really need
5952 to complete the memory write, and then evaluate the
5953 watchpoint expression. We do this by single-stepping the
5954 target.
5955
5956 It may not be necessary to disable the watchpoint to step over
5957 it. For example, the PA can (with some kernel cooperation)
5958 single step over a watchpoint without disabling the watchpoint.
5959
5960 It is far more common to need to disable a watchpoint to step
5961 the inferior over it. If we have non-steppable watchpoints,
5962 we must disable the current watchpoint; it's simplest to
5963 disable all watchpoints.
5964
5965 Any breakpoint at PC must also be stepped over -- if there's
5966 one, it will have already triggered before the watchpoint
5967 triggered, and we either already reported it to the user, or
5968 it didn't cause a stop and we called keep_going. In either
5969 case, if there was a breakpoint at PC, we must be trying to
5970 step past it. */
5971 ecs->event_thread->stepping_over_watchpoint = 1;
5972 keep_going (ecs);
5973 return;
5974 }
5975
5976 ecs->event_thread->stepping_over_breakpoint = 0;
5977 ecs->event_thread->stepping_over_watchpoint = 0;
5978 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5979 ecs->event_thread->control.stop_step = 0;
5980 stop_print_frame = true;
5981 stopped_by_random_signal = 0;
5982 bpstat stop_chain = NULL;
5983
5984 /* Hide inlined functions starting here, unless we just performed stepi or
5985 nexti. After stepi and nexti, always show the innermost frame (not any
5986 inline function call sites). */
5987 if (ecs->event_thread->control.step_range_end != 1)
5988 {
5989 const address_space *aspace
5990 = get_thread_regcache (ecs->event_thread)->aspace ();
5991
5992 /* skip_inline_frames is expensive, so we avoid it if we can
5993 determine that the address is one where functions cannot have
5994 been inlined. This improves performance with inferiors that
5995 load a lot of shared libraries, because the solib event
5996 breakpoint is defined as the address of a function (i.e. not
5997 inline). Note that we have to check the previous PC as well
5998 as the current one to catch cases when we have just
5999 single-stepped off a breakpoint prior to reinstating it.
6000 Note that we're assuming that the code we single-step to is
6001 not inline, but that's not definitive: there's nothing
6002 preventing the event breakpoint function from containing
6003 inlined code, and the single-step ending up there. If the
6004 user had set a breakpoint on that inlined code, the missing
6005 skip_inline_frames call would break things. Fortunately
6006 that's an extremely unlikely scenario. */
6007 if (!pc_at_non_inline_function (aspace,
6008 ecs->event_thread->suspend.stop_pc,
6009 &ecs->ws)
6010 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6011 && ecs->event_thread->control.trap_expected
6012 && pc_at_non_inline_function (aspace,
6013 ecs->event_thread->prev_pc,
6014 &ecs->ws)))
6015 {
6016 stop_chain = build_bpstat_chain (aspace,
6017 ecs->event_thread->suspend.stop_pc,
6018 &ecs->ws);
6019 skip_inline_frames (ecs->event_thread, stop_chain);
6020
6021 /* Re-fetch current thread's frame in case that invalidated
6022 the frame cache. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
6025 }
6026 }
6027
6028 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6029 && ecs->event_thread->control.trap_expected
6030 && gdbarch_single_step_through_delay_p (gdbarch)
6031 && currently_stepping (ecs->event_thread))
6032 {
6033 /* We're trying to step off a breakpoint. Turns out that we're
6034 also on an instruction that needs to be stepped multiple
6035 times before it's been fully executing. E.g., architectures
6036 with a delay slot. It needs to be stepped twice, once for
6037 the instruction and once for the delay slot. */
6038 int step_through_delay
6039 = gdbarch_single_step_through_delay (gdbarch, frame);
6040
6041 if (step_through_delay)
6042 infrun_debug_printf ("step through delay");
6043
6044 if (ecs->event_thread->control.step_range_end == 0
6045 && step_through_delay)
6046 {
6047 /* The user issued a continue when stopped at a breakpoint.
6048 Set up for another trap and get out of here. */
6049 ecs->event_thread->stepping_over_breakpoint = 1;
6050 keep_going (ecs);
6051 return;
6052 }
6053 else if (step_through_delay)
6054 {
6055 /* The user issued a step when stopped at a breakpoint.
6056 Maybe we should stop, maybe we should not - the delay
6057 slot *might* correspond to a line of source. In any
6058 case, don't decide that here, just set
6059 ecs->stepping_over_breakpoint, making sure we
6060 single-step again before breakpoints are re-inserted. */
6061 ecs->event_thread->stepping_over_breakpoint = 1;
6062 }
6063 }
6064
6065 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6066 handles this event. */
6067 ecs->event_thread->control.stop_bpstat
6068 = bpstat_stop_status (get_current_regcache ()->aspace (),
6069 ecs->event_thread->suspend.stop_pc,
6070 ecs->event_thread, &ecs->ws, stop_chain);
6071
6072 /* Following in case break condition called a
6073 function. */
6074 stop_print_frame = true;
6075
6076 /* This is where we handle "moribund" watchpoints. Unlike
6077 software breakpoints traps, hardware watchpoint traps are
6078 always distinguishable from random traps. If no high-level
6079 watchpoint is associated with the reported stop data address
6080 anymore, then the bpstat does not explain the signal ---
6081 simply make sure to ignore it if `stopped_by_watchpoint' is
6082 set. */
6083
6084 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6085 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6086 GDB_SIGNAL_TRAP)
6087 && stopped_by_watchpoint)
6088 {
6089 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6090 "ignoring");
6091 }
6092
6093 /* NOTE: cagney/2003-03-29: These checks for a random signal
6094 at one stage in the past included checks for an inferior
6095 function call's call dummy's return breakpoint. The original
6096 comment, that went with the test, read:
6097
6098 ``End of a stack dummy. Some systems (e.g. Sony news) give
6099 another signal besides SIGTRAP, so check here as well as
6100 above.''
6101
6102 If someone ever tries to get call dummys on a
6103 non-executable stack to work (where the target would stop
6104 with something like a SIGSEGV), then those tests might need
6105 to be re-instated. Given, however, that the tests were only
6106 enabled when momentary breakpoints were not being used, I
6107 suspect that it won't be the case.
6108
6109 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6110 be necessary for call dummies on a non-executable stack on
6111 SPARC. */
6112
6113 /* See if the breakpoints module can explain the signal. */
6114 random_signal
6115 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6116 ecs->event_thread->suspend.stop_signal);
6117
6118 /* Maybe this was a trap for a software breakpoint that has since
6119 been removed. */
6120 if (random_signal && target_stopped_by_sw_breakpoint ())
6121 {
6122 if (gdbarch_program_breakpoint_here_p (gdbarch,
6123 ecs->event_thread->suspend.stop_pc))
6124 {
6125 struct regcache *regcache;
6126 int decr_pc;
6127
6128 /* Re-adjust PC to what the program would see if GDB was not
6129 debugging it. */
6130 regcache = get_thread_regcache (ecs->event_thread);
6131 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6132 if (decr_pc != 0)
6133 {
6134 gdb::optional<scoped_restore_tmpl<int>>
6135 restore_operation_disable;
6136
6137 if (record_full_is_used ())
6138 restore_operation_disable.emplace
6139 (record_full_gdb_operation_disable_set ());
6140
6141 regcache_write_pc (regcache,
6142 ecs->event_thread->suspend.stop_pc + decr_pc);
6143 }
6144 }
6145 else
6146 {
6147 /* A delayed software breakpoint event. Ignore the trap. */
6148 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6149 random_signal = 0;
6150 }
6151 }
6152
6153 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6154 has since been removed. */
6155 if (random_signal && target_stopped_by_hw_breakpoint ())
6156 {
6157 /* A delayed hardware breakpoint event. Ignore the trap. */
6158 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6159 "trap, ignoring");
6160 random_signal = 0;
6161 }
6162
6163 /* If not, perhaps stepping/nexting can. */
6164 if (random_signal)
6165 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6166 && currently_stepping (ecs->event_thread));
6167
6168 /* Perhaps the thread hit a single-step breakpoint of _another_
6169 thread. Single-step breakpoints are transparent to the
6170 breakpoints module. */
6171 if (random_signal)
6172 random_signal = !ecs->hit_singlestep_breakpoint;
6173
6174 /* No? Perhaps we got a moribund watchpoint. */
6175 if (random_signal)
6176 random_signal = !stopped_by_watchpoint;
6177
6178 /* Always stop if the user explicitly requested this thread to
6179 remain stopped. */
6180 if (ecs->event_thread->stop_requested)
6181 {
6182 random_signal = 1;
6183 infrun_debug_printf ("user-requested stop");
6184 }
6185
6186 /* For the program's own signals, act according to
6187 the signal handling tables. */
6188
6189 if (random_signal)
6190 {
6191 /* Signal not for debugging purposes. */
6192 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6193 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6194
6195 infrun_debug_printf ("random signal (%s)",
6196 gdb_signal_to_symbol_string (stop_signal));
6197
6198 stopped_by_random_signal = 1;
6199
6200 /* Always stop on signals if we're either just gaining control
6201 of the program, or the user explicitly requested this thread
6202 to remain stopped. */
6203 if (stop_soon != NO_STOP_QUIETLY
6204 || ecs->event_thread->stop_requested
6205 || (!inf->detaching
6206 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6207 {
6208 stop_waiting (ecs);
6209 return;
6210 }
6211
6212 /* Notify observers the signal has "handle print" set. Note we
6213 returned early above if stopping; normal_stop handles the
6214 printing in that case. */
6215 if (signal_print[ecs->event_thread->suspend.stop_signal])
6216 {
6217 /* The signal table tells us to print about this signal. */
6218 target_terminal::ours_for_output ();
6219 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6220 target_terminal::inferior ();
6221 }
6222
6223 /* Clear the signal if it should not be passed. */
6224 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6225 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6226
6227 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6228 && ecs->event_thread->control.trap_expected
6229 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6230 {
6231 /* We were just starting a new sequence, attempting to
6232 single-step off of a breakpoint and expecting a SIGTRAP.
6233 Instead this signal arrives. This signal will take us out
6234 of the stepping range so GDB needs to remember to, when
6235 the signal handler returns, resume stepping off that
6236 breakpoint. */
6237 /* To simplify things, "continue" is forced to use the same
6238 code paths as single-step - set a breakpoint at the
6239 signal return address and then, once hit, step off that
6240 breakpoint. */
6241 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6242
6243 insert_hp_step_resume_breakpoint_at_frame (frame);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6245 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6246 ecs->event_thread->control.trap_expected = 0;
6247
6248 /* If we were nexting/stepping some other thread, switch to
6249 it, so that we don't continue it, losing control. */
6250 if (!switch_back_to_stepped_thread (ecs))
6251 keep_going (ecs);
6252 return;
6253 }
6254
6255 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6256 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6257 ecs->event_thread)
6258 || ecs->event_thread->control.step_range_end == 1)
6259 && frame_id_eq (get_stack_frame_id (frame),
6260 ecs->event_thread->control.step_stack_frame_id)
6261 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6262 {
6263 /* The inferior is about to take a signal that will take it
6264 out of the single step range. Set a breakpoint at the
6265 current PC (which is presumably where the signal handler
6266 will eventually return) and then allow the inferior to
6267 run free.
6268
6269 Note that this is only needed for a signal delivered
6270 while in the single-step range. Nested signals aren't a
6271 problem as they eventually all return. */
6272 infrun_debug_printf ("signal may take us out of single-step range");
6273
6274 clear_step_over_info ();
6275 insert_hp_step_resume_breakpoint_at_frame (frame);
6276 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6277 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6278 ecs->event_thread->control.trap_expected = 0;
6279 keep_going (ecs);
6280 return;
6281 }
6282
6283 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6284 when either there's a nested signal, or when there's a
6285 pending signal enabled just as the signal handler returns
6286 (leaving the inferior at the step-resume-breakpoint without
6287 actually executing it). Either way continue until the
6288 breakpoint is really hit. */
6289
6290 if (!switch_back_to_stepped_thread (ecs))
6291 {
6292 infrun_debug_printf ("random signal, keep going");
6293
6294 keep_going (ecs);
6295 }
6296 return;
6297 }
6298
6299 process_event_stop_test (ecs);
6300 }
6301
6302 /* Come here when we've got some debug event / signal we can explain
6303 (IOW, not a random signal), and test whether it should cause a
6304 stop, or whether we should resume the inferior (transparently).
6305 E.g., could be a breakpoint whose condition evaluates false; we
6306 could be still stepping within the line; etc. */
6307
6308 static void
6309 process_event_stop_test (struct execution_control_state *ecs)
6310 {
6311 struct symtab_and_line stop_pc_sal;
6312 struct frame_info *frame;
6313 struct gdbarch *gdbarch;
6314 CORE_ADDR jmp_buf_pc;
6315 struct bpstat_what what;
6316
6317 /* Handle cases caused by hitting a breakpoint. */
6318
6319 frame = get_current_frame ();
6320 gdbarch = get_frame_arch (frame);
6321
6322 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6323
6324 if (what.call_dummy)
6325 {
6326 stop_stack_dummy = what.call_dummy;
6327 }
6328
6329 /* A few breakpoint types have callbacks associated (e.g.,
6330 bp_jit_event). Run them now. */
6331 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6332
6333 /* If we hit an internal event that triggers symbol changes, the
6334 current frame will be invalidated within bpstat_what (e.g., if we
6335 hit an internal solib event). Re-fetch it. */
6336 frame = get_current_frame ();
6337 gdbarch = get_frame_arch (frame);
6338
6339 switch (what.main_action)
6340 {
6341 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6342 /* If we hit the breakpoint at longjmp while stepping, we
6343 install a momentary breakpoint at the target of the
6344 jmp_buf. */
6345
6346 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6347
6348 ecs->event_thread->stepping_over_breakpoint = 1;
6349
6350 if (what.is_longjmp)
6351 {
6352 struct value *arg_value;
6353
6354 /* If we set the longjmp breakpoint via a SystemTap probe,
6355 then use it to extract the arguments. The destination PC
6356 is the third argument to the probe. */
6357 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6358 if (arg_value)
6359 {
6360 jmp_buf_pc = value_as_address (arg_value);
6361 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6362 }
6363 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6364 || !gdbarch_get_longjmp_target (gdbarch,
6365 frame, &jmp_buf_pc))
6366 {
6367 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6368 "(!gdbarch_get_longjmp_target)");
6369 keep_going (ecs);
6370 return;
6371 }
6372
6373 /* Insert a breakpoint at resume address. */
6374 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6375 }
6376 else
6377 check_exception_resume (ecs, frame);
6378 keep_going (ecs);
6379 return;
6380
6381 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6382 {
6383 struct frame_info *init_frame;
6384
6385 /* There are several cases to consider.
6386
6387 1. The initiating frame no longer exists. In this case we
6388 must stop, because the exception or longjmp has gone too
6389 far.
6390
6391 2. The initiating frame exists, and is the same as the
6392 current frame. We stop, because the exception or longjmp
6393 has been caught.
6394
6395 3. The initiating frame exists and is different from the
6396 current frame. This means the exception or longjmp has
6397 been caught beneath the initiating frame, so keep going.
6398
6399 4. longjmp breakpoint has been placed just to protect
6400 against stale dummy frames and user is not interested in
6401 stopping around longjmps. */
6402
6403 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6404
6405 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6406 != NULL);
6407 delete_exception_resume_breakpoint (ecs->event_thread);
6408
6409 if (what.is_longjmp)
6410 {
6411 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6412
6413 if (!frame_id_p (ecs->event_thread->initiating_frame))
6414 {
6415 /* Case 4. */
6416 keep_going (ecs);
6417 return;
6418 }
6419 }
6420
6421 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6422
6423 if (init_frame)
6424 {
6425 struct frame_id current_id
6426 = get_frame_id (get_current_frame ());
6427 if (frame_id_eq (current_id,
6428 ecs->event_thread->initiating_frame))
6429 {
6430 /* Case 2. Fall through. */
6431 }
6432 else
6433 {
6434 /* Case 3. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
6440 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6441 exists. */
6442 delete_step_resume_breakpoint (ecs->event_thread);
6443
6444 end_stepping_range (ecs);
6445 }
6446 return;
6447
6448 case BPSTAT_WHAT_SINGLE:
6449 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6450 ecs->event_thread->stepping_over_breakpoint = 1;
6451 /* Still need to check other stuff, at least the case where we
6452 are stepping and step out of the right range. */
6453 break;
6454
6455 case BPSTAT_WHAT_STEP_RESUME:
6456 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6457
6458 delete_step_resume_breakpoint (ecs->event_thread);
6459 if (ecs->event_thread->control.proceed_to_finish
6460 && execution_direction == EXEC_REVERSE)
6461 {
6462 struct thread_info *tp = ecs->event_thread;
6463
6464 /* We are finishing a function in reverse, and just hit the
6465 step-resume breakpoint at the start address of the
6466 function, and we're almost there -- just need to back up
6467 by one more single-step, which should take us back to the
6468 function call. */
6469 tp->control.step_range_start = tp->control.step_range_end = 1;
6470 keep_going (ecs);
6471 return;
6472 }
6473 fill_in_stop_func (gdbarch, ecs);
6474 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6475 && execution_direction == EXEC_REVERSE)
6476 {
6477 /* We are stepping over a function call in reverse, and just
6478 hit the step-resume breakpoint at the start address of
6479 the function. Go back to single-stepping, which should
6480 take us back to the function call. */
6481 ecs->event_thread->stepping_over_breakpoint = 1;
6482 keep_going (ecs);
6483 return;
6484 }
6485 break;
6486
6487 case BPSTAT_WHAT_STOP_NOISY:
6488 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6489 stop_print_frame = true;
6490
6491 /* Assume the thread stopped for a breakpoint. We'll still check
6492 whether a/the breakpoint is there when the thread is next
6493 resumed. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
6495
6496 stop_waiting (ecs);
6497 return;
6498
6499 case BPSTAT_WHAT_STOP_SILENT:
6500 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6501 stop_print_frame = false;
6502
6503 /* Assume the thread stopped for a breakpoint. We'll still check
6504 whether a/the breakpoint is there when the thread is next
6505 resumed. */
6506 ecs->event_thread->stepping_over_breakpoint = 1;
6507 stop_waiting (ecs);
6508 return;
6509
6510 case BPSTAT_WHAT_HP_STEP_RESUME:
6511 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6512
6513 delete_step_resume_breakpoint (ecs->event_thread);
6514 if (ecs->event_thread->step_after_step_resume_breakpoint)
6515 {
6516 /* Back when the step-resume breakpoint was inserted, we
6517 were trying to single-step off a breakpoint. Go back to
6518 doing that. */
6519 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6520 ecs->event_thread->stepping_over_breakpoint = 1;
6521 keep_going (ecs);
6522 return;
6523 }
6524 break;
6525
6526 case BPSTAT_WHAT_KEEP_CHECKING:
6527 break;
6528 }
6529
6530 /* If we stepped a permanent breakpoint and we had a high priority
6531 step-resume breakpoint for the address we stepped, but we didn't
6532 hit it, then we must have stepped into the signal handler. The
6533 step-resume was only necessary to catch the case of _not_
6534 stepping into the handler, so delete it, and fall through to
6535 checking whether the step finished. */
6536 if (ecs->event_thread->stepped_breakpoint)
6537 {
6538 struct breakpoint *sr_bp
6539 = ecs->event_thread->control.step_resume_breakpoint;
6540
6541 if (sr_bp != NULL
6542 && sr_bp->loc->permanent
6543 && sr_bp->type == bp_hp_step_resume
6544 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6545 {
6546 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6547 delete_step_resume_breakpoint (ecs->event_thread);
6548 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6549 }
6550 }
6551
6552 /* We come here if we hit a breakpoint but should not stop for it.
6553 Possibly we also were stepping and should stop for that. So fall
6554 through and test for stepping. But, if not stepping, do not
6555 stop. */
6556
6557 /* In all-stop mode, if we're currently stepping but have stopped in
6558 some other thread, we need to switch back to the stepped thread. */
6559 if (switch_back_to_stepped_thread (ecs))
6560 return;
6561
6562 if (ecs->event_thread->control.step_resume_breakpoint)
6563 {
6564 infrun_debug_printf ("step-resume breakpoint is inserted");
6565
6566 /* Having a step-resume breakpoint overrides anything
6567 else having to do with stepping commands until
6568 that breakpoint is reached. */
6569 keep_going (ecs);
6570 return;
6571 }
6572
6573 if (ecs->event_thread->control.step_range_end == 0)
6574 {
6575 infrun_debug_printf ("no stepping, continue");
6576 /* Likewise if we aren't even stepping. */
6577 keep_going (ecs);
6578 return;
6579 }
6580
6581 /* Re-fetch current thread's frame in case the code above caused
6582 the frame cache to be re-initialized, making our FRAME variable
6583 a dangling pointer. */
6584 frame = get_current_frame ();
6585 gdbarch = get_frame_arch (frame);
6586 fill_in_stop_func (gdbarch, ecs);
6587
6588 /* If stepping through a line, keep going if still within it.
6589
6590 Note that step_range_end is the address of the first instruction
6591 beyond the step range, and NOT the address of the last instruction
6592 within it!
6593
6594 Note also that during reverse execution, we may be stepping
6595 through a function epilogue and therefore must detect when
6596 the current-frame changes in the middle of a line. */
6597
6598 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6599 ecs->event_thread)
6600 && (execution_direction != EXEC_REVERSE
6601 || frame_id_eq (get_frame_id (frame),
6602 ecs->event_thread->control.step_frame_id)))
6603 {
6604 infrun_debug_printf
6605 ("stepping inside range [%s-%s]",
6606 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6607 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6608
6609 /* Tentatively re-enable range stepping; `resume' disables it if
6610 necessary (e.g., if we're stepping over a breakpoint or we
6611 have software watchpoints). */
6612 ecs->event_thread->control.may_range_step = 1;
6613
6614 /* When stepping backward, stop at beginning of line range
6615 (unless it's the function entry point, in which case
6616 keep going back to the call point). */
6617 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6618 if (stop_pc == ecs->event_thread->control.step_range_start
6619 && stop_pc != ecs->stop_func_start
6620 && execution_direction == EXEC_REVERSE)
6621 end_stepping_range (ecs);
6622 else
6623 keep_going (ecs);
6624
6625 return;
6626 }
6627
6628 /* We stepped out of the stepping range. */
6629
6630 /* If we are stepping at the source level and entered the runtime
6631 loader dynamic symbol resolution code...
6632
6633 EXEC_FORWARD: we keep on single stepping until we exit the run
6634 time loader code and reach the callee's address.
6635
6636 EXEC_REVERSE: we've already executed the callee (backward), and
6637 the runtime loader code is handled just like any other
6638 undebuggable function call. Now we need only keep stepping
6639 backward through the trampoline code, and that's handled further
6640 down, so there is nothing for us to do here. */
6641
6642 if (execution_direction != EXEC_REVERSE
6643 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6644 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6645 {
6646 CORE_ADDR pc_after_resolver =
6647 gdbarch_skip_solib_resolver (gdbarch,
6648 ecs->event_thread->suspend.stop_pc);
6649
6650 infrun_debug_printf ("stepped into dynsym resolve code");
6651
6652 if (pc_after_resolver)
6653 {
6654 /* Set up a step-resume breakpoint at the address
6655 indicated by SKIP_SOLIB_RESOLVER. */
6656 symtab_and_line sr_sal;
6657 sr_sal.pc = pc_after_resolver;
6658 sr_sal.pspace = get_frame_program_space (frame);
6659
6660 insert_step_resume_breakpoint_at_sal (gdbarch,
6661 sr_sal, null_frame_id);
6662 }
6663
6664 keep_going (ecs);
6665 return;
6666 }
6667
6668 /* Step through an indirect branch thunk. */
6669 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6670 && gdbarch_in_indirect_branch_thunk (gdbarch,
6671 ecs->event_thread->suspend.stop_pc))
6672 {
6673 infrun_debug_printf ("stepped into indirect branch thunk");
6674 keep_going (ecs);
6675 return;
6676 }
6677
6678 if (ecs->event_thread->control.step_range_end != 1
6679 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6680 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6681 && get_frame_type (frame) == SIGTRAMP_FRAME)
6682 {
6683 infrun_debug_printf ("stepped into signal trampoline");
6684 /* The inferior, while doing a "step" or "next", has ended up in
6685 a signal trampoline (either by a signal being delivered or by
6686 the signal handler returning). Just single-step until the
6687 inferior leaves the trampoline (either by calling the handler
6688 or returning). */
6689 keep_going (ecs);
6690 return;
6691 }
6692
6693 /* If we're in the return path from a shared library trampoline,
6694 we want to proceed through the trampoline when stepping. */
6695 /* macro/2012-04-25: This needs to come before the subroutine
6696 call check below as on some targets return trampolines look
6697 like subroutine calls (MIPS16 return thunks). */
6698 if (gdbarch_in_solib_return_trampoline (gdbarch,
6699 ecs->event_thread->suspend.stop_pc,
6700 ecs->stop_func_name)
6701 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6702 {
6703 /* Determine where this trampoline returns. */
6704 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6705 CORE_ADDR real_stop_pc
6706 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6707
6708 infrun_debug_printf ("stepped into solib return tramp");
6709
6710 /* Only proceed through if we know where it's going. */
6711 if (real_stop_pc)
6712 {
6713 /* And put the step-breakpoint there and go until there. */
6714 symtab_and_line sr_sal;
6715 sr_sal.pc = real_stop_pc;
6716 sr_sal.section = find_pc_overlay (sr_sal.pc);
6717 sr_sal.pspace = get_frame_program_space (frame);
6718
6719 /* Do not specify what the fp should be when we stop since
6720 on some machines the prologue is where the new fp value
6721 is established. */
6722 insert_step_resume_breakpoint_at_sal (gdbarch,
6723 sr_sal, null_frame_id);
6724
6725 /* Restart without fiddling with the step ranges or
6726 other state. */
6727 keep_going (ecs);
6728 return;
6729 }
6730 }
6731
6732 /* Check for subroutine calls. The check for the current frame
6733 equalling the step ID is not necessary - the check of the
6734 previous frame's ID is sufficient - but it is a common case and
6735 cheaper than checking the previous frame's ID.
6736
6737 NOTE: frame_id_eq will never report two invalid frame IDs as
6738 being equal, so to get into this block, both the current and
6739 previous frame must have valid frame IDs. */
6740 /* The outer_frame_id check is a heuristic to detect stepping
6741 through startup code. If we step over an instruction which
6742 sets the stack pointer from an invalid value to a valid value,
6743 we may detect that as a subroutine call from the mythical
6744 "outermost" function. This could be fixed by marking
6745 outermost frames as !stack_p,code_p,special_p. Then the
6746 initial outermost frame, before sp was valid, would
6747 have code_addr == &_start. See the comment in frame_id_eq
6748 for more. */
6749 if (!frame_id_eq (get_stack_frame_id (frame),
6750 ecs->event_thread->control.step_stack_frame_id)
6751 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6752 ecs->event_thread->control.step_stack_frame_id)
6753 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6754 outer_frame_id)
6755 || (ecs->event_thread->control.step_start_function
6756 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6757 {
6758 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6759 CORE_ADDR real_stop_pc;
6760
6761 infrun_debug_printf ("stepped into subroutine");
6762
6763 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6764 {
6765 /* I presume that step_over_calls is only 0 when we're
6766 supposed to be stepping at the assembly language level
6767 ("stepi"). Just stop. */
6768 /* And this works the same backward as frontward. MVS */
6769 end_stepping_range (ecs);
6770 return;
6771 }
6772
6773 /* Reverse stepping through solib trampolines. */
6774
6775 if (execution_direction == EXEC_REVERSE
6776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6777 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6778 || (ecs->stop_func_start == 0
6779 && in_solib_dynsym_resolve_code (stop_pc))))
6780 {
6781 /* Any solib trampoline code can be handled in reverse
6782 by simply continuing to single-step. We have already
6783 executed the solib function (backwards), and a few
6784 steps will take us back through the trampoline to the
6785 caller. */
6786 keep_going (ecs);
6787 return;
6788 }
6789
6790 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6791 {
6792 /* We're doing a "next".
6793
6794 Normal (forward) execution: set a breakpoint at the
6795 callee's return address (the address at which the caller
6796 will resume).
6797
6798 Reverse (backward) execution. set the step-resume
6799 breakpoint at the start of the function that we just
6800 stepped into (backwards), and continue to there. When we
6801 get there, we'll need to single-step back to the caller. */
6802
6803 if (execution_direction == EXEC_REVERSE)
6804 {
6805 /* If we're already at the start of the function, we've either
6806 just stepped backward into a single instruction function,
6807 or stepped back out of a signal handler to the first instruction
6808 of the function. Just keep going, which will single-step back
6809 to the caller. */
6810 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6811 {
6812 /* Normal function call return (static or dynamic). */
6813 symtab_and_line sr_sal;
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 }
6819 }
6820 else
6821 insert_step_resume_breakpoint_at_caller (frame);
6822
6823 keep_going (ecs);
6824 return;
6825 }
6826
6827 /* If we are in a function call trampoline (a stub between the
6828 calling routine and the real function), locate the real
6829 function. That's what tells us (a) whether we want to step
6830 into it at all, and (b) what prologue we want to run to the
6831 end of, if we do step into it. */
6832 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6833 if (real_stop_pc == 0)
6834 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6835 if (real_stop_pc != 0)
6836 ecs->stop_func_start = real_stop_pc;
6837
6838 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6839 {
6840 symtab_and_line sr_sal;
6841 sr_sal.pc = ecs->stop_func_start;
6842 sr_sal.pspace = get_frame_program_space (frame);
6843
6844 insert_step_resume_breakpoint_at_sal (gdbarch,
6845 sr_sal, null_frame_id);
6846 keep_going (ecs);
6847 return;
6848 }
6849
6850 /* If we have line number information for the function we are
6851 thinking of stepping into and the function isn't on the skip
6852 list, step into it.
6853
6854 If there are several symtabs at that PC (e.g. with include
6855 files), just want to know whether *any* of them have line
6856 numbers. find_pc_line handles this. */
6857 {
6858 struct symtab_and_line tmp_sal;
6859
6860 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6861 if (tmp_sal.line != 0
6862 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6863 tmp_sal)
6864 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6865 {
6866 if (execution_direction == EXEC_REVERSE)
6867 handle_step_into_function_backward (gdbarch, ecs);
6868 else
6869 handle_step_into_function (gdbarch, ecs);
6870 return;
6871 }
6872 }
6873
6874 /* If we have no line number and the step-stop-if-no-debug is
6875 set, we stop the step so that the user has a chance to switch
6876 in assembly mode. */
6877 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6878 && step_stop_if_no_debug)
6879 {
6880 end_stepping_range (ecs);
6881 return;
6882 }
6883
6884 if (execution_direction == EXEC_REVERSE)
6885 {
6886 /* If we're already at the start of the function, we've either just
6887 stepped backward into a single instruction function without line
6888 number info, or stepped back out of a signal handler to the first
6889 instruction of the function without line number info. Just keep
6890 going, which will single-step back to the caller. */
6891 if (ecs->stop_func_start != stop_pc)
6892 {
6893 /* Set a breakpoint at callee's start address.
6894 From there we can step once and be back in the caller. */
6895 symtab_and_line sr_sal;
6896 sr_sal.pc = ecs->stop_func_start;
6897 sr_sal.pspace = get_frame_program_space (frame);
6898 insert_step_resume_breakpoint_at_sal (gdbarch,
6899 sr_sal, null_frame_id);
6900 }
6901 }
6902 else
6903 /* Set a breakpoint at callee's return address (the address
6904 at which the caller will resume). */
6905 insert_step_resume_breakpoint_at_caller (frame);
6906
6907 keep_going (ecs);
6908 return;
6909 }
6910
6911 /* Reverse stepping through solib trampolines. */
6912
6913 if (execution_direction == EXEC_REVERSE
6914 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6915 {
6916 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6917
6918 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6919 || (ecs->stop_func_start == 0
6920 && in_solib_dynsym_resolve_code (stop_pc)))
6921 {
6922 /* Any solib trampoline code can be handled in reverse
6923 by simply continuing to single-step. We have already
6924 executed the solib function (backwards), and a few
6925 steps will take us back through the trampoline to the
6926 caller. */
6927 keep_going (ecs);
6928 return;
6929 }
6930 else if (in_solib_dynsym_resolve_code (stop_pc))
6931 {
6932 /* Stepped backward into the solib dynsym resolver.
6933 Set a breakpoint at its start and continue, then
6934 one more step will take us out. */
6935 symtab_and_line sr_sal;
6936 sr_sal.pc = ecs->stop_func_start;
6937 sr_sal.pspace = get_frame_program_space (frame);
6938 insert_step_resume_breakpoint_at_sal (gdbarch,
6939 sr_sal, null_frame_id);
6940 keep_going (ecs);
6941 return;
6942 }
6943 }
6944
6945 /* This always returns the sal for the inner-most frame when we are in a
6946 stack of inlined frames, even if GDB actually believes that it is in a
6947 more outer frame. This is checked for below by calls to
6948 inline_skipped_frames. */
6949 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6950
6951 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6952 the trampoline processing logic, however, there are some trampolines
6953 that have no names, so we should do trampoline handling first. */
6954 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6955 && ecs->stop_func_name == NULL
6956 && stop_pc_sal.line == 0)
6957 {
6958 infrun_debug_printf ("stepped into undebuggable function");
6959
6960 /* The inferior just stepped into, or returned to, an
6961 undebuggable function (where there is no debugging information
6962 and no line number corresponding to the address where the
6963 inferior stopped). Since we want to skip this kind of code,
6964 we keep going until the inferior returns from this
6965 function - unless the user has asked us not to (via
6966 set step-mode) or we no longer know how to get back
6967 to the call site. */
6968 if (step_stop_if_no_debug
6969 || !frame_id_p (frame_unwind_caller_id (frame)))
6970 {
6971 /* If we have no line number and the step-stop-if-no-debug
6972 is set, we stop the step so that the user has a chance to
6973 switch in assembly mode. */
6974 end_stepping_range (ecs);
6975 return;
6976 }
6977 else
6978 {
6979 /* Set a breakpoint at callee's return address (the address
6980 at which the caller will resume). */
6981 insert_step_resume_breakpoint_at_caller (frame);
6982 keep_going (ecs);
6983 return;
6984 }
6985 }
6986
6987 if (ecs->event_thread->control.step_range_end == 1)
6988 {
6989 /* It is stepi or nexti. We always want to stop stepping after
6990 one instruction. */
6991 infrun_debug_printf ("stepi/nexti");
6992 end_stepping_range (ecs);
6993 return;
6994 }
6995
6996 if (stop_pc_sal.line == 0)
6997 {
6998 /* We have no line number information. That means to stop
6999 stepping (does this always happen right after one instruction,
7000 when we do "s" in a function with no line numbers,
7001 or can this happen as a result of a return or longjmp?). */
7002 infrun_debug_printf ("line number info");
7003 end_stepping_range (ecs);
7004 return;
7005 }
7006
7007 /* Look for "calls" to inlined functions, part one. If the inline
7008 frame machinery detected some skipped call sites, we have entered
7009 a new inline function. */
7010
7011 if (frame_id_eq (get_frame_id (get_current_frame ()),
7012 ecs->event_thread->control.step_frame_id)
7013 && inline_skipped_frames (ecs->event_thread))
7014 {
7015 infrun_debug_printf ("stepped into inlined function");
7016
7017 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7018
7019 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7020 {
7021 /* For "step", we're going to stop. But if the call site
7022 for this inlined function is on the same source line as
7023 we were previously stepping, go down into the function
7024 first. Otherwise stop at the call site. */
7025
7026 if (call_sal.line == ecs->event_thread->current_line
7027 && call_sal.symtab == ecs->event_thread->current_symtab)
7028 {
7029 step_into_inline_frame (ecs->event_thread);
7030 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7031 {
7032 keep_going (ecs);
7033 return;
7034 }
7035 }
7036
7037 end_stepping_range (ecs);
7038 return;
7039 }
7040 else
7041 {
7042 /* For "next", we should stop at the call site if it is on a
7043 different source line. Otherwise continue through the
7044 inlined function. */
7045 if (call_sal.line == ecs->event_thread->current_line
7046 && call_sal.symtab == ecs->event_thread->current_symtab)
7047 keep_going (ecs);
7048 else
7049 end_stepping_range (ecs);
7050 return;
7051 }
7052 }
7053
7054 /* Look for "calls" to inlined functions, part two. If we are still
7055 in the same real function we were stepping through, but we have
7056 to go further up to find the exact frame ID, we are stepping
7057 through a more inlined call beyond its call site. */
7058
7059 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7060 && !frame_id_eq (get_frame_id (get_current_frame ()),
7061 ecs->event_thread->control.step_frame_id)
7062 && stepped_in_from (get_current_frame (),
7063 ecs->event_thread->control.step_frame_id))
7064 {
7065 infrun_debug_printf ("stepping through inlined function");
7066
7067 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7068 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7069 keep_going (ecs);
7070 else
7071 end_stepping_range (ecs);
7072 return;
7073 }
7074
7075 bool refresh_step_info = true;
7076 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7077 && (ecs->event_thread->current_line != stop_pc_sal.line
7078 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7079 {
7080 if (stop_pc_sal.is_stmt)
7081 {
7082 /* We are at the start of a different line. So stop. Note that
7083 we don't stop if we step into the middle of a different line.
7084 That is said to make things like for (;;) statements work
7085 better. */
7086 infrun_debug_printf ("stepped to a different line");
7087 end_stepping_range (ecs);
7088 return;
7089 }
7090 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7091 ecs->event_thread->control.step_frame_id))
7092 {
7093 /* We are at the start of a different line, however, this line is
7094 not marked as a statement, and we have not changed frame. We
7095 ignore this line table entry, and continue stepping forward,
7096 looking for a better place to stop. */
7097 refresh_step_info = false;
7098 infrun_debug_printf ("stepped to a different line, but "
7099 "it's not the start of a statement");
7100 }
7101 }
7102
7103 /* We aren't done stepping.
7104
7105 Optimize by setting the stepping range to the line.
7106 (We might not be in the original line, but if we entered a
7107 new line in mid-statement, we continue stepping. This makes
7108 things like for(;;) statements work better.)
7109
7110 If we entered a SAL that indicates a non-statement line table entry,
7111 then we update the stepping range, but we don't update the step info,
7112 which includes things like the line number we are stepping away from.
7113 This means we will stop when we find a line table entry that is marked
7114 as is-statement, even if it matches the non-statement one we just
7115 stepped into. */
7116
7117 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7118 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7119 ecs->event_thread->control.may_range_step = 1;
7120 if (refresh_step_info)
7121 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7122
7123 infrun_debug_printf ("keep going");
7124 keep_going (ecs);
7125 }
7126
7127 /* In all-stop mode, if we're currently stepping but have stopped in
7128 some other thread, we may need to switch back to the stepped
7129 thread. Returns true we set the inferior running, false if we left
7130 it stopped (and the event needs further processing). */
7131
7132 static bool
7133 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7134 {
7135 if (!target_is_non_stop_p ())
7136 {
7137 struct thread_info *stepping_thread;
7138
7139 /* If any thread is blocked on some internal breakpoint, and we
7140 simply need to step over that breakpoint to get it going
7141 again, do that first. */
7142
7143 /* However, if we see an event for the stepping thread, then we
7144 know all other threads have been moved past their breakpoints
7145 already. Let the caller check whether the step is finished,
7146 etc., before deciding to move it past a breakpoint. */
7147 if (ecs->event_thread->control.step_range_end != 0)
7148 return false;
7149
7150 /* Check if the current thread is blocked on an incomplete
7151 step-over, interrupted by a random signal. */
7152 if (ecs->event_thread->control.trap_expected
7153 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7154 {
7155 infrun_debug_printf
7156 ("need to finish step-over of [%s]",
7157 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7158 keep_going (ecs);
7159 return true;
7160 }
7161
7162 /* Check if the current thread is blocked by a single-step
7163 breakpoint of another thread. */
7164 if (ecs->hit_singlestep_breakpoint)
7165 {
7166 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7167 target_pid_to_str (ecs->ptid).c_str ());
7168 keep_going (ecs);
7169 return true;
7170 }
7171
7172 /* If this thread needs yet another step-over (e.g., stepping
7173 through a delay slot), do it first before moving on to
7174 another thread. */
7175 if (thread_still_needs_step_over (ecs->event_thread))
7176 {
7177 infrun_debug_printf
7178 ("thread [%s] still needs step-over",
7179 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7180 keep_going (ecs);
7181 return true;
7182 }
7183
7184 /* If scheduler locking applies even if not stepping, there's no
7185 need to walk over threads. Above we've checked whether the
7186 current thread is stepping. If some other thread not the
7187 event thread is stepping, then it must be that scheduler
7188 locking is not in effect. */
7189 if (schedlock_applies (ecs->event_thread))
7190 return false;
7191
7192 /* Otherwise, we no longer expect a trap in the current thread.
7193 Clear the trap_expected flag before switching back -- this is
7194 what keep_going does as well, if we call it. */
7195 ecs->event_thread->control.trap_expected = 0;
7196
7197 /* Likewise, clear the signal if it should not be passed. */
7198 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7199 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7200
7201 /* Do all pending step-overs before actually proceeding with
7202 step/next/etc. */
7203 if (start_step_over ())
7204 {
7205 prepare_to_wait (ecs);
7206 return true;
7207 }
7208
7209 /* Look for the stepping/nexting thread. */
7210 stepping_thread = NULL;
7211
7212 for (thread_info *tp : all_non_exited_threads ())
7213 {
7214 switch_to_thread_no_regs (tp);
7215
7216 /* Ignore threads of processes the caller is not
7217 resuming. */
7218 if (!sched_multi
7219 && (tp->inf->process_target () != ecs->target
7220 || tp->inf->pid != ecs->ptid.pid ()))
7221 continue;
7222
7223 /* When stepping over a breakpoint, we lock all threads
7224 except the one that needs to move past the breakpoint.
7225 If a non-event thread has this set, the "incomplete
7226 step-over" check above should have caught it earlier. */
7227 if (tp->control.trap_expected)
7228 {
7229 internal_error (__FILE__, __LINE__,
7230 "[%s] has inconsistent state: "
7231 "trap_expected=%d\n",
7232 target_pid_to_str (tp->ptid).c_str (),
7233 tp->control.trap_expected);
7234 }
7235
7236 /* Did we find the stepping thread? */
7237 if (tp->control.step_range_end)
7238 {
7239 /* Yep. There should only one though. */
7240 gdb_assert (stepping_thread == NULL);
7241
7242 /* The event thread is handled at the top, before we
7243 enter this loop. */
7244 gdb_assert (tp != ecs->event_thread);
7245
7246 /* If some thread other than the event thread is
7247 stepping, then scheduler locking can't be in effect,
7248 otherwise we wouldn't have resumed the current event
7249 thread in the first place. */
7250 gdb_assert (!schedlock_applies (tp));
7251
7252 stepping_thread = tp;
7253 }
7254 }
7255
7256 if (stepping_thread != NULL)
7257 {
7258 infrun_debug_printf ("switching back to stepped thread");
7259
7260 if (keep_going_stepped_thread (stepping_thread))
7261 {
7262 prepare_to_wait (ecs);
7263 return true;
7264 }
7265 }
7266
7267 switch_to_thread (ecs->event_thread);
7268 }
7269
7270 return false;
7271 }
7272
7273 /* Set a previously stepped thread back to stepping. Returns true on
7274 success, false if the resume is not possible (e.g., the thread
7275 vanished). */
7276
7277 static bool
7278 keep_going_stepped_thread (struct thread_info *tp)
7279 {
7280 struct frame_info *frame;
7281 struct execution_control_state ecss;
7282 struct execution_control_state *ecs = &ecss;
7283
7284 /* If the stepping thread exited, then don't try to switch back and
7285 resume it, which could fail in several different ways depending
7286 on the target. Instead, just keep going.
7287
7288 We can find a stepping dead thread in the thread list in two
7289 cases:
7290
7291 - The target supports thread exit events, and when the target
7292 tries to delete the thread from the thread list, inferior_ptid
7293 pointed at the exiting thread. In such case, calling
7294 delete_thread does not really remove the thread from the list;
7295 instead, the thread is left listed, with 'exited' state.
7296
7297 - The target's debug interface does not support thread exit
7298 events, and so we have no idea whatsoever if the previously
7299 stepping thread is still alive. For that reason, we need to
7300 synchronously query the target now. */
7301
7302 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7303 {
7304 infrun_debug_printf ("not resuming previously stepped thread, it has "
7305 "vanished");
7306
7307 delete_thread (tp);
7308 return false;
7309 }
7310
7311 infrun_debug_printf ("resuming previously stepped thread");
7312
7313 reset_ecs (ecs, tp);
7314 switch_to_thread (tp);
7315
7316 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7317 frame = get_current_frame ();
7318
7319 /* If the PC of the thread we were trying to single-step has
7320 changed, then that thread has trapped or been signaled, but the
7321 event has not been reported to GDB yet. Re-poll the target
7322 looking for this particular thread's event (i.e. temporarily
7323 enable schedlock) by:
7324
7325 - setting a break at the current PC
7326 - resuming that particular thread, only (by setting trap
7327 expected)
7328
7329 This prevents us continuously moving the single-step breakpoint
7330 forward, one instruction at a time, overstepping. */
7331
7332 if (tp->suspend.stop_pc != tp->prev_pc)
7333 {
7334 ptid_t resume_ptid;
7335
7336 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7337 paddress (target_gdbarch (), tp->prev_pc),
7338 paddress (target_gdbarch (), tp->suspend.stop_pc));
7339
7340 /* Clear the info of the previous step-over, as it's no longer
7341 valid (if the thread was trying to step over a breakpoint, it
7342 has already succeeded). It's what keep_going would do too,
7343 if we called it. Do this before trying to insert the sss
7344 breakpoint, otherwise if we were previously trying to step
7345 over this exact address in another thread, the breakpoint is
7346 skipped. */
7347 clear_step_over_info ();
7348 tp->control.trap_expected = 0;
7349
7350 insert_single_step_breakpoint (get_frame_arch (frame),
7351 get_frame_address_space (frame),
7352 tp->suspend.stop_pc);
7353
7354 tp->resumed = true;
7355 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7356 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7357 }
7358 else
7359 {
7360 infrun_debug_printf ("expected thread still hasn't advanced");
7361
7362 keep_going_pass_signal (ecs);
7363 }
7364
7365 return true;
7366 }
7367
7368 /* Is thread TP in the middle of (software or hardware)
7369 single-stepping? (Note the result of this function must never be
7370 passed directly as target_resume's STEP parameter.) */
7371
7372 static bool
7373 currently_stepping (struct thread_info *tp)
7374 {
7375 return ((tp->control.step_range_end
7376 && tp->control.step_resume_breakpoint == NULL)
7377 || tp->control.trap_expected
7378 || tp->stepped_breakpoint
7379 || bpstat_should_step ());
7380 }
7381
7382 /* Inferior has stepped into a subroutine call with source code that
7383 we should not step over. Do step to the first line of code in
7384 it. */
7385
7386 static void
7387 handle_step_into_function (struct gdbarch *gdbarch,
7388 struct execution_control_state *ecs)
7389 {
7390 fill_in_stop_func (gdbarch, ecs);
7391
7392 compunit_symtab *cust
7393 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7394 if (cust != NULL && compunit_language (cust) != language_asm)
7395 ecs->stop_func_start
7396 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7397
7398 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7399 /* Use the step_resume_break to step until the end of the prologue,
7400 even if that involves jumps (as it seems to on the vax under
7401 4.2). */
7402 /* If the prologue ends in the middle of a source line, continue to
7403 the end of that source line (if it is still within the function).
7404 Otherwise, just go to end of prologue. */
7405 if (stop_func_sal.end
7406 && stop_func_sal.pc != ecs->stop_func_start
7407 && stop_func_sal.end < ecs->stop_func_end)
7408 ecs->stop_func_start = stop_func_sal.end;
7409
7410 /* Architectures which require breakpoint adjustment might not be able
7411 to place a breakpoint at the computed address. If so, the test
7412 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7413 ecs->stop_func_start to an address at which a breakpoint may be
7414 legitimately placed.
7415
7416 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7417 made, GDB will enter an infinite loop when stepping through
7418 optimized code consisting of VLIW instructions which contain
7419 subinstructions corresponding to different source lines. On
7420 FR-V, it's not permitted to place a breakpoint on any but the
7421 first subinstruction of a VLIW instruction. When a breakpoint is
7422 set, GDB will adjust the breakpoint address to the beginning of
7423 the VLIW instruction. Thus, we need to make the corresponding
7424 adjustment here when computing the stop address. */
7425
7426 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7427 {
7428 ecs->stop_func_start
7429 = gdbarch_adjust_breakpoint_address (gdbarch,
7430 ecs->stop_func_start);
7431 }
7432
7433 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7434 {
7435 /* We are already there: stop now. */
7436 end_stepping_range (ecs);
7437 return;
7438 }
7439 else
7440 {
7441 /* Put the step-breakpoint there and go until there. */
7442 symtab_and_line sr_sal;
7443 sr_sal.pc = ecs->stop_func_start;
7444 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7445 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7446
7447 /* Do not specify what the fp should be when we stop since on
7448 some machines the prologue is where the new fp value is
7449 established. */
7450 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7451
7452 /* And make sure stepping stops right away then. */
7453 ecs->event_thread->control.step_range_end
7454 = ecs->event_thread->control.step_range_start;
7455 }
7456 keep_going (ecs);
7457 }
7458
7459 /* Inferior has stepped backward into a subroutine call with source
7460 code that we should not step over. Do step to the beginning of the
7461 last line of code in it. */
7462
7463 static void
7464 handle_step_into_function_backward (struct gdbarch *gdbarch,
7465 struct execution_control_state *ecs)
7466 {
7467 struct compunit_symtab *cust;
7468 struct symtab_and_line stop_func_sal;
7469
7470 fill_in_stop_func (gdbarch, ecs);
7471
7472 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7473 if (cust != NULL && compunit_language (cust) != language_asm)
7474 ecs->stop_func_start
7475 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7476
7477 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7478
7479 /* OK, we're just going to keep stepping here. */
7480 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7481 {
7482 /* We're there already. Just stop stepping now. */
7483 end_stepping_range (ecs);
7484 }
7485 else
7486 {
7487 /* Else just reset the step range and keep going.
7488 No step-resume breakpoint, they don't work for
7489 epilogues, which can have multiple entry paths. */
7490 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7491 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7492 keep_going (ecs);
7493 }
7494 return;
7495 }
7496
7497 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7498 This is used to both functions and to skip over code. */
7499
7500 static void
7501 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7502 struct symtab_and_line sr_sal,
7503 struct frame_id sr_id,
7504 enum bptype sr_type)
7505 {
7506 /* There should never be more than one step-resume or longjmp-resume
7507 breakpoint per thread, so we should never be setting a new
7508 step_resume_breakpoint when one is already active. */
7509 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7510 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7511
7512 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7513 paddress (gdbarch, sr_sal.pc));
7514
7515 inferior_thread ()->control.step_resume_breakpoint
7516 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7517 }
7518
7519 void
7520 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7521 struct symtab_and_line sr_sal,
7522 struct frame_id sr_id)
7523 {
7524 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7525 sr_sal, sr_id,
7526 bp_step_resume);
7527 }
7528
7529 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7530 This is used to skip a potential signal handler.
7531
7532 This is called with the interrupted function's frame. The signal
7533 handler, when it returns, will resume the interrupted function at
7534 RETURN_FRAME.pc. */
7535
7536 static void
7537 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7538 {
7539 gdb_assert (return_frame != NULL);
7540
7541 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7542
7543 symtab_and_line sr_sal;
7544 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7545 sr_sal.section = find_pc_overlay (sr_sal.pc);
7546 sr_sal.pspace = get_frame_program_space (return_frame);
7547
7548 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7549 get_stack_frame_id (return_frame),
7550 bp_hp_step_resume);
7551 }
7552
7553 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7554 is used to skip a function after stepping into it (for "next" or if
7555 the called function has no debugging information).
7556
7557 The current function has almost always been reached by single
7558 stepping a call or return instruction. NEXT_FRAME belongs to the
7559 current function, and the breakpoint will be set at the caller's
7560 resume address.
7561
7562 This is a separate function rather than reusing
7563 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7564 get_prev_frame, which may stop prematurely (see the implementation
7565 of frame_unwind_caller_id for an example). */
7566
7567 static void
7568 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7569 {
7570 /* We shouldn't have gotten here if we don't know where the call site
7571 is. */
7572 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7573
7574 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7575
7576 symtab_and_line sr_sal;
7577 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7578 frame_unwind_caller_pc (next_frame));
7579 sr_sal.section = find_pc_overlay (sr_sal.pc);
7580 sr_sal.pspace = frame_unwind_program_space (next_frame);
7581
7582 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7583 frame_unwind_caller_id (next_frame));
7584 }
7585
7586 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7587 new breakpoint at the target of a jmp_buf. The handling of
7588 longjmp-resume uses the same mechanisms used for handling
7589 "step-resume" breakpoints. */
7590
7591 static void
7592 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7593 {
7594 /* There should never be more than one longjmp-resume breakpoint per
7595 thread, so we should never be setting a new
7596 longjmp_resume_breakpoint when one is already active. */
7597 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7598
7599 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7600 paddress (gdbarch, pc));
7601
7602 inferior_thread ()->control.exception_resume_breakpoint =
7603 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7604 }
7605
7606 /* Insert an exception resume breakpoint. TP is the thread throwing
7607 the exception. The block B is the block of the unwinder debug hook
7608 function. FRAME is the frame corresponding to the call to this
7609 function. SYM is the symbol of the function argument holding the
7610 target PC of the exception. */
7611
7612 static void
7613 insert_exception_resume_breakpoint (struct thread_info *tp,
7614 const struct block *b,
7615 struct frame_info *frame,
7616 struct symbol *sym)
7617 {
7618 try
7619 {
7620 struct block_symbol vsym;
7621 struct value *value;
7622 CORE_ADDR handler;
7623 struct breakpoint *bp;
7624
7625 vsym = lookup_symbol_search_name (sym->search_name (),
7626 b, VAR_DOMAIN);
7627 value = read_var_value (vsym.symbol, vsym.block, frame);
7628 /* If the value was optimized out, revert to the old behavior. */
7629 if (! value_optimized_out (value))
7630 {
7631 handler = value_as_address (value);
7632
7633 infrun_debug_printf ("exception resume at %lx",
7634 (unsigned long) handler);
7635
7636 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7637 handler,
7638 bp_exception_resume).release ();
7639
7640 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7641 frame = NULL;
7642
7643 bp->thread = tp->global_num;
7644 inferior_thread ()->control.exception_resume_breakpoint = bp;
7645 }
7646 }
7647 catch (const gdb_exception_error &e)
7648 {
7649 /* We want to ignore errors here. */
7650 }
7651 }
7652
7653 /* A helper for check_exception_resume that sets an
7654 exception-breakpoint based on a SystemTap probe. */
7655
7656 static void
7657 insert_exception_resume_from_probe (struct thread_info *tp,
7658 const struct bound_probe *probe,
7659 struct frame_info *frame)
7660 {
7661 struct value *arg_value;
7662 CORE_ADDR handler;
7663 struct breakpoint *bp;
7664
7665 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7666 if (!arg_value)
7667 return;
7668
7669 handler = value_as_address (arg_value);
7670
7671 infrun_debug_printf ("exception resume at %s",
7672 paddress (probe->objfile->arch (), handler));
7673
7674 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7675 handler, bp_exception_resume).release ();
7676 bp->thread = tp->global_num;
7677 inferior_thread ()->control.exception_resume_breakpoint = bp;
7678 }
7679
7680 /* This is called when an exception has been intercepted. Check to
7681 see whether the exception's destination is of interest, and if so,
7682 set an exception resume breakpoint there. */
7683
7684 static void
7685 check_exception_resume (struct execution_control_state *ecs,
7686 struct frame_info *frame)
7687 {
7688 struct bound_probe probe;
7689 struct symbol *func;
7690
7691 /* First see if this exception unwinding breakpoint was set via a
7692 SystemTap probe point. If so, the probe has two arguments: the
7693 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7694 set a breakpoint there. */
7695 probe = find_probe_by_pc (get_frame_pc (frame));
7696 if (probe.prob)
7697 {
7698 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7699 return;
7700 }
7701
7702 func = get_frame_function (frame);
7703 if (!func)
7704 return;
7705
7706 try
7707 {
7708 const struct block *b;
7709 struct block_iterator iter;
7710 struct symbol *sym;
7711 int argno = 0;
7712
7713 /* The exception breakpoint is a thread-specific breakpoint on
7714 the unwinder's debug hook, declared as:
7715
7716 void _Unwind_DebugHook (void *cfa, void *handler);
7717
7718 The CFA argument indicates the frame to which control is
7719 about to be transferred. HANDLER is the destination PC.
7720
7721 We ignore the CFA and set a temporary breakpoint at HANDLER.
7722 This is not extremely efficient but it avoids issues in gdb
7723 with computing the DWARF CFA, and it also works even in weird
7724 cases such as throwing an exception from inside a signal
7725 handler. */
7726
7727 b = SYMBOL_BLOCK_VALUE (func);
7728 ALL_BLOCK_SYMBOLS (b, iter, sym)
7729 {
7730 if (!SYMBOL_IS_ARGUMENT (sym))
7731 continue;
7732
7733 if (argno == 0)
7734 ++argno;
7735 else
7736 {
7737 insert_exception_resume_breakpoint (ecs->event_thread,
7738 b, frame, sym);
7739 break;
7740 }
7741 }
7742 }
7743 catch (const gdb_exception_error &e)
7744 {
7745 }
7746 }
7747
7748 static void
7749 stop_waiting (struct execution_control_state *ecs)
7750 {
7751 infrun_debug_printf ("stop_waiting");
7752
7753 /* Let callers know we don't want to wait for the inferior anymore. */
7754 ecs->wait_some_more = 0;
7755
7756 /* If all-stop, but there exists a non-stop target, stop all
7757 threads now that we're presenting the stop to the user. */
7758 if (!non_stop && exists_non_stop_target ())
7759 stop_all_threads ();
7760 }
7761
7762 /* Like keep_going, but passes the signal to the inferior, even if the
7763 signal is set to nopass. */
7764
7765 static void
7766 keep_going_pass_signal (struct execution_control_state *ecs)
7767 {
7768 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7769 gdb_assert (!ecs->event_thread->resumed);
7770
7771 /* Save the pc before execution, to compare with pc after stop. */
7772 ecs->event_thread->prev_pc
7773 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7774
7775 if (ecs->event_thread->control.trap_expected)
7776 {
7777 struct thread_info *tp = ecs->event_thread;
7778
7779 infrun_debug_printf ("%s has trap_expected set, "
7780 "resuming to collect trap",
7781 target_pid_to_str (tp->ptid).c_str ());
7782
7783 /* We haven't yet gotten our trap, and either: intercepted a
7784 non-signal event (e.g., a fork); or took a signal which we
7785 are supposed to pass through to the inferior. Simply
7786 continue. */
7787 resume (ecs->event_thread->suspend.stop_signal);
7788 }
7789 else if (step_over_info_valid_p ())
7790 {
7791 /* Another thread is stepping over a breakpoint in-line. If
7792 this thread needs a step-over too, queue the request. In
7793 either case, this resume must be deferred for later. */
7794 struct thread_info *tp = ecs->event_thread;
7795
7796 if (ecs->hit_singlestep_breakpoint
7797 || thread_still_needs_step_over (tp))
7798 {
7799 infrun_debug_printf ("step-over already in progress: "
7800 "step-over for %s deferred",
7801 target_pid_to_str (tp->ptid).c_str ());
7802 thread_step_over_chain_enqueue (tp);
7803 }
7804 else
7805 {
7806 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7807 target_pid_to_str (tp->ptid).c_str ());
7808 }
7809 }
7810 else
7811 {
7812 struct regcache *regcache = get_current_regcache ();
7813 int remove_bp;
7814 int remove_wps;
7815 step_over_what step_what;
7816
7817 /* Either the trap was not expected, but we are continuing
7818 anyway (if we got a signal, the user asked it be passed to
7819 the child)
7820 -- or --
7821 We got our expected trap, but decided we should resume from
7822 it.
7823
7824 We're going to run this baby now!
7825
7826 Note that insert_breakpoints won't try to re-insert
7827 already inserted breakpoints. Therefore, we don't
7828 care if breakpoints were already inserted, or not. */
7829
7830 /* If we need to step over a breakpoint, and we're not using
7831 displaced stepping to do so, insert all breakpoints
7832 (watchpoints, etc.) but the one we're stepping over, step one
7833 instruction, and then re-insert the breakpoint when that step
7834 is finished. */
7835
7836 step_what = thread_still_needs_step_over (ecs->event_thread);
7837
7838 remove_bp = (ecs->hit_singlestep_breakpoint
7839 || (step_what & STEP_OVER_BREAKPOINT));
7840 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7841
7842 /* We can't use displaced stepping if we need to step past a
7843 watchpoint. The instruction copied to the scratch pad would
7844 still trigger the watchpoint. */
7845 if (remove_bp
7846 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7847 {
7848 set_step_over_info (regcache->aspace (),
7849 regcache_read_pc (regcache), remove_wps,
7850 ecs->event_thread->global_num);
7851 }
7852 else if (remove_wps)
7853 set_step_over_info (NULL, 0, remove_wps, -1);
7854
7855 /* If we now need to do an in-line step-over, we need to stop
7856 all other threads. Note this must be done before
7857 insert_breakpoints below, because that removes the breakpoint
7858 we're about to step over, otherwise other threads could miss
7859 it. */
7860 if (step_over_info_valid_p () && target_is_non_stop_p ())
7861 stop_all_threads ();
7862
7863 /* Stop stepping if inserting breakpoints fails. */
7864 try
7865 {
7866 insert_breakpoints ();
7867 }
7868 catch (const gdb_exception_error &e)
7869 {
7870 exception_print (gdb_stderr, e);
7871 stop_waiting (ecs);
7872 clear_step_over_info ();
7873 return;
7874 }
7875
7876 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7877
7878 resume (ecs->event_thread->suspend.stop_signal);
7879 }
7880
7881 prepare_to_wait (ecs);
7882 }
7883
7884 /* Called when we should continue running the inferior, because the
7885 current event doesn't cause a user visible stop. This does the
7886 resuming part; waiting for the next event is done elsewhere. */
7887
7888 static void
7889 keep_going (struct execution_control_state *ecs)
7890 {
7891 if (ecs->event_thread->control.trap_expected
7892 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7893 ecs->event_thread->control.trap_expected = 0;
7894
7895 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7896 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7897 keep_going_pass_signal (ecs);
7898 }
7899
7900 /* This function normally comes after a resume, before
7901 handle_inferior_event exits. It takes care of any last bits of
7902 housekeeping, and sets the all-important wait_some_more flag. */
7903
7904 static void
7905 prepare_to_wait (struct execution_control_state *ecs)
7906 {
7907 infrun_debug_printf ("prepare_to_wait");
7908
7909 ecs->wait_some_more = 1;
7910
7911 /* If the target can't async, emulate it by marking the infrun event
7912 handler such that as soon as we get back to the event-loop, we
7913 immediately end up in fetch_inferior_event again calling
7914 target_wait. */
7915 if (!target_can_async_p ())
7916 mark_infrun_async_event_handler ();
7917 }
7918
7919 /* We are done with the step range of a step/next/si/ni command.
7920 Called once for each n of a "step n" operation. */
7921
7922 static void
7923 end_stepping_range (struct execution_control_state *ecs)
7924 {
7925 ecs->event_thread->control.stop_step = 1;
7926 stop_waiting (ecs);
7927 }
7928
7929 /* Several print_*_reason functions to print why the inferior has stopped.
7930 We always print something when the inferior exits, or receives a signal.
7931 The rest of the cases are dealt with later on in normal_stop and
7932 print_it_typical. Ideally there should be a call to one of these
7933 print_*_reason functions functions from handle_inferior_event each time
7934 stop_waiting is called.
7935
7936 Note that we don't call these directly, instead we delegate that to
7937 the interpreters, through observers. Interpreters then call these
7938 with whatever uiout is right. */
7939
7940 void
7941 print_end_stepping_range_reason (struct ui_out *uiout)
7942 {
7943 /* For CLI-like interpreters, print nothing. */
7944
7945 if (uiout->is_mi_like_p ())
7946 {
7947 uiout->field_string ("reason",
7948 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7949 }
7950 }
7951
7952 void
7953 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7954 {
7955 annotate_signalled ();
7956 if (uiout->is_mi_like_p ())
7957 uiout->field_string
7958 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7959 uiout->text ("\nProgram terminated with signal ");
7960 annotate_signal_name ();
7961 uiout->field_string ("signal-name",
7962 gdb_signal_to_name (siggnal));
7963 annotate_signal_name_end ();
7964 uiout->text (", ");
7965 annotate_signal_string ();
7966 uiout->field_string ("signal-meaning",
7967 gdb_signal_to_string (siggnal));
7968 annotate_signal_string_end ();
7969 uiout->text (".\n");
7970 uiout->text ("The program no longer exists.\n");
7971 }
7972
7973 void
7974 print_exited_reason (struct ui_out *uiout, int exitstatus)
7975 {
7976 struct inferior *inf = current_inferior ();
7977 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7978
7979 annotate_exited (exitstatus);
7980 if (exitstatus)
7981 {
7982 if (uiout->is_mi_like_p ())
7983 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7984 std::string exit_code_str
7985 = string_printf ("0%o", (unsigned int) exitstatus);
7986 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7987 plongest (inf->num), pidstr.c_str (),
7988 string_field ("exit-code", exit_code_str.c_str ()));
7989 }
7990 else
7991 {
7992 if (uiout->is_mi_like_p ())
7993 uiout->field_string
7994 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7995 uiout->message ("[Inferior %s (%s) exited normally]\n",
7996 plongest (inf->num), pidstr.c_str ());
7997 }
7998 }
7999
8000 void
8001 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8002 {
8003 struct thread_info *thr = inferior_thread ();
8004
8005 annotate_signal ();
8006
8007 if (uiout->is_mi_like_p ())
8008 ;
8009 else if (show_thread_that_caused_stop ())
8010 {
8011 const char *name;
8012
8013 uiout->text ("\nThread ");
8014 uiout->field_string ("thread-id", print_thread_id (thr));
8015
8016 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8017 if (name != NULL)
8018 {
8019 uiout->text (" \"");
8020 uiout->field_string ("name", name);
8021 uiout->text ("\"");
8022 }
8023 }
8024 else
8025 uiout->text ("\nProgram");
8026
8027 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8028 uiout->text (" stopped");
8029 else
8030 {
8031 uiout->text (" received signal ");
8032 annotate_signal_name ();
8033 if (uiout->is_mi_like_p ())
8034 uiout->field_string
8035 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8036 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8037 annotate_signal_name_end ();
8038 uiout->text (", ");
8039 annotate_signal_string ();
8040 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8041
8042 struct regcache *regcache = get_current_regcache ();
8043 struct gdbarch *gdbarch = regcache->arch ();
8044 if (gdbarch_report_signal_info_p (gdbarch))
8045 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8046
8047 annotate_signal_string_end ();
8048 }
8049 uiout->text (".\n");
8050 }
8051
8052 void
8053 print_no_history_reason (struct ui_out *uiout)
8054 {
8055 uiout->text ("\nNo more reverse-execution history.\n");
8056 }
8057
8058 /* Print current location without a level number, if we have changed
8059 functions or hit a breakpoint. Print source line if we have one.
8060 bpstat_print contains the logic deciding in detail what to print,
8061 based on the event(s) that just occurred. */
8062
8063 static void
8064 print_stop_location (struct target_waitstatus *ws)
8065 {
8066 int bpstat_ret;
8067 enum print_what source_flag;
8068 int do_frame_printing = 1;
8069 struct thread_info *tp = inferior_thread ();
8070
8071 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8072 switch (bpstat_ret)
8073 {
8074 case PRINT_UNKNOWN:
8075 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8076 should) carry around the function and does (or should) use
8077 that when doing a frame comparison. */
8078 if (tp->control.stop_step
8079 && frame_id_eq (tp->control.step_frame_id,
8080 get_frame_id (get_current_frame ()))
8081 && (tp->control.step_start_function
8082 == find_pc_function (tp->suspend.stop_pc)))
8083 {
8084 /* Finished step, just print source line. */
8085 source_flag = SRC_LINE;
8086 }
8087 else
8088 {
8089 /* Print location and source line. */
8090 source_flag = SRC_AND_LOC;
8091 }
8092 break;
8093 case PRINT_SRC_AND_LOC:
8094 /* Print location and source line. */
8095 source_flag = SRC_AND_LOC;
8096 break;
8097 case PRINT_SRC_ONLY:
8098 source_flag = SRC_LINE;
8099 break;
8100 case PRINT_NOTHING:
8101 /* Something bogus. */
8102 source_flag = SRC_LINE;
8103 do_frame_printing = 0;
8104 break;
8105 default:
8106 internal_error (__FILE__, __LINE__, _("Unknown value."));
8107 }
8108
8109 /* The behavior of this routine with respect to the source
8110 flag is:
8111 SRC_LINE: Print only source line
8112 LOCATION: Print only location
8113 SRC_AND_LOC: Print location and source line. */
8114 if (do_frame_printing)
8115 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8116 }
8117
8118 /* See infrun.h. */
8119
8120 void
8121 print_stop_event (struct ui_out *uiout, bool displays)
8122 {
8123 struct target_waitstatus last;
8124 struct thread_info *tp;
8125
8126 get_last_target_status (nullptr, nullptr, &last);
8127
8128 {
8129 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8130
8131 print_stop_location (&last);
8132
8133 /* Display the auto-display expressions. */
8134 if (displays)
8135 do_displays ();
8136 }
8137
8138 tp = inferior_thread ();
8139 if (tp->thread_fsm != NULL
8140 && tp->thread_fsm->finished_p ())
8141 {
8142 struct return_value_info *rv;
8143
8144 rv = tp->thread_fsm->return_value ();
8145 if (rv != NULL)
8146 print_return_value (uiout, rv);
8147 }
8148 }
8149
8150 /* See infrun.h. */
8151
8152 void
8153 maybe_remove_breakpoints (void)
8154 {
8155 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8156 {
8157 if (remove_breakpoints ())
8158 {
8159 target_terminal::ours_for_output ();
8160 printf_filtered (_("Cannot remove breakpoints because "
8161 "program is no longer writable.\nFurther "
8162 "execution is probably impossible.\n"));
8163 }
8164 }
8165 }
8166
8167 /* The execution context that just caused a normal stop. */
8168
8169 struct stop_context
8170 {
8171 stop_context ();
8172 ~stop_context ();
8173
8174 DISABLE_COPY_AND_ASSIGN (stop_context);
8175
8176 bool changed () const;
8177
8178 /* The stop ID. */
8179 ULONGEST stop_id;
8180
8181 /* The event PTID. */
8182
8183 ptid_t ptid;
8184
8185 /* If stopp for a thread event, this is the thread that caused the
8186 stop. */
8187 struct thread_info *thread;
8188
8189 /* The inferior that caused the stop. */
8190 int inf_num;
8191 };
8192
8193 /* Initializes a new stop context. If stopped for a thread event, this
8194 takes a strong reference to the thread. */
8195
8196 stop_context::stop_context ()
8197 {
8198 stop_id = get_stop_id ();
8199 ptid = inferior_ptid;
8200 inf_num = current_inferior ()->num;
8201
8202 if (inferior_ptid != null_ptid)
8203 {
8204 /* Take a strong reference so that the thread can't be deleted
8205 yet. */
8206 thread = inferior_thread ();
8207 thread->incref ();
8208 }
8209 else
8210 thread = NULL;
8211 }
8212
8213 /* Release a stop context previously created with save_stop_context.
8214 Releases the strong reference to the thread as well. */
8215
8216 stop_context::~stop_context ()
8217 {
8218 if (thread != NULL)
8219 thread->decref ();
8220 }
8221
8222 /* Return true if the current context no longer matches the saved stop
8223 context. */
8224
8225 bool
8226 stop_context::changed () const
8227 {
8228 if (ptid != inferior_ptid)
8229 return true;
8230 if (inf_num != current_inferior ()->num)
8231 return true;
8232 if (thread != NULL && thread->state != THREAD_STOPPED)
8233 return true;
8234 if (get_stop_id () != stop_id)
8235 return true;
8236 return false;
8237 }
8238
8239 /* See infrun.h. */
8240
8241 int
8242 normal_stop (void)
8243 {
8244 struct target_waitstatus last;
8245
8246 get_last_target_status (nullptr, nullptr, &last);
8247
8248 new_stop_id ();
8249
8250 /* If an exception is thrown from this point on, make sure to
8251 propagate GDB's knowledge of the executing state to the
8252 frontend/user running state. A QUIT is an easy exception to see
8253 here, so do this before any filtered output. */
8254
8255 ptid_t finish_ptid = null_ptid;
8256
8257 if (!non_stop)
8258 finish_ptid = minus_one_ptid;
8259 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8260 || last.kind == TARGET_WAITKIND_EXITED)
8261 {
8262 /* On some targets, we may still have live threads in the
8263 inferior when we get a process exit event. E.g., for
8264 "checkpoint", when the current checkpoint/fork exits,
8265 linux-fork.c automatically switches to another fork from
8266 within target_mourn_inferior. */
8267 if (inferior_ptid != null_ptid)
8268 finish_ptid = ptid_t (inferior_ptid.pid ());
8269 }
8270 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8271 finish_ptid = inferior_ptid;
8272
8273 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8274 if (finish_ptid != null_ptid)
8275 {
8276 maybe_finish_thread_state.emplace
8277 (user_visible_resume_target (finish_ptid), finish_ptid);
8278 }
8279
8280 /* As we're presenting a stop, and potentially removing breakpoints,
8281 update the thread list so we can tell whether there are threads
8282 running on the target. With target remote, for example, we can
8283 only learn about new threads when we explicitly update the thread
8284 list. Do this before notifying the interpreters about signal
8285 stops, end of stepping ranges, etc., so that the "new thread"
8286 output is emitted before e.g., "Program received signal FOO",
8287 instead of after. */
8288 update_thread_list ();
8289
8290 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8291 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8292
8293 /* As with the notification of thread events, we want to delay
8294 notifying the user that we've switched thread context until
8295 the inferior actually stops.
8296
8297 There's no point in saying anything if the inferior has exited.
8298 Note that SIGNALLED here means "exited with a signal", not
8299 "received a signal".
8300
8301 Also skip saying anything in non-stop mode. In that mode, as we
8302 don't want GDB to switch threads behind the user's back, to avoid
8303 races where the user is typing a command to apply to thread x,
8304 but GDB switches to thread y before the user finishes entering
8305 the command, fetch_inferior_event installs a cleanup to restore
8306 the current thread back to the thread the user had selected right
8307 after this event is handled, so we're not really switching, only
8308 informing of a stop. */
8309 if (!non_stop
8310 && previous_inferior_ptid != inferior_ptid
8311 && target_has_execution ()
8312 && last.kind != TARGET_WAITKIND_SIGNALLED
8313 && last.kind != TARGET_WAITKIND_EXITED
8314 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8315 {
8316 SWITCH_THRU_ALL_UIS ()
8317 {
8318 target_terminal::ours_for_output ();
8319 printf_filtered (_("[Switching to %s]\n"),
8320 target_pid_to_str (inferior_ptid).c_str ());
8321 annotate_thread_changed ();
8322 }
8323 previous_inferior_ptid = inferior_ptid;
8324 }
8325
8326 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8327 {
8328 SWITCH_THRU_ALL_UIS ()
8329 if (current_ui->prompt_state == PROMPT_BLOCKED)
8330 {
8331 target_terminal::ours_for_output ();
8332 printf_filtered (_("No unwaited-for children left.\n"));
8333 }
8334 }
8335
8336 /* Note: this depends on the update_thread_list call above. */
8337 maybe_remove_breakpoints ();
8338
8339 /* If an auto-display called a function and that got a signal,
8340 delete that auto-display to avoid an infinite recursion. */
8341
8342 if (stopped_by_random_signal)
8343 disable_current_display ();
8344
8345 SWITCH_THRU_ALL_UIS ()
8346 {
8347 async_enable_stdin ();
8348 }
8349
8350 /* Let the user/frontend see the threads as stopped. */
8351 maybe_finish_thread_state.reset ();
8352
8353 /* Select innermost stack frame - i.e., current frame is frame 0,
8354 and current location is based on that. Handle the case where the
8355 dummy call is returning after being stopped. E.g. the dummy call
8356 previously hit a breakpoint. (If the dummy call returns
8357 normally, we won't reach here.) Do this before the stop hook is
8358 run, so that it doesn't get to see the temporary dummy frame,
8359 which is not where we'll present the stop. */
8360 if (has_stack_frames ())
8361 {
8362 if (stop_stack_dummy == STOP_STACK_DUMMY)
8363 {
8364 /* Pop the empty frame that contains the stack dummy. This
8365 also restores inferior state prior to the call (struct
8366 infcall_suspend_state). */
8367 struct frame_info *frame = get_current_frame ();
8368
8369 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8370 frame_pop (frame);
8371 /* frame_pop calls reinit_frame_cache as the last thing it
8372 does which means there's now no selected frame. */
8373 }
8374
8375 select_frame (get_current_frame ());
8376
8377 /* Set the current source location. */
8378 set_current_sal_from_frame (get_current_frame ());
8379 }
8380
8381 /* Look up the hook_stop and run it (CLI internally handles problem
8382 of stop_command's pre-hook not existing). */
8383 if (stop_command != NULL)
8384 {
8385 stop_context saved_context;
8386
8387 try
8388 {
8389 execute_cmd_pre_hook (stop_command);
8390 }
8391 catch (const gdb_exception &ex)
8392 {
8393 exception_fprintf (gdb_stderr, ex,
8394 "Error while running hook_stop:\n");
8395 }
8396
8397 /* If the stop hook resumes the target, then there's no point in
8398 trying to notify about the previous stop; its context is
8399 gone. Likewise if the command switches thread or inferior --
8400 the observers would print a stop for the wrong
8401 thread/inferior. */
8402 if (saved_context.changed ())
8403 return 1;
8404 }
8405
8406 /* Notify observers about the stop. This is where the interpreters
8407 print the stop event. */
8408 if (inferior_ptid != null_ptid)
8409 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8410 stop_print_frame);
8411 else
8412 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8413
8414 annotate_stopped ();
8415
8416 if (target_has_execution ())
8417 {
8418 if (last.kind != TARGET_WAITKIND_SIGNALLED
8419 && last.kind != TARGET_WAITKIND_EXITED
8420 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8421 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8422 Delete any breakpoint that is to be deleted at the next stop. */
8423 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8424 }
8425
8426 /* Try to get rid of automatically added inferiors that are no
8427 longer needed. Keeping those around slows down things linearly.
8428 Note that this never removes the current inferior. */
8429 prune_inferiors ();
8430
8431 return 0;
8432 }
8433 \f
8434 int
8435 signal_stop_state (int signo)
8436 {
8437 return signal_stop[signo];
8438 }
8439
8440 int
8441 signal_print_state (int signo)
8442 {
8443 return signal_print[signo];
8444 }
8445
8446 int
8447 signal_pass_state (int signo)
8448 {
8449 return signal_program[signo];
8450 }
8451
8452 static void
8453 signal_cache_update (int signo)
8454 {
8455 if (signo == -1)
8456 {
8457 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8458 signal_cache_update (signo);
8459
8460 return;
8461 }
8462
8463 signal_pass[signo] = (signal_stop[signo] == 0
8464 && signal_print[signo] == 0
8465 && signal_program[signo] == 1
8466 && signal_catch[signo] == 0);
8467 }
8468
8469 int
8470 signal_stop_update (int signo, int state)
8471 {
8472 int ret = signal_stop[signo];
8473
8474 signal_stop[signo] = state;
8475 signal_cache_update (signo);
8476 return ret;
8477 }
8478
8479 int
8480 signal_print_update (int signo, int state)
8481 {
8482 int ret = signal_print[signo];
8483
8484 signal_print[signo] = state;
8485 signal_cache_update (signo);
8486 return ret;
8487 }
8488
8489 int
8490 signal_pass_update (int signo, int state)
8491 {
8492 int ret = signal_program[signo];
8493
8494 signal_program[signo] = state;
8495 signal_cache_update (signo);
8496 return ret;
8497 }
8498
8499 /* Update the global 'signal_catch' from INFO and notify the
8500 target. */
8501
8502 void
8503 signal_catch_update (const unsigned int *info)
8504 {
8505 int i;
8506
8507 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8508 signal_catch[i] = info[i] > 0;
8509 signal_cache_update (-1);
8510 target_pass_signals (signal_pass);
8511 }
8512
8513 static void
8514 sig_print_header (void)
8515 {
8516 printf_filtered (_("Signal Stop\tPrint\tPass "
8517 "to program\tDescription\n"));
8518 }
8519
8520 static void
8521 sig_print_info (enum gdb_signal oursig)
8522 {
8523 const char *name = gdb_signal_to_name (oursig);
8524 int name_padding = 13 - strlen (name);
8525
8526 if (name_padding <= 0)
8527 name_padding = 0;
8528
8529 printf_filtered ("%s", name);
8530 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8531 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8532 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8533 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8534 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8535 }
8536
8537 /* Specify how various signals in the inferior should be handled. */
8538
8539 static void
8540 handle_command (const char *args, int from_tty)
8541 {
8542 int digits, wordlen;
8543 int sigfirst, siglast;
8544 enum gdb_signal oursig;
8545 int allsigs;
8546
8547 if (args == NULL)
8548 {
8549 error_no_arg (_("signal to handle"));
8550 }
8551
8552 /* Allocate and zero an array of flags for which signals to handle. */
8553
8554 const size_t nsigs = GDB_SIGNAL_LAST;
8555 unsigned char sigs[nsigs] {};
8556
8557 /* Break the command line up into args. */
8558
8559 gdb_argv built_argv (args);
8560
8561 /* Walk through the args, looking for signal oursigs, signal names, and
8562 actions. Signal numbers and signal names may be interspersed with
8563 actions, with the actions being performed for all signals cumulatively
8564 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8565
8566 for (char *arg : built_argv)
8567 {
8568 wordlen = strlen (arg);
8569 for (digits = 0; isdigit (arg[digits]); digits++)
8570 {;
8571 }
8572 allsigs = 0;
8573 sigfirst = siglast = -1;
8574
8575 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8576 {
8577 /* Apply action to all signals except those used by the
8578 debugger. Silently skip those. */
8579 allsigs = 1;
8580 sigfirst = 0;
8581 siglast = nsigs - 1;
8582 }
8583 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8584 {
8585 SET_SIGS (nsigs, sigs, signal_stop);
8586 SET_SIGS (nsigs, sigs, signal_print);
8587 }
8588 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8589 {
8590 UNSET_SIGS (nsigs, sigs, signal_program);
8591 }
8592 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8593 {
8594 SET_SIGS (nsigs, sigs, signal_print);
8595 }
8596 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8597 {
8598 SET_SIGS (nsigs, sigs, signal_program);
8599 }
8600 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8601 {
8602 UNSET_SIGS (nsigs, sigs, signal_stop);
8603 }
8604 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8605 {
8606 SET_SIGS (nsigs, sigs, signal_program);
8607 }
8608 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8609 {
8610 UNSET_SIGS (nsigs, sigs, signal_print);
8611 UNSET_SIGS (nsigs, sigs, signal_stop);
8612 }
8613 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8614 {
8615 UNSET_SIGS (nsigs, sigs, signal_program);
8616 }
8617 else if (digits > 0)
8618 {
8619 /* It is numeric. The numeric signal refers to our own
8620 internal signal numbering from target.h, not to host/target
8621 signal number. This is a feature; users really should be
8622 using symbolic names anyway, and the common ones like
8623 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8624
8625 sigfirst = siglast = (int)
8626 gdb_signal_from_command (atoi (arg));
8627 if (arg[digits] == '-')
8628 {
8629 siglast = (int)
8630 gdb_signal_from_command (atoi (arg + digits + 1));
8631 }
8632 if (sigfirst > siglast)
8633 {
8634 /* Bet he didn't figure we'd think of this case... */
8635 std::swap (sigfirst, siglast);
8636 }
8637 }
8638 else
8639 {
8640 oursig = gdb_signal_from_name (arg);
8641 if (oursig != GDB_SIGNAL_UNKNOWN)
8642 {
8643 sigfirst = siglast = (int) oursig;
8644 }
8645 else
8646 {
8647 /* Not a number and not a recognized flag word => complain. */
8648 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8649 }
8650 }
8651
8652 /* If any signal numbers or symbol names were found, set flags for
8653 which signals to apply actions to. */
8654
8655 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8656 {
8657 switch ((enum gdb_signal) signum)
8658 {
8659 case GDB_SIGNAL_TRAP:
8660 case GDB_SIGNAL_INT:
8661 if (!allsigs && !sigs[signum])
8662 {
8663 if (query (_("%s is used by the debugger.\n\
8664 Are you sure you want to change it? "),
8665 gdb_signal_to_name ((enum gdb_signal) signum)))
8666 {
8667 sigs[signum] = 1;
8668 }
8669 else
8670 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8671 }
8672 break;
8673 case GDB_SIGNAL_0:
8674 case GDB_SIGNAL_DEFAULT:
8675 case GDB_SIGNAL_UNKNOWN:
8676 /* Make sure that "all" doesn't print these. */
8677 break;
8678 default:
8679 sigs[signum] = 1;
8680 break;
8681 }
8682 }
8683 }
8684
8685 for (int signum = 0; signum < nsigs; signum++)
8686 if (sigs[signum])
8687 {
8688 signal_cache_update (-1);
8689 target_pass_signals (signal_pass);
8690 target_program_signals (signal_program);
8691
8692 if (from_tty)
8693 {
8694 /* Show the results. */
8695 sig_print_header ();
8696 for (; signum < nsigs; signum++)
8697 if (sigs[signum])
8698 sig_print_info ((enum gdb_signal) signum);
8699 }
8700
8701 break;
8702 }
8703 }
8704
8705 /* Complete the "handle" command. */
8706
8707 static void
8708 handle_completer (struct cmd_list_element *ignore,
8709 completion_tracker &tracker,
8710 const char *text, const char *word)
8711 {
8712 static const char * const keywords[] =
8713 {
8714 "all",
8715 "stop",
8716 "ignore",
8717 "print",
8718 "pass",
8719 "nostop",
8720 "noignore",
8721 "noprint",
8722 "nopass",
8723 NULL,
8724 };
8725
8726 signal_completer (ignore, tracker, text, word);
8727 complete_on_enum (tracker, keywords, word, word);
8728 }
8729
8730 enum gdb_signal
8731 gdb_signal_from_command (int num)
8732 {
8733 if (num >= 1 && num <= 15)
8734 return (enum gdb_signal) num;
8735 error (_("Only signals 1-15 are valid as numeric signals.\n\
8736 Use \"info signals\" for a list of symbolic signals."));
8737 }
8738
8739 /* Print current contents of the tables set by the handle command.
8740 It is possible we should just be printing signals actually used
8741 by the current target (but for things to work right when switching
8742 targets, all signals should be in the signal tables). */
8743
8744 static void
8745 info_signals_command (const char *signum_exp, int from_tty)
8746 {
8747 enum gdb_signal oursig;
8748
8749 sig_print_header ();
8750
8751 if (signum_exp)
8752 {
8753 /* First see if this is a symbol name. */
8754 oursig = gdb_signal_from_name (signum_exp);
8755 if (oursig == GDB_SIGNAL_UNKNOWN)
8756 {
8757 /* No, try numeric. */
8758 oursig =
8759 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8760 }
8761 sig_print_info (oursig);
8762 return;
8763 }
8764
8765 printf_filtered ("\n");
8766 /* These ugly casts brought to you by the native VAX compiler. */
8767 for (oursig = GDB_SIGNAL_FIRST;
8768 (int) oursig < (int) GDB_SIGNAL_LAST;
8769 oursig = (enum gdb_signal) ((int) oursig + 1))
8770 {
8771 QUIT;
8772
8773 if (oursig != GDB_SIGNAL_UNKNOWN
8774 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8775 sig_print_info (oursig);
8776 }
8777
8778 printf_filtered (_("\nUse the \"handle\" command "
8779 "to change these tables.\n"));
8780 }
8781
8782 /* The $_siginfo convenience variable is a bit special. We don't know
8783 for sure the type of the value until we actually have a chance to
8784 fetch the data. The type can change depending on gdbarch, so it is
8785 also dependent on which thread you have selected.
8786
8787 1. making $_siginfo be an internalvar that creates a new value on
8788 access.
8789
8790 2. making the value of $_siginfo be an lval_computed value. */
8791
8792 /* This function implements the lval_computed support for reading a
8793 $_siginfo value. */
8794
8795 static void
8796 siginfo_value_read (struct value *v)
8797 {
8798 LONGEST transferred;
8799
8800 /* If we can access registers, so can we access $_siginfo. Likewise
8801 vice versa. */
8802 validate_registers_access ();
8803
8804 transferred =
8805 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8806 NULL,
8807 value_contents_all_raw (v),
8808 value_offset (v),
8809 TYPE_LENGTH (value_type (v)));
8810
8811 if (transferred != TYPE_LENGTH (value_type (v)))
8812 error (_("Unable to read siginfo"));
8813 }
8814
8815 /* This function implements the lval_computed support for writing a
8816 $_siginfo value. */
8817
8818 static void
8819 siginfo_value_write (struct value *v, struct value *fromval)
8820 {
8821 LONGEST transferred;
8822
8823 /* If we can access registers, so can we access $_siginfo. Likewise
8824 vice versa. */
8825 validate_registers_access ();
8826
8827 transferred = target_write (current_top_target (),
8828 TARGET_OBJECT_SIGNAL_INFO,
8829 NULL,
8830 value_contents_all_raw (fromval),
8831 value_offset (v),
8832 TYPE_LENGTH (value_type (fromval)));
8833
8834 if (transferred != TYPE_LENGTH (value_type (fromval)))
8835 error (_("Unable to write siginfo"));
8836 }
8837
8838 static const struct lval_funcs siginfo_value_funcs =
8839 {
8840 siginfo_value_read,
8841 siginfo_value_write
8842 };
8843
8844 /* Return a new value with the correct type for the siginfo object of
8845 the current thread using architecture GDBARCH. Return a void value
8846 if there's no object available. */
8847
8848 static struct value *
8849 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8850 void *ignore)
8851 {
8852 if (target_has_stack ()
8853 && inferior_ptid != null_ptid
8854 && gdbarch_get_siginfo_type_p (gdbarch))
8855 {
8856 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8857
8858 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8859 }
8860
8861 return allocate_value (builtin_type (gdbarch)->builtin_void);
8862 }
8863
8864 \f
8865 /* infcall_suspend_state contains state about the program itself like its
8866 registers and any signal it received when it last stopped.
8867 This state must be restored regardless of how the inferior function call
8868 ends (either successfully, or after it hits a breakpoint or signal)
8869 if the program is to properly continue where it left off. */
8870
8871 class infcall_suspend_state
8872 {
8873 public:
8874 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8875 once the inferior function call has finished. */
8876 infcall_suspend_state (struct gdbarch *gdbarch,
8877 const struct thread_info *tp,
8878 struct regcache *regcache)
8879 : m_thread_suspend (tp->suspend),
8880 m_registers (new readonly_detached_regcache (*regcache))
8881 {
8882 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8883
8884 if (gdbarch_get_siginfo_type_p (gdbarch))
8885 {
8886 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8887 size_t len = TYPE_LENGTH (type);
8888
8889 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8890
8891 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8892 siginfo_data.get (), 0, len) != len)
8893 {
8894 /* Errors ignored. */
8895 siginfo_data.reset (nullptr);
8896 }
8897 }
8898
8899 if (siginfo_data)
8900 {
8901 m_siginfo_gdbarch = gdbarch;
8902 m_siginfo_data = std::move (siginfo_data);
8903 }
8904 }
8905
8906 /* Return a pointer to the stored register state. */
8907
8908 readonly_detached_regcache *registers () const
8909 {
8910 return m_registers.get ();
8911 }
8912
8913 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8914
8915 void restore (struct gdbarch *gdbarch,
8916 struct thread_info *tp,
8917 struct regcache *regcache) const
8918 {
8919 tp->suspend = m_thread_suspend;
8920
8921 if (m_siginfo_gdbarch == gdbarch)
8922 {
8923 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8924
8925 /* Errors ignored. */
8926 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8927 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8928 }
8929
8930 /* The inferior can be gone if the user types "print exit(0)"
8931 (and perhaps other times). */
8932 if (target_has_execution ())
8933 /* NB: The register write goes through to the target. */
8934 regcache->restore (registers ());
8935 }
8936
8937 private:
8938 /* How the current thread stopped before the inferior function call was
8939 executed. */
8940 struct thread_suspend_state m_thread_suspend;
8941
8942 /* The registers before the inferior function call was executed. */
8943 std::unique_ptr<readonly_detached_regcache> m_registers;
8944
8945 /* Format of SIGINFO_DATA or NULL if it is not present. */
8946 struct gdbarch *m_siginfo_gdbarch = nullptr;
8947
8948 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8949 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8950 content would be invalid. */
8951 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8952 };
8953
8954 infcall_suspend_state_up
8955 save_infcall_suspend_state ()
8956 {
8957 struct thread_info *tp = inferior_thread ();
8958 struct regcache *regcache = get_current_regcache ();
8959 struct gdbarch *gdbarch = regcache->arch ();
8960
8961 infcall_suspend_state_up inf_state
8962 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8963
8964 /* Having saved the current state, adjust the thread state, discarding
8965 any stop signal information. The stop signal is not useful when
8966 starting an inferior function call, and run_inferior_call will not use
8967 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8968 tp->suspend.stop_signal = GDB_SIGNAL_0;
8969
8970 return inf_state;
8971 }
8972
8973 /* Restore inferior session state to INF_STATE. */
8974
8975 void
8976 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8977 {
8978 struct thread_info *tp = inferior_thread ();
8979 struct regcache *regcache = get_current_regcache ();
8980 struct gdbarch *gdbarch = regcache->arch ();
8981
8982 inf_state->restore (gdbarch, tp, regcache);
8983 discard_infcall_suspend_state (inf_state);
8984 }
8985
8986 void
8987 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8988 {
8989 delete inf_state;
8990 }
8991
8992 readonly_detached_regcache *
8993 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8994 {
8995 return inf_state->registers ();
8996 }
8997
8998 /* infcall_control_state contains state regarding gdb's control of the
8999 inferior itself like stepping control. It also contains session state like
9000 the user's currently selected frame. */
9001
9002 struct infcall_control_state
9003 {
9004 struct thread_control_state thread_control;
9005 struct inferior_control_state inferior_control;
9006
9007 /* Other fields: */
9008 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9009 int stopped_by_random_signal = 0;
9010
9011 /* ID and level of the selected frame when the inferior function
9012 call was made. */
9013 struct frame_id selected_frame_id {};
9014 int selected_frame_level = -1;
9015 };
9016
9017 /* Save all of the information associated with the inferior<==>gdb
9018 connection. */
9019
9020 infcall_control_state_up
9021 save_infcall_control_state ()
9022 {
9023 infcall_control_state_up inf_status (new struct infcall_control_state);
9024 struct thread_info *tp = inferior_thread ();
9025 struct inferior *inf = current_inferior ();
9026
9027 inf_status->thread_control = tp->control;
9028 inf_status->inferior_control = inf->control;
9029
9030 tp->control.step_resume_breakpoint = NULL;
9031 tp->control.exception_resume_breakpoint = NULL;
9032
9033 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9034 chain. If caller's caller is walking the chain, they'll be happier if we
9035 hand them back the original chain when restore_infcall_control_state is
9036 called. */
9037 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9038
9039 /* Other fields: */
9040 inf_status->stop_stack_dummy = stop_stack_dummy;
9041 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9042
9043 save_selected_frame (&inf_status->selected_frame_id,
9044 &inf_status->selected_frame_level);
9045
9046 return inf_status;
9047 }
9048
9049 /* Restore inferior session state to INF_STATUS. */
9050
9051 void
9052 restore_infcall_control_state (struct infcall_control_state *inf_status)
9053 {
9054 struct thread_info *tp = inferior_thread ();
9055 struct inferior *inf = current_inferior ();
9056
9057 if (tp->control.step_resume_breakpoint)
9058 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9059
9060 if (tp->control.exception_resume_breakpoint)
9061 tp->control.exception_resume_breakpoint->disposition
9062 = disp_del_at_next_stop;
9063
9064 /* Handle the bpstat_copy of the chain. */
9065 bpstat_clear (&tp->control.stop_bpstat);
9066
9067 tp->control = inf_status->thread_control;
9068 inf->control = inf_status->inferior_control;
9069
9070 /* Other fields: */
9071 stop_stack_dummy = inf_status->stop_stack_dummy;
9072 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9073
9074 if (target_has_stack ())
9075 {
9076 restore_selected_frame (inf_status->selected_frame_id,
9077 inf_status->selected_frame_level);
9078 }
9079
9080 delete inf_status;
9081 }
9082
9083 void
9084 discard_infcall_control_state (struct infcall_control_state *inf_status)
9085 {
9086 if (inf_status->thread_control.step_resume_breakpoint)
9087 inf_status->thread_control.step_resume_breakpoint->disposition
9088 = disp_del_at_next_stop;
9089
9090 if (inf_status->thread_control.exception_resume_breakpoint)
9091 inf_status->thread_control.exception_resume_breakpoint->disposition
9092 = disp_del_at_next_stop;
9093
9094 /* See save_infcall_control_state for info on stop_bpstat. */
9095 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9096
9097 delete inf_status;
9098 }
9099 \f
9100 /* See infrun.h. */
9101
9102 void
9103 clear_exit_convenience_vars (void)
9104 {
9105 clear_internalvar (lookup_internalvar ("_exitsignal"));
9106 clear_internalvar (lookup_internalvar ("_exitcode"));
9107 }
9108 \f
9109
9110 /* User interface for reverse debugging:
9111 Set exec-direction / show exec-direction commands
9112 (returns error unless target implements to_set_exec_direction method). */
9113
9114 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9115 static const char exec_forward[] = "forward";
9116 static const char exec_reverse[] = "reverse";
9117 static const char *exec_direction = exec_forward;
9118 static const char *const exec_direction_names[] = {
9119 exec_forward,
9120 exec_reverse,
9121 NULL
9122 };
9123
9124 static void
9125 set_exec_direction_func (const char *args, int from_tty,
9126 struct cmd_list_element *cmd)
9127 {
9128 if (target_can_execute_reverse ())
9129 {
9130 if (!strcmp (exec_direction, exec_forward))
9131 execution_direction = EXEC_FORWARD;
9132 else if (!strcmp (exec_direction, exec_reverse))
9133 execution_direction = EXEC_REVERSE;
9134 }
9135 else
9136 {
9137 exec_direction = exec_forward;
9138 error (_("Target does not support this operation."));
9139 }
9140 }
9141
9142 static void
9143 show_exec_direction_func (struct ui_file *out, int from_tty,
9144 struct cmd_list_element *cmd, const char *value)
9145 {
9146 switch (execution_direction) {
9147 case EXEC_FORWARD:
9148 fprintf_filtered (out, _("Forward.\n"));
9149 break;
9150 case EXEC_REVERSE:
9151 fprintf_filtered (out, _("Reverse.\n"));
9152 break;
9153 default:
9154 internal_error (__FILE__, __LINE__,
9155 _("bogus execution_direction value: %d"),
9156 (int) execution_direction);
9157 }
9158 }
9159
9160 static void
9161 show_schedule_multiple (struct ui_file *file, int from_tty,
9162 struct cmd_list_element *c, const char *value)
9163 {
9164 fprintf_filtered (file, _("Resuming the execution of threads "
9165 "of all processes is %s.\n"), value);
9166 }
9167
9168 /* Implementation of `siginfo' variable. */
9169
9170 static const struct internalvar_funcs siginfo_funcs =
9171 {
9172 siginfo_make_value,
9173 NULL,
9174 NULL
9175 };
9176
9177 /* Callback for infrun's target events source. This is marked when a
9178 thread has a pending status to process. */
9179
9180 static void
9181 infrun_async_inferior_event_handler (gdb_client_data data)
9182 {
9183 inferior_event_handler (INF_REG_EVENT);
9184 }
9185
9186 #if GDB_SELF_TEST
9187 namespace selftests
9188 {
9189
9190 /* Verify that when two threads with the same ptid exist (from two different
9191 targets) and one of them changes ptid, we only update inferior_ptid if
9192 it is appropriate. */
9193
9194 static void
9195 infrun_thread_ptid_changed ()
9196 {
9197 gdbarch *arch = current_inferior ()->gdbarch;
9198
9199 /* The thread which inferior_ptid represents changes ptid. */
9200 {
9201 scoped_restore_current_pspace_and_thread restore;
9202
9203 scoped_mock_context<test_target_ops> target1 (arch);
9204 scoped_mock_context<test_target_ops> target2 (arch);
9205 target2.mock_inferior.next = &target1.mock_inferior;
9206
9207 ptid_t old_ptid (111, 222);
9208 ptid_t new_ptid (111, 333);
9209
9210 target1.mock_inferior.pid = old_ptid.pid ();
9211 target1.mock_thread.ptid = old_ptid;
9212 target2.mock_inferior.pid = old_ptid.pid ();
9213 target2.mock_thread.ptid = old_ptid;
9214
9215 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9216 set_current_inferior (&target1.mock_inferior);
9217
9218 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9219
9220 gdb_assert (inferior_ptid == new_ptid);
9221 }
9222
9223 /* A thread with the same ptid as inferior_ptid, but from another target,
9224 changes ptid. */
9225 {
9226 scoped_restore_current_pspace_and_thread restore;
9227
9228 scoped_mock_context<test_target_ops> target1 (arch);
9229 scoped_mock_context<test_target_ops> target2 (arch);
9230 target2.mock_inferior.next = &target1.mock_inferior;
9231
9232 ptid_t old_ptid (111, 222);
9233 ptid_t new_ptid (111, 333);
9234
9235 target1.mock_inferior.pid = old_ptid.pid ();
9236 target1.mock_thread.ptid = old_ptid;
9237 target2.mock_inferior.pid = old_ptid.pid ();
9238 target2.mock_thread.ptid = old_ptid;
9239
9240 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9241 set_current_inferior (&target2.mock_inferior);
9242
9243 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9244
9245 gdb_assert (inferior_ptid == old_ptid);
9246 }
9247 }
9248
9249 } /* namespace selftests */
9250
9251 #endif /* GDB_SELF_TEST */
9252
9253 void _initialize_infrun ();
9254 void
9255 _initialize_infrun ()
9256 {
9257 struct cmd_list_element *c;
9258
9259 /* Register extra event sources in the event loop. */
9260 infrun_async_inferior_event_token
9261 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9262 "infrun");
9263
9264 add_info ("signals", info_signals_command, _("\
9265 What debugger does when program gets various signals.\n\
9266 Specify a signal as argument to print info on that signal only."));
9267 add_info_alias ("handle", "signals", 0);
9268
9269 c = add_com ("handle", class_run, handle_command, _("\
9270 Specify how to handle signals.\n\
9271 Usage: handle SIGNAL [ACTIONS]\n\
9272 Args are signals and actions to apply to those signals.\n\
9273 If no actions are specified, the current settings for the specified signals\n\
9274 will be displayed instead.\n\
9275 \n\
9276 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9277 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9278 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9279 The special arg \"all\" is recognized to mean all signals except those\n\
9280 used by the debugger, typically SIGTRAP and SIGINT.\n\
9281 \n\
9282 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9283 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9284 Stop means reenter debugger if this signal happens (implies print).\n\
9285 Print means print a message if this signal happens.\n\
9286 Pass means let program see this signal; otherwise program doesn't know.\n\
9287 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9288 Pass and Stop may be combined.\n\
9289 \n\
9290 Multiple signals may be specified. Signal numbers and signal names\n\
9291 may be interspersed with actions, with the actions being performed for\n\
9292 all signals cumulatively specified."));
9293 set_cmd_completer (c, handle_completer);
9294
9295 if (!dbx_commands)
9296 stop_command = add_cmd ("stop", class_obscure,
9297 not_just_help_class_command, _("\
9298 There is no `stop' command, but you can set a hook on `stop'.\n\
9299 This allows you to set a list of commands to be run each time execution\n\
9300 of the program stops."), &cmdlist);
9301
9302 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9303 Set inferior debugging."), _("\
9304 Show inferior debugging."), _("\
9305 When non-zero, inferior specific debugging is enabled."),
9306 NULL,
9307 show_debug_infrun,
9308 &setdebuglist, &showdebuglist);
9309
9310 add_setshow_boolean_cmd ("displaced", class_maintenance,
9311 &debug_displaced, _("\
9312 Set displaced stepping debugging."), _("\
9313 Show displaced stepping debugging."), _("\
9314 When non-zero, displaced stepping specific debugging is enabled."),
9315 NULL,
9316 show_debug_displaced,
9317 &setdebuglist, &showdebuglist);
9318
9319 add_setshow_boolean_cmd ("non-stop", no_class,
9320 &non_stop_1, _("\
9321 Set whether gdb controls the inferior in non-stop mode."), _("\
9322 Show whether gdb controls the inferior in non-stop mode."), _("\
9323 When debugging a multi-threaded program and this setting is\n\
9324 off (the default, also called all-stop mode), when one thread stops\n\
9325 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9326 all other threads in the program while you interact with the thread of\n\
9327 interest. When you continue or step a thread, you can allow the other\n\
9328 threads to run, or have them remain stopped, but while you inspect any\n\
9329 thread's state, all threads stop.\n\
9330 \n\
9331 In non-stop mode, when one thread stops, other threads can continue\n\
9332 to run freely. You'll be able to step each thread independently,\n\
9333 leave it stopped or free to run as needed."),
9334 set_non_stop,
9335 show_non_stop,
9336 &setlist,
9337 &showlist);
9338
9339 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9340 {
9341 signal_stop[i] = 1;
9342 signal_print[i] = 1;
9343 signal_program[i] = 1;
9344 signal_catch[i] = 0;
9345 }
9346
9347 /* Signals caused by debugger's own actions should not be given to
9348 the program afterwards.
9349
9350 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9351 explicitly specifies that it should be delivered to the target
9352 program. Typically, that would occur when a user is debugging a
9353 target monitor on a simulator: the target monitor sets a
9354 breakpoint; the simulator encounters this breakpoint and halts
9355 the simulation handing control to GDB; GDB, noting that the stop
9356 address doesn't map to any known breakpoint, returns control back
9357 to the simulator; the simulator then delivers the hardware
9358 equivalent of a GDB_SIGNAL_TRAP to the program being
9359 debugged. */
9360 signal_program[GDB_SIGNAL_TRAP] = 0;
9361 signal_program[GDB_SIGNAL_INT] = 0;
9362
9363 /* Signals that are not errors should not normally enter the debugger. */
9364 signal_stop[GDB_SIGNAL_ALRM] = 0;
9365 signal_print[GDB_SIGNAL_ALRM] = 0;
9366 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9367 signal_print[GDB_SIGNAL_VTALRM] = 0;
9368 signal_stop[GDB_SIGNAL_PROF] = 0;
9369 signal_print[GDB_SIGNAL_PROF] = 0;
9370 signal_stop[GDB_SIGNAL_CHLD] = 0;
9371 signal_print[GDB_SIGNAL_CHLD] = 0;
9372 signal_stop[GDB_SIGNAL_IO] = 0;
9373 signal_print[GDB_SIGNAL_IO] = 0;
9374 signal_stop[GDB_SIGNAL_POLL] = 0;
9375 signal_print[GDB_SIGNAL_POLL] = 0;
9376 signal_stop[GDB_SIGNAL_URG] = 0;
9377 signal_print[GDB_SIGNAL_URG] = 0;
9378 signal_stop[GDB_SIGNAL_WINCH] = 0;
9379 signal_print[GDB_SIGNAL_WINCH] = 0;
9380 signal_stop[GDB_SIGNAL_PRIO] = 0;
9381 signal_print[GDB_SIGNAL_PRIO] = 0;
9382
9383 /* These signals are used internally by user-level thread
9384 implementations. (See signal(5) on Solaris.) Like the above
9385 signals, a healthy program receives and handles them as part of
9386 its normal operation. */
9387 signal_stop[GDB_SIGNAL_LWP] = 0;
9388 signal_print[GDB_SIGNAL_LWP] = 0;
9389 signal_stop[GDB_SIGNAL_WAITING] = 0;
9390 signal_print[GDB_SIGNAL_WAITING] = 0;
9391 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9392 signal_print[GDB_SIGNAL_CANCEL] = 0;
9393 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9394 signal_print[GDB_SIGNAL_LIBRT] = 0;
9395
9396 /* Update cached state. */
9397 signal_cache_update (-1);
9398
9399 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9400 &stop_on_solib_events, _("\
9401 Set stopping for shared library events."), _("\
9402 Show stopping for shared library events."), _("\
9403 If nonzero, gdb will give control to the user when the dynamic linker\n\
9404 notifies gdb of shared library events. The most common event of interest\n\
9405 to the user would be loading/unloading of a new library."),
9406 set_stop_on_solib_events,
9407 show_stop_on_solib_events,
9408 &setlist, &showlist);
9409
9410 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9411 follow_fork_mode_kind_names,
9412 &follow_fork_mode_string, _("\
9413 Set debugger response to a program call of fork or vfork."), _("\
9414 Show debugger response to a program call of fork or vfork."), _("\
9415 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9416 parent - the original process is debugged after a fork\n\
9417 child - the new process is debugged after a fork\n\
9418 The unfollowed process will continue to run.\n\
9419 By default, the debugger will follow the parent process."),
9420 NULL,
9421 show_follow_fork_mode_string,
9422 &setlist, &showlist);
9423
9424 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9425 follow_exec_mode_names,
9426 &follow_exec_mode_string, _("\
9427 Set debugger response to a program call of exec."), _("\
9428 Show debugger response to a program call of exec."), _("\
9429 An exec call replaces the program image of a process.\n\
9430 \n\
9431 follow-exec-mode can be:\n\
9432 \n\
9433 new - the debugger creates a new inferior and rebinds the process\n\
9434 to this new inferior. The program the process was running before\n\
9435 the exec call can be restarted afterwards by restarting the original\n\
9436 inferior.\n\
9437 \n\
9438 same - the debugger keeps the process bound to the same inferior.\n\
9439 The new executable image replaces the previous executable loaded in\n\
9440 the inferior. Restarting the inferior after the exec call restarts\n\
9441 the executable the process was running after the exec call.\n\
9442 \n\
9443 By default, the debugger will use the same inferior."),
9444 NULL,
9445 show_follow_exec_mode_string,
9446 &setlist, &showlist);
9447
9448 add_setshow_enum_cmd ("scheduler-locking", class_run,
9449 scheduler_enums, &scheduler_mode, _("\
9450 Set mode for locking scheduler during execution."), _("\
9451 Show mode for locking scheduler during execution."), _("\
9452 off == no locking (threads may preempt at any time)\n\
9453 on == full locking (no thread except the current thread may run)\n\
9454 This applies to both normal execution and replay mode.\n\
9455 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9456 In this mode, other threads may run during other commands.\n\
9457 This applies to both normal execution and replay mode.\n\
9458 replay == scheduler locked in replay mode and unlocked during normal execution."),
9459 set_schedlock_func, /* traps on target vector */
9460 show_scheduler_mode,
9461 &setlist, &showlist);
9462
9463 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9464 Set mode for resuming threads of all processes."), _("\
9465 Show mode for resuming threads of all processes."), _("\
9466 When on, execution commands (such as 'continue' or 'next') resume all\n\
9467 threads of all processes. When off (which is the default), execution\n\
9468 commands only resume the threads of the current process. The set of\n\
9469 threads that are resumed is further refined by the scheduler-locking\n\
9470 mode (see help set scheduler-locking)."),
9471 NULL,
9472 show_schedule_multiple,
9473 &setlist, &showlist);
9474
9475 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9476 Set mode of the step operation."), _("\
9477 Show mode of the step operation."), _("\
9478 When set, doing a step over a function without debug line information\n\
9479 will stop at the first instruction of that function. Otherwise, the\n\
9480 function is skipped and the step command stops at a different source line."),
9481 NULL,
9482 show_step_stop_if_no_debug,
9483 &setlist, &showlist);
9484
9485 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9486 &can_use_displaced_stepping, _("\
9487 Set debugger's willingness to use displaced stepping."), _("\
9488 Show debugger's willingness to use displaced stepping."), _("\
9489 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9490 supported by the target architecture. If off, gdb will not use displaced\n\
9491 stepping to step over breakpoints, even if such is supported by the target\n\
9492 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9493 if the target architecture supports it and non-stop mode is active, but will not\n\
9494 use it in all-stop mode (see help set non-stop)."),
9495 NULL,
9496 show_can_use_displaced_stepping,
9497 &setlist, &showlist);
9498
9499 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9500 &exec_direction, _("Set direction of execution.\n\
9501 Options are 'forward' or 'reverse'."),
9502 _("Show direction of execution (forward/reverse)."),
9503 _("Tells gdb whether to execute forward or backward."),
9504 set_exec_direction_func, show_exec_direction_func,
9505 &setlist, &showlist);
9506
9507 /* Set/show detach-on-fork: user-settable mode. */
9508
9509 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9510 Set whether gdb will detach the child of a fork."), _("\
9511 Show whether gdb will detach the child of a fork."), _("\
9512 Tells gdb whether to detach the child of a fork."),
9513 NULL, NULL, &setlist, &showlist);
9514
9515 /* Set/show disable address space randomization mode. */
9516
9517 add_setshow_boolean_cmd ("disable-randomization", class_support,
9518 &disable_randomization, _("\
9519 Set disabling of debuggee's virtual address space randomization."), _("\
9520 Show disabling of debuggee's virtual address space randomization."), _("\
9521 When this mode is on (which is the default), randomization of the virtual\n\
9522 address space is disabled. Standalone programs run with the randomization\n\
9523 enabled by default on some platforms."),
9524 &set_disable_randomization,
9525 &show_disable_randomization,
9526 &setlist, &showlist);
9527
9528 /* ptid initializations */
9529 inferior_ptid = null_ptid;
9530 target_last_wait_ptid = minus_one_ptid;
9531
9532 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9533 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9534 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9535 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9536
9537 /* Explicitly create without lookup, since that tries to create a
9538 value with a void typed value, and when we get here, gdbarch
9539 isn't initialized yet. At this point, we're quite sure there
9540 isn't another convenience variable of the same name. */
9541 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9542
9543 add_setshow_boolean_cmd ("observer", no_class,
9544 &observer_mode_1, _("\
9545 Set whether gdb controls the inferior in observer mode."), _("\
9546 Show whether gdb controls the inferior in observer mode."), _("\
9547 In observer mode, GDB can get data from the inferior, but not\n\
9548 affect its execution. Registers and memory may not be changed,\n\
9549 breakpoints may not be set, and the program cannot be interrupted\n\
9550 or signalled."),
9551 set_observer_mode,
9552 show_observer_mode,
9553 &setlist,
9554 &showlist);
9555
9556 #if GDB_SELF_TEST
9557 selftests::register_test ("infrun_thread_ptid_changed",
9558 selftests::infrun_thread_ptid_changed);
9559 #endif
9560 }
This page took 0.226382 seconds and 5 git commands to generate.