Fix gdb.threads/multiple-step-overs.exp fails on arm
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* In asynchronous mode, but simulating synchronous execution. */
156
157 int sync_execution = 0;
158
159 /* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
162
163 static ptid_t previous_inferior_ptid;
164
165 /* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170 static int detach_fork = 1;
171
172 int debug_displaced = 0;
173 static void
174 show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178 }
179
180 unsigned int debug_infrun = 0;
181 static void
182 show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186 }
187
188
189 /* Support for disabling address space randomization. */
190
191 int disable_randomization = 1;
192
193 static void
194 show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206 }
207
208 static void
209 set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216 }
217
218 /* User interface for non-stop mode. */
219
220 int non_stop = 0;
221 static int non_stop_1 = 0;
222
223 static void
224 set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234 }
235
236 static void
237 show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243 }
244
245 /* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
249 int observer_mode = 0;
250 static int observer_mode_1 = 0;
251
252 static void
253 set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255 {
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286 }
287
288 static void
289 show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291 {
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293 }
294
295 /* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301 void
302 update_observer_mode (void)
303 {
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318 }
319
320 /* Tables of how to react to signals; the user sets them. */
321
322 static unsigned char *signal_stop;
323 static unsigned char *signal_print;
324 static unsigned char *signal_program;
325
326 /* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330 static unsigned char *signal_catch;
331
332 /* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335 static unsigned char *signal_pass;
336
337 #define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345 #define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
353 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356 void
357 update_signals_program_target (void)
358 {
359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
360 }
361
362 /* Value to pass to target_resume() to cause all threads to resume. */
363
364 #define RESUME_ALL minus_one_ptid
365
366 /* Command list pointer for the "stop" placeholder. */
367
368 static struct cmd_list_element *stop_command;
369
370 /* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
372 int stop_on_solib_events;
373
374 /* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377 static void
378 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379 {
380 update_solib_breakpoints ();
381 }
382
383 static void
384 show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389 }
390
391 /* Nonzero after stop if current stack frame should be printed. */
392
393 static int stop_print_frame;
394
395 /* This is a cached copy of the pid/waitstatus of the last event
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 static void context_switch (ptid_t ptid);
402
403 void init_thread_stepping_state (struct thread_info *tss);
404
405 static const char follow_fork_mode_child[] = "child";
406 static const char follow_fork_mode_parent[] = "parent";
407
408 static const char *const follow_fork_mode_kind_names[] = {
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
412 };
413
414 static const char *follow_fork_mode_string = follow_fork_mode_parent;
415 static void
416 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
422 value);
423 }
424 \f
425
426 /* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432 static int
433 follow_fork_inferior (int follow_child, int detach_fork)
434 {
435 int has_vforked;
436 ptid_t parent_ptid, child_ptid;
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454 Can not resume the parent process over vfork in the foreground while\n\
455 holding the child stopped. Try \"set detach-on-fork\" or \
456 \"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
486 target_terminal_ours_for_output ();
487 fprintf_filtered (gdb_stdlog,
488 _("Detaching after %s from child %s.\n"),
489 has_vforked ? "vfork" : "fork",
490 target_pid_to_str (process_ptid));
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
499 child_inf = add_inferior (ptid_get_pid (child_ptid));
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
510 inferior_ptid = child_ptid;
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
578 has_vforked ? "vfork" : "fork",
579 target_pid_to_str (child_ptid));
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
585 child_inf = add_inferior (ptid_get_pid (child_ptid));
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
616 {
617 if (info_verbose || debug_infrun)
618 {
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
625 "child %s.\n"),
626 target_pid_to_str (process_ptid));
627 }
628
629 target_detach (NULL, 0);
630 }
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
638 inferior_ptid = child_ptid;
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668 }
669
670 /* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
674 static int
675 follow_fork (void)
676 {
677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
686 struct breakpoint *exception_resume_breakpoint = NULL;
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
690 struct interp *command_interp = NULL;
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
742 command_interp = tp->control.command_interp;
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
753 delete_exception_resume_breakpoint (tp);
754 tp->control.command_interp = NULL;
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
775 tp = find_thread_ptid (parent);
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
783 /* If we followed the child, switch to it... */
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
800 tp->control.command_interp = command_interp;
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
810 warning (_("Not resuming: switched threads "
811 "before following fork child."));
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
831
832 return should_resume;
833 }
834
835 static void
836 follow_inferior_reset_breakpoints (void)
837 {
838 struct thread_info *tp = inferior_thread ();
839
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
853 if (tp->control.step_resume_breakpoint)
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
858
859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
860 if (tp->control.exception_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
873 }
874
875 /* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878 static int
879 proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881 {
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
896 clear_proceed_status (0);
897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
898 }
899
900 return 0;
901 }
902
903 /* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906 static void
907 handle_vfork_child_exec_or_exit (int exec)
908 {
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
926 /* follow-fork child, detach-on-fork on. */
927
928 inf->vfork_parent->pending_detach = 0;
929
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
964 target_terminal_ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
1031 inf->symfile_flags = SYMFILE_NO_READ;
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1037 inferior. */
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXECD_PATHNAME is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, char *execd_pathname)
1090 {
1091 struct thread_info *th, *tmp;
1092 struct inferior *inf = current_inferior ();
1093 int pid = ptid_get_pid (ptid);
1094 ptid_t process_ptid;
1095
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1115 we now have a new a.out, those shadow contents aren't valid. */
1116
1117 mark_breakpoints_out ();
1118
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
1138 ALL_THREADS_SAFE (th, tmp)
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
1147 th->control.step_resume_breakpoint = NULL;
1148 th->control.exception_resume_breakpoint = NULL;
1149 th->control.single_step_breakpoints = NULL;
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
1152
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
1156 th->stop_requested = 0;
1157
1158 update_breakpoints_after_exec ();
1159
1160 /* What is this a.out's name? */
1161 process_ptid = pid_to_ptid (pid);
1162 printf_unfiltered (_("%s is executing new program: %s\n"),
1163 target_pid_to_str (process_ptid),
1164 execd_pathname);
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1167 inferior has essentially been killed & reborn. */
1168
1169 gdb_flush (gdb_stdout);
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 if (*gdb_sysroot != '\0')
1174 {
1175 char *name = exec_file_find (execd_pathname, NULL);
1176
1177 execd_pathname = (char *) alloca (strlen (name) + 1);
1178 strcpy (execd_pathname, name);
1179 xfree (name);
1180 }
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
1203
1204 set_current_inferior (inf);
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
1207 }
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1221 /* That a.out is now the one to use. */
1222 exec_file_attach (execd_pathname, 0);
1223
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1232 NULL, 0);
1233
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
1236
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
1245 solib_create_inferior_hook (0);
1246
1247 jit_inferior_created_hook ();
1248
1249 breakpoint_re_set ();
1250
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1253 to symbol_file_command...). */
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1259 matically get reset there in the new process.). */
1260 }
1261
1262 /* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269 struct thread_info *step_over_queue_head;
1270
1271 /* Bit flags indicating what the thread needs to step over. */
1272
1273 enum step_over_what_flag
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
1283 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1284
1285 /* Info about an instruction that is being stepped over. */
1286
1287 struct step_over_info
1288 {
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
1293 struct address_space *aspace;
1294 CORE_ADDR address;
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
1299 };
1300
1301 /* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325 static struct step_over_info step_over_info;
1326
1327 /* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330 static void
1331 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
1333 {
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1337 }
1338
1339 /* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342 static void
1343 clear_step_over_info (void)
1344 {
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
1350 step_over_info.nonsteppable_watchpoint_p = 0;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 stepping_past_nonsteppable_watchpoint (void)
1369 {
1370 return step_over_info.nonsteppable_watchpoint_p;
1371 }
1372
1373 /* Returns true if step-over info is valid. */
1374
1375 static int
1376 step_over_info_valid_p (void)
1377 {
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
1380 }
1381
1382 \f
1383 /* Displaced stepping. */
1384
1385 /* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
1471 /* Per-inferior displaced stepping state. */
1472 struct displaced_step_inferior_state
1473 {
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502 };
1503
1504 /* The list of states of processes involved in displaced stepping
1505 presently. */
1506 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508 /* Get the displaced stepping state of process PID. */
1509
1510 static struct displaced_step_inferior_state *
1511 get_displaced_stepping_state (int pid)
1512 {
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522 }
1523
1524 /* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527 static int
1528 displaced_step_in_progress_any_inferior (void)
1529 {
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539 }
1540
1541 /* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544 static int
1545 displaced_step_in_progress_thread (ptid_t ptid)
1546 {
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554 }
1555
1556 /* Return true if process PID has a thread doing a displaced step. */
1557
1558 static int
1559 displaced_step_in_progress (int pid)
1560 {
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568 }
1569
1570 /* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574 static struct displaced_step_inferior_state *
1575 add_displaced_stepping_state (int pid)
1576 {
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
1584
1585 state = XCNEW (struct displaced_step_inferior_state);
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
1589
1590 return state;
1591 }
1592
1593 /* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597 struct displaced_step_closure*
1598 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599 {
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609 }
1610
1611 /* Remove the displaced stepping state of process PID. */
1612
1613 static void
1614 remove_displaced_stepping_state (int pid)
1615 {
1616 struct displaced_step_inferior_state *it, **prev_next_p;
1617
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634 }
1635
1636 static void
1637 infrun_inferior_exit (struct inferior *inf)
1638 {
1639 remove_displaced_stepping_state (inf->pid);
1640 }
1641
1642 /* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
1650 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1651
1652 static void
1653 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656 {
1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
1661 value, target_is_non_stop_p () ? "on" : "off");
1662 else
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
1666 }
1667
1668 /* Return non-zero if displaced stepping can/should be used to step
1669 over breakpoints of thread TP. */
1670
1671 static int
1672 use_displaced_stepping (struct thread_info *tp)
1673 {
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
1687 }
1688
1689 /* Clean out any stray displaced stepping state. */
1690 static void
1691 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1692 {
1693 /* Indicate that there is no cleanup pending. */
1694 displaced->step_ptid = null_ptid;
1695
1696 if (displaced->step_closure)
1697 {
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
1701 }
1702 }
1703
1704 static void
1705 displaced_step_clear_cleanup (void *arg)
1706 {
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
1709
1710 displaced_step_clear (state);
1711 }
1712
1713 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714 void
1715 displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718 {
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724 }
1725
1726 /* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
1742 static int
1743 displaced_step_prepare_throw (ptid_t ptid)
1744 {
1745 struct cleanup *old_cleanups, *ignore_cleanups;
1746 struct thread_info *tp = find_thread_ptid (ptid);
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1749 struct address_space *aspace = get_regcache_aspace (regcache);
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
1753 struct displaced_step_inferior_state *displaced;
1754 int status;
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
1771
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "displaced: deferring step of %s\n",
1782 target_pid_to_str (ptid));
1783
1784 thread_step_over_chain_enqueue (tp);
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
1795 displaced_step_clear (displaced);
1796
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
1800 original = regcache_read_pc (regcache);
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
1827 /* Save the original contents of the copy area. */
1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1829 ignore_cleanups = make_cleanup (free_current_contents,
1830 &displaced->step_saved_copy);
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
1837 if (debug_displaced)
1838 {
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1847 original, copy, regcache);
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
1856
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
1864
1865 make_cleanup (displaced_step_clear_cleanup, displaced);
1866
1867 /* Resume execution at the copy. */
1868 regcache_write_pc (regcache, copy);
1869
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
1873
1874 if (debug_displaced)
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
1877
1878 return 1;
1879 }
1880
1881 /* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884 static int
1885 displaced_step_prepare (ptid_t ptid)
1886 {
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
1911 warning (_("disabling displaced stepping: %s"),
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923 }
1924
1925 static void
1926 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
1928 {
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1930
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934 }
1935
1936 /* Restore the contents of the copy area for thread PTID. */
1937
1938 static void
1939 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941 {
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951 }
1952
1953 /* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959 static int
1960 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1961 {
1962 struct cleanup *old_cleanups;
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1965 int ret;
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
1969 return 0;
1970
1971 /* Was this event for the pid we displaced? */
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
1974 return 0;
1975
1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1977
1978 displaced_step_restore (displaced, displaced->step_ptid);
1979
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
1985 /* Did the instruction complete successfully? */
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
1990 {
1991 /* Fix up the resulting state. */
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
1997 ret = 1;
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
2005
2006 pc = displaced->step_original + (pc - displaced->step_copy);
2007 regcache_write_pc (regcache, pc);
2008 ret = -1;
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
2013 displaced->step_ptid = null_ptid;
2014
2015 return ret;
2016 }
2017
2018 /* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020 struct execution_control_state
2021 {
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039 };
2040
2041 /* Clear ECS and set it to point at TP. */
2042
2043 static void
2044 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045 {
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049 }
2050
2051 static void keep_going_pass_signal (struct execution_control_state *ecs);
2052 static void prepare_to_wait (struct execution_control_state *ecs);
2053 static int keep_going_stepped_thread (struct thread_info *tp);
2054 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2055 static void stop_all_threads (void);
2056
2057 /* Are there any pending step-over requests? If so, run all we can
2058 now and return true. Otherwise, return false. */
2059
2060 static int
2061 start_step_over (void)
2062 {
2063 struct thread_info *tp, *next;
2064
2065 /* Don't start a new step-over if we already have an in-line
2066 step-over operation ongoing. */
2067 if (step_over_info_valid_p ())
2068 return 0;
2069
2070 for (tp = step_over_queue_head; tp != NULL; tp = next)
2071 {
2072 struct execution_control_state ecss;
2073 struct execution_control_state *ecs = &ecss;
2074 step_over_what step_what;
2075 int must_be_in_line;
2076
2077 next = thread_step_over_chain_next (tp);
2078
2079 /* If this inferior already has a displaced step in process,
2080 don't start a new one. */
2081 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2082 continue;
2083
2084 step_what = thread_still_needs_step_over (tp);
2085 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2086 || ((step_what & STEP_OVER_BREAKPOINT)
2087 && !use_displaced_stepping (tp)));
2088
2089 /* We currently stop all threads of all processes to step-over
2090 in-line. If we need to start a new in-line step-over, let
2091 any pending displaced steps finish first. */
2092 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2093 return 0;
2094
2095 thread_step_over_chain_remove (tp);
2096
2097 if (step_over_queue_head == NULL)
2098 {
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "infrun: step-over queue now empty\n");
2102 }
2103
2104 if (tp->control.trap_expected
2105 || tp->resumed
2106 || tp->executing)
2107 {
2108 internal_error (__FILE__, __LINE__,
2109 "[%s] has inconsistent state: "
2110 "trap_expected=%d, resumed=%d, executing=%d\n",
2111 target_pid_to_str (tp->ptid),
2112 tp->control.trap_expected,
2113 tp->resumed,
2114 tp->executing);
2115 }
2116
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: resuming [%s] for step-over\n",
2120 target_pid_to_str (tp->ptid));
2121
2122 /* keep_going_pass_signal skips the step-over if the breakpoint
2123 is no longer inserted. In all-stop, we want to keep looking
2124 for a thread that needs a step-over instead of resuming TP,
2125 because we wouldn't be able to resume anything else until the
2126 target stops again. In non-stop, the resume always resumes
2127 only TP, so it's OK to let the thread resume freely. */
2128 if (!target_is_non_stop_p () && !step_what)
2129 continue;
2130
2131 switch_to_thread (tp->ptid);
2132 reset_ecs (ecs, tp);
2133 keep_going_pass_signal (ecs);
2134
2135 if (!ecs->wait_some_more)
2136 error (_("Command aborted."));
2137
2138 gdb_assert (tp->resumed);
2139
2140 /* If we started a new in-line step-over, we're done. */
2141 if (step_over_info_valid_p ())
2142 {
2143 gdb_assert (tp->control.trap_expected);
2144 return 1;
2145 }
2146
2147 if (!target_is_non_stop_p ())
2148 {
2149 /* On all-stop, shouldn't have resumed unless we needed a
2150 step over. */
2151 gdb_assert (tp->control.trap_expected
2152 || tp->step_after_step_resume_breakpoint);
2153
2154 /* With remote targets (at least), in all-stop, we can't
2155 issue any further remote commands until the program stops
2156 again. */
2157 return 1;
2158 }
2159
2160 /* Either the thread no longer needed a step-over, or a new
2161 displaced stepping sequence started. Even in the latter
2162 case, continue looking. Maybe we can also start another
2163 displaced step on a thread of other process. */
2164 }
2165
2166 return 0;
2167 }
2168
2169 /* Update global variables holding ptids to hold NEW_PTID if they were
2170 holding OLD_PTID. */
2171 static void
2172 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2173 {
2174 struct displaced_step_request *it;
2175 struct displaced_step_inferior_state *displaced;
2176
2177 if (ptid_equal (inferior_ptid, old_ptid))
2178 inferior_ptid = new_ptid;
2179
2180 for (displaced = displaced_step_inferior_states;
2181 displaced;
2182 displaced = displaced->next)
2183 {
2184 if (ptid_equal (displaced->step_ptid, old_ptid))
2185 displaced->step_ptid = new_ptid;
2186 }
2187 }
2188
2189 \f
2190 /* Resuming. */
2191
2192 /* Things to clean up if we QUIT out of resume (). */
2193 static void
2194 resume_cleanups (void *ignore)
2195 {
2196 if (!ptid_equal (inferior_ptid, null_ptid))
2197 delete_single_step_breakpoints (inferior_thread ());
2198
2199 normal_stop ();
2200 }
2201
2202 static const char schedlock_off[] = "off";
2203 static const char schedlock_on[] = "on";
2204 static const char schedlock_step[] = "step";
2205 static const char schedlock_replay[] = "replay";
2206 static const char *const scheduler_enums[] = {
2207 schedlock_off,
2208 schedlock_on,
2209 schedlock_step,
2210 schedlock_replay,
2211 NULL
2212 };
2213 static const char *scheduler_mode = schedlock_replay;
2214 static void
2215 show_scheduler_mode (struct ui_file *file, int from_tty,
2216 struct cmd_list_element *c, const char *value)
2217 {
2218 fprintf_filtered (file,
2219 _("Mode for locking scheduler "
2220 "during execution is \"%s\".\n"),
2221 value);
2222 }
2223
2224 static void
2225 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2226 {
2227 if (!target_can_lock_scheduler)
2228 {
2229 scheduler_mode = schedlock_off;
2230 error (_("Target '%s' cannot support this command."), target_shortname);
2231 }
2232 }
2233
2234 /* True if execution commands resume all threads of all processes by
2235 default; otherwise, resume only threads of the current inferior
2236 process. */
2237 int sched_multi = 0;
2238
2239 /* Try to setup for software single stepping over the specified location.
2240 Return 1 if target_resume() should use hardware single step.
2241
2242 GDBARCH the current gdbarch.
2243 PC the location to step over. */
2244
2245 static int
2246 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2247 {
2248 int hw_step = 1;
2249
2250 if (execution_direction == EXEC_FORWARD
2251 && gdbarch_software_single_step_p (gdbarch)
2252 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2253 {
2254 hw_step = 0;
2255 }
2256 return hw_step;
2257 }
2258
2259 /* See infrun.h. */
2260
2261 ptid_t
2262 user_visible_resume_ptid (int step)
2263 {
2264 ptid_t resume_ptid;
2265
2266 if (non_stop)
2267 {
2268 /* With non-stop mode on, threads are always handled
2269 individually. */
2270 resume_ptid = inferior_ptid;
2271 }
2272 else if ((scheduler_mode == schedlock_on)
2273 || (scheduler_mode == schedlock_step && step))
2274 {
2275 /* User-settable 'scheduler' mode requires solo thread
2276 resume. */
2277 resume_ptid = inferior_ptid;
2278 }
2279 else if ((scheduler_mode == schedlock_replay)
2280 && target_record_will_replay (minus_one_ptid, execution_direction))
2281 {
2282 /* User-settable 'scheduler' mode requires solo thread resume in replay
2283 mode. */
2284 resume_ptid = inferior_ptid;
2285 }
2286 else if (!sched_multi && target_supports_multi_process ())
2287 {
2288 /* Resume all threads of the current process (and none of other
2289 processes). */
2290 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2291 }
2292 else
2293 {
2294 /* Resume all threads of all processes. */
2295 resume_ptid = RESUME_ALL;
2296 }
2297
2298 return resume_ptid;
2299 }
2300
2301 /* Return a ptid representing the set of threads that we will resume,
2302 in the perspective of the target, assuming run control handling
2303 does not require leaving some threads stopped (e.g., stepping past
2304 breakpoint). USER_STEP indicates whether we're about to start the
2305 target for a stepping command. */
2306
2307 static ptid_t
2308 internal_resume_ptid (int user_step)
2309 {
2310 /* In non-stop, we always control threads individually. Note that
2311 the target may always work in non-stop mode even with "set
2312 non-stop off", in which case user_visible_resume_ptid could
2313 return a wildcard ptid. */
2314 if (target_is_non_stop_p ())
2315 return inferior_ptid;
2316 else
2317 return user_visible_resume_ptid (user_step);
2318 }
2319
2320 /* Wrapper for target_resume, that handles infrun-specific
2321 bookkeeping. */
2322
2323 static void
2324 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2325 {
2326 struct thread_info *tp = inferior_thread ();
2327
2328 /* Install inferior's terminal modes. */
2329 target_terminal_inferior ();
2330
2331 /* Avoid confusing the next resume, if the next stop/resume
2332 happens to apply to another thread. */
2333 tp->suspend.stop_signal = GDB_SIGNAL_0;
2334
2335 /* Advise target which signals may be handled silently.
2336
2337 If we have removed breakpoints because we are stepping over one
2338 in-line (in any thread), we need to receive all signals to avoid
2339 accidentally skipping a breakpoint during execution of a signal
2340 handler.
2341
2342 Likewise if we're displaced stepping, otherwise a trap for a
2343 breakpoint in a signal handler might be confused with the
2344 displaced step finishing. We don't make the displaced_step_fixup
2345 step distinguish the cases instead, because:
2346
2347 - a backtrace while stopped in the signal handler would show the
2348 scratch pad as frame older than the signal handler, instead of
2349 the real mainline code.
2350
2351 - when the thread is later resumed, the signal handler would
2352 return to the scratch pad area, which would no longer be
2353 valid. */
2354 if (step_over_info_valid_p ()
2355 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2356 target_pass_signals (0, NULL);
2357 else
2358 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2359
2360 target_resume (resume_ptid, step, sig);
2361 }
2362
2363 /* Resume the inferior, but allow a QUIT. This is useful if the user
2364 wants to interrupt some lengthy single-stepping operation
2365 (for child processes, the SIGINT goes to the inferior, and so
2366 we get a SIGINT random_signal, but for remote debugging and perhaps
2367 other targets, that's not true).
2368
2369 SIG is the signal to give the inferior (zero for none). */
2370 void
2371 resume (enum gdb_signal sig)
2372 {
2373 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2374 struct regcache *regcache = get_current_regcache ();
2375 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2376 struct thread_info *tp = inferior_thread ();
2377 CORE_ADDR pc = regcache_read_pc (regcache);
2378 struct address_space *aspace = get_regcache_aspace (regcache);
2379 ptid_t resume_ptid;
2380 /* This represents the user's step vs continue request. When
2381 deciding whether "set scheduler-locking step" applies, it's the
2382 user's intention that counts. */
2383 const int user_step = tp->control.stepping_command;
2384 /* This represents what we'll actually request the target to do.
2385 This can decay from a step to a continue, if e.g., we need to
2386 implement single-stepping with breakpoints (software
2387 single-step). */
2388 int step;
2389
2390 gdb_assert (!thread_is_in_step_over_chain (tp));
2391
2392 QUIT;
2393
2394 if (tp->suspend.waitstatus_pending_p)
2395 {
2396 if (debug_infrun)
2397 {
2398 char *statstr;
2399
2400 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2401 fprintf_unfiltered (gdb_stdlog,
2402 "infrun: resume: thread %s has pending wait status %s "
2403 "(currently_stepping=%d).\n",
2404 target_pid_to_str (tp->ptid), statstr,
2405 currently_stepping (tp));
2406 xfree (statstr);
2407 }
2408
2409 tp->resumed = 1;
2410
2411 /* FIXME: What should we do if we are supposed to resume this
2412 thread with a signal? Maybe we should maintain a queue of
2413 pending signals to deliver. */
2414 if (sig != GDB_SIGNAL_0)
2415 {
2416 warning (_("Couldn't deliver signal %s to %s."),
2417 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2418 }
2419
2420 tp->suspend.stop_signal = GDB_SIGNAL_0;
2421 discard_cleanups (old_cleanups);
2422
2423 if (target_can_async_p ())
2424 target_async (1);
2425 return;
2426 }
2427
2428 tp->stepped_breakpoint = 0;
2429
2430 /* Depends on stepped_breakpoint. */
2431 step = currently_stepping (tp);
2432
2433 if (current_inferior ()->waiting_for_vfork_done)
2434 {
2435 /* Don't try to single-step a vfork parent that is waiting for
2436 the child to get out of the shared memory region (by exec'ing
2437 or exiting). This is particularly important on software
2438 single-step archs, as the child process would trip on the
2439 software single step breakpoint inserted for the parent
2440 process. Since the parent will not actually execute any
2441 instruction until the child is out of the shared region (such
2442 are vfork's semantics), it is safe to simply continue it.
2443 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2444 the parent, and tell it to `keep_going', which automatically
2445 re-sets it stepping. */
2446 if (debug_infrun)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "infrun: resume : clear step\n");
2449 step = 0;
2450 }
2451
2452 if (debug_infrun)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "infrun: resume (step=%d, signal=%s), "
2455 "trap_expected=%d, current thread [%s] at %s\n",
2456 step, gdb_signal_to_symbol_string (sig),
2457 tp->control.trap_expected,
2458 target_pid_to_str (inferior_ptid),
2459 paddress (gdbarch, pc));
2460
2461 /* Normally, by the time we reach `resume', the breakpoints are either
2462 removed or inserted, as appropriate. The exception is if we're sitting
2463 at a permanent breakpoint; we need to step over it, but permanent
2464 breakpoints can't be removed. So we have to test for it here. */
2465 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2466 {
2467 if (sig != GDB_SIGNAL_0)
2468 {
2469 /* We have a signal to pass to the inferior. The resume
2470 may, or may not take us to the signal handler. If this
2471 is a step, we'll need to stop in the signal handler, if
2472 there's one, (if the target supports stepping into
2473 handlers), or in the next mainline instruction, if
2474 there's no handler. If this is a continue, we need to be
2475 sure to run the handler with all breakpoints inserted.
2476 In all cases, set a breakpoint at the current address
2477 (where the handler returns to), and once that breakpoint
2478 is hit, resume skipping the permanent breakpoint. If
2479 that breakpoint isn't hit, then we've stepped into the
2480 signal handler (or hit some other event). We'll delete
2481 the step-resume breakpoint then. */
2482
2483 if (debug_infrun)
2484 fprintf_unfiltered (gdb_stdlog,
2485 "infrun: resume: skipping permanent breakpoint, "
2486 "deliver signal first\n");
2487
2488 clear_step_over_info ();
2489 tp->control.trap_expected = 0;
2490
2491 if (tp->control.step_resume_breakpoint == NULL)
2492 {
2493 /* Set a "high-priority" step-resume, as we don't want
2494 user breakpoints at PC to trigger (again) when this
2495 hits. */
2496 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2497 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2498
2499 tp->step_after_step_resume_breakpoint = step;
2500 }
2501
2502 insert_breakpoints ();
2503 }
2504 else
2505 {
2506 /* There's no signal to pass, we can go ahead and skip the
2507 permanent breakpoint manually. */
2508 if (debug_infrun)
2509 fprintf_unfiltered (gdb_stdlog,
2510 "infrun: resume: skipping permanent breakpoint\n");
2511 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2512 /* Update pc to reflect the new address from which we will
2513 execute instructions. */
2514 pc = regcache_read_pc (regcache);
2515
2516 if (step)
2517 {
2518 /* We've already advanced the PC, so the stepping part
2519 is done. Now we need to arrange for a trap to be
2520 reported to handle_inferior_event. Set a breakpoint
2521 at the current PC, and run to it. Don't update
2522 prev_pc, because if we end in
2523 switch_back_to_stepped_thread, we want the "expected
2524 thread advanced also" branch to be taken. IOW, we
2525 don't want this thread to step further from PC
2526 (overstep). */
2527 gdb_assert (!step_over_info_valid_p ());
2528 insert_single_step_breakpoint (gdbarch, aspace, pc);
2529 insert_breakpoints ();
2530
2531 resume_ptid = internal_resume_ptid (user_step);
2532 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2533 discard_cleanups (old_cleanups);
2534 tp->resumed = 1;
2535 return;
2536 }
2537 }
2538 }
2539
2540 /* If we have a breakpoint to step over, make sure to do a single
2541 step only. Same if we have software watchpoints. */
2542 if (tp->control.trap_expected || bpstat_should_step ())
2543 tp->control.may_range_step = 0;
2544
2545 /* If enabled, step over breakpoints by executing a copy of the
2546 instruction at a different address.
2547
2548 We can't use displaced stepping when we have a signal to deliver;
2549 the comments for displaced_step_prepare explain why. The
2550 comments in the handle_inferior event for dealing with 'random
2551 signals' explain what we do instead.
2552
2553 We can't use displaced stepping when we are waiting for vfork_done
2554 event, displaced stepping breaks the vfork child similarly as single
2555 step software breakpoint. */
2556 if (tp->control.trap_expected
2557 && use_displaced_stepping (tp)
2558 && !step_over_info_valid_p ()
2559 && sig == GDB_SIGNAL_0
2560 && !current_inferior ()->waiting_for_vfork_done)
2561 {
2562 int prepared = displaced_step_prepare (inferior_ptid);
2563
2564 if (prepared == 0)
2565 {
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "Got placed in step-over queue\n");
2569
2570 tp->control.trap_expected = 0;
2571 discard_cleanups (old_cleanups);
2572 return;
2573 }
2574 else if (prepared < 0)
2575 {
2576 /* Fallback to stepping over the breakpoint in-line. */
2577
2578 if (target_is_non_stop_p ())
2579 stop_all_threads ();
2580
2581 set_step_over_info (get_regcache_aspace (regcache),
2582 regcache_read_pc (regcache), 0);
2583
2584 step = maybe_software_singlestep (gdbarch, pc);
2585
2586 insert_breakpoints ();
2587 }
2588 else if (prepared > 0)
2589 {
2590 struct displaced_step_inferior_state *displaced;
2591
2592 /* Update pc to reflect the new address from which we will
2593 execute instructions due to displaced stepping. */
2594 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2595
2596 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2597 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2598 displaced->step_closure);
2599 }
2600 }
2601
2602 /* Do we need to do it the hard way, w/temp breakpoints? */
2603 else if (step)
2604 step = maybe_software_singlestep (gdbarch, pc);
2605
2606 /* Currently, our software single-step implementation leads to different
2607 results than hardware single-stepping in one situation: when stepping
2608 into delivering a signal which has an associated signal handler,
2609 hardware single-step will stop at the first instruction of the handler,
2610 while software single-step will simply skip execution of the handler.
2611
2612 For now, this difference in behavior is accepted since there is no
2613 easy way to actually implement single-stepping into a signal handler
2614 without kernel support.
2615
2616 However, there is one scenario where this difference leads to follow-on
2617 problems: if we're stepping off a breakpoint by removing all breakpoints
2618 and then single-stepping. In this case, the software single-step
2619 behavior means that even if there is a *breakpoint* in the signal
2620 handler, GDB still would not stop.
2621
2622 Fortunately, we can at least fix this particular issue. We detect
2623 here the case where we are about to deliver a signal while software
2624 single-stepping with breakpoints removed. In this situation, we
2625 revert the decisions to remove all breakpoints and insert single-
2626 step breakpoints, and instead we install a step-resume breakpoint
2627 at the current address, deliver the signal without stepping, and
2628 once we arrive back at the step-resume breakpoint, actually step
2629 over the breakpoint we originally wanted to step over. */
2630 if (thread_has_single_step_breakpoints_set (tp)
2631 && sig != GDB_SIGNAL_0
2632 && step_over_info_valid_p ())
2633 {
2634 /* If we have nested signals or a pending signal is delivered
2635 immediately after a handler returns, might might already have
2636 a step-resume breakpoint set on the earlier handler. We cannot
2637 set another step-resume breakpoint; just continue on until the
2638 original breakpoint is hit. */
2639 if (tp->control.step_resume_breakpoint == NULL)
2640 {
2641 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2642 tp->step_after_step_resume_breakpoint = 1;
2643 }
2644
2645 delete_single_step_breakpoints (tp);
2646
2647 clear_step_over_info ();
2648 tp->control.trap_expected = 0;
2649
2650 insert_breakpoints ();
2651 }
2652
2653 /* If STEP is set, it's a request to use hardware stepping
2654 facilities. But in that case, we should never
2655 use singlestep breakpoint. */
2656 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2657
2658 /* Decide the set of threads to ask the target to resume. */
2659 if (tp->control.trap_expected)
2660 {
2661 /* We're allowing a thread to run past a breakpoint it has
2662 hit, either by single-stepping the thread with the breakpoint
2663 removed, or by displaced stepping, with the breakpoint inserted.
2664 In the former case, we need to single-step only this thread,
2665 and keep others stopped, as they can miss this breakpoint if
2666 allowed to run. That's not really a problem for displaced
2667 stepping, but, we still keep other threads stopped, in case
2668 another thread is also stopped for a breakpoint waiting for
2669 its turn in the displaced stepping queue. */
2670 resume_ptid = inferior_ptid;
2671 }
2672 else
2673 resume_ptid = internal_resume_ptid (user_step);
2674
2675 if (execution_direction != EXEC_REVERSE
2676 && step && breakpoint_inserted_here_p (aspace, pc))
2677 {
2678 /* There are two cases where we currently need to step a
2679 breakpoint instruction when we have a signal to deliver:
2680
2681 - See handle_signal_stop where we handle random signals that
2682 could take out us out of the stepping range. Normally, in
2683 that case we end up continuing (instead of stepping) over the
2684 signal handler with a breakpoint at PC, but there are cases
2685 where we should _always_ single-step, even if we have a
2686 step-resume breakpoint, like when a software watchpoint is
2687 set. Assuming single-stepping and delivering a signal at the
2688 same time would takes us to the signal handler, then we could
2689 have removed the breakpoint at PC to step over it. However,
2690 some hardware step targets (like e.g., Mac OS) can't step
2691 into signal handlers, and for those, we need to leave the
2692 breakpoint at PC inserted, as otherwise if the handler
2693 recurses and executes PC again, it'll miss the breakpoint.
2694 So we leave the breakpoint inserted anyway, but we need to
2695 record that we tried to step a breakpoint instruction, so
2696 that adjust_pc_after_break doesn't end up confused.
2697
2698 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2699 in one thread after another thread that was stepping had been
2700 momentarily paused for a step-over. When we re-resume the
2701 stepping thread, it may be resumed from that address with a
2702 breakpoint that hasn't trapped yet. Seen with
2703 gdb.threads/non-stop-fair-events.exp, on targets that don't
2704 do displaced stepping. */
2705
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: resume: [%s] stepped breakpoint\n",
2709 target_pid_to_str (tp->ptid));
2710
2711 tp->stepped_breakpoint = 1;
2712
2713 /* Most targets can step a breakpoint instruction, thus
2714 executing it normally. But if this one cannot, just
2715 continue and we will hit it anyway. */
2716 if (gdbarch_cannot_step_breakpoint (gdbarch))
2717 step = 0;
2718 }
2719
2720 if (debug_displaced
2721 && tp->control.trap_expected
2722 && use_displaced_stepping (tp)
2723 && !step_over_info_valid_p ())
2724 {
2725 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2726 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2727 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2728 gdb_byte buf[4];
2729
2730 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2731 paddress (resume_gdbarch, actual_pc));
2732 read_memory (actual_pc, buf, sizeof (buf));
2733 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2734 }
2735
2736 if (tp->control.may_range_step)
2737 {
2738 /* If we're resuming a thread with the PC out of the step
2739 range, then we're doing some nested/finer run control
2740 operation, like stepping the thread out of the dynamic
2741 linker or the displaced stepping scratch pad. We
2742 shouldn't have allowed a range step then. */
2743 gdb_assert (pc_in_thread_step_range (pc, tp));
2744 }
2745
2746 do_target_resume (resume_ptid, step, sig);
2747 tp->resumed = 1;
2748 discard_cleanups (old_cleanups);
2749 }
2750 \f
2751 /* Proceeding. */
2752
2753 /* See infrun.h. */
2754
2755 /* Counter that tracks number of user visible stops. This can be used
2756 to tell whether a command has proceeded the inferior past the
2757 current location. This allows e.g., inferior function calls in
2758 breakpoint commands to not interrupt the command list. When the
2759 call finishes successfully, the inferior is standing at the same
2760 breakpoint as if nothing happened (and so we don't call
2761 normal_stop). */
2762 static ULONGEST current_stop_id;
2763
2764 /* See infrun.h. */
2765
2766 ULONGEST
2767 get_stop_id (void)
2768 {
2769 return current_stop_id;
2770 }
2771
2772 /* Called when we report a user visible stop. */
2773
2774 static void
2775 new_stop_id (void)
2776 {
2777 current_stop_id++;
2778 }
2779
2780 /* Clear out all variables saying what to do when inferior is continued.
2781 First do this, then set the ones you want, then call `proceed'. */
2782
2783 static void
2784 clear_proceed_status_thread (struct thread_info *tp)
2785 {
2786 if (debug_infrun)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "infrun: clear_proceed_status_thread (%s)\n",
2789 target_pid_to_str (tp->ptid));
2790
2791 /* If we're starting a new sequence, then the previous finished
2792 single-step is no longer relevant. */
2793 if (tp->suspend.waitstatus_pending_p)
2794 {
2795 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2796 {
2797 if (debug_infrun)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "infrun: clear_proceed_status: pending "
2800 "event of %s was a finished step. "
2801 "Discarding.\n",
2802 target_pid_to_str (tp->ptid));
2803
2804 tp->suspend.waitstatus_pending_p = 0;
2805 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2806 }
2807 else if (debug_infrun)
2808 {
2809 char *statstr;
2810
2811 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2812 fprintf_unfiltered (gdb_stdlog,
2813 "infrun: clear_proceed_status_thread: thread %s "
2814 "has pending wait status %s "
2815 "(currently_stepping=%d).\n",
2816 target_pid_to_str (tp->ptid), statstr,
2817 currently_stepping (tp));
2818 xfree (statstr);
2819 }
2820 }
2821
2822 /* If this signal should not be seen by program, give it zero.
2823 Used for debugging signals. */
2824 if (!signal_pass_state (tp->suspend.stop_signal))
2825 tp->suspend.stop_signal = GDB_SIGNAL_0;
2826
2827 thread_fsm_delete (tp->thread_fsm);
2828 tp->thread_fsm = NULL;
2829
2830 tp->control.trap_expected = 0;
2831 tp->control.step_range_start = 0;
2832 tp->control.step_range_end = 0;
2833 tp->control.may_range_step = 0;
2834 tp->control.step_frame_id = null_frame_id;
2835 tp->control.step_stack_frame_id = null_frame_id;
2836 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2837 tp->control.step_start_function = NULL;
2838 tp->stop_requested = 0;
2839
2840 tp->control.stop_step = 0;
2841
2842 tp->control.proceed_to_finish = 0;
2843
2844 tp->control.command_interp = NULL;
2845 tp->control.stepping_command = 0;
2846
2847 /* Discard any remaining commands or status from previous stop. */
2848 bpstat_clear (&tp->control.stop_bpstat);
2849 }
2850
2851 void
2852 clear_proceed_status (int step)
2853 {
2854 /* With scheduler-locking replay, stop replaying other threads if we're
2855 not replaying the user-visible resume ptid.
2856
2857 This is a convenience feature to not require the user to explicitly
2858 stop replaying the other threads. We're assuming that the user's
2859 intent is to resume tracing the recorded process. */
2860 if (!non_stop && scheduler_mode == schedlock_replay
2861 && target_record_is_replaying (minus_one_ptid)
2862 && !target_record_will_replay (user_visible_resume_ptid (step),
2863 execution_direction))
2864 target_record_stop_replaying ();
2865
2866 if (!non_stop)
2867 {
2868 struct thread_info *tp;
2869 ptid_t resume_ptid;
2870
2871 resume_ptid = user_visible_resume_ptid (step);
2872
2873 /* In all-stop mode, delete the per-thread status of all threads
2874 we're about to resume, implicitly and explicitly. */
2875 ALL_NON_EXITED_THREADS (tp)
2876 {
2877 if (!ptid_match (tp->ptid, resume_ptid))
2878 continue;
2879 clear_proceed_status_thread (tp);
2880 }
2881 }
2882
2883 if (!ptid_equal (inferior_ptid, null_ptid))
2884 {
2885 struct inferior *inferior;
2886
2887 if (non_stop)
2888 {
2889 /* If in non-stop mode, only delete the per-thread status of
2890 the current thread. */
2891 clear_proceed_status_thread (inferior_thread ());
2892 }
2893
2894 inferior = current_inferior ();
2895 inferior->control.stop_soon = NO_STOP_QUIETLY;
2896 }
2897
2898 observer_notify_about_to_proceed ();
2899 }
2900
2901 /* Returns true if TP is still stopped at a breakpoint that needs
2902 stepping-over in order to make progress. If the breakpoint is gone
2903 meanwhile, we can skip the whole step-over dance. */
2904
2905 static int
2906 thread_still_needs_step_over_bp (struct thread_info *tp)
2907 {
2908 if (tp->stepping_over_breakpoint)
2909 {
2910 struct regcache *regcache = get_thread_regcache (tp->ptid);
2911
2912 if (breakpoint_here_p (get_regcache_aspace (regcache),
2913 regcache_read_pc (regcache))
2914 == ordinary_breakpoint_here)
2915 return 1;
2916
2917 tp->stepping_over_breakpoint = 0;
2918 }
2919
2920 return 0;
2921 }
2922
2923 /* Check whether thread TP still needs to start a step-over in order
2924 to make progress when resumed. Returns an bitwise or of enum
2925 step_over_what bits, indicating what needs to be stepped over. */
2926
2927 static step_over_what
2928 thread_still_needs_step_over (struct thread_info *tp)
2929 {
2930 struct inferior *inf = find_inferior_ptid (tp->ptid);
2931 step_over_what what = 0;
2932
2933 if (thread_still_needs_step_over_bp (tp))
2934 what |= STEP_OVER_BREAKPOINT;
2935
2936 if (tp->stepping_over_watchpoint
2937 && !target_have_steppable_watchpoint)
2938 what |= STEP_OVER_WATCHPOINT;
2939
2940 return what;
2941 }
2942
2943 /* Returns true if scheduler locking applies. STEP indicates whether
2944 we're about to do a step/next-like command to a thread. */
2945
2946 static int
2947 schedlock_applies (struct thread_info *tp)
2948 {
2949 return (scheduler_mode == schedlock_on
2950 || (scheduler_mode == schedlock_step
2951 && tp->control.stepping_command)
2952 || (scheduler_mode == schedlock_replay
2953 && target_record_will_replay (minus_one_ptid,
2954 execution_direction)));
2955 }
2956
2957 /* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
2960 SIGGNAL is the signal to give it, or 0 for none,
2961 or -1 for act according to how it stopped.
2962 STEP is nonzero if should trap after one instruction.
2963 -1 means return after that and print nothing.
2964 You should probably set various step_... variables
2965 before calling here, if you are stepping.
2966
2967 You should call clear_proceed_status before calling proceed. */
2968
2969 void
2970 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2971 {
2972 struct regcache *regcache;
2973 struct gdbarch *gdbarch;
2974 struct thread_info *tp;
2975 CORE_ADDR pc;
2976 struct address_space *aspace;
2977 ptid_t resume_ptid;
2978 struct execution_control_state ecss;
2979 struct execution_control_state *ecs = &ecss;
2980 struct cleanup *old_chain;
2981 int started;
2982
2983 /* If we're stopped at a fork/vfork, follow the branch set by the
2984 "set follow-fork-mode" command; otherwise, we'll just proceed
2985 resuming the current thread. */
2986 if (!follow_fork ())
2987 {
2988 /* The target for some reason decided not to resume. */
2989 normal_stop ();
2990 if (target_can_async_p ())
2991 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2992 return;
2993 }
2994
2995 /* We'll update this if & when we switch to a new thread. */
2996 previous_inferior_ptid = inferior_ptid;
2997
2998 regcache = get_current_regcache ();
2999 gdbarch = get_regcache_arch (regcache);
3000 aspace = get_regcache_aspace (regcache);
3001 pc = regcache_read_pc (regcache);
3002 tp = inferior_thread ();
3003
3004 /* Fill in with reasonable starting values. */
3005 init_thread_stepping_state (tp);
3006
3007 gdb_assert (!thread_is_in_step_over_chain (tp));
3008
3009 if (addr == (CORE_ADDR) -1)
3010 {
3011 if (pc == stop_pc
3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3013 && execution_direction != EXEC_REVERSE)
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
3022 tp->stepping_over_breakpoint = 1;
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
3028 tp->stepping_over_breakpoint = 1;
3029 }
3030 else
3031 {
3032 regcache_write_pc (regcache, addr);
3033 }
3034
3035 if (siggnal != GDB_SIGNAL_DEFAULT)
3036 tp->suspend.stop_signal = siggnal;
3037
3038 /* Record the interpreter that issued the execution command that
3039 caused this thread to resume. If the top level interpreter is
3040 MI/async, and the execution command was a CLI command
3041 (next/step/etc.), we'll want to print stop event output to the MI
3042 console channel (the stepped-to line, etc.), as if the user
3043 entered the execution command on a real GDB console. */
3044 tp->control.command_interp = command_interp ();
3045
3046 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3047
3048 /* If an exception is thrown from this point on, make sure to
3049 propagate GDB's knowledge of the executing state to the
3050 frontend/user running state. */
3051 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3052
3053 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3054 threads (e.g., we might need to set threads stepping over
3055 breakpoints first), from the user/frontend's point of view, all
3056 threads in RESUME_PTID are now running. Unless we're calling an
3057 inferior function, as in that case we pretend the inferior
3058 doesn't run at all. */
3059 if (!tp->control.in_infcall)
3060 set_running (resume_ptid, 1);
3061
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "infrun: proceed (addr=%s, signal=%s)\n",
3065 paddress (gdbarch, addr),
3066 gdb_signal_to_symbol_string (siggnal));
3067
3068 annotate_starting ();
3069
3070 /* Make sure that output from GDB appears before output from the
3071 inferior. */
3072 gdb_flush (gdb_stdout);
3073
3074 /* In a multi-threaded task we may select another thread and
3075 then continue or step.
3076
3077 But if a thread that we're resuming had stopped at a breakpoint,
3078 it will immediately cause another breakpoint stop without any
3079 execution (i.e. it will report a breakpoint hit incorrectly). So
3080 we must step over it first.
3081
3082 Look for threads other than the current (TP) that reported a
3083 breakpoint hit and haven't been resumed yet since. */
3084
3085 /* If scheduler locking applies, we can avoid iterating over all
3086 threads. */
3087 if (!non_stop && !schedlock_applies (tp))
3088 {
3089 struct thread_info *current = tp;
3090
3091 ALL_NON_EXITED_THREADS (tp)
3092 {
3093 /* Ignore the current thread here. It's handled
3094 afterwards. */
3095 if (tp == current)
3096 continue;
3097
3098 /* Ignore threads of processes we're not resuming. */
3099 if (!ptid_match (tp->ptid, resume_ptid))
3100 continue;
3101
3102 if (!thread_still_needs_step_over (tp))
3103 continue;
3104
3105 gdb_assert (!thread_is_in_step_over_chain (tp));
3106
3107 if (debug_infrun)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "infrun: need to step-over [%s] first\n",
3110 target_pid_to_str (tp->ptid));
3111
3112 thread_step_over_chain_enqueue (tp);
3113 }
3114
3115 tp = current;
3116 }
3117
3118 /* Enqueue the current thread last, so that we move all other
3119 threads over their breakpoints first. */
3120 if (tp->stepping_over_breakpoint)
3121 thread_step_over_chain_enqueue (tp);
3122
3123 /* If the thread isn't started, we'll still need to set its prev_pc,
3124 so that switch_back_to_stepped_thread knows the thread hasn't
3125 advanced. Must do this before resuming any thread, as in
3126 all-stop/remote, once we resume we can't send any other packet
3127 until the target stops again. */
3128 tp->prev_pc = regcache_read_pc (regcache);
3129
3130 started = start_step_over ();
3131
3132 if (step_over_info_valid_p ())
3133 {
3134 /* Either this thread started a new in-line step over, or some
3135 other thread was already doing one. In either case, don't
3136 resume anything else until the step-over is finished. */
3137 }
3138 else if (started && !target_is_non_stop_p ())
3139 {
3140 /* A new displaced stepping sequence was started. In all-stop,
3141 we can't talk to the target anymore until it next stops. */
3142 }
3143 else if (!non_stop && target_is_non_stop_p ())
3144 {
3145 /* In all-stop, but the target is always in non-stop mode.
3146 Start all other threads that are implicitly resumed too. */
3147 ALL_NON_EXITED_THREADS (tp)
3148 {
3149 /* Ignore threads of processes we're not resuming. */
3150 if (!ptid_match (tp->ptid, resume_ptid))
3151 continue;
3152
3153 if (tp->resumed)
3154 {
3155 if (debug_infrun)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "infrun: proceed: [%s] resumed\n",
3158 target_pid_to_str (tp->ptid));
3159 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3160 continue;
3161 }
3162
3163 if (thread_is_in_step_over_chain (tp))
3164 {
3165 if (debug_infrun)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "infrun: proceed: [%s] needs step-over\n",
3168 target_pid_to_str (tp->ptid));
3169 continue;
3170 }
3171
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: resuming %s\n",
3175 target_pid_to_str (tp->ptid));
3176
3177 reset_ecs (ecs, tp);
3178 switch_to_thread (tp->ptid);
3179 keep_going_pass_signal (ecs);
3180 if (!ecs->wait_some_more)
3181 error (_("Command aborted."));
3182 }
3183 }
3184 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3185 {
3186 /* The thread wasn't started, and isn't queued, run it now. */
3187 reset_ecs (ecs, tp);
3188 switch_to_thread (tp->ptid);
3189 keep_going_pass_signal (ecs);
3190 if (!ecs->wait_some_more)
3191 error (_("Command aborted."));
3192 }
3193
3194 discard_cleanups (old_chain);
3195
3196 /* Tell the event loop to wait for it to stop. If the target
3197 supports asynchronous execution, it'll do this from within
3198 target_resume. */
3199 if (!target_can_async_p ())
3200 mark_async_event_handler (infrun_async_inferior_event_token);
3201 }
3202 \f
3203
3204 /* Start remote-debugging of a machine over a serial link. */
3205
3206 void
3207 start_remote (int from_tty)
3208 {
3209 struct inferior *inferior;
3210
3211 inferior = current_inferior ();
3212 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3213
3214 /* Always go on waiting for the target, regardless of the mode. */
3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3216 indicate to wait_for_inferior that a target should timeout if
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
3220 timeout. */
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
3227 for an async run. */
3228 wait_for_inferior ();
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
3233 post_create_inferior (&current_target, from_tty);
3234
3235 normal_stop ();
3236 }
3237
3238 /* Initialize static vars when a new inferior begins. */
3239
3240 void
3241 init_wait_for_inferior (void)
3242 {
3243 /* These are meaningless until the first time through wait_for_inferior. */
3244
3245 breakpoint_init_inferior (inf_starting);
3246
3247 clear_proceed_status (0);
3248
3249 target_last_wait_ptid = minus_one_ptid;
3250
3251 previous_inferior_ptid = inferior_ptid;
3252
3253 /* Discard any skipped inlined frames. */
3254 clear_inline_frame_state (minus_one_ptid);
3255 }
3256
3257 \f
3258
3259 static void handle_inferior_event (struct execution_control_state *ecs);
3260
3261 static void handle_step_into_function (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3264 struct execution_control_state *ecs);
3265 static void handle_signal_stop (struct execution_control_state *ecs);
3266 static void check_exception_resume (struct execution_control_state *,
3267 struct frame_info *);
3268
3269 static void end_stepping_range (struct execution_control_state *ecs);
3270 static void stop_waiting (struct execution_control_state *ecs);
3271 static void keep_going (struct execution_control_state *ecs);
3272 static void process_event_stop_test (struct execution_control_state *ecs);
3273 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3274
3275 /* Callback for iterate over threads. If the thread is stopped, but
3276 the user/frontend doesn't know about that yet, go through
3277 normal_stop, as if the thread had just stopped now. ARG points at
3278 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3279 ptid_is_pid(PTID) is true, applies to all threads of the process
3280 pointed at by PTID. Otherwise, apply only to the thread pointed by
3281 PTID. */
3282
3283 static int
3284 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3285 {
3286 ptid_t ptid = * (ptid_t *) arg;
3287
3288 if ((ptid_equal (info->ptid, ptid)
3289 || ptid_equal (minus_one_ptid, ptid)
3290 || (ptid_is_pid (ptid)
3291 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3292 && is_running (info->ptid)
3293 && !is_executing (info->ptid))
3294 {
3295 struct cleanup *old_chain;
3296 struct execution_control_state ecss;
3297 struct execution_control_state *ecs = &ecss;
3298
3299 memset (ecs, 0, sizeof (*ecs));
3300
3301 old_chain = make_cleanup_restore_current_thread ();
3302
3303 overlay_cache_invalid = 1;
3304 /* Flush target cache before starting to handle each event.
3305 Target was running and cache could be stale. This is just a
3306 heuristic. Running threads may modify target memory, but we
3307 don't get any event. */
3308 target_dcache_invalidate ();
3309
3310 /* Go through handle_inferior_event/normal_stop, so we always
3311 have consistent output as if the stop event had been
3312 reported. */
3313 ecs->ptid = info->ptid;
3314 ecs->event_thread = info;
3315 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3316 ecs->ws.value.sig = GDB_SIGNAL_0;
3317
3318 handle_inferior_event (ecs);
3319
3320 if (!ecs->wait_some_more)
3321 {
3322 /* Cancel any running execution command. */
3323 thread_cancel_execution_command (info);
3324
3325 normal_stop ();
3326 }
3327
3328 do_cleanups (old_chain);
3329 }
3330
3331 return 0;
3332 }
3333
3334 /* This function is attached as a "thread_stop_requested" observer.
3335 Cleanup local state that assumed the PTID was to be resumed, and
3336 report the stop to the frontend. */
3337
3338 static void
3339 infrun_thread_stop_requested (ptid_t ptid)
3340 {
3341 struct thread_info *tp;
3342
3343 /* PTID was requested to stop. Remove matching threads from the
3344 step-over queue, so we don't try to resume them
3345 automatically. */
3346 ALL_NON_EXITED_THREADS (tp)
3347 if (ptid_match (tp->ptid, ptid))
3348 {
3349 if (thread_is_in_step_over_chain (tp))
3350 thread_step_over_chain_remove (tp);
3351 }
3352
3353 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3354 }
3355
3356 static void
3357 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3358 {
3359 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3360 nullify_last_target_wait_ptid ();
3361 }
3362
3363 /* Delete the step resume, single-step and longjmp/exception resume
3364 breakpoints of TP. */
3365
3366 static void
3367 delete_thread_infrun_breakpoints (struct thread_info *tp)
3368 {
3369 delete_step_resume_breakpoint (tp);
3370 delete_exception_resume_breakpoint (tp);
3371 delete_single_step_breakpoints (tp);
3372 }
3373
3374 /* If the target still has execution, call FUNC for each thread that
3375 just stopped. In all-stop, that's all the non-exited threads; in
3376 non-stop, that's the current thread, only. */
3377
3378 typedef void (*for_each_just_stopped_thread_callback_func)
3379 (struct thread_info *tp);
3380
3381 static void
3382 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3383 {
3384 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3385 return;
3386
3387 if (target_is_non_stop_p ())
3388 {
3389 /* If in non-stop mode, only the current thread stopped. */
3390 func (inferior_thread ());
3391 }
3392 else
3393 {
3394 struct thread_info *tp;
3395
3396 /* In all-stop mode, all threads have stopped. */
3397 ALL_NON_EXITED_THREADS (tp)
3398 {
3399 func (tp);
3400 }
3401 }
3402 }
3403
3404 /* Delete the step resume and longjmp/exception resume breakpoints of
3405 the threads that just stopped. */
3406
3407 static void
3408 delete_just_stopped_threads_infrun_breakpoints (void)
3409 {
3410 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3411 }
3412
3413 /* Delete the single-step breakpoints of the threads that just
3414 stopped. */
3415
3416 static void
3417 delete_just_stopped_threads_single_step_breakpoints (void)
3418 {
3419 for_each_just_stopped_thread (delete_single_step_breakpoints);
3420 }
3421
3422 /* A cleanup wrapper. */
3423
3424 static void
3425 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3426 {
3427 delete_just_stopped_threads_infrun_breakpoints ();
3428 }
3429
3430 /* See infrun.h. */
3431
3432 void
3433 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3434 const struct target_waitstatus *ws)
3435 {
3436 char *status_string = target_waitstatus_to_string (ws);
3437 struct ui_file *tmp_stream = mem_fileopen ();
3438 char *text;
3439
3440 /* The text is split over several lines because it was getting too long.
3441 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3442 output as a unit; we want only one timestamp printed if debug_timestamp
3443 is set. */
3444
3445 fprintf_unfiltered (tmp_stream,
3446 "infrun: target_wait (%d.%ld.%ld",
3447 ptid_get_pid (waiton_ptid),
3448 ptid_get_lwp (waiton_ptid),
3449 ptid_get_tid (waiton_ptid));
3450 if (ptid_get_pid (waiton_ptid) != -1)
3451 fprintf_unfiltered (tmp_stream,
3452 " [%s]", target_pid_to_str (waiton_ptid));
3453 fprintf_unfiltered (tmp_stream, ", status) =\n");
3454 fprintf_unfiltered (tmp_stream,
3455 "infrun: %d.%ld.%ld [%s],\n",
3456 ptid_get_pid (result_ptid),
3457 ptid_get_lwp (result_ptid),
3458 ptid_get_tid (result_ptid),
3459 target_pid_to_str (result_ptid));
3460 fprintf_unfiltered (tmp_stream,
3461 "infrun: %s\n",
3462 status_string);
3463
3464 text = ui_file_xstrdup (tmp_stream, NULL);
3465
3466 /* This uses %s in part to handle %'s in the text, but also to avoid
3467 a gcc error: the format attribute requires a string literal. */
3468 fprintf_unfiltered (gdb_stdlog, "%s", text);
3469
3470 xfree (status_string);
3471 xfree (text);
3472 ui_file_delete (tmp_stream);
3473 }
3474
3475 /* Select a thread at random, out of those which are resumed and have
3476 had events. */
3477
3478 static struct thread_info *
3479 random_pending_event_thread (ptid_t waiton_ptid)
3480 {
3481 struct thread_info *event_tp;
3482 int num_events = 0;
3483 int random_selector;
3484
3485 /* First see how many events we have. Count only resumed threads
3486 that have an event pending. */
3487 ALL_NON_EXITED_THREADS (event_tp)
3488 if (ptid_match (event_tp->ptid, waiton_ptid)
3489 && event_tp->resumed
3490 && event_tp->suspend.waitstatus_pending_p)
3491 num_events++;
3492
3493 if (num_events == 0)
3494 return NULL;
3495
3496 /* Now randomly pick a thread out of those that have had events. */
3497 random_selector = (int)
3498 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3499
3500 if (debug_infrun && num_events > 1)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: Found %d events, selecting #%d\n",
3503 num_events, random_selector);
3504
3505 /* Select the Nth thread that has had an event. */
3506 ALL_NON_EXITED_THREADS (event_tp)
3507 if (ptid_match (event_tp->ptid, waiton_ptid)
3508 && event_tp->resumed
3509 && event_tp->suspend.waitstatus_pending_p)
3510 if (random_selector-- == 0)
3511 break;
3512
3513 return event_tp;
3514 }
3515
3516 /* Wrapper for target_wait that first checks whether threads have
3517 pending statuses to report before actually asking the target for
3518 more events. */
3519
3520 static ptid_t
3521 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3522 {
3523 ptid_t event_ptid;
3524 struct thread_info *tp;
3525
3526 /* First check if there is a resumed thread with a wait status
3527 pending. */
3528 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3529 {
3530 tp = random_pending_event_thread (ptid);
3531 }
3532 else
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: Waiting for specific thread %s.\n",
3537 target_pid_to_str (ptid));
3538
3539 /* We have a specific thread to check. */
3540 tp = find_thread_ptid (ptid);
3541 gdb_assert (tp != NULL);
3542 if (!tp->suspend.waitstatus_pending_p)
3543 tp = NULL;
3544 }
3545
3546 if (tp != NULL
3547 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3548 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3549 {
3550 struct regcache *regcache = get_thread_regcache (tp->ptid);
3551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3552 CORE_ADDR pc;
3553 int discard = 0;
3554
3555 pc = regcache_read_pc (regcache);
3556
3557 if (pc != tp->suspend.stop_pc)
3558 {
3559 if (debug_infrun)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: PC of %s changed. was=%s, now=%s\n",
3562 target_pid_to_str (tp->ptid),
3563 paddress (gdbarch, tp->prev_pc),
3564 paddress (gdbarch, pc));
3565 discard = 1;
3566 }
3567 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3568 {
3569 if (debug_infrun)
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: previous breakpoint of %s, at %s gone\n",
3572 target_pid_to_str (tp->ptid),
3573 paddress (gdbarch, pc));
3574
3575 discard = 1;
3576 }
3577
3578 if (discard)
3579 {
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: pending event of %s cancelled.\n",
3583 target_pid_to_str (tp->ptid));
3584
3585 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3586 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3587 }
3588 }
3589
3590 if (tp != NULL)
3591 {
3592 if (debug_infrun)
3593 {
3594 char *statstr;
3595
3596 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3597 fprintf_unfiltered (gdb_stdlog,
3598 "infrun: Using pending wait status %s for %s.\n",
3599 statstr,
3600 target_pid_to_str (tp->ptid));
3601 xfree (statstr);
3602 }
3603
3604 /* Now that we've selected our final event LWP, un-adjust its PC
3605 if it was a software breakpoint (and the target doesn't
3606 always adjust the PC itself). */
3607 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3608 && !target_supports_stopped_by_sw_breakpoint ())
3609 {
3610 struct regcache *regcache;
3611 struct gdbarch *gdbarch;
3612 int decr_pc;
3613
3614 regcache = get_thread_regcache (tp->ptid);
3615 gdbarch = get_regcache_arch (regcache);
3616
3617 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3618 if (decr_pc != 0)
3619 {
3620 CORE_ADDR pc;
3621
3622 pc = regcache_read_pc (regcache);
3623 regcache_write_pc (regcache, pc + decr_pc);
3624 }
3625 }
3626
3627 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3628 *status = tp->suspend.waitstatus;
3629 tp->suspend.waitstatus_pending_p = 0;
3630
3631 /* Wake up the event loop again, until all pending events are
3632 processed. */
3633 if (target_is_async_p ())
3634 mark_async_event_handler (infrun_async_inferior_event_token);
3635 return tp->ptid;
3636 }
3637
3638 /* But if we don't find one, we'll have to wait. */
3639
3640 if (deprecated_target_wait_hook)
3641 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3642 else
3643 event_ptid = target_wait (ptid, status, options);
3644
3645 return event_ptid;
3646 }
3647
3648 /* Prepare and stabilize the inferior for detaching it. E.g.,
3649 detaching while a thread is displaced stepping is a recipe for
3650 crashing it, as nothing would readjust the PC out of the scratch
3651 pad. */
3652
3653 void
3654 prepare_for_detach (void)
3655 {
3656 struct inferior *inf = current_inferior ();
3657 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3658 struct cleanup *old_chain_1;
3659 struct displaced_step_inferior_state *displaced;
3660
3661 displaced = get_displaced_stepping_state (inf->pid);
3662
3663 /* Is any thread of this process displaced stepping? If not,
3664 there's nothing else to do. */
3665 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3666 return;
3667
3668 if (debug_infrun)
3669 fprintf_unfiltered (gdb_stdlog,
3670 "displaced-stepping in-process while detaching");
3671
3672 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3673 inf->detaching = 1;
3674
3675 while (!ptid_equal (displaced->step_ptid, null_ptid))
3676 {
3677 struct cleanup *old_chain_2;
3678 struct execution_control_state ecss;
3679 struct execution_control_state *ecs;
3680
3681 ecs = &ecss;
3682 memset (ecs, 0, sizeof (*ecs));
3683
3684 overlay_cache_invalid = 1;
3685 /* Flush target cache before starting to handle each event.
3686 Target was running and cache could be stale. This is just a
3687 heuristic. Running threads may modify target memory, but we
3688 don't get any event. */
3689 target_dcache_invalidate ();
3690
3691 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3692
3693 if (debug_infrun)
3694 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3695
3696 /* If an error happens while handling the event, propagate GDB's
3697 knowledge of the executing state to the frontend/user running
3698 state. */
3699 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3700 &minus_one_ptid);
3701
3702 /* Now figure out what to do with the result of the result. */
3703 handle_inferior_event (ecs);
3704
3705 /* No error, don't finish the state yet. */
3706 discard_cleanups (old_chain_2);
3707
3708 /* Breakpoints and watchpoints are not installed on the target
3709 at this point, and signals are passed directly to the
3710 inferior, so this must mean the process is gone. */
3711 if (!ecs->wait_some_more)
3712 {
3713 discard_cleanups (old_chain_1);
3714 error (_("Program exited while detaching"));
3715 }
3716 }
3717
3718 discard_cleanups (old_chain_1);
3719 }
3720
3721 /* Wait for control to return from inferior to debugger.
3722
3723 If inferior gets a signal, we may decide to start it up again
3724 instead of returning. That is why there is a loop in this function.
3725 When this function actually returns it means the inferior
3726 should be left stopped and GDB should read more commands. */
3727
3728 void
3729 wait_for_inferior (void)
3730 {
3731 struct cleanup *old_cleanups;
3732 struct cleanup *thread_state_chain;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered
3736 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3737
3738 old_cleanups
3739 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3740 NULL);
3741
3742 /* If an error happens while handling the event, propagate GDB's
3743 knowledge of the executing state to the frontend/user running
3744 state. */
3745 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3746
3747 while (1)
3748 {
3749 struct execution_control_state ecss;
3750 struct execution_control_state *ecs = &ecss;
3751 ptid_t waiton_ptid = minus_one_ptid;
3752
3753 memset (ecs, 0, sizeof (*ecs));
3754
3755 overlay_cache_invalid = 1;
3756
3757 /* Flush target cache before starting to handle each event.
3758 Target was running and cache could be stale. This is just a
3759 heuristic. Running threads may modify target memory, but we
3760 don't get any event. */
3761 target_dcache_invalidate ();
3762
3763 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3764
3765 if (debug_infrun)
3766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3767
3768 /* Now figure out what to do with the result of the result. */
3769 handle_inferior_event (ecs);
3770
3771 if (!ecs->wait_some_more)
3772 break;
3773 }
3774
3775 /* No error, don't finish the state yet. */
3776 discard_cleanups (thread_state_chain);
3777
3778 do_cleanups (old_cleanups);
3779 }
3780
3781 /* Cleanup that reinstalls the readline callback handler, if the
3782 target is running in the background. If while handling the target
3783 event something triggered a secondary prompt, like e.g., a
3784 pagination prompt, we'll have removed the callback handler (see
3785 gdb_readline_wrapper_line). Need to do this as we go back to the
3786 event loop, ready to process further input. Note this has no
3787 effect if the handler hasn't actually been removed, because calling
3788 rl_callback_handler_install resets the line buffer, thus losing
3789 input. */
3790
3791 static void
3792 reinstall_readline_callback_handler_cleanup (void *arg)
3793 {
3794 if (!interpreter_async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3804 if (async_command_editing_p && !sync_execution)
3805 gdb_rl_callback_handler_reinstall ();
3806 }
3807
3808 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835 }
3836
3837 /* A cleanup that restores the execution direction to the value saved
3838 in *ARG. */
3839
3840 static void
3841 restore_execution_direction (void *arg)
3842 {
3843 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3844
3845 execution_direction = *save_exec_dir;
3846 }
3847
3848 /* Asynchronous version of wait_for_inferior. It is called by the
3849 event loop whenever a change of state is detected on the file
3850 descriptor corresponding to the target. It can be called more than
3851 once to complete a single execution command. In such cases we need
3852 to keep the state in a global variable ECSS. If it is the last time
3853 that this function is called for a single execution command, then
3854 report to the user that the inferior has stopped, and do the
3855 necessary cleanups. */
3856
3857 void
3858 fetch_inferior_event (void *client_data)
3859 {
3860 struct execution_control_state ecss;
3861 struct execution_control_state *ecs = &ecss;
3862 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3863 struct cleanup *ts_old_chain;
3864 int was_sync = sync_execution;
3865 enum exec_direction_kind save_exec_dir = execution_direction;
3866 int cmd_done = 0;
3867 ptid_t waiton_ptid = minus_one_ptid;
3868
3869 memset (ecs, 0, sizeof (*ecs));
3870
3871 /* End up with readline processing input, if necessary. */
3872 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3873
3874 /* We're handling a live event, so make sure we're doing live
3875 debugging. If we're looking at traceframes while the target is
3876 running, we're going to need to get back to that mode after
3877 handling the event. */
3878 if (non_stop)
3879 {
3880 make_cleanup_restore_current_traceframe ();
3881 set_current_traceframe (-1);
3882 }
3883
3884 if (non_stop)
3885 /* In non-stop mode, the user/frontend should not notice a thread
3886 switch due to internal events. Make sure we reverse to the
3887 user selected thread and frame after handling the event and
3888 running any breakpoint commands. */
3889 make_cleanup_restore_current_thread ();
3890
3891 overlay_cache_invalid = 1;
3892 /* Flush target cache before starting to handle each event. Target
3893 was running and cache could be stale. This is just a heuristic.
3894 Running threads may modify target memory, but we don't get any
3895 event. */
3896 target_dcache_invalidate ();
3897
3898 make_cleanup (restore_execution_direction, &save_exec_dir);
3899 execution_direction = target_execution_direction ();
3900
3901 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3902 target_can_async_p () ? TARGET_WNOHANG : 0);
3903
3904 if (debug_infrun)
3905 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3906
3907 /* If an error happens while handling the event, propagate GDB's
3908 knowledge of the executing state to the frontend/user running
3909 state. */
3910 if (!target_is_non_stop_p ())
3911 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3912 else
3913 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3914
3915 /* Get executed before make_cleanup_restore_current_thread above to apply
3916 still for the thread which has thrown the exception. */
3917 make_bpstat_clear_actions_cleanup ();
3918
3919 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3920
3921 /* Now figure out what to do with the result of the result. */
3922 handle_inferior_event (ecs);
3923
3924 if (!ecs->wait_some_more)
3925 {
3926 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3927 int should_stop = 1;
3928 struct thread_info *thr = ecs->event_thread;
3929 int should_notify_stop = 1;
3930
3931 delete_just_stopped_threads_infrun_breakpoints ();
3932
3933 if (thr != NULL)
3934 {
3935 struct thread_fsm *thread_fsm = thr->thread_fsm;
3936
3937 if (thread_fsm != NULL)
3938 should_stop = thread_fsm_should_stop (thread_fsm);
3939 }
3940
3941 if (!should_stop)
3942 {
3943 keep_going (ecs);
3944 }
3945 else
3946 {
3947 clean_up_just_stopped_threads_fsms (ecs);
3948
3949 if (thr != NULL && thr->thread_fsm != NULL)
3950 {
3951 should_notify_stop
3952 = thread_fsm_should_notify_stop (thr->thread_fsm);
3953 }
3954
3955 if (should_notify_stop)
3956 {
3957 int proceeded = 0;
3958
3959 /* We may not find an inferior if this was a process exit. */
3960 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3961 proceeded = normal_stop ();
3962
3963 if (!proceeded)
3964 {
3965 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3966 cmd_done = 1;
3967 }
3968 }
3969 }
3970 }
3971
3972 /* No error, don't finish the thread states yet. */
3973 discard_cleanups (ts_old_chain);
3974
3975 /* Revert thread and frame. */
3976 do_cleanups (old_chain);
3977
3978 /* If the inferior was in sync execution mode, and now isn't,
3979 restore the prompt (a synchronous execution command has finished,
3980 and we're ready for input). */
3981 if (interpreter_async && was_sync && !sync_execution)
3982 observer_notify_sync_execution_done ();
3983
3984 if (cmd_done
3985 && !was_sync
3986 && exec_done_display_p
3987 && (ptid_equal (inferior_ptid, null_ptid)
3988 || !is_running (inferior_ptid)))
3989 printf_unfiltered (_("completed.\n"));
3990 }
3991
3992 /* Record the frame and location we're currently stepping through. */
3993 void
3994 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3995 {
3996 struct thread_info *tp = inferior_thread ();
3997
3998 tp->control.step_frame_id = get_frame_id (frame);
3999 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4000
4001 tp->current_symtab = sal.symtab;
4002 tp->current_line = sal.line;
4003 }
4004
4005 /* Clear context switchable stepping state. */
4006
4007 void
4008 init_thread_stepping_state (struct thread_info *tss)
4009 {
4010 tss->stepped_breakpoint = 0;
4011 tss->stepping_over_breakpoint = 0;
4012 tss->stepping_over_watchpoint = 0;
4013 tss->step_after_step_resume_breakpoint = 0;
4014 }
4015
4016 /* Set the cached copy of the last ptid/waitstatus. */
4017
4018 static void
4019 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4020 {
4021 target_last_wait_ptid = ptid;
4022 target_last_waitstatus = status;
4023 }
4024
4025 /* Return the cached copy of the last pid/waitstatus returned by
4026 target_wait()/deprecated_target_wait_hook(). The data is actually
4027 cached by handle_inferior_event(), which gets called immediately
4028 after target_wait()/deprecated_target_wait_hook(). */
4029
4030 void
4031 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4032 {
4033 *ptidp = target_last_wait_ptid;
4034 *status = target_last_waitstatus;
4035 }
4036
4037 void
4038 nullify_last_target_wait_ptid (void)
4039 {
4040 target_last_wait_ptid = minus_one_ptid;
4041 }
4042
4043 /* Switch thread contexts. */
4044
4045 static void
4046 context_switch (ptid_t ptid)
4047 {
4048 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4049 {
4050 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4051 target_pid_to_str (inferior_ptid));
4052 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4053 target_pid_to_str (ptid));
4054 }
4055
4056 switch_to_thread (ptid);
4057 }
4058
4059 /* If the target can't tell whether we've hit breakpoints
4060 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4061 check whether that could have been caused by a breakpoint. If so,
4062 adjust the PC, per gdbarch_decr_pc_after_break. */
4063
4064 static void
4065 adjust_pc_after_break (struct thread_info *thread,
4066 struct target_waitstatus *ws)
4067 {
4068 struct regcache *regcache;
4069 struct gdbarch *gdbarch;
4070 struct address_space *aspace;
4071 CORE_ADDR breakpoint_pc, decr_pc;
4072
4073 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4074 we aren't, just return.
4075
4076 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4077 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4078 implemented by software breakpoints should be handled through the normal
4079 breakpoint layer.
4080
4081 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4082 different signals (SIGILL or SIGEMT for instance), but it is less
4083 clear where the PC is pointing afterwards. It may not match
4084 gdbarch_decr_pc_after_break. I don't know any specific target that
4085 generates these signals at breakpoints (the code has been in GDB since at
4086 least 1992) so I can not guess how to handle them here.
4087
4088 In earlier versions of GDB, a target with
4089 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4090 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4091 target with both of these set in GDB history, and it seems unlikely to be
4092 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4093
4094 if (ws->kind != TARGET_WAITKIND_STOPPED)
4095 return;
4096
4097 if (ws->value.sig != GDB_SIGNAL_TRAP)
4098 return;
4099
4100 /* In reverse execution, when a breakpoint is hit, the instruction
4101 under it has already been de-executed. The reported PC always
4102 points at the breakpoint address, so adjusting it further would
4103 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4104 architecture:
4105
4106 B1 0x08000000 : INSN1
4107 B2 0x08000001 : INSN2
4108 0x08000002 : INSN3
4109 PC -> 0x08000003 : INSN4
4110
4111 Say you're stopped at 0x08000003 as above. Reverse continuing
4112 from that point should hit B2 as below. Reading the PC when the
4113 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4114 been de-executed already.
4115
4116 B1 0x08000000 : INSN1
4117 B2 PC -> 0x08000001 : INSN2
4118 0x08000002 : INSN3
4119 0x08000003 : INSN4
4120
4121 We can't apply the same logic as for forward execution, because
4122 we would wrongly adjust the PC to 0x08000000, since there's a
4123 breakpoint at PC - 1. We'd then report a hit on B1, although
4124 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4125 behaviour. */
4126 if (execution_direction == EXEC_REVERSE)
4127 return;
4128
4129 /* If the target can tell whether the thread hit a SW breakpoint,
4130 trust it. Targets that can tell also adjust the PC
4131 themselves. */
4132 if (target_supports_stopped_by_sw_breakpoint ())
4133 return;
4134
4135 /* Note that relying on whether a breakpoint is planted in memory to
4136 determine this can fail. E.g,. the breakpoint could have been
4137 removed since. Or the thread could have been told to step an
4138 instruction the size of a breakpoint instruction, and only
4139 _after_ was a breakpoint inserted at its address. */
4140
4141 /* If this target does not decrement the PC after breakpoints, then
4142 we have nothing to do. */
4143 regcache = get_thread_regcache (thread->ptid);
4144 gdbarch = get_regcache_arch (regcache);
4145
4146 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4147 if (decr_pc == 0)
4148 return;
4149
4150 aspace = get_regcache_aspace (regcache);
4151
4152 /* Find the location where (if we've hit a breakpoint) the
4153 breakpoint would be. */
4154 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4155
4156 /* If the target can't tell whether a software breakpoint triggered,
4157 fallback to figuring it out based on breakpoints we think were
4158 inserted in the target, and on whether the thread was stepped or
4159 continued. */
4160
4161 /* Check whether there actually is a software breakpoint inserted at
4162 that location.
4163
4164 If in non-stop mode, a race condition is possible where we've
4165 removed a breakpoint, but stop events for that breakpoint were
4166 already queued and arrive later. To suppress those spurious
4167 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4168 and retire them after a number of stop events are reported. Note
4169 this is an heuristic and can thus get confused. The real fix is
4170 to get the "stopped by SW BP and needs adjustment" info out of
4171 the target/kernel (and thus never reach here; see above). */
4172 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4173 || (target_is_non_stop_p ()
4174 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4175 {
4176 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4177
4178 if (record_full_is_used ())
4179 record_full_gdb_operation_disable_set ();
4180
4181 /* When using hardware single-step, a SIGTRAP is reported for both
4182 a completed single-step and a software breakpoint. Need to
4183 differentiate between the two, as the latter needs adjusting
4184 but the former does not.
4185
4186 The SIGTRAP can be due to a completed hardware single-step only if
4187 - we didn't insert software single-step breakpoints
4188 - this thread is currently being stepped
4189
4190 If any of these events did not occur, we must have stopped due
4191 to hitting a software breakpoint, and have to back up to the
4192 breakpoint address.
4193
4194 As a special case, we could have hardware single-stepped a
4195 software breakpoint. In this case (prev_pc == breakpoint_pc),
4196 we also need to back up to the breakpoint address. */
4197
4198 if (thread_has_single_step_breakpoints_set (thread)
4199 || !currently_stepping (thread)
4200 || (thread->stepped_breakpoint
4201 && thread->prev_pc == breakpoint_pc))
4202 regcache_write_pc (regcache, breakpoint_pc);
4203
4204 do_cleanups (old_cleanups);
4205 }
4206 }
4207
4208 static int
4209 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4210 {
4211 for (frame = get_prev_frame (frame);
4212 frame != NULL;
4213 frame = get_prev_frame (frame))
4214 {
4215 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4216 return 1;
4217 if (get_frame_type (frame) != INLINE_FRAME)
4218 break;
4219 }
4220
4221 return 0;
4222 }
4223
4224 /* Auxiliary function that handles syscall entry/return events.
4225 It returns 1 if the inferior should keep going (and GDB
4226 should ignore the event), or 0 if the event deserves to be
4227 processed. */
4228
4229 static int
4230 handle_syscall_event (struct execution_control_state *ecs)
4231 {
4232 struct regcache *regcache;
4233 int syscall_number;
4234
4235 if (!ptid_equal (ecs->ptid, inferior_ptid))
4236 context_switch (ecs->ptid);
4237
4238 regcache = get_thread_regcache (ecs->ptid);
4239 syscall_number = ecs->ws.value.syscall_number;
4240 stop_pc = regcache_read_pc (regcache);
4241
4242 if (catch_syscall_enabled () > 0
4243 && catching_syscall_number (syscall_number) > 0)
4244 {
4245 if (debug_infrun)
4246 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4247 syscall_number);
4248
4249 ecs->event_thread->control.stop_bpstat
4250 = bpstat_stop_status (get_regcache_aspace (regcache),
4251 stop_pc, ecs->ptid, &ecs->ws);
4252
4253 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4254 {
4255 /* Catchpoint hit. */
4256 return 0;
4257 }
4258 }
4259
4260 /* If no catchpoint triggered for this, then keep going. */
4261 keep_going (ecs);
4262 return 1;
4263 }
4264
4265 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4266
4267 static void
4268 fill_in_stop_func (struct gdbarch *gdbarch,
4269 struct execution_control_state *ecs)
4270 {
4271 if (!ecs->stop_func_filled_in)
4272 {
4273 /* Don't care about return value; stop_func_start and stop_func_name
4274 will both be 0 if it doesn't work. */
4275 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4276 &ecs->stop_func_start, &ecs->stop_func_end);
4277 ecs->stop_func_start
4278 += gdbarch_deprecated_function_start_offset (gdbarch);
4279
4280 if (gdbarch_skip_entrypoint_p (gdbarch))
4281 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4282 ecs->stop_func_start);
4283
4284 ecs->stop_func_filled_in = 1;
4285 }
4286 }
4287
4288
4289 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4290
4291 static enum stop_kind
4292 get_inferior_stop_soon (ptid_t ptid)
4293 {
4294 struct inferior *inf = find_inferior_ptid (ptid);
4295
4296 gdb_assert (inf != NULL);
4297 return inf->control.stop_soon;
4298 }
4299
4300 /* Wait for one event. Store the resulting waitstatus in WS, and
4301 return the event ptid. */
4302
4303 static ptid_t
4304 wait_one (struct target_waitstatus *ws)
4305 {
4306 ptid_t event_ptid;
4307 ptid_t wait_ptid = minus_one_ptid;
4308
4309 overlay_cache_invalid = 1;
4310
4311 /* Flush target cache before starting to handle each event.
4312 Target was running and cache could be stale. This is just a
4313 heuristic. Running threads may modify target memory, but we
4314 don't get any event. */
4315 target_dcache_invalidate ();
4316
4317 if (deprecated_target_wait_hook)
4318 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4319 else
4320 event_ptid = target_wait (wait_ptid, ws, 0);
4321
4322 if (debug_infrun)
4323 print_target_wait_results (wait_ptid, event_ptid, ws);
4324
4325 return event_ptid;
4326 }
4327
4328 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4329 instead of the current thread. */
4330 #define THREAD_STOPPED_BY(REASON) \
4331 static int \
4332 thread_stopped_by_ ## REASON (ptid_t ptid) \
4333 { \
4334 struct cleanup *old_chain; \
4335 int res; \
4336 \
4337 old_chain = save_inferior_ptid (); \
4338 inferior_ptid = ptid; \
4339 \
4340 res = target_stopped_by_ ## REASON (); \
4341 \
4342 do_cleanups (old_chain); \
4343 \
4344 return res; \
4345 }
4346
4347 /* Generate thread_stopped_by_watchpoint. */
4348 THREAD_STOPPED_BY (watchpoint)
4349 /* Generate thread_stopped_by_sw_breakpoint. */
4350 THREAD_STOPPED_BY (sw_breakpoint)
4351 /* Generate thread_stopped_by_hw_breakpoint. */
4352 THREAD_STOPPED_BY (hw_breakpoint)
4353
4354 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4355
4356 static void
4357 switch_to_thread_cleanup (void *ptid_p)
4358 {
4359 ptid_t ptid = *(ptid_t *) ptid_p;
4360
4361 switch_to_thread (ptid);
4362 }
4363
4364 /* Save the thread's event and stop reason to process it later. */
4365
4366 static void
4367 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4368 {
4369 struct regcache *regcache;
4370 struct address_space *aspace;
4371
4372 if (debug_infrun)
4373 {
4374 char *statstr;
4375
4376 statstr = target_waitstatus_to_string (ws);
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: saving status %s for %d.%ld.%ld\n",
4379 statstr,
4380 ptid_get_pid (tp->ptid),
4381 ptid_get_lwp (tp->ptid),
4382 ptid_get_tid (tp->ptid));
4383 xfree (statstr);
4384 }
4385
4386 /* Record for later. */
4387 tp->suspend.waitstatus = *ws;
4388 tp->suspend.waitstatus_pending_p = 1;
4389
4390 regcache = get_thread_regcache (tp->ptid);
4391 aspace = get_regcache_aspace (regcache);
4392
4393 if (ws->kind == TARGET_WAITKIND_STOPPED
4394 && ws->value.sig == GDB_SIGNAL_TRAP)
4395 {
4396 CORE_ADDR pc = regcache_read_pc (regcache);
4397
4398 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4399
4400 if (thread_stopped_by_watchpoint (tp->ptid))
4401 {
4402 tp->suspend.stop_reason
4403 = TARGET_STOPPED_BY_WATCHPOINT;
4404 }
4405 else if (target_supports_stopped_by_sw_breakpoint ()
4406 && thread_stopped_by_sw_breakpoint (tp->ptid))
4407 {
4408 tp->suspend.stop_reason
4409 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4410 }
4411 else if (target_supports_stopped_by_hw_breakpoint ()
4412 && thread_stopped_by_hw_breakpoint (tp->ptid))
4413 {
4414 tp->suspend.stop_reason
4415 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4416 }
4417 else if (!target_supports_stopped_by_hw_breakpoint ()
4418 && hardware_breakpoint_inserted_here_p (aspace,
4419 pc))
4420 {
4421 tp->suspend.stop_reason
4422 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4423 }
4424 else if (!target_supports_stopped_by_sw_breakpoint ()
4425 && software_breakpoint_inserted_here_p (aspace,
4426 pc))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4430 }
4431 else if (!thread_has_single_step_breakpoints_set (tp)
4432 && currently_stepping (tp))
4433 {
4434 tp->suspend.stop_reason
4435 = TARGET_STOPPED_BY_SINGLE_STEP;
4436 }
4437 }
4438 }
4439
4440 /* Stop all threads. */
4441
4442 static void
4443 stop_all_threads (void)
4444 {
4445 /* We may need multiple passes to discover all threads. */
4446 int pass;
4447 int iterations = 0;
4448 ptid_t entry_ptid;
4449 struct cleanup *old_chain;
4450
4451 gdb_assert (target_is_non_stop_p ());
4452
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4455
4456 entry_ptid = inferior_ptid;
4457 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4458
4459 /* Request threads to stop, and then wait for the stops. Because
4460 threads we already know about can spawn more threads while we're
4461 trying to stop them, and we only learn about new threads when we
4462 update the thread list, do this in a loop, and keep iterating
4463 until two passes find no threads that need to be stopped. */
4464 for (pass = 0; pass < 2; pass++, iterations++)
4465 {
4466 if (debug_infrun)
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: stop_all_threads, pass=%d, "
4469 "iterations=%d\n", pass, iterations);
4470 while (1)
4471 {
4472 ptid_t event_ptid;
4473 struct target_waitstatus ws;
4474 int need_wait = 0;
4475 struct thread_info *t;
4476
4477 update_thread_list ();
4478
4479 /* Go through all threads looking for threads that we need
4480 to tell the target to stop. */
4481 ALL_NON_EXITED_THREADS (t)
4482 {
4483 if (t->executing)
4484 {
4485 /* If already stopping, don't request a stop again.
4486 We just haven't seen the notification yet. */
4487 if (!t->stop_requested)
4488 {
4489 if (debug_infrun)
4490 fprintf_unfiltered (gdb_stdlog,
4491 "infrun: %s executing, "
4492 "need stop\n",
4493 target_pid_to_str (t->ptid));
4494 target_stop (t->ptid);
4495 t->stop_requested = 1;
4496 }
4497 else
4498 {
4499 if (debug_infrun)
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: %s executing, "
4502 "already stopping\n",
4503 target_pid_to_str (t->ptid));
4504 }
4505
4506 if (t->stop_requested)
4507 need_wait = 1;
4508 }
4509 else
4510 {
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog,
4513 "infrun: %s not executing\n",
4514 target_pid_to_str (t->ptid));
4515
4516 /* The thread may be not executing, but still be
4517 resumed with a pending status to process. */
4518 t->resumed = 0;
4519 }
4520 }
4521
4522 if (!need_wait)
4523 break;
4524
4525 /* If we find new threads on the second iteration, restart
4526 over. We want to see two iterations in a row with all
4527 threads stopped. */
4528 if (pass > 0)
4529 pass = -1;
4530
4531 event_ptid = wait_one (&ws);
4532 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4533 {
4534 /* All resumed threads exited. */
4535 }
4536 else if (ws.kind == TARGET_WAITKIND_EXITED
4537 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4538 {
4539 if (debug_infrun)
4540 {
4541 ptid_t ptid = pid_to_ptid (ws.value.integer);
4542
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: %s exited while "
4545 "stopping threads\n",
4546 target_pid_to_str (ptid));
4547 }
4548 }
4549 else
4550 {
4551 t = find_thread_ptid (event_ptid);
4552 if (t == NULL)
4553 t = add_thread (event_ptid);
4554
4555 t->stop_requested = 0;
4556 t->executing = 0;
4557 t->resumed = 0;
4558 t->control.may_range_step = 0;
4559
4560 if (ws.kind == TARGET_WAITKIND_STOPPED
4561 && ws.value.sig == GDB_SIGNAL_0)
4562 {
4563 /* We caught the event that we intended to catch, so
4564 there's no event pending. */
4565 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4566 t->suspend.waitstatus_pending_p = 0;
4567
4568 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4569 {
4570 /* Add it back to the step-over queue. */
4571 if (debug_infrun)
4572 {
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: displaced-step of %s "
4575 "canceled: adding back to the "
4576 "step-over queue\n",
4577 target_pid_to_str (t->ptid));
4578 }
4579 t->control.trap_expected = 0;
4580 thread_step_over_chain_enqueue (t);
4581 }
4582 }
4583 else
4584 {
4585 enum gdb_signal sig;
4586 struct regcache *regcache;
4587 struct address_space *aspace;
4588
4589 if (debug_infrun)
4590 {
4591 char *statstr;
4592
4593 statstr = target_waitstatus_to_string (&ws);
4594 fprintf_unfiltered (gdb_stdlog,
4595 "infrun: target_wait %s, saving "
4596 "status for %d.%ld.%ld\n",
4597 statstr,
4598 ptid_get_pid (t->ptid),
4599 ptid_get_lwp (t->ptid),
4600 ptid_get_tid (t->ptid));
4601 xfree (statstr);
4602 }
4603
4604 /* Record for later. */
4605 save_waitstatus (t, &ws);
4606
4607 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4608 ? ws.value.sig : GDB_SIGNAL_0);
4609
4610 if (displaced_step_fixup (t->ptid, sig) < 0)
4611 {
4612 /* Add it back to the step-over queue. */
4613 t->control.trap_expected = 0;
4614 thread_step_over_chain_enqueue (t);
4615 }
4616
4617 regcache = get_thread_regcache (t->ptid);
4618 t->suspend.stop_pc = regcache_read_pc (regcache);
4619
4620 if (debug_infrun)
4621 {
4622 fprintf_unfiltered (gdb_stdlog,
4623 "infrun: saved stop_pc=%s for %s "
4624 "(currently_stepping=%d)\n",
4625 paddress (target_gdbarch (),
4626 t->suspend.stop_pc),
4627 target_pid_to_str (t->ptid),
4628 currently_stepping (t));
4629 }
4630 }
4631 }
4632 }
4633 }
4634
4635 do_cleanups (old_chain);
4636
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4639 }
4640
4641 /* Given an execution control state that has been freshly filled in by
4642 an event from the inferior, figure out what it means and take
4643 appropriate action.
4644
4645 The alternatives are:
4646
4647 1) stop_waiting and return; to really stop and return to the
4648 debugger.
4649
4650 2) keep_going and return; to wait for the next event (set
4651 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4652 once). */
4653
4654 static void
4655 handle_inferior_event_1 (struct execution_control_state *ecs)
4656 {
4657 enum stop_kind stop_soon;
4658
4659 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4660 {
4661 /* We had an event in the inferior, but we are not interested in
4662 handling it at this level. The lower layers have already
4663 done what needs to be done, if anything.
4664
4665 One of the possible circumstances for this is when the
4666 inferior produces output for the console. The inferior has
4667 not stopped, and we are ignoring the event. Another possible
4668 circumstance is any event which the lower level knows will be
4669 reported multiple times without an intervening resume. */
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4672 prepare_to_wait (ecs);
4673 return;
4674 }
4675
4676 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4677 && target_can_async_p () && !sync_execution)
4678 {
4679 /* There were no unwaited-for children left in the target, but,
4680 we're not synchronously waiting for events either. Just
4681 ignore. Otherwise, if we were running a synchronous
4682 execution command, we need to cancel it and give the user
4683 back the terminal. */
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4687 prepare_to_wait (ecs);
4688 return;
4689 }
4690
4691 /* Cache the last pid/waitstatus. */
4692 set_last_target_status (ecs->ptid, ecs->ws);
4693
4694 /* Always clear state belonging to the previous time we stopped. */
4695 stop_stack_dummy = STOP_NONE;
4696
4697 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4698 {
4699 /* No unwaited-for children left. IOW, all resumed children
4700 have exited. */
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4703
4704 stop_print_frame = 0;
4705 stop_waiting (ecs);
4706 return;
4707 }
4708
4709 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4710 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4711 {
4712 ecs->event_thread = find_thread_ptid (ecs->ptid);
4713 /* If it's a new thread, add it to the thread database. */
4714 if (ecs->event_thread == NULL)
4715 ecs->event_thread = add_thread (ecs->ptid);
4716
4717 /* Disable range stepping. If the next step request could use a
4718 range, this will be end up re-enabled then. */
4719 ecs->event_thread->control.may_range_step = 0;
4720 }
4721
4722 /* Dependent on valid ECS->EVENT_THREAD. */
4723 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4724
4725 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4726 reinit_frame_cache ();
4727
4728 breakpoint_retire_moribund ();
4729
4730 /* First, distinguish signals caused by the debugger from signals
4731 that have to do with the program's own actions. Note that
4732 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4733 on the operating system version. Here we detect when a SIGILL or
4734 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4735 something similar for SIGSEGV, since a SIGSEGV will be generated
4736 when we're trying to execute a breakpoint instruction on a
4737 non-executable stack. This happens for call dummy breakpoints
4738 for architectures like SPARC that place call dummies on the
4739 stack. */
4740 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4741 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4742 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4743 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4744 {
4745 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4746
4747 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4748 regcache_read_pc (regcache)))
4749 {
4750 if (debug_infrun)
4751 fprintf_unfiltered (gdb_stdlog,
4752 "infrun: Treating signal as SIGTRAP\n");
4753 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4754 }
4755 }
4756
4757 /* Mark the non-executing threads accordingly. In all-stop, all
4758 threads of all processes are stopped when we get any event
4759 reported. In non-stop mode, only the event thread stops. */
4760 {
4761 ptid_t mark_ptid;
4762
4763 if (!target_is_non_stop_p ())
4764 mark_ptid = minus_one_ptid;
4765 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4766 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4767 {
4768 /* If we're handling a process exit in non-stop mode, even
4769 though threads haven't been deleted yet, one would think
4770 that there is nothing to do, as threads of the dead process
4771 will be soon deleted, and threads of any other process were
4772 left running. However, on some targets, threads survive a
4773 process exit event. E.g., for the "checkpoint" command,
4774 when the current checkpoint/fork exits, linux-fork.c
4775 automatically switches to another fork from within
4776 target_mourn_inferior, by associating the same
4777 inferior/thread to another fork. We haven't mourned yet at
4778 this point, but we must mark any threads left in the
4779 process as not-executing so that finish_thread_state marks
4780 them stopped (in the user's perspective) if/when we present
4781 the stop to the user. */
4782 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4783 }
4784 else
4785 mark_ptid = ecs->ptid;
4786
4787 set_executing (mark_ptid, 0);
4788
4789 /* Likewise the resumed flag. */
4790 set_resumed (mark_ptid, 0);
4791 }
4792
4793 switch (ecs->ws.kind)
4794 {
4795 case TARGET_WAITKIND_LOADED:
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4798 if (!ptid_equal (ecs->ptid, inferior_ptid))
4799 context_switch (ecs->ptid);
4800 /* Ignore gracefully during startup of the inferior, as it might
4801 be the shell which has just loaded some objects, otherwise
4802 add the symbols for the newly loaded objects. Also ignore at
4803 the beginning of an attach or remote session; we will query
4804 the full list of libraries once the connection is
4805 established. */
4806
4807 stop_soon = get_inferior_stop_soon (ecs->ptid);
4808 if (stop_soon == NO_STOP_QUIETLY)
4809 {
4810 struct regcache *regcache;
4811
4812 regcache = get_thread_regcache (ecs->ptid);
4813
4814 handle_solib_event ();
4815
4816 ecs->event_thread->control.stop_bpstat
4817 = bpstat_stop_status (get_regcache_aspace (regcache),
4818 stop_pc, ecs->ptid, &ecs->ws);
4819
4820 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4821 {
4822 /* A catchpoint triggered. */
4823 process_event_stop_test (ecs);
4824 return;
4825 }
4826
4827 /* If requested, stop when the dynamic linker notifies
4828 gdb of events. This allows the user to get control
4829 and place breakpoints in initializer routines for
4830 dynamically loaded objects (among other things). */
4831 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4832 if (stop_on_solib_events)
4833 {
4834 /* Make sure we print "Stopped due to solib-event" in
4835 normal_stop. */
4836 stop_print_frame = 1;
4837
4838 stop_waiting (ecs);
4839 return;
4840 }
4841 }
4842
4843 /* If we are skipping through a shell, or through shared library
4844 loading that we aren't interested in, resume the program. If
4845 we're running the program normally, also resume. */
4846 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4847 {
4848 /* Loading of shared libraries might have changed breakpoint
4849 addresses. Make sure new breakpoints are inserted. */
4850 if (stop_soon == NO_STOP_QUIETLY)
4851 insert_breakpoints ();
4852 resume (GDB_SIGNAL_0);
4853 prepare_to_wait (ecs);
4854 return;
4855 }
4856
4857 /* But stop if we're attaching or setting up a remote
4858 connection. */
4859 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4860 || stop_soon == STOP_QUIETLY_REMOTE)
4861 {
4862 if (debug_infrun)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4864 stop_waiting (ecs);
4865 return;
4866 }
4867
4868 internal_error (__FILE__, __LINE__,
4869 _("unhandled stop_soon: %d"), (int) stop_soon);
4870
4871 case TARGET_WAITKIND_SPURIOUS:
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4874 if (!ptid_equal (ecs->ptid, inferior_ptid))
4875 context_switch (ecs->ptid);
4876 resume (GDB_SIGNAL_0);
4877 prepare_to_wait (ecs);
4878 return;
4879
4880 case TARGET_WAITKIND_EXITED:
4881 case TARGET_WAITKIND_SIGNALLED:
4882 if (debug_infrun)
4883 {
4884 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4885 fprintf_unfiltered (gdb_stdlog,
4886 "infrun: TARGET_WAITKIND_EXITED\n");
4887 else
4888 fprintf_unfiltered (gdb_stdlog,
4889 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4890 }
4891
4892 inferior_ptid = ecs->ptid;
4893 set_current_inferior (find_inferior_ptid (ecs->ptid));
4894 set_current_program_space (current_inferior ()->pspace);
4895 handle_vfork_child_exec_or_exit (0);
4896 target_terminal_ours (); /* Must do this before mourn anyway. */
4897
4898 /* Clearing any previous state of convenience variables. */
4899 clear_exit_convenience_vars ();
4900
4901 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4902 {
4903 /* Record the exit code in the convenience variable $_exitcode, so
4904 that the user can inspect this again later. */
4905 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4906 (LONGEST) ecs->ws.value.integer);
4907
4908 /* Also record this in the inferior itself. */
4909 current_inferior ()->has_exit_code = 1;
4910 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4911
4912 /* Support the --return-child-result option. */
4913 return_child_result_value = ecs->ws.value.integer;
4914
4915 observer_notify_exited (ecs->ws.value.integer);
4916 }
4917 else
4918 {
4919 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4920 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4921
4922 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4923 {
4924 /* Set the value of the internal variable $_exitsignal,
4925 which holds the signal uncaught by the inferior. */
4926 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4927 gdbarch_gdb_signal_to_target (gdbarch,
4928 ecs->ws.value.sig));
4929 }
4930 else
4931 {
4932 /* We don't have access to the target's method used for
4933 converting between signal numbers (GDB's internal
4934 representation <-> target's representation).
4935 Therefore, we cannot do a good job at displaying this
4936 information to the user. It's better to just warn
4937 her about it (if infrun debugging is enabled), and
4938 give up. */
4939 if (debug_infrun)
4940 fprintf_filtered (gdb_stdlog, _("\
4941 Cannot fill $_exitsignal with the correct signal number.\n"));
4942 }
4943
4944 observer_notify_signal_exited (ecs->ws.value.sig);
4945 }
4946
4947 gdb_flush (gdb_stdout);
4948 target_mourn_inferior ();
4949 stop_print_frame = 0;
4950 stop_waiting (ecs);
4951 return;
4952
4953 /* The following are the only cases in which we keep going;
4954 the above cases end in a continue or goto. */
4955 case TARGET_WAITKIND_FORKED:
4956 case TARGET_WAITKIND_VFORKED:
4957 if (debug_infrun)
4958 {
4959 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4960 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4961 else
4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4963 }
4964
4965 /* Check whether the inferior is displaced stepping. */
4966 {
4967 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4968 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4969
4970 /* If checking displaced stepping is supported, and thread
4971 ecs->ptid is displaced stepping. */
4972 if (displaced_step_in_progress_thread (ecs->ptid))
4973 {
4974 struct inferior *parent_inf
4975 = find_inferior_ptid (ecs->ptid);
4976 struct regcache *child_regcache;
4977 CORE_ADDR parent_pc;
4978
4979 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4980 indicating that the displaced stepping of syscall instruction
4981 has been done. Perform cleanup for parent process here. Note
4982 that this operation also cleans up the child process for vfork,
4983 because their pages are shared. */
4984 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4985 /* Start a new step-over in another thread if there's one
4986 that needs it. */
4987 start_step_over ();
4988
4989 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4990 {
4991 struct displaced_step_inferior_state *displaced
4992 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4993
4994 /* Restore scratch pad for child process. */
4995 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4996 }
4997
4998 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4999 the child's PC is also within the scratchpad. Set the child's PC
5000 to the parent's PC value, which has already been fixed up.
5001 FIXME: we use the parent's aspace here, although we're touching
5002 the child, because the child hasn't been added to the inferior
5003 list yet at this point. */
5004
5005 child_regcache
5006 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5007 gdbarch,
5008 parent_inf->aspace);
5009 /* Read PC value of parent process. */
5010 parent_pc = regcache_read_pc (regcache);
5011
5012 if (debug_displaced)
5013 fprintf_unfiltered (gdb_stdlog,
5014 "displaced: write child pc from %s to %s\n",
5015 paddress (gdbarch,
5016 regcache_read_pc (child_regcache)),
5017 paddress (gdbarch, parent_pc));
5018
5019 regcache_write_pc (child_regcache, parent_pc);
5020 }
5021 }
5022
5023 if (!ptid_equal (ecs->ptid, inferior_ptid))
5024 context_switch (ecs->ptid);
5025
5026 /* Immediately detach breakpoints from the child before there's
5027 any chance of letting the user delete breakpoints from the
5028 breakpoint lists. If we don't do this early, it's easy to
5029 leave left over traps in the child, vis: "break foo; catch
5030 fork; c; <fork>; del; c; <child calls foo>". We only follow
5031 the fork on the last `continue', and by that time the
5032 breakpoint at "foo" is long gone from the breakpoint table.
5033 If we vforked, then we don't need to unpatch here, since both
5034 parent and child are sharing the same memory pages; we'll
5035 need to unpatch at follow/detach time instead to be certain
5036 that new breakpoints added between catchpoint hit time and
5037 vfork follow are detached. */
5038 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5039 {
5040 /* This won't actually modify the breakpoint list, but will
5041 physically remove the breakpoints from the child. */
5042 detach_breakpoints (ecs->ws.value.related_pid);
5043 }
5044
5045 delete_just_stopped_threads_single_step_breakpoints ();
5046
5047 /* In case the event is caught by a catchpoint, remember that
5048 the event is to be followed at the next resume of the thread,
5049 and not immediately. */
5050 ecs->event_thread->pending_follow = ecs->ws;
5051
5052 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5053
5054 ecs->event_thread->control.stop_bpstat
5055 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5056 stop_pc, ecs->ptid, &ecs->ws);
5057
5058 /* If no catchpoint triggered for this, then keep going. Note
5059 that we're interested in knowing the bpstat actually causes a
5060 stop, not just if it may explain the signal. Software
5061 watchpoints, for example, always appear in the bpstat. */
5062 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5063 {
5064 ptid_t parent;
5065 ptid_t child;
5066 int should_resume;
5067 int follow_child
5068 = (follow_fork_mode_string == follow_fork_mode_child);
5069
5070 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5071
5072 should_resume = follow_fork ();
5073
5074 parent = ecs->ptid;
5075 child = ecs->ws.value.related_pid;
5076
5077 /* In non-stop mode, also resume the other branch. */
5078 if (!detach_fork && (non_stop
5079 || (sched_multi && target_is_non_stop_p ())))
5080 {
5081 if (follow_child)
5082 switch_to_thread (parent);
5083 else
5084 switch_to_thread (child);
5085
5086 ecs->event_thread = inferior_thread ();
5087 ecs->ptid = inferior_ptid;
5088 keep_going (ecs);
5089 }
5090
5091 if (follow_child)
5092 switch_to_thread (child);
5093 else
5094 switch_to_thread (parent);
5095
5096 ecs->event_thread = inferior_thread ();
5097 ecs->ptid = inferior_ptid;
5098
5099 if (should_resume)
5100 keep_going (ecs);
5101 else
5102 stop_waiting (ecs);
5103 return;
5104 }
5105 process_event_stop_test (ecs);
5106 return;
5107
5108 case TARGET_WAITKIND_VFORK_DONE:
5109 /* Done with the shared memory region. Re-insert breakpoints in
5110 the parent, and keep going. */
5111
5112 if (debug_infrun)
5113 fprintf_unfiltered (gdb_stdlog,
5114 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5115
5116 if (!ptid_equal (ecs->ptid, inferior_ptid))
5117 context_switch (ecs->ptid);
5118
5119 current_inferior ()->waiting_for_vfork_done = 0;
5120 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5121 /* This also takes care of reinserting breakpoints in the
5122 previously locked inferior. */
5123 keep_going (ecs);
5124 return;
5125
5126 case TARGET_WAITKIND_EXECD:
5127 if (debug_infrun)
5128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5129
5130 if (!ptid_equal (ecs->ptid, inferior_ptid))
5131 context_switch (ecs->ptid);
5132
5133 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5134
5135 /* Do whatever is necessary to the parent branch of the vfork. */
5136 handle_vfork_child_exec_or_exit (1);
5137
5138 /* This causes the eventpoints and symbol table to be reset.
5139 Must do this now, before trying to determine whether to
5140 stop. */
5141 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5142
5143 /* In follow_exec we may have deleted the original thread and
5144 created a new one. Make sure that the event thread is the
5145 execd thread for that case (this is a nop otherwise). */
5146 ecs->event_thread = inferior_thread ();
5147
5148 ecs->event_thread->control.stop_bpstat
5149 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5150 stop_pc, ecs->ptid, &ecs->ws);
5151
5152 /* Note that this may be referenced from inside
5153 bpstat_stop_status above, through inferior_has_execd. */
5154 xfree (ecs->ws.value.execd_pathname);
5155 ecs->ws.value.execd_pathname = NULL;
5156
5157 /* If no catchpoint triggered for this, then keep going. */
5158 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5159 {
5160 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5161 keep_going (ecs);
5162 return;
5163 }
5164 process_event_stop_test (ecs);
5165 return;
5166
5167 /* Be careful not to try to gather much state about a thread
5168 that's in a syscall. It's frequently a losing proposition. */
5169 case TARGET_WAITKIND_SYSCALL_ENTRY:
5170 if (debug_infrun)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5173 /* Getting the current syscall number. */
5174 if (handle_syscall_event (ecs) == 0)
5175 process_event_stop_test (ecs);
5176 return;
5177
5178 /* Before examining the threads further, step this thread to
5179 get it entirely out of the syscall. (We get notice of the
5180 event when the thread is just on the verge of exiting a
5181 syscall. Stepping one instruction seems to get it back
5182 into user code.) */
5183 case TARGET_WAITKIND_SYSCALL_RETURN:
5184 if (debug_infrun)
5185 fprintf_unfiltered (gdb_stdlog,
5186 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5187 if (handle_syscall_event (ecs) == 0)
5188 process_event_stop_test (ecs);
5189 return;
5190
5191 case TARGET_WAITKIND_STOPPED:
5192 if (debug_infrun)
5193 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5194 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5195 handle_signal_stop (ecs);
5196 return;
5197
5198 case TARGET_WAITKIND_NO_HISTORY:
5199 if (debug_infrun)
5200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5201 /* Reverse execution: target ran out of history info. */
5202
5203 /* Switch to the stopped thread. */
5204 if (!ptid_equal (ecs->ptid, inferior_ptid))
5205 context_switch (ecs->ptid);
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5208
5209 delete_just_stopped_threads_single_step_breakpoints ();
5210 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5211 observer_notify_no_history ();
5212 stop_waiting (ecs);
5213 return;
5214 }
5215 }
5216
5217 /* A wrapper around handle_inferior_event_1, which also makes sure
5218 that all temporary struct value objects that were created during
5219 the handling of the event get deleted at the end. */
5220
5221 static void
5222 handle_inferior_event (struct execution_control_state *ecs)
5223 {
5224 struct value *mark = value_mark ();
5225
5226 handle_inferior_event_1 (ecs);
5227 /* Purge all temporary values created during the event handling,
5228 as it could be a long time before we return to the command level
5229 where such values would otherwise be purged. */
5230 value_free_to_mark (mark);
5231 }
5232
5233 /* Restart threads back to what they were trying to do back when we
5234 paused them for an in-line step-over. The EVENT_THREAD thread is
5235 ignored. */
5236
5237 static void
5238 restart_threads (struct thread_info *event_thread)
5239 {
5240 struct thread_info *tp;
5241 struct thread_info *step_over = NULL;
5242
5243 /* In case the instruction just stepped spawned a new thread. */
5244 update_thread_list ();
5245
5246 ALL_NON_EXITED_THREADS (tp)
5247 {
5248 if (tp == event_thread)
5249 {
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: "
5253 "[%s] is event thread\n",
5254 target_pid_to_str (tp->ptid));
5255 continue;
5256 }
5257
5258 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5259 {
5260 if (debug_infrun)
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: restart threads: "
5263 "[%s] not meant to be running\n",
5264 target_pid_to_str (tp->ptid));
5265 continue;
5266 }
5267
5268 if (tp->resumed)
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: [%s] resumed\n",
5273 target_pid_to_str (tp->ptid));
5274 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5275 continue;
5276 }
5277
5278 if (thread_is_in_step_over_chain (tp))
5279 {
5280 if (debug_infrun)
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: restart threads: "
5283 "[%s] needs step-over\n",
5284 target_pid_to_str (tp->ptid));
5285 gdb_assert (!tp->resumed);
5286 continue;
5287 }
5288
5289
5290 if (tp->suspend.waitstatus_pending_p)
5291 {
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: restart threads: "
5295 "[%s] has pending status\n",
5296 target_pid_to_str (tp->ptid));
5297 tp->resumed = 1;
5298 continue;
5299 }
5300
5301 /* If some thread needs to start a step-over at this point, it
5302 should still be in the step-over queue, and thus skipped
5303 above. */
5304 if (thread_still_needs_step_over (tp))
5305 {
5306 internal_error (__FILE__, __LINE__,
5307 "thread [%s] needs a step-over, but not in "
5308 "step-over queue\n",
5309 target_pid_to_str (tp->ptid));
5310 }
5311
5312 if (currently_stepping (tp))
5313 {
5314 if (debug_infrun)
5315 fprintf_unfiltered (gdb_stdlog,
5316 "infrun: restart threads: [%s] was stepping\n",
5317 target_pid_to_str (tp->ptid));
5318 keep_going_stepped_thread (tp);
5319 }
5320 else
5321 {
5322 struct execution_control_state ecss;
5323 struct execution_control_state *ecs = &ecss;
5324
5325 if (debug_infrun)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "infrun: restart threads: [%s] continuing\n",
5328 target_pid_to_str (tp->ptid));
5329 reset_ecs (ecs, tp);
5330 switch_to_thread (tp->ptid);
5331 keep_going_pass_signal (ecs);
5332 }
5333 }
5334 }
5335
5336 /* Callback for iterate_over_threads. Find a resumed thread that has
5337 a pending waitstatus. */
5338
5339 static int
5340 resumed_thread_with_pending_status (struct thread_info *tp,
5341 void *arg)
5342 {
5343 return (tp->resumed
5344 && tp->suspend.waitstatus_pending_p);
5345 }
5346
5347 /* Called when we get an event that may finish an in-line or
5348 out-of-line (displaced stepping) step-over started previously.
5349 Return true if the event is processed and we should go back to the
5350 event loop; false if the caller should continue processing the
5351 event. */
5352
5353 static int
5354 finish_step_over (struct execution_control_state *ecs)
5355 {
5356 int had_step_over_info;
5357
5358 displaced_step_fixup (ecs->ptid,
5359 ecs->event_thread->suspend.stop_signal);
5360
5361 had_step_over_info = step_over_info_valid_p ();
5362
5363 if (had_step_over_info)
5364 {
5365 /* If we're stepping over a breakpoint with all threads locked,
5366 then only the thread that was stepped should be reporting
5367 back an event. */
5368 gdb_assert (ecs->event_thread->control.trap_expected);
5369
5370 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5371 clear_step_over_info ();
5372 }
5373
5374 if (!target_is_non_stop_p ())
5375 return 0;
5376
5377 /* Start a new step-over in another thread if there's one that
5378 needs it. */
5379 start_step_over ();
5380
5381 /* If we were stepping over a breakpoint before, and haven't started
5382 a new in-line step-over sequence, then restart all other threads
5383 (except the event thread). We can't do this in all-stop, as then
5384 e.g., we wouldn't be able to issue any other remote packet until
5385 these other threads stop. */
5386 if (had_step_over_info && !step_over_info_valid_p ())
5387 {
5388 struct thread_info *pending;
5389
5390 /* If we only have threads with pending statuses, the restart
5391 below won't restart any thread and so nothing re-inserts the
5392 breakpoint we just stepped over. But we need it inserted
5393 when we later process the pending events, otherwise if
5394 another thread has a pending event for this breakpoint too,
5395 we'd discard its event (because the breakpoint that
5396 originally caused the event was no longer inserted). */
5397 context_switch (ecs->ptid);
5398 insert_breakpoints ();
5399
5400 restart_threads (ecs->event_thread);
5401
5402 /* If we have events pending, go through handle_inferior_event
5403 again, picking up a pending event at random. This avoids
5404 thread starvation. */
5405
5406 /* But not if we just stepped over a watchpoint in order to let
5407 the instruction execute so we can evaluate its expression.
5408 The set of watchpoints that triggered is recorded in the
5409 breakpoint objects themselves (see bp->watchpoint_triggered).
5410 If we processed another event first, that other event could
5411 clobber this info. */
5412 if (ecs->event_thread->stepping_over_watchpoint)
5413 return 0;
5414
5415 pending = iterate_over_threads (resumed_thread_with_pending_status,
5416 NULL);
5417 if (pending != NULL)
5418 {
5419 struct thread_info *tp = ecs->event_thread;
5420 struct regcache *regcache;
5421
5422 if (debug_infrun)
5423 {
5424 fprintf_unfiltered (gdb_stdlog,
5425 "infrun: found resumed threads with "
5426 "pending events, saving status\n");
5427 }
5428
5429 gdb_assert (pending != tp);
5430
5431 /* Record the event thread's event for later. */
5432 save_waitstatus (tp, &ecs->ws);
5433 /* This was cleared early, by handle_inferior_event. Set it
5434 so this pending event is considered by
5435 do_target_wait. */
5436 tp->resumed = 1;
5437
5438 gdb_assert (!tp->executing);
5439
5440 regcache = get_thread_regcache (tp->ptid);
5441 tp->suspend.stop_pc = regcache_read_pc (regcache);
5442
5443 if (debug_infrun)
5444 {
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: saved stop_pc=%s for %s "
5447 "(currently_stepping=%d)\n",
5448 paddress (target_gdbarch (),
5449 tp->suspend.stop_pc),
5450 target_pid_to_str (tp->ptid),
5451 currently_stepping (tp));
5452 }
5453
5454 /* This in-line step-over finished; clear this so we won't
5455 start a new one. This is what handle_signal_stop would
5456 do, if we returned false. */
5457 tp->stepping_over_breakpoint = 0;
5458
5459 /* Wake up the event loop again. */
5460 mark_async_event_handler (infrun_async_inferior_event_token);
5461
5462 prepare_to_wait (ecs);
5463 return 1;
5464 }
5465 }
5466
5467 return 0;
5468 }
5469
5470 /* Come here when the program has stopped with a signal. */
5471
5472 static void
5473 handle_signal_stop (struct execution_control_state *ecs)
5474 {
5475 struct frame_info *frame;
5476 struct gdbarch *gdbarch;
5477 int stopped_by_watchpoint;
5478 enum stop_kind stop_soon;
5479 int random_signal;
5480
5481 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5482
5483 /* Do we need to clean up the state of a thread that has
5484 completed a displaced single-step? (Doing so usually affects
5485 the PC, so do it here, before we set stop_pc.) */
5486 if (finish_step_over (ecs))
5487 return;
5488
5489 /* If we either finished a single-step or hit a breakpoint, but
5490 the user wanted this thread to be stopped, pretend we got a
5491 SIG0 (generic unsignaled stop). */
5492 if (ecs->event_thread->stop_requested
5493 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5494 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5495
5496 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5497
5498 if (debug_infrun)
5499 {
5500 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5501 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5502 struct cleanup *old_chain = save_inferior_ptid ();
5503
5504 inferior_ptid = ecs->ptid;
5505
5506 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5507 paddress (gdbarch, stop_pc));
5508 if (target_stopped_by_watchpoint ())
5509 {
5510 CORE_ADDR addr;
5511
5512 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5513
5514 if (target_stopped_data_address (&current_target, &addr))
5515 fprintf_unfiltered (gdb_stdlog,
5516 "infrun: stopped data address = %s\n",
5517 paddress (gdbarch, addr));
5518 else
5519 fprintf_unfiltered (gdb_stdlog,
5520 "infrun: (no data address available)\n");
5521 }
5522
5523 do_cleanups (old_chain);
5524 }
5525
5526 /* This is originated from start_remote(), start_inferior() and
5527 shared libraries hook functions. */
5528 stop_soon = get_inferior_stop_soon (ecs->ptid);
5529 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5530 {
5531 if (!ptid_equal (ecs->ptid, inferior_ptid))
5532 context_switch (ecs->ptid);
5533 if (debug_infrun)
5534 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5535 stop_print_frame = 1;
5536 stop_waiting (ecs);
5537 return;
5538 }
5539
5540 /* This originates from attach_command(). We need to overwrite
5541 the stop_signal here, because some kernels don't ignore a
5542 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5543 See more comments in inferior.h. On the other hand, if we
5544 get a non-SIGSTOP, report it to the user - assume the backend
5545 will handle the SIGSTOP if it should show up later.
5546
5547 Also consider that the attach is complete when we see a
5548 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5549 target extended-remote report it instead of a SIGSTOP
5550 (e.g. gdbserver). We already rely on SIGTRAP being our
5551 signal, so this is no exception.
5552
5553 Also consider that the attach is complete when we see a
5554 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5555 the target to stop all threads of the inferior, in case the
5556 low level attach operation doesn't stop them implicitly. If
5557 they weren't stopped implicitly, then the stub will report a
5558 GDB_SIGNAL_0, meaning: stopped for no particular reason
5559 other than GDB's request. */
5560 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5561 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5562 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5563 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5564 {
5565 stop_print_frame = 1;
5566 stop_waiting (ecs);
5567 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5568 return;
5569 }
5570
5571 /* See if something interesting happened to the non-current thread. If
5572 so, then switch to that thread. */
5573 if (!ptid_equal (ecs->ptid, inferior_ptid))
5574 {
5575 if (debug_infrun)
5576 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5577
5578 context_switch (ecs->ptid);
5579
5580 if (deprecated_context_hook)
5581 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5582 }
5583
5584 /* At this point, get hold of the now-current thread's frame. */
5585 frame = get_current_frame ();
5586 gdbarch = get_frame_arch (frame);
5587
5588 /* Pull the single step breakpoints out of the target. */
5589 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5590 {
5591 struct regcache *regcache;
5592 struct address_space *aspace;
5593 CORE_ADDR pc;
5594
5595 regcache = get_thread_regcache (ecs->ptid);
5596 aspace = get_regcache_aspace (regcache);
5597 pc = regcache_read_pc (regcache);
5598
5599 /* However, before doing so, if this single-step breakpoint was
5600 actually for another thread, set this thread up for moving
5601 past it. */
5602 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5603 aspace, pc))
5604 {
5605 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5606 {
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: [%s] hit another thread's "
5611 "single-step breakpoint\n",
5612 target_pid_to_str (ecs->ptid));
5613 }
5614 ecs->hit_singlestep_breakpoint = 1;
5615 }
5616 }
5617 else
5618 {
5619 if (debug_infrun)
5620 {
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: [%s] hit its "
5623 "single-step breakpoint\n",
5624 target_pid_to_str (ecs->ptid));
5625 }
5626 }
5627 }
5628 delete_just_stopped_threads_single_step_breakpoints ();
5629
5630 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5631 && ecs->event_thread->control.trap_expected
5632 && ecs->event_thread->stepping_over_watchpoint)
5633 stopped_by_watchpoint = 0;
5634 else
5635 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5636
5637 /* If necessary, step over this watchpoint. We'll be back to display
5638 it in a moment. */
5639 if (stopped_by_watchpoint
5640 && (target_have_steppable_watchpoint
5641 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5642 {
5643 /* At this point, we are stopped at an instruction which has
5644 attempted to write to a piece of memory under control of
5645 a watchpoint. The instruction hasn't actually executed
5646 yet. If we were to evaluate the watchpoint expression
5647 now, we would get the old value, and therefore no change
5648 would seem to have occurred.
5649
5650 In order to make watchpoints work `right', we really need
5651 to complete the memory write, and then evaluate the
5652 watchpoint expression. We do this by single-stepping the
5653 target.
5654
5655 It may not be necessary to disable the watchpoint to step over
5656 it. For example, the PA can (with some kernel cooperation)
5657 single step over a watchpoint without disabling the watchpoint.
5658
5659 It is far more common to need to disable a watchpoint to step
5660 the inferior over it. If we have non-steppable watchpoints,
5661 we must disable the current watchpoint; it's simplest to
5662 disable all watchpoints.
5663
5664 Any breakpoint at PC must also be stepped over -- if there's
5665 one, it will have already triggered before the watchpoint
5666 triggered, and we either already reported it to the user, or
5667 it didn't cause a stop and we called keep_going. In either
5668 case, if there was a breakpoint at PC, we must be trying to
5669 step past it. */
5670 ecs->event_thread->stepping_over_watchpoint = 1;
5671 keep_going (ecs);
5672 return;
5673 }
5674
5675 ecs->event_thread->stepping_over_breakpoint = 0;
5676 ecs->event_thread->stepping_over_watchpoint = 0;
5677 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5678 ecs->event_thread->control.stop_step = 0;
5679 stop_print_frame = 1;
5680 stopped_by_random_signal = 0;
5681
5682 /* Hide inlined functions starting here, unless we just performed stepi or
5683 nexti. After stepi and nexti, always show the innermost frame (not any
5684 inline function call sites). */
5685 if (ecs->event_thread->control.step_range_end != 1)
5686 {
5687 struct address_space *aspace =
5688 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5689
5690 /* skip_inline_frames is expensive, so we avoid it if we can
5691 determine that the address is one where functions cannot have
5692 been inlined. This improves performance with inferiors that
5693 load a lot of shared libraries, because the solib event
5694 breakpoint is defined as the address of a function (i.e. not
5695 inline). Note that we have to check the previous PC as well
5696 as the current one to catch cases when we have just
5697 single-stepped off a breakpoint prior to reinstating it.
5698 Note that we're assuming that the code we single-step to is
5699 not inline, but that's not definitive: there's nothing
5700 preventing the event breakpoint function from containing
5701 inlined code, and the single-step ending up there. If the
5702 user had set a breakpoint on that inlined code, the missing
5703 skip_inline_frames call would break things. Fortunately
5704 that's an extremely unlikely scenario. */
5705 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5706 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5707 && ecs->event_thread->control.trap_expected
5708 && pc_at_non_inline_function (aspace,
5709 ecs->event_thread->prev_pc,
5710 &ecs->ws)))
5711 {
5712 skip_inline_frames (ecs->ptid);
5713
5714 /* Re-fetch current thread's frame in case that invalidated
5715 the frame cache. */
5716 frame = get_current_frame ();
5717 gdbarch = get_frame_arch (frame);
5718 }
5719 }
5720
5721 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5722 && ecs->event_thread->control.trap_expected
5723 && gdbarch_single_step_through_delay_p (gdbarch)
5724 && currently_stepping (ecs->event_thread))
5725 {
5726 /* We're trying to step off a breakpoint. Turns out that we're
5727 also on an instruction that needs to be stepped multiple
5728 times before it's been fully executing. E.g., architectures
5729 with a delay slot. It needs to be stepped twice, once for
5730 the instruction and once for the delay slot. */
5731 int step_through_delay
5732 = gdbarch_single_step_through_delay (gdbarch, frame);
5733
5734 if (debug_infrun && step_through_delay)
5735 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5736 if (ecs->event_thread->control.step_range_end == 0
5737 && step_through_delay)
5738 {
5739 /* The user issued a continue when stopped at a breakpoint.
5740 Set up for another trap and get out of here. */
5741 ecs->event_thread->stepping_over_breakpoint = 1;
5742 keep_going (ecs);
5743 return;
5744 }
5745 else if (step_through_delay)
5746 {
5747 /* The user issued a step when stopped at a breakpoint.
5748 Maybe we should stop, maybe we should not - the delay
5749 slot *might* correspond to a line of source. In any
5750 case, don't decide that here, just set
5751 ecs->stepping_over_breakpoint, making sure we
5752 single-step again before breakpoints are re-inserted. */
5753 ecs->event_thread->stepping_over_breakpoint = 1;
5754 }
5755 }
5756
5757 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5758 handles this event. */
5759 ecs->event_thread->control.stop_bpstat
5760 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5761 stop_pc, ecs->ptid, &ecs->ws);
5762
5763 /* Following in case break condition called a
5764 function. */
5765 stop_print_frame = 1;
5766
5767 /* This is where we handle "moribund" watchpoints. Unlike
5768 software breakpoints traps, hardware watchpoint traps are
5769 always distinguishable from random traps. If no high-level
5770 watchpoint is associated with the reported stop data address
5771 anymore, then the bpstat does not explain the signal ---
5772 simply make sure to ignore it if `stopped_by_watchpoint' is
5773 set. */
5774
5775 if (debug_infrun
5776 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5777 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5778 GDB_SIGNAL_TRAP)
5779 && stopped_by_watchpoint)
5780 fprintf_unfiltered (gdb_stdlog,
5781 "infrun: no user watchpoint explains "
5782 "watchpoint SIGTRAP, ignoring\n");
5783
5784 /* NOTE: cagney/2003-03-29: These checks for a random signal
5785 at one stage in the past included checks for an inferior
5786 function call's call dummy's return breakpoint. The original
5787 comment, that went with the test, read:
5788
5789 ``End of a stack dummy. Some systems (e.g. Sony news) give
5790 another signal besides SIGTRAP, so check here as well as
5791 above.''
5792
5793 If someone ever tries to get call dummys on a
5794 non-executable stack to work (where the target would stop
5795 with something like a SIGSEGV), then those tests might need
5796 to be re-instated. Given, however, that the tests were only
5797 enabled when momentary breakpoints were not being used, I
5798 suspect that it won't be the case.
5799
5800 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5801 be necessary for call dummies on a non-executable stack on
5802 SPARC. */
5803
5804 /* See if the breakpoints module can explain the signal. */
5805 random_signal
5806 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5807 ecs->event_thread->suspend.stop_signal);
5808
5809 /* Maybe this was a trap for a software breakpoint that has since
5810 been removed. */
5811 if (random_signal && target_stopped_by_sw_breakpoint ())
5812 {
5813 if (program_breakpoint_here_p (gdbarch, stop_pc))
5814 {
5815 struct regcache *regcache;
5816 int decr_pc;
5817
5818 /* Re-adjust PC to what the program would see if GDB was not
5819 debugging it. */
5820 regcache = get_thread_regcache (ecs->event_thread->ptid);
5821 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5822 if (decr_pc != 0)
5823 {
5824 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5825
5826 if (record_full_is_used ())
5827 record_full_gdb_operation_disable_set ();
5828
5829 regcache_write_pc (regcache, stop_pc + decr_pc);
5830
5831 do_cleanups (old_cleanups);
5832 }
5833 }
5834 else
5835 {
5836 /* A delayed software breakpoint event. Ignore the trap. */
5837 if (debug_infrun)
5838 fprintf_unfiltered (gdb_stdlog,
5839 "infrun: delayed software breakpoint "
5840 "trap, ignoring\n");
5841 random_signal = 0;
5842 }
5843 }
5844
5845 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5846 has since been removed. */
5847 if (random_signal && target_stopped_by_hw_breakpoint ())
5848 {
5849 /* A delayed hardware breakpoint event. Ignore the trap. */
5850 if (debug_infrun)
5851 fprintf_unfiltered (gdb_stdlog,
5852 "infrun: delayed hardware breakpoint/watchpoint "
5853 "trap, ignoring\n");
5854 random_signal = 0;
5855 }
5856
5857 /* If not, perhaps stepping/nexting can. */
5858 if (random_signal)
5859 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5860 && currently_stepping (ecs->event_thread));
5861
5862 /* Perhaps the thread hit a single-step breakpoint of _another_
5863 thread. Single-step breakpoints are transparent to the
5864 breakpoints module. */
5865 if (random_signal)
5866 random_signal = !ecs->hit_singlestep_breakpoint;
5867
5868 /* No? Perhaps we got a moribund watchpoint. */
5869 if (random_signal)
5870 random_signal = !stopped_by_watchpoint;
5871
5872 /* For the program's own signals, act according to
5873 the signal handling tables. */
5874
5875 if (random_signal)
5876 {
5877 /* Signal not for debugging purposes. */
5878 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5879 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5880
5881 if (debug_infrun)
5882 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5883 gdb_signal_to_symbol_string (stop_signal));
5884
5885 stopped_by_random_signal = 1;
5886
5887 /* Always stop on signals if we're either just gaining control
5888 of the program, or the user explicitly requested this thread
5889 to remain stopped. */
5890 if (stop_soon != NO_STOP_QUIETLY
5891 || ecs->event_thread->stop_requested
5892 || (!inf->detaching
5893 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5894 {
5895 stop_waiting (ecs);
5896 return;
5897 }
5898
5899 /* Notify observers the signal has "handle print" set. Note we
5900 returned early above if stopping; normal_stop handles the
5901 printing in that case. */
5902 if (signal_print[ecs->event_thread->suspend.stop_signal])
5903 {
5904 /* The signal table tells us to print about this signal. */
5905 target_terminal_ours_for_output ();
5906 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5907 target_terminal_inferior ();
5908 }
5909
5910 /* Clear the signal if it should not be passed. */
5911 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5912 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5913
5914 if (ecs->event_thread->prev_pc == stop_pc
5915 && ecs->event_thread->control.trap_expected
5916 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5917 {
5918 int was_in_line;
5919
5920 /* We were just starting a new sequence, attempting to
5921 single-step off of a breakpoint and expecting a SIGTRAP.
5922 Instead this signal arrives. This signal will take us out
5923 of the stepping range so GDB needs to remember to, when
5924 the signal handler returns, resume stepping off that
5925 breakpoint. */
5926 /* To simplify things, "continue" is forced to use the same
5927 code paths as single-step - set a breakpoint at the
5928 signal return address and then, once hit, step off that
5929 breakpoint. */
5930 if (debug_infrun)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: signal arrived while stepping over "
5933 "breakpoint\n");
5934
5935 was_in_line = step_over_info_valid_p ();
5936 clear_step_over_info ();
5937 insert_hp_step_resume_breakpoint_at_frame (frame);
5938 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5939 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5940 ecs->event_thread->control.trap_expected = 0;
5941
5942 if (target_is_non_stop_p ())
5943 {
5944 /* Either "set non-stop" is "on", or the target is
5945 always in non-stop mode. In this case, we have a bit
5946 more work to do. Resume the current thread, and if
5947 we had paused all threads, restart them while the
5948 signal handler runs. */
5949 keep_going (ecs);
5950
5951 if (was_in_line)
5952 {
5953 restart_threads (ecs->event_thread);
5954 }
5955 else if (debug_infrun)
5956 {
5957 fprintf_unfiltered (gdb_stdlog,
5958 "infrun: no need to restart threads\n");
5959 }
5960 return;
5961 }
5962
5963 /* If we were nexting/stepping some other thread, switch to
5964 it, so that we don't continue it, losing control. */
5965 if (!switch_back_to_stepped_thread (ecs))
5966 keep_going (ecs);
5967 return;
5968 }
5969
5970 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5971 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5972 || ecs->event_thread->control.step_range_end == 1)
5973 && frame_id_eq (get_stack_frame_id (frame),
5974 ecs->event_thread->control.step_stack_frame_id)
5975 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5976 {
5977 /* The inferior is about to take a signal that will take it
5978 out of the single step range. Set a breakpoint at the
5979 current PC (which is presumably where the signal handler
5980 will eventually return) and then allow the inferior to
5981 run free.
5982
5983 Note that this is only needed for a signal delivered
5984 while in the single-step range. Nested signals aren't a
5985 problem as they eventually all return. */
5986 if (debug_infrun)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: signal may take us out of "
5989 "single-step range\n");
5990
5991 clear_step_over_info ();
5992 insert_hp_step_resume_breakpoint_at_frame (frame);
5993 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5994 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5995 ecs->event_thread->control.trap_expected = 0;
5996 keep_going (ecs);
5997 return;
5998 }
5999
6000 /* Note: step_resume_breakpoint may be non-NULL. This occures
6001 when either there's a nested signal, or when there's a
6002 pending signal enabled just as the signal handler returns
6003 (leaving the inferior at the step-resume-breakpoint without
6004 actually executing it). Either way continue until the
6005 breakpoint is really hit. */
6006
6007 if (!switch_back_to_stepped_thread (ecs))
6008 {
6009 if (debug_infrun)
6010 fprintf_unfiltered (gdb_stdlog,
6011 "infrun: random signal, keep going\n");
6012
6013 keep_going (ecs);
6014 }
6015 return;
6016 }
6017
6018 process_event_stop_test (ecs);
6019 }
6020
6021 /* Come here when we've got some debug event / signal we can explain
6022 (IOW, not a random signal), and test whether it should cause a
6023 stop, or whether we should resume the inferior (transparently).
6024 E.g., could be a breakpoint whose condition evaluates false; we
6025 could be still stepping within the line; etc. */
6026
6027 static void
6028 process_event_stop_test (struct execution_control_state *ecs)
6029 {
6030 struct symtab_and_line stop_pc_sal;
6031 struct frame_info *frame;
6032 struct gdbarch *gdbarch;
6033 CORE_ADDR jmp_buf_pc;
6034 struct bpstat_what what;
6035
6036 /* Handle cases caused by hitting a breakpoint. */
6037
6038 frame = get_current_frame ();
6039 gdbarch = get_frame_arch (frame);
6040
6041 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6042
6043 if (what.call_dummy)
6044 {
6045 stop_stack_dummy = what.call_dummy;
6046 }
6047
6048 /* A few breakpoint types have callbacks associated (e.g.,
6049 bp_jit_event). Run them now. */
6050 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6051
6052 /* If we hit an internal event that triggers symbol changes, the
6053 current frame will be invalidated within bpstat_what (e.g., if we
6054 hit an internal solib event). Re-fetch it. */
6055 frame = get_current_frame ();
6056 gdbarch = get_frame_arch (frame);
6057
6058 switch (what.main_action)
6059 {
6060 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6061 /* If we hit the breakpoint at longjmp while stepping, we
6062 install a momentary breakpoint at the target of the
6063 jmp_buf. */
6064
6065 if (debug_infrun)
6066 fprintf_unfiltered (gdb_stdlog,
6067 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6068
6069 ecs->event_thread->stepping_over_breakpoint = 1;
6070
6071 if (what.is_longjmp)
6072 {
6073 struct value *arg_value;
6074
6075 /* If we set the longjmp breakpoint via a SystemTap probe,
6076 then use it to extract the arguments. The destination PC
6077 is the third argument to the probe. */
6078 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6079 if (arg_value)
6080 {
6081 jmp_buf_pc = value_as_address (arg_value);
6082 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6083 }
6084 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6085 || !gdbarch_get_longjmp_target (gdbarch,
6086 frame, &jmp_buf_pc))
6087 {
6088 if (debug_infrun)
6089 fprintf_unfiltered (gdb_stdlog,
6090 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6091 "(!gdbarch_get_longjmp_target)\n");
6092 keep_going (ecs);
6093 return;
6094 }
6095
6096 /* Insert a breakpoint at resume address. */
6097 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6098 }
6099 else
6100 check_exception_resume (ecs, frame);
6101 keep_going (ecs);
6102 return;
6103
6104 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6105 {
6106 struct frame_info *init_frame;
6107
6108 /* There are several cases to consider.
6109
6110 1. The initiating frame no longer exists. In this case we
6111 must stop, because the exception or longjmp has gone too
6112 far.
6113
6114 2. The initiating frame exists, and is the same as the
6115 current frame. We stop, because the exception or longjmp
6116 has been caught.
6117
6118 3. The initiating frame exists and is different from the
6119 current frame. This means the exception or longjmp has
6120 been caught beneath the initiating frame, so keep going.
6121
6122 4. longjmp breakpoint has been placed just to protect
6123 against stale dummy frames and user is not interested in
6124 stopping around longjmps. */
6125
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6129
6130 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6131 != NULL);
6132 delete_exception_resume_breakpoint (ecs->event_thread);
6133
6134 if (what.is_longjmp)
6135 {
6136 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6137
6138 if (!frame_id_p (ecs->event_thread->initiating_frame))
6139 {
6140 /* Case 4. */
6141 keep_going (ecs);
6142 return;
6143 }
6144 }
6145
6146 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6147
6148 if (init_frame)
6149 {
6150 struct frame_id current_id
6151 = get_frame_id (get_current_frame ());
6152 if (frame_id_eq (current_id,
6153 ecs->event_thread->initiating_frame))
6154 {
6155 /* Case 2. Fall through. */
6156 }
6157 else
6158 {
6159 /* Case 3. */
6160 keep_going (ecs);
6161 return;
6162 }
6163 }
6164
6165 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6166 exists. */
6167 delete_step_resume_breakpoint (ecs->event_thread);
6168
6169 end_stepping_range (ecs);
6170 }
6171 return;
6172
6173 case BPSTAT_WHAT_SINGLE:
6174 if (debug_infrun)
6175 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 /* Still need to check other stuff, at least the case where we
6178 are stepping and step out of the right range. */
6179 break;
6180
6181 case BPSTAT_WHAT_STEP_RESUME:
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6184
6185 delete_step_resume_breakpoint (ecs->event_thread);
6186 if (ecs->event_thread->control.proceed_to_finish
6187 && execution_direction == EXEC_REVERSE)
6188 {
6189 struct thread_info *tp = ecs->event_thread;
6190
6191 /* We are finishing a function in reverse, and just hit the
6192 step-resume breakpoint at the start address of the
6193 function, and we're almost there -- just need to back up
6194 by one more single-step, which should take us back to the
6195 function call. */
6196 tp->control.step_range_start = tp->control.step_range_end = 1;
6197 keep_going (ecs);
6198 return;
6199 }
6200 fill_in_stop_func (gdbarch, ecs);
6201 if (stop_pc == ecs->stop_func_start
6202 && execution_direction == EXEC_REVERSE)
6203 {
6204 /* We are stepping over a function call in reverse, and just
6205 hit the step-resume breakpoint at the start address of
6206 the function. Go back to single-stepping, which should
6207 take us back to the function call. */
6208 ecs->event_thread->stepping_over_breakpoint = 1;
6209 keep_going (ecs);
6210 return;
6211 }
6212 break;
6213
6214 case BPSTAT_WHAT_STOP_NOISY:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6217 stop_print_frame = 1;
6218
6219 /* Assume the thread stopped for a breapoint. We'll still check
6220 whether a/the breakpoint is there when the thread is next
6221 resumed. */
6222 ecs->event_thread->stepping_over_breakpoint = 1;
6223
6224 stop_waiting (ecs);
6225 return;
6226
6227 case BPSTAT_WHAT_STOP_SILENT:
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6230 stop_print_frame = 0;
6231
6232 /* Assume the thread stopped for a breapoint. We'll still check
6233 whether a/the breakpoint is there when the thread is next
6234 resumed. */
6235 ecs->event_thread->stepping_over_breakpoint = 1;
6236 stop_waiting (ecs);
6237 return;
6238
6239 case BPSTAT_WHAT_HP_STEP_RESUME:
6240 if (debug_infrun)
6241 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6242
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 if (ecs->event_thread->step_after_step_resume_breakpoint)
6245 {
6246 /* Back when the step-resume breakpoint was inserted, we
6247 were trying to single-step off a breakpoint. Go back to
6248 doing that. */
6249 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6250 ecs->event_thread->stepping_over_breakpoint = 1;
6251 keep_going (ecs);
6252 return;
6253 }
6254 break;
6255
6256 case BPSTAT_WHAT_KEEP_CHECKING:
6257 break;
6258 }
6259
6260 /* If we stepped a permanent breakpoint and we had a high priority
6261 step-resume breakpoint for the address we stepped, but we didn't
6262 hit it, then we must have stepped into the signal handler. The
6263 step-resume was only necessary to catch the case of _not_
6264 stepping into the handler, so delete it, and fall through to
6265 checking whether the step finished. */
6266 if (ecs->event_thread->stepped_breakpoint)
6267 {
6268 struct breakpoint *sr_bp
6269 = ecs->event_thread->control.step_resume_breakpoint;
6270
6271 if (sr_bp != NULL
6272 && sr_bp->loc->permanent
6273 && sr_bp->type == bp_hp_step_resume
6274 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6275 {
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: stepped permanent breakpoint, stopped in "
6279 "handler\n");
6280 delete_step_resume_breakpoint (ecs->event_thread);
6281 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6282 }
6283 }
6284
6285 /* We come here if we hit a breakpoint but should not stop for it.
6286 Possibly we also were stepping and should stop for that. So fall
6287 through and test for stepping. But, if not stepping, do not
6288 stop. */
6289
6290 /* In all-stop mode, if we're currently stepping but have stopped in
6291 some other thread, we need to switch back to the stepped thread. */
6292 if (switch_back_to_stepped_thread (ecs))
6293 return;
6294
6295 if (ecs->event_thread->control.step_resume_breakpoint)
6296 {
6297 if (debug_infrun)
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: step-resume breakpoint is inserted\n");
6300
6301 /* Having a step-resume breakpoint overrides anything
6302 else having to do with stepping commands until
6303 that breakpoint is reached. */
6304 keep_going (ecs);
6305 return;
6306 }
6307
6308 if (ecs->event_thread->control.step_range_end == 0)
6309 {
6310 if (debug_infrun)
6311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6312 /* Likewise if we aren't even stepping. */
6313 keep_going (ecs);
6314 return;
6315 }
6316
6317 /* Re-fetch current thread's frame in case the code above caused
6318 the frame cache to be re-initialized, making our FRAME variable
6319 a dangling pointer. */
6320 frame = get_current_frame ();
6321 gdbarch = get_frame_arch (frame);
6322 fill_in_stop_func (gdbarch, ecs);
6323
6324 /* If stepping through a line, keep going if still within it.
6325
6326 Note that step_range_end is the address of the first instruction
6327 beyond the step range, and NOT the address of the last instruction
6328 within it!
6329
6330 Note also that during reverse execution, we may be stepping
6331 through a function epilogue and therefore must detect when
6332 the current-frame changes in the middle of a line. */
6333
6334 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6335 && (execution_direction != EXEC_REVERSE
6336 || frame_id_eq (get_frame_id (frame),
6337 ecs->event_thread->control.step_frame_id)))
6338 {
6339 if (debug_infrun)
6340 fprintf_unfiltered
6341 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6342 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6343 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6344
6345 /* Tentatively re-enable range stepping; `resume' disables it if
6346 necessary (e.g., if we're stepping over a breakpoint or we
6347 have software watchpoints). */
6348 ecs->event_thread->control.may_range_step = 1;
6349
6350 /* When stepping backward, stop at beginning of line range
6351 (unless it's the function entry point, in which case
6352 keep going back to the call point). */
6353 if (stop_pc == ecs->event_thread->control.step_range_start
6354 && stop_pc != ecs->stop_func_start
6355 && execution_direction == EXEC_REVERSE)
6356 end_stepping_range (ecs);
6357 else
6358 keep_going (ecs);
6359
6360 return;
6361 }
6362
6363 /* We stepped out of the stepping range. */
6364
6365 /* If we are stepping at the source level and entered the runtime
6366 loader dynamic symbol resolution code...
6367
6368 EXEC_FORWARD: we keep on single stepping until we exit the run
6369 time loader code and reach the callee's address.
6370
6371 EXEC_REVERSE: we've already executed the callee (backward), and
6372 the runtime loader code is handled just like any other
6373 undebuggable function call. Now we need only keep stepping
6374 backward through the trampoline code, and that's handled further
6375 down, so there is nothing for us to do here. */
6376
6377 if (execution_direction != EXEC_REVERSE
6378 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6379 && in_solib_dynsym_resolve_code (stop_pc))
6380 {
6381 CORE_ADDR pc_after_resolver =
6382 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6383
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog,
6386 "infrun: stepped into dynsym resolve code\n");
6387
6388 if (pc_after_resolver)
6389 {
6390 /* Set up a step-resume breakpoint at the address
6391 indicated by SKIP_SOLIB_RESOLVER. */
6392 struct symtab_and_line sr_sal;
6393
6394 init_sal (&sr_sal);
6395 sr_sal.pc = pc_after_resolver;
6396 sr_sal.pspace = get_frame_program_space (frame);
6397
6398 insert_step_resume_breakpoint_at_sal (gdbarch,
6399 sr_sal, null_frame_id);
6400 }
6401
6402 keep_going (ecs);
6403 return;
6404 }
6405
6406 if (ecs->event_thread->control.step_range_end != 1
6407 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6408 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6409 && get_frame_type (frame) == SIGTRAMP_FRAME)
6410 {
6411 if (debug_infrun)
6412 fprintf_unfiltered (gdb_stdlog,
6413 "infrun: stepped into signal trampoline\n");
6414 /* The inferior, while doing a "step" or "next", has ended up in
6415 a signal trampoline (either by a signal being delivered or by
6416 the signal handler returning). Just single-step until the
6417 inferior leaves the trampoline (either by calling the handler
6418 or returning). */
6419 keep_going (ecs);
6420 return;
6421 }
6422
6423 /* If we're in the return path from a shared library trampoline,
6424 we want to proceed through the trampoline when stepping. */
6425 /* macro/2012-04-25: This needs to come before the subroutine
6426 call check below as on some targets return trampolines look
6427 like subroutine calls (MIPS16 return thunks). */
6428 if (gdbarch_in_solib_return_trampoline (gdbarch,
6429 stop_pc, ecs->stop_func_name)
6430 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6431 {
6432 /* Determine where this trampoline returns. */
6433 CORE_ADDR real_stop_pc;
6434
6435 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6436
6437 if (debug_infrun)
6438 fprintf_unfiltered (gdb_stdlog,
6439 "infrun: stepped into solib return tramp\n");
6440
6441 /* Only proceed through if we know where it's going. */
6442 if (real_stop_pc)
6443 {
6444 /* And put the step-breakpoint there and go until there. */
6445 struct symtab_and_line sr_sal;
6446
6447 init_sal (&sr_sal); /* initialize to zeroes */
6448 sr_sal.pc = real_stop_pc;
6449 sr_sal.section = find_pc_overlay (sr_sal.pc);
6450 sr_sal.pspace = get_frame_program_space (frame);
6451
6452 /* Do not specify what the fp should be when we stop since
6453 on some machines the prologue is where the new fp value
6454 is established. */
6455 insert_step_resume_breakpoint_at_sal (gdbarch,
6456 sr_sal, null_frame_id);
6457
6458 /* Restart without fiddling with the step ranges or
6459 other state. */
6460 keep_going (ecs);
6461 return;
6462 }
6463 }
6464
6465 /* Check for subroutine calls. The check for the current frame
6466 equalling the step ID is not necessary - the check of the
6467 previous frame's ID is sufficient - but it is a common case and
6468 cheaper than checking the previous frame's ID.
6469
6470 NOTE: frame_id_eq will never report two invalid frame IDs as
6471 being equal, so to get into this block, both the current and
6472 previous frame must have valid frame IDs. */
6473 /* The outer_frame_id check is a heuristic to detect stepping
6474 through startup code. If we step over an instruction which
6475 sets the stack pointer from an invalid value to a valid value,
6476 we may detect that as a subroutine call from the mythical
6477 "outermost" function. This could be fixed by marking
6478 outermost frames as !stack_p,code_p,special_p. Then the
6479 initial outermost frame, before sp was valid, would
6480 have code_addr == &_start. See the comment in frame_id_eq
6481 for more. */
6482 if (!frame_id_eq (get_stack_frame_id (frame),
6483 ecs->event_thread->control.step_stack_frame_id)
6484 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6485 ecs->event_thread->control.step_stack_frame_id)
6486 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6487 outer_frame_id)
6488 || (ecs->event_thread->control.step_start_function
6489 != find_pc_function (stop_pc)))))
6490 {
6491 CORE_ADDR real_stop_pc;
6492
6493 if (debug_infrun)
6494 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6495
6496 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6497 {
6498 /* I presume that step_over_calls is only 0 when we're
6499 supposed to be stepping at the assembly language level
6500 ("stepi"). Just stop. */
6501 /* And this works the same backward as frontward. MVS */
6502 end_stepping_range (ecs);
6503 return;
6504 }
6505
6506 /* Reverse stepping through solib trampolines. */
6507
6508 if (execution_direction == EXEC_REVERSE
6509 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6510 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6511 || (ecs->stop_func_start == 0
6512 && in_solib_dynsym_resolve_code (stop_pc))))
6513 {
6514 /* Any solib trampoline code can be handled in reverse
6515 by simply continuing to single-step. We have already
6516 executed the solib function (backwards), and a few
6517 steps will take us back through the trampoline to the
6518 caller. */
6519 keep_going (ecs);
6520 return;
6521 }
6522
6523 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6524 {
6525 /* We're doing a "next".
6526
6527 Normal (forward) execution: set a breakpoint at the
6528 callee's return address (the address at which the caller
6529 will resume).
6530
6531 Reverse (backward) execution. set the step-resume
6532 breakpoint at the start of the function that we just
6533 stepped into (backwards), and continue to there. When we
6534 get there, we'll need to single-step back to the caller. */
6535
6536 if (execution_direction == EXEC_REVERSE)
6537 {
6538 /* If we're already at the start of the function, we've either
6539 just stepped backward into a single instruction function,
6540 or stepped back out of a signal handler to the first instruction
6541 of the function. Just keep going, which will single-step back
6542 to the caller. */
6543 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6544 {
6545 struct symtab_and_line sr_sal;
6546
6547 /* Normal function call return (static or dynamic). */
6548 init_sal (&sr_sal);
6549 sr_sal.pc = ecs->stop_func_start;
6550 sr_sal.pspace = get_frame_program_space (frame);
6551 insert_step_resume_breakpoint_at_sal (gdbarch,
6552 sr_sal, null_frame_id);
6553 }
6554 }
6555 else
6556 insert_step_resume_breakpoint_at_caller (frame);
6557
6558 keep_going (ecs);
6559 return;
6560 }
6561
6562 /* If we are in a function call trampoline (a stub between the
6563 calling routine and the real function), locate the real
6564 function. That's what tells us (a) whether we want to step
6565 into it at all, and (b) what prologue we want to run to the
6566 end of, if we do step into it. */
6567 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6568 if (real_stop_pc == 0)
6569 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6570 if (real_stop_pc != 0)
6571 ecs->stop_func_start = real_stop_pc;
6572
6573 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6574 {
6575 struct symtab_and_line sr_sal;
6576
6577 init_sal (&sr_sal);
6578 sr_sal.pc = ecs->stop_func_start;
6579 sr_sal.pspace = get_frame_program_space (frame);
6580
6581 insert_step_resume_breakpoint_at_sal (gdbarch,
6582 sr_sal, null_frame_id);
6583 keep_going (ecs);
6584 return;
6585 }
6586
6587 /* If we have line number information for the function we are
6588 thinking of stepping into and the function isn't on the skip
6589 list, step into it.
6590
6591 If there are several symtabs at that PC (e.g. with include
6592 files), just want to know whether *any* of them have line
6593 numbers. find_pc_line handles this. */
6594 {
6595 struct symtab_and_line tmp_sal;
6596
6597 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6598 if (tmp_sal.line != 0
6599 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6600 &tmp_sal))
6601 {
6602 if (execution_direction == EXEC_REVERSE)
6603 handle_step_into_function_backward (gdbarch, ecs);
6604 else
6605 handle_step_into_function (gdbarch, ecs);
6606 return;
6607 }
6608 }
6609
6610 /* If we have no line number and the step-stop-if-no-debug is
6611 set, we stop the step so that the user has a chance to switch
6612 in assembly mode. */
6613 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6614 && step_stop_if_no_debug)
6615 {
6616 end_stepping_range (ecs);
6617 return;
6618 }
6619
6620 if (execution_direction == EXEC_REVERSE)
6621 {
6622 /* If we're already at the start of the function, we've either just
6623 stepped backward into a single instruction function without line
6624 number info, or stepped back out of a signal handler to the first
6625 instruction of the function without line number info. Just keep
6626 going, which will single-step back to the caller. */
6627 if (ecs->stop_func_start != stop_pc)
6628 {
6629 /* Set a breakpoint at callee's start address.
6630 From there we can step once and be back in the caller. */
6631 struct symtab_and_line sr_sal;
6632
6633 init_sal (&sr_sal);
6634 sr_sal.pc = ecs->stop_func_start;
6635 sr_sal.pspace = get_frame_program_space (frame);
6636 insert_step_resume_breakpoint_at_sal (gdbarch,
6637 sr_sal, null_frame_id);
6638 }
6639 }
6640 else
6641 /* Set a breakpoint at callee's return address (the address
6642 at which the caller will resume). */
6643 insert_step_resume_breakpoint_at_caller (frame);
6644
6645 keep_going (ecs);
6646 return;
6647 }
6648
6649 /* Reverse stepping through solib trampolines. */
6650
6651 if (execution_direction == EXEC_REVERSE
6652 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6653 {
6654 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6655 || (ecs->stop_func_start == 0
6656 && in_solib_dynsym_resolve_code (stop_pc)))
6657 {
6658 /* Any solib trampoline code can be handled in reverse
6659 by simply continuing to single-step. We have already
6660 executed the solib function (backwards), and a few
6661 steps will take us back through the trampoline to the
6662 caller. */
6663 keep_going (ecs);
6664 return;
6665 }
6666 else if (in_solib_dynsym_resolve_code (stop_pc))
6667 {
6668 /* Stepped backward into the solib dynsym resolver.
6669 Set a breakpoint at its start and continue, then
6670 one more step will take us out. */
6671 struct symtab_and_line sr_sal;
6672
6673 init_sal (&sr_sal);
6674 sr_sal.pc = ecs->stop_func_start;
6675 sr_sal.pspace = get_frame_program_space (frame);
6676 insert_step_resume_breakpoint_at_sal (gdbarch,
6677 sr_sal, null_frame_id);
6678 keep_going (ecs);
6679 return;
6680 }
6681 }
6682
6683 stop_pc_sal = find_pc_line (stop_pc, 0);
6684
6685 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6686 the trampoline processing logic, however, there are some trampolines
6687 that have no names, so we should do trampoline handling first. */
6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6689 && ecs->stop_func_name == NULL
6690 && stop_pc_sal.line == 0)
6691 {
6692 if (debug_infrun)
6693 fprintf_unfiltered (gdb_stdlog,
6694 "infrun: stepped into undebuggable function\n");
6695
6696 /* The inferior just stepped into, or returned to, an
6697 undebuggable function (where there is no debugging information
6698 and no line number corresponding to the address where the
6699 inferior stopped). Since we want to skip this kind of code,
6700 we keep going until the inferior returns from this
6701 function - unless the user has asked us not to (via
6702 set step-mode) or we no longer know how to get back
6703 to the call site. */
6704 if (step_stop_if_no_debug
6705 || !frame_id_p (frame_unwind_caller_id (frame)))
6706 {
6707 /* If we have no line number and the step-stop-if-no-debug
6708 is set, we stop the step so that the user has a chance to
6709 switch in assembly mode. */
6710 end_stepping_range (ecs);
6711 return;
6712 }
6713 else
6714 {
6715 /* Set a breakpoint at callee's return address (the address
6716 at which the caller will resume). */
6717 insert_step_resume_breakpoint_at_caller (frame);
6718 keep_going (ecs);
6719 return;
6720 }
6721 }
6722
6723 if (ecs->event_thread->control.step_range_end == 1)
6724 {
6725 /* It is stepi or nexti. We always want to stop stepping after
6726 one instruction. */
6727 if (debug_infrun)
6728 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6729 end_stepping_range (ecs);
6730 return;
6731 }
6732
6733 if (stop_pc_sal.line == 0)
6734 {
6735 /* We have no line number information. That means to stop
6736 stepping (does this always happen right after one instruction,
6737 when we do "s" in a function with no line numbers,
6738 or can this happen as a result of a return or longjmp?). */
6739 if (debug_infrun)
6740 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6741 end_stepping_range (ecs);
6742 return;
6743 }
6744
6745 /* Look for "calls" to inlined functions, part one. If the inline
6746 frame machinery detected some skipped call sites, we have entered
6747 a new inline function. */
6748
6749 if (frame_id_eq (get_frame_id (get_current_frame ()),
6750 ecs->event_thread->control.step_frame_id)
6751 && inline_skipped_frames (ecs->ptid))
6752 {
6753 struct symtab_and_line call_sal;
6754
6755 if (debug_infrun)
6756 fprintf_unfiltered (gdb_stdlog,
6757 "infrun: stepped into inlined function\n");
6758
6759 find_frame_sal (get_current_frame (), &call_sal);
6760
6761 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6762 {
6763 /* For "step", we're going to stop. But if the call site
6764 for this inlined function is on the same source line as
6765 we were previously stepping, go down into the function
6766 first. Otherwise stop at the call site. */
6767
6768 if (call_sal.line == ecs->event_thread->current_line
6769 && call_sal.symtab == ecs->event_thread->current_symtab)
6770 step_into_inline_frame (ecs->ptid);
6771
6772 end_stepping_range (ecs);
6773 return;
6774 }
6775 else
6776 {
6777 /* For "next", we should stop at the call site if it is on a
6778 different source line. Otherwise continue through the
6779 inlined function. */
6780 if (call_sal.line == ecs->event_thread->current_line
6781 && call_sal.symtab == ecs->event_thread->current_symtab)
6782 keep_going (ecs);
6783 else
6784 end_stepping_range (ecs);
6785 return;
6786 }
6787 }
6788
6789 /* Look for "calls" to inlined functions, part two. If we are still
6790 in the same real function we were stepping through, but we have
6791 to go further up to find the exact frame ID, we are stepping
6792 through a more inlined call beyond its call site. */
6793
6794 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6795 && !frame_id_eq (get_frame_id (get_current_frame ()),
6796 ecs->event_thread->control.step_frame_id)
6797 && stepped_in_from (get_current_frame (),
6798 ecs->event_thread->control.step_frame_id))
6799 {
6800 if (debug_infrun)
6801 fprintf_unfiltered (gdb_stdlog,
6802 "infrun: stepping through inlined function\n");
6803
6804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6805 keep_going (ecs);
6806 else
6807 end_stepping_range (ecs);
6808 return;
6809 }
6810
6811 if ((stop_pc == stop_pc_sal.pc)
6812 && (ecs->event_thread->current_line != stop_pc_sal.line
6813 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6814 {
6815 /* We are at the start of a different line. So stop. Note that
6816 we don't stop if we step into the middle of a different line.
6817 That is said to make things like for (;;) statements work
6818 better. */
6819 if (debug_infrun)
6820 fprintf_unfiltered (gdb_stdlog,
6821 "infrun: stepped to a different line\n");
6822 end_stepping_range (ecs);
6823 return;
6824 }
6825
6826 /* We aren't done stepping.
6827
6828 Optimize by setting the stepping range to the line.
6829 (We might not be in the original line, but if we entered a
6830 new line in mid-statement, we continue stepping. This makes
6831 things like for(;;) statements work better.) */
6832
6833 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6834 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6835 ecs->event_thread->control.may_range_step = 1;
6836 set_step_info (frame, stop_pc_sal);
6837
6838 if (debug_infrun)
6839 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6840 keep_going (ecs);
6841 }
6842
6843 /* In all-stop mode, if we're currently stepping but have stopped in
6844 some other thread, we may need to switch back to the stepped
6845 thread. Returns true we set the inferior running, false if we left
6846 it stopped (and the event needs further processing). */
6847
6848 static int
6849 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6850 {
6851 if (!target_is_non_stop_p ())
6852 {
6853 struct thread_info *tp;
6854 struct thread_info *stepping_thread;
6855
6856 /* If any thread is blocked on some internal breakpoint, and we
6857 simply need to step over that breakpoint to get it going
6858 again, do that first. */
6859
6860 /* However, if we see an event for the stepping thread, then we
6861 know all other threads have been moved past their breakpoints
6862 already. Let the caller check whether the step is finished,
6863 etc., before deciding to move it past a breakpoint. */
6864 if (ecs->event_thread->control.step_range_end != 0)
6865 return 0;
6866
6867 /* Check if the current thread is blocked on an incomplete
6868 step-over, interrupted by a random signal. */
6869 if (ecs->event_thread->control.trap_expected
6870 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6871 {
6872 if (debug_infrun)
6873 {
6874 fprintf_unfiltered (gdb_stdlog,
6875 "infrun: need to finish step-over of [%s]\n",
6876 target_pid_to_str (ecs->event_thread->ptid));
6877 }
6878 keep_going (ecs);
6879 return 1;
6880 }
6881
6882 /* Check if the current thread is blocked by a single-step
6883 breakpoint of another thread. */
6884 if (ecs->hit_singlestep_breakpoint)
6885 {
6886 if (debug_infrun)
6887 {
6888 fprintf_unfiltered (gdb_stdlog,
6889 "infrun: need to step [%s] over single-step "
6890 "breakpoint\n",
6891 target_pid_to_str (ecs->ptid));
6892 }
6893 keep_going (ecs);
6894 return 1;
6895 }
6896
6897 /* If this thread needs yet another step-over (e.g., stepping
6898 through a delay slot), do it first before moving on to
6899 another thread. */
6900 if (thread_still_needs_step_over (ecs->event_thread))
6901 {
6902 if (debug_infrun)
6903 {
6904 fprintf_unfiltered (gdb_stdlog,
6905 "infrun: thread [%s] still needs step-over\n",
6906 target_pid_to_str (ecs->event_thread->ptid));
6907 }
6908 keep_going (ecs);
6909 return 1;
6910 }
6911
6912 /* If scheduler locking applies even if not stepping, there's no
6913 need to walk over threads. Above we've checked whether the
6914 current thread is stepping. If some other thread not the
6915 event thread is stepping, then it must be that scheduler
6916 locking is not in effect. */
6917 if (schedlock_applies (ecs->event_thread))
6918 return 0;
6919
6920 /* Otherwise, we no longer expect a trap in the current thread.
6921 Clear the trap_expected flag before switching back -- this is
6922 what keep_going does as well, if we call it. */
6923 ecs->event_thread->control.trap_expected = 0;
6924
6925 /* Likewise, clear the signal if it should not be passed. */
6926 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6927 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6928
6929 /* Do all pending step-overs before actually proceeding with
6930 step/next/etc. */
6931 if (start_step_over ())
6932 {
6933 prepare_to_wait (ecs);
6934 return 1;
6935 }
6936
6937 /* Look for the stepping/nexting thread. */
6938 stepping_thread = NULL;
6939
6940 ALL_NON_EXITED_THREADS (tp)
6941 {
6942 /* Ignore threads of processes the caller is not
6943 resuming. */
6944 if (!sched_multi
6945 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6946 continue;
6947
6948 /* When stepping over a breakpoint, we lock all threads
6949 except the one that needs to move past the breakpoint.
6950 If a non-event thread has this set, the "incomplete
6951 step-over" check above should have caught it earlier. */
6952 if (tp->control.trap_expected)
6953 {
6954 internal_error (__FILE__, __LINE__,
6955 "[%s] has inconsistent state: "
6956 "trap_expected=%d\n",
6957 target_pid_to_str (tp->ptid),
6958 tp->control.trap_expected);
6959 }
6960
6961 /* Did we find the stepping thread? */
6962 if (tp->control.step_range_end)
6963 {
6964 /* Yep. There should only one though. */
6965 gdb_assert (stepping_thread == NULL);
6966
6967 /* The event thread is handled at the top, before we
6968 enter this loop. */
6969 gdb_assert (tp != ecs->event_thread);
6970
6971 /* If some thread other than the event thread is
6972 stepping, then scheduler locking can't be in effect,
6973 otherwise we wouldn't have resumed the current event
6974 thread in the first place. */
6975 gdb_assert (!schedlock_applies (tp));
6976
6977 stepping_thread = tp;
6978 }
6979 }
6980
6981 if (stepping_thread != NULL)
6982 {
6983 if (debug_infrun)
6984 fprintf_unfiltered (gdb_stdlog,
6985 "infrun: switching back to stepped thread\n");
6986
6987 if (keep_going_stepped_thread (stepping_thread))
6988 {
6989 prepare_to_wait (ecs);
6990 return 1;
6991 }
6992 }
6993 }
6994
6995 return 0;
6996 }
6997
6998 /* Set a previously stepped thread back to stepping. Returns true on
6999 success, false if the resume is not possible (e.g., the thread
7000 vanished). */
7001
7002 static int
7003 keep_going_stepped_thread (struct thread_info *tp)
7004 {
7005 struct frame_info *frame;
7006 struct gdbarch *gdbarch;
7007 struct execution_control_state ecss;
7008 struct execution_control_state *ecs = &ecss;
7009
7010 /* If the stepping thread exited, then don't try to switch back and
7011 resume it, which could fail in several different ways depending
7012 on the target. Instead, just keep going.
7013
7014 We can find a stepping dead thread in the thread list in two
7015 cases:
7016
7017 - The target supports thread exit events, and when the target
7018 tries to delete the thread from the thread list, inferior_ptid
7019 pointed at the exiting thread. In such case, calling
7020 delete_thread does not really remove the thread from the list;
7021 instead, the thread is left listed, with 'exited' state.
7022
7023 - The target's debug interface does not support thread exit
7024 events, and so we have no idea whatsoever if the previously
7025 stepping thread is still alive. For that reason, we need to
7026 synchronously query the target now. */
7027
7028 if (is_exited (tp->ptid)
7029 || !target_thread_alive (tp->ptid))
7030 {
7031 if (debug_infrun)
7032 fprintf_unfiltered (gdb_stdlog,
7033 "infrun: not resuming previously "
7034 "stepped thread, it has vanished\n");
7035
7036 delete_thread (tp->ptid);
7037 return 0;
7038 }
7039
7040 if (debug_infrun)
7041 fprintf_unfiltered (gdb_stdlog,
7042 "infrun: resuming previously stepped thread\n");
7043
7044 reset_ecs (ecs, tp);
7045 switch_to_thread (tp->ptid);
7046
7047 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7048 frame = get_current_frame ();
7049 gdbarch = get_frame_arch (frame);
7050
7051 /* If the PC of the thread we were trying to single-step has
7052 changed, then that thread has trapped or been signaled, but the
7053 event has not been reported to GDB yet. Re-poll the target
7054 looking for this particular thread's event (i.e. temporarily
7055 enable schedlock) by:
7056
7057 - setting a break at the current PC
7058 - resuming that particular thread, only (by setting trap
7059 expected)
7060
7061 This prevents us continuously moving the single-step breakpoint
7062 forward, one instruction at a time, overstepping. */
7063
7064 if (stop_pc != tp->prev_pc)
7065 {
7066 ptid_t resume_ptid;
7067
7068 if (debug_infrun)
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: expected thread advanced also (%s -> %s)\n",
7071 paddress (target_gdbarch (), tp->prev_pc),
7072 paddress (target_gdbarch (), stop_pc));
7073
7074 /* Clear the info of the previous step-over, as it's no longer
7075 valid (if the thread was trying to step over a breakpoint, it
7076 has already succeeded). It's what keep_going would do too,
7077 if we called it. Do this before trying to insert the sss
7078 breakpoint, otherwise if we were previously trying to step
7079 over this exact address in another thread, the breakpoint is
7080 skipped. */
7081 clear_step_over_info ();
7082 tp->control.trap_expected = 0;
7083
7084 insert_single_step_breakpoint (get_frame_arch (frame),
7085 get_frame_address_space (frame),
7086 stop_pc);
7087
7088 tp->resumed = 1;
7089 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7090 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7091 }
7092 else
7093 {
7094 if (debug_infrun)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "infrun: expected thread still hasn't advanced\n");
7097
7098 keep_going_pass_signal (ecs);
7099 }
7100 return 1;
7101 }
7102
7103 /* Is thread TP in the middle of (software or hardware)
7104 single-stepping? (Note the result of this function must never be
7105 passed directly as target_resume's STEP parameter.) */
7106
7107 static int
7108 currently_stepping (struct thread_info *tp)
7109 {
7110 return ((tp->control.step_range_end
7111 && tp->control.step_resume_breakpoint == NULL)
7112 || tp->control.trap_expected
7113 || tp->stepped_breakpoint
7114 || bpstat_should_step ());
7115 }
7116
7117 /* Inferior has stepped into a subroutine call with source code that
7118 we should not step over. Do step to the first line of code in
7119 it. */
7120
7121 static void
7122 handle_step_into_function (struct gdbarch *gdbarch,
7123 struct execution_control_state *ecs)
7124 {
7125 struct compunit_symtab *cust;
7126 struct symtab_and_line stop_func_sal, sr_sal;
7127
7128 fill_in_stop_func (gdbarch, ecs);
7129
7130 cust = find_pc_compunit_symtab (stop_pc);
7131 if (cust != NULL && compunit_language (cust) != language_asm)
7132 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7133 ecs->stop_func_start);
7134
7135 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7136 /* Use the step_resume_break to step until the end of the prologue,
7137 even if that involves jumps (as it seems to on the vax under
7138 4.2). */
7139 /* If the prologue ends in the middle of a source line, continue to
7140 the end of that source line (if it is still within the function).
7141 Otherwise, just go to end of prologue. */
7142 if (stop_func_sal.end
7143 && stop_func_sal.pc != ecs->stop_func_start
7144 && stop_func_sal.end < ecs->stop_func_end)
7145 ecs->stop_func_start = stop_func_sal.end;
7146
7147 /* Architectures which require breakpoint adjustment might not be able
7148 to place a breakpoint at the computed address. If so, the test
7149 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7150 ecs->stop_func_start to an address at which a breakpoint may be
7151 legitimately placed.
7152
7153 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7154 made, GDB will enter an infinite loop when stepping through
7155 optimized code consisting of VLIW instructions which contain
7156 subinstructions corresponding to different source lines. On
7157 FR-V, it's not permitted to place a breakpoint on any but the
7158 first subinstruction of a VLIW instruction. When a breakpoint is
7159 set, GDB will adjust the breakpoint address to the beginning of
7160 the VLIW instruction. Thus, we need to make the corresponding
7161 adjustment here when computing the stop address. */
7162
7163 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7164 {
7165 ecs->stop_func_start
7166 = gdbarch_adjust_breakpoint_address (gdbarch,
7167 ecs->stop_func_start);
7168 }
7169
7170 if (ecs->stop_func_start == stop_pc)
7171 {
7172 /* We are already there: stop now. */
7173 end_stepping_range (ecs);
7174 return;
7175 }
7176 else
7177 {
7178 /* Put the step-breakpoint there and go until there. */
7179 init_sal (&sr_sal); /* initialize to zeroes */
7180 sr_sal.pc = ecs->stop_func_start;
7181 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7182 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7183
7184 /* Do not specify what the fp should be when we stop since on
7185 some machines the prologue is where the new fp value is
7186 established. */
7187 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7188
7189 /* And make sure stepping stops right away then. */
7190 ecs->event_thread->control.step_range_end
7191 = ecs->event_thread->control.step_range_start;
7192 }
7193 keep_going (ecs);
7194 }
7195
7196 /* Inferior has stepped backward into a subroutine call with source
7197 code that we should not step over. Do step to the beginning of the
7198 last line of code in it. */
7199
7200 static void
7201 handle_step_into_function_backward (struct gdbarch *gdbarch,
7202 struct execution_control_state *ecs)
7203 {
7204 struct compunit_symtab *cust;
7205 struct symtab_and_line stop_func_sal;
7206
7207 fill_in_stop_func (gdbarch, ecs);
7208
7209 cust = find_pc_compunit_symtab (stop_pc);
7210 if (cust != NULL && compunit_language (cust) != language_asm)
7211 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7212 ecs->stop_func_start);
7213
7214 stop_func_sal = find_pc_line (stop_pc, 0);
7215
7216 /* OK, we're just going to keep stepping here. */
7217 if (stop_func_sal.pc == stop_pc)
7218 {
7219 /* We're there already. Just stop stepping now. */
7220 end_stepping_range (ecs);
7221 }
7222 else
7223 {
7224 /* Else just reset the step range and keep going.
7225 No step-resume breakpoint, they don't work for
7226 epilogues, which can have multiple entry paths. */
7227 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7228 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7229 keep_going (ecs);
7230 }
7231 return;
7232 }
7233
7234 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7235 This is used to both functions and to skip over code. */
7236
7237 static void
7238 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7239 struct symtab_and_line sr_sal,
7240 struct frame_id sr_id,
7241 enum bptype sr_type)
7242 {
7243 /* There should never be more than one step-resume or longjmp-resume
7244 breakpoint per thread, so we should never be setting a new
7245 step_resume_breakpoint when one is already active. */
7246 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7247 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7248
7249 if (debug_infrun)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "infrun: inserting step-resume breakpoint at %s\n",
7252 paddress (gdbarch, sr_sal.pc));
7253
7254 inferior_thread ()->control.step_resume_breakpoint
7255 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7256 }
7257
7258 void
7259 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7260 struct symtab_and_line sr_sal,
7261 struct frame_id sr_id)
7262 {
7263 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7264 sr_sal, sr_id,
7265 bp_step_resume);
7266 }
7267
7268 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7269 This is used to skip a potential signal handler.
7270
7271 This is called with the interrupted function's frame. The signal
7272 handler, when it returns, will resume the interrupted function at
7273 RETURN_FRAME.pc. */
7274
7275 static void
7276 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7277 {
7278 struct symtab_and_line sr_sal;
7279 struct gdbarch *gdbarch;
7280
7281 gdb_assert (return_frame != NULL);
7282 init_sal (&sr_sal); /* initialize to zeros */
7283
7284 gdbarch = get_frame_arch (return_frame);
7285 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7286 sr_sal.section = find_pc_overlay (sr_sal.pc);
7287 sr_sal.pspace = get_frame_program_space (return_frame);
7288
7289 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7290 get_stack_frame_id (return_frame),
7291 bp_hp_step_resume);
7292 }
7293
7294 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7295 is used to skip a function after stepping into it (for "next" or if
7296 the called function has no debugging information).
7297
7298 The current function has almost always been reached by single
7299 stepping a call or return instruction. NEXT_FRAME belongs to the
7300 current function, and the breakpoint will be set at the caller's
7301 resume address.
7302
7303 This is a separate function rather than reusing
7304 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7305 get_prev_frame, which may stop prematurely (see the implementation
7306 of frame_unwind_caller_id for an example). */
7307
7308 static void
7309 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7310 {
7311 struct symtab_and_line sr_sal;
7312 struct gdbarch *gdbarch;
7313
7314 /* We shouldn't have gotten here if we don't know where the call site
7315 is. */
7316 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7317
7318 init_sal (&sr_sal); /* initialize to zeros */
7319
7320 gdbarch = frame_unwind_caller_arch (next_frame);
7321 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7322 frame_unwind_caller_pc (next_frame));
7323 sr_sal.section = find_pc_overlay (sr_sal.pc);
7324 sr_sal.pspace = frame_unwind_program_space (next_frame);
7325
7326 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7327 frame_unwind_caller_id (next_frame));
7328 }
7329
7330 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7331 new breakpoint at the target of a jmp_buf. The handling of
7332 longjmp-resume uses the same mechanisms used for handling
7333 "step-resume" breakpoints. */
7334
7335 static void
7336 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7337 {
7338 /* There should never be more than one longjmp-resume breakpoint per
7339 thread, so we should never be setting a new
7340 longjmp_resume_breakpoint when one is already active. */
7341 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7342
7343 if (debug_infrun)
7344 fprintf_unfiltered (gdb_stdlog,
7345 "infrun: inserting longjmp-resume breakpoint at %s\n",
7346 paddress (gdbarch, pc));
7347
7348 inferior_thread ()->control.exception_resume_breakpoint =
7349 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7350 }
7351
7352 /* Insert an exception resume breakpoint. TP is the thread throwing
7353 the exception. The block B is the block of the unwinder debug hook
7354 function. FRAME is the frame corresponding to the call to this
7355 function. SYM is the symbol of the function argument holding the
7356 target PC of the exception. */
7357
7358 static void
7359 insert_exception_resume_breakpoint (struct thread_info *tp,
7360 const struct block *b,
7361 struct frame_info *frame,
7362 struct symbol *sym)
7363 {
7364 TRY
7365 {
7366 struct block_symbol vsym;
7367 struct value *value;
7368 CORE_ADDR handler;
7369 struct breakpoint *bp;
7370
7371 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7372 value = read_var_value (vsym.symbol, vsym.block, frame);
7373 /* If the value was optimized out, revert to the old behavior. */
7374 if (! value_optimized_out (value))
7375 {
7376 handler = value_as_address (value);
7377
7378 if (debug_infrun)
7379 fprintf_unfiltered (gdb_stdlog,
7380 "infrun: exception resume at %lx\n",
7381 (unsigned long) handler);
7382
7383 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7384 handler, bp_exception_resume);
7385
7386 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7387 frame = NULL;
7388
7389 bp->thread = tp->num;
7390 inferior_thread ()->control.exception_resume_breakpoint = bp;
7391 }
7392 }
7393 CATCH (e, RETURN_MASK_ERROR)
7394 {
7395 /* We want to ignore errors here. */
7396 }
7397 END_CATCH
7398 }
7399
7400 /* A helper for check_exception_resume that sets an
7401 exception-breakpoint based on a SystemTap probe. */
7402
7403 static void
7404 insert_exception_resume_from_probe (struct thread_info *tp,
7405 const struct bound_probe *probe,
7406 struct frame_info *frame)
7407 {
7408 struct value *arg_value;
7409 CORE_ADDR handler;
7410 struct breakpoint *bp;
7411
7412 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7413 if (!arg_value)
7414 return;
7415
7416 handler = value_as_address (arg_value);
7417
7418 if (debug_infrun)
7419 fprintf_unfiltered (gdb_stdlog,
7420 "infrun: exception resume at %s\n",
7421 paddress (get_objfile_arch (probe->objfile),
7422 handler));
7423
7424 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7425 handler, bp_exception_resume);
7426 bp->thread = tp->num;
7427 inferior_thread ()->control.exception_resume_breakpoint = bp;
7428 }
7429
7430 /* This is called when an exception has been intercepted. Check to
7431 see whether the exception's destination is of interest, and if so,
7432 set an exception resume breakpoint there. */
7433
7434 static void
7435 check_exception_resume (struct execution_control_state *ecs,
7436 struct frame_info *frame)
7437 {
7438 struct bound_probe probe;
7439 struct symbol *func;
7440
7441 /* First see if this exception unwinding breakpoint was set via a
7442 SystemTap probe point. If so, the probe has two arguments: the
7443 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7444 set a breakpoint there. */
7445 probe = find_probe_by_pc (get_frame_pc (frame));
7446 if (probe.probe)
7447 {
7448 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7449 return;
7450 }
7451
7452 func = get_frame_function (frame);
7453 if (!func)
7454 return;
7455
7456 TRY
7457 {
7458 const struct block *b;
7459 struct block_iterator iter;
7460 struct symbol *sym;
7461 int argno = 0;
7462
7463 /* The exception breakpoint is a thread-specific breakpoint on
7464 the unwinder's debug hook, declared as:
7465
7466 void _Unwind_DebugHook (void *cfa, void *handler);
7467
7468 The CFA argument indicates the frame to which control is
7469 about to be transferred. HANDLER is the destination PC.
7470
7471 We ignore the CFA and set a temporary breakpoint at HANDLER.
7472 This is not extremely efficient but it avoids issues in gdb
7473 with computing the DWARF CFA, and it also works even in weird
7474 cases such as throwing an exception from inside a signal
7475 handler. */
7476
7477 b = SYMBOL_BLOCK_VALUE (func);
7478 ALL_BLOCK_SYMBOLS (b, iter, sym)
7479 {
7480 if (!SYMBOL_IS_ARGUMENT (sym))
7481 continue;
7482
7483 if (argno == 0)
7484 ++argno;
7485 else
7486 {
7487 insert_exception_resume_breakpoint (ecs->event_thread,
7488 b, frame, sym);
7489 break;
7490 }
7491 }
7492 }
7493 CATCH (e, RETURN_MASK_ERROR)
7494 {
7495 }
7496 END_CATCH
7497 }
7498
7499 static void
7500 stop_waiting (struct execution_control_state *ecs)
7501 {
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7504
7505 clear_step_over_info ();
7506
7507 /* Let callers know we don't want to wait for the inferior anymore. */
7508 ecs->wait_some_more = 0;
7509
7510 /* If all-stop, but the target is always in non-stop mode, stop all
7511 threads now that we're presenting the stop to the user. */
7512 if (!non_stop && target_is_non_stop_p ())
7513 stop_all_threads ();
7514 }
7515
7516 /* Like keep_going, but passes the signal to the inferior, even if the
7517 signal is set to nopass. */
7518
7519 static void
7520 keep_going_pass_signal (struct execution_control_state *ecs)
7521 {
7522 /* Make sure normal_stop is called if we get a QUIT handled before
7523 reaching resume. */
7524 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7525
7526 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7527 gdb_assert (!ecs->event_thread->resumed);
7528
7529 /* Save the pc before execution, to compare with pc after stop. */
7530 ecs->event_thread->prev_pc
7531 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7532
7533 if (ecs->event_thread->control.trap_expected)
7534 {
7535 struct thread_info *tp = ecs->event_thread;
7536
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: %s has trap_expected set, "
7540 "resuming to collect trap\n",
7541 target_pid_to_str (tp->ptid));
7542
7543 /* We haven't yet gotten our trap, and either: intercepted a
7544 non-signal event (e.g., a fork); or took a signal which we
7545 are supposed to pass through to the inferior. Simply
7546 continue. */
7547 discard_cleanups (old_cleanups);
7548 resume (ecs->event_thread->suspend.stop_signal);
7549 }
7550 else if (step_over_info_valid_p ())
7551 {
7552 /* Another thread is stepping over a breakpoint in-line. If
7553 this thread needs a step-over too, queue the request. In
7554 either case, this resume must be deferred for later. */
7555 struct thread_info *tp = ecs->event_thread;
7556
7557 if (ecs->hit_singlestep_breakpoint
7558 || thread_still_needs_step_over (tp))
7559 {
7560 if (debug_infrun)
7561 fprintf_unfiltered (gdb_stdlog,
7562 "infrun: step-over already in progress: "
7563 "step-over for %s deferred\n",
7564 target_pid_to_str (tp->ptid));
7565 thread_step_over_chain_enqueue (tp);
7566 }
7567 else
7568 {
7569 if (debug_infrun)
7570 fprintf_unfiltered (gdb_stdlog,
7571 "infrun: step-over in progress: "
7572 "resume of %s deferred\n",
7573 target_pid_to_str (tp->ptid));
7574 }
7575
7576 discard_cleanups (old_cleanups);
7577 }
7578 else
7579 {
7580 struct regcache *regcache = get_current_regcache ();
7581 int remove_bp;
7582 int remove_wps;
7583 step_over_what step_what;
7584
7585 /* Either the trap was not expected, but we are continuing
7586 anyway (if we got a signal, the user asked it be passed to
7587 the child)
7588 -- or --
7589 We got our expected trap, but decided we should resume from
7590 it.
7591
7592 We're going to run this baby now!
7593
7594 Note that insert_breakpoints won't try to re-insert
7595 already inserted breakpoints. Therefore, we don't
7596 care if breakpoints were already inserted, or not. */
7597
7598 /* If we need to step over a breakpoint, and we're not using
7599 displaced stepping to do so, insert all breakpoints
7600 (watchpoints, etc.) but the one we're stepping over, step one
7601 instruction, and then re-insert the breakpoint when that step
7602 is finished. */
7603
7604 step_what = thread_still_needs_step_over (ecs->event_thread);
7605
7606 remove_bp = (ecs->hit_singlestep_breakpoint
7607 || (step_what & STEP_OVER_BREAKPOINT));
7608 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7609
7610 /* We can't use displaced stepping if we need to step past a
7611 watchpoint. The instruction copied to the scratch pad would
7612 still trigger the watchpoint. */
7613 if (remove_bp
7614 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7615 {
7616 set_step_over_info (get_regcache_aspace (regcache),
7617 regcache_read_pc (regcache), remove_wps);
7618 }
7619 else if (remove_wps)
7620 set_step_over_info (NULL, 0, remove_wps);
7621
7622 /* If we now need to do an in-line step-over, we need to stop
7623 all other threads. Note this must be done before
7624 insert_breakpoints below, because that removes the breakpoint
7625 we're about to step over, otherwise other threads could miss
7626 it. */
7627 if (step_over_info_valid_p () && target_is_non_stop_p ())
7628 stop_all_threads ();
7629
7630 /* Stop stepping if inserting breakpoints fails. */
7631 TRY
7632 {
7633 insert_breakpoints ();
7634 }
7635 CATCH (e, RETURN_MASK_ERROR)
7636 {
7637 exception_print (gdb_stderr, e);
7638 stop_waiting (ecs);
7639 discard_cleanups (old_cleanups);
7640 return;
7641 }
7642 END_CATCH
7643
7644 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7645
7646 discard_cleanups (old_cleanups);
7647 resume (ecs->event_thread->suspend.stop_signal);
7648 }
7649
7650 prepare_to_wait (ecs);
7651 }
7652
7653 /* Called when we should continue running the inferior, because the
7654 current event doesn't cause a user visible stop. This does the
7655 resuming part; waiting for the next event is done elsewhere. */
7656
7657 static void
7658 keep_going (struct execution_control_state *ecs)
7659 {
7660 if (ecs->event_thread->control.trap_expected
7661 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7662 ecs->event_thread->control.trap_expected = 0;
7663
7664 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7665 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7666 keep_going_pass_signal (ecs);
7667 }
7668
7669 /* This function normally comes after a resume, before
7670 handle_inferior_event exits. It takes care of any last bits of
7671 housekeeping, and sets the all-important wait_some_more flag. */
7672
7673 static void
7674 prepare_to_wait (struct execution_control_state *ecs)
7675 {
7676 if (debug_infrun)
7677 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7678
7679 ecs->wait_some_more = 1;
7680
7681 if (!target_is_async_p ())
7682 mark_infrun_async_event_handler ();
7683 }
7684
7685 /* We are done with the step range of a step/next/si/ni command.
7686 Called once for each n of a "step n" operation. */
7687
7688 static void
7689 end_stepping_range (struct execution_control_state *ecs)
7690 {
7691 ecs->event_thread->control.stop_step = 1;
7692 stop_waiting (ecs);
7693 }
7694
7695 /* Several print_*_reason functions to print why the inferior has stopped.
7696 We always print something when the inferior exits, or receives a signal.
7697 The rest of the cases are dealt with later on in normal_stop and
7698 print_it_typical. Ideally there should be a call to one of these
7699 print_*_reason functions functions from handle_inferior_event each time
7700 stop_waiting is called.
7701
7702 Note that we don't call these directly, instead we delegate that to
7703 the interpreters, through observers. Interpreters then call these
7704 with whatever uiout is right. */
7705
7706 void
7707 print_end_stepping_range_reason (struct ui_out *uiout)
7708 {
7709 /* For CLI-like interpreters, print nothing. */
7710
7711 if (ui_out_is_mi_like_p (uiout))
7712 {
7713 ui_out_field_string (uiout, "reason",
7714 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7715 }
7716 }
7717
7718 void
7719 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7720 {
7721 annotate_signalled ();
7722 if (ui_out_is_mi_like_p (uiout))
7723 ui_out_field_string
7724 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7725 ui_out_text (uiout, "\nProgram terminated with signal ");
7726 annotate_signal_name ();
7727 ui_out_field_string (uiout, "signal-name",
7728 gdb_signal_to_name (siggnal));
7729 annotate_signal_name_end ();
7730 ui_out_text (uiout, ", ");
7731 annotate_signal_string ();
7732 ui_out_field_string (uiout, "signal-meaning",
7733 gdb_signal_to_string (siggnal));
7734 annotate_signal_string_end ();
7735 ui_out_text (uiout, ".\n");
7736 ui_out_text (uiout, "The program no longer exists.\n");
7737 }
7738
7739 void
7740 print_exited_reason (struct ui_out *uiout, int exitstatus)
7741 {
7742 struct inferior *inf = current_inferior ();
7743 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7744
7745 annotate_exited (exitstatus);
7746 if (exitstatus)
7747 {
7748 if (ui_out_is_mi_like_p (uiout))
7749 ui_out_field_string (uiout, "reason",
7750 async_reason_lookup (EXEC_ASYNC_EXITED));
7751 ui_out_text (uiout, "[Inferior ");
7752 ui_out_text (uiout, plongest (inf->num));
7753 ui_out_text (uiout, " (");
7754 ui_out_text (uiout, pidstr);
7755 ui_out_text (uiout, ") exited with code ");
7756 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7757 ui_out_text (uiout, "]\n");
7758 }
7759 else
7760 {
7761 if (ui_out_is_mi_like_p (uiout))
7762 ui_out_field_string
7763 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7764 ui_out_text (uiout, "[Inferior ");
7765 ui_out_text (uiout, plongest (inf->num));
7766 ui_out_text (uiout, " (");
7767 ui_out_text (uiout, pidstr);
7768 ui_out_text (uiout, ") exited normally]\n");
7769 }
7770 }
7771
7772 void
7773 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7774 {
7775 annotate_signal ();
7776
7777 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7778 {
7779 struct thread_info *t = inferior_thread ();
7780
7781 ui_out_text (uiout, "\n[");
7782 ui_out_field_string (uiout, "thread-name",
7783 target_pid_to_str (t->ptid));
7784 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7785 ui_out_text (uiout, " stopped");
7786 }
7787 else
7788 {
7789 ui_out_text (uiout, "\nProgram received signal ");
7790 annotate_signal_name ();
7791 if (ui_out_is_mi_like_p (uiout))
7792 ui_out_field_string
7793 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7794 ui_out_field_string (uiout, "signal-name",
7795 gdb_signal_to_name (siggnal));
7796 annotate_signal_name_end ();
7797 ui_out_text (uiout, ", ");
7798 annotate_signal_string ();
7799 ui_out_field_string (uiout, "signal-meaning",
7800 gdb_signal_to_string (siggnal));
7801 annotate_signal_string_end ();
7802 }
7803 ui_out_text (uiout, ".\n");
7804 }
7805
7806 void
7807 print_no_history_reason (struct ui_out *uiout)
7808 {
7809 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7810 }
7811
7812 /* Print current location without a level number, if we have changed
7813 functions or hit a breakpoint. Print source line if we have one.
7814 bpstat_print contains the logic deciding in detail what to print,
7815 based on the event(s) that just occurred. */
7816
7817 static void
7818 print_stop_location (struct target_waitstatus *ws)
7819 {
7820 int bpstat_ret;
7821 enum print_what source_flag;
7822 int do_frame_printing = 1;
7823 struct thread_info *tp = inferior_thread ();
7824
7825 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7826 switch (bpstat_ret)
7827 {
7828 case PRINT_UNKNOWN:
7829 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7830 should) carry around the function and does (or should) use
7831 that when doing a frame comparison. */
7832 if (tp->control.stop_step
7833 && frame_id_eq (tp->control.step_frame_id,
7834 get_frame_id (get_current_frame ()))
7835 && tp->control.step_start_function == find_pc_function (stop_pc))
7836 {
7837 /* Finished step, just print source line. */
7838 source_flag = SRC_LINE;
7839 }
7840 else
7841 {
7842 /* Print location and source line. */
7843 source_flag = SRC_AND_LOC;
7844 }
7845 break;
7846 case PRINT_SRC_AND_LOC:
7847 /* Print location and source line. */
7848 source_flag = SRC_AND_LOC;
7849 break;
7850 case PRINT_SRC_ONLY:
7851 source_flag = SRC_LINE;
7852 break;
7853 case PRINT_NOTHING:
7854 /* Something bogus. */
7855 source_flag = SRC_LINE;
7856 do_frame_printing = 0;
7857 break;
7858 default:
7859 internal_error (__FILE__, __LINE__, _("Unknown value."));
7860 }
7861
7862 /* The behavior of this routine with respect to the source
7863 flag is:
7864 SRC_LINE: Print only source line
7865 LOCATION: Print only location
7866 SRC_AND_LOC: Print location and source line. */
7867 if (do_frame_printing)
7868 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7869 }
7870
7871 /* Cleanup that restores a previous current uiout. */
7872
7873 static void
7874 restore_current_uiout_cleanup (void *arg)
7875 {
7876 struct ui_out *saved_uiout = (struct ui_out *) arg;
7877
7878 current_uiout = saved_uiout;
7879 }
7880
7881 /* See infrun.h. */
7882
7883 void
7884 print_stop_event (struct ui_out *uiout)
7885 {
7886 struct cleanup *old_chain;
7887 struct target_waitstatus last;
7888 ptid_t last_ptid;
7889 struct thread_info *tp;
7890
7891 get_last_target_status (&last_ptid, &last);
7892
7893 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7894 current_uiout = uiout;
7895
7896 print_stop_location (&last);
7897
7898 /* Display the auto-display expressions. */
7899 do_displays ();
7900
7901 do_cleanups (old_chain);
7902
7903 tp = inferior_thread ();
7904 if (tp->thread_fsm != NULL
7905 && thread_fsm_finished_p (tp->thread_fsm))
7906 {
7907 struct return_value_info *rv;
7908
7909 rv = thread_fsm_return_value (tp->thread_fsm);
7910 if (rv != NULL)
7911 print_return_value (uiout, rv);
7912 }
7913 }
7914
7915 /* See infrun.h. */
7916
7917 void
7918 maybe_remove_breakpoints (void)
7919 {
7920 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7921 {
7922 if (remove_breakpoints ())
7923 {
7924 target_terminal_ours_for_output ();
7925 printf_filtered (_("Cannot remove breakpoints because "
7926 "program is no longer writable.\nFurther "
7927 "execution is probably impossible.\n"));
7928 }
7929 }
7930 }
7931
7932 /* The execution context that just caused a normal stop. */
7933
7934 struct stop_context
7935 {
7936 /* The stop ID. */
7937 ULONGEST stop_id;
7938
7939 /* The event PTID. */
7940
7941 ptid_t ptid;
7942
7943 /* If stopp for a thread event, this is the thread that caused the
7944 stop. */
7945 struct thread_info *thread;
7946
7947 /* The inferior that caused the stop. */
7948 int inf_num;
7949 };
7950
7951 /* Returns a new stop context. If stopped for a thread event, this
7952 takes a strong reference to the thread. */
7953
7954 static struct stop_context *
7955 save_stop_context (void)
7956 {
7957 struct stop_context *sc = XNEW (struct stop_context);
7958
7959 sc->stop_id = get_stop_id ();
7960 sc->ptid = inferior_ptid;
7961 sc->inf_num = current_inferior ()->num;
7962
7963 if (!ptid_equal (inferior_ptid, null_ptid))
7964 {
7965 /* Take a strong reference so that the thread can't be deleted
7966 yet. */
7967 sc->thread = inferior_thread ();
7968 sc->thread->refcount++;
7969 }
7970 else
7971 sc->thread = NULL;
7972
7973 return sc;
7974 }
7975
7976 /* Release a stop context previously created with save_stop_context.
7977 Releases the strong reference to the thread as well. */
7978
7979 static void
7980 release_stop_context_cleanup (void *arg)
7981 {
7982 struct stop_context *sc = (struct stop_context *) arg;
7983
7984 if (sc->thread != NULL)
7985 sc->thread->refcount--;
7986 xfree (sc);
7987 }
7988
7989 /* Return true if the current context no longer matches the saved stop
7990 context. */
7991
7992 static int
7993 stop_context_changed (struct stop_context *prev)
7994 {
7995 if (!ptid_equal (prev->ptid, inferior_ptid))
7996 return 1;
7997 if (prev->inf_num != current_inferior ()->num)
7998 return 1;
7999 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8000 return 1;
8001 if (get_stop_id () != prev->stop_id)
8002 return 1;
8003 return 0;
8004 }
8005
8006 /* See infrun.h. */
8007
8008 int
8009 normal_stop (void)
8010 {
8011 struct target_waitstatus last;
8012 ptid_t last_ptid;
8013 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8014 ptid_t pid_ptid;
8015
8016 get_last_target_status (&last_ptid, &last);
8017
8018 new_stop_id ();
8019
8020 /* If an exception is thrown from this point on, make sure to
8021 propagate GDB's knowledge of the executing state to the
8022 frontend/user running state. A QUIT is an easy exception to see
8023 here, so do this before any filtered output. */
8024 if (!non_stop)
8025 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8026 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8027 || last.kind == TARGET_WAITKIND_EXITED)
8028 {
8029 /* On some targets, we may still have live threads in the
8030 inferior when we get a process exit event. E.g., for
8031 "checkpoint", when the current checkpoint/fork exits,
8032 linux-fork.c automatically switches to another fork from
8033 within target_mourn_inferior. */
8034 if (!ptid_equal (inferior_ptid, null_ptid))
8035 {
8036 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8037 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8038 }
8039 }
8040 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8041 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8042
8043 /* As we're presenting a stop, and potentially removing breakpoints,
8044 update the thread list so we can tell whether there are threads
8045 running on the target. With target remote, for example, we can
8046 only learn about new threads when we explicitly update the thread
8047 list. Do this before notifying the interpreters about signal
8048 stops, end of stepping ranges, etc., so that the "new thread"
8049 output is emitted before e.g., "Program received signal FOO",
8050 instead of after. */
8051 update_thread_list ();
8052
8053 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8054 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8055
8056 /* As with the notification of thread events, we want to delay
8057 notifying the user that we've switched thread context until
8058 the inferior actually stops.
8059
8060 There's no point in saying anything if the inferior has exited.
8061 Note that SIGNALLED here means "exited with a signal", not
8062 "received a signal".
8063
8064 Also skip saying anything in non-stop mode. In that mode, as we
8065 don't want GDB to switch threads behind the user's back, to avoid
8066 races where the user is typing a command to apply to thread x,
8067 but GDB switches to thread y before the user finishes entering
8068 the command, fetch_inferior_event installs a cleanup to restore
8069 the current thread back to the thread the user had selected right
8070 after this event is handled, so we're not really switching, only
8071 informing of a stop. */
8072 if (!non_stop
8073 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8074 && target_has_execution
8075 && last.kind != TARGET_WAITKIND_SIGNALLED
8076 && last.kind != TARGET_WAITKIND_EXITED
8077 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8078 {
8079 target_terminal_ours_for_output ();
8080 printf_filtered (_("[Switching to %s]\n"),
8081 target_pid_to_str (inferior_ptid));
8082 annotate_thread_changed ();
8083 previous_inferior_ptid = inferior_ptid;
8084 }
8085
8086 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8087 {
8088 gdb_assert (sync_execution || !target_can_async_p ());
8089
8090 target_terminal_ours_for_output ();
8091 printf_filtered (_("No unwaited-for children left.\n"));
8092 }
8093
8094 /* Note: this depends on the update_thread_list call above. */
8095 maybe_remove_breakpoints ();
8096
8097 /* If an auto-display called a function and that got a signal,
8098 delete that auto-display to avoid an infinite recursion. */
8099
8100 if (stopped_by_random_signal)
8101 disable_current_display ();
8102
8103 target_terminal_ours ();
8104 async_enable_stdin ();
8105
8106 /* Let the user/frontend see the threads as stopped. */
8107 do_cleanups (old_chain);
8108
8109 /* Select innermost stack frame - i.e., current frame is frame 0,
8110 and current location is based on that. Handle the case where the
8111 dummy call is returning after being stopped. E.g. the dummy call
8112 previously hit a breakpoint. (If the dummy call returns
8113 normally, we won't reach here.) Do this before the stop hook is
8114 run, so that it doesn't get to see the temporary dummy frame,
8115 which is not where we'll present the stop. */
8116 if (has_stack_frames ())
8117 {
8118 if (stop_stack_dummy == STOP_STACK_DUMMY)
8119 {
8120 /* Pop the empty frame that contains the stack dummy. This
8121 also restores inferior state prior to the call (struct
8122 infcall_suspend_state). */
8123 struct frame_info *frame = get_current_frame ();
8124
8125 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8126 frame_pop (frame);
8127 /* frame_pop calls reinit_frame_cache as the last thing it
8128 does which means there's now no selected frame. */
8129 }
8130
8131 select_frame (get_current_frame ());
8132
8133 /* Set the current source location. */
8134 set_current_sal_from_frame (get_current_frame ());
8135 }
8136
8137 /* Look up the hook_stop and run it (CLI internally handles problem
8138 of stop_command's pre-hook not existing). */
8139 if (stop_command != NULL)
8140 {
8141 struct stop_context *saved_context = save_stop_context ();
8142 struct cleanup *old_chain
8143 = make_cleanup (release_stop_context_cleanup, saved_context);
8144
8145 catch_errors (hook_stop_stub, stop_command,
8146 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8147
8148 /* If the stop hook resumes the target, then there's no point in
8149 trying to notify about the previous stop; its context is
8150 gone. Likewise if the command switches thread or inferior --
8151 the observers would print a stop for the wrong
8152 thread/inferior. */
8153 if (stop_context_changed (saved_context))
8154 {
8155 do_cleanups (old_chain);
8156 return 1;
8157 }
8158 do_cleanups (old_chain);
8159 }
8160
8161 /* Notify observers about the stop. This is where the interpreters
8162 print the stop event. */
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8165 stop_print_frame);
8166 else
8167 observer_notify_normal_stop (NULL, stop_print_frame);
8168
8169 annotate_stopped ();
8170
8171 if (target_has_execution)
8172 {
8173 if (last.kind != TARGET_WAITKIND_SIGNALLED
8174 && last.kind != TARGET_WAITKIND_EXITED)
8175 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8176 Delete any breakpoint that is to be deleted at the next stop. */
8177 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8178 }
8179
8180 /* Try to get rid of automatically added inferiors that are no
8181 longer needed. Keeping those around slows down things linearly.
8182 Note that this never removes the current inferior. */
8183 prune_inferiors ();
8184
8185 return 0;
8186 }
8187
8188 static int
8189 hook_stop_stub (void *cmd)
8190 {
8191 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8192 return (0);
8193 }
8194 \f
8195 int
8196 signal_stop_state (int signo)
8197 {
8198 return signal_stop[signo];
8199 }
8200
8201 int
8202 signal_print_state (int signo)
8203 {
8204 return signal_print[signo];
8205 }
8206
8207 int
8208 signal_pass_state (int signo)
8209 {
8210 return signal_program[signo];
8211 }
8212
8213 static void
8214 signal_cache_update (int signo)
8215 {
8216 if (signo == -1)
8217 {
8218 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8219 signal_cache_update (signo);
8220
8221 return;
8222 }
8223
8224 signal_pass[signo] = (signal_stop[signo] == 0
8225 && signal_print[signo] == 0
8226 && signal_program[signo] == 1
8227 && signal_catch[signo] == 0);
8228 }
8229
8230 int
8231 signal_stop_update (int signo, int state)
8232 {
8233 int ret = signal_stop[signo];
8234
8235 signal_stop[signo] = state;
8236 signal_cache_update (signo);
8237 return ret;
8238 }
8239
8240 int
8241 signal_print_update (int signo, int state)
8242 {
8243 int ret = signal_print[signo];
8244
8245 signal_print[signo] = state;
8246 signal_cache_update (signo);
8247 return ret;
8248 }
8249
8250 int
8251 signal_pass_update (int signo, int state)
8252 {
8253 int ret = signal_program[signo];
8254
8255 signal_program[signo] = state;
8256 signal_cache_update (signo);
8257 return ret;
8258 }
8259
8260 /* Update the global 'signal_catch' from INFO and notify the
8261 target. */
8262
8263 void
8264 signal_catch_update (const unsigned int *info)
8265 {
8266 int i;
8267
8268 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8269 signal_catch[i] = info[i] > 0;
8270 signal_cache_update (-1);
8271 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8272 }
8273
8274 static void
8275 sig_print_header (void)
8276 {
8277 printf_filtered (_("Signal Stop\tPrint\tPass "
8278 "to program\tDescription\n"));
8279 }
8280
8281 static void
8282 sig_print_info (enum gdb_signal oursig)
8283 {
8284 const char *name = gdb_signal_to_name (oursig);
8285 int name_padding = 13 - strlen (name);
8286
8287 if (name_padding <= 0)
8288 name_padding = 0;
8289
8290 printf_filtered ("%s", name);
8291 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8292 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8293 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8294 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8295 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8296 }
8297
8298 /* Specify how various signals in the inferior should be handled. */
8299
8300 static void
8301 handle_command (char *args, int from_tty)
8302 {
8303 char **argv;
8304 int digits, wordlen;
8305 int sigfirst, signum, siglast;
8306 enum gdb_signal oursig;
8307 int allsigs;
8308 int nsigs;
8309 unsigned char *sigs;
8310 struct cleanup *old_chain;
8311
8312 if (args == NULL)
8313 {
8314 error_no_arg (_("signal to handle"));
8315 }
8316
8317 /* Allocate and zero an array of flags for which signals to handle. */
8318
8319 nsigs = (int) GDB_SIGNAL_LAST;
8320 sigs = (unsigned char *) alloca (nsigs);
8321 memset (sigs, 0, nsigs);
8322
8323 /* Break the command line up into args. */
8324
8325 argv = gdb_buildargv (args);
8326 old_chain = make_cleanup_freeargv (argv);
8327
8328 /* Walk through the args, looking for signal oursigs, signal names, and
8329 actions. Signal numbers and signal names may be interspersed with
8330 actions, with the actions being performed for all signals cumulatively
8331 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8332
8333 while (*argv != NULL)
8334 {
8335 wordlen = strlen (*argv);
8336 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8337 {;
8338 }
8339 allsigs = 0;
8340 sigfirst = siglast = -1;
8341
8342 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8343 {
8344 /* Apply action to all signals except those used by the
8345 debugger. Silently skip those. */
8346 allsigs = 1;
8347 sigfirst = 0;
8348 siglast = nsigs - 1;
8349 }
8350 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8351 {
8352 SET_SIGS (nsigs, sigs, signal_stop);
8353 SET_SIGS (nsigs, sigs, signal_print);
8354 }
8355 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8356 {
8357 UNSET_SIGS (nsigs, sigs, signal_program);
8358 }
8359 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8360 {
8361 SET_SIGS (nsigs, sigs, signal_print);
8362 }
8363 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8364 {
8365 SET_SIGS (nsigs, sigs, signal_program);
8366 }
8367 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8368 {
8369 UNSET_SIGS (nsigs, sigs, signal_stop);
8370 }
8371 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8372 {
8373 SET_SIGS (nsigs, sigs, signal_program);
8374 }
8375 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8376 {
8377 UNSET_SIGS (nsigs, sigs, signal_print);
8378 UNSET_SIGS (nsigs, sigs, signal_stop);
8379 }
8380 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8381 {
8382 UNSET_SIGS (nsigs, sigs, signal_program);
8383 }
8384 else if (digits > 0)
8385 {
8386 /* It is numeric. The numeric signal refers to our own
8387 internal signal numbering from target.h, not to host/target
8388 signal number. This is a feature; users really should be
8389 using symbolic names anyway, and the common ones like
8390 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8391
8392 sigfirst = siglast = (int)
8393 gdb_signal_from_command (atoi (*argv));
8394 if ((*argv)[digits] == '-')
8395 {
8396 siglast = (int)
8397 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8398 }
8399 if (sigfirst > siglast)
8400 {
8401 /* Bet he didn't figure we'd think of this case... */
8402 signum = sigfirst;
8403 sigfirst = siglast;
8404 siglast = signum;
8405 }
8406 }
8407 else
8408 {
8409 oursig = gdb_signal_from_name (*argv);
8410 if (oursig != GDB_SIGNAL_UNKNOWN)
8411 {
8412 sigfirst = siglast = (int) oursig;
8413 }
8414 else
8415 {
8416 /* Not a number and not a recognized flag word => complain. */
8417 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8418 }
8419 }
8420
8421 /* If any signal numbers or symbol names were found, set flags for
8422 which signals to apply actions to. */
8423
8424 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8425 {
8426 switch ((enum gdb_signal) signum)
8427 {
8428 case GDB_SIGNAL_TRAP:
8429 case GDB_SIGNAL_INT:
8430 if (!allsigs && !sigs[signum])
8431 {
8432 if (query (_("%s is used by the debugger.\n\
8433 Are you sure you want to change it? "),
8434 gdb_signal_to_name ((enum gdb_signal) signum)))
8435 {
8436 sigs[signum] = 1;
8437 }
8438 else
8439 {
8440 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8441 gdb_flush (gdb_stdout);
8442 }
8443 }
8444 break;
8445 case GDB_SIGNAL_0:
8446 case GDB_SIGNAL_DEFAULT:
8447 case GDB_SIGNAL_UNKNOWN:
8448 /* Make sure that "all" doesn't print these. */
8449 break;
8450 default:
8451 sigs[signum] = 1;
8452 break;
8453 }
8454 }
8455
8456 argv++;
8457 }
8458
8459 for (signum = 0; signum < nsigs; signum++)
8460 if (sigs[signum])
8461 {
8462 signal_cache_update (-1);
8463 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8464 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8465
8466 if (from_tty)
8467 {
8468 /* Show the results. */
8469 sig_print_header ();
8470 for (; signum < nsigs; signum++)
8471 if (sigs[signum])
8472 sig_print_info ((enum gdb_signal) signum);
8473 }
8474
8475 break;
8476 }
8477
8478 do_cleanups (old_chain);
8479 }
8480
8481 /* Complete the "handle" command. */
8482
8483 static VEC (char_ptr) *
8484 handle_completer (struct cmd_list_element *ignore,
8485 const char *text, const char *word)
8486 {
8487 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8488 static const char * const keywords[] =
8489 {
8490 "all",
8491 "stop",
8492 "ignore",
8493 "print",
8494 "pass",
8495 "nostop",
8496 "noignore",
8497 "noprint",
8498 "nopass",
8499 NULL,
8500 };
8501
8502 vec_signals = signal_completer (ignore, text, word);
8503 vec_keywords = complete_on_enum (keywords, word, word);
8504
8505 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8506 VEC_free (char_ptr, vec_signals);
8507 VEC_free (char_ptr, vec_keywords);
8508 return return_val;
8509 }
8510
8511 enum gdb_signal
8512 gdb_signal_from_command (int num)
8513 {
8514 if (num >= 1 && num <= 15)
8515 return (enum gdb_signal) num;
8516 error (_("Only signals 1-15 are valid as numeric signals.\n\
8517 Use \"info signals\" for a list of symbolic signals."));
8518 }
8519
8520 /* Print current contents of the tables set by the handle command.
8521 It is possible we should just be printing signals actually used
8522 by the current target (but for things to work right when switching
8523 targets, all signals should be in the signal tables). */
8524
8525 static void
8526 signals_info (char *signum_exp, int from_tty)
8527 {
8528 enum gdb_signal oursig;
8529
8530 sig_print_header ();
8531
8532 if (signum_exp)
8533 {
8534 /* First see if this is a symbol name. */
8535 oursig = gdb_signal_from_name (signum_exp);
8536 if (oursig == GDB_SIGNAL_UNKNOWN)
8537 {
8538 /* No, try numeric. */
8539 oursig =
8540 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8541 }
8542 sig_print_info (oursig);
8543 return;
8544 }
8545
8546 printf_filtered ("\n");
8547 /* These ugly casts brought to you by the native VAX compiler. */
8548 for (oursig = GDB_SIGNAL_FIRST;
8549 (int) oursig < (int) GDB_SIGNAL_LAST;
8550 oursig = (enum gdb_signal) ((int) oursig + 1))
8551 {
8552 QUIT;
8553
8554 if (oursig != GDB_SIGNAL_UNKNOWN
8555 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8556 sig_print_info (oursig);
8557 }
8558
8559 printf_filtered (_("\nUse the \"handle\" command "
8560 "to change these tables.\n"));
8561 }
8562
8563 /* Check if it makes sense to read $_siginfo from the current thread
8564 at this point. If not, throw an error. */
8565
8566 static void
8567 validate_siginfo_access (void)
8568 {
8569 /* No current inferior, no siginfo. */
8570 if (ptid_equal (inferior_ptid, null_ptid))
8571 error (_("No thread selected."));
8572
8573 /* Don't try to read from a dead thread. */
8574 if (is_exited (inferior_ptid))
8575 error (_("The current thread has terminated"));
8576
8577 /* ... or from a spinning thread. */
8578 if (is_running (inferior_ptid))
8579 error (_("Selected thread is running."));
8580 }
8581
8582 /* The $_siginfo convenience variable is a bit special. We don't know
8583 for sure the type of the value until we actually have a chance to
8584 fetch the data. The type can change depending on gdbarch, so it is
8585 also dependent on which thread you have selected.
8586
8587 1. making $_siginfo be an internalvar that creates a new value on
8588 access.
8589
8590 2. making the value of $_siginfo be an lval_computed value. */
8591
8592 /* This function implements the lval_computed support for reading a
8593 $_siginfo value. */
8594
8595 static void
8596 siginfo_value_read (struct value *v)
8597 {
8598 LONGEST transferred;
8599
8600 validate_siginfo_access ();
8601
8602 transferred =
8603 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8604 NULL,
8605 value_contents_all_raw (v),
8606 value_offset (v),
8607 TYPE_LENGTH (value_type (v)));
8608
8609 if (transferred != TYPE_LENGTH (value_type (v)))
8610 error (_("Unable to read siginfo"));
8611 }
8612
8613 /* This function implements the lval_computed support for writing a
8614 $_siginfo value. */
8615
8616 static void
8617 siginfo_value_write (struct value *v, struct value *fromval)
8618 {
8619 LONGEST transferred;
8620
8621 validate_siginfo_access ();
8622
8623 transferred = target_write (&current_target,
8624 TARGET_OBJECT_SIGNAL_INFO,
8625 NULL,
8626 value_contents_all_raw (fromval),
8627 value_offset (v),
8628 TYPE_LENGTH (value_type (fromval)));
8629
8630 if (transferred != TYPE_LENGTH (value_type (fromval)))
8631 error (_("Unable to write siginfo"));
8632 }
8633
8634 static const struct lval_funcs siginfo_value_funcs =
8635 {
8636 siginfo_value_read,
8637 siginfo_value_write
8638 };
8639
8640 /* Return a new value with the correct type for the siginfo object of
8641 the current thread using architecture GDBARCH. Return a void value
8642 if there's no object available. */
8643
8644 static struct value *
8645 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8646 void *ignore)
8647 {
8648 if (target_has_stack
8649 && !ptid_equal (inferior_ptid, null_ptid)
8650 && gdbarch_get_siginfo_type_p (gdbarch))
8651 {
8652 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8653
8654 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8655 }
8656
8657 return allocate_value (builtin_type (gdbarch)->builtin_void);
8658 }
8659
8660 \f
8661 /* infcall_suspend_state contains state about the program itself like its
8662 registers and any signal it received when it last stopped.
8663 This state must be restored regardless of how the inferior function call
8664 ends (either successfully, or after it hits a breakpoint or signal)
8665 if the program is to properly continue where it left off. */
8666
8667 struct infcall_suspend_state
8668 {
8669 struct thread_suspend_state thread_suspend;
8670
8671 /* Other fields: */
8672 CORE_ADDR stop_pc;
8673 struct regcache *registers;
8674
8675 /* Format of SIGINFO_DATA or NULL if it is not present. */
8676 struct gdbarch *siginfo_gdbarch;
8677
8678 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8679 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8680 content would be invalid. */
8681 gdb_byte *siginfo_data;
8682 };
8683
8684 struct infcall_suspend_state *
8685 save_infcall_suspend_state (void)
8686 {
8687 struct infcall_suspend_state *inf_state;
8688 struct thread_info *tp = inferior_thread ();
8689 struct regcache *regcache = get_current_regcache ();
8690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8691 gdb_byte *siginfo_data = NULL;
8692
8693 if (gdbarch_get_siginfo_type_p (gdbarch))
8694 {
8695 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8696 size_t len = TYPE_LENGTH (type);
8697 struct cleanup *back_to;
8698
8699 siginfo_data = (gdb_byte *) xmalloc (len);
8700 back_to = make_cleanup (xfree, siginfo_data);
8701
8702 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8703 siginfo_data, 0, len) == len)
8704 discard_cleanups (back_to);
8705 else
8706 {
8707 /* Errors ignored. */
8708 do_cleanups (back_to);
8709 siginfo_data = NULL;
8710 }
8711 }
8712
8713 inf_state = XCNEW (struct infcall_suspend_state);
8714
8715 if (siginfo_data)
8716 {
8717 inf_state->siginfo_gdbarch = gdbarch;
8718 inf_state->siginfo_data = siginfo_data;
8719 }
8720
8721 inf_state->thread_suspend = tp->suspend;
8722
8723 /* run_inferior_call will not use the signal due to its `proceed' call with
8724 GDB_SIGNAL_0 anyway. */
8725 tp->suspend.stop_signal = GDB_SIGNAL_0;
8726
8727 inf_state->stop_pc = stop_pc;
8728
8729 inf_state->registers = regcache_dup (regcache);
8730
8731 return inf_state;
8732 }
8733
8734 /* Restore inferior session state to INF_STATE. */
8735
8736 void
8737 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8738 {
8739 struct thread_info *tp = inferior_thread ();
8740 struct regcache *regcache = get_current_regcache ();
8741 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8742
8743 tp->suspend = inf_state->thread_suspend;
8744
8745 stop_pc = inf_state->stop_pc;
8746
8747 if (inf_state->siginfo_gdbarch == gdbarch)
8748 {
8749 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8750
8751 /* Errors ignored. */
8752 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8753 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8754 }
8755
8756 /* The inferior can be gone if the user types "print exit(0)"
8757 (and perhaps other times). */
8758 if (target_has_execution)
8759 /* NB: The register write goes through to the target. */
8760 regcache_cpy (regcache, inf_state->registers);
8761
8762 discard_infcall_suspend_state (inf_state);
8763 }
8764
8765 static void
8766 do_restore_infcall_suspend_state_cleanup (void *state)
8767 {
8768 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8769 }
8770
8771 struct cleanup *
8772 make_cleanup_restore_infcall_suspend_state
8773 (struct infcall_suspend_state *inf_state)
8774 {
8775 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8776 }
8777
8778 void
8779 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8780 {
8781 regcache_xfree (inf_state->registers);
8782 xfree (inf_state->siginfo_data);
8783 xfree (inf_state);
8784 }
8785
8786 struct regcache *
8787 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8788 {
8789 return inf_state->registers;
8790 }
8791
8792 /* infcall_control_state contains state regarding gdb's control of the
8793 inferior itself like stepping control. It also contains session state like
8794 the user's currently selected frame. */
8795
8796 struct infcall_control_state
8797 {
8798 struct thread_control_state thread_control;
8799 struct inferior_control_state inferior_control;
8800
8801 /* Other fields: */
8802 enum stop_stack_kind stop_stack_dummy;
8803 int stopped_by_random_signal;
8804
8805 /* ID if the selected frame when the inferior function call was made. */
8806 struct frame_id selected_frame_id;
8807 };
8808
8809 /* Save all of the information associated with the inferior<==>gdb
8810 connection. */
8811
8812 struct infcall_control_state *
8813 save_infcall_control_state (void)
8814 {
8815 struct infcall_control_state *inf_status =
8816 XNEW (struct infcall_control_state);
8817 struct thread_info *tp = inferior_thread ();
8818 struct inferior *inf = current_inferior ();
8819
8820 inf_status->thread_control = tp->control;
8821 inf_status->inferior_control = inf->control;
8822
8823 tp->control.step_resume_breakpoint = NULL;
8824 tp->control.exception_resume_breakpoint = NULL;
8825
8826 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8827 chain. If caller's caller is walking the chain, they'll be happier if we
8828 hand them back the original chain when restore_infcall_control_state is
8829 called. */
8830 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8831
8832 /* Other fields: */
8833 inf_status->stop_stack_dummy = stop_stack_dummy;
8834 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8835
8836 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8837
8838 return inf_status;
8839 }
8840
8841 static int
8842 restore_selected_frame (void *args)
8843 {
8844 struct frame_id *fid = (struct frame_id *) args;
8845 struct frame_info *frame;
8846
8847 frame = frame_find_by_id (*fid);
8848
8849 /* If inf_status->selected_frame_id is NULL, there was no previously
8850 selected frame. */
8851 if (frame == NULL)
8852 {
8853 warning (_("Unable to restore previously selected frame."));
8854 return 0;
8855 }
8856
8857 select_frame (frame);
8858
8859 return (1);
8860 }
8861
8862 /* Restore inferior session state to INF_STATUS. */
8863
8864 void
8865 restore_infcall_control_state (struct infcall_control_state *inf_status)
8866 {
8867 struct thread_info *tp = inferior_thread ();
8868 struct inferior *inf = current_inferior ();
8869
8870 if (tp->control.step_resume_breakpoint)
8871 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8872
8873 if (tp->control.exception_resume_breakpoint)
8874 tp->control.exception_resume_breakpoint->disposition
8875 = disp_del_at_next_stop;
8876
8877 /* Handle the bpstat_copy of the chain. */
8878 bpstat_clear (&tp->control.stop_bpstat);
8879
8880 tp->control = inf_status->thread_control;
8881 inf->control = inf_status->inferior_control;
8882
8883 /* Other fields: */
8884 stop_stack_dummy = inf_status->stop_stack_dummy;
8885 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8886
8887 if (target_has_stack)
8888 {
8889 /* The point of catch_errors is that if the stack is clobbered,
8890 walking the stack might encounter a garbage pointer and
8891 error() trying to dereference it. */
8892 if (catch_errors
8893 (restore_selected_frame, &inf_status->selected_frame_id,
8894 "Unable to restore previously selected frame:\n",
8895 RETURN_MASK_ERROR) == 0)
8896 /* Error in restoring the selected frame. Select the innermost
8897 frame. */
8898 select_frame (get_current_frame ());
8899 }
8900
8901 xfree (inf_status);
8902 }
8903
8904 static void
8905 do_restore_infcall_control_state_cleanup (void *sts)
8906 {
8907 restore_infcall_control_state ((struct infcall_control_state *) sts);
8908 }
8909
8910 struct cleanup *
8911 make_cleanup_restore_infcall_control_state
8912 (struct infcall_control_state *inf_status)
8913 {
8914 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8915 }
8916
8917 void
8918 discard_infcall_control_state (struct infcall_control_state *inf_status)
8919 {
8920 if (inf_status->thread_control.step_resume_breakpoint)
8921 inf_status->thread_control.step_resume_breakpoint->disposition
8922 = disp_del_at_next_stop;
8923
8924 if (inf_status->thread_control.exception_resume_breakpoint)
8925 inf_status->thread_control.exception_resume_breakpoint->disposition
8926 = disp_del_at_next_stop;
8927
8928 /* See save_infcall_control_state for info on stop_bpstat. */
8929 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8930
8931 xfree (inf_status);
8932 }
8933 \f
8934 /* restore_inferior_ptid() will be used by the cleanup machinery
8935 to restore the inferior_ptid value saved in a call to
8936 save_inferior_ptid(). */
8937
8938 static void
8939 restore_inferior_ptid (void *arg)
8940 {
8941 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
8942
8943 inferior_ptid = *saved_ptid_ptr;
8944 xfree (arg);
8945 }
8946
8947 /* Save the value of inferior_ptid so that it may be restored by a
8948 later call to do_cleanups(). Returns the struct cleanup pointer
8949 needed for later doing the cleanup. */
8950
8951 struct cleanup *
8952 save_inferior_ptid (void)
8953 {
8954 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8955
8956 *saved_ptid_ptr = inferior_ptid;
8957 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8958 }
8959
8960 /* See infrun.h. */
8961
8962 void
8963 clear_exit_convenience_vars (void)
8964 {
8965 clear_internalvar (lookup_internalvar ("_exitsignal"));
8966 clear_internalvar (lookup_internalvar ("_exitcode"));
8967 }
8968 \f
8969
8970 /* User interface for reverse debugging:
8971 Set exec-direction / show exec-direction commands
8972 (returns error unless target implements to_set_exec_direction method). */
8973
8974 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8975 static const char exec_forward[] = "forward";
8976 static const char exec_reverse[] = "reverse";
8977 static const char *exec_direction = exec_forward;
8978 static const char *const exec_direction_names[] = {
8979 exec_forward,
8980 exec_reverse,
8981 NULL
8982 };
8983
8984 static void
8985 set_exec_direction_func (char *args, int from_tty,
8986 struct cmd_list_element *cmd)
8987 {
8988 if (target_can_execute_reverse)
8989 {
8990 if (!strcmp (exec_direction, exec_forward))
8991 execution_direction = EXEC_FORWARD;
8992 else if (!strcmp (exec_direction, exec_reverse))
8993 execution_direction = EXEC_REVERSE;
8994 }
8995 else
8996 {
8997 exec_direction = exec_forward;
8998 error (_("Target does not support this operation."));
8999 }
9000 }
9001
9002 static void
9003 show_exec_direction_func (struct ui_file *out, int from_tty,
9004 struct cmd_list_element *cmd, const char *value)
9005 {
9006 switch (execution_direction) {
9007 case EXEC_FORWARD:
9008 fprintf_filtered (out, _("Forward.\n"));
9009 break;
9010 case EXEC_REVERSE:
9011 fprintf_filtered (out, _("Reverse.\n"));
9012 break;
9013 default:
9014 internal_error (__FILE__, __LINE__,
9015 _("bogus execution_direction value: %d"),
9016 (int) execution_direction);
9017 }
9018 }
9019
9020 static void
9021 show_schedule_multiple (struct ui_file *file, int from_tty,
9022 struct cmd_list_element *c, const char *value)
9023 {
9024 fprintf_filtered (file, _("Resuming the execution of threads "
9025 "of all processes is %s.\n"), value);
9026 }
9027
9028 /* Implementation of `siginfo' variable. */
9029
9030 static const struct internalvar_funcs siginfo_funcs =
9031 {
9032 siginfo_make_value,
9033 NULL,
9034 NULL
9035 };
9036
9037 /* Callback for infrun's target events source. This is marked when a
9038 thread has a pending status to process. */
9039
9040 static void
9041 infrun_async_inferior_event_handler (gdb_client_data data)
9042 {
9043 inferior_event_handler (INF_REG_EVENT, NULL);
9044 }
9045
9046 void
9047 _initialize_infrun (void)
9048 {
9049 int i;
9050 int numsigs;
9051 struct cmd_list_element *c;
9052
9053 /* Register extra event sources in the event loop. */
9054 infrun_async_inferior_event_token
9055 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9056
9057 add_info ("signals", signals_info, _("\
9058 What debugger does when program gets various signals.\n\
9059 Specify a signal as argument to print info on that signal only."));
9060 add_info_alias ("handle", "signals", 0);
9061
9062 c = add_com ("handle", class_run, handle_command, _("\
9063 Specify how to handle signals.\n\
9064 Usage: handle SIGNAL [ACTIONS]\n\
9065 Args are signals and actions to apply to those signals.\n\
9066 If no actions are specified, the current settings for the specified signals\n\
9067 will be displayed instead.\n\
9068 \n\
9069 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9070 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9071 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9072 The special arg \"all\" is recognized to mean all signals except those\n\
9073 used by the debugger, typically SIGTRAP and SIGINT.\n\
9074 \n\
9075 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9076 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9077 Stop means reenter debugger if this signal happens (implies print).\n\
9078 Print means print a message if this signal happens.\n\
9079 Pass means let program see this signal; otherwise program doesn't know.\n\
9080 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9081 Pass and Stop may be combined.\n\
9082 \n\
9083 Multiple signals may be specified. Signal numbers and signal names\n\
9084 may be interspersed with actions, with the actions being performed for\n\
9085 all signals cumulatively specified."));
9086 set_cmd_completer (c, handle_completer);
9087
9088 if (!dbx_commands)
9089 stop_command = add_cmd ("stop", class_obscure,
9090 not_just_help_class_command, _("\
9091 There is no `stop' command, but you can set a hook on `stop'.\n\
9092 This allows you to set a list of commands to be run each time execution\n\
9093 of the program stops."), &cmdlist);
9094
9095 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9096 Set inferior debugging."), _("\
9097 Show inferior debugging."), _("\
9098 When non-zero, inferior specific debugging is enabled."),
9099 NULL,
9100 show_debug_infrun,
9101 &setdebuglist, &showdebuglist);
9102
9103 add_setshow_boolean_cmd ("displaced", class_maintenance,
9104 &debug_displaced, _("\
9105 Set displaced stepping debugging."), _("\
9106 Show displaced stepping debugging."), _("\
9107 When non-zero, displaced stepping specific debugging is enabled."),
9108 NULL,
9109 show_debug_displaced,
9110 &setdebuglist, &showdebuglist);
9111
9112 add_setshow_boolean_cmd ("non-stop", no_class,
9113 &non_stop_1, _("\
9114 Set whether gdb controls the inferior in non-stop mode."), _("\
9115 Show whether gdb controls the inferior in non-stop mode."), _("\
9116 When debugging a multi-threaded program and this setting is\n\
9117 off (the default, also called all-stop mode), when one thread stops\n\
9118 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9119 all other threads in the program while you interact with the thread of\n\
9120 interest. When you continue or step a thread, you can allow the other\n\
9121 threads to run, or have them remain stopped, but while you inspect any\n\
9122 thread's state, all threads stop.\n\
9123 \n\
9124 In non-stop mode, when one thread stops, other threads can continue\n\
9125 to run freely. You'll be able to step each thread independently,\n\
9126 leave it stopped or free to run as needed."),
9127 set_non_stop,
9128 show_non_stop,
9129 &setlist,
9130 &showlist);
9131
9132 numsigs = (int) GDB_SIGNAL_LAST;
9133 signal_stop = XNEWVEC (unsigned char, numsigs);
9134 signal_print = XNEWVEC (unsigned char, numsigs);
9135 signal_program = XNEWVEC (unsigned char, numsigs);
9136 signal_catch = XNEWVEC (unsigned char, numsigs);
9137 signal_pass = XNEWVEC (unsigned char, numsigs);
9138 for (i = 0; i < numsigs; i++)
9139 {
9140 signal_stop[i] = 1;
9141 signal_print[i] = 1;
9142 signal_program[i] = 1;
9143 signal_catch[i] = 0;
9144 }
9145
9146 /* Signals caused by debugger's own actions should not be given to
9147 the program afterwards.
9148
9149 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9150 explicitly specifies that it should be delivered to the target
9151 program. Typically, that would occur when a user is debugging a
9152 target monitor on a simulator: the target monitor sets a
9153 breakpoint; the simulator encounters this breakpoint and halts
9154 the simulation handing control to GDB; GDB, noting that the stop
9155 address doesn't map to any known breakpoint, returns control back
9156 to the simulator; the simulator then delivers the hardware
9157 equivalent of a GDB_SIGNAL_TRAP to the program being
9158 debugged. */
9159 signal_program[GDB_SIGNAL_TRAP] = 0;
9160 signal_program[GDB_SIGNAL_INT] = 0;
9161
9162 /* Signals that are not errors should not normally enter the debugger. */
9163 signal_stop[GDB_SIGNAL_ALRM] = 0;
9164 signal_print[GDB_SIGNAL_ALRM] = 0;
9165 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9166 signal_print[GDB_SIGNAL_VTALRM] = 0;
9167 signal_stop[GDB_SIGNAL_PROF] = 0;
9168 signal_print[GDB_SIGNAL_PROF] = 0;
9169 signal_stop[GDB_SIGNAL_CHLD] = 0;
9170 signal_print[GDB_SIGNAL_CHLD] = 0;
9171 signal_stop[GDB_SIGNAL_IO] = 0;
9172 signal_print[GDB_SIGNAL_IO] = 0;
9173 signal_stop[GDB_SIGNAL_POLL] = 0;
9174 signal_print[GDB_SIGNAL_POLL] = 0;
9175 signal_stop[GDB_SIGNAL_URG] = 0;
9176 signal_print[GDB_SIGNAL_URG] = 0;
9177 signal_stop[GDB_SIGNAL_WINCH] = 0;
9178 signal_print[GDB_SIGNAL_WINCH] = 0;
9179 signal_stop[GDB_SIGNAL_PRIO] = 0;
9180 signal_print[GDB_SIGNAL_PRIO] = 0;
9181
9182 /* These signals are used internally by user-level thread
9183 implementations. (See signal(5) on Solaris.) Like the above
9184 signals, a healthy program receives and handles them as part of
9185 its normal operation. */
9186 signal_stop[GDB_SIGNAL_LWP] = 0;
9187 signal_print[GDB_SIGNAL_LWP] = 0;
9188 signal_stop[GDB_SIGNAL_WAITING] = 0;
9189 signal_print[GDB_SIGNAL_WAITING] = 0;
9190 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9191 signal_print[GDB_SIGNAL_CANCEL] = 0;
9192
9193 /* Update cached state. */
9194 signal_cache_update (-1);
9195
9196 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9197 &stop_on_solib_events, _("\
9198 Set stopping for shared library events."), _("\
9199 Show stopping for shared library events."), _("\
9200 If nonzero, gdb will give control to the user when the dynamic linker\n\
9201 notifies gdb of shared library events. The most common event of interest\n\
9202 to the user would be loading/unloading of a new library."),
9203 set_stop_on_solib_events,
9204 show_stop_on_solib_events,
9205 &setlist, &showlist);
9206
9207 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9208 follow_fork_mode_kind_names,
9209 &follow_fork_mode_string, _("\
9210 Set debugger response to a program call of fork or vfork."), _("\
9211 Show debugger response to a program call of fork or vfork."), _("\
9212 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9213 parent - the original process is debugged after a fork\n\
9214 child - the new process is debugged after a fork\n\
9215 The unfollowed process will continue to run.\n\
9216 By default, the debugger will follow the parent process."),
9217 NULL,
9218 show_follow_fork_mode_string,
9219 &setlist, &showlist);
9220
9221 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9222 follow_exec_mode_names,
9223 &follow_exec_mode_string, _("\
9224 Set debugger response to a program call of exec."), _("\
9225 Show debugger response to a program call of exec."), _("\
9226 An exec call replaces the program image of a process.\n\
9227 \n\
9228 follow-exec-mode can be:\n\
9229 \n\
9230 new - the debugger creates a new inferior and rebinds the process\n\
9231 to this new inferior. The program the process was running before\n\
9232 the exec call can be restarted afterwards by restarting the original\n\
9233 inferior.\n\
9234 \n\
9235 same - the debugger keeps the process bound to the same inferior.\n\
9236 The new executable image replaces the previous executable loaded in\n\
9237 the inferior. Restarting the inferior after the exec call restarts\n\
9238 the executable the process was running after the exec call.\n\
9239 \n\
9240 By default, the debugger will use the same inferior."),
9241 NULL,
9242 show_follow_exec_mode_string,
9243 &setlist, &showlist);
9244
9245 add_setshow_enum_cmd ("scheduler-locking", class_run,
9246 scheduler_enums, &scheduler_mode, _("\
9247 Set mode for locking scheduler during execution."), _("\
9248 Show mode for locking scheduler during execution."), _("\
9249 off == no locking (threads may preempt at any time)\n\
9250 on == full locking (no thread except the current thread may run)\n\
9251 This applies to both normal execution and replay mode.\n\
9252 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9253 In this mode, other threads may run during other commands.\n\
9254 This applies to both normal execution and replay mode.\n\
9255 replay == scheduler locked in replay mode and unlocked during normal execution."),
9256 set_schedlock_func, /* traps on target vector */
9257 show_scheduler_mode,
9258 &setlist, &showlist);
9259
9260 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9261 Set mode for resuming threads of all processes."), _("\
9262 Show mode for resuming threads of all processes."), _("\
9263 When on, execution commands (such as 'continue' or 'next') resume all\n\
9264 threads of all processes. When off (which is the default), execution\n\
9265 commands only resume the threads of the current process. The set of\n\
9266 threads that are resumed is further refined by the scheduler-locking\n\
9267 mode (see help set scheduler-locking)."),
9268 NULL,
9269 show_schedule_multiple,
9270 &setlist, &showlist);
9271
9272 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9273 Set mode of the step operation."), _("\
9274 Show mode of the step operation."), _("\
9275 When set, doing a step over a function without debug line information\n\
9276 will stop at the first instruction of that function. Otherwise, the\n\
9277 function is skipped and the step command stops at a different source line."),
9278 NULL,
9279 show_step_stop_if_no_debug,
9280 &setlist, &showlist);
9281
9282 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9283 &can_use_displaced_stepping, _("\
9284 Set debugger's willingness to use displaced stepping."), _("\
9285 Show debugger's willingness to use displaced stepping."), _("\
9286 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9287 supported by the target architecture. If off, gdb will not use displaced\n\
9288 stepping to step over breakpoints, even if such is supported by the target\n\
9289 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9290 if the target architecture supports it and non-stop mode is active, but will not\n\
9291 use it in all-stop mode (see help set non-stop)."),
9292 NULL,
9293 show_can_use_displaced_stepping,
9294 &setlist, &showlist);
9295
9296 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9297 &exec_direction, _("Set direction of execution.\n\
9298 Options are 'forward' or 'reverse'."),
9299 _("Show direction of execution (forward/reverse)."),
9300 _("Tells gdb whether to execute forward or backward."),
9301 set_exec_direction_func, show_exec_direction_func,
9302 &setlist, &showlist);
9303
9304 /* Set/show detach-on-fork: user-settable mode. */
9305
9306 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9307 Set whether gdb will detach the child of a fork."), _("\
9308 Show whether gdb will detach the child of a fork."), _("\
9309 Tells gdb whether to detach the child of a fork."),
9310 NULL, NULL, &setlist, &showlist);
9311
9312 /* Set/show disable address space randomization mode. */
9313
9314 add_setshow_boolean_cmd ("disable-randomization", class_support,
9315 &disable_randomization, _("\
9316 Set disabling of debuggee's virtual address space randomization."), _("\
9317 Show disabling of debuggee's virtual address space randomization."), _("\
9318 When this mode is on (which is the default), randomization of the virtual\n\
9319 address space is disabled. Standalone programs run with the randomization\n\
9320 enabled by default on some platforms."),
9321 &set_disable_randomization,
9322 &show_disable_randomization,
9323 &setlist, &showlist);
9324
9325 /* ptid initializations */
9326 inferior_ptid = null_ptid;
9327 target_last_wait_ptid = minus_one_ptid;
9328
9329 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9330 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9331 observer_attach_thread_exit (infrun_thread_thread_exit);
9332 observer_attach_inferior_exit (infrun_inferior_exit);
9333
9334 /* Explicitly create without lookup, since that tries to create a
9335 value with a void typed value, and when we get here, gdbarch
9336 isn't initialized yet. At this point, we're quite sure there
9337 isn't another convenience variable of the same name. */
9338 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9339
9340 add_setshow_boolean_cmd ("observer", no_class,
9341 &observer_mode_1, _("\
9342 Set whether gdb controls the inferior in observer mode."), _("\
9343 Show whether gdb controls the inferior in observer mode."), _("\
9344 In observer mode, GDB can get data from the inferior, but not\n\
9345 affect its execution. Registers and memory may not be changed,\n\
9346 breakpoints may not be set, and the program cannot be interrupted\n\
9347 or signalled."),
9348 set_observer_mode,
9349 show_observer_mode,
9350 &setlist,
9351 &showlist);
9352 }
This page took 0.236445 seconds and 5 git commands to generate.