* infrun.c: Remove step_resume_{duplicate,shadow}. Replace
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Notes on the algorithm used in wait_for_inferior to determine if we
22 just did a subroutine call when stepping. We have the following
23 information at that point:
24
25 Current and previous (just before this step) pc.
26 Current and previous sp.
27 Current and previous start of current function.
28
29 If the starts of the functions don't match, then
30
31 a) We did a subroutine call.
32
33 In this case, the pc will be at the beginning of a function.
34
35 b) We did a subroutine return.
36
37 Otherwise.
38
39 c) We did a longjmp.
40
41 If we did a longjump, we were doing "nexti", since a next would
42 have attempted to skip over the assembly language routine in which
43 the longjmp is coded and would have simply been the equivalent of a
44 continue. I consider this ok behaivior. We'd like one of two
45 things to happen if we are doing a nexti through the longjmp()
46 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
47 above. Given that this is a special case, and that anybody who
48 thinks that the concept of sub calls is meaningful in the context
49 of a longjmp, I'll take either one. Let's see what happens.
50
51 Acts like a subroutine return. I can handle that with no problem
52 at all.
53
54 -->So: If the current and previous beginnings of the current
55 function don't match, *and* the pc is at the start of a function,
56 we've done a subroutine call. If the pc is not at the start of a
57 function, we *didn't* do a subroutine call.
58
59 -->If the beginnings of the current and previous function do match,
60 either:
61
62 a) We just did a recursive call.
63
64 In this case, we would be at the very beginning of a
65 function and 1) it will have a prologue (don't jump to
66 before prologue, or 2) (we assume here that it doesn't have
67 a prologue) there will have been a change in the stack
68 pointer over the last instruction. (Ie. it's got to put
69 the saved pc somewhere. The stack is the usual place. In
70 a recursive call a register is only an option if there's a
71 prologue to do something with it. This is even true on
72 register window machines; the prologue sets up the new
73 window. It might not be true on a register window machine
74 where the call instruction moved the register window
75 itself. Hmmm. One would hope that the stack pointer would
76 also change. If it doesn't, somebody send me a note, and
77 I'll work out a more general theory.
78 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
79 so) on all machines I'm aware of:
80
81 m68k: Call changes stack pointer. Regular jumps don't.
82
83 sparc: Recursive calls must have frames and therefor,
84 prologues.
85
86 vax: All calls have frames and hence change the
87 stack pointer.
88
89 b) We did a return from a recursive call. I don't see that we
90 have either the ability or the need to distinguish this
91 from an ordinary jump. The stack frame will be printed
92 when and if the frame pointer changes; if we are in a
93 function without a frame pointer, it's the users own
94 lookout.
95
96 c) We did a jump within a function. We assume that this is
97 true if we didn't do a recursive call.
98
99 d) We are in no-man's land ("I see no symbols here"). We
100 don't worry about this; it will make calls look like simple
101 jumps (and the stack frames will be printed when the frame
102 pointer moves), which is a reasonably non-violent response.
103 */
104
105 #include "defs.h"
106 #include <string.h>
107 #include <ctype.h>
108 #include "symtab.h"
109 #include "frame.h"
110 #include "inferior.h"
111 #include "breakpoint.h"
112 #include "wait.h"
113 #include "gdbcore.h"
114 #include "gdbcmd.h"
115 #include "target.h"
116
117 #include <signal.h>
118
119 /* unistd.h is needed to #define X_OK */
120 #ifdef USG
121 #include <unistd.h>
122 #else
123 #include <sys/file.h>
124 #endif
125
126 /* Prototypes for local functions */
127
128 static void
129 signals_info PARAMS ((char *, int));
130
131 static void
132 handle_command PARAMS ((char *, int));
133
134 static void
135 sig_print_info PARAMS ((int));
136
137 static void
138 sig_print_header PARAMS ((void));
139
140 static void
141 resume_cleanups PARAMS ((int));
142
143 static int
144 hook_stop_stub PARAMS ((char *));
145
146 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
147 program. It needs to examine the jmp_buf argument and extract the PC
148 from it. The return value is non-zero on success, zero otherwise. */
149 #ifndef GET_LONGJMP_TARGET
150 #define GET_LONGJMP_TARGET(PC_ADDR) 0
151 #endif
152
153
154 /* Some machines have trampoline code that sits between function callers
155 and the actual functions themselves. If this machine doesn't have
156 such things, disable their processing. */
157 #ifndef SKIP_TRAMPOLINE_CODE
158 #define SKIP_TRAMPOLINE_CODE(pc) 0
159 #endif
160
161 /* For SVR4 shared libraries, each call goes through a small piece of
162 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
163 to nonzero if we are current stopped in one of these. */
164 #ifndef IN_SOLIB_TRAMPOLINE
165 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
166 #endif
167
168 /* On some systems, the PC may be left pointing at an instruction that won't
169 actually be executed. This is usually indicated by a bit in the PSW. If
170 we find ourselves in such a state, then we step the target beyond the
171 nullified instruction before returning control to the user so as to avoid
172 confusion. */
173
174 #ifndef INSTRUCTION_NULLIFIED
175 #define INSTRUCTION_NULLIFIED 0
176 #endif
177
178 /* Tables of how to react to signals; the user sets them. */
179
180 static unsigned char *signal_stop;
181 static unsigned char *signal_print;
182 static unsigned char *signal_program;
183
184 #define SET_SIGS(nsigs,sigs,flags) \
185 do { \
186 int signum = (nsigs); \
187 while (signum-- > 0) \
188 if ((sigs)[signum]) \
189 (flags)[signum] = 1; \
190 } while (0)
191
192 #define UNSET_SIGS(nsigs,sigs,flags) \
193 do { \
194 int signum = (nsigs); \
195 while (signum-- > 0) \
196 if ((sigs)[signum]) \
197 (flags)[signum] = 0; \
198 } while (0)
199
200
201 /* Command list pointer for the "stop" placeholder. */
202
203 static struct cmd_list_element *stop_command;
204
205 /* Nonzero if breakpoints are now inserted in the inferior. */
206
207 static int breakpoints_inserted;
208
209 /* Function inferior was in as of last step command. */
210
211 static struct symbol *step_start_function;
212
213 /* Nonzero if we are expecting a trace trap and should proceed from it. */
214
215 static int trap_expected;
216
217 /* Nonzero if the next time we try to continue the inferior, it will
218 step one instruction and generate a spurious trace trap.
219 This is used to compensate for a bug in HP-UX. */
220
221 static int trap_expected_after_continue;
222
223 /* Nonzero means expecting a trace trap
224 and should stop the inferior and return silently when it happens. */
225
226 int stop_after_trap;
227
228 /* Nonzero means expecting a trap and caller will handle it themselves.
229 It is used after attach, due to attaching to a process;
230 when running in the shell before the child program has been exec'd;
231 and when running some kinds of remote stuff (FIXME?). */
232
233 int stop_soon_quietly;
234
235 /* Nonzero if pc has been changed by the debugger
236 since the inferior stopped. */
237
238 int pc_changed;
239
240 /* Nonzero if proceed is being used for a "finish" command or a similar
241 situation when stop_registers should be saved. */
242
243 int proceed_to_finish;
244
245 /* Save register contents here when about to pop a stack dummy frame,
246 if-and-only-if proceed_to_finish is set.
247 Thus this contains the return value from the called function (assuming
248 values are returned in a register). */
249
250 char stop_registers[REGISTER_BYTES];
251
252 /* Nonzero if program stopped due to error trying to insert breakpoints. */
253
254 static int breakpoints_failed;
255
256 /* Nonzero after stop if current stack frame should be printed. */
257
258 static int stop_print_frame;
259
260 #ifdef NO_SINGLE_STEP
261 extern int one_stepped; /* From machine dependent code */
262 extern void single_step (); /* Same. */
263 #endif /* NO_SINGLE_STEP */
264
265 \f
266 /* Things to clean up if we QUIT out of resume (). */
267 /* ARGSUSED */
268 static void
269 resume_cleanups (arg)
270 int arg;
271 {
272 normal_stop ();
273 }
274
275 /* Resume the inferior, but allow a QUIT. This is useful if the user
276 wants to interrupt some lengthy single-stepping operation
277 (for child processes, the SIGINT goes to the inferior, and so
278 we get a SIGINT random_signal, but for remote debugging and perhaps
279 other targets, that's not true).
280
281 STEP nonzero if we should step (zero to continue instead).
282 SIG is the signal to give the inferior (zero for none). */
283 void
284 resume (step, sig)
285 int step;
286 int sig;
287 {
288 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
289 QUIT;
290
291 #ifdef NO_SINGLE_STEP
292 if (step) {
293 single_step(sig); /* Do it the hard way, w/temp breakpoints */
294 step = 0; /* ...and don't ask hardware to do it. */
295 }
296 #endif
297
298 /* Handle any optimized stores to the inferior NOW... */
299 #ifdef DO_DEFERRED_STORES
300 DO_DEFERRED_STORES;
301 #endif
302
303 target_resume (step, sig);
304 discard_cleanups (old_cleanups);
305 }
306
307 \f
308 /* Clear out all variables saying what to do when inferior is continued.
309 First do this, then set the ones you want, then call `proceed'. */
310
311 void
312 clear_proceed_status ()
313 {
314 trap_expected = 0;
315 step_range_start = 0;
316 step_range_end = 0;
317 step_frame_address = 0;
318 step_over_calls = -1;
319 stop_after_trap = 0;
320 stop_soon_quietly = 0;
321 proceed_to_finish = 0;
322 breakpoint_proceeded = 1; /* We're about to proceed... */
323
324 /* Discard any remaining commands or status from previous stop. */
325 bpstat_clear (&stop_bpstat);
326 }
327
328 /* Basic routine for continuing the program in various fashions.
329
330 ADDR is the address to resume at, or -1 for resume where stopped.
331 SIGGNAL is the signal to give it, or 0 for none,
332 or -1 for act according to how it stopped.
333 STEP is nonzero if should trap after one instruction.
334 -1 means return after that and print nothing.
335 You should probably set various step_... variables
336 before calling here, if you are stepping.
337
338 You should call clear_proceed_status before calling proceed. */
339
340 void
341 proceed (addr, siggnal, step)
342 CORE_ADDR addr;
343 int siggnal;
344 int step;
345 {
346 int oneproc = 0;
347
348 if (step > 0)
349 step_start_function = find_pc_function (read_pc ());
350 if (step < 0)
351 stop_after_trap = 1;
352
353 if (addr == (CORE_ADDR)-1)
354 {
355 /* If there is a breakpoint at the address we will resume at,
356 step one instruction before inserting breakpoints
357 so that we do not stop right away. */
358
359 if (!pc_changed && breakpoint_here_p (read_pc ()))
360 oneproc = 1;
361 }
362 else
363 write_pc (addr);
364
365 if (trap_expected_after_continue)
366 {
367 /* If (step == 0), a trap will be automatically generated after
368 the first instruction is executed. Force step one
369 instruction to clear this condition. This should not occur
370 if step is nonzero, but it is harmless in that case. */
371 oneproc = 1;
372 trap_expected_after_continue = 0;
373 }
374
375 if (oneproc)
376 /* We will get a trace trap after one instruction.
377 Continue it automatically and insert breakpoints then. */
378 trap_expected = 1;
379 else
380 {
381 int temp = insert_breakpoints ();
382 if (temp)
383 {
384 print_sys_errmsg ("ptrace", temp);
385 error ("Cannot insert breakpoints.\n\
386 The same program may be running in another process.");
387 }
388 breakpoints_inserted = 1;
389 }
390
391 /* Install inferior's terminal modes. */
392 target_terminal_inferior ();
393
394 if (siggnal >= 0)
395 stop_signal = siggnal;
396 /* If this signal should not be seen by program,
397 give it zero. Used for debugging signals. */
398 else if (stop_signal < NSIG && !signal_program[stop_signal])
399 stop_signal= 0;
400
401 /* Resume inferior. */
402 resume (oneproc || step || bpstat_should_step (), stop_signal);
403
404 /* Wait for it to stop (if not standalone)
405 and in any case decode why it stopped, and act accordingly. */
406
407 wait_for_inferior ();
408 normal_stop ();
409 }
410
411 /* Record the pc and sp of the program the last time it stopped.
412 These are just used internally by wait_for_inferior, but need
413 to be preserved over calls to it and cleared when the inferior
414 is started. */
415 static CORE_ADDR prev_pc;
416 static CORE_ADDR prev_sp;
417 static CORE_ADDR prev_func_start;
418 static char *prev_func_name;
419
420 \f
421 /* Start remote-debugging of a machine over a serial link. */
422
423 void
424 start_remote ()
425 {
426 init_wait_for_inferior ();
427 clear_proceed_status ();
428 stop_soon_quietly = 1;
429 trap_expected = 0;
430 wait_for_inferior ();
431 normal_stop ();
432 }
433
434 /* Initialize static vars when a new inferior begins. */
435
436 void
437 init_wait_for_inferior ()
438 {
439 /* These are meaningless until the first time through wait_for_inferior. */
440 prev_pc = 0;
441 prev_sp = 0;
442 prev_func_start = 0;
443 prev_func_name = NULL;
444
445 trap_expected_after_continue = 0;
446 breakpoints_inserted = 0;
447 mark_breakpoints_out ();
448 stop_signal = 0; /* Don't confuse first call to proceed(). */
449 }
450
451 static void
452 delete_breakpoint_current_contents (arg)
453 PTR arg;
454 {
455 struct breakpoint **breakpointp = (struct breakpoint **)arg;
456 if (*breakpointp != NULL)
457 delete_breakpoint (*breakpointp);
458 }
459 \f
460 /* Wait for control to return from inferior to debugger.
461 If inferior gets a signal, we may decide to start it up again
462 instead of returning. That is why there is a loop in this function.
463 When this function actually returns it means the inferior
464 should be left stopped and GDB should read more commands. */
465
466 void
467 wait_for_inferior ()
468 {
469 struct cleanup *old_cleanups;
470 WAITTYPE w;
471 int another_trap;
472 int random_signal;
473 CORE_ADDR stop_sp;
474 CORE_ADDR stop_func_start;
475 char *stop_func_name;
476 CORE_ADDR prologue_pc, tmp;
477 struct symtab_and_line sal;
478 int remove_breakpoints_on_following_step = 0;
479 int current_line;
480 int handling_longjmp = 0; /* FIXME */
481 struct symtab *symtab;
482 struct breakpoint *step_resume_breakpoint = NULL;
483
484 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
485 &step_resume_breakpoint);
486 sal = find_pc_line(prev_pc, 0);
487 current_line = sal.line;
488
489 while (1)
490 {
491 /* Clean up saved state that will become invalid. */
492 pc_changed = 0;
493 flush_cached_frames ();
494 registers_changed ();
495
496 target_wait (&w);
497
498 #ifdef SIGTRAP_STOP_AFTER_LOAD
499
500 /* Somebody called load(2), and it gave us a "trap signal after load".
501 Ignore it gracefully. */
502
503 SIGTRAP_STOP_AFTER_LOAD (w);
504 #endif
505
506 /* See if the process still exists; clean up if it doesn't. */
507 if (WIFEXITED (w))
508 {
509 target_terminal_ours (); /* Must do this before mourn anyway */
510 if (WEXITSTATUS (w))
511 printf_filtered ("\nProgram exited with code 0%o.\n",
512 (unsigned int)WEXITSTATUS (w));
513 else
514 if (!batch_mode())
515 printf_filtered ("\nProgram exited normally.\n");
516 fflush (stdout);
517 target_mourn_inferior ();
518 #ifdef NO_SINGLE_STEP
519 one_stepped = 0;
520 #endif
521 stop_print_frame = 0;
522 break;
523 }
524 else if (!WIFSTOPPED (w))
525 {
526 char *signame;
527
528 stop_print_frame = 0;
529 stop_signal = WTERMSIG (w);
530 target_terminal_ours (); /* Must do this before mourn anyway */
531 target_kill (); /* kill mourns as well */
532 #ifdef PRINT_RANDOM_SIGNAL
533 printf_filtered ("\nProgram terminated: ");
534 PRINT_RANDOM_SIGNAL (stop_signal);
535 #else
536 printf_filtered ("\nProgram terminated with signal ");
537 signame = strsigno (stop_signal);
538 if (signame == NULL)
539 printf_filtered ("%d", stop_signal);
540 else
541 /* Do we need to print the number in addition to the name? */
542 printf_filtered ("%s (%d)", signame, stop_signal);
543 printf_filtered (", %s\n", safe_strsignal (stop_signal));
544 #endif
545 printf_filtered ("The program no longer exists.\n");
546 fflush (stdout);
547 #ifdef NO_SINGLE_STEP
548 one_stepped = 0;
549 #endif
550 break;
551 }
552
553 #ifdef NO_SINGLE_STEP
554 if (one_stepped)
555 single_step (0); /* This actually cleans up the ss */
556 #endif /* NO_SINGLE_STEP */
557
558 /* If PC is pointing at a nullified instruction, then step beyond it so that
559 the user won't be confused when GDB appears to be ready to execute it. */
560
561 if (INSTRUCTION_NULLIFIED)
562 {
563 resume (1, 0);
564 continue;
565 }
566
567 stop_pc = read_pc ();
568 set_current_frame ( create_new_frame (read_fp (),
569 read_pc ()));
570
571 stop_frame_address = FRAME_FP (get_current_frame ());
572 stop_sp = read_sp ();
573 stop_func_start = 0;
574 stop_func_name = 0;
575 /* Don't care about return value; stop_func_start and stop_func_name
576 will both be 0 if it doesn't work. */
577 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start);
578 stop_func_start += FUNCTION_START_OFFSET;
579 another_trap = 0;
580 bpstat_clear (&stop_bpstat);
581 stop_step = 0;
582 stop_stack_dummy = 0;
583 stop_print_frame = 1;
584 random_signal = 0;
585 stopped_by_random_signal = 0;
586 breakpoints_failed = 0;
587
588 /* Look at the cause of the stop, and decide what to do.
589 The alternatives are:
590 1) break; to really stop and return to the debugger,
591 2) drop through to start up again
592 (set another_trap to 1 to single step once)
593 3) set random_signal to 1, and the decision between 1 and 2
594 will be made according to the signal handling tables. */
595
596 stop_signal = WSTOPSIG (w);
597
598 /* First, distinguish signals caused by the debugger from signals
599 that have to do with the program's own actions.
600 Note that breakpoint insns may cause SIGTRAP or SIGILL
601 or SIGEMT, depending on the operating system version.
602 Here we detect when a SIGILL or SIGEMT is really a breakpoint
603 and change it to SIGTRAP. */
604
605 if (stop_signal == SIGTRAP
606 || (breakpoints_inserted &&
607 (stop_signal == SIGILL
608 #ifdef SIGEMT
609 || stop_signal == SIGEMT
610 #endif
611 ))
612 || stop_soon_quietly)
613 {
614 if (stop_signal == SIGTRAP && stop_after_trap)
615 {
616 stop_print_frame = 0;
617 break;
618 }
619 if (stop_soon_quietly)
620 break;
621
622 /* Don't even think about breakpoints
623 if just proceeded over a breakpoint.
624
625 However, if we are trying to proceed over a breakpoint
626 and end up in sigtramp, then step_resume_breakpoint
627 will be set and we should check whether we've hit the
628 step breakpoint. */
629 if (stop_signal == SIGTRAP && trap_expected
630 && step_resume_breakpoint == NULL)
631 bpstat_clear (&stop_bpstat);
632 else
633 {
634 /* See if there is a breakpoint at the current PC. */
635 #if DECR_PC_AFTER_BREAK
636 /* Notice the case of stepping through a jump
637 that lands just after a breakpoint.
638 Don't confuse that with hitting the breakpoint.
639 What we check for is that 1) stepping is going on
640 and 2) the pc before the last insn does not match
641 the address of the breakpoint before the current pc. */
642 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
643 || !step_range_end
644 || step_resume_breakpoint != NULL
645 || handling_longjmp /* FIXME */)
646 #endif /* DECR_PC_AFTER_BREAK not zero */
647 {
648 stop_bpstat =
649 bpstat_stop_status (&stop_pc, stop_frame_address);
650 /* Following in case break condition called a
651 function. */
652 stop_print_frame = 1;
653 }
654 }
655
656 if (stop_signal == SIGTRAP)
657 random_signal
658 = !(bpstat_explains_signal (stop_bpstat)
659 || trap_expected
660 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
661 || (step_range_end && step_resume_breakpoint == NULL));
662 else
663 {
664 random_signal
665 = !(bpstat_explains_signal (stop_bpstat)
666 /* End of a stack dummy. Some systems (e.g. Sony
667 news) give another signal besides SIGTRAP,
668 so check here as well as above. */
669 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
670 );
671 if (!random_signal)
672 stop_signal = SIGTRAP;
673 }
674 }
675 else
676 random_signal = 1;
677
678 /* For the program's own signals, act according to
679 the signal handling tables. */
680
681 if (random_signal)
682 {
683 /* Signal not for debugging purposes. */
684 int printed = 0;
685
686 stopped_by_random_signal = 1;
687
688 if (stop_signal >= NSIG
689 || signal_print[stop_signal])
690 {
691 char *signame;
692 printed = 1;
693 target_terminal_ours_for_output ();
694 #ifdef PRINT_RANDOM_SIGNAL
695 PRINT_RANDOM_SIGNAL (stop_signal);
696 #else
697 printf_filtered ("\nProgram received signal ");
698 signame = strsigno (stop_signal);
699 if (signame == NULL)
700 printf_filtered ("%d", stop_signal);
701 else
702 /* Do we need to print the number as well as the name? */
703 printf_filtered ("%s (%d)", signame, stop_signal);
704 printf_filtered (", %s\n", safe_strsignal (stop_signal));
705 #endif /* PRINT_RANDOM_SIGNAL */
706 fflush (stdout);
707 }
708 if (stop_signal >= NSIG
709 || signal_stop[stop_signal])
710 break;
711 /* If not going to stop, give terminal back
712 if we took it away. */
713 else if (printed)
714 target_terminal_inferior ();
715
716 /* Clear the signal if it should not be passed. */
717 if (signal_program[stop_signal] == 0)
718 stop_signal = 0;
719
720 /* I'm not sure whether this needs to be check_sigtramp2 or
721 whether it could/should be keep_going. */
722 goto check_sigtramp2;
723 }
724
725 /* Handle cases caused by hitting a breakpoint. */
726 {
727 CORE_ADDR jmp_buf_pc;
728 struct bpstat_what what;
729
730 what = bpstat_what (stop_bpstat);
731
732 switch (what.main_action)
733 {
734 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
735 /* If we hit the breakpoint at longjmp, disable it for the
736 duration of this command. Then, install a temporary
737 breakpoint at the target of the jmp_buf. */
738 disable_longjmp_breakpoint();
739 remove_breakpoints ();
740 breakpoints_inserted = 0;
741 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
742
743 /* Need to blow away step-resume breakpoint, as it
744 interferes with us */
745 if (step_resume_breakpoint != NULL)
746 {
747 delete_breakpoint (step_resume_breakpoint);
748 step_resume_breakpoint = NULL;
749 what.step_resume = 0;
750 }
751
752 #if 0
753 /* FIXME - Need to implement nested temporary breakpoints */
754 if (step_over_calls > 0)
755 set_longjmp_resume_breakpoint(jmp_buf_pc,
756 get_current_frame());
757 else
758 #endif /* 0 */
759 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
760 handling_longjmp = 1; /* FIXME */
761 goto keep_going;
762
763 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
764 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
765 remove_breakpoints ();
766 breakpoints_inserted = 0;
767 #if 0
768 /* FIXME - Need to implement nested temporary breakpoints */
769 if (step_over_calls
770 && (stop_frame_address
771 INNER_THAN step_frame_address))
772 {
773 another_trap = 1;
774 goto keep_going;
775 }
776 #endif /* 0 */
777 disable_longjmp_breakpoint();
778 handling_longjmp = 0; /* FIXME */
779 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
780 break;
781 /* else fallthrough */
782
783 case BPSTAT_WHAT_SINGLE:
784 if (breakpoints_inserted)
785 remove_breakpoints ();
786 breakpoints_inserted = 0;
787 another_trap = 1;
788 /* Still need to check other stuff, at least the case
789 where we are stepping and step out of the right range. */
790 break;
791
792 case BPSTAT_WHAT_STOP_NOISY:
793 stop_print_frame = 1;
794 /* We are about to nuke the step_resume_breakpoint via the
795 cleanup chain, so no need to worry about it here. */
796 goto stop_stepping;
797
798 case BPSTAT_WHAT_STOP_SILENT:
799 stop_print_frame = 0;
800 /* We are about to nuke the step_resume_breakpoint via the
801 cleanup chain, so no need to worry about it here. */
802 goto stop_stepping;
803
804 case BPSTAT_WHAT_KEEP_CHECKING:
805 break;
806 }
807
808 if (what.step_resume)
809 {
810 delete_breakpoint (step_resume_breakpoint);
811 step_resume_breakpoint = NULL;
812
813 /* If were waiting for a trap, hitting the step_resume_break
814 doesn't count as getting it. */
815 if (trap_expected)
816 another_trap = 1;
817 }
818 }
819
820 /* We come here if we hit a breakpoint but should not
821 stop for it. Possibly we also were stepping
822 and should stop for that. So fall through and
823 test for stepping. But, if not stepping,
824 do not stop. */
825
826 /* If this is the breakpoint at the end of a stack dummy,
827 just stop silently. */
828 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
829 {
830 stop_print_frame = 0;
831 stop_stack_dummy = 1;
832 #ifdef HP_OS_BUG
833 trap_expected_after_continue = 1;
834 #endif
835 break;
836 }
837
838 if (step_resume_breakpoint)
839 /* Having a step-resume breakpoint overrides anything
840 else having to do with stepping commands until
841 that breakpoint is reached. */
842 /* I suspect this could/should be keep_going, because if the
843 check_sigtramp2 check succeeds, then it will put in another
844 step_resume_breakpoint, and we aren't (yet) prepared to nest
845 them. */
846 goto check_sigtramp2;
847
848 if (step_range_end == 0)
849 /* Likewise if we aren't even stepping. */
850 /* I'm not sure whether this needs to be check_sigtramp2 or
851 whether it could/should be keep_going. */
852 goto check_sigtramp2;
853
854 /* If stepping through a line, keep going if still within it. */
855 if (stop_pc >= step_range_start
856 && stop_pc < step_range_end
857 /* The step range might include the start of the
858 function, so if we are at the start of the
859 step range and either the stack or frame pointers
860 just changed, we've stepped outside */
861 && !(stop_pc == step_range_start
862 && stop_frame_address
863 && (stop_sp INNER_THAN prev_sp
864 || stop_frame_address != step_frame_address)))
865 {
866 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
867 So definately need to check for sigtramp here. */
868 goto check_sigtramp2;
869 }
870
871 /* We stepped out of the stepping range. See if that was due
872 to a subroutine call that we should proceed to the end of. */
873
874 /* Did we just take a signal? */
875 if (IN_SIGTRAMP (stop_pc, stop_func_name)
876 && !IN_SIGTRAMP (prev_pc, prev_func_name))
877 {
878 /* This code is needed at least in the following case:
879 The user types "next" and then a signal arrives (before
880 the "next" is done). */
881 /* We've just taken a signal; go until we are back to
882 the point where we took it and one more. */
883 {
884 struct symtab_and_line sr_sal;
885
886 sr_sal.pc = prev_pc;
887 sr_sal.symtab = NULL;
888 sr_sal.line = 0;
889 step_resume_breakpoint =
890 set_momentary_breakpoint (sr_sal, get_current_frame (),
891 bp_step_resume);
892 if (breakpoints_inserted)
893 insert_breakpoints ();
894 }
895
896 /* If this is stepi or nexti, make sure that the stepping range
897 gets us past that instruction. */
898 if (step_range_end == 1)
899 /* FIXME: Does this run afoul of the code below which, if
900 we step into the middle of a line, resets the stepping
901 range? */
902 step_range_end = (step_range_start = prev_pc) + 1;
903
904 remove_breakpoints_on_following_step = 1;
905 goto keep_going;
906 }
907
908 if (stop_func_start)
909 {
910 /* Do this after the IN_SIGTRAMP check; it might give
911 an error. */
912 prologue_pc = stop_func_start;
913 SKIP_PROLOGUE (prologue_pc);
914 }
915
916 /* ==> See comments at top of file on this algorithm. <==*/
917
918 if ((stop_pc == stop_func_start
919 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
920 && (stop_func_start != prev_func_start
921 || prologue_pc != stop_func_start
922 || stop_sp != prev_sp))
923 {
924 /* It's a subroutine call. */
925
926 if (step_over_calls == 0)
927 {
928 /* I presume that step_over_calls is only 0 when we're
929 supposed to be stepping at the assembly language level
930 ("stepi"). Just stop. */
931 stop_step = 1;
932 break;
933 }
934
935 if (step_over_calls > 0)
936 /* We're doing a "next". */
937 goto step_over_function;
938
939 /* If we are in a function call trampoline (a stub between
940 the calling routine and the real function), locate the real
941 function. That's what tells us (a) whether we want to step
942 into it at all, and (b) what prologue we want to run to
943 the end of, if we do step into it. */
944 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
945 if (tmp != 0)
946 stop_func_start = tmp;
947
948 /* If we have line number information for the function we
949 are thinking of stepping into, step into it.
950
951 If there are several symtabs at that PC (e.g. with include
952 files), just want to know whether *any* of them have line
953 numbers. find_pc_line handles this. */
954 {
955 struct symtab_and_line tmp_sal;
956
957 tmp_sal = find_pc_line (stop_func_start, 0);
958 if (tmp_sal.line != 0)
959 goto step_into_function;
960 }
961
962 step_over_function:
963 /* A subroutine call has happened. */
964 {
965 /* Set a special breakpoint after the return */
966 struct symtab_and_line sr_sal;
967 sr_sal.pc =
968 ADDR_BITS_REMOVE
969 (SAVED_PC_AFTER_CALL (get_current_frame ()));
970 sr_sal.symtab = NULL;
971 sr_sal.line = 0;
972 step_resume_breakpoint =
973 set_momentary_breakpoint (sr_sal, get_current_frame (),
974 bp_step_resume);
975 if (breakpoints_inserted)
976 insert_breakpoints ();
977 }
978 goto keep_going;
979
980 step_into_function:
981 /* Subroutine call with source code we should not step over.
982 Do step to the first line of code in it. */
983 SKIP_PROLOGUE (stop_func_start);
984 sal = find_pc_line (stop_func_start, 0);
985 /* Use the step_resume_break to step until
986 the end of the prologue, even if that involves jumps
987 (as it seems to on the vax under 4.2). */
988 /* If the prologue ends in the middle of a source line,
989 continue to the end of that source line.
990 Otherwise, just go to end of prologue. */
991 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
992 /* no, don't either. It skips any code that's
993 legitimately on the first line. */
994 #else
995 if (sal.end && sal.pc != stop_func_start)
996 stop_func_start = sal.end;
997 #endif
998
999 if (stop_func_start == stop_pc)
1000 {
1001 /* We are already there: stop now. */
1002 stop_step = 1;
1003 break;
1004 }
1005 else
1006 /* Put the step-breakpoint there and go until there. */
1007 {
1008 struct symtab_and_line sr_sal;
1009
1010 sr_sal.pc = stop_func_start;
1011 sr_sal.symtab = NULL;
1012 sr_sal.line = 0;
1013 /* Do not specify what the fp should be when we stop
1014 since on some machines the prologue
1015 is where the new fp value is established. */
1016 step_resume_breakpoint =
1017 set_momentary_breakpoint (sr_sal, (CORE_ADDR)0,
1018 bp_step_resume);
1019 if (breakpoints_inserted)
1020 insert_breakpoints ();
1021
1022 /* And make sure stepping stops right away then. */
1023 step_range_end = step_range_start;
1024 }
1025 goto keep_going;
1026 }
1027
1028 /* We've wandered out of the step range (but haven't done a
1029 subroutine call or return). (Is that true? I think we get
1030 here if we did a return and maybe a longjmp). */
1031
1032 sal = find_pc_line(stop_pc, 0);
1033
1034 if (step_range_end == 1)
1035 {
1036 /* It is stepi or nexti. We always want to stop stepping after
1037 one instruction. */
1038 stop_step = 1;
1039 break;
1040 }
1041
1042 if (sal.line == 0)
1043 {
1044 /* We have no line number information. That means to stop
1045 stepping (does this always happen right after one instruction,
1046 when we do "s" in a function with no line numbers,
1047 or can this happen as a result of a return or longjmp?). */
1048 stop_step = 1;
1049 break;
1050 }
1051
1052 if (stop_pc == sal.pc && current_line != sal.line)
1053 {
1054 /* We are at the start of a different line. So stop. Note that
1055 we don't stop if we step into the middle of a different line.
1056 That is said to make things like for (;;) statements work
1057 better. */
1058 stop_step = 1;
1059 break;
1060 }
1061
1062 /* We aren't done stepping.
1063
1064 Optimize by setting the stepping range to the line.
1065 (We might not be in the original line, but if we entered a
1066 new line in mid-statement, we continue stepping. This makes
1067 things like for(;;) statements work better.) */
1068 step_range_start = sal.pc;
1069 step_range_end = sal.end;
1070 goto keep_going;
1071
1072 check_sigtramp2:
1073 if (trap_expected
1074 && IN_SIGTRAMP (stop_pc, stop_func_name)
1075 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1076 {
1077 /* What has happened here is that we have just stepped the inferior
1078 with a signal (because it is a signal which shouldn't make
1079 us stop), thus stepping into sigtramp.
1080
1081 So we need to set a step_resume_break_address breakpoint
1082 and continue until we hit it, and then step. FIXME: This should
1083 be more enduring than a step_resume breakpoint; we should know
1084 that we will later need to keep going rather than re-hitting
1085 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1086 it says "exceedingly difficult"). */
1087 struct symtab_and_line sr_sal;
1088
1089 sr_sal.pc = prev_pc;
1090 sr_sal.symtab = NULL;
1091 sr_sal.line = 0;
1092 step_resume_breakpoint =
1093 set_momentary_breakpoint (sr_sal, get_current_frame (),
1094 bp_step_resume);
1095 if (breakpoints_inserted)
1096 insert_breakpoints ();
1097
1098 remove_breakpoints_on_following_step = 1;
1099 another_trap = 1;
1100 }
1101
1102 keep_going:
1103 /* Come to this label when you need to resume the inferior.
1104 It's really much cleaner to do a goto than a maze of if-else
1105 conditions. */
1106
1107 /* Save the pc before execution, to compare with pc after stop. */
1108 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1109 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1110 BREAK is defined, the
1111 original pc would not have
1112 been at the start of a
1113 function. */
1114 prev_func_name = stop_func_name;
1115 prev_sp = stop_sp;
1116
1117 /* If we did not do break;, it means we should keep
1118 running the inferior and not return to debugger. */
1119
1120 if (trap_expected && stop_signal != SIGTRAP)
1121 {
1122 /* We took a signal (which we are supposed to pass through to
1123 the inferior, else we'd have done a break above) and we
1124 haven't yet gotten our trap. Simply continue. */
1125 resume ((step_range_end && step_resume_breakpoint == NULL)
1126 || (trap_expected && step_resume_breakpoint == NULL)
1127 || bpstat_should_step (),
1128 stop_signal);
1129 }
1130 else
1131 {
1132 /* Either the trap was not expected, but we are continuing
1133 anyway (the user asked that this signal be passed to the
1134 child)
1135 -- or --
1136 The signal was SIGTRAP, e.g. it was our signal, but we
1137 decided we should resume from it.
1138
1139 We're going to run this baby now!
1140
1141 Insert breakpoints now, unless we are trying
1142 to one-proceed past a breakpoint. */
1143 /* If we've just finished a special step resume and we don't
1144 want to hit a breakpoint, pull em out. */
1145 if (step_resume_breakpoint == NULL &&
1146 remove_breakpoints_on_following_step)
1147 {
1148 remove_breakpoints_on_following_step = 0;
1149 remove_breakpoints ();
1150 breakpoints_inserted = 0;
1151 }
1152 else if (!breakpoints_inserted &&
1153 (step_resume_breakpoint != NULL || !another_trap))
1154 {
1155 breakpoints_failed = insert_breakpoints ();
1156 if (breakpoints_failed)
1157 break;
1158 breakpoints_inserted = 1;
1159 }
1160
1161 trap_expected = another_trap;
1162
1163 if (stop_signal == SIGTRAP)
1164 stop_signal = 0;
1165
1166 #ifdef SHIFT_INST_REGS
1167 /* I'm not sure when this following segment applies. I do know, now,
1168 that we shouldn't rewrite the regs when we were stopped by a
1169 random signal from the inferior process. */
1170
1171 if (!bpstat_explains_signal (stop_bpstat)
1172 && (stop_signal != SIGCLD)
1173 && !stopped_by_random_signal)
1174 {
1175 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1176 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1177 if (pc_contents != npc_contents)
1178 {
1179 write_register (NNPC_REGNUM, npc_contents);
1180 write_register (NPC_REGNUM, pc_contents);
1181 }
1182 }
1183 #endif /* SHIFT_INST_REGS */
1184
1185 resume ((step_resume_breakpoint == NULL
1186 && !handling_longjmp
1187 && (step_range_end
1188 || trap_expected))
1189 || bpstat_should_step (),
1190 stop_signal);
1191 }
1192 }
1193
1194 stop_stepping:
1195 if (target_has_execution)
1196 {
1197 /* Assuming the inferior still exists, set these up for next
1198 time, just like we did above if we didn't break out of the
1199 loop. */
1200 prev_pc = read_pc ();
1201 prev_func_start = stop_func_start;
1202 prev_func_name = stop_func_name;
1203 prev_sp = stop_sp;
1204 }
1205 do_cleanups (old_cleanups);
1206 }
1207 \f
1208 /* Here to return control to GDB when the inferior stops for real.
1209 Print appropriate messages, remove breakpoints, give terminal our modes.
1210
1211 STOP_PRINT_FRAME nonzero means print the executing frame
1212 (pc, function, args, file, line number and line text).
1213 BREAKPOINTS_FAILED nonzero means stop was due to error
1214 attempting to insert breakpoints. */
1215
1216 void
1217 normal_stop ()
1218 {
1219 /* Make sure that the current_frame's pc is correct. This
1220 is a correction for setting up the frame info before doing
1221 DECR_PC_AFTER_BREAK */
1222 if (target_has_execution)
1223 (get_current_frame ())->pc = read_pc ();
1224
1225 if (breakpoints_failed)
1226 {
1227 target_terminal_ours_for_output ();
1228 print_sys_errmsg ("ptrace", breakpoints_failed);
1229 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1230 The same program may be running in another process.\n");
1231 }
1232
1233 if (target_has_execution && breakpoints_inserted)
1234 if (remove_breakpoints ())
1235 {
1236 target_terminal_ours_for_output ();
1237 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1238 It might be running in another process.\n\
1239 Further execution is probably impossible.\n");
1240 }
1241
1242 breakpoints_inserted = 0;
1243
1244 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1245 Delete any breakpoint that is to be deleted at the next stop. */
1246
1247 breakpoint_auto_delete (stop_bpstat);
1248
1249 /* If an auto-display called a function and that got a signal,
1250 delete that auto-display to avoid an infinite recursion. */
1251
1252 if (stopped_by_random_signal)
1253 disable_current_display ();
1254
1255 if (step_multi && stop_step)
1256 return;
1257
1258 target_terminal_ours ();
1259
1260 /* Look up the hook_stop and run it if it exists. */
1261
1262 if (stop_command->hook)
1263 {
1264 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1265 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1266 }
1267
1268 if (!target_has_stack)
1269 return;
1270
1271 /* Select innermost stack frame except on return from a stack dummy routine,
1272 or if the program has exited. Print it without a level number if
1273 we have changed functions or hit a breakpoint. Print source line
1274 if we have one. */
1275 if (!stop_stack_dummy)
1276 {
1277 select_frame (get_current_frame (), 0);
1278
1279 if (stop_print_frame)
1280 {
1281 int source_only;
1282
1283 source_only = bpstat_print (stop_bpstat);
1284 source_only = source_only ||
1285 ( stop_step
1286 && step_frame_address == stop_frame_address
1287 && step_start_function == find_pc_function (stop_pc));
1288
1289 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1290
1291 /* Display the auto-display expressions. */
1292 do_displays ();
1293 }
1294 }
1295
1296 /* Save the function value return registers, if we care.
1297 We might be about to restore their previous contents. */
1298 if (proceed_to_finish)
1299 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1300
1301 if (stop_stack_dummy)
1302 {
1303 /* Pop the empty frame that contains the stack dummy.
1304 POP_FRAME ends with a setting of the current frame, so we
1305 can use that next. */
1306 POP_FRAME;
1307 select_frame (get_current_frame (), 0);
1308 }
1309 }
1310
1311 static int
1312 hook_stop_stub (cmd)
1313 char *cmd;
1314 {
1315 execute_user_command ((struct cmd_list_element *)cmd, 0);
1316 return (0);
1317 }
1318 \f
1319 int signal_stop_state (signo)
1320 int signo;
1321 {
1322 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1323 }
1324
1325 int signal_print_state (signo)
1326 int signo;
1327 {
1328 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1329 }
1330
1331 int signal_pass_state (signo)
1332 int signo;
1333 {
1334 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1335 }
1336
1337 static void
1338 sig_print_header ()
1339 {
1340 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1341 }
1342
1343 static void
1344 sig_print_info (number)
1345 int number;
1346 {
1347 char *name;
1348
1349 if ((name = strsigno (number)) == NULL)
1350 printf_filtered ("%d\t\t", number);
1351 else
1352 printf_filtered ("%s (%d)\t", name, number);
1353 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1354 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1355 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1356 printf_filtered ("%s\n", safe_strsignal (number));
1357 }
1358
1359 /* Specify how various signals in the inferior should be handled. */
1360
1361 static void
1362 handle_command (args, from_tty)
1363 char *args;
1364 int from_tty;
1365 {
1366 char **argv;
1367 int digits, wordlen;
1368 int sigfirst, signum, siglast;
1369 int allsigs;
1370 int nsigs;
1371 unsigned char *sigs;
1372 struct cleanup *old_chain;
1373
1374 if (args == NULL)
1375 {
1376 error_no_arg ("signal to handle");
1377 }
1378
1379 /* Allocate and zero an array of flags for which signals to handle. */
1380
1381 nsigs = signo_max () + 1;
1382 sigs = (unsigned char *) alloca (nsigs);
1383 memset (sigs, 0, nsigs);
1384
1385 /* Break the command line up into args. */
1386
1387 argv = buildargv (args);
1388 if (argv == NULL)
1389 {
1390 nomem (0);
1391 }
1392 old_chain = make_cleanup (freeargv, (char *) argv);
1393
1394 /* Walk through the args, looking for signal numbers, signal names, and
1395 actions. Signal numbers and signal names may be interspersed with
1396 actions, with the actions being performed for all signals cumulatively
1397 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1398
1399 while (*argv != NULL)
1400 {
1401 wordlen = strlen (*argv);
1402 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1403 allsigs = 0;
1404 sigfirst = siglast = -1;
1405
1406 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1407 {
1408 /* Apply action to all signals except those used by the
1409 debugger. Silently skip those. */
1410 allsigs = 1;
1411 sigfirst = 0;
1412 siglast = nsigs - 1;
1413 }
1414 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1415 {
1416 SET_SIGS (nsigs, sigs, signal_stop);
1417 SET_SIGS (nsigs, sigs, signal_print);
1418 }
1419 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1420 {
1421 UNSET_SIGS (nsigs, sigs, signal_program);
1422 }
1423 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1424 {
1425 SET_SIGS (nsigs, sigs, signal_print);
1426 }
1427 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1428 {
1429 SET_SIGS (nsigs, sigs, signal_program);
1430 }
1431 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1432 {
1433 UNSET_SIGS (nsigs, sigs, signal_stop);
1434 }
1435 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1436 {
1437 SET_SIGS (nsigs, sigs, signal_program);
1438 }
1439 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1440 {
1441 UNSET_SIGS (nsigs, sigs, signal_print);
1442 UNSET_SIGS (nsigs, sigs, signal_stop);
1443 }
1444 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1445 {
1446 UNSET_SIGS (nsigs, sigs, signal_program);
1447 }
1448 else if (digits > 0)
1449 {
1450 sigfirst = siglast = atoi (*argv);
1451 if ((*argv)[digits] == '-')
1452 {
1453 siglast = atoi ((*argv) + digits + 1);
1454 }
1455 if (sigfirst > siglast)
1456 {
1457 /* Bet he didn't figure we'd think of this case... */
1458 signum = sigfirst;
1459 sigfirst = siglast;
1460 siglast = signum;
1461 }
1462 if (sigfirst < 0 || sigfirst >= nsigs)
1463 {
1464 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1465 }
1466 if (siglast < 0 || siglast >= nsigs)
1467 {
1468 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1469 }
1470 }
1471 else if ((signum = strtosigno (*argv)) != 0)
1472 {
1473 sigfirst = siglast = signum;
1474 }
1475 else
1476 {
1477 /* Not a number and not a recognized flag word => complain. */
1478 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1479 }
1480
1481 /* If any signal numbers or symbol names were found, set flags for
1482 which signals to apply actions to. */
1483
1484 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1485 {
1486 switch (signum)
1487 {
1488 case SIGTRAP:
1489 case SIGINT:
1490 if (!allsigs && !sigs[signum])
1491 {
1492 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1493 {
1494 sigs[signum] = 1;
1495 }
1496 else
1497 {
1498 printf ("Not confirmed, unchanged.\n");
1499 fflush (stdout);
1500 }
1501 }
1502 break;
1503 default:
1504 sigs[signum] = 1;
1505 break;
1506 }
1507 }
1508
1509 argv++;
1510 }
1511
1512 target_notice_signals();
1513
1514 if (from_tty)
1515 {
1516 /* Show the results. */
1517 sig_print_header ();
1518 for (signum = 0; signum < nsigs; signum++)
1519 {
1520 if (sigs[signum])
1521 {
1522 sig_print_info (signum);
1523 }
1524 }
1525 }
1526
1527 do_cleanups (old_chain);
1528 }
1529
1530 /* Print current contents of the tables set by the handle command. */
1531
1532 static void
1533 signals_info (signum_exp, from_tty)
1534 char *signum_exp;
1535 int from_tty;
1536 {
1537 register int i;
1538 sig_print_header ();
1539
1540 if (signum_exp)
1541 {
1542 /* First see if this is a symbol name. */
1543 i = strtosigno (signum_exp);
1544 if (i == 0)
1545 {
1546 /* Nope, maybe it's an address which evaluates to a signal
1547 number. */
1548 i = parse_and_eval_address (signum_exp);
1549 if (i >= NSIG || i < 0)
1550 error ("Signal number out of bounds.");
1551 }
1552 sig_print_info (i);
1553 return;
1554 }
1555
1556 printf_filtered ("\n");
1557 for (i = 0; i < NSIG; i++)
1558 {
1559 QUIT;
1560
1561 sig_print_info (i);
1562 }
1563
1564 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1565 }
1566 \f
1567 /* Save all of the information associated with the inferior<==>gdb
1568 connection. INF_STATUS is a pointer to a "struct inferior_status"
1569 (defined in inferior.h). */
1570
1571 void
1572 save_inferior_status (inf_status, restore_stack_info)
1573 struct inferior_status *inf_status;
1574 int restore_stack_info;
1575 {
1576 inf_status->pc_changed = pc_changed;
1577 inf_status->stop_signal = stop_signal;
1578 inf_status->stop_pc = stop_pc;
1579 inf_status->stop_frame_address = stop_frame_address;
1580 inf_status->stop_step = stop_step;
1581 inf_status->stop_stack_dummy = stop_stack_dummy;
1582 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1583 inf_status->trap_expected = trap_expected;
1584 inf_status->step_range_start = step_range_start;
1585 inf_status->step_range_end = step_range_end;
1586 inf_status->step_frame_address = step_frame_address;
1587 inf_status->step_over_calls = step_over_calls;
1588 inf_status->stop_after_trap = stop_after_trap;
1589 inf_status->stop_soon_quietly = stop_soon_quietly;
1590 /* Save original bpstat chain here; replace it with copy of chain.
1591 If caller's caller is walking the chain, they'll be happier if we
1592 hand them back the original chain when restore_i_s is called. */
1593 inf_status->stop_bpstat = stop_bpstat;
1594 stop_bpstat = bpstat_copy (stop_bpstat);
1595 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1596 inf_status->restore_stack_info = restore_stack_info;
1597 inf_status->proceed_to_finish = proceed_to_finish;
1598
1599 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1600
1601 record_selected_frame (&(inf_status->selected_frame_address),
1602 &(inf_status->selected_level));
1603 return;
1604 }
1605
1606 void
1607 restore_inferior_status (inf_status)
1608 struct inferior_status *inf_status;
1609 {
1610 FRAME fid;
1611 int level = inf_status->selected_level;
1612
1613 pc_changed = inf_status->pc_changed;
1614 stop_signal = inf_status->stop_signal;
1615 stop_pc = inf_status->stop_pc;
1616 stop_frame_address = inf_status->stop_frame_address;
1617 stop_step = inf_status->stop_step;
1618 stop_stack_dummy = inf_status->stop_stack_dummy;
1619 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1620 trap_expected = inf_status->trap_expected;
1621 step_range_start = inf_status->step_range_start;
1622 step_range_end = inf_status->step_range_end;
1623 step_frame_address = inf_status->step_frame_address;
1624 step_over_calls = inf_status->step_over_calls;
1625 stop_after_trap = inf_status->stop_after_trap;
1626 stop_soon_quietly = inf_status->stop_soon_quietly;
1627 bpstat_clear (&stop_bpstat);
1628 stop_bpstat = inf_status->stop_bpstat;
1629 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1630 proceed_to_finish = inf_status->proceed_to_finish;
1631
1632 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1633
1634 /* The inferior can be gone if the user types "print exit(0)"
1635 (and perhaps other times). */
1636 if (target_has_stack && inf_status->restore_stack_info)
1637 {
1638 fid = find_relative_frame (get_current_frame (),
1639 &level);
1640
1641 /* If inf_status->selected_frame_address is NULL, there was no
1642 previously selected frame. */
1643 if (fid == 0 ||
1644 FRAME_FP (fid) != inf_status->selected_frame_address ||
1645 level != 0)
1646 {
1647 #if 1
1648 /* I'm not sure this error message is a good idea. I have
1649 only seen it occur after "Can't continue previously
1650 requested operation" (we get called from do_cleanups), in
1651 which case it just adds insult to injury (one confusing
1652 error message after another. Besides which, does the
1653 user really care if we can't restore the previously
1654 selected frame? */
1655 fprintf (stderr, "Unable to restore previously selected frame.\n");
1656 #endif
1657 select_frame (get_current_frame (), 0);
1658 return;
1659 }
1660
1661 select_frame (fid, inf_status->selected_level);
1662 }
1663 }
1664
1665 \f
1666 void
1667 _initialize_infrun ()
1668 {
1669 register int i;
1670 register int numsigs;
1671
1672 add_info ("signals", signals_info,
1673 "What debugger does when program gets various signals.\n\
1674 Specify a signal number as argument to print info on that signal only.");
1675 add_info_alias ("handle", "signals", 0);
1676
1677 add_com ("handle", class_run, handle_command,
1678 "Specify how to handle a signal.\n\
1679 Args are signal numbers and actions to apply to those signals.\n\
1680 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1681 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1682 The special arg \"all\" is recognized to mean all signals except those\n\
1683 used by the debugger, typically SIGTRAP and SIGINT.\n\
1684 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1685 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1686 Stop means reenter debugger if this signal happens (implies print).\n\
1687 Print means print a message if this signal happens.\n\
1688 Pass means let program see this signal; otherwise program doesn't know.\n\
1689 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1690 Pass and Stop may be combined.");
1691
1692 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1693 "There is no `stop' command, but you can set a hook on `stop'.\n\
1694 This allows you to set a list of commands to be run each time execution\n\
1695 of the program stops.", &cmdlist);
1696
1697 numsigs = signo_max () + 1;
1698 signal_stop = (unsigned char *)
1699 xmalloc (sizeof (signal_stop[0]) * numsigs);
1700 signal_print = (unsigned char *)
1701 xmalloc (sizeof (signal_print[0]) * numsigs);
1702 signal_program = (unsigned char *)
1703 xmalloc (sizeof (signal_program[0]) * numsigs);
1704 for (i = 0; i < numsigs; i++)
1705 {
1706 signal_stop[i] = 1;
1707 signal_print[i] = 1;
1708 signal_program[i] = 1;
1709 }
1710
1711 /* Signals caused by debugger's own actions
1712 should not be given to the program afterwards. */
1713 signal_program[SIGTRAP] = 0;
1714 signal_program[SIGINT] = 0;
1715
1716 /* Signals that are not errors should not normally enter the debugger. */
1717 #ifdef SIGALRM
1718 signal_stop[SIGALRM] = 0;
1719 signal_print[SIGALRM] = 0;
1720 #endif /* SIGALRM */
1721 #ifdef SIGVTALRM
1722 signal_stop[SIGVTALRM] = 0;
1723 signal_print[SIGVTALRM] = 0;
1724 #endif /* SIGVTALRM */
1725 #ifdef SIGPROF
1726 signal_stop[SIGPROF] = 0;
1727 signal_print[SIGPROF] = 0;
1728 #endif /* SIGPROF */
1729 #ifdef SIGCHLD
1730 signal_stop[SIGCHLD] = 0;
1731 signal_print[SIGCHLD] = 0;
1732 #endif /* SIGCHLD */
1733 #ifdef SIGCLD
1734 signal_stop[SIGCLD] = 0;
1735 signal_print[SIGCLD] = 0;
1736 #endif /* SIGCLD */
1737 #ifdef SIGIO
1738 signal_stop[SIGIO] = 0;
1739 signal_print[SIGIO] = 0;
1740 #endif /* SIGIO */
1741 #ifdef SIGURG
1742 signal_stop[SIGURG] = 0;
1743 signal_print[SIGURG] = 0;
1744 #endif /* SIGURG */
1745 }
This page took 0.069194 seconds and 5 git commands to generate.