2009-06-18 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
79 void *data);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (int);
84
85 void _initialize_infrun (void);
86
87 void nullify_last_target_wait_ptid (void);
88
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
93 static void
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98 }
99
100 /* In asynchronous mode, but simulating synchronous execution. */
101
102 int sync_execution = 0;
103
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
106 running in. */
107
108 static ptid_t previous_inferior_ptid;
109
110 int debug_displaced = 0;
111 static void
112 show_debug_displaced (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
114 {
115 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
116 }
117
118 static int debug_infrun = 0;
119 static void
120 show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
124 }
125
126 /* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
133
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
137 dynamic linker.
138
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
144 function call.
145
146 in_solib_dynsym_resolve_code() says whether we're in the dynamic
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
151
152 in_solib_dynsym_resolve_code() can generally be implemented in a
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
155
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
163 inferior's state. */
164
165 /* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
167 dld itself).
168
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
172
173 #ifndef SOLIB_IN_DYNAMIC_LINKER
174 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175 #endif
176
177
178 /* Convert the #defines into values. This is temporary until wfi control
179 flow is completely sorted out. */
180
181 #ifndef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 0
183 #else
184 #undef CANNOT_STEP_HW_WATCHPOINTS
185 #define CANNOT_STEP_HW_WATCHPOINTS 1
186 #endif
187
188 /* Tables of how to react to signals; the user sets them. */
189
190 static unsigned char *signal_stop;
191 static unsigned char *signal_print;
192 static unsigned char *signal_program;
193
194 #define SET_SIGS(nsigs,sigs,flags) \
195 do { \
196 int signum = (nsigs); \
197 while (signum-- > 0) \
198 if ((sigs)[signum]) \
199 (flags)[signum] = 1; \
200 } while (0)
201
202 #define UNSET_SIGS(nsigs,sigs,flags) \
203 do { \
204 int signum = (nsigs); \
205 while (signum-- > 0) \
206 if ((sigs)[signum]) \
207 (flags)[signum] = 0; \
208 } while (0)
209
210 /* Value to pass to target_resume() to cause all threads to resume */
211
212 #define RESUME_ALL (pid_to_ptid (-1))
213
214 /* Command list pointer for the "stop" placeholder. */
215
216 static struct cmd_list_element *stop_command;
217
218 /* Function inferior was in as of last step command. */
219
220 static struct symbol *step_start_function;
221
222 /* Nonzero if we want to give control to the user when we're notified
223 of shared library events by the dynamic linker. */
224 static int stop_on_solib_events;
225 static void
226 show_stop_on_solib_events (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228 {
229 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
230 value);
231 }
232
233 /* Nonzero means expecting a trace trap
234 and should stop the inferior and return silently when it happens. */
235
236 int stop_after_trap;
237
238 /* Save register contents here when executing a "finish" command or are
239 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
240 Thus this contains the return value from the called function (assuming
241 values are returned in a register). */
242
243 struct regcache *stop_registers;
244
245 /* Nonzero after stop if current stack frame should be printed. */
246
247 static int stop_print_frame;
248
249 /* This is a cached copy of the pid/waitstatus of the last event
250 returned by target_wait()/deprecated_target_wait_hook(). This
251 information is returned by get_last_target_status(). */
252 static ptid_t target_last_wait_ptid;
253 static struct target_waitstatus target_last_waitstatus;
254
255 static void context_switch (ptid_t ptid);
256
257 void init_thread_stepping_state (struct thread_info *tss);
258
259 void init_infwait_state (void);
260
261 static const char follow_fork_mode_child[] = "child";
262 static const char follow_fork_mode_parent[] = "parent";
263
264 static const char *follow_fork_mode_kind_names[] = {
265 follow_fork_mode_child,
266 follow_fork_mode_parent,
267 NULL
268 };
269
270 static const char *follow_fork_mode_string = follow_fork_mode_parent;
271 static void
272 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274 {
275 fprintf_filtered (file, _("\
276 Debugger response to a program call of fork or vfork is \"%s\".\n"),
277 value);
278 }
279 \f
280
281 /* Tell the target to follow the fork we're stopped at. Returns true
282 if the inferior should be resumed; false, if the target for some
283 reason decided it's best not to resume. */
284
285 static int
286 follow_fork (void)
287 {
288 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
289 int should_resume = 1;
290 struct thread_info *tp;
291
292 /* Copy user stepping state to the new inferior thread. FIXME: the
293 followed fork child thread should have a copy of most of the
294 parent thread structure's run control related fields, not just these.
295 Initialized to avoid "may be used uninitialized" warnings from gcc. */
296 struct breakpoint *step_resume_breakpoint = NULL;
297 CORE_ADDR step_range_start = 0;
298 CORE_ADDR step_range_end = 0;
299 struct frame_id step_frame_id = { 0 };
300
301 if (!non_stop)
302 {
303 ptid_t wait_ptid;
304 struct target_waitstatus wait_status;
305
306 /* Get the last target status returned by target_wait(). */
307 get_last_target_status (&wait_ptid, &wait_status);
308
309 /* If not stopped at a fork event, then there's nothing else to
310 do. */
311 if (wait_status.kind != TARGET_WAITKIND_FORKED
312 && wait_status.kind != TARGET_WAITKIND_VFORKED)
313 return 1;
314
315 /* Check if we switched over from WAIT_PTID, since the event was
316 reported. */
317 if (!ptid_equal (wait_ptid, minus_one_ptid)
318 && !ptid_equal (inferior_ptid, wait_ptid))
319 {
320 /* We did. Switch back to WAIT_PTID thread, to tell the
321 target to follow it (in either direction). We'll
322 afterwards refuse to resume, and inform the user what
323 happened. */
324 switch_to_thread (wait_ptid);
325 should_resume = 0;
326 }
327 }
328
329 tp = inferior_thread ();
330
331 /* If there were any forks/vforks that were caught and are now to be
332 followed, then do so now. */
333 switch (tp->pending_follow.kind)
334 {
335 case TARGET_WAITKIND_FORKED:
336 case TARGET_WAITKIND_VFORKED:
337 {
338 ptid_t parent, child;
339
340 /* If the user did a next/step, etc, over a fork call,
341 preserve the stepping state in the fork child. */
342 if (follow_child && should_resume)
343 {
344 step_resume_breakpoint
345 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
346 step_range_start = tp->step_range_start;
347 step_range_end = tp->step_range_end;
348 step_frame_id = tp->step_frame_id;
349
350 /* For now, delete the parent's sr breakpoint, otherwise,
351 parent/child sr breakpoints are considered duplicates,
352 and the child version will not be installed. Remove
353 this when the breakpoints module becomes aware of
354 inferiors and address spaces. */
355 delete_step_resume_breakpoint (tp);
356 tp->step_range_start = 0;
357 tp->step_range_end = 0;
358 tp->step_frame_id = null_frame_id;
359 }
360
361 parent = inferior_ptid;
362 child = tp->pending_follow.value.related_pid;
363
364 /* Tell the target to do whatever is necessary to follow
365 either parent or child. */
366 if (target_follow_fork (follow_child))
367 {
368 /* Target refused to follow, or there's some other reason
369 we shouldn't resume. */
370 should_resume = 0;
371 }
372 else
373 {
374 /* This pending follow fork event is now handled, one way
375 or another. The previous selected thread may be gone
376 from the lists by now, but if it is still around, need
377 to clear the pending follow request. */
378 tp = find_thread_ptid (parent);
379 if (tp)
380 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
381
382 /* This makes sure we don't try to apply the "Switched
383 over from WAIT_PID" logic above. */
384 nullify_last_target_wait_ptid ();
385
386 /* If we followed the child, switch to it... */
387 if (follow_child)
388 {
389 switch_to_thread (child);
390
391 /* ... and preserve the stepping state, in case the
392 user was stepping over the fork call. */
393 if (should_resume)
394 {
395 tp = inferior_thread ();
396 tp->step_resume_breakpoint = step_resume_breakpoint;
397 tp->step_range_start = step_range_start;
398 tp->step_range_end = step_range_end;
399 tp->step_frame_id = step_frame_id;
400 }
401 else
402 {
403 /* If we get here, it was because we're trying to
404 resume from a fork catchpoint, but, the user
405 has switched threads away from the thread that
406 forked. In that case, the resume command
407 issued is most likely not applicable to the
408 child, so just warn, and refuse to resume. */
409 warning (_("\
410 Not resuming: switched threads before following fork child.\n"));
411 }
412
413 /* Reset breakpoints in the child as appropriate. */
414 follow_inferior_reset_breakpoints ();
415 }
416 else
417 switch_to_thread (parent);
418 }
419 }
420 break;
421 case TARGET_WAITKIND_SPURIOUS:
422 /* Nothing to follow. */
423 break;
424 default:
425 internal_error (__FILE__, __LINE__,
426 "Unexpected pending_follow.kind %d\n",
427 tp->pending_follow.kind);
428 break;
429 }
430
431 return should_resume;
432 }
433
434 void
435 follow_inferior_reset_breakpoints (void)
436 {
437 struct thread_info *tp = inferior_thread ();
438
439 /* Was there a step_resume breakpoint? (There was if the user
440 did a "next" at the fork() call.) If so, explicitly reset its
441 thread number.
442
443 step_resumes are a form of bp that are made to be per-thread.
444 Since we created the step_resume bp when the parent process
445 was being debugged, and now are switching to the child process,
446 from the breakpoint package's viewpoint, that's a switch of
447 "threads". We must update the bp's notion of which thread
448 it is for, or it'll be ignored when it triggers. */
449
450 if (tp->step_resume_breakpoint)
451 breakpoint_re_set_thread (tp->step_resume_breakpoint);
452
453 /* Reinsert all breakpoints in the child. The user may have set
454 breakpoints after catching the fork, in which case those
455 were never set in the child, but only in the parent. This makes
456 sure the inserted breakpoints match the breakpoint list. */
457
458 breakpoint_re_set ();
459 insert_breakpoints ();
460 }
461
462 /* EXECD_PATHNAME is assumed to be non-NULL. */
463
464 static void
465 follow_exec (ptid_t pid, char *execd_pathname)
466 {
467 struct target_ops *tgt;
468 struct thread_info *th = inferior_thread ();
469
470 /* This is an exec event that we actually wish to pay attention to.
471 Refresh our symbol table to the newly exec'd program, remove any
472 momentary bp's, etc.
473
474 If there are breakpoints, they aren't really inserted now,
475 since the exec() transformed our inferior into a fresh set
476 of instructions.
477
478 We want to preserve symbolic breakpoints on the list, since
479 we have hopes that they can be reset after the new a.out's
480 symbol table is read.
481
482 However, any "raw" breakpoints must be removed from the list
483 (e.g., the solib bp's), since their address is probably invalid
484 now.
485
486 And, we DON'T want to call delete_breakpoints() here, since
487 that may write the bp's "shadow contents" (the instruction
488 value that was overwritten witha TRAP instruction). Since
489 we now have a new a.out, those shadow contents aren't valid. */
490 update_breakpoints_after_exec ();
491
492 /* If there was one, it's gone now. We cannot truly step-to-next
493 statement through an exec(). */
494 th->step_resume_breakpoint = NULL;
495 th->step_range_start = 0;
496 th->step_range_end = 0;
497
498 /* The target reports the exec event to the main thread, even if
499 some other thread does the exec, and even if the main thread was
500 already stopped --- if debugging in non-stop mode, it's possible
501 the user had the main thread held stopped in the previous image
502 --- release it now. This is the same behavior as step-over-exec
503 with scheduler-locking on in all-stop mode. */
504 th->stop_requested = 0;
505
506 /* What is this a.out's name? */
507 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
508
509 /* We've followed the inferior through an exec. Therefore, the
510 inferior has essentially been killed & reborn. */
511
512 gdb_flush (gdb_stdout);
513
514 breakpoint_init_inferior (inf_execd);
515
516 if (gdb_sysroot && *gdb_sysroot)
517 {
518 char *name = alloca (strlen (gdb_sysroot)
519 + strlen (execd_pathname)
520 + 1);
521 strcpy (name, gdb_sysroot);
522 strcat (name, execd_pathname);
523 execd_pathname = name;
524 }
525
526 /* That a.out is now the one to use. */
527 exec_file_attach (execd_pathname, 0);
528
529 /* Reset the shared library package. This ensures that we get a
530 shlib event when the child reaches "_start", at which point the
531 dld will have had a chance to initialize the child. */
532 /* Also, loading a symbol file below may trigger symbol lookups, and
533 we don't want those to be satisfied by the libraries of the
534 previous incarnation of this process. */
535 no_shared_libraries (NULL, 0);
536
537 /* Load the main file's symbols. */
538 symbol_file_add_main (execd_pathname, 0);
539
540 #ifdef SOLIB_CREATE_INFERIOR_HOOK
541 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
542 #else
543 solib_create_inferior_hook ();
544 #endif
545
546 /* Reinsert all breakpoints. (Those which were symbolic have
547 been reset to the proper address in the new a.out, thanks
548 to symbol_file_command...) */
549 insert_breakpoints ();
550
551 /* The next resume of this inferior should bring it to the shlib
552 startup breakpoints. (If the user had also set bp's on
553 "main" from the old (parent) process, then they'll auto-
554 matically get reset there in the new process.) */
555 }
556
557 /* Non-zero if we just simulating a single-step. This is needed
558 because we cannot remove the breakpoints in the inferior process
559 until after the `wait' in `wait_for_inferior'. */
560 static int singlestep_breakpoints_inserted_p = 0;
561
562 /* The thread we inserted single-step breakpoints for. */
563 static ptid_t singlestep_ptid;
564
565 /* PC when we started this single-step. */
566 static CORE_ADDR singlestep_pc;
567
568 /* If another thread hit the singlestep breakpoint, we save the original
569 thread here so that we can resume single-stepping it later. */
570 static ptid_t saved_singlestep_ptid;
571 static int stepping_past_singlestep_breakpoint;
572
573 /* If not equal to null_ptid, this means that after stepping over breakpoint
574 is finished, we need to switch to deferred_step_ptid, and step it.
575
576 The use case is when one thread has hit a breakpoint, and then the user
577 has switched to another thread and issued 'step'. We need to step over
578 breakpoint in the thread which hit the breakpoint, but then continue
579 stepping the thread user has selected. */
580 static ptid_t deferred_step_ptid;
581 \f
582 /* Displaced stepping. */
583
584 /* In non-stop debugging mode, we must take special care to manage
585 breakpoints properly; in particular, the traditional strategy for
586 stepping a thread past a breakpoint it has hit is unsuitable.
587 'Displaced stepping' is a tactic for stepping one thread past a
588 breakpoint it has hit while ensuring that other threads running
589 concurrently will hit the breakpoint as they should.
590
591 The traditional way to step a thread T off a breakpoint in a
592 multi-threaded program in all-stop mode is as follows:
593
594 a0) Initially, all threads are stopped, and breakpoints are not
595 inserted.
596 a1) We single-step T, leaving breakpoints uninserted.
597 a2) We insert breakpoints, and resume all threads.
598
599 In non-stop debugging, however, this strategy is unsuitable: we
600 don't want to have to stop all threads in the system in order to
601 continue or step T past a breakpoint. Instead, we use displaced
602 stepping:
603
604 n0) Initially, T is stopped, other threads are running, and
605 breakpoints are inserted.
606 n1) We copy the instruction "under" the breakpoint to a separate
607 location, outside the main code stream, making any adjustments
608 to the instruction, register, and memory state as directed by
609 T's architecture.
610 n2) We single-step T over the instruction at its new location.
611 n3) We adjust the resulting register and memory state as directed
612 by T's architecture. This includes resetting T's PC to point
613 back into the main instruction stream.
614 n4) We resume T.
615
616 This approach depends on the following gdbarch methods:
617
618 - gdbarch_max_insn_length and gdbarch_displaced_step_location
619 indicate where to copy the instruction, and how much space must
620 be reserved there. We use these in step n1.
621
622 - gdbarch_displaced_step_copy_insn copies a instruction to a new
623 address, and makes any necessary adjustments to the instruction,
624 register contents, and memory. We use this in step n1.
625
626 - gdbarch_displaced_step_fixup adjusts registers and memory after
627 we have successfuly single-stepped the instruction, to yield the
628 same effect the instruction would have had if we had executed it
629 at its original address. We use this in step n3.
630
631 - gdbarch_displaced_step_free_closure provides cleanup.
632
633 The gdbarch_displaced_step_copy_insn and
634 gdbarch_displaced_step_fixup functions must be written so that
635 copying an instruction with gdbarch_displaced_step_copy_insn,
636 single-stepping across the copied instruction, and then applying
637 gdbarch_displaced_insn_fixup should have the same effects on the
638 thread's memory and registers as stepping the instruction in place
639 would have. Exactly which responsibilities fall to the copy and
640 which fall to the fixup is up to the author of those functions.
641
642 See the comments in gdbarch.sh for details.
643
644 Note that displaced stepping and software single-step cannot
645 currently be used in combination, although with some care I think
646 they could be made to. Software single-step works by placing
647 breakpoints on all possible subsequent instructions; if the
648 displaced instruction is a PC-relative jump, those breakpoints
649 could fall in very strange places --- on pages that aren't
650 executable, or at addresses that are not proper instruction
651 boundaries. (We do generally let other threads run while we wait
652 to hit the software single-step breakpoint, and they might
653 encounter such a corrupted instruction.) One way to work around
654 this would be to have gdbarch_displaced_step_copy_insn fully
655 simulate the effect of PC-relative instructions (and return NULL)
656 on architectures that use software single-stepping.
657
658 In non-stop mode, we can have independent and simultaneous step
659 requests, so more than one thread may need to simultaneously step
660 over a breakpoint. The current implementation assumes there is
661 only one scratch space per process. In this case, we have to
662 serialize access to the scratch space. If thread A wants to step
663 over a breakpoint, but we are currently waiting for some other
664 thread to complete a displaced step, we leave thread A stopped and
665 place it in the displaced_step_request_queue. Whenever a displaced
666 step finishes, we pick the next thread in the queue and start a new
667 displaced step operation on it. See displaced_step_prepare and
668 displaced_step_fixup for details. */
669
670 /* If this is not null_ptid, this is the thread carrying out a
671 displaced single-step. This thread's state will require fixing up
672 once it has completed its step. */
673 static ptid_t displaced_step_ptid;
674
675 struct displaced_step_request
676 {
677 ptid_t ptid;
678 struct displaced_step_request *next;
679 };
680
681 /* A queue of pending displaced stepping requests. */
682 struct displaced_step_request *displaced_step_request_queue;
683
684 /* The architecture the thread had when we stepped it. */
685 static struct gdbarch *displaced_step_gdbarch;
686
687 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
688 for post-step cleanup. */
689 static struct displaced_step_closure *displaced_step_closure;
690
691 /* The address of the original instruction, and the copy we made. */
692 static CORE_ADDR displaced_step_original, displaced_step_copy;
693
694 /* Saved contents of copy area. */
695 static gdb_byte *displaced_step_saved_copy;
696
697 /* Enum strings for "set|show displaced-stepping". */
698
699 static const char can_use_displaced_stepping_auto[] = "auto";
700 static const char can_use_displaced_stepping_on[] = "on";
701 static const char can_use_displaced_stepping_off[] = "off";
702 static const char *can_use_displaced_stepping_enum[] =
703 {
704 can_use_displaced_stepping_auto,
705 can_use_displaced_stepping_on,
706 can_use_displaced_stepping_off,
707 NULL,
708 };
709
710 /* If ON, and the architecture supports it, GDB will use displaced
711 stepping to step over breakpoints. If OFF, or if the architecture
712 doesn't support it, GDB will instead use the traditional
713 hold-and-step approach. If AUTO (which is the default), GDB will
714 decide which technique to use to step over breakpoints depending on
715 which of all-stop or non-stop mode is active --- displaced stepping
716 in non-stop mode; hold-and-step in all-stop mode. */
717
718 static const char *can_use_displaced_stepping =
719 can_use_displaced_stepping_auto;
720
721 static void
722 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
724 const char *value)
725 {
726 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
727 fprintf_filtered (file, _("\
728 Debugger's willingness to use displaced stepping to step over \
729 breakpoints is %s (currently %s).\n"),
730 value, non_stop ? "on" : "off");
731 else
732 fprintf_filtered (file, _("\
733 Debugger's willingness to use displaced stepping to step over \
734 breakpoints is %s.\n"), value);
735 }
736
737 /* Return non-zero if displaced stepping can/should be used to step
738 over breakpoints. */
739
740 static int
741 use_displaced_stepping (struct gdbarch *gdbarch)
742 {
743 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
744 && non_stop)
745 || can_use_displaced_stepping == can_use_displaced_stepping_on)
746 && gdbarch_displaced_step_copy_insn_p (gdbarch)
747 && !RECORD_IS_USED);
748 }
749
750 /* Clean out any stray displaced stepping state. */
751 static void
752 displaced_step_clear (void)
753 {
754 /* Indicate that there is no cleanup pending. */
755 displaced_step_ptid = null_ptid;
756
757 if (displaced_step_closure)
758 {
759 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
760 displaced_step_closure);
761 displaced_step_closure = NULL;
762 }
763 }
764
765 static void
766 displaced_step_clear_cleanup (void *ignore)
767 {
768 displaced_step_clear ();
769 }
770
771 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
772 void
773 displaced_step_dump_bytes (struct ui_file *file,
774 const gdb_byte *buf,
775 size_t len)
776 {
777 int i;
778
779 for (i = 0; i < len; i++)
780 fprintf_unfiltered (file, "%02x ", buf[i]);
781 fputs_unfiltered ("\n", file);
782 }
783
784 /* Prepare to single-step, using displaced stepping.
785
786 Note that we cannot use displaced stepping when we have a signal to
787 deliver. If we have a signal to deliver and an instruction to step
788 over, then after the step, there will be no indication from the
789 target whether the thread entered a signal handler or ignored the
790 signal and stepped over the instruction successfully --- both cases
791 result in a simple SIGTRAP. In the first case we mustn't do a
792 fixup, and in the second case we must --- but we can't tell which.
793 Comments in the code for 'random signals' in handle_inferior_event
794 explain how we handle this case instead.
795
796 Returns 1 if preparing was successful -- this thread is going to be
797 stepped now; or 0 if displaced stepping this thread got queued. */
798 static int
799 displaced_step_prepare (ptid_t ptid)
800 {
801 struct cleanup *old_cleanups, *ignore_cleanups;
802 struct regcache *regcache = get_thread_regcache (ptid);
803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
804 CORE_ADDR original, copy;
805 ULONGEST len;
806 struct displaced_step_closure *closure;
807
808 /* We should never reach this function if the architecture does not
809 support displaced stepping. */
810 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
811
812 /* For the first cut, we're displaced stepping one thread at a
813 time. */
814
815 if (!ptid_equal (displaced_step_ptid, null_ptid))
816 {
817 /* Already waiting for a displaced step to finish. Defer this
818 request and place in queue. */
819 struct displaced_step_request *req, *new_req;
820
821 if (debug_displaced)
822 fprintf_unfiltered (gdb_stdlog,
823 "displaced: defering step of %s\n",
824 target_pid_to_str (ptid));
825
826 new_req = xmalloc (sizeof (*new_req));
827 new_req->ptid = ptid;
828 new_req->next = NULL;
829
830 if (displaced_step_request_queue)
831 {
832 for (req = displaced_step_request_queue;
833 req && req->next;
834 req = req->next)
835 ;
836 req->next = new_req;
837 }
838 else
839 displaced_step_request_queue = new_req;
840
841 return 0;
842 }
843 else
844 {
845 if (debug_displaced)
846 fprintf_unfiltered (gdb_stdlog,
847 "displaced: stepping %s now\n",
848 target_pid_to_str (ptid));
849 }
850
851 displaced_step_clear ();
852
853 old_cleanups = save_inferior_ptid ();
854 inferior_ptid = ptid;
855
856 original = regcache_read_pc (regcache);
857
858 copy = gdbarch_displaced_step_location (gdbarch);
859 len = gdbarch_max_insn_length (gdbarch);
860
861 /* Save the original contents of the copy area. */
862 displaced_step_saved_copy = xmalloc (len);
863 ignore_cleanups = make_cleanup (free_current_contents,
864 &displaced_step_saved_copy);
865 read_memory (copy, displaced_step_saved_copy, len);
866 if (debug_displaced)
867 {
868 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
869 paddr_nz (copy));
870 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
871 };
872
873 closure = gdbarch_displaced_step_copy_insn (gdbarch,
874 original, copy, regcache);
875
876 /* We don't support the fully-simulated case at present. */
877 gdb_assert (closure);
878
879 /* Save the information we need to fix things up if the step
880 succeeds. */
881 displaced_step_ptid = ptid;
882 displaced_step_gdbarch = gdbarch;
883 displaced_step_closure = closure;
884 displaced_step_original = original;
885 displaced_step_copy = copy;
886
887 make_cleanup (displaced_step_clear_cleanup, 0);
888
889 /* Resume execution at the copy. */
890 regcache_write_pc (regcache, copy);
891
892 discard_cleanups (ignore_cleanups);
893
894 do_cleanups (old_cleanups);
895
896 if (debug_displaced)
897 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
898 paddr_nz (copy));
899
900 return 1;
901 }
902
903 static void
904 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
905 {
906 struct cleanup *ptid_cleanup = save_inferior_ptid ();
907 inferior_ptid = ptid;
908 write_memory (memaddr, myaddr, len);
909 do_cleanups (ptid_cleanup);
910 }
911
912 static void
913 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
914 {
915 struct cleanup *old_cleanups;
916
917 /* Was this event for the pid we displaced? */
918 if (ptid_equal (displaced_step_ptid, null_ptid)
919 || ! ptid_equal (displaced_step_ptid, event_ptid))
920 return;
921
922 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
923
924 /* Restore the contents of the copy area. */
925 {
926 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
927 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
928 displaced_step_saved_copy, len);
929 if (debug_displaced)
930 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
931 paddr_nz (displaced_step_copy));
932 }
933
934 /* Did the instruction complete successfully? */
935 if (signal == TARGET_SIGNAL_TRAP)
936 {
937 /* Fix up the resulting state. */
938 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
939 displaced_step_closure,
940 displaced_step_original,
941 displaced_step_copy,
942 get_thread_regcache (displaced_step_ptid));
943 }
944 else
945 {
946 /* Since the instruction didn't complete, all we can do is
947 relocate the PC. */
948 struct regcache *regcache = get_thread_regcache (event_ptid);
949 CORE_ADDR pc = regcache_read_pc (regcache);
950 pc = displaced_step_original + (pc - displaced_step_copy);
951 regcache_write_pc (regcache, pc);
952 }
953
954 do_cleanups (old_cleanups);
955
956 displaced_step_ptid = null_ptid;
957
958 /* Are there any pending displaced stepping requests? If so, run
959 one now. */
960 while (displaced_step_request_queue)
961 {
962 struct displaced_step_request *head;
963 ptid_t ptid;
964 CORE_ADDR actual_pc;
965
966 head = displaced_step_request_queue;
967 ptid = head->ptid;
968 displaced_step_request_queue = head->next;
969 xfree (head);
970
971 context_switch (ptid);
972
973 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
974
975 if (breakpoint_here_p (actual_pc))
976 {
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
979 "displaced: stepping queued %s now\n",
980 target_pid_to_str (ptid));
981
982 displaced_step_prepare (ptid);
983
984 if (debug_displaced)
985 {
986 gdb_byte buf[4];
987
988 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
989 paddr_nz (actual_pc));
990 read_memory (actual_pc, buf, sizeof (buf));
991 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
992 }
993
994 target_resume (ptid, 1, TARGET_SIGNAL_0);
995
996 /* Done, we're stepping a thread. */
997 break;
998 }
999 else
1000 {
1001 int step;
1002 struct thread_info *tp = inferior_thread ();
1003
1004 /* The breakpoint we were sitting under has since been
1005 removed. */
1006 tp->trap_expected = 0;
1007
1008 /* Go back to what we were trying to do. */
1009 step = currently_stepping (tp);
1010
1011 if (debug_displaced)
1012 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1013 target_pid_to_str (tp->ptid), step);
1014
1015 target_resume (ptid, step, TARGET_SIGNAL_0);
1016 tp->stop_signal = TARGET_SIGNAL_0;
1017
1018 /* This request was discarded. See if there's any other
1019 thread waiting for its turn. */
1020 }
1021 }
1022 }
1023
1024 /* Update global variables holding ptids to hold NEW_PTID if they were
1025 holding OLD_PTID. */
1026 static void
1027 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1028 {
1029 struct displaced_step_request *it;
1030
1031 if (ptid_equal (inferior_ptid, old_ptid))
1032 inferior_ptid = new_ptid;
1033
1034 if (ptid_equal (singlestep_ptid, old_ptid))
1035 singlestep_ptid = new_ptid;
1036
1037 if (ptid_equal (displaced_step_ptid, old_ptid))
1038 displaced_step_ptid = new_ptid;
1039
1040 if (ptid_equal (deferred_step_ptid, old_ptid))
1041 deferred_step_ptid = new_ptid;
1042
1043 for (it = displaced_step_request_queue; it; it = it->next)
1044 if (ptid_equal (it->ptid, old_ptid))
1045 it->ptid = new_ptid;
1046 }
1047
1048 \f
1049 /* Resuming. */
1050
1051 /* Things to clean up if we QUIT out of resume (). */
1052 static void
1053 resume_cleanups (void *ignore)
1054 {
1055 normal_stop ();
1056 }
1057
1058 static const char schedlock_off[] = "off";
1059 static const char schedlock_on[] = "on";
1060 static const char schedlock_step[] = "step";
1061 static const char *scheduler_enums[] = {
1062 schedlock_off,
1063 schedlock_on,
1064 schedlock_step,
1065 NULL
1066 };
1067 static const char *scheduler_mode = schedlock_off;
1068 static void
1069 show_scheduler_mode (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071 {
1072 fprintf_filtered (file, _("\
1073 Mode for locking scheduler during execution is \"%s\".\n"),
1074 value);
1075 }
1076
1077 static void
1078 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1079 {
1080 if (!target_can_lock_scheduler)
1081 {
1082 scheduler_mode = schedlock_off;
1083 error (_("Target '%s' cannot support this command."), target_shortname);
1084 }
1085 }
1086
1087 /* True if execution commands resume all threads of all processes by
1088 default; otherwise, resume only threads of the current inferior
1089 process. */
1090 int sched_multi = 0;
1091
1092 /* Try to setup for software single stepping over the specified location.
1093 Return 1 if target_resume() should use hardware single step.
1094
1095 GDBARCH the current gdbarch.
1096 PC the location to step over. */
1097
1098 static int
1099 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1100 {
1101 int hw_step = 1;
1102
1103 if (gdbarch_software_single_step_p (gdbarch)
1104 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1105 {
1106 hw_step = 0;
1107 /* Do not pull these breakpoints until after a `wait' in
1108 `wait_for_inferior' */
1109 singlestep_breakpoints_inserted_p = 1;
1110 singlestep_ptid = inferior_ptid;
1111 singlestep_pc = pc;
1112 }
1113 return hw_step;
1114 }
1115
1116 /* Resume the inferior, but allow a QUIT. This is useful if the user
1117 wants to interrupt some lengthy single-stepping operation
1118 (for child processes, the SIGINT goes to the inferior, and so
1119 we get a SIGINT random_signal, but for remote debugging and perhaps
1120 other targets, that's not true).
1121
1122 STEP nonzero if we should step (zero to continue instead).
1123 SIG is the signal to give the inferior (zero for none). */
1124 void
1125 resume (int step, enum target_signal sig)
1126 {
1127 int should_resume = 1;
1128 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1129 struct regcache *regcache = get_current_regcache ();
1130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1131 struct thread_info *tp = inferior_thread ();
1132 CORE_ADDR pc = regcache_read_pc (regcache);
1133
1134 QUIT;
1135
1136 if (debug_infrun)
1137 fprintf_unfiltered (gdb_stdlog,
1138 "infrun: resume (step=%d, signal=%d), "
1139 "trap_expected=%d\n",
1140 step, sig, tp->trap_expected);
1141
1142 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1143 over an instruction that causes a page fault without triggering
1144 a hardware watchpoint. The kernel properly notices that it shouldn't
1145 stop, because the hardware watchpoint is not triggered, but it forgets
1146 the step request and continues the program normally.
1147 Work around the problem by removing hardware watchpoints if a step is
1148 requested, GDB will check for a hardware watchpoint trigger after the
1149 step anyway. */
1150 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1151 remove_hw_watchpoints ();
1152
1153
1154 /* Normally, by the time we reach `resume', the breakpoints are either
1155 removed or inserted, as appropriate. The exception is if we're sitting
1156 at a permanent breakpoint; we need to step over it, but permanent
1157 breakpoints can't be removed. So we have to test for it here. */
1158 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1159 {
1160 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1161 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1162 else
1163 error (_("\
1164 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1165 how to step past a permanent breakpoint on this architecture. Try using\n\
1166 a command like `return' or `jump' to continue execution."));
1167 }
1168
1169 /* If enabled, step over breakpoints by executing a copy of the
1170 instruction at a different address.
1171
1172 We can't use displaced stepping when we have a signal to deliver;
1173 the comments for displaced_step_prepare explain why. The
1174 comments in the handle_inferior event for dealing with 'random
1175 signals' explain what we do instead. */
1176 if (use_displaced_stepping (gdbarch)
1177 && tp->trap_expected
1178 && sig == TARGET_SIGNAL_0)
1179 {
1180 if (!displaced_step_prepare (inferior_ptid))
1181 {
1182 /* Got placed in displaced stepping queue. Will be resumed
1183 later when all the currently queued displaced stepping
1184 requests finish. The thread is not executing at this point,
1185 and the call to set_executing will be made later. But we
1186 need to call set_running here, since from frontend point of view,
1187 the thread is running. */
1188 set_running (inferior_ptid, 1);
1189 discard_cleanups (old_cleanups);
1190 return;
1191 }
1192 }
1193
1194 /* Do we need to do it the hard way, w/temp breakpoints? */
1195 if (step)
1196 step = maybe_software_singlestep (gdbarch, pc);
1197
1198 if (should_resume)
1199 {
1200 ptid_t resume_ptid;
1201
1202 /* If STEP is set, it's a request to use hardware stepping
1203 facilities. But in that case, we should never
1204 use singlestep breakpoint. */
1205 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1206
1207 /* Decide the set of threads to ask the target to resume. Start
1208 by assuming everything will be resumed, than narrow the set
1209 by applying increasingly restricting conditions. */
1210
1211 /* By default, resume all threads of all processes. */
1212 resume_ptid = RESUME_ALL;
1213
1214 /* Maybe resume only all threads of the current process. */
1215 if (!sched_multi && target_supports_multi_process ())
1216 {
1217 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1218 }
1219
1220 /* Maybe resume a single thread after all. */
1221 if (singlestep_breakpoints_inserted_p
1222 && stepping_past_singlestep_breakpoint)
1223 {
1224 /* The situation here is as follows. In thread T1 we wanted to
1225 single-step. Lacking hardware single-stepping we've
1226 set breakpoint at the PC of the next instruction -- call it
1227 P. After resuming, we've hit that breakpoint in thread T2.
1228 Now we've removed original breakpoint, inserted breakpoint
1229 at P+1, and try to step to advance T2 past breakpoint.
1230 We need to step only T2, as if T1 is allowed to freely run,
1231 it can run past P, and if other threads are allowed to run,
1232 they can hit breakpoint at P+1, and nested hits of single-step
1233 breakpoints is not something we'd want -- that's complicated
1234 to support, and has no value. */
1235 resume_ptid = inferior_ptid;
1236 }
1237 else if ((step || singlestep_breakpoints_inserted_p)
1238 && tp->trap_expected)
1239 {
1240 /* We're allowing a thread to run past a breakpoint it has
1241 hit, by single-stepping the thread with the breakpoint
1242 removed. In which case, we need to single-step only this
1243 thread, and keep others stopped, as they can miss this
1244 breakpoint if allowed to run.
1245
1246 The current code actually removes all breakpoints when
1247 doing this, not just the one being stepped over, so if we
1248 let other threads run, we can actually miss any
1249 breakpoint, not just the one at PC. */
1250 resume_ptid = inferior_ptid;
1251 }
1252 else if (non_stop)
1253 {
1254 /* With non-stop mode on, threads are always handled
1255 individually. */
1256 resume_ptid = inferior_ptid;
1257 }
1258 else if ((scheduler_mode == schedlock_on)
1259 || (scheduler_mode == schedlock_step
1260 && (step || singlestep_breakpoints_inserted_p)))
1261 {
1262 /* User-settable 'scheduler' mode requires solo thread resume. */
1263 resume_ptid = inferior_ptid;
1264 }
1265
1266 if (gdbarch_cannot_step_breakpoint (gdbarch))
1267 {
1268 /* Most targets can step a breakpoint instruction, thus
1269 executing it normally. But if this one cannot, just
1270 continue and we will hit it anyway. */
1271 if (step && breakpoint_inserted_here_p (pc))
1272 step = 0;
1273 }
1274
1275 if (debug_displaced
1276 && use_displaced_stepping (gdbarch)
1277 && tp->trap_expected)
1278 {
1279 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1280 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1281 gdb_byte buf[4];
1282
1283 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1284 paddr_nz (actual_pc));
1285 read_memory (actual_pc, buf, sizeof (buf));
1286 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1287 }
1288
1289 /* Install inferior's terminal modes. */
1290 target_terminal_inferior ();
1291
1292 /* Avoid confusing the next resume, if the next stop/resume
1293 happens to apply to another thread. */
1294 tp->stop_signal = TARGET_SIGNAL_0;
1295
1296 target_resume (resume_ptid, step, sig);
1297 }
1298
1299 discard_cleanups (old_cleanups);
1300 }
1301 \f
1302 /* Proceeding. */
1303
1304 /* Clear out all variables saying what to do when inferior is continued.
1305 First do this, then set the ones you want, then call `proceed'. */
1306
1307 static void
1308 clear_proceed_status_thread (struct thread_info *tp)
1309 {
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog,
1312 "infrun: clear_proceed_status_thread (%s)\n",
1313 target_pid_to_str (tp->ptid));
1314
1315 tp->trap_expected = 0;
1316 tp->step_range_start = 0;
1317 tp->step_range_end = 0;
1318 tp->step_frame_id = null_frame_id;
1319 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1320 tp->stop_requested = 0;
1321
1322 tp->stop_step = 0;
1323
1324 tp->proceed_to_finish = 0;
1325
1326 /* Discard any remaining commands or status from previous stop. */
1327 bpstat_clear (&tp->stop_bpstat);
1328 }
1329
1330 static int
1331 clear_proceed_status_callback (struct thread_info *tp, void *data)
1332 {
1333 if (is_exited (tp->ptid))
1334 return 0;
1335
1336 clear_proceed_status_thread (tp);
1337 return 0;
1338 }
1339
1340 void
1341 clear_proceed_status (void)
1342 {
1343 if (!ptid_equal (inferior_ptid, null_ptid))
1344 {
1345 struct inferior *inferior;
1346
1347 if (non_stop)
1348 {
1349 /* If in non-stop mode, only delete the per-thread status
1350 of the current thread. */
1351 clear_proceed_status_thread (inferior_thread ());
1352 }
1353 else
1354 {
1355 /* In all-stop mode, delete the per-thread status of
1356 *all* threads. */
1357 iterate_over_threads (clear_proceed_status_callback, NULL);
1358 }
1359
1360 inferior = current_inferior ();
1361 inferior->stop_soon = NO_STOP_QUIETLY;
1362 }
1363
1364 stop_after_trap = 0;
1365
1366 observer_notify_about_to_proceed ();
1367
1368 if (stop_registers)
1369 {
1370 regcache_xfree (stop_registers);
1371 stop_registers = NULL;
1372 }
1373 }
1374
1375 /* Check the current thread against the thread that reported the most recent
1376 event. If a step-over is required return TRUE and set the current thread
1377 to the old thread. Otherwise return FALSE.
1378
1379 This should be suitable for any targets that support threads. */
1380
1381 static int
1382 prepare_to_proceed (int step)
1383 {
1384 ptid_t wait_ptid;
1385 struct target_waitstatus wait_status;
1386 int schedlock_enabled;
1387
1388 /* With non-stop mode on, threads are always handled individually. */
1389 gdb_assert (! non_stop);
1390
1391 /* Get the last target status returned by target_wait(). */
1392 get_last_target_status (&wait_ptid, &wait_status);
1393
1394 /* Make sure we were stopped at a breakpoint. */
1395 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1396 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1397 {
1398 return 0;
1399 }
1400
1401 schedlock_enabled = (scheduler_mode == schedlock_on
1402 || (scheduler_mode == schedlock_step
1403 && step));
1404
1405 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1406 if (schedlock_enabled)
1407 return 0;
1408
1409 /* Don't switch over if we're about to resume some other process
1410 other than WAIT_PTID's, and schedule-multiple is off. */
1411 if (!sched_multi
1412 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1413 return 0;
1414
1415 /* Switched over from WAIT_PID. */
1416 if (!ptid_equal (wait_ptid, minus_one_ptid)
1417 && !ptid_equal (inferior_ptid, wait_ptid))
1418 {
1419 struct regcache *regcache = get_thread_regcache (wait_ptid);
1420
1421 if (breakpoint_here_p (regcache_read_pc (regcache)))
1422 {
1423 /* If stepping, remember current thread to switch back to. */
1424 if (step)
1425 deferred_step_ptid = inferior_ptid;
1426
1427 /* Switch back to WAIT_PID thread. */
1428 switch_to_thread (wait_ptid);
1429
1430 /* We return 1 to indicate that there is a breakpoint here,
1431 so we need to step over it before continuing to avoid
1432 hitting it straight away. */
1433 return 1;
1434 }
1435 }
1436
1437 return 0;
1438 }
1439
1440 /* Basic routine for continuing the program in various fashions.
1441
1442 ADDR is the address to resume at, or -1 for resume where stopped.
1443 SIGGNAL is the signal to give it, or 0 for none,
1444 or -1 for act according to how it stopped.
1445 STEP is nonzero if should trap after one instruction.
1446 -1 means return after that and print nothing.
1447 You should probably set various step_... variables
1448 before calling here, if you are stepping.
1449
1450 You should call clear_proceed_status before calling proceed. */
1451
1452 void
1453 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1454 {
1455 struct regcache *regcache;
1456 struct gdbarch *gdbarch;
1457 struct thread_info *tp;
1458 CORE_ADDR pc;
1459 int oneproc = 0;
1460
1461 /* If we're stopped at a fork/vfork, follow the branch set by the
1462 "set follow-fork-mode" command; otherwise, we'll just proceed
1463 resuming the current thread. */
1464 if (!follow_fork ())
1465 {
1466 /* The target for some reason decided not to resume. */
1467 normal_stop ();
1468 return;
1469 }
1470
1471 regcache = get_current_regcache ();
1472 gdbarch = get_regcache_arch (regcache);
1473 pc = regcache_read_pc (regcache);
1474
1475 if (step > 0)
1476 step_start_function = find_pc_function (pc);
1477 if (step < 0)
1478 stop_after_trap = 1;
1479
1480 if (addr == (CORE_ADDR) -1)
1481 {
1482 if (pc == stop_pc && breakpoint_here_p (pc)
1483 && execution_direction != EXEC_REVERSE)
1484 /* There is a breakpoint at the address we will resume at,
1485 step one instruction before inserting breakpoints so that
1486 we do not stop right away (and report a second hit at this
1487 breakpoint).
1488
1489 Note, we don't do this in reverse, because we won't
1490 actually be executing the breakpoint insn anyway.
1491 We'll be (un-)executing the previous instruction. */
1492
1493 oneproc = 1;
1494 else if (gdbarch_single_step_through_delay_p (gdbarch)
1495 && gdbarch_single_step_through_delay (gdbarch,
1496 get_current_frame ()))
1497 /* We stepped onto an instruction that needs to be stepped
1498 again before re-inserting the breakpoint, do so. */
1499 oneproc = 1;
1500 }
1501 else
1502 {
1503 regcache_write_pc (regcache, addr);
1504 }
1505
1506 if (debug_infrun)
1507 fprintf_unfiltered (gdb_stdlog,
1508 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1509 paddr_nz (addr), siggnal, step);
1510
1511 if (non_stop)
1512 /* In non-stop, each thread is handled individually. The context
1513 must already be set to the right thread here. */
1514 ;
1515 else
1516 {
1517 /* In a multi-threaded task we may select another thread and
1518 then continue or step.
1519
1520 But if the old thread was stopped at a breakpoint, it will
1521 immediately cause another breakpoint stop without any
1522 execution (i.e. it will report a breakpoint hit incorrectly).
1523 So we must step over it first.
1524
1525 prepare_to_proceed checks the current thread against the
1526 thread that reported the most recent event. If a step-over
1527 is required it returns TRUE and sets the current thread to
1528 the old thread. */
1529 if (prepare_to_proceed (step))
1530 oneproc = 1;
1531 }
1532
1533 /* prepare_to_proceed may change the current thread. */
1534 tp = inferior_thread ();
1535
1536 if (oneproc)
1537 {
1538 tp->trap_expected = 1;
1539 /* If displaced stepping is enabled, we can step over the
1540 breakpoint without hitting it, so leave all breakpoints
1541 inserted. Otherwise we need to disable all breakpoints, step
1542 one instruction, and then re-add them when that step is
1543 finished. */
1544 if (!use_displaced_stepping (gdbarch))
1545 remove_breakpoints ();
1546 }
1547
1548 /* We can insert breakpoints if we're not trying to step over one,
1549 or if we are stepping over one but we're using displaced stepping
1550 to do so. */
1551 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1552 insert_breakpoints ();
1553
1554 if (!non_stop)
1555 {
1556 /* Pass the last stop signal to the thread we're resuming,
1557 irrespective of whether the current thread is the thread that
1558 got the last event or not. This was historically GDB's
1559 behaviour before keeping a stop_signal per thread. */
1560
1561 struct thread_info *last_thread;
1562 ptid_t last_ptid;
1563 struct target_waitstatus last_status;
1564
1565 get_last_target_status (&last_ptid, &last_status);
1566 if (!ptid_equal (inferior_ptid, last_ptid)
1567 && !ptid_equal (last_ptid, null_ptid)
1568 && !ptid_equal (last_ptid, minus_one_ptid))
1569 {
1570 last_thread = find_thread_ptid (last_ptid);
1571 if (last_thread)
1572 {
1573 tp->stop_signal = last_thread->stop_signal;
1574 last_thread->stop_signal = TARGET_SIGNAL_0;
1575 }
1576 }
1577 }
1578
1579 if (siggnal != TARGET_SIGNAL_DEFAULT)
1580 tp->stop_signal = siggnal;
1581 /* If this signal should not be seen by program,
1582 give it zero. Used for debugging signals. */
1583 else if (!signal_program[tp->stop_signal])
1584 tp->stop_signal = TARGET_SIGNAL_0;
1585
1586 annotate_starting ();
1587
1588 /* Make sure that output from GDB appears before output from the
1589 inferior. */
1590 gdb_flush (gdb_stdout);
1591
1592 /* Refresh prev_pc value just prior to resuming. This used to be
1593 done in stop_stepping, however, setting prev_pc there did not handle
1594 scenarios such as inferior function calls or returning from
1595 a function via the return command. In those cases, the prev_pc
1596 value was not set properly for subsequent commands. The prev_pc value
1597 is used to initialize the starting line number in the ecs. With an
1598 invalid value, the gdb next command ends up stopping at the position
1599 represented by the next line table entry past our start position.
1600 On platforms that generate one line table entry per line, this
1601 is not a problem. However, on the ia64, the compiler generates
1602 extraneous line table entries that do not increase the line number.
1603 When we issue the gdb next command on the ia64 after an inferior call
1604 or a return command, we often end up a few instructions forward, still
1605 within the original line we started.
1606
1607 An attempt was made to have init_execution_control_state () refresh
1608 the prev_pc value before calculating the line number. This approach
1609 did not work because on platforms that use ptrace, the pc register
1610 cannot be read unless the inferior is stopped. At that point, we
1611 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1612 call can fail. Setting the prev_pc value here ensures the value is
1613 updated correctly when the inferior is stopped. */
1614 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1615
1616 /* Fill in with reasonable starting values. */
1617 init_thread_stepping_state (tp);
1618
1619 /* Reset to normal state. */
1620 init_infwait_state ();
1621
1622 /* Resume inferior. */
1623 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1624
1625 /* Wait for it to stop (if not standalone)
1626 and in any case decode why it stopped, and act accordingly. */
1627 /* Do this only if we are not using the event loop, or if the target
1628 does not support asynchronous execution. */
1629 if (!target_can_async_p ())
1630 {
1631 wait_for_inferior (0);
1632 normal_stop ();
1633 }
1634 }
1635 \f
1636
1637 /* Start remote-debugging of a machine over a serial link. */
1638
1639 void
1640 start_remote (int from_tty)
1641 {
1642 struct inferior *inferior;
1643 init_wait_for_inferior ();
1644
1645 inferior = current_inferior ();
1646 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1647
1648 /* Always go on waiting for the target, regardless of the mode. */
1649 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1650 indicate to wait_for_inferior that a target should timeout if
1651 nothing is returned (instead of just blocking). Because of this,
1652 targets expecting an immediate response need to, internally, set
1653 things up so that the target_wait() is forced to eventually
1654 timeout. */
1655 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1656 differentiate to its caller what the state of the target is after
1657 the initial open has been performed. Here we're assuming that
1658 the target has stopped. It should be possible to eventually have
1659 target_open() return to the caller an indication that the target
1660 is currently running and GDB state should be set to the same as
1661 for an async run. */
1662 wait_for_inferior (0);
1663
1664 /* Now that the inferior has stopped, do any bookkeeping like
1665 loading shared libraries. We want to do this before normal_stop,
1666 so that the displayed frame is up to date. */
1667 post_create_inferior (&current_target, from_tty);
1668
1669 normal_stop ();
1670 }
1671
1672 /* Initialize static vars when a new inferior begins. */
1673
1674 void
1675 init_wait_for_inferior (void)
1676 {
1677 /* These are meaningless until the first time through wait_for_inferior. */
1678
1679 breakpoint_init_inferior (inf_starting);
1680
1681 clear_proceed_status ();
1682
1683 stepping_past_singlestep_breakpoint = 0;
1684 deferred_step_ptid = null_ptid;
1685
1686 target_last_wait_ptid = minus_one_ptid;
1687
1688 previous_inferior_ptid = null_ptid;
1689 init_infwait_state ();
1690
1691 displaced_step_clear ();
1692 }
1693
1694 \f
1695 /* This enum encodes possible reasons for doing a target_wait, so that
1696 wfi can call target_wait in one place. (Ultimately the call will be
1697 moved out of the infinite loop entirely.) */
1698
1699 enum infwait_states
1700 {
1701 infwait_normal_state,
1702 infwait_thread_hop_state,
1703 infwait_step_watch_state,
1704 infwait_nonstep_watch_state
1705 };
1706
1707 /* Why did the inferior stop? Used to print the appropriate messages
1708 to the interface from within handle_inferior_event(). */
1709 enum inferior_stop_reason
1710 {
1711 /* Step, next, nexti, stepi finished. */
1712 END_STEPPING_RANGE,
1713 /* Inferior terminated by signal. */
1714 SIGNAL_EXITED,
1715 /* Inferior exited. */
1716 EXITED,
1717 /* Inferior received signal, and user asked to be notified. */
1718 SIGNAL_RECEIVED,
1719 /* Reverse execution -- target ran out of history info. */
1720 NO_HISTORY
1721 };
1722
1723 /* The PTID we'll do a target_wait on.*/
1724 ptid_t waiton_ptid;
1725
1726 /* Current inferior wait state. */
1727 enum infwait_states infwait_state;
1728
1729 /* Data to be passed around while handling an event. This data is
1730 discarded between events. */
1731 struct execution_control_state
1732 {
1733 ptid_t ptid;
1734 /* The thread that got the event, if this was a thread event; NULL
1735 otherwise. */
1736 struct thread_info *event_thread;
1737
1738 struct target_waitstatus ws;
1739 int random_signal;
1740 CORE_ADDR stop_func_start;
1741 CORE_ADDR stop_func_end;
1742 char *stop_func_name;
1743 int new_thread_event;
1744 int wait_some_more;
1745 };
1746
1747 void init_execution_control_state (struct execution_control_state *ecs);
1748
1749 void handle_inferior_event (struct execution_control_state *ecs);
1750
1751 static void handle_step_into_function (struct gdbarch *gdbarch,
1752 struct execution_control_state *ecs);
1753 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1754 struct execution_control_state *ecs);
1755 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1756 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1757 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1758 struct frame_id sr_id);
1759 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1760
1761 static void stop_stepping (struct execution_control_state *ecs);
1762 static void prepare_to_wait (struct execution_control_state *ecs);
1763 static void keep_going (struct execution_control_state *ecs);
1764 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1765 int stop_info);
1766
1767 /* Callback for iterate over threads. If the thread is stopped, but
1768 the user/frontend doesn't know about that yet, go through
1769 normal_stop, as if the thread had just stopped now. ARG points at
1770 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1771 ptid_is_pid(PTID) is true, applies to all threads of the process
1772 pointed at by PTID. Otherwise, apply only to the thread pointed by
1773 PTID. */
1774
1775 static int
1776 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1777 {
1778 ptid_t ptid = * (ptid_t *) arg;
1779
1780 if ((ptid_equal (info->ptid, ptid)
1781 || ptid_equal (minus_one_ptid, ptid)
1782 || (ptid_is_pid (ptid)
1783 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1784 && is_running (info->ptid)
1785 && !is_executing (info->ptid))
1786 {
1787 struct cleanup *old_chain;
1788 struct execution_control_state ecss;
1789 struct execution_control_state *ecs = &ecss;
1790
1791 memset (ecs, 0, sizeof (*ecs));
1792
1793 old_chain = make_cleanup_restore_current_thread ();
1794
1795 switch_to_thread (info->ptid);
1796
1797 /* Go through handle_inferior_event/normal_stop, so we always
1798 have consistent output as if the stop event had been
1799 reported. */
1800 ecs->ptid = info->ptid;
1801 ecs->event_thread = find_thread_ptid (info->ptid);
1802 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1803 ecs->ws.value.sig = TARGET_SIGNAL_0;
1804
1805 handle_inferior_event (ecs);
1806
1807 if (!ecs->wait_some_more)
1808 {
1809 struct thread_info *tp;
1810
1811 normal_stop ();
1812
1813 /* Finish off the continuations. The continations
1814 themselves are responsible for realising the thread
1815 didn't finish what it was supposed to do. */
1816 tp = inferior_thread ();
1817 do_all_intermediate_continuations_thread (tp);
1818 do_all_continuations_thread (tp);
1819 }
1820
1821 do_cleanups (old_chain);
1822 }
1823
1824 return 0;
1825 }
1826
1827 /* This function is attached as a "thread_stop_requested" observer.
1828 Cleanup local state that assumed the PTID was to be resumed, and
1829 report the stop to the frontend. */
1830
1831 static void
1832 infrun_thread_stop_requested (ptid_t ptid)
1833 {
1834 struct displaced_step_request *it, *next, *prev = NULL;
1835
1836 /* PTID was requested to stop. Remove it from the displaced
1837 stepping queue, so we don't try to resume it automatically. */
1838 for (it = displaced_step_request_queue; it; it = next)
1839 {
1840 next = it->next;
1841
1842 if (ptid_equal (it->ptid, ptid)
1843 || ptid_equal (minus_one_ptid, ptid)
1844 || (ptid_is_pid (ptid)
1845 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1846 {
1847 if (displaced_step_request_queue == it)
1848 displaced_step_request_queue = it->next;
1849 else
1850 prev->next = it->next;
1851
1852 xfree (it);
1853 }
1854 else
1855 prev = it;
1856 }
1857
1858 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1859 }
1860
1861 static void
1862 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1863 {
1864 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1865 nullify_last_target_wait_ptid ();
1866 }
1867
1868 /* Callback for iterate_over_threads. */
1869
1870 static int
1871 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1872 {
1873 if (is_exited (info->ptid))
1874 return 0;
1875
1876 delete_step_resume_breakpoint (info);
1877 return 0;
1878 }
1879
1880 /* In all-stop, delete the step resume breakpoint of any thread that
1881 had one. In non-stop, delete the step resume breakpoint of the
1882 thread that just stopped. */
1883
1884 static void
1885 delete_step_thread_step_resume_breakpoint (void)
1886 {
1887 if (!target_has_execution
1888 || ptid_equal (inferior_ptid, null_ptid))
1889 /* If the inferior has exited, we have already deleted the step
1890 resume breakpoints out of GDB's lists. */
1891 return;
1892
1893 if (non_stop)
1894 {
1895 /* If in non-stop mode, only delete the step-resume or
1896 longjmp-resume breakpoint of the thread that just stopped
1897 stepping. */
1898 struct thread_info *tp = inferior_thread ();
1899 delete_step_resume_breakpoint (tp);
1900 }
1901 else
1902 /* In all-stop mode, delete all step-resume and longjmp-resume
1903 breakpoints of any thread that had them. */
1904 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1905 }
1906
1907 /* A cleanup wrapper. */
1908
1909 static void
1910 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1911 {
1912 delete_step_thread_step_resume_breakpoint ();
1913 }
1914
1915 /* Pretty print the results of target_wait, for debugging purposes. */
1916
1917 static void
1918 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1919 const struct target_waitstatus *ws)
1920 {
1921 char *status_string = target_waitstatus_to_string (ws);
1922 struct ui_file *tmp_stream = mem_fileopen ();
1923 char *text;
1924 long len;
1925
1926 /* The text is split over several lines because it was getting too long.
1927 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1928 output as a unit; we want only one timestamp printed if debug_timestamp
1929 is set. */
1930
1931 fprintf_unfiltered (tmp_stream,
1932 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1933 if (PIDGET (waiton_ptid) != -1)
1934 fprintf_unfiltered (tmp_stream,
1935 " [%s]", target_pid_to_str (waiton_ptid));
1936 fprintf_unfiltered (tmp_stream, ", status) =\n");
1937 fprintf_unfiltered (tmp_stream,
1938 "infrun: %d [%s],\n",
1939 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1940 fprintf_unfiltered (tmp_stream,
1941 "infrun: %s\n",
1942 status_string);
1943
1944 text = ui_file_xstrdup (tmp_stream, &len);
1945
1946 /* This uses %s in part to handle %'s in the text, but also to avoid
1947 a gcc error: the format attribute requires a string literal. */
1948 fprintf_unfiltered (gdb_stdlog, "%s", text);
1949
1950 xfree (status_string);
1951 xfree (text);
1952 ui_file_delete (tmp_stream);
1953 }
1954
1955 /* Wait for control to return from inferior to debugger.
1956
1957 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1958 as if they were SIGTRAP signals. This can be useful during
1959 the startup sequence on some targets such as HP/UX, where
1960 we receive an EXEC event instead of the expected SIGTRAP.
1961
1962 If inferior gets a signal, we may decide to start it up again
1963 instead of returning. That is why there is a loop in this function.
1964 When this function actually returns it means the inferior
1965 should be left stopped and GDB should read more commands. */
1966
1967 void
1968 wait_for_inferior (int treat_exec_as_sigtrap)
1969 {
1970 struct cleanup *old_cleanups;
1971 struct execution_control_state ecss;
1972 struct execution_control_state *ecs;
1973
1974 if (debug_infrun)
1975 fprintf_unfiltered
1976 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1977 treat_exec_as_sigtrap);
1978
1979 old_cleanups =
1980 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1981
1982 ecs = &ecss;
1983 memset (ecs, 0, sizeof (*ecs));
1984
1985 overlay_cache_invalid = 1;
1986
1987 /* We'll update this if & when we switch to a new thread. */
1988 previous_inferior_ptid = inferior_ptid;
1989
1990 /* We have to invalidate the registers BEFORE calling target_wait
1991 because they can be loaded from the target while in target_wait.
1992 This makes remote debugging a bit more efficient for those
1993 targets that provide critical registers as part of their normal
1994 status mechanism. */
1995
1996 registers_changed ();
1997
1998 while (1)
1999 {
2000 struct cleanup *old_chain;
2001
2002 if (deprecated_target_wait_hook)
2003 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2004 else
2005 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2006
2007 if (debug_infrun)
2008 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2009
2010 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2011 {
2012 xfree (ecs->ws.value.execd_pathname);
2013 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2014 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2015 }
2016
2017 /* If an error happens while handling the event, propagate GDB's
2018 knowledge of the executing state to the frontend/user running
2019 state. */
2020 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2021
2022 /* Now figure out what to do with the result of the result. */
2023 handle_inferior_event (ecs);
2024
2025 /* No error, don't finish the state yet. */
2026 discard_cleanups (old_chain);
2027
2028 if (!ecs->wait_some_more)
2029 break;
2030 }
2031
2032 do_cleanups (old_cleanups);
2033 }
2034
2035 /* Asynchronous version of wait_for_inferior. It is called by the
2036 event loop whenever a change of state is detected on the file
2037 descriptor corresponding to the target. It can be called more than
2038 once to complete a single execution command. In such cases we need
2039 to keep the state in a global variable ECSS. If it is the last time
2040 that this function is called for a single execution command, then
2041 report to the user that the inferior has stopped, and do the
2042 necessary cleanups. */
2043
2044 void
2045 fetch_inferior_event (void *client_data)
2046 {
2047 struct execution_control_state ecss;
2048 struct execution_control_state *ecs = &ecss;
2049 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2050 struct cleanup *ts_old_chain;
2051 int was_sync = sync_execution;
2052
2053 memset (ecs, 0, sizeof (*ecs));
2054
2055 overlay_cache_invalid = 1;
2056
2057 /* We can only rely on wait_for_more being correct before handling
2058 the event in all-stop, but previous_inferior_ptid isn't used in
2059 non-stop. */
2060 if (!ecs->wait_some_more)
2061 /* We'll update this if & when we switch to a new thread. */
2062 previous_inferior_ptid = inferior_ptid;
2063
2064 if (non_stop)
2065 /* In non-stop mode, the user/frontend should not notice a thread
2066 switch due to internal events. Make sure we reverse to the
2067 user selected thread and frame after handling the event and
2068 running any breakpoint commands. */
2069 make_cleanup_restore_current_thread ();
2070
2071 /* We have to invalidate the registers BEFORE calling target_wait
2072 because they can be loaded from the target while in target_wait.
2073 This makes remote debugging a bit more efficient for those
2074 targets that provide critical registers as part of their normal
2075 status mechanism. */
2076
2077 registers_changed ();
2078
2079 if (deprecated_target_wait_hook)
2080 ecs->ptid =
2081 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2082 else
2083 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2084
2085 if (debug_infrun)
2086 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2087
2088 if (non_stop
2089 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2090 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2091 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2092 /* In non-stop mode, each thread is handled individually. Switch
2093 early, so the global state is set correctly for this
2094 thread. */
2095 context_switch (ecs->ptid);
2096
2097 /* If an error happens while handling the event, propagate GDB's
2098 knowledge of the executing state to the frontend/user running
2099 state. */
2100 if (!non_stop)
2101 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2102 else
2103 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2104
2105 /* Now figure out what to do with the result of the result. */
2106 handle_inferior_event (ecs);
2107
2108 if (!ecs->wait_some_more)
2109 {
2110 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2111
2112 delete_step_thread_step_resume_breakpoint ();
2113
2114 /* We may not find an inferior if this was a process exit. */
2115 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2116 normal_stop ();
2117
2118 if (target_has_execution
2119 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2120 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2121 && ecs->event_thread->step_multi
2122 && ecs->event_thread->stop_step)
2123 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2124 else
2125 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2126 }
2127
2128 /* No error, don't finish the thread states yet. */
2129 discard_cleanups (ts_old_chain);
2130
2131 /* Revert thread and frame. */
2132 do_cleanups (old_chain);
2133
2134 /* If the inferior was in sync execution mode, and now isn't,
2135 restore the prompt. */
2136 if (was_sync && !sync_execution)
2137 display_gdb_prompt (0);
2138 }
2139
2140 /* Prepare an execution control state for looping through a
2141 wait_for_inferior-type loop. */
2142
2143 void
2144 init_execution_control_state (struct execution_control_state *ecs)
2145 {
2146 ecs->random_signal = 0;
2147 }
2148
2149 /* Clear context switchable stepping state. */
2150
2151 void
2152 init_thread_stepping_state (struct thread_info *tss)
2153 {
2154 struct symtab_and_line sal;
2155
2156 tss->stepping_over_breakpoint = 0;
2157 tss->step_after_step_resume_breakpoint = 0;
2158 tss->stepping_through_solib_after_catch = 0;
2159 tss->stepping_through_solib_catchpoints = NULL;
2160
2161 sal = find_pc_line (tss->prev_pc, 0);
2162 tss->current_line = sal.line;
2163 tss->current_symtab = sal.symtab;
2164 }
2165
2166 /* Return the cached copy of the last pid/waitstatus returned by
2167 target_wait()/deprecated_target_wait_hook(). The data is actually
2168 cached by handle_inferior_event(), which gets called immediately
2169 after target_wait()/deprecated_target_wait_hook(). */
2170
2171 void
2172 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2173 {
2174 *ptidp = target_last_wait_ptid;
2175 *status = target_last_waitstatus;
2176 }
2177
2178 void
2179 nullify_last_target_wait_ptid (void)
2180 {
2181 target_last_wait_ptid = minus_one_ptid;
2182 }
2183
2184 /* Switch thread contexts. */
2185
2186 static void
2187 context_switch (ptid_t ptid)
2188 {
2189 if (debug_infrun)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2192 target_pid_to_str (inferior_ptid));
2193 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2194 target_pid_to_str (ptid));
2195 }
2196
2197 switch_to_thread (ptid);
2198 }
2199
2200 static void
2201 adjust_pc_after_break (struct execution_control_state *ecs)
2202 {
2203 struct regcache *regcache;
2204 struct gdbarch *gdbarch;
2205 CORE_ADDR breakpoint_pc;
2206
2207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2208 we aren't, just return.
2209
2210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2212 implemented by software breakpoints should be handled through the normal
2213 breakpoint layer.
2214
2215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2216 different signals (SIGILL or SIGEMT for instance), but it is less
2217 clear where the PC is pointing afterwards. It may not match
2218 gdbarch_decr_pc_after_break. I don't know any specific target that
2219 generates these signals at breakpoints (the code has been in GDB since at
2220 least 1992) so I can not guess how to handle them here.
2221
2222 In earlier versions of GDB, a target with
2223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2225 target with both of these set in GDB history, and it seems unlikely to be
2226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2227
2228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2229 return;
2230
2231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2232 return;
2233
2234 /* In reverse execution, when a breakpoint is hit, the instruction
2235 under it has already been de-executed. The reported PC always
2236 points at the breakpoint address, so adjusting it further would
2237 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2238 architecture:
2239
2240 B1 0x08000000 : INSN1
2241 B2 0x08000001 : INSN2
2242 0x08000002 : INSN3
2243 PC -> 0x08000003 : INSN4
2244
2245 Say you're stopped at 0x08000003 as above. Reverse continuing
2246 from that point should hit B2 as below. Reading the PC when the
2247 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2248 been de-executed already.
2249
2250 B1 0x08000000 : INSN1
2251 B2 PC -> 0x08000001 : INSN2
2252 0x08000002 : INSN3
2253 0x08000003 : INSN4
2254
2255 We can't apply the same logic as for forward execution, because
2256 we would wrongly adjust the PC to 0x08000000, since there's a
2257 breakpoint at PC - 1. We'd then report a hit on B1, although
2258 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2259 behaviour. */
2260 if (execution_direction == EXEC_REVERSE)
2261 return;
2262
2263 /* If this target does not decrement the PC after breakpoints, then
2264 we have nothing to do. */
2265 regcache = get_thread_regcache (ecs->ptid);
2266 gdbarch = get_regcache_arch (regcache);
2267 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2268 return;
2269
2270 /* Find the location where (if we've hit a breakpoint) the
2271 breakpoint would be. */
2272 breakpoint_pc = regcache_read_pc (regcache)
2273 - gdbarch_decr_pc_after_break (gdbarch);
2274
2275 /* Check whether there actually is a software breakpoint inserted at
2276 that location.
2277
2278 If in non-stop mode, a race condition is possible where we've
2279 removed a breakpoint, but stop events for that breakpoint were
2280 already queued and arrive later. To suppress those spurious
2281 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2282 and retire them after a number of stop events are reported. */
2283 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2284 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2285 {
2286 struct cleanup *old_cleanups = NULL;
2287 if (RECORD_IS_USED)
2288 old_cleanups = record_gdb_operation_disable_set ();
2289
2290 /* When using hardware single-step, a SIGTRAP is reported for both
2291 a completed single-step and a software breakpoint. Need to
2292 differentiate between the two, as the latter needs adjusting
2293 but the former does not.
2294
2295 The SIGTRAP can be due to a completed hardware single-step only if
2296 - we didn't insert software single-step breakpoints
2297 - the thread to be examined is still the current thread
2298 - this thread is currently being stepped
2299
2300 If any of these events did not occur, we must have stopped due
2301 to hitting a software breakpoint, and have to back up to the
2302 breakpoint address.
2303
2304 As a special case, we could have hardware single-stepped a
2305 software breakpoint. In this case (prev_pc == breakpoint_pc),
2306 we also need to back up to the breakpoint address. */
2307
2308 if (singlestep_breakpoints_inserted_p
2309 || !ptid_equal (ecs->ptid, inferior_ptid)
2310 || !currently_stepping (ecs->event_thread)
2311 || ecs->event_thread->prev_pc == breakpoint_pc)
2312 regcache_write_pc (regcache, breakpoint_pc);
2313
2314 if (RECORD_IS_USED)
2315 do_cleanups (old_cleanups);
2316 }
2317 }
2318
2319 void
2320 init_infwait_state (void)
2321 {
2322 waiton_ptid = pid_to_ptid (-1);
2323 infwait_state = infwait_normal_state;
2324 }
2325
2326 void
2327 error_is_running (void)
2328 {
2329 error (_("\
2330 Cannot execute this command while the selected thread is running."));
2331 }
2332
2333 void
2334 ensure_not_running (void)
2335 {
2336 if (is_running (inferior_ptid))
2337 error_is_running ();
2338 }
2339
2340 /* Given an execution control state that has been freshly filled in
2341 by an event from the inferior, figure out what it means and take
2342 appropriate action. */
2343
2344 void
2345 handle_inferior_event (struct execution_control_state *ecs)
2346 {
2347 struct frame_info *frame;
2348 struct gdbarch *gdbarch;
2349 int sw_single_step_trap_p = 0;
2350 int stopped_by_watchpoint;
2351 int stepped_after_stopped_by_watchpoint = 0;
2352 struct symtab_and_line stop_pc_sal;
2353 enum stop_kind stop_soon;
2354
2355 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2356 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2357 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2358 {
2359 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2360 gdb_assert (inf);
2361 stop_soon = inf->stop_soon;
2362 }
2363 else
2364 stop_soon = NO_STOP_QUIETLY;
2365
2366 /* Cache the last pid/waitstatus. */
2367 target_last_wait_ptid = ecs->ptid;
2368 target_last_waitstatus = ecs->ws;
2369
2370 /* Always clear state belonging to the previous time we stopped. */
2371 stop_stack_dummy = 0;
2372
2373 /* If it's a new process, add it to the thread database */
2374
2375 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2376 && !ptid_equal (ecs->ptid, minus_one_ptid)
2377 && !in_thread_list (ecs->ptid));
2378
2379 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2380 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2381 add_thread (ecs->ptid);
2382
2383 ecs->event_thread = find_thread_ptid (ecs->ptid);
2384
2385 /* Dependent on valid ECS->EVENT_THREAD. */
2386 adjust_pc_after_break (ecs);
2387
2388 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2389 reinit_frame_cache ();
2390
2391 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2392 {
2393 breakpoint_retire_moribund ();
2394
2395 /* Mark the non-executing threads accordingly. In all-stop, all
2396 threads of all processes are stopped when we get any event
2397 reported. In non-stop mode, only the event thread stops. If
2398 we're handling a process exit in non-stop mode, there's
2399 nothing to do, as threads of the dead process are gone, and
2400 threads of any other process were left running. */
2401 if (!non_stop)
2402 set_executing (minus_one_ptid, 0);
2403 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2404 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2405 set_executing (inferior_ptid, 0);
2406 }
2407
2408 switch (infwait_state)
2409 {
2410 case infwait_thread_hop_state:
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2413 /* Cancel the waiton_ptid. */
2414 waiton_ptid = pid_to_ptid (-1);
2415 break;
2416
2417 case infwait_normal_state:
2418 if (debug_infrun)
2419 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2420 break;
2421
2422 case infwait_step_watch_state:
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog,
2425 "infrun: infwait_step_watch_state\n");
2426
2427 stepped_after_stopped_by_watchpoint = 1;
2428 break;
2429
2430 case infwait_nonstep_watch_state:
2431 if (debug_infrun)
2432 fprintf_unfiltered (gdb_stdlog,
2433 "infrun: infwait_nonstep_watch_state\n");
2434 insert_breakpoints ();
2435
2436 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2437 handle things like signals arriving and other things happening
2438 in combination correctly? */
2439 stepped_after_stopped_by_watchpoint = 1;
2440 break;
2441
2442 default:
2443 internal_error (__FILE__, __LINE__, _("bad switch"));
2444 }
2445 infwait_state = infwait_normal_state;
2446
2447 switch (ecs->ws.kind)
2448 {
2449 case TARGET_WAITKIND_LOADED:
2450 if (debug_infrun)
2451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2452 /* Ignore gracefully during startup of the inferior, as it might
2453 be the shell which has just loaded some objects, otherwise
2454 add the symbols for the newly loaded objects. Also ignore at
2455 the beginning of an attach or remote session; we will query
2456 the full list of libraries once the connection is
2457 established. */
2458 if (stop_soon == NO_STOP_QUIETLY)
2459 {
2460 /* Check for any newly added shared libraries if we're
2461 supposed to be adding them automatically. Switch
2462 terminal for any messages produced by
2463 breakpoint_re_set. */
2464 target_terminal_ours_for_output ();
2465 /* NOTE: cagney/2003-11-25: Make certain that the target
2466 stack's section table is kept up-to-date. Architectures,
2467 (e.g., PPC64), use the section table to perform
2468 operations such as address => section name and hence
2469 require the table to contain all sections (including
2470 those found in shared libraries). */
2471 #ifdef SOLIB_ADD
2472 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2473 #else
2474 solib_add (NULL, 0, &current_target, auto_solib_add);
2475 #endif
2476 target_terminal_inferior ();
2477
2478 /* If requested, stop when the dynamic linker notifies
2479 gdb of events. This allows the user to get control
2480 and place breakpoints in initializer routines for
2481 dynamically loaded objects (among other things). */
2482 if (stop_on_solib_events)
2483 {
2484 stop_stepping (ecs);
2485 return;
2486 }
2487
2488 /* NOTE drow/2007-05-11: This might be a good place to check
2489 for "catch load". */
2490 }
2491
2492 /* If we are skipping through a shell, or through shared library
2493 loading that we aren't interested in, resume the program. If
2494 we're running the program normally, also resume. But stop if
2495 we're attaching or setting up a remote connection. */
2496 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2497 {
2498 /* Loading of shared libraries might have changed breakpoint
2499 addresses. Make sure new breakpoints are inserted. */
2500 if (stop_soon == NO_STOP_QUIETLY
2501 && !breakpoints_always_inserted_mode ())
2502 insert_breakpoints ();
2503 resume (0, TARGET_SIGNAL_0);
2504 prepare_to_wait (ecs);
2505 return;
2506 }
2507
2508 break;
2509
2510 case TARGET_WAITKIND_SPURIOUS:
2511 if (debug_infrun)
2512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2513 resume (0, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2515 return;
2516
2517 case TARGET_WAITKIND_EXITED:
2518 if (debug_infrun)
2519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2520 inferior_ptid = ecs->ptid;
2521 target_terminal_ours (); /* Must do this before mourn anyway */
2522 print_stop_reason (EXITED, ecs->ws.value.integer);
2523
2524 /* Record the exit code in the convenience variable $_exitcode, so
2525 that the user can inspect this again later. */
2526 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2527 (LONGEST) ecs->ws.value.integer);
2528 gdb_flush (gdb_stdout);
2529 target_mourn_inferior ();
2530 singlestep_breakpoints_inserted_p = 0;
2531 stop_print_frame = 0;
2532 stop_stepping (ecs);
2533 return;
2534
2535 case TARGET_WAITKIND_SIGNALLED:
2536 if (debug_infrun)
2537 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2538 inferior_ptid = ecs->ptid;
2539 stop_print_frame = 0;
2540 target_terminal_ours (); /* Must do this before mourn anyway */
2541
2542 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2543 reach here unless the inferior is dead. However, for years
2544 target_kill() was called here, which hints that fatal signals aren't
2545 really fatal on some systems. If that's true, then some changes
2546 may be needed. */
2547 target_mourn_inferior ();
2548
2549 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2550 singlestep_breakpoints_inserted_p = 0;
2551 stop_stepping (ecs);
2552 return;
2553
2554 /* The following are the only cases in which we keep going;
2555 the above cases end in a continue or goto. */
2556 case TARGET_WAITKIND_FORKED:
2557 case TARGET_WAITKIND_VFORKED:
2558 if (debug_infrun)
2559 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2560
2561 if (!ptid_equal (ecs->ptid, inferior_ptid))
2562 {
2563 context_switch (ecs->ptid);
2564 reinit_frame_cache ();
2565 }
2566
2567 /* Immediately detach breakpoints from the child before there's
2568 any chance of letting the user delete breakpoints from the
2569 breakpoint lists. If we don't do this early, it's easy to
2570 leave left over traps in the child, vis: "break foo; catch
2571 fork; c; <fork>; del; c; <child calls foo>". We only follow
2572 the fork on the last `continue', and by that time the
2573 breakpoint at "foo" is long gone from the breakpoint table.
2574 If we vforked, then we don't need to unpatch here, since both
2575 parent and child are sharing the same memory pages; we'll
2576 need to unpatch at follow/detach time instead to be certain
2577 that new breakpoints added between catchpoint hit time and
2578 vfork follow are detached. */
2579 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2580 {
2581 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2582
2583 /* This won't actually modify the breakpoint list, but will
2584 physically remove the breakpoints from the child. */
2585 detach_breakpoints (child_pid);
2586 }
2587
2588 /* In case the event is caught by a catchpoint, remember that
2589 the event is to be followed at the next resume of the thread,
2590 and not immediately. */
2591 ecs->event_thread->pending_follow = ecs->ws;
2592
2593 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2594
2595 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2596
2597 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2598
2599 /* If no catchpoint triggered for this, then keep going. */
2600 if (ecs->random_signal)
2601 {
2602 int should_resume;
2603
2604 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2605
2606 should_resume = follow_fork ();
2607
2608 ecs->event_thread = inferior_thread ();
2609 ecs->ptid = inferior_ptid;
2610
2611 if (should_resume)
2612 keep_going (ecs);
2613 else
2614 stop_stepping (ecs);
2615 return;
2616 }
2617 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2618 goto process_event_stop_test;
2619
2620 case TARGET_WAITKIND_EXECD:
2621 if (debug_infrun)
2622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2623
2624 if (!ptid_equal (ecs->ptid, inferior_ptid))
2625 {
2626 context_switch (ecs->ptid);
2627 reinit_frame_cache ();
2628 }
2629
2630 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2631
2632 /* This causes the eventpoints and symbol table to be reset.
2633 Must do this now, before trying to determine whether to
2634 stop. */
2635 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2636
2637 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2638 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2639
2640 /* Note that this may be referenced from inside
2641 bpstat_stop_status above, through inferior_has_execd. */
2642 xfree (ecs->ws.value.execd_pathname);
2643 ecs->ws.value.execd_pathname = NULL;
2644
2645 /* If no catchpoint triggered for this, then keep going. */
2646 if (ecs->random_signal)
2647 {
2648 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2649 keep_going (ecs);
2650 return;
2651 }
2652 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2653 goto process_event_stop_test;
2654
2655 /* Be careful not to try to gather much state about a thread
2656 that's in a syscall. It's frequently a losing proposition. */
2657 case TARGET_WAITKIND_SYSCALL_ENTRY:
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2660 resume (0, TARGET_SIGNAL_0);
2661 prepare_to_wait (ecs);
2662 return;
2663
2664 /* Before examining the threads further, step this thread to
2665 get it entirely out of the syscall. (We get notice of the
2666 event when the thread is just on the verge of exiting a
2667 syscall. Stepping one instruction seems to get it back
2668 into user code.) */
2669 case TARGET_WAITKIND_SYSCALL_RETURN:
2670 if (debug_infrun)
2671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2672 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2673 prepare_to_wait (ecs);
2674 return;
2675
2676 case TARGET_WAITKIND_STOPPED:
2677 if (debug_infrun)
2678 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2679 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2680 break;
2681
2682 case TARGET_WAITKIND_NO_HISTORY:
2683 /* Reverse execution: target ran out of history info. */
2684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2685 print_stop_reason (NO_HISTORY, 0);
2686 stop_stepping (ecs);
2687 return;
2688
2689 /* We had an event in the inferior, but we are not interested
2690 in handling it at this level. The lower layers have already
2691 done what needs to be done, if anything.
2692
2693 One of the possible circumstances for this is when the
2694 inferior produces output for the console. The inferior has
2695 not stopped, and we are ignoring the event. Another possible
2696 circumstance is any event which the lower level knows will be
2697 reported multiple times without an intervening resume. */
2698 case TARGET_WAITKIND_IGNORE:
2699 if (debug_infrun)
2700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2701 prepare_to_wait (ecs);
2702 return;
2703 }
2704
2705 if (ecs->new_thread_event)
2706 {
2707 if (non_stop)
2708 /* Non-stop assumes that the target handles adding new threads
2709 to the thread list. */
2710 internal_error (__FILE__, __LINE__, "\
2711 targets should add new threads to the thread list themselves in non-stop mode.");
2712
2713 /* We may want to consider not doing a resume here in order to
2714 give the user a chance to play with the new thread. It might
2715 be good to make that a user-settable option. */
2716
2717 /* At this point, all threads are stopped (happens automatically
2718 in either the OS or the native code). Therefore we need to
2719 continue all threads in order to make progress. */
2720
2721 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2722 prepare_to_wait (ecs);
2723 return;
2724 }
2725
2726 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2727 {
2728 /* Do we need to clean up the state of a thread that has
2729 completed a displaced single-step? (Doing so usually affects
2730 the PC, so do it here, before we set stop_pc.) */
2731 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2732
2733 /* If we either finished a single-step or hit a breakpoint, but
2734 the user wanted this thread to be stopped, pretend we got a
2735 SIG0 (generic unsignaled stop). */
2736
2737 if (ecs->event_thread->stop_requested
2738 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2739 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2740 }
2741
2742 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2743
2744 if (debug_infrun)
2745 {
2746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2747 paddr_nz (stop_pc));
2748 if (target_stopped_by_watchpoint ())
2749 {
2750 CORE_ADDR addr;
2751 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2752
2753 if (target_stopped_data_address (&current_target, &addr))
2754 fprintf_unfiltered (gdb_stdlog,
2755 "infrun: stopped data address = 0x%s\n",
2756 paddr_nz (addr));
2757 else
2758 fprintf_unfiltered (gdb_stdlog,
2759 "infrun: (no data address available)\n");
2760 }
2761 }
2762
2763 if (stepping_past_singlestep_breakpoint)
2764 {
2765 gdb_assert (singlestep_breakpoints_inserted_p);
2766 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2767 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2768
2769 stepping_past_singlestep_breakpoint = 0;
2770
2771 /* We've either finished single-stepping past the single-step
2772 breakpoint, or stopped for some other reason. It would be nice if
2773 we could tell, but we can't reliably. */
2774 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2775 {
2776 if (debug_infrun)
2777 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2778 /* Pull the single step breakpoints out of the target. */
2779 remove_single_step_breakpoints ();
2780 singlestep_breakpoints_inserted_p = 0;
2781
2782 ecs->random_signal = 0;
2783
2784 context_switch (saved_singlestep_ptid);
2785 if (deprecated_context_hook)
2786 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2787
2788 resume (1, TARGET_SIGNAL_0);
2789 prepare_to_wait (ecs);
2790 return;
2791 }
2792 }
2793
2794 if (!ptid_equal (deferred_step_ptid, null_ptid))
2795 {
2796 /* In non-stop mode, there's never a deferred_step_ptid set. */
2797 gdb_assert (!non_stop);
2798
2799 /* If we stopped for some other reason than single-stepping, ignore
2800 the fact that we were supposed to switch back. */
2801 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: handling deferred step\n");
2806
2807 /* Pull the single step breakpoints out of the target. */
2808 if (singlestep_breakpoints_inserted_p)
2809 {
2810 remove_single_step_breakpoints ();
2811 singlestep_breakpoints_inserted_p = 0;
2812 }
2813
2814 /* Note: We do not call context_switch at this point, as the
2815 context is already set up for stepping the original thread. */
2816 switch_to_thread (deferred_step_ptid);
2817 deferred_step_ptid = null_ptid;
2818 /* Suppress spurious "Switching to ..." message. */
2819 previous_inferior_ptid = inferior_ptid;
2820
2821 resume (1, TARGET_SIGNAL_0);
2822 prepare_to_wait (ecs);
2823 return;
2824 }
2825
2826 deferred_step_ptid = null_ptid;
2827 }
2828
2829 /* See if a thread hit a thread-specific breakpoint that was meant for
2830 another thread. If so, then step that thread past the breakpoint,
2831 and continue it. */
2832
2833 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2834 {
2835 int thread_hop_needed = 0;
2836
2837 /* Check if a regular breakpoint has been hit before checking
2838 for a potential single step breakpoint. Otherwise, GDB will
2839 not see this breakpoint hit when stepping onto breakpoints. */
2840 if (regular_breakpoint_inserted_here_p (stop_pc))
2841 {
2842 ecs->random_signal = 0;
2843 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2844 thread_hop_needed = 1;
2845 }
2846 else if (singlestep_breakpoints_inserted_p)
2847 {
2848 /* We have not context switched yet, so this should be true
2849 no matter which thread hit the singlestep breakpoint. */
2850 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2853 "trap for %s\n",
2854 target_pid_to_str (ecs->ptid));
2855
2856 ecs->random_signal = 0;
2857 /* The call to in_thread_list is necessary because PTIDs sometimes
2858 change when we go from single-threaded to multi-threaded. If
2859 the singlestep_ptid is still in the list, assume that it is
2860 really different from ecs->ptid. */
2861 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2862 && in_thread_list (singlestep_ptid))
2863 {
2864 /* If the PC of the thread we were trying to single-step
2865 has changed, discard this event (which we were going
2866 to ignore anyway), and pretend we saw that thread
2867 trap. This prevents us continuously moving the
2868 single-step breakpoint forward, one instruction at a
2869 time. If the PC has changed, then the thread we were
2870 trying to single-step has trapped or been signalled,
2871 but the event has not been reported to GDB yet.
2872
2873 There might be some cases where this loses signal
2874 information, if a signal has arrived at exactly the
2875 same time that the PC changed, but this is the best
2876 we can do with the information available. Perhaps we
2877 should arrange to report all events for all threads
2878 when they stop, or to re-poll the remote looking for
2879 this particular thread (i.e. temporarily enable
2880 schedlock). */
2881
2882 CORE_ADDR new_singlestep_pc
2883 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2884
2885 if (new_singlestep_pc != singlestep_pc)
2886 {
2887 enum target_signal stop_signal;
2888
2889 if (debug_infrun)
2890 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2891 " but expected thread advanced also\n");
2892
2893 /* The current context still belongs to
2894 singlestep_ptid. Don't swap here, since that's
2895 the context we want to use. Just fudge our
2896 state and continue. */
2897 stop_signal = ecs->event_thread->stop_signal;
2898 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2899 ecs->ptid = singlestep_ptid;
2900 ecs->event_thread = find_thread_ptid (ecs->ptid);
2901 ecs->event_thread->stop_signal = stop_signal;
2902 stop_pc = new_singlestep_pc;
2903 }
2904 else
2905 {
2906 if (debug_infrun)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "infrun: unexpected thread\n");
2909
2910 thread_hop_needed = 1;
2911 stepping_past_singlestep_breakpoint = 1;
2912 saved_singlestep_ptid = singlestep_ptid;
2913 }
2914 }
2915 }
2916
2917 if (thread_hop_needed)
2918 {
2919 struct regcache *thread_regcache;
2920 int remove_status = 0;
2921
2922 if (debug_infrun)
2923 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2924
2925 /* Switch context before touching inferior memory, the
2926 previous thread may have exited. */
2927 if (!ptid_equal (inferior_ptid, ecs->ptid))
2928 context_switch (ecs->ptid);
2929
2930 /* Saw a breakpoint, but it was hit by the wrong thread.
2931 Just continue. */
2932
2933 if (singlestep_breakpoints_inserted_p)
2934 {
2935 /* Pull the single step breakpoints out of the target. */
2936 remove_single_step_breakpoints ();
2937 singlestep_breakpoints_inserted_p = 0;
2938 }
2939
2940 /* If the arch can displace step, don't remove the
2941 breakpoints. */
2942 thread_regcache = get_thread_regcache (ecs->ptid);
2943 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
2944 remove_status = remove_breakpoints ();
2945
2946 /* Did we fail to remove breakpoints? If so, try
2947 to set the PC past the bp. (There's at least
2948 one situation in which we can fail to remove
2949 the bp's: On HP-UX's that use ttrace, we can't
2950 change the address space of a vforking child
2951 process until the child exits (well, okay, not
2952 then either :-) or execs. */
2953 if (remove_status != 0)
2954 error (_("Cannot step over breakpoint hit in wrong thread"));
2955 else
2956 { /* Single step */
2957 if (!non_stop)
2958 {
2959 /* Only need to require the next event from this
2960 thread in all-stop mode. */
2961 waiton_ptid = ecs->ptid;
2962 infwait_state = infwait_thread_hop_state;
2963 }
2964
2965 ecs->event_thread->stepping_over_breakpoint = 1;
2966 keep_going (ecs);
2967 registers_changed ();
2968 return;
2969 }
2970 }
2971 else if (singlestep_breakpoints_inserted_p)
2972 {
2973 sw_single_step_trap_p = 1;
2974 ecs->random_signal = 0;
2975 }
2976 }
2977 else
2978 ecs->random_signal = 1;
2979
2980 /* See if something interesting happened to the non-current thread. If
2981 so, then switch to that thread. */
2982 if (!ptid_equal (ecs->ptid, inferior_ptid))
2983 {
2984 if (debug_infrun)
2985 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2986
2987 context_switch (ecs->ptid);
2988
2989 if (deprecated_context_hook)
2990 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2991 }
2992
2993 /* At this point, get hold of the now-current thread's frame. */
2994 frame = get_current_frame ();
2995 gdbarch = get_frame_arch (frame);
2996
2997 if (singlestep_breakpoints_inserted_p)
2998 {
2999 /* Pull the single step breakpoints out of the target. */
3000 remove_single_step_breakpoints ();
3001 singlestep_breakpoints_inserted_p = 0;
3002 }
3003
3004 if (stepped_after_stopped_by_watchpoint)
3005 stopped_by_watchpoint = 0;
3006 else
3007 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3008
3009 /* If necessary, step over this watchpoint. We'll be back to display
3010 it in a moment. */
3011 if (stopped_by_watchpoint
3012 && (target_have_steppable_watchpoint
3013 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3014 {
3015 /* At this point, we are stopped at an instruction which has
3016 attempted to write to a piece of memory under control of
3017 a watchpoint. The instruction hasn't actually executed
3018 yet. If we were to evaluate the watchpoint expression
3019 now, we would get the old value, and therefore no change
3020 would seem to have occurred.
3021
3022 In order to make watchpoints work `right', we really need
3023 to complete the memory write, and then evaluate the
3024 watchpoint expression. We do this by single-stepping the
3025 target.
3026
3027 It may not be necessary to disable the watchpoint to stop over
3028 it. For example, the PA can (with some kernel cooperation)
3029 single step over a watchpoint without disabling the watchpoint.
3030
3031 It is far more common to need to disable a watchpoint to step
3032 the inferior over it. If we have non-steppable watchpoints,
3033 we must disable the current watchpoint; it's simplest to
3034 disable all watchpoints and breakpoints. */
3035 int hw_step = 1;
3036
3037 if (!target_have_steppable_watchpoint)
3038 remove_breakpoints ();
3039 /* Single step */
3040 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3041 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3042 registers_changed ();
3043 waiton_ptid = ecs->ptid;
3044 if (target_have_steppable_watchpoint)
3045 infwait_state = infwait_step_watch_state;
3046 else
3047 infwait_state = infwait_nonstep_watch_state;
3048 prepare_to_wait (ecs);
3049 return;
3050 }
3051
3052 ecs->stop_func_start = 0;
3053 ecs->stop_func_end = 0;
3054 ecs->stop_func_name = 0;
3055 /* Don't care about return value; stop_func_start and stop_func_name
3056 will both be 0 if it doesn't work. */
3057 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3058 &ecs->stop_func_start, &ecs->stop_func_end);
3059 ecs->stop_func_start
3060 += gdbarch_deprecated_function_start_offset (gdbarch);
3061 ecs->event_thread->stepping_over_breakpoint = 0;
3062 bpstat_clear (&ecs->event_thread->stop_bpstat);
3063 ecs->event_thread->stop_step = 0;
3064 stop_print_frame = 1;
3065 ecs->random_signal = 0;
3066 stopped_by_random_signal = 0;
3067
3068 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3069 && ecs->event_thread->trap_expected
3070 && gdbarch_single_step_through_delay_p (gdbarch)
3071 && currently_stepping (ecs->event_thread))
3072 {
3073 /* We're trying to step off a breakpoint. Turns out that we're
3074 also on an instruction that needs to be stepped multiple
3075 times before it's been fully executing. E.g., architectures
3076 with a delay slot. It needs to be stepped twice, once for
3077 the instruction and once for the delay slot. */
3078 int step_through_delay
3079 = gdbarch_single_step_through_delay (gdbarch, frame);
3080 if (debug_infrun && step_through_delay)
3081 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3082 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3083 {
3084 /* The user issued a continue when stopped at a breakpoint.
3085 Set up for another trap and get out of here. */
3086 ecs->event_thread->stepping_over_breakpoint = 1;
3087 keep_going (ecs);
3088 return;
3089 }
3090 else if (step_through_delay)
3091 {
3092 /* The user issued a step when stopped at a breakpoint.
3093 Maybe we should stop, maybe we should not - the delay
3094 slot *might* correspond to a line of source. In any
3095 case, don't decide that here, just set
3096 ecs->stepping_over_breakpoint, making sure we
3097 single-step again before breakpoints are re-inserted. */
3098 ecs->event_thread->stepping_over_breakpoint = 1;
3099 }
3100 }
3101
3102 /* Look at the cause of the stop, and decide what to do.
3103 The alternatives are:
3104 1) stop_stepping and return; to really stop and return to the debugger,
3105 2) keep_going and return to start up again
3106 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3107 3) set ecs->random_signal to 1, and the decision between 1 and 2
3108 will be made according to the signal handling tables. */
3109
3110 /* First, distinguish signals caused by the debugger from signals
3111 that have to do with the program's own actions. Note that
3112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3113 on the operating system version. Here we detect when a SIGILL or
3114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3115 something similar for SIGSEGV, since a SIGSEGV will be generated
3116 when we're trying to execute a breakpoint instruction on a
3117 non-executable stack. This happens for call dummy breakpoints
3118 for architectures like SPARC that place call dummies on the
3119 stack.
3120
3121 If we're doing a displaced step past a breakpoint, then the
3122 breakpoint is always inserted at the original instruction;
3123 non-standard signals can't be explained by the breakpoint. */
3124 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3125 || (! ecs->event_thread->trap_expected
3126 && breakpoint_inserted_here_p (stop_pc)
3127 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3128 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3129 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3130 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3131 || stop_soon == STOP_QUIETLY_REMOTE)
3132 {
3133 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3134 {
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3137 stop_print_frame = 0;
3138 stop_stepping (ecs);
3139 return;
3140 }
3141
3142 /* This is originated from start_remote(), start_inferior() and
3143 shared libraries hook functions. */
3144 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3145 {
3146 if (debug_infrun)
3147 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3148 stop_stepping (ecs);
3149 return;
3150 }
3151
3152 /* This originates from attach_command(). We need to overwrite
3153 the stop_signal here, because some kernels don't ignore a
3154 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3155 See more comments in inferior.h. On the other hand, if we
3156 get a non-SIGSTOP, report it to the user - assume the backend
3157 will handle the SIGSTOP if it should show up later.
3158
3159 Also consider that the attach is complete when we see a
3160 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3161 target extended-remote report it instead of a SIGSTOP
3162 (e.g. gdbserver). We already rely on SIGTRAP being our
3163 signal, so this is no exception.
3164
3165 Also consider that the attach is complete when we see a
3166 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3167 the target to stop all threads of the inferior, in case the
3168 low level attach operation doesn't stop them implicitly. If
3169 they weren't stopped implicitly, then the stub will report a
3170 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3171 other than GDB's request. */
3172 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3173 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3174 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3175 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3176 {
3177 stop_stepping (ecs);
3178 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3179 return;
3180 }
3181
3182 /* See if there is a breakpoint at the current PC. */
3183 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3184
3185 /* Following in case break condition called a
3186 function. */
3187 stop_print_frame = 1;
3188
3189 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3190 at one stage in the past included checks for an inferior
3191 function call's call dummy's return breakpoint. The original
3192 comment, that went with the test, read:
3193
3194 ``End of a stack dummy. Some systems (e.g. Sony news) give
3195 another signal besides SIGTRAP, so check here as well as
3196 above.''
3197
3198 If someone ever tries to get call dummys on a
3199 non-executable stack to work (where the target would stop
3200 with something like a SIGSEGV), then those tests might need
3201 to be re-instated. Given, however, that the tests were only
3202 enabled when momentary breakpoints were not being used, I
3203 suspect that it won't be the case.
3204
3205 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3206 be necessary for call dummies on a non-executable stack on
3207 SPARC. */
3208
3209 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3210 ecs->random_signal
3211 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3212 || ecs->event_thread->trap_expected
3213 || (ecs->event_thread->step_range_end
3214 && ecs->event_thread->step_resume_breakpoint == NULL));
3215 else
3216 {
3217 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3218 if (!ecs->random_signal)
3219 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3220 }
3221 }
3222
3223 /* When we reach this point, we've pretty much decided
3224 that the reason for stopping must've been a random
3225 (unexpected) signal. */
3226
3227 else
3228 ecs->random_signal = 1;
3229
3230 process_event_stop_test:
3231
3232 /* Re-fetch current thread's frame in case we did a
3233 "goto process_event_stop_test" above. */
3234 frame = get_current_frame ();
3235 gdbarch = get_frame_arch (frame);
3236
3237 /* For the program's own signals, act according to
3238 the signal handling tables. */
3239
3240 if (ecs->random_signal)
3241 {
3242 /* Signal not for debugging purposes. */
3243 int printed = 0;
3244
3245 if (debug_infrun)
3246 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3247 ecs->event_thread->stop_signal);
3248
3249 stopped_by_random_signal = 1;
3250
3251 if (signal_print[ecs->event_thread->stop_signal])
3252 {
3253 printed = 1;
3254 target_terminal_ours_for_output ();
3255 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3256 }
3257 /* Always stop on signals if we're either just gaining control
3258 of the program, or the user explicitly requested this thread
3259 to remain stopped. */
3260 if (stop_soon != NO_STOP_QUIETLY
3261 || ecs->event_thread->stop_requested
3262 || signal_stop_state (ecs->event_thread->stop_signal))
3263 {
3264 stop_stepping (ecs);
3265 return;
3266 }
3267 /* If not going to stop, give terminal back
3268 if we took it away. */
3269 else if (printed)
3270 target_terminal_inferior ();
3271
3272 /* Clear the signal if it should not be passed. */
3273 if (signal_program[ecs->event_thread->stop_signal] == 0)
3274 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3275
3276 if (ecs->event_thread->prev_pc == stop_pc
3277 && ecs->event_thread->trap_expected
3278 && ecs->event_thread->step_resume_breakpoint == NULL)
3279 {
3280 /* We were just starting a new sequence, attempting to
3281 single-step off of a breakpoint and expecting a SIGTRAP.
3282 Instead this signal arrives. This signal will take us out
3283 of the stepping range so GDB needs to remember to, when
3284 the signal handler returns, resume stepping off that
3285 breakpoint. */
3286 /* To simplify things, "continue" is forced to use the same
3287 code paths as single-step - set a breakpoint at the
3288 signal return address and then, once hit, step off that
3289 breakpoint. */
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog,
3292 "infrun: signal arrived while stepping over "
3293 "breakpoint\n");
3294
3295 insert_step_resume_breakpoint_at_frame (frame);
3296 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3297 keep_going (ecs);
3298 return;
3299 }
3300
3301 if (ecs->event_thread->step_range_end != 0
3302 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3303 && (ecs->event_thread->step_range_start <= stop_pc
3304 && stop_pc < ecs->event_thread->step_range_end)
3305 && frame_id_eq (get_frame_id (frame),
3306 ecs->event_thread->step_frame_id)
3307 && ecs->event_thread->step_resume_breakpoint == NULL)
3308 {
3309 /* The inferior is about to take a signal that will take it
3310 out of the single step range. Set a breakpoint at the
3311 current PC (which is presumably where the signal handler
3312 will eventually return) and then allow the inferior to
3313 run free.
3314
3315 Note that this is only needed for a signal delivered
3316 while in the single-step range. Nested signals aren't a
3317 problem as they eventually all return. */
3318 if (debug_infrun)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "infrun: signal may take us out of "
3321 "single-step range\n");
3322
3323 insert_step_resume_breakpoint_at_frame (frame);
3324 keep_going (ecs);
3325 return;
3326 }
3327
3328 /* Note: step_resume_breakpoint may be non-NULL. This occures
3329 when either there's a nested signal, or when there's a
3330 pending signal enabled just as the signal handler returns
3331 (leaving the inferior at the step-resume-breakpoint without
3332 actually executing it). Either way continue until the
3333 breakpoint is really hit. */
3334 keep_going (ecs);
3335 return;
3336 }
3337
3338 /* Handle cases caused by hitting a breakpoint. */
3339 {
3340 CORE_ADDR jmp_buf_pc;
3341 struct bpstat_what what;
3342
3343 what = bpstat_what (ecs->event_thread->stop_bpstat);
3344
3345 if (what.call_dummy)
3346 {
3347 stop_stack_dummy = 1;
3348 }
3349
3350 switch (what.main_action)
3351 {
3352 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3353 /* If we hit the breakpoint at longjmp while stepping, we
3354 install a momentary breakpoint at the target of the
3355 jmp_buf. */
3356
3357 if (debug_infrun)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3360
3361 ecs->event_thread->stepping_over_breakpoint = 1;
3362
3363 if (!gdbarch_get_longjmp_target_p (gdbarch)
3364 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3365 {
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog, "\
3368 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3369 keep_going (ecs);
3370 return;
3371 }
3372
3373 /* We're going to replace the current step-resume breakpoint
3374 with a longjmp-resume breakpoint. */
3375 delete_step_resume_breakpoint (ecs->event_thread);
3376
3377 /* Insert a breakpoint at resume address. */
3378 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3379
3380 keep_going (ecs);
3381 return;
3382
3383 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3384 if (debug_infrun)
3385 fprintf_unfiltered (gdb_stdlog,
3386 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3387
3388 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3389 delete_step_resume_breakpoint (ecs->event_thread);
3390
3391 ecs->event_thread->stop_step = 1;
3392 print_stop_reason (END_STEPPING_RANGE, 0);
3393 stop_stepping (ecs);
3394 return;
3395
3396 case BPSTAT_WHAT_SINGLE:
3397 if (debug_infrun)
3398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3399 ecs->event_thread->stepping_over_breakpoint = 1;
3400 /* Still need to check other stuff, at least the case
3401 where we are stepping and step out of the right range. */
3402 break;
3403
3404 case BPSTAT_WHAT_STOP_NOISY:
3405 if (debug_infrun)
3406 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3407 stop_print_frame = 1;
3408
3409 /* We are about to nuke the step_resume_breakpointt via the
3410 cleanup chain, so no need to worry about it here. */
3411
3412 stop_stepping (ecs);
3413 return;
3414
3415 case BPSTAT_WHAT_STOP_SILENT:
3416 if (debug_infrun)
3417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3418 stop_print_frame = 0;
3419
3420 /* We are about to nuke the step_resume_breakpoin via the
3421 cleanup chain, so no need to worry about it here. */
3422
3423 stop_stepping (ecs);
3424 return;
3425
3426 case BPSTAT_WHAT_STEP_RESUME:
3427 if (debug_infrun)
3428 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3429
3430 delete_step_resume_breakpoint (ecs->event_thread);
3431 if (ecs->event_thread->step_after_step_resume_breakpoint)
3432 {
3433 /* Back when the step-resume breakpoint was inserted, we
3434 were trying to single-step off a breakpoint. Go back
3435 to doing that. */
3436 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3437 ecs->event_thread->stepping_over_breakpoint = 1;
3438 keep_going (ecs);
3439 return;
3440 }
3441 if (stop_pc == ecs->stop_func_start
3442 && execution_direction == EXEC_REVERSE)
3443 {
3444 /* We are stepping over a function call in reverse, and
3445 just hit the step-resume breakpoint at the start
3446 address of the function. Go back to single-stepping,
3447 which should take us back to the function call. */
3448 ecs->event_thread->stepping_over_breakpoint = 1;
3449 keep_going (ecs);
3450 return;
3451 }
3452 break;
3453
3454 case BPSTAT_WHAT_CHECK_SHLIBS:
3455 {
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3458
3459 /* Check for any newly added shared libraries if we're
3460 supposed to be adding them automatically. Switch
3461 terminal for any messages produced by
3462 breakpoint_re_set. */
3463 target_terminal_ours_for_output ();
3464 /* NOTE: cagney/2003-11-25: Make certain that the target
3465 stack's section table is kept up-to-date. Architectures,
3466 (e.g., PPC64), use the section table to perform
3467 operations such as address => section name and hence
3468 require the table to contain all sections (including
3469 those found in shared libraries). */
3470 #ifdef SOLIB_ADD
3471 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3472 #else
3473 solib_add (NULL, 0, &current_target, auto_solib_add);
3474 #endif
3475 target_terminal_inferior ();
3476
3477 /* If requested, stop when the dynamic linker notifies
3478 gdb of events. This allows the user to get control
3479 and place breakpoints in initializer routines for
3480 dynamically loaded objects (among other things). */
3481 if (stop_on_solib_events || stop_stack_dummy)
3482 {
3483 stop_stepping (ecs);
3484 return;
3485 }
3486 else
3487 {
3488 /* We want to step over this breakpoint, then keep going. */
3489 ecs->event_thread->stepping_over_breakpoint = 1;
3490 break;
3491 }
3492 }
3493 break;
3494
3495 case BPSTAT_WHAT_LAST:
3496 /* Not a real code, but listed here to shut up gcc -Wall. */
3497
3498 case BPSTAT_WHAT_KEEP_CHECKING:
3499 break;
3500 }
3501 }
3502
3503 /* We come here if we hit a breakpoint but should not
3504 stop for it. Possibly we also were stepping
3505 and should stop for that. So fall through and
3506 test for stepping. But, if not stepping,
3507 do not stop. */
3508
3509 /* In all-stop mode, if we're currently stepping but have stopped in
3510 some other thread, we need to switch back to the stepped thread. */
3511 if (!non_stop)
3512 {
3513 struct thread_info *tp;
3514 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3515 ecs->event_thread);
3516 if (tp)
3517 {
3518 /* However, if the current thread is blocked on some internal
3519 breakpoint, and we simply need to step over that breakpoint
3520 to get it going again, do that first. */
3521 if ((ecs->event_thread->trap_expected
3522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3523 || ecs->event_thread->stepping_over_breakpoint)
3524 {
3525 keep_going (ecs);
3526 return;
3527 }
3528
3529 /* If the stepping thread exited, then don't try to switch
3530 back and resume it, which could fail in several different
3531 ways depending on the target. Instead, just keep going.
3532
3533 We can find a stepping dead thread in the thread list in
3534 two cases:
3535
3536 - The target supports thread exit events, and when the
3537 target tries to delete the thread from the thread list,
3538 inferior_ptid pointed at the exiting thread. In such
3539 case, calling delete_thread does not really remove the
3540 thread from the list; instead, the thread is left listed,
3541 with 'exited' state.
3542
3543 - The target's debug interface does not support thread
3544 exit events, and so we have no idea whatsoever if the
3545 previously stepping thread is still alive. For that
3546 reason, we need to synchronously query the target
3547 now. */
3548 if (is_exited (tp->ptid)
3549 || !target_thread_alive (tp->ptid))
3550 {
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog, "\
3553 infrun: not switching back to stepped thread, it has vanished\n");
3554
3555 delete_thread (tp->ptid);
3556 keep_going (ecs);
3557 return;
3558 }
3559
3560 /* Otherwise, we no longer expect a trap in the current thread.
3561 Clear the trap_expected flag before switching back -- this is
3562 what keep_going would do as well, if we called it. */
3563 ecs->event_thread->trap_expected = 0;
3564
3565 if (debug_infrun)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "infrun: switching back to stepped thread\n");
3568
3569 ecs->event_thread = tp;
3570 ecs->ptid = tp->ptid;
3571 context_switch (ecs->ptid);
3572 keep_going (ecs);
3573 return;
3574 }
3575 }
3576
3577 /* Are we stepping to get the inferior out of the dynamic linker's
3578 hook (and possibly the dld itself) after catching a shlib
3579 event? */
3580 if (ecs->event_thread->stepping_through_solib_after_catch)
3581 {
3582 #if defined(SOLIB_ADD)
3583 /* Have we reached our destination? If not, keep going. */
3584 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3585 {
3586 if (debug_infrun)
3587 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3588 ecs->event_thread->stepping_over_breakpoint = 1;
3589 keep_going (ecs);
3590 return;
3591 }
3592 #endif
3593 if (debug_infrun)
3594 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3595 /* Else, stop and report the catchpoint(s) whose triggering
3596 caused us to begin stepping. */
3597 ecs->event_thread->stepping_through_solib_after_catch = 0;
3598 bpstat_clear (&ecs->event_thread->stop_bpstat);
3599 ecs->event_thread->stop_bpstat
3600 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3601 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3602 stop_print_frame = 1;
3603 stop_stepping (ecs);
3604 return;
3605 }
3606
3607 if (ecs->event_thread->step_resume_breakpoint)
3608 {
3609 if (debug_infrun)
3610 fprintf_unfiltered (gdb_stdlog,
3611 "infrun: step-resume breakpoint is inserted\n");
3612
3613 /* Having a step-resume breakpoint overrides anything
3614 else having to do with stepping commands until
3615 that breakpoint is reached. */
3616 keep_going (ecs);
3617 return;
3618 }
3619
3620 if (ecs->event_thread->step_range_end == 0)
3621 {
3622 if (debug_infrun)
3623 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3624 /* Likewise if we aren't even stepping. */
3625 keep_going (ecs);
3626 return;
3627 }
3628
3629 /* If stepping through a line, keep going if still within it.
3630
3631 Note that step_range_end is the address of the first instruction
3632 beyond the step range, and NOT the address of the last instruction
3633 within it!
3634
3635 Note also that during reverse execution, we may be stepping
3636 through a function epilogue and therefore must detect when
3637 the current-frame changes in the middle of a line. */
3638
3639 if (stop_pc >= ecs->event_thread->step_range_start
3640 && stop_pc < ecs->event_thread->step_range_end
3641 && (execution_direction != EXEC_REVERSE
3642 || frame_id_eq (get_frame_id (get_current_frame ()),
3643 ecs->event_thread->step_frame_id)))
3644 {
3645 if (debug_infrun)
3646 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3647 paddr_nz (ecs->event_thread->step_range_start),
3648 paddr_nz (ecs->event_thread->step_range_end));
3649
3650 /* When stepping backward, stop at beginning of line range
3651 (unless it's the function entry point, in which case
3652 keep going back to the call point). */
3653 if (stop_pc == ecs->event_thread->step_range_start
3654 && stop_pc != ecs->stop_func_start
3655 && execution_direction == EXEC_REVERSE)
3656 {
3657 ecs->event_thread->stop_step = 1;
3658 print_stop_reason (END_STEPPING_RANGE, 0);
3659 stop_stepping (ecs);
3660 }
3661 else
3662 keep_going (ecs);
3663
3664 return;
3665 }
3666
3667 /* We stepped out of the stepping range. */
3668
3669 /* If we are stepping at the source level and entered the runtime
3670 loader dynamic symbol resolution code, we keep on single stepping
3671 until we exit the run time loader code and reach the callee's
3672 address. */
3673 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3674 && in_solib_dynsym_resolve_code (stop_pc))
3675 {
3676 CORE_ADDR pc_after_resolver =
3677 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
3678
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3681
3682 if (pc_after_resolver)
3683 {
3684 /* Set up a step-resume breakpoint at the address
3685 indicated by SKIP_SOLIB_RESOLVER. */
3686 struct symtab_and_line sr_sal;
3687 init_sal (&sr_sal);
3688 sr_sal.pc = pc_after_resolver;
3689
3690 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3691 }
3692
3693 keep_going (ecs);
3694 return;
3695 }
3696
3697 if (ecs->event_thread->step_range_end != 1
3698 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3699 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3700 && get_frame_type (frame) == SIGTRAMP_FRAME)
3701 {
3702 if (debug_infrun)
3703 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3704 /* The inferior, while doing a "step" or "next", has ended up in
3705 a signal trampoline (either by a signal being delivered or by
3706 the signal handler returning). Just single-step until the
3707 inferior leaves the trampoline (either by calling the handler
3708 or returning). */
3709 keep_going (ecs);
3710 return;
3711 }
3712
3713 /* Check for subroutine calls. The check for the current frame
3714 equalling the step ID is not necessary - the check of the
3715 previous frame's ID is sufficient - but it is a common case and
3716 cheaper than checking the previous frame's ID.
3717
3718 NOTE: frame_id_eq will never report two invalid frame IDs as
3719 being equal, so to get into this block, both the current and
3720 previous frame must have valid frame IDs. */
3721 if (!frame_id_eq (get_frame_id (frame),
3722 ecs->event_thread->step_frame_id)
3723 && (frame_id_eq (frame_unwind_id (frame),
3724 ecs->event_thread->step_frame_id)
3725 || execution_direction == EXEC_REVERSE))
3726 {
3727 CORE_ADDR real_stop_pc;
3728
3729 if (debug_infrun)
3730 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3731
3732 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3733 || ((ecs->event_thread->step_range_end == 1)
3734 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
3735 ecs->stop_func_start)))
3736 {
3737 /* I presume that step_over_calls is only 0 when we're
3738 supposed to be stepping at the assembly language level
3739 ("stepi"). Just stop. */
3740 /* Also, maybe we just did a "nexti" inside a prolog, so we
3741 thought it was a subroutine call but it was not. Stop as
3742 well. FENN */
3743 ecs->event_thread->stop_step = 1;
3744 print_stop_reason (END_STEPPING_RANGE, 0);
3745 stop_stepping (ecs);
3746 return;
3747 }
3748
3749 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3750 {
3751 /* We're doing a "next".
3752
3753 Normal (forward) execution: set a breakpoint at the
3754 callee's return address (the address at which the caller
3755 will resume).
3756
3757 Reverse (backward) execution. set the step-resume
3758 breakpoint at the start of the function that we just
3759 stepped into (backwards), and continue to there. When we
3760 get there, we'll need to single-step back to the caller. */
3761
3762 if (execution_direction == EXEC_REVERSE)
3763 {
3764 struct symtab_and_line sr_sal;
3765
3766 if (ecs->stop_func_start == 0
3767 && in_solib_dynsym_resolve_code (stop_pc))
3768 {
3769 /* Stepped into runtime loader dynamic symbol
3770 resolution code. Since we're in reverse,
3771 we have already backed up through the runtime
3772 loader and the dynamic function. This is just
3773 the trampoline (jump table).
3774
3775 Just keep stepping, we'll soon be home.
3776 */
3777 keep_going (ecs);
3778 return;
3779 }
3780 /* Normal (staticly linked) function call return. */
3781 init_sal (&sr_sal);
3782 sr_sal.pc = ecs->stop_func_start;
3783 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3784 }
3785 else
3786 insert_step_resume_breakpoint_at_caller (frame);
3787
3788 keep_going (ecs);
3789 return;
3790 }
3791
3792 /* If we are in a function call trampoline (a stub between the
3793 calling routine and the real function), locate the real
3794 function. That's what tells us (a) whether we want to step
3795 into it at all, and (b) what prologue we want to run to the
3796 end of, if we do step into it. */
3797 real_stop_pc = skip_language_trampoline (frame, stop_pc);
3798 if (real_stop_pc == 0)
3799 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3800 if (real_stop_pc != 0)
3801 ecs->stop_func_start = real_stop_pc;
3802
3803 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3804 {
3805 struct symtab_and_line sr_sal;
3806 init_sal (&sr_sal);
3807 sr_sal.pc = ecs->stop_func_start;
3808
3809 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3810 keep_going (ecs);
3811 return;
3812 }
3813
3814 /* If we have line number information for the function we are
3815 thinking of stepping into, step into it.
3816
3817 If there are several symtabs at that PC (e.g. with include
3818 files), just want to know whether *any* of them have line
3819 numbers. find_pc_line handles this. */
3820 {
3821 struct symtab_and_line tmp_sal;
3822
3823 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3824 if (tmp_sal.line != 0)
3825 {
3826 if (execution_direction == EXEC_REVERSE)
3827 handle_step_into_function_backward (gdbarch, ecs);
3828 else
3829 handle_step_into_function (gdbarch, ecs);
3830 return;
3831 }
3832 }
3833
3834 /* If we have no line number and the step-stop-if-no-debug is
3835 set, we stop the step so that the user has a chance to switch
3836 in assembly mode. */
3837 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3838 && step_stop_if_no_debug)
3839 {
3840 ecs->event_thread->stop_step = 1;
3841 print_stop_reason (END_STEPPING_RANGE, 0);
3842 stop_stepping (ecs);
3843 return;
3844 }
3845
3846 if (execution_direction == EXEC_REVERSE)
3847 {
3848 /* Set a breakpoint at callee's start address.
3849 From there we can step once and be back in the caller. */
3850 struct symtab_and_line sr_sal;
3851 init_sal (&sr_sal);
3852 sr_sal.pc = ecs->stop_func_start;
3853 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3854 }
3855 else
3856 /* Set a breakpoint at callee's return address (the address
3857 at which the caller will resume). */
3858 insert_step_resume_breakpoint_at_caller (frame);
3859
3860 keep_going (ecs);
3861 return;
3862 }
3863
3864 /* If we're in the return path from a shared library trampoline,
3865 we want to proceed through the trampoline when stepping. */
3866 if (gdbarch_in_solib_return_trampoline (gdbarch,
3867 stop_pc, ecs->stop_func_name))
3868 {
3869 /* Determine where this trampoline returns. */
3870 CORE_ADDR real_stop_pc;
3871 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3872
3873 if (debug_infrun)
3874 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3875
3876 /* Only proceed through if we know where it's going. */
3877 if (real_stop_pc)
3878 {
3879 /* And put the step-breakpoint there and go until there. */
3880 struct symtab_and_line sr_sal;
3881
3882 init_sal (&sr_sal); /* initialize to zeroes */
3883 sr_sal.pc = real_stop_pc;
3884 sr_sal.section = find_pc_overlay (sr_sal.pc);
3885
3886 /* Do not specify what the fp should be when we stop since
3887 on some machines the prologue is where the new fp value
3888 is established. */
3889 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3890
3891 /* Restart without fiddling with the step ranges or
3892 other state. */
3893 keep_going (ecs);
3894 return;
3895 }
3896 }
3897
3898 stop_pc_sal = find_pc_line (stop_pc, 0);
3899
3900 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3901 the trampoline processing logic, however, there are some trampolines
3902 that have no names, so we should do trampoline handling first. */
3903 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3904 && ecs->stop_func_name == NULL
3905 && stop_pc_sal.line == 0)
3906 {
3907 if (debug_infrun)
3908 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3909
3910 /* The inferior just stepped into, or returned to, an
3911 undebuggable function (where there is no debugging information
3912 and no line number corresponding to the address where the
3913 inferior stopped). Since we want to skip this kind of code,
3914 we keep going until the inferior returns from this
3915 function - unless the user has asked us not to (via
3916 set step-mode) or we no longer know how to get back
3917 to the call site. */
3918 if (step_stop_if_no_debug
3919 || !frame_id_p (frame_unwind_id (frame)))
3920 {
3921 /* If we have no line number and the step-stop-if-no-debug
3922 is set, we stop the step so that the user has a chance to
3923 switch in assembly mode. */
3924 ecs->event_thread->stop_step = 1;
3925 print_stop_reason (END_STEPPING_RANGE, 0);
3926 stop_stepping (ecs);
3927 return;
3928 }
3929 else
3930 {
3931 /* Set a breakpoint at callee's return address (the address
3932 at which the caller will resume). */
3933 insert_step_resume_breakpoint_at_caller (frame);
3934 keep_going (ecs);
3935 return;
3936 }
3937 }
3938
3939 if (ecs->event_thread->step_range_end == 1)
3940 {
3941 /* It is stepi or nexti. We always want to stop stepping after
3942 one instruction. */
3943 if (debug_infrun)
3944 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3945 ecs->event_thread->stop_step = 1;
3946 print_stop_reason (END_STEPPING_RANGE, 0);
3947 stop_stepping (ecs);
3948 return;
3949 }
3950
3951 if (stop_pc_sal.line == 0)
3952 {
3953 /* We have no line number information. That means to stop
3954 stepping (does this always happen right after one instruction,
3955 when we do "s" in a function with no line numbers,
3956 or can this happen as a result of a return or longjmp?). */
3957 if (debug_infrun)
3958 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3959 ecs->event_thread->stop_step = 1;
3960 print_stop_reason (END_STEPPING_RANGE, 0);
3961 stop_stepping (ecs);
3962 return;
3963 }
3964
3965 if ((stop_pc == stop_pc_sal.pc)
3966 && (ecs->event_thread->current_line != stop_pc_sal.line
3967 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3968 {
3969 /* We are at the start of a different line. So stop. Note that
3970 we don't stop if we step into the middle of a different line.
3971 That is said to make things like for (;;) statements work
3972 better. */
3973 if (debug_infrun)
3974 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3975 ecs->event_thread->stop_step = 1;
3976 print_stop_reason (END_STEPPING_RANGE, 0);
3977 stop_stepping (ecs);
3978 return;
3979 }
3980
3981 /* We aren't done stepping.
3982
3983 Optimize by setting the stepping range to the line.
3984 (We might not be in the original line, but if we entered a
3985 new line in mid-statement, we continue stepping. This makes
3986 things like for(;;) statements work better.) */
3987
3988 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3989 ecs->event_thread->step_range_end = stop_pc_sal.end;
3990 ecs->event_thread->step_frame_id = get_frame_id (frame);
3991 ecs->event_thread->current_line = stop_pc_sal.line;
3992 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3993
3994 if (debug_infrun)
3995 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3996 keep_going (ecs);
3997 }
3998
3999 /* Is thread TP in the middle of single-stepping? */
4000
4001 static int
4002 currently_stepping (struct thread_info *tp)
4003 {
4004 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4005 || tp->trap_expected
4006 || tp->stepping_through_solib_after_catch
4007 || bpstat_should_step ());
4008 }
4009
4010 /* Returns true if any thread *but* the one passed in "data" is in the
4011 middle of stepping or of handling a "next". */
4012
4013 static int
4014 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4015 {
4016 if (tp == data)
4017 return 0;
4018
4019 return (tp->step_range_end
4020 || tp->trap_expected
4021 || tp->stepping_through_solib_after_catch);
4022 }
4023
4024 /* Inferior has stepped into a subroutine call with source code that
4025 we should not step over. Do step to the first line of code in
4026 it. */
4027
4028 static void
4029 handle_step_into_function (struct gdbarch *gdbarch,
4030 struct execution_control_state *ecs)
4031 {
4032 struct symtab *s;
4033 struct symtab_and_line stop_func_sal, sr_sal;
4034
4035 s = find_pc_symtab (stop_pc);
4036 if (s && s->language != language_asm)
4037 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4038 ecs->stop_func_start);
4039
4040 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4041 /* Use the step_resume_break to step until the end of the prologue,
4042 even if that involves jumps (as it seems to on the vax under
4043 4.2). */
4044 /* If the prologue ends in the middle of a source line, continue to
4045 the end of that source line (if it is still within the function).
4046 Otherwise, just go to end of prologue. */
4047 if (stop_func_sal.end
4048 && stop_func_sal.pc != ecs->stop_func_start
4049 && stop_func_sal.end < ecs->stop_func_end)
4050 ecs->stop_func_start = stop_func_sal.end;
4051
4052 /* Architectures which require breakpoint adjustment might not be able
4053 to place a breakpoint at the computed address. If so, the test
4054 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4055 ecs->stop_func_start to an address at which a breakpoint may be
4056 legitimately placed.
4057
4058 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4059 made, GDB will enter an infinite loop when stepping through
4060 optimized code consisting of VLIW instructions which contain
4061 subinstructions corresponding to different source lines. On
4062 FR-V, it's not permitted to place a breakpoint on any but the
4063 first subinstruction of a VLIW instruction. When a breakpoint is
4064 set, GDB will adjust the breakpoint address to the beginning of
4065 the VLIW instruction. Thus, we need to make the corresponding
4066 adjustment here when computing the stop address. */
4067
4068 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4069 {
4070 ecs->stop_func_start
4071 = gdbarch_adjust_breakpoint_address (gdbarch,
4072 ecs->stop_func_start);
4073 }
4074
4075 if (ecs->stop_func_start == stop_pc)
4076 {
4077 /* We are already there: stop now. */
4078 ecs->event_thread->stop_step = 1;
4079 print_stop_reason (END_STEPPING_RANGE, 0);
4080 stop_stepping (ecs);
4081 return;
4082 }
4083 else
4084 {
4085 /* Put the step-breakpoint there and go until there. */
4086 init_sal (&sr_sal); /* initialize to zeroes */
4087 sr_sal.pc = ecs->stop_func_start;
4088 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4089
4090 /* Do not specify what the fp should be when we stop since on
4091 some machines the prologue is where the new fp value is
4092 established. */
4093 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
4094
4095 /* And make sure stepping stops right away then. */
4096 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4097 }
4098 keep_going (ecs);
4099 }
4100
4101 /* Inferior has stepped backward into a subroutine call with source
4102 code that we should not step over. Do step to the beginning of the
4103 last line of code in it. */
4104
4105 static void
4106 handle_step_into_function_backward (struct gdbarch *gdbarch,
4107 struct execution_control_state *ecs)
4108 {
4109 struct symtab *s;
4110 struct symtab_and_line stop_func_sal, sr_sal;
4111
4112 s = find_pc_symtab (stop_pc);
4113 if (s && s->language != language_asm)
4114 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4115 ecs->stop_func_start);
4116
4117 stop_func_sal = find_pc_line (stop_pc, 0);
4118
4119 /* OK, we're just going to keep stepping here. */
4120 if (stop_func_sal.pc == stop_pc)
4121 {
4122 /* We're there already. Just stop stepping now. */
4123 ecs->event_thread->stop_step = 1;
4124 print_stop_reason (END_STEPPING_RANGE, 0);
4125 stop_stepping (ecs);
4126 }
4127 else
4128 {
4129 /* Else just reset the step range and keep going.
4130 No step-resume breakpoint, they don't work for
4131 epilogues, which can have multiple entry paths. */
4132 ecs->event_thread->step_range_start = stop_func_sal.pc;
4133 ecs->event_thread->step_range_end = stop_func_sal.end;
4134 keep_going (ecs);
4135 }
4136 return;
4137 }
4138
4139 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4140 This is used to both functions and to skip over code. */
4141
4142 static void
4143 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4144 struct frame_id sr_id)
4145 {
4146 /* There should never be more than one step-resume or longjmp-resume
4147 breakpoint per thread, so we should never be setting a new
4148 step_resume_breakpoint when one is already active. */
4149 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4150
4151 if (debug_infrun)
4152 fprintf_unfiltered (gdb_stdlog,
4153 "infrun: inserting step-resume breakpoint at 0x%s\n",
4154 paddr_nz (sr_sal.pc));
4155
4156 inferior_thread ()->step_resume_breakpoint
4157 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
4158 }
4159
4160 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4161 to skip a potential signal handler.
4162
4163 This is called with the interrupted function's frame. The signal
4164 handler, when it returns, will resume the interrupted function at
4165 RETURN_FRAME.pc. */
4166
4167 static void
4168 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4169 {
4170 struct gdbarch *gdbarch = get_frame_arch (return_frame);
4171 struct symtab_and_line sr_sal;
4172
4173 gdb_assert (return_frame != NULL);
4174 init_sal (&sr_sal); /* initialize to zeros */
4175
4176 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4177 sr_sal.section = find_pc_overlay (sr_sal.pc);
4178
4179 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
4180 }
4181
4182 /* Similar to insert_step_resume_breakpoint_at_frame, except
4183 but a breakpoint at the previous frame's PC. This is used to
4184 skip a function after stepping into it (for "next" or if the called
4185 function has no debugging information).
4186
4187 The current function has almost always been reached by single
4188 stepping a call or return instruction. NEXT_FRAME belongs to the
4189 current function, and the breakpoint will be set at the caller's
4190 resume address.
4191
4192 This is a separate function rather than reusing
4193 insert_step_resume_breakpoint_at_frame in order to avoid
4194 get_prev_frame, which may stop prematurely (see the implementation
4195 of frame_unwind_id for an example). */
4196
4197 static void
4198 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4199 {
4200 struct gdbarch *gdbarch = get_frame_arch (next_frame);
4201 struct symtab_and_line sr_sal;
4202
4203 /* We shouldn't have gotten here if we don't know where the call site
4204 is. */
4205 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
4206
4207 init_sal (&sr_sal); /* initialize to zeros */
4208
4209 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, frame_pc_unwind (next_frame));
4210 sr_sal.section = find_pc_overlay (sr_sal.pc);
4211
4212 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
4213 }
4214
4215 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4216 new breakpoint at the target of a jmp_buf. The handling of
4217 longjmp-resume uses the same mechanisms used for handling
4218 "step-resume" breakpoints. */
4219
4220 static void
4221 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4222 {
4223 /* There should never be more than one step-resume or longjmp-resume
4224 breakpoint per thread, so we should never be setting a new
4225 longjmp_resume_breakpoint when one is already active. */
4226 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4227
4228 if (debug_infrun)
4229 fprintf_unfiltered (gdb_stdlog,
4230 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4231 paddr_nz (pc));
4232
4233 inferior_thread ()->step_resume_breakpoint =
4234 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4235 }
4236
4237 static void
4238 stop_stepping (struct execution_control_state *ecs)
4239 {
4240 if (debug_infrun)
4241 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4242
4243 /* Let callers know we don't want to wait for the inferior anymore. */
4244 ecs->wait_some_more = 0;
4245 }
4246
4247 /* This function handles various cases where we need to continue
4248 waiting for the inferior. */
4249 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4250
4251 static void
4252 keep_going (struct execution_control_state *ecs)
4253 {
4254 /* Save the pc before execution, to compare with pc after stop. */
4255 ecs->event_thread->prev_pc
4256 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4257
4258 /* If we did not do break;, it means we should keep running the
4259 inferior and not return to debugger. */
4260
4261 if (ecs->event_thread->trap_expected
4262 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4263 {
4264 /* We took a signal (which we are supposed to pass through to
4265 the inferior, else we'd not get here) and we haven't yet
4266 gotten our trap. Simply continue. */
4267 resume (currently_stepping (ecs->event_thread),
4268 ecs->event_thread->stop_signal);
4269 }
4270 else
4271 {
4272 /* Either the trap was not expected, but we are continuing
4273 anyway (the user asked that this signal be passed to the
4274 child)
4275 -- or --
4276 The signal was SIGTRAP, e.g. it was our signal, but we
4277 decided we should resume from it.
4278
4279 We're going to run this baby now!
4280
4281 Note that insert_breakpoints won't try to re-insert
4282 already inserted breakpoints. Therefore, we don't
4283 care if breakpoints were already inserted, or not. */
4284
4285 if (ecs->event_thread->stepping_over_breakpoint)
4286 {
4287 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4288 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4289 /* Since we can't do a displaced step, we have to remove
4290 the breakpoint while we step it. To keep things
4291 simple, we remove them all. */
4292 remove_breakpoints ();
4293 }
4294 else
4295 {
4296 struct gdb_exception e;
4297 /* Stop stepping when inserting breakpoints
4298 has failed. */
4299 TRY_CATCH (e, RETURN_MASK_ERROR)
4300 {
4301 insert_breakpoints ();
4302 }
4303 if (e.reason < 0)
4304 {
4305 stop_stepping (ecs);
4306 return;
4307 }
4308 }
4309
4310 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4311
4312 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4313 specifies that such a signal should be delivered to the
4314 target program).
4315
4316 Typically, this would occure when a user is debugging a
4317 target monitor on a simulator: the target monitor sets a
4318 breakpoint; the simulator encounters this break-point and
4319 halts the simulation handing control to GDB; GDB, noteing
4320 that the break-point isn't valid, returns control back to the
4321 simulator; the simulator then delivers the hardware
4322 equivalent of a SIGNAL_TRAP to the program being debugged. */
4323
4324 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4325 && !signal_program[ecs->event_thread->stop_signal])
4326 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4327
4328 resume (currently_stepping (ecs->event_thread),
4329 ecs->event_thread->stop_signal);
4330 }
4331
4332 prepare_to_wait (ecs);
4333 }
4334
4335 /* This function normally comes after a resume, before
4336 handle_inferior_event exits. It takes care of any last bits of
4337 housekeeping, and sets the all-important wait_some_more flag. */
4338
4339 static void
4340 prepare_to_wait (struct execution_control_state *ecs)
4341 {
4342 if (debug_infrun)
4343 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4344 if (infwait_state == infwait_normal_state)
4345 {
4346 overlay_cache_invalid = 1;
4347
4348 /* We have to invalidate the registers BEFORE calling
4349 target_wait because they can be loaded from the target while
4350 in target_wait. This makes remote debugging a bit more
4351 efficient for those targets that provide critical registers
4352 as part of their normal status mechanism. */
4353
4354 registers_changed ();
4355 waiton_ptid = pid_to_ptid (-1);
4356 }
4357 /* This is the old end of the while loop. Let everybody know we
4358 want to wait for the inferior some more and get called again
4359 soon. */
4360 ecs->wait_some_more = 1;
4361 }
4362
4363 /* Print why the inferior has stopped. We always print something when
4364 the inferior exits, or receives a signal. The rest of the cases are
4365 dealt with later on in normal_stop() and print_it_typical(). Ideally
4366 there should be a call to this function from handle_inferior_event()
4367 each time stop_stepping() is called.*/
4368 static void
4369 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4370 {
4371 switch (stop_reason)
4372 {
4373 case END_STEPPING_RANGE:
4374 /* We are done with a step/next/si/ni command. */
4375 /* For now print nothing. */
4376 /* Print a message only if not in the middle of doing a "step n"
4377 operation for n > 1 */
4378 if (!inferior_thread ()->step_multi
4379 || !inferior_thread ()->stop_step)
4380 if (ui_out_is_mi_like_p (uiout))
4381 ui_out_field_string
4382 (uiout, "reason",
4383 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4384 break;
4385 case SIGNAL_EXITED:
4386 /* The inferior was terminated by a signal. */
4387 annotate_signalled ();
4388 if (ui_out_is_mi_like_p (uiout))
4389 ui_out_field_string
4390 (uiout, "reason",
4391 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4392 ui_out_text (uiout, "\nProgram terminated with signal ");
4393 annotate_signal_name ();
4394 ui_out_field_string (uiout, "signal-name",
4395 target_signal_to_name (stop_info));
4396 annotate_signal_name_end ();
4397 ui_out_text (uiout, ", ");
4398 annotate_signal_string ();
4399 ui_out_field_string (uiout, "signal-meaning",
4400 target_signal_to_string (stop_info));
4401 annotate_signal_string_end ();
4402 ui_out_text (uiout, ".\n");
4403 ui_out_text (uiout, "The program no longer exists.\n");
4404 break;
4405 case EXITED:
4406 /* The inferior program is finished. */
4407 annotate_exited (stop_info);
4408 if (stop_info)
4409 {
4410 if (ui_out_is_mi_like_p (uiout))
4411 ui_out_field_string (uiout, "reason",
4412 async_reason_lookup (EXEC_ASYNC_EXITED));
4413 ui_out_text (uiout, "\nProgram exited with code ");
4414 ui_out_field_fmt (uiout, "exit-code", "0%o",
4415 (unsigned int) stop_info);
4416 ui_out_text (uiout, ".\n");
4417 }
4418 else
4419 {
4420 if (ui_out_is_mi_like_p (uiout))
4421 ui_out_field_string
4422 (uiout, "reason",
4423 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4424 ui_out_text (uiout, "\nProgram exited normally.\n");
4425 }
4426 /* Support the --return-child-result option. */
4427 return_child_result_value = stop_info;
4428 break;
4429 case SIGNAL_RECEIVED:
4430 /* Signal received. The signal table tells us to print about
4431 it. */
4432 annotate_signal ();
4433
4434 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4435 {
4436 struct thread_info *t = inferior_thread ();
4437
4438 ui_out_text (uiout, "\n[");
4439 ui_out_field_string (uiout, "thread-name",
4440 target_pid_to_str (t->ptid));
4441 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4442 ui_out_text (uiout, " stopped");
4443 }
4444 else
4445 {
4446 ui_out_text (uiout, "\nProgram received signal ");
4447 annotate_signal_name ();
4448 if (ui_out_is_mi_like_p (uiout))
4449 ui_out_field_string
4450 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4451 ui_out_field_string (uiout, "signal-name",
4452 target_signal_to_name (stop_info));
4453 annotate_signal_name_end ();
4454 ui_out_text (uiout, ", ");
4455 annotate_signal_string ();
4456 ui_out_field_string (uiout, "signal-meaning",
4457 target_signal_to_string (stop_info));
4458 annotate_signal_string_end ();
4459 }
4460 ui_out_text (uiout, ".\n");
4461 break;
4462 case NO_HISTORY:
4463 /* Reverse execution: target ran out of history info. */
4464 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4465 break;
4466 default:
4467 internal_error (__FILE__, __LINE__,
4468 _("print_stop_reason: unrecognized enum value"));
4469 break;
4470 }
4471 }
4472 \f
4473
4474 /* Here to return control to GDB when the inferior stops for real.
4475 Print appropriate messages, remove breakpoints, give terminal our modes.
4476
4477 STOP_PRINT_FRAME nonzero means print the executing frame
4478 (pc, function, args, file, line number and line text).
4479 BREAKPOINTS_FAILED nonzero means stop was due to error
4480 attempting to insert breakpoints. */
4481
4482 void
4483 normal_stop (void)
4484 {
4485 struct target_waitstatus last;
4486 ptid_t last_ptid;
4487 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4488
4489 get_last_target_status (&last_ptid, &last);
4490
4491 /* If an exception is thrown from this point on, make sure to
4492 propagate GDB's knowledge of the executing state to the
4493 frontend/user running state. A QUIT is an easy exception to see
4494 here, so do this before any filtered output. */
4495 if (!non_stop)
4496 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4497 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4498 && last.kind != TARGET_WAITKIND_EXITED)
4499 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4500
4501 /* In non-stop mode, we don't want GDB to switch threads behind the
4502 user's back, to avoid races where the user is typing a command to
4503 apply to thread x, but GDB switches to thread y before the user
4504 finishes entering the command. */
4505
4506 /* As with the notification of thread events, we want to delay
4507 notifying the user that we've switched thread context until
4508 the inferior actually stops.
4509
4510 There's no point in saying anything if the inferior has exited.
4511 Note that SIGNALLED here means "exited with a signal", not
4512 "received a signal". */
4513 if (!non_stop
4514 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4515 && target_has_execution
4516 && last.kind != TARGET_WAITKIND_SIGNALLED
4517 && last.kind != TARGET_WAITKIND_EXITED)
4518 {
4519 target_terminal_ours_for_output ();
4520 printf_filtered (_("[Switching to %s]\n"),
4521 target_pid_to_str (inferior_ptid));
4522 annotate_thread_changed ();
4523 previous_inferior_ptid = inferior_ptid;
4524 }
4525
4526 if (!breakpoints_always_inserted_mode () && target_has_execution)
4527 {
4528 if (remove_breakpoints ())
4529 {
4530 target_terminal_ours_for_output ();
4531 printf_filtered (_("\
4532 Cannot remove breakpoints because program is no longer writable.\n\
4533 Further execution is probably impossible.\n"));
4534 }
4535 }
4536
4537 /* If an auto-display called a function and that got a signal,
4538 delete that auto-display to avoid an infinite recursion. */
4539
4540 if (stopped_by_random_signal)
4541 disable_current_display ();
4542
4543 /* Don't print a message if in the middle of doing a "step n"
4544 operation for n > 1 */
4545 if (target_has_execution
4546 && last.kind != TARGET_WAITKIND_SIGNALLED
4547 && last.kind != TARGET_WAITKIND_EXITED
4548 && inferior_thread ()->step_multi
4549 && inferior_thread ()->stop_step)
4550 goto done;
4551
4552 target_terminal_ours ();
4553
4554 /* Set the current source location. This will also happen if we
4555 display the frame below, but the current SAL will be incorrect
4556 during a user hook-stop function. */
4557 if (has_stack_frames () && !stop_stack_dummy)
4558 set_current_sal_from_frame (get_current_frame (), 1);
4559
4560 /* Let the user/frontend see the threads as stopped. */
4561 do_cleanups (old_chain);
4562
4563 /* Look up the hook_stop and run it (CLI internally handles problem
4564 of stop_command's pre-hook not existing). */
4565 if (stop_command)
4566 catch_errors (hook_stop_stub, stop_command,
4567 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4568
4569 if (!has_stack_frames ())
4570 goto done;
4571
4572 if (last.kind == TARGET_WAITKIND_SIGNALLED
4573 || last.kind == TARGET_WAITKIND_EXITED)
4574 goto done;
4575
4576 /* Select innermost stack frame - i.e., current frame is frame 0,
4577 and current location is based on that.
4578 Don't do this on return from a stack dummy routine,
4579 or if the program has exited. */
4580
4581 if (!stop_stack_dummy)
4582 {
4583 select_frame (get_current_frame ());
4584
4585 /* Print current location without a level number, if
4586 we have changed functions or hit a breakpoint.
4587 Print source line if we have one.
4588 bpstat_print() contains the logic deciding in detail
4589 what to print, based on the event(s) that just occurred. */
4590
4591 /* If --batch-silent is enabled then there's no need to print the current
4592 source location, and to try risks causing an error message about
4593 missing source files. */
4594 if (stop_print_frame && !batch_silent)
4595 {
4596 int bpstat_ret;
4597 int source_flag;
4598 int do_frame_printing = 1;
4599 struct thread_info *tp = inferior_thread ();
4600
4601 bpstat_ret = bpstat_print (tp->stop_bpstat);
4602 switch (bpstat_ret)
4603 {
4604 case PRINT_UNKNOWN:
4605 /* If we had hit a shared library event breakpoint,
4606 bpstat_print would print out this message. If we hit
4607 an OS-level shared library event, do the same
4608 thing. */
4609 if (last.kind == TARGET_WAITKIND_LOADED)
4610 {
4611 printf_filtered (_("Stopped due to shared library event\n"));
4612 source_flag = SRC_LINE; /* something bogus */
4613 do_frame_printing = 0;
4614 break;
4615 }
4616
4617 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4618 (or should) carry around the function and does (or
4619 should) use that when doing a frame comparison. */
4620 if (tp->stop_step
4621 && frame_id_eq (tp->step_frame_id,
4622 get_frame_id (get_current_frame ()))
4623 && step_start_function == find_pc_function (stop_pc))
4624 source_flag = SRC_LINE; /* finished step, just print source line */
4625 else
4626 source_flag = SRC_AND_LOC; /* print location and source line */
4627 break;
4628 case PRINT_SRC_AND_LOC:
4629 source_flag = SRC_AND_LOC; /* print location and source line */
4630 break;
4631 case PRINT_SRC_ONLY:
4632 source_flag = SRC_LINE;
4633 break;
4634 case PRINT_NOTHING:
4635 source_flag = SRC_LINE; /* something bogus */
4636 do_frame_printing = 0;
4637 break;
4638 default:
4639 internal_error (__FILE__, __LINE__, _("Unknown value."));
4640 }
4641
4642 /* The behavior of this routine with respect to the source
4643 flag is:
4644 SRC_LINE: Print only source line
4645 LOCATION: Print only location
4646 SRC_AND_LOC: Print location and source line */
4647 if (do_frame_printing)
4648 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4649
4650 /* Display the auto-display expressions. */
4651 do_displays ();
4652 }
4653 }
4654
4655 /* Save the function value return registers, if we care.
4656 We might be about to restore their previous contents. */
4657 if (inferior_thread ()->proceed_to_finish)
4658 {
4659 /* This should not be necessary. */
4660 if (stop_registers)
4661 regcache_xfree (stop_registers);
4662
4663 /* NB: The copy goes through to the target picking up the value of
4664 all the registers. */
4665 stop_registers = regcache_dup (get_current_regcache ());
4666 }
4667
4668 if (stop_stack_dummy)
4669 {
4670 /* Pop the empty frame that contains the stack dummy.
4671 This also restores inferior state prior to the call
4672 (struct inferior_thread_state). */
4673 struct frame_info *frame = get_current_frame ();
4674 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4675 frame_pop (frame);
4676 /* frame_pop() calls reinit_frame_cache as the last thing it does
4677 which means there's currently no selected frame. We don't need
4678 to re-establish a selected frame if the dummy call returns normally,
4679 that will be done by restore_inferior_status. However, we do have
4680 to handle the case where the dummy call is returning after being
4681 stopped (e.g. the dummy call previously hit a breakpoint). We
4682 can't know which case we have so just always re-establish a
4683 selected frame here. */
4684 select_frame (get_current_frame ());
4685 }
4686
4687 done:
4688 annotate_stopped ();
4689
4690 /* Suppress the stop observer if we're in the middle of:
4691
4692 - a step n (n > 1), as there still more steps to be done.
4693
4694 - a "finish" command, as the observer will be called in
4695 finish_command_continuation, so it can include the inferior
4696 function's return value.
4697
4698 - calling an inferior function, as we pretend we inferior didn't
4699 run at all. The return value of the call is handled by the
4700 expression evaluator, through call_function_by_hand. */
4701
4702 if (!target_has_execution
4703 || last.kind == TARGET_WAITKIND_SIGNALLED
4704 || last.kind == TARGET_WAITKIND_EXITED
4705 || (!inferior_thread ()->step_multi
4706 && !(inferior_thread ()->stop_bpstat
4707 && inferior_thread ()->proceed_to_finish)
4708 && !inferior_thread ()->in_infcall))
4709 {
4710 if (!ptid_equal (inferior_ptid, null_ptid))
4711 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4712 stop_print_frame);
4713 else
4714 observer_notify_normal_stop (NULL, stop_print_frame);
4715 }
4716
4717 if (target_has_execution)
4718 {
4719 if (last.kind != TARGET_WAITKIND_SIGNALLED
4720 && last.kind != TARGET_WAITKIND_EXITED)
4721 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4722 Delete any breakpoint that is to be deleted at the next stop. */
4723 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4724 }
4725 }
4726
4727 static int
4728 hook_stop_stub (void *cmd)
4729 {
4730 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4731 return (0);
4732 }
4733 \f
4734 int
4735 signal_stop_state (int signo)
4736 {
4737 return signal_stop[signo];
4738 }
4739
4740 int
4741 signal_print_state (int signo)
4742 {
4743 return signal_print[signo];
4744 }
4745
4746 int
4747 signal_pass_state (int signo)
4748 {
4749 return signal_program[signo];
4750 }
4751
4752 int
4753 signal_stop_update (int signo, int state)
4754 {
4755 int ret = signal_stop[signo];
4756 signal_stop[signo] = state;
4757 return ret;
4758 }
4759
4760 int
4761 signal_print_update (int signo, int state)
4762 {
4763 int ret = signal_print[signo];
4764 signal_print[signo] = state;
4765 return ret;
4766 }
4767
4768 int
4769 signal_pass_update (int signo, int state)
4770 {
4771 int ret = signal_program[signo];
4772 signal_program[signo] = state;
4773 return ret;
4774 }
4775
4776 static void
4777 sig_print_header (void)
4778 {
4779 printf_filtered (_("\
4780 Signal Stop\tPrint\tPass to program\tDescription\n"));
4781 }
4782
4783 static void
4784 sig_print_info (enum target_signal oursig)
4785 {
4786 const char *name = target_signal_to_name (oursig);
4787 int name_padding = 13 - strlen (name);
4788
4789 if (name_padding <= 0)
4790 name_padding = 0;
4791
4792 printf_filtered ("%s", name);
4793 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4794 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4795 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4796 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4797 printf_filtered ("%s\n", target_signal_to_string (oursig));
4798 }
4799
4800 /* Specify how various signals in the inferior should be handled. */
4801
4802 static void
4803 handle_command (char *args, int from_tty)
4804 {
4805 char **argv;
4806 int digits, wordlen;
4807 int sigfirst, signum, siglast;
4808 enum target_signal oursig;
4809 int allsigs;
4810 int nsigs;
4811 unsigned char *sigs;
4812 struct cleanup *old_chain;
4813
4814 if (args == NULL)
4815 {
4816 error_no_arg (_("signal to handle"));
4817 }
4818
4819 /* Allocate and zero an array of flags for which signals to handle. */
4820
4821 nsigs = (int) TARGET_SIGNAL_LAST;
4822 sigs = (unsigned char *) alloca (nsigs);
4823 memset (sigs, 0, nsigs);
4824
4825 /* Break the command line up into args. */
4826
4827 argv = gdb_buildargv (args);
4828 old_chain = make_cleanup_freeargv (argv);
4829
4830 /* Walk through the args, looking for signal oursigs, signal names, and
4831 actions. Signal numbers and signal names may be interspersed with
4832 actions, with the actions being performed for all signals cumulatively
4833 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4834
4835 while (*argv != NULL)
4836 {
4837 wordlen = strlen (*argv);
4838 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4839 {;
4840 }
4841 allsigs = 0;
4842 sigfirst = siglast = -1;
4843
4844 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4845 {
4846 /* Apply action to all signals except those used by the
4847 debugger. Silently skip those. */
4848 allsigs = 1;
4849 sigfirst = 0;
4850 siglast = nsigs - 1;
4851 }
4852 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4853 {
4854 SET_SIGS (nsigs, sigs, signal_stop);
4855 SET_SIGS (nsigs, sigs, signal_print);
4856 }
4857 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4858 {
4859 UNSET_SIGS (nsigs, sigs, signal_program);
4860 }
4861 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4862 {
4863 SET_SIGS (nsigs, sigs, signal_print);
4864 }
4865 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4866 {
4867 SET_SIGS (nsigs, sigs, signal_program);
4868 }
4869 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4870 {
4871 UNSET_SIGS (nsigs, sigs, signal_stop);
4872 }
4873 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4874 {
4875 SET_SIGS (nsigs, sigs, signal_program);
4876 }
4877 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4878 {
4879 UNSET_SIGS (nsigs, sigs, signal_print);
4880 UNSET_SIGS (nsigs, sigs, signal_stop);
4881 }
4882 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4883 {
4884 UNSET_SIGS (nsigs, sigs, signal_program);
4885 }
4886 else if (digits > 0)
4887 {
4888 /* It is numeric. The numeric signal refers to our own
4889 internal signal numbering from target.h, not to host/target
4890 signal number. This is a feature; users really should be
4891 using symbolic names anyway, and the common ones like
4892 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4893
4894 sigfirst = siglast = (int)
4895 target_signal_from_command (atoi (*argv));
4896 if ((*argv)[digits] == '-')
4897 {
4898 siglast = (int)
4899 target_signal_from_command (atoi ((*argv) + digits + 1));
4900 }
4901 if (sigfirst > siglast)
4902 {
4903 /* Bet he didn't figure we'd think of this case... */
4904 signum = sigfirst;
4905 sigfirst = siglast;
4906 siglast = signum;
4907 }
4908 }
4909 else
4910 {
4911 oursig = target_signal_from_name (*argv);
4912 if (oursig != TARGET_SIGNAL_UNKNOWN)
4913 {
4914 sigfirst = siglast = (int) oursig;
4915 }
4916 else
4917 {
4918 /* Not a number and not a recognized flag word => complain. */
4919 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4920 }
4921 }
4922
4923 /* If any signal numbers or symbol names were found, set flags for
4924 which signals to apply actions to. */
4925
4926 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4927 {
4928 switch ((enum target_signal) signum)
4929 {
4930 case TARGET_SIGNAL_TRAP:
4931 case TARGET_SIGNAL_INT:
4932 if (!allsigs && !sigs[signum])
4933 {
4934 if (query (_("%s is used by the debugger.\n\
4935 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
4936 {
4937 sigs[signum] = 1;
4938 }
4939 else
4940 {
4941 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4942 gdb_flush (gdb_stdout);
4943 }
4944 }
4945 break;
4946 case TARGET_SIGNAL_0:
4947 case TARGET_SIGNAL_DEFAULT:
4948 case TARGET_SIGNAL_UNKNOWN:
4949 /* Make sure that "all" doesn't print these. */
4950 break;
4951 default:
4952 sigs[signum] = 1;
4953 break;
4954 }
4955 }
4956
4957 argv++;
4958 }
4959
4960 for (signum = 0; signum < nsigs; signum++)
4961 if (sigs[signum])
4962 {
4963 target_notice_signals (inferior_ptid);
4964
4965 if (from_tty)
4966 {
4967 /* Show the results. */
4968 sig_print_header ();
4969 for (; signum < nsigs; signum++)
4970 if (sigs[signum])
4971 sig_print_info (signum);
4972 }
4973
4974 break;
4975 }
4976
4977 do_cleanups (old_chain);
4978 }
4979
4980 static void
4981 xdb_handle_command (char *args, int from_tty)
4982 {
4983 char **argv;
4984 struct cleanup *old_chain;
4985
4986 if (args == NULL)
4987 error_no_arg (_("xdb command"));
4988
4989 /* Break the command line up into args. */
4990
4991 argv = gdb_buildargv (args);
4992 old_chain = make_cleanup_freeargv (argv);
4993 if (argv[1] != (char *) NULL)
4994 {
4995 char *argBuf;
4996 int bufLen;
4997
4998 bufLen = strlen (argv[0]) + 20;
4999 argBuf = (char *) xmalloc (bufLen);
5000 if (argBuf)
5001 {
5002 int validFlag = 1;
5003 enum target_signal oursig;
5004
5005 oursig = target_signal_from_name (argv[0]);
5006 memset (argBuf, 0, bufLen);
5007 if (strcmp (argv[1], "Q") == 0)
5008 sprintf (argBuf, "%s %s", argv[0], "noprint");
5009 else
5010 {
5011 if (strcmp (argv[1], "s") == 0)
5012 {
5013 if (!signal_stop[oursig])
5014 sprintf (argBuf, "%s %s", argv[0], "stop");
5015 else
5016 sprintf (argBuf, "%s %s", argv[0], "nostop");
5017 }
5018 else if (strcmp (argv[1], "i") == 0)
5019 {
5020 if (!signal_program[oursig])
5021 sprintf (argBuf, "%s %s", argv[0], "pass");
5022 else
5023 sprintf (argBuf, "%s %s", argv[0], "nopass");
5024 }
5025 else if (strcmp (argv[1], "r") == 0)
5026 {
5027 if (!signal_print[oursig])
5028 sprintf (argBuf, "%s %s", argv[0], "print");
5029 else
5030 sprintf (argBuf, "%s %s", argv[0], "noprint");
5031 }
5032 else
5033 validFlag = 0;
5034 }
5035 if (validFlag)
5036 handle_command (argBuf, from_tty);
5037 else
5038 printf_filtered (_("Invalid signal handling flag.\n"));
5039 if (argBuf)
5040 xfree (argBuf);
5041 }
5042 }
5043 do_cleanups (old_chain);
5044 }
5045
5046 /* Print current contents of the tables set by the handle command.
5047 It is possible we should just be printing signals actually used
5048 by the current target (but for things to work right when switching
5049 targets, all signals should be in the signal tables). */
5050
5051 static void
5052 signals_info (char *signum_exp, int from_tty)
5053 {
5054 enum target_signal oursig;
5055 sig_print_header ();
5056
5057 if (signum_exp)
5058 {
5059 /* First see if this is a symbol name. */
5060 oursig = target_signal_from_name (signum_exp);
5061 if (oursig == TARGET_SIGNAL_UNKNOWN)
5062 {
5063 /* No, try numeric. */
5064 oursig =
5065 target_signal_from_command (parse_and_eval_long (signum_exp));
5066 }
5067 sig_print_info (oursig);
5068 return;
5069 }
5070
5071 printf_filtered ("\n");
5072 /* These ugly casts brought to you by the native VAX compiler. */
5073 for (oursig = TARGET_SIGNAL_FIRST;
5074 (int) oursig < (int) TARGET_SIGNAL_LAST;
5075 oursig = (enum target_signal) ((int) oursig + 1))
5076 {
5077 QUIT;
5078
5079 if (oursig != TARGET_SIGNAL_UNKNOWN
5080 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5081 sig_print_info (oursig);
5082 }
5083
5084 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5085 }
5086
5087 /* The $_siginfo convenience variable is a bit special. We don't know
5088 for sure the type of the value until we actually have a chance to
5089 fetch the data. The type can change depending on gdbarch, so it it
5090 also dependent on which thread you have selected.
5091
5092 1. making $_siginfo be an internalvar that creates a new value on
5093 access.
5094
5095 2. making the value of $_siginfo be an lval_computed value. */
5096
5097 /* This function implements the lval_computed support for reading a
5098 $_siginfo value. */
5099
5100 static void
5101 siginfo_value_read (struct value *v)
5102 {
5103 LONGEST transferred;
5104
5105 transferred =
5106 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5107 NULL,
5108 value_contents_all_raw (v),
5109 value_offset (v),
5110 TYPE_LENGTH (value_type (v)));
5111
5112 if (transferred != TYPE_LENGTH (value_type (v)))
5113 error (_("Unable to read siginfo"));
5114 }
5115
5116 /* This function implements the lval_computed support for writing a
5117 $_siginfo value. */
5118
5119 static void
5120 siginfo_value_write (struct value *v, struct value *fromval)
5121 {
5122 LONGEST transferred;
5123
5124 transferred = target_write (&current_target,
5125 TARGET_OBJECT_SIGNAL_INFO,
5126 NULL,
5127 value_contents_all_raw (fromval),
5128 value_offset (v),
5129 TYPE_LENGTH (value_type (fromval)));
5130
5131 if (transferred != TYPE_LENGTH (value_type (fromval)))
5132 error (_("Unable to write siginfo"));
5133 }
5134
5135 static struct lval_funcs siginfo_value_funcs =
5136 {
5137 siginfo_value_read,
5138 siginfo_value_write
5139 };
5140
5141 /* Return a new value with the correct type for the siginfo object of
5142 the current thread. Return a void value if there's no object
5143 available. */
5144
5145 static struct value *
5146 siginfo_make_value (struct internalvar *var)
5147 {
5148 struct type *type;
5149 struct gdbarch *gdbarch;
5150
5151 if (target_has_stack
5152 && !ptid_equal (inferior_ptid, null_ptid))
5153 {
5154 gdbarch = get_frame_arch (get_current_frame ());
5155
5156 if (gdbarch_get_siginfo_type_p (gdbarch))
5157 {
5158 type = gdbarch_get_siginfo_type (gdbarch);
5159
5160 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5161 }
5162 }
5163
5164 return allocate_value (builtin_type_void);
5165 }
5166
5167 \f
5168 /* Inferior thread state.
5169 These are details related to the inferior itself, and don't include
5170 things like what frame the user had selected or what gdb was doing
5171 with the target at the time.
5172 For inferior function calls these are things we want to restore
5173 regardless of whether the function call successfully completes
5174 or the dummy frame has to be manually popped. */
5175
5176 struct inferior_thread_state
5177 {
5178 enum target_signal stop_signal;
5179 CORE_ADDR stop_pc;
5180 struct regcache *registers;
5181 };
5182
5183 struct inferior_thread_state *
5184 save_inferior_thread_state (void)
5185 {
5186 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5187 struct thread_info *tp = inferior_thread ();
5188
5189 inf_state->stop_signal = tp->stop_signal;
5190 inf_state->stop_pc = stop_pc;
5191
5192 inf_state->registers = regcache_dup (get_current_regcache ());
5193
5194 return inf_state;
5195 }
5196
5197 /* Restore inferior session state to INF_STATE. */
5198
5199 void
5200 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5201 {
5202 struct thread_info *tp = inferior_thread ();
5203
5204 tp->stop_signal = inf_state->stop_signal;
5205 stop_pc = inf_state->stop_pc;
5206
5207 /* The inferior can be gone if the user types "print exit(0)"
5208 (and perhaps other times). */
5209 if (target_has_execution)
5210 /* NB: The register write goes through to the target. */
5211 regcache_cpy (get_current_regcache (), inf_state->registers);
5212 regcache_xfree (inf_state->registers);
5213 xfree (inf_state);
5214 }
5215
5216 static void
5217 do_restore_inferior_thread_state_cleanup (void *state)
5218 {
5219 restore_inferior_thread_state (state);
5220 }
5221
5222 struct cleanup *
5223 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5224 {
5225 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5226 }
5227
5228 void
5229 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5230 {
5231 regcache_xfree (inf_state->registers);
5232 xfree (inf_state);
5233 }
5234
5235 struct regcache *
5236 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5237 {
5238 return inf_state->registers;
5239 }
5240
5241 /* Session related state for inferior function calls.
5242 These are the additional bits of state that need to be restored
5243 when an inferior function call successfully completes. */
5244
5245 struct inferior_status
5246 {
5247 bpstat stop_bpstat;
5248 int stop_step;
5249 int stop_stack_dummy;
5250 int stopped_by_random_signal;
5251 int stepping_over_breakpoint;
5252 CORE_ADDR step_range_start;
5253 CORE_ADDR step_range_end;
5254 struct frame_id step_frame_id;
5255 enum step_over_calls_kind step_over_calls;
5256 CORE_ADDR step_resume_break_address;
5257 int stop_after_trap;
5258 int stop_soon;
5259
5260 /* ID if the selected frame when the inferior function call was made. */
5261 struct frame_id selected_frame_id;
5262
5263 int proceed_to_finish;
5264 int in_infcall;
5265 };
5266
5267 /* Save all of the information associated with the inferior<==>gdb
5268 connection. */
5269
5270 struct inferior_status *
5271 save_inferior_status (void)
5272 {
5273 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5274 struct thread_info *tp = inferior_thread ();
5275 struct inferior *inf = current_inferior ();
5276
5277 inf_status->stop_step = tp->stop_step;
5278 inf_status->stop_stack_dummy = stop_stack_dummy;
5279 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5280 inf_status->stepping_over_breakpoint = tp->trap_expected;
5281 inf_status->step_range_start = tp->step_range_start;
5282 inf_status->step_range_end = tp->step_range_end;
5283 inf_status->step_frame_id = tp->step_frame_id;
5284 inf_status->step_over_calls = tp->step_over_calls;
5285 inf_status->stop_after_trap = stop_after_trap;
5286 inf_status->stop_soon = inf->stop_soon;
5287 /* Save original bpstat chain here; replace it with copy of chain.
5288 If caller's caller is walking the chain, they'll be happier if we
5289 hand them back the original chain when restore_inferior_status is
5290 called. */
5291 inf_status->stop_bpstat = tp->stop_bpstat;
5292 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5293 inf_status->proceed_to_finish = tp->proceed_to_finish;
5294 inf_status->in_infcall = tp->in_infcall;
5295
5296 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5297
5298 return inf_status;
5299 }
5300
5301 static int
5302 restore_selected_frame (void *args)
5303 {
5304 struct frame_id *fid = (struct frame_id *) args;
5305 struct frame_info *frame;
5306
5307 frame = frame_find_by_id (*fid);
5308
5309 /* If inf_status->selected_frame_id is NULL, there was no previously
5310 selected frame. */
5311 if (frame == NULL)
5312 {
5313 warning (_("Unable to restore previously selected frame."));
5314 return 0;
5315 }
5316
5317 select_frame (frame);
5318
5319 return (1);
5320 }
5321
5322 /* Restore inferior session state to INF_STATUS. */
5323
5324 void
5325 restore_inferior_status (struct inferior_status *inf_status)
5326 {
5327 struct thread_info *tp = inferior_thread ();
5328 struct inferior *inf = current_inferior ();
5329
5330 tp->stop_step = inf_status->stop_step;
5331 stop_stack_dummy = inf_status->stop_stack_dummy;
5332 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5333 tp->trap_expected = inf_status->stepping_over_breakpoint;
5334 tp->step_range_start = inf_status->step_range_start;
5335 tp->step_range_end = inf_status->step_range_end;
5336 tp->step_frame_id = inf_status->step_frame_id;
5337 tp->step_over_calls = inf_status->step_over_calls;
5338 stop_after_trap = inf_status->stop_after_trap;
5339 inf->stop_soon = inf_status->stop_soon;
5340 bpstat_clear (&tp->stop_bpstat);
5341 tp->stop_bpstat = inf_status->stop_bpstat;
5342 inf_status->stop_bpstat = NULL;
5343 tp->proceed_to_finish = inf_status->proceed_to_finish;
5344 tp->in_infcall = inf_status->in_infcall;
5345
5346 if (target_has_stack)
5347 {
5348 /* The point of catch_errors is that if the stack is clobbered,
5349 walking the stack might encounter a garbage pointer and
5350 error() trying to dereference it. */
5351 if (catch_errors
5352 (restore_selected_frame, &inf_status->selected_frame_id,
5353 "Unable to restore previously selected frame:\n",
5354 RETURN_MASK_ERROR) == 0)
5355 /* Error in restoring the selected frame. Select the innermost
5356 frame. */
5357 select_frame (get_current_frame ());
5358 }
5359
5360 xfree (inf_status);
5361 }
5362
5363 static void
5364 do_restore_inferior_status_cleanup (void *sts)
5365 {
5366 restore_inferior_status (sts);
5367 }
5368
5369 struct cleanup *
5370 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5371 {
5372 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5373 }
5374
5375 void
5376 discard_inferior_status (struct inferior_status *inf_status)
5377 {
5378 /* See save_inferior_status for info on stop_bpstat. */
5379 bpstat_clear (&inf_status->stop_bpstat);
5380 xfree (inf_status);
5381 }
5382 \f
5383 int
5384 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5385 {
5386 struct target_waitstatus last;
5387 ptid_t last_ptid;
5388
5389 get_last_target_status (&last_ptid, &last);
5390
5391 if (last.kind != TARGET_WAITKIND_FORKED)
5392 return 0;
5393
5394 if (!ptid_equal (last_ptid, pid))
5395 return 0;
5396
5397 *child_pid = last.value.related_pid;
5398 return 1;
5399 }
5400
5401 int
5402 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5403 {
5404 struct target_waitstatus last;
5405 ptid_t last_ptid;
5406
5407 get_last_target_status (&last_ptid, &last);
5408
5409 if (last.kind != TARGET_WAITKIND_VFORKED)
5410 return 0;
5411
5412 if (!ptid_equal (last_ptid, pid))
5413 return 0;
5414
5415 *child_pid = last.value.related_pid;
5416 return 1;
5417 }
5418
5419 int
5420 inferior_has_execd (ptid_t pid, char **execd_pathname)
5421 {
5422 struct target_waitstatus last;
5423 ptid_t last_ptid;
5424
5425 get_last_target_status (&last_ptid, &last);
5426
5427 if (last.kind != TARGET_WAITKIND_EXECD)
5428 return 0;
5429
5430 if (!ptid_equal (last_ptid, pid))
5431 return 0;
5432
5433 *execd_pathname = xstrdup (last.value.execd_pathname);
5434 return 1;
5435 }
5436
5437 /* Oft used ptids */
5438 ptid_t null_ptid;
5439 ptid_t minus_one_ptid;
5440
5441 /* Create a ptid given the necessary PID, LWP, and TID components. */
5442
5443 ptid_t
5444 ptid_build (int pid, long lwp, long tid)
5445 {
5446 ptid_t ptid;
5447
5448 ptid.pid = pid;
5449 ptid.lwp = lwp;
5450 ptid.tid = tid;
5451 return ptid;
5452 }
5453
5454 /* Create a ptid from just a pid. */
5455
5456 ptid_t
5457 pid_to_ptid (int pid)
5458 {
5459 return ptid_build (pid, 0, 0);
5460 }
5461
5462 /* Fetch the pid (process id) component from a ptid. */
5463
5464 int
5465 ptid_get_pid (ptid_t ptid)
5466 {
5467 return ptid.pid;
5468 }
5469
5470 /* Fetch the lwp (lightweight process) component from a ptid. */
5471
5472 long
5473 ptid_get_lwp (ptid_t ptid)
5474 {
5475 return ptid.lwp;
5476 }
5477
5478 /* Fetch the tid (thread id) component from a ptid. */
5479
5480 long
5481 ptid_get_tid (ptid_t ptid)
5482 {
5483 return ptid.tid;
5484 }
5485
5486 /* ptid_equal() is used to test equality of two ptids. */
5487
5488 int
5489 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5490 {
5491 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5492 && ptid1.tid == ptid2.tid);
5493 }
5494
5495 /* Returns true if PTID represents a process. */
5496
5497 int
5498 ptid_is_pid (ptid_t ptid)
5499 {
5500 if (ptid_equal (minus_one_ptid, ptid))
5501 return 0;
5502 if (ptid_equal (null_ptid, ptid))
5503 return 0;
5504
5505 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5506 }
5507
5508 /* restore_inferior_ptid() will be used by the cleanup machinery
5509 to restore the inferior_ptid value saved in a call to
5510 save_inferior_ptid(). */
5511
5512 static void
5513 restore_inferior_ptid (void *arg)
5514 {
5515 ptid_t *saved_ptid_ptr = arg;
5516 inferior_ptid = *saved_ptid_ptr;
5517 xfree (arg);
5518 }
5519
5520 /* Save the value of inferior_ptid so that it may be restored by a
5521 later call to do_cleanups(). Returns the struct cleanup pointer
5522 needed for later doing the cleanup. */
5523
5524 struct cleanup *
5525 save_inferior_ptid (void)
5526 {
5527 ptid_t *saved_ptid_ptr;
5528
5529 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5530 *saved_ptid_ptr = inferior_ptid;
5531 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5532 }
5533 \f
5534
5535 /* User interface for reverse debugging:
5536 Set exec-direction / show exec-direction commands
5537 (returns error unless target implements to_set_exec_direction method). */
5538
5539 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5540 static const char exec_forward[] = "forward";
5541 static const char exec_reverse[] = "reverse";
5542 static const char *exec_direction = exec_forward;
5543 static const char *exec_direction_names[] = {
5544 exec_forward,
5545 exec_reverse,
5546 NULL
5547 };
5548
5549 static void
5550 set_exec_direction_func (char *args, int from_tty,
5551 struct cmd_list_element *cmd)
5552 {
5553 if (target_can_execute_reverse)
5554 {
5555 if (!strcmp (exec_direction, exec_forward))
5556 execution_direction = EXEC_FORWARD;
5557 else if (!strcmp (exec_direction, exec_reverse))
5558 execution_direction = EXEC_REVERSE;
5559 }
5560 }
5561
5562 static void
5563 show_exec_direction_func (struct ui_file *out, int from_tty,
5564 struct cmd_list_element *cmd, const char *value)
5565 {
5566 switch (execution_direction) {
5567 case EXEC_FORWARD:
5568 fprintf_filtered (out, _("Forward.\n"));
5569 break;
5570 case EXEC_REVERSE:
5571 fprintf_filtered (out, _("Reverse.\n"));
5572 break;
5573 case EXEC_ERROR:
5574 default:
5575 fprintf_filtered (out,
5576 _("Forward (target `%s' does not support exec-direction).\n"),
5577 target_shortname);
5578 break;
5579 }
5580 }
5581
5582 /* User interface for non-stop mode. */
5583
5584 int non_stop = 0;
5585 static int non_stop_1 = 0;
5586
5587 static void
5588 set_non_stop (char *args, int from_tty,
5589 struct cmd_list_element *c)
5590 {
5591 if (target_has_execution)
5592 {
5593 non_stop_1 = non_stop;
5594 error (_("Cannot change this setting while the inferior is running."));
5595 }
5596
5597 non_stop = non_stop_1;
5598 }
5599
5600 static void
5601 show_non_stop (struct ui_file *file, int from_tty,
5602 struct cmd_list_element *c, const char *value)
5603 {
5604 fprintf_filtered (file,
5605 _("Controlling the inferior in non-stop mode is %s.\n"),
5606 value);
5607 }
5608
5609 static void
5610 show_schedule_multiple (struct ui_file *file, int from_tty,
5611 struct cmd_list_element *c, const char *value)
5612 {
5613 fprintf_filtered (file, _("\
5614 Resuming the execution of threads of all processes is %s.\n"), value);
5615 }
5616
5617 void
5618 _initialize_infrun (void)
5619 {
5620 int i;
5621 int numsigs;
5622 struct cmd_list_element *c;
5623
5624 add_info ("signals", signals_info, _("\
5625 What debugger does when program gets various signals.\n\
5626 Specify a signal as argument to print info on that signal only."));
5627 add_info_alias ("handle", "signals", 0);
5628
5629 add_com ("handle", class_run, handle_command, _("\
5630 Specify how to handle a signal.\n\
5631 Args are signals and actions to apply to those signals.\n\
5632 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5633 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5634 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5635 The special arg \"all\" is recognized to mean all signals except those\n\
5636 used by the debugger, typically SIGTRAP and SIGINT.\n\
5637 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5638 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5639 Stop means reenter debugger if this signal happens (implies print).\n\
5640 Print means print a message if this signal happens.\n\
5641 Pass means let program see this signal; otherwise program doesn't know.\n\
5642 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5643 Pass and Stop may be combined."));
5644 if (xdb_commands)
5645 {
5646 add_com ("lz", class_info, signals_info, _("\
5647 What debugger does when program gets various signals.\n\
5648 Specify a signal as argument to print info on that signal only."));
5649 add_com ("z", class_run, xdb_handle_command, _("\
5650 Specify how to handle a signal.\n\
5651 Args are signals and actions to apply to those signals.\n\
5652 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5653 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5654 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5655 The special arg \"all\" is recognized to mean all signals except those\n\
5656 used by the debugger, typically SIGTRAP and SIGINT.\n\
5657 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5658 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5659 nopass), \"Q\" (noprint)\n\
5660 Stop means reenter debugger if this signal happens (implies print).\n\
5661 Print means print a message if this signal happens.\n\
5662 Pass means let program see this signal; otherwise program doesn't know.\n\
5663 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5664 Pass and Stop may be combined."));
5665 }
5666
5667 if (!dbx_commands)
5668 stop_command = add_cmd ("stop", class_obscure,
5669 not_just_help_class_command, _("\
5670 There is no `stop' command, but you can set a hook on `stop'.\n\
5671 This allows you to set a list of commands to be run each time execution\n\
5672 of the program stops."), &cmdlist);
5673
5674 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5675 Set inferior debugging."), _("\
5676 Show inferior debugging."), _("\
5677 When non-zero, inferior specific debugging is enabled."),
5678 NULL,
5679 show_debug_infrun,
5680 &setdebuglist, &showdebuglist);
5681
5682 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5683 Set displaced stepping debugging."), _("\
5684 Show displaced stepping debugging."), _("\
5685 When non-zero, displaced stepping specific debugging is enabled."),
5686 NULL,
5687 show_debug_displaced,
5688 &setdebuglist, &showdebuglist);
5689
5690 add_setshow_boolean_cmd ("non-stop", no_class,
5691 &non_stop_1, _("\
5692 Set whether gdb controls the inferior in non-stop mode."), _("\
5693 Show whether gdb controls the inferior in non-stop mode."), _("\
5694 When debugging a multi-threaded program and this setting is\n\
5695 off (the default, also called all-stop mode), when one thread stops\n\
5696 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5697 all other threads in the program while you interact with the thread of\n\
5698 interest. When you continue or step a thread, you can allow the other\n\
5699 threads to run, or have them remain stopped, but while you inspect any\n\
5700 thread's state, all threads stop.\n\
5701 \n\
5702 In non-stop mode, when one thread stops, other threads can continue\n\
5703 to run freely. You'll be able to step each thread independently,\n\
5704 leave it stopped or free to run as needed."),
5705 set_non_stop,
5706 show_non_stop,
5707 &setlist,
5708 &showlist);
5709
5710 numsigs = (int) TARGET_SIGNAL_LAST;
5711 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5712 signal_print = (unsigned char *)
5713 xmalloc (sizeof (signal_print[0]) * numsigs);
5714 signal_program = (unsigned char *)
5715 xmalloc (sizeof (signal_program[0]) * numsigs);
5716 for (i = 0; i < numsigs; i++)
5717 {
5718 signal_stop[i] = 1;
5719 signal_print[i] = 1;
5720 signal_program[i] = 1;
5721 }
5722
5723 /* Signals caused by debugger's own actions
5724 should not be given to the program afterwards. */
5725 signal_program[TARGET_SIGNAL_TRAP] = 0;
5726 signal_program[TARGET_SIGNAL_INT] = 0;
5727
5728 /* Signals that are not errors should not normally enter the debugger. */
5729 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5730 signal_print[TARGET_SIGNAL_ALRM] = 0;
5731 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5732 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5733 signal_stop[TARGET_SIGNAL_PROF] = 0;
5734 signal_print[TARGET_SIGNAL_PROF] = 0;
5735 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5736 signal_print[TARGET_SIGNAL_CHLD] = 0;
5737 signal_stop[TARGET_SIGNAL_IO] = 0;
5738 signal_print[TARGET_SIGNAL_IO] = 0;
5739 signal_stop[TARGET_SIGNAL_POLL] = 0;
5740 signal_print[TARGET_SIGNAL_POLL] = 0;
5741 signal_stop[TARGET_SIGNAL_URG] = 0;
5742 signal_print[TARGET_SIGNAL_URG] = 0;
5743 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5744 signal_print[TARGET_SIGNAL_WINCH] = 0;
5745
5746 /* These signals are used internally by user-level thread
5747 implementations. (See signal(5) on Solaris.) Like the above
5748 signals, a healthy program receives and handles them as part of
5749 its normal operation. */
5750 signal_stop[TARGET_SIGNAL_LWP] = 0;
5751 signal_print[TARGET_SIGNAL_LWP] = 0;
5752 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5753 signal_print[TARGET_SIGNAL_WAITING] = 0;
5754 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5755 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5756
5757 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5758 &stop_on_solib_events, _("\
5759 Set stopping for shared library events."), _("\
5760 Show stopping for shared library events."), _("\
5761 If nonzero, gdb will give control to the user when the dynamic linker\n\
5762 notifies gdb of shared library events. The most common event of interest\n\
5763 to the user would be loading/unloading of a new library."),
5764 NULL,
5765 show_stop_on_solib_events,
5766 &setlist, &showlist);
5767
5768 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5769 follow_fork_mode_kind_names,
5770 &follow_fork_mode_string, _("\
5771 Set debugger response to a program call of fork or vfork."), _("\
5772 Show debugger response to a program call of fork or vfork."), _("\
5773 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5774 parent - the original process is debugged after a fork\n\
5775 child - the new process is debugged after a fork\n\
5776 The unfollowed process will continue to run.\n\
5777 By default, the debugger will follow the parent process."),
5778 NULL,
5779 show_follow_fork_mode_string,
5780 &setlist, &showlist);
5781
5782 add_setshow_enum_cmd ("scheduler-locking", class_run,
5783 scheduler_enums, &scheduler_mode, _("\
5784 Set mode for locking scheduler during execution."), _("\
5785 Show mode for locking scheduler during execution."), _("\
5786 off == no locking (threads may preempt at any time)\n\
5787 on == full locking (no thread except the current thread may run)\n\
5788 step == scheduler locked during every single-step operation.\n\
5789 In this mode, no other thread may run during a step command.\n\
5790 Other threads may run while stepping over a function call ('next')."),
5791 set_schedlock_func, /* traps on target vector */
5792 show_scheduler_mode,
5793 &setlist, &showlist);
5794
5795 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5796 Set mode for resuming threads of all processes."), _("\
5797 Show mode for resuming threads of all processes."), _("\
5798 When on, execution commands (such as 'continue' or 'next') resume all\n\
5799 threads of all processes. When off (which is the default), execution\n\
5800 commands only resume the threads of the current process. The set of\n\
5801 threads that are resumed is further refined by the scheduler-locking\n\
5802 mode (see help set scheduler-locking)."),
5803 NULL,
5804 show_schedule_multiple,
5805 &setlist, &showlist);
5806
5807 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5808 Set mode of the step operation."), _("\
5809 Show mode of the step operation."), _("\
5810 When set, doing a step over a function without debug line information\n\
5811 will stop at the first instruction of that function. Otherwise, the\n\
5812 function is skipped and the step command stops at a different source line."),
5813 NULL,
5814 show_step_stop_if_no_debug,
5815 &setlist, &showlist);
5816
5817 add_setshow_enum_cmd ("displaced-stepping", class_run,
5818 can_use_displaced_stepping_enum,
5819 &can_use_displaced_stepping, _("\
5820 Set debugger's willingness to use displaced stepping."), _("\
5821 Show debugger's willingness to use displaced stepping."), _("\
5822 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5823 supported by the target architecture. If off, gdb will not use displaced\n\
5824 stepping to step over breakpoints, even if such is supported by the target\n\
5825 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5826 if the target architecture supports it and non-stop mode is active, but will not\n\
5827 use it in all-stop mode (see help set non-stop)."),
5828 NULL,
5829 show_can_use_displaced_stepping,
5830 &setlist, &showlist);
5831
5832 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5833 &exec_direction, _("Set direction of execution.\n\
5834 Options are 'forward' or 'reverse'."),
5835 _("Show direction of execution (forward/reverse)."),
5836 _("Tells gdb whether to execute forward or backward."),
5837 set_exec_direction_func, show_exec_direction_func,
5838 &setlist, &showlist);
5839
5840 /* ptid initializations */
5841 null_ptid = ptid_build (0, 0, 0);
5842 minus_one_ptid = ptid_build (-1, 0, 0);
5843 inferior_ptid = null_ptid;
5844 target_last_wait_ptid = minus_one_ptid;
5845 displaced_step_ptid = null_ptid;
5846
5847 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5848 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5849 observer_attach_thread_exit (infrun_thread_thread_exit);
5850
5851 /* Explicitly create without lookup, since that tries to create a
5852 value with a void typed value, and when we get here, gdbarch
5853 isn't initialized yet. At this point, we're quite sure there
5854 isn't another convenience variable of the same name. */
5855 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
5856 }
This page took 0.142188 seconds and 5 git commands to generate.