PR breakpoints/7143 - Watchpoint does not trigger when first set
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63 #include "target-dcache.h"
64
65 /* Prototypes for local functions */
66
67 static void signals_info (char *, int);
68
69 static void handle_command (char *, int);
70
71 static void sig_print_info (enum gdb_signal);
72
73 static void sig_print_header (void);
74
75 static void resume_cleanups (void *);
76
77 static int hook_stop_stub (void *);
78
79 static int restore_selected_frame (void *);
80
81 static int follow_fork (void);
82
83 static void set_schedlock_func (char *args, int from_tty,
84 struct cmd_list_element *c);
85
86 static int currently_stepping (struct thread_info *tp);
87
88 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 static int prepare_to_proceed (int);
94
95 static void print_exited_reason (int exitstatus);
96
97 static void print_signal_exited_reason (enum gdb_signal siggnal);
98
99 static void print_no_history_reason (void);
100
101 static void print_signal_received_reason (enum gdb_signal siggnal);
102
103 static void print_end_stepping_range_reason (void);
104
105 void _initialize_infrun (void);
106
107 void nullify_last_target_wait_ptid (void);
108
109 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
110
111 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
113 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
115 /* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118 int step_stop_if_no_debug = 0;
119 static void
120 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124 }
125
126 /* In asynchronous mode, but simulating synchronous execution. */
127
128 int sync_execution = 0;
129
130 /* proceed and normal_stop use this to notify the user when the
131 inferior stopped in a different thread than it had been running
132 in. */
133
134 static ptid_t previous_inferior_ptid;
135
136 /* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141 static int detach_fork = 1;
142
143 int debug_displaced = 0;
144 static void
145 show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149 }
150
151 unsigned int debug_infrun = 0;
152 static void
153 show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157 }
158
159
160 /* Support for disabling address space randomization. */
161
162 int disable_randomization = 1;
163
164 static void
165 show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177 }
178
179 static void
180 set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182 {
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187 }
188
189 /* User interface for non-stop mode. */
190
191 int non_stop = 0;
192 static int non_stop_1 = 0;
193
194 static void
195 set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197 {
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205 }
206
207 static void
208 show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214 }
215
216 /* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
220 int observer_mode = 0;
221 static int observer_mode_1 = 0;
222
223 static void
224 set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258 }
259
260 static void
261 show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265 }
266
267 /* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273 void
274 update_observer_mode (void)
275 {
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290 }
291
292 /* Tables of how to react to signals; the user sets them. */
293
294 static unsigned char *signal_stop;
295 static unsigned char *signal_print;
296 static unsigned char *signal_program;
297
298 /* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302 static unsigned char *signal_catch;
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char *signal_pass;
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Function inferior was in as of last step command. */
343
344 static struct symbol *step_start_function;
345
346 /* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
348 int stop_on_solib_events;
349
350 /* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353 static void
354 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355 {
356 update_solib_breakpoints ();
357 }
358
359 static void
360 show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362 {
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365 }
366
367 /* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370 int stop_after_trap;
371
372 /* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
377 struct regcache *stop_registers;
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 static void context_switch (ptid_t ptid);
390
391 void init_thread_stepping_state (struct thread_info *tss);
392
393 static void init_infwait_state (void);
394
395 static const char follow_fork_mode_child[] = "child";
396 static const char follow_fork_mode_parent[] = "parent";
397
398 static const char *const follow_fork_mode_kind_names[] = {
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
402 };
403
404 static const char *follow_fork_mode_string = follow_fork_mode_parent;
405 static void
406 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408 {
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
412 value);
413 }
414 \f
415
416 /* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
420 static int
421 follow_fork (void)
422 {
423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
432 struct breakpoint *exception_resume_breakpoint = NULL;
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
497 delete_exception_resume_breakpoint (tp);
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
505 if (target_follow_fork (follow_child, detach_fork))
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
517 tp = find_thread_ptid (parent);
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
525 /* If we followed the child, switch to it... */
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
572
573 return should_resume;
574 }
575
576 void
577 follow_inferior_reset_breakpoints (void)
578 {
579 struct thread_info *tp = inferior_thread ();
580
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
594
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
605 }
606
607 /* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610 static int
611 proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613 {
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
630 }
631
632 return 0;
633 }
634
635 /* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638 static void
639 handle_vfork_child_exec_or_exit (int exec)
640 {
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
658 /* follow-fork child, detach-on-fork on. */
659
660 inf->vfork_parent->pending_detach = 0;
661
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
759 inf->symfile_flags = SYMFILE_NO_READ;
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
765 inferior. */
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793 }
794
795 /* Enum strings for "set|show follow-exec-mode". */
796
797 static const char follow_exec_mode_new[] = "new";
798 static const char follow_exec_mode_same[] = "same";
799 static const char *const follow_exec_mode_names[] =
800 {
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804 };
805
806 static const char *follow_exec_mode_string = follow_exec_mode_same;
807 static void
808 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810 {
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812 }
813
814 /* EXECD_PATHNAME is assumed to be non-NULL. */
815
816 static void
817 follow_exec (ptid_t pid, char *execd_pathname)
818 {
819 struct thread_info *th = inferior_thread ();
820 struct inferior *inf = current_inferior ();
821
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
841 we now have a new a.out, those shadow contents aren't valid. */
842
843 mark_breakpoints_out ();
844
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
848 statement through an exec(). */
849 th->control.step_resume_breakpoint = NULL;
850 th->control.exception_resume_breakpoint = NULL;
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
853
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
862 /* What is this a.out's name? */
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
866
867 /* We've followed the inferior through an exec. Therefore, the
868 inferior has essentially been killed & reborn. */
869
870 gdb_flush (gdb_stdout);
871
872 breakpoint_init_inferior (inf_execd);
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
879
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
884
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
920
921 gdb_assert (current_program_space == inf->pspace);
922
923 /* That a.out is now the one to use. */
924 exec_file_attach (execd_pathname, 0);
925
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
934 NULL, 0);
935
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
938
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
947 solib_create_inferior_hook (0);
948
949 jit_inferior_created_hook ();
950
951 breakpoint_re_set ();
952
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
955 to symbol_file_command...). */
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
961 matically get reset there in the new process.). */
962 }
963
964 /* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967 static int singlestep_breakpoints_inserted_p = 0;
968
969 /* The thread we inserted single-step breakpoints for. */
970 static ptid_t singlestep_ptid;
971
972 /* PC when we started this single-step. */
973 static CORE_ADDR singlestep_pc;
974
975 /* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977 static ptid_t saved_singlestep_ptid;
978 static int stepping_past_singlestep_breakpoint;
979
980 /* Info about an instruction that is being stepped over. Invalid if
981 ASPACE is NULL. */
982
983 struct step_over_info
984 {
985 /* The instruction's address space. */
986 struct address_space *aspace;
987
988 /* The instruction's address. */
989 CORE_ADDR address;
990 };
991
992 /* The step-over info of the location that is being stepped over.
993
994 Note that with async/breakpoint always-inserted mode, a user might
995 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
996 being stepped over. As setting a new breakpoint inserts all
997 breakpoints, we need to make sure the breakpoint being stepped over
998 isn't inserted then. We do that by only clearing the step-over
999 info when the step-over is actually finished (or aborted).
1000
1001 Presently GDB can only step over one breakpoint at any given time.
1002 Given threads that can't run code in the same address space as the
1003 breakpoint's can't really miss the breakpoint, GDB could be taught
1004 to step-over at most one breakpoint per address space (so this info
1005 could move to the address space object if/when GDB is extended).
1006 The set of breakpoints being stepped over will normally be much
1007 smaller than the set of all breakpoints, so a flag in the
1008 breakpoint location structure would be wasteful. A separate list
1009 also saves complexity and run-time, as otherwise we'd have to go
1010 through all breakpoint locations clearing their flag whenever we
1011 start a new sequence. Similar considerations weigh against storing
1012 this info in the thread object. Plus, not all step overs actually
1013 have breakpoint locations -- e.g., stepping past a single-step
1014 breakpoint, or stepping to complete a non-continuable
1015 watchpoint. */
1016 static struct step_over_info step_over_info;
1017
1018 /* Record the address of the breakpoint/instruction we're currently
1019 stepping over. */
1020
1021 static void
1022 set_step_over_info (struct address_space *aspace, CORE_ADDR address)
1023 {
1024 step_over_info.aspace = aspace;
1025 step_over_info.address = address;
1026 }
1027
1028 /* Called when we're not longer stepping over a breakpoint / an
1029 instruction, so all breakpoints are free to be (re)inserted. */
1030
1031 static void
1032 clear_step_over_info (void)
1033 {
1034 step_over_info.aspace = NULL;
1035 step_over_info.address = 0;
1036 }
1037
1038 /* See inferior.h. */
1039
1040 int
1041 stepping_past_instruction_at (struct address_space *aspace,
1042 CORE_ADDR address)
1043 {
1044 return (step_over_info.aspace != NULL
1045 && breakpoint_address_match (aspace, address,
1046 step_over_info.aspace,
1047 step_over_info.address));
1048 }
1049
1050 \f
1051 /* Displaced stepping. */
1052
1053 /* In non-stop debugging mode, we must take special care to manage
1054 breakpoints properly; in particular, the traditional strategy for
1055 stepping a thread past a breakpoint it has hit is unsuitable.
1056 'Displaced stepping' is a tactic for stepping one thread past a
1057 breakpoint it has hit while ensuring that other threads running
1058 concurrently will hit the breakpoint as they should.
1059
1060 The traditional way to step a thread T off a breakpoint in a
1061 multi-threaded program in all-stop mode is as follows:
1062
1063 a0) Initially, all threads are stopped, and breakpoints are not
1064 inserted.
1065 a1) We single-step T, leaving breakpoints uninserted.
1066 a2) We insert breakpoints, and resume all threads.
1067
1068 In non-stop debugging, however, this strategy is unsuitable: we
1069 don't want to have to stop all threads in the system in order to
1070 continue or step T past a breakpoint. Instead, we use displaced
1071 stepping:
1072
1073 n0) Initially, T is stopped, other threads are running, and
1074 breakpoints are inserted.
1075 n1) We copy the instruction "under" the breakpoint to a separate
1076 location, outside the main code stream, making any adjustments
1077 to the instruction, register, and memory state as directed by
1078 T's architecture.
1079 n2) We single-step T over the instruction at its new location.
1080 n3) We adjust the resulting register and memory state as directed
1081 by T's architecture. This includes resetting T's PC to point
1082 back into the main instruction stream.
1083 n4) We resume T.
1084
1085 This approach depends on the following gdbarch methods:
1086
1087 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1088 indicate where to copy the instruction, and how much space must
1089 be reserved there. We use these in step n1.
1090
1091 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1092 address, and makes any necessary adjustments to the instruction,
1093 register contents, and memory. We use this in step n1.
1094
1095 - gdbarch_displaced_step_fixup adjusts registers and memory after
1096 we have successfuly single-stepped the instruction, to yield the
1097 same effect the instruction would have had if we had executed it
1098 at its original address. We use this in step n3.
1099
1100 - gdbarch_displaced_step_free_closure provides cleanup.
1101
1102 The gdbarch_displaced_step_copy_insn and
1103 gdbarch_displaced_step_fixup functions must be written so that
1104 copying an instruction with gdbarch_displaced_step_copy_insn,
1105 single-stepping across the copied instruction, and then applying
1106 gdbarch_displaced_insn_fixup should have the same effects on the
1107 thread's memory and registers as stepping the instruction in place
1108 would have. Exactly which responsibilities fall to the copy and
1109 which fall to the fixup is up to the author of those functions.
1110
1111 See the comments in gdbarch.sh for details.
1112
1113 Note that displaced stepping and software single-step cannot
1114 currently be used in combination, although with some care I think
1115 they could be made to. Software single-step works by placing
1116 breakpoints on all possible subsequent instructions; if the
1117 displaced instruction is a PC-relative jump, those breakpoints
1118 could fall in very strange places --- on pages that aren't
1119 executable, or at addresses that are not proper instruction
1120 boundaries. (We do generally let other threads run while we wait
1121 to hit the software single-step breakpoint, and they might
1122 encounter such a corrupted instruction.) One way to work around
1123 this would be to have gdbarch_displaced_step_copy_insn fully
1124 simulate the effect of PC-relative instructions (and return NULL)
1125 on architectures that use software single-stepping.
1126
1127 In non-stop mode, we can have independent and simultaneous step
1128 requests, so more than one thread may need to simultaneously step
1129 over a breakpoint. The current implementation assumes there is
1130 only one scratch space per process. In this case, we have to
1131 serialize access to the scratch space. If thread A wants to step
1132 over a breakpoint, but we are currently waiting for some other
1133 thread to complete a displaced step, we leave thread A stopped and
1134 place it in the displaced_step_request_queue. Whenever a displaced
1135 step finishes, we pick the next thread in the queue and start a new
1136 displaced step operation on it. See displaced_step_prepare and
1137 displaced_step_fixup for details. */
1138
1139 struct displaced_step_request
1140 {
1141 ptid_t ptid;
1142 struct displaced_step_request *next;
1143 };
1144
1145 /* Per-inferior displaced stepping state. */
1146 struct displaced_step_inferior_state
1147 {
1148 /* Pointer to next in linked list. */
1149 struct displaced_step_inferior_state *next;
1150
1151 /* The process this displaced step state refers to. */
1152 int pid;
1153
1154 /* A queue of pending displaced stepping requests. One entry per
1155 thread that needs to do a displaced step. */
1156 struct displaced_step_request *step_request_queue;
1157
1158 /* If this is not null_ptid, this is the thread carrying out a
1159 displaced single-step in process PID. This thread's state will
1160 require fixing up once it has completed its step. */
1161 ptid_t step_ptid;
1162
1163 /* The architecture the thread had when we stepped it. */
1164 struct gdbarch *step_gdbarch;
1165
1166 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1167 for post-step cleanup. */
1168 struct displaced_step_closure *step_closure;
1169
1170 /* The address of the original instruction, and the copy we
1171 made. */
1172 CORE_ADDR step_original, step_copy;
1173
1174 /* Saved contents of copy area. */
1175 gdb_byte *step_saved_copy;
1176 };
1177
1178 /* The list of states of processes involved in displaced stepping
1179 presently. */
1180 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1181
1182 /* Get the displaced stepping state of process PID. */
1183
1184 static struct displaced_step_inferior_state *
1185 get_displaced_stepping_state (int pid)
1186 {
1187 struct displaced_step_inferior_state *state;
1188
1189 for (state = displaced_step_inferior_states;
1190 state != NULL;
1191 state = state->next)
1192 if (state->pid == pid)
1193 return state;
1194
1195 return NULL;
1196 }
1197
1198 /* Add a new displaced stepping state for process PID to the displaced
1199 stepping state list, or return a pointer to an already existing
1200 entry, if it already exists. Never returns NULL. */
1201
1202 static struct displaced_step_inferior_state *
1203 add_displaced_stepping_state (int pid)
1204 {
1205 struct displaced_step_inferior_state *state;
1206
1207 for (state = displaced_step_inferior_states;
1208 state != NULL;
1209 state = state->next)
1210 if (state->pid == pid)
1211 return state;
1212
1213 state = xcalloc (1, sizeof (*state));
1214 state->pid = pid;
1215 state->next = displaced_step_inferior_states;
1216 displaced_step_inferior_states = state;
1217
1218 return state;
1219 }
1220
1221 /* If inferior is in displaced stepping, and ADDR equals to starting address
1222 of copy area, return corresponding displaced_step_closure. Otherwise,
1223 return NULL. */
1224
1225 struct displaced_step_closure*
1226 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1227 {
1228 struct displaced_step_inferior_state *displaced
1229 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1230
1231 /* If checking the mode of displaced instruction in copy area. */
1232 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1233 && (displaced->step_copy == addr))
1234 return displaced->step_closure;
1235
1236 return NULL;
1237 }
1238
1239 /* Remove the displaced stepping state of process PID. */
1240
1241 static void
1242 remove_displaced_stepping_state (int pid)
1243 {
1244 struct displaced_step_inferior_state *it, **prev_next_p;
1245
1246 gdb_assert (pid != 0);
1247
1248 it = displaced_step_inferior_states;
1249 prev_next_p = &displaced_step_inferior_states;
1250 while (it)
1251 {
1252 if (it->pid == pid)
1253 {
1254 *prev_next_p = it->next;
1255 xfree (it);
1256 return;
1257 }
1258
1259 prev_next_p = &it->next;
1260 it = *prev_next_p;
1261 }
1262 }
1263
1264 static void
1265 infrun_inferior_exit (struct inferior *inf)
1266 {
1267 remove_displaced_stepping_state (inf->pid);
1268 }
1269
1270 /* If ON, and the architecture supports it, GDB will use displaced
1271 stepping to step over breakpoints. If OFF, or if the architecture
1272 doesn't support it, GDB will instead use the traditional
1273 hold-and-step approach. If AUTO (which is the default), GDB will
1274 decide which technique to use to step over breakpoints depending on
1275 which of all-stop or non-stop mode is active --- displaced stepping
1276 in non-stop mode; hold-and-step in all-stop mode. */
1277
1278 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1279
1280 static void
1281 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *c,
1283 const char *value)
1284 {
1285 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1286 fprintf_filtered (file,
1287 _("Debugger's willingness to use displaced stepping "
1288 "to step over breakpoints is %s (currently %s).\n"),
1289 value, non_stop ? "on" : "off");
1290 else
1291 fprintf_filtered (file,
1292 _("Debugger's willingness to use displaced stepping "
1293 "to step over breakpoints is %s.\n"), value);
1294 }
1295
1296 /* Return non-zero if displaced stepping can/should be used to step
1297 over breakpoints. */
1298
1299 static int
1300 use_displaced_stepping (struct gdbarch *gdbarch)
1301 {
1302 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1303 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1304 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1305 && find_record_target () == NULL);
1306 }
1307
1308 /* Clean out any stray displaced stepping state. */
1309 static void
1310 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1311 {
1312 /* Indicate that there is no cleanup pending. */
1313 displaced->step_ptid = null_ptid;
1314
1315 if (displaced->step_closure)
1316 {
1317 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1318 displaced->step_closure);
1319 displaced->step_closure = NULL;
1320 }
1321 }
1322
1323 static void
1324 displaced_step_clear_cleanup (void *arg)
1325 {
1326 struct displaced_step_inferior_state *state = arg;
1327
1328 displaced_step_clear (state);
1329 }
1330
1331 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1332 void
1333 displaced_step_dump_bytes (struct ui_file *file,
1334 const gdb_byte *buf,
1335 size_t len)
1336 {
1337 int i;
1338
1339 for (i = 0; i < len; i++)
1340 fprintf_unfiltered (file, "%02x ", buf[i]);
1341 fputs_unfiltered ("\n", file);
1342 }
1343
1344 /* Prepare to single-step, using displaced stepping.
1345
1346 Note that we cannot use displaced stepping when we have a signal to
1347 deliver. If we have a signal to deliver and an instruction to step
1348 over, then after the step, there will be no indication from the
1349 target whether the thread entered a signal handler or ignored the
1350 signal and stepped over the instruction successfully --- both cases
1351 result in a simple SIGTRAP. In the first case we mustn't do a
1352 fixup, and in the second case we must --- but we can't tell which.
1353 Comments in the code for 'random signals' in handle_inferior_event
1354 explain how we handle this case instead.
1355
1356 Returns 1 if preparing was successful -- this thread is going to be
1357 stepped now; or 0 if displaced stepping this thread got queued. */
1358 static int
1359 displaced_step_prepare (ptid_t ptid)
1360 {
1361 struct cleanup *old_cleanups, *ignore_cleanups;
1362 struct thread_info *tp = find_thread_ptid (ptid);
1363 struct regcache *regcache = get_thread_regcache (ptid);
1364 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1365 CORE_ADDR original, copy;
1366 ULONGEST len;
1367 struct displaced_step_closure *closure;
1368 struct displaced_step_inferior_state *displaced;
1369 int status;
1370
1371 /* We should never reach this function if the architecture does not
1372 support displaced stepping. */
1373 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1374
1375 /* Disable range stepping while executing in the scratch pad. We
1376 want a single-step even if executing the displaced instruction in
1377 the scratch buffer lands within the stepping range (e.g., a
1378 jump/branch). */
1379 tp->control.may_range_step = 0;
1380
1381 /* We have to displaced step one thread at a time, as we only have
1382 access to a single scratch space per inferior. */
1383
1384 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1385
1386 if (!ptid_equal (displaced->step_ptid, null_ptid))
1387 {
1388 /* Already waiting for a displaced step to finish. Defer this
1389 request and place in queue. */
1390 struct displaced_step_request *req, *new_req;
1391
1392 if (debug_displaced)
1393 fprintf_unfiltered (gdb_stdlog,
1394 "displaced: defering step of %s\n",
1395 target_pid_to_str (ptid));
1396
1397 new_req = xmalloc (sizeof (*new_req));
1398 new_req->ptid = ptid;
1399 new_req->next = NULL;
1400
1401 if (displaced->step_request_queue)
1402 {
1403 for (req = displaced->step_request_queue;
1404 req && req->next;
1405 req = req->next)
1406 ;
1407 req->next = new_req;
1408 }
1409 else
1410 displaced->step_request_queue = new_req;
1411
1412 return 0;
1413 }
1414 else
1415 {
1416 if (debug_displaced)
1417 fprintf_unfiltered (gdb_stdlog,
1418 "displaced: stepping %s now\n",
1419 target_pid_to_str (ptid));
1420 }
1421
1422 displaced_step_clear (displaced);
1423
1424 old_cleanups = save_inferior_ptid ();
1425 inferior_ptid = ptid;
1426
1427 original = regcache_read_pc (regcache);
1428
1429 copy = gdbarch_displaced_step_location (gdbarch);
1430 len = gdbarch_max_insn_length (gdbarch);
1431
1432 /* Save the original contents of the copy area. */
1433 displaced->step_saved_copy = xmalloc (len);
1434 ignore_cleanups = make_cleanup (free_current_contents,
1435 &displaced->step_saved_copy);
1436 status = target_read_memory (copy, displaced->step_saved_copy, len);
1437 if (status != 0)
1438 throw_error (MEMORY_ERROR,
1439 _("Error accessing memory address %s (%s) for "
1440 "displaced-stepping scratch space."),
1441 paddress (gdbarch, copy), safe_strerror (status));
1442 if (debug_displaced)
1443 {
1444 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1445 paddress (gdbarch, copy));
1446 displaced_step_dump_bytes (gdb_stdlog,
1447 displaced->step_saved_copy,
1448 len);
1449 };
1450
1451 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1452 original, copy, regcache);
1453
1454 /* We don't support the fully-simulated case at present. */
1455 gdb_assert (closure);
1456
1457 /* Save the information we need to fix things up if the step
1458 succeeds. */
1459 displaced->step_ptid = ptid;
1460 displaced->step_gdbarch = gdbarch;
1461 displaced->step_closure = closure;
1462 displaced->step_original = original;
1463 displaced->step_copy = copy;
1464
1465 make_cleanup (displaced_step_clear_cleanup, displaced);
1466
1467 /* Resume execution at the copy. */
1468 regcache_write_pc (regcache, copy);
1469
1470 discard_cleanups (ignore_cleanups);
1471
1472 do_cleanups (old_cleanups);
1473
1474 if (debug_displaced)
1475 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1476 paddress (gdbarch, copy));
1477
1478 return 1;
1479 }
1480
1481 static void
1482 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1483 const gdb_byte *myaddr, int len)
1484 {
1485 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1486
1487 inferior_ptid = ptid;
1488 write_memory (memaddr, myaddr, len);
1489 do_cleanups (ptid_cleanup);
1490 }
1491
1492 /* Restore the contents of the copy area for thread PTID. */
1493
1494 static void
1495 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1496 ptid_t ptid)
1497 {
1498 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1499
1500 write_memory_ptid (ptid, displaced->step_copy,
1501 displaced->step_saved_copy, len);
1502 if (debug_displaced)
1503 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1504 target_pid_to_str (ptid),
1505 paddress (displaced->step_gdbarch,
1506 displaced->step_copy));
1507 }
1508
1509 static void
1510 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1511 {
1512 struct cleanup *old_cleanups;
1513 struct displaced_step_inferior_state *displaced
1514 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1515
1516 /* Was any thread of this process doing a displaced step? */
1517 if (displaced == NULL)
1518 return;
1519
1520 /* Was this event for the pid we displaced? */
1521 if (ptid_equal (displaced->step_ptid, null_ptid)
1522 || ! ptid_equal (displaced->step_ptid, event_ptid))
1523 return;
1524
1525 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1526
1527 displaced_step_restore (displaced, displaced->step_ptid);
1528
1529 /* Did the instruction complete successfully? */
1530 if (signal == GDB_SIGNAL_TRAP)
1531 {
1532 /* Fix up the resulting state. */
1533 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1534 displaced->step_closure,
1535 displaced->step_original,
1536 displaced->step_copy,
1537 get_thread_regcache (displaced->step_ptid));
1538 }
1539 else
1540 {
1541 /* Since the instruction didn't complete, all we can do is
1542 relocate the PC. */
1543 struct regcache *regcache = get_thread_regcache (event_ptid);
1544 CORE_ADDR pc = regcache_read_pc (regcache);
1545
1546 pc = displaced->step_original + (pc - displaced->step_copy);
1547 regcache_write_pc (regcache, pc);
1548 }
1549
1550 do_cleanups (old_cleanups);
1551
1552 displaced->step_ptid = null_ptid;
1553
1554 /* Are there any pending displaced stepping requests? If so, run
1555 one now. Leave the state object around, since we're likely to
1556 need it again soon. */
1557 while (displaced->step_request_queue)
1558 {
1559 struct displaced_step_request *head;
1560 ptid_t ptid;
1561 struct regcache *regcache;
1562 struct gdbarch *gdbarch;
1563 CORE_ADDR actual_pc;
1564 struct address_space *aspace;
1565
1566 head = displaced->step_request_queue;
1567 ptid = head->ptid;
1568 displaced->step_request_queue = head->next;
1569 xfree (head);
1570
1571 context_switch (ptid);
1572
1573 regcache = get_thread_regcache (ptid);
1574 actual_pc = regcache_read_pc (regcache);
1575 aspace = get_regcache_aspace (regcache);
1576
1577 if (breakpoint_here_p (aspace, actual_pc))
1578 {
1579 if (debug_displaced)
1580 fprintf_unfiltered (gdb_stdlog,
1581 "displaced: stepping queued %s now\n",
1582 target_pid_to_str (ptid));
1583
1584 displaced_step_prepare (ptid);
1585
1586 gdbarch = get_regcache_arch (regcache);
1587
1588 if (debug_displaced)
1589 {
1590 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1591 gdb_byte buf[4];
1592
1593 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1594 paddress (gdbarch, actual_pc));
1595 read_memory (actual_pc, buf, sizeof (buf));
1596 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1597 }
1598
1599 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1600 displaced->step_closure))
1601 target_resume (ptid, 1, GDB_SIGNAL_0);
1602 else
1603 target_resume (ptid, 0, GDB_SIGNAL_0);
1604
1605 /* Done, we're stepping a thread. */
1606 break;
1607 }
1608 else
1609 {
1610 int step;
1611 struct thread_info *tp = inferior_thread ();
1612
1613 /* The breakpoint we were sitting under has since been
1614 removed. */
1615 tp->control.trap_expected = 0;
1616
1617 /* Go back to what we were trying to do. */
1618 step = currently_stepping (tp);
1619
1620 if (debug_displaced)
1621 fprintf_unfiltered (gdb_stdlog,
1622 "displaced: breakpoint is gone: %s, step(%d)\n",
1623 target_pid_to_str (tp->ptid), step);
1624
1625 target_resume (ptid, step, GDB_SIGNAL_0);
1626 tp->suspend.stop_signal = GDB_SIGNAL_0;
1627
1628 /* This request was discarded. See if there's any other
1629 thread waiting for its turn. */
1630 }
1631 }
1632 }
1633
1634 /* Update global variables holding ptids to hold NEW_PTID if they were
1635 holding OLD_PTID. */
1636 static void
1637 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1638 {
1639 struct displaced_step_request *it;
1640 struct displaced_step_inferior_state *displaced;
1641
1642 if (ptid_equal (inferior_ptid, old_ptid))
1643 inferior_ptid = new_ptid;
1644
1645 if (ptid_equal (singlestep_ptid, old_ptid))
1646 singlestep_ptid = new_ptid;
1647
1648 for (displaced = displaced_step_inferior_states;
1649 displaced;
1650 displaced = displaced->next)
1651 {
1652 if (ptid_equal (displaced->step_ptid, old_ptid))
1653 displaced->step_ptid = new_ptid;
1654
1655 for (it = displaced->step_request_queue; it; it = it->next)
1656 if (ptid_equal (it->ptid, old_ptid))
1657 it->ptid = new_ptid;
1658 }
1659 }
1660
1661 \f
1662 /* Resuming. */
1663
1664 /* Things to clean up if we QUIT out of resume (). */
1665 static void
1666 resume_cleanups (void *ignore)
1667 {
1668 normal_stop ();
1669 }
1670
1671 static const char schedlock_off[] = "off";
1672 static const char schedlock_on[] = "on";
1673 static const char schedlock_step[] = "step";
1674 static const char *const scheduler_enums[] = {
1675 schedlock_off,
1676 schedlock_on,
1677 schedlock_step,
1678 NULL
1679 };
1680 static const char *scheduler_mode = schedlock_off;
1681 static void
1682 show_scheduler_mode (struct ui_file *file, int from_tty,
1683 struct cmd_list_element *c, const char *value)
1684 {
1685 fprintf_filtered (file,
1686 _("Mode for locking scheduler "
1687 "during execution is \"%s\".\n"),
1688 value);
1689 }
1690
1691 static void
1692 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1693 {
1694 if (!target_can_lock_scheduler)
1695 {
1696 scheduler_mode = schedlock_off;
1697 error (_("Target '%s' cannot support this command."), target_shortname);
1698 }
1699 }
1700
1701 /* True if execution commands resume all threads of all processes by
1702 default; otherwise, resume only threads of the current inferior
1703 process. */
1704 int sched_multi = 0;
1705
1706 /* Try to setup for software single stepping over the specified location.
1707 Return 1 if target_resume() should use hardware single step.
1708
1709 GDBARCH the current gdbarch.
1710 PC the location to step over. */
1711
1712 static int
1713 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1714 {
1715 int hw_step = 1;
1716
1717 if (execution_direction == EXEC_FORWARD
1718 && gdbarch_software_single_step_p (gdbarch)
1719 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1720 {
1721 hw_step = 0;
1722 /* Do not pull these breakpoints until after a `wait' in
1723 `wait_for_inferior'. */
1724 singlestep_breakpoints_inserted_p = 1;
1725 singlestep_ptid = inferior_ptid;
1726 singlestep_pc = pc;
1727 }
1728 return hw_step;
1729 }
1730
1731 /* Return a ptid representing the set of threads that we will proceed,
1732 in the perspective of the user/frontend. We may actually resume
1733 fewer threads at first, e.g., if a thread is stopped at a
1734 breakpoint that needs stepping-off, but that should not be visible
1735 to the user/frontend, and neither should the frontend/user be
1736 allowed to proceed any of the threads that happen to be stopped for
1737 internal run control handling, if a previous command wanted them
1738 resumed. */
1739
1740 ptid_t
1741 user_visible_resume_ptid (int step)
1742 {
1743 /* By default, resume all threads of all processes. */
1744 ptid_t resume_ptid = RESUME_ALL;
1745
1746 /* Maybe resume only all threads of the current process. */
1747 if (!sched_multi && target_supports_multi_process ())
1748 {
1749 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1750 }
1751
1752 /* Maybe resume a single thread after all. */
1753 if (non_stop)
1754 {
1755 /* With non-stop mode on, threads are always handled
1756 individually. */
1757 resume_ptid = inferior_ptid;
1758 }
1759 else if ((scheduler_mode == schedlock_on)
1760 || (scheduler_mode == schedlock_step
1761 && (step || singlestep_breakpoints_inserted_p)))
1762 {
1763 /* User-settable 'scheduler' mode requires solo thread resume. */
1764 resume_ptid = inferior_ptid;
1765 }
1766
1767 return resume_ptid;
1768 }
1769
1770 /* Resume the inferior, but allow a QUIT. This is useful if the user
1771 wants to interrupt some lengthy single-stepping operation
1772 (for child processes, the SIGINT goes to the inferior, and so
1773 we get a SIGINT random_signal, but for remote debugging and perhaps
1774 other targets, that's not true).
1775
1776 STEP nonzero if we should step (zero to continue instead).
1777 SIG is the signal to give the inferior (zero for none). */
1778 void
1779 resume (int step, enum gdb_signal sig)
1780 {
1781 int should_resume = 1;
1782 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1783 struct regcache *regcache = get_current_regcache ();
1784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1785 struct thread_info *tp = inferior_thread ();
1786 CORE_ADDR pc = regcache_read_pc (regcache);
1787 struct address_space *aspace = get_regcache_aspace (regcache);
1788
1789 QUIT;
1790
1791 if (current_inferior ()->waiting_for_vfork_done)
1792 {
1793 /* Don't try to single-step a vfork parent that is waiting for
1794 the child to get out of the shared memory region (by exec'ing
1795 or exiting). This is particularly important on software
1796 single-step archs, as the child process would trip on the
1797 software single step breakpoint inserted for the parent
1798 process. Since the parent will not actually execute any
1799 instruction until the child is out of the shared region (such
1800 are vfork's semantics), it is safe to simply continue it.
1801 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1802 the parent, and tell it to `keep_going', which automatically
1803 re-sets it stepping. */
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "infrun: resume : clear step\n");
1807 step = 0;
1808 }
1809
1810 if (debug_infrun)
1811 fprintf_unfiltered (gdb_stdlog,
1812 "infrun: resume (step=%d, signal=%s), "
1813 "trap_expected=%d, current thread [%s] at %s\n",
1814 step, gdb_signal_to_symbol_string (sig),
1815 tp->control.trap_expected,
1816 target_pid_to_str (inferior_ptid),
1817 paddress (gdbarch, pc));
1818
1819 /* Normally, by the time we reach `resume', the breakpoints are either
1820 removed or inserted, as appropriate. The exception is if we're sitting
1821 at a permanent breakpoint; we need to step over it, but permanent
1822 breakpoints can't be removed. So we have to test for it here. */
1823 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1824 {
1825 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1826 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1827 else
1828 error (_("\
1829 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1830 how to step past a permanent breakpoint on this architecture. Try using\n\
1831 a command like `return' or `jump' to continue execution."));
1832 }
1833
1834 /* If we have a breakpoint to step over, make sure to do a single
1835 step only. Same if we have software watchpoints. */
1836 if (tp->control.trap_expected || bpstat_should_step ())
1837 tp->control.may_range_step = 0;
1838
1839 /* If enabled, step over breakpoints by executing a copy of the
1840 instruction at a different address.
1841
1842 We can't use displaced stepping when we have a signal to deliver;
1843 the comments for displaced_step_prepare explain why. The
1844 comments in the handle_inferior event for dealing with 'random
1845 signals' explain what we do instead.
1846
1847 We can't use displaced stepping when we are waiting for vfork_done
1848 event, displaced stepping breaks the vfork child similarly as single
1849 step software breakpoint. */
1850 if (use_displaced_stepping (gdbarch)
1851 && (tp->control.trap_expected
1852 || (step && gdbarch_software_single_step_p (gdbarch)))
1853 && sig == GDB_SIGNAL_0
1854 && !current_inferior ()->waiting_for_vfork_done)
1855 {
1856 struct displaced_step_inferior_state *displaced;
1857
1858 if (!displaced_step_prepare (inferior_ptid))
1859 {
1860 /* Got placed in displaced stepping queue. Will be resumed
1861 later when all the currently queued displaced stepping
1862 requests finish. The thread is not executing at this point,
1863 and the call to set_executing will be made later. But we
1864 need to call set_running here, since from frontend point of view,
1865 the thread is running. */
1866 set_running (inferior_ptid, 1);
1867 discard_cleanups (old_cleanups);
1868 return;
1869 }
1870
1871 /* Update pc to reflect the new address from which we will execute
1872 instructions due to displaced stepping. */
1873 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1874
1875 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1876 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1877 displaced->step_closure);
1878 }
1879
1880 /* Do we need to do it the hard way, w/temp breakpoints? */
1881 else if (step)
1882 step = maybe_software_singlestep (gdbarch, pc);
1883
1884 /* Currently, our software single-step implementation leads to different
1885 results than hardware single-stepping in one situation: when stepping
1886 into delivering a signal which has an associated signal handler,
1887 hardware single-step will stop at the first instruction of the handler,
1888 while software single-step will simply skip execution of the handler.
1889
1890 For now, this difference in behavior is accepted since there is no
1891 easy way to actually implement single-stepping into a signal handler
1892 without kernel support.
1893
1894 However, there is one scenario where this difference leads to follow-on
1895 problems: if we're stepping off a breakpoint by removing all breakpoints
1896 and then single-stepping. In this case, the software single-step
1897 behavior means that even if there is a *breakpoint* in the signal
1898 handler, GDB still would not stop.
1899
1900 Fortunately, we can at least fix this particular issue. We detect
1901 here the case where we are about to deliver a signal while software
1902 single-stepping with breakpoints removed. In this situation, we
1903 revert the decisions to remove all breakpoints and insert single-
1904 step breakpoints, and instead we install a step-resume breakpoint
1905 at the current address, deliver the signal without stepping, and
1906 once we arrive back at the step-resume breakpoint, actually step
1907 over the breakpoint we originally wanted to step over. */
1908 if (singlestep_breakpoints_inserted_p
1909 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1910 {
1911 /* If we have nested signals or a pending signal is delivered
1912 immediately after a handler returns, might might already have
1913 a step-resume breakpoint set on the earlier handler. We cannot
1914 set another step-resume breakpoint; just continue on until the
1915 original breakpoint is hit. */
1916 if (tp->control.step_resume_breakpoint == NULL)
1917 {
1918 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1919 tp->step_after_step_resume_breakpoint = 1;
1920 }
1921
1922 remove_single_step_breakpoints ();
1923 singlestep_breakpoints_inserted_p = 0;
1924
1925 clear_step_over_info ();
1926 tp->control.trap_expected = 0;
1927
1928 insert_breakpoints ();
1929 }
1930
1931 if (should_resume)
1932 {
1933 ptid_t resume_ptid;
1934
1935 /* If STEP is set, it's a request to use hardware stepping
1936 facilities. But in that case, we should never
1937 use singlestep breakpoint. */
1938 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1939
1940 /* Decide the set of threads to ask the target to resume. Start
1941 by assuming everything will be resumed, than narrow the set
1942 by applying increasingly restricting conditions. */
1943 resume_ptid = user_visible_resume_ptid (step);
1944
1945 /* Maybe resume a single thread after all. */
1946 if (singlestep_breakpoints_inserted_p
1947 && stepping_past_singlestep_breakpoint)
1948 {
1949 /* The situation here is as follows. In thread T1 we wanted to
1950 single-step. Lacking hardware single-stepping we've
1951 set breakpoint at the PC of the next instruction -- call it
1952 P. After resuming, we've hit that breakpoint in thread T2.
1953 Now we've removed original breakpoint, inserted breakpoint
1954 at P+1, and try to step to advance T2 past breakpoint.
1955 We need to step only T2, as if T1 is allowed to freely run,
1956 it can run past P, and if other threads are allowed to run,
1957 they can hit breakpoint at P+1, and nested hits of single-step
1958 breakpoints is not something we'd want -- that's complicated
1959 to support, and has no value. */
1960 resume_ptid = inferior_ptid;
1961 }
1962 else if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected)
1964 {
1965 /* We're allowing a thread to run past a breakpoint it has
1966 hit, by single-stepping the thread with the breakpoint
1967 removed. In which case, we need to single-step only this
1968 thread, and keep others stopped, as they can miss this
1969 breakpoint if allowed to run. */
1970 resume_ptid = inferior_ptid;
1971 }
1972
1973 if (gdbarch_cannot_step_breakpoint (gdbarch))
1974 {
1975 /* Most targets can step a breakpoint instruction, thus
1976 executing it normally. But if this one cannot, just
1977 continue and we will hit it anyway. */
1978 if (step && breakpoint_inserted_here_p (aspace, pc))
1979 step = 0;
1980 }
1981
1982 if (debug_displaced
1983 && use_displaced_stepping (gdbarch)
1984 && tp->control.trap_expected)
1985 {
1986 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1987 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1988 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1989 gdb_byte buf[4];
1990
1991 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1992 paddress (resume_gdbarch, actual_pc));
1993 read_memory (actual_pc, buf, sizeof (buf));
1994 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1995 }
1996
1997 if (tp->control.may_range_step)
1998 {
1999 /* If we're resuming a thread with the PC out of the step
2000 range, then we're doing some nested/finer run control
2001 operation, like stepping the thread out of the dynamic
2002 linker or the displaced stepping scratch pad. We
2003 shouldn't have allowed a range step then. */
2004 gdb_assert (pc_in_thread_step_range (pc, tp));
2005 }
2006
2007 /* Install inferior's terminal modes. */
2008 target_terminal_inferior ();
2009
2010 /* Avoid confusing the next resume, if the next stop/resume
2011 happens to apply to another thread. */
2012 tp->suspend.stop_signal = GDB_SIGNAL_0;
2013
2014 /* Advise target which signals may be handled silently. If we have
2015 removed breakpoints because we are stepping over one (which can
2016 happen only if we are not using displaced stepping), we need to
2017 receive all signals to avoid accidentally skipping a breakpoint
2018 during execution of a signal handler. */
2019 if ((step || singlestep_breakpoints_inserted_p)
2020 && tp->control.trap_expected
2021 && !use_displaced_stepping (gdbarch))
2022 target_pass_signals (0, NULL);
2023 else
2024 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2025
2026 target_resume (resume_ptid, step, sig);
2027 }
2028
2029 discard_cleanups (old_cleanups);
2030 }
2031 \f
2032 /* Proceeding. */
2033
2034 /* Clear out all variables saying what to do when inferior is continued.
2035 First do this, then set the ones you want, then call `proceed'. */
2036
2037 static void
2038 clear_proceed_status_thread (struct thread_info *tp)
2039 {
2040 if (debug_infrun)
2041 fprintf_unfiltered (gdb_stdlog,
2042 "infrun: clear_proceed_status_thread (%s)\n",
2043 target_pid_to_str (tp->ptid));
2044
2045 tp->control.trap_expected = 0;
2046 tp->control.step_range_start = 0;
2047 tp->control.step_range_end = 0;
2048 tp->control.may_range_step = 0;
2049 tp->control.step_frame_id = null_frame_id;
2050 tp->control.step_stack_frame_id = null_frame_id;
2051 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2052 tp->stop_requested = 0;
2053
2054 tp->control.stop_step = 0;
2055
2056 tp->control.proceed_to_finish = 0;
2057
2058 /* Discard any remaining commands or status from previous stop. */
2059 bpstat_clear (&tp->control.stop_bpstat);
2060 }
2061
2062 static int
2063 clear_proceed_status_callback (struct thread_info *tp, void *data)
2064 {
2065 if (is_exited (tp->ptid))
2066 return 0;
2067
2068 clear_proceed_status_thread (tp);
2069 return 0;
2070 }
2071
2072 void
2073 clear_proceed_status (void)
2074 {
2075 if (!non_stop)
2076 {
2077 /* In all-stop mode, delete the per-thread status of all
2078 threads, even if inferior_ptid is null_ptid, there may be
2079 threads on the list. E.g., we may be launching a new
2080 process, while selecting the executable. */
2081 iterate_over_threads (clear_proceed_status_callback, NULL);
2082 }
2083
2084 if (!ptid_equal (inferior_ptid, null_ptid))
2085 {
2086 struct inferior *inferior;
2087
2088 if (non_stop)
2089 {
2090 /* If in non-stop mode, only delete the per-thread status of
2091 the current thread. */
2092 clear_proceed_status_thread (inferior_thread ());
2093 }
2094
2095 inferior = current_inferior ();
2096 inferior->control.stop_soon = NO_STOP_QUIETLY;
2097 }
2098
2099 stop_after_trap = 0;
2100
2101 clear_step_over_info ();
2102
2103 observer_notify_about_to_proceed ();
2104
2105 if (stop_registers)
2106 {
2107 regcache_xfree (stop_registers);
2108 stop_registers = NULL;
2109 }
2110 }
2111
2112 /* Check the current thread against the thread that reported the most recent
2113 event. If a step-over is required return TRUE and set the current thread
2114 to the old thread. Otherwise return FALSE.
2115
2116 This should be suitable for any targets that support threads. */
2117
2118 static int
2119 prepare_to_proceed (int step)
2120 {
2121 ptid_t wait_ptid;
2122 struct target_waitstatus wait_status;
2123 int schedlock_enabled;
2124
2125 /* With non-stop mode on, threads are always handled individually. */
2126 gdb_assert (! non_stop);
2127
2128 /* Get the last target status returned by target_wait(). */
2129 get_last_target_status (&wait_ptid, &wait_status);
2130
2131 /* Make sure we were stopped at a breakpoint. */
2132 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2133 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2134 && wait_status.value.sig != GDB_SIGNAL_ILL
2135 && wait_status.value.sig != GDB_SIGNAL_SEGV
2136 && wait_status.value.sig != GDB_SIGNAL_EMT))
2137 {
2138 return 0;
2139 }
2140
2141 schedlock_enabled = (scheduler_mode == schedlock_on
2142 || (scheduler_mode == schedlock_step
2143 && step));
2144
2145 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2146 if (schedlock_enabled)
2147 return 0;
2148
2149 /* Don't switch over if we're about to resume some other process
2150 other than WAIT_PTID's, and schedule-multiple is off. */
2151 if (!sched_multi
2152 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2153 return 0;
2154
2155 /* Switched over from WAIT_PID. */
2156 if (!ptid_equal (wait_ptid, minus_one_ptid)
2157 && !ptid_equal (inferior_ptid, wait_ptid))
2158 {
2159 struct regcache *regcache = get_thread_regcache (wait_ptid);
2160
2161 if (breakpoint_here_p (get_regcache_aspace (regcache),
2162 regcache_read_pc (regcache)))
2163 {
2164 /* Switch back to WAIT_PID thread. */
2165 switch_to_thread (wait_ptid);
2166
2167 if (debug_infrun)
2168 fprintf_unfiltered (gdb_stdlog,
2169 "infrun: prepare_to_proceed (step=%d), "
2170 "switched to [%s]\n",
2171 step, target_pid_to_str (inferior_ptid));
2172
2173 /* We return 1 to indicate that there is a breakpoint here,
2174 so we need to step over it before continuing to avoid
2175 hitting it straight away. */
2176 return 1;
2177 }
2178 }
2179
2180 return 0;
2181 }
2182
2183 /* Basic routine for continuing the program in various fashions.
2184
2185 ADDR is the address to resume at, or -1 for resume where stopped.
2186 SIGGNAL is the signal to give it, or 0 for none,
2187 or -1 for act according to how it stopped.
2188 STEP is nonzero if should trap after one instruction.
2189 -1 means return after that and print nothing.
2190 You should probably set various step_... variables
2191 before calling here, if you are stepping.
2192
2193 You should call clear_proceed_status before calling proceed. */
2194
2195 void
2196 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2197 {
2198 struct regcache *regcache;
2199 struct gdbarch *gdbarch;
2200 struct thread_info *tp;
2201 CORE_ADDR pc;
2202 struct address_space *aspace;
2203 /* GDB may force the inferior to step due to various reasons. */
2204 int force_step = 0;
2205
2206 /* If we're stopped at a fork/vfork, follow the branch set by the
2207 "set follow-fork-mode" command; otherwise, we'll just proceed
2208 resuming the current thread. */
2209 if (!follow_fork ())
2210 {
2211 /* The target for some reason decided not to resume. */
2212 normal_stop ();
2213 if (target_can_async_p ())
2214 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2215 return;
2216 }
2217
2218 /* We'll update this if & when we switch to a new thread. */
2219 previous_inferior_ptid = inferior_ptid;
2220
2221 regcache = get_current_regcache ();
2222 gdbarch = get_regcache_arch (regcache);
2223 aspace = get_regcache_aspace (regcache);
2224 pc = regcache_read_pc (regcache);
2225
2226 if (step > 0)
2227 step_start_function = find_pc_function (pc);
2228 if (step < 0)
2229 stop_after_trap = 1;
2230
2231 if (addr == (CORE_ADDR) -1)
2232 {
2233 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2234 && execution_direction != EXEC_REVERSE)
2235 /* There is a breakpoint at the address we will resume at,
2236 step one instruction before inserting breakpoints so that
2237 we do not stop right away (and report a second hit at this
2238 breakpoint).
2239
2240 Note, we don't do this in reverse, because we won't
2241 actually be executing the breakpoint insn anyway.
2242 We'll be (un-)executing the previous instruction. */
2243
2244 force_step = 1;
2245 else if (gdbarch_single_step_through_delay_p (gdbarch)
2246 && gdbarch_single_step_through_delay (gdbarch,
2247 get_current_frame ()))
2248 /* We stepped onto an instruction that needs to be stepped
2249 again before re-inserting the breakpoint, do so. */
2250 force_step = 1;
2251 }
2252 else
2253 {
2254 regcache_write_pc (regcache, addr);
2255 }
2256
2257 if (debug_infrun)
2258 fprintf_unfiltered (gdb_stdlog,
2259 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2260 paddress (gdbarch, addr),
2261 gdb_signal_to_symbol_string (siggnal), step);
2262
2263 if (non_stop)
2264 /* In non-stop, each thread is handled individually. The context
2265 must already be set to the right thread here. */
2266 ;
2267 else
2268 {
2269 /* In a multi-threaded task we may select another thread and
2270 then continue or step.
2271
2272 But if the old thread was stopped at a breakpoint, it will
2273 immediately cause another breakpoint stop without any
2274 execution (i.e. it will report a breakpoint hit incorrectly).
2275 So we must step over it first.
2276
2277 prepare_to_proceed checks the current thread against the
2278 thread that reported the most recent event. If a step-over
2279 is required it returns TRUE and sets the current thread to
2280 the old thread. */
2281 if (prepare_to_proceed (step))
2282 force_step = 1;
2283 }
2284
2285 /* prepare_to_proceed may change the current thread. */
2286 tp = inferior_thread ();
2287
2288 if (force_step)
2289 tp->control.trap_expected = 1;
2290
2291 /* If we need to step over a breakpoint, and we're not using
2292 displaced stepping to do so, insert all breakpoints (watchpoints,
2293 etc.) but the one we're stepping over, step one instruction, and
2294 then re-insert the breakpoint when that step is finished. */
2295 if (tp->control.trap_expected && !use_displaced_stepping (gdbarch))
2296 {
2297 struct regcache *regcache = get_current_regcache ();
2298
2299 set_step_over_info (get_regcache_aspace (regcache),
2300 regcache_read_pc (regcache));
2301 }
2302 else
2303 clear_step_over_info ();
2304
2305 insert_breakpoints ();
2306
2307 if (!non_stop)
2308 {
2309 /* Pass the last stop signal to the thread we're resuming,
2310 irrespective of whether the current thread is the thread that
2311 got the last event or not. This was historically GDB's
2312 behaviour before keeping a stop_signal per thread. */
2313
2314 struct thread_info *last_thread;
2315 ptid_t last_ptid;
2316 struct target_waitstatus last_status;
2317
2318 get_last_target_status (&last_ptid, &last_status);
2319 if (!ptid_equal (inferior_ptid, last_ptid)
2320 && !ptid_equal (last_ptid, null_ptid)
2321 && !ptid_equal (last_ptid, minus_one_ptid))
2322 {
2323 last_thread = find_thread_ptid (last_ptid);
2324 if (last_thread)
2325 {
2326 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2327 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2328 }
2329 }
2330 }
2331
2332 if (siggnal != GDB_SIGNAL_DEFAULT)
2333 tp->suspend.stop_signal = siggnal;
2334 /* If this signal should not be seen by program,
2335 give it zero. Used for debugging signals. */
2336 else if (!signal_program[tp->suspend.stop_signal])
2337 tp->suspend.stop_signal = GDB_SIGNAL_0;
2338
2339 annotate_starting ();
2340
2341 /* Make sure that output from GDB appears before output from the
2342 inferior. */
2343 gdb_flush (gdb_stdout);
2344
2345 /* Refresh prev_pc value just prior to resuming. This used to be
2346 done in stop_stepping, however, setting prev_pc there did not handle
2347 scenarios such as inferior function calls or returning from
2348 a function via the return command. In those cases, the prev_pc
2349 value was not set properly for subsequent commands. The prev_pc value
2350 is used to initialize the starting line number in the ecs. With an
2351 invalid value, the gdb next command ends up stopping at the position
2352 represented by the next line table entry past our start position.
2353 On platforms that generate one line table entry per line, this
2354 is not a problem. However, on the ia64, the compiler generates
2355 extraneous line table entries that do not increase the line number.
2356 When we issue the gdb next command on the ia64 after an inferior call
2357 or a return command, we often end up a few instructions forward, still
2358 within the original line we started.
2359
2360 An attempt was made to refresh the prev_pc at the same time the
2361 execution_control_state is initialized (for instance, just before
2362 waiting for an inferior event). But this approach did not work
2363 because of platforms that use ptrace, where the pc register cannot
2364 be read unless the inferior is stopped. At that point, we are not
2365 guaranteed the inferior is stopped and so the regcache_read_pc() call
2366 can fail. Setting the prev_pc value here ensures the value is updated
2367 correctly when the inferior is stopped. */
2368 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2369
2370 /* Fill in with reasonable starting values. */
2371 init_thread_stepping_state (tp);
2372
2373 /* Reset to normal state. */
2374 init_infwait_state ();
2375
2376 /* Resume inferior. */
2377 resume (force_step || step || bpstat_should_step (),
2378 tp->suspend.stop_signal);
2379
2380 /* Wait for it to stop (if not standalone)
2381 and in any case decode why it stopped, and act accordingly. */
2382 /* Do this only if we are not using the event loop, or if the target
2383 does not support asynchronous execution. */
2384 if (!target_can_async_p ())
2385 {
2386 wait_for_inferior ();
2387 normal_stop ();
2388 }
2389 }
2390 \f
2391
2392 /* Start remote-debugging of a machine over a serial link. */
2393
2394 void
2395 start_remote (int from_tty)
2396 {
2397 struct inferior *inferior;
2398
2399 inferior = current_inferior ();
2400 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2401
2402 /* Always go on waiting for the target, regardless of the mode. */
2403 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2404 indicate to wait_for_inferior that a target should timeout if
2405 nothing is returned (instead of just blocking). Because of this,
2406 targets expecting an immediate response need to, internally, set
2407 things up so that the target_wait() is forced to eventually
2408 timeout. */
2409 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2410 differentiate to its caller what the state of the target is after
2411 the initial open has been performed. Here we're assuming that
2412 the target has stopped. It should be possible to eventually have
2413 target_open() return to the caller an indication that the target
2414 is currently running and GDB state should be set to the same as
2415 for an async run. */
2416 wait_for_inferior ();
2417
2418 /* Now that the inferior has stopped, do any bookkeeping like
2419 loading shared libraries. We want to do this before normal_stop,
2420 so that the displayed frame is up to date. */
2421 post_create_inferior (&current_target, from_tty);
2422
2423 normal_stop ();
2424 }
2425
2426 /* Initialize static vars when a new inferior begins. */
2427
2428 void
2429 init_wait_for_inferior (void)
2430 {
2431 /* These are meaningless until the first time through wait_for_inferior. */
2432
2433 breakpoint_init_inferior (inf_starting);
2434
2435 clear_proceed_status ();
2436
2437 stepping_past_singlestep_breakpoint = 0;
2438
2439 target_last_wait_ptid = minus_one_ptid;
2440
2441 previous_inferior_ptid = inferior_ptid;
2442 init_infwait_state ();
2443
2444 /* Discard any skipped inlined frames. */
2445 clear_inline_frame_state (minus_one_ptid);
2446 }
2447
2448 \f
2449 /* This enum encodes possible reasons for doing a target_wait, so that
2450 wfi can call target_wait in one place. (Ultimately the call will be
2451 moved out of the infinite loop entirely.) */
2452
2453 enum infwait_states
2454 {
2455 infwait_normal_state,
2456 infwait_thread_hop_state,
2457 infwait_step_watch_state,
2458 infwait_nonstep_watch_state
2459 };
2460
2461 /* The PTID we'll do a target_wait on.*/
2462 ptid_t waiton_ptid;
2463
2464 /* Current inferior wait state. */
2465 static enum infwait_states infwait_state;
2466
2467 /* Data to be passed around while handling an event. This data is
2468 discarded between events. */
2469 struct execution_control_state
2470 {
2471 ptid_t ptid;
2472 /* The thread that got the event, if this was a thread event; NULL
2473 otherwise. */
2474 struct thread_info *event_thread;
2475
2476 struct target_waitstatus ws;
2477 int stop_func_filled_in;
2478 CORE_ADDR stop_func_start;
2479 CORE_ADDR stop_func_end;
2480 const char *stop_func_name;
2481 int wait_some_more;
2482
2483 /* We were in infwait_step_watch_state or
2484 infwait_nonstep_watch_state state, and the thread reported an
2485 event. */
2486 int stepped_after_stopped_by_watchpoint;
2487 };
2488
2489 static void handle_inferior_event (struct execution_control_state *ecs);
2490
2491 static void handle_step_into_function (struct gdbarch *gdbarch,
2492 struct execution_control_state *ecs);
2493 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2494 struct execution_control_state *ecs);
2495 static void handle_signal_stop (struct execution_control_state *ecs);
2496 static void check_exception_resume (struct execution_control_state *,
2497 struct frame_info *);
2498
2499 static void stop_stepping (struct execution_control_state *ecs);
2500 static void prepare_to_wait (struct execution_control_state *ecs);
2501 static void keep_going (struct execution_control_state *ecs);
2502 static void process_event_stop_test (struct execution_control_state *ecs);
2503 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2504
2505 /* Callback for iterate over threads. If the thread is stopped, but
2506 the user/frontend doesn't know about that yet, go through
2507 normal_stop, as if the thread had just stopped now. ARG points at
2508 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2509 ptid_is_pid(PTID) is true, applies to all threads of the process
2510 pointed at by PTID. Otherwise, apply only to the thread pointed by
2511 PTID. */
2512
2513 static int
2514 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2515 {
2516 ptid_t ptid = * (ptid_t *) arg;
2517
2518 if ((ptid_equal (info->ptid, ptid)
2519 || ptid_equal (minus_one_ptid, ptid)
2520 || (ptid_is_pid (ptid)
2521 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2522 && is_running (info->ptid)
2523 && !is_executing (info->ptid))
2524 {
2525 struct cleanup *old_chain;
2526 struct execution_control_state ecss;
2527 struct execution_control_state *ecs = &ecss;
2528
2529 memset (ecs, 0, sizeof (*ecs));
2530
2531 old_chain = make_cleanup_restore_current_thread ();
2532
2533 overlay_cache_invalid = 1;
2534 /* Flush target cache before starting to handle each event.
2535 Target was running and cache could be stale. This is just a
2536 heuristic. Running threads may modify target memory, but we
2537 don't get any event. */
2538 target_dcache_invalidate ();
2539
2540 /* Go through handle_inferior_event/normal_stop, so we always
2541 have consistent output as if the stop event had been
2542 reported. */
2543 ecs->ptid = info->ptid;
2544 ecs->event_thread = find_thread_ptid (info->ptid);
2545 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2546 ecs->ws.value.sig = GDB_SIGNAL_0;
2547
2548 handle_inferior_event (ecs);
2549
2550 if (!ecs->wait_some_more)
2551 {
2552 struct thread_info *tp;
2553
2554 normal_stop ();
2555
2556 /* Finish off the continuations. */
2557 tp = inferior_thread ();
2558 do_all_intermediate_continuations_thread (tp, 1);
2559 do_all_continuations_thread (tp, 1);
2560 }
2561
2562 do_cleanups (old_chain);
2563 }
2564
2565 return 0;
2566 }
2567
2568 /* This function is attached as a "thread_stop_requested" observer.
2569 Cleanup local state that assumed the PTID was to be resumed, and
2570 report the stop to the frontend. */
2571
2572 static void
2573 infrun_thread_stop_requested (ptid_t ptid)
2574 {
2575 struct displaced_step_inferior_state *displaced;
2576
2577 /* PTID was requested to stop. Remove it from the displaced
2578 stepping queue, so we don't try to resume it automatically. */
2579
2580 for (displaced = displaced_step_inferior_states;
2581 displaced;
2582 displaced = displaced->next)
2583 {
2584 struct displaced_step_request *it, **prev_next_p;
2585
2586 it = displaced->step_request_queue;
2587 prev_next_p = &displaced->step_request_queue;
2588 while (it)
2589 {
2590 if (ptid_match (it->ptid, ptid))
2591 {
2592 *prev_next_p = it->next;
2593 it->next = NULL;
2594 xfree (it);
2595 }
2596 else
2597 {
2598 prev_next_p = &it->next;
2599 }
2600
2601 it = *prev_next_p;
2602 }
2603 }
2604
2605 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2606 }
2607
2608 static void
2609 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2610 {
2611 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2612 nullify_last_target_wait_ptid ();
2613 }
2614
2615 /* Callback for iterate_over_threads. */
2616
2617 static int
2618 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2619 {
2620 if (is_exited (info->ptid))
2621 return 0;
2622
2623 delete_step_resume_breakpoint (info);
2624 delete_exception_resume_breakpoint (info);
2625 return 0;
2626 }
2627
2628 /* In all-stop, delete the step resume breakpoint of any thread that
2629 had one. In non-stop, delete the step resume breakpoint of the
2630 thread that just stopped. */
2631
2632 static void
2633 delete_step_thread_step_resume_breakpoint (void)
2634 {
2635 if (!target_has_execution
2636 || ptid_equal (inferior_ptid, null_ptid))
2637 /* If the inferior has exited, we have already deleted the step
2638 resume breakpoints out of GDB's lists. */
2639 return;
2640
2641 if (non_stop)
2642 {
2643 /* If in non-stop mode, only delete the step-resume or
2644 longjmp-resume breakpoint of the thread that just stopped
2645 stepping. */
2646 struct thread_info *tp = inferior_thread ();
2647
2648 delete_step_resume_breakpoint (tp);
2649 delete_exception_resume_breakpoint (tp);
2650 }
2651 else
2652 /* In all-stop mode, delete all step-resume and longjmp-resume
2653 breakpoints of any thread that had them. */
2654 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2655 }
2656
2657 /* A cleanup wrapper. */
2658
2659 static void
2660 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2661 {
2662 delete_step_thread_step_resume_breakpoint ();
2663 }
2664
2665 /* Pretty print the results of target_wait, for debugging purposes. */
2666
2667 static void
2668 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2669 const struct target_waitstatus *ws)
2670 {
2671 char *status_string = target_waitstatus_to_string (ws);
2672 struct ui_file *tmp_stream = mem_fileopen ();
2673 char *text;
2674
2675 /* The text is split over several lines because it was getting too long.
2676 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2677 output as a unit; we want only one timestamp printed if debug_timestamp
2678 is set. */
2679
2680 fprintf_unfiltered (tmp_stream,
2681 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2682 if (ptid_get_pid (waiton_ptid) != -1)
2683 fprintf_unfiltered (tmp_stream,
2684 " [%s]", target_pid_to_str (waiton_ptid));
2685 fprintf_unfiltered (tmp_stream, ", status) =\n");
2686 fprintf_unfiltered (tmp_stream,
2687 "infrun: %d [%s],\n",
2688 ptid_get_pid (result_ptid),
2689 target_pid_to_str (result_ptid));
2690 fprintf_unfiltered (tmp_stream,
2691 "infrun: %s\n",
2692 status_string);
2693
2694 text = ui_file_xstrdup (tmp_stream, NULL);
2695
2696 /* This uses %s in part to handle %'s in the text, but also to avoid
2697 a gcc error: the format attribute requires a string literal. */
2698 fprintf_unfiltered (gdb_stdlog, "%s", text);
2699
2700 xfree (status_string);
2701 xfree (text);
2702 ui_file_delete (tmp_stream);
2703 }
2704
2705 /* Prepare and stabilize the inferior for detaching it. E.g.,
2706 detaching while a thread is displaced stepping is a recipe for
2707 crashing it, as nothing would readjust the PC out of the scratch
2708 pad. */
2709
2710 void
2711 prepare_for_detach (void)
2712 {
2713 struct inferior *inf = current_inferior ();
2714 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2715 struct cleanup *old_chain_1;
2716 struct displaced_step_inferior_state *displaced;
2717
2718 displaced = get_displaced_stepping_state (inf->pid);
2719
2720 /* Is any thread of this process displaced stepping? If not,
2721 there's nothing else to do. */
2722 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2723 return;
2724
2725 if (debug_infrun)
2726 fprintf_unfiltered (gdb_stdlog,
2727 "displaced-stepping in-process while detaching");
2728
2729 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2730 inf->detaching = 1;
2731
2732 while (!ptid_equal (displaced->step_ptid, null_ptid))
2733 {
2734 struct cleanup *old_chain_2;
2735 struct execution_control_state ecss;
2736 struct execution_control_state *ecs;
2737
2738 ecs = &ecss;
2739 memset (ecs, 0, sizeof (*ecs));
2740
2741 overlay_cache_invalid = 1;
2742 /* Flush target cache before starting to handle each event.
2743 Target was running and cache could be stale. This is just a
2744 heuristic. Running threads may modify target memory, but we
2745 don't get any event. */
2746 target_dcache_invalidate ();
2747
2748 if (deprecated_target_wait_hook)
2749 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2750 else
2751 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2752
2753 if (debug_infrun)
2754 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2755
2756 /* If an error happens while handling the event, propagate GDB's
2757 knowledge of the executing state to the frontend/user running
2758 state. */
2759 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2760 &minus_one_ptid);
2761
2762 /* Now figure out what to do with the result of the result. */
2763 handle_inferior_event (ecs);
2764
2765 /* No error, don't finish the state yet. */
2766 discard_cleanups (old_chain_2);
2767
2768 /* Breakpoints and watchpoints are not installed on the target
2769 at this point, and signals are passed directly to the
2770 inferior, so this must mean the process is gone. */
2771 if (!ecs->wait_some_more)
2772 {
2773 discard_cleanups (old_chain_1);
2774 error (_("Program exited while detaching"));
2775 }
2776 }
2777
2778 discard_cleanups (old_chain_1);
2779 }
2780
2781 /* Wait for control to return from inferior to debugger.
2782
2783 If inferior gets a signal, we may decide to start it up again
2784 instead of returning. That is why there is a loop in this function.
2785 When this function actually returns it means the inferior
2786 should be left stopped and GDB should read more commands. */
2787
2788 void
2789 wait_for_inferior (void)
2790 {
2791 struct cleanup *old_cleanups;
2792
2793 if (debug_infrun)
2794 fprintf_unfiltered
2795 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2796
2797 old_cleanups =
2798 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2799
2800 while (1)
2801 {
2802 struct execution_control_state ecss;
2803 struct execution_control_state *ecs = &ecss;
2804 struct cleanup *old_chain;
2805
2806 memset (ecs, 0, sizeof (*ecs));
2807
2808 overlay_cache_invalid = 1;
2809
2810 /* Flush target cache before starting to handle each event.
2811 Target was running and cache could be stale. This is just a
2812 heuristic. Running threads may modify target memory, but we
2813 don't get any event. */
2814 target_dcache_invalidate ();
2815
2816 if (deprecated_target_wait_hook)
2817 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2818 else
2819 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2820
2821 if (debug_infrun)
2822 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2823
2824 /* If an error happens while handling the event, propagate GDB's
2825 knowledge of the executing state to the frontend/user running
2826 state. */
2827 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2828
2829 /* Now figure out what to do with the result of the result. */
2830 handle_inferior_event (ecs);
2831
2832 /* No error, don't finish the state yet. */
2833 discard_cleanups (old_chain);
2834
2835 if (!ecs->wait_some_more)
2836 break;
2837 }
2838
2839 do_cleanups (old_cleanups);
2840 }
2841
2842 /* Asynchronous version of wait_for_inferior. It is called by the
2843 event loop whenever a change of state is detected on the file
2844 descriptor corresponding to the target. It can be called more than
2845 once to complete a single execution command. In such cases we need
2846 to keep the state in a global variable ECSS. If it is the last time
2847 that this function is called for a single execution command, then
2848 report to the user that the inferior has stopped, and do the
2849 necessary cleanups. */
2850
2851 void
2852 fetch_inferior_event (void *client_data)
2853 {
2854 struct execution_control_state ecss;
2855 struct execution_control_state *ecs = &ecss;
2856 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2857 struct cleanup *ts_old_chain;
2858 int was_sync = sync_execution;
2859 int cmd_done = 0;
2860
2861 memset (ecs, 0, sizeof (*ecs));
2862
2863 /* We're handling a live event, so make sure we're doing live
2864 debugging. If we're looking at traceframes while the target is
2865 running, we're going to need to get back to that mode after
2866 handling the event. */
2867 if (non_stop)
2868 {
2869 make_cleanup_restore_current_traceframe ();
2870 set_current_traceframe (-1);
2871 }
2872
2873 if (non_stop)
2874 /* In non-stop mode, the user/frontend should not notice a thread
2875 switch due to internal events. Make sure we reverse to the
2876 user selected thread and frame after handling the event and
2877 running any breakpoint commands. */
2878 make_cleanup_restore_current_thread ();
2879
2880 overlay_cache_invalid = 1;
2881 /* Flush target cache before starting to handle each event. Target
2882 was running and cache could be stale. This is just a heuristic.
2883 Running threads may modify target memory, but we don't get any
2884 event. */
2885 target_dcache_invalidate ();
2886
2887 make_cleanup_restore_integer (&execution_direction);
2888 execution_direction = target_execution_direction ();
2889
2890 if (deprecated_target_wait_hook)
2891 ecs->ptid =
2892 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2893 else
2894 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2895
2896 if (debug_infrun)
2897 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2898
2899 /* If an error happens while handling the event, propagate GDB's
2900 knowledge of the executing state to the frontend/user running
2901 state. */
2902 if (!non_stop)
2903 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2904 else
2905 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2906
2907 /* Get executed before make_cleanup_restore_current_thread above to apply
2908 still for the thread which has thrown the exception. */
2909 make_bpstat_clear_actions_cleanup ();
2910
2911 /* Now figure out what to do with the result of the result. */
2912 handle_inferior_event (ecs);
2913
2914 if (!ecs->wait_some_more)
2915 {
2916 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2917
2918 delete_step_thread_step_resume_breakpoint ();
2919
2920 /* We may not find an inferior if this was a process exit. */
2921 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2922 normal_stop ();
2923
2924 if (target_has_execution
2925 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2926 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2927 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2928 && ecs->event_thread->step_multi
2929 && ecs->event_thread->control.stop_step)
2930 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2931 else
2932 {
2933 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2934 cmd_done = 1;
2935 }
2936 }
2937
2938 /* No error, don't finish the thread states yet. */
2939 discard_cleanups (ts_old_chain);
2940
2941 /* Revert thread and frame. */
2942 do_cleanups (old_chain);
2943
2944 /* If the inferior was in sync execution mode, and now isn't,
2945 restore the prompt (a synchronous execution command has finished,
2946 and we're ready for input). */
2947 if (interpreter_async && was_sync && !sync_execution)
2948 display_gdb_prompt (0);
2949
2950 if (cmd_done
2951 && !was_sync
2952 && exec_done_display_p
2953 && (ptid_equal (inferior_ptid, null_ptid)
2954 || !is_running (inferior_ptid)))
2955 printf_unfiltered (_("completed.\n"));
2956 }
2957
2958 /* Record the frame and location we're currently stepping through. */
2959 void
2960 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2961 {
2962 struct thread_info *tp = inferior_thread ();
2963
2964 tp->control.step_frame_id = get_frame_id (frame);
2965 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2966
2967 tp->current_symtab = sal.symtab;
2968 tp->current_line = sal.line;
2969 }
2970
2971 /* Clear context switchable stepping state. */
2972
2973 void
2974 init_thread_stepping_state (struct thread_info *tss)
2975 {
2976 tss->stepping_over_breakpoint = 0;
2977 tss->step_after_step_resume_breakpoint = 0;
2978 }
2979
2980 /* Return the cached copy of the last pid/waitstatus returned by
2981 target_wait()/deprecated_target_wait_hook(). The data is actually
2982 cached by handle_inferior_event(), which gets called immediately
2983 after target_wait()/deprecated_target_wait_hook(). */
2984
2985 void
2986 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2987 {
2988 *ptidp = target_last_wait_ptid;
2989 *status = target_last_waitstatus;
2990 }
2991
2992 void
2993 nullify_last_target_wait_ptid (void)
2994 {
2995 target_last_wait_ptid = minus_one_ptid;
2996 }
2997
2998 /* Switch thread contexts. */
2999
3000 static void
3001 context_switch (ptid_t ptid)
3002 {
3003 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3004 {
3005 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3006 target_pid_to_str (inferior_ptid));
3007 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3008 target_pid_to_str (ptid));
3009 }
3010
3011 switch_to_thread (ptid);
3012 }
3013
3014 static void
3015 adjust_pc_after_break (struct execution_control_state *ecs)
3016 {
3017 struct regcache *regcache;
3018 struct gdbarch *gdbarch;
3019 struct address_space *aspace;
3020 CORE_ADDR breakpoint_pc, decr_pc;
3021
3022 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3023 we aren't, just return.
3024
3025 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3026 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3027 implemented by software breakpoints should be handled through the normal
3028 breakpoint layer.
3029
3030 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3031 different signals (SIGILL or SIGEMT for instance), but it is less
3032 clear where the PC is pointing afterwards. It may not match
3033 gdbarch_decr_pc_after_break. I don't know any specific target that
3034 generates these signals at breakpoints (the code has been in GDB since at
3035 least 1992) so I can not guess how to handle them here.
3036
3037 In earlier versions of GDB, a target with
3038 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3039 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3040 target with both of these set in GDB history, and it seems unlikely to be
3041 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3042
3043 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3044 return;
3045
3046 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3047 return;
3048
3049 /* In reverse execution, when a breakpoint is hit, the instruction
3050 under it has already been de-executed. The reported PC always
3051 points at the breakpoint address, so adjusting it further would
3052 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3053 architecture:
3054
3055 B1 0x08000000 : INSN1
3056 B2 0x08000001 : INSN2
3057 0x08000002 : INSN3
3058 PC -> 0x08000003 : INSN4
3059
3060 Say you're stopped at 0x08000003 as above. Reverse continuing
3061 from that point should hit B2 as below. Reading the PC when the
3062 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3063 been de-executed already.
3064
3065 B1 0x08000000 : INSN1
3066 B2 PC -> 0x08000001 : INSN2
3067 0x08000002 : INSN3
3068 0x08000003 : INSN4
3069
3070 We can't apply the same logic as for forward execution, because
3071 we would wrongly adjust the PC to 0x08000000, since there's a
3072 breakpoint at PC - 1. We'd then report a hit on B1, although
3073 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3074 behaviour. */
3075 if (execution_direction == EXEC_REVERSE)
3076 return;
3077
3078 /* If this target does not decrement the PC after breakpoints, then
3079 we have nothing to do. */
3080 regcache = get_thread_regcache (ecs->ptid);
3081 gdbarch = get_regcache_arch (regcache);
3082
3083 decr_pc = target_decr_pc_after_break (gdbarch);
3084 if (decr_pc == 0)
3085 return;
3086
3087 aspace = get_regcache_aspace (regcache);
3088
3089 /* Find the location where (if we've hit a breakpoint) the
3090 breakpoint would be. */
3091 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3092
3093 /* Check whether there actually is a software breakpoint inserted at
3094 that location.
3095
3096 If in non-stop mode, a race condition is possible where we've
3097 removed a breakpoint, but stop events for that breakpoint were
3098 already queued and arrive later. To suppress those spurious
3099 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3100 and retire them after a number of stop events are reported. */
3101 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3102 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3103 {
3104 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3105
3106 if (record_full_is_used ())
3107 record_full_gdb_operation_disable_set ();
3108
3109 /* When using hardware single-step, a SIGTRAP is reported for both
3110 a completed single-step and a software breakpoint. Need to
3111 differentiate between the two, as the latter needs adjusting
3112 but the former does not.
3113
3114 The SIGTRAP can be due to a completed hardware single-step only if
3115 - we didn't insert software single-step breakpoints
3116 - the thread to be examined is still the current thread
3117 - this thread is currently being stepped
3118
3119 If any of these events did not occur, we must have stopped due
3120 to hitting a software breakpoint, and have to back up to the
3121 breakpoint address.
3122
3123 As a special case, we could have hardware single-stepped a
3124 software breakpoint. In this case (prev_pc == breakpoint_pc),
3125 we also need to back up to the breakpoint address. */
3126
3127 if (singlestep_breakpoints_inserted_p
3128 || !ptid_equal (ecs->ptid, inferior_ptid)
3129 || !currently_stepping (ecs->event_thread)
3130 || ecs->event_thread->prev_pc == breakpoint_pc)
3131 regcache_write_pc (regcache, breakpoint_pc);
3132
3133 do_cleanups (old_cleanups);
3134 }
3135 }
3136
3137 static void
3138 init_infwait_state (void)
3139 {
3140 waiton_ptid = pid_to_ptid (-1);
3141 infwait_state = infwait_normal_state;
3142 }
3143
3144 static int
3145 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3146 {
3147 for (frame = get_prev_frame (frame);
3148 frame != NULL;
3149 frame = get_prev_frame (frame))
3150 {
3151 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3152 return 1;
3153 if (get_frame_type (frame) != INLINE_FRAME)
3154 break;
3155 }
3156
3157 return 0;
3158 }
3159
3160 /* Auxiliary function that handles syscall entry/return events.
3161 It returns 1 if the inferior should keep going (and GDB
3162 should ignore the event), or 0 if the event deserves to be
3163 processed. */
3164
3165 static int
3166 handle_syscall_event (struct execution_control_state *ecs)
3167 {
3168 struct regcache *regcache;
3169 int syscall_number;
3170
3171 if (!ptid_equal (ecs->ptid, inferior_ptid))
3172 context_switch (ecs->ptid);
3173
3174 regcache = get_thread_regcache (ecs->ptid);
3175 syscall_number = ecs->ws.value.syscall_number;
3176 stop_pc = regcache_read_pc (regcache);
3177
3178 if (catch_syscall_enabled () > 0
3179 && catching_syscall_number (syscall_number) > 0)
3180 {
3181 if (debug_infrun)
3182 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3183 syscall_number);
3184
3185 ecs->event_thread->control.stop_bpstat
3186 = bpstat_stop_status (get_regcache_aspace (regcache),
3187 stop_pc, ecs->ptid, &ecs->ws);
3188
3189 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3190 {
3191 /* Catchpoint hit. */
3192 return 0;
3193 }
3194 }
3195
3196 /* If no catchpoint triggered for this, then keep going. */
3197 keep_going (ecs);
3198 return 1;
3199 }
3200
3201 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3202
3203 static void
3204 fill_in_stop_func (struct gdbarch *gdbarch,
3205 struct execution_control_state *ecs)
3206 {
3207 if (!ecs->stop_func_filled_in)
3208 {
3209 /* Don't care about return value; stop_func_start and stop_func_name
3210 will both be 0 if it doesn't work. */
3211 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3212 &ecs->stop_func_start, &ecs->stop_func_end);
3213 ecs->stop_func_start
3214 += gdbarch_deprecated_function_start_offset (gdbarch);
3215
3216 if (gdbarch_skip_entrypoint_p (gdbarch))
3217 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3218 ecs->stop_func_start);
3219
3220 ecs->stop_func_filled_in = 1;
3221 }
3222 }
3223
3224
3225 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3226
3227 static enum stop_kind
3228 get_inferior_stop_soon (ptid_t ptid)
3229 {
3230 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3231
3232 gdb_assert (inf != NULL);
3233 return inf->control.stop_soon;
3234 }
3235
3236 /* Given an execution control state that has been freshly filled in by
3237 an event from the inferior, figure out what it means and take
3238 appropriate action.
3239
3240 The alternatives are:
3241
3242 1) stop_stepping and return; to really stop and return to the
3243 debugger.
3244
3245 2) keep_going and return; to wait for the next event (set
3246 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3247 once). */
3248
3249 static void
3250 handle_inferior_event (struct execution_control_state *ecs)
3251 {
3252 enum stop_kind stop_soon;
3253
3254 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3255 {
3256 /* We had an event in the inferior, but we are not interested in
3257 handling it at this level. The lower layers have already
3258 done what needs to be done, if anything.
3259
3260 One of the possible circumstances for this is when the
3261 inferior produces output for the console. The inferior has
3262 not stopped, and we are ignoring the event. Another possible
3263 circumstance is any event which the lower level knows will be
3264 reported multiple times without an intervening resume. */
3265 if (debug_infrun)
3266 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3267 prepare_to_wait (ecs);
3268 return;
3269 }
3270
3271 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3272 && target_can_async_p () && !sync_execution)
3273 {
3274 /* There were no unwaited-for children left in the target, but,
3275 we're not synchronously waiting for events either. Just
3276 ignore. Otherwise, if we were running a synchronous
3277 execution command, we need to cancel it and give the user
3278 back the terminal. */
3279 if (debug_infrun)
3280 fprintf_unfiltered (gdb_stdlog,
3281 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3282 prepare_to_wait (ecs);
3283 return;
3284 }
3285
3286 /* Cache the last pid/waitstatus. */
3287 target_last_wait_ptid = ecs->ptid;
3288 target_last_waitstatus = ecs->ws;
3289
3290 /* Always clear state belonging to the previous time we stopped. */
3291 stop_stack_dummy = STOP_NONE;
3292
3293 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3294 {
3295 /* No unwaited-for children left. IOW, all resumed children
3296 have exited. */
3297 if (debug_infrun)
3298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3299
3300 stop_print_frame = 0;
3301 stop_stepping (ecs);
3302 return;
3303 }
3304
3305 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3306 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3307 {
3308 ecs->event_thread = find_thread_ptid (ecs->ptid);
3309 /* If it's a new thread, add it to the thread database. */
3310 if (ecs->event_thread == NULL)
3311 ecs->event_thread = add_thread (ecs->ptid);
3312
3313 /* Disable range stepping. If the next step request could use a
3314 range, this will be end up re-enabled then. */
3315 ecs->event_thread->control.may_range_step = 0;
3316 }
3317
3318 /* Dependent on valid ECS->EVENT_THREAD. */
3319 adjust_pc_after_break (ecs);
3320
3321 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3322 reinit_frame_cache ();
3323
3324 breakpoint_retire_moribund ();
3325
3326 /* First, distinguish signals caused by the debugger from signals
3327 that have to do with the program's own actions. Note that
3328 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3329 on the operating system version. Here we detect when a SIGILL or
3330 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3331 something similar for SIGSEGV, since a SIGSEGV will be generated
3332 when we're trying to execute a breakpoint instruction on a
3333 non-executable stack. This happens for call dummy breakpoints
3334 for architectures like SPARC that place call dummies on the
3335 stack. */
3336 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3337 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3338 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3339 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3340 {
3341 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3342
3343 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3344 regcache_read_pc (regcache)))
3345 {
3346 if (debug_infrun)
3347 fprintf_unfiltered (gdb_stdlog,
3348 "infrun: Treating signal as SIGTRAP\n");
3349 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3350 }
3351 }
3352
3353 /* Mark the non-executing threads accordingly. In all-stop, all
3354 threads of all processes are stopped when we get any event
3355 reported. In non-stop mode, only the event thread stops. If
3356 we're handling a process exit in non-stop mode, there's nothing
3357 to do, as threads of the dead process are gone, and threads of
3358 any other process were left running. */
3359 if (!non_stop)
3360 set_executing (minus_one_ptid, 0);
3361 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3362 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3363 set_executing (ecs->ptid, 0);
3364
3365 switch (infwait_state)
3366 {
3367 case infwait_thread_hop_state:
3368 if (debug_infrun)
3369 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3370 break;
3371
3372 case infwait_normal_state:
3373 if (debug_infrun)
3374 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3375 break;
3376
3377 case infwait_step_watch_state:
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: infwait_step_watch_state\n");
3381
3382 ecs->stepped_after_stopped_by_watchpoint = 1;
3383 break;
3384
3385 case infwait_nonstep_watch_state:
3386 if (debug_infrun)
3387 fprintf_unfiltered (gdb_stdlog,
3388 "infrun: infwait_nonstep_watch_state\n");
3389 insert_breakpoints ();
3390
3391 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3392 handle things like signals arriving and other things happening
3393 in combination correctly? */
3394 ecs->stepped_after_stopped_by_watchpoint = 1;
3395 break;
3396
3397 default:
3398 internal_error (__FILE__, __LINE__, _("bad switch"));
3399 }
3400
3401 infwait_state = infwait_normal_state;
3402 waiton_ptid = pid_to_ptid (-1);
3403
3404 switch (ecs->ws.kind)
3405 {
3406 case TARGET_WAITKIND_LOADED:
3407 if (debug_infrun)
3408 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3409 if (!ptid_equal (ecs->ptid, inferior_ptid))
3410 context_switch (ecs->ptid);
3411 /* Ignore gracefully during startup of the inferior, as it might
3412 be the shell which has just loaded some objects, otherwise
3413 add the symbols for the newly loaded objects. Also ignore at
3414 the beginning of an attach or remote session; we will query
3415 the full list of libraries once the connection is
3416 established. */
3417
3418 stop_soon = get_inferior_stop_soon (ecs->ptid);
3419 if (stop_soon == NO_STOP_QUIETLY)
3420 {
3421 struct regcache *regcache;
3422
3423 regcache = get_thread_regcache (ecs->ptid);
3424
3425 handle_solib_event ();
3426
3427 ecs->event_thread->control.stop_bpstat
3428 = bpstat_stop_status (get_regcache_aspace (regcache),
3429 stop_pc, ecs->ptid, &ecs->ws);
3430
3431 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3432 {
3433 /* A catchpoint triggered. */
3434 process_event_stop_test (ecs);
3435 return;
3436 }
3437
3438 /* If requested, stop when the dynamic linker notifies
3439 gdb of events. This allows the user to get control
3440 and place breakpoints in initializer routines for
3441 dynamically loaded objects (among other things). */
3442 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3443 if (stop_on_solib_events)
3444 {
3445 /* Make sure we print "Stopped due to solib-event" in
3446 normal_stop. */
3447 stop_print_frame = 1;
3448
3449 stop_stepping (ecs);
3450 return;
3451 }
3452 }
3453
3454 /* If we are skipping through a shell, or through shared library
3455 loading that we aren't interested in, resume the program. If
3456 we're running the program normally, also resume. */
3457 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3458 {
3459 /* Loading of shared libraries might have changed breakpoint
3460 addresses. Make sure new breakpoints are inserted. */
3461 if (stop_soon == NO_STOP_QUIETLY
3462 && !breakpoints_always_inserted_mode ())
3463 insert_breakpoints ();
3464 resume (0, GDB_SIGNAL_0);
3465 prepare_to_wait (ecs);
3466 return;
3467 }
3468
3469 /* But stop if we're attaching or setting up a remote
3470 connection. */
3471 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3472 || stop_soon == STOP_QUIETLY_REMOTE)
3473 {
3474 if (debug_infrun)
3475 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3476 stop_stepping (ecs);
3477 return;
3478 }
3479
3480 internal_error (__FILE__, __LINE__,
3481 _("unhandled stop_soon: %d"), (int) stop_soon);
3482
3483 case TARGET_WAITKIND_SPURIOUS:
3484 if (debug_infrun)
3485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3486 if (!ptid_equal (ecs->ptid, inferior_ptid))
3487 context_switch (ecs->ptid);
3488 resume (0, GDB_SIGNAL_0);
3489 prepare_to_wait (ecs);
3490 return;
3491
3492 case TARGET_WAITKIND_EXITED:
3493 case TARGET_WAITKIND_SIGNALLED:
3494 if (debug_infrun)
3495 {
3496 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "infrun: TARGET_WAITKIND_EXITED\n");
3499 else
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3502 }
3503
3504 inferior_ptid = ecs->ptid;
3505 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3506 set_current_program_space (current_inferior ()->pspace);
3507 handle_vfork_child_exec_or_exit (0);
3508 target_terminal_ours (); /* Must do this before mourn anyway. */
3509
3510 /* Clearing any previous state of convenience variables. */
3511 clear_exit_convenience_vars ();
3512
3513 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3514 {
3515 /* Record the exit code in the convenience variable $_exitcode, so
3516 that the user can inspect this again later. */
3517 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3518 (LONGEST) ecs->ws.value.integer);
3519
3520 /* Also record this in the inferior itself. */
3521 current_inferior ()->has_exit_code = 1;
3522 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3523
3524 print_exited_reason (ecs->ws.value.integer);
3525 }
3526 else
3527 {
3528 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3529 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3530
3531 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3532 {
3533 /* Set the value of the internal variable $_exitsignal,
3534 which holds the signal uncaught by the inferior. */
3535 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3536 gdbarch_gdb_signal_to_target (gdbarch,
3537 ecs->ws.value.sig));
3538 }
3539 else
3540 {
3541 /* We don't have access to the target's method used for
3542 converting between signal numbers (GDB's internal
3543 representation <-> target's representation).
3544 Therefore, we cannot do a good job at displaying this
3545 information to the user. It's better to just warn
3546 her about it (if infrun debugging is enabled), and
3547 give up. */
3548 if (debug_infrun)
3549 fprintf_filtered (gdb_stdlog, _("\
3550 Cannot fill $_exitsignal with the correct signal number.\n"));
3551 }
3552
3553 print_signal_exited_reason (ecs->ws.value.sig);
3554 }
3555
3556 gdb_flush (gdb_stdout);
3557 target_mourn_inferior ();
3558 singlestep_breakpoints_inserted_p = 0;
3559 cancel_single_step_breakpoints ();
3560 stop_print_frame = 0;
3561 stop_stepping (ecs);
3562 return;
3563
3564 /* The following are the only cases in which we keep going;
3565 the above cases end in a continue or goto. */
3566 case TARGET_WAITKIND_FORKED:
3567 case TARGET_WAITKIND_VFORKED:
3568 if (debug_infrun)
3569 {
3570 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3571 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3572 else
3573 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3574 }
3575
3576 /* Check whether the inferior is displaced stepping. */
3577 {
3578 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3579 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3580 struct displaced_step_inferior_state *displaced
3581 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3582
3583 /* If checking displaced stepping is supported, and thread
3584 ecs->ptid is displaced stepping. */
3585 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3586 {
3587 struct inferior *parent_inf
3588 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3589 struct regcache *child_regcache;
3590 CORE_ADDR parent_pc;
3591
3592 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3593 indicating that the displaced stepping of syscall instruction
3594 has been done. Perform cleanup for parent process here. Note
3595 that this operation also cleans up the child process for vfork,
3596 because their pages are shared. */
3597 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3598
3599 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3600 {
3601 /* Restore scratch pad for child process. */
3602 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3603 }
3604
3605 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3606 the child's PC is also within the scratchpad. Set the child's PC
3607 to the parent's PC value, which has already been fixed up.
3608 FIXME: we use the parent's aspace here, although we're touching
3609 the child, because the child hasn't been added to the inferior
3610 list yet at this point. */
3611
3612 child_regcache
3613 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3614 gdbarch,
3615 parent_inf->aspace);
3616 /* Read PC value of parent process. */
3617 parent_pc = regcache_read_pc (regcache);
3618
3619 if (debug_displaced)
3620 fprintf_unfiltered (gdb_stdlog,
3621 "displaced: write child pc from %s to %s\n",
3622 paddress (gdbarch,
3623 regcache_read_pc (child_regcache)),
3624 paddress (gdbarch, parent_pc));
3625
3626 regcache_write_pc (child_regcache, parent_pc);
3627 }
3628 }
3629
3630 if (!ptid_equal (ecs->ptid, inferior_ptid))
3631 context_switch (ecs->ptid);
3632
3633 /* Immediately detach breakpoints from the child before there's
3634 any chance of letting the user delete breakpoints from the
3635 breakpoint lists. If we don't do this early, it's easy to
3636 leave left over traps in the child, vis: "break foo; catch
3637 fork; c; <fork>; del; c; <child calls foo>". We only follow
3638 the fork on the last `continue', and by that time the
3639 breakpoint at "foo" is long gone from the breakpoint table.
3640 If we vforked, then we don't need to unpatch here, since both
3641 parent and child are sharing the same memory pages; we'll
3642 need to unpatch at follow/detach time instead to be certain
3643 that new breakpoints added between catchpoint hit time and
3644 vfork follow are detached. */
3645 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3646 {
3647 /* This won't actually modify the breakpoint list, but will
3648 physically remove the breakpoints from the child. */
3649 detach_breakpoints (ecs->ws.value.related_pid);
3650 }
3651
3652 if (singlestep_breakpoints_inserted_p)
3653 {
3654 /* Pull the single step breakpoints out of the target. */
3655 remove_single_step_breakpoints ();
3656 singlestep_breakpoints_inserted_p = 0;
3657 }
3658
3659 /* In case the event is caught by a catchpoint, remember that
3660 the event is to be followed at the next resume of the thread,
3661 and not immediately. */
3662 ecs->event_thread->pending_follow = ecs->ws;
3663
3664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3665
3666 ecs->event_thread->control.stop_bpstat
3667 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3668 stop_pc, ecs->ptid, &ecs->ws);
3669
3670 /* If no catchpoint triggered for this, then keep going. Note
3671 that we're interested in knowing the bpstat actually causes a
3672 stop, not just if it may explain the signal. Software
3673 watchpoints, for example, always appear in the bpstat. */
3674 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3675 {
3676 ptid_t parent;
3677 ptid_t child;
3678 int should_resume;
3679 int follow_child
3680 = (follow_fork_mode_string == follow_fork_mode_child);
3681
3682 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3683
3684 should_resume = follow_fork ();
3685
3686 parent = ecs->ptid;
3687 child = ecs->ws.value.related_pid;
3688
3689 /* In non-stop mode, also resume the other branch. */
3690 if (non_stop && !detach_fork)
3691 {
3692 if (follow_child)
3693 switch_to_thread (parent);
3694 else
3695 switch_to_thread (child);
3696
3697 ecs->event_thread = inferior_thread ();
3698 ecs->ptid = inferior_ptid;
3699 keep_going (ecs);
3700 }
3701
3702 if (follow_child)
3703 switch_to_thread (child);
3704 else
3705 switch_to_thread (parent);
3706
3707 ecs->event_thread = inferior_thread ();
3708 ecs->ptid = inferior_ptid;
3709
3710 if (should_resume)
3711 keep_going (ecs);
3712 else
3713 stop_stepping (ecs);
3714 return;
3715 }
3716 process_event_stop_test (ecs);
3717 return;
3718
3719 case TARGET_WAITKIND_VFORK_DONE:
3720 /* Done with the shared memory region. Re-insert breakpoints in
3721 the parent, and keep going. */
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3726
3727 if (!ptid_equal (ecs->ptid, inferior_ptid))
3728 context_switch (ecs->ptid);
3729
3730 current_inferior ()->waiting_for_vfork_done = 0;
3731 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3732 /* This also takes care of reinserting breakpoints in the
3733 previously locked inferior. */
3734 keep_going (ecs);
3735 return;
3736
3737 case TARGET_WAITKIND_EXECD:
3738 if (debug_infrun)
3739 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3740
3741 if (!ptid_equal (ecs->ptid, inferior_ptid))
3742 context_switch (ecs->ptid);
3743
3744 singlestep_breakpoints_inserted_p = 0;
3745 cancel_single_step_breakpoints ();
3746
3747 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3748
3749 /* Do whatever is necessary to the parent branch of the vfork. */
3750 handle_vfork_child_exec_or_exit (1);
3751
3752 /* This causes the eventpoints and symbol table to be reset.
3753 Must do this now, before trying to determine whether to
3754 stop. */
3755 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3756
3757 ecs->event_thread->control.stop_bpstat
3758 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3759 stop_pc, ecs->ptid, &ecs->ws);
3760
3761 /* Note that this may be referenced from inside
3762 bpstat_stop_status above, through inferior_has_execd. */
3763 xfree (ecs->ws.value.execd_pathname);
3764 ecs->ws.value.execd_pathname = NULL;
3765
3766 /* If no catchpoint triggered for this, then keep going. */
3767 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3768 {
3769 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3770 keep_going (ecs);
3771 return;
3772 }
3773 process_event_stop_test (ecs);
3774 return;
3775
3776 /* Be careful not to try to gather much state about a thread
3777 that's in a syscall. It's frequently a losing proposition. */
3778 case TARGET_WAITKIND_SYSCALL_ENTRY:
3779 if (debug_infrun)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3782 /* Getting the current syscall number. */
3783 if (handle_syscall_event (ecs) == 0)
3784 process_event_stop_test (ecs);
3785 return;
3786
3787 /* Before examining the threads further, step this thread to
3788 get it entirely out of the syscall. (We get notice of the
3789 event when the thread is just on the verge of exiting a
3790 syscall. Stepping one instruction seems to get it back
3791 into user code.) */
3792 case TARGET_WAITKIND_SYSCALL_RETURN:
3793 if (debug_infrun)
3794 fprintf_unfiltered (gdb_stdlog,
3795 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3796 if (handle_syscall_event (ecs) == 0)
3797 process_event_stop_test (ecs);
3798 return;
3799
3800 case TARGET_WAITKIND_STOPPED:
3801 if (debug_infrun)
3802 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3803 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3804 handle_signal_stop (ecs);
3805 return;
3806
3807 case TARGET_WAITKIND_NO_HISTORY:
3808 if (debug_infrun)
3809 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3810 /* Reverse execution: target ran out of history info. */
3811
3812 /* Pull the single step breakpoints out of the target. */
3813 if (singlestep_breakpoints_inserted_p)
3814 {
3815 if (!ptid_equal (ecs->ptid, inferior_ptid))
3816 context_switch (ecs->ptid);
3817 remove_single_step_breakpoints ();
3818 singlestep_breakpoints_inserted_p = 0;
3819 }
3820 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3821 print_no_history_reason ();
3822 stop_stepping (ecs);
3823 return;
3824 }
3825 }
3826
3827 /* Come here when the program has stopped with a signal. */
3828
3829 static void
3830 handle_signal_stop (struct execution_control_state *ecs)
3831 {
3832 struct frame_info *frame;
3833 struct gdbarch *gdbarch;
3834 int stopped_by_watchpoint;
3835 enum stop_kind stop_soon;
3836 int random_signal;
3837
3838 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
3839
3840 /* Do we need to clean up the state of a thread that has
3841 completed a displaced single-step? (Doing so usually affects
3842 the PC, so do it here, before we set stop_pc.) */
3843 displaced_step_fixup (ecs->ptid,
3844 ecs->event_thread->suspend.stop_signal);
3845
3846 /* If we either finished a single-step or hit a breakpoint, but
3847 the user wanted this thread to be stopped, pretend we got a
3848 SIG0 (generic unsignaled stop). */
3849 if (ecs->event_thread->stop_requested
3850 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3851 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3852
3853 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3854
3855 if (debug_infrun)
3856 {
3857 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3858 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3859 struct cleanup *old_chain = save_inferior_ptid ();
3860
3861 inferior_ptid = ecs->ptid;
3862
3863 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3864 paddress (gdbarch, stop_pc));
3865 if (target_stopped_by_watchpoint ())
3866 {
3867 CORE_ADDR addr;
3868
3869 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3870
3871 if (target_stopped_data_address (&current_target, &addr))
3872 fprintf_unfiltered (gdb_stdlog,
3873 "infrun: stopped data address = %s\n",
3874 paddress (gdbarch, addr));
3875 else
3876 fprintf_unfiltered (gdb_stdlog,
3877 "infrun: (no data address available)\n");
3878 }
3879
3880 do_cleanups (old_chain);
3881 }
3882
3883 /* This is originated from start_remote(), start_inferior() and
3884 shared libraries hook functions. */
3885 stop_soon = get_inferior_stop_soon (ecs->ptid);
3886 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3887 {
3888 if (!ptid_equal (ecs->ptid, inferior_ptid))
3889 context_switch (ecs->ptid);
3890 if (debug_infrun)
3891 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3892 stop_print_frame = 1;
3893 stop_stepping (ecs);
3894 return;
3895 }
3896
3897 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3898 && stop_after_trap)
3899 {
3900 if (!ptid_equal (ecs->ptid, inferior_ptid))
3901 context_switch (ecs->ptid);
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3904 stop_print_frame = 0;
3905 stop_stepping (ecs);
3906 return;
3907 }
3908
3909 /* This originates from attach_command(). We need to overwrite
3910 the stop_signal here, because some kernels don't ignore a
3911 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3912 See more comments in inferior.h. On the other hand, if we
3913 get a non-SIGSTOP, report it to the user - assume the backend
3914 will handle the SIGSTOP if it should show up later.
3915
3916 Also consider that the attach is complete when we see a
3917 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3918 target extended-remote report it instead of a SIGSTOP
3919 (e.g. gdbserver). We already rely on SIGTRAP being our
3920 signal, so this is no exception.
3921
3922 Also consider that the attach is complete when we see a
3923 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3924 the target to stop all threads of the inferior, in case the
3925 low level attach operation doesn't stop them implicitly. If
3926 they weren't stopped implicitly, then the stub will report a
3927 GDB_SIGNAL_0, meaning: stopped for no particular reason
3928 other than GDB's request. */
3929 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3930 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3931 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3932 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3933 {
3934 stop_print_frame = 1;
3935 stop_stepping (ecs);
3936 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3937 return;
3938 }
3939
3940 if (stepping_past_singlestep_breakpoint)
3941 {
3942 gdb_assert (singlestep_breakpoints_inserted_p);
3943 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3944 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3945
3946 stepping_past_singlestep_breakpoint = 0;
3947
3948 /* We've either finished single-stepping past the single-step
3949 breakpoint, or stopped for some other reason. It would be nice if
3950 we could tell, but we can't reliably. */
3951 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3952 {
3953 if (debug_infrun)
3954 fprintf_unfiltered (gdb_stdlog,
3955 "infrun: stepping_past_"
3956 "singlestep_breakpoint\n");
3957 /* Pull the single step breakpoints out of the target. */
3958 if (!ptid_equal (ecs->ptid, inferior_ptid))
3959 context_switch (ecs->ptid);
3960 remove_single_step_breakpoints ();
3961 singlestep_breakpoints_inserted_p = 0;
3962
3963 ecs->event_thread->control.trap_expected = 0;
3964
3965 context_switch (saved_singlestep_ptid);
3966 if (deprecated_context_hook)
3967 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3968
3969 resume (1, GDB_SIGNAL_0);
3970 prepare_to_wait (ecs);
3971 return;
3972 }
3973 }
3974
3975 /* See if a thread hit a thread-specific breakpoint that was meant for
3976 another thread. If so, then step that thread past the breakpoint,
3977 and continue it. */
3978
3979 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3980 {
3981 int thread_hop_needed = 0;
3982 struct address_space *aspace =
3983 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3984
3985 /* Check if a regular breakpoint has been hit before checking
3986 for a potential single step breakpoint. Otherwise, GDB will
3987 not see this breakpoint hit when stepping onto breakpoints. */
3988 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3989 {
3990 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3991 thread_hop_needed = 1;
3992 }
3993 else if (singlestep_breakpoints_inserted_p)
3994 {
3995 /* We have not context switched yet, so this should be true
3996 no matter which thread hit the singlestep breakpoint. */
3997 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3998 if (debug_infrun)
3999 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
4000 "trap for %s\n",
4001 target_pid_to_str (ecs->ptid));
4002
4003 /* The call to in_thread_list is necessary because PTIDs sometimes
4004 change when we go from single-threaded to multi-threaded. If
4005 the singlestep_ptid is still in the list, assume that it is
4006 really different from ecs->ptid. */
4007 if (!ptid_equal (singlestep_ptid, ecs->ptid)
4008 && in_thread_list (singlestep_ptid))
4009 {
4010 /* If the PC of the thread we were trying to single-step
4011 has changed, discard this event (which we were going
4012 to ignore anyway), and pretend we saw that thread
4013 trap. This prevents us continuously moving the
4014 single-step breakpoint forward, one instruction at a
4015 time. If the PC has changed, then the thread we were
4016 trying to single-step has trapped or been signalled,
4017 but the event has not been reported to GDB yet.
4018
4019 There might be some cases where this loses signal
4020 information, if a signal has arrived at exactly the
4021 same time that the PC changed, but this is the best
4022 we can do with the information available. Perhaps we
4023 should arrange to report all events for all threads
4024 when they stop, or to re-poll the remote looking for
4025 this particular thread (i.e. temporarily enable
4026 schedlock). */
4027
4028 CORE_ADDR new_singlestep_pc
4029 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
4030
4031 if (new_singlestep_pc != singlestep_pc)
4032 {
4033 enum gdb_signal stop_signal;
4034
4035 if (debug_infrun)
4036 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
4037 " but expected thread advanced also\n");
4038
4039 /* The current context still belongs to
4040 singlestep_ptid. Don't swap here, since that's
4041 the context we want to use. Just fudge our
4042 state and continue. */
4043 stop_signal = ecs->event_thread->suspend.stop_signal;
4044 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4045 ecs->ptid = singlestep_ptid;
4046 ecs->event_thread = find_thread_ptid (ecs->ptid);
4047 ecs->event_thread->suspend.stop_signal = stop_signal;
4048 stop_pc = new_singlestep_pc;
4049 }
4050 else
4051 {
4052 if (debug_infrun)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "infrun: unexpected thread\n");
4055
4056 thread_hop_needed = 1;
4057 stepping_past_singlestep_breakpoint = 1;
4058 saved_singlestep_ptid = singlestep_ptid;
4059 }
4060 }
4061 }
4062
4063 if (thread_hop_needed)
4064 {
4065 if (debug_infrun)
4066 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
4067
4068 /* Switch context before touching inferior memory, the
4069 previous thread may have exited. */
4070 if (!ptid_equal (inferior_ptid, ecs->ptid))
4071 context_switch (ecs->ptid);
4072
4073 /* Saw a breakpoint, but it was hit by the wrong thread.
4074 Just continue. */
4075
4076 if (singlestep_breakpoints_inserted_p)
4077 {
4078 /* Pull the single step breakpoints out of the target. */
4079 remove_single_step_breakpoints ();
4080 singlestep_breakpoints_inserted_p = 0;
4081 }
4082
4083 if (!non_stop)
4084 {
4085 /* Only need to require the next event from this thread
4086 in all-stop mode. */
4087 waiton_ptid = ecs->ptid;
4088 infwait_state = infwait_thread_hop_state;
4089 }
4090
4091 ecs->event_thread->stepping_over_breakpoint = 1;
4092 keep_going (ecs);
4093 return;
4094 }
4095 }
4096
4097 /* See if something interesting happened to the non-current thread. If
4098 so, then switch to that thread. */
4099 if (!ptid_equal (ecs->ptid, inferior_ptid))
4100 {
4101 if (debug_infrun)
4102 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4103
4104 context_switch (ecs->ptid);
4105
4106 if (deprecated_context_hook)
4107 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4108 }
4109
4110 /* At this point, get hold of the now-current thread's frame. */
4111 frame = get_current_frame ();
4112 gdbarch = get_frame_arch (frame);
4113
4114 if (singlestep_breakpoints_inserted_p)
4115 {
4116 /* Pull the single step breakpoints out of the target. */
4117 remove_single_step_breakpoints ();
4118 singlestep_breakpoints_inserted_p = 0;
4119 }
4120
4121 if (ecs->stepped_after_stopped_by_watchpoint)
4122 stopped_by_watchpoint = 0;
4123 else
4124 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4125
4126 /* If necessary, step over this watchpoint. We'll be back to display
4127 it in a moment. */
4128 if (stopped_by_watchpoint
4129 && (target_have_steppable_watchpoint
4130 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4131 {
4132 /* At this point, we are stopped at an instruction which has
4133 attempted to write to a piece of memory under control of
4134 a watchpoint. The instruction hasn't actually executed
4135 yet. If we were to evaluate the watchpoint expression
4136 now, we would get the old value, and therefore no change
4137 would seem to have occurred.
4138
4139 In order to make watchpoints work `right', we really need
4140 to complete the memory write, and then evaluate the
4141 watchpoint expression. We do this by single-stepping the
4142 target.
4143
4144 It may not be necessary to disable the watchpoint to stop over
4145 it. For example, the PA can (with some kernel cooperation)
4146 single step over a watchpoint without disabling the watchpoint.
4147
4148 It is far more common to need to disable a watchpoint to step
4149 the inferior over it. If we have non-steppable watchpoints,
4150 we must disable the current watchpoint; it's simplest to
4151 disable all watchpoints and breakpoints. */
4152 int hw_step = 1;
4153
4154 if (!target_have_steppable_watchpoint)
4155 {
4156 remove_breakpoints ();
4157 /* See comment in resume why we need to stop bypassing signals
4158 while breakpoints have been removed. */
4159 target_pass_signals (0, NULL);
4160 }
4161 /* Single step */
4162 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4163 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4164 waiton_ptid = ecs->ptid;
4165 if (target_have_steppable_watchpoint)
4166 infwait_state = infwait_step_watch_state;
4167 else
4168 infwait_state = infwait_nonstep_watch_state;
4169 prepare_to_wait (ecs);
4170 return;
4171 }
4172
4173 ecs->event_thread->stepping_over_breakpoint = 0;
4174 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4175 ecs->event_thread->control.stop_step = 0;
4176 stop_print_frame = 1;
4177 stopped_by_random_signal = 0;
4178
4179 /* Hide inlined functions starting here, unless we just performed stepi or
4180 nexti. After stepi and nexti, always show the innermost frame (not any
4181 inline function call sites). */
4182 if (ecs->event_thread->control.step_range_end != 1)
4183 {
4184 struct address_space *aspace =
4185 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4186
4187 /* skip_inline_frames is expensive, so we avoid it if we can
4188 determine that the address is one where functions cannot have
4189 been inlined. This improves performance with inferiors that
4190 load a lot of shared libraries, because the solib event
4191 breakpoint is defined as the address of a function (i.e. not
4192 inline). Note that we have to check the previous PC as well
4193 as the current one to catch cases when we have just
4194 single-stepped off a breakpoint prior to reinstating it.
4195 Note that we're assuming that the code we single-step to is
4196 not inline, but that's not definitive: there's nothing
4197 preventing the event breakpoint function from containing
4198 inlined code, and the single-step ending up there. If the
4199 user had set a breakpoint on that inlined code, the missing
4200 skip_inline_frames call would break things. Fortunately
4201 that's an extremely unlikely scenario. */
4202 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4203 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4204 && ecs->event_thread->control.trap_expected
4205 && pc_at_non_inline_function (aspace,
4206 ecs->event_thread->prev_pc,
4207 &ecs->ws)))
4208 {
4209 skip_inline_frames (ecs->ptid);
4210
4211 /* Re-fetch current thread's frame in case that invalidated
4212 the frame cache. */
4213 frame = get_current_frame ();
4214 gdbarch = get_frame_arch (frame);
4215 }
4216 }
4217
4218 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4219 && ecs->event_thread->control.trap_expected
4220 && gdbarch_single_step_through_delay_p (gdbarch)
4221 && currently_stepping (ecs->event_thread))
4222 {
4223 /* We're trying to step off a breakpoint. Turns out that we're
4224 also on an instruction that needs to be stepped multiple
4225 times before it's been fully executing. E.g., architectures
4226 with a delay slot. It needs to be stepped twice, once for
4227 the instruction and once for the delay slot. */
4228 int step_through_delay
4229 = gdbarch_single_step_through_delay (gdbarch, frame);
4230
4231 if (debug_infrun && step_through_delay)
4232 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4233 if (ecs->event_thread->control.step_range_end == 0
4234 && step_through_delay)
4235 {
4236 /* The user issued a continue when stopped at a breakpoint.
4237 Set up for another trap and get out of here. */
4238 ecs->event_thread->stepping_over_breakpoint = 1;
4239 keep_going (ecs);
4240 return;
4241 }
4242 else if (step_through_delay)
4243 {
4244 /* The user issued a step when stopped at a breakpoint.
4245 Maybe we should stop, maybe we should not - the delay
4246 slot *might* correspond to a line of source. In any
4247 case, don't decide that here, just set
4248 ecs->stepping_over_breakpoint, making sure we
4249 single-step again before breakpoints are re-inserted. */
4250 ecs->event_thread->stepping_over_breakpoint = 1;
4251 }
4252 }
4253
4254 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4255 handles this event. */
4256 ecs->event_thread->control.stop_bpstat
4257 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4258 stop_pc, ecs->ptid, &ecs->ws);
4259
4260 /* Following in case break condition called a
4261 function. */
4262 stop_print_frame = 1;
4263
4264 /* This is where we handle "moribund" watchpoints. Unlike
4265 software breakpoints traps, hardware watchpoint traps are
4266 always distinguishable from random traps. If no high-level
4267 watchpoint is associated with the reported stop data address
4268 anymore, then the bpstat does not explain the signal ---
4269 simply make sure to ignore it if `stopped_by_watchpoint' is
4270 set. */
4271
4272 if (debug_infrun
4273 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4274 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4275 GDB_SIGNAL_TRAP)
4276 && stopped_by_watchpoint)
4277 fprintf_unfiltered (gdb_stdlog,
4278 "infrun: no user watchpoint explains "
4279 "watchpoint SIGTRAP, ignoring\n");
4280
4281 /* NOTE: cagney/2003-03-29: These checks for a random signal
4282 at one stage in the past included checks for an inferior
4283 function call's call dummy's return breakpoint. The original
4284 comment, that went with the test, read:
4285
4286 ``End of a stack dummy. Some systems (e.g. Sony news) give
4287 another signal besides SIGTRAP, so check here as well as
4288 above.''
4289
4290 If someone ever tries to get call dummys on a
4291 non-executable stack to work (where the target would stop
4292 with something like a SIGSEGV), then those tests might need
4293 to be re-instated. Given, however, that the tests were only
4294 enabled when momentary breakpoints were not being used, I
4295 suspect that it won't be the case.
4296
4297 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4298 be necessary for call dummies on a non-executable stack on
4299 SPARC. */
4300
4301 /* See if the breakpoints module can explain the signal. */
4302 random_signal
4303 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4304 ecs->event_thread->suspend.stop_signal);
4305
4306 /* If not, perhaps stepping/nexting can. */
4307 if (random_signal)
4308 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4309 && currently_stepping (ecs->event_thread));
4310
4311 /* No? Perhaps we got a moribund watchpoint. */
4312 if (random_signal)
4313 random_signal = !stopped_by_watchpoint;
4314
4315 /* For the program's own signals, act according to
4316 the signal handling tables. */
4317
4318 if (random_signal)
4319 {
4320 /* Signal not for debugging purposes. */
4321 int printed = 0;
4322 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4323 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4324
4325 if (debug_infrun)
4326 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4327 gdb_signal_to_symbol_string (stop_signal));
4328
4329 stopped_by_random_signal = 1;
4330
4331 if (signal_print[ecs->event_thread->suspend.stop_signal])
4332 {
4333 printed = 1;
4334 target_terminal_ours_for_output ();
4335 print_signal_received_reason
4336 (ecs->event_thread->suspend.stop_signal);
4337 }
4338 /* Always stop on signals if we're either just gaining control
4339 of the program, or the user explicitly requested this thread
4340 to remain stopped. */
4341 if (stop_soon != NO_STOP_QUIETLY
4342 || ecs->event_thread->stop_requested
4343 || (!inf->detaching
4344 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4345 {
4346 stop_stepping (ecs);
4347 return;
4348 }
4349 /* If not going to stop, give terminal back
4350 if we took it away. */
4351 else if (printed)
4352 target_terminal_inferior ();
4353
4354 /* Clear the signal if it should not be passed. */
4355 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4356 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4357
4358 if (ecs->event_thread->prev_pc == stop_pc
4359 && ecs->event_thread->control.trap_expected
4360 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4361 {
4362 /* We were just starting a new sequence, attempting to
4363 single-step off of a breakpoint and expecting a SIGTRAP.
4364 Instead this signal arrives. This signal will take us out
4365 of the stepping range so GDB needs to remember to, when
4366 the signal handler returns, resume stepping off that
4367 breakpoint. */
4368 /* To simplify things, "continue" is forced to use the same
4369 code paths as single-step - set a breakpoint at the
4370 signal return address and then, once hit, step off that
4371 breakpoint. */
4372 if (debug_infrun)
4373 fprintf_unfiltered (gdb_stdlog,
4374 "infrun: signal arrived while stepping over "
4375 "breakpoint\n");
4376
4377 insert_hp_step_resume_breakpoint_at_frame (frame);
4378 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4379 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4380 ecs->event_thread->control.trap_expected = 0;
4381
4382 /* If we were nexting/stepping some other thread, switch to
4383 it, so that we don't continue it, losing control. */
4384 if (!switch_back_to_stepped_thread (ecs))
4385 keep_going (ecs);
4386 return;
4387 }
4388
4389 if (ecs->event_thread->control.step_range_end != 0
4390 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4391 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4392 && frame_id_eq (get_stack_frame_id (frame),
4393 ecs->event_thread->control.step_stack_frame_id)
4394 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4395 {
4396 /* The inferior is about to take a signal that will take it
4397 out of the single step range. Set a breakpoint at the
4398 current PC (which is presumably where the signal handler
4399 will eventually return) and then allow the inferior to
4400 run free.
4401
4402 Note that this is only needed for a signal delivered
4403 while in the single-step range. Nested signals aren't a
4404 problem as they eventually all return. */
4405 if (debug_infrun)
4406 fprintf_unfiltered (gdb_stdlog,
4407 "infrun: signal may take us out of "
4408 "single-step range\n");
4409
4410 insert_hp_step_resume_breakpoint_at_frame (frame);
4411 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4412 ecs->event_thread->control.trap_expected = 0;
4413 keep_going (ecs);
4414 return;
4415 }
4416
4417 /* Note: step_resume_breakpoint may be non-NULL. This occures
4418 when either there's a nested signal, or when there's a
4419 pending signal enabled just as the signal handler returns
4420 (leaving the inferior at the step-resume-breakpoint without
4421 actually executing it). Either way continue until the
4422 breakpoint is really hit. */
4423
4424 if (!switch_back_to_stepped_thread (ecs))
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: random signal, keep going\n");
4429
4430 keep_going (ecs);
4431 }
4432 return;
4433 }
4434
4435 process_event_stop_test (ecs);
4436 }
4437
4438 /* Come here when we've got some debug event / signal we can explain
4439 (IOW, not a random signal), and test whether it should cause a
4440 stop, or whether we should resume the inferior (transparently).
4441 E.g., could be a breakpoint whose condition evaluates false; we
4442 could be still stepping within the line; etc. */
4443
4444 static void
4445 process_event_stop_test (struct execution_control_state *ecs)
4446 {
4447 struct symtab_and_line stop_pc_sal;
4448 struct frame_info *frame;
4449 struct gdbarch *gdbarch;
4450 CORE_ADDR jmp_buf_pc;
4451 struct bpstat_what what;
4452
4453 /* Handle cases caused by hitting a breakpoint. */
4454
4455 frame = get_current_frame ();
4456 gdbarch = get_frame_arch (frame);
4457
4458 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4459
4460 if (what.call_dummy)
4461 {
4462 stop_stack_dummy = what.call_dummy;
4463 }
4464
4465 /* If we hit an internal event that triggers symbol changes, the
4466 current frame will be invalidated within bpstat_what (e.g., if we
4467 hit an internal solib event). Re-fetch it. */
4468 frame = get_current_frame ();
4469 gdbarch = get_frame_arch (frame);
4470
4471 switch (what.main_action)
4472 {
4473 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4474 /* If we hit the breakpoint at longjmp while stepping, we
4475 install a momentary breakpoint at the target of the
4476 jmp_buf. */
4477
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog,
4480 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4481
4482 ecs->event_thread->stepping_over_breakpoint = 1;
4483
4484 if (what.is_longjmp)
4485 {
4486 struct value *arg_value;
4487
4488 /* If we set the longjmp breakpoint via a SystemTap probe,
4489 then use it to extract the arguments. The destination PC
4490 is the third argument to the probe. */
4491 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4492 if (arg_value)
4493 jmp_buf_pc = value_as_address (arg_value);
4494 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4495 || !gdbarch_get_longjmp_target (gdbarch,
4496 frame, &jmp_buf_pc))
4497 {
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4501 "(!gdbarch_get_longjmp_target)\n");
4502 keep_going (ecs);
4503 return;
4504 }
4505
4506 /* Insert a breakpoint at resume address. */
4507 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4508 }
4509 else
4510 check_exception_resume (ecs, frame);
4511 keep_going (ecs);
4512 return;
4513
4514 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4515 {
4516 struct frame_info *init_frame;
4517
4518 /* There are several cases to consider.
4519
4520 1. The initiating frame no longer exists. In this case we
4521 must stop, because the exception or longjmp has gone too
4522 far.
4523
4524 2. The initiating frame exists, and is the same as the
4525 current frame. We stop, because the exception or longjmp
4526 has been caught.
4527
4528 3. The initiating frame exists and is different from the
4529 current frame. This means the exception or longjmp has
4530 been caught beneath the initiating frame, so keep going.
4531
4532 4. longjmp breakpoint has been placed just to protect
4533 against stale dummy frames and user is not interested in
4534 stopping around longjmps. */
4535
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4539
4540 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4541 != NULL);
4542 delete_exception_resume_breakpoint (ecs->event_thread);
4543
4544 if (what.is_longjmp)
4545 {
4546 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4547
4548 if (!frame_id_p (ecs->event_thread->initiating_frame))
4549 {
4550 /* Case 4. */
4551 keep_going (ecs);
4552 return;
4553 }
4554 }
4555
4556 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4557
4558 if (init_frame)
4559 {
4560 struct frame_id current_id
4561 = get_frame_id (get_current_frame ());
4562 if (frame_id_eq (current_id,
4563 ecs->event_thread->initiating_frame))
4564 {
4565 /* Case 2. Fall through. */
4566 }
4567 else
4568 {
4569 /* Case 3. */
4570 keep_going (ecs);
4571 return;
4572 }
4573 }
4574
4575 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4576 exists. */
4577 delete_step_resume_breakpoint (ecs->event_thread);
4578
4579 ecs->event_thread->control.stop_step = 1;
4580 print_end_stepping_range_reason ();
4581 stop_stepping (ecs);
4582 }
4583 return;
4584
4585 case BPSTAT_WHAT_SINGLE:
4586 if (debug_infrun)
4587 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4588 ecs->event_thread->stepping_over_breakpoint = 1;
4589 /* Still need to check other stuff, at least the case where we
4590 are stepping and step out of the right range. */
4591 break;
4592
4593 case BPSTAT_WHAT_STEP_RESUME:
4594 if (debug_infrun)
4595 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4596
4597 delete_step_resume_breakpoint (ecs->event_thread);
4598 if (ecs->event_thread->control.proceed_to_finish
4599 && execution_direction == EXEC_REVERSE)
4600 {
4601 struct thread_info *tp = ecs->event_thread;
4602
4603 /* We are finishing a function in reverse, and just hit the
4604 step-resume breakpoint at the start address of the
4605 function, and we're almost there -- just need to back up
4606 by one more single-step, which should take us back to the
4607 function call. */
4608 tp->control.step_range_start = tp->control.step_range_end = 1;
4609 keep_going (ecs);
4610 return;
4611 }
4612 fill_in_stop_func (gdbarch, ecs);
4613 if (stop_pc == ecs->stop_func_start
4614 && execution_direction == EXEC_REVERSE)
4615 {
4616 /* We are stepping over a function call in reverse, and just
4617 hit the step-resume breakpoint at the start address of
4618 the function. Go back to single-stepping, which should
4619 take us back to the function call. */
4620 ecs->event_thread->stepping_over_breakpoint = 1;
4621 keep_going (ecs);
4622 return;
4623 }
4624 break;
4625
4626 case BPSTAT_WHAT_STOP_NOISY:
4627 if (debug_infrun)
4628 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4629 stop_print_frame = 1;
4630
4631 /* We are about to nuke the step_resume_breakpointt via the
4632 cleanup chain, so no need to worry about it here. */
4633
4634 stop_stepping (ecs);
4635 return;
4636
4637 case BPSTAT_WHAT_STOP_SILENT:
4638 if (debug_infrun)
4639 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4640 stop_print_frame = 0;
4641
4642 /* We are about to nuke the step_resume_breakpoin via the
4643 cleanup chain, so no need to worry about it here. */
4644
4645 stop_stepping (ecs);
4646 return;
4647
4648 case BPSTAT_WHAT_HP_STEP_RESUME:
4649 if (debug_infrun)
4650 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4651
4652 delete_step_resume_breakpoint (ecs->event_thread);
4653 if (ecs->event_thread->step_after_step_resume_breakpoint)
4654 {
4655 /* Back when the step-resume breakpoint was inserted, we
4656 were trying to single-step off a breakpoint. Go back to
4657 doing that. */
4658 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4659 ecs->event_thread->stepping_over_breakpoint = 1;
4660 keep_going (ecs);
4661 return;
4662 }
4663 break;
4664
4665 case BPSTAT_WHAT_KEEP_CHECKING:
4666 break;
4667 }
4668
4669 /* We come here if we hit a breakpoint but should not stop for it.
4670 Possibly we also were stepping and should stop for that. So fall
4671 through and test for stepping. But, if not stepping, do not
4672 stop. */
4673
4674 /* In all-stop mode, if we're currently stepping but have stopped in
4675 some other thread, we need to switch back to the stepped thread. */
4676 if (switch_back_to_stepped_thread (ecs))
4677 return;
4678
4679 if (ecs->event_thread->control.step_resume_breakpoint)
4680 {
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog,
4683 "infrun: step-resume breakpoint is inserted\n");
4684
4685 /* Having a step-resume breakpoint overrides anything
4686 else having to do with stepping commands until
4687 that breakpoint is reached. */
4688 keep_going (ecs);
4689 return;
4690 }
4691
4692 if (ecs->event_thread->control.step_range_end == 0)
4693 {
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4696 /* Likewise if we aren't even stepping. */
4697 keep_going (ecs);
4698 return;
4699 }
4700
4701 /* Re-fetch current thread's frame in case the code above caused
4702 the frame cache to be re-initialized, making our FRAME variable
4703 a dangling pointer. */
4704 frame = get_current_frame ();
4705 gdbarch = get_frame_arch (frame);
4706 fill_in_stop_func (gdbarch, ecs);
4707
4708 /* If stepping through a line, keep going if still within it.
4709
4710 Note that step_range_end is the address of the first instruction
4711 beyond the step range, and NOT the address of the last instruction
4712 within it!
4713
4714 Note also that during reverse execution, we may be stepping
4715 through a function epilogue and therefore must detect when
4716 the current-frame changes in the middle of a line. */
4717
4718 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4719 && (execution_direction != EXEC_REVERSE
4720 || frame_id_eq (get_frame_id (frame),
4721 ecs->event_thread->control.step_frame_id)))
4722 {
4723 if (debug_infrun)
4724 fprintf_unfiltered
4725 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4726 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4727 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4728
4729 /* Tentatively re-enable range stepping; `resume' disables it if
4730 necessary (e.g., if we're stepping over a breakpoint or we
4731 have software watchpoints). */
4732 ecs->event_thread->control.may_range_step = 1;
4733
4734 /* When stepping backward, stop at beginning of line range
4735 (unless it's the function entry point, in which case
4736 keep going back to the call point). */
4737 if (stop_pc == ecs->event_thread->control.step_range_start
4738 && stop_pc != ecs->stop_func_start
4739 && execution_direction == EXEC_REVERSE)
4740 {
4741 ecs->event_thread->control.stop_step = 1;
4742 print_end_stepping_range_reason ();
4743 stop_stepping (ecs);
4744 }
4745 else
4746 keep_going (ecs);
4747
4748 return;
4749 }
4750
4751 /* We stepped out of the stepping range. */
4752
4753 /* If we are stepping at the source level and entered the runtime
4754 loader dynamic symbol resolution code...
4755
4756 EXEC_FORWARD: we keep on single stepping until we exit the run
4757 time loader code and reach the callee's address.
4758
4759 EXEC_REVERSE: we've already executed the callee (backward), and
4760 the runtime loader code is handled just like any other
4761 undebuggable function call. Now we need only keep stepping
4762 backward through the trampoline code, and that's handled further
4763 down, so there is nothing for us to do here. */
4764
4765 if (execution_direction != EXEC_REVERSE
4766 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4767 && in_solib_dynsym_resolve_code (stop_pc))
4768 {
4769 CORE_ADDR pc_after_resolver =
4770 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4771
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: stepped into dynsym resolve code\n");
4775
4776 if (pc_after_resolver)
4777 {
4778 /* Set up a step-resume breakpoint at the address
4779 indicated by SKIP_SOLIB_RESOLVER. */
4780 struct symtab_and_line sr_sal;
4781
4782 init_sal (&sr_sal);
4783 sr_sal.pc = pc_after_resolver;
4784 sr_sal.pspace = get_frame_program_space (frame);
4785
4786 insert_step_resume_breakpoint_at_sal (gdbarch,
4787 sr_sal, null_frame_id);
4788 }
4789
4790 keep_going (ecs);
4791 return;
4792 }
4793
4794 if (ecs->event_thread->control.step_range_end != 1
4795 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4796 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4797 && get_frame_type (frame) == SIGTRAMP_FRAME)
4798 {
4799 if (debug_infrun)
4800 fprintf_unfiltered (gdb_stdlog,
4801 "infrun: stepped into signal trampoline\n");
4802 /* The inferior, while doing a "step" or "next", has ended up in
4803 a signal trampoline (either by a signal being delivered or by
4804 the signal handler returning). Just single-step until the
4805 inferior leaves the trampoline (either by calling the handler
4806 or returning). */
4807 keep_going (ecs);
4808 return;
4809 }
4810
4811 /* If we're in the return path from a shared library trampoline,
4812 we want to proceed through the trampoline when stepping. */
4813 /* macro/2012-04-25: This needs to come before the subroutine
4814 call check below as on some targets return trampolines look
4815 like subroutine calls (MIPS16 return thunks). */
4816 if (gdbarch_in_solib_return_trampoline (gdbarch,
4817 stop_pc, ecs->stop_func_name)
4818 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4819 {
4820 /* Determine where this trampoline returns. */
4821 CORE_ADDR real_stop_pc;
4822
4823 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4824
4825 if (debug_infrun)
4826 fprintf_unfiltered (gdb_stdlog,
4827 "infrun: stepped into solib return tramp\n");
4828
4829 /* Only proceed through if we know where it's going. */
4830 if (real_stop_pc)
4831 {
4832 /* And put the step-breakpoint there and go until there. */
4833 struct symtab_and_line sr_sal;
4834
4835 init_sal (&sr_sal); /* initialize to zeroes */
4836 sr_sal.pc = real_stop_pc;
4837 sr_sal.section = find_pc_overlay (sr_sal.pc);
4838 sr_sal.pspace = get_frame_program_space (frame);
4839
4840 /* Do not specify what the fp should be when we stop since
4841 on some machines the prologue is where the new fp value
4842 is established. */
4843 insert_step_resume_breakpoint_at_sal (gdbarch,
4844 sr_sal, null_frame_id);
4845
4846 /* Restart without fiddling with the step ranges or
4847 other state. */
4848 keep_going (ecs);
4849 return;
4850 }
4851 }
4852
4853 /* Check for subroutine calls. The check for the current frame
4854 equalling the step ID is not necessary - the check of the
4855 previous frame's ID is sufficient - but it is a common case and
4856 cheaper than checking the previous frame's ID.
4857
4858 NOTE: frame_id_eq will never report two invalid frame IDs as
4859 being equal, so to get into this block, both the current and
4860 previous frame must have valid frame IDs. */
4861 /* The outer_frame_id check is a heuristic to detect stepping
4862 through startup code. If we step over an instruction which
4863 sets the stack pointer from an invalid value to a valid value,
4864 we may detect that as a subroutine call from the mythical
4865 "outermost" function. This could be fixed by marking
4866 outermost frames as !stack_p,code_p,special_p. Then the
4867 initial outermost frame, before sp was valid, would
4868 have code_addr == &_start. See the comment in frame_id_eq
4869 for more. */
4870 if (!frame_id_eq (get_stack_frame_id (frame),
4871 ecs->event_thread->control.step_stack_frame_id)
4872 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4873 ecs->event_thread->control.step_stack_frame_id)
4874 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4875 outer_frame_id)
4876 || step_start_function != find_pc_function (stop_pc))))
4877 {
4878 CORE_ADDR real_stop_pc;
4879
4880 if (debug_infrun)
4881 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4882
4883 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4884 || ((ecs->event_thread->control.step_range_end == 1)
4885 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4886 ecs->stop_func_start)))
4887 {
4888 /* I presume that step_over_calls is only 0 when we're
4889 supposed to be stepping at the assembly language level
4890 ("stepi"). Just stop. */
4891 /* Also, maybe we just did a "nexti" inside a prolog, so we
4892 thought it was a subroutine call but it was not. Stop as
4893 well. FENN */
4894 /* And this works the same backward as frontward. MVS */
4895 ecs->event_thread->control.stop_step = 1;
4896 print_end_stepping_range_reason ();
4897 stop_stepping (ecs);
4898 return;
4899 }
4900
4901 /* Reverse stepping through solib trampolines. */
4902
4903 if (execution_direction == EXEC_REVERSE
4904 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4905 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4906 || (ecs->stop_func_start == 0
4907 && in_solib_dynsym_resolve_code (stop_pc))))
4908 {
4909 /* Any solib trampoline code can be handled in reverse
4910 by simply continuing to single-step. We have already
4911 executed the solib function (backwards), and a few
4912 steps will take us back through the trampoline to the
4913 caller. */
4914 keep_going (ecs);
4915 return;
4916 }
4917
4918 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4919 {
4920 /* We're doing a "next".
4921
4922 Normal (forward) execution: set a breakpoint at the
4923 callee's return address (the address at which the caller
4924 will resume).
4925
4926 Reverse (backward) execution. set the step-resume
4927 breakpoint at the start of the function that we just
4928 stepped into (backwards), and continue to there. When we
4929 get there, we'll need to single-step back to the caller. */
4930
4931 if (execution_direction == EXEC_REVERSE)
4932 {
4933 /* If we're already at the start of the function, we've either
4934 just stepped backward into a single instruction function,
4935 or stepped back out of a signal handler to the first instruction
4936 of the function. Just keep going, which will single-step back
4937 to the caller. */
4938 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4939 {
4940 struct symtab_and_line sr_sal;
4941
4942 /* Normal function call return (static or dynamic). */
4943 init_sal (&sr_sal);
4944 sr_sal.pc = ecs->stop_func_start;
4945 sr_sal.pspace = get_frame_program_space (frame);
4946 insert_step_resume_breakpoint_at_sal (gdbarch,
4947 sr_sal, null_frame_id);
4948 }
4949 }
4950 else
4951 insert_step_resume_breakpoint_at_caller (frame);
4952
4953 keep_going (ecs);
4954 return;
4955 }
4956
4957 /* If we are in a function call trampoline (a stub between the
4958 calling routine and the real function), locate the real
4959 function. That's what tells us (a) whether we want to step
4960 into it at all, and (b) what prologue we want to run to the
4961 end of, if we do step into it. */
4962 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4963 if (real_stop_pc == 0)
4964 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4965 if (real_stop_pc != 0)
4966 ecs->stop_func_start = real_stop_pc;
4967
4968 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4969 {
4970 struct symtab_and_line sr_sal;
4971
4972 init_sal (&sr_sal);
4973 sr_sal.pc = ecs->stop_func_start;
4974 sr_sal.pspace = get_frame_program_space (frame);
4975
4976 insert_step_resume_breakpoint_at_sal (gdbarch,
4977 sr_sal, null_frame_id);
4978 keep_going (ecs);
4979 return;
4980 }
4981
4982 /* If we have line number information for the function we are
4983 thinking of stepping into and the function isn't on the skip
4984 list, step into it.
4985
4986 If there are several symtabs at that PC (e.g. with include
4987 files), just want to know whether *any* of them have line
4988 numbers. find_pc_line handles this. */
4989 {
4990 struct symtab_and_line tmp_sal;
4991
4992 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4993 if (tmp_sal.line != 0
4994 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4995 &tmp_sal))
4996 {
4997 if (execution_direction == EXEC_REVERSE)
4998 handle_step_into_function_backward (gdbarch, ecs);
4999 else
5000 handle_step_into_function (gdbarch, ecs);
5001 return;
5002 }
5003 }
5004
5005 /* If we have no line number and the step-stop-if-no-debug is
5006 set, we stop the step so that the user has a chance to switch
5007 in assembly mode. */
5008 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5009 && step_stop_if_no_debug)
5010 {
5011 ecs->event_thread->control.stop_step = 1;
5012 print_end_stepping_range_reason ();
5013 stop_stepping (ecs);
5014 return;
5015 }
5016
5017 if (execution_direction == EXEC_REVERSE)
5018 {
5019 /* If we're already at the start of the function, we've either just
5020 stepped backward into a single instruction function without line
5021 number info, or stepped back out of a signal handler to the first
5022 instruction of the function without line number info. Just keep
5023 going, which will single-step back to the caller. */
5024 if (ecs->stop_func_start != stop_pc)
5025 {
5026 /* Set a breakpoint at callee's start address.
5027 From there we can step once and be back in the caller. */
5028 struct symtab_and_line sr_sal;
5029
5030 init_sal (&sr_sal);
5031 sr_sal.pc = ecs->stop_func_start;
5032 sr_sal.pspace = get_frame_program_space (frame);
5033 insert_step_resume_breakpoint_at_sal (gdbarch,
5034 sr_sal, null_frame_id);
5035 }
5036 }
5037 else
5038 /* Set a breakpoint at callee's return address (the address
5039 at which the caller will resume). */
5040 insert_step_resume_breakpoint_at_caller (frame);
5041
5042 keep_going (ecs);
5043 return;
5044 }
5045
5046 /* Reverse stepping through solib trampolines. */
5047
5048 if (execution_direction == EXEC_REVERSE
5049 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5050 {
5051 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5052 || (ecs->stop_func_start == 0
5053 && in_solib_dynsym_resolve_code (stop_pc)))
5054 {
5055 /* Any solib trampoline code can be handled in reverse
5056 by simply continuing to single-step. We have already
5057 executed the solib function (backwards), and a few
5058 steps will take us back through the trampoline to the
5059 caller. */
5060 keep_going (ecs);
5061 return;
5062 }
5063 else if (in_solib_dynsym_resolve_code (stop_pc))
5064 {
5065 /* Stepped backward into the solib dynsym resolver.
5066 Set a breakpoint at its start and continue, then
5067 one more step will take us out. */
5068 struct symtab_and_line sr_sal;
5069
5070 init_sal (&sr_sal);
5071 sr_sal.pc = ecs->stop_func_start;
5072 sr_sal.pspace = get_frame_program_space (frame);
5073 insert_step_resume_breakpoint_at_sal (gdbarch,
5074 sr_sal, null_frame_id);
5075 keep_going (ecs);
5076 return;
5077 }
5078 }
5079
5080 stop_pc_sal = find_pc_line (stop_pc, 0);
5081
5082 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5083 the trampoline processing logic, however, there are some trampolines
5084 that have no names, so we should do trampoline handling first. */
5085 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5086 && ecs->stop_func_name == NULL
5087 && stop_pc_sal.line == 0)
5088 {
5089 if (debug_infrun)
5090 fprintf_unfiltered (gdb_stdlog,
5091 "infrun: stepped into undebuggable function\n");
5092
5093 /* The inferior just stepped into, or returned to, an
5094 undebuggable function (where there is no debugging information
5095 and no line number corresponding to the address where the
5096 inferior stopped). Since we want to skip this kind of code,
5097 we keep going until the inferior returns from this
5098 function - unless the user has asked us not to (via
5099 set step-mode) or we no longer know how to get back
5100 to the call site. */
5101 if (step_stop_if_no_debug
5102 || !frame_id_p (frame_unwind_caller_id (frame)))
5103 {
5104 /* If we have no line number and the step-stop-if-no-debug
5105 is set, we stop the step so that the user has a chance to
5106 switch in assembly mode. */
5107 ecs->event_thread->control.stop_step = 1;
5108 print_end_stepping_range_reason ();
5109 stop_stepping (ecs);
5110 return;
5111 }
5112 else
5113 {
5114 /* Set a breakpoint at callee's return address (the address
5115 at which the caller will resume). */
5116 insert_step_resume_breakpoint_at_caller (frame);
5117 keep_going (ecs);
5118 return;
5119 }
5120 }
5121
5122 if (ecs->event_thread->control.step_range_end == 1)
5123 {
5124 /* It is stepi or nexti. We always want to stop stepping after
5125 one instruction. */
5126 if (debug_infrun)
5127 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5128 ecs->event_thread->control.stop_step = 1;
5129 print_end_stepping_range_reason ();
5130 stop_stepping (ecs);
5131 return;
5132 }
5133
5134 if (stop_pc_sal.line == 0)
5135 {
5136 /* We have no line number information. That means to stop
5137 stepping (does this always happen right after one instruction,
5138 when we do "s" in a function with no line numbers,
5139 or can this happen as a result of a return or longjmp?). */
5140 if (debug_infrun)
5141 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5142 ecs->event_thread->control.stop_step = 1;
5143 print_end_stepping_range_reason ();
5144 stop_stepping (ecs);
5145 return;
5146 }
5147
5148 /* Look for "calls" to inlined functions, part one. If the inline
5149 frame machinery detected some skipped call sites, we have entered
5150 a new inline function. */
5151
5152 if (frame_id_eq (get_frame_id (get_current_frame ()),
5153 ecs->event_thread->control.step_frame_id)
5154 && inline_skipped_frames (ecs->ptid))
5155 {
5156 struct symtab_and_line call_sal;
5157
5158 if (debug_infrun)
5159 fprintf_unfiltered (gdb_stdlog,
5160 "infrun: stepped into inlined function\n");
5161
5162 find_frame_sal (get_current_frame (), &call_sal);
5163
5164 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5165 {
5166 /* For "step", we're going to stop. But if the call site
5167 for this inlined function is on the same source line as
5168 we were previously stepping, go down into the function
5169 first. Otherwise stop at the call site. */
5170
5171 if (call_sal.line == ecs->event_thread->current_line
5172 && call_sal.symtab == ecs->event_thread->current_symtab)
5173 step_into_inline_frame (ecs->ptid);
5174
5175 ecs->event_thread->control.stop_step = 1;
5176 print_end_stepping_range_reason ();
5177 stop_stepping (ecs);
5178 return;
5179 }
5180 else
5181 {
5182 /* For "next", we should stop at the call site if it is on a
5183 different source line. Otherwise continue through the
5184 inlined function. */
5185 if (call_sal.line == ecs->event_thread->current_line
5186 && call_sal.symtab == ecs->event_thread->current_symtab)
5187 keep_going (ecs);
5188 else
5189 {
5190 ecs->event_thread->control.stop_step = 1;
5191 print_end_stepping_range_reason ();
5192 stop_stepping (ecs);
5193 }
5194 return;
5195 }
5196 }
5197
5198 /* Look for "calls" to inlined functions, part two. If we are still
5199 in the same real function we were stepping through, but we have
5200 to go further up to find the exact frame ID, we are stepping
5201 through a more inlined call beyond its call site. */
5202
5203 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5204 && !frame_id_eq (get_frame_id (get_current_frame ()),
5205 ecs->event_thread->control.step_frame_id)
5206 && stepped_in_from (get_current_frame (),
5207 ecs->event_thread->control.step_frame_id))
5208 {
5209 if (debug_infrun)
5210 fprintf_unfiltered (gdb_stdlog,
5211 "infrun: stepping through inlined function\n");
5212
5213 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5214 keep_going (ecs);
5215 else
5216 {
5217 ecs->event_thread->control.stop_step = 1;
5218 print_end_stepping_range_reason ();
5219 stop_stepping (ecs);
5220 }
5221 return;
5222 }
5223
5224 if ((stop_pc == stop_pc_sal.pc)
5225 && (ecs->event_thread->current_line != stop_pc_sal.line
5226 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5227 {
5228 /* We are at the start of a different line. So stop. Note that
5229 we don't stop if we step into the middle of a different line.
5230 That is said to make things like for (;;) statements work
5231 better. */
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: stepped to a different line\n");
5235 ecs->event_thread->control.stop_step = 1;
5236 print_end_stepping_range_reason ();
5237 stop_stepping (ecs);
5238 return;
5239 }
5240
5241 /* We aren't done stepping.
5242
5243 Optimize by setting the stepping range to the line.
5244 (We might not be in the original line, but if we entered a
5245 new line in mid-statement, we continue stepping. This makes
5246 things like for(;;) statements work better.) */
5247
5248 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5249 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5250 ecs->event_thread->control.may_range_step = 1;
5251 set_step_info (frame, stop_pc_sal);
5252
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5255 keep_going (ecs);
5256 }
5257
5258 /* In all-stop mode, if we're currently stepping but have stopped in
5259 some other thread, we may need to switch back to the stepped
5260 thread. Returns true we set the inferior running, false if we left
5261 it stopped (and the event needs further processing). */
5262
5263 static int
5264 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5265 {
5266 if (!non_stop)
5267 {
5268 struct thread_info *tp;
5269
5270 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5271 ecs->event_thread);
5272 if (tp)
5273 {
5274 /* However, if the current thread is blocked on some internal
5275 breakpoint, and we simply need to step over that breakpoint
5276 to get it going again, do that first. */
5277 if ((ecs->event_thread->control.trap_expected
5278 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5279 || ecs->event_thread->stepping_over_breakpoint)
5280 {
5281 keep_going (ecs);
5282 return 1;
5283 }
5284
5285 /* If the stepping thread exited, then don't try to switch
5286 back and resume it, which could fail in several different
5287 ways depending on the target. Instead, just keep going.
5288
5289 We can find a stepping dead thread in the thread list in
5290 two cases:
5291
5292 - The target supports thread exit events, and when the
5293 target tries to delete the thread from the thread list,
5294 inferior_ptid pointed at the exiting thread. In such
5295 case, calling delete_thread does not really remove the
5296 thread from the list; instead, the thread is left listed,
5297 with 'exited' state.
5298
5299 - The target's debug interface does not support thread
5300 exit events, and so we have no idea whatsoever if the
5301 previously stepping thread is still alive. For that
5302 reason, we need to synchronously query the target
5303 now. */
5304 if (is_exited (tp->ptid)
5305 || !target_thread_alive (tp->ptid))
5306 {
5307 if (debug_infrun)
5308 fprintf_unfiltered (gdb_stdlog,
5309 "infrun: not switching back to "
5310 "stepped thread, it has vanished\n");
5311
5312 delete_thread (tp->ptid);
5313 keep_going (ecs);
5314 return 1;
5315 }
5316
5317 /* Otherwise, we no longer expect a trap in the current thread.
5318 Clear the trap_expected flag before switching back -- this is
5319 what keep_going would do as well, if we called it. */
5320 ecs->event_thread->control.trap_expected = 0;
5321
5322 if (debug_infrun)
5323 fprintf_unfiltered (gdb_stdlog,
5324 "infrun: switching back to stepped thread\n");
5325
5326 ecs->event_thread = tp;
5327 ecs->ptid = tp->ptid;
5328 context_switch (ecs->ptid);
5329 keep_going (ecs);
5330 return 1;
5331 }
5332 }
5333 return 0;
5334 }
5335
5336 /* Is thread TP in the middle of single-stepping? */
5337
5338 static int
5339 currently_stepping (struct thread_info *tp)
5340 {
5341 return ((tp->control.step_range_end
5342 && tp->control.step_resume_breakpoint == NULL)
5343 || tp->control.trap_expected
5344 || bpstat_should_step ());
5345 }
5346
5347 /* Returns true if any thread *but* the one passed in "data" is in the
5348 middle of stepping or of handling a "next". */
5349
5350 static int
5351 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5352 {
5353 if (tp == data)
5354 return 0;
5355
5356 return (tp->control.step_range_end
5357 || tp->control.trap_expected);
5358 }
5359
5360 /* Inferior has stepped into a subroutine call with source code that
5361 we should not step over. Do step to the first line of code in
5362 it. */
5363
5364 static void
5365 handle_step_into_function (struct gdbarch *gdbarch,
5366 struct execution_control_state *ecs)
5367 {
5368 struct symtab *s;
5369 struct symtab_and_line stop_func_sal, sr_sal;
5370
5371 fill_in_stop_func (gdbarch, ecs);
5372
5373 s = find_pc_symtab (stop_pc);
5374 if (s && s->language != language_asm)
5375 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5376 ecs->stop_func_start);
5377
5378 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5379 /* Use the step_resume_break to step until the end of the prologue,
5380 even if that involves jumps (as it seems to on the vax under
5381 4.2). */
5382 /* If the prologue ends in the middle of a source line, continue to
5383 the end of that source line (if it is still within the function).
5384 Otherwise, just go to end of prologue. */
5385 if (stop_func_sal.end
5386 && stop_func_sal.pc != ecs->stop_func_start
5387 && stop_func_sal.end < ecs->stop_func_end)
5388 ecs->stop_func_start = stop_func_sal.end;
5389
5390 /* Architectures which require breakpoint adjustment might not be able
5391 to place a breakpoint at the computed address. If so, the test
5392 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5393 ecs->stop_func_start to an address at which a breakpoint may be
5394 legitimately placed.
5395
5396 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5397 made, GDB will enter an infinite loop when stepping through
5398 optimized code consisting of VLIW instructions which contain
5399 subinstructions corresponding to different source lines. On
5400 FR-V, it's not permitted to place a breakpoint on any but the
5401 first subinstruction of a VLIW instruction. When a breakpoint is
5402 set, GDB will adjust the breakpoint address to the beginning of
5403 the VLIW instruction. Thus, we need to make the corresponding
5404 adjustment here when computing the stop address. */
5405
5406 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5407 {
5408 ecs->stop_func_start
5409 = gdbarch_adjust_breakpoint_address (gdbarch,
5410 ecs->stop_func_start);
5411 }
5412
5413 if (ecs->stop_func_start == stop_pc)
5414 {
5415 /* We are already there: stop now. */
5416 ecs->event_thread->control.stop_step = 1;
5417 print_end_stepping_range_reason ();
5418 stop_stepping (ecs);
5419 return;
5420 }
5421 else
5422 {
5423 /* Put the step-breakpoint there and go until there. */
5424 init_sal (&sr_sal); /* initialize to zeroes */
5425 sr_sal.pc = ecs->stop_func_start;
5426 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5427 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5428
5429 /* Do not specify what the fp should be when we stop since on
5430 some machines the prologue is where the new fp value is
5431 established. */
5432 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5433
5434 /* And make sure stepping stops right away then. */
5435 ecs->event_thread->control.step_range_end
5436 = ecs->event_thread->control.step_range_start;
5437 }
5438 keep_going (ecs);
5439 }
5440
5441 /* Inferior has stepped backward into a subroutine call with source
5442 code that we should not step over. Do step to the beginning of the
5443 last line of code in it. */
5444
5445 static void
5446 handle_step_into_function_backward (struct gdbarch *gdbarch,
5447 struct execution_control_state *ecs)
5448 {
5449 struct symtab *s;
5450 struct symtab_and_line stop_func_sal;
5451
5452 fill_in_stop_func (gdbarch, ecs);
5453
5454 s = find_pc_symtab (stop_pc);
5455 if (s && s->language != language_asm)
5456 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5457 ecs->stop_func_start);
5458
5459 stop_func_sal = find_pc_line (stop_pc, 0);
5460
5461 /* OK, we're just going to keep stepping here. */
5462 if (stop_func_sal.pc == stop_pc)
5463 {
5464 /* We're there already. Just stop stepping now. */
5465 ecs->event_thread->control.stop_step = 1;
5466 print_end_stepping_range_reason ();
5467 stop_stepping (ecs);
5468 }
5469 else
5470 {
5471 /* Else just reset the step range and keep going.
5472 No step-resume breakpoint, they don't work for
5473 epilogues, which can have multiple entry paths. */
5474 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5475 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5476 keep_going (ecs);
5477 }
5478 return;
5479 }
5480
5481 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5482 This is used to both functions and to skip over code. */
5483
5484 static void
5485 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5486 struct symtab_and_line sr_sal,
5487 struct frame_id sr_id,
5488 enum bptype sr_type)
5489 {
5490 /* There should never be more than one step-resume or longjmp-resume
5491 breakpoint per thread, so we should never be setting a new
5492 step_resume_breakpoint when one is already active. */
5493 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5494 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5495
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog,
5498 "infrun: inserting step-resume breakpoint at %s\n",
5499 paddress (gdbarch, sr_sal.pc));
5500
5501 inferior_thread ()->control.step_resume_breakpoint
5502 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5503 }
5504
5505 void
5506 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5507 struct symtab_and_line sr_sal,
5508 struct frame_id sr_id)
5509 {
5510 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5511 sr_sal, sr_id,
5512 bp_step_resume);
5513 }
5514
5515 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5516 This is used to skip a potential signal handler.
5517
5518 This is called with the interrupted function's frame. The signal
5519 handler, when it returns, will resume the interrupted function at
5520 RETURN_FRAME.pc. */
5521
5522 static void
5523 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5524 {
5525 struct symtab_and_line sr_sal;
5526 struct gdbarch *gdbarch;
5527
5528 gdb_assert (return_frame != NULL);
5529 init_sal (&sr_sal); /* initialize to zeros */
5530
5531 gdbarch = get_frame_arch (return_frame);
5532 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5533 sr_sal.section = find_pc_overlay (sr_sal.pc);
5534 sr_sal.pspace = get_frame_program_space (return_frame);
5535
5536 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5537 get_stack_frame_id (return_frame),
5538 bp_hp_step_resume);
5539 }
5540
5541 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5542 is used to skip a function after stepping into it (for "next" or if
5543 the called function has no debugging information).
5544
5545 The current function has almost always been reached by single
5546 stepping a call or return instruction. NEXT_FRAME belongs to the
5547 current function, and the breakpoint will be set at the caller's
5548 resume address.
5549
5550 This is a separate function rather than reusing
5551 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5552 get_prev_frame, which may stop prematurely (see the implementation
5553 of frame_unwind_caller_id for an example). */
5554
5555 static void
5556 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5557 {
5558 struct symtab_and_line sr_sal;
5559 struct gdbarch *gdbarch;
5560
5561 /* We shouldn't have gotten here if we don't know where the call site
5562 is. */
5563 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5564
5565 init_sal (&sr_sal); /* initialize to zeros */
5566
5567 gdbarch = frame_unwind_caller_arch (next_frame);
5568 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5569 frame_unwind_caller_pc (next_frame));
5570 sr_sal.section = find_pc_overlay (sr_sal.pc);
5571 sr_sal.pspace = frame_unwind_program_space (next_frame);
5572
5573 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5574 frame_unwind_caller_id (next_frame));
5575 }
5576
5577 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5578 new breakpoint at the target of a jmp_buf. The handling of
5579 longjmp-resume uses the same mechanisms used for handling
5580 "step-resume" breakpoints. */
5581
5582 static void
5583 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5584 {
5585 /* There should never be more than one longjmp-resume breakpoint per
5586 thread, so we should never be setting a new
5587 longjmp_resume_breakpoint when one is already active. */
5588 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5589
5590 if (debug_infrun)
5591 fprintf_unfiltered (gdb_stdlog,
5592 "infrun: inserting longjmp-resume breakpoint at %s\n",
5593 paddress (gdbarch, pc));
5594
5595 inferior_thread ()->control.exception_resume_breakpoint =
5596 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5597 }
5598
5599 /* Insert an exception resume breakpoint. TP is the thread throwing
5600 the exception. The block B is the block of the unwinder debug hook
5601 function. FRAME is the frame corresponding to the call to this
5602 function. SYM is the symbol of the function argument holding the
5603 target PC of the exception. */
5604
5605 static void
5606 insert_exception_resume_breakpoint (struct thread_info *tp,
5607 struct block *b,
5608 struct frame_info *frame,
5609 struct symbol *sym)
5610 {
5611 volatile struct gdb_exception e;
5612
5613 /* We want to ignore errors here. */
5614 TRY_CATCH (e, RETURN_MASK_ERROR)
5615 {
5616 struct symbol *vsym;
5617 struct value *value;
5618 CORE_ADDR handler;
5619 struct breakpoint *bp;
5620
5621 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5622 value = read_var_value (vsym, frame);
5623 /* If the value was optimized out, revert to the old behavior. */
5624 if (! value_optimized_out (value))
5625 {
5626 handler = value_as_address (value);
5627
5628 if (debug_infrun)
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: exception resume at %lx\n",
5631 (unsigned long) handler);
5632
5633 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5634 handler, bp_exception_resume);
5635
5636 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5637 frame = NULL;
5638
5639 bp->thread = tp->num;
5640 inferior_thread ()->control.exception_resume_breakpoint = bp;
5641 }
5642 }
5643 }
5644
5645 /* A helper for check_exception_resume that sets an
5646 exception-breakpoint based on a SystemTap probe. */
5647
5648 static void
5649 insert_exception_resume_from_probe (struct thread_info *tp,
5650 const struct bound_probe *probe,
5651 struct frame_info *frame)
5652 {
5653 struct value *arg_value;
5654 CORE_ADDR handler;
5655 struct breakpoint *bp;
5656
5657 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5658 if (!arg_value)
5659 return;
5660
5661 handler = value_as_address (arg_value);
5662
5663 if (debug_infrun)
5664 fprintf_unfiltered (gdb_stdlog,
5665 "infrun: exception resume at %s\n",
5666 paddress (get_objfile_arch (probe->objfile),
5667 handler));
5668
5669 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5670 handler, bp_exception_resume);
5671 bp->thread = tp->num;
5672 inferior_thread ()->control.exception_resume_breakpoint = bp;
5673 }
5674
5675 /* This is called when an exception has been intercepted. Check to
5676 see whether the exception's destination is of interest, and if so,
5677 set an exception resume breakpoint there. */
5678
5679 static void
5680 check_exception_resume (struct execution_control_state *ecs,
5681 struct frame_info *frame)
5682 {
5683 volatile struct gdb_exception e;
5684 struct bound_probe probe;
5685 struct symbol *func;
5686
5687 /* First see if this exception unwinding breakpoint was set via a
5688 SystemTap probe point. If so, the probe has two arguments: the
5689 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5690 set a breakpoint there. */
5691 probe = find_probe_by_pc (get_frame_pc (frame));
5692 if (probe.probe)
5693 {
5694 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
5695 return;
5696 }
5697
5698 func = get_frame_function (frame);
5699 if (!func)
5700 return;
5701
5702 TRY_CATCH (e, RETURN_MASK_ERROR)
5703 {
5704 struct block *b;
5705 struct block_iterator iter;
5706 struct symbol *sym;
5707 int argno = 0;
5708
5709 /* The exception breakpoint is a thread-specific breakpoint on
5710 the unwinder's debug hook, declared as:
5711
5712 void _Unwind_DebugHook (void *cfa, void *handler);
5713
5714 The CFA argument indicates the frame to which control is
5715 about to be transferred. HANDLER is the destination PC.
5716
5717 We ignore the CFA and set a temporary breakpoint at HANDLER.
5718 This is not extremely efficient but it avoids issues in gdb
5719 with computing the DWARF CFA, and it also works even in weird
5720 cases such as throwing an exception from inside a signal
5721 handler. */
5722
5723 b = SYMBOL_BLOCK_VALUE (func);
5724 ALL_BLOCK_SYMBOLS (b, iter, sym)
5725 {
5726 if (!SYMBOL_IS_ARGUMENT (sym))
5727 continue;
5728
5729 if (argno == 0)
5730 ++argno;
5731 else
5732 {
5733 insert_exception_resume_breakpoint (ecs->event_thread,
5734 b, frame, sym);
5735 break;
5736 }
5737 }
5738 }
5739 }
5740
5741 static void
5742 stop_stepping (struct execution_control_state *ecs)
5743 {
5744 if (debug_infrun)
5745 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5746
5747 clear_step_over_info ();
5748
5749 /* Let callers know we don't want to wait for the inferior anymore. */
5750 ecs->wait_some_more = 0;
5751 }
5752
5753 /* Called when we should continue running the inferior, because the
5754 current event doesn't cause a user visible stop. This does the
5755 resuming part; waiting for the next event is done elsewhere. */
5756
5757 static void
5758 keep_going (struct execution_control_state *ecs)
5759 {
5760 /* Make sure normal_stop is called if we get a QUIT handled before
5761 reaching resume. */
5762 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5763
5764 /* Save the pc before execution, to compare with pc after stop. */
5765 ecs->event_thread->prev_pc
5766 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5767
5768 if (ecs->event_thread->control.trap_expected
5769 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5770 {
5771 /* We haven't yet gotten our trap, and either: intercepted a
5772 non-signal event (e.g., a fork); or took a signal which we
5773 are supposed to pass through to the inferior. Simply
5774 continue. */
5775 discard_cleanups (old_cleanups);
5776 resume (currently_stepping (ecs->event_thread),
5777 ecs->event_thread->suspend.stop_signal);
5778 }
5779 else
5780 {
5781 volatile struct gdb_exception e;
5782 struct regcache *regcache = get_current_regcache ();
5783
5784 /* Either the trap was not expected, but we are continuing
5785 anyway (if we got a signal, the user asked it be passed to
5786 the child)
5787 -- or --
5788 We got our expected trap, but decided we should resume from
5789 it.
5790
5791 We're going to run this baby now!
5792
5793 Note that insert_breakpoints won't try to re-insert
5794 already inserted breakpoints. Therefore, we don't
5795 care if breakpoints were already inserted, or not. */
5796
5797 /* If we need to step over a breakpoint, and we're not using
5798 displaced stepping to do so, insert all breakpoints
5799 (watchpoints, etc.) but the one we're stepping over, step one
5800 instruction, and then re-insert the breakpoint when that step
5801 is finished. */
5802 if (ecs->event_thread->stepping_over_breakpoint
5803 && !use_displaced_stepping (get_regcache_arch (regcache)))
5804 {
5805 set_step_over_info (get_regcache_aspace (regcache),
5806 regcache_read_pc (regcache));
5807 }
5808 else
5809 clear_step_over_info ();
5810
5811 /* Stop stepping if inserting breakpoints fails. */
5812 TRY_CATCH (e, RETURN_MASK_ERROR)
5813 {
5814 insert_breakpoints ();
5815 }
5816 if (e.reason < 0)
5817 {
5818 exception_print (gdb_stderr, e);
5819 stop_stepping (ecs);
5820 return;
5821 }
5822
5823 ecs->event_thread->control.trap_expected
5824 = ecs->event_thread->stepping_over_breakpoint;
5825
5826 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5827 explicitly specifies that such a signal should be delivered
5828 to the target program). Typically, that would occur when a
5829 user is debugging a target monitor on a simulator: the target
5830 monitor sets a breakpoint; the simulator encounters this
5831 breakpoint and halts the simulation handing control to GDB;
5832 GDB, noting that the stop address doesn't map to any known
5833 breakpoint, returns control back to the simulator; the
5834 simulator then delivers the hardware equivalent of a
5835 GDB_SIGNAL_TRAP to the program being debugged. */
5836 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5837 && !signal_program[ecs->event_thread->suspend.stop_signal])
5838 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5839
5840 discard_cleanups (old_cleanups);
5841 resume (currently_stepping (ecs->event_thread),
5842 ecs->event_thread->suspend.stop_signal);
5843 }
5844
5845 prepare_to_wait (ecs);
5846 }
5847
5848 /* This function normally comes after a resume, before
5849 handle_inferior_event exits. It takes care of any last bits of
5850 housekeeping, and sets the all-important wait_some_more flag. */
5851
5852 static void
5853 prepare_to_wait (struct execution_control_state *ecs)
5854 {
5855 if (debug_infrun)
5856 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5857
5858 /* This is the old end of the while loop. Let everybody know we
5859 want to wait for the inferior some more and get called again
5860 soon. */
5861 ecs->wait_some_more = 1;
5862 }
5863
5864 /* Several print_*_reason functions to print why the inferior has stopped.
5865 We always print something when the inferior exits, or receives a signal.
5866 The rest of the cases are dealt with later on in normal_stop and
5867 print_it_typical. Ideally there should be a call to one of these
5868 print_*_reason functions functions from handle_inferior_event each time
5869 stop_stepping is called. */
5870
5871 /* Print why the inferior has stopped.
5872 We are done with a step/next/si/ni command, print why the inferior has
5873 stopped. For now print nothing. Print a message only if not in the middle
5874 of doing a "step n" operation for n > 1. */
5875
5876 static void
5877 print_end_stepping_range_reason (void)
5878 {
5879 if ((!inferior_thread ()->step_multi
5880 || !inferior_thread ()->control.stop_step)
5881 && ui_out_is_mi_like_p (current_uiout))
5882 ui_out_field_string (current_uiout, "reason",
5883 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5884 }
5885
5886 /* The inferior was terminated by a signal, print why it stopped. */
5887
5888 static void
5889 print_signal_exited_reason (enum gdb_signal siggnal)
5890 {
5891 struct ui_out *uiout = current_uiout;
5892
5893 annotate_signalled ();
5894 if (ui_out_is_mi_like_p (uiout))
5895 ui_out_field_string
5896 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5897 ui_out_text (uiout, "\nProgram terminated with signal ");
5898 annotate_signal_name ();
5899 ui_out_field_string (uiout, "signal-name",
5900 gdb_signal_to_name (siggnal));
5901 annotate_signal_name_end ();
5902 ui_out_text (uiout, ", ");
5903 annotate_signal_string ();
5904 ui_out_field_string (uiout, "signal-meaning",
5905 gdb_signal_to_string (siggnal));
5906 annotate_signal_string_end ();
5907 ui_out_text (uiout, ".\n");
5908 ui_out_text (uiout, "The program no longer exists.\n");
5909 }
5910
5911 /* The inferior program is finished, print why it stopped. */
5912
5913 static void
5914 print_exited_reason (int exitstatus)
5915 {
5916 struct inferior *inf = current_inferior ();
5917 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5918 struct ui_out *uiout = current_uiout;
5919
5920 annotate_exited (exitstatus);
5921 if (exitstatus)
5922 {
5923 if (ui_out_is_mi_like_p (uiout))
5924 ui_out_field_string (uiout, "reason",
5925 async_reason_lookup (EXEC_ASYNC_EXITED));
5926 ui_out_text (uiout, "[Inferior ");
5927 ui_out_text (uiout, plongest (inf->num));
5928 ui_out_text (uiout, " (");
5929 ui_out_text (uiout, pidstr);
5930 ui_out_text (uiout, ") exited with code ");
5931 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5932 ui_out_text (uiout, "]\n");
5933 }
5934 else
5935 {
5936 if (ui_out_is_mi_like_p (uiout))
5937 ui_out_field_string
5938 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5939 ui_out_text (uiout, "[Inferior ");
5940 ui_out_text (uiout, plongest (inf->num));
5941 ui_out_text (uiout, " (");
5942 ui_out_text (uiout, pidstr);
5943 ui_out_text (uiout, ") exited normally]\n");
5944 }
5945 /* Support the --return-child-result option. */
5946 return_child_result_value = exitstatus;
5947 }
5948
5949 /* Signal received, print why the inferior has stopped. The signal table
5950 tells us to print about it. */
5951
5952 static void
5953 print_signal_received_reason (enum gdb_signal siggnal)
5954 {
5955 struct ui_out *uiout = current_uiout;
5956
5957 annotate_signal ();
5958
5959 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5960 {
5961 struct thread_info *t = inferior_thread ();
5962
5963 ui_out_text (uiout, "\n[");
5964 ui_out_field_string (uiout, "thread-name",
5965 target_pid_to_str (t->ptid));
5966 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5967 ui_out_text (uiout, " stopped");
5968 }
5969 else
5970 {
5971 ui_out_text (uiout, "\nProgram received signal ");
5972 annotate_signal_name ();
5973 if (ui_out_is_mi_like_p (uiout))
5974 ui_out_field_string
5975 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5976 ui_out_field_string (uiout, "signal-name",
5977 gdb_signal_to_name (siggnal));
5978 annotate_signal_name_end ();
5979 ui_out_text (uiout, ", ");
5980 annotate_signal_string ();
5981 ui_out_field_string (uiout, "signal-meaning",
5982 gdb_signal_to_string (siggnal));
5983 annotate_signal_string_end ();
5984 }
5985 ui_out_text (uiout, ".\n");
5986 }
5987
5988 /* Reverse execution: target ran out of history info, print why the inferior
5989 has stopped. */
5990
5991 static void
5992 print_no_history_reason (void)
5993 {
5994 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5995 }
5996
5997 /* Print current location without a level number, if we have changed
5998 functions or hit a breakpoint. Print source line if we have one.
5999 bpstat_print contains the logic deciding in detail what to print,
6000 based on the event(s) that just occurred. */
6001
6002 void
6003 print_stop_event (struct target_waitstatus *ws)
6004 {
6005 int bpstat_ret;
6006 int source_flag;
6007 int do_frame_printing = 1;
6008 struct thread_info *tp = inferior_thread ();
6009
6010 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6011 switch (bpstat_ret)
6012 {
6013 case PRINT_UNKNOWN:
6014 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6015 should) carry around the function and does (or should) use
6016 that when doing a frame comparison. */
6017 if (tp->control.stop_step
6018 && frame_id_eq (tp->control.step_frame_id,
6019 get_frame_id (get_current_frame ()))
6020 && step_start_function == find_pc_function (stop_pc))
6021 {
6022 /* Finished step, just print source line. */
6023 source_flag = SRC_LINE;
6024 }
6025 else
6026 {
6027 /* Print location and source line. */
6028 source_flag = SRC_AND_LOC;
6029 }
6030 break;
6031 case PRINT_SRC_AND_LOC:
6032 /* Print location and source line. */
6033 source_flag = SRC_AND_LOC;
6034 break;
6035 case PRINT_SRC_ONLY:
6036 source_flag = SRC_LINE;
6037 break;
6038 case PRINT_NOTHING:
6039 /* Something bogus. */
6040 source_flag = SRC_LINE;
6041 do_frame_printing = 0;
6042 break;
6043 default:
6044 internal_error (__FILE__, __LINE__, _("Unknown value."));
6045 }
6046
6047 /* The behavior of this routine with respect to the source
6048 flag is:
6049 SRC_LINE: Print only source line
6050 LOCATION: Print only location
6051 SRC_AND_LOC: Print location and source line. */
6052 if (do_frame_printing)
6053 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6054
6055 /* Display the auto-display expressions. */
6056 do_displays ();
6057 }
6058
6059 /* Here to return control to GDB when the inferior stops for real.
6060 Print appropriate messages, remove breakpoints, give terminal our modes.
6061
6062 STOP_PRINT_FRAME nonzero means print the executing frame
6063 (pc, function, args, file, line number and line text).
6064 BREAKPOINTS_FAILED nonzero means stop was due to error
6065 attempting to insert breakpoints. */
6066
6067 void
6068 normal_stop (void)
6069 {
6070 struct target_waitstatus last;
6071 ptid_t last_ptid;
6072 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6073
6074 get_last_target_status (&last_ptid, &last);
6075
6076 /* If an exception is thrown from this point on, make sure to
6077 propagate GDB's knowledge of the executing state to the
6078 frontend/user running state. A QUIT is an easy exception to see
6079 here, so do this before any filtered output. */
6080 if (!non_stop)
6081 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6082 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6083 && last.kind != TARGET_WAITKIND_EXITED
6084 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6085 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6086
6087 /* In non-stop mode, we don't want GDB to switch threads behind the
6088 user's back, to avoid races where the user is typing a command to
6089 apply to thread x, but GDB switches to thread y before the user
6090 finishes entering the command. */
6091
6092 /* As with the notification of thread events, we want to delay
6093 notifying the user that we've switched thread context until
6094 the inferior actually stops.
6095
6096 There's no point in saying anything if the inferior has exited.
6097 Note that SIGNALLED here means "exited with a signal", not
6098 "received a signal". */
6099 if (!non_stop
6100 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6101 && target_has_execution
6102 && last.kind != TARGET_WAITKIND_SIGNALLED
6103 && last.kind != TARGET_WAITKIND_EXITED
6104 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6105 {
6106 target_terminal_ours_for_output ();
6107 printf_filtered (_("[Switching to %s]\n"),
6108 target_pid_to_str (inferior_ptid));
6109 annotate_thread_changed ();
6110 previous_inferior_ptid = inferior_ptid;
6111 }
6112
6113 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6114 {
6115 gdb_assert (sync_execution || !target_can_async_p ());
6116
6117 target_terminal_ours_for_output ();
6118 printf_filtered (_("No unwaited-for children left.\n"));
6119 }
6120
6121 if (!breakpoints_always_inserted_mode () && target_has_execution)
6122 {
6123 if (remove_breakpoints ())
6124 {
6125 target_terminal_ours_for_output ();
6126 printf_filtered (_("Cannot remove breakpoints because "
6127 "program is no longer writable.\nFurther "
6128 "execution is probably impossible.\n"));
6129 }
6130 }
6131
6132 /* If an auto-display called a function and that got a signal,
6133 delete that auto-display to avoid an infinite recursion. */
6134
6135 if (stopped_by_random_signal)
6136 disable_current_display ();
6137
6138 /* Don't print a message if in the middle of doing a "step n"
6139 operation for n > 1 */
6140 if (target_has_execution
6141 && last.kind != TARGET_WAITKIND_SIGNALLED
6142 && last.kind != TARGET_WAITKIND_EXITED
6143 && inferior_thread ()->step_multi
6144 && inferior_thread ()->control.stop_step)
6145 goto done;
6146
6147 target_terminal_ours ();
6148 async_enable_stdin ();
6149
6150 /* Set the current source location. This will also happen if we
6151 display the frame below, but the current SAL will be incorrect
6152 during a user hook-stop function. */
6153 if (has_stack_frames () && !stop_stack_dummy)
6154 set_current_sal_from_frame (get_current_frame (), 1);
6155
6156 /* Let the user/frontend see the threads as stopped. */
6157 do_cleanups (old_chain);
6158
6159 /* Look up the hook_stop and run it (CLI internally handles problem
6160 of stop_command's pre-hook not existing). */
6161 if (stop_command)
6162 catch_errors (hook_stop_stub, stop_command,
6163 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6164
6165 if (!has_stack_frames ())
6166 goto done;
6167
6168 if (last.kind == TARGET_WAITKIND_SIGNALLED
6169 || last.kind == TARGET_WAITKIND_EXITED)
6170 goto done;
6171
6172 /* Select innermost stack frame - i.e., current frame is frame 0,
6173 and current location is based on that.
6174 Don't do this on return from a stack dummy routine,
6175 or if the program has exited. */
6176
6177 if (!stop_stack_dummy)
6178 {
6179 select_frame (get_current_frame ());
6180
6181 /* If --batch-silent is enabled then there's no need to print the current
6182 source location, and to try risks causing an error message about
6183 missing source files. */
6184 if (stop_print_frame && !batch_silent)
6185 print_stop_event (&last);
6186 }
6187
6188 /* Save the function value return registers, if we care.
6189 We might be about to restore their previous contents. */
6190 if (inferior_thread ()->control.proceed_to_finish
6191 && execution_direction != EXEC_REVERSE)
6192 {
6193 /* This should not be necessary. */
6194 if (stop_registers)
6195 regcache_xfree (stop_registers);
6196
6197 /* NB: The copy goes through to the target picking up the value of
6198 all the registers. */
6199 stop_registers = regcache_dup (get_current_regcache ());
6200 }
6201
6202 if (stop_stack_dummy == STOP_STACK_DUMMY)
6203 {
6204 /* Pop the empty frame that contains the stack dummy.
6205 This also restores inferior state prior to the call
6206 (struct infcall_suspend_state). */
6207 struct frame_info *frame = get_current_frame ();
6208
6209 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6210 frame_pop (frame);
6211 /* frame_pop() calls reinit_frame_cache as the last thing it
6212 does which means there's currently no selected frame. We
6213 don't need to re-establish a selected frame if the dummy call
6214 returns normally, that will be done by
6215 restore_infcall_control_state. However, we do have to handle
6216 the case where the dummy call is returning after being
6217 stopped (e.g. the dummy call previously hit a breakpoint).
6218 We can't know which case we have so just always re-establish
6219 a selected frame here. */
6220 select_frame (get_current_frame ());
6221 }
6222
6223 done:
6224 annotate_stopped ();
6225
6226 /* Suppress the stop observer if we're in the middle of:
6227
6228 - a step n (n > 1), as there still more steps to be done.
6229
6230 - a "finish" command, as the observer will be called in
6231 finish_command_continuation, so it can include the inferior
6232 function's return value.
6233
6234 - calling an inferior function, as we pretend we inferior didn't
6235 run at all. The return value of the call is handled by the
6236 expression evaluator, through call_function_by_hand. */
6237
6238 if (!target_has_execution
6239 || last.kind == TARGET_WAITKIND_SIGNALLED
6240 || last.kind == TARGET_WAITKIND_EXITED
6241 || last.kind == TARGET_WAITKIND_NO_RESUMED
6242 || (!(inferior_thread ()->step_multi
6243 && inferior_thread ()->control.stop_step)
6244 && !(inferior_thread ()->control.stop_bpstat
6245 && inferior_thread ()->control.proceed_to_finish)
6246 && !inferior_thread ()->control.in_infcall))
6247 {
6248 if (!ptid_equal (inferior_ptid, null_ptid))
6249 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6250 stop_print_frame);
6251 else
6252 observer_notify_normal_stop (NULL, stop_print_frame);
6253 }
6254
6255 if (target_has_execution)
6256 {
6257 if (last.kind != TARGET_WAITKIND_SIGNALLED
6258 && last.kind != TARGET_WAITKIND_EXITED)
6259 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6260 Delete any breakpoint that is to be deleted at the next stop. */
6261 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6262 }
6263
6264 /* Try to get rid of automatically added inferiors that are no
6265 longer needed. Keeping those around slows down things linearly.
6266 Note that this never removes the current inferior. */
6267 prune_inferiors ();
6268 }
6269
6270 static int
6271 hook_stop_stub (void *cmd)
6272 {
6273 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6274 return (0);
6275 }
6276 \f
6277 int
6278 signal_stop_state (int signo)
6279 {
6280 return signal_stop[signo];
6281 }
6282
6283 int
6284 signal_print_state (int signo)
6285 {
6286 return signal_print[signo];
6287 }
6288
6289 int
6290 signal_pass_state (int signo)
6291 {
6292 return signal_program[signo];
6293 }
6294
6295 static void
6296 signal_cache_update (int signo)
6297 {
6298 if (signo == -1)
6299 {
6300 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6301 signal_cache_update (signo);
6302
6303 return;
6304 }
6305
6306 signal_pass[signo] = (signal_stop[signo] == 0
6307 && signal_print[signo] == 0
6308 && signal_program[signo] == 1
6309 && signal_catch[signo] == 0);
6310 }
6311
6312 int
6313 signal_stop_update (int signo, int state)
6314 {
6315 int ret = signal_stop[signo];
6316
6317 signal_stop[signo] = state;
6318 signal_cache_update (signo);
6319 return ret;
6320 }
6321
6322 int
6323 signal_print_update (int signo, int state)
6324 {
6325 int ret = signal_print[signo];
6326
6327 signal_print[signo] = state;
6328 signal_cache_update (signo);
6329 return ret;
6330 }
6331
6332 int
6333 signal_pass_update (int signo, int state)
6334 {
6335 int ret = signal_program[signo];
6336
6337 signal_program[signo] = state;
6338 signal_cache_update (signo);
6339 return ret;
6340 }
6341
6342 /* Update the global 'signal_catch' from INFO and notify the
6343 target. */
6344
6345 void
6346 signal_catch_update (const unsigned int *info)
6347 {
6348 int i;
6349
6350 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6351 signal_catch[i] = info[i] > 0;
6352 signal_cache_update (-1);
6353 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6354 }
6355
6356 static void
6357 sig_print_header (void)
6358 {
6359 printf_filtered (_("Signal Stop\tPrint\tPass "
6360 "to program\tDescription\n"));
6361 }
6362
6363 static void
6364 sig_print_info (enum gdb_signal oursig)
6365 {
6366 const char *name = gdb_signal_to_name (oursig);
6367 int name_padding = 13 - strlen (name);
6368
6369 if (name_padding <= 0)
6370 name_padding = 0;
6371
6372 printf_filtered ("%s", name);
6373 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6374 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6375 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6376 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6377 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6378 }
6379
6380 /* Specify how various signals in the inferior should be handled. */
6381
6382 static void
6383 handle_command (char *args, int from_tty)
6384 {
6385 char **argv;
6386 int digits, wordlen;
6387 int sigfirst, signum, siglast;
6388 enum gdb_signal oursig;
6389 int allsigs;
6390 int nsigs;
6391 unsigned char *sigs;
6392 struct cleanup *old_chain;
6393
6394 if (args == NULL)
6395 {
6396 error_no_arg (_("signal to handle"));
6397 }
6398
6399 /* Allocate and zero an array of flags for which signals to handle. */
6400
6401 nsigs = (int) GDB_SIGNAL_LAST;
6402 sigs = (unsigned char *) alloca (nsigs);
6403 memset (sigs, 0, nsigs);
6404
6405 /* Break the command line up into args. */
6406
6407 argv = gdb_buildargv (args);
6408 old_chain = make_cleanup_freeargv (argv);
6409
6410 /* Walk through the args, looking for signal oursigs, signal names, and
6411 actions. Signal numbers and signal names may be interspersed with
6412 actions, with the actions being performed for all signals cumulatively
6413 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6414
6415 while (*argv != NULL)
6416 {
6417 wordlen = strlen (*argv);
6418 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6419 {;
6420 }
6421 allsigs = 0;
6422 sigfirst = siglast = -1;
6423
6424 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6425 {
6426 /* Apply action to all signals except those used by the
6427 debugger. Silently skip those. */
6428 allsigs = 1;
6429 sigfirst = 0;
6430 siglast = nsigs - 1;
6431 }
6432 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6433 {
6434 SET_SIGS (nsigs, sigs, signal_stop);
6435 SET_SIGS (nsigs, sigs, signal_print);
6436 }
6437 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6438 {
6439 UNSET_SIGS (nsigs, sigs, signal_program);
6440 }
6441 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6442 {
6443 SET_SIGS (nsigs, sigs, signal_print);
6444 }
6445 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6446 {
6447 SET_SIGS (nsigs, sigs, signal_program);
6448 }
6449 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6450 {
6451 UNSET_SIGS (nsigs, sigs, signal_stop);
6452 }
6453 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6454 {
6455 SET_SIGS (nsigs, sigs, signal_program);
6456 }
6457 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6458 {
6459 UNSET_SIGS (nsigs, sigs, signal_print);
6460 UNSET_SIGS (nsigs, sigs, signal_stop);
6461 }
6462 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6463 {
6464 UNSET_SIGS (nsigs, sigs, signal_program);
6465 }
6466 else if (digits > 0)
6467 {
6468 /* It is numeric. The numeric signal refers to our own
6469 internal signal numbering from target.h, not to host/target
6470 signal number. This is a feature; users really should be
6471 using symbolic names anyway, and the common ones like
6472 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6473
6474 sigfirst = siglast = (int)
6475 gdb_signal_from_command (atoi (*argv));
6476 if ((*argv)[digits] == '-')
6477 {
6478 siglast = (int)
6479 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6480 }
6481 if (sigfirst > siglast)
6482 {
6483 /* Bet he didn't figure we'd think of this case... */
6484 signum = sigfirst;
6485 sigfirst = siglast;
6486 siglast = signum;
6487 }
6488 }
6489 else
6490 {
6491 oursig = gdb_signal_from_name (*argv);
6492 if (oursig != GDB_SIGNAL_UNKNOWN)
6493 {
6494 sigfirst = siglast = (int) oursig;
6495 }
6496 else
6497 {
6498 /* Not a number and not a recognized flag word => complain. */
6499 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6500 }
6501 }
6502
6503 /* If any signal numbers or symbol names were found, set flags for
6504 which signals to apply actions to. */
6505
6506 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6507 {
6508 switch ((enum gdb_signal) signum)
6509 {
6510 case GDB_SIGNAL_TRAP:
6511 case GDB_SIGNAL_INT:
6512 if (!allsigs && !sigs[signum])
6513 {
6514 if (query (_("%s is used by the debugger.\n\
6515 Are you sure you want to change it? "),
6516 gdb_signal_to_name ((enum gdb_signal) signum)))
6517 {
6518 sigs[signum] = 1;
6519 }
6520 else
6521 {
6522 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6523 gdb_flush (gdb_stdout);
6524 }
6525 }
6526 break;
6527 case GDB_SIGNAL_0:
6528 case GDB_SIGNAL_DEFAULT:
6529 case GDB_SIGNAL_UNKNOWN:
6530 /* Make sure that "all" doesn't print these. */
6531 break;
6532 default:
6533 sigs[signum] = 1;
6534 break;
6535 }
6536 }
6537
6538 argv++;
6539 }
6540
6541 for (signum = 0; signum < nsigs; signum++)
6542 if (sigs[signum])
6543 {
6544 signal_cache_update (-1);
6545 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6546 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6547
6548 if (from_tty)
6549 {
6550 /* Show the results. */
6551 sig_print_header ();
6552 for (; signum < nsigs; signum++)
6553 if (sigs[signum])
6554 sig_print_info (signum);
6555 }
6556
6557 break;
6558 }
6559
6560 do_cleanups (old_chain);
6561 }
6562
6563 /* Complete the "handle" command. */
6564
6565 static VEC (char_ptr) *
6566 handle_completer (struct cmd_list_element *ignore,
6567 const char *text, const char *word)
6568 {
6569 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6570 static const char * const keywords[] =
6571 {
6572 "all",
6573 "stop",
6574 "ignore",
6575 "print",
6576 "pass",
6577 "nostop",
6578 "noignore",
6579 "noprint",
6580 "nopass",
6581 NULL,
6582 };
6583
6584 vec_signals = signal_completer (ignore, text, word);
6585 vec_keywords = complete_on_enum (keywords, word, word);
6586
6587 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6588 VEC_free (char_ptr, vec_signals);
6589 VEC_free (char_ptr, vec_keywords);
6590 return return_val;
6591 }
6592
6593 static void
6594 xdb_handle_command (char *args, int from_tty)
6595 {
6596 char **argv;
6597 struct cleanup *old_chain;
6598
6599 if (args == NULL)
6600 error_no_arg (_("xdb command"));
6601
6602 /* Break the command line up into args. */
6603
6604 argv = gdb_buildargv (args);
6605 old_chain = make_cleanup_freeargv (argv);
6606 if (argv[1] != (char *) NULL)
6607 {
6608 char *argBuf;
6609 int bufLen;
6610
6611 bufLen = strlen (argv[0]) + 20;
6612 argBuf = (char *) xmalloc (bufLen);
6613 if (argBuf)
6614 {
6615 int validFlag = 1;
6616 enum gdb_signal oursig;
6617
6618 oursig = gdb_signal_from_name (argv[0]);
6619 memset (argBuf, 0, bufLen);
6620 if (strcmp (argv[1], "Q") == 0)
6621 sprintf (argBuf, "%s %s", argv[0], "noprint");
6622 else
6623 {
6624 if (strcmp (argv[1], "s") == 0)
6625 {
6626 if (!signal_stop[oursig])
6627 sprintf (argBuf, "%s %s", argv[0], "stop");
6628 else
6629 sprintf (argBuf, "%s %s", argv[0], "nostop");
6630 }
6631 else if (strcmp (argv[1], "i") == 0)
6632 {
6633 if (!signal_program[oursig])
6634 sprintf (argBuf, "%s %s", argv[0], "pass");
6635 else
6636 sprintf (argBuf, "%s %s", argv[0], "nopass");
6637 }
6638 else if (strcmp (argv[1], "r") == 0)
6639 {
6640 if (!signal_print[oursig])
6641 sprintf (argBuf, "%s %s", argv[0], "print");
6642 else
6643 sprintf (argBuf, "%s %s", argv[0], "noprint");
6644 }
6645 else
6646 validFlag = 0;
6647 }
6648 if (validFlag)
6649 handle_command (argBuf, from_tty);
6650 else
6651 printf_filtered (_("Invalid signal handling flag.\n"));
6652 if (argBuf)
6653 xfree (argBuf);
6654 }
6655 }
6656 do_cleanups (old_chain);
6657 }
6658
6659 enum gdb_signal
6660 gdb_signal_from_command (int num)
6661 {
6662 if (num >= 1 && num <= 15)
6663 return (enum gdb_signal) num;
6664 error (_("Only signals 1-15 are valid as numeric signals.\n\
6665 Use \"info signals\" for a list of symbolic signals."));
6666 }
6667
6668 /* Print current contents of the tables set by the handle command.
6669 It is possible we should just be printing signals actually used
6670 by the current target (but for things to work right when switching
6671 targets, all signals should be in the signal tables). */
6672
6673 static void
6674 signals_info (char *signum_exp, int from_tty)
6675 {
6676 enum gdb_signal oursig;
6677
6678 sig_print_header ();
6679
6680 if (signum_exp)
6681 {
6682 /* First see if this is a symbol name. */
6683 oursig = gdb_signal_from_name (signum_exp);
6684 if (oursig == GDB_SIGNAL_UNKNOWN)
6685 {
6686 /* No, try numeric. */
6687 oursig =
6688 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6689 }
6690 sig_print_info (oursig);
6691 return;
6692 }
6693
6694 printf_filtered ("\n");
6695 /* These ugly casts brought to you by the native VAX compiler. */
6696 for (oursig = GDB_SIGNAL_FIRST;
6697 (int) oursig < (int) GDB_SIGNAL_LAST;
6698 oursig = (enum gdb_signal) ((int) oursig + 1))
6699 {
6700 QUIT;
6701
6702 if (oursig != GDB_SIGNAL_UNKNOWN
6703 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6704 sig_print_info (oursig);
6705 }
6706
6707 printf_filtered (_("\nUse the \"handle\" command "
6708 "to change these tables.\n"));
6709 }
6710
6711 /* Check if it makes sense to read $_siginfo from the current thread
6712 at this point. If not, throw an error. */
6713
6714 static void
6715 validate_siginfo_access (void)
6716 {
6717 /* No current inferior, no siginfo. */
6718 if (ptid_equal (inferior_ptid, null_ptid))
6719 error (_("No thread selected."));
6720
6721 /* Don't try to read from a dead thread. */
6722 if (is_exited (inferior_ptid))
6723 error (_("The current thread has terminated"));
6724
6725 /* ... or from a spinning thread. */
6726 if (is_running (inferior_ptid))
6727 error (_("Selected thread is running."));
6728 }
6729
6730 /* The $_siginfo convenience variable is a bit special. We don't know
6731 for sure the type of the value until we actually have a chance to
6732 fetch the data. The type can change depending on gdbarch, so it is
6733 also dependent on which thread you have selected.
6734
6735 1. making $_siginfo be an internalvar that creates a new value on
6736 access.
6737
6738 2. making the value of $_siginfo be an lval_computed value. */
6739
6740 /* This function implements the lval_computed support for reading a
6741 $_siginfo value. */
6742
6743 static void
6744 siginfo_value_read (struct value *v)
6745 {
6746 LONGEST transferred;
6747
6748 validate_siginfo_access ();
6749
6750 transferred =
6751 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6752 NULL,
6753 value_contents_all_raw (v),
6754 value_offset (v),
6755 TYPE_LENGTH (value_type (v)));
6756
6757 if (transferred != TYPE_LENGTH (value_type (v)))
6758 error (_("Unable to read siginfo"));
6759 }
6760
6761 /* This function implements the lval_computed support for writing a
6762 $_siginfo value. */
6763
6764 static void
6765 siginfo_value_write (struct value *v, struct value *fromval)
6766 {
6767 LONGEST transferred;
6768
6769 validate_siginfo_access ();
6770
6771 transferred = target_write (&current_target,
6772 TARGET_OBJECT_SIGNAL_INFO,
6773 NULL,
6774 value_contents_all_raw (fromval),
6775 value_offset (v),
6776 TYPE_LENGTH (value_type (fromval)));
6777
6778 if (transferred != TYPE_LENGTH (value_type (fromval)))
6779 error (_("Unable to write siginfo"));
6780 }
6781
6782 static const struct lval_funcs siginfo_value_funcs =
6783 {
6784 siginfo_value_read,
6785 siginfo_value_write
6786 };
6787
6788 /* Return a new value with the correct type for the siginfo object of
6789 the current thread using architecture GDBARCH. Return a void value
6790 if there's no object available. */
6791
6792 static struct value *
6793 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6794 void *ignore)
6795 {
6796 if (target_has_stack
6797 && !ptid_equal (inferior_ptid, null_ptid)
6798 && gdbarch_get_siginfo_type_p (gdbarch))
6799 {
6800 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6801
6802 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6803 }
6804
6805 return allocate_value (builtin_type (gdbarch)->builtin_void);
6806 }
6807
6808 \f
6809 /* infcall_suspend_state contains state about the program itself like its
6810 registers and any signal it received when it last stopped.
6811 This state must be restored regardless of how the inferior function call
6812 ends (either successfully, or after it hits a breakpoint or signal)
6813 if the program is to properly continue where it left off. */
6814
6815 struct infcall_suspend_state
6816 {
6817 struct thread_suspend_state thread_suspend;
6818 #if 0 /* Currently unused and empty structures are not valid C. */
6819 struct inferior_suspend_state inferior_suspend;
6820 #endif
6821
6822 /* Other fields: */
6823 CORE_ADDR stop_pc;
6824 struct regcache *registers;
6825
6826 /* Format of SIGINFO_DATA or NULL if it is not present. */
6827 struct gdbarch *siginfo_gdbarch;
6828
6829 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6830 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6831 content would be invalid. */
6832 gdb_byte *siginfo_data;
6833 };
6834
6835 struct infcall_suspend_state *
6836 save_infcall_suspend_state (void)
6837 {
6838 struct infcall_suspend_state *inf_state;
6839 struct thread_info *tp = inferior_thread ();
6840 #if 0
6841 struct inferior *inf = current_inferior ();
6842 #endif
6843 struct regcache *regcache = get_current_regcache ();
6844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6845 gdb_byte *siginfo_data = NULL;
6846
6847 if (gdbarch_get_siginfo_type_p (gdbarch))
6848 {
6849 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6850 size_t len = TYPE_LENGTH (type);
6851 struct cleanup *back_to;
6852
6853 siginfo_data = xmalloc (len);
6854 back_to = make_cleanup (xfree, siginfo_data);
6855
6856 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6857 siginfo_data, 0, len) == len)
6858 discard_cleanups (back_to);
6859 else
6860 {
6861 /* Errors ignored. */
6862 do_cleanups (back_to);
6863 siginfo_data = NULL;
6864 }
6865 }
6866
6867 inf_state = XCNEW (struct infcall_suspend_state);
6868
6869 if (siginfo_data)
6870 {
6871 inf_state->siginfo_gdbarch = gdbarch;
6872 inf_state->siginfo_data = siginfo_data;
6873 }
6874
6875 inf_state->thread_suspend = tp->suspend;
6876 #if 0 /* Currently unused and empty structures are not valid C. */
6877 inf_state->inferior_suspend = inf->suspend;
6878 #endif
6879
6880 /* run_inferior_call will not use the signal due to its `proceed' call with
6881 GDB_SIGNAL_0 anyway. */
6882 tp->suspend.stop_signal = GDB_SIGNAL_0;
6883
6884 inf_state->stop_pc = stop_pc;
6885
6886 inf_state->registers = regcache_dup (regcache);
6887
6888 return inf_state;
6889 }
6890
6891 /* Restore inferior session state to INF_STATE. */
6892
6893 void
6894 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6895 {
6896 struct thread_info *tp = inferior_thread ();
6897 #if 0
6898 struct inferior *inf = current_inferior ();
6899 #endif
6900 struct regcache *regcache = get_current_regcache ();
6901 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6902
6903 tp->suspend = inf_state->thread_suspend;
6904 #if 0 /* Currently unused and empty structures are not valid C. */
6905 inf->suspend = inf_state->inferior_suspend;
6906 #endif
6907
6908 stop_pc = inf_state->stop_pc;
6909
6910 if (inf_state->siginfo_gdbarch == gdbarch)
6911 {
6912 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6913
6914 /* Errors ignored. */
6915 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6916 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6917 }
6918
6919 /* The inferior can be gone if the user types "print exit(0)"
6920 (and perhaps other times). */
6921 if (target_has_execution)
6922 /* NB: The register write goes through to the target. */
6923 regcache_cpy (regcache, inf_state->registers);
6924
6925 discard_infcall_suspend_state (inf_state);
6926 }
6927
6928 static void
6929 do_restore_infcall_suspend_state_cleanup (void *state)
6930 {
6931 restore_infcall_suspend_state (state);
6932 }
6933
6934 struct cleanup *
6935 make_cleanup_restore_infcall_suspend_state
6936 (struct infcall_suspend_state *inf_state)
6937 {
6938 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6939 }
6940
6941 void
6942 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6943 {
6944 regcache_xfree (inf_state->registers);
6945 xfree (inf_state->siginfo_data);
6946 xfree (inf_state);
6947 }
6948
6949 struct regcache *
6950 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6951 {
6952 return inf_state->registers;
6953 }
6954
6955 /* infcall_control_state contains state regarding gdb's control of the
6956 inferior itself like stepping control. It also contains session state like
6957 the user's currently selected frame. */
6958
6959 struct infcall_control_state
6960 {
6961 struct thread_control_state thread_control;
6962 struct inferior_control_state inferior_control;
6963
6964 /* Other fields: */
6965 enum stop_stack_kind stop_stack_dummy;
6966 int stopped_by_random_signal;
6967 int stop_after_trap;
6968
6969 /* ID if the selected frame when the inferior function call was made. */
6970 struct frame_id selected_frame_id;
6971 };
6972
6973 /* Save all of the information associated with the inferior<==>gdb
6974 connection. */
6975
6976 struct infcall_control_state *
6977 save_infcall_control_state (void)
6978 {
6979 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6980 struct thread_info *tp = inferior_thread ();
6981 struct inferior *inf = current_inferior ();
6982
6983 inf_status->thread_control = tp->control;
6984 inf_status->inferior_control = inf->control;
6985
6986 tp->control.step_resume_breakpoint = NULL;
6987 tp->control.exception_resume_breakpoint = NULL;
6988
6989 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6990 chain. If caller's caller is walking the chain, they'll be happier if we
6991 hand them back the original chain when restore_infcall_control_state is
6992 called. */
6993 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6994
6995 /* Other fields: */
6996 inf_status->stop_stack_dummy = stop_stack_dummy;
6997 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6998 inf_status->stop_after_trap = stop_after_trap;
6999
7000 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7001
7002 return inf_status;
7003 }
7004
7005 static int
7006 restore_selected_frame (void *args)
7007 {
7008 struct frame_id *fid = (struct frame_id *) args;
7009 struct frame_info *frame;
7010
7011 frame = frame_find_by_id (*fid);
7012
7013 /* If inf_status->selected_frame_id is NULL, there was no previously
7014 selected frame. */
7015 if (frame == NULL)
7016 {
7017 warning (_("Unable to restore previously selected frame."));
7018 return 0;
7019 }
7020
7021 select_frame (frame);
7022
7023 return (1);
7024 }
7025
7026 /* Restore inferior session state to INF_STATUS. */
7027
7028 void
7029 restore_infcall_control_state (struct infcall_control_state *inf_status)
7030 {
7031 struct thread_info *tp = inferior_thread ();
7032 struct inferior *inf = current_inferior ();
7033
7034 if (tp->control.step_resume_breakpoint)
7035 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7036
7037 if (tp->control.exception_resume_breakpoint)
7038 tp->control.exception_resume_breakpoint->disposition
7039 = disp_del_at_next_stop;
7040
7041 /* Handle the bpstat_copy of the chain. */
7042 bpstat_clear (&tp->control.stop_bpstat);
7043
7044 tp->control = inf_status->thread_control;
7045 inf->control = inf_status->inferior_control;
7046
7047 /* Other fields: */
7048 stop_stack_dummy = inf_status->stop_stack_dummy;
7049 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7050 stop_after_trap = inf_status->stop_after_trap;
7051
7052 if (target_has_stack)
7053 {
7054 /* The point of catch_errors is that if the stack is clobbered,
7055 walking the stack might encounter a garbage pointer and
7056 error() trying to dereference it. */
7057 if (catch_errors
7058 (restore_selected_frame, &inf_status->selected_frame_id,
7059 "Unable to restore previously selected frame:\n",
7060 RETURN_MASK_ERROR) == 0)
7061 /* Error in restoring the selected frame. Select the innermost
7062 frame. */
7063 select_frame (get_current_frame ());
7064 }
7065
7066 xfree (inf_status);
7067 }
7068
7069 static void
7070 do_restore_infcall_control_state_cleanup (void *sts)
7071 {
7072 restore_infcall_control_state (sts);
7073 }
7074
7075 struct cleanup *
7076 make_cleanup_restore_infcall_control_state
7077 (struct infcall_control_state *inf_status)
7078 {
7079 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7080 }
7081
7082 void
7083 discard_infcall_control_state (struct infcall_control_state *inf_status)
7084 {
7085 if (inf_status->thread_control.step_resume_breakpoint)
7086 inf_status->thread_control.step_resume_breakpoint->disposition
7087 = disp_del_at_next_stop;
7088
7089 if (inf_status->thread_control.exception_resume_breakpoint)
7090 inf_status->thread_control.exception_resume_breakpoint->disposition
7091 = disp_del_at_next_stop;
7092
7093 /* See save_infcall_control_state for info on stop_bpstat. */
7094 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7095
7096 xfree (inf_status);
7097 }
7098 \f
7099 /* restore_inferior_ptid() will be used by the cleanup machinery
7100 to restore the inferior_ptid value saved in a call to
7101 save_inferior_ptid(). */
7102
7103 static void
7104 restore_inferior_ptid (void *arg)
7105 {
7106 ptid_t *saved_ptid_ptr = arg;
7107
7108 inferior_ptid = *saved_ptid_ptr;
7109 xfree (arg);
7110 }
7111
7112 /* Save the value of inferior_ptid so that it may be restored by a
7113 later call to do_cleanups(). Returns the struct cleanup pointer
7114 needed for later doing the cleanup. */
7115
7116 struct cleanup *
7117 save_inferior_ptid (void)
7118 {
7119 ptid_t *saved_ptid_ptr;
7120
7121 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7122 *saved_ptid_ptr = inferior_ptid;
7123 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7124 }
7125
7126 /* See inferior.h. */
7127
7128 void
7129 clear_exit_convenience_vars (void)
7130 {
7131 clear_internalvar (lookup_internalvar ("_exitsignal"));
7132 clear_internalvar (lookup_internalvar ("_exitcode"));
7133 }
7134 \f
7135
7136 /* User interface for reverse debugging:
7137 Set exec-direction / show exec-direction commands
7138 (returns error unless target implements to_set_exec_direction method). */
7139
7140 int execution_direction = EXEC_FORWARD;
7141 static const char exec_forward[] = "forward";
7142 static const char exec_reverse[] = "reverse";
7143 static const char *exec_direction = exec_forward;
7144 static const char *const exec_direction_names[] = {
7145 exec_forward,
7146 exec_reverse,
7147 NULL
7148 };
7149
7150 static void
7151 set_exec_direction_func (char *args, int from_tty,
7152 struct cmd_list_element *cmd)
7153 {
7154 if (target_can_execute_reverse)
7155 {
7156 if (!strcmp (exec_direction, exec_forward))
7157 execution_direction = EXEC_FORWARD;
7158 else if (!strcmp (exec_direction, exec_reverse))
7159 execution_direction = EXEC_REVERSE;
7160 }
7161 else
7162 {
7163 exec_direction = exec_forward;
7164 error (_("Target does not support this operation."));
7165 }
7166 }
7167
7168 static void
7169 show_exec_direction_func (struct ui_file *out, int from_tty,
7170 struct cmd_list_element *cmd, const char *value)
7171 {
7172 switch (execution_direction) {
7173 case EXEC_FORWARD:
7174 fprintf_filtered (out, _("Forward.\n"));
7175 break;
7176 case EXEC_REVERSE:
7177 fprintf_filtered (out, _("Reverse.\n"));
7178 break;
7179 default:
7180 internal_error (__FILE__, __LINE__,
7181 _("bogus execution_direction value: %d"),
7182 (int) execution_direction);
7183 }
7184 }
7185
7186 static void
7187 show_schedule_multiple (struct ui_file *file, int from_tty,
7188 struct cmd_list_element *c, const char *value)
7189 {
7190 fprintf_filtered (file, _("Resuming the execution of threads "
7191 "of all processes is %s.\n"), value);
7192 }
7193
7194 /* Implementation of `siginfo' variable. */
7195
7196 static const struct internalvar_funcs siginfo_funcs =
7197 {
7198 siginfo_make_value,
7199 NULL,
7200 NULL
7201 };
7202
7203 void
7204 _initialize_infrun (void)
7205 {
7206 int i;
7207 int numsigs;
7208 struct cmd_list_element *c;
7209
7210 add_info ("signals", signals_info, _("\
7211 What debugger does when program gets various signals.\n\
7212 Specify a signal as argument to print info on that signal only."));
7213 add_info_alias ("handle", "signals", 0);
7214
7215 c = add_com ("handle", class_run, handle_command, _("\
7216 Specify how to handle signals.\n\
7217 Usage: handle SIGNAL [ACTIONS]\n\
7218 Args are signals and actions to apply to those signals.\n\
7219 If no actions are specified, the current settings for the specified signals\n\
7220 will be displayed instead.\n\
7221 \n\
7222 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7223 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7224 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7225 The special arg \"all\" is recognized to mean all signals except those\n\
7226 used by the debugger, typically SIGTRAP and SIGINT.\n\
7227 \n\
7228 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7229 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7230 Stop means reenter debugger if this signal happens (implies print).\n\
7231 Print means print a message if this signal happens.\n\
7232 Pass means let program see this signal; otherwise program doesn't know.\n\
7233 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7234 Pass and Stop may be combined.\n\
7235 \n\
7236 Multiple signals may be specified. Signal numbers and signal names\n\
7237 may be interspersed with actions, with the actions being performed for\n\
7238 all signals cumulatively specified."));
7239 set_cmd_completer (c, handle_completer);
7240
7241 if (xdb_commands)
7242 {
7243 add_com ("lz", class_info, signals_info, _("\
7244 What debugger does when program gets various signals.\n\
7245 Specify a signal as argument to print info on that signal only."));
7246 add_com ("z", class_run, xdb_handle_command, _("\
7247 Specify how to handle a signal.\n\
7248 Args are signals and actions to apply to those signals.\n\
7249 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7250 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7251 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7252 The special arg \"all\" is recognized to mean all signals except those\n\
7253 used by the debugger, typically SIGTRAP and SIGINT.\n\
7254 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7255 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7256 nopass), \"Q\" (noprint)\n\
7257 Stop means reenter debugger if this signal happens (implies print).\n\
7258 Print means print a message if this signal happens.\n\
7259 Pass means let program see this signal; otherwise program doesn't know.\n\
7260 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7261 Pass and Stop may be combined."));
7262 }
7263
7264 if (!dbx_commands)
7265 stop_command = add_cmd ("stop", class_obscure,
7266 not_just_help_class_command, _("\
7267 There is no `stop' command, but you can set a hook on `stop'.\n\
7268 This allows you to set a list of commands to be run each time execution\n\
7269 of the program stops."), &cmdlist);
7270
7271 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7272 Set inferior debugging."), _("\
7273 Show inferior debugging."), _("\
7274 When non-zero, inferior specific debugging is enabled."),
7275 NULL,
7276 show_debug_infrun,
7277 &setdebuglist, &showdebuglist);
7278
7279 add_setshow_boolean_cmd ("displaced", class_maintenance,
7280 &debug_displaced, _("\
7281 Set displaced stepping debugging."), _("\
7282 Show displaced stepping debugging."), _("\
7283 When non-zero, displaced stepping specific debugging is enabled."),
7284 NULL,
7285 show_debug_displaced,
7286 &setdebuglist, &showdebuglist);
7287
7288 add_setshow_boolean_cmd ("non-stop", no_class,
7289 &non_stop_1, _("\
7290 Set whether gdb controls the inferior in non-stop mode."), _("\
7291 Show whether gdb controls the inferior in non-stop mode."), _("\
7292 When debugging a multi-threaded program and this setting is\n\
7293 off (the default, also called all-stop mode), when one thread stops\n\
7294 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7295 all other threads in the program while you interact with the thread of\n\
7296 interest. When you continue or step a thread, you can allow the other\n\
7297 threads to run, or have them remain stopped, but while you inspect any\n\
7298 thread's state, all threads stop.\n\
7299 \n\
7300 In non-stop mode, when one thread stops, other threads can continue\n\
7301 to run freely. You'll be able to step each thread independently,\n\
7302 leave it stopped or free to run as needed."),
7303 set_non_stop,
7304 show_non_stop,
7305 &setlist,
7306 &showlist);
7307
7308 numsigs = (int) GDB_SIGNAL_LAST;
7309 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7310 signal_print = (unsigned char *)
7311 xmalloc (sizeof (signal_print[0]) * numsigs);
7312 signal_program = (unsigned char *)
7313 xmalloc (sizeof (signal_program[0]) * numsigs);
7314 signal_catch = (unsigned char *)
7315 xmalloc (sizeof (signal_catch[0]) * numsigs);
7316 signal_pass = (unsigned char *)
7317 xmalloc (sizeof (signal_program[0]) * numsigs);
7318 for (i = 0; i < numsigs; i++)
7319 {
7320 signal_stop[i] = 1;
7321 signal_print[i] = 1;
7322 signal_program[i] = 1;
7323 signal_catch[i] = 0;
7324 }
7325
7326 /* Signals caused by debugger's own actions
7327 should not be given to the program afterwards. */
7328 signal_program[GDB_SIGNAL_TRAP] = 0;
7329 signal_program[GDB_SIGNAL_INT] = 0;
7330
7331 /* Signals that are not errors should not normally enter the debugger. */
7332 signal_stop[GDB_SIGNAL_ALRM] = 0;
7333 signal_print[GDB_SIGNAL_ALRM] = 0;
7334 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7335 signal_print[GDB_SIGNAL_VTALRM] = 0;
7336 signal_stop[GDB_SIGNAL_PROF] = 0;
7337 signal_print[GDB_SIGNAL_PROF] = 0;
7338 signal_stop[GDB_SIGNAL_CHLD] = 0;
7339 signal_print[GDB_SIGNAL_CHLD] = 0;
7340 signal_stop[GDB_SIGNAL_IO] = 0;
7341 signal_print[GDB_SIGNAL_IO] = 0;
7342 signal_stop[GDB_SIGNAL_POLL] = 0;
7343 signal_print[GDB_SIGNAL_POLL] = 0;
7344 signal_stop[GDB_SIGNAL_URG] = 0;
7345 signal_print[GDB_SIGNAL_URG] = 0;
7346 signal_stop[GDB_SIGNAL_WINCH] = 0;
7347 signal_print[GDB_SIGNAL_WINCH] = 0;
7348 signal_stop[GDB_SIGNAL_PRIO] = 0;
7349 signal_print[GDB_SIGNAL_PRIO] = 0;
7350
7351 /* These signals are used internally by user-level thread
7352 implementations. (See signal(5) on Solaris.) Like the above
7353 signals, a healthy program receives and handles them as part of
7354 its normal operation. */
7355 signal_stop[GDB_SIGNAL_LWP] = 0;
7356 signal_print[GDB_SIGNAL_LWP] = 0;
7357 signal_stop[GDB_SIGNAL_WAITING] = 0;
7358 signal_print[GDB_SIGNAL_WAITING] = 0;
7359 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7360 signal_print[GDB_SIGNAL_CANCEL] = 0;
7361
7362 /* Update cached state. */
7363 signal_cache_update (-1);
7364
7365 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7366 &stop_on_solib_events, _("\
7367 Set stopping for shared library events."), _("\
7368 Show stopping for shared library events."), _("\
7369 If nonzero, gdb will give control to the user when the dynamic linker\n\
7370 notifies gdb of shared library events. The most common event of interest\n\
7371 to the user would be loading/unloading of a new library."),
7372 set_stop_on_solib_events,
7373 show_stop_on_solib_events,
7374 &setlist, &showlist);
7375
7376 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7377 follow_fork_mode_kind_names,
7378 &follow_fork_mode_string, _("\
7379 Set debugger response to a program call of fork or vfork."), _("\
7380 Show debugger response to a program call of fork or vfork."), _("\
7381 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7382 parent - the original process is debugged after a fork\n\
7383 child - the new process is debugged after a fork\n\
7384 The unfollowed process will continue to run.\n\
7385 By default, the debugger will follow the parent process."),
7386 NULL,
7387 show_follow_fork_mode_string,
7388 &setlist, &showlist);
7389
7390 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7391 follow_exec_mode_names,
7392 &follow_exec_mode_string, _("\
7393 Set debugger response to a program call of exec."), _("\
7394 Show debugger response to a program call of exec."), _("\
7395 An exec call replaces the program image of a process.\n\
7396 \n\
7397 follow-exec-mode can be:\n\
7398 \n\
7399 new - the debugger creates a new inferior and rebinds the process\n\
7400 to this new inferior. The program the process was running before\n\
7401 the exec call can be restarted afterwards by restarting the original\n\
7402 inferior.\n\
7403 \n\
7404 same - the debugger keeps the process bound to the same inferior.\n\
7405 The new executable image replaces the previous executable loaded in\n\
7406 the inferior. Restarting the inferior after the exec call restarts\n\
7407 the executable the process was running after the exec call.\n\
7408 \n\
7409 By default, the debugger will use the same inferior."),
7410 NULL,
7411 show_follow_exec_mode_string,
7412 &setlist, &showlist);
7413
7414 add_setshow_enum_cmd ("scheduler-locking", class_run,
7415 scheduler_enums, &scheduler_mode, _("\
7416 Set mode for locking scheduler during execution."), _("\
7417 Show mode for locking scheduler during execution."), _("\
7418 off == no locking (threads may preempt at any time)\n\
7419 on == full locking (no thread except the current thread may run)\n\
7420 step == scheduler locked during every single-step operation.\n\
7421 In this mode, no other thread may run during a step command.\n\
7422 Other threads may run while stepping over a function call ('next')."),
7423 set_schedlock_func, /* traps on target vector */
7424 show_scheduler_mode,
7425 &setlist, &showlist);
7426
7427 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7428 Set mode for resuming threads of all processes."), _("\
7429 Show mode for resuming threads of all processes."), _("\
7430 When on, execution commands (such as 'continue' or 'next') resume all\n\
7431 threads of all processes. When off (which is the default), execution\n\
7432 commands only resume the threads of the current process. The set of\n\
7433 threads that are resumed is further refined by the scheduler-locking\n\
7434 mode (see help set scheduler-locking)."),
7435 NULL,
7436 show_schedule_multiple,
7437 &setlist, &showlist);
7438
7439 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7440 Set mode of the step operation."), _("\
7441 Show mode of the step operation."), _("\
7442 When set, doing a step over a function without debug line information\n\
7443 will stop at the first instruction of that function. Otherwise, the\n\
7444 function is skipped and the step command stops at a different source line."),
7445 NULL,
7446 show_step_stop_if_no_debug,
7447 &setlist, &showlist);
7448
7449 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7450 &can_use_displaced_stepping, _("\
7451 Set debugger's willingness to use displaced stepping."), _("\
7452 Show debugger's willingness to use displaced stepping."), _("\
7453 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7454 supported by the target architecture. If off, gdb will not use displaced\n\
7455 stepping to step over breakpoints, even if such is supported by the target\n\
7456 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7457 if the target architecture supports it and non-stop mode is active, but will not\n\
7458 use it in all-stop mode (see help set non-stop)."),
7459 NULL,
7460 show_can_use_displaced_stepping,
7461 &setlist, &showlist);
7462
7463 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7464 &exec_direction, _("Set direction of execution.\n\
7465 Options are 'forward' or 'reverse'."),
7466 _("Show direction of execution (forward/reverse)."),
7467 _("Tells gdb whether to execute forward or backward."),
7468 set_exec_direction_func, show_exec_direction_func,
7469 &setlist, &showlist);
7470
7471 /* Set/show detach-on-fork: user-settable mode. */
7472
7473 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7474 Set whether gdb will detach the child of a fork."), _("\
7475 Show whether gdb will detach the child of a fork."), _("\
7476 Tells gdb whether to detach the child of a fork."),
7477 NULL, NULL, &setlist, &showlist);
7478
7479 /* Set/show disable address space randomization mode. */
7480
7481 add_setshow_boolean_cmd ("disable-randomization", class_support,
7482 &disable_randomization, _("\
7483 Set disabling of debuggee's virtual address space randomization."), _("\
7484 Show disabling of debuggee's virtual address space randomization."), _("\
7485 When this mode is on (which is the default), randomization of the virtual\n\
7486 address space is disabled. Standalone programs run with the randomization\n\
7487 enabled by default on some platforms."),
7488 &set_disable_randomization,
7489 &show_disable_randomization,
7490 &setlist, &showlist);
7491
7492 /* ptid initializations */
7493 inferior_ptid = null_ptid;
7494 target_last_wait_ptid = minus_one_ptid;
7495
7496 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7497 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7498 observer_attach_thread_exit (infrun_thread_thread_exit);
7499 observer_attach_inferior_exit (infrun_inferior_exit);
7500
7501 /* Explicitly create without lookup, since that tries to create a
7502 value with a void typed value, and when we get here, gdbarch
7503 isn't initialized yet. At this point, we're quite sure there
7504 isn't another convenience variable of the same name. */
7505 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7506
7507 add_setshow_boolean_cmd ("observer", no_class,
7508 &observer_mode_1, _("\
7509 Set whether gdb controls the inferior in observer mode."), _("\
7510 Show whether gdb controls the inferior in observer mode."), _("\
7511 In observer mode, GDB can get data from the inferior, but not\n\
7512 affect its execution. Registers and memory may not be changed,\n\
7513 breakpoints may not be set, and the program cannot be interrupted\n\
7514 or signalled."),
7515 set_observer_mode,
7516 show_observer_mode,
7517 &setlist,
7518 &showlist);
7519 }
This page took 0.175037 seconds and 5 git commands to generate.