* dbxread.c, partial-stab.h (near N_SO): SO stabs with blank
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* unistd.h is needed to #define X_OK */
38 #ifdef USG
39 #include <unistd.h>
40 #else
41 #include <sys/file.h>
42 #endif
43
44 /* Prototypes for local functions */
45
46 static void
47 signals_info PARAMS ((char *, int));
48
49 static void
50 handle_command PARAMS ((char *, int));
51
52 static void sig_print_info PARAMS ((enum target_signal));
53
54 static void
55 sig_print_header PARAMS ((void));
56
57 static void
58 resume_cleanups PARAMS ((int));
59
60 static int
61 hook_stop_stub PARAMS ((char *));
62
63 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
64 program. It needs to examine the jmp_buf argument and extract the PC
65 from it. The return value is non-zero on success, zero otherwise. */
66 #ifndef GET_LONGJMP_TARGET
67 #define GET_LONGJMP_TARGET(PC_ADDR) 0
68 #endif
69
70
71 /* Some machines have trampoline code that sits between function callers
72 and the actual functions themselves. If this machine doesn't have
73 such things, disable their processing. */
74 #ifndef SKIP_TRAMPOLINE_CODE
75 #define SKIP_TRAMPOLINE_CODE(pc) 0
76 #endif
77
78 /* For SVR4 shared libraries, each call goes through a small piece of
79 trampoline code in the ".plt" section. IN_SOLIB_TRAMPOLINE evaluates
80 to nonzero if we are current stopped in one of these. */
81 #ifndef IN_SOLIB_TRAMPOLINE
82 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
83 #endif
84
85 /* On some systems, the PC may be left pointing at an instruction that won't
86 actually be executed. This is usually indicated by a bit in the PSW. If
87 we find ourselves in such a state, then we step the target beyond the
88 nullified instruction before returning control to the user so as to avoid
89 confusion. */
90
91 #ifndef INSTRUCTION_NULLIFIED
92 #define INSTRUCTION_NULLIFIED 0
93 #endif
94
95 /* Tables of how to react to signals; the user sets them. */
96
97 static unsigned char *signal_stop;
98 static unsigned char *signal_print;
99 static unsigned char *signal_program;
100
101 #define SET_SIGS(nsigs,sigs,flags) \
102 do { \
103 int signum = (nsigs); \
104 while (signum-- > 0) \
105 if ((sigs)[signum]) \
106 (flags)[signum] = 1; \
107 } while (0)
108
109 #define UNSET_SIGS(nsigs,sigs,flags) \
110 do { \
111 int signum = (nsigs); \
112 while (signum-- > 0) \
113 if ((sigs)[signum]) \
114 (flags)[signum] = 0; \
115 } while (0)
116
117
118 /* Command list pointer for the "stop" placeholder. */
119
120 static struct cmd_list_element *stop_command;
121
122 /* Nonzero if breakpoints are now inserted in the inferior. */
123
124 static int breakpoints_inserted;
125
126 /* Function inferior was in as of last step command. */
127
128 static struct symbol *step_start_function;
129
130 /* Nonzero if we are expecting a trace trap and should proceed from it. */
131
132 static int trap_expected;
133
134 /* Nonzero if the next time we try to continue the inferior, it will
135 step one instruction and generate a spurious trace trap.
136 This is used to compensate for a bug in HP-UX. */
137
138 static int trap_expected_after_continue;
139
140 /* Nonzero means expecting a trace trap
141 and should stop the inferior and return silently when it happens. */
142
143 int stop_after_trap;
144
145 /* Nonzero means expecting a trap and caller will handle it themselves.
146 It is used after attach, due to attaching to a process;
147 when running in the shell before the child program has been exec'd;
148 and when running some kinds of remote stuff (FIXME?). */
149
150 int stop_soon_quietly;
151
152 /* Nonzero if proceed is being used for a "finish" command or a similar
153 situation when stop_registers should be saved. */
154
155 int proceed_to_finish;
156
157 /* Save register contents here when about to pop a stack dummy frame,
158 if-and-only-if proceed_to_finish is set.
159 Thus this contains the return value from the called function (assuming
160 values are returned in a register). */
161
162 char stop_registers[REGISTER_BYTES];
163
164 /* Nonzero if program stopped due to error trying to insert breakpoints. */
165
166 static int breakpoints_failed;
167
168 /* Nonzero after stop if current stack frame should be printed. */
169
170 static int stop_print_frame;
171
172 #ifdef NO_SINGLE_STEP
173 extern int one_stepped; /* From machine dependent code */
174 extern void single_step (); /* Same. */
175 #endif /* NO_SINGLE_STEP */
176
177 \f
178 /* Things to clean up if we QUIT out of resume (). */
179 /* ARGSUSED */
180 static void
181 resume_cleanups (arg)
182 int arg;
183 {
184 normal_stop ();
185 }
186
187 /* Resume the inferior, but allow a QUIT. This is useful if the user
188 wants to interrupt some lengthy single-stepping operation
189 (for child processes, the SIGINT goes to the inferior, and so
190 we get a SIGINT random_signal, but for remote debugging and perhaps
191 other targets, that's not true).
192
193 STEP nonzero if we should step (zero to continue instead).
194 SIG is the signal to give the inferior (zero for none). */
195 void
196 resume (step, sig)
197 int step;
198 enum target_signal sig;
199 {
200 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
201 QUIT;
202
203 #ifdef CANNOT_STEP_BREAKPOINT
204 /* Most targets can step a breakpoint instruction, thus executing it
205 normally. But if this one cannot, just continue and we will hit
206 it anyway. */
207 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
208 step = 0;
209 #endif
210
211 #ifdef NO_SINGLE_STEP
212 if (step) {
213 single_step(sig); /* Do it the hard way, w/temp breakpoints */
214 step = 0; /* ...and don't ask hardware to do it. */
215 }
216 #endif
217
218 /* Handle any optimized stores to the inferior NOW... */
219 #ifdef DO_DEFERRED_STORES
220 DO_DEFERRED_STORES;
221 #endif
222
223 /* Install inferior's terminal modes. */
224 target_terminal_inferior ();
225
226 target_resume (-1, step, sig);
227 discard_cleanups (old_cleanups);
228 }
229
230 \f
231 /* Clear out all variables saying what to do when inferior is continued.
232 First do this, then set the ones you want, then call `proceed'. */
233
234 void
235 clear_proceed_status ()
236 {
237 trap_expected = 0;
238 step_range_start = 0;
239 step_range_end = 0;
240 step_frame_address = 0;
241 step_over_calls = -1;
242 stop_after_trap = 0;
243 stop_soon_quietly = 0;
244 proceed_to_finish = 0;
245 breakpoint_proceeded = 1; /* We're about to proceed... */
246
247 /* Discard any remaining commands or status from previous stop. */
248 bpstat_clear (&stop_bpstat);
249 }
250
251 /* Basic routine for continuing the program in various fashions.
252
253 ADDR is the address to resume at, or -1 for resume where stopped.
254 SIGGNAL is the signal to give it, or 0 for none,
255 or -1 for act according to how it stopped.
256 STEP is nonzero if should trap after one instruction.
257 -1 means return after that and print nothing.
258 You should probably set various step_... variables
259 before calling here, if you are stepping.
260
261 You should call clear_proceed_status before calling proceed. */
262
263 void
264 proceed (addr, siggnal, step)
265 CORE_ADDR addr;
266 enum target_signal siggnal;
267 int step;
268 {
269 int oneproc = 0;
270
271 if (step > 0)
272 step_start_function = find_pc_function (read_pc ());
273 if (step < 0)
274 stop_after_trap = 1;
275
276 if (addr == (CORE_ADDR)-1)
277 {
278 /* If there is a breakpoint at the address we will resume at,
279 step one instruction before inserting breakpoints
280 so that we do not stop right away. */
281
282 if (breakpoint_here_p (read_pc ()))
283 oneproc = 1;
284
285 #ifdef STEP_SKIPS_DELAY
286 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
287 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
288 is slow (it needs to read memory from the target). */
289 if (breakpoint_here_p (read_pc () + 4)
290 && STEP_SKIPS_DELAY (read_pc ()))
291 oneproc = 1;
292 #endif /* STEP_SKIPS_DELAY */
293 }
294 else
295 write_pc (addr);
296
297 #ifdef PREPARE_TO_PROCEED
298 /* In a multi-threaded task we may select another thread and then continue.
299
300 In this case the thread that stopped at a breakpoint will immediately
301 cause another stop, if it is not stepped over first. On the other hand,
302 if (ADDR != -1) we only want to single step over the breakpoint if we did
303 switch to another thread.
304
305 If we are single stepping, don't do any of the above.
306 (Note that in the current implementation single stepping another
307 thread after a breakpoint and then continuing will cause the original
308 breakpoint to be hit again, but you can always continue, so it's not
309 a big deal.) */
310
311 if (! step && PREPARE_TO_PROCEED && breakpoint_here_p (read_pc ()))
312 oneproc = 1;
313 #endif /* PREPARE_TO_PROCEED */
314
315 if (trap_expected_after_continue)
316 {
317 /* If (step == 0), a trap will be automatically generated after
318 the first instruction is executed. Force step one
319 instruction to clear this condition. This should not occur
320 if step is nonzero, but it is harmless in that case. */
321 oneproc = 1;
322 trap_expected_after_continue = 0;
323 }
324
325 if (oneproc)
326 /* We will get a trace trap after one instruction.
327 Continue it automatically and insert breakpoints then. */
328 trap_expected = 1;
329 else
330 {
331 int temp = insert_breakpoints ();
332 if (temp)
333 {
334 print_sys_errmsg ("ptrace", temp);
335 error ("Cannot insert breakpoints.\n\
336 The same program may be running in another process.");
337 }
338 breakpoints_inserted = 1;
339 }
340
341 if (siggnal != TARGET_SIGNAL_DEFAULT)
342 stop_signal = siggnal;
343 /* If this signal should not be seen by program,
344 give it zero. Used for debugging signals. */
345 else if (!signal_program[stop_signal])
346 stop_signal = TARGET_SIGNAL_0;
347
348 annotate_starting ();
349
350 /* Resume inferior. */
351 resume (oneproc || step || bpstat_should_step (), stop_signal);
352
353 /* Wait for it to stop (if not standalone)
354 and in any case decode why it stopped, and act accordingly. */
355
356 wait_for_inferior ();
357 normal_stop ();
358 }
359
360 /* Record the pc and sp of the program the last time it stopped.
361 These are just used internally by wait_for_inferior, but need
362 to be preserved over calls to it and cleared when the inferior
363 is started. */
364 static CORE_ADDR prev_pc;
365 static CORE_ADDR prev_sp;
366 static CORE_ADDR prev_func_start;
367 static char *prev_func_name;
368 static CORE_ADDR prev_frame_address;
369
370 \f
371 /* Start remote-debugging of a machine over a serial link. */
372
373 void
374 start_remote ()
375 {
376 init_wait_for_inferior ();
377 clear_proceed_status ();
378 stop_soon_quietly = 1;
379 trap_expected = 0;
380 wait_for_inferior ();
381 normal_stop ();
382 }
383
384 /* Initialize static vars when a new inferior begins. */
385
386 void
387 init_wait_for_inferior ()
388 {
389 /* These are meaningless until the first time through wait_for_inferior. */
390 prev_pc = 0;
391 prev_sp = 0;
392 prev_func_start = 0;
393 prev_func_name = NULL;
394 prev_frame_address = 0;
395
396 trap_expected_after_continue = 0;
397 breakpoints_inserted = 0;
398 breakpoint_init_inferior ();
399
400 /* Don't confuse first call to proceed(). */
401 stop_signal = TARGET_SIGNAL_0;
402 }
403
404 static void
405 delete_breakpoint_current_contents (arg)
406 PTR arg;
407 {
408 struct breakpoint **breakpointp = (struct breakpoint **)arg;
409 if (*breakpointp != NULL)
410 delete_breakpoint (*breakpointp);
411 }
412 \f
413 /* Wait for control to return from inferior to debugger.
414 If inferior gets a signal, we may decide to start it up again
415 instead of returning. That is why there is a loop in this function.
416 When this function actually returns it means the inferior
417 should be left stopped and GDB should read more commands. */
418
419 void
420 wait_for_inferior ()
421 {
422 struct cleanup *old_cleanups;
423 struct target_waitstatus w;
424 int another_trap;
425 int random_signal;
426 CORE_ADDR stop_sp = 0;
427 CORE_ADDR stop_func_start;
428 CORE_ADDR stop_func_end;
429 char *stop_func_name;
430 CORE_ADDR prologue_pc = 0, tmp;
431 struct symtab_and_line sal;
432 int remove_breakpoints_on_following_step = 0;
433 int current_line;
434 struct symtab *current_symtab;
435 int handling_longjmp = 0; /* FIXME */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *through_sigtramp_breakpoint = NULL;
438 int pid;
439
440 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
441 &step_resume_breakpoint);
442 make_cleanup (delete_breakpoint_current_contents,
443 &through_sigtramp_breakpoint);
444 sal = find_pc_line(prev_pc, 0);
445 current_line = sal.line;
446 current_symtab = sal.symtab;
447
448 /* Are we stepping? */
449 #define CURRENTLY_STEPPING() \
450 ((through_sigtramp_breakpoint == NULL \
451 && !handling_longjmp \
452 && ((step_range_end && step_resume_breakpoint == NULL) \
453 || trap_expected)) \
454 || bpstat_should_step ())
455
456 while (1)
457 {
458 /* We have to invalidate the registers BEFORE calling target_wait because
459 they can be loaded from the target while in target_wait. This makes
460 remote debugging a bit more efficient for those targets that provide
461 critical registers as part of their normal status mechanism. */
462
463 registers_changed ();
464
465 pid = target_wait (-1, &w);
466
467 flush_cached_frames ();
468
469 /* If it's a new process, add it to the thread database */
470
471 if (pid != inferior_pid
472 && !in_thread_list (pid))
473 {
474 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
475 add_thread (pid);
476 }
477
478 switch (w.kind)
479 {
480 case TARGET_WAITKIND_LOADED:
481 /* Ignore it gracefully. */
482 if (breakpoints_inserted)
483 {
484 mark_breakpoints_out ();
485 insert_breakpoints ();
486 }
487 resume (0, TARGET_SIGNAL_0);
488 continue;
489
490 case TARGET_WAITKIND_SPURIOUS:
491 resume (0, TARGET_SIGNAL_0);
492 continue;
493
494 case TARGET_WAITKIND_EXITED:
495 target_terminal_ours (); /* Must do this before mourn anyway */
496 annotate_exited (w.value.integer);
497 if (w.value.integer)
498 printf_filtered ("\nProgram exited with code 0%o.\n",
499 (unsigned int)w.value.integer);
500 else
501 if (!batch_mode())
502 printf_filtered ("\nProgram exited normally.\n");
503 gdb_flush (gdb_stdout);
504 target_mourn_inferior ();
505 #ifdef NO_SINGLE_STEP
506 one_stepped = 0;
507 #endif
508 stop_print_frame = 0;
509 goto stop_stepping;
510
511 case TARGET_WAITKIND_SIGNALLED:
512 stop_print_frame = 0;
513 stop_signal = w.value.sig;
514 target_terminal_ours (); /* Must do this before mourn anyway */
515 annotate_signalled ();
516 target_kill (); /* kill mourns as well */
517 printf_filtered ("\nProgram terminated with signal ");
518 annotate_signal_name ();
519 printf_filtered ("%s", target_signal_to_name (stop_signal));
520 annotate_signal_name_end ();
521 printf_filtered (", ");
522 annotate_signal_string ();
523 printf_filtered ("%s", target_signal_to_string (stop_signal));
524 annotate_signal_string_end ();
525 printf_filtered (".\n");
526
527 printf_filtered ("The program no longer exists.\n");
528 gdb_flush (gdb_stdout);
529 #ifdef NO_SINGLE_STEP
530 one_stepped = 0;
531 #endif
532 goto stop_stepping;
533
534 case TARGET_WAITKIND_STOPPED:
535 /* This is the only case in which we keep going; the above cases
536 end in a continue or goto. */
537 break;
538 }
539
540 stop_signal = w.value.sig;
541
542 stop_pc = read_pc_pid (pid);
543
544 /* See if a thread hit a thread-specific breakpoint that was meant for
545 another thread. If so, then step that thread past the breakpoint,
546 and continue it. */
547
548 if (stop_signal == TARGET_SIGNAL_TRAP
549 && breakpoints_inserted
550 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
551 {
552 random_signal = 0;
553 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
554 {
555 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
556 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
557
558 remove_breakpoints ();
559 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
560 /* FIXME: What if a signal arrives instead of the single-step
561 happening? */
562 target_wait (pid, &w);
563 insert_breakpoints ();
564 target_resume (pid, 0, TARGET_SIGNAL_0);
565 continue;
566 }
567 }
568 else
569 random_signal = 1;
570
571 /* See if something interesting happened to the non-current thread. If
572 so, then switch to that thread, and eventually give control back to
573 the user. */
574
575 if (pid != inferior_pid)
576 {
577 int printed = 0;
578
579 /* If it's a random signal for a non-current thread, notify user
580 if he's expressed an interest. */
581
582 if (random_signal
583 && signal_print[stop_signal])
584 {
585 printed = 1;
586 target_terminal_ours_for_output ();
587 printf_filtered ("\nProgram received signal %s, %s.\n",
588 target_signal_to_name (stop_signal),
589 target_signal_to_string (stop_signal));
590 gdb_flush (gdb_stdout);
591 }
592
593 /* If it's not SIGTRAP and not a signal we want to stop for, then
594 continue the thread. */
595
596 if (stop_signal != TARGET_SIGNAL_TRAP
597 && !signal_stop[stop_signal])
598 {
599 if (printed)
600 target_terminal_inferior ();
601
602 /* Clear the signal if it should not be passed. */
603 if (signal_program[stop_signal] == 0)
604 stop_signal = TARGET_SIGNAL_0;
605
606 target_resume (pid, 0, stop_signal);
607 continue;
608 }
609
610 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
611 and fall into the rest of wait_for_inferior(). */
612
613 inferior_pid = pid;
614 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
615
616 flush_cached_frames ();
617 trap_expected = 0;
618 if (step_resume_breakpoint)
619 {
620 delete_breakpoint (step_resume_breakpoint);
621 step_resume_breakpoint = NULL;
622 }
623
624 /* Not sure whether we need to blow this away too,
625 but probably it is like the step-resume
626 breakpoint. */
627 if (through_sigtramp_breakpoint)
628 {
629 delete_breakpoint (through_sigtramp_breakpoint);
630 through_sigtramp_breakpoint = NULL;
631 }
632 prev_pc = 0;
633 prev_sp = 0;
634 prev_func_name = NULL;
635 step_range_start = 0;
636 step_range_end = 0;
637 step_frame_address = 0;
638 handling_longjmp = 0;
639 another_trap = 0;
640 }
641
642 #ifdef NO_SINGLE_STEP
643 if (one_stepped)
644 single_step (0); /* This actually cleans up the ss */
645 #endif /* NO_SINGLE_STEP */
646
647 /* If PC is pointing at a nullified instruction, then step beyond
648 it so that the user won't be confused when GDB appears to be ready
649 to execute it. */
650
651 if (INSTRUCTION_NULLIFIED)
652 {
653 resume (1, 0);
654 continue;
655 }
656
657 set_current_frame (create_new_frame (read_fp (), stop_pc));
658 select_frame (get_current_frame (), 0);
659
660 #ifdef HAVE_STEPPABLE_WATCHPOINT
661 /* It may not be necessary to disable the watchpoint to stop over
662 it. For example, the PA can (with some kernel cooperation)
663 single step over a watchpoint without disabling the watchpoint. */
664 if (STOPPED_BY_WATCHPOINT (w))
665 {
666 resume (1, 0);
667 continue;
668 }
669 #endif
670
671 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
672 /* It is far more common to need to disable a watchpoint
673 to step the inferior over it. FIXME. What else might
674 a debug register or page protection watchpoint scheme need
675 here? */
676 if (STOPPED_BY_WATCHPOINT (w))
677 {
678 remove_breakpoints ();
679 resume (1, 0);
680
681 /* FIXME: This is bogus. You can't interact with the
682 inferior except when it is stopped. It apparently
683 happens to work on Irix4, but it depends on /proc
684 allowing us to muck with the memory of a running process,
685 and the kernel deciding to run one instruction of the
686 inferior before it executes our insert_breakpoints code,
687 which seems like an awfully dubious assumption. */
688 insert_breakpoints ();
689
690 continue;
691 }
692 #endif
693
694 #ifdef HAVE_CONTINUABLE_WATCHPOINT
695 /* It may be possible to simply continue after a watchpoint. */
696 STOPPED_BY_WATCHPOINT (w);
697 #endif
698
699 stop_frame_address = FRAME_FP (get_current_frame ());
700 stop_sp = read_sp ();
701 stop_func_start = 0;
702 stop_func_name = 0;
703 /* Don't care about return value; stop_func_start and stop_func_name
704 will both be 0 if it doesn't work. */
705 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
706 &stop_func_end);
707 stop_func_start += FUNCTION_START_OFFSET;
708 another_trap = 0;
709 bpstat_clear (&stop_bpstat);
710 stop_step = 0;
711 stop_stack_dummy = 0;
712 stop_print_frame = 1;
713 random_signal = 0;
714 stopped_by_random_signal = 0;
715 breakpoints_failed = 0;
716
717 /* Look at the cause of the stop, and decide what to do.
718 The alternatives are:
719 1) break; to really stop and return to the debugger,
720 2) drop through to start up again
721 (set another_trap to 1 to single step once)
722 3) set random_signal to 1, and the decision between 1 and 2
723 will be made according to the signal handling tables. */
724
725 /* First, distinguish signals caused by the debugger from signals
726 that have to do with the program's own actions.
727 Note that breakpoint insns may cause SIGTRAP or SIGILL
728 or SIGEMT, depending on the operating system version.
729 Here we detect when a SIGILL or SIGEMT is really a breakpoint
730 and change it to SIGTRAP. */
731
732 if (stop_signal == TARGET_SIGNAL_TRAP
733 || (breakpoints_inserted &&
734 (stop_signal == TARGET_SIGNAL_ILL
735 || stop_signal == TARGET_SIGNAL_EMT
736 ))
737 || stop_soon_quietly)
738 {
739 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
740 {
741 stop_print_frame = 0;
742 break;
743 }
744 if (stop_soon_quietly)
745 break;
746
747 /* Don't even think about breakpoints
748 if just proceeded over a breakpoint.
749
750 However, if we are trying to proceed over a breakpoint
751 and end up in sigtramp, then through_sigtramp_breakpoint
752 will be set and we should check whether we've hit the
753 step breakpoint. */
754 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
755 && through_sigtramp_breakpoint == NULL)
756 bpstat_clear (&stop_bpstat);
757 else
758 {
759 /* See if there is a breakpoint at the current PC. */
760 stop_bpstat = bpstat_stop_status
761 (&stop_pc, stop_frame_address,
762 #if DECR_PC_AFTER_BREAK
763 /* Notice the case of stepping through a jump
764 that lands just after a breakpoint.
765 Don't confuse that with hitting the breakpoint.
766 What we check for is that 1) stepping is going on
767 and 2) the pc before the last insn does not match
768 the address of the breakpoint before the current pc. */
769 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
770 && CURRENTLY_STEPPING ())
771 #else /* DECR_PC_AFTER_BREAK zero */
772 0
773 #endif /* DECR_PC_AFTER_BREAK zero */
774 );
775 /* Following in case break condition called a
776 function. */
777 stop_print_frame = 1;
778 }
779
780 if (stop_signal == TARGET_SIGNAL_TRAP)
781 random_signal
782 = !(bpstat_explains_signal (stop_bpstat)
783 || trap_expected
784 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
785 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
786 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
787 || (step_range_end && step_resume_breakpoint == NULL));
788 else
789 {
790 random_signal
791 = !(bpstat_explains_signal (stop_bpstat)
792 /* End of a stack dummy. Some systems (e.g. Sony
793 news) give another signal besides SIGTRAP,
794 so check here as well as above. */
795 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
796 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
797 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
798 );
799 if (!random_signal)
800 stop_signal = TARGET_SIGNAL_TRAP;
801 }
802 }
803 else
804 random_signal = 1;
805
806 /* For the program's own signals, act according to
807 the signal handling tables. */
808
809 if (random_signal)
810 {
811 /* Signal not for debugging purposes. */
812 int printed = 0;
813
814 stopped_by_random_signal = 1;
815
816 if (signal_print[stop_signal])
817 {
818 printed = 1;
819 target_terminal_ours_for_output ();
820 annotate_signal ();
821 printf_filtered ("\nProgram received signal ");
822 annotate_signal_name ();
823 printf_filtered ("%s", target_signal_to_name (stop_signal));
824 annotate_signal_name_end ();
825 printf_filtered (", ");
826 annotate_signal_string ();
827 printf_filtered ("%s", target_signal_to_string (stop_signal));
828 annotate_signal_string_end ();
829 printf_filtered (".\n");
830 gdb_flush (gdb_stdout);
831 }
832 if (signal_stop[stop_signal])
833 break;
834 /* If not going to stop, give terminal back
835 if we took it away. */
836 else if (printed)
837 target_terminal_inferior ();
838
839 /* Clear the signal if it should not be passed. */
840 if (signal_program[stop_signal] == 0)
841 stop_signal = TARGET_SIGNAL_0;
842
843 /* I'm not sure whether this needs to be check_sigtramp2 or
844 whether it could/should be keep_going. */
845 goto check_sigtramp2;
846 }
847
848 /* Handle cases caused by hitting a breakpoint. */
849 {
850 CORE_ADDR jmp_buf_pc;
851 struct bpstat_what what;
852
853 what = bpstat_what (stop_bpstat);
854
855 if (what.call_dummy)
856 {
857 stop_stack_dummy = 1;
858 #ifdef HP_OS_BUG
859 trap_expected_after_continue = 1;
860 #endif
861 }
862
863 switch (what.main_action)
864 {
865 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
866 /* If we hit the breakpoint at longjmp, disable it for the
867 duration of this command. Then, install a temporary
868 breakpoint at the target of the jmp_buf. */
869 disable_longjmp_breakpoint();
870 remove_breakpoints ();
871 breakpoints_inserted = 0;
872 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
873
874 /* Need to blow away step-resume breakpoint, as it
875 interferes with us */
876 if (step_resume_breakpoint != NULL)
877 {
878 delete_breakpoint (step_resume_breakpoint);
879 step_resume_breakpoint = NULL;
880 }
881 /* Not sure whether we need to blow this away too, but probably
882 it is like the step-resume breakpoint. */
883 if (through_sigtramp_breakpoint != NULL)
884 {
885 delete_breakpoint (through_sigtramp_breakpoint);
886 through_sigtramp_breakpoint = NULL;
887 }
888
889 #if 0
890 /* FIXME - Need to implement nested temporary breakpoints */
891 if (step_over_calls > 0)
892 set_longjmp_resume_breakpoint(jmp_buf_pc,
893 get_current_frame());
894 else
895 #endif /* 0 */
896 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
897 handling_longjmp = 1; /* FIXME */
898 goto keep_going;
899
900 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
901 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
902 remove_breakpoints ();
903 breakpoints_inserted = 0;
904 #if 0
905 /* FIXME - Need to implement nested temporary breakpoints */
906 if (step_over_calls
907 && (stop_frame_address
908 INNER_THAN step_frame_address))
909 {
910 another_trap = 1;
911 goto keep_going;
912 }
913 #endif /* 0 */
914 disable_longjmp_breakpoint();
915 handling_longjmp = 0; /* FIXME */
916 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
917 break;
918 /* else fallthrough */
919
920 case BPSTAT_WHAT_SINGLE:
921 if (breakpoints_inserted)
922 remove_breakpoints ();
923 breakpoints_inserted = 0;
924 another_trap = 1;
925 /* Still need to check other stuff, at least the case
926 where we are stepping and step out of the right range. */
927 break;
928
929 case BPSTAT_WHAT_STOP_NOISY:
930 stop_print_frame = 1;
931
932 /* We are about to nuke the step_resume_breakpoint and
933 through_sigtramp_breakpoint via the cleanup chain, so
934 no need to worry about it here. */
935
936 goto stop_stepping;
937
938 case BPSTAT_WHAT_STOP_SILENT:
939 stop_print_frame = 0;
940
941 /* We are about to nuke the step_resume_breakpoint and
942 through_sigtramp_breakpoint via the cleanup chain, so
943 no need to worry about it here. */
944
945 goto stop_stepping;
946
947 case BPSTAT_WHAT_STEP_RESUME:
948 delete_breakpoint (step_resume_breakpoint);
949 step_resume_breakpoint = NULL;
950 break;
951
952 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
953 delete_breakpoint (through_sigtramp_breakpoint);
954 through_sigtramp_breakpoint = NULL;
955
956 /* If were waiting for a trap, hitting the step_resume_break
957 doesn't count as getting it. */
958 if (trap_expected)
959 another_trap = 1;
960 break;
961
962 case BPSTAT_WHAT_LAST:
963 /* Not a real code, but listed here to shut up gcc -Wall. */
964
965 case BPSTAT_WHAT_KEEP_CHECKING:
966 break;
967 }
968 }
969
970 /* We come here if we hit a breakpoint but should not
971 stop for it. Possibly we also were stepping
972 and should stop for that. So fall through and
973 test for stepping. But, if not stepping,
974 do not stop. */
975
976 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
977 /* This is the old way of detecting the end of the stack dummy.
978 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
979 handled above. As soon as we can test it on all of them, all
980 architectures should define it. */
981
982 /* If this is the breakpoint at the end of a stack dummy,
983 just stop silently, unless the user was doing an si/ni, in which
984 case she'd better know what she's doing. */
985
986 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
987 && !step_range_end)
988 {
989 stop_print_frame = 0;
990 stop_stack_dummy = 1;
991 #ifdef HP_OS_BUG
992 trap_expected_after_continue = 1;
993 #endif
994 break;
995 }
996 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
997
998 if (step_resume_breakpoint)
999 /* Having a step-resume breakpoint overrides anything
1000 else having to do with stepping commands until
1001 that breakpoint is reached. */
1002 /* I'm not sure whether this needs to be check_sigtramp2 or
1003 whether it could/should be keep_going. */
1004 goto check_sigtramp2;
1005
1006 if (step_range_end == 0)
1007 /* Likewise if we aren't even stepping. */
1008 /* I'm not sure whether this needs to be check_sigtramp2 or
1009 whether it could/should be keep_going. */
1010 goto check_sigtramp2;
1011
1012 /* If stepping through a line, keep going if still within it. */
1013 if (stop_pc >= step_range_start
1014 && stop_pc < step_range_end
1015 /* The step range might include the start of the
1016 function, so if we are at the start of the
1017 step range and either the stack or frame pointers
1018 just changed, we've stepped outside */
1019 && !(stop_pc == step_range_start
1020 && stop_frame_address
1021 && (stop_sp INNER_THAN prev_sp
1022 || stop_frame_address != step_frame_address)))
1023 {
1024 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1025 So definately need to check for sigtramp here. */
1026 goto check_sigtramp2;
1027 }
1028
1029 /* We stepped out of the stepping range. See if that was due
1030 to a subroutine call that we should proceed to the end of. */
1031
1032 /* Did we just take a signal? */
1033 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1034 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1035 {
1036 /* We've just taken a signal; go until we are back to
1037 the point where we took it and one more. */
1038
1039 /* This code is needed at least in the following case:
1040 The user types "next" and then a signal arrives (before
1041 the "next" is done). */
1042
1043 /* Note that if we are stopped at a breakpoint, then we need
1044 the step_resume breakpoint to override any breakpoints at
1045 the same location, so that we will still step over the
1046 breakpoint even though the signal happened. */
1047
1048 {
1049 struct symtab_and_line sr_sal;
1050
1051 sr_sal.pc = prev_pc;
1052 sr_sal.symtab = NULL;
1053 sr_sal.line = 0;
1054 /* We could probably be setting the frame to
1055 prev_frame_address; the reason we don't is that it didn't used
1056 to exist. */
1057 step_resume_breakpoint =
1058 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1059 if (breakpoints_inserted)
1060 insert_breakpoints ();
1061 }
1062
1063 /* If this is stepi or nexti, make sure that the stepping range
1064 gets us past that instruction. */
1065 if (step_range_end == 1)
1066 /* FIXME: Does this run afoul of the code below which, if
1067 we step into the middle of a line, resets the stepping
1068 range? */
1069 step_range_end = (step_range_start = prev_pc) + 1;
1070
1071 remove_breakpoints_on_following_step = 1;
1072 goto keep_going;
1073 }
1074
1075 #if 1
1076 if (stop_func_start)
1077 {
1078 struct symtab *s;
1079
1080 /* Do this after the IN_SIGTRAMP check; it might give
1081 an error. */
1082 prologue_pc = stop_func_start;
1083
1084 /* Don't skip the prologue if this is assembly source */
1085 s = find_pc_symtab (stop_pc);
1086 if (s && s->language != language_asm)
1087 SKIP_PROLOGUE (prologue_pc);
1088 }
1089
1090 if ((/* Might be a non-recursive call. If the symbols are missing
1091 enough that stop_func_start == prev_func_start even though
1092 they are really two functions, we will treat some calls as
1093 jumps. */
1094 stop_func_start != prev_func_start
1095
1096 /* Might be a recursive call if either we have a prologue
1097 or the call instruction itself saves the PC on the stack. */
1098 || prologue_pc != stop_func_start
1099 || stop_sp != prev_sp)
1100 && (/* PC is completely out of bounds of any known objfiles. Treat
1101 like a subroutine call. */
1102 ! stop_func_start
1103
1104 /* If we do a call, we will be at the start of a function... */
1105 || stop_pc == stop_func_start
1106
1107 /* ...except on the Alpha with -O (and also Irix 5 and
1108 perhaps others), in which we might call the address
1109 after the load of gp. Since prologues don't contain
1110 calls, we can't return to within one, and we don't
1111 jump back into them, so this check is OK. */
1112
1113 || stop_pc < prologue_pc
1114
1115 /* If we end up in certain places, it means we did a subroutine
1116 call. I'm not completely sure this is necessary now that we
1117 have the above checks with stop_func_start (and now that
1118 find_pc_partial_function is pickier). */
1119 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
1120
1121 /* If none of the above apply, it is a jump within a function,
1122 or a return from a subroutine. The other case is longjmp,
1123 which can no longer happen here as long as the
1124 handling_longjmp stuff is working. */
1125 ))
1126 #else
1127 /* This is experimental code which greatly simplifies the subroutine call
1128 test. I've actually tested on the Alpha, and it works great. -Stu */
1129
1130 if (in_prologue (stop_pc, NULL)
1131 || (prev_func_start != 0
1132 && stop_func_start == 0))
1133 #endif
1134 {
1135 /* It's a subroutine call. */
1136
1137 if (step_over_calls == 0)
1138 {
1139 /* I presume that step_over_calls is only 0 when we're
1140 supposed to be stepping at the assembly language level
1141 ("stepi"). Just stop. */
1142 stop_step = 1;
1143 break;
1144 }
1145
1146 if (step_over_calls > 0)
1147 /* We're doing a "next". */
1148 goto step_over_function;
1149
1150 /* If we are in a function call trampoline (a stub between
1151 the calling routine and the real function), locate the real
1152 function. That's what tells us (a) whether we want to step
1153 into it at all, and (b) what prologue we want to run to
1154 the end of, if we do step into it. */
1155 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1156 if (tmp != 0)
1157 stop_func_start = tmp;
1158
1159 /* If we have line number information for the function we
1160 are thinking of stepping into, step into it.
1161
1162 If there are several symtabs at that PC (e.g. with include
1163 files), just want to know whether *any* of them have line
1164 numbers. find_pc_line handles this. */
1165 {
1166 struct symtab_and_line tmp_sal;
1167
1168 tmp_sal = find_pc_line (stop_func_start, 0);
1169 if (tmp_sal.line != 0)
1170 goto step_into_function;
1171 }
1172
1173 step_over_function:
1174 /* A subroutine call has happened. */
1175 {
1176 /* Set a special breakpoint after the return */
1177 struct symtab_and_line sr_sal;
1178 sr_sal.pc =
1179 ADDR_BITS_REMOVE
1180 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1181 sr_sal.symtab = NULL;
1182 sr_sal.line = 0;
1183 step_resume_breakpoint =
1184 set_momentary_breakpoint (sr_sal, get_current_frame (),
1185 bp_step_resume);
1186 step_resume_breakpoint->frame = prev_frame_address;
1187 if (breakpoints_inserted)
1188 insert_breakpoints ();
1189 }
1190 goto keep_going;
1191
1192 step_into_function:
1193 /* Subroutine call with source code we should not step over.
1194 Do step to the first line of code in it. */
1195 {
1196 struct symtab *s;
1197
1198 s = find_pc_symtab (stop_pc);
1199 if (s && s->language != language_asm)
1200 SKIP_PROLOGUE (stop_func_start);
1201 }
1202 sal = find_pc_line (stop_func_start, 0);
1203 /* Use the step_resume_break to step until
1204 the end of the prologue, even if that involves jumps
1205 (as it seems to on the vax under 4.2). */
1206 /* If the prologue ends in the middle of a source line,
1207 continue to the end of that source line (if it is still
1208 within the function). Otherwise, just go to end of prologue. */
1209 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1210 /* no, don't either. It skips any code that's
1211 legitimately on the first line. */
1212 #else
1213 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1214 stop_func_start = sal.end;
1215 #endif
1216
1217 if (stop_func_start == stop_pc)
1218 {
1219 /* We are already there: stop now. */
1220 stop_step = 1;
1221 break;
1222 }
1223 else
1224 /* Put the step-breakpoint there and go until there. */
1225 {
1226 struct symtab_and_line sr_sal;
1227
1228 sr_sal.pc = stop_func_start;
1229 sr_sal.symtab = NULL;
1230 sr_sal.line = 0;
1231 /* Do not specify what the fp should be when we stop
1232 since on some machines the prologue
1233 is where the new fp value is established. */
1234 step_resume_breakpoint =
1235 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1236 if (breakpoints_inserted)
1237 insert_breakpoints ();
1238
1239 /* And make sure stepping stops right away then. */
1240 step_range_end = step_range_start;
1241 }
1242 goto keep_going;
1243 }
1244
1245 /* We've wandered out of the step range. */
1246
1247 sal = find_pc_line(stop_pc, 0);
1248
1249 if (step_range_end == 1)
1250 {
1251 /* It is stepi or nexti. We always want to stop stepping after
1252 one instruction. */
1253 stop_step = 1;
1254 break;
1255 }
1256
1257 if (sal.line == 0)
1258 {
1259 /* We have no line number information. That means to stop
1260 stepping (does this always happen right after one instruction,
1261 when we do "s" in a function with no line numbers,
1262 or can this happen as a result of a return or longjmp?). */
1263 stop_step = 1;
1264 break;
1265 }
1266
1267 if (stop_pc == sal.pc
1268 && (current_line != sal.line || current_symtab != sal.symtab))
1269 {
1270 /* We are at the start of a different line. So stop. Note that
1271 we don't stop if we step into the middle of a different line.
1272 That is said to make things like for (;;) statements work
1273 better. */
1274 stop_step = 1;
1275 break;
1276 }
1277
1278 /* We aren't done stepping.
1279
1280 Optimize by setting the stepping range to the line.
1281 (We might not be in the original line, but if we entered a
1282 new line in mid-statement, we continue stepping. This makes
1283 things like for(;;) statements work better.) */
1284
1285 if (stop_func_end && sal.end >= stop_func_end)
1286 {
1287 /* If this is the last line of the function, don't keep stepping
1288 (it would probably step us out of the function).
1289 This is particularly necessary for a one-line function,
1290 in which after skipping the prologue we better stop even though
1291 we will be in mid-line. */
1292 stop_step = 1;
1293 break;
1294 }
1295 step_range_start = sal.pc;
1296 step_range_end = sal.end;
1297 goto keep_going;
1298
1299 check_sigtramp2:
1300 if (trap_expected
1301 && IN_SIGTRAMP (stop_pc, stop_func_name)
1302 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1303 {
1304 /* What has happened here is that we have just stepped the inferior
1305 with a signal (because it is a signal which shouldn't make
1306 us stop), thus stepping into sigtramp.
1307
1308 So we need to set a step_resume_break_address breakpoint
1309 and continue until we hit it, and then step. FIXME: This should
1310 be more enduring than a step_resume breakpoint; we should know
1311 that we will later need to keep going rather than re-hitting
1312 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1313 it says "exceedingly difficult"). */
1314 struct symtab_and_line sr_sal;
1315
1316 sr_sal.pc = prev_pc;
1317 sr_sal.symtab = NULL;
1318 sr_sal.line = 0;
1319 /* We perhaps could set the frame if we kept track of what
1320 the frame corresponding to prev_pc was. But we don't,
1321 so don't. */
1322 through_sigtramp_breakpoint =
1323 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1324 if (breakpoints_inserted)
1325 insert_breakpoints ();
1326
1327 remove_breakpoints_on_following_step = 1;
1328 another_trap = 1;
1329 }
1330
1331 keep_going:
1332 /* Come to this label when you need to resume the inferior.
1333 It's really much cleaner to do a goto than a maze of if-else
1334 conditions. */
1335
1336 /* Save the pc before execution, to compare with pc after stop. */
1337 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1338 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1339 BREAK is defined, the
1340 original pc would not have
1341 been at the start of a
1342 function. */
1343 prev_func_name = stop_func_name;
1344 prev_sp = stop_sp;
1345 prev_frame_address = stop_frame_address;
1346
1347 /* If we did not do break;, it means we should keep
1348 running the inferior and not return to debugger. */
1349
1350 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1351 {
1352 /* We took a signal (which we are supposed to pass through to
1353 the inferior, else we'd have done a break above) and we
1354 haven't yet gotten our trap. Simply continue. */
1355 resume (CURRENTLY_STEPPING (), stop_signal);
1356 }
1357 else
1358 {
1359 /* Either the trap was not expected, but we are continuing
1360 anyway (the user asked that this signal be passed to the
1361 child)
1362 -- or --
1363 The signal was SIGTRAP, e.g. it was our signal, but we
1364 decided we should resume from it.
1365
1366 We're going to run this baby now!
1367
1368 Insert breakpoints now, unless we are trying
1369 to one-proceed past a breakpoint. */
1370 /* If we've just finished a special step resume and we don't
1371 want to hit a breakpoint, pull em out. */
1372 if (step_resume_breakpoint == NULL
1373 && through_sigtramp_breakpoint == NULL
1374 && remove_breakpoints_on_following_step)
1375 {
1376 remove_breakpoints_on_following_step = 0;
1377 remove_breakpoints ();
1378 breakpoints_inserted = 0;
1379 }
1380 else if (!breakpoints_inserted &&
1381 (through_sigtramp_breakpoint != NULL || !another_trap))
1382 {
1383 breakpoints_failed = insert_breakpoints ();
1384 if (breakpoints_failed)
1385 break;
1386 breakpoints_inserted = 1;
1387 }
1388
1389 trap_expected = another_trap;
1390
1391 if (stop_signal == TARGET_SIGNAL_TRAP)
1392 stop_signal = TARGET_SIGNAL_0;
1393
1394 #ifdef SHIFT_INST_REGS
1395 /* I'm not sure when this following segment applies. I do know, now,
1396 that we shouldn't rewrite the regs when we were stopped by a
1397 random signal from the inferior process. */
1398 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1399 (this is only used on the 88k). */
1400
1401 if (!bpstat_explains_signal (stop_bpstat)
1402 && (stop_signal != TARGET_SIGNAL_CHLD)
1403 && !stopped_by_random_signal)
1404 SHIFT_INST_REGS();
1405 #endif /* SHIFT_INST_REGS */
1406
1407 resume (CURRENTLY_STEPPING (), stop_signal);
1408 }
1409 }
1410
1411 stop_stepping:
1412 if (target_has_execution)
1413 {
1414 /* Assuming the inferior still exists, set these up for next
1415 time, just like we did above if we didn't break out of the
1416 loop. */
1417 prev_pc = read_pc ();
1418 prev_func_start = stop_func_start;
1419 prev_func_name = stop_func_name;
1420 prev_sp = stop_sp;
1421 prev_frame_address = stop_frame_address;
1422 }
1423 do_cleanups (old_cleanups);
1424 }
1425 \f
1426 /* Here to return control to GDB when the inferior stops for real.
1427 Print appropriate messages, remove breakpoints, give terminal our modes.
1428
1429 STOP_PRINT_FRAME nonzero means print the executing frame
1430 (pc, function, args, file, line number and line text).
1431 BREAKPOINTS_FAILED nonzero means stop was due to error
1432 attempting to insert breakpoints. */
1433
1434 void
1435 normal_stop ()
1436 {
1437 /* Make sure that the current_frame's pc is correct. This
1438 is a correction for setting up the frame info before doing
1439 DECR_PC_AFTER_BREAK */
1440 if (target_has_execution && get_current_frame())
1441 (get_current_frame ())->pc = read_pc ();
1442
1443 if (breakpoints_failed)
1444 {
1445 target_terminal_ours_for_output ();
1446 print_sys_errmsg ("ptrace", breakpoints_failed);
1447 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1448 The same program may be running in another process.\n");
1449 }
1450
1451 if (target_has_execution && breakpoints_inserted)
1452 if (remove_breakpoints ())
1453 {
1454 target_terminal_ours_for_output ();
1455 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1456 It might be running in another process.\n\
1457 Further execution is probably impossible.\n");
1458 }
1459
1460 breakpoints_inserted = 0;
1461
1462 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1463 Delete any breakpoint that is to be deleted at the next stop. */
1464
1465 breakpoint_auto_delete (stop_bpstat);
1466
1467 /* If an auto-display called a function and that got a signal,
1468 delete that auto-display to avoid an infinite recursion. */
1469
1470 if (stopped_by_random_signal)
1471 disable_current_display ();
1472
1473 if (step_multi && stop_step)
1474 goto done;
1475
1476 target_terminal_ours ();
1477
1478 /* Look up the hook_stop and run it if it exists. */
1479
1480 if (stop_command->hook)
1481 {
1482 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1483 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1484 }
1485
1486 if (!target_has_stack)
1487 goto done;
1488
1489 /* Select innermost stack frame except on return from a stack dummy routine,
1490 or if the program has exited. Print it without a level number if
1491 we have changed functions or hit a breakpoint. Print source line
1492 if we have one. */
1493 if (!stop_stack_dummy)
1494 {
1495 if (stop_print_frame)
1496 {
1497 int source_only;
1498
1499 source_only = bpstat_print (stop_bpstat);
1500 source_only = source_only ||
1501 ( stop_step
1502 && step_frame_address == stop_frame_address
1503 && step_start_function == find_pc_function (stop_pc));
1504
1505 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1506
1507 /* Display the auto-display expressions. */
1508 do_displays ();
1509 }
1510 }
1511
1512 /* Save the function value return registers, if we care.
1513 We might be about to restore their previous contents. */
1514 if (proceed_to_finish)
1515 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1516
1517 if (stop_stack_dummy)
1518 {
1519 /* Pop the empty frame that contains the stack dummy.
1520 POP_FRAME ends with a setting of the current frame, so we
1521 can use that next. */
1522 POP_FRAME;
1523 /* Set stop_pc to what it was before we called the function. Can't rely
1524 on restore_inferior_status because that only gets called if we don't
1525 stop in the called function. */
1526 stop_pc = read_pc();
1527 select_frame (get_current_frame (), 0);
1528 }
1529 done:
1530 annotate_stopped ();
1531 }
1532
1533 static int
1534 hook_stop_stub (cmd)
1535 char *cmd;
1536 {
1537 execute_user_command ((struct cmd_list_element *)cmd, 0);
1538 return (0);
1539 }
1540 \f
1541 int signal_stop_state (signo)
1542 int signo;
1543 {
1544 return signal_stop[signo];
1545 }
1546
1547 int signal_print_state (signo)
1548 int signo;
1549 {
1550 return signal_print[signo];
1551 }
1552
1553 int signal_pass_state (signo)
1554 int signo;
1555 {
1556 return signal_program[signo];
1557 }
1558
1559 static void
1560 sig_print_header ()
1561 {
1562 printf_filtered ("\
1563 Signal Stop\tPrint\tPass to program\tDescription\n");
1564 }
1565
1566 static void
1567 sig_print_info (oursig)
1568 enum target_signal oursig;
1569 {
1570 char *name = target_signal_to_name (oursig);
1571 printf_filtered ("%s", name);
1572 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1573 " ");
1574 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1575 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1576 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1577 printf_filtered ("%s\n", target_signal_to_string (oursig));
1578 }
1579
1580 /* Specify how various signals in the inferior should be handled. */
1581
1582 static void
1583 handle_command (args, from_tty)
1584 char *args;
1585 int from_tty;
1586 {
1587 char **argv;
1588 int digits, wordlen;
1589 int sigfirst, signum, siglast;
1590 enum target_signal oursig;
1591 int allsigs;
1592 int nsigs;
1593 unsigned char *sigs;
1594 struct cleanup *old_chain;
1595
1596 if (args == NULL)
1597 {
1598 error_no_arg ("signal to handle");
1599 }
1600
1601 /* Allocate and zero an array of flags for which signals to handle. */
1602
1603 nsigs = (int)TARGET_SIGNAL_LAST;
1604 sigs = (unsigned char *) alloca (nsigs);
1605 memset (sigs, 0, nsigs);
1606
1607 /* Break the command line up into args. */
1608
1609 argv = buildargv (args);
1610 if (argv == NULL)
1611 {
1612 nomem (0);
1613 }
1614 old_chain = make_cleanup (freeargv, (char *) argv);
1615
1616 /* Walk through the args, looking for signal oursigs, signal names, and
1617 actions. Signal numbers and signal names may be interspersed with
1618 actions, with the actions being performed for all signals cumulatively
1619 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1620
1621 while (*argv != NULL)
1622 {
1623 wordlen = strlen (*argv);
1624 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1625 allsigs = 0;
1626 sigfirst = siglast = -1;
1627
1628 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1629 {
1630 /* Apply action to all signals except those used by the
1631 debugger. Silently skip those. */
1632 allsigs = 1;
1633 sigfirst = 0;
1634 siglast = nsigs - 1;
1635 }
1636 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1637 {
1638 SET_SIGS (nsigs, sigs, signal_stop);
1639 SET_SIGS (nsigs, sigs, signal_print);
1640 }
1641 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1642 {
1643 UNSET_SIGS (nsigs, sigs, signal_program);
1644 }
1645 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1646 {
1647 SET_SIGS (nsigs, sigs, signal_print);
1648 }
1649 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1650 {
1651 SET_SIGS (nsigs, sigs, signal_program);
1652 }
1653 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1654 {
1655 UNSET_SIGS (nsigs, sigs, signal_stop);
1656 }
1657 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1658 {
1659 SET_SIGS (nsigs, sigs, signal_program);
1660 }
1661 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1662 {
1663 UNSET_SIGS (nsigs, sigs, signal_print);
1664 UNSET_SIGS (nsigs, sigs, signal_stop);
1665 }
1666 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1667 {
1668 UNSET_SIGS (nsigs, sigs, signal_program);
1669 }
1670 else if (digits > 0)
1671 {
1672 /* It is numeric. The numeric signal refers to our own internal
1673 signal numbering from target.h, not to host/target signal number.
1674 This is a feature; users really should be using symbolic names
1675 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1676 will work right anyway. */
1677
1678 sigfirst = siglast = atoi (*argv);
1679 if ((*argv)[digits] == '-')
1680 {
1681 siglast = atoi ((*argv) + digits + 1);
1682 }
1683 if (sigfirst > siglast)
1684 {
1685 /* Bet he didn't figure we'd think of this case... */
1686 signum = sigfirst;
1687 sigfirst = siglast;
1688 siglast = signum;
1689 }
1690 if (sigfirst < 0 || sigfirst >= nsigs)
1691 {
1692 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1693 }
1694 if (siglast < 0 || siglast >= nsigs)
1695 {
1696 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1697 }
1698 }
1699 else
1700 {
1701 oursig = target_signal_from_name (*argv);
1702 if (oursig != TARGET_SIGNAL_UNKNOWN)
1703 {
1704 sigfirst = siglast = (int)oursig;
1705 }
1706 else
1707 {
1708 /* Not a number and not a recognized flag word => complain. */
1709 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1710 }
1711 }
1712
1713 /* If any signal numbers or symbol names were found, set flags for
1714 which signals to apply actions to. */
1715
1716 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1717 {
1718 switch ((enum target_signal)signum)
1719 {
1720 case TARGET_SIGNAL_TRAP:
1721 case TARGET_SIGNAL_INT:
1722 if (!allsigs && !sigs[signum])
1723 {
1724 if (query ("%s is used by the debugger.\n\
1725 Are you sure you want to change it? ",
1726 target_signal_to_name
1727 ((enum target_signal)signum)))
1728 {
1729 sigs[signum] = 1;
1730 }
1731 else
1732 {
1733 printf_unfiltered ("Not confirmed, unchanged.\n");
1734 gdb_flush (gdb_stdout);
1735 }
1736 }
1737 break;
1738 default:
1739 sigs[signum] = 1;
1740 break;
1741 }
1742 }
1743
1744 argv++;
1745 }
1746
1747 target_notice_signals(inferior_pid);
1748
1749 if (from_tty)
1750 {
1751 /* Show the results. */
1752 sig_print_header ();
1753 for (signum = 0; signum < nsigs; signum++)
1754 {
1755 if (sigs[signum])
1756 {
1757 sig_print_info (signum);
1758 }
1759 }
1760 }
1761
1762 do_cleanups (old_chain);
1763 }
1764
1765 /* Print current contents of the tables set by the handle command.
1766 It is possible we should just be printing signals actually used
1767 by the current target (but for things to work right when switching
1768 targets, all signals should be in the signal tables). */
1769
1770 static void
1771 signals_info (signum_exp, from_tty)
1772 char *signum_exp;
1773 int from_tty;
1774 {
1775 enum target_signal oursig;
1776 sig_print_header ();
1777
1778 if (signum_exp)
1779 {
1780 /* First see if this is a symbol name. */
1781 oursig = target_signal_from_name (signum_exp);
1782 if (oursig == TARGET_SIGNAL_UNKNOWN)
1783 {
1784 /* Nope, maybe it's an address which evaluates to a signal
1785 number. */
1786 /* The numeric signal refers to our own internal
1787 signal numbering from target.h, not to host/target signal number.
1788 This is a feature; users really should be using symbolic names
1789 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1790 will work right anyway. */
1791 int i = parse_and_eval_address (signum_exp);
1792 if (i >= (int)TARGET_SIGNAL_LAST
1793 || i < 0
1794 || i == (int)TARGET_SIGNAL_UNKNOWN
1795 || i == (int)TARGET_SIGNAL_DEFAULT)
1796 error ("Signal number out of bounds.");
1797 oursig = (enum target_signal)i;
1798 }
1799 sig_print_info (oursig);
1800 return;
1801 }
1802
1803 printf_filtered ("\n");
1804 /* These ugly casts brought to you by the native VAX compiler. */
1805 for (oursig = TARGET_SIGNAL_FIRST;
1806 (int)oursig < (int)TARGET_SIGNAL_LAST;
1807 oursig = (enum target_signal)((int)oursig + 1))
1808 {
1809 QUIT;
1810
1811 if (oursig != TARGET_SIGNAL_UNKNOWN
1812 && oursig != TARGET_SIGNAL_DEFAULT
1813 && oursig != TARGET_SIGNAL_0)
1814 sig_print_info (oursig);
1815 }
1816
1817 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1818 }
1819 \f
1820 /* Save all of the information associated with the inferior<==>gdb
1821 connection. INF_STATUS is a pointer to a "struct inferior_status"
1822 (defined in inferior.h). */
1823
1824 void
1825 save_inferior_status (inf_status, restore_stack_info)
1826 struct inferior_status *inf_status;
1827 int restore_stack_info;
1828 {
1829 inf_status->stop_signal = stop_signal;
1830 inf_status->stop_pc = stop_pc;
1831 inf_status->stop_frame_address = stop_frame_address;
1832 inf_status->stop_step = stop_step;
1833 inf_status->stop_stack_dummy = stop_stack_dummy;
1834 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1835 inf_status->trap_expected = trap_expected;
1836 inf_status->step_range_start = step_range_start;
1837 inf_status->step_range_end = step_range_end;
1838 inf_status->step_frame_address = step_frame_address;
1839 inf_status->step_over_calls = step_over_calls;
1840 inf_status->stop_after_trap = stop_after_trap;
1841 inf_status->stop_soon_quietly = stop_soon_quietly;
1842 /* Save original bpstat chain here; replace it with copy of chain.
1843 If caller's caller is walking the chain, they'll be happier if we
1844 hand them back the original chain when restore_i_s is called. */
1845 inf_status->stop_bpstat = stop_bpstat;
1846 stop_bpstat = bpstat_copy (stop_bpstat);
1847 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1848 inf_status->restore_stack_info = restore_stack_info;
1849 inf_status->proceed_to_finish = proceed_to_finish;
1850
1851 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1852
1853 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1854
1855 record_selected_frame (&(inf_status->selected_frame_address),
1856 &(inf_status->selected_level));
1857 return;
1858 }
1859
1860 struct restore_selected_frame_args {
1861 FRAME_ADDR frame_address;
1862 int level;
1863 };
1864
1865 static int restore_selected_frame PARAMS ((char *));
1866
1867 /* Restore the selected frame. args is really a struct
1868 restore_selected_frame_args * (declared as char * for catch_errors)
1869 telling us what frame to restore. Returns 1 for success, or 0 for
1870 failure. An error message will have been printed on error. */
1871 static int
1872 restore_selected_frame (args)
1873 char *args;
1874 {
1875 struct restore_selected_frame_args *fr =
1876 (struct restore_selected_frame_args *) args;
1877 FRAME fid;
1878 int level = fr->level;
1879
1880 fid = find_relative_frame (get_current_frame (), &level);
1881
1882 /* If inf_status->selected_frame_address is NULL, there was no
1883 previously selected frame. */
1884 if (fid == 0 ||
1885 FRAME_FP (fid) != fr->frame_address ||
1886 level != 0)
1887 {
1888 warning ("Unable to restore previously selected frame.\n");
1889 return 0;
1890 }
1891 select_frame (fid, fr->level);
1892 return(1);
1893 }
1894
1895 void
1896 restore_inferior_status (inf_status)
1897 struct inferior_status *inf_status;
1898 {
1899 stop_signal = inf_status->stop_signal;
1900 stop_pc = inf_status->stop_pc;
1901 stop_frame_address = inf_status->stop_frame_address;
1902 stop_step = inf_status->stop_step;
1903 stop_stack_dummy = inf_status->stop_stack_dummy;
1904 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1905 trap_expected = inf_status->trap_expected;
1906 step_range_start = inf_status->step_range_start;
1907 step_range_end = inf_status->step_range_end;
1908 step_frame_address = inf_status->step_frame_address;
1909 step_over_calls = inf_status->step_over_calls;
1910 stop_after_trap = inf_status->stop_after_trap;
1911 stop_soon_quietly = inf_status->stop_soon_quietly;
1912 bpstat_clear (&stop_bpstat);
1913 stop_bpstat = inf_status->stop_bpstat;
1914 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1915 proceed_to_finish = inf_status->proceed_to_finish;
1916
1917 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1918
1919 /* The inferior can be gone if the user types "print exit(0)"
1920 (and perhaps other times). */
1921 if (target_has_execution)
1922 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1923
1924 /* The inferior can be gone if the user types "print exit(0)"
1925 (and perhaps other times). */
1926
1927 /* FIXME: If we are being called after stopping in a function which
1928 is called from gdb, we should not be trying to restore the
1929 selected frame; it just prints a spurious error message (The
1930 message is useful, however, in detecting bugs in gdb (like if gdb
1931 clobbers the stack)). In fact, should we be restoring the
1932 inferior status at all in that case? . */
1933
1934 if (target_has_stack && inf_status->restore_stack_info)
1935 {
1936 struct restore_selected_frame_args fr;
1937 fr.level = inf_status->selected_level;
1938 fr.frame_address = inf_status->selected_frame_address;
1939 /* The point of catch_errors is that if the stack is clobbered,
1940 walking the stack might encounter a garbage pointer and error()
1941 trying to dereference it. */
1942 if (catch_errors (restore_selected_frame, &fr,
1943 "Unable to restore previously selected frame:\n",
1944 RETURN_MASK_ERROR) == 0)
1945 /* Error in restoring the selected frame. Select the innermost
1946 frame. */
1947 select_frame (get_current_frame (), 0);
1948 }
1949 }
1950
1951 \f
1952 void
1953 _initialize_infrun ()
1954 {
1955 register int i;
1956 register int numsigs;
1957
1958 add_info ("signals", signals_info,
1959 "What debugger does when program gets various signals.\n\
1960 Specify a signal number as argument to print info on that signal only.");
1961 add_info_alias ("handle", "signals", 0);
1962
1963 add_com ("handle", class_run, handle_command,
1964 "Specify how to handle a signal.\n\
1965 Args are signal numbers and actions to apply to those signals.\n\
1966 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1967 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1968 The special arg \"all\" is recognized to mean all signals except those\n\
1969 used by the debugger, typically SIGTRAP and SIGINT.\n\
1970 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1971 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1972 Stop means reenter debugger if this signal happens (implies print).\n\
1973 Print means print a message if this signal happens.\n\
1974 Pass means let program see this signal; otherwise program doesn't know.\n\
1975 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1976 Pass and Stop may be combined.");
1977
1978 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1979 "There is no `stop' command, but you can set a hook on `stop'.\n\
1980 This allows you to set a list of commands to be run each time execution\n\
1981 of the program stops.", &cmdlist);
1982
1983 numsigs = (int)TARGET_SIGNAL_LAST;
1984 signal_stop = (unsigned char *)
1985 xmalloc (sizeof (signal_stop[0]) * numsigs);
1986 signal_print = (unsigned char *)
1987 xmalloc (sizeof (signal_print[0]) * numsigs);
1988 signal_program = (unsigned char *)
1989 xmalloc (sizeof (signal_program[0]) * numsigs);
1990 for (i = 0; i < numsigs; i++)
1991 {
1992 signal_stop[i] = 1;
1993 signal_print[i] = 1;
1994 signal_program[i] = 1;
1995 }
1996
1997 /* Signals caused by debugger's own actions
1998 should not be given to the program afterwards. */
1999 signal_program[TARGET_SIGNAL_TRAP] = 0;
2000 signal_program[TARGET_SIGNAL_INT] = 0;
2001
2002 /* Signals that are not errors should not normally enter the debugger. */
2003 signal_stop[TARGET_SIGNAL_ALRM] = 0;
2004 signal_print[TARGET_SIGNAL_ALRM] = 0;
2005 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
2006 signal_print[TARGET_SIGNAL_VTALRM] = 0;
2007 signal_stop[TARGET_SIGNAL_PROF] = 0;
2008 signal_print[TARGET_SIGNAL_PROF] = 0;
2009 signal_stop[TARGET_SIGNAL_CHLD] = 0;
2010 signal_print[TARGET_SIGNAL_CHLD] = 0;
2011 signal_stop[TARGET_SIGNAL_IO] = 0;
2012 signal_print[TARGET_SIGNAL_IO] = 0;
2013 signal_stop[TARGET_SIGNAL_POLL] = 0;
2014 signal_print[TARGET_SIGNAL_POLL] = 0;
2015 signal_stop[TARGET_SIGNAL_URG] = 0;
2016 signal_print[TARGET_SIGNAL_URG] = 0;
2017 }
This page took 0.091906 seconds and 5 git commands to generate.