Reimplement shared library support on ppc-aix...
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* Default behavior is to detach newly forked processes (legacy). */
136 int detach_fork = 1;
137
138 int debug_displaced = 0;
139 static void
140 show_debug_displaced (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144 }
145
146 unsigned int debug_infrun = 0;
147 static void
148 show_debug_infrun (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152 }
153
154
155 /* Support for disabling address space randomization. */
156
157 int disable_randomization = 1;
158
159 static void
160 show_disable_randomization (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 if (target_supports_disable_randomization ())
164 fprintf_filtered (file,
165 _("Disabling randomization of debuggee's "
166 "virtual address space is %s.\n"),
167 value);
168 else
169 fputs_filtered (_("Disabling randomization of debuggee's "
170 "virtual address space is unsupported on\n"
171 "this platform.\n"), file);
172 }
173
174 static void
175 set_disable_randomization (char *args, int from_tty,
176 struct cmd_list_element *c)
177 {
178 if (!target_supports_disable_randomization ())
179 error (_("Disabling randomization of debuggee's "
180 "virtual address space is unsupported on\n"
181 "this platform."));
182 }
183
184
185 /* If the program uses ELF-style shared libraries, then calls to
186 functions in shared libraries go through stubs, which live in a
187 table called the PLT (Procedure Linkage Table). The first time the
188 function is called, the stub sends control to the dynamic linker,
189 which looks up the function's real address, patches the stub so
190 that future calls will go directly to the function, and then passes
191 control to the function.
192
193 If we are stepping at the source level, we don't want to see any of
194 this --- we just want to skip over the stub and the dynamic linker.
195 The simple approach is to single-step until control leaves the
196 dynamic linker.
197
198 However, on some systems (e.g., Red Hat's 5.2 distribution) the
199 dynamic linker calls functions in the shared C library, so you
200 can't tell from the PC alone whether the dynamic linker is still
201 running. In this case, we use a step-resume breakpoint to get us
202 past the dynamic linker, as if we were using "next" to step over a
203 function call.
204
205 in_solib_dynsym_resolve_code() says whether we're in the dynamic
206 linker code or not. Normally, this means we single-step. However,
207 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
208 address where we can place a step-resume breakpoint to get past the
209 linker's symbol resolution function.
210
211 in_solib_dynsym_resolve_code() can generally be implemented in a
212 pretty portable way, by comparing the PC against the address ranges
213 of the dynamic linker's sections.
214
215 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
216 it depends on internal details of the dynamic linker. It's usually
217 not too hard to figure out where to put a breakpoint, but it
218 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
219 sanity checking. If it can't figure things out, returning zero and
220 getting the (possibly confusing) stepping behavior is better than
221 signalling an error, which will obscure the change in the
222 inferior's state. */
223
224 /* This function returns TRUE if pc is the address of an instruction
225 that lies within the dynamic linker (such as the event hook, or the
226 dld itself).
227
228 This function must be used only when a dynamic linker event has
229 been caught, and the inferior is being stepped out of the hook, or
230 undefined results are guaranteed. */
231
232 #ifndef SOLIB_IN_DYNAMIC_LINKER
233 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
234 #endif
235
236 /* "Observer mode" is somewhat like a more extreme version of
237 non-stop, in which all GDB operations that might affect the
238 target's execution have been disabled. */
239
240 static int non_stop_1 = 0;
241
242 int observer_mode = 0;
243 static int observer_mode_1 = 0;
244
245 static void
246 set_observer_mode (char *args, int from_tty,
247 struct cmd_list_element *c)
248 {
249 extern int pagination_enabled;
250
251 if (target_has_execution)
252 {
253 observer_mode_1 = observer_mode;
254 error (_("Cannot change this setting while the inferior is running."));
255 }
256
257 observer_mode = observer_mode_1;
258
259 may_write_registers = !observer_mode;
260 may_write_memory = !observer_mode;
261 may_insert_breakpoints = !observer_mode;
262 may_insert_tracepoints = !observer_mode;
263 /* We can insert fast tracepoints in or out of observer mode,
264 but enable them if we're going into this mode. */
265 if (observer_mode)
266 may_insert_fast_tracepoints = 1;
267 may_stop = !observer_mode;
268 update_target_permissions ();
269
270 /* Going *into* observer mode we must force non-stop, then
271 going out we leave it that way. */
272 if (observer_mode)
273 {
274 target_async_permitted = 1;
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Function inferior was in as of last step command. */
367
368 static struct symbol *step_start_function;
369
370 /* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
372 int stop_on_solib_events;
373 static void
374 show_stop_on_solib_events (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376 {
377 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
378 value);
379 }
380
381 /* Nonzero means expecting a trace trap
382 and should stop the inferior and return silently when it happens. */
383
384 int stop_after_trap;
385
386 /* Save register contents here when executing a "finish" command or are
387 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
388 Thus this contains the return value from the called function (assuming
389 values are returned in a register). */
390
391 struct regcache *stop_registers;
392
393 /* Nonzero after stop if current stack frame should be printed. */
394
395 static int stop_print_frame;
396
397 /* This is a cached copy of the pid/waitstatus of the last event
398 returned by target_wait()/deprecated_target_wait_hook(). This
399 information is returned by get_last_target_status(). */
400 static ptid_t target_last_wait_ptid;
401 static struct target_waitstatus target_last_waitstatus;
402
403 static void context_switch (ptid_t ptid);
404
405 void init_thread_stepping_state (struct thread_info *tss);
406
407 static void init_infwait_state (void);
408
409 static const char follow_fork_mode_child[] = "child";
410 static const char follow_fork_mode_parent[] = "parent";
411
412 static const char *const follow_fork_mode_kind_names[] = {
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
416 };
417
418 static const char *follow_fork_mode_string = follow_fork_mode_parent;
419 static void
420 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422 {
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
426 value);
427 }
428 \f
429
430 /* Tell the target to follow the fork we're stopped at. Returns true
431 if the inferior should be resumed; false, if the target for some
432 reason decided it's best not to resume. */
433
434 static int
435 follow_fork (void)
436 {
437 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
438 int should_resume = 1;
439 struct thread_info *tp;
440
441 /* Copy user stepping state to the new inferior thread. FIXME: the
442 followed fork child thread should have a copy of most of the
443 parent thread structure's run control related fields, not just these.
444 Initialized to avoid "may be used uninitialized" warnings from gcc. */
445 struct breakpoint *step_resume_breakpoint = NULL;
446 struct breakpoint *exception_resume_breakpoint = NULL;
447 CORE_ADDR step_range_start = 0;
448 CORE_ADDR step_range_end = 0;
449 struct frame_id step_frame_id = { 0 };
450
451 if (!non_stop)
452 {
453 ptid_t wait_ptid;
454 struct target_waitstatus wait_status;
455
456 /* Get the last target status returned by target_wait(). */
457 get_last_target_status (&wait_ptid, &wait_status);
458
459 /* If not stopped at a fork event, then there's nothing else to
460 do. */
461 if (wait_status.kind != TARGET_WAITKIND_FORKED
462 && wait_status.kind != TARGET_WAITKIND_VFORKED)
463 return 1;
464
465 /* Check if we switched over from WAIT_PTID, since the event was
466 reported. */
467 if (!ptid_equal (wait_ptid, minus_one_ptid)
468 && !ptid_equal (inferior_ptid, wait_ptid))
469 {
470 /* We did. Switch back to WAIT_PTID thread, to tell the
471 target to follow it (in either direction). We'll
472 afterwards refuse to resume, and inform the user what
473 happened. */
474 switch_to_thread (wait_ptid);
475 should_resume = 0;
476 }
477 }
478
479 tp = inferior_thread ();
480
481 /* If there were any forks/vforks that were caught and are now to be
482 followed, then do so now. */
483 switch (tp->pending_follow.kind)
484 {
485 case TARGET_WAITKIND_FORKED:
486 case TARGET_WAITKIND_VFORKED:
487 {
488 ptid_t parent, child;
489
490 /* If the user did a next/step, etc, over a fork call,
491 preserve the stepping state in the fork child. */
492 if (follow_child && should_resume)
493 {
494 step_resume_breakpoint = clone_momentary_breakpoint
495 (tp->control.step_resume_breakpoint);
496 step_range_start = tp->control.step_range_start;
497 step_range_end = tp->control.step_range_end;
498 step_frame_id = tp->control.step_frame_id;
499 exception_resume_breakpoint
500 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
501
502 /* For now, delete the parent's sr breakpoint, otherwise,
503 parent/child sr breakpoints are considered duplicates,
504 and the child version will not be installed. Remove
505 this when the breakpoints module becomes aware of
506 inferiors and address spaces. */
507 delete_step_resume_breakpoint (tp);
508 tp->control.step_range_start = 0;
509 tp->control.step_range_end = 0;
510 tp->control.step_frame_id = null_frame_id;
511 delete_exception_resume_breakpoint (tp);
512 }
513
514 parent = inferior_ptid;
515 child = tp->pending_follow.value.related_pid;
516
517 /* Tell the target to do whatever is necessary to follow
518 either parent or child. */
519 if (target_follow_fork (follow_child))
520 {
521 /* Target refused to follow, or there's some other reason
522 we shouldn't resume. */
523 should_resume = 0;
524 }
525 else
526 {
527 /* This pending follow fork event is now handled, one way
528 or another. The previous selected thread may be gone
529 from the lists by now, but if it is still around, need
530 to clear the pending follow request. */
531 tp = find_thread_ptid (parent);
532 if (tp)
533 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
534
535 /* This makes sure we don't try to apply the "Switched
536 over from WAIT_PID" logic above. */
537 nullify_last_target_wait_ptid ();
538
539 /* If we followed the child, switch to it... */
540 if (follow_child)
541 {
542 switch_to_thread (child);
543
544 /* ... and preserve the stepping state, in case the
545 user was stepping over the fork call. */
546 if (should_resume)
547 {
548 tp = inferior_thread ();
549 tp->control.step_resume_breakpoint
550 = step_resume_breakpoint;
551 tp->control.step_range_start = step_range_start;
552 tp->control.step_range_end = step_range_end;
553 tp->control.step_frame_id = step_frame_id;
554 tp->control.exception_resume_breakpoint
555 = exception_resume_breakpoint;
556 }
557 else
558 {
559 /* If we get here, it was because we're trying to
560 resume from a fork catchpoint, but, the user
561 has switched threads away from the thread that
562 forked. In that case, the resume command
563 issued is most likely not applicable to the
564 child, so just warn, and refuse to resume. */
565 warning (_("Not resuming: switched threads "
566 "before following fork child.\n"));
567 }
568
569 /* Reset breakpoints in the child as appropriate. */
570 follow_inferior_reset_breakpoints ();
571 }
572 else
573 switch_to_thread (parent);
574 }
575 }
576 break;
577 case TARGET_WAITKIND_SPURIOUS:
578 /* Nothing to follow. */
579 break;
580 default:
581 internal_error (__FILE__, __LINE__,
582 "Unexpected pending_follow.kind %d\n",
583 tp->pending_follow.kind);
584 break;
585 }
586
587 return should_resume;
588 }
589
590 void
591 follow_inferior_reset_breakpoints (void)
592 {
593 struct thread_info *tp = inferior_thread ();
594
595 /* Was there a step_resume breakpoint? (There was if the user
596 did a "next" at the fork() call.) If so, explicitly reset its
597 thread number.
598
599 step_resumes are a form of bp that are made to be per-thread.
600 Since we created the step_resume bp when the parent process
601 was being debugged, and now are switching to the child process,
602 from the breakpoint package's viewpoint, that's a switch of
603 "threads". We must update the bp's notion of which thread
604 it is for, or it'll be ignored when it triggers. */
605
606 if (tp->control.step_resume_breakpoint)
607 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
608
609 if (tp->control.exception_resume_breakpoint)
610 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
611
612 /* Reinsert all breakpoints in the child. The user may have set
613 breakpoints after catching the fork, in which case those
614 were never set in the child, but only in the parent. This makes
615 sure the inserted breakpoints match the breakpoint list. */
616
617 breakpoint_re_set ();
618 insert_breakpoints ();
619 }
620
621 /* The child has exited or execed: resume threads of the parent the
622 user wanted to be executing. */
623
624 static int
625 proceed_after_vfork_done (struct thread_info *thread,
626 void *arg)
627 {
628 int pid = * (int *) arg;
629
630 if (ptid_get_pid (thread->ptid) == pid
631 && is_running (thread->ptid)
632 && !is_executing (thread->ptid)
633 && !thread->stop_requested
634 && thread->suspend.stop_signal == GDB_SIGNAL_0)
635 {
636 if (debug_infrun)
637 fprintf_unfiltered (gdb_stdlog,
638 "infrun: resuming vfork parent thread %s\n",
639 target_pid_to_str (thread->ptid));
640
641 switch_to_thread (thread->ptid);
642 clear_proceed_status ();
643 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
644 }
645
646 return 0;
647 }
648
649 /* Called whenever we notice an exec or exit event, to handle
650 detaching or resuming a vfork parent. */
651
652 static void
653 handle_vfork_child_exec_or_exit (int exec)
654 {
655 struct inferior *inf = current_inferior ();
656
657 if (inf->vfork_parent)
658 {
659 int resume_parent = -1;
660
661 /* This exec or exit marks the end of the shared memory region
662 between the parent and the child. If the user wanted to
663 detach from the parent, now is the time. */
664
665 if (inf->vfork_parent->pending_detach)
666 {
667 struct thread_info *tp;
668 struct cleanup *old_chain;
669 struct program_space *pspace;
670 struct address_space *aspace;
671
672 /* follow-fork child, detach-on-fork on. */
673
674 inf->vfork_parent->pending_detach = 0;
675
676 if (!exec)
677 {
678 /* If we're handling a child exit, then inferior_ptid
679 points at the inferior's pid, not to a thread. */
680 old_chain = save_inferior_ptid ();
681 save_current_program_space ();
682 save_current_inferior ();
683 }
684 else
685 old_chain = save_current_space_and_thread ();
686
687 /* We're letting loose of the parent. */
688 tp = any_live_thread_of_process (inf->vfork_parent->pid);
689 switch_to_thread (tp->ptid);
690
691 /* We're about to detach from the parent, which implicitly
692 removes breakpoints from its address space. There's a
693 catch here: we want to reuse the spaces for the child,
694 but, parent/child are still sharing the pspace at this
695 point, although the exec in reality makes the kernel give
696 the child a fresh set of new pages. The problem here is
697 that the breakpoints module being unaware of this, would
698 likely chose the child process to write to the parent
699 address space. Swapping the child temporarily away from
700 the spaces has the desired effect. Yes, this is "sort
701 of" a hack. */
702
703 pspace = inf->pspace;
704 aspace = inf->aspace;
705 inf->aspace = NULL;
706 inf->pspace = NULL;
707
708 if (debug_infrun || info_verbose)
709 {
710 target_terminal_ours ();
711
712 if (exec)
713 fprintf_filtered (gdb_stdlog,
714 "Detaching vfork parent process "
715 "%d after child exec.\n",
716 inf->vfork_parent->pid);
717 else
718 fprintf_filtered (gdb_stdlog,
719 "Detaching vfork parent process "
720 "%d after child exit.\n",
721 inf->vfork_parent->pid);
722 }
723
724 target_detach (NULL, 0);
725
726 /* Put it back. */
727 inf->pspace = pspace;
728 inf->aspace = aspace;
729
730 do_cleanups (old_chain);
731 }
732 else if (exec)
733 {
734 /* We're staying attached to the parent, so, really give the
735 child a new address space. */
736 inf->pspace = add_program_space (maybe_new_address_space ());
737 inf->aspace = inf->pspace->aspace;
738 inf->removable = 1;
739 set_current_program_space (inf->pspace);
740
741 resume_parent = inf->vfork_parent->pid;
742
743 /* Break the bonds. */
744 inf->vfork_parent->vfork_child = NULL;
745 }
746 else
747 {
748 struct cleanup *old_chain;
749 struct program_space *pspace;
750
751 /* If this is a vfork child exiting, then the pspace and
752 aspaces were shared with the parent. Since we're
753 reporting the process exit, we'll be mourning all that is
754 found in the address space, and switching to null_ptid,
755 preparing to start a new inferior. But, since we don't
756 want to clobber the parent's address/program spaces, we
757 go ahead and create a new one for this exiting
758 inferior. */
759
760 /* Switch to null_ptid, so that clone_program_space doesn't want
761 to read the selected frame of a dead process. */
762 old_chain = save_inferior_ptid ();
763 inferior_ptid = null_ptid;
764
765 /* This inferior is dead, so avoid giving the breakpoints
766 module the option to write through to it (cloning a
767 program space resets breakpoints). */
768 inf->aspace = NULL;
769 inf->pspace = NULL;
770 pspace = add_program_space (maybe_new_address_space ());
771 set_current_program_space (pspace);
772 inf->removable = 1;
773 inf->symfile_flags = SYMFILE_NO_READ;
774 clone_program_space (pspace, inf->vfork_parent->pspace);
775 inf->pspace = pspace;
776 inf->aspace = pspace->aspace;
777
778 /* Put back inferior_ptid. We'll continue mourning this
779 inferior. */
780 do_cleanups (old_chain);
781
782 resume_parent = inf->vfork_parent->pid;
783 /* Break the bonds. */
784 inf->vfork_parent->vfork_child = NULL;
785 }
786
787 inf->vfork_parent = NULL;
788
789 gdb_assert (current_program_space == inf->pspace);
790
791 if (non_stop && resume_parent != -1)
792 {
793 /* If the user wanted the parent to be running, let it go
794 free now. */
795 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
796
797 if (debug_infrun)
798 fprintf_unfiltered (gdb_stdlog,
799 "infrun: resuming vfork parent process %d\n",
800 resume_parent);
801
802 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
803
804 do_cleanups (old_chain);
805 }
806 }
807 }
808
809 /* Enum strings for "set|show follow-exec-mode". */
810
811 static const char follow_exec_mode_new[] = "new";
812 static const char follow_exec_mode_same[] = "same";
813 static const char *const follow_exec_mode_names[] =
814 {
815 follow_exec_mode_new,
816 follow_exec_mode_same,
817 NULL,
818 };
819
820 static const char *follow_exec_mode_string = follow_exec_mode_same;
821 static void
822 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
823 struct cmd_list_element *c, const char *value)
824 {
825 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
826 }
827
828 /* EXECD_PATHNAME is assumed to be non-NULL. */
829
830 static void
831 follow_exec (ptid_t pid, char *execd_pathname)
832 {
833 struct thread_info *th = inferior_thread ();
834 struct inferior *inf = current_inferior ();
835
836 /* This is an exec event that we actually wish to pay attention to.
837 Refresh our symbol table to the newly exec'd program, remove any
838 momentary bp's, etc.
839
840 If there are breakpoints, they aren't really inserted now,
841 since the exec() transformed our inferior into a fresh set
842 of instructions.
843
844 We want to preserve symbolic breakpoints on the list, since
845 we have hopes that they can be reset after the new a.out's
846 symbol table is read.
847
848 However, any "raw" breakpoints must be removed from the list
849 (e.g., the solib bp's), since their address is probably invalid
850 now.
851
852 And, we DON'T want to call delete_breakpoints() here, since
853 that may write the bp's "shadow contents" (the instruction
854 value that was overwritten witha TRAP instruction). Since
855 we now have a new a.out, those shadow contents aren't valid. */
856
857 mark_breakpoints_out ();
858
859 update_breakpoints_after_exec ();
860
861 /* If there was one, it's gone now. We cannot truly step-to-next
862 statement through an exec(). */
863 th->control.step_resume_breakpoint = NULL;
864 th->control.exception_resume_breakpoint = NULL;
865 th->control.step_range_start = 0;
866 th->control.step_range_end = 0;
867
868 /* The target reports the exec event to the main thread, even if
869 some other thread does the exec, and even if the main thread was
870 already stopped --- if debugging in non-stop mode, it's possible
871 the user had the main thread held stopped in the previous image
872 --- release it now. This is the same behavior as step-over-exec
873 with scheduler-locking on in all-stop mode. */
874 th->stop_requested = 0;
875
876 /* What is this a.out's name? */
877 printf_unfiltered (_("%s is executing new program: %s\n"),
878 target_pid_to_str (inferior_ptid),
879 execd_pathname);
880
881 /* We've followed the inferior through an exec. Therefore, the
882 inferior has essentially been killed & reborn. */
883
884 gdb_flush (gdb_stdout);
885
886 breakpoint_init_inferior (inf_execd);
887
888 if (gdb_sysroot && *gdb_sysroot)
889 {
890 char *name = alloca (strlen (gdb_sysroot)
891 + strlen (execd_pathname)
892 + 1);
893
894 strcpy (name, gdb_sysroot);
895 strcat (name, execd_pathname);
896 execd_pathname = name;
897 }
898
899 /* Reset the shared library package. This ensures that we get a
900 shlib event when the child reaches "_start", at which point the
901 dld will have had a chance to initialize the child. */
902 /* Also, loading a symbol file below may trigger symbol lookups, and
903 we don't want those to be satisfied by the libraries of the
904 previous incarnation of this process. */
905 no_shared_libraries (NULL, 0);
906
907 if (follow_exec_mode_string == follow_exec_mode_new)
908 {
909 struct program_space *pspace;
910
911 /* The user wants to keep the old inferior and program spaces
912 around. Create a new fresh one, and switch to it. */
913
914 inf = add_inferior (current_inferior ()->pid);
915 pspace = add_program_space (maybe_new_address_space ());
916 inf->pspace = pspace;
917 inf->aspace = pspace->aspace;
918
919 exit_inferior_num_silent (current_inferior ()->num);
920
921 set_current_inferior (inf);
922 set_current_program_space (pspace);
923 }
924 else
925 {
926 /* The old description may no longer be fit for the new image.
927 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
928 old description; we'll read a new one below. No need to do
929 this on "follow-exec-mode new", as the old inferior stays
930 around (its description is later cleared/refetched on
931 restart). */
932 target_clear_description ();
933 }
934
935 gdb_assert (current_program_space == inf->pspace);
936
937 /* That a.out is now the one to use. */
938 exec_file_attach (execd_pathname, 0);
939
940 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
941 (Position Independent Executable) main symbol file will get applied by
942 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
943 the breakpoints with the zero displacement. */
944
945 symbol_file_add (execd_pathname,
946 (inf->symfile_flags
947 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
948 NULL, 0);
949
950 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
951 set_initial_language ();
952
953 /* If the target can specify a description, read it. Must do this
954 after flipping to the new executable (because the target supplied
955 description must be compatible with the executable's
956 architecture, and the old executable may e.g., be 32-bit, while
957 the new one 64-bit), and before anything involving memory or
958 registers. */
959 target_find_description ();
960
961 solib_create_inferior_hook (0);
962
963 jit_inferior_created_hook ();
964
965 breakpoint_re_set ();
966
967 /* Reinsert all breakpoints. (Those which were symbolic have
968 been reset to the proper address in the new a.out, thanks
969 to symbol_file_command...). */
970 insert_breakpoints ();
971
972 /* The next resume of this inferior should bring it to the shlib
973 startup breakpoints. (If the user had also set bp's on
974 "main" from the old (parent) process, then they'll auto-
975 matically get reset there in the new process.). */
976 }
977
978 /* Non-zero if we just simulating a single-step. This is needed
979 because we cannot remove the breakpoints in the inferior process
980 until after the `wait' in `wait_for_inferior'. */
981 static int singlestep_breakpoints_inserted_p = 0;
982
983 /* The thread we inserted single-step breakpoints for. */
984 static ptid_t singlestep_ptid;
985
986 /* PC when we started this single-step. */
987 static CORE_ADDR singlestep_pc;
988
989 /* If another thread hit the singlestep breakpoint, we save the original
990 thread here so that we can resume single-stepping it later. */
991 static ptid_t saved_singlestep_ptid;
992 static int stepping_past_singlestep_breakpoint;
993
994 /* If not equal to null_ptid, this means that after stepping over breakpoint
995 is finished, we need to switch to deferred_step_ptid, and step it.
996
997 The use case is when one thread has hit a breakpoint, and then the user
998 has switched to another thread and issued 'step'. We need to step over
999 breakpoint in the thread which hit the breakpoint, but then continue
1000 stepping the thread user has selected. */
1001 static ptid_t deferred_step_ptid;
1002 \f
1003 /* Displaced stepping. */
1004
1005 /* In non-stop debugging mode, we must take special care to manage
1006 breakpoints properly; in particular, the traditional strategy for
1007 stepping a thread past a breakpoint it has hit is unsuitable.
1008 'Displaced stepping' is a tactic for stepping one thread past a
1009 breakpoint it has hit while ensuring that other threads running
1010 concurrently will hit the breakpoint as they should.
1011
1012 The traditional way to step a thread T off a breakpoint in a
1013 multi-threaded program in all-stop mode is as follows:
1014
1015 a0) Initially, all threads are stopped, and breakpoints are not
1016 inserted.
1017 a1) We single-step T, leaving breakpoints uninserted.
1018 a2) We insert breakpoints, and resume all threads.
1019
1020 In non-stop debugging, however, this strategy is unsuitable: we
1021 don't want to have to stop all threads in the system in order to
1022 continue or step T past a breakpoint. Instead, we use displaced
1023 stepping:
1024
1025 n0) Initially, T is stopped, other threads are running, and
1026 breakpoints are inserted.
1027 n1) We copy the instruction "under" the breakpoint to a separate
1028 location, outside the main code stream, making any adjustments
1029 to the instruction, register, and memory state as directed by
1030 T's architecture.
1031 n2) We single-step T over the instruction at its new location.
1032 n3) We adjust the resulting register and memory state as directed
1033 by T's architecture. This includes resetting T's PC to point
1034 back into the main instruction stream.
1035 n4) We resume T.
1036
1037 This approach depends on the following gdbarch methods:
1038
1039 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1040 indicate where to copy the instruction, and how much space must
1041 be reserved there. We use these in step n1.
1042
1043 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1044 address, and makes any necessary adjustments to the instruction,
1045 register contents, and memory. We use this in step n1.
1046
1047 - gdbarch_displaced_step_fixup adjusts registers and memory after
1048 we have successfuly single-stepped the instruction, to yield the
1049 same effect the instruction would have had if we had executed it
1050 at its original address. We use this in step n3.
1051
1052 - gdbarch_displaced_step_free_closure provides cleanup.
1053
1054 The gdbarch_displaced_step_copy_insn and
1055 gdbarch_displaced_step_fixup functions must be written so that
1056 copying an instruction with gdbarch_displaced_step_copy_insn,
1057 single-stepping across the copied instruction, and then applying
1058 gdbarch_displaced_insn_fixup should have the same effects on the
1059 thread's memory and registers as stepping the instruction in place
1060 would have. Exactly which responsibilities fall to the copy and
1061 which fall to the fixup is up to the author of those functions.
1062
1063 See the comments in gdbarch.sh for details.
1064
1065 Note that displaced stepping and software single-step cannot
1066 currently be used in combination, although with some care I think
1067 they could be made to. Software single-step works by placing
1068 breakpoints on all possible subsequent instructions; if the
1069 displaced instruction is a PC-relative jump, those breakpoints
1070 could fall in very strange places --- on pages that aren't
1071 executable, or at addresses that are not proper instruction
1072 boundaries. (We do generally let other threads run while we wait
1073 to hit the software single-step breakpoint, and they might
1074 encounter such a corrupted instruction.) One way to work around
1075 this would be to have gdbarch_displaced_step_copy_insn fully
1076 simulate the effect of PC-relative instructions (and return NULL)
1077 on architectures that use software single-stepping.
1078
1079 In non-stop mode, we can have independent and simultaneous step
1080 requests, so more than one thread may need to simultaneously step
1081 over a breakpoint. The current implementation assumes there is
1082 only one scratch space per process. In this case, we have to
1083 serialize access to the scratch space. If thread A wants to step
1084 over a breakpoint, but we are currently waiting for some other
1085 thread to complete a displaced step, we leave thread A stopped and
1086 place it in the displaced_step_request_queue. Whenever a displaced
1087 step finishes, we pick the next thread in the queue and start a new
1088 displaced step operation on it. See displaced_step_prepare and
1089 displaced_step_fixup for details. */
1090
1091 struct displaced_step_request
1092 {
1093 ptid_t ptid;
1094 struct displaced_step_request *next;
1095 };
1096
1097 /* Per-inferior displaced stepping state. */
1098 struct displaced_step_inferior_state
1099 {
1100 /* Pointer to next in linked list. */
1101 struct displaced_step_inferior_state *next;
1102
1103 /* The process this displaced step state refers to. */
1104 int pid;
1105
1106 /* A queue of pending displaced stepping requests. One entry per
1107 thread that needs to do a displaced step. */
1108 struct displaced_step_request *step_request_queue;
1109
1110 /* If this is not null_ptid, this is the thread carrying out a
1111 displaced single-step in process PID. This thread's state will
1112 require fixing up once it has completed its step. */
1113 ptid_t step_ptid;
1114
1115 /* The architecture the thread had when we stepped it. */
1116 struct gdbarch *step_gdbarch;
1117
1118 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1119 for post-step cleanup. */
1120 struct displaced_step_closure *step_closure;
1121
1122 /* The address of the original instruction, and the copy we
1123 made. */
1124 CORE_ADDR step_original, step_copy;
1125
1126 /* Saved contents of copy area. */
1127 gdb_byte *step_saved_copy;
1128 };
1129
1130 /* The list of states of processes involved in displaced stepping
1131 presently. */
1132 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1133
1134 /* Get the displaced stepping state of process PID. */
1135
1136 static struct displaced_step_inferior_state *
1137 get_displaced_stepping_state (int pid)
1138 {
1139 struct displaced_step_inferior_state *state;
1140
1141 for (state = displaced_step_inferior_states;
1142 state != NULL;
1143 state = state->next)
1144 if (state->pid == pid)
1145 return state;
1146
1147 return NULL;
1148 }
1149
1150 /* Add a new displaced stepping state for process PID to the displaced
1151 stepping state list, or return a pointer to an already existing
1152 entry, if it already exists. Never returns NULL. */
1153
1154 static struct displaced_step_inferior_state *
1155 add_displaced_stepping_state (int pid)
1156 {
1157 struct displaced_step_inferior_state *state;
1158
1159 for (state = displaced_step_inferior_states;
1160 state != NULL;
1161 state = state->next)
1162 if (state->pid == pid)
1163 return state;
1164
1165 state = xcalloc (1, sizeof (*state));
1166 state->pid = pid;
1167 state->next = displaced_step_inferior_states;
1168 displaced_step_inferior_states = state;
1169
1170 return state;
1171 }
1172
1173 /* If inferior is in displaced stepping, and ADDR equals to starting address
1174 of copy area, return corresponding displaced_step_closure. Otherwise,
1175 return NULL. */
1176
1177 struct displaced_step_closure*
1178 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1179 {
1180 struct displaced_step_inferior_state *displaced
1181 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1182
1183 /* If checking the mode of displaced instruction in copy area. */
1184 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1185 && (displaced->step_copy == addr))
1186 return displaced->step_closure;
1187
1188 return NULL;
1189 }
1190
1191 /* Remove the displaced stepping state of process PID. */
1192
1193 static void
1194 remove_displaced_stepping_state (int pid)
1195 {
1196 struct displaced_step_inferior_state *it, **prev_next_p;
1197
1198 gdb_assert (pid != 0);
1199
1200 it = displaced_step_inferior_states;
1201 prev_next_p = &displaced_step_inferior_states;
1202 while (it)
1203 {
1204 if (it->pid == pid)
1205 {
1206 *prev_next_p = it->next;
1207 xfree (it);
1208 return;
1209 }
1210
1211 prev_next_p = &it->next;
1212 it = *prev_next_p;
1213 }
1214 }
1215
1216 static void
1217 infrun_inferior_exit (struct inferior *inf)
1218 {
1219 remove_displaced_stepping_state (inf->pid);
1220 }
1221
1222 /* If ON, and the architecture supports it, GDB will use displaced
1223 stepping to step over breakpoints. If OFF, or if the architecture
1224 doesn't support it, GDB will instead use the traditional
1225 hold-and-step approach. If AUTO (which is the default), GDB will
1226 decide which technique to use to step over breakpoints depending on
1227 which of all-stop or non-stop mode is active --- displaced stepping
1228 in non-stop mode; hold-and-step in all-stop mode. */
1229
1230 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1231
1232 static void
1233 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1234 struct cmd_list_element *c,
1235 const char *value)
1236 {
1237 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1238 fprintf_filtered (file,
1239 _("Debugger's willingness to use displaced stepping "
1240 "to step over breakpoints is %s (currently %s).\n"),
1241 value, non_stop ? "on" : "off");
1242 else
1243 fprintf_filtered (file,
1244 _("Debugger's willingness to use displaced stepping "
1245 "to step over breakpoints is %s.\n"), value);
1246 }
1247
1248 /* Return non-zero if displaced stepping can/should be used to step
1249 over breakpoints. */
1250
1251 static int
1252 use_displaced_stepping (struct gdbarch *gdbarch)
1253 {
1254 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1255 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1256 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1257 && !RECORD_IS_USED);
1258 }
1259
1260 /* Clean out any stray displaced stepping state. */
1261 static void
1262 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1263 {
1264 /* Indicate that there is no cleanup pending. */
1265 displaced->step_ptid = null_ptid;
1266
1267 if (displaced->step_closure)
1268 {
1269 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1270 displaced->step_closure);
1271 displaced->step_closure = NULL;
1272 }
1273 }
1274
1275 static void
1276 displaced_step_clear_cleanup (void *arg)
1277 {
1278 struct displaced_step_inferior_state *state = arg;
1279
1280 displaced_step_clear (state);
1281 }
1282
1283 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1284 void
1285 displaced_step_dump_bytes (struct ui_file *file,
1286 const gdb_byte *buf,
1287 size_t len)
1288 {
1289 int i;
1290
1291 for (i = 0; i < len; i++)
1292 fprintf_unfiltered (file, "%02x ", buf[i]);
1293 fputs_unfiltered ("\n", file);
1294 }
1295
1296 /* Prepare to single-step, using displaced stepping.
1297
1298 Note that we cannot use displaced stepping when we have a signal to
1299 deliver. If we have a signal to deliver and an instruction to step
1300 over, then after the step, there will be no indication from the
1301 target whether the thread entered a signal handler or ignored the
1302 signal and stepped over the instruction successfully --- both cases
1303 result in a simple SIGTRAP. In the first case we mustn't do a
1304 fixup, and in the second case we must --- but we can't tell which.
1305 Comments in the code for 'random signals' in handle_inferior_event
1306 explain how we handle this case instead.
1307
1308 Returns 1 if preparing was successful -- this thread is going to be
1309 stepped now; or 0 if displaced stepping this thread got queued. */
1310 static int
1311 displaced_step_prepare (ptid_t ptid)
1312 {
1313 struct cleanup *old_cleanups, *ignore_cleanups;
1314 struct regcache *regcache = get_thread_regcache (ptid);
1315 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1316 CORE_ADDR original, copy;
1317 ULONGEST len;
1318 struct displaced_step_closure *closure;
1319 struct displaced_step_inferior_state *displaced;
1320 int status;
1321
1322 /* We should never reach this function if the architecture does not
1323 support displaced stepping. */
1324 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1325
1326 /* We have to displaced step one thread at a time, as we only have
1327 access to a single scratch space per inferior. */
1328
1329 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1330
1331 if (!ptid_equal (displaced->step_ptid, null_ptid))
1332 {
1333 /* Already waiting for a displaced step to finish. Defer this
1334 request and place in queue. */
1335 struct displaced_step_request *req, *new_req;
1336
1337 if (debug_displaced)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "displaced: defering step of %s\n",
1340 target_pid_to_str (ptid));
1341
1342 new_req = xmalloc (sizeof (*new_req));
1343 new_req->ptid = ptid;
1344 new_req->next = NULL;
1345
1346 if (displaced->step_request_queue)
1347 {
1348 for (req = displaced->step_request_queue;
1349 req && req->next;
1350 req = req->next)
1351 ;
1352 req->next = new_req;
1353 }
1354 else
1355 displaced->step_request_queue = new_req;
1356
1357 return 0;
1358 }
1359 else
1360 {
1361 if (debug_displaced)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "displaced: stepping %s now\n",
1364 target_pid_to_str (ptid));
1365 }
1366
1367 displaced_step_clear (displaced);
1368
1369 old_cleanups = save_inferior_ptid ();
1370 inferior_ptid = ptid;
1371
1372 original = regcache_read_pc (regcache);
1373
1374 copy = gdbarch_displaced_step_location (gdbarch);
1375 len = gdbarch_max_insn_length (gdbarch);
1376
1377 /* Save the original contents of the copy area. */
1378 displaced->step_saved_copy = xmalloc (len);
1379 ignore_cleanups = make_cleanup (free_current_contents,
1380 &displaced->step_saved_copy);
1381 status = target_read_memory (copy, displaced->step_saved_copy, len);
1382 if (status != 0)
1383 throw_error (MEMORY_ERROR,
1384 _("Error accessing memory address %s (%s) for "
1385 "displaced-stepping scratch space."),
1386 paddress (gdbarch, copy), safe_strerror (status));
1387 if (debug_displaced)
1388 {
1389 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1390 paddress (gdbarch, copy));
1391 displaced_step_dump_bytes (gdb_stdlog,
1392 displaced->step_saved_copy,
1393 len);
1394 };
1395
1396 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1397 original, copy, regcache);
1398
1399 /* We don't support the fully-simulated case at present. */
1400 gdb_assert (closure);
1401
1402 /* Save the information we need to fix things up if the step
1403 succeeds. */
1404 displaced->step_ptid = ptid;
1405 displaced->step_gdbarch = gdbarch;
1406 displaced->step_closure = closure;
1407 displaced->step_original = original;
1408 displaced->step_copy = copy;
1409
1410 make_cleanup (displaced_step_clear_cleanup, displaced);
1411
1412 /* Resume execution at the copy. */
1413 regcache_write_pc (regcache, copy);
1414
1415 discard_cleanups (ignore_cleanups);
1416
1417 do_cleanups (old_cleanups);
1418
1419 if (debug_displaced)
1420 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1421 paddress (gdbarch, copy));
1422
1423 return 1;
1424 }
1425
1426 static void
1427 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1428 const gdb_byte *myaddr, int len)
1429 {
1430 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1431
1432 inferior_ptid = ptid;
1433 write_memory (memaddr, myaddr, len);
1434 do_cleanups (ptid_cleanup);
1435 }
1436
1437 /* Restore the contents of the copy area for thread PTID. */
1438
1439 static void
1440 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1441 ptid_t ptid)
1442 {
1443 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1444
1445 write_memory_ptid (ptid, displaced->step_copy,
1446 displaced->step_saved_copy, len);
1447 if (debug_displaced)
1448 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1449 target_pid_to_str (ptid),
1450 paddress (displaced->step_gdbarch,
1451 displaced->step_copy));
1452 }
1453
1454 static void
1455 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1456 {
1457 struct cleanup *old_cleanups;
1458 struct displaced_step_inferior_state *displaced
1459 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1460
1461 /* Was any thread of this process doing a displaced step? */
1462 if (displaced == NULL)
1463 return;
1464
1465 /* Was this event for the pid we displaced? */
1466 if (ptid_equal (displaced->step_ptid, null_ptid)
1467 || ! ptid_equal (displaced->step_ptid, event_ptid))
1468 return;
1469
1470 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1471
1472 displaced_step_restore (displaced, displaced->step_ptid);
1473
1474 /* Did the instruction complete successfully? */
1475 if (signal == GDB_SIGNAL_TRAP)
1476 {
1477 /* Fix up the resulting state. */
1478 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1479 displaced->step_closure,
1480 displaced->step_original,
1481 displaced->step_copy,
1482 get_thread_regcache (displaced->step_ptid));
1483 }
1484 else
1485 {
1486 /* Since the instruction didn't complete, all we can do is
1487 relocate the PC. */
1488 struct regcache *regcache = get_thread_regcache (event_ptid);
1489 CORE_ADDR pc = regcache_read_pc (regcache);
1490
1491 pc = displaced->step_original + (pc - displaced->step_copy);
1492 regcache_write_pc (regcache, pc);
1493 }
1494
1495 do_cleanups (old_cleanups);
1496
1497 displaced->step_ptid = null_ptid;
1498
1499 /* Are there any pending displaced stepping requests? If so, run
1500 one now. Leave the state object around, since we're likely to
1501 need it again soon. */
1502 while (displaced->step_request_queue)
1503 {
1504 struct displaced_step_request *head;
1505 ptid_t ptid;
1506 struct regcache *regcache;
1507 struct gdbarch *gdbarch;
1508 CORE_ADDR actual_pc;
1509 struct address_space *aspace;
1510
1511 head = displaced->step_request_queue;
1512 ptid = head->ptid;
1513 displaced->step_request_queue = head->next;
1514 xfree (head);
1515
1516 context_switch (ptid);
1517
1518 regcache = get_thread_regcache (ptid);
1519 actual_pc = regcache_read_pc (regcache);
1520 aspace = get_regcache_aspace (regcache);
1521
1522 if (breakpoint_here_p (aspace, actual_pc))
1523 {
1524 if (debug_displaced)
1525 fprintf_unfiltered (gdb_stdlog,
1526 "displaced: stepping queued %s now\n",
1527 target_pid_to_str (ptid));
1528
1529 displaced_step_prepare (ptid);
1530
1531 gdbarch = get_regcache_arch (regcache);
1532
1533 if (debug_displaced)
1534 {
1535 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1536 gdb_byte buf[4];
1537
1538 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1539 paddress (gdbarch, actual_pc));
1540 read_memory (actual_pc, buf, sizeof (buf));
1541 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1542 }
1543
1544 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1545 displaced->step_closure))
1546 target_resume (ptid, 1, GDB_SIGNAL_0);
1547 else
1548 target_resume (ptid, 0, GDB_SIGNAL_0);
1549
1550 /* Done, we're stepping a thread. */
1551 break;
1552 }
1553 else
1554 {
1555 int step;
1556 struct thread_info *tp = inferior_thread ();
1557
1558 /* The breakpoint we were sitting under has since been
1559 removed. */
1560 tp->control.trap_expected = 0;
1561
1562 /* Go back to what we were trying to do. */
1563 step = currently_stepping (tp);
1564
1565 if (debug_displaced)
1566 fprintf_unfiltered (gdb_stdlog,
1567 "displaced: breakpoint is gone: %s, step(%d)\n",
1568 target_pid_to_str (tp->ptid), step);
1569
1570 target_resume (ptid, step, GDB_SIGNAL_0);
1571 tp->suspend.stop_signal = GDB_SIGNAL_0;
1572
1573 /* This request was discarded. See if there's any other
1574 thread waiting for its turn. */
1575 }
1576 }
1577 }
1578
1579 /* Update global variables holding ptids to hold NEW_PTID if they were
1580 holding OLD_PTID. */
1581 static void
1582 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1583 {
1584 struct displaced_step_request *it;
1585 struct displaced_step_inferior_state *displaced;
1586
1587 if (ptid_equal (inferior_ptid, old_ptid))
1588 inferior_ptid = new_ptid;
1589
1590 if (ptid_equal (singlestep_ptid, old_ptid))
1591 singlestep_ptid = new_ptid;
1592
1593 if (ptid_equal (deferred_step_ptid, old_ptid))
1594 deferred_step_ptid = new_ptid;
1595
1596 for (displaced = displaced_step_inferior_states;
1597 displaced;
1598 displaced = displaced->next)
1599 {
1600 if (ptid_equal (displaced->step_ptid, old_ptid))
1601 displaced->step_ptid = new_ptid;
1602
1603 for (it = displaced->step_request_queue; it; it = it->next)
1604 if (ptid_equal (it->ptid, old_ptid))
1605 it->ptid = new_ptid;
1606 }
1607 }
1608
1609 \f
1610 /* Resuming. */
1611
1612 /* Things to clean up if we QUIT out of resume (). */
1613 static void
1614 resume_cleanups (void *ignore)
1615 {
1616 normal_stop ();
1617 }
1618
1619 static const char schedlock_off[] = "off";
1620 static const char schedlock_on[] = "on";
1621 static const char schedlock_step[] = "step";
1622 static const char *const scheduler_enums[] = {
1623 schedlock_off,
1624 schedlock_on,
1625 schedlock_step,
1626 NULL
1627 };
1628 static const char *scheduler_mode = schedlock_off;
1629 static void
1630 show_scheduler_mode (struct ui_file *file, int from_tty,
1631 struct cmd_list_element *c, const char *value)
1632 {
1633 fprintf_filtered (file,
1634 _("Mode for locking scheduler "
1635 "during execution is \"%s\".\n"),
1636 value);
1637 }
1638
1639 static void
1640 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1641 {
1642 if (!target_can_lock_scheduler)
1643 {
1644 scheduler_mode = schedlock_off;
1645 error (_("Target '%s' cannot support this command."), target_shortname);
1646 }
1647 }
1648
1649 /* True if execution commands resume all threads of all processes by
1650 default; otherwise, resume only threads of the current inferior
1651 process. */
1652 int sched_multi = 0;
1653
1654 /* Try to setup for software single stepping over the specified location.
1655 Return 1 if target_resume() should use hardware single step.
1656
1657 GDBARCH the current gdbarch.
1658 PC the location to step over. */
1659
1660 static int
1661 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1662 {
1663 int hw_step = 1;
1664
1665 if (execution_direction == EXEC_FORWARD
1666 && gdbarch_software_single_step_p (gdbarch)
1667 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1668 {
1669 hw_step = 0;
1670 /* Do not pull these breakpoints until after a `wait' in
1671 `wait_for_inferior'. */
1672 singlestep_breakpoints_inserted_p = 1;
1673 singlestep_ptid = inferior_ptid;
1674 singlestep_pc = pc;
1675 }
1676 return hw_step;
1677 }
1678
1679 /* Return a ptid representing the set of threads that we will proceed,
1680 in the perspective of the user/frontend. We may actually resume
1681 fewer threads at first, e.g., if a thread is stopped at a
1682 breakpoint that needs stepping-off, but that should not be visible
1683 to the user/frontend, and neither should the frontend/user be
1684 allowed to proceed any of the threads that happen to be stopped for
1685 internal run control handling, if a previous command wanted them
1686 resumed. */
1687
1688 ptid_t
1689 user_visible_resume_ptid (int step)
1690 {
1691 /* By default, resume all threads of all processes. */
1692 ptid_t resume_ptid = RESUME_ALL;
1693
1694 /* Maybe resume only all threads of the current process. */
1695 if (!sched_multi && target_supports_multi_process ())
1696 {
1697 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1698 }
1699
1700 /* Maybe resume a single thread after all. */
1701 if (non_stop)
1702 {
1703 /* With non-stop mode on, threads are always handled
1704 individually. */
1705 resume_ptid = inferior_ptid;
1706 }
1707 else if ((scheduler_mode == schedlock_on)
1708 || (scheduler_mode == schedlock_step
1709 && (step || singlestep_breakpoints_inserted_p)))
1710 {
1711 /* User-settable 'scheduler' mode requires solo thread resume. */
1712 resume_ptid = inferior_ptid;
1713 }
1714
1715 return resume_ptid;
1716 }
1717
1718 /* Resume the inferior, but allow a QUIT. This is useful if the user
1719 wants to interrupt some lengthy single-stepping operation
1720 (for child processes, the SIGINT goes to the inferior, and so
1721 we get a SIGINT random_signal, but for remote debugging and perhaps
1722 other targets, that's not true).
1723
1724 STEP nonzero if we should step (zero to continue instead).
1725 SIG is the signal to give the inferior (zero for none). */
1726 void
1727 resume (int step, enum gdb_signal sig)
1728 {
1729 int should_resume = 1;
1730 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1731 struct regcache *regcache = get_current_regcache ();
1732 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1733 struct thread_info *tp = inferior_thread ();
1734 CORE_ADDR pc = regcache_read_pc (regcache);
1735 struct address_space *aspace = get_regcache_aspace (regcache);
1736
1737 QUIT;
1738
1739 if (current_inferior ()->waiting_for_vfork_done)
1740 {
1741 /* Don't try to single-step a vfork parent that is waiting for
1742 the child to get out of the shared memory region (by exec'ing
1743 or exiting). This is particularly important on software
1744 single-step archs, as the child process would trip on the
1745 software single step breakpoint inserted for the parent
1746 process. Since the parent will not actually execute any
1747 instruction until the child is out of the shared region (such
1748 are vfork's semantics), it is safe to simply continue it.
1749 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1750 the parent, and tell it to `keep_going', which automatically
1751 re-sets it stepping. */
1752 if (debug_infrun)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "infrun: resume : clear step\n");
1755 step = 0;
1756 }
1757
1758 if (debug_infrun)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "infrun: resume (step=%d, signal=%d), "
1761 "trap_expected=%d, current thread [%s] at %s\n",
1762 step, sig, tp->control.trap_expected,
1763 target_pid_to_str (inferior_ptid),
1764 paddress (gdbarch, pc));
1765
1766 /* Normally, by the time we reach `resume', the breakpoints are either
1767 removed or inserted, as appropriate. The exception is if we're sitting
1768 at a permanent breakpoint; we need to step over it, but permanent
1769 breakpoints can't be removed. So we have to test for it here. */
1770 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1771 {
1772 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1773 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1774 else
1775 error (_("\
1776 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1777 how to step past a permanent breakpoint on this architecture. Try using\n\
1778 a command like `return' or `jump' to continue execution."));
1779 }
1780
1781 /* If enabled, step over breakpoints by executing a copy of the
1782 instruction at a different address.
1783
1784 We can't use displaced stepping when we have a signal to deliver;
1785 the comments for displaced_step_prepare explain why. The
1786 comments in the handle_inferior event for dealing with 'random
1787 signals' explain what we do instead.
1788
1789 We can't use displaced stepping when we are waiting for vfork_done
1790 event, displaced stepping breaks the vfork child similarly as single
1791 step software breakpoint. */
1792 if (use_displaced_stepping (gdbarch)
1793 && (tp->control.trap_expected
1794 || (step && gdbarch_software_single_step_p (gdbarch)))
1795 && sig == GDB_SIGNAL_0
1796 && !current_inferior ()->waiting_for_vfork_done)
1797 {
1798 struct displaced_step_inferior_state *displaced;
1799
1800 if (!displaced_step_prepare (inferior_ptid))
1801 {
1802 /* Got placed in displaced stepping queue. Will be resumed
1803 later when all the currently queued displaced stepping
1804 requests finish. The thread is not executing at this point,
1805 and the call to set_executing will be made later. But we
1806 need to call set_running here, since from frontend point of view,
1807 the thread is running. */
1808 set_running (inferior_ptid, 1);
1809 discard_cleanups (old_cleanups);
1810 return;
1811 }
1812
1813 /* Update pc to reflect the new address from which we will execute
1814 instructions due to displaced stepping. */
1815 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1816
1817 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1818 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1819 displaced->step_closure);
1820 }
1821
1822 /* Do we need to do it the hard way, w/temp breakpoints? */
1823 else if (step)
1824 step = maybe_software_singlestep (gdbarch, pc);
1825
1826 /* Currently, our software single-step implementation leads to different
1827 results than hardware single-stepping in one situation: when stepping
1828 into delivering a signal which has an associated signal handler,
1829 hardware single-step will stop at the first instruction of the handler,
1830 while software single-step will simply skip execution of the handler.
1831
1832 For now, this difference in behavior is accepted since there is no
1833 easy way to actually implement single-stepping into a signal handler
1834 without kernel support.
1835
1836 However, there is one scenario where this difference leads to follow-on
1837 problems: if we're stepping off a breakpoint by removing all breakpoints
1838 and then single-stepping. In this case, the software single-step
1839 behavior means that even if there is a *breakpoint* in the signal
1840 handler, GDB still would not stop.
1841
1842 Fortunately, we can at least fix this particular issue. We detect
1843 here the case where we are about to deliver a signal while software
1844 single-stepping with breakpoints removed. In this situation, we
1845 revert the decisions to remove all breakpoints and insert single-
1846 step breakpoints, and instead we install a step-resume breakpoint
1847 at the current address, deliver the signal without stepping, and
1848 once we arrive back at the step-resume breakpoint, actually step
1849 over the breakpoint we originally wanted to step over. */
1850 if (singlestep_breakpoints_inserted_p
1851 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1852 {
1853 /* If we have nested signals or a pending signal is delivered
1854 immediately after a handler returns, might might already have
1855 a step-resume breakpoint set on the earlier handler. We cannot
1856 set another step-resume breakpoint; just continue on until the
1857 original breakpoint is hit. */
1858 if (tp->control.step_resume_breakpoint == NULL)
1859 {
1860 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1861 tp->step_after_step_resume_breakpoint = 1;
1862 }
1863
1864 remove_single_step_breakpoints ();
1865 singlestep_breakpoints_inserted_p = 0;
1866
1867 insert_breakpoints ();
1868 tp->control.trap_expected = 0;
1869 }
1870
1871 if (should_resume)
1872 {
1873 ptid_t resume_ptid;
1874
1875 /* If STEP is set, it's a request to use hardware stepping
1876 facilities. But in that case, we should never
1877 use singlestep breakpoint. */
1878 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1879
1880 /* Decide the set of threads to ask the target to resume. Start
1881 by assuming everything will be resumed, than narrow the set
1882 by applying increasingly restricting conditions. */
1883 resume_ptid = user_visible_resume_ptid (step);
1884
1885 /* Maybe resume a single thread after all. */
1886 if (singlestep_breakpoints_inserted_p
1887 && stepping_past_singlestep_breakpoint)
1888 {
1889 /* The situation here is as follows. In thread T1 we wanted to
1890 single-step. Lacking hardware single-stepping we've
1891 set breakpoint at the PC of the next instruction -- call it
1892 P. After resuming, we've hit that breakpoint in thread T2.
1893 Now we've removed original breakpoint, inserted breakpoint
1894 at P+1, and try to step to advance T2 past breakpoint.
1895 We need to step only T2, as if T1 is allowed to freely run,
1896 it can run past P, and if other threads are allowed to run,
1897 they can hit breakpoint at P+1, and nested hits of single-step
1898 breakpoints is not something we'd want -- that's complicated
1899 to support, and has no value. */
1900 resume_ptid = inferior_ptid;
1901 }
1902 else if ((step || singlestep_breakpoints_inserted_p)
1903 && tp->control.trap_expected)
1904 {
1905 /* We're allowing a thread to run past a breakpoint it has
1906 hit, by single-stepping the thread with the breakpoint
1907 removed. In which case, we need to single-step only this
1908 thread, and keep others stopped, as they can miss this
1909 breakpoint if allowed to run.
1910
1911 The current code actually removes all breakpoints when
1912 doing this, not just the one being stepped over, so if we
1913 let other threads run, we can actually miss any
1914 breakpoint, not just the one at PC. */
1915 resume_ptid = inferior_ptid;
1916 }
1917
1918 if (gdbarch_cannot_step_breakpoint (gdbarch))
1919 {
1920 /* Most targets can step a breakpoint instruction, thus
1921 executing it normally. But if this one cannot, just
1922 continue and we will hit it anyway. */
1923 if (step && breakpoint_inserted_here_p (aspace, pc))
1924 step = 0;
1925 }
1926
1927 if (debug_displaced
1928 && use_displaced_stepping (gdbarch)
1929 && tp->control.trap_expected)
1930 {
1931 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1932 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1933 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1934 gdb_byte buf[4];
1935
1936 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1937 paddress (resume_gdbarch, actual_pc));
1938 read_memory (actual_pc, buf, sizeof (buf));
1939 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1940 }
1941
1942 /* Install inferior's terminal modes. */
1943 target_terminal_inferior ();
1944
1945 /* Avoid confusing the next resume, if the next stop/resume
1946 happens to apply to another thread. */
1947 tp->suspend.stop_signal = GDB_SIGNAL_0;
1948
1949 /* Advise target which signals may be handled silently. If we have
1950 removed breakpoints because we are stepping over one (which can
1951 happen only if we are not using displaced stepping), we need to
1952 receive all signals to avoid accidentally skipping a breakpoint
1953 during execution of a signal handler. */
1954 if ((step || singlestep_breakpoints_inserted_p)
1955 && tp->control.trap_expected
1956 && !use_displaced_stepping (gdbarch))
1957 target_pass_signals (0, NULL);
1958 else
1959 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1960
1961 target_resume (resume_ptid, step, sig);
1962 }
1963
1964 discard_cleanups (old_cleanups);
1965 }
1966 \f
1967 /* Proceeding. */
1968
1969 /* Clear out all variables saying what to do when inferior is continued.
1970 First do this, then set the ones you want, then call `proceed'. */
1971
1972 static void
1973 clear_proceed_status_thread (struct thread_info *tp)
1974 {
1975 if (debug_infrun)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "infrun: clear_proceed_status_thread (%s)\n",
1978 target_pid_to_str (tp->ptid));
1979
1980 tp->control.trap_expected = 0;
1981 tp->control.step_range_start = 0;
1982 tp->control.step_range_end = 0;
1983 tp->control.step_frame_id = null_frame_id;
1984 tp->control.step_stack_frame_id = null_frame_id;
1985 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1986 tp->stop_requested = 0;
1987
1988 tp->control.stop_step = 0;
1989
1990 tp->control.proceed_to_finish = 0;
1991
1992 /* Discard any remaining commands or status from previous stop. */
1993 bpstat_clear (&tp->control.stop_bpstat);
1994 }
1995
1996 static int
1997 clear_proceed_status_callback (struct thread_info *tp, void *data)
1998 {
1999 if (is_exited (tp->ptid))
2000 return 0;
2001
2002 clear_proceed_status_thread (tp);
2003 return 0;
2004 }
2005
2006 void
2007 clear_proceed_status (void)
2008 {
2009 if (!non_stop)
2010 {
2011 /* In all-stop mode, delete the per-thread status of all
2012 threads, even if inferior_ptid is null_ptid, there may be
2013 threads on the list. E.g., we may be launching a new
2014 process, while selecting the executable. */
2015 iterate_over_threads (clear_proceed_status_callback, NULL);
2016 }
2017
2018 if (!ptid_equal (inferior_ptid, null_ptid))
2019 {
2020 struct inferior *inferior;
2021
2022 if (non_stop)
2023 {
2024 /* If in non-stop mode, only delete the per-thread status of
2025 the current thread. */
2026 clear_proceed_status_thread (inferior_thread ());
2027 }
2028
2029 inferior = current_inferior ();
2030 inferior->control.stop_soon = NO_STOP_QUIETLY;
2031 }
2032
2033 stop_after_trap = 0;
2034
2035 observer_notify_about_to_proceed ();
2036
2037 if (stop_registers)
2038 {
2039 regcache_xfree (stop_registers);
2040 stop_registers = NULL;
2041 }
2042 }
2043
2044 /* Check the current thread against the thread that reported the most recent
2045 event. If a step-over is required return TRUE and set the current thread
2046 to the old thread. Otherwise return FALSE.
2047
2048 This should be suitable for any targets that support threads. */
2049
2050 static int
2051 prepare_to_proceed (int step)
2052 {
2053 ptid_t wait_ptid;
2054 struct target_waitstatus wait_status;
2055 int schedlock_enabled;
2056
2057 /* With non-stop mode on, threads are always handled individually. */
2058 gdb_assert (! non_stop);
2059
2060 /* Get the last target status returned by target_wait(). */
2061 get_last_target_status (&wait_ptid, &wait_status);
2062
2063 /* Make sure we were stopped at a breakpoint. */
2064 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2065 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2066 && wait_status.value.sig != GDB_SIGNAL_ILL
2067 && wait_status.value.sig != GDB_SIGNAL_SEGV
2068 && wait_status.value.sig != GDB_SIGNAL_EMT))
2069 {
2070 return 0;
2071 }
2072
2073 schedlock_enabled = (scheduler_mode == schedlock_on
2074 || (scheduler_mode == schedlock_step
2075 && step));
2076
2077 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2078 if (schedlock_enabled)
2079 return 0;
2080
2081 /* Don't switch over if we're about to resume some other process
2082 other than WAIT_PTID's, and schedule-multiple is off. */
2083 if (!sched_multi
2084 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2085 return 0;
2086
2087 /* Switched over from WAIT_PID. */
2088 if (!ptid_equal (wait_ptid, minus_one_ptid)
2089 && !ptid_equal (inferior_ptid, wait_ptid))
2090 {
2091 struct regcache *regcache = get_thread_regcache (wait_ptid);
2092
2093 if (breakpoint_here_p (get_regcache_aspace (regcache),
2094 regcache_read_pc (regcache)))
2095 {
2096 /* If stepping, remember current thread to switch back to. */
2097 if (step)
2098 deferred_step_ptid = inferior_ptid;
2099
2100 /* Switch back to WAIT_PID thread. */
2101 switch_to_thread (wait_ptid);
2102
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: prepare_to_proceed (step=%d), "
2106 "switched to [%s]\n",
2107 step, target_pid_to_str (inferior_ptid));
2108
2109 /* We return 1 to indicate that there is a breakpoint here,
2110 so we need to step over it before continuing to avoid
2111 hitting it straight away. */
2112 return 1;
2113 }
2114 }
2115
2116 return 0;
2117 }
2118
2119 /* Basic routine for continuing the program in various fashions.
2120
2121 ADDR is the address to resume at, or -1 for resume where stopped.
2122 SIGGNAL is the signal to give it, or 0 for none,
2123 or -1 for act according to how it stopped.
2124 STEP is nonzero if should trap after one instruction.
2125 -1 means return after that and print nothing.
2126 You should probably set various step_... variables
2127 before calling here, if you are stepping.
2128
2129 You should call clear_proceed_status before calling proceed. */
2130
2131 void
2132 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2133 {
2134 struct regcache *regcache;
2135 struct gdbarch *gdbarch;
2136 struct thread_info *tp;
2137 CORE_ADDR pc;
2138 struct address_space *aspace;
2139 /* GDB may force the inferior to step due to various reasons. */
2140 int force_step = 0;
2141
2142 /* If we're stopped at a fork/vfork, follow the branch set by the
2143 "set follow-fork-mode" command; otherwise, we'll just proceed
2144 resuming the current thread. */
2145 if (!follow_fork ())
2146 {
2147 /* The target for some reason decided not to resume. */
2148 normal_stop ();
2149 if (target_can_async_p ())
2150 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2151 return;
2152 }
2153
2154 /* We'll update this if & when we switch to a new thread. */
2155 previous_inferior_ptid = inferior_ptid;
2156
2157 regcache = get_current_regcache ();
2158 gdbarch = get_regcache_arch (regcache);
2159 aspace = get_regcache_aspace (regcache);
2160 pc = regcache_read_pc (regcache);
2161
2162 if (step > 0)
2163 step_start_function = find_pc_function (pc);
2164 if (step < 0)
2165 stop_after_trap = 1;
2166
2167 if (addr == (CORE_ADDR) -1)
2168 {
2169 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2170 && execution_direction != EXEC_REVERSE)
2171 /* There is a breakpoint at the address we will resume at,
2172 step one instruction before inserting breakpoints so that
2173 we do not stop right away (and report a second hit at this
2174 breakpoint).
2175
2176 Note, we don't do this in reverse, because we won't
2177 actually be executing the breakpoint insn anyway.
2178 We'll be (un-)executing the previous instruction. */
2179
2180 force_step = 1;
2181 else if (gdbarch_single_step_through_delay_p (gdbarch)
2182 && gdbarch_single_step_through_delay (gdbarch,
2183 get_current_frame ()))
2184 /* We stepped onto an instruction that needs to be stepped
2185 again before re-inserting the breakpoint, do so. */
2186 force_step = 1;
2187 }
2188 else
2189 {
2190 regcache_write_pc (regcache, addr);
2191 }
2192
2193 if (debug_infrun)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2196 paddress (gdbarch, addr), siggnal, step);
2197
2198 if (non_stop)
2199 /* In non-stop, each thread is handled individually. The context
2200 must already be set to the right thread here. */
2201 ;
2202 else
2203 {
2204 /* In a multi-threaded task we may select another thread and
2205 then continue or step.
2206
2207 But if the old thread was stopped at a breakpoint, it will
2208 immediately cause another breakpoint stop without any
2209 execution (i.e. it will report a breakpoint hit incorrectly).
2210 So we must step over it first.
2211
2212 prepare_to_proceed checks the current thread against the
2213 thread that reported the most recent event. If a step-over
2214 is required it returns TRUE and sets the current thread to
2215 the old thread. */
2216 if (prepare_to_proceed (step))
2217 force_step = 1;
2218 }
2219
2220 /* prepare_to_proceed may change the current thread. */
2221 tp = inferior_thread ();
2222
2223 if (force_step)
2224 {
2225 tp->control.trap_expected = 1;
2226 /* If displaced stepping is enabled, we can step over the
2227 breakpoint without hitting it, so leave all breakpoints
2228 inserted. Otherwise we need to disable all breakpoints, step
2229 one instruction, and then re-add them when that step is
2230 finished. */
2231 if (!use_displaced_stepping (gdbarch))
2232 remove_breakpoints ();
2233 }
2234
2235 /* We can insert breakpoints if we're not trying to step over one,
2236 or if we are stepping over one but we're using displaced stepping
2237 to do so. */
2238 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2239 insert_breakpoints ();
2240
2241 if (!non_stop)
2242 {
2243 /* Pass the last stop signal to the thread we're resuming,
2244 irrespective of whether the current thread is the thread that
2245 got the last event or not. This was historically GDB's
2246 behaviour before keeping a stop_signal per thread. */
2247
2248 struct thread_info *last_thread;
2249 ptid_t last_ptid;
2250 struct target_waitstatus last_status;
2251
2252 get_last_target_status (&last_ptid, &last_status);
2253 if (!ptid_equal (inferior_ptid, last_ptid)
2254 && !ptid_equal (last_ptid, null_ptid)
2255 && !ptid_equal (last_ptid, minus_one_ptid))
2256 {
2257 last_thread = find_thread_ptid (last_ptid);
2258 if (last_thread)
2259 {
2260 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2261 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2262 }
2263 }
2264 }
2265
2266 if (siggnal != GDB_SIGNAL_DEFAULT)
2267 tp->suspend.stop_signal = siggnal;
2268 /* If this signal should not be seen by program,
2269 give it zero. Used for debugging signals. */
2270 else if (!signal_program[tp->suspend.stop_signal])
2271 tp->suspend.stop_signal = GDB_SIGNAL_0;
2272
2273 annotate_starting ();
2274
2275 /* Make sure that output from GDB appears before output from the
2276 inferior. */
2277 gdb_flush (gdb_stdout);
2278
2279 /* Refresh prev_pc value just prior to resuming. This used to be
2280 done in stop_stepping, however, setting prev_pc there did not handle
2281 scenarios such as inferior function calls or returning from
2282 a function via the return command. In those cases, the prev_pc
2283 value was not set properly for subsequent commands. The prev_pc value
2284 is used to initialize the starting line number in the ecs. With an
2285 invalid value, the gdb next command ends up stopping at the position
2286 represented by the next line table entry past our start position.
2287 On platforms that generate one line table entry per line, this
2288 is not a problem. However, on the ia64, the compiler generates
2289 extraneous line table entries that do not increase the line number.
2290 When we issue the gdb next command on the ia64 after an inferior call
2291 or a return command, we often end up a few instructions forward, still
2292 within the original line we started.
2293
2294 An attempt was made to refresh the prev_pc at the same time the
2295 execution_control_state is initialized (for instance, just before
2296 waiting for an inferior event). But this approach did not work
2297 because of platforms that use ptrace, where the pc register cannot
2298 be read unless the inferior is stopped. At that point, we are not
2299 guaranteed the inferior is stopped and so the regcache_read_pc() call
2300 can fail. Setting the prev_pc value here ensures the value is updated
2301 correctly when the inferior is stopped. */
2302 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2303
2304 /* Fill in with reasonable starting values. */
2305 init_thread_stepping_state (tp);
2306
2307 /* Reset to normal state. */
2308 init_infwait_state ();
2309
2310 /* Resume inferior. */
2311 resume (force_step || step || bpstat_should_step (),
2312 tp->suspend.stop_signal);
2313
2314 /* Wait for it to stop (if not standalone)
2315 and in any case decode why it stopped, and act accordingly. */
2316 /* Do this only if we are not using the event loop, or if the target
2317 does not support asynchronous execution. */
2318 if (!target_can_async_p ())
2319 {
2320 wait_for_inferior ();
2321 normal_stop ();
2322 }
2323 }
2324 \f
2325
2326 /* Start remote-debugging of a machine over a serial link. */
2327
2328 void
2329 start_remote (int from_tty)
2330 {
2331 struct inferior *inferior;
2332
2333 inferior = current_inferior ();
2334 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2335
2336 /* Always go on waiting for the target, regardless of the mode. */
2337 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2338 indicate to wait_for_inferior that a target should timeout if
2339 nothing is returned (instead of just blocking). Because of this,
2340 targets expecting an immediate response need to, internally, set
2341 things up so that the target_wait() is forced to eventually
2342 timeout. */
2343 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2344 differentiate to its caller what the state of the target is after
2345 the initial open has been performed. Here we're assuming that
2346 the target has stopped. It should be possible to eventually have
2347 target_open() return to the caller an indication that the target
2348 is currently running and GDB state should be set to the same as
2349 for an async run. */
2350 wait_for_inferior ();
2351
2352 /* Now that the inferior has stopped, do any bookkeeping like
2353 loading shared libraries. We want to do this before normal_stop,
2354 so that the displayed frame is up to date. */
2355 post_create_inferior (&current_target, from_tty);
2356
2357 normal_stop ();
2358 }
2359
2360 /* Initialize static vars when a new inferior begins. */
2361
2362 void
2363 init_wait_for_inferior (void)
2364 {
2365 /* These are meaningless until the first time through wait_for_inferior. */
2366
2367 breakpoint_init_inferior (inf_starting);
2368
2369 clear_proceed_status ();
2370
2371 stepping_past_singlestep_breakpoint = 0;
2372 deferred_step_ptid = null_ptid;
2373
2374 target_last_wait_ptid = minus_one_ptid;
2375
2376 previous_inferior_ptid = inferior_ptid;
2377 init_infwait_state ();
2378
2379 /* Discard any skipped inlined frames. */
2380 clear_inline_frame_state (minus_one_ptid);
2381 }
2382
2383 \f
2384 /* This enum encodes possible reasons for doing a target_wait, so that
2385 wfi can call target_wait in one place. (Ultimately the call will be
2386 moved out of the infinite loop entirely.) */
2387
2388 enum infwait_states
2389 {
2390 infwait_normal_state,
2391 infwait_thread_hop_state,
2392 infwait_step_watch_state,
2393 infwait_nonstep_watch_state
2394 };
2395
2396 /* The PTID we'll do a target_wait on.*/
2397 ptid_t waiton_ptid;
2398
2399 /* Current inferior wait state. */
2400 static enum infwait_states infwait_state;
2401
2402 /* Data to be passed around while handling an event. This data is
2403 discarded between events. */
2404 struct execution_control_state
2405 {
2406 ptid_t ptid;
2407 /* The thread that got the event, if this was a thread event; NULL
2408 otherwise. */
2409 struct thread_info *event_thread;
2410
2411 struct target_waitstatus ws;
2412 int random_signal;
2413 int stop_func_filled_in;
2414 CORE_ADDR stop_func_start;
2415 CORE_ADDR stop_func_end;
2416 const char *stop_func_name;
2417 int wait_some_more;
2418 };
2419
2420 static void handle_inferior_event (struct execution_control_state *ecs);
2421
2422 static void handle_step_into_function (struct gdbarch *gdbarch,
2423 struct execution_control_state *ecs);
2424 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2425 struct execution_control_state *ecs);
2426 static void check_exception_resume (struct execution_control_state *,
2427 struct frame_info *);
2428
2429 static void stop_stepping (struct execution_control_state *ecs);
2430 static void prepare_to_wait (struct execution_control_state *ecs);
2431 static void keep_going (struct execution_control_state *ecs);
2432
2433 /* Callback for iterate over threads. If the thread is stopped, but
2434 the user/frontend doesn't know about that yet, go through
2435 normal_stop, as if the thread had just stopped now. ARG points at
2436 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2437 ptid_is_pid(PTID) is true, applies to all threads of the process
2438 pointed at by PTID. Otherwise, apply only to the thread pointed by
2439 PTID. */
2440
2441 static int
2442 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2443 {
2444 ptid_t ptid = * (ptid_t *) arg;
2445
2446 if ((ptid_equal (info->ptid, ptid)
2447 || ptid_equal (minus_one_ptid, ptid)
2448 || (ptid_is_pid (ptid)
2449 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2450 && is_running (info->ptid)
2451 && !is_executing (info->ptid))
2452 {
2453 struct cleanup *old_chain;
2454 struct execution_control_state ecss;
2455 struct execution_control_state *ecs = &ecss;
2456
2457 memset (ecs, 0, sizeof (*ecs));
2458
2459 old_chain = make_cleanup_restore_current_thread ();
2460
2461 /* Go through handle_inferior_event/normal_stop, so we always
2462 have consistent output as if the stop event had been
2463 reported. */
2464 ecs->ptid = info->ptid;
2465 ecs->event_thread = find_thread_ptid (info->ptid);
2466 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2467 ecs->ws.value.sig = GDB_SIGNAL_0;
2468
2469 handle_inferior_event (ecs);
2470
2471 if (!ecs->wait_some_more)
2472 {
2473 struct thread_info *tp;
2474
2475 normal_stop ();
2476
2477 /* Finish off the continuations. */
2478 tp = inferior_thread ();
2479 do_all_intermediate_continuations_thread (tp, 1);
2480 do_all_continuations_thread (tp, 1);
2481 }
2482
2483 do_cleanups (old_chain);
2484 }
2485
2486 return 0;
2487 }
2488
2489 /* This function is attached as a "thread_stop_requested" observer.
2490 Cleanup local state that assumed the PTID was to be resumed, and
2491 report the stop to the frontend. */
2492
2493 static void
2494 infrun_thread_stop_requested (ptid_t ptid)
2495 {
2496 struct displaced_step_inferior_state *displaced;
2497
2498 /* PTID was requested to stop. Remove it from the displaced
2499 stepping queue, so we don't try to resume it automatically. */
2500
2501 for (displaced = displaced_step_inferior_states;
2502 displaced;
2503 displaced = displaced->next)
2504 {
2505 struct displaced_step_request *it, **prev_next_p;
2506
2507 it = displaced->step_request_queue;
2508 prev_next_p = &displaced->step_request_queue;
2509 while (it)
2510 {
2511 if (ptid_match (it->ptid, ptid))
2512 {
2513 *prev_next_p = it->next;
2514 it->next = NULL;
2515 xfree (it);
2516 }
2517 else
2518 {
2519 prev_next_p = &it->next;
2520 }
2521
2522 it = *prev_next_p;
2523 }
2524 }
2525
2526 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2527 }
2528
2529 static void
2530 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2531 {
2532 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2533 nullify_last_target_wait_ptid ();
2534 }
2535
2536 /* Callback for iterate_over_threads. */
2537
2538 static int
2539 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2540 {
2541 if (is_exited (info->ptid))
2542 return 0;
2543
2544 delete_step_resume_breakpoint (info);
2545 delete_exception_resume_breakpoint (info);
2546 return 0;
2547 }
2548
2549 /* In all-stop, delete the step resume breakpoint of any thread that
2550 had one. In non-stop, delete the step resume breakpoint of the
2551 thread that just stopped. */
2552
2553 static void
2554 delete_step_thread_step_resume_breakpoint (void)
2555 {
2556 if (!target_has_execution
2557 || ptid_equal (inferior_ptid, null_ptid))
2558 /* If the inferior has exited, we have already deleted the step
2559 resume breakpoints out of GDB's lists. */
2560 return;
2561
2562 if (non_stop)
2563 {
2564 /* If in non-stop mode, only delete the step-resume or
2565 longjmp-resume breakpoint of the thread that just stopped
2566 stepping. */
2567 struct thread_info *tp = inferior_thread ();
2568
2569 delete_step_resume_breakpoint (tp);
2570 delete_exception_resume_breakpoint (tp);
2571 }
2572 else
2573 /* In all-stop mode, delete all step-resume and longjmp-resume
2574 breakpoints of any thread that had them. */
2575 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2576 }
2577
2578 /* A cleanup wrapper. */
2579
2580 static void
2581 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2582 {
2583 delete_step_thread_step_resume_breakpoint ();
2584 }
2585
2586 /* Pretty print the results of target_wait, for debugging purposes. */
2587
2588 static void
2589 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2590 const struct target_waitstatus *ws)
2591 {
2592 char *status_string = target_waitstatus_to_string (ws);
2593 struct ui_file *tmp_stream = mem_fileopen ();
2594 char *text;
2595
2596 /* The text is split over several lines because it was getting too long.
2597 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2598 output as a unit; we want only one timestamp printed if debug_timestamp
2599 is set. */
2600
2601 fprintf_unfiltered (tmp_stream,
2602 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2603 if (PIDGET (waiton_ptid) != -1)
2604 fprintf_unfiltered (tmp_stream,
2605 " [%s]", target_pid_to_str (waiton_ptid));
2606 fprintf_unfiltered (tmp_stream, ", status) =\n");
2607 fprintf_unfiltered (tmp_stream,
2608 "infrun: %d [%s],\n",
2609 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2610 fprintf_unfiltered (tmp_stream,
2611 "infrun: %s\n",
2612 status_string);
2613
2614 text = ui_file_xstrdup (tmp_stream, NULL);
2615
2616 /* This uses %s in part to handle %'s in the text, but also to avoid
2617 a gcc error: the format attribute requires a string literal. */
2618 fprintf_unfiltered (gdb_stdlog, "%s", text);
2619
2620 xfree (status_string);
2621 xfree (text);
2622 ui_file_delete (tmp_stream);
2623 }
2624
2625 /* Prepare and stabilize the inferior for detaching it. E.g.,
2626 detaching while a thread is displaced stepping is a recipe for
2627 crashing it, as nothing would readjust the PC out of the scratch
2628 pad. */
2629
2630 void
2631 prepare_for_detach (void)
2632 {
2633 struct inferior *inf = current_inferior ();
2634 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2635 struct cleanup *old_chain_1;
2636 struct displaced_step_inferior_state *displaced;
2637
2638 displaced = get_displaced_stepping_state (inf->pid);
2639
2640 /* Is any thread of this process displaced stepping? If not,
2641 there's nothing else to do. */
2642 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2643 return;
2644
2645 if (debug_infrun)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "displaced-stepping in-process while detaching");
2648
2649 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2650 inf->detaching = 1;
2651
2652 while (!ptid_equal (displaced->step_ptid, null_ptid))
2653 {
2654 struct cleanup *old_chain_2;
2655 struct execution_control_state ecss;
2656 struct execution_control_state *ecs;
2657
2658 ecs = &ecss;
2659 memset (ecs, 0, sizeof (*ecs));
2660
2661 overlay_cache_invalid = 1;
2662
2663 if (deprecated_target_wait_hook)
2664 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2665 else
2666 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2667
2668 if (debug_infrun)
2669 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2670
2671 /* If an error happens while handling the event, propagate GDB's
2672 knowledge of the executing state to the frontend/user running
2673 state. */
2674 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2675 &minus_one_ptid);
2676
2677 /* Now figure out what to do with the result of the result. */
2678 handle_inferior_event (ecs);
2679
2680 /* No error, don't finish the state yet. */
2681 discard_cleanups (old_chain_2);
2682
2683 /* Breakpoints and watchpoints are not installed on the target
2684 at this point, and signals are passed directly to the
2685 inferior, so this must mean the process is gone. */
2686 if (!ecs->wait_some_more)
2687 {
2688 discard_cleanups (old_chain_1);
2689 error (_("Program exited while detaching"));
2690 }
2691 }
2692
2693 discard_cleanups (old_chain_1);
2694 }
2695
2696 /* Wait for control to return from inferior to debugger.
2697
2698 If inferior gets a signal, we may decide to start it up again
2699 instead of returning. That is why there is a loop in this function.
2700 When this function actually returns it means the inferior
2701 should be left stopped and GDB should read more commands. */
2702
2703 void
2704 wait_for_inferior (void)
2705 {
2706 struct cleanup *old_cleanups;
2707
2708 if (debug_infrun)
2709 fprintf_unfiltered
2710 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2711
2712 old_cleanups =
2713 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2714
2715 while (1)
2716 {
2717 struct execution_control_state ecss;
2718 struct execution_control_state *ecs = &ecss;
2719 struct cleanup *old_chain;
2720
2721 memset (ecs, 0, sizeof (*ecs));
2722
2723 overlay_cache_invalid = 1;
2724
2725 if (deprecated_target_wait_hook)
2726 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2727 else
2728 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2729
2730 if (debug_infrun)
2731 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2732
2733 /* If an error happens while handling the event, propagate GDB's
2734 knowledge of the executing state to the frontend/user running
2735 state. */
2736 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2737
2738 /* Now figure out what to do with the result of the result. */
2739 handle_inferior_event (ecs);
2740
2741 /* No error, don't finish the state yet. */
2742 discard_cleanups (old_chain);
2743
2744 if (!ecs->wait_some_more)
2745 break;
2746 }
2747
2748 do_cleanups (old_cleanups);
2749 }
2750
2751 /* Asynchronous version of wait_for_inferior. It is called by the
2752 event loop whenever a change of state is detected on the file
2753 descriptor corresponding to the target. It can be called more than
2754 once to complete a single execution command. In such cases we need
2755 to keep the state in a global variable ECSS. If it is the last time
2756 that this function is called for a single execution command, then
2757 report to the user that the inferior has stopped, and do the
2758 necessary cleanups. */
2759
2760 void
2761 fetch_inferior_event (void *client_data)
2762 {
2763 struct execution_control_state ecss;
2764 struct execution_control_state *ecs = &ecss;
2765 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2766 struct cleanup *ts_old_chain;
2767 int was_sync = sync_execution;
2768 int cmd_done = 0;
2769
2770 memset (ecs, 0, sizeof (*ecs));
2771
2772 /* We're handling a live event, so make sure we're doing live
2773 debugging. If we're looking at traceframes while the target is
2774 running, we're going to need to get back to that mode after
2775 handling the event. */
2776 if (non_stop)
2777 {
2778 make_cleanup_restore_current_traceframe ();
2779 set_current_traceframe (-1);
2780 }
2781
2782 if (non_stop)
2783 /* In non-stop mode, the user/frontend should not notice a thread
2784 switch due to internal events. Make sure we reverse to the
2785 user selected thread and frame after handling the event and
2786 running any breakpoint commands. */
2787 make_cleanup_restore_current_thread ();
2788
2789 overlay_cache_invalid = 1;
2790
2791 make_cleanup_restore_integer (&execution_direction);
2792 execution_direction = target_execution_direction ();
2793
2794 if (deprecated_target_wait_hook)
2795 ecs->ptid =
2796 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2797 else
2798 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2799
2800 if (debug_infrun)
2801 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2802
2803 /* If an error happens while handling the event, propagate GDB's
2804 knowledge of the executing state to the frontend/user running
2805 state. */
2806 if (!non_stop)
2807 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2808 else
2809 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2810
2811 /* Get executed before make_cleanup_restore_current_thread above to apply
2812 still for the thread which has thrown the exception. */
2813 make_bpstat_clear_actions_cleanup ();
2814
2815 /* Now figure out what to do with the result of the result. */
2816 handle_inferior_event (ecs);
2817
2818 if (!ecs->wait_some_more)
2819 {
2820 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2821
2822 delete_step_thread_step_resume_breakpoint ();
2823
2824 /* We may not find an inferior if this was a process exit. */
2825 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2826 normal_stop ();
2827
2828 if (target_has_execution
2829 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2830 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2831 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2832 && ecs->event_thread->step_multi
2833 && ecs->event_thread->control.stop_step)
2834 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2835 else
2836 {
2837 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2838 cmd_done = 1;
2839 }
2840 }
2841
2842 /* No error, don't finish the thread states yet. */
2843 discard_cleanups (ts_old_chain);
2844
2845 /* Revert thread and frame. */
2846 do_cleanups (old_chain);
2847
2848 /* If the inferior was in sync execution mode, and now isn't,
2849 restore the prompt (a synchronous execution command has finished,
2850 and we're ready for input). */
2851 if (interpreter_async && was_sync && !sync_execution)
2852 display_gdb_prompt (0);
2853
2854 if (cmd_done
2855 && !was_sync
2856 && exec_done_display_p
2857 && (ptid_equal (inferior_ptid, null_ptid)
2858 || !is_running (inferior_ptid)))
2859 printf_unfiltered (_("completed.\n"));
2860 }
2861
2862 /* Record the frame and location we're currently stepping through. */
2863 void
2864 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2865 {
2866 struct thread_info *tp = inferior_thread ();
2867
2868 tp->control.step_frame_id = get_frame_id (frame);
2869 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2870
2871 tp->current_symtab = sal.symtab;
2872 tp->current_line = sal.line;
2873 }
2874
2875 /* Clear context switchable stepping state. */
2876
2877 void
2878 init_thread_stepping_state (struct thread_info *tss)
2879 {
2880 tss->stepping_over_breakpoint = 0;
2881 tss->step_after_step_resume_breakpoint = 0;
2882 }
2883
2884 /* Return the cached copy of the last pid/waitstatus returned by
2885 target_wait()/deprecated_target_wait_hook(). The data is actually
2886 cached by handle_inferior_event(), which gets called immediately
2887 after target_wait()/deprecated_target_wait_hook(). */
2888
2889 void
2890 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2891 {
2892 *ptidp = target_last_wait_ptid;
2893 *status = target_last_waitstatus;
2894 }
2895
2896 void
2897 nullify_last_target_wait_ptid (void)
2898 {
2899 target_last_wait_ptid = minus_one_ptid;
2900 }
2901
2902 /* Switch thread contexts. */
2903
2904 static void
2905 context_switch (ptid_t ptid)
2906 {
2907 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2908 {
2909 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2910 target_pid_to_str (inferior_ptid));
2911 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2912 target_pid_to_str (ptid));
2913 }
2914
2915 switch_to_thread (ptid);
2916 }
2917
2918 static void
2919 adjust_pc_after_break (struct execution_control_state *ecs)
2920 {
2921 struct regcache *regcache;
2922 struct gdbarch *gdbarch;
2923 struct address_space *aspace;
2924 CORE_ADDR breakpoint_pc;
2925
2926 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2927 we aren't, just return.
2928
2929 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2930 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2931 implemented by software breakpoints should be handled through the normal
2932 breakpoint layer.
2933
2934 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2935 different signals (SIGILL or SIGEMT for instance), but it is less
2936 clear where the PC is pointing afterwards. It may not match
2937 gdbarch_decr_pc_after_break. I don't know any specific target that
2938 generates these signals at breakpoints (the code has been in GDB since at
2939 least 1992) so I can not guess how to handle them here.
2940
2941 In earlier versions of GDB, a target with
2942 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2943 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2944 target with both of these set in GDB history, and it seems unlikely to be
2945 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2946
2947 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2948 return;
2949
2950 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2951 return;
2952
2953 /* In reverse execution, when a breakpoint is hit, the instruction
2954 under it has already been de-executed. The reported PC always
2955 points at the breakpoint address, so adjusting it further would
2956 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2957 architecture:
2958
2959 B1 0x08000000 : INSN1
2960 B2 0x08000001 : INSN2
2961 0x08000002 : INSN3
2962 PC -> 0x08000003 : INSN4
2963
2964 Say you're stopped at 0x08000003 as above. Reverse continuing
2965 from that point should hit B2 as below. Reading the PC when the
2966 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2967 been de-executed already.
2968
2969 B1 0x08000000 : INSN1
2970 B2 PC -> 0x08000001 : INSN2
2971 0x08000002 : INSN3
2972 0x08000003 : INSN4
2973
2974 We can't apply the same logic as for forward execution, because
2975 we would wrongly adjust the PC to 0x08000000, since there's a
2976 breakpoint at PC - 1. We'd then report a hit on B1, although
2977 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2978 behaviour. */
2979 if (execution_direction == EXEC_REVERSE)
2980 return;
2981
2982 /* If this target does not decrement the PC after breakpoints, then
2983 we have nothing to do. */
2984 regcache = get_thread_regcache (ecs->ptid);
2985 gdbarch = get_regcache_arch (regcache);
2986 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2987 return;
2988
2989 aspace = get_regcache_aspace (regcache);
2990
2991 /* Find the location where (if we've hit a breakpoint) the
2992 breakpoint would be. */
2993 breakpoint_pc = regcache_read_pc (regcache)
2994 - gdbarch_decr_pc_after_break (gdbarch);
2995
2996 /* Check whether there actually is a software breakpoint inserted at
2997 that location.
2998
2999 If in non-stop mode, a race condition is possible where we've
3000 removed a breakpoint, but stop events for that breakpoint were
3001 already queued and arrive later. To suppress those spurious
3002 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3003 and retire them after a number of stop events are reported. */
3004 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3005 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3006 {
3007 struct cleanup *old_cleanups = NULL;
3008
3009 if (RECORD_IS_USED)
3010 old_cleanups = record_full_gdb_operation_disable_set ();
3011
3012 /* When using hardware single-step, a SIGTRAP is reported for both
3013 a completed single-step and a software breakpoint. Need to
3014 differentiate between the two, as the latter needs adjusting
3015 but the former does not.
3016
3017 The SIGTRAP can be due to a completed hardware single-step only if
3018 - we didn't insert software single-step breakpoints
3019 - the thread to be examined is still the current thread
3020 - this thread is currently being stepped
3021
3022 If any of these events did not occur, we must have stopped due
3023 to hitting a software breakpoint, and have to back up to the
3024 breakpoint address.
3025
3026 As a special case, we could have hardware single-stepped a
3027 software breakpoint. In this case (prev_pc == breakpoint_pc),
3028 we also need to back up to the breakpoint address. */
3029
3030 if (singlestep_breakpoints_inserted_p
3031 || !ptid_equal (ecs->ptid, inferior_ptid)
3032 || !currently_stepping (ecs->event_thread)
3033 || ecs->event_thread->prev_pc == breakpoint_pc)
3034 regcache_write_pc (regcache, breakpoint_pc);
3035
3036 if (RECORD_IS_USED)
3037 do_cleanups (old_cleanups);
3038 }
3039 }
3040
3041 static void
3042 init_infwait_state (void)
3043 {
3044 waiton_ptid = pid_to_ptid (-1);
3045 infwait_state = infwait_normal_state;
3046 }
3047
3048 static int
3049 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3050 {
3051 for (frame = get_prev_frame (frame);
3052 frame != NULL;
3053 frame = get_prev_frame (frame))
3054 {
3055 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3056 return 1;
3057 if (get_frame_type (frame) != INLINE_FRAME)
3058 break;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Auxiliary function that handles syscall entry/return events.
3065 It returns 1 if the inferior should keep going (and GDB
3066 should ignore the event), or 0 if the event deserves to be
3067 processed. */
3068
3069 static int
3070 handle_syscall_event (struct execution_control_state *ecs)
3071 {
3072 struct regcache *regcache;
3073 int syscall_number;
3074
3075 if (!ptid_equal (ecs->ptid, inferior_ptid))
3076 context_switch (ecs->ptid);
3077
3078 regcache = get_thread_regcache (ecs->ptid);
3079 syscall_number = ecs->ws.value.syscall_number;
3080 stop_pc = regcache_read_pc (regcache);
3081
3082 if (catch_syscall_enabled () > 0
3083 && catching_syscall_number (syscall_number) > 0)
3084 {
3085 enum bpstat_signal_value sval;
3086
3087 if (debug_infrun)
3088 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3089 syscall_number);
3090
3091 ecs->event_thread->control.stop_bpstat
3092 = bpstat_stop_status (get_regcache_aspace (regcache),
3093 stop_pc, ecs->ptid, &ecs->ws);
3094
3095 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3096 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3097
3098 if (!ecs->random_signal)
3099 {
3100 /* Catchpoint hit. */
3101 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3102 return 0;
3103 }
3104 }
3105
3106 /* If no catchpoint triggered for this, then keep going. */
3107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3108 keep_going (ecs);
3109 return 1;
3110 }
3111
3112 /* Clear the supplied execution_control_state's stop_func_* fields. */
3113
3114 static void
3115 clear_stop_func (struct execution_control_state *ecs)
3116 {
3117 ecs->stop_func_filled_in = 0;
3118 ecs->stop_func_start = 0;
3119 ecs->stop_func_end = 0;
3120 ecs->stop_func_name = NULL;
3121 }
3122
3123 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3124
3125 static void
3126 fill_in_stop_func (struct gdbarch *gdbarch,
3127 struct execution_control_state *ecs)
3128 {
3129 if (!ecs->stop_func_filled_in)
3130 {
3131 /* Don't care about return value; stop_func_start and stop_func_name
3132 will both be 0 if it doesn't work. */
3133 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3134 &ecs->stop_func_start, &ecs->stop_func_end);
3135 ecs->stop_func_start
3136 += gdbarch_deprecated_function_start_offset (gdbarch);
3137
3138 ecs->stop_func_filled_in = 1;
3139 }
3140 }
3141
3142 /* Given an execution control state that has been freshly filled in
3143 by an event from the inferior, figure out what it means and take
3144 appropriate action. */
3145
3146 static void
3147 handle_inferior_event (struct execution_control_state *ecs)
3148 {
3149 struct frame_info *frame;
3150 struct gdbarch *gdbarch;
3151 int stopped_by_watchpoint;
3152 int stepped_after_stopped_by_watchpoint = 0;
3153 struct symtab_and_line stop_pc_sal;
3154 enum stop_kind stop_soon;
3155
3156 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3157 {
3158 /* We had an event in the inferior, but we are not interested in
3159 handling it at this level. The lower layers have already
3160 done what needs to be done, if anything.
3161
3162 One of the possible circumstances for this is when the
3163 inferior produces output for the console. The inferior has
3164 not stopped, and we are ignoring the event. Another possible
3165 circumstance is any event which the lower level knows will be
3166 reported multiple times without an intervening resume. */
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3169 prepare_to_wait (ecs);
3170 return;
3171 }
3172
3173 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3174 && target_can_async_p () && !sync_execution)
3175 {
3176 /* There were no unwaited-for children left in the target, but,
3177 we're not synchronously waiting for events either. Just
3178 ignore. Otherwise, if we were running a synchronous
3179 execution command, we need to cancel it and give the user
3180 back the terminal. */
3181 if (debug_infrun)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3184 prepare_to_wait (ecs);
3185 return;
3186 }
3187
3188 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3189 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3190 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3191 {
3192 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3193
3194 gdb_assert (inf);
3195 stop_soon = inf->control.stop_soon;
3196 }
3197 else
3198 stop_soon = NO_STOP_QUIETLY;
3199
3200 /* Cache the last pid/waitstatus. */
3201 target_last_wait_ptid = ecs->ptid;
3202 target_last_waitstatus = ecs->ws;
3203
3204 /* Always clear state belonging to the previous time we stopped. */
3205 stop_stack_dummy = STOP_NONE;
3206
3207 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3208 {
3209 /* No unwaited-for children left. IOW, all resumed children
3210 have exited. */
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3213
3214 stop_print_frame = 0;
3215 stop_stepping (ecs);
3216 return;
3217 }
3218
3219 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3220 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3221 {
3222 ecs->event_thread = find_thread_ptid (ecs->ptid);
3223 /* If it's a new thread, add it to the thread database. */
3224 if (ecs->event_thread == NULL)
3225 ecs->event_thread = add_thread (ecs->ptid);
3226 }
3227
3228 /* Dependent on valid ECS->EVENT_THREAD. */
3229 adjust_pc_after_break (ecs);
3230
3231 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3232 reinit_frame_cache ();
3233
3234 breakpoint_retire_moribund ();
3235
3236 /* First, distinguish signals caused by the debugger from signals
3237 that have to do with the program's own actions. Note that
3238 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3239 on the operating system version. Here we detect when a SIGILL or
3240 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3241 something similar for SIGSEGV, since a SIGSEGV will be generated
3242 when we're trying to execute a breakpoint instruction on a
3243 non-executable stack. This happens for call dummy breakpoints
3244 for architectures like SPARC that place call dummies on the
3245 stack. */
3246 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3247 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3248 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3249 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3250 {
3251 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3252
3253 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3254 regcache_read_pc (regcache)))
3255 {
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "infrun: Treating signal as SIGTRAP\n");
3259 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3260 }
3261 }
3262
3263 /* Mark the non-executing threads accordingly. In all-stop, all
3264 threads of all processes are stopped when we get any event
3265 reported. In non-stop mode, only the event thread stops. If
3266 we're handling a process exit in non-stop mode, there's nothing
3267 to do, as threads of the dead process are gone, and threads of
3268 any other process were left running. */
3269 if (!non_stop)
3270 set_executing (minus_one_ptid, 0);
3271 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3272 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3273 set_executing (ecs->ptid, 0);
3274
3275 switch (infwait_state)
3276 {
3277 case infwait_thread_hop_state:
3278 if (debug_infrun)
3279 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3280 break;
3281
3282 case infwait_normal_state:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3285 break;
3286
3287 case infwait_step_watch_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_step_watch_state\n");
3291
3292 stepped_after_stopped_by_watchpoint = 1;
3293 break;
3294
3295 case infwait_nonstep_watch_state:
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog,
3298 "infrun: infwait_nonstep_watch_state\n");
3299 insert_breakpoints ();
3300
3301 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3302 handle things like signals arriving and other things happening
3303 in combination correctly? */
3304 stepped_after_stopped_by_watchpoint = 1;
3305 break;
3306
3307 default:
3308 internal_error (__FILE__, __LINE__, _("bad switch"));
3309 }
3310
3311 infwait_state = infwait_normal_state;
3312 waiton_ptid = pid_to_ptid (-1);
3313
3314 switch (ecs->ws.kind)
3315 {
3316 case TARGET_WAITKIND_LOADED:
3317 if (debug_infrun)
3318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3319 /* Ignore gracefully during startup of the inferior, as it might
3320 be the shell which has just loaded some objects, otherwise
3321 add the symbols for the newly loaded objects. Also ignore at
3322 the beginning of an attach or remote session; we will query
3323 the full list of libraries once the connection is
3324 established. */
3325 if (stop_soon == NO_STOP_QUIETLY)
3326 {
3327 struct regcache *regcache;
3328 enum bpstat_signal_value sval;
3329
3330 if (!ptid_equal (ecs->ptid, inferior_ptid))
3331 context_switch (ecs->ptid);
3332 regcache = get_thread_regcache (ecs->ptid);
3333
3334 handle_solib_event ();
3335
3336 ecs->event_thread->control.stop_bpstat
3337 = bpstat_stop_status (get_regcache_aspace (regcache),
3338 stop_pc, ecs->ptid, &ecs->ws);
3339
3340 sval
3341 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3342 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3343
3344 if (!ecs->random_signal)
3345 {
3346 /* A catchpoint triggered. */
3347 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3348 goto process_event_stop_test;
3349 }
3350
3351 /* If requested, stop when the dynamic linker notifies
3352 gdb of events. This allows the user to get control
3353 and place breakpoints in initializer routines for
3354 dynamically loaded objects (among other things). */
3355 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3356 if (stop_on_solib_events)
3357 {
3358 /* Make sure we print "Stopped due to solib-event" in
3359 normal_stop. */
3360 stop_print_frame = 1;
3361
3362 stop_stepping (ecs);
3363 return;
3364 }
3365 }
3366
3367 /* If we are skipping through a shell, or through shared library
3368 loading that we aren't interested in, resume the program. If
3369 we're running the program normally, also resume. But stop if
3370 we're attaching or setting up a remote connection. */
3371 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3372 {
3373 if (!ptid_equal (ecs->ptid, inferior_ptid))
3374 context_switch (ecs->ptid);
3375
3376 /* Loading of shared libraries might have changed breakpoint
3377 addresses. Make sure new breakpoints are inserted. */
3378 if (stop_soon == NO_STOP_QUIETLY
3379 && !breakpoints_always_inserted_mode ())
3380 insert_breakpoints ();
3381 resume (0, GDB_SIGNAL_0);
3382 prepare_to_wait (ecs);
3383 return;
3384 }
3385
3386 break;
3387
3388 case TARGET_WAITKIND_SPURIOUS:
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3391 if (!ptid_equal (ecs->ptid, inferior_ptid))
3392 context_switch (ecs->ptid);
3393 resume (0, GDB_SIGNAL_0);
3394 prepare_to_wait (ecs);
3395 return;
3396
3397 case TARGET_WAITKIND_EXITED:
3398 case TARGET_WAITKIND_SIGNALLED:
3399 if (debug_infrun)
3400 {
3401 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3402 fprintf_unfiltered (gdb_stdlog,
3403 "infrun: TARGET_WAITKIND_EXITED\n");
3404 else
3405 fprintf_unfiltered (gdb_stdlog,
3406 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3407 }
3408
3409 inferior_ptid = ecs->ptid;
3410 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3411 set_current_program_space (current_inferior ()->pspace);
3412 handle_vfork_child_exec_or_exit (0);
3413 target_terminal_ours (); /* Must do this before mourn anyway. */
3414
3415 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3416 {
3417 /* Record the exit code in the convenience variable $_exitcode, so
3418 that the user can inspect this again later. */
3419 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3420 (LONGEST) ecs->ws.value.integer);
3421
3422 /* Also record this in the inferior itself. */
3423 current_inferior ()->has_exit_code = 1;
3424 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3425
3426 print_exited_reason (ecs->ws.value.integer);
3427 }
3428 else
3429 print_signal_exited_reason (ecs->ws.value.sig);
3430
3431 gdb_flush (gdb_stdout);
3432 target_mourn_inferior ();
3433 singlestep_breakpoints_inserted_p = 0;
3434 cancel_single_step_breakpoints ();
3435 stop_print_frame = 0;
3436 stop_stepping (ecs);
3437 return;
3438
3439 /* The following are the only cases in which we keep going;
3440 the above cases end in a continue or goto. */
3441 case TARGET_WAITKIND_FORKED:
3442 case TARGET_WAITKIND_VFORKED:
3443 if (debug_infrun)
3444 {
3445 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3446 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3447 else
3448 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3449 }
3450
3451 /* Check whether the inferior is displaced stepping. */
3452 {
3453 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3455 struct displaced_step_inferior_state *displaced
3456 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3457
3458 /* If checking displaced stepping is supported, and thread
3459 ecs->ptid is displaced stepping. */
3460 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3461 {
3462 struct inferior *parent_inf
3463 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3464 struct regcache *child_regcache;
3465 CORE_ADDR parent_pc;
3466
3467 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3468 indicating that the displaced stepping of syscall instruction
3469 has been done. Perform cleanup for parent process here. Note
3470 that this operation also cleans up the child process for vfork,
3471 because their pages are shared. */
3472 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3473
3474 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3475 {
3476 /* Restore scratch pad for child process. */
3477 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3478 }
3479
3480 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3481 the child's PC is also within the scratchpad. Set the child's PC
3482 to the parent's PC value, which has already been fixed up.
3483 FIXME: we use the parent's aspace here, although we're touching
3484 the child, because the child hasn't been added to the inferior
3485 list yet at this point. */
3486
3487 child_regcache
3488 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3489 gdbarch,
3490 parent_inf->aspace);
3491 /* Read PC value of parent process. */
3492 parent_pc = regcache_read_pc (regcache);
3493
3494 if (debug_displaced)
3495 fprintf_unfiltered (gdb_stdlog,
3496 "displaced: write child pc from %s to %s\n",
3497 paddress (gdbarch,
3498 regcache_read_pc (child_regcache)),
3499 paddress (gdbarch, parent_pc));
3500
3501 regcache_write_pc (child_regcache, parent_pc);
3502 }
3503 }
3504
3505 if (!ptid_equal (ecs->ptid, inferior_ptid))
3506 context_switch (ecs->ptid);
3507
3508 /* Immediately detach breakpoints from the child before there's
3509 any chance of letting the user delete breakpoints from the
3510 breakpoint lists. If we don't do this early, it's easy to
3511 leave left over traps in the child, vis: "break foo; catch
3512 fork; c; <fork>; del; c; <child calls foo>". We only follow
3513 the fork on the last `continue', and by that time the
3514 breakpoint at "foo" is long gone from the breakpoint table.
3515 If we vforked, then we don't need to unpatch here, since both
3516 parent and child are sharing the same memory pages; we'll
3517 need to unpatch at follow/detach time instead to be certain
3518 that new breakpoints added between catchpoint hit time and
3519 vfork follow are detached. */
3520 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3521 {
3522 /* This won't actually modify the breakpoint list, but will
3523 physically remove the breakpoints from the child. */
3524 detach_breakpoints (ecs->ws.value.related_pid);
3525 }
3526
3527 if (singlestep_breakpoints_inserted_p)
3528 {
3529 /* Pull the single step breakpoints out of the target. */
3530 remove_single_step_breakpoints ();
3531 singlestep_breakpoints_inserted_p = 0;
3532 }
3533
3534 /* In case the event is caught by a catchpoint, remember that
3535 the event is to be followed at the next resume of the thread,
3536 and not immediately. */
3537 ecs->event_thread->pending_follow = ecs->ws;
3538
3539 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3540
3541 ecs->event_thread->control.stop_bpstat
3542 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3543 stop_pc, ecs->ptid, &ecs->ws);
3544
3545 /* Note that we're interested in knowing the bpstat actually
3546 causes a stop, not just if it may explain the signal.
3547 Software watchpoints, for example, always appear in the
3548 bpstat. */
3549 ecs->random_signal
3550 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3551
3552 /* If no catchpoint triggered for this, then keep going. */
3553 if (ecs->random_signal)
3554 {
3555 ptid_t parent;
3556 ptid_t child;
3557 int should_resume;
3558 int follow_child
3559 = (follow_fork_mode_string == follow_fork_mode_child);
3560
3561 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3562
3563 should_resume = follow_fork ();
3564
3565 parent = ecs->ptid;
3566 child = ecs->ws.value.related_pid;
3567
3568 /* In non-stop mode, also resume the other branch. */
3569 if (non_stop && !detach_fork)
3570 {
3571 if (follow_child)
3572 switch_to_thread (parent);
3573 else
3574 switch_to_thread (child);
3575
3576 ecs->event_thread = inferior_thread ();
3577 ecs->ptid = inferior_ptid;
3578 keep_going (ecs);
3579 }
3580
3581 if (follow_child)
3582 switch_to_thread (child);
3583 else
3584 switch_to_thread (parent);
3585
3586 ecs->event_thread = inferior_thread ();
3587 ecs->ptid = inferior_ptid;
3588
3589 if (should_resume)
3590 keep_going (ecs);
3591 else
3592 stop_stepping (ecs);
3593 return;
3594 }
3595 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3596 goto process_event_stop_test;
3597
3598 case TARGET_WAITKIND_VFORK_DONE:
3599 /* Done with the shared memory region. Re-insert breakpoints in
3600 the parent, and keep going. */
3601
3602 if (debug_infrun)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3605
3606 if (!ptid_equal (ecs->ptid, inferior_ptid))
3607 context_switch (ecs->ptid);
3608
3609 current_inferior ()->waiting_for_vfork_done = 0;
3610 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3611 /* This also takes care of reinserting breakpoints in the
3612 previously locked inferior. */
3613 keep_going (ecs);
3614 return;
3615
3616 case TARGET_WAITKIND_EXECD:
3617 if (debug_infrun)
3618 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3619
3620 if (!ptid_equal (ecs->ptid, inferior_ptid))
3621 context_switch (ecs->ptid);
3622
3623 singlestep_breakpoints_inserted_p = 0;
3624 cancel_single_step_breakpoints ();
3625
3626 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3627
3628 /* Do whatever is necessary to the parent branch of the vfork. */
3629 handle_vfork_child_exec_or_exit (1);
3630
3631 /* This causes the eventpoints and symbol table to be reset.
3632 Must do this now, before trying to determine whether to
3633 stop. */
3634 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3635
3636 ecs->event_thread->control.stop_bpstat
3637 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3638 stop_pc, ecs->ptid, &ecs->ws);
3639 ecs->random_signal
3640 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3641 == BPSTAT_SIGNAL_NO);
3642
3643 /* Note that this may be referenced from inside
3644 bpstat_stop_status above, through inferior_has_execd. */
3645 xfree (ecs->ws.value.execd_pathname);
3646 ecs->ws.value.execd_pathname = NULL;
3647
3648 /* If no catchpoint triggered for this, then keep going. */
3649 if (ecs->random_signal)
3650 {
3651 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3652 keep_going (ecs);
3653 return;
3654 }
3655 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3656 goto process_event_stop_test;
3657
3658 /* Be careful not to try to gather much state about a thread
3659 that's in a syscall. It's frequently a losing proposition. */
3660 case TARGET_WAITKIND_SYSCALL_ENTRY:
3661 if (debug_infrun)
3662 fprintf_unfiltered (gdb_stdlog,
3663 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3664 /* Getting the current syscall number. */
3665 if (handle_syscall_event (ecs) != 0)
3666 return;
3667 goto process_event_stop_test;
3668
3669 /* Before examining the threads further, step this thread to
3670 get it entirely out of the syscall. (We get notice of the
3671 event when the thread is just on the verge of exiting a
3672 syscall. Stepping one instruction seems to get it back
3673 into user code.) */
3674 case TARGET_WAITKIND_SYSCALL_RETURN:
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3678 if (handle_syscall_event (ecs) != 0)
3679 return;
3680 goto process_event_stop_test;
3681
3682 case TARGET_WAITKIND_STOPPED:
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3685 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3686 break;
3687
3688 case TARGET_WAITKIND_NO_HISTORY:
3689 if (debug_infrun)
3690 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3691 /* Reverse execution: target ran out of history info. */
3692
3693 /* Pull the single step breakpoints out of the target. */
3694 if (singlestep_breakpoints_inserted_p)
3695 {
3696 if (!ptid_equal (ecs->ptid, inferior_ptid))
3697 context_switch (ecs->ptid);
3698 remove_single_step_breakpoints ();
3699 singlestep_breakpoints_inserted_p = 0;
3700 }
3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3702 print_no_history_reason ();
3703 stop_stepping (ecs);
3704 return;
3705 }
3706
3707 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3708 {
3709 /* Do we need to clean up the state of a thread that has
3710 completed a displaced single-step? (Doing so usually affects
3711 the PC, so do it here, before we set stop_pc.) */
3712 displaced_step_fixup (ecs->ptid,
3713 ecs->event_thread->suspend.stop_signal);
3714
3715 /* If we either finished a single-step or hit a breakpoint, but
3716 the user wanted this thread to be stopped, pretend we got a
3717 SIG0 (generic unsignaled stop). */
3718
3719 if (ecs->event_thread->stop_requested
3720 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3721 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3722 }
3723
3724 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3725
3726 if (debug_infrun)
3727 {
3728 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3730 struct cleanup *old_chain = save_inferior_ptid ();
3731
3732 inferior_ptid = ecs->ptid;
3733
3734 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3735 paddress (gdbarch, stop_pc));
3736 if (target_stopped_by_watchpoint ())
3737 {
3738 CORE_ADDR addr;
3739
3740 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3741
3742 if (target_stopped_data_address (&current_target, &addr))
3743 fprintf_unfiltered (gdb_stdlog,
3744 "infrun: stopped data address = %s\n",
3745 paddress (gdbarch, addr));
3746 else
3747 fprintf_unfiltered (gdb_stdlog,
3748 "infrun: (no data address available)\n");
3749 }
3750
3751 do_cleanups (old_chain);
3752 }
3753
3754 if (stepping_past_singlestep_breakpoint)
3755 {
3756 gdb_assert (singlestep_breakpoints_inserted_p);
3757 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3758 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3759
3760 stepping_past_singlestep_breakpoint = 0;
3761
3762 /* We've either finished single-stepping past the single-step
3763 breakpoint, or stopped for some other reason. It would be nice if
3764 we could tell, but we can't reliably. */
3765 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3766 {
3767 if (debug_infrun)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "infrun: stepping_past_"
3770 "singlestep_breakpoint\n");
3771 /* Pull the single step breakpoints out of the target. */
3772 if (!ptid_equal (ecs->ptid, inferior_ptid))
3773 context_switch (ecs->ptid);
3774 remove_single_step_breakpoints ();
3775 singlestep_breakpoints_inserted_p = 0;
3776
3777 ecs->random_signal = 0;
3778 ecs->event_thread->control.trap_expected = 0;
3779
3780 context_switch (saved_singlestep_ptid);
3781 if (deprecated_context_hook)
3782 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3783
3784 resume (1, GDB_SIGNAL_0);
3785 prepare_to_wait (ecs);
3786 return;
3787 }
3788 }
3789
3790 if (!ptid_equal (deferred_step_ptid, null_ptid))
3791 {
3792 /* In non-stop mode, there's never a deferred_step_ptid set. */
3793 gdb_assert (!non_stop);
3794
3795 /* If we stopped for some other reason than single-stepping, ignore
3796 the fact that we were supposed to switch back. */
3797 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3798 {
3799 if (debug_infrun)
3800 fprintf_unfiltered (gdb_stdlog,
3801 "infrun: handling deferred step\n");
3802
3803 /* Pull the single step breakpoints out of the target. */
3804 if (singlestep_breakpoints_inserted_p)
3805 {
3806 if (!ptid_equal (ecs->ptid, inferior_ptid))
3807 context_switch (ecs->ptid);
3808 remove_single_step_breakpoints ();
3809 singlestep_breakpoints_inserted_p = 0;
3810 }
3811
3812 ecs->event_thread->control.trap_expected = 0;
3813
3814 context_switch (deferred_step_ptid);
3815 deferred_step_ptid = null_ptid;
3816 /* Suppress spurious "Switching to ..." message. */
3817 previous_inferior_ptid = inferior_ptid;
3818
3819 resume (1, GDB_SIGNAL_0);
3820 prepare_to_wait (ecs);
3821 return;
3822 }
3823
3824 deferred_step_ptid = null_ptid;
3825 }
3826
3827 /* See if a thread hit a thread-specific breakpoint that was meant for
3828 another thread. If so, then step that thread past the breakpoint,
3829 and continue it. */
3830
3831 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3832 {
3833 int thread_hop_needed = 0;
3834 struct address_space *aspace =
3835 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3836
3837 /* Check if a regular breakpoint has been hit before checking
3838 for a potential single step breakpoint. Otherwise, GDB will
3839 not see this breakpoint hit when stepping onto breakpoints. */
3840 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3841 {
3842 ecs->random_signal = 0;
3843 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3844 thread_hop_needed = 1;
3845 }
3846 else if (singlestep_breakpoints_inserted_p)
3847 {
3848 /* We have not context switched yet, so this should be true
3849 no matter which thread hit the singlestep breakpoint. */
3850 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3851 if (debug_infrun)
3852 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3853 "trap for %s\n",
3854 target_pid_to_str (ecs->ptid));
3855
3856 ecs->random_signal = 0;
3857 /* The call to in_thread_list is necessary because PTIDs sometimes
3858 change when we go from single-threaded to multi-threaded. If
3859 the singlestep_ptid is still in the list, assume that it is
3860 really different from ecs->ptid. */
3861 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3862 && in_thread_list (singlestep_ptid))
3863 {
3864 /* If the PC of the thread we were trying to single-step
3865 has changed, discard this event (which we were going
3866 to ignore anyway), and pretend we saw that thread
3867 trap. This prevents us continuously moving the
3868 single-step breakpoint forward, one instruction at a
3869 time. If the PC has changed, then the thread we were
3870 trying to single-step has trapped or been signalled,
3871 but the event has not been reported to GDB yet.
3872
3873 There might be some cases where this loses signal
3874 information, if a signal has arrived at exactly the
3875 same time that the PC changed, but this is the best
3876 we can do with the information available. Perhaps we
3877 should arrange to report all events for all threads
3878 when they stop, or to re-poll the remote looking for
3879 this particular thread (i.e. temporarily enable
3880 schedlock). */
3881
3882 CORE_ADDR new_singlestep_pc
3883 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3884
3885 if (new_singlestep_pc != singlestep_pc)
3886 {
3887 enum gdb_signal stop_signal;
3888
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3891 " but expected thread advanced also\n");
3892
3893 /* The current context still belongs to
3894 singlestep_ptid. Don't swap here, since that's
3895 the context we want to use. Just fudge our
3896 state and continue. */
3897 stop_signal = ecs->event_thread->suspend.stop_signal;
3898 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3899 ecs->ptid = singlestep_ptid;
3900 ecs->event_thread = find_thread_ptid (ecs->ptid);
3901 ecs->event_thread->suspend.stop_signal = stop_signal;
3902 stop_pc = new_singlestep_pc;
3903 }
3904 else
3905 {
3906 if (debug_infrun)
3907 fprintf_unfiltered (gdb_stdlog,
3908 "infrun: unexpected thread\n");
3909
3910 thread_hop_needed = 1;
3911 stepping_past_singlestep_breakpoint = 1;
3912 saved_singlestep_ptid = singlestep_ptid;
3913 }
3914 }
3915 }
3916
3917 if (thread_hop_needed)
3918 {
3919 struct regcache *thread_regcache;
3920 int remove_status = 0;
3921
3922 if (debug_infrun)
3923 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3924
3925 /* Switch context before touching inferior memory, the
3926 previous thread may have exited. */
3927 if (!ptid_equal (inferior_ptid, ecs->ptid))
3928 context_switch (ecs->ptid);
3929
3930 /* Saw a breakpoint, but it was hit by the wrong thread.
3931 Just continue. */
3932
3933 if (singlestep_breakpoints_inserted_p)
3934 {
3935 /* Pull the single step breakpoints out of the target. */
3936 remove_single_step_breakpoints ();
3937 singlestep_breakpoints_inserted_p = 0;
3938 }
3939
3940 /* If the arch can displace step, don't remove the
3941 breakpoints. */
3942 thread_regcache = get_thread_regcache (ecs->ptid);
3943 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3944 remove_status = remove_breakpoints ();
3945
3946 /* Did we fail to remove breakpoints? If so, try
3947 to set the PC past the bp. (There's at least
3948 one situation in which we can fail to remove
3949 the bp's: On HP-UX's that use ttrace, we can't
3950 change the address space of a vforking child
3951 process until the child exits (well, okay, not
3952 then either :-) or execs. */
3953 if (remove_status != 0)
3954 error (_("Cannot step over breakpoint hit in wrong thread"));
3955 else
3956 { /* Single step */
3957 if (!non_stop)
3958 {
3959 /* Only need to require the next event from this
3960 thread in all-stop mode. */
3961 waiton_ptid = ecs->ptid;
3962 infwait_state = infwait_thread_hop_state;
3963 }
3964
3965 ecs->event_thread->stepping_over_breakpoint = 1;
3966 keep_going (ecs);
3967 return;
3968 }
3969 }
3970 else if (singlestep_breakpoints_inserted_p)
3971 {
3972 ecs->random_signal = 0;
3973 }
3974 }
3975 else
3976 ecs->random_signal = 1;
3977
3978 /* See if something interesting happened to the non-current thread. If
3979 so, then switch to that thread. */
3980 if (!ptid_equal (ecs->ptid, inferior_ptid))
3981 {
3982 if (debug_infrun)
3983 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3984
3985 context_switch (ecs->ptid);
3986
3987 if (deprecated_context_hook)
3988 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3989 }
3990
3991 /* At this point, get hold of the now-current thread's frame. */
3992 frame = get_current_frame ();
3993 gdbarch = get_frame_arch (frame);
3994
3995 if (singlestep_breakpoints_inserted_p)
3996 {
3997 /* Pull the single step breakpoints out of the target. */
3998 remove_single_step_breakpoints ();
3999 singlestep_breakpoints_inserted_p = 0;
4000 }
4001
4002 if (stepped_after_stopped_by_watchpoint)
4003 stopped_by_watchpoint = 0;
4004 else
4005 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4006
4007 /* If necessary, step over this watchpoint. We'll be back to display
4008 it in a moment. */
4009 if (stopped_by_watchpoint
4010 && (target_have_steppable_watchpoint
4011 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4012 {
4013 /* At this point, we are stopped at an instruction which has
4014 attempted to write to a piece of memory under control of
4015 a watchpoint. The instruction hasn't actually executed
4016 yet. If we were to evaluate the watchpoint expression
4017 now, we would get the old value, and therefore no change
4018 would seem to have occurred.
4019
4020 In order to make watchpoints work `right', we really need
4021 to complete the memory write, and then evaluate the
4022 watchpoint expression. We do this by single-stepping the
4023 target.
4024
4025 It may not be necessary to disable the watchpoint to stop over
4026 it. For example, the PA can (with some kernel cooperation)
4027 single step over a watchpoint without disabling the watchpoint.
4028
4029 It is far more common to need to disable a watchpoint to step
4030 the inferior over it. If we have non-steppable watchpoints,
4031 we must disable the current watchpoint; it's simplest to
4032 disable all watchpoints and breakpoints. */
4033 int hw_step = 1;
4034
4035 if (!target_have_steppable_watchpoint)
4036 {
4037 remove_breakpoints ();
4038 /* See comment in resume why we need to stop bypassing signals
4039 while breakpoints have been removed. */
4040 target_pass_signals (0, NULL);
4041 }
4042 /* Single step */
4043 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4044 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4045 waiton_ptid = ecs->ptid;
4046 if (target_have_steppable_watchpoint)
4047 infwait_state = infwait_step_watch_state;
4048 else
4049 infwait_state = infwait_nonstep_watch_state;
4050 prepare_to_wait (ecs);
4051 return;
4052 }
4053
4054 clear_stop_func (ecs);
4055 ecs->event_thread->stepping_over_breakpoint = 0;
4056 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4057 ecs->event_thread->control.stop_step = 0;
4058 stop_print_frame = 1;
4059 ecs->random_signal = 0;
4060 stopped_by_random_signal = 0;
4061
4062 /* Hide inlined functions starting here, unless we just performed stepi or
4063 nexti. After stepi and nexti, always show the innermost frame (not any
4064 inline function call sites). */
4065 if (ecs->event_thread->control.step_range_end != 1)
4066 {
4067 struct address_space *aspace =
4068 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4069
4070 /* skip_inline_frames is expensive, so we avoid it if we can
4071 determine that the address is one where functions cannot have
4072 been inlined. This improves performance with inferiors that
4073 load a lot of shared libraries, because the solib event
4074 breakpoint is defined as the address of a function (i.e. not
4075 inline). Note that we have to check the previous PC as well
4076 as the current one to catch cases when we have just
4077 single-stepped off a breakpoint prior to reinstating it.
4078 Note that we're assuming that the code we single-step to is
4079 not inline, but that's not definitive: there's nothing
4080 preventing the event breakpoint function from containing
4081 inlined code, and the single-step ending up there. If the
4082 user had set a breakpoint on that inlined code, the missing
4083 skip_inline_frames call would break things. Fortunately
4084 that's an extremely unlikely scenario. */
4085 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4086 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4087 && ecs->event_thread->control.trap_expected
4088 && pc_at_non_inline_function (aspace,
4089 ecs->event_thread->prev_pc,
4090 &ecs->ws)))
4091 {
4092 skip_inline_frames (ecs->ptid);
4093
4094 /* Re-fetch current thread's frame in case that invalidated
4095 the frame cache. */
4096 frame = get_current_frame ();
4097 gdbarch = get_frame_arch (frame);
4098 }
4099 }
4100
4101 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4102 && ecs->event_thread->control.trap_expected
4103 && gdbarch_single_step_through_delay_p (gdbarch)
4104 && currently_stepping (ecs->event_thread))
4105 {
4106 /* We're trying to step off a breakpoint. Turns out that we're
4107 also on an instruction that needs to be stepped multiple
4108 times before it's been fully executing. E.g., architectures
4109 with a delay slot. It needs to be stepped twice, once for
4110 the instruction and once for the delay slot. */
4111 int step_through_delay
4112 = gdbarch_single_step_through_delay (gdbarch, frame);
4113
4114 if (debug_infrun && step_through_delay)
4115 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4116 if (ecs->event_thread->control.step_range_end == 0
4117 && step_through_delay)
4118 {
4119 /* The user issued a continue when stopped at a breakpoint.
4120 Set up for another trap and get out of here. */
4121 ecs->event_thread->stepping_over_breakpoint = 1;
4122 keep_going (ecs);
4123 return;
4124 }
4125 else if (step_through_delay)
4126 {
4127 /* The user issued a step when stopped at a breakpoint.
4128 Maybe we should stop, maybe we should not - the delay
4129 slot *might* correspond to a line of source. In any
4130 case, don't decide that here, just set
4131 ecs->stepping_over_breakpoint, making sure we
4132 single-step again before breakpoints are re-inserted. */
4133 ecs->event_thread->stepping_over_breakpoint = 1;
4134 }
4135 }
4136
4137 /* Look at the cause of the stop, and decide what to do.
4138 The alternatives are:
4139 1) stop_stepping and return; to really stop and return to the debugger,
4140 2) keep_going and return to start up again
4141 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4142 3) set ecs->random_signal to 1, and the decision between 1 and 2
4143 will be made according to the signal handling tables. */
4144
4145 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4146 && stop_after_trap)
4147 {
4148 if (debug_infrun)
4149 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4150 stop_print_frame = 0;
4151 stop_stepping (ecs);
4152 return;
4153 }
4154
4155 /* This is originated from start_remote(), start_inferior() and
4156 shared libraries hook functions. */
4157 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4158 {
4159 if (debug_infrun)
4160 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4161 stop_stepping (ecs);
4162 return;
4163 }
4164
4165 /* This originates from attach_command(). We need to overwrite
4166 the stop_signal here, because some kernels don't ignore a
4167 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4168 See more comments in inferior.h. On the other hand, if we
4169 get a non-SIGSTOP, report it to the user - assume the backend
4170 will handle the SIGSTOP if it should show up later.
4171
4172 Also consider that the attach is complete when we see a
4173 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4174 target extended-remote report it instead of a SIGSTOP
4175 (e.g. gdbserver). We already rely on SIGTRAP being our
4176 signal, so this is no exception.
4177
4178 Also consider that the attach is complete when we see a
4179 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4180 the target to stop all threads of the inferior, in case the
4181 low level attach operation doesn't stop them implicitly. If
4182 they weren't stopped implicitly, then the stub will report a
4183 GDB_SIGNAL_0, meaning: stopped for no particular reason
4184 other than GDB's request. */
4185 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4186 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4187 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4188 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4189 {
4190 stop_stepping (ecs);
4191 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4192 return;
4193 }
4194
4195 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4196 handles this event. */
4197 ecs->event_thread->control.stop_bpstat
4198 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4199 stop_pc, ecs->ptid, &ecs->ws);
4200
4201 /* Following in case break condition called a
4202 function. */
4203 stop_print_frame = 1;
4204
4205 /* This is where we handle "moribund" watchpoints. Unlike
4206 software breakpoints traps, hardware watchpoint traps are
4207 always distinguishable from random traps. If no high-level
4208 watchpoint is associated with the reported stop data address
4209 anymore, then the bpstat does not explain the signal ---
4210 simply make sure to ignore it if `stopped_by_watchpoint' is
4211 set. */
4212
4213 if (debug_infrun
4214 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4215 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4216 == BPSTAT_SIGNAL_NO)
4217 && stopped_by_watchpoint)
4218 fprintf_unfiltered (gdb_stdlog,
4219 "infrun: no user watchpoint explains "
4220 "watchpoint SIGTRAP, ignoring\n");
4221
4222 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4223 at one stage in the past included checks for an inferior
4224 function call's call dummy's return breakpoint. The original
4225 comment, that went with the test, read:
4226
4227 ``End of a stack dummy. Some systems (e.g. Sony news) give
4228 another signal besides SIGTRAP, so check here as well as
4229 above.''
4230
4231 If someone ever tries to get call dummys on a
4232 non-executable stack to work (where the target would stop
4233 with something like a SIGSEGV), then those tests might need
4234 to be re-instated. Given, however, that the tests were only
4235 enabled when momentary breakpoints were not being used, I
4236 suspect that it won't be the case.
4237
4238 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4239 be necessary for call dummies on a non-executable stack on
4240 SPARC. */
4241
4242 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4243 ecs->random_signal
4244 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4245 != BPSTAT_SIGNAL_NO)
4246 || stopped_by_watchpoint
4247 || ecs->event_thread->control.trap_expected
4248 || (ecs->event_thread->control.step_range_end
4249 && (ecs->event_thread->control.step_resume_breakpoint
4250 == NULL)));
4251 else
4252 {
4253 enum bpstat_signal_value sval;
4254
4255 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
4256 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4257
4258 if (sval == BPSTAT_SIGNAL_HIDE)
4259 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4260 }
4261
4262 process_event_stop_test:
4263
4264 /* Re-fetch current thread's frame in case we did a
4265 "goto process_event_stop_test" above. */
4266 frame = get_current_frame ();
4267 gdbarch = get_frame_arch (frame);
4268
4269 /* For the program's own signals, act according to
4270 the signal handling tables. */
4271
4272 if (ecs->random_signal)
4273 {
4274 /* Signal not for debugging purposes. */
4275 int printed = 0;
4276 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4277
4278 if (debug_infrun)
4279 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4280 ecs->event_thread->suspend.stop_signal);
4281
4282 stopped_by_random_signal = 1;
4283
4284 if (signal_print[ecs->event_thread->suspend.stop_signal])
4285 {
4286 printed = 1;
4287 target_terminal_ours_for_output ();
4288 print_signal_received_reason
4289 (ecs->event_thread->suspend.stop_signal);
4290 }
4291 /* Always stop on signals if we're either just gaining control
4292 of the program, or the user explicitly requested this thread
4293 to remain stopped. */
4294 if (stop_soon != NO_STOP_QUIETLY
4295 || ecs->event_thread->stop_requested
4296 || (!inf->detaching
4297 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4298 {
4299 stop_stepping (ecs);
4300 return;
4301 }
4302 /* If not going to stop, give terminal back
4303 if we took it away. */
4304 else if (printed)
4305 target_terminal_inferior ();
4306
4307 /* Clear the signal if it should not be passed. */
4308 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4309 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4310
4311 if (ecs->event_thread->prev_pc == stop_pc
4312 && ecs->event_thread->control.trap_expected
4313 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4314 {
4315 /* We were just starting a new sequence, attempting to
4316 single-step off of a breakpoint and expecting a SIGTRAP.
4317 Instead this signal arrives. This signal will take us out
4318 of the stepping range so GDB needs to remember to, when
4319 the signal handler returns, resume stepping off that
4320 breakpoint. */
4321 /* To simplify things, "continue" is forced to use the same
4322 code paths as single-step - set a breakpoint at the
4323 signal return address and then, once hit, step off that
4324 breakpoint. */
4325 if (debug_infrun)
4326 fprintf_unfiltered (gdb_stdlog,
4327 "infrun: signal arrived while stepping over "
4328 "breakpoint\n");
4329
4330 insert_hp_step_resume_breakpoint_at_frame (frame);
4331 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4332 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4333 ecs->event_thread->control.trap_expected = 0;
4334 keep_going (ecs);
4335 return;
4336 }
4337
4338 if (ecs->event_thread->control.step_range_end != 0
4339 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4340 && (ecs->event_thread->control.step_range_start <= stop_pc
4341 && stop_pc < ecs->event_thread->control.step_range_end)
4342 && frame_id_eq (get_stack_frame_id (frame),
4343 ecs->event_thread->control.step_stack_frame_id)
4344 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4345 {
4346 /* The inferior is about to take a signal that will take it
4347 out of the single step range. Set a breakpoint at the
4348 current PC (which is presumably where the signal handler
4349 will eventually return) and then allow the inferior to
4350 run free.
4351
4352 Note that this is only needed for a signal delivered
4353 while in the single-step range. Nested signals aren't a
4354 problem as they eventually all return. */
4355 if (debug_infrun)
4356 fprintf_unfiltered (gdb_stdlog,
4357 "infrun: signal may take us out of "
4358 "single-step range\n");
4359
4360 insert_hp_step_resume_breakpoint_at_frame (frame);
4361 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4362 ecs->event_thread->control.trap_expected = 0;
4363 keep_going (ecs);
4364 return;
4365 }
4366
4367 /* Note: step_resume_breakpoint may be non-NULL. This occures
4368 when either there's a nested signal, or when there's a
4369 pending signal enabled just as the signal handler returns
4370 (leaving the inferior at the step-resume-breakpoint without
4371 actually executing it). Either way continue until the
4372 breakpoint is really hit. */
4373 }
4374 else
4375 {
4376 /* Handle cases caused by hitting a breakpoint. */
4377
4378 CORE_ADDR jmp_buf_pc;
4379 struct bpstat_what what;
4380
4381 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4382
4383 if (what.call_dummy)
4384 {
4385 stop_stack_dummy = what.call_dummy;
4386 }
4387
4388 /* If we hit an internal event that triggers symbol changes, the
4389 current frame will be invalidated within bpstat_what (e.g.,
4390 if we hit an internal solib event). Re-fetch it. */
4391 frame = get_current_frame ();
4392 gdbarch = get_frame_arch (frame);
4393
4394 switch (what.main_action)
4395 {
4396 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4397 /* If we hit the breakpoint at longjmp while stepping, we
4398 install a momentary breakpoint at the target of the
4399 jmp_buf. */
4400
4401 if (debug_infrun)
4402 fprintf_unfiltered (gdb_stdlog,
4403 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4404
4405 ecs->event_thread->stepping_over_breakpoint = 1;
4406
4407 if (what.is_longjmp)
4408 {
4409 struct value *arg_value;
4410
4411 /* If we set the longjmp breakpoint via a SystemTap
4412 probe, then use it to extract the arguments. The
4413 destination PC is the third argument to the
4414 probe. */
4415 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4416 if (arg_value)
4417 jmp_buf_pc = value_as_address (arg_value);
4418 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4419 || !gdbarch_get_longjmp_target (gdbarch,
4420 frame, &jmp_buf_pc))
4421 {
4422 if (debug_infrun)
4423 fprintf_unfiltered (gdb_stdlog,
4424 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4425 "(!gdbarch_get_longjmp_target)\n");
4426 keep_going (ecs);
4427 return;
4428 }
4429
4430 /* Insert a breakpoint at resume address. */
4431 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4432 }
4433 else
4434 check_exception_resume (ecs, frame);
4435 keep_going (ecs);
4436 return;
4437
4438 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4439 {
4440 struct frame_info *init_frame;
4441
4442 /* There are several cases to consider.
4443
4444 1. The initiating frame no longer exists. In this case
4445 we must stop, because the exception or longjmp has gone
4446 too far.
4447
4448 2. The initiating frame exists, and is the same as the
4449 current frame. We stop, because the exception or
4450 longjmp has been caught.
4451
4452 3. The initiating frame exists and is different from
4453 the current frame. This means the exception or longjmp
4454 has been caught beneath the initiating frame, so keep
4455 going.
4456
4457 4. longjmp breakpoint has been placed just to protect
4458 against stale dummy frames and user is not interested
4459 in stopping around longjmps. */
4460
4461 if (debug_infrun)
4462 fprintf_unfiltered (gdb_stdlog,
4463 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4464
4465 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4466 != NULL);
4467 delete_exception_resume_breakpoint (ecs->event_thread);
4468
4469 if (what.is_longjmp)
4470 {
4471 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4472
4473 if (!frame_id_p (ecs->event_thread->initiating_frame))
4474 {
4475 /* Case 4. */
4476 keep_going (ecs);
4477 return;
4478 }
4479 }
4480
4481 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4482
4483 if (init_frame)
4484 {
4485 struct frame_id current_id
4486 = get_frame_id (get_current_frame ());
4487 if (frame_id_eq (current_id,
4488 ecs->event_thread->initiating_frame))
4489 {
4490 /* Case 2. Fall through. */
4491 }
4492 else
4493 {
4494 /* Case 3. */
4495 keep_going (ecs);
4496 return;
4497 }
4498 }
4499
4500 /* For Cases 1 and 2, remove the step-resume breakpoint,
4501 if it exists. */
4502 delete_step_resume_breakpoint (ecs->event_thread);
4503
4504 ecs->event_thread->control.stop_step = 1;
4505 print_end_stepping_range_reason ();
4506 stop_stepping (ecs);
4507 }
4508 return;
4509
4510 case BPSTAT_WHAT_SINGLE:
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4513 ecs->event_thread->stepping_over_breakpoint = 1;
4514 /* Still need to check other stuff, at least the case where
4515 we are stepping and step out of the right range. */
4516 break;
4517
4518 case BPSTAT_WHAT_STEP_RESUME:
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4521
4522 delete_step_resume_breakpoint (ecs->event_thread);
4523 if (ecs->event_thread->control.proceed_to_finish
4524 && execution_direction == EXEC_REVERSE)
4525 {
4526 struct thread_info *tp = ecs->event_thread;
4527
4528 /* We are finishing a function in reverse, and just hit
4529 the step-resume breakpoint at the start address of
4530 the function, and we're almost there -- just need to
4531 back up by one more single-step, which should take us
4532 back to the function call. */
4533 tp->control.step_range_start = tp->control.step_range_end = 1;
4534 keep_going (ecs);
4535 return;
4536 }
4537 fill_in_stop_func (gdbarch, ecs);
4538 if (stop_pc == ecs->stop_func_start
4539 && execution_direction == EXEC_REVERSE)
4540 {
4541 /* We are stepping over a function call in reverse, and
4542 just hit the step-resume breakpoint at the start
4543 address of the function. Go back to single-stepping,
4544 which should take us back to the function call. */
4545 ecs->event_thread->stepping_over_breakpoint = 1;
4546 keep_going (ecs);
4547 return;
4548 }
4549 break;
4550
4551 case BPSTAT_WHAT_STOP_NOISY:
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4554 stop_print_frame = 1;
4555
4556 /* We are about to nuke the step_resume_breakpointt via the
4557 cleanup chain, so no need to worry about it here. */
4558
4559 stop_stepping (ecs);
4560 return;
4561
4562 case BPSTAT_WHAT_STOP_SILENT:
4563 if (debug_infrun)
4564 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4565 stop_print_frame = 0;
4566
4567 /* We are about to nuke the step_resume_breakpoin via the
4568 cleanup chain, so no need to worry about it here. */
4569
4570 stop_stepping (ecs);
4571 return;
4572
4573 case BPSTAT_WHAT_HP_STEP_RESUME:
4574 if (debug_infrun)
4575 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4576
4577 delete_step_resume_breakpoint (ecs->event_thread);
4578 if (ecs->event_thread->step_after_step_resume_breakpoint)
4579 {
4580 /* Back when the step-resume breakpoint was inserted, we
4581 were trying to single-step off a breakpoint. Go back
4582 to doing that. */
4583 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4584 ecs->event_thread->stepping_over_breakpoint = 1;
4585 keep_going (ecs);
4586 return;
4587 }
4588 break;
4589
4590 case BPSTAT_WHAT_KEEP_CHECKING:
4591 break;
4592 }
4593 }
4594
4595 /* We come here if we hit a breakpoint but should not
4596 stop for it. Possibly we also were stepping
4597 and should stop for that. So fall through and
4598 test for stepping. But, if not stepping,
4599 do not stop. */
4600
4601 /* In all-stop mode, if we're currently stepping but have stopped in
4602 some other thread, we need to switch back to the stepped thread. */
4603 if (!non_stop)
4604 {
4605 struct thread_info *tp;
4606
4607 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4608 ecs->event_thread);
4609 if (tp)
4610 {
4611 /* However, if the current thread is blocked on some internal
4612 breakpoint, and we simply need to step over that breakpoint
4613 to get it going again, do that first. */
4614 if ((ecs->event_thread->control.trap_expected
4615 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4616 || ecs->event_thread->stepping_over_breakpoint)
4617 {
4618 keep_going (ecs);
4619 return;
4620 }
4621
4622 /* If the stepping thread exited, then don't try to switch
4623 back and resume it, which could fail in several different
4624 ways depending on the target. Instead, just keep going.
4625
4626 We can find a stepping dead thread in the thread list in
4627 two cases:
4628
4629 - The target supports thread exit events, and when the
4630 target tries to delete the thread from the thread list,
4631 inferior_ptid pointed at the exiting thread. In such
4632 case, calling delete_thread does not really remove the
4633 thread from the list; instead, the thread is left listed,
4634 with 'exited' state.
4635
4636 - The target's debug interface does not support thread
4637 exit events, and so we have no idea whatsoever if the
4638 previously stepping thread is still alive. For that
4639 reason, we need to synchronously query the target
4640 now. */
4641 if (is_exited (tp->ptid)
4642 || !target_thread_alive (tp->ptid))
4643 {
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: not switching back to "
4647 "stepped thread, it has vanished\n");
4648
4649 delete_thread (tp->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653
4654 /* Otherwise, we no longer expect a trap in the current thread.
4655 Clear the trap_expected flag before switching back -- this is
4656 what keep_going would do as well, if we called it. */
4657 ecs->event_thread->control.trap_expected = 0;
4658
4659 if (debug_infrun)
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: switching back to stepped thread\n");
4662
4663 ecs->event_thread = tp;
4664 ecs->ptid = tp->ptid;
4665 context_switch (ecs->ptid);
4666 keep_going (ecs);
4667 return;
4668 }
4669 }
4670
4671 if (ecs->event_thread->control.step_resume_breakpoint)
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: step-resume breakpoint is inserted\n");
4676
4677 /* Having a step-resume breakpoint overrides anything
4678 else having to do with stepping commands until
4679 that breakpoint is reached. */
4680 keep_going (ecs);
4681 return;
4682 }
4683
4684 if (ecs->event_thread->control.step_range_end == 0)
4685 {
4686 if (debug_infrun)
4687 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4688 /* Likewise if we aren't even stepping. */
4689 keep_going (ecs);
4690 return;
4691 }
4692
4693 /* Re-fetch current thread's frame in case the code above caused
4694 the frame cache to be re-initialized, making our FRAME variable
4695 a dangling pointer. */
4696 frame = get_current_frame ();
4697 gdbarch = get_frame_arch (frame);
4698 fill_in_stop_func (gdbarch, ecs);
4699
4700 /* If stepping through a line, keep going if still within it.
4701
4702 Note that step_range_end is the address of the first instruction
4703 beyond the step range, and NOT the address of the last instruction
4704 within it!
4705
4706 Note also that during reverse execution, we may be stepping
4707 through a function epilogue and therefore must detect when
4708 the current-frame changes in the middle of a line. */
4709
4710 if (stop_pc >= ecs->event_thread->control.step_range_start
4711 && stop_pc < ecs->event_thread->control.step_range_end
4712 && (execution_direction != EXEC_REVERSE
4713 || frame_id_eq (get_frame_id (frame),
4714 ecs->event_thread->control.step_frame_id)))
4715 {
4716 if (debug_infrun)
4717 fprintf_unfiltered
4718 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4719 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4720 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4721
4722 /* When stepping backward, stop at beginning of line range
4723 (unless it's the function entry point, in which case
4724 keep going back to the call point). */
4725 if (stop_pc == ecs->event_thread->control.step_range_start
4726 && stop_pc != ecs->stop_func_start
4727 && execution_direction == EXEC_REVERSE)
4728 {
4729 ecs->event_thread->control.stop_step = 1;
4730 print_end_stepping_range_reason ();
4731 stop_stepping (ecs);
4732 }
4733 else
4734 keep_going (ecs);
4735
4736 return;
4737 }
4738
4739 /* We stepped out of the stepping range. */
4740
4741 /* If we are stepping at the source level and entered the runtime
4742 loader dynamic symbol resolution code...
4743
4744 EXEC_FORWARD: we keep on single stepping until we exit the run
4745 time loader code and reach the callee's address.
4746
4747 EXEC_REVERSE: we've already executed the callee (backward), and
4748 the runtime loader code is handled just like any other
4749 undebuggable function call. Now we need only keep stepping
4750 backward through the trampoline code, and that's handled further
4751 down, so there is nothing for us to do here. */
4752
4753 if (execution_direction != EXEC_REVERSE
4754 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4755 && in_solib_dynsym_resolve_code (stop_pc))
4756 {
4757 CORE_ADDR pc_after_resolver =
4758 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4759
4760 if (debug_infrun)
4761 fprintf_unfiltered (gdb_stdlog,
4762 "infrun: stepped into dynsym resolve code\n");
4763
4764 if (pc_after_resolver)
4765 {
4766 /* Set up a step-resume breakpoint at the address
4767 indicated by SKIP_SOLIB_RESOLVER. */
4768 struct symtab_and_line sr_sal;
4769
4770 init_sal (&sr_sal);
4771 sr_sal.pc = pc_after_resolver;
4772 sr_sal.pspace = get_frame_program_space (frame);
4773
4774 insert_step_resume_breakpoint_at_sal (gdbarch,
4775 sr_sal, null_frame_id);
4776 }
4777
4778 keep_going (ecs);
4779 return;
4780 }
4781
4782 if (ecs->event_thread->control.step_range_end != 1
4783 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4784 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4785 && get_frame_type (frame) == SIGTRAMP_FRAME)
4786 {
4787 if (debug_infrun)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: stepped into signal trampoline\n");
4790 /* The inferior, while doing a "step" or "next", has ended up in
4791 a signal trampoline (either by a signal being delivered or by
4792 the signal handler returning). Just single-step until the
4793 inferior leaves the trampoline (either by calling the handler
4794 or returning). */
4795 keep_going (ecs);
4796 return;
4797 }
4798
4799 /* If we're in the return path from a shared library trampoline,
4800 we want to proceed through the trampoline when stepping. */
4801 /* macro/2012-04-25: This needs to come before the subroutine
4802 call check below as on some targets return trampolines look
4803 like subroutine calls (MIPS16 return thunks). */
4804 if (gdbarch_in_solib_return_trampoline (gdbarch,
4805 stop_pc, ecs->stop_func_name)
4806 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4807 {
4808 /* Determine where this trampoline returns. */
4809 CORE_ADDR real_stop_pc;
4810
4811 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4812
4813 if (debug_infrun)
4814 fprintf_unfiltered (gdb_stdlog,
4815 "infrun: stepped into solib return tramp\n");
4816
4817 /* Only proceed through if we know where it's going. */
4818 if (real_stop_pc)
4819 {
4820 /* And put the step-breakpoint there and go until there. */
4821 struct symtab_and_line sr_sal;
4822
4823 init_sal (&sr_sal); /* initialize to zeroes */
4824 sr_sal.pc = real_stop_pc;
4825 sr_sal.section = find_pc_overlay (sr_sal.pc);
4826 sr_sal.pspace = get_frame_program_space (frame);
4827
4828 /* Do not specify what the fp should be when we stop since
4829 on some machines the prologue is where the new fp value
4830 is established. */
4831 insert_step_resume_breakpoint_at_sal (gdbarch,
4832 sr_sal, null_frame_id);
4833
4834 /* Restart without fiddling with the step ranges or
4835 other state. */
4836 keep_going (ecs);
4837 return;
4838 }
4839 }
4840
4841 /* Check for subroutine calls. The check for the current frame
4842 equalling the step ID is not necessary - the check of the
4843 previous frame's ID is sufficient - but it is a common case and
4844 cheaper than checking the previous frame's ID.
4845
4846 NOTE: frame_id_eq will never report two invalid frame IDs as
4847 being equal, so to get into this block, both the current and
4848 previous frame must have valid frame IDs. */
4849 /* The outer_frame_id check is a heuristic to detect stepping
4850 through startup code. If we step over an instruction which
4851 sets the stack pointer from an invalid value to a valid value,
4852 we may detect that as a subroutine call from the mythical
4853 "outermost" function. This could be fixed by marking
4854 outermost frames as !stack_p,code_p,special_p. Then the
4855 initial outermost frame, before sp was valid, would
4856 have code_addr == &_start. See the comment in frame_id_eq
4857 for more. */
4858 if (!frame_id_eq (get_stack_frame_id (frame),
4859 ecs->event_thread->control.step_stack_frame_id)
4860 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4861 ecs->event_thread->control.step_stack_frame_id)
4862 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4863 outer_frame_id)
4864 || step_start_function != find_pc_function (stop_pc))))
4865 {
4866 CORE_ADDR real_stop_pc;
4867
4868 if (debug_infrun)
4869 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4870
4871 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4872 || ((ecs->event_thread->control.step_range_end == 1)
4873 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4874 ecs->stop_func_start)))
4875 {
4876 /* I presume that step_over_calls is only 0 when we're
4877 supposed to be stepping at the assembly language level
4878 ("stepi"). Just stop. */
4879 /* Also, maybe we just did a "nexti" inside a prolog, so we
4880 thought it was a subroutine call but it was not. Stop as
4881 well. FENN */
4882 /* And this works the same backward as frontward. MVS */
4883 ecs->event_thread->control.stop_step = 1;
4884 print_end_stepping_range_reason ();
4885 stop_stepping (ecs);
4886 return;
4887 }
4888
4889 /* Reverse stepping through solib trampolines. */
4890
4891 if (execution_direction == EXEC_REVERSE
4892 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4893 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4894 || (ecs->stop_func_start == 0
4895 && in_solib_dynsym_resolve_code (stop_pc))))
4896 {
4897 /* Any solib trampoline code can be handled in reverse
4898 by simply continuing to single-step. We have already
4899 executed the solib function (backwards), and a few
4900 steps will take us back through the trampoline to the
4901 caller. */
4902 keep_going (ecs);
4903 return;
4904 }
4905
4906 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4907 {
4908 /* We're doing a "next".
4909
4910 Normal (forward) execution: set a breakpoint at the
4911 callee's return address (the address at which the caller
4912 will resume).
4913
4914 Reverse (backward) execution. set the step-resume
4915 breakpoint at the start of the function that we just
4916 stepped into (backwards), and continue to there. When we
4917 get there, we'll need to single-step back to the caller. */
4918
4919 if (execution_direction == EXEC_REVERSE)
4920 {
4921 /* If we're already at the start of the function, we've either
4922 just stepped backward into a single instruction function,
4923 or stepped back out of a signal handler to the first instruction
4924 of the function. Just keep going, which will single-step back
4925 to the caller. */
4926 if (ecs->stop_func_start != stop_pc)
4927 {
4928 struct symtab_and_line sr_sal;
4929
4930 /* Normal function call return (static or dynamic). */
4931 init_sal (&sr_sal);
4932 sr_sal.pc = ecs->stop_func_start;
4933 sr_sal.pspace = get_frame_program_space (frame);
4934 insert_step_resume_breakpoint_at_sal (gdbarch,
4935 sr_sal, null_frame_id);
4936 }
4937 }
4938 else
4939 insert_step_resume_breakpoint_at_caller (frame);
4940
4941 keep_going (ecs);
4942 return;
4943 }
4944
4945 /* If we are in a function call trampoline (a stub between the
4946 calling routine and the real function), locate the real
4947 function. That's what tells us (a) whether we want to step
4948 into it at all, and (b) what prologue we want to run to the
4949 end of, if we do step into it. */
4950 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4951 if (real_stop_pc == 0)
4952 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4953 if (real_stop_pc != 0)
4954 ecs->stop_func_start = real_stop_pc;
4955
4956 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4957 {
4958 struct symtab_and_line sr_sal;
4959
4960 init_sal (&sr_sal);
4961 sr_sal.pc = ecs->stop_func_start;
4962 sr_sal.pspace = get_frame_program_space (frame);
4963
4964 insert_step_resume_breakpoint_at_sal (gdbarch,
4965 sr_sal, null_frame_id);
4966 keep_going (ecs);
4967 return;
4968 }
4969
4970 /* If we have line number information for the function we are
4971 thinking of stepping into and the function isn't on the skip
4972 list, step into it.
4973
4974 If there are several symtabs at that PC (e.g. with include
4975 files), just want to know whether *any* of them have line
4976 numbers. find_pc_line handles this. */
4977 {
4978 struct symtab_and_line tmp_sal;
4979
4980 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4981 if (tmp_sal.line != 0
4982 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4983 &tmp_sal))
4984 {
4985 if (execution_direction == EXEC_REVERSE)
4986 handle_step_into_function_backward (gdbarch, ecs);
4987 else
4988 handle_step_into_function (gdbarch, ecs);
4989 return;
4990 }
4991 }
4992
4993 /* If we have no line number and the step-stop-if-no-debug is
4994 set, we stop the step so that the user has a chance to switch
4995 in assembly mode. */
4996 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4997 && step_stop_if_no_debug)
4998 {
4999 ecs->event_thread->control.stop_step = 1;
5000 print_end_stepping_range_reason ();
5001 stop_stepping (ecs);
5002 return;
5003 }
5004
5005 if (execution_direction == EXEC_REVERSE)
5006 {
5007 /* If we're already at the start of the function, we've either just
5008 stepped backward into a single instruction function without line
5009 number info, or stepped back out of a signal handler to the first
5010 instruction of the function without line number info. Just keep
5011 going, which will single-step back to the caller. */
5012 if (ecs->stop_func_start != stop_pc)
5013 {
5014 /* Set a breakpoint at callee's start address.
5015 From there we can step once and be back in the caller. */
5016 struct symtab_and_line sr_sal;
5017
5018 init_sal (&sr_sal);
5019 sr_sal.pc = ecs->stop_func_start;
5020 sr_sal.pspace = get_frame_program_space (frame);
5021 insert_step_resume_breakpoint_at_sal (gdbarch,
5022 sr_sal, null_frame_id);
5023 }
5024 }
5025 else
5026 /* Set a breakpoint at callee's return address (the address
5027 at which the caller will resume). */
5028 insert_step_resume_breakpoint_at_caller (frame);
5029
5030 keep_going (ecs);
5031 return;
5032 }
5033
5034 /* Reverse stepping through solib trampolines. */
5035
5036 if (execution_direction == EXEC_REVERSE
5037 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5038 {
5039 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5040 || (ecs->stop_func_start == 0
5041 && in_solib_dynsym_resolve_code (stop_pc)))
5042 {
5043 /* Any solib trampoline code can be handled in reverse
5044 by simply continuing to single-step. We have already
5045 executed the solib function (backwards), and a few
5046 steps will take us back through the trampoline to the
5047 caller. */
5048 keep_going (ecs);
5049 return;
5050 }
5051 else if (in_solib_dynsym_resolve_code (stop_pc))
5052 {
5053 /* Stepped backward into the solib dynsym resolver.
5054 Set a breakpoint at its start and continue, then
5055 one more step will take us out. */
5056 struct symtab_and_line sr_sal;
5057
5058 init_sal (&sr_sal);
5059 sr_sal.pc = ecs->stop_func_start;
5060 sr_sal.pspace = get_frame_program_space (frame);
5061 insert_step_resume_breakpoint_at_sal (gdbarch,
5062 sr_sal, null_frame_id);
5063 keep_going (ecs);
5064 return;
5065 }
5066 }
5067
5068 stop_pc_sal = find_pc_line (stop_pc, 0);
5069
5070 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5071 the trampoline processing logic, however, there are some trampolines
5072 that have no names, so we should do trampoline handling first. */
5073 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5074 && ecs->stop_func_name == NULL
5075 && stop_pc_sal.line == 0)
5076 {
5077 if (debug_infrun)
5078 fprintf_unfiltered (gdb_stdlog,
5079 "infrun: stepped into undebuggable function\n");
5080
5081 /* The inferior just stepped into, or returned to, an
5082 undebuggable function (where there is no debugging information
5083 and no line number corresponding to the address where the
5084 inferior stopped). Since we want to skip this kind of code,
5085 we keep going until the inferior returns from this
5086 function - unless the user has asked us not to (via
5087 set step-mode) or we no longer know how to get back
5088 to the call site. */
5089 if (step_stop_if_no_debug
5090 || !frame_id_p (frame_unwind_caller_id (frame)))
5091 {
5092 /* If we have no line number and the step-stop-if-no-debug
5093 is set, we stop the step so that the user has a chance to
5094 switch in assembly mode. */
5095 ecs->event_thread->control.stop_step = 1;
5096 print_end_stepping_range_reason ();
5097 stop_stepping (ecs);
5098 return;
5099 }
5100 else
5101 {
5102 /* Set a breakpoint at callee's return address (the address
5103 at which the caller will resume). */
5104 insert_step_resume_breakpoint_at_caller (frame);
5105 keep_going (ecs);
5106 return;
5107 }
5108 }
5109
5110 if (ecs->event_thread->control.step_range_end == 1)
5111 {
5112 /* It is stepi or nexti. We always want to stop stepping after
5113 one instruction. */
5114 if (debug_infrun)
5115 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5116 ecs->event_thread->control.stop_step = 1;
5117 print_end_stepping_range_reason ();
5118 stop_stepping (ecs);
5119 return;
5120 }
5121
5122 if (stop_pc_sal.line == 0)
5123 {
5124 /* We have no line number information. That means to stop
5125 stepping (does this always happen right after one instruction,
5126 when we do "s" in a function with no line numbers,
5127 or can this happen as a result of a return or longjmp?). */
5128 if (debug_infrun)
5129 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5130 ecs->event_thread->control.stop_step = 1;
5131 print_end_stepping_range_reason ();
5132 stop_stepping (ecs);
5133 return;
5134 }
5135
5136 /* Look for "calls" to inlined functions, part one. If the inline
5137 frame machinery detected some skipped call sites, we have entered
5138 a new inline function. */
5139
5140 if (frame_id_eq (get_frame_id (get_current_frame ()),
5141 ecs->event_thread->control.step_frame_id)
5142 && inline_skipped_frames (ecs->ptid))
5143 {
5144 struct symtab_and_line call_sal;
5145
5146 if (debug_infrun)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "infrun: stepped into inlined function\n");
5149
5150 find_frame_sal (get_current_frame (), &call_sal);
5151
5152 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5153 {
5154 /* For "step", we're going to stop. But if the call site
5155 for this inlined function is on the same source line as
5156 we were previously stepping, go down into the function
5157 first. Otherwise stop at the call site. */
5158
5159 if (call_sal.line == ecs->event_thread->current_line
5160 && call_sal.symtab == ecs->event_thread->current_symtab)
5161 step_into_inline_frame (ecs->ptid);
5162
5163 ecs->event_thread->control.stop_step = 1;
5164 print_end_stepping_range_reason ();
5165 stop_stepping (ecs);
5166 return;
5167 }
5168 else
5169 {
5170 /* For "next", we should stop at the call site if it is on a
5171 different source line. Otherwise continue through the
5172 inlined function. */
5173 if (call_sal.line == ecs->event_thread->current_line
5174 && call_sal.symtab == ecs->event_thread->current_symtab)
5175 keep_going (ecs);
5176 else
5177 {
5178 ecs->event_thread->control.stop_step = 1;
5179 print_end_stepping_range_reason ();
5180 stop_stepping (ecs);
5181 }
5182 return;
5183 }
5184 }
5185
5186 /* Look for "calls" to inlined functions, part two. If we are still
5187 in the same real function we were stepping through, but we have
5188 to go further up to find the exact frame ID, we are stepping
5189 through a more inlined call beyond its call site. */
5190
5191 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5192 && !frame_id_eq (get_frame_id (get_current_frame ()),
5193 ecs->event_thread->control.step_frame_id)
5194 && stepped_in_from (get_current_frame (),
5195 ecs->event_thread->control.step_frame_id))
5196 {
5197 if (debug_infrun)
5198 fprintf_unfiltered (gdb_stdlog,
5199 "infrun: stepping through inlined function\n");
5200
5201 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5202 keep_going (ecs);
5203 else
5204 {
5205 ecs->event_thread->control.stop_step = 1;
5206 print_end_stepping_range_reason ();
5207 stop_stepping (ecs);
5208 }
5209 return;
5210 }
5211
5212 if ((stop_pc == stop_pc_sal.pc)
5213 && (ecs->event_thread->current_line != stop_pc_sal.line
5214 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5215 {
5216 /* We are at the start of a different line. So stop. Note that
5217 we don't stop if we step into the middle of a different line.
5218 That is said to make things like for (;;) statements work
5219 better. */
5220 if (debug_infrun)
5221 fprintf_unfiltered (gdb_stdlog,
5222 "infrun: stepped to a different line\n");
5223 ecs->event_thread->control.stop_step = 1;
5224 print_end_stepping_range_reason ();
5225 stop_stepping (ecs);
5226 return;
5227 }
5228
5229 /* We aren't done stepping.
5230
5231 Optimize by setting the stepping range to the line.
5232 (We might not be in the original line, but if we entered a
5233 new line in mid-statement, we continue stepping. This makes
5234 things like for(;;) statements work better.) */
5235
5236 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5237 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5238 set_step_info (frame, stop_pc_sal);
5239
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5242 keep_going (ecs);
5243 }
5244
5245 /* Is thread TP in the middle of single-stepping? */
5246
5247 static int
5248 currently_stepping (struct thread_info *tp)
5249 {
5250 return ((tp->control.step_range_end
5251 && tp->control.step_resume_breakpoint == NULL)
5252 || tp->control.trap_expected
5253 || bpstat_should_step ());
5254 }
5255
5256 /* Returns true if any thread *but* the one passed in "data" is in the
5257 middle of stepping or of handling a "next". */
5258
5259 static int
5260 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5261 {
5262 if (tp == data)
5263 return 0;
5264
5265 return (tp->control.step_range_end
5266 || tp->control.trap_expected);
5267 }
5268
5269 /* Inferior has stepped into a subroutine call with source code that
5270 we should not step over. Do step to the first line of code in
5271 it. */
5272
5273 static void
5274 handle_step_into_function (struct gdbarch *gdbarch,
5275 struct execution_control_state *ecs)
5276 {
5277 struct symtab *s;
5278 struct symtab_and_line stop_func_sal, sr_sal;
5279
5280 fill_in_stop_func (gdbarch, ecs);
5281
5282 s = find_pc_symtab (stop_pc);
5283 if (s && s->language != language_asm)
5284 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5285 ecs->stop_func_start);
5286
5287 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5288 /* Use the step_resume_break to step until the end of the prologue,
5289 even if that involves jumps (as it seems to on the vax under
5290 4.2). */
5291 /* If the prologue ends in the middle of a source line, continue to
5292 the end of that source line (if it is still within the function).
5293 Otherwise, just go to end of prologue. */
5294 if (stop_func_sal.end
5295 && stop_func_sal.pc != ecs->stop_func_start
5296 && stop_func_sal.end < ecs->stop_func_end)
5297 ecs->stop_func_start = stop_func_sal.end;
5298
5299 /* Architectures which require breakpoint adjustment might not be able
5300 to place a breakpoint at the computed address. If so, the test
5301 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5302 ecs->stop_func_start to an address at which a breakpoint may be
5303 legitimately placed.
5304
5305 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5306 made, GDB will enter an infinite loop when stepping through
5307 optimized code consisting of VLIW instructions which contain
5308 subinstructions corresponding to different source lines. On
5309 FR-V, it's not permitted to place a breakpoint on any but the
5310 first subinstruction of a VLIW instruction. When a breakpoint is
5311 set, GDB will adjust the breakpoint address to the beginning of
5312 the VLIW instruction. Thus, we need to make the corresponding
5313 adjustment here when computing the stop address. */
5314
5315 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5316 {
5317 ecs->stop_func_start
5318 = gdbarch_adjust_breakpoint_address (gdbarch,
5319 ecs->stop_func_start);
5320 }
5321
5322 if (ecs->stop_func_start == stop_pc)
5323 {
5324 /* We are already there: stop now. */
5325 ecs->event_thread->control.stop_step = 1;
5326 print_end_stepping_range_reason ();
5327 stop_stepping (ecs);
5328 return;
5329 }
5330 else
5331 {
5332 /* Put the step-breakpoint there and go until there. */
5333 init_sal (&sr_sal); /* initialize to zeroes */
5334 sr_sal.pc = ecs->stop_func_start;
5335 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5336 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5337
5338 /* Do not specify what the fp should be when we stop since on
5339 some machines the prologue is where the new fp value is
5340 established. */
5341 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5342
5343 /* And make sure stepping stops right away then. */
5344 ecs->event_thread->control.step_range_end
5345 = ecs->event_thread->control.step_range_start;
5346 }
5347 keep_going (ecs);
5348 }
5349
5350 /* Inferior has stepped backward into a subroutine call with source
5351 code that we should not step over. Do step to the beginning of the
5352 last line of code in it. */
5353
5354 static void
5355 handle_step_into_function_backward (struct gdbarch *gdbarch,
5356 struct execution_control_state *ecs)
5357 {
5358 struct symtab *s;
5359 struct symtab_and_line stop_func_sal;
5360
5361 fill_in_stop_func (gdbarch, ecs);
5362
5363 s = find_pc_symtab (stop_pc);
5364 if (s && s->language != language_asm)
5365 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5366 ecs->stop_func_start);
5367
5368 stop_func_sal = find_pc_line (stop_pc, 0);
5369
5370 /* OK, we're just going to keep stepping here. */
5371 if (stop_func_sal.pc == stop_pc)
5372 {
5373 /* We're there already. Just stop stepping now. */
5374 ecs->event_thread->control.stop_step = 1;
5375 print_end_stepping_range_reason ();
5376 stop_stepping (ecs);
5377 }
5378 else
5379 {
5380 /* Else just reset the step range and keep going.
5381 No step-resume breakpoint, they don't work for
5382 epilogues, which can have multiple entry paths. */
5383 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5384 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5385 keep_going (ecs);
5386 }
5387 return;
5388 }
5389
5390 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5391 This is used to both functions and to skip over code. */
5392
5393 static void
5394 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5395 struct symtab_and_line sr_sal,
5396 struct frame_id sr_id,
5397 enum bptype sr_type)
5398 {
5399 /* There should never be more than one step-resume or longjmp-resume
5400 breakpoint per thread, so we should never be setting a new
5401 step_resume_breakpoint when one is already active. */
5402 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5403 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5404
5405 if (debug_infrun)
5406 fprintf_unfiltered (gdb_stdlog,
5407 "infrun: inserting step-resume breakpoint at %s\n",
5408 paddress (gdbarch, sr_sal.pc));
5409
5410 inferior_thread ()->control.step_resume_breakpoint
5411 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5412 }
5413
5414 void
5415 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5416 struct symtab_and_line sr_sal,
5417 struct frame_id sr_id)
5418 {
5419 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5420 sr_sal, sr_id,
5421 bp_step_resume);
5422 }
5423
5424 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5425 This is used to skip a potential signal handler.
5426
5427 This is called with the interrupted function's frame. The signal
5428 handler, when it returns, will resume the interrupted function at
5429 RETURN_FRAME.pc. */
5430
5431 static void
5432 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5433 {
5434 struct symtab_and_line sr_sal;
5435 struct gdbarch *gdbarch;
5436
5437 gdb_assert (return_frame != NULL);
5438 init_sal (&sr_sal); /* initialize to zeros */
5439
5440 gdbarch = get_frame_arch (return_frame);
5441 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5442 sr_sal.section = find_pc_overlay (sr_sal.pc);
5443 sr_sal.pspace = get_frame_program_space (return_frame);
5444
5445 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5446 get_stack_frame_id (return_frame),
5447 bp_hp_step_resume);
5448 }
5449
5450 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5451 is used to skip a function after stepping into it (for "next" or if
5452 the called function has no debugging information).
5453
5454 The current function has almost always been reached by single
5455 stepping a call or return instruction. NEXT_FRAME belongs to the
5456 current function, and the breakpoint will be set at the caller's
5457 resume address.
5458
5459 This is a separate function rather than reusing
5460 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5461 get_prev_frame, which may stop prematurely (see the implementation
5462 of frame_unwind_caller_id for an example). */
5463
5464 static void
5465 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5466 {
5467 struct symtab_and_line sr_sal;
5468 struct gdbarch *gdbarch;
5469
5470 /* We shouldn't have gotten here if we don't know where the call site
5471 is. */
5472 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5473
5474 init_sal (&sr_sal); /* initialize to zeros */
5475
5476 gdbarch = frame_unwind_caller_arch (next_frame);
5477 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5478 frame_unwind_caller_pc (next_frame));
5479 sr_sal.section = find_pc_overlay (sr_sal.pc);
5480 sr_sal.pspace = frame_unwind_program_space (next_frame);
5481
5482 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5483 frame_unwind_caller_id (next_frame));
5484 }
5485
5486 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5487 new breakpoint at the target of a jmp_buf. The handling of
5488 longjmp-resume uses the same mechanisms used for handling
5489 "step-resume" breakpoints. */
5490
5491 static void
5492 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5493 {
5494 /* There should never be more than one longjmp-resume breakpoint per
5495 thread, so we should never be setting a new
5496 longjmp_resume_breakpoint when one is already active. */
5497 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5498
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: inserting longjmp-resume breakpoint at %s\n",
5502 paddress (gdbarch, pc));
5503
5504 inferior_thread ()->control.exception_resume_breakpoint =
5505 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5506 }
5507
5508 /* Insert an exception resume breakpoint. TP is the thread throwing
5509 the exception. The block B is the block of the unwinder debug hook
5510 function. FRAME is the frame corresponding to the call to this
5511 function. SYM is the symbol of the function argument holding the
5512 target PC of the exception. */
5513
5514 static void
5515 insert_exception_resume_breakpoint (struct thread_info *tp,
5516 struct block *b,
5517 struct frame_info *frame,
5518 struct symbol *sym)
5519 {
5520 volatile struct gdb_exception e;
5521
5522 /* We want to ignore errors here. */
5523 TRY_CATCH (e, RETURN_MASK_ERROR)
5524 {
5525 struct symbol *vsym;
5526 struct value *value;
5527 CORE_ADDR handler;
5528 struct breakpoint *bp;
5529
5530 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5531 value = read_var_value (vsym, frame);
5532 /* If the value was optimized out, revert to the old behavior. */
5533 if (! value_optimized_out (value))
5534 {
5535 handler = value_as_address (value);
5536
5537 if (debug_infrun)
5538 fprintf_unfiltered (gdb_stdlog,
5539 "infrun: exception resume at %lx\n",
5540 (unsigned long) handler);
5541
5542 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5543 handler, bp_exception_resume);
5544
5545 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5546 frame = NULL;
5547
5548 bp->thread = tp->num;
5549 inferior_thread ()->control.exception_resume_breakpoint = bp;
5550 }
5551 }
5552 }
5553
5554 /* A helper for check_exception_resume that sets an
5555 exception-breakpoint based on a SystemTap probe. */
5556
5557 static void
5558 insert_exception_resume_from_probe (struct thread_info *tp,
5559 const struct probe *probe,
5560 struct frame_info *frame)
5561 {
5562 struct value *arg_value;
5563 CORE_ADDR handler;
5564 struct breakpoint *bp;
5565
5566 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5567 if (!arg_value)
5568 return;
5569
5570 handler = value_as_address (arg_value);
5571
5572 if (debug_infrun)
5573 fprintf_unfiltered (gdb_stdlog,
5574 "infrun: exception resume at %s\n",
5575 paddress (get_objfile_arch (probe->objfile),
5576 handler));
5577
5578 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5579 handler, bp_exception_resume);
5580 bp->thread = tp->num;
5581 inferior_thread ()->control.exception_resume_breakpoint = bp;
5582 }
5583
5584 /* This is called when an exception has been intercepted. Check to
5585 see whether the exception's destination is of interest, and if so,
5586 set an exception resume breakpoint there. */
5587
5588 static void
5589 check_exception_resume (struct execution_control_state *ecs,
5590 struct frame_info *frame)
5591 {
5592 volatile struct gdb_exception e;
5593 const struct probe *probe;
5594 struct symbol *func;
5595
5596 /* First see if this exception unwinding breakpoint was set via a
5597 SystemTap probe point. If so, the probe has two arguments: the
5598 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5599 set a breakpoint there. */
5600 probe = find_probe_by_pc (get_frame_pc (frame));
5601 if (probe)
5602 {
5603 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5604 return;
5605 }
5606
5607 func = get_frame_function (frame);
5608 if (!func)
5609 return;
5610
5611 TRY_CATCH (e, RETURN_MASK_ERROR)
5612 {
5613 struct block *b;
5614 struct block_iterator iter;
5615 struct symbol *sym;
5616 int argno = 0;
5617
5618 /* The exception breakpoint is a thread-specific breakpoint on
5619 the unwinder's debug hook, declared as:
5620
5621 void _Unwind_DebugHook (void *cfa, void *handler);
5622
5623 The CFA argument indicates the frame to which control is
5624 about to be transferred. HANDLER is the destination PC.
5625
5626 We ignore the CFA and set a temporary breakpoint at HANDLER.
5627 This is not extremely efficient but it avoids issues in gdb
5628 with computing the DWARF CFA, and it also works even in weird
5629 cases such as throwing an exception from inside a signal
5630 handler. */
5631
5632 b = SYMBOL_BLOCK_VALUE (func);
5633 ALL_BLOCK_SYMBOLS (b, iter, sym)
5634 {
5635 if (!SYMBOL_IS_ARGUMENT (sym))
5636 continue;
5637
5638 if (argno == 0)
5639 ++argno;
5640 else
5641 {
5642 insert_exception_resume_breakpoint (ecs->event_thread,
5643 b, frame, sym);
5644 break;
5645 }
5646 }
5647 }
5648 }
5649
5650 static void
5651 stop_stepping (struct execution_control_state *ecs)
5652 {
5653 if (debug_infrun)
5654 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5655
5656 /* Let callers know we don't want to wait for the inferior anymore. */
5657 ecs->wait_some_more = 0;
5658 }
5659
5660 /* This function handles various cases where we need to continue
5661 waiting for the inferior. */
5662 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5663
5664 static void
5665 keep_going (struct execution_control_state *ecs)
5666 {
5667 /* Make sure normal_stop is called if we get a QUIT handled before
5668 reaching resume. */
5669 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5670
5671 /* Save the pc before execution, to compare with pc after stop. */
5672 ecs->event_thread->prev_pc
5673 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5674
5675 /* If we did not do break;, it means we should keep running the
5676 inferior and not return to debugger. */
5677
5678 if (ecs->event_thread->control.trap_expected
5679 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5680 {
5681 /* We took a signal (which we are supposed to pass through to
5682 the inferior, else we'd not get here) and we haven't yet
5683 gotten our trap. Simply continue. */
5684
5685 discard_cleanups (old_cleanups);
5686 resume (currently_stepping (ecs->event_thread),
5687 ecs->event_thread->suspend.stop_signal);
5688 }
5689 else
5690 {
5691 /* Either the trap was not expected, but we are continuing
5692 anyway (the user asked that this signal be passed to the
5693 child)
5694 -- or --
5695 The signal was SIGTRAP, e.g. it was our signal, but we
5696 decided we should resume from it.
5697
5698 We're going to run this baby now!
5699
5700 Note that insert_breakpoints won't try to re-insert
5701 already inserted breakpoints. Therefore, we don't
5702 care if breakpoints were already inserted, or not. */
5703
5704 if (ecs->event_thread->stepping_over_breakpoint)
5705 {
5706 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5707
5708 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5709 /* Since we can't do a displaced step, we have to remove
5710 the breakpoint while we step it. To keep things
5711 simple, we remove them all. */
5712 remove_breakpoints ();
5713 }
5714 else
5715 {
5716 volatile struct gdb_exception e;
5717
5718 /* Stop stepping when inserting breakpoints
5719 has failed. */
5720 TRY_CATCH (e, RETURN_MASK_ERROR)
5721 {
5722 insert_breakpoints ();
5723 }
5724 if (e.reason < 0)
5725 {
5726 exception_print (gdb_stderr, e);
5727 stop_stepping (ecs);
5728 return;
5729 }
5730 }
5731
5732 ecs->event_thread->control.trap_expected
5733 = ecs->event_thread->stepping_over_breakpoint;
5734
5735 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5736 specifies that such a signal should be delivered to the
5737 target program).
5738
5739 Typically, this would occure when a user is debugging a
5740 target monitor on a simulator: the target monitor sets a
5741 breakpoint; the simulator encounters this break-point and
5742 halts the simulation handing control to GDB; GDB, noteing
5743 that the break-point isn't valid, returns control back to the
5744 simulator; the simulator then delivers the hardware
5745 equivalent of a SIGNAL_TRAP to the program being debugged. */
5746
5747 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 && !signal_program[ecs->event_thread->suspend.stop_signal])
5749 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5750
5751 discard_cleanups (old_cleanups);
5752 resume (currently_stepping (ecs->event_thread),
5753 ecs->event_thread->suspend.stop_signal);
5754 }
5755
5756 prepare_to_wait (ecs);
5757 }
5758
5759 /* This function normally comes after a resume, before
5760 handle_inferior_event exits. It takes care of any last bits of
5761 housekeeping, and sets the all-important wait_some_more flag. */
5762
5763 static void
5764 prepare_to_wait (struct execution_control_state *ecs)
5765 {
5766 if (debug_infrun)
5767 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5768
5769 /* This is the old end of the while loop. Let everybody know we
5770 want to wait for the inferior some more and get called again
5771 soon. */
5772 ecs->wait_some_more = 1;
5773 }
5774
5775 /* Several print_*_reason functions to print why the inferior has stopped.
5776 We always print something when the inferior exits, or receives a signal.
5777 The rest of the cases are dealt with later on in normal_stop and
5778 print_it_typical. Ideally there should be a call to one of these
5779 print_*_reason functions functions from handle_inferior_event each time
5780 stop_stepping is called. */
5781
5782 /* Print why the inferior has stopped.
5783 We are done with a step/next/si/ni command, print why the inferior has
5784 stopped. For now print nothing. Print a message only if not in the middle
5785 of doing a "step n" operation for n > 1. */
5786
5787 static void
5788 print_end_stepping_range_reason (void)
5789 {
5790 if ((!inferior_thread ()->step_multi
5791 || !inferior_thread ()->control.stop_step)
5792 && ui_out_is_mi_like_p (current_uiout))
5793 ui_out_field_string (current_uiout, "reason",
5794 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5795 }
5796
5797 /* The inferior was terminated by a signal, print why it stopped. */
5798
5799 static void
5800 print_signal_exited_reason (enum gdb_signal siggnal)
5801 {
5802 struct ui_out *uiout = current_uiout;
5803
5804 annotate_signalled ();
5805 if (ui_out_is_mi_like_p (uiout))
5806 ui_out_field_string
5807 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5808 ui_out_text (uiout, "\nProgram terminated with signal ");
5809 annotate_signal_name ();
5810 ui_out_field_string (uiout, "signal-name",
5811 gdb_signal_to_name (siggnal));
5812 annotate_signal_name_end ();
5813 ui_out_text (uiout, ", ");
5814 annotate_signal_string ();
5815 ui_out_field_string (uiout, "signal-meaning",
5816 gdb_signal_to_string (siggnal));
5817 annotate_signal_string_end ();
5818 ui_out_text (uiout, ".\n");
5819 ui_out_text (uiout, "The program no longer exists.\n");
5820 }
5821
5822 /* The inferior program is finished, print why it stopped. */
5823
5824 static void
5825 print_exited_reason (int exitstatus)
5826 {
5827 struct inferior *inf = current_inferior ();
5828 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5829 struct ui_out *uiout = current_uiout;
5830
5831 annotate_exited (exitstatus);
5832 if (exitstatus)
5833 {
5834 if (ui_out_is_mi_like_p (uiout))
5835 ui_out_field_string (uiout, "reason",
5836 async_reason_lookup (EXEC_ASYNC_EXITED));
5837 ui_out_text (uiout, "[Inferior ");
5838 ui_out_text (uiout, plongest (inf->num));
5839 ui_out_text (uiout, " (");
5840 ui_out_text (uiout, pidstr);
5841 ui_out_text (uiout, ") exited with code ");
5842 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5843 ui_out_text (uiout, "]\n");
5844 }
5845 else
5846 {
5847 if (ui_out_is_mi_like_p (uiout))
5848 ui_out_field_string
5849 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5850 ui_out_text (uiout, "[Inferior ");
5851 ui_out_text (uiout, plongest (inf->num));
5852 ui_out_text (uiout, " (");
5853 ui_out_text (uiout, pidstr);
5854 ui_out_text (uiout, ") exited normally]\n");
5855 }
5856 /* Support the --return-child-result option. */
5857 return_child_result_value = exitstatus;
5858 }
5859
5860 /* Signal received, print why the inferior has stopped. The signal table
5861 tells us to print about it. */
5862
5863 static void
5864 print_signal_received_reason (enum gdb_signal siggnal)
5865 {
5866 struct ui_out *uiout = current_uiout;
5867
5868 annotate_signal ();
5869
5870 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5871 {
5872 struct thread_info *t = inferior_thread ();
5873
5874 ui_out_text (uiout, "\n[");
5875 ui_out_field_string (uiout, "thread-name",
5876 target_pid_to_str (t->ptid));
5877 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5878 ui_out_text (uiout, " stopped");
5879 }
5880 else
5881 {
5882 ui_out_text (uiout, "\nProgram received signal ");
5883 annotate_signal_name ();
5884 if (ui_out_is_mi_like_p (uiout))
5885 ui_out_field_string
5886 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5887 ui_out_field_string (uiout, "signal-name",
5888 gdb_signal_to_name (siggnal));
5889 annotate_signal_name_end ();
5890 ui_out_text (uiout, ", ");
5891 annotate_signal_string ();
5892 ui_out_field_string (uiout, "signal-meaning",
5893 gdb_signal_to_string (siggnal));
5894 annotate_signal_string_end ();
5895 }
5896 ui_out_text (uiout, ".\n");
5897 }
5898
5899 /* Reverse execution: target ran out of history info, print why the inferior
5900 has stopped. */
5901
5902 static void
5903 print_no_history_reason (void)
5904 {
5905 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5906 }
5907
5908 /* Here to return control to GDB when the inferior stops for real.
5909 Print appropriate messages, remove breakpoints, give terminal our modes.
5910
5911 STOP_PRINT_FRAME nonzero means print the executing frame
5912 (pc, function, args, file, line number and line text).
5913 BREAKPOINTS_FAILED nonzero means stop was due to error
5914 attempting to insert breakpoints. */
5915
5916 void
5917 normal_stop (void)
5918 {
5919 struct target_waitstatus last;
5920 ptid_t last_ptid;
5921 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5922
5923 get_last_target_status (&last_ptid, &last);
5924
5925 /* If an exception is thrown from this point on, make sure to
5926 propagate GDB's knowledge of the executing state to the
5927 frontend/user running state. A QUIT is an easy exception to see
5928 here, so do this before any filtered output. */
5929 if (!non_stop)
5930 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5931 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5932 && last.kind != TARGET_WAITKIND_EXITED
5933 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5934 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5935
5936 /* In non-stop mode, we don't want GDB to switch threads behind the
5937 user's back, to avoid races where the user is typing a command to
5938 apply to thread x, but GDB switches to thread y before the user
5939 finishes entering the command. */
5940
5941 /* As with the notification of thread events, we want to delay
5942 notifying the user that we've switched thread context until
5943 the inferior actually stops.
5944
5945 There's no point in saying anything if the inferior has exited.
5946 Note that SIGNALLED here means "exited with a signal", not
5947 "received a signal". */
5948 if (!non_stop
5949 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5950 && target_has_execution
5951 && last.kind != TARGET_WAITKIND_SIGNALLED
5952 && last.kind != TARGET_WAITKIND_EXITED
5953 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5954 {
5955 target_terminal_ours_for_output ();
5956 printf_filtered (_("[Switching to %s]\n"),
5957 target_pid_to_str (inferior_ptid));
5958 annotate_thread_changed ();
5959 previous_inferior_ptid = inferior_ptid;
5960 }
5961
5962 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5963 {
5964 gdb_assert (sync_execution || !target_can_async_p ());
5965
5966 target_terminal_ours_for_output ();
5967 printf_filtered (_("No unwaited-for children left.\n"));
5968 }
5969
5970 if (!breakpoints_always_inserted_mode () && target_has_execution)
5971 {
5972 if (remove_breakpoints ())
5973 {
5974 target_terminal_ours_for_output ();
5975 printf_filtered (_("Cannot remove breakpoints because "
5976 "program is no longer writable.\nFurther "
5977 "execution is probably impossible.\n"));
5978 }
5979 }
5980
5981 /* If an auto-display called a function and that got a signal,
5982 delete that auto-display to avoid an infinite recursion. */
5983
5984 if (stopped_by_random_signal)
5985 disable_current_display ();
5986
5987 /* Don't print a message if in the middle of doing a "step n"
5988 operation for n > 1 */
5989 if (target_has_execution
5990 && last.kind != TARGET_WAITKIND_SIGNALLED
5991 && last.kind != TARGET_WAITKIND_EXITED
5992 && inferior_thread ()->step_multi
5993 && inferior_thread ()->control.stop_step)
5994 goto done;
5995
5996 target_terminal_ours ();
5997 async_enable_stdin ();
5998
5999 /* Set the current source location. This will also happen if we
6000 display the frame below, but the current SAL will be incorrect
6001 during a user hook-stop function. */
6002 if (has_stack_frames () && !stop_stack_dummy)
6003 set_current_sal_from_frame (get_current_frame (), 1);
6004
6005 /* Let the user/frontend see the threads as stopped. */
6006 do_cleanups (old_chain);
6007
6008 /* Look up the hook_stop and run it (CLI internally handles problem
6009 of stop_command's pre-hook not existing). */
6010 if (stop_command)
6011 catch_errors (hook_stop_stub, stop_command,
6012 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6013
6014 if (!has_stack_frames ())
6015 goto done;
6016
6017 if (last.kind == TARGET_WAITKIND_SIGNALLED
6018 || last.kind == TARGET_WAITKIND_EXITED)
6019 goto done;
6020
6021 /* Select innermost stack frame - i.e., current frame is frame 0,
6022 and current location is based on that.
6023 Don't do this on return from a stack dummy routine,
6024 or if the program has exited. */
6025
6026 if (!stop_stack_dummy)
6027 {
6028 select_frame (get_current_frame ());
6029
6030 /* Print current location without a level number, if
6031 we have changed functions or hit a breakpoint.
6032 Print source line if we have one.
6033 bpstat_print() contains the logic deciding in detail
6034 what to print, based on the event(s) that just occurred. */
6035
6036 /* If --batch-silent is enabled then there's no need to print the current
6037 source location, and to try risks causing an error message about
6038 missing source files. */
6039 if (stop_print_frame && !batch_silent)
6040 {
6041 int bpstat_ret;
6042 int source_flag;
6043 int do_frame_printing = 1;
6044 struct thread_info *tp = inferior_thread ();
6045
6046 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6047 switch (bpstat_ret)
6048 {
6049 case PRINT_UNKNOWN:
6050 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6051 (or should) carry around the function and does (or
6052 should) use that when doing a frame comparison. */
6053 if (tp->control.stop_step
6054 && frame_id_eq (tp->control.step_frame_id,
6055 get_frame_id (get_current_frame ()))
6056 && step_start_function == find_pc_function (stop_pc))
6057 source_flag = SRC_LINE; /* Finished step, just
6058 print source line. */
6059 else
6060 source_flag = SRC_AND_LOC; /* Print location and
6061 source line. */
6062 break;
6063 case PRINT_SRC_AND_LOC:
6064 source_flag = SRC_AND_LOC; /* Print location and
6065 source line. */
6066 break;
6067 case PRINT_SRC_ONLY:
6068 source_flag = SRC_LINE;
6069 break;
6070 case PRINT_NOTHING:
6071 source_flag = SRC_LINE; /* something bogus */
6072 do_frame_printing = 0;
6073 break;
6074 default:
6075 internal_error (__FILE__, __LINE__, _("Unknown value."));
6076 }
6077
6078 /* The behavior of this routine with respect to the source
6079 flag is:
6080 SRC_LINE: Print only source line
6081 LOCATION: Print only location
6082 SRC_AND_LOC: Print location and source line. */
6083 if (do_frame_printing)
6084 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6085
6086 /* Display the auto-display expressions. */
6087 do_displays ();
6088 }
6089 }
6090
6091 /* Save the function value return registers, if we care.
6092 We might be about to restore their previous contents. */
6093 if (inferior_thread ()->control.proceed_to_finish
6094 && execution_direction != EXEC_REVERSE)
6095 {
6096 /* This should not be necessary. */
6097 if (stop_registers)
6098 regcache_xfree (stop_registers);
6099
6100 /* NB: The copy goes through to the target picking up the value of
6101 all the registers. */
6102 stop_registers = regcache_dup (get_current_regcache ());
6103 }
6104
6105 if (stop_stack_dummy == STOP_STACK_DUMMY)
6106 {
6107 /* Pop the empty frame that contains the stack dummy.
6108 This also restores inferior state prior to the call
6109 (struct infcall_suspend_state). */
6110 struct frame_info *frame = get_current_frame ();
6111
6112 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6113 frame_pop (frame);
6114 /* frame_pop() calls reinit_frame_cache as the last thing it
6115 does which means there's currently no selected frame. We
6116 don't need to re-establish a selected frame if the dummy call
6117 returns normally, that will be done by
6118 restore_infcall_control_state. However, we do have to handle
6119 the case where the dummy call is returning after being
6120 stopped (e.g. the dummy call previously hit a breakpoint).
6121 We can't know which case we have so just always re-establish
6122 a selected frame here. */
6123 select_frame (get_current_frame ());
6124 }
6125
6126 done:
6127 annotate_stopped ();
6128
6129 /* Suppress the stop observer if we're in the middle of:
6130
6131 - a step n (n > 1), as there still more steps to be done.
6132
6133 - a "finish" command, as the observer will be called in
6134 finish_command_continuation, so it can include the inferior
6135 function's return value.
6136
6137 - calling an inferior function, as we pretend we inferior didn't
6138 run at all. The return value of the call is handled by the
6139 expression evaluator, through call_function_by_hand. */
6140
6141 if (!target_has_execution
6142 || last.kind == TARGET_WAITKIND_SIGNALLED
6143 || last.kind == TARGET_WAITKIND_EXITED
6144 || last.kind == TARGET_WAITKIND_NO_RESUMED
6145 || (!(inferior_thread ()->step_multi
6146 && inferior_thread ()->control.stop_step)
6147 && !(inferior_thread ()->control.stop_bpstat
6148 && inferior_thread ()->control.proceed_to_finish)
6149 && !inferior_thread ()->control.in_infcall))
6150 {
6151 if (!ptid_equal (inferior_ptid, null_ptid))
6152 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6153 stop_print_frame);
6154 else
6155 observer_notify_normal_stop (NULL, stop_print_frame);
6156 }
6157
6158 if (target_has_execution)
6159 {
6160 if (last.kind != TARGET_WAITKIND_SIGNALLED
6161 && last.kind != TARGET_WAITKIND_EXITED)
6162 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6163 Delete any breakpoint that is to be deleted at the next stop. */
6164 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6165 }
6166
6167 /* Try to get rid of automatically added inferiors that are no
6168 longer needed. Keeping those around slows down things linearly.
6169 Note that this never removes the current inferior. */
6170 prune_inferiors ();
6171 }
6172
6173 static int
6174 hook_stop_stub (void *cmd)
6175 {
6176 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6177 return (0);
6178 }
6179 \f
6180 int
6181 signal_stop_state (int signo)
6182 {
6183 return signal_stop[signo];
6184 }
6185
6186 int
6187 signal_print_state (int signo)
6188 {
6189 return signal_print[signo];
6190 }
6191
6192 int
6193 signal_pass_state (int signo)
6194 {
6195 return signal_program[signo];
6196 }
6197
6198 static void
6199 signal_cache_update (int signo)
6200 {
6201 if (signo == -1)
6202 {
6203 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6204 signal_cache_update (signo);
6205
6206 return;
6207 }
6208
6209 signal_pass[signo] = (signal_stop[signo] == 0
6210 && signal_print[signo] == 0
6211 && signal_program[signo] == 1
6212 && signal_catch[signo] == 0);
6213 }
6214
6215 int
6216 signal_stop_update (int signo, int state)
6217 {
6218 int ret = signal_stop[signo];
6219
6220 signal_stop[signo] = state;
6221 signal_cache_update (signo);
6222 return ret;
6223 }
6224
6225 int
6226 signal_print_update (int signo, int state)
6227 {
6228 int ret = signal_print[signo];
6229
6230 signal_print[signo] = state;
6231 signal_cache_update (signo);
6232 return ret;
6233 }
6234
6235 int
6236 signal_pass_update (int signo, int state)
6237 {
6238 int ret = signal_program[signo];
6239
6240 signal_program[signo] = state;
6241 signal_cache_update (signo);
6242 return ret;
6243 }
6244
6245 /* Update the global 'signal_catch' from INFO and notify the
6246 target. */
6247
6248 void
6249 signal_catch_update (const unsigned int *info)
6250 {
6251 int i;
6252
6253 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6254 signal_catch[i] = info[i] > 0;
6255 signal_cache_update (-1);
6256 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6257 }
6258
6259 static void
6260 sig_print_header (void)
6261 {
6262 printf_filtered (_("Signal Stop\tPrint\tPass "
6263 "to program\tDescription\n"));
6264 }
6265
6266 static void
6267 sig_print_info (enum gdb_signal oursig)
6268 {
6269 const char *name = gdb_signal_to_name (oursig);
6270 int name_padding = 13 - strlen (name);
6271
6272 if (name_padding <= 0)
6273 name_padding = 0;
6274
6275 printf_filtered ("%s", name);
6276 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6277 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6278 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6279 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6280 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6281 }
6282
6283 /* Specify how various signals in the inferior should be handled. */
6284
6285 static void
6286 handle_command (char *args, int from_tty)
6287 {
6288 char **argv;
6289 int digits, wordlen;
6290 int sigfirst, signum, siglast;
6291 enum gdb_signal oursig;
6292 int allsigs;
6293 int nsigs;
6294 unsigned char *sigs;
6295 struct cleanup *old_chain;
6296
6297 if (args == NULL)
6298 {
6299 error_no_arg (_("signal to handle"));
6300 }
6301
6302 /* Allocate and zero an array of flags for which signals to handle. */
6303
6304 nsigs = (int) GDB_SIGNAL_LAST;
6305 sigs = (unsigned char *) alloca (nsigs);
6306 memset (sigs, 0, nsigs);
6307
6308 /* Break the command line up into args. */
6309
6310 argv = gdb_buildargv (args);
6311 old_chain = make_cleanup_freeargv (argv);
6312
6313 /* Walk through the args, looking for signal oursigs, signal names, and
6314 actions. Signal numbers and signal names may be interspersed with
6315 actions, with the actions being performed for all signals cumulatively
6316 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6317
6318 while (*argv != NULL)
6319 {
6320 wordlen = strlen (*argv);
6321 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6322 {;
6323 }
6324 allsigs = 0;
6325 sigfirst = siglast = -1;
6326
6327 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6328 {
6329 /* Apply action to all signals except those used by the
6330 debugger. Silently skip those. */
6331 allsigs = 1;
6332 sigfirst = 0;
6333 siglast = nsigs - 1;
6334 }
6335 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6336 {
6337 SET_SIGS (nsigs, sigs, signal_stop);
6338 SET_SIGS (nsigs, sigs, signal_print);
6339 }
6340 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6341 {
6342 UNSET_SIGS (nsigs, sigs, signal_program);
6343 }
6344 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6345 {
6346 SET_SIGS (nsigs, sigs, signal_print);
6347 }
6348 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6349 {
6350 SET_SIGS (nsigs, sigs, signal_program);
6351 }
6352 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6353 {
6354 UNSET_SIGS (nsigs, sigs, signal_stop);
6355 }
6356 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6357 {
6358 SET_SIGS (nsigs, sigs, signal_program);
6359 }
6360 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6361 {
6362 UNSET_SIGS (nsigs, sigs, signal_print);
6363 UNSET_SIGS (nsigs, sigs, signal_stop);
6364 }
6365 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6366 {
6367 UNSET_SIGS (nsigs, sigs, signal_program);
6368 }
6369 else if (digits > 0)
6370 {
6371 /* It is numeric. The numeric signal refers to our own
6372 internal signal numbering from target.h, not to host/target
6373 signal number. This is a feature; users really should be
6374 using symbolic names anyway, and the common ones like
6375 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6376
6377 sigfirst = siglast = (int)
6378 gdb_signal_from_command (atoi (*argv));
6379 if ((*argv)[digits] == '-')
6380 {
6381 siglast = (int)
6382 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6383 }
6384 if (sigfirst > siglast)
6385 {
6386 /* Bet he didn't figure we'd think of this case... */
6387 signum = sigfirst;
6388 sigfirst = siglast;
6389 siglast = signum;
6390 }
6391 }
6392 else
6393 {
6394 oursig = gdb_signal_from_name (*argv);
6395 if (oursig != GDB_SIGNAL_UNKNOWN)
6396 {
6397 sigfirst = siglast = (int) oursig;
6398 }
6399 else
6400 {
6401 /* Not a number and not a recognized flag word => complain. */
6402 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6403 }
6404 }
6405
6406 /* If any signal numbers or symbol names were found, set flags for
6407 which signals to apply actions to. */
6408
6409 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6410 {
6411 switch ((enum gdb_signal) signum)
6412 {
6413 case GDB_SIGNAL_TRAP:
6414 case GDB_SIGNAL_INT:
6415 if (!allsigs && !sigs[signum])
6416 {
6417 if (query (_("%s is used by the debugger.\n\
6418 Are you sure you want to change it? "),
6419 gdb_signal_to_name ((enum gdb_signal) signum)))
6420 {
6421 sigs[signum] = 1;
6422 }
6423 else
6424 {
6425 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6426 gdb_flush (gdb_stdout);
6427 }
6428 }
6429 break;
6430 case GDB_SIGNAL_0:
6431 case GDB_SIGNAL_DEFAULT:
6432 case GDB_SIGNAL_UNKNOWN:
6433 /* Make sure that "all" doesn't print these. */
6434 break;
6435 default:
6436 sigs[signum] = 1;
6437 break;
6438 }
6439 }
6440
6441 argv++;
6442 }
6443
6444 for (signum = 0; signum < nsigs; signum++)
6445 if (sigs[signum])
6446 {
6447 signal_cache_update (-1);
6448 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6449 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6450
6451 if (from_tty)
6452 {
6453 /* Show the results. */
6454 sig_print_header ();
6455 for (; signum < nsigs; signum++)
6456 if (sigs[signum])
6457 sig_print_info (signum);
6458 }
6459
6460 break;
6461 }
6462
6463 do_cleanups (old_chain);
6464 }
6465
6466 /* Complete the "handle" command. */
6467
6468 static VEC (char_ptr) *
6469 handle_completer (struct cmd_list_element *ignore,
6470 const char *text, const char *word)
6471 {
6472 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6473 static const char * const keywords[] =
6474 {
6475 "all",
6476 "stop",
6477 "ignore",
6478 "print",
6479 "pass",
6480 "nostop",
6481 "noignore",
6482 "noprint",
6483 "nopass",
6484 NULL,
6485 };
6486
6487 vec_signals = signal_completer (ignore, text, word);
6488 vec_keywords = complete_on_enum (keywords, word, word);
6489
6490 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6491 VEC_free (char_ptr, vec_signals);
6492 VEC_free (char_ptr, vec_keywords);
6493 return return_val;
6494 }
6495
6496 static void
6497 xdb_handle_command (char *args, int from_tty)
6498 {
6499 char **argv;
6500 struct cleanup *old_chain;
6501
6502 if (args == NULL)
6503 error_no_arg (_("xdb command"));
6504
6505 /* Break the command line up into args. */
6506
6507 argv = gdb_buildargv (args);
6508 old_chain = make_cleanup_freeargv (argv);
6509 if (argv[1] != (char *) NULL)
6510 {
6511 char *argBuf;
6512 int bufLen;
6513
6514 bufLen = strlen (argv[0]) + 20;
6515 argBuf = (char *) xmalloc (bufLen);
6516 if (argBuf)
6517 {
6518 int validFlag = 1;
6519 enum gdb_signal oursig;
6520
6521 oursig = gdb_signal_from_name (argv[0]);
6522 memset (argBuf, 0, bufLen);
6523 if (strcmp (argv[1], "Q") == 0)
6524 sprintf (argBuf, "%s %s", argv[0], "noprint");
6525 else
6526 {
6527 if (strcmp (argv[1], "s") == 0)
6528 {
6529 if (!signal_stop[oursig])
6530 sprintf (argBuf, "%s %s", argv[0], "stop");
6531 else
6532 sprintf (argBuf, "%s %s", argv[0], "nostop");
6533 }
6534 else if (strcmp (argv[1], "i") == 0)
6535 {
6536 if (!signal_program[oursig])
6537 sprintf (argBuf, "%s %s", argv[0], "pass");
6538 else
6539 sprintf (argBuf, "%s %s", argv[0], "nopass");
6540 }
6541 else if (strcmp (argv[1], "r") == 0)
6542 {
6543 if (!signal_print[oursig])
6544 sprintf (argBuf, "%s %s", argv[0], "print");
6545 else
6546 sprintf (argBuf, "%s %s", argv[0], "noprint");
6547 }
6548 else
6549 validFlag = 0;
6550 }
6551 if (validFlag)
6552 handle_command (argBuf, from_tty);
6553 else
6554 printf_filtered (_("Invalid signal handling flag.\n"));
6555 if (argBuf)
6556 xfree (argBuf);
6557 }
6558 }
6559 do_cleanups (old_chain);
6560 }
6561
6562 enum gdb_signal
6563 gdb_signal_from_command (int num)
6564 {
6565 if (num >= 1 && num <= 15)
6566 return (enum gdb_signal) num;
6567 error (_("Only signals 1-15 are valid as numeric signals.\n\
6568 Use \"info signals\" for a list of symbolic signals."));
6569 }
6570
6571 /* Print current contents of the tables set by the handle command.
6572 It is possible we should just be printing signals actually used
6573 by the current target (but for things to work right when switching
6574 targets, all signals should be in the signal tables). */
6575
6576 static void
6577 signals_info (char *signum_exp, int from_tty)
6578 {
6579 enum gdb_signal oursig;
6580
6581 sig_print_header ();
6582
6583 if (signum_exp)
6584 {
6585 /* First see if this is a symbol name. */
6586 oursig = gdb_signal_from_name (signum_exp);
6587 if (oursig == GDB_SIGNAL_UNKNOWN)
6588 {
6589 /* No, try numeric. */
6590 oursig =
6591 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6592 }
6593 sig_print_info (oursig);
6594 return;
6595 }
6596
6597 printf_filtered ("\n");
6598 /* These ugly casts brought to you by the native VAX compiler. */
6599 for (oursig = GDB_SIGNAL_FIRST;
6600 (int) oursig < (int) GDB_SIGNAL_LAST;
6601 oursig = (enum gdb_signal) ((int) oursig + 1))
6602 {
6603 QUIT;
6604
6605 if (oursig != GDB_SIGNAL_UNKNOWN
6606 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6607 sig_print_info (oursig);
6608 }
6609
6610 printf_filtered (_("\nUse the \"handle\" command "
6611 "to change these tables.\n"));
6612 }
6613
6614 /* Check if it makes sense to read $_siginfo from the current thread
6615 at this point. If not, throw an error. */
6616
6617 static void
6618 validate_siginfo_access (void)
6619 {
6620 /* No current inferior, no siginfo. */
6621 if (ptid_equal (inferior_ptid, null_ptid))
6622 error (_("No thread selected."));
6623
6624 /* Don't try to read from a dead thread. */
6625 if (is_exited (inferior_ptid))
6626 error (_("The current thread has terminated"));
6627
6628 /* ... or from a spinning thread. */
6629 if (is_running (inferior_ptid))
6630 error (_("Selected thread is running."));
6631 }
6632
6633 /* The $_siginfo convenience variable is a bit special. We don't know
6634 for sure the type of the value until we actually have a chance to
6635 fetch the data. The type can change depending on gdbarch, so it is
6636 also dependent on which thread you have selected.
6637
6638 1. making $_siginfo be an internalvar that creates a new value on
6639 access.
6640
6641 2. making the value of $_siginfo be an lval_computed value. */
6642
6643 /* This function implements the lval_computed support for reading a
6644 $_siginfo value. */
6645
6646 static void
6647 siginfo_value_read (struct value *v)
6648 {
6649 LONGEST transferred;
6650
6651 validate_siginfo_access ();
6652
6653 transferred =
6654 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6655 NULL,
6656 value_contents_all_raw (v),
6657 value_offset (v),
6658 TYPE_LENGTH (value_type (v)));
6659
6660 if (transferred != TYPE_LENGTH (value_type (v)))
6661 error (_("Unable to read siginfo"));
6662 }
6663
6664 /* This function implements the lval_computed support for writing a
6665 $_siginfo value. */
6666
6667 static void
6668 siginfo_value_write (struct value *v, struct value *fromval)
6669 {
6670 LONGEST transferred;
6671
6672 validate_siginfo_access ();
6673
6674 transferred = target_write (&current_target,
6675 TARGET_OBJECT_SIGNAL_INFO,
6676 NULL,
6677 value_contents_all_raw (fromval),
6678 value_offset (v),
6679 TYPE_LENGTH (value_type (fromval)));
6680
6681 if (transferred != TYPE_LENGTH (value_type (fromval)))
6682 error (_("Unable to write siginfo"));
6683 }
6684
6685 static const struct lval_funcs siginfo_value_funcs =
6686 {
6687 siginfo_value_read,
6688 siginfo_value_write
6689 };
6690
6691 /* Return a new value with the correct type for the siginfo object of
6692 the current thread using architecture GDBARCH. Return a void value
6693 if there's no object available. */
6694
6695 static struct value *
6696 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6697 void *ignore)
6698 {
6699 if (target_has_stack
6700 && !ptid_equal (inferior_ptid, null_ptid)
6701 && gdbarch_get_siginfo_type_p (gdbarch))
6702 {
6703 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6704
6705 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6706 }
6707
6708 return allocate_value (builtin_type (gdbarch)->builtin_void);
6709 }
6710
6711 \f
6712 /* infcall_suspend_state contains state about the program itself like its
6713 registers and any signal it received when it last stopped.
6714 This state must be restored regardless of how the inferior function call
6715 ends (either successfully, or after it hits a breakpoint or signal)
6716 if the program is to properly continue where it left off. */
6717
6718 struct infcall_suspend_state
6719 {
6720 struct thread_suspend_state thread_suspend;
6721 #if 0 /* Currently unused and empty structures are not valid C. */
6722 struct inferior_suspend_state inferior_suspend;
6723 #endif
6724
6725 /* Other fields: */
6726 CORE_ADDR stop_pc;
6727 struct regcache *registers;
6728
6729 /* Format of SIGINFO_DATA or NULL if it is not present. */
6730 struct gdbarch *siginfo_gdbarch;
6731
6732 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6733 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6734 content would be invalid. */
6735 gdb_byte *siginfo_data;
6736 };
6737
6738 struct infcall_suspend_state *
6739 save_infcall_suspend_state (void)
6740 {
6741 struct infcall_suspend_state *inf_state;
6742 struct thread_info *tp = inferior_thread ();
6743 #if 0
6744 struct inferior *inf = current_inferior ();
6745 #endif
6746 struct regcache *regcache = get_current_regcache ();
6747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6748 gdb_byte *siginfo_data = NULL;
6749
6750 if (gdbarch_get_siginfo_type_p (gdbarch))
6751 {
6752 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6753 size_t len = TYPE_LENGTH (type);
6754 struct cleanup *back_to;
6755
6756 siginfo_data = xmalloc (len);
6757 back_to = make_cleanup (xfree, siginfo_data);
6758
6759 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6760 siginfo_data, 0, len) == len)
6761 discard_cleanups (back_to);
6762 else
6763 {
6764 /* Errors ignored. */
6765 do_cleanups (back_to);
6766 siginfo_data = NULL;
6767 }
6768 }
6769
6770 inf_state = XZALLOC (struct infcall_suspend_state);
6771
6772 if (siginfo_data)
6773 {
6774 inf_state->siginfo_gdbarch = gdbarch;
6775 inf_state->siginfo_data = siginfo_data;
6776 }
6777
6778 inf_state->thread_suspend = tp->suspend;
6779 #if 0 /* Currently unused and empty structures are not valid C. */
6780 inf_state->inferior_suspend = inf->suspend;
6781 #endif
6782
6783 /* run_inferior_call will not use the signal due to its `proceed' call with
6784 GDB_SIGNAL_0 anyway. */
6785 tp->suspend.stop_signal = GDB_SIGNAL_0;
6786
6787 inf_state->stop_pc = stop_pc;
6788
6789 inf_state->registers = regcache_dup (regcache);
6790
6791 return inf_state;
6792 }
6793
6794 /* Restore inferior session state to INF_STATE. */
6795
6796 void
6797 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6798 {
6799 struct thread_info *tp = inferior_thread ();
6800 #if 0
6801 struct inferior *inf = current_inferior ();
6802 #endif
6803 struct regcache *regcache = get_current_regcache ();
6804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6805
6806 tp->suspend = inf_state->thread_suspend;
6807 #if 0 /* Currently unused and empty structures are not valid C. */
6808 inf->suspend = inf_state->inferior_suspend;
6809 #endif
6810
6811 stop_pc = inf_state->stop_pc;
6812
6813 if (inf_state->siginfo_gdbarch == gdbarch)
6814 {
6815 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6816
6817 /* Errors ignored. */
6818 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6819 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6820 }
6821
6822 /* The inferior can be gone if the user types "print exit(0)"
6823 (and perhaps other times). */
6824 if (target_has_execution)
6825 /* NB: The register write goes through to the target. */
6826 regcache_cpy (regcache, inf_state->registers);
6827
6828 discard_infcall_suspend_state (inf_state);
6829 }
6830
6831 static void
6832 do_restore_infcall_suspend_state_cleanup (void *state)
6833 {
6834 restore_infcall_suspend_state (state);
6835 }
6836
6837 struct cleanup *
6838 make_cleanup_restore_infcall_suspend_state
6839 (struct infcall_suspend_state *inf_state)
6840 {
6841 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6842 }
6843
6844 void
6845 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6846 {
6847 regcache_xfree (inf_state->registers);
6848 xfree (inf_state->siginfo_data);
6849 xfree (inf_state);
6850 }
6851
6852 struct regcache *
6853 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6854 {
6855 return inf_state->registers;
6856 }
6857
6858 /* infcall_control_state contains state regarding gdb's control of the
6859 inferior itself like stepping control. It also contains session state like
6860 the user's currently selected frame. */
6861
6862 struct infcall_control_state
6863 {
6864 struct thread_control_state thread_control;
6865 struct inferior_control_state inferior_control;
6866
6867 /* Other fields: */
6868 enum stop_stack_kind stop_stack_dummy;
6869 int stopped_by_random_signal;
6870 int stop_after_trap;
6871
6872 /* ID if the selected frame when the inferior function call was made. */
6873 struct frame_id selected_frame_id;
6874 };
6875
6876 /* Save all of the information associated with the inferior<==>gdb
6877 connection. */
6878
6879 struct infcall_control_state *
6880 save_infcall_control_state (void)
6881 {
6882 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6883 struct thread_info *tp = inferior_thread ();
6884 struct inferior *inf = current_inferior ();
6885
6886 inf_status->thread_control = tp->control;
6887 inf_status->inferior_control = inf->control;
6888
6889 tp->control.step_resume_breakpoint = NULL;
6890 tp->control.exception_resume_breakpoint = NULL;
6891
6892 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6893 chain. If caller's caller is walking the chain, they'll be happier if we
6894 hand them back the original chain when restore_infcall_control_state is
6895 called. */
6896 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6897
6898 /* Other fields: */
6899 inf_status->stop_stack_dummy = stop_stack_dummy;
6900 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6901 inf_status->stop_after_trap = stop_after_trap;
6902
6903 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6904
6905 return inf_status;
6906 }
6907
6908 static int
6909 restore_selected_frame (void *args)
6910 {
6911 struct frame_id *fid = (struct frame_id *) args;
6912 struct frame_info *frame;
6913
6914 frame = frame_find_by_id (*fid);
6915
6916 /* If inf_status->selected_frame_id is NULL, there was no previously
6917 selected frame. */
6918 if (frame == NULL)
6919 {
6920 warning (_("Unable to restore previously selected frame."));
6921 return 0;
6922 }
6923
6924 select_frame (frame);
6925
6926 return (1);
6927 }
6928
6929 /* Restore inferior session state to INF_STATUS. */
6930
6931 void
6932 restore_infcall_control_state (struct infcall_control_state *inf_status)
6933 {
6934 struct thread_info *tp = inferior_thread ();
6935 struct inferior *inf = current_inferior ();
6936
6937 if (tp->control.step_resume_breakpoint)
6938 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6939
6940 if (tp->control.exception_resume_breakpoint)
6941 tp->control.exception_resume_breakpoint->disposition
6942 = disp_del_at_next_stop;
6943
6944 /* Handle the bpstat_copy of the chain. */
6945 bpstat_clear (&tp->control.stop_bpstat);
6946
6947 tp->control = inf_status->thread_control;
6948 inf->control = inf_status->inferior_control;
6949
6950 /* Other fields: */
6951 stop_stack_dummy = inf_status->stop_stack_dummy;
6952 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6953 stop_after_trap = inf_status->stop_after_trap;
6954
6955 if (target_has_stack)
6956 {
6957 /* The point of catch_errors is that if the stack is clobbered,
6958 walking the stack might encounter a garbage pointer and
6959 error() trying to dereference it. */
6960 if (catch_errors
6961 (restore_selected_frame, &inf_status->selected_frame_id,
6962 "Unable to restore previously selected frame:\n",
6963 RETURN_MASK_ERROR) == 0)
6964 /* Error in restoring the selected frame. Select the innermost
6965 frame. */
6966 select_frame (get_current_frame ());
6967 }
6968
6969 xfree (inf_status);
6970 }
6971
6972 static void
6973 do_restore_infcall_control_state_cleanup (void *sts)
6974 {
6975 restore_infcall_control_state (sts);
6976 }
6977
6978 struct cleanup *
6979 make_cleanup_restore_infcall_control_state
6980 (struct infcall_control_state *inf_status)
6981 {
6982 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6983 }
6984
6985 void
6986 discard_infcall_control_state (struct infcall_control_state *inf_status)
6987 {
6988 if (inf_status->thread_control.step_resume_breakpoint)
6989 inf_status->thread_control.step_resume_breakpoint->disposition
6990 = disp_del_at_next_stop;
6991
6992 if (inf_status->thread_control.exception_resume_breakpoint)
6993 inf_status->thread_control.exception_resume_breakpoint->disposition
6994 = disp_del_at_next_stop;
6995
6996 /* See save_infcall_control_state for info on stop_bpstat. */
6997 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6998
6999 xfree (inf_status);
7000 }
7001 \f
7002 int
7003 ptid_match (ptid_t ptid, ptid_t filter)
7004 {
7005 if (ptid_equal (filter, minus_one_ptid))
7006 return 1;
7007 if (ptid_is_pid (filter)
7008 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7009 return 1;
7010 else if (ptid_equal (ptid, filter))
7011 return 1;
7012
7013 return 0;
7014 }
7015
7016 /* restore_inferior_ptid() will be used by the cleanup machinery
7017 to restore the inferior_ptid value saved in a call to
7018 save_inferior_ptid(). */
7019
7020 static void
7021 restore_inferior_ptid (void *arg)
7022 {
7023 ptid_t *saved_ptid_ptr = arg;
7024
7025 inferior_ptid = *saved_ptid_ptr;
7026 xfree (arg);
7027 }
7028
7029 /* Save the value of inferior_ptid so that it may be restored by a
7030 later call to do_cleanups(). Returns the struct cleanup pointer
7031 needed for later doing the cleanup. */
7032
7033 struct cleanup *
7034 save_inferior_ptid (void)
7035 {
7036 ptid_t *saved_ptid_ptr;
7037
7038 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7039 *saved_ptid_ptr = inferior_ptid;
7040 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7041 }
7042 \f
7043
7044 /* User interface for reverse debugging:
7045 Set exec-direction / show exec-direction commands
7046 (returns error unless target implements to_set_exec_direction method). */
7047
7048 int execution_direction = EXEC_FORWARD;
7049 static const char exec_forward[] = "forward";
7050 static const char exec_reverse[] = "reverse";
7051 static const char *exec_direction = exec_forward;
7052 static const char *const exec_direction_names[] = {
7053 exec_forward,
7054 exec_reverse,
7055 NULL
7056 };
7057
7058 static void
7059 set_exec_direction_func (char *args, int from_tty,
7060 struct cmd_list_element *cmd)
7061 {
7062 if (target_can_execute_reverse)
7063 {
7064 if (!strcmp (exec_direction, exec_forward))
7065 execution_direction = EXEC_FORWARD;
7066 else if (!strcmp (exec_direction, exec_reverse))
7067 execution_direction = EXEC_REVERSE;
7068 }
7069 else
7070 {
7071 exec_direction = exec_forward;
7072 error (_("Target does not support this operation."));
7073 }
7074 }
7075
7076 static void
7077 show_exec_direction_func (struct ui_file *out, int from_tty,
7078 struct cmd_list_element *cmd, const char *value)
7079 {
7080 switch (execution_direction) {
7081 case EXEC_FORWARD:
7082 fprintf_filtered (out, _("Forward.\n"));
7083 break;
7084 case EXEC_REVERSE:
7085 fprintf_filtered (out, _("Reverse.\n"));
7086 break;
7087 default:
7088 internal_error (__FILE__, __LINE__,
7089 _("bogus execution_direction value: %d"),
7090 (int) execution_direction);
7091 }
7092 }
7093
7094 /* User interface for non-stop mode. */
7095
7096 int non_stop = 0;
7097
7098 static void
7099 set_non_stop (char *args, int from_tty,
7100 struct cmd_list_element *c)
7101 {
7102 if (target_has_execution)
7103 {
7104 non_stop_1 = non_stop;
7105 error (_("Cannot change this setting while the inferior is running."));
7106 }
7107
7108 non_stop = non_stop_1;
7109 }
7110
7111 static void
7112 show_non_stop (struct ui_file *file, int from_tty,
7113 struct cmd_list_element *c, const char *value)
7114 {
7115 fprintf_filtered (file,
7116 _("Controlling the inferior in non-stop mode is %s.\n"),
7117 value);
7118 }
7119
7120 static void
7121 show_schedule_multiple (struct ui_file *file, int from_tty,
7122 struct cmd_list_element *c, const char *value)
7123 {
7124 fprintf_filtered (file, _("Resuming the execution of threads "
7125 "of all processes is %s.\n"), value);
7126 }
7127
7128 /* Implementation of `siginfo' variable. */
7129
7130 static const struct internalvar_funcs siginfo_funcs =
7131 {
7132 siginfo_make_value,
7133 NULL,
7134 NULL
7135 };
7136
7137 void
7138 _initialize_infrun (void)
7139 {
7140 int i;
7141 int numsigs;
7142 struct cmd_list_element *c;
7143
7144 add_info ("signals", signals_info, _("\
7145 What debugger does when program gets various signals.\n\
7146 Specify a signal as argument to print info on that signal only."));
7147 add_info_alias ("handle", "signals", 0);
7148
7149 c = add_com ("handle", class_run, handle_command, _("\
7150 Specify how to handle signals.\n\
7151 Usage: handle SIGNAL [ACTIONS]\n\
7152 Args are signals and actions to apply to those signals.\n\
7153 If no actions are specified, the current settings for the specified signals\n\
7154 will be displayed instead.\n\
7155 \n\
7156 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7157 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7158 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7159 The special arg \"all\" is recognized to mean all signals except those\n\
7160 used by the debugger, typically SIGTRAP and SIGINT.\n\
7161 \n\
7162 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7163 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7164 Stop means reenter debugger if this signal happens (implies print).\n\
7165 Print means print a message if this signal happens.\n\
7166 Pass means let program see this signal; otherwise program doesn't know.\n\
7167 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7168 Pass and Stop may be combined.\n\
7169 \n\
7170 Multiple signals may be specified. Signal numbers and signal names\n\
7171 may be interspersed with actions, with the actions being performed for\n\
7172 all signals cumulatively specified."));
7173 set_cmd_completer (c, handle_completer);
7174
7175 if (xdb_commands)
7176 {
7177 add_com ("lz", class_info, signals_info, _("\
7178 What debugger does when program gets various signals.\n\
7179 Specify a signal as argument to print info on that signal only."));
7180 add_com ("z", class_run, xdb_handle_command, _("\
7181 Specify how to handle a signal.\n\
7182 Args are signals and actions to apply to those signals.\n\
7183 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7184 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7185 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7186 The special arg \"all\" is recognized to mean all signals except those\n\
7187 used by the debugger, typically SIGTRAP and SIGINT.\n\
7188 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7189 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7190 nopass), \"Q\" (noprint)\n\
7191 Stop means reenter debugger if this signal happens (implies print).\n\
7192 Print means print a message if this signal happens.\n\
7193 Pass means let program see this signal; otherwise program doesn't know.\n\
7194 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7195 Pass and Stop may be combined."));
7196 }
7197
7198 if (!dbx_commands)
7199 stop_command = add_cmd ("stop", class_obscure,
7200 not_just_help_class_command, _("\
7201 There is no `stop' command, but you can set a hook on `stop'.\n\
7202 This allows you to set a list of commands to be run each time execution\n\
7203 of the program stops."), &cmdlist);
7204
7205 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7206 Set inferior debugging."), _("\
7207 Show inferior debugging."), _("\
7208 When non-zero, inferior specific debugging is enabled."),
7209 NULL,
7210 show_debug_infrun,
7211 &setdebuglist, &showdebuglist);
7212
7213 add_setshow_boolean_cmd ("displaced", class_maintenance,
7214 &debug_displaced, _("\
7215 Set displaced stepping debugging."), _("\
7216 Show displaced stepping debugging."), _("\
7217 When non-zero, displaced stepping specific debugging is enabled."),
7218 NULL,
7219 show_debug_displaced,
7220 &setdebuglist, &showdebuglist);
7221
7222 add_setshow_boolean_cmd ("non-stop", no_class,
7223 &non_stop_1, _("\
7224 Set whether gdb controls the inferior in non-stop mode."), _("\
7225 Show whether gdb controls the inferior in non-stop mode."), _("\
7226 When debugging a multi-threaded program and this setting is\n\
7227 off (the default, also called all-stop mode), when one thread stops\n\
7228 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7229 all other threads in the program while you interact with the thread of\n\
7230 interest. When you continue or step a thread, you can allow the other\n\
7231 threads to run, or have them remain stopped, but while you inspect any\n\
7232 thread's state, all threads stop.\n\
7233 \n\
7234 In non-stop mode, when one thread stops, other threads can continue\n\
7235 to run freely. You'll be able to step each thread independently,\n\
7236 leave it stopped or free to run as needed."),
7237 set_non_stop,
7238 show_non_stop,
7239 &setlist,
7240 &showlist);
7241
7242 numsigs = (int) GDB_SIGNAL_LAST;
7243 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7244 signal_print = (unsigned char *)
7245 xmalloc (sizeof (signal_print[0]) * numsigs);
7246 signal_program = (unsigned char *)
7247 xmalloc (sizeof (signal_program[0]) * numsigs);
7248 signal_catch = (unsigned char *)
7249 xmalloc (sizeof (signal_catch[0]) * numsigs);
7250 signal_pass = (unsigned char *)
7251 xmalloc (sizeof (signal_program[0]) * numsigs);
7252 for (i = 0; i < numsigs; i++)
7253 {
7254 signal_stop[i] = 1;
7255 signal_print[i] = 1;
7256 signal_program[i] = 1;
7257 signal_catch[i] = 0;
7258 }
7259
7260 /* Signals caused by debugger's own actions
7261 should not be given to the program afterwards. */
7262 signal_program[GDB_SIGNAL_TRAP] = 0;
7263 signal_program[GDB_SIGNAL_INT] = 0;
7264
7265 /* Signals that are not errors should not normally enter the debugger. */
7266 signal_stop[GDB_SIGNAL_ALRM] = 0;
7267 signal_print[GDB_SIGNAL_ALRM] = 0;
7268 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7269 signal_print[GDB_SIGNAL_VTALRM] = 0;
7270 signal_stop[GDB_SIGNAL_PROF] = 0;
7271 signal_print[GDB_SIGNAL_PROF] = 0;
7272 signal_stop[GDB_SIGNAL_CHLD] = 0;
7273 signal_print[GDB_SIGNAL_CHLD] = 0;
7274 signal_stop[GDB_SIGNAL_IO] = 0;
7275 signal_print[GDB_SIGNAL_IO] = 0;
7276 signal_stop[GDB_SIGNAL_POLL] = 0;
7277 signal_print[GDB_SIGNAL_POLL] = 0;
7278 signal_stop[GDB_SIGNAL_URG] = 0;
7279 signal_print[GDB_SIGNAL_URG] = 0;
7280 signal_stop[GDB_SIGNAL_WINCH] = 0;
7281 signal_print[GDB_SIGNAL_WINCH] = 0;
7282 signal_stop[GDB_SIGNAL_PRIO] = 0;
7283 signal_print[GDB_SIGNAL_PRIO] = 0;
7284
7285 /* These signals are used internally by user-level thread
7286 implementations. (See signal(5) on Solaris.) Like the above
7287 signals, a healthy program receives and handles them as part of
7288 its normal operation. */
7289 signal_stop[GDB_SIGNAL_LWP] = 0;
7290 signal_print[GDB_SIGNAL_LWP] = 0;
7291 signal_stop[GDB_SIGNAL_WAITING] = 0;
7292 signal_print[GDB_SIGNAL_WAITING] = 0;
7293 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7294 signal_print[GDB_SIGNAL_CANCEL] = 0;
7295
7296 /* Update cached state. */
7297 signal_cache_update (-1);
7298
7299 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7300 &stop_on_solib_events, _("\
7301 Set stopping for shared library events."), _("\
7302 Show stopping for shared library events."), _("\
7303 If nonzero, gdb will give control to the user when the dynamic linker\n\
7304 notifies gdb of shared library events. The most common event of interest\n\
7305 to the user would be loading/unloading of a new library."),
7306 NULL,
7307 show_stop_on_solib_events,
7308 &setlist, &showlist);
7309
7310 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7311 follow_fork_mode_kind_names,
7312 &follow_fork_mode_string, _("\
7313 Set debugger response to a program call of fork or vfork."), _("\
7314 Show debugger response to a program call of fork or vfork."), _("\
7315 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7316 parent - the original process is debugged after a fork\n\
7317 child - the new process is debugged after a fork\n\
7318 The unfollowed process will continue to run.\n\
7319 By default, the debugger will follow the parent process."),
7320 NULL,
7321 show_follow_fork_mode_string,
7322 &setlist, &showlist);
7323
7324 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7325 follow_exec_mode_names,
7326 &follow_exec_mode_string, _("\
7327 Set debugger response to a program call of exec."), _("\
7328 Show debugger response to a program call of exec."), _("\
7329 An exec call replaces the program image of a process.\n\
7330 \n\
7331 follow-exec-mode can be:\n\
7332 \n\
7333 new - the debugger creates a new inferior and rebinds the process\n\
7334 to this new inferior. The program the process was running before\n\
7335 the exec call can be restarted afterwards by restarting the original\n\
7336 inferior.\n\
7337 \n\
7338 same - the debugger keeps the process bound to the same inferior.\n\
7339 The new executable image replaces the previous executable loaded in\n\
7340 the inferior. Restarting the inferior after the exec call restarts\n\
7341 the executable the process was running after the exec call.\n\
7342 \n\
7343 By default, the debugger will use the same inferior."),
7344 NULL,
7345 show_follow_exec_mode_string,
7346 &setlist, &showlist);
7347
7348 add_setshow_enum_cmd ("scheduler-locking", class_run,
7349 scheduler_enums, &scheduler_mode, _("\
7350 Set mode for locking scheduler during execution."), _("\
7351 Show mode for locking scheduler during execution."), _("\
7352 off == no locking (threads may preempt at any time)\n\
7353 on == full locking (no thread except the current thread may run)\n\
7354 step == scheduler locked during every single-step operation.\n\
7355 In this mode, no other thread may run during a step command.\n\
7356 Other threads may run while stepping over a function call ('next')."),
7357 set_schedlock_func, /* traps on target vector */
7358 show_scheduler_mode,
7359 &setlist, &showlist);
7360
7361 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7362 Set mode for resuming threads of all processes."), _("\
7363 Show mode for resuming threads of all processes."), _("\
7364 When on, execution commands (such as 'continue' or 'next') resume all\n\
7365 threads of all processes. When off (which is the default), execution\n\
7366 commands only resume the threads of the current process. The set of\n\
7367 threads that are resumed is further refined by the scheduler-locking\n\
7368 mode (see help set scheduler-locking)."),
7369 NULL,
7370 show_schedule_multiple,
7371 &setlist, &showlist);
7372
7373 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7374 Set mode of the step operation."), _("\
7375 Show mode of the step operation."), _("\
7376 When set, doing a step over a function without debug line information\n\
7377 will stop at the first instruction of that function. Otherwise, the\n\
7378 function is skipped and the step command stops at a different source line."),
7379 NULL,
7380 show_step_stop_if_no_debug,
7381 &setlist, &showlist);
7382
7383 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7384 &can_use_displaced_stepping, _("\
7385 Set debugger's willingness to use displaced stepping."), _("\
7386 Show debugger's willingness to use displaced stepping."), _("\
7387 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7388 supported by the target architecture. If off, gdb will not use displaced\n\
7389 stepping to step over breakpoints, even if such is supported by the target\n\
7390 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7391 if the target architecture supports it and non-stop mode is active, but will not\n\
7392 use it in all-stop mode (see help set non-stop)."),
7393 NULL,
7394 show_can_use_displaced_stepping,
7395 &setlist, &showlist);
7396
7397 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7398 &exec_direction, _("Set direction of execution.\n\
7399 Options are 'forward' or 'reverse'."),
7400 _("Show direction of execution (forward/reverse)."),
7401 _("Tells gdb whether to execute forward or backward."),
7402 set_exec_direction_func, show_exec_direction_func,
7403 &setlist, &showlist);
7404
7405 /* Set/show detach-on-fork: user-settable mode. */
7406
7407 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7408 Set whether gdb will detach the child of a fork."), _("\
7409 Show whether gdb will detach the child of a fork."), _("\
7410 Tells gdb whether to detach the child of a fork."),
7411 NULL, NULL, &setlist, &showlist);
7412
7413 /* Set/show disable address space randomization mode. */
7414
7415 add_setshow_boolean_cmd ("disable-randomization", class_support,
7416 &disable_randomization, _("\
7417 Set disabling of debuggee's virtual address space randomization."), _("\
7418 Show disabling of debuggee's virtual address space randomization."), _("\
7419 When this mode is on (which is the default), randomization of the virtual\n\
7420 address space is disabled. Standalone programs run with the randomization\n\
7421 enabled by default on some platforms."),
7422 &set_disable_randomization,
7423 &show_disable_randomization,
7424 &setlist, &showlist);
7425
7426 /* ptid initializations */
7427 inferior_ptid = null_ptid;
7428 target_last_wait_ptid = minus_one_ptid;
7429
7430 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7431 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7432 observer_attach_thread_exit (infrun_thread_thread_exit);
7433 observer_attach_inferior_exit (infrun_inferior_exit);
7434
7435 /* Explicitly create without lookup, since that tries to create a
7436 value with a void typed value, and when we get here, gdbarch
7437 isn't initialized yet. At this point, we're quite sure there
7438 isn't another convenience variable of the same name. */
7439 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7440
7441 add_setshow_boolean_cmd ("observer", no_class,
7442 &observer_mode_1, _("\
7443 Set whether gdb controls the inferior in observer mode."), _("\
7444 Show whether gdb controls the inferior in observer mode."), _("\
7445 In observer mode, GDB can get data from the inferior, but not\n\
7446 affect its execution. Registers and memory may not be changed,\n\
7447 breakpoints may not be set, and the program cannot be interrupted\n\
7448 or signalled."),
7449 set_observer_mode,
7450 show_observer_mode,
7451 &setlist,
7452 &showlist);
7453 }
This page took 0.18159 seconds and 5 git commands to generate.