* gdbarch.sh: Add skip_permanent_breakpoint callback.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
532 else
533 error (_("\
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
537 }
538
539 if (SOFTWARE_SINGLE_STEP_P () && step)
540 {
541 /* Do it the hard way, w/temp breakpoints */
542 if (SOFTWARE_SINGLE_STEP (current_regcache))
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 reinit_frame_cache ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 }
675
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
680 return 1;
681 }
682
683 return 0;
684
685 }
686
687 /* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690 static CORE_ADDR prev_pc;
691
692 /* Basic routine for continuing the program in various fashions.
693
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
696 or -1 for act according to how it stopped.
697 STEP is nonzero if should trap after one instruction.
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
701
702 You should call clear_proceed_status before calling proceed. */
703
704 void
705 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
706 {
707 int oneproc = 0;
708
709 if (step > 0)
710 step_start_function = find_pc_function (read_pc ());
711 if (step < 0)
712 stop_after_trap = 1;
713
714 if (addr == (CORE_ADDR) -1)
715 {
716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
720 breakpoint). */
721 oneproc = 1;
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
727 oneproc = 1;
728 }
729 else
730 {
731 write_pc (addr);
732 }
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
738
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
741
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
746
747 prepare_to_proceed checks the current thread against the thread
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
751 oneproc = 1;
752
753 if (oneproc)
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
756 trap_expected = 1;
757 else
758 {
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
761 insert breakpoints -- so they were inserted. */
762 breakpoints_inserted = 1;
763 }
764
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
771
772 annotate_starting ();
773
774 /* Make sure that output from GDB appears before output from the
775 inferior. */
776 gdb_flush (gdb_stdout);
777
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
792
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
799 updated correctly when the inferior is stopped. */
800 prev_pc = read_pc ();
801
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
804
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
809 if (!target_can_async_p ())
810 {
811 wait_for_inferior ();
812 normal_stop ();
813 }
814 }
815 \f
816
817 /* Start remote-debugging of a machine over a serial link. */
818
819 void
820 start_remote (int from_tty)
821 {
822 init_thread_list ();
823 init_wait_for_inferior ();
824 stop_soon = STOP_QUIETLY;
825 trap_expected = 0;
826
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
829 indicate to wait_for_inferior that a target should timeout if
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
833 timeout. */
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
840 for an async run. */
841 wait_for_inferior ();
842
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (&current_target, from_tty);
847
848 normal_stop ();
849 }
850
851 /* Initialize static vars when a new inferior begins. */
852
853 void
854 init_wait_for_inferior (void)
855 {
856 /* These are meaningless until the first time through wait_for_inferior. */
857 prev_pc = 0;
858
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nonstep_watch_state
882 };
883
884 /* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886 enum inferior_stop_reason
887 {
888 /* Step, next, nexti, stepi finished. */
889 END_STEPPING_RANGE,
890 /* Inferior terminated by signal. */
891 SIGNAL_EXITED,
892 /* Inferior exited. */
893 EXITED,
894 /* Inferior received signal, and user asked to be notified. */
895 SIGNAL_RECEIVED
896 };
897
898 /* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
901
902 struct execution_control_state
903 {
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
906 int another_trap;
907 int random_signal;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
912 int current_line;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
915 ptid_t ptid;
916 ptid_t saved_inferior_ptid;
917 int step_after_step_resume_breakpoint;
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void step_into_function (struct execution_control_state *ecs);
932 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
933 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
934 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
936 static void stop_stepping (struct execution_control_state *ecs);
937 static void prepare_to_wait (struct execution_control_state *ecs);
938 static void keep_going (struct execution_control_state *ecs);
939 static void print_stop_reason (enum inferior_stop_reason stop_reason,
940 int stop_info);
941
942 /* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
947
948 void
949 wait_for_inferior (void)
950 {
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
954
955 if (debug_infrun)
956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
957
958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
959 &step_resume_breakpoint);
960
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
963 ecs = &ecss;
964
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
967
968 /* We'll update this if & when we switch to a new thread. */
969 previous_inferior_ptid = inferior_ptid;
970
971 overlay_cache_invalid = 1;
972
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
977 status mechanism. */
978
979 registers_changed ();
980
981 while (1)
982 {
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
985 else
986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
987
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
990
991 if (!ecs->wait_some_more)
992 break;
993 }
994 do_cleanups (old_cleanups);
995 }
996
997 /* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1005
1006 struct execution_control_state async_ecss;
1007 struct execution_control_state *async_ecs;
1008
1009 void
1010 fetch_inferior_event (void *client_data)
1011 {
1012 static struct cleanup *old_cleanups;
1013
1014 async_ecs = &async_ecss;
1015
1016 if (!async_ecs->wait_some_more)
1017 {
1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1019 &step_resume_breakpoint);
1020
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1023
1024 /* We'll update this if & when we switch to a new thread. */
1025 previous_inferior_ptid = inferior_ptid;
1026
1027 overlay_cache_invalid = 1;
1028
1029 /* We have to invalidate the registers BEFORE calling target_wait
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
1034
1035 registers_changed ();
1036 }
1037
1038 if (deprecated_target_wait_hook)
1039 async_ecs->ptid =
1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1041 else
1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1043
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1046
1047 if (!async_ecs->wait_some_more)
1048 {
1049 /* Do only the cleanups that have been added by this
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
1052 do_exec_cleanups (old_cleanups);
1053 normal_stop ();
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1056 else
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1058 }
1059 }
1060
1061 /* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1063
1064 void
1065 init_execution_control_state (struct execution_control_state *ecs)
1066 {
1067 ecs->another_trap = 0;
1068 ecs->random_signal = 0;
1069 ecs->step_after_step_resume_breakpoint = 0;
1070 ecs->handling_longjmp = 0; /* FIXME */
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
1077 ecs->waiton_ptid = pid_to_ptid (-1);
1078 ecs->wp = &(ecs->ws);
1079 }
1080
1081 /* Return the cached copy of the last pid/waitstatus returned by
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
1085
1086 void
1087 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1088 {
1089 *ptidp = target_last_wait_ptid;
1090 *status = target_last_waitstatus;
1091 }
1092
1093 void
1094 nullify_last_target_wait_ptid (void)
1095 {
1096 target_last_wait_ptid = minus_one_ptid;
1097 }
1098
1099 /* Switch thread contexts, maintaining "infrun state". */
1100
1101 static void
1102 context_switch (struct execution_control_state *ecs)
1103 {
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1109
1110 if (debug_infrun)
1111 {
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1116 }
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 trap_expected, step_resume_breakpoint,
1123 step_range_start,
1124 step_range_end, &step_frame_id,
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
1128 ecs->current_line, ecs->current_symtab);
1129
1130 /* Load infrun state for the new thread. */
1131 load_infrun_state (ecs->ptid, &prev_pc,
1132 &trap_expected, &step_resume_breakpoint,
1133 &step_range_start,
1134 &step_range_end, &step_frame_id,
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
1138 &ecs->current_line, &ecs->current_symtab);
1139 }
1140 inferior_ptid = ecs->ptid;
1141 reinit_frame_cache ();
1142 }
1143
1144 static void
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1146 {
1147 CORE_ADDR breakpoint_pc;
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1160 layer.
1161
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
1168
1169 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1170 would have the PC after hitting a watchpoint affected by
1171 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1172 in GDB history, and it seems unlikely to be correct, so
1173 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1184
1185 if (SOFTWARE_SINGLE_STEP_P ())
1186 {
1187 /* When using software single-step, a SIGTRAP can only indicate
1188 an inserted breakpoint. This actually makes things
1189 easier. */
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 }
1202 else
1203 {
1204 /* When using hardware single-step, a SIGTRAP is reported for
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
1207 adjusting but the former does not.
1208
1209 When the thread to be examined does not match the current thread
1210 context we can't use currently_stepping, so assume no
1211 single-stepping in this case. */
1212 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1213 {
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 else
1224 {
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 }
1231 }
1232 }
1233
1234 /* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
1237
1238 int stepped_after_stopped_by_watchpoint;
1239
1240 void
1241 handle_inferior_event (struct execution_control_state *ecs)
1242 {
1243 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1244 that the variable stepped_after_stopped_by_watchpoint isn't used,
1245 then you're wrong! See remote.c:remote_stopped_data_address. */
1246
1247 int sw_single_step_trap_p = 0;
1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1249
1250 /* Cache the last pid/waitstatus. */
1251 target_last_wait_ptid = ecs->ptid;
1252 target_last_waitstatus = *ecs->wp;
1253
1254 adjust_pc_after_break (ecs);
1255
1256 switch (ecs->infwait_state)
1257 {
1258 case infwait_thread_hop_state:
1259 if (debug_infrun)
1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1261 /* Cancel the waiton_ptid. */
1262 ecs->waiton_ptid = pid_to_ptid (-1);
1263 break;
1264
1265 case infwait_normal_state:
1266 if (debug_infrun)
1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1268 stepped_after_stopped_by_watchpoint = 0;
1269 break;
1270
1271 case infwait_nonstep_watch_state:
1272 if (debug_infrun)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "infrun: infwait_nonstep_watch_state\n");
1275 insert_breakpoints ();
1276
1277 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1278 handle things like signals arriving and other things happening
1279 in combination correctly? */
1280 stepped_after_stopped_by_watchpoint = 1;
1281 break;
1282
1283 default:
1284 internal_error (__FILE__, __LINE__, _("bad switch"));
1285 }
1286 ecs->infwait_state = infwait_normal_state;
1287
1288 reinit_frame_cache ();
1289
1290 /* If it's a new process, add it to the thread database */
1291
1292 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1293 && !ptid_equal (ecs->ptid, minus_one_ptid)
1294 && !in_thread_list (ecs->ptid));
1295
1296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1298 {
1299 add_thread (ecs->ptid);
1300
1301 ui_out_text (uiout, "[New ");
1302 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1303 ui_out_text (uiout, "]\n");
1304 }
1305
1306 switch (ecs->ws.kind)
1307 {
1308 case TARGET_WAITKIND_LOADED:
1309 if (debug_infrun)
1310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1311 /* Ignore gracefully during startup of the inferior, as it
1312 might be the shell which has just loaded some objects,
1313 otherwise add the symbols for the newly loaded objects. */
1314 #ifdef SOLIB_ADD
1315 if (stop_soon == NO_STOP_QUIETLY)
1316 {
1317 /* Remove breakpoints, SOLIB_ADD might adjust
1318 breakpoint addresses via breakpoint_re_set. */
1319 if (breakpoints_inserted)
1320 remove_breakpoints ();
1321
1322 /* Check for any newly added shared libraries if we're
1323 supposed to be adding them automatically. Switch
1324 terminal for any messages produced by
1325 breakpoint_re_set. */
1326 target_terminal_ours_for_output ();
1327 /* NOTE: cagney/2003-11-25: Make certain that the target
1328 stack's section table is kept up-to-date. Architectures,
1329 (e.g., PPC64), use the section table to perform
1330 operations such as address => section name and hence
1331 require the table to contain all sections (including
1332 those found in shared libraries). */
1333 /* NOTE: cagney/2003-11-25: Pass current_target and not
1334 exec_ops to SOLIB_ADD. This is because current GDB is
1335 only tooled to propagate section_table changes out from
1336 the "current_target" (see target_resize_to_sections), and
1337 not up from the exec stratum. This, of course, isn't
1338 right. "infrun.c" should only interact with the
1339 exec/process stratum, instead relying on the target stack
1340 to propagate relevant changes (stop, section table
1341 changed, ...) up to other layers. */
1342 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1343 target_terminal_inferior ();
1344
1345 /* Reinsert breakpoints and continue. */
1346 if (breakpoints_inserted)
1347 insert_breakpoints ();
1348 }
1349 #endif
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1352 return;
1353
1354 case TARGET_WAITKIND_SPURIOUS:
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
1360
1361 case TARGET_WAITKIND_EXITED:
1362 if (debug_infrun)
1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1364 target_terminal_ours (); /* Must do this before mourn anyway */
1365 print_stop_reason (EXITED, ecs->ws.value.integer);
1366
1367 /* Record the exit code in the convenience variable $_exitcode, so
1368 that the user can inspect this again later. */
1369 set_internalvar (lookup_internalvar ("_exitcode"),
1370 value_from_longest (builtin_type_int,
1371 (LONGEST) ecs->ws.value.integer));
1372 gdb_flush (gdb_stdout);
1373 target_mourn_inferior ();
1374 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1375 stop_print_frame = 0;
1376 stop_stepping (ecs);
1377 return;
1378
1379 case TARGET_WAITKIND_SIGNALLED:
1380 if (debug_infrun)
1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1382 stop_print_frame = 0;
1383 stop_signal = ecs->ws.value.sig;
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1385
1386 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1387 reach here unless the inferior is dead. However, for years
1388 target_kill() was called here, which hints that fatal signals aren't
1389 really fatal on some systems. If that's true, then some changes
1390 may be needed. */
1391 target_mourn_inferior ();
1392
1393 print_stop_reason (SIGNAL_EXITED, stop_signal);
1394 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1395 stop_stepping (ecs);
1396 return;
1397
1398 /* The following are the only cases in which we keep going;
1399 the above cases end in a continue or goto. */
1400 case TARGET_WAITKIND_FORKED:
1401 case TARGET_WAITKIND_VFORKED:
1402 if (debug_infrun)
1403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405 pending_follow.kind = ecs->ws.kind;
1406
1407 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1408 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1409
1410 if (!ptid_equal (ecs->ptid, inferior_ptid))
1411 {
1412 context_switch (ecs);
1413 reinit_frame_cache ();
1414 }
1415
1416 stop_pc = read_pc ();
1417
1418 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1419
1420 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1421
1422 /* If no catchpoint triggered for this, then keep going. */
1423 if (ecs->random_signal)
1424 {
1425 stop_signal = TARGET_SIGNAL_0;
1426 keep_going (ecs);
1427 return;
1428 }
1429 goto process_event_stop_test;
1430
1431 case TARGET_WAITKIND_EXECD:
1432 if (debug_infrun)
1433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1434 stop_signal = TARGET_SIGNAL_TRAP;
1435
1436 /* NOTE drow/2002-12-05: This code should be pushed down into the
1437 target_wait function. Until then following vfork on HP/UX 10.20
1438 is probably broken by this. Of course, it's broken anyway. */
1439 /* Is this a target which reports multiple exec events per actual
1440 call to exec()? (HP-UX using ptrace does, for example.) If so,
1441 ignore all but the last one. Just resume the exec'r, and wait
1442 for the next exec event. */
1443 if (inferior_ignoring_leading_exec_events)
1444 {
1445 inferior_ignoring_leading_exec_events--;
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
1461
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
1465
1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1467
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
1470
1471 if (!ptid_equal (ecs->ptid, inferior_ptid))
1472 {
1473 context_switch (ecs);
1474 reinit_frame_cache ();
1475 }
1476
1477 /* If no catchpoint triggered for this, then keep going. */
1478 if (ecs->random_signal)
1479 {
1480 stop_signal = TARGET_SIGNAL_0;
1481 keep_going (ecs);
1482 return;
1483 }
1484 goto process_event_stop_test;
1485
1486 /* Be careful not to try to gather much state about a thread
1487 that's in a syscall. It's frequently a losing proposition. */
1488 case TARGET_WAITKIND_SYSCALL_ENTRY:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1491 resume (0, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1493 return;
1494
1495 /* Before examining the threads further, step this thread to
1496 get it entirely out of the syscall. (We get notice of the
1497 event when the thread is just on the verge of exiting a
1498 syscall. Stepping one instruction seems to get it back
1499 into user code.) */
1500 case TARGET_WAITKIND_SYSCALL_RETURN:
1501 if (debug_infrun)
1502 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1503 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1504 prepare_to_wait (ecs);
1505 return;
1506
1507 case TARGET_WAITKIND_STOPPED:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1510 stop_signal = ecs->ws.value.sig;
1511 break;
1512
1513 /* We had an event in the inferior, but we are not interested
1514 in handling it at this level. The lower layers have already
1515 done what needs to be done, if anything.
1516
1517 One of the possible circumstances for this is when the
1518 inferior produces output for the console. The inferior has
1519 not stopped, and we are ignoring the event. Another possible
1520 circumstance is any event which the lower level knows will be
1521 reported multiple times without an intervening resume. */
1522 case TARGET_WAITKIND_IGNORE:
1523 if (debug_infrun)
1524 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1525 prepare_to_wait (ecs);
1526 return;
1527 }
1528
1529 /* We may want to consider not doing a resume here in order to give
1530 the user a chance to play with the new thread. It might be good
1531 to make that a user-settable option. */
1532
1533 /* At this point, all threads are stopped (happens automatically in
1534 either the OS or the native code). Therefore we need to continue
1535 all threads in order to make progress. */
1536 if (ecs->new_thread_event)
1537 {
1538 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1540 return;
1541 }
1542
1543 stop_pc = read_pc_pid (ecs->ptid);
1544
1545 if (debug_infrun)
1546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1547
1548 if (stepping_past_singlestep_breakpoint)
1549 {
1550 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1551 && singlestep_breakpoints_inserted_p);
1552 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1553 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1554
1555 stepping_past_singlestep_breakpoint = 0;
1556
1557 /* We've either finished single-stepping past the single-step
1558 breakpoint, or stopped for some other reason. It would be nice if
1559 we could tell, but we can't reliably. */
1560 if (stop_signal == TARGET_SIGNAL_TRAP)
1561 {
1562 if (debug_infrun)
1563 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1564 /* Pull the single step breakpoints out of the target. */
1565 remove_single_step_breakpoints ();
1566 singlestep_breakpoints_inserted_p = 0;
1567
1568 ecs->random_signal = 0;
1569
1570 ecs->ptid = saved_singlestep_ptid;
1571 context_switch (ecs);
1572 if (deprecated_context_hook)
1573 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1574
1575 resume (1, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
1579 }
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
1583 /* See if a thread hit a thread-specific breakpoint that was meant for
1584 another thread. If so, then step that thread past the breakpoint,
1585 and continue it. */
1586
1587 if (stop_signal == TARGET_SIGNAL_TRAP)
1588 {
1589 int thread_hop_needed = 0;
1590
1591 /* Check if a regular breakpoint has been hit before checking
1592 for a potential single step breakpoint. Otherwise, GDB will
1593 not see this breakpoint hit when stepping onto breakpoints. */
1594 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1595 {
1596 ecs->random_signal = 0;
1597 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1598 thread_hop_needed = 1;
1599 }
1600 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1601 {
1602 /* We have not context switched yet, so this should be true
1603 no matter which thread hit the singlestep breakpoint. */
1604 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1605 if (debug_infrun)
1606 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1607 "trap for %s\n",
1608 target_pid_to_str (ecs->ptid));
1609
1610 ecs->random_signal = 0;
1611 /* The call to in_thread_list is necessary because PTIDs sometimes
1612 change when we go from single-threaded to multi-threaded. If
1613 the singlestep_ptid is still in the list, assume that it is
1614 really different from ecs->ptid. */
1615 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1616 && in_thread_list (singlestep_ptid))
1617 {
1618 /* If the PC of the thread we were trying to single-step
1619 has changed, discard this event (which we were going
1620 to ignore anyway), and pretend we saw that thread
1621 trap. This prevents us continuously moving the
1622 single-step breakpoint forward, one instruction at a
1623 time. If the PC has changed, then the thread we were
1624 trying to single-step has trapped or been signalled,
1625 but the event has not been reported to GDB yet.
1626
1627 There might be some cases where this loses signal
1628 information, if a signal has arrived at exactly the
1629 same time that the PC changed, but this is the best
1630 we can do with the information available. Perhaps we
1631 should arrange to report all events for all threads
1632 when they stop, or to re-poll the remote looking for
1633 this particular thread (i.e. temporarily enable
1634 schedlock). */
1635 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1636 {
1637 if (debug_infrun)
1638 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1639 " but expected thread advanced also\n");
1640
1641 /* The current context still belongs to
1642 singlestep_ptid. Don't swap here, since that's
1643 the context we want to use. Just fudge our
1644 state and continue. */
1645 ecs->ptid = singlestep_ptid;
1646 stop_pc = read_pc_pid (ecs->ptid);
1647 }
1648 else
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: unexpected thread\n");
1653
1654 thread_hop_needed = 1;
1655 stepping_past_singlestep_breakpoint = 1;
1656 saved_singlestep_ptid = singlestep_ptid;
1657 }
1658 }
1659 }
1660
1661 if (thread_hop_needed)
1662 {
1663 int remove_status;
1664
1665 if (debug_infrun)
1666 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1667
1668 /* Saw a breakpoint, but it was hit by the wrong thread.
1669 Just continue. */
1670
1671 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1672 {
1673 /* Pull the single step breakpoints out of the target. */
1674 remove_single_step_breakpoints ();
1675 singlestep_breakpoints_inserted_p = 0;
1676 }
1677
1678 remove_status = remove_breakpoints ();
1679 /* Did we fail to remove breakpoints? If so, try
1680 to set the PC past the bp. (There's at least
1681 one situation in which we can fail to remove
1682 the bp's: On HP-UX's that use ttrace, we can't
1683 change the address space of a vforking child
1684 process until the child exits (well, okay, not
1685 then either :-) or execs. */
1686 if (remove_status != 0)
1687 {
1688 /* FIXME! This is obviously non-portable! */
1689 write_pc_pid (stop_pc + 4, ecs->ptid);
1690 /* We need to restart all the threads now,
1691 * unles we're running in scheduler-locked mode.
1692 * Use currently_stepping to determine whether to
1693 * step or continue.
1694 */
1695 /* FIXME MVS: is there any reason not to call resume()? */
1696 if (scheduler_mode == schedlock_on)
1697 target_resume (ecs->ptid,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
1699 else
1700 target_resume (RESUME_ALL,
1701 currently_stepping (ecs), TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
1705 else
1706 { /* Single step */
1707 breakpoints_inserted = 0;
1708 if (!ptid_equal (inferior_ptid, ecs->ptid))
1709 context_switch (ecs);
1710 ecs->waiton_ptid = ecs->ptid;
1711 ecs->wp = &(ecs->ws);
1712 ecs->another_trap = 1;
1713
1714 ecs->infwait_state = infwait_thread_hop_state;
1715 keep_going (ecs);
1716 registers_changed ();
1717 return;
1718 }
1719 }
1720 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1721 {
1722 sw_single_step_trap_p = 1;
1723 ecs->random_signal = 0;
1724 }
1725 }
1726 else
1727 ecs->random_signal = 1;
1728
1729 /* See if something interesting happened to the non-current thread. If
1730 so, then switch to that thread. */
1731 if (!ptid_equal (ecs->ptid, inferior_ptid))
1732 {
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1735
1736 context_switch (ecs);
1737
1738 if (deprecated_context_hook)
1739 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1740 }
1741
1742 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 /* It may not be necessary to disable the watchpoint to stop over
1750 it. For example, the PA can (with some kernel cooperation)
1751 single step over a watchpoint without disabling the watchpoint. */
1752 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1753 {
1754 if (debug_infrun)
1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1756 resume (1, 0);
1757 prepare_to_wait (ecs);
1758 return;
1759 }
1760
1761 /* It is far more common to need to disable a watchpoint to step
1762 the inferior over it. FIXME. What else might a debug
1763 register or page protection watchpoint scheme need here? */
1764 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1765 {
1766 /* At this point, we are stopped at an instruction which has
1767 attempted to write to a piece of memory under control of
1768 a watchpoint. The instruction hasn't actually executed
1769 yet. If we were to evaluate the watchpoint expression
1770 now, we would get the old value, and therefore no change
1771 would seem to have occurred.
1772
1773 In order to make watchpoints work `right', we really need
1774 to complete the memory write, and then evaluate the
1775 watchpoint expression. The following code does that by
1776 removing the watchpoint (actually, all watchpoints and
1777 breakpoints), single-stepping the target, re-inserting
1778 watchpoints, and then falling through to let normal
1779 single-step processing handle proceed. Since this
1780 includes evaluating watchpoints, things will come to a
1781 stop in the correct manner. */
1782
1783 if (debug_infrun)
1784 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1785 remove_breakpoints ();
1786 registers_changed ();
1787 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1788
1789 ecs->waiton_ptid = ecs->ptid;
1790 ecs->wp = &(ecs->ws);
1791 ecs->infwait_state = infwait_nonstep_watch_state;
1792 prepare_to_wait (ecs);
1793 return;
1794 }
1795
1796 /* It may be possible to simply continue after a watchpoint. */
1797 if (HAVE_CONTINUABLE_WATCHPOINT)
1798 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1799
1800 ecs->stop_func_start = 0;
1801 ecs->stop_func_end = 0;
1802 ecs->stop_func_name = 0;
1803 /* Don't care about return value; stop_func_start and stop_func_name
1804 will both be 0 if it doesn't work. */
1805 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1806 &ecs->stop_func_start, &ecs->stop_func_end);
1807 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1808 ecs->another_trap = 0;
1809 bpstat_clear (&stop_bpstat);
1810 stop_step = 0;
1811 stop_stack_dummy = 0;
1812 stop_print_frame = 1;
1813 ecs->random_signal = 0;
1814 stopped_by_random_signal = 0;
1815
1816 if (stop_signal == TARGET_SIGNAL_TRAP
1817 && trap_expected
1818 && gdbarch_single_step_through_delay_p (current_gdbarch)
1819 && currently_stepping (ecs))
1820 {
1821 /* We're trying to step of a breakpoint. Turns out that we're
1822 also on an instruction that needs to be stepped multiple
1823 times before it's been fully executing. E.g., architectures
1824 with a delay slot. It needs to be stepped twice, once for
1825 the instruction and once for the delay slot. */
1826 int step_through_delay
1827 = gdbarch_single_step_through_delay (current_gdbarch,
1828 get_current_frame ());
1829 if (debug_infrun && step_through_delay)
1830 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1831 if (step_range_end == 0 && step_through_delay)
1832 {
1833 /* The user issued a continue when stopped at a breakpoint.
1834 Set up for another trap and get out of here. */
1835 ecs->another_trap = 1;
1836 keep_going (ecs);
1837 return;
1838 }
1839 else if (step_through_delay)
1840 {
1841 /* The user issued a step when stopped at a breakpoint.
1842 Maybe we should stop, maybe we should not - the delay
1843 slot *might* correspond to a line of source. In any
1844 case, don't decide that here, just set ecs->another_trap,
1845 making sure we single-step again before breakpoints are
1846 re-inserted. */
1847 ecs->another_trap = 1;
1848 }
1849 }
1850
1851 /* Look at the cause of the stop, and decide what to do.
1852 The alternatives are:
1853 1) break; to really stop and return to the debugger,
1854 2) drop through to start up again
1855 (set ecs->another_trap to 1 to single step once)
1856 3) set ecs->random_signal to 1, and the decision between 1 and 2
1857 will be made according to the signal handling tables. */
1858
1859 /* First, distinguish signals caused by the debugger from signals
1860 that have to do with the program's own actions. Note that
1861 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1862 on the operating system version. Here we detect when a SIGILL or
1863 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1864 something similar for SIGSEGV, since a SIGSEGV will be generated
1865 when we're trying to execute a breakpoint instruction on a
1866 non-executable stack. This happens for call dummy breakpoints
1867 for architectures like SPARC that place call dummies on the
1868 stack. */
1869
1870 if (stop_signal == TARGET_SIGNAL_TRAP
1871 || (breakpoints_inserted
1872 && (stop_signal == TARGET_SIGNAL_ILL
1873 || stop_signal == TARGET_SIGNAL_SEGV
1874 || stop_signal == TARGET_SIGNAL_EMT))
1875 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1876 {
1877 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1878 {
1879 if (debug_infrun)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1883 return;
1884 }
1885
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
1888 if (stop_soon == STOP_QUIETLY)
1889 {
1890 if (debug_infrun)
1891 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1892 stop_stepping (ecs);
1893 return;
1894 }
1895
1896 /* This originates from attach_command(). We need to overwrite
1897 the stop_signal here, because some kernels don't ignore a
1898 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1899 See more comments in inferior.h. */
1900 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1901 {
1902 stop_stepping (ecs);
1903 if (stop_signal == TARGET_SIGNAL_STOP)
1904 stop_signal = TARGET_SIGNAL_0;
1905 return;
1906 }
1907
1908 /* Don't even think about breakpoints if just proceeded over a
1909 breakpoint. */
1910 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1911 {
1912 if (debug_infrun)
1913 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1914 bpstat_clear (&stop_bpstat);
1915 }
1916 else
1917 {
1918 /* See if there is a breakpoint at the current PC. */
1919 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1920 stopped_by_watchpoint);
1921
1922 /* Following in case break condition called a
1923 function. */
1924 stop_print_frame = 1;
1925 }
1926
1927 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1928 at one stage in the past included checks for an inferior
1929 function call's call dummy's return breakpoint. The original
1930 comment, that went with the test, read:
1931
1932 ``End of a stack dummy. Some systems (e.g. Sony news) give
1933 another signal besides SIGTRAP, so check here as well as
1934 above.''
1935
1936 If someone ever tries to get get call dummys on a
1937 non-executable stack to work (where the target would stop
1938 with something like a SIGSEGV), then those tests might need
1939 to be re-instated. Given, however, that the tests were only
1940 enabled when momentary breakpoints were not being used, I
1941 suspect that it won't be the case.
1942
1943 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1944 be necessary for call dummies on a non-executable stack on
1945 SPARC. */
1946
1947 if (stop_signal == TARGET_SIGNAL_TRAP)
1948 ecs->random_signal
1949 = !(bpstat_explains_signal (stop_bpstat)
1950 || trap_expected
1951 || (step_range_end && step_resume_breakpoint == NULL));
1952 else
1953 {
1954 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1955 if (!ecs->random_signal)
1956 stop_signal = TARGET_SIGNAL_TRAP;
1957 }
1958 }
1959
1960 /* When we reach this point, we've pretty much decided
1961 that the reason for stopping must've been a random
1962 (unexpected) signal. */
1963
1964 else
1965 ecs->random_signal = 1;
1966
1967 process_event_stop_test:
1968 /* For the program's own signals, act according to
1969 the signal handling tables. */
1970
1971 if (ecs->random_signal)
1972 {
1973 /* Signal not for debugging purposes. */
1974 int printed = 0;
1975
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1978
1979 stopped_by_random_signal = 1;
1980
1981 if (signal_print[stop_signal])
1982 {
1983 printed = 1;
1984 target_terminal_ours_for_output ();
1985 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1986 }
1987 if (signal_stop[stop_signal])
1988 {
1989 stop_stepping (ecs);
1990 return;
1991 }
1992 /* If not going to stop, give terminal back
1993 if we took it away. */
1994 else if (printed)
1995 target_terminal_inferior ();
1996
1997 /* Clear the signal if it should not be passed. */
1998 if (signal_program[stop_signal] == 0)
1999 stop_signal = TARGET_SIGNAL_0;
2000
2001 if (prev_pc == read_pc ()
2002 && !breakpoints_inserted
2003 && breakpoint_here_p (read_pc ())
2004 && step_resume_breakpoint == NULL)
2005 {
2006 /* We were just starting a new sequence, attempting to
2007 single-step off of a breakpoint and expecting a SIGTRAP.
2008 Intead this signal arrives. This signal will take us out
2009 of the stepping range so GDB needs to remember to, when
2010 the signal handler returns, resume stepping off that
2011 breakpoint. */
2012 /* To simplify things, "continue" is forced to use the same
2013 code paths as single-step - set a breakpoint at the
2014 signal return address and then, once hit, step off that
2015 breakpoint. */
2016
2017 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2018 ecs->step_after_step_resume_breakpoint = 1;
2019 keep_going (ecs);
2020 return;
2021 }
2022
2023 if (step_range_end != 0
2024 && stop_signal != TARGET_SIGNAL_0
2025 && stop_pc >= step_range_start && stop_pc < step_range_end
2026 && frame_id_eq (get_frame_id (get_current_frame ()),
2027 step_frame_id)
2028 && step_resume_breakpoint == NULL)
2029 {
2030 /* The inferior is about to take a signal that will take it
2031 out of the single step range. Set a breakpoint at the
2032 current PC (which is presumably where the signal handler
2033 will eventually return) and then allow the inferior to
2034 run free.
2035
2036 Note that this is only needed for a signal delivered
2037 while in the single-step range. Nested signals aren't a
2038 problem as they eventually all return. */
2039 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2040 keep_going (ecs);
2041 return;
2042 }
2043
2044 /* Note: step_resume_breakpoint may be non-NULL. This occures
2045 when either there's a nested signal, or when there's a
2046 pending signal enabled just as the signal handler returns
2047 (leaving the inferior at the step-resume-breakpoint without
2048 actually executing it). Either way continue until the
2049 breakpoint is really hit. */
2050 keep_going (ecs);
2051 return;
2052 }
2053
2054 /* Handle cases caused by hitting a breakpoint. */
2055 {
2056 CORE_ADDR jmp_buf_pc;
2057 struct bpstat_what what;
2058
2059 what = bpstat_what (stop_bpstat);
2060
2061 if (what.call_dummy)
2062 {
2063 stop_stack_dummy = 1;
2064 }
2065
2066 switch (what.main_action)
2067 {
2068 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2069 /* If we hit the breakpoint at longjmp, disable it for the
2070 duration of this command. Then, install a temporary
2071 breakpoint at the target of the jmp_buf. */
2072 if (debug_infrun)
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2074 disable_longjmp_breakpoint ();
2075 remove_breakpoints ();
2076 breakpoints_inserted = 0;
2077 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2078 {
2079 keep_going (ecs);
2080 return;
2081 }
2082
2083 /* Need to blow away step-resume breakpoint, as it
2084 interferes with us */
2085 if (step_resume_breakpoint != NULL)
2086 {
2087 delete_step_resume_breakpoint (&step_resume_breakpoint);
2088 }
2089
2090 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2091 ecs->handling_longjmp = 1; /* FIXME */
2092 keep_going (ecs);
2093 return;
2094
2095 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2096 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2097 if (debug_infrun)
2098 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2099 remove_breakpoints ();
2100 breakpoints_inserted = 0;
2101 disable_longjmp_breakpoint ();
2102 ecs->handling_longjmp = 0; /* FIXME */
2103 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2104 break;
2105 /* else fallthrough */
2106
2107 case BPSTAT_WHAT_SINGLE:
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2110 if (breakpoints_inserted)
2111 remove_breakpoints ();
2112 breakpoints_inserted = 0;
2113 ecs->another_trap = 1;
2114 /* Still need to check other stuff, at least the case
2115 where we are stepping and step out of the right range. */
2116 break;
2117
2118 case BPSTAT_WHAT_STOP_NOISY:
2119 if (debug_infrun)
2120 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2121 stop_print_frame = 1;
2122
2123 /* We are about to nuke the step_resume_breakpointt via the
2124 cleanup chain, so no need to worry about it here. */
2125
2126 stop_stepping (ecs);
2127 return;
2128
2129 case BPSTAT_WHAT_STOP_SILENT:
2130 if (debug_infrun)
2131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2132 stop_print_frame = 0;
2133
2134 /* We are about to nuke the step_resume_breakpoin via the
2135 cleanup chain, so no need to worry about it here. */
2136
2137 stop_stepping (ecs);
2138 return;
2139
2140 case BPSTAT_WHAT_STEP_RESUME:
2141 /* This proably demands a more elegant solution, but, yeah
2142 right...
2143
2144 This function's use of the simple variable
2145 step_resume_breakpoint doesn't seem to accomodate
2146 simultaneously active step-resume bp's, although the
2147 breakpoint list certainly can.
2148
2149 If we reach here and step_resume_breakpoint is already
2150 NULL, then apparently we have multiple active
2151 step-resume bp's. We'll just delete the breakpoint we
2152 stopped at, and carry on.
2153
2154 Correction: what the code currently does is delete a
2155 step-resume bp, but it makes no effort to ensure that
2156 the one deleted is the one currently stopped at. MVS */
2157
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2160
2161 if (step_resume_breakpoint == NULL)
2162 {
2163 step_resume_breakpoint =
2164 bpstat_find_step_resume_breakpoint (stop_bpstat);
2165 }
2166 delete_step_resume_breakpoint (&step_resume_breakpoint);
2167 if (ecs->step_after_step_resume_breakpoint)
2168 {
2169 /* Back when the step-resume breakpoint was inserted, we
2170 were trying to single-step off a breakpoint. Go back
2171 to doing that. */
2172 ecs->step_after_step_resume_breakpoint = 0;
2173 remove_breakpoints ();
2174 breakpoints_inserted = 0;
2175 ecs->another_trap = 1;
2176 keep_going (ecs);
2177 return;
2178 }
2179 break;
2180
2181 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2182 if (debug_infrun)
2183 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2184 /* If were waiting for a trap, hitting the step_resume_break
2185 doesn't count as getting it. */
2186 if (trap_expected)
2187 ecs->another_trap = 1;
2188 break;
2189
2190 case BPSTAT_WHAT_CHECK_SHLIBS:
2191 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2192 {
2193 if (debug_infrun)
2194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2195 /* Remove breakpoints, we eventually want to step over the
2196 shlib event breakpoint, and SOLIB_ADD might adjust
2197 breakpoint addresses via breakpoint_re_set. */
2198 if (breakpoints_inserted)
2199 remove_breakpoints ();
2200 breakpoints_inserted = 0;
2201
2202 /* Check for any newly added shared libraries if we're
2203 supposed to be adding them automatically. Switch
2204 terminal for any messages produced by
2205 breakpoint_re_set. */
2206 target_terminal_ours_for_output ();
2207 /* NOTE: cagney/2003-11-25: Make certain that the target
2208 stack's section table is kept up-to-date. Architectures,
2209 (e.g., PPC64), use the section table to perform
2210 operations such as address => section name and hence
2211 require the table to contain all sections (including
2212 those found in shared libraries). */
2213 /* NOTE: cagney/2003-11-25: Pass current_target and not
2214 exec_ops to SOLIB_ADD. This is because current GDB is
2215 only tooled to propagate section_table changes out from
2216 the "current_target" (see target_resize_to_sections), and
2217 not up from the exec stratum. This, of course, isn't
2218 right. "infrun.c" should only interact with the
2219 exec/process stratum, instead relying on the target stack
2220 to propagate relevant changes (stop, section table
2221 changed, ...) up to other layers. */
2222 #ifdef SOLIB_ADD
2223 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2224 #else
2225 solib_add (NULL, 0, &current_target, auto_solib_add);
2226 #endif
2227 target_terminal_inferior ();
2228
2229 /* Try to reenable shared library breakpoints, additional
2230 code segments in shared libraries might be mapped in now. */
2231 re_enable_breakpoints_in_shlibs ();
2232
2233 /* If requested, stop when the dynamic linker notifies
2234 gdb of events. This allows the user to get control
2235 and place breakpoints in initializer routines for
2236 dynamically loaded objects (among other things). */
2237 if (stop_on_solib_events || stop_stack_dummy)
2238 {
2239 stop_stepping (ecs);
2240 return;
2241 }
2242
2243 /* If we stopped due to an explicit catchpoint, then the
2244 (see above) call to SOLIB_ADD pulled in any symbols
2245 from a newly-loaded library, if appropriate.
2246
2247 We do want the inferior to stop, but not where it is
2248 now, which is in the dynamic linker callback. Rather,
2249 we would like it stop in the user's program, just after
2250 the call that caused this catchpoint to trigger. That
2251 gives the user a more useful vantage from which to
2252 examine their program's state. */
2253 else if (what.main_action
2254 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2255 {
2256 /* ??rehrauer: If I could figure out how to get the
2257 right return PC from here, we could just set a temp
2258 breakpoint and resume. I'm not sure we can without
2259 cracking open the dld's shared libraries and sniffing
2260 their unwind tables and text/data ranges, and that's
2261 not a terribly portable notion.
2262
2263 Until that time, we must step the inferior out of the
2264 dld callback, and also out of the dld itself (and any
2265 code or stubs in libdld.sl, such as "shl_load" and
2266 friends) until we reach non-dld code. At that point,
2267 we can stop stepping. */
2268 bpstat_get_triggered_catchpoints (stop_bpstat,
2269 &ecs->
2270 stepping_through_solib_catchpoints);
2271 ecs->stepping_through_solib_after_catch = 1;
2272
2273 /* Be sure to lift all breakpoints, so the inferior does
2274 actually step past this point... */
2275 ecs->another_trap = 1;
2276 break;
2277 }
2278 else
2279 {
2280 /* We want to step over this breakpoint, then keep going. */
2281 ecs->another_trap = 1;
2282 break;
2283 }
2284 }
2285 break;
2286
2287 case BPSTAT_WHAT_LAST:
2288 /* Not a real code, but listed here to shut up gcc -Wall. */
2289
2290 case BPSTAT_WHAT_KEEP_CHECKING:
2291 break;
2292 }
2293 }
2294
2295 /* We come here if we hit a breakpoint but should not
2296 stop for it. Possibly we also were stepping
2297 and should stop for that. So fall through and
2298 test for stepping. But, if not stepping,
2299 do not stop. */
2300
2301 /* Are we stepping to get the inferior out of the dynamic linker's
2302 hook (and possibly the dld itself) after catching a shlib
2303 event? */
2304 if (ecs->stepping_through_solib_after_catch)
2305 {
2306 #if defined(SOLIB_ADD)
2307 /* Have we reached our destination? If not, keep going. */
2308 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2309 {
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2312 ecs->another_trap = 1;
2313 keep_going (ecs);
2314 return;
2315 }
2316 #endif
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2319 /* Else, stop and report the catchpoint(s) whose triggering
2320 caused us to begin stepping. */
2321 ecs->stepping_through_solib_after_catch = 0;
2322 bpstat_clear (&stop_bpstat);
2323 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2324 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2325 stop_print_frame = 1;
2326 stop_stepping (ecs);
2327 return;
2328 }
2329
2330 if (step_resume_breakpoint)
2331 {
2332 if (debug_infrun)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "infrun: step-resume breakpoint is inserted\n");
2335
2336 /* Having a step-resume breakpoint overrides anything
2337 else having to do with stepping commands until
2338 that breakpoint is reached. */
2339 keep_going (ecs);
2340 return;
2341 }
2342
2343 if (step_range_end == 0)
2344 {
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2347 /* Likewise if we aren't even stepping. */
2348 keep_going (ecs);
2349 return;
2350 }
2351
2352 /* If stepping through a line, keep going if still within it.
2353
2354 Note that step_range_end is the address of the first instruction
2355 beyond the step range, and NOT the address of the last instruction
2356 within it! */
2357 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2358 {
2359 if (debug_infrun)
2360 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2361 paddr_nz (step_range_start),
2362 paddr_nz (step_range_end));
2363 keep_going (ecs);
2364 return;
2365 }
2366
2367 /* We stepped out of the stepping range. */
2368
2369 /* If we are stepping at the source level and entered the runtime
2370 loader dynamic symbol resolution code, we keep on single stepping
2371 until we exit the run time loader code and reach the callee's
2372 address. */
2373 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2374 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2375 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2376 #else
2377 && in_solib_dynsym_resolve_code (stop_pc)
2378 #endif
2379 )
2380 {
2381 CORE_ADDR pc_after_resolver =
2382 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2383
2384 if (debug_infrun)
2385 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2386
2387 if (pc_after_resolver)
2388 {
2389 /* Set up a step-resume breakpoint at the address
2390 indicated by SKIP_SOLIB_RESOLVER. */
2391 struct symtab_and_line sr_sal;
2392 init_sal (&sr_sal);
2393 sr_sal.pc = pc_after_resolver;
2394
2395 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2396 }
2397
2398 keep_going (ecs);
2399 return;
2400 }
2401
2402 if (step_range_end != 1
2403 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2404 || step_over_calls == STEP_OVER_ALL)
2405 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2406 {
2407 if (debug_infrun)
2408 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2409 /* The inferior, while doing a "step" or "next", has ended up in
2410 a signal trampoline (either by a signal being delivered or by
2411 the signal handler returning). Just single-step until the
2412 inferior leaves the trampoline (either by calling the handler
2413 or returning). */
2414 keep_going (ecs);
2415 return;
2416 }
2417
2418 /* Check for subroutine calls. The check for the current frame
2419 equalling the step ID is not necessary - the check of the
2420 previous frame's ID is sufficient - but it is a common case and
2421 cheaper than checking the previous frame's ID.
2422
2423 NOTE: frame_id_eq will never report two invalid frame IDs as
2424 being equal, so to get into this block, both the current and
2425 previous frame must have valid frame IDs. */
2426 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2427 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2428 {
2429 CORE_ADDR real_stop_pc;
2430
2431 if (debug_infrun)
2432 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2433
2434 if ((step_over_calls == STEP_OVER_NONE)
2435 || ((step_range_end == 1)
2436 && in_prologue (prev_pc, ecs->stop_func_start)))
2437 {
2438 /* I presume that step_over_calls is only 0 when we're
2439 supposed to be stepping at the assembly language level
2440 ("stepi"). Just stop. */
2441 /* Also, maybe we just did a "nexti" inside a prolog, so we
2442 thought it was a subroutine call but it was not. Stop as
2443 well. FENN */
2444 stop_step = 1;
2445 print_stop_reason (END_STEPPING_RANGE, 0);
2446 stop_stepping (ecs);
2447 return;
2448 }
2449
2450 if (step_over_calls == STEP_OVER_ALL)
2451 {
2452 /* We're doing a "next", set a breakpoint at callee's return
2453 address (the address at which the caller will
2454 resume). */
2455 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2456 keep_going (ecs);
2457 return;
2458 }
2459
2460 /* If we are in a function call trampoline (a stub between the
2461 calling routine and the real function), locate the real
2462 function. That's what tells us (a) whether we want to step
2463 into it at all, and (b) what prologue we want to run to the
2464 end of, if we do step into it. */
2465 real_stop_pc = skip_language_trampoline (stop_pc);
2466 if (real_stop_pc == 0)
2467 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2468 if (real_stop_pc != 0)
2469 ecs->stop_func_start = real_stop_pc;
2470
2471 if (
2472 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2473 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2474 #else
2475 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2476 #endif
2477 )
2478 {
2479 struct symtab_and_line sr_sal;
2480 init_sal (&sr_sal);
2481 sr_sal.pc = ecs->stop_func_start;
2482
2483 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2484 keep_going (ecs);
2485 return;
2486 }
2487
2488 /* If we have line number information for the function we are
2489 thinking of stepping into, step into it.
2490
2491 If there are several symtabs at that PC (e.g. with include
2492 files), just want to know whether *any* of them have line
2493 numbers. find_pc_line handles this. */
2494 {
2495 struct symtab_and_line tmp_sal;
2496
2497 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2498 if (tmp_sal.line != 0)
2499 {
2500 step_into_function (ecs);
2501 return;
2502 }
2503 }
2504
2505 /* If we have no line number and the step-stop-if-no-debug is
2506 set, we stop the step so that the user has a chance to switch
2507 in assembly mode. */
2508 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2509 {
2510 stop_step = 1;
2511 print_stop_reason (END_STEPPING_RANGE, 0);
2512 stop_stepping (ecs);
2513 return;
2514 }
2515
2516 /* Set a breakpoint at callee's return address (the address at
2517 which the caller will resume). */
2518 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2519 keep_going (ecs);
2520 return;
2521 }
2522
2523 /* If we're in the return path from a shared library trampoline,
2524 we want to proceed through the trampoline when stepping. */
2525 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2526 {
2527 /* Determine where this trampoline returns. */
2528 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2529
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2532
2533 /* Only proceed through if we know where it's going. */
2534 if (real_stop_pc)
2535 {
2536 /* And put the step-breakpoint there and go until there. */
2537 struct symtab_and_line sr_sal;
2538
2539 init_sal (&sr_sal); /* initialize to zeroes */
2540 sr_sal.pc = real_stop_pc;
2541 sr_sal.section = find_pc_overlay (sr_sal.pc);
2542
2543 /* Do not specify what the fp should be when we stop since
2544 on some machines the prologue is where the new fp value
2545 is established. */
2546 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2547
2548 /* Restart without fiddling with the step ranges or
2549 other state. */
2550 keep_going (ecs);
2551 return;
2552 }
2553 }
2554
2555 ecs->sal = find_pc_line (stop_pc, 0);
2556
2557 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2558 the trampoline processing logic, however, there are some trampolines
2559 that have no names, so we should do trampoline handling first. */
2560 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2561 && ecs->stop_func_name == NULL
2562 && ecs->sal.line == 0)
2563 {
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2566
2567 /* The inferior just stepped into, or returned to, an
2568 undebuggable function (where there is no debugging information
2569 and no line number corresponding to the address where the
2570 inferior stopped). Since we want to skip this kind of code,
2571 we keep going until the inferior returns from this
2572 function - unless the user has asked us not to (via
2573 set step-mode) or we no longer know how to get back
2574 to the call site. */
2575 if (step_stop_if_no_debug
2576 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2577 {
2578 /* If we have no line number and the step-stop-if-no-debug
2579 is set, we stop the step so that the user has a chance to
2580 switch in assembly mode. */
2581 stop_step = 1;
2582 print_stop_reason (END_STEPPING_RANGE, 0);
2583 stop_stepping (ecs);
2584 return;
2585 }
2586 else
2587 {
2588 /* Set a breakpoint at callee's return address (the address
2589 at which the caller will resume). */
2590 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2591 keep_going (ecs);
2592 return;
2593 }
2594 }
2595
2596 if (step_range_end == 1)
2597 {
2598 /* It is stepi or nexti. We always want to stop stepping after
2599 one instruction. */
2600 if (debug_infrun)
2601 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2602 stop_step = 1;
2603 print_stop_reason (END_STEPPING_RANGE, 0);
2604 stop_stepping (ecs);
2605 return;
2606 }
2607
2608 if (ecs->sal.line == 0)
2609 {
2610 /* We have no line number information. That means to stop
2611 stepping (does this always happen right after one instruction,
2612 when we do "s" in a function with no line numbers,
2613 or can this happen as a result of a return or longjmp?). */
2614 if (debug_infrun)
2615 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2616 stop_step = 1;
2617 print_stop_reason (END_STEPPING_RANGE, 0);
2618 stop_stepping (ecs);
2619 return;
2620 }
2621
2622 if ((stop_pc == ecs->sal.pc)
2623 && (ecs->current_line != ecs->sal.line
2624 || ecs->current_symtab != ecs->sal.symtab))
2625 {
2626 /* We are at the start of a different line. So stop. Note that
2627 we don't stop if we step into the middle of a different line.
2628 That is said to make things like for (;;) statements work
2629 better. */
2630 if (debug_infrun)
2631 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2632 stop_step = 1;
2633 print_stop_reason (END_STEPPING_RANGE, 0);
2634 stop_stepping (ecs);
2635 return;
2636 }
2637
2638 /* We aren't done stepping.
2639
2640 Optimize by setting the stepping range to the line.
2641 (We might not be in the original line, but if we entered a
2642 new line in mid-statement, we continue stepping. This makes
2643 things like for(;;) statements work better.) */
2644
2645 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2646 {
2647 /* If this is the last line of the function, don't keep stepping
2648 (it would probably step us out of the function).
2649 This is particularly necessary for a one-line function,
2650 in which after skipping the prologue we better stop even though
2651 we will be in mid-line. */
2652 if (debug_infrun)
2653 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2654 stop_step = 1;
2655 print_stop_reason (END_STEPPING_RANGE, 0);
2656 stop_stepping (ecs);
2657 return;
2658 }
2659 step_range_start = ecs->sal.pc;
2660 step_range_end = ecs->sal.end;
2661 step_frame_id = get_frame_id (get_current_frame ());
2662 ecs->current_line = ecs->sal.line;
2663 ecs->current_symtab = ecs->sal.symtab;
2664
2665 /* In the case where we just stepped out of a function into the
2666 middle of a line of the caller, continue stepping, but
2667 step_frame_id must be modified to current frame */
2668 #if 0
2669 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2670 generous. It will trigger on things like a step into a frameless
2671 stackless leaf function. I think the logic should instead look
2672 at the unwound frame ID has that should give a more robust
2673 indication of what happened. */
2674 if (step - ID == current - ID)
2675 still stepping in same function;
2676 else if (step - ID == unwind (current - ID))
2677 stepped into a function;
2678 else
2679 stepped out of a function;
2680 /* Of course this assumes that the frame ID unwind code is robust
2681 and we're willing to introduce frame unwind logic into this
2682 function. Fortunately, those days are nearly upon us. */
2683 #endif
2684 {
2685 struct frame_id current_frame = get_frame_id (get_current_frame ());
2686 if (!(frame_id_inner (current_frame, step_frame_id)))
2687 step_frame_id = current_frame;
2688 }
2689
2690 if (debug_infrun)
2691 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2692 keep_going (ecs);
2693 }
2694
2695 /* Are we in the middle of stepping? */
2696
2697 static int
2698 currently_stepping (struct execution_control_state *ecs)
2699 {
2700 return ((!ecs->handling_longjmp
2701 && ((step_range_end && step_resume_breakpoint == NULL)
2702 || trap_expected))
2703 || ecs->stepping_through_solib_after_catch
2704 || bpstat_should_step ());
2705 }
2706
2707 /* Subroutine call with source code we should not step over. Do step
2708 to the first line of code in it. */
2709
2710 static void
2711 step_into_function (struct execution_control_state *ecs)
2712 {
2713 struct symtab *s;
2714 struct symtab_and_line sr_sal;
2715
2716 s = find_pc_symtab (stop_pc);
2717 if (s && s->language != language_asm)
2718 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2719
2720 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2721 /* Use the step_resume_break to step until the end of the prologue,
2722 even if that involves jumps (as it seems to on the vax under
2723 4.2). */
2724 /* If the prologue ends in the middle of a source line, continue to
2725 the end of that source line (if it is still within the function).
2726 Otherwise, just go to end of prologue. */
2727 if (ecs->sal.end
2728 && ecs->sal.pc != ecs->stop_func_start
2729 && ecs->sal.end < ecs->stop_func_end)
2730 ecs->stop_func_start = ecs->sal.end;
2731
2732 /* Architectures which require breakpoint adjustment might not be able
2733 to place a breakpoint at the computed address. If so, the test
2734 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2735 ecs->stop_func_start to an address at which a breakpoint may be
2736 legitimately placed.
2737
2738 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2739 made, GDB will enter an infinite loop when stepping through
2740 optimized code consisting of VLIW instructions which contain
2741 subinstructions corresponding to different source lines. On
2742 FR-V, it's not permitted to place a breakpoint on any but the
2743 first subinstruction of a VLIW instruction. When a breakpoint is
2744 set, GDB will adjust the breakpoint address to the beginning of
2745 the VLIW instruction. Thus, we need to make the corresponding
2746 adjustment here when computing the stop address. */
2747
2748 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2749 {
2750 ecs->stop_func_start
2751 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2752 ecs->stop_func_start);
2753 }
2754
2755 if (ecs->stop_func_start == stop_pc)
2756 {
2757 /* We are already there: stop now. */
2758 stop_step = 1;
2759 print_stop_reason (END_STEPPING_RANGE, 0);
2760 stop_stepping (ecs);
2761 return;
2762 }
2763 else
2764 {
2765 /* Put the step-breakpoint there and go until there. */
2766 init_sal (&sr_sal); /* initialize to zeroes */
2767 sr_sal.pc = ecs->stop_func_start;
2768 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2769
2770 /* Do not specify what the fp should be when we stop since on
2771 some machines the prologue is where the new fp value is
2772 established. */
2773 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2774
2775 /* And make sure stepping stops right away then. */
2776 step_range_end = step_range_start;
2777 }
2778 keep_going (ecs);
2779 }
2780
2781 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2782 This is used to both functions and to skip over code. */
2783
2784 static void
2785 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2786 struct frame_id sr_id)
2787 {
2788 /* There should never be more than one step-resume breakpoint per
2789 thread, so we should never be setting a new
2790 step_resume_breakpoint when one is already active. */
2791 gdb_assert (step_resume_breakpoint == NULL);
2792
2793 if (debug_infrun)
2794 fprintf_unfiltered (gdb_stdlog,
2795 "infrun: inserting step-resume breakpoint at 0x%s\n",
2796 paddr_nz (sr_sal.pc));
2797
2798 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2799 bp_step_resume);
2800 if (breakpoints_inserted)
2801 insert_breakpoints ();
2802 }
2803
2804 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2805 to skip a potential signal handler.
2806
2807 This is called with the interrupted function's frame. The signal
2808 handler, when it returns, will resume the interrupted function at
2809 RETURN_FRAME.pc. */
2810
2811 static void
2812 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2813 {
2814 struct symtab_and_line sr_sal;
2815
2816 init_sal (&sr_sal); /* initialize to zeros */
2817
2818 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2819 sr_sal.section = find_pc_overlay (sr_sal.pc);
2820
2821 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2822 }
2823
2824 /* Similar to insert_step_resume_breakpoint_at_frame, except
2825 but a breakpoint at the previous frame's PC. This is used to
2826 skip a function after stepping into it (for "next" or if the called
2827 function has no debugging information).
2828
2829 The current function has almost always been reached by single
2830 stepping a call or return instruction. NEXT_FRAME belongs to the
2831 current function, and the breakpoint will be set at the caller's
2832 resume address.
2833
2834 This is a separate function rather than reusing
2835 insert_step_resume_breakpoint_at_frame in order to avoid
2836 get_prev_frame, which may stop prematurely (see the implementation
2837 of frame_unwind_id for an example). */
2838
2839 static void
2840 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2841 {
2842 struct symtab_and_line sr_sal;
2843
2844 /* We shouldn't have gotten here if we don't know where the call site
2845 is. */
2846 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2847
2848 init_sal (&sr_sal); /* initialize to zeros */
2849
2850 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2851 sr_sal.section = find_pc_overlay (sr_sal.pc);
2852
2853 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2854 }
2855
2856 static void
2857 stop_stepping (struct execution_control_state *ecs)
2858 {
2859 if (debug_infrun)
2860 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2861
2862 /* Let callers know we don't want to wait for the inferior anymore. */
2863 ecs->wait_some_more = 0;
2864 }
2865
2866 /* This function handles various cases where we need to continue
2867 waiting for the inferior. */
2868 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2869
2870 static void
2871 keep_going (struct execution_control_state *ecs)
2872 {
2873 /* Save the pc before execution, to compare with pc after stop. */
2874 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2875
2876 /* If we did not do break;, it means we should keep running the
2877 inferior and not return to debugger. */
2878
2879 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2880 {
2881 /* We took a signal (which we are supposed to pass through to
2882 the inferior, else we'd have done a break above) and we
2883 haven't yet gotten our trap. Simply continue. */
2884 resume (currently_stepping (ecs), stop_signal);
2885 }
2886 else
2887 {
2888 /* Either the trap was not expected, but we are continuing
2889 anyway (the user asked that this signal be passed to the
2890 child)
2891 -- or --
2892 The signal was SIGTRAP, e.g. it was our signal, but we
2893 decided we should resume from it.
2894
2895 We're going to run this baby now! */
2896
2897 if (!breakpoints_inserted && !ecs->another_trap)
2898 {
2899 /* Stop stepping when inserting breakpoints
2900 has failed. */
2901 if (insert_breakpoints () != 0)
2902 {
2903 stop_stepping (ecs);
2904 return;
2905 }
2906 breakpoints_inserted = 1;
2907 }
2908
2909 trap_expected = ecs->another_trap;
2910
2911 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2912 specifies that such a signal should be delivered to the
2913 target program).
2914
2915 Typically, this would occure when a user is debugging a
2916 target monitor on a simulator: the target monitor sets a
2917 breakpoint; the simulator encounters this break-point and
2918 halts the simulation handing control to GDB; GDB, noteing
2919 that the break-point isn't valid, returns control back to the
2920 simulator; the simulator then delivers the hardware
2921 equivalent of a SIGNAL_TRAP to the program being debugged. */
2922
2923 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2924 stop_signal = TARGET_SIGNAL_0;
2925
2926
2927 resume (currently_stepping (ecs), stop_signal);
2928 }
2929
2930 prepare_to_wait (ecs);
2931 }
2932
2933 /* This function normally comes after a resume, before
2934 handle_inferior_event exits. It takes care of any last bits of
2935 housekeeping, and sets the all-important wait_some_more flag. */
2936
2937 static void
2938 prepare_to_wait (struct execution_control_state *ecs)
2939 {
2940 if (debug_infrun)
2941 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2942 if (ecs->infwait_state == infwait_normal_state)
2943 {
2944 overlay_cache_invalid = 1;
2945
2946 /* We have to invalidate the registers BEFORE calling
2947 target_wait because they can be loaded from the target while
2948 in target_wait. This makes remote debugging a bit more
2949 efficient for those targets that provide critical registers
2950 as part of their normal status mechanism. */
2951
2952 registers_changed ();
2953 ecs->waiton_ptid = pid_to_ptid (-1);
2954 ecs->wp = &(ecs->ws);
2955 }
2956 /* This is the old end of the while loop. Let everybody know we
2957 want to wait for the inferior some more and get called again
2958 soon. */
2959 ecs->wait_some_more = 1;
2960 }
2961
2962 /* Print why the inferior has stopped. We always print something when
2963 the inferior exits, or receives a signal. The rest of the cases are
2964 dealt with later on in normal_stop() and print_it_typical(). Ideally
2965 there should be a call to this function from handle_inferior_event()
2966 each time stop_stepping() is called.*/
2967 static void
2968 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2969 {
2970 switch (stop_reason)
2971 {
2972 case END_STEPPING_RANGE:
2973 /* We are done with a step/next/si/ni command. */
2974 /* For now print nothing. */
2975 /* Print a message only if not in the middle of doing a "step n"
2976 operation for n > 1 */
2977 if (!step_multi || !stop_step)
2978 if (ui_out_is_mi_like_p (uiout))
2979 ui_out_field_string
2980 (uiout, "reason",
2981 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2982 break;
2983 case SIGNAL_EXITED:
2984 /* The inferior was terminated by a signal. */
2985 annotate_signalled ();
2986 if (ui_out_is_mi_like_p (uiout))
2987 ui_out_field_string
2988 (uiout, "reason",
2989 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2990 ui_out_text (uiout, "\nProgram terminated with signal ");
2991 annotate_signal_name ();
2992 ui_out_field_string (uiout, "signal-name",
2993 target_signal_to_name (stop_info));
2994 annotate_signal_name_end ();
2995 ui_out_text (uiout, ", ");
2996 annotate_signal_string ();
2997 ui_out_field_string (uiout, "signal-meaning",
2998 target_signal_to_string (stop_info));
2999 annotate_signal_string_end ();
3000 ui_out_text (uiout, ".\n");
3001 ui_out_text (uiout, "The program no longer exists.\n");
3002 break;
3003 case EXITED:
3004 /* The inferior program is finished. */
3005 annotate_exited (stop_info);
3006 if (stop_info)
3007 {
3008 if (ui_out_is_mi_like_p (uiout))
3009 ui_out_field_string (uiout, "reason",
3010 async_reason_lookup (EXEC_ASYNC_EXITED));
3011 ui_out_text (uiout, "\nProgram exited with code ");
3012 ui_out_field_fmt (uiout, "exit-code", "0%o",
3013 (unsigned int) stop_info);
3014 ui_out_text (uiout, ".\n");
3015 }
3016 else
3017 {
3018 if (ui_out_is_mi_like_p (uiout))
3019 ui_out_field_string
3020 (uiout, "reason",
3021 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3022 ui_out_text (uiout, "\nProgram exited normally.\n");
3023 }
3024 /* Support the --return-child-result option. */
3025 return_child_result_value = stop_info;
3026 break;
3027 case SIGNAL_RECEIVED:
3028 /* Signal received. The signal table tells us to print about
3029 it. */
3030 annotate_signal ();
3031 ui_out_text (uiout, "\nProgram received signal ");
3032 annotate_signal_name ();
3033 if (ui_out_is_mi_like_p (uiout))
3034 ui_out_field_string
3035 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3036 ui_out_field_string (uiout, "signal-name",
3037 target_signal_to_name (stop_info));
3038 annotate_signal_name_end ();
3039 ui_out_text (uiout, ", ");
3040 annotate_signal_string ();
3041 ui_out_field_string (uiout, "signal-meaning",
3042 target_signal_to_string (stop_info));
3043 annotate_signal_string_end ();
3044 ui_out_text (uiout, ".\n");
3045 break;
3046 default:
3047 internal_error (__FILE__, __LINE__,
3048 _("print_stop_reason: unrecognized enum value"));
3049 break;
3050 }
3051 }
3052 \f
3053
3054 /* Here to return control to GDB when the inferior stops for real.
3055 Print appropriate messages, remove breakpoints, give terminal our modes.
3056
3057 STOP_PRINT_FRAME nonzero means print the executing frame
3058 (pc, function, args, file, line number and line text).
3059 BREAKPOINTS_FAILED nonzero means stop was due to error
3060 attempting to insert breakpoints. */
3061
3062 void
3063 normal_stop (void)
3064 {
3065 struct target_waitstatus last;
3066 ptid_t last_ptid;
3067
3068 get_last_target_status (&last_ptid, &last);
3069
3070 /* As with the notification of thread events, we want to delay
3071 notifying the user that we've switched thread context until
3072 the inferior actually stops.
3073
3074 There's no point in saying anything if the inferior has exited.
3075 Note that SIGNALLED here means "exited with a signal", not
3076 "received a signal". */
3077 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3078 && target_has_execution
3079 && last.kind != TARGET_WAITKIND_SIGNALLED
3080 && last.kind != TARGET_WAITKIND_EXITED)
3081 {
3082 target_terminal_ours_for_output ();
3083 printf_filtered (_("[Switching to %s]\n"),
3084 target_pid_or_tid_to_str (inferior_ptid));
3085 previous_inferior_ptid = inferior_ptid;
3086 }
3087
3088 /* NOTE drow/2004-01-17: Is this still necessary? */
3089 /* Make sure that the current_frame's pc is correct. This
3090 is a correction for setting up the frame info before doing
3091 DECR_PC_AFTER_BREAK */
3092 if (target_has_execution)
3093 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3094 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3095 frame code to check for this and sort out any resultant mess.
3096 DECR_PC_AFTER_BREAK needs to just go away. */
3097 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3098
3099 if (target_has_execution && breakpoints_inserted)
3100 {
3101 if (remove_breakpoints ())
3102 {
3103 target_terminal_ours_for_output ();
3104 printf_filtered (_("\
3105 Cannot remove breakpoints because program is no longer writable.\n\
3106 It might be running in another process.\n\
3107 Further execution is probably impossible.\n"));
3108 }
3109 }
3110 breakpoints_inserted = 0;
3111
3112 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3113 Delete any breakpoint that is to be deleted at the next stop. */
3114
3115 breakpoint_auto_delete (stop_bpstat);
3116
3117 /* If an auto-display called a function and that got a signal,
3118 delete that auto-display to avoid an infinite recursion. */
3119
3120 if (stopped_by_random_signal)
3121 disable_current_display ();
3122
3123 /* Don't print a message if in the middle of doing a "step n"
3124 operation for n > 1 */
3125 if (step_multi && stop_step)
3126 goto done;
3127
3128 target_terminal_ours ();
3129
3130 /* Set the current source location. This will also happen if we
3131 display the frame below, but the current SAL will be incorrect
3132 during a user hook-stop function. */
3133 if (target_has_stack && !stop_stack_dummy)
3134 set_current_sal_from_frame (get_current_frame (), 1);
3135
3136 /* Look up the hook_stop and run it (CLI internally handles problem
3137 of stop_command's pre-hook not existing). */
3138 if (stop_command)
3139 catch_errors (hook_stop_stub, stop_command,
3140 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3141
3142 if (!target_has_stack)
3143 {
3144
3145 goto done;
3146 }
3147
3148 /* Select innermost stack frame - i.e., current frame is frame 0,
3149 and current location is based on that.
3150 Don't do this on return from a stack dummy routine,
3151 or if the program has exited. */
3152
3153 if (!stop_stack_dummy)
3154 {
3155 select_frame (get_current_frame ());
3156
3157 /* Print current location without a level number, if
3158 we have changed functions or hit a breakpoint.
3159 Print source line if we have one.
3160 bpstat_print() contains the logic deciding in detail
3161 what to print, based on the event(s) that just occurred. */
3162
3163 if (stop_print_frame)
3164 {
3165 int bpstat_ret;
3166 int source_flag;
3167 int do_frame_printing = 1;
3168
3169 bpstat_ret = bpstat_print (stop_bpstat);
3170 switch (bpstat_ret)
3171 {
3172 case PRINT_UNKNOWN:
3173 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3174 (or should) carry around the function and does (or
3175 should) use that when doing a frame comparison. */
3176 if (stop_step
3177 && frame_id_eq (step_frame_id,
3178 get_frame_id (get_current_frame ()))
3179 && step_start_function == find_pc_function (stop_pc))
3180 source_flag = SRC_LINE; /* finished step, just print source line */
3181 else
3182 source_flag = SRC_AND_LOC; /* print location and source line */
3183 break;
3184 case PRINT_SRC_AND_LOC:
3185 source_flag = SRC_AND_LOC; /* print location and source line */
3186 break;
3187 case PRINT_SRC_ONLY:
3188 source_flag = SRC_LINE;
3189 break;
3190 case PRINT_NOTHING:
3191 source_flag = SRC_LINE; /* something bogus */
3192 do_frame_printing = 0;
3193 break;
3194 default:
3195 internal_error (__FILE__, __LINE__, _("Unknown value."));
3196 }
3197
3198 if (ui_out_is_mi_like_p (uiout))
3199 ui_out_field_int (uiout, "thread-id",
3200 pid_to_thread_id (inferior_ptid));
3201 /* The behavior of this routine with respect to the source
3202 flag is:
3203 SRC_LINE: Print only source line
3204 LOCATION: Print only location
3205 SRC_AND_LOC: Print location and source line */
3206 if (do_frame_printing)
3207 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3208
3209 /* Display the auto-display expressions. */
3210 do_displays ();
3211 }
3212 }
3213
3214 /* Save the function value return registers, if we care.
3215 We might be about to restore their previous contents. */
3216 if (proceed_to_finish)
3217 /* NB: The copy goes through to the target picking up the value of
3218 all the registers. */
3219 regcache_cpy (stop_registers, current_regcache);
3220
3221 if (stop_stack_dummy)
3222 {
3223 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3224 ends with a setting of the current frame, so we can use that
3225 next. */
3226 frame_pop (get_current_frame ());
3227 /* Set stop_pc to what it was before we called the function.
3228 Can't rely on restore_inferior_status because that only gets
3229 called if we don't stop in the called function. */
3230 stop_pc = read_pc ();
3231 select_frame (get_current_frame ());
3232 }
3233
3234 done:
3235 annotate_stopped ();
3236 observer_notify_normal_stop (stop_bpstat);
3237 }
3238
3239 static int
3240 hook_stop_stub (void *cmd)
3241 {
3242 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3243 return (0);
3244 }
3245 \f
3246 int
3247 signal_stop_state (int signo)
3248 {
3249 return signal_stop[signo];
3250 }
3251
3252 int
3253 signal_print_state (int signo)
3254 {
3255 return signal_print[signo];
3256 }
3257
3258 int
3259 signal_pass_state (int signo)
3260 {
3261 return signal_program[signo];
3262 }
3263
3264 int
3265 signal_stop_update (int signo, int state)
3266 {
3267 int ret = signal_stop[signo];
3268 signal_stop[signo] = state;
3269 return ret;
3270 }
3271
3272 int
3273 signal_print_update (int signo, int state)
3274 {
3275 int ret = signal_print[signo];
3276 signal_print[signo] = state;
3277 return ret;
3278 }
3279
3280 int
3281 signal_pass_update (int signo, int state)
3282 {
3283 int ret = signal_program[signo];
3284 signal_program[signo] = state;
3285 return ret;
3286 }
3287
3288 static void
3289 sig_print_header (void)
3290 {
3291 printf_filtered (_("\
3292 Signal Stop\tPrint\tPass to program\tDescription\n"));
3293 }
3294
3295 static void
3296 sig_print_info (enum target_signal oursig)
3297 {
3298 char *name = target_signal_to_name (oursig);
3299 int name_padding = 13 - strlen (name);
3300
3301 if (name_padding <= 0)
3302 name_padding = 0;
3303
3304 printf_filtered ("%s", name);
3305 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3306 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3307 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3308 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3309 printf_filtered ("%s\n", target_signal_to_string (oursig));
3310 }
3311
3312 /* Specify how various signals in the inferior should be handled. */
3313
3314 static void
3315 handle_command (char *args, int from_tty)
3316 {
3317 char **argv;
3318 int digits, wordlen;
3319 int sigfirst, signum, siglast;
3320 enum target_signal oursig;
3321 int allsigs;
3322 int nsigs;
3323 unsigned char *sigs;
3324 struct cleanup *old_chain;
3325
3326 if (args == NULL)
3327 {
3328 error_no_arg (_("signal to handle"));
3329 }
3330
3331 /* Allocate and zero an array of flags for which signals to handle. */
3332
3333 nsigs = (int) TARGET_SIGNAL_LAST;
3334 sigs = (unsigned char *) alloca (nsigs);
3335 memset (sigs, 0, nsigs);
3336
3337 /* Break the command line up into args. */
3338
3339 argv = buildargv (args);
3340 if (argv == NULL)
3341 {
3342 nomem (0);
3343 }
3344 old_chain = make_cleanup_freeargv (argv);
3345
3346 /* Walk through the args, looking for signal oursigs, signal names, and
3347 actions. Signal numbers and signal names may be interspersed with
3348 actions, with the actions being performed for all signals cumulatively
3349 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3350
3351 while (*argv != NULL)
3352 {
3353 wordlen = strlen (*argv);
3354 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3355 {;
3356 }
3357 allsigs = 0;
3358 sigfirst = siglast = -1;
3359
3360 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3361 {
3362 /* Apply action to all signals except those used by the
3363 debugger. Silently skip those. */
3364 allsigs = 1;
3365 sigfirst = 0;
3366 siglast = nsigs - 1;
3367 }
3368 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3369 {
3370 SET_SIGS (nsigs, sigs, signal_stop);
3371 SET_SIGS (nsigs, sigs, signal_print);
3372 }
3373 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3374 {
3375 UNSET_SIGS (nsigs, sigs, signal_program);
3376 }
3377 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3378 {
3379 SET_SIGS (nsigs, sigs, signal_print);
3380 }
3381 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3382 {
3383 SET_SIGS (nsigs, sigs, signal_program);
3384 }
3385 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3386 {
3387 UNSET_SIGS (nsigs, sigs, signal_stop);
3388 }
3389 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3390 {
3391 SET_SIGS (nsigs, sigs, signal_program);
3392 }
3393 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3394 {
3395 UNSET_SIGS (nsigs, sigs, signal_print);
3396 UNSET_SIGS (nsigs, sigs, signal_stop);
3397 }
3398 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3399 {
3400 UNSET_SIGS (nsigs, sigs, signal_program);
3401 }
3402 else if (digits > 0)
3403 {
3404 /* It is numeric. The numeric signal refers to our own
3405 internal signal numbering from target.h, not to host/target
3406 signal number. This is a feature; users really should be
3407 using symbolic names anyway, and the common ones like
3408 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3409
3410 sigfirst = siglast = (int)
3411 target_signal_from_command (atoi (*argv));
3412 if ((*argv)[digits] == '-')
3413 {
3414 siglast = (int)
3415 target_signal_from_command (atoi ((*argv) + digits + 1));
3416 }
3417 if (sigfirst > siglast)
3418 {
3419 /* Bet he didn't figure we'd think of this case... */
3420 signum = sigfirst;
3421 sigfirst = siglast;
3422 siglast = signum;
3423 }
3424 }
3425 else
3426 {
3427 oursig = target_signal_from_name (*argv);
3428 if (oursig != TARGET_SIGNAL_UNKNOWN)
3429 {
3430 sigfirst = siglast = (int) oursig;
3431 }
3432 else
3433 {
3434 /* Not a number and not a recognized flag word => complain. */
3435 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3436 }
3437 }
3438
3439 /* If any signal numbers or symbol names were found, set flags for
3440 which signals to apply actions to. */
3441
3442 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3443 {
3444 switch ((enum target_signal) signum)
3445 {
3446 case TARGET_SIGNAL_TRAP:
3447 case TARGET_SIGNAL_INT:
3448 if (!allsigs && !sigs[signum])
3449 {
3450 if (query ("%s is used by the debugger.\n\
3451 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3452 {
3453 sigs[signum] = 1;
3454 }
3455 else
3456 {
3457 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3458 gdb_flush (gdb_stdout);
3459 }
3460 }
3461 break;
3462 case TARGET_SIGNAL_0:
3463 case TARGET_SIGNAL_DEFAULT:
3464 case TARGET_SIGNAL_UNKNOWN:
3465 /* Make sure that "all" doesn't print these. */
3466 break;
3467 default:
3468 sigs[signum] = 1;
3469 break;
3470 }
3471 }
3472
3473 argv++;
3474 }
3475
3476 target_notice_signals (inferior_ptid);
3477
3478 if (from_tty)
3479 {
3480 /* Show the results. */
3481 sig_print_header ();
3482 for (signum = 0; signum < nsigs; signum++)
3483 {
3484 if (sigs[signum])
3485 {
3486 sig_print_info (signum);
3487 }
3488 }
3489 }
3490
3491 do_cleanups (old_chain);
3492 }
3493
3494 static void
3495 xdb_handle_command (char *args, int from_tty)
3496 {
3497 char **argv;
3498 struct cleanup *old_chain;
3499
3500 /* Break the command line up into args. */
3501
3502 argv = buildargv (args);
3503 if (argv == NULL)
3504 {
3505 nomem (0);
3506 }
3507 old_chain = make_cleanup_freeargv (argv);
3508 if (argv[1] != (char *) NULL)
3509 {
3510 char *argBuf;
3511 int bufLen;
3512
3513 bufLen = strlen (argv[0]) + 20;
3514 argBuf = (char *) xmalloc (bufLen);
3515 if (argBuf)
3516 {
3517 int validFlag = 1;
3518 enum target_signal oursig;
3519
3520 oursig = target_signal_from_name (argv[0]);
3521 memset (argBuf, 0, bufLen);
3522 if (strcmp (argv[1], "Q") == 0)
3523 sprintf (argBuf, "%s %s", argv[0], "noprint");
3524 else
3525 {
3526 if (strcmp (argv[1], "s") == 0)
3527 {
3528 if (!signal_stop[oursig])
3529 sprintf (argBuf, "%s %s", argv[0], "stop");
3530 else
3531 sprintf (argBuf, "%s %s", argv[0], "nostop");
3532 }
3533 else if (strcmp (argv[1], "i") == 0)
3534 {
3535 if (!signal_program[oursig])
3536 sprintf (argBuf, "%s %s", argv[0], "pass");
3537 else
3538 sprintf (argBuf, "%s %s", argv[0], "nopass");
3539 }
3540 else if (strcmp (argv[1], "r") == 0)
3541 {
3542 if (!signal_print[oursig])
3543 sprintf (argBuf, "%s %s", argv[0], "print");
3544 else
3545 sprintf (argBuf, "%s %s", argv[0], "noprint");
3546 }
3547 else
3548 validFlag = 0;
3549 }
3550 if (validFlag)
3551 handle_command (argBuf, from_tty);
3552 else
3553 printf_filtered (_("Invalid signal handling flag.\n"));
3554 if (argBuf)
3555 xfree (argBuf);
3556 }
3557 }
3558 do_cleanups (old_chain);
3559 }
3560
3561 /* Print current contents of the tables set by the handle command.
3562 It is possible we should just be printing signals actually used
3563 by the current target (but for things to work right when switching
3564 targets, all signals should be in the signal tables). */
3565
3566 static void
3567 signals_info (char *signum_exp, int from_tty)
3568 {
3569 enum target_signal oursig;
3570 sig_print_header ();
3571
3572 if (signum_exp)
3573 {
3574 /* First see if this is a symbol name. */
3575 oursig = target_signal_from_name (signum_exp);
3576 if (oursig == TARGET_SIGNAL_UNKNOWN)
3577 {
3578 /* No, try numeric. */
3579 oursig =
3580 target_signal_from_command (parse_and_eval_long (signum_exp));
3581 }
3582 sig_print_info (oursig);
3583 return;
3584 }
3585
3586 printf_filtered ("\n");
3587 /* These ugly casts brought to you by the native VAX compiler. */
3588 for (oursig = TARGET_SIGNAL_FIRST;
3589 (int) oursig < (int) TARGET_SIGNAL_LAST;
3590 oursig = (enum target_signal) ((int) oursig + 1))
3591 {
3592 QUIT;
3593
3594 if (oursig != TARGET_SIGNAL_UNKNOWN
3595 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3596 sig_print_info (oursig);
3597 }
3598
3599 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3600 }
3601 \f
3602 struct inferior_status
3603 {
3604 enum target_signal stop_signal;
3605 CORE_ADDR stop_pc;
3606 bpstat stop_bpstat;
3607 int stop_step;
3608 int stop_stack_dummy;
3609 int stopped_by_random_signal;
3610 int trap_expected;
3611 CORE_ADDR step_range_start;
3612 CORE_ADDR step_range_end;
3613 struct frame_id step_frame_id;
3614 enum step_over_calls_kind step_over_calls;
3615 CORE_ADDR step_resume_break_address;
3616 int stop_after_trap;
3617 int stop_soon;
3618 struct regcache *stop_registers;
3619
3620 /* These are here because if call_function_by_hand has written some
3621 registers and then decides to call error(), we better not have changed
3622 any registers. */
3623 struct regcache *registers;
3624
3625 /* A frame unique identifier. */
3626 struct frame_id selected_frame_id;
3627
3628 int breakpoint_proceeded;
3629 int restore_stack_info;
3630 int proceed_to_finish;
3631 };
3632
3633 void
3634 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3635 LONGEST val)
3636 {
3637 int size = register_size (current_gdbarch, regno);
3638 void *buf = alloca (size);
3639 store_signed_integer (buf, size, val);
3640 regcache_raw_write (inf_status->registers, regno, buf);
3641 }
3642
3643 /* Save all of the information associated with the inferior<==>gdb
3644 connection. INF_STATUS is a pointer to a "struct inferior_status"
3645 (defined in inferior.h). */
3646
3647 struct inferior_status *
3648 save_inferior_status (int restore_stack_info)
3649 {
3650 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3651
3652 inf_status->stop_signal = stop_signal;
3653 inf_status->stop_pc = stop_pc;
3654 inf_status->stop_step = stop_step;
3655 inf_status->stop_stack_dummy = stop_stack_dummy;
3656 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3657 inf_status->trap_expected = trap_expected;
3658 inf_status->step_range_start = step_range_start;
3659 inf_status->step_range_end = step_range_end;
3660 inf_status->step_frame_id = step_frame_id;
3661 inf_status->step_over_calls = step_over_calls;
3662 inf_status->stop_after_trap = stop_after_trap;
3663 inf_status->stop_soon = stop_soon;
3664 /* Save original bpstat chain here; replace it with copy of chain.
3665 If caller's caller is walking the chain, they'll be happier if we
3666 hand them back the original chain when restore_inferior_status is
3667 called. */
3668 inf_status->stop_bpstat = stop_bpstat;
3669 stop_bpstat = bpstat_copy (stop_bpstat);
3670 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3671 inf_status->restore_stack_info = restore_stack_info;
3672 inf_status->proceed_to_finish = proceed_to_finish;
3673
3674 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3675
3676 inf_status->registers = regcache_dup (current_regcache);
3677
3678 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3679 return inf_status;
3680 }
3681
3682 static int
3683 restore_selected_frame (void *args)
3684 {
3685 struct frame_id *fid = (struct frame_id *) args;
3686 struct frame_info *frame;
3687
3688 frame = frame_find_by_id (*fid);
3689
3690 /* If inf_status->selected_frame_id is NULL, there was no previously
3691 selected frame. */
3692 if (frame == NULL)
3693 {
3694 warning (_("Unable to restore previously selected frame."));
3695 return 0;
3696 }
3697
3698 select_frame (frame);
3699
3700 return (1);
3701 }
3702
3703 void
3704 restore_inferior_status (struct inferior_status *inf_status)
3705 {
3706 stop_signal = inf_status->stop_signal;
3707 stop_pc = inf_status->stop_pc;
3708 stop_step = inf_status->stop_step;
3709 stop_stack_dummy = inf_status->stop_stack_dummy;
3710 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3711 trap_expected = inf_status->trap_expected;
3712 step_range_start = inf_status->step_range_start;
3713 step_range_end = inf_status->step_range_end;
3714 step_frame_id = inf_status->step_frame_id;
3715 step_over_calls = inf_status->step_over_calls;
3716 stop_after_trap = inf_status->stop_after_trap;
3717 stop_soon = inf_status->stop_soon;
3718 bpstat_clear (&stop_bpstat);
3719 stop_bpstat = inf_status->stop_bpstat;
3720 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3721 proceed_to_finish = inf_status->proceed_to_finish;
3722
3723 /* FIXME: Is the restore of stop_registers always needed. */
3724 regcache_xfree (stop_registers);
3725 stop_registers = inf_status->stop_registers;
3726
3727 /* The inferior can be gone if the user types "print exit(0)"
3728 (and perhaps other times). */
3729 if (target_has_execution)
3730 /* NB: The register write goes through to the target. */
3731 regcache_cpy (current_regcache, inf_status->registers);
3732 regcache_xfree (inf_status->registers);
3733
3734 /* FIXME: If we are being called after stopping in a function which
3735 is called from gdb, we should not be trying to restore the
3736 selected frame; it just prints a spurious error message (The
3737 message is useful, however, in detecting bugs in gdb (like if gdb
3738 clobbers the stack)). In fact, should we be restoring the
3739 inferior status at all in that case? . */
3740
3741 if (target_has_stack && inf_status->restore_stack_info)
3742 {
3743 /* The point of catch_errors is that if the stack is clobbered,
3744 walking the stack might encounter a garbage pointer and
3745 error() trying to dereference it. */
3746 if (catch_errors
3747 (restore_selected_frame, &inf_status->selected_frame_id,
3748 "Unable to restore previously selected frame:\n",
3749 RETURN_MASK_ERROR) == 0)
3750 /* Error in restoring the selected frame. Select the innermost
3751 frame. */
3752 select_frame (get_current_frame ());
3753
3754 }
3755
3756 xfree (inf_status);
3757 }
3758
3759 static void
3760 do_restore_inferior_status_cleanup (void *sts)
3761 {
3762 restore_inferior_status (sts);
3763 }
3764
3765 struct cleanup *
3766 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3767 {
3768 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3769 }
3770
3771 void
3772 discard_inferior_status (struct inferior_status *inf_status)
3773 {
3774 /* See save_inferior_status for info on stop_bpstat. */
3775 bpstat_clear (&inf_status->stop_bpstat);
3776 regcache_xfree (inf_status->registers);
3777 regcache_xfree (inf_status->stop_registers);
3778 xfree (inf_status);
3779 }
3780
3781 int
3782 inferior_has_forked (int pid, int *child_pid)
3783 {
3784 struct target_waitstatus last;
3785 ptid_t last_ptid;
3786
3787 get_last_target_status (&last_ptid, &last);
3788
3789 if (last.kind != TARGET_WAITKIND_FORKED)
3790 return 0;
3791
3792 if (ptid_get_pid (last_ptid) != pid)
3793 return 0;
3794
3795 *child_pid = last.value.related_pid;
3796 return 1;
3797 }
3798
3799 int
3800 inferior_has_vforked (int pid, int *child_pid)
3801 {
3802 struct target_waitstatus last;
3803 ptid_t last_ptid;
3804
3805 get_last_target_status (&last_ptid, &last);
3806
3807 if (last.kind != TARGET_WAITKIND_VFORKED)
3808 return 0;
3809
3810 if (ptid_get_pid (last_ptid) != pid)
3811 return 0;
3812
3813 *child_pid = last.value.related_pid;
3814 return 1;
3815 }
3816
3817 int
3818 inferior_has_execd (int pid, char **execd_pathname)
3819 {
3820 struct target_waitstatus last;
3821 ptid_t last_ptid;
3822
3823 get_last_target_status (&last_ptid, &last);
3824
3825 if (last.kind != TARGET_WAITKIND_EXECD)
3826 return 0;
3827
3828 if (ptid_get_pid (last_ptid) != pid)
3829 return 0;
3830
3831 *execd_pathname = xstrdup (last.value.execd_pathname);
3832 return 1;
3833 }
3834
3835 /* Oft used ptids */
3836 ptid_t null_ptid;
3837 ptid_t minus_one_ptid;
3838
3839 /* Create a ptid given the necessary PID, LWP, and TID components. */
3840
3841 ptid_t
3842 ptid_build (int pid, long lwp, long tid)
3843 {
3844 ptid_t ptid;
3845
3846 ptid.pid = pid;
3847 ptid.lwp = lwp;
3848 ptid.tid = tid;
3849 return ptid;
3850 }
3851
3852 /* Create a ptid from just a pid. */
3853
3854 ptid_t
3855 pid_to_ptid (int pid)
3856 {
3857 return ptid_build (pid, 0, 0);
3858 }
3859
3860 /* Fetch the pid (process id) component from a ptid. */
3861
3862 int
3863 ptid_get_pid (ptid_t ptid)
3864 {
3865 return ptid.pid;
3866 }
3867
3868 /* Fetch the lwp (lightweight process) component from a ptid. */
3869
3870 long
3871 ptid_get_lwp (ptid_t ptid)
3872 {
3873 return ptid.lwp;
3874 }
3875
3876 /* Fetch the tid (thread id) component from a ptid. */
3877
3878 long
3879 ptid_get_tid (ptid_t ptid)
3880 {
3881 return ptid.tid;
3882 }
3883
3884 /* ptid_equal() is used to test equality of two ptids. */
3885
3886 int
3887 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3888 {
3889 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3890 && ptid1.tid == ptid2.tid);
3891 }
3892
3893 /* restore_inferior_ptid() will be used by the cleanup machinery
3894 to restore the inferior_ptid value saved in a call to
3895 save_inferior_ptid(). */
3896
3897 static void
3898 restore_inferior_ptid (void *arg)
3899 {
3900 ptid_t *saved_ptid_ptr = arg;
3901 inferior_ptid = *saved_ptid_ptr;
3902 xfree (arg);
3903 }
3904
3905 /* Save the value of inferior_ptid so that it may be restored by a
3906 later call to do_cleanups(). Returns the struct cleanup pointer
3907 needed for later doing the cleanup. */
3908
3909 struct cleanup *
3910 save_inferior_ptid (void)
3911 {
3912 ptid_t *saved_ptid_ptr;
3913
3914 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3915 *saved_ptid_ptr = inferior_ptid;
3916 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3917 }
3918 \f
3919
3920 static void
3921 build_infrun (void)
3922 {
3923 stop_registers = regcache_xmalloc (current_gdbarch);
3924 }
3925
3926 void
3927 _initialize_infrun (void)
3928 {
3929 int i;
3930 int numsigs;
3931 struct cmd_list_element *c;
3932
3933 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3934 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3935
3936 add_info ("signals", signals_info, _("\
3937 What debugger does when program gets various signals.\n\
3938 Specify a signal as argument to print info on that signal only."));
3939 add_info_alias ("handle", "signals", 0);
3940
3941 add_com ("handle", class_run, handle_command, _("\
3942 Specify how to handle a signal.\n\
3943 Args are signals and actions to apply to those signals.\n\
3944 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3945 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3946 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3947 The special arg \"all\" is recognized to mean all signals except those\n\
3948 used by the debugger, typically SIGTRAP and SIGINT.\n\
3949 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3950 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3951 Stop means reenter debugger if this signal happens (implies print).\n\
3952 Print means print a message if this signal happens.\n\
3953 Pass means let program see this signal; otherwise program doesn't know.\n\
3954 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3955 Pass and Stop may be combined."));
3956 if (xdb_commands)
3957 {
3958 add_com ("lz", class_info, signals_info, _("\
3959 What debugger does when program gets various signals.\n\
3960 Specify a signal as argument to print info on that signal only."));
3961 add_com ("z", class_run, xdb_handle_command, _("\
3962 Specify how to handle a signal.\n\
3963 Args are signals and actions to apply to those signals.\n\
3964 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3965 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3966 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3967 The special arg \"all\" is recognized to mean all signals except those\n\
3968 used by the debugger, typically SIGTRAP and SIGINT.\n\
3969 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3970 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3971 nopass), \"Q\" (noprint)\n\
3972 Stop means reenter debugger if this signal happens (implies print).\n\
3973 Print means print a message if this signal happens.\n\
3974 Pass means let program see this signal; otherwise program doesn't know.\n\
3975 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3976 Pass and Stop may be combined."));
3977 }
3978
3979 if (!dbx_commands)
3980 stop_command = add_cmd ("stop", class_obscure,
3981 not_just_help_class_command, _("\
3982 There is no `stop' command, but you can set a hook on `stop'.\n\
3983 This allows you to set a list of commands to be run each time execution\n\
3984 of the program stops."), &cmdlist);
3985
3986 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3987 Set inferior debugging."), _("\
3988 Show inferior debugging."), _("\
3989 When non-zero, inferior specific debugging is enabled."),
3990 NULL,
3991 show_debug_infrun,
3992 &setdebuglist, &showdebuglist);
3993
3994 numsigs = (int) TARGET_SIGNAL_LAST;
3995 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3996 signal_print = (unsigned char *)
3997 xmalloc (sizeof (signal_print[0]) * numsigs);
3998 signal_program = (unsigned char *)
3999 xmalloc (sizeof (signal_program[0]) * numsigs);
4000 for (i = 0; i < numsigs; i++)
4001 {
4002 signal_stop[i] = 1;
4003 signal_print[i] = 1;
4004 signal_program[i] = 1;
4005 }
4006
4007 /* Signals caused by debugger's own actions
4008 should not be given to the program afterwards. */
4009 signal_program[TARGET_SIGNAL_TRAP] = 0;
4010 signal_program[TARGET_SIGNAL_INT] = 0;
4011
4012 /* Signals that are not errors should not normally enter the debugger. */
4013 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4014 signal_print[TARGET_SIGNAL_ALRM] = 0;
4015 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4016 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4017 signal_stop[TARGET_SIGNAL_PROF] = 0;
4018 signal_print[TARGET_SIGNAL_PROF] = 0;
4019 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4020 signal_print[TARGET_SIGNAL_CHLD] = 0;
4021 signal_stop[TARGET_SIGNAL_IO] = 0;
4022 signal_print[TARGET_SIGNAL_IO] = 0;
4023 signal_stop[TARGET_SIGNAL_POLL] = 0;
4024 signal_print[TARGET_SIGNAL_POLL] = 0;
4025 signal_stop[TARGET_SIGNAL_URG] = 0;
4026 signal_print[TARGET_SIGNAL_URG] = 0;
4027 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4028 signal_print[TARGET_SIGNAL_WINCH] = 0;
4029
4030 /* These signals are used internally by user-level thread
4031 implementations. (See signal(5) on Solaris.) Like the above
4032 signals, a healthy program receives and handles them as part of
4033 its normal operation. */
4034 signal_stop[TARGET_SIGNAL_LWP] = 0;
4035 signal_print[TARGET_SIGNAL_LWP] = 0;
4036 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4037 signal_print[TARGET_SIGNAL_WAITING] = 0;
4038 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4039 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4040
4041 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4042 &stop_on_solib_events, _("\
4043 Set stopping for shared library events."), _("\
4044 Show stopping for shared library events."), _("\
4045 If nonzero, gdb will give control to the user when the dynamic linker\n\
4046 notifies gdb of shared library events. The most common event of interest\n\
4047 to the user would be loading/unloading of a new library."),
4048 NULL,
4049 show_stop_on_solib_events,
4050 &setlist, &showlist);
4051
4052 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4053 follow_fork_mode_kind_names,
4054 &follow_fork_mode_string, _("\
4055 Set debugger response to a program call of fork or vfork."), _("\
4056 Show debugger response to a program call of fork or vfork."), _("\
4057 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4058 parent - the original process is debugged after a fork\n\
4059 child - the new process is debugged after a fork\n\
4060 The unfollowed process will continue to run.\n\
4061 By default, the debugger will follow the parent process."),
4062 NULL,
4063 show_follow_fork_mode_string,
4064 &setlist, &showlist);
4065
4066 add_setshow_enum_cmd ("scheduler-locking", class_run,
4067 scheduler_enums, &scheduler_mode, _("\
4068 Set mode for locking scheduler during execution."), _("\
4069 Show mode for locking scheduler during execution."), _("\
4070 off == no locking (threads may preempt at any time)\n\
4071 on == full locking (no thread except the current thread may run)\n\
4072 step == scheduler locked during every single-step operation.\n\
4073 In this mode, no other thread may run during a step command.\n\
4074 Other threads may run while stepping over a function call ('next')."),
4075 set_schedlock_func, /* traps on target vector */
4076 show_scheduler_mode,
4077 &setlist, &showlist);
4078
4079 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4080 Set mode of the step operation."), _("\
4081 Show mode of the step operation."), _("\
4082 When set, doing a step over a function without debug line information\n\
4083 will stop at the first instruction of that function. Otherwise, the\n\
4084 function is skipped and the step command stops at a different source line."),
4085 NULL,
4086 show_step_stop_if_no_debug,
4087 &setlist, &showlist);
4088
4089 /* ptid initializations */
4090 null_ptid = ptid_build (0, 0, 0);
4091 minus_one_ptid = ptid_build (-1, 0, 0);
4092 inferior_ptid = null_ptid;
4093 target_last_wait_ptid = minus_one_ptid;
4094 }
This page took 0.161374 seconds and 5 git commands to generate.