Remove cleanup from stop_all_threads
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70 #include "common/scope-exit.h"
71
72 /* Prototypes for local functions */
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static int follow_fork (void);
79
80 static int follow_fork_inferior (int follow_child, int detach_fork);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static int currently_stepping (struct thread_info *tp);
85
86 void nullify_last_target_wait_ptid (void);
87
88 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
89
90 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
92 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
94 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
96 static void resume (gdb_signal sig);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125 }
126
127 /* See infrun.h. */
128
129 void
130 mark_infrun_async_event_handler (void)
131 {
132 mark_async_event_handler (infrun_async_inferior_event_token);
133 }
134
135 /* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138 int step_stop_if_no_debug = 0;
139 static void
140 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144 }
145
146 /* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
149
150 static ptid_t previous_inferior_ptid;
151
152 /* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157 static int detach_fork = 1;
158
159 int debug_displaced = 0;
160 static void
161 show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165 }
166
167 unsigned int debug_infrun = 0;
168 static void
169 show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173 }
174
175
176 /* Support for disabling address space randomization. */
177
178 int disable_randomization = 1;
179
180 static void
181 show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193 }
194
195 static void
196 set_disable_randomization (const char *args, int from_tty,
197 struct cmd_list_element *c)
198 {
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203 }
204
205 /* User interface for non-stop mode. */
206
207 int non_stop = 0;
208 static int non_stop_1 = 0;
209
210 static void
211 set_non_stop (const char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221 }
222
223 static void
224 show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230 }
231
232 /* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236 int observer_mode = 0;
237 static int observer_mode_1 = 0;
238
239 static void
240 set_observer_mode (const char *args, int from_tty,
241 struct cmd_list_element *c)
242 {
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273 }
274
275 static void
276 show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280 }
281
282 /* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288 void
289 update_observer_mode (void)
290 {
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305 }
306
307 /* Tables of how to react to signals; the user sets them. */
308
309 static unsigned char *signal_stop;
310 static unsigned char *signal_print;
311 static unsigned char *signal_program;
312
313 /* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
315 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
316 signals. */
317 static unsigned char *signal_catch;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
359 int stop_on_solib_events;
360
361 /* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364 static void
365 set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
367 {
368 update_solib_breakpoints ();
369 }
370
371 static void
372 show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374 {
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377 }
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 void init_thread_stepping_state (struct thread_info *tss);
390
391 static const char follow_fork_mode_child[] = "child";
392 static const char follow_fork_mode_parent[] = "parent";
393
394 static const char *const follow_fork_mode_kind_names[] = {
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
398 };
399
400 static const char *follow_fork_mode_string = follow_fork_mode_parent;
401 static void
402 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404 {
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
408 value);
409 }
410 \f
411
412 /* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418 static int
419 follow_fork_inferior (int follow_child, int detach_fork)
420 {
421 int has_vforked;
422 ptid_t parent_ptid, child_ptid;
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
431 && current_ui->prompt_state == PROMPT_BLOCKED
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440 Can not resume the parent process over vfork in the foreground while\n\
441 holding the child stopped. Try \"set detach-on-fork\" or \
442 \"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
462 remove_breakpoints_inf (current_inferior ());
463 }
464
465 if (print_inferior_events)
466 {
467 /* Ensure that we have a process ptid. */
468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
469
470 target_terminal::ours_for_output ();
471 fprintf_filtered (gdb_stdlog,
472 _("[Detaching after %s from child %s]\n"),
473 has_vforked ? "vfork" : "fork",
474 target_pid_to_str (process_ptid));
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
480
481 /* Add process to GDB's tables. */
482 child_inf = add_inferior (child_ptid.pid ());
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
491
492 inferior_ptid = child_ptid;
493 add_thread_silent (inferior_ptid);
494 set_current_inferior (child_inf);
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
515 child_inf->pspace = new program_space (child_inf->aspace);
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
553 if (print_inferior_events)
554 {
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
558 target_terminal::ours_for_output ();
559 fprintf_filtered (gdb_stdlog,
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
562 has_vforked ? "vfork" : "fork",
563 child_pid.c_str ());
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
569 child_inf = add_inferior (child_ptid.pid ());
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
600 {
601 if (print_inferior_events)
602 {
603 /* Ensure that we have a process ptid. */
604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
605
606 target_terminal::ours_for_output ();
607 fprintf_filtered (gdb_stdlog,
608 _("[Detaching after fork from "
609 "parent %s]\n"),
610 target_pid_to_str (process_ptid));
611 }
612
613 target_detach (parent_inf, 0);
614 }
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
622 inferior_ptid = child_ptid;
623 add_thread_silent (inferior_ptid);
624 set_current_inferior (child_inf);
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
637 child_inf->pspace = new program_space (child_inf->aspace);
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653 }
654
655 /* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
659 static int
660 follow_fork (void)
661 {
662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
671 struct breakpoint *exception_resume_breakpoint = NULL;
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
675 struct thread_fsm *thread_fsm = NULL;
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
729 thread_fsm = tp->thread_fsm;
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
740 delete_exception_resume_breakpoint (tp);
741 tp->thread_fsm = NULL;
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
762 tp = find_thread_ptid (parent);
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
770 /* If we followed the child, switch to it... */
771 if (follow_child)
772 {
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
788 tp->thread_fsm = thread_fsm;
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
798 warning (_("Not resuming: switched threads "
799 "before following fork child."));
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
817
818 return should_resume;
819 }
820
821 static void
822 follow_inferior_reset_breakpoints (void)
823 {
824 struct thread_info *tp = inferior_thread ();
825
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
839 if (tp->control.step_resume_breakpoint)
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
844
845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
846 if (tp->control.exception_resume_breakpoint)
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
851
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
859 }
860
861 /* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864 static int
865 proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867 {
868 int pid = * (int *) arg;
869
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
873 && !thread->stop_requested
874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid));
880
881 switch_to_thread (thread);
882 clear_proceed_status (0);
883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
884 }
885
886 return 0;
887 }
888
889 /* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892 class scoped_restore_exited_inferior
893 {
894 public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899 private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903 };
904
905 /* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908 static void
909 handle_vfork_child_exec_or_exit (int exec)
910 {
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
924 struct program_space *pspace;
925 struct address_space *aspace;
926
927 /* follow-fork child, detach-on-fork on. */
928
929 inf->vfork_parent->pending_detach = 0;
930
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
938 if (!exec)
939 maybe_restore_inferior.emplace ();
940 else
941 maybe_restore_thread.emplace ();
942
943 /* We're letting loose of the parent. */
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
964 if (print_inferior_events)
965 {
966 const char *pidstr
967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
968
969 target_terminal::ours_for_output ();
970
971 if (exec)
972 {
973 fprintf_filtered (gdb_stdlog,
974 _("[Detaching vfork parent %s "
975 "after child exec]\n"), pidstr);
976 }
977 else
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("[Detaching vfork parent %s "
981 "after child exit]\n"), pidstr);
982 }
983 }
984
985 target_detach (inf->vfork_parent, 0);
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
995 inf->pspace = new program_space (maybe_new_address_space ());
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
1029 pspace = new program_space (maybe_new_address_space ());
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
1032 inf->symfile_flags = SYMFILE_NO_READ;
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 if (debug_infrun)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1058 }
1059 }
1060 }
1061
1062 /* Enum strings for "set|show follow-exec-mode". */
1063
1064 static const char follow_exec_mode_new[] = "new";
1065 static const char follow_exec_mode_same[] = "same";
1066 static const char *const follow_exec_mode_names[] =
1067 {
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071 };
1072
1073 static const char *follow_exec_mode_string = follow_exec_mode_same;
1074 static void
1075 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077 {
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079 }
1080
1081 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1082
1083 static void
1084 follow_exec (ptid_t ptid, char *exec_file_target)
1085 {
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid.pid ();
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 for (thread_info *th : all_threads_safe ())
1133 if (th->ptid.pid () == pid && th->ptid != ptid)
1134 delete_thread (th);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 thread_info *th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = ptid_t (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 exec_file_target);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
1198 exit_inferior_silent (current_inferior ());
1199
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1226
1227 /* If the target can specify a description, read it. Must do this
1228 after flipping to the new executable (because the target supplied
1229 description must be compatible with the executable's
1230 architecture, and the old executable may e.g., be 32-bit, while
1231 the new one 64-bit), and before anything involving memory or
1232 registers. */
1233 target_find_description ();
1234
1235 solib_create_inferior_hook (0);
1236
1237 jit_inferior_created_hook ();
1238
1239 breakpoint_re_set ();
1240
1241 /* Reinsert all breakpoints. (Those which were symbolic have
1242 been reset to the proper address in the new a.out, thanks
1243 to symbol_file_command...). */
1244 insert_breakpoints ();
1245
1246 /* The next resume of this inferior should bring it to the shlib
1247 startup breakpoints. (If the user had also set bp's on
1248 "main" from the old (parent) process, then they'll auto-
1249 matically get reset there in the new process.). */
1250 }
1251
1252 /* The queue of threads that need to do a step-over operation to get
1253 past e.g., a breakpoint. What technique is used to step over the
1254 breakpoint/watchpoint does not matter -- all threads end up in the
1255 same queue, to maintain rough temporal order of execution, in order
1256 to avoid starvation, otherwise, we could e.g., find ourselves
1257 constantly stepping the same couple threads past their breakpoints
1258 over and over, if the single-step finish fast enough. */
1259 struct thread_info *step_over_queue_head;
1260
1261 /* Bit flags indicating what the thread needs to step over. */
1262
1263 enum step_over_what_flag
1264 {
1265 /* Step over a breakpoint. */
1266 STEP_OVER_BREAKPOINT = 1,
1267
1268 /* Step past a non-continuable watchpoint, in order to let the
1269 instruction execute so we can evaluate the watchpoint
1270 expression. */
1271 STEP_OVER_WATCHPOINT = 2
1272 };
1273 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1274
1275 /* Info about an instruction that is being stepped over. */
1276
1277 struct step_over_info
1278 {
1279 /* If we're stepping past a breakpoint, this is the address space
1280 and address of the instruction the breakpoint is set at. We'll
1281 skip inserting all breakpoints here. Valid iff ASPACE is
1282 non-NULL. */
1283 const address_space *aspace;
1284 CORE_ADDR address;
1285
1286 /* The instruction being stepped over triggers a nonsteppable
1287 watchpoint. If true, we'll skip inserting watchpoints. */
1288 int nonsteppable_watchpoint_p;
1289
1290 /* The thread's global number. */
1291 int thread;
1292 };
1293
1294 /* The step-over info of the location that is being stepped over.
1295
1296 Note that with async/breakpoint always-inserted mode, a user might
1297 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1298 being stepped over. As setting a new breakpoint inserts all
1299 breakpoints, we need to make sure the breakpoint being stepped over
1300 isn't inserted then. We do that by only clearing the step-over
1301 info when the step-over is actually finished (or aborted).
1302
1303 Presently GDB can only step over one breakpoint at any given time.
1304 Given threads that can't run code in the same address space as the
1305 breakpoint's can't really miss the breakpoint, GDB could be taught
1306 to step-over at most one breakpoint per address space (so this info
1307 could move to the address space object if/when GDB is extended).
1308 The set of breakpoints being stepped over will normally be much
1309 smaller than the set of all breakpoints, so a flag in the
1310 breakpoint location structure would be wasteful. A separate list
1311 also saves complexity and run-time, as otherwise we'd have to go
1312 through all breakpoint locations clearing their flag whenever we
1313 start a new sequence. Similar considerations weigh against storing
1314 this info in the thread object. Plus, not all step overs actually
1315 have breakpoint locations -- e.g., stepping past a single-step
1316 breakpoint, or stepping to complete a non-continuable
1317 watchpoint. */
1318 static struct step_over_info step_over_info;
1319
1320 /* Record the address of the breakpoint/instruction we're currently
1321 stepping over.
1322 N.B. We record the aspace and address now, instead of say just the thread,
1323 because when we need the info later the thread may be running. */
1324
1325 static void
1326 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1327 int nonsteppable_watchpoint_p,
1328 int thread)
1329 {
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1333 step_over_info.thread = thread;
1334 }
1335
1336 /* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339 static void
1340 clear_step_over_info (void)
1341 {
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Get the displaced stepping state of process PID. */
1481
1482 static displaced_step_inferior_state *
1483 get_displaced_stepping_state (inferior *inf)
1484 {
1485 return &inf->displaced_step_state;
1486 }
1487
1488 /* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
1491 static bool
1492 displaced_step_in_progress_any_inferior ()
1493 {
1494 for (inferior *i : all_inferiors ())
1495 {
1496 if (i->displaced_step_state.step_thread != nullptr)
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /* Return true if thread represented by PTID is doing a displaced
1504 step. */
1505
1506 static int
1507 displaced_step_in_progress_thread (thread_info *thread)
1508 {
1509 gdb_assert (thread != NULL);
1510
1511 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1512 }
1513
1514 /* Return true if process PID has a thread doing a displaced step. */
1515
1516 static int
1517 displaced_step_in_progress (inferior *inf)
1518 {
1519 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1520 }
1521
1522 /* If inferior is in displaced stepping, and ADDR equals to starting address
1523 of copy area, return corresponding displaced_step_closure. Otherwise,
1524 return NULL. */
1525
1526 struct displaced_step_closure*
1527 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1528 {
1529 displaced_step_inferior_state *displaced
1530 = get_displaced_stepping_state (current_inferior ());
1531
1532 /* If checking the mode of displaced instruction in copy area. */
1533 if (displaced->step_thread != nullptr
1534 && displaced->step_copy == addr)
1535 return displaced->step_closure;
1536
1537 return NULL;
1538 }
1539
1540 static void
1541 infrun_inferior_exit (struct inferior *inf)
1542 {
1543 inf->displaced_step_state.reset ();
1544 }
1545
1546 /* If ON, and the architecture supports it, GDB will use displaced
1547 stepping to step over breakpoints. If OFF, or if the architecture
1548 doesn't support it, GDB will instead use the traditional
1549 hold-and-step approach. If AUTO (which is the default), GDB will
1550 decide which technique to use to step over breakpoints depending on
1551 which of all-stop or non-stop mode is active --- displaced stepping
1552 in non-stop mode; hold-and-step in all-stop mode. */
1553
1554 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1555
1556 static void
1557 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c,
1559 const char *value)
1560 {
1561 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1562 fprintf_filtered (file,
1563 _("Debugger's willingness to use displaced stepping "
1564 "to step over breakpoints is %s (currently %s).\n"),
1565 value, target_is_non_stop_p () ? "on" : "off");
1566 else
1567 fprintf_filtered (file,
1568 _("Debugger's willingness to use displaced stepping "
1569 "to step over breakpoints is %s.\n"), value);
1570 }
1571
1572 /* Return non-zero if displaced stepping can/should be used to step
1573 over breakpoints of thread TP. */
1574
1575 static int
1576 use_displaced_stepping (struct thread_info *tp)
1577 {
1578 struct regcache *regcache = get_thread_regcache (tp);
1579 struct gdbarch *gdbarch = regcache->arch ();
1580 displaced_step_inferior_state *displaced_state
1581 = get_displaced_stepping_state (tp->inf);
1582
1583 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1584 && target_is_non_stop_p ())
1585 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1586 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1587 && find_record_target () == NULL
1588 && !displaced_state->failed_before);
1589 }
1590
1591 /* Clean out any stray displaced stepping state. */
1592 static void
1593 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1594 {
1595 /* Indicate that there is no cleanup pending. */
1596 displaced->step_thread = nullptr;
1597
1598 delete displaced->step_closure;
1599 displaced->step_closure = NULL;
1600 }
1601
1602 static void
1603 displaced_step_clear_cleanup (void *arg)
1604 {
1605 struct displaced_step_inferior_state *state
1606 = (struct displaced_step_inferior_state *) arg;
1607
1608 displaced_step_clear (state);
1609 }
1610
1611 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1612 void
1613 displaced_step_dump_bytes (struct ui_file *file,
1614 const gdb_byte *buf,
1615 size_t len)
1616 {
1617 int i;
1618
1619 for (i = 0; i < len; i++)
1620 fprintf_unfiltered (file, "%02x ", buf[i]);
1621 fputs_unfiltered ("\n", file);
1622 }
1623
1624 /* Prepare to single-step, using displaced stepping.
1625
1626 Note that we cannot use displaced stepping when we have a signal to
1627 deliver. If we have a signal to deliver and an instruction to step
1628 over, then after the step, there will be no indication from the
1629 target whether the thread entered a signal handler or ignored the
1630 signal and stepped over the instruction successfully --- both cases
1631 result in a simple SIGTRAP. In the first case we mustn't do a
1632 fixup, and in the second case we must --- but we can't tell which.
1633 Comments in the code for 'random signals' in handle_inferior_event
1634 explain how we handle this case instead.
1635
1636 Returns 1 if preparing was successful -- this thread is going to be
1637 stepped now; 0 if displaced stepping this thread got queued; or -1
1638 if this instruction can't be displaced stepped. */
1639
1640 static int
1641 displaced_step_prepare_throw (thread_info *tp)
1642 {
1643 regcache *regcache = get_thread_regcache (tp);
1644 struct gdbarch *gdbarch = regcache->arch ();
1645 const address_space *aspace = regcache->aspace ();
1646 CORE_ADDR original, copy;
1647 ULONGEST len;
1648 struct displaced_step_closure *closure;
1649 int status;
1650
1651 /* We should never reach this function if the architecture does not
1652 support displaced stepping. */
1653 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1654
1655 /* Nor if the thread isn't meant to step over a breakpoint. */
1656 gdb_assert (tp->control.trap_expected);
1657
1658 /* Disable range stepping while executing in the scratch pad. We
1659 want a single-step even if executing the displaced instruction in
1660 the scratch buffer lands within the stepping range (e.g., a
1661 jump/branch). */
1662 tp->control.may_range_step = 0;
1663
1664 /* We have to displaced step one thread at a time, as we only have
1665 access to a single scratch space per inferior. */
1666
1667 displaced_step_inferior_state *displaced
1668 = get_displaced_stepping_state (tp->inf);
1669
1670 if (displaced->step_thread != nullptr)
1671 {
1672 /* Already waiting for a displaced step to finish. Defer this
1673 request and place in queue. */
1674
1675 if (debug_displaced)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "displaced: deferring step of %s\n",
1678 target_pid_to_str (tp->ptid));
1679
1680 thread_step_over_chain_enqueue (tp);
1681 return 0;
1682 }
1683 else
1684 {
1685 if (debug_displaced)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "displaced: stepping %s now\n",
1688 target_pid_to_str (tp->ptid));
1689 }
1690
1691 displaced_step_clear (displaced);
1692
1693 scoped_restore_current_thread restore_thread;
1694
1695 switch_to_thread (tp);
1696
1697 original = regcache_read_pc (regcache);
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
1702 if (breakpoint_in_range_p (aspace, copy, len))
1703 {
1704 /* There's a breakpoint set in the scratch pad location range
1705 (which is usually around the entry point). We'd either
1706 install it before resuming, which would overwrite/corrupt the
1707 scratch pad, or if it was already inserted, this displaced
1708 step would overwrite it. The latter is OK in the sense that
1709 we already assume that no thread is going to execute the code
1710 in the scratch pad range (after initial startup) anyway, but
1711 the former is unacceptable. Simply punt and fallback to
1712 stepping over this breakpoint in-line. */
1713 if (debug_displaced)
1714 {
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: breakpoint set in scratch pad. "
1717 "Stepping over breakpoint in-line instead.\n");
1718 }
1719
1720 return -1;
1721 }
1722
1723 /* Save the original contents of the copy area. */
1724 displaced->step_saved_copy.resize (len);
1725 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1726 if (status != 0)
1727 throw_error (MEMORY_ERROR,
1728 _("Error accessing memory address %s (%s) for "
1729 "displaced-stepping scratch space."),
1730 paddress (gdbarch, copy), safe_strerror (status));
1731 if (debug_displaced)
1732 {
1733 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1734 paddress (gdbarch, copy));
1735 displaced_step_dump_bytes (gdb_stdlog,
1736 displaced->step_saved_copy.data (),
1737 len);
1738 };
1739
1740 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1741 original, copy, regcache);
1742 if (closure == NULL)
1743 {
1744 /* The architecture doesn't know how or want to displaced step
1745 this instruction or instruction sequence. Fallback to
1746 stepping over the breakpoint in-line. */
1747 return -1;
1748 }
1749
1750 /* Save the information we need to fix things up if the step
1751 succeeds. */
1752 displaced->step_thread = tp;
1753 displaced->step_gdbarch = gdbarch;
1754 displaced->step_closure = closure;
1755 displaced->step_original = original;
1756 displaced->step_copy = copy;
1757
1758 cleanup *ignore_cleanups
1759 = make_cleanup (displaced_step_clear_cleanup, displaced);
1760
1761 /* Resume execution at the copy. */
1762 regcache_write_pc (regcache, copy);
1763
1764 discard_cleanups (ignore_cleanups);
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1768 paddress (gdbarch, copy));
1769
1770 return 1;
1771 }
1772
1773 /* Wrapper for displaced_step_prepare_throw that disabled further
1774 attempts at displaced stepping if we get a memory error. */
1775
1776 static int
1777 displaced_step_prepare (thread_info *thread)
1778 {
1779 int prepared = -1;
1780
1781 TRY
1782 {
1783 prepared = displaced_step_prepare_throw (thread);
1784 }
1785 CATCH (ex, RETURN_MASK_ERROR)
1786 {
1787 struct displaced_step_inferior_state *displaced_state;
1788
1789 if (ex.error != MEMORY_ERROR
1790 && ex.error != NOT_SUPPORTED_ERROR)
1791 throw_exception (ex);
1792
1793 if (debug_infrun)
1794 {
1795 fprintf_unfiltered (gdb_stdlog,
1796 "infrun: disabling displaced stepping: %s\n",
1797 ex.message);
1798 }
1799
1800 /* Be verbose if "set displaced-stepping" is "on", silent if
1801 "auto". */
1802 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1803 {
1804 warning (_("disabling displaced stepping: %s"),
1805 ex.message);
1806 }
1807
1808 /* Disable further displaced stepping attempts. */
1809 displaced_state
1810 = get_displaced_stepping_state (thread->inf);
1811 displaced_state->failed_before = 1;
1812 }
1813 END_CATCH
1814
1815 return prepared;
1816 }
1817
1818 static void
1819 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1820 const gdb_byte *myaddr, int len)
1821 {
1822 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1823
1824 inferior_ptid = ptid;
1825 write_memory (memaddr, myaddr, len);
1826 }
1827
1828 /* Restore the contents of the copy area for thread PTID. */
1829
1830 static void
1831 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1832 ptid_t ptid)
1833 {
1834 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1835
1836 write_memory_ptid (ptid, displaced->step_copy,
1837 displaced->step_saved_copy.data (), len);
1838 if (debug_displaced)
1839 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1840 target_pid_to_str (ptid),
1841 paddress (displaced->step_gdbarch,
1842 displaced->step_copy));
1843 }
1844
1845 /* If we displaced stepped an instruction successfully, adjust
1846 registers and memory to yield the same effect the instruction would
1847 have had if we had executed it at its original address, and return
1848 1. If the instruction didn't complete, relocate the PC and return
1849 -1. If the thread wasn't displaced stepping, return 0. */
1850
1851 static int
1852 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1853 {
1854 struct cleanup *old_cleanups;
1855 struct displaced_step_inferior_state *displaced
1856 = get_displaced_stepping_state (event_thread->inf);
1857 int ret;
1858
1859 /* Was this event for the thread we displaced? */
1860 if (displaced->step_thread != event_thread)
1861 return 0;
1862
1863 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1864
1865 displaced_step_restore (displaced, displaced->step_thread->ptid);
1866
1867 /* Fixup may need to read memory/registers. Switch to the thread
1868 that we're fixing up. Also, target_stopped_by_watchpoint checks
1869 the current thread. */
1870 switch_to_thread (event_thread);
1871
1872 /* Did the instruction complete successfully? */
1873 if (signal == GDB_SIGNAL_TRAP
1874 && !(target_stopped_by_watchpoint ()
1875 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1876 || target_have_steppable_watchpoint)))
1877 {
1878 /* Fix up the resulting state. */
1879 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1880 displaced->step_closure,
1881 displaced->step_original,
1882 displaced->step_copy,
1883 get_thread_regcache (displaced->step_thread));
1884 ret = 1;
1885 }
1886 else
1887 {
1888 /* Since the instruction didn't complete, all we can do is
1889 relocate the PC. */
1890 struct regcache *regcache = get_thread_regcache (event_thread);
1891 CORE_ADDR pc = regcache_read_pc (regcache);
1892
1893 pc = displaced->step_original + (pc - displaced->step_copy);
1894 regcache_write_pc (regcache, pc);
1895 ret = -1;
1896 }
1897
1898 do_cleanups (old_cleanups);
1899
1900 displaced->step_thread = nullptr;
1901
1902 return ret;
1903 }
1904
1905 /* Data to be passed around while handling an event. This data is
1906 discarded between events. */
1907 struct execution_control_state
1908 {
1909 ptid_t ptid;
1910 /* The thread that got the event, if this was a thread event; NULL
1911 otherwise. */
1912 struct thread_info *event_thread;
1913
1914 struct target_waitstatus ws;
1915 int stop_func_filled_in;
1916 CORE_ADDR stop_func_start;
1917 CORE_ADDR stop_func_end;
1918 const char *stop_func_name;
1919 int wait_some_more;
1920
1921 /* True if the event thread hit the single-step breakpoint of
1922 another thread. Thus the event doesn't cause a stop, the thread
1923 needs to be single-stepped past the single-step breakpoint before
1924 we can switch back to the original stepping thread. */
1925 int hit_singlestep_breakpoint;
1926 };
1927
1928 /* Clear ECS and set it to point at TP. */
1929
1930 static void
1931 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1932 {
1933 memset (ecs, 0, sizeof (*ecs));
1934 ecs->event_thread = tp;
1935 ecs->ptid = tp->ptid;
1936 }
1937
1938 static void keep_going_pass_signal (struct execution_control_state *ecs);
1939 static void prepare_to_wait (struct execution_control_state *ecs);
1940 static int keep_going_stepped_thread (struct thread_info *tp);
1941 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1942
1943 /* Are there any pending step-over requests? If so, run all we can
1944 now and return true. Otherwise, return false. */
1945
1946 static int
1947 start_step_over (void)
1948 {
1949 struct thread_info *tp, *next;
1950
1951 /* Don't start a new step-over if we already have an in-line
1952 step-over operation ongoing. */
1953 if (step_over_info_valid_p ())
1954 return 0;
1955
1956 for (tp = step_over_queue_head; tp != NULL; tp = next)
1957 {
1958 struct execution_control_state ecss;
1959 struct execution_control_state *ecs = &ecss;
1960 step_over_what step_what;
1961 int must_be_in_line;
1962
1963 gdb_assert (!tp->stop_requested);
1964
1965 next = thread_step_over_chain_next (tp);
1966
1967 /* If this inferior already has a displaced step in process,
1968 don't start a new one. */
1969 if (displaced_step_in_progress (tp->inf))
1970 continue;
1971
1972 step_what = thread_still_needs_step_over (tp);
1973 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1974 || ((step_what & STEP_OVER_BREAKPOINT)
1975 && !use_displaced_stepping (tp)));
1976
1977 /* We currently stop all threads of all processes to step-over
1978 in-line. If we need to start a new in-line step-over, let
1979 any pending displaced steps finish first. */
1980 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1981 return 0;
1982
1983 thread_step_over_chain_remove (tp);
1984
1985 if (step_over_queue_head == NULL)
1986 {
1987 if (debug_infrun)
1988 fprintf_unfiltered (gdb_stdlog,
1989 "infrun: step-over queue now empty\n");
1990 }
1991
1992 if (tp->control.trap_expected
1993 || tp->resumed
1994 || tp->executing)
1995 {
1996 internal_error (__FILE__, __LINE__,
1997 "[%s] has inconsistent state: "
1998 "trap_expected=%d, resumed=%d, executing=%d\n",
1999 target_pid_to_str (tp->ptid),
2000 tp->control.trap_expected,
2001 tp->resumed,
2002 tp->executing);
2003 }
2004
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "infrun: resuming [%s] for step-over\n",
2008 target_pid_to_str (tp->ptid));
2009
2010 /* keep_going_pass_signal skips the step-over if the breakpoint
2011 is no longer inserted. In all-stop, we want to keep looking
2012 for a thread that needs a step-over instead of resuming TP,
2013 because we wouldn't be able to resume anything else until the
2014 target stops again. In non-stop, the resume always resumes
2015 only TP, so it's OK to let the thread resume freely. */
2016 if (!target_is_non_stop_p () && !step_what)
2017 continue;
2018
2019 switch_to_thread (tp);
2020 reset_ecs (ecs, tp);
2021 keep_going_pass_signal (ecs);
2022
2023 if (!ecs->wait_some_more)
2024 error (_("Command aborted."));
2025
2026 gdb_assert (tp->resumed);
2027
2028 /* If we started a new in-line step-over, we're done. */
2029 if (step_over_info_valid_p ())
2030 {
2031 gdb_assert (tp->control.trap_expected);
2032 return 1;
2033 }
2034
2035 if (!target_is_non_stop_p ())
2036 {
2037 /* On all-stop, shouldn't have resumed unless we needed a
2038 step over. */
2039 gdb_assert (tp->control.trap_expected
2040 || tp->step_after_step_resume_breakpoint);
2041
2042 /* With remote targets (at least), in all-stop, we can't
2043 issue any further remote commands until the program stops
2044 again. */
2045 return 1;
2046 }
2047
2048 /* Either the thread no longer needed a step-over, or a new
2049 displaced stepping sequence started. Even in the latter
2050 case, continue looking. Maybe we can also start another
2051 displaced step on a thread of other process. */
2052 }
2053
2054 return 0;
2055 }
2056
2057 /* Update global variables holding ptids to hold NEW_PTID if they were
2058 holding OLD_PTID. */
2059 static void
2060 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2061 {
2062 if (inferior_ptid == old_ptid)
2063 inferior_ptid = new_ptid;
2064 }
2065
2066 \f
2067
2068 static const char schedlock_off[] = "off";
2069 static const char schedlock_on[] = "on";
2070 static const char schedlock_step[] = "step";
2071 static const char schedlock_replay[] = "replay";
2072 static const char *const scheduler_enums[] = {
2073 schedlock_off,
2074 schedlock_on,
2075 schedlock_step,
2076 schedlock_replay,
2077 NULL
2078 };
2079 static const char *scheduler_mode = schedlock_replay;
2080 static void
2081 show_scheduler_mode (struct ui_file *file, int from_tty,
2082 struct cmd_list_element *c, const char *value)
2083 {
2084 fprintf_filtered (file,
2085 _("Mode for locking scheduler "
2086 "during execution is \"%s\".\n"),
2087 value);
2088 }
2089
2090 static void
2091 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2092 {
2093 if (!target_can_lock_scheduler)
2094 {
2095 scheduler_mode = schedlock_off;
2096 error (_("Target '%s' cannot support this command."), target_shortname);
2097 }
2098 }
2099
2100 /* True if execution commands resume all threads of all processes by
2101 default; otherwise, resume only threads of the current inferior
2102 process. */
2103 int sched_multi = 0;
2104
2105 /* Try to setup for software single stepping over the specified location.
2106 Return 1 if target_resume() should use hardware single step.
2107
2108 GDBARCH the current gdbarch.
2109 PC the location to step over. */
2110
2111 static int
2112 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2113 {
2114 int hw_step = 1;
2115
2116 if (execution_direction == EXEC_FORWARD
2117 && gdbarch_software_single_step_p (gdbarch))
2118 hw_step = !insert_single_step_breakpoints (gdbarch);
2119
2120 return hw_step;
2121 }
2122
2123 /* See infrun.h. */
2124
2125 ptid_t
2126 user_visible_resume_ptid (int step)
2127 {
2128 ptid_t resume_ptid;
2129
2130 if (non_stop)
2131 {
2132 /* With non-stop mode on, threads are always handled
2133 individually. */
2134 resume_ptid = inferior_ptid;
2135 }
2136 else if ((scheduler_mode == schedlock_on)
2137 || (scheduler_mode == schedlock_step && step))
2138 {
2139 /* User-settable 'scheduler' mode requires solo thread
2140 resume. */
2141 resume_ptid = inferior_ptid;
2142 }
2143 else if ((scheduler_mode == schedlock_replay)
2144 && target_record_will_replay (minus_one_ptid, execution_direction))
2145 {
2146 /* User-settable 'scheduler' mode requires solo thread resume in replay
2147 mode. */
2148 resume_ptid = inferior_ptid;
2149 }
2150 else if (!sched_multi && target_supports_multi_process ())
2151 {
2152 /* Resume all threads of the current process (and none of other
2153 processes). */
2154 resume_ptid = ptid_t (inferior_ptid.pid ());
2155 }
2156 else
2157 {
2158 /* Resume all threads of all processes. */
2159 resume_ptid = RESUME_ALL;
2160 }
2161
2162 return resume_ptid;
2163 }
2164
2165 /* Return a ptid representing the set of threads that we will resume,
2166 in the perspective of the target, assuming run control handling
2167 does not require leaving some threads stopped (e.g., stepping past
2168 breakpoint). USER_STEP indicates whether we're about to start the
2169 target for a stepping command. */
2170
2171 static ptid_t
2172 internal_resume_ptid (int user_step)
2173 {
2174 /* In non-stop, we always control threads individually. Note that
2175 the target may always work in non-stop mode even with "set
2176 non-stop off", in which case user_visible_resume_ptid could
2177 return a wildcard ptid. */
2178 if (target_is_non_stop_p ())
2179 return inferior_ptid;
2180 else
2181 return user_visible_resume_ptid (user_step);
2182 }
2183
2184 /* Wrapper for target_resume, that handles infrun-specific
2185 bookkeeping. */
2186
2187 static void
2188 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2189 {
2190 struct thread_info *tp = inferior_thread ();
2191
2192 gdb_assert (!tp->stop_requested);
2193
2194 /* Install inferior's terminal modes. */
2195 target_terminal::inferior ();
2196
2197 /* Avoid confusing the next resume, if the next stop/resume
2198 happens to apply to another thread. */
2199 tp->suspend.stop_signal = GDB_SIGNAL_0;
2200
2201 /* Advise target which signals may be handled silently.
2202
2203 If we have removed breakpoints because we are stepping over one
2204 in-line (in any thread), we need to receive all signals to avoid
2205 accidentally skipping a breakpoint during execution of a signal
2206 handler.
2207
2208 Likewise if we're displaced stepping, otherwise a trap for a
2209 breakpoint in a signal handler might be confused with the
2210 displaced step finishing. We don't make the displaced_step_fixup
2211 step distinguish the cases instead, because:
2212
2213 - a backtrace while stopped in the signal handler would show the
2214 scratch pad as frame older than the signal handler, instead of
2215 the real mainline code.
2216
2217 - when the thread is later resumed, the signal handler would
2218 return to the scratch pad area, which would no longer be
2219 valid. */
2220 if (step_over_info_valid_p ()
2221 || displaced_step_in_progress (tp->inf))
2222 target_pass_signals (0, NULL);
2223 else
2224 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2225
2226 target_resume (resume_ptid, step, sig);
2227
2228 target_commit_resume ();
2229 }
2230
2231 /* Resume the inferior. SIG is the signal to give the inferior
2232 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2233 call 'resume', which handles exceptions. */
2234
2235 static void
2236 resume_1 (enum gdb_signal sig)
2237 {
2238 struct regcache *regcache = get_current_regcache ();
2239 struct gdbarch *gdbarch = regcache->arch ();
2240 struct thread_info *tp = inferior_thread ();
2241 CORE_ADDR pc = regcache_read_pc (regcache);
2242 const address_space *aspace = regcache->aspace ();
2243 ptid_t resume_ptid;
2244 /* This represents the user's step vs continue request. When
2245 deciding whether "set scheduler-locking step" applies, it's the
2246 user's intention that counts. */
2247 const int user_step = tp->control.stepping_command;
2248 /* This represents what we'll actually request the target to do.
2249 This can decay from a step to a continue, if e.g., we need to
2250 implement single-stepping with breakpoints (software
2251 single-step). */
2252 int step;
2253
2254 gdb_assert (!tp->stop_requested);
2255 gdb_assert (!thread_is_in_step_over_chain (tp));
2256
2257 if (tp->suspend.waitstatus_pending_p)
2258 {
2259 if (debug_infrun)
2260 {
2261 std::string statstr
2262 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2263
2264 fprintf_unfiltered (gdb_stdlog,
2265 "infrun: resume: thread %s has pending wait "
2266 "status %s (currently_stepping=%d).\n",
2267 target_pid_to_str (tp->ptid), statstr.c_str (),
2268 currently_stepping (tp));
2269 }
2270
2271 tp->resumed = 1;
2272
2273 /* FIXME: What should we do if we are supposed to resume this
2274 thread with a signal? Maybe we should maintain a queue of
2275 pending signals to deliver. */
2276 if (sig != GDB_SIGNAL_0)
2277 {
2278 warning (_("Couldn't deliver signal %s to %s."),
2279 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2280 }
2281
2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
2283
2284 if (target_can_async_p ())
2285 {
2286 target_async (1);
2287 /* Tell the event loop we have an event to process. */
2288 mark_async_event_handler (infrun_async_inferior_event_token);
2289 }
2290 return;
2291 }
2292
2293 tp->stepped_breakpoint = 0;
2294
2295 /* Depends on stepped_breakpoint. */
2296 step = currently_stepping (tp);
2297
2298 if (current_inferior ()->waiting_for_vfork_done)
2299 {
2300 /* Don't try to single-step a vfork parent that is waiting for
2301 the child to get out of the shared memory region (by exec'ing
2302 or exiting). This is particularly important on software
2303 single-step archs, as the child process would trip on the
2304 software single step breakpoint inserted for the parent
2305 process. Since the parent will not actually execute any
2306 instruction until the child is out of the shared region (such
2307 are vfork's semantics), it is safe to simply continue it.
2308 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2309 the parent, and tell it to `keep_going', which automatically
2310 re-sets it stepping. */
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog,
2313 "infrun: resume : clear step\n");
2314 step = 0;
2315 }
2316
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "infrun: resume (step=%d, signal=%s), "
2320 "trap_expected=%d, current thread [%s] at %s\n",
2321 step, gdb_signal_to_symbol_string (sig),
2322 tp->control.trap_expected,
2323 target_pid_to_str (inferior_ptid),
2324 paddress (gdbarch, pc));
2325
2326 /* Normally, by the time we reach `resume', the breakpoints are either
2327 removed or inserted, as appropriate. The exception is if we're sitting
2328 at a permanent breakpoint; we need to step over it, but permanent
2329 breakpoints can't be removed. So we have to test for it here. */
2330 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2331 {
2332 if (sig != GDB_SIGNAL_0)
2333 {
2334 /* We have a signal to pass to the inferior. The resume
2335 may, or may not take us to the signal handler. If this
2336 is a step, we'll need to stop in the signal handler, if
2337 there's one, (if the target supports stepping into
2338 handlers), or in the next mainline instruction, if
2339 there's no handler. If this is a continue, we need to be
2340 sure to run the handler with all breakpoints inserted.
2341 In all cases, set a breakpoint at the current address
2342 (where the handler returns to), and once that breakpoint
2343 is hit, resume skipping the permanent breakpoint. If
2344 that breakpoint isn't hit, then we've stepped into the
2345 signal handler (or hit some other event). We'll delete
2346 the step-resume breakpoint then. */
2347
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "infrun: resume: skipping permanent breakpoint, "
2351 "deliver signal first\n");
2352
2353 clear_step_over_info ();
2354 tp->control.trap_expected = 0;
2355
2356 if (tp->control.step_resume_breakpoint == NULL)
2357 {
2358 /* Set a "high-priority" step-resume, as we don't want
2359 user breakpoints at PC to trigger (again) when this
2360 hits. */
2361 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2362 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2363
2364 tp->step_after_step_resume_breakpoint = step;
2365 }
2366
2367 insert_breakpoints ();
2368 }
2369 else
2370 {
2371 /* There's no signal to pass, we can go ahead and skip the
2372 permanent breakpoint manually. */
2373 if (debug_infrun)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "infrun: resume: skipping permanent breakpoint\n");
2376 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2377 /* Update pc to reflect the new address from which we will
2378 execute instructions. */
2379 pc = regcache_read_pc (regcache);
2380
2381 if (step)
2382 {
2383 /* We've already advanced the PC, so the stepping part
2384 is done. Now we need to arrange for a trap to be
2385 reported to handle_inferior_event. Set a breakpoint
2386 at the current PC, and run to it. Don't update
2387 prev_pc, because if we end in
2388 switch_back_to_stepped_thread, we want the "expected
2389 thread advanced also" branch to be taken. IOW, we
2390 don't want this thread to step further from PC
2391 (overstep). */
2392 gdb_assert (!step_over_info_valid_p ());
2393 insert_single_step_breakpoint (gdbarch, aspace, pc);
2394 insert_breakpoints ();
2395
2396 resume_ptid = internal_resume_ptid (user_step);
2397 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2398 tp->resumed = 1;
2399 return;
2400 }
2401 }
2402 }
2403
2404 /* If we have a breakpoint to step over, make sure to do a single
2405 step only. Same if we have software watchpoints. */
2406 if (tp->control.trap_expected || bpstat_should_step ())
2407 tp->control.may_range_step = 0;
2408
2409 /* If enabled, step over breakpoints by executing a copy of the
2410 instruction at a different address.
2411
2412 We can't use displaced stepping when we have a signal to deliver;
2413 the comments for displaced_step_prepare explain why. The
2414 comments in the handle_inferior event for dealing with 'random
2415 signals' explain what we do instead.
2416
2417 We can't use displaced stepping when we are waiting for vfork_done
2418 event, displaced stepping breaks the vfork child similarly as single
2419 step software breakpoint. */
2420 if (tp->control.trap_expected
2421 && use_displaced_stepping (tp)
2422 && !step_over_info_valid_p ()
2423 && sig == GDB_SIGNAL_0
2424 && !current_inferior ()->waiting_for_vfork_done)
2425 {
2426 int prepared = displaced_step_prepare (tp);
2427
2428 if (prepared == 0)
2429 {
2430 if (debug_infrun)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "Got placed in step-over queue\n");
2433
2434 tp->control.trap_expected = 0;
2435 return;
2436 }
2437 else if (prepared < 0)
2438 {
2439 /* Fallback to stepping over the breakpoint in-line. */
2440
2441 if (target_is_non_stop_p ())
2442 stop_all_threads ();
2443
2444 set_step_over_info (regcache->aspace (),
2445 regcache_read_pc (regcache), 0, tp->global_num);
2446
2447 step = maybe_software_singlestep (gdbarch, pc);
2448
2449 insert_breakpoints ();
2450 }
2451 else if (prepared > 0)
2452 {
2453 struct displaced_step_inferior_state *displaced;
2454
2455 /* Update pc to reflect the new address from which we will
2456 execute instructions due to displaced stepping. */
2457 pc = regcache_read_pc (get_thread_regcache (tp));
2458
2459 displaced = get_displaced_stepping_state (tp->inf);
2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2461 displaced->step_closure);
2462 }
2463 }
2464
2465 /* Do we need to do it the hard way, w/temp breakpoints? */
2466 else if (step)
2467 step = maybe_software_singlestep (gdbarch, pc);
2468
2469 /* Currently, our software single-step implementation leads to different
2470 results than hardware single-stepping in one situation: when stepping
2471 into delivering a signal which has an associated signal handler,
2472 hardware single-step will stop at the first instruction of the handler,
2473 while software single-step will simply skip execution of the handler.
2474
2475 For now, this difference in behavior is accepted since there is no
2476 easy way to actually implement single-stepping into a signal handler
2477 without kernel support.
2478
2479 However, there is one scenario where this difference leads to follow-on
2480 problems: if we're stepping off a breakpoint by removing all breakpoints
2481 and then single-stepping. In this case, the software single-step
2482 behavior means that even if there is a *breakpoint* in the signal
2483 handler, GDB still would not stop.
2484
2485 Fortunately, we can at least fix this particular issue. We detect
2486 here the case where we are about to deliver a signal while software
2487 single-stepping with breakpoints removed. In this situation, we
2488 revert the decisions to remove all breakpoints and insert single-
2489 step breakpoints, and instead we install a step-resume breakpoint
2490 at the current address, deliver the signal without stepping, and
2491 once we arrive back at the step-resume breakpoint, actually step
2492 over the breakpoint we originally wanted to step over. */
2493 if (thread_has_single_step_breakpoints_set (tp)
2494 && sig != GDB_SIGNAL_0
2495 && step_over_info_valid_p ())
2496 {
2497 /* If we have nested signals or a pending signal is delivered
2498 immediately after a handler returns, might might already have
2499 a step-resume breakpoint set on the earlier handler. We cannot
2500 set another step-resume breakpoint; just continue on until the
2501 original breakpoint is hit. */
2502 if (tp->control.step_resume_breakpoint == NULL)
2503 {
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 tp->step_after_step_resume_breakpoint = 1;
2506 }
2507
2508 delete_single_step_breakpoints (tp);
2509
2510 clear_step_over_info ();
2511 tp->control.trap_expected = 0;
2512
2513 insert_breakpoints ();
2514 }
2515
2516 /* If STEP is set, it's a request to use hardware stepping
2517 facilities. But in that case, we should never
2518 use singlestep breakpoint. */
2519 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2520
2521 /* Decide the set of threads to ask the target to resume. */
2522 if (tp->control.trap_expected)
2523 {
2524 /* We're allowing a thread to run past a breakpoint it has
2525 hit, either by single-stepping the thread with the breakpoint
2526 removed, or by displaced stepping, with the breakpoint inserted.
2527 In the former case, we need to single-step only this thread,
2528 and keep others stopped, as they can miss this breakpoint if
2529 allowed to run. That's not really a problem for displaced
2530 stepping, but, we still keep other threads stopped, in case
2531 another thread is also stopped for a breakpoint waiting for
2532 its turn in the displaced stepping queue. */
2533 resume_ptid = inferior_ptid;
2534 }
2535 else
2536 resume_ptid = internal_resume_ptid (user_step);
2537
2538 if (execution_direction != EXEC_REVERSE
2539 && step && breakpoint_inserted_here_p (aspace, pc))
2540 {
2541 /* There are two cases where we currently need to step a
2542 breakpoint instruction when we have a signal to deliver:
2543
2544 - See handle_signal_stop where we handle random signals that
2545 could take out us out of the stepping range. Normally, in
2546 that case we end up continuing (instead of stepping) over the
2547 signal handler with a breakpoint at PC, but there are cases
2548 where we should _always_ single-step, even if we have a
2549 step-resume breakpoint, like when a software watchpoint is
2550 set. Assuming single-stepping and delivering a signal at the
2551 same time would takes us to the signal handler, then we could
2552 have removed the breakpoint at PC to step over it. However,
2553 some hardware step targets (like e.g., Mac OS) can't step
2554 into signal handlers, and for those, we need to leave the
2555 breakpoint at PC inserted, as otherwise if the handler
2556 recurses and executes PC again, it'll miss the breakpoint.
2557 So we leave the breakpoint inserted anyway, but we need to
2558 record that we tried to step a breakpoint instruction, so
2559 that adjust_pc_after_break doesn't end up confused.
2560
2561 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2562 in one thread after another thread that was stepping had been
2563 momentarily paused for a step-over. When we re-resume the
2564 stepping thread, it may be resumed from that address with a
2565 breakpoint that hasn't trapped yet. Seen with
2566 gdb.threads/non-stop-fair-events.exp, on targets that don't
2567 do displaced stepping. */
2568
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "infrun: resume: [%s] stepped breakpoint\n",
2572 target_pid_to_str (tp->ptid));
2573
2574 tp->stepped_breakpoint = 1;
2575
2576 /* Most targets can step a breakpoint instruction, thus
2577 executing it normally. But if this one cannot, just
2578 continue and we will hit it anyway. */
2579 if (gdbarch_cannot_step_breakpoint (gdbarch))
2580 step = 0;
2581 }
2582
2583 if (debug_displaced
2584 && tp->control.trap_expected
2585 && use_displaced_stepping (tp)
2586 && !step_over_info_valid_p ())
2587 {
2588 struct regcache *resume_regcache = get_thread_regcache (tp);
2589 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2590 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2591 gdb_byte buf[4];
2592
2593 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2594 paddress (resume_gdbarch, actual_pc));
2595 read_memory (actual_pc, buf, sizeof (buf));
2596 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2597 }
2598
2599 if (tp->control.may_range_step)
2600 {
2601 /* If we're resuming a thread with the PC out of the step
2602 range, then we're doing some nested/finer run control
2603 operation, like stepping the thread out of the dynamic
2604 linker or the displaced stepping scratch pad. We
2605 shouldn't have allowed a range step then. */
2606 gdb_assert (pc_in_thread_step_range (pc, tp));
2607 }
2608
2609 do_target_resume (resume_ptid, step, sig);
2610 tp->resumed = 1;
2611 }
2612
2613 /* Resume the inferior. SIG is the signal to give the inferior
2614 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2615 rolls back state on error. */
2616
2617 static void
2618 resume (gdb_signal sig)
2619 {
2620 TRY
2621 {
2622 resume_1 (sig);
2623 }
2624 CATCH (ex, RETURN_MASK_ALL)
2625 {
2626 /* If resuming is being aborted for any reason, delete any
2627 single-step breakpoint resume_1 may have created, to avoid
2628 confusing the following resumption, and to avoid leaving
2629 single-step breakpoints perturbing other threads, in case
2630 we're running in non-stop mode. */
2631 if (inferior_ptid != null_ptid)
2632 delete_single_step_breakpoints (inferior_thread ());
2633 throw_exception (ex);
2634 }
2635 END_CATCH
2636 }
2637
2638 \f
2639 /* Proceeding. */
2640
2641 /* See infrun.h. */
2642
2643 /* Counter that tracks number of user visible stops. This can be used
2644 to tell whether a command has proceeded the inferior past the
2645 current location. This allows e.g., inferior function calls in
2646 breakpoint commands to not interrupt the command list. When the
2647 call finishes successfully, the inferior is standing at the same
2648 breakpoint as if nothing happened (and so we don't call
2649 normal_stop). */
2650 static ULONGEST current_stop_id;
2651
2652 /* See infrun.h. */
2653
2654 ULONGEST
2655 get_stop_id (void)
2656 {
2657 return current_stop_id;
2658 }
2659
2660 /* Called when we report a user visible stop. */
2661
2662 static void
2663 new_stop_id (void)
2664 {
2665 current_stop_id++;
2666 }
2667
2668 /* Clear out all variables saying what to do when inferior is continued.
2669 First do this, then set the ones you want, then call `proceed'. */
2670
2671 static void
2672 clear_proceed_status_thread (struct thread_info *tp)
2673 {
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "infrun: clear_proceed_status_thread (%s)\n",
2677 target_pid_to_str (tp->ptid));
2678
2679 /* If we're starting a new sequence, then the previous finished
2680 single-step is no longer relevant. */
2681 if (tp->suspend.waitstatus_pending_p)
2682 {
2683 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2684 {
2685 if (debug_infrun)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "infrun: clear_proceed_status: pending "
2688 "event of %s was a finished step. "
2689 "Discarding.\n",
2690 target_pid_to_str (tp->ptid));
2691
2692 tp->suspend.waitstatus_pending_p = 0;
2693 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2694 }
2695 else if (debug_infrun)
2696 {
2697 std::string statstr
2698 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2699
2700 fprintf_unfiltered (gdb_stdlog,
2701 "infrun: clear_proceed_status_thread: thread %s "
2702 "has pending wait status %s "
2703 "(currently_stepping=%d).\n",
2704 target_pid_to_str (tp->ptid), statstr.c_str (),
2705 currently_stepping (tp));
2706 }
2707 }
2708
2709 /* If this signal should not be seen by program, give it zero.
2710 Used for debugging signals. */
2711 if (!signal_pass_state (tp->suspend.stop_signal))
2712 tp->suspend.stop_signal = GDB_SIGNAL_0;
2713
2714 thread_fsm_delete (tp->thread_fsm);
2715 tp->thread_fsm = NULL;
2716
2717 tp->control.trap_expected = 0;
2718 tp->control.step_range_start = 0;
2719 tp->control.step_range_end = 0;
2720 tp->control.may_range_step = 0;
2721 tp->control.step_frame_id = null_frame_id;
2722 tp->control.step_stack_frame_id = null_frame_id;
2723 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2724 tp->control.step_start_function = NULL;
2725 tp->stop_requested = 0;
2726
2727 tp->control.stop_step = 0;
2728
2729 tp->control.proceed_to_finish = 0;
2730
2731 tp->control.stepping_command = 0;
2732
2733 /* Discard any remaining commands or status from previous stop. */
2734 bpstat_clear (&tp->control.stop_bpstat);
2735 }
2736
2737 void
2738 clear_proceed_status (int step)
2739 {
2740 /* With scheduler-locking replay, stop replaying other threads if we're
2741 not replaying the user-visible resume ptid.
2742
2743 This is a convenience feature to not require the user to explicitly
2744 stop replaying the other threads. We're assuming that the user's
2745 intent is to resume tracing the recorded process. */
2746 if (!non_stop && scheduler_mode == schedlock_replay
2747 && target_record_is_replaying (minus_one_ptid)
2748 && !target_record_will_replay (user_visible_resume_ptid (step),
2749 execution_direction))
2750 target_record_stop_replaying ();
2751
2752 if (!non_stop && inferior_ptid != null_ptid)
2753 {
2754 ptid_t resume_ptid = user_visible_resume_ptid (step);
2755
2756 /* In all-stop mode, delete the per-thread status of all threads
2757 we're about to resume, implicitly and explicitly. */
2758 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2759 clear_proceed_status_thread (tp);
2760 }
2761
2762 if (inferior_ptid != null_ptid)
2763 {
2764 struct inferior *inferior;
2765
2766 if (non_stop)
2767 {
2768 /* If in non-stop mode, only delete the per-thread status of
2769 the current thread. */
2770 clear_proceed_status_thread (inferior_thread ());
2771 }
2772
2773 inferior = current_inferior ();
2774 inferior->control.stop_soon = NO_STOP_QUIETLY;
2775 }
2776
2777 gdb::observers::about_to_proceed.notify ();
2778 }
2779
2780 /* Returns true if TP is still stopped at a breakpoint that needs
2781 stepping-over in order to make progress. If the breakpoint is gone
2782 meanwhile, we can skip the whole step-over dance. */
2783
2784 static int
2785 thread_still_needs_step_over_bp (struct thread_info *tp)
2786 {
2787 if (tp->stepping_over_breakpoint)
2788 {
2789 struct regcache *regcache = get_thread_regcache (tp);
2790
2791 if (breakpoint_here_p (regcache->aspace (),
2792 regcache_read_pc (regcache))
2793 == ordinary_breakpoint_here)
2794 return 1;
2795
2796 tp->stepping_over_breakpoint = 0;
2797 }
2798
2799 return 0;
2800 }
2801
2802 /* Check whether thread TP still needs to start a step-over in order
2803 to make progress when resumed. Returns an bitwise or of enum
2804 step_over_what bits, indicating what needs to be stepped over. */
2805
2806 static step_over_what
2807 thread_still_needs_step_over (struct thread_info *tp)
2808 {
2809 step_over_what what = 0;
2810
2811 if (thread_still_needs_step_over_bp (tp))
2812 what |= STEP_OVER_BREAKPOINT;
2813
2814 if (tp->stepping_over_watchpoint
2815 && !target_have_steppable_watchpoint)
2816 what |= STEP_OVER_WATCHPOINT;
2817
2818 return what;
2819 }
2820
2821 /* Returns true if scheduler locking applies. STEP indicates whether
2822 we're about to do a step/next-like command to a thread. */
2823
2824 static int
2825 schedlock_applies (struct thread_info *tp)
2826 {
2827 return (scheduler_mode == schedlock_on
2828 || (scheduler_mode == schedlock_step
2829 && tp->control.stepping_command)
2830 || (scheduler_mode == schedlock_replay
2831 && target_record_will_replay (minus_one_ptid,
2832 execution_direction)));
2833 }
2834
2835 /* Basic routine for continuing the program in various fashions.
2836
2837 ADDR is the address to resume at, or -1 for resume where stopped.
2838 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2839 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2840
2841 You should call clear_proceed_status before calling proceed. */
2842
2843 void
2844 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2845 {
2846 struct regcache *regcache;
2847 struct gdbarch *gdbarch;
2848 CORE_ADDR pc;
2849 ptid_t resume_ptid;
2850 struct execution_control_state ecss;
2851 struct execution_control_state *ecs = &ecss;
2852 int started;
2853
2854 /* If we're stopped at a fork/vfork, follow the branch set by the
2855 "set follow-fork-mode" command; otherwise, we'll just proceed
2856 resuming the current thread. */
2857 if (!follow_fork ())
2858 {
2859 /* The target for some reason decided not to resume. */
2860 normal_stop ();
2861 if (target_can_async_p ())
2862 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2863 return;
2864 }
2865
2866 /* We'll update this if & when we switch to a new thread. */
2867 previous_inferior_ptid = inferior_ptid;
2868
2869 regcache = get_current_regcache ();
2870 gdbarch = regcache->arch ();
2871 const address_space *aspace = regcache->aspace ();
2872
2873 pc = regcache_read_pc (regcache);
2874 thread_info *cur_thr = inferior_thread ();
2875
2876 /* Fill in with reasonable starting values. */
2877 init_thread_stepping_state (cur_thr);
2878
2879 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2880
2881 if (addr == (CORE_ADDR) -1)
2882 {
2883 if (pc == cur_thr->suspend.stop_pc
2884 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2885 && execution_direction != EXEC_REVERSE)
2886 /* There is a breakpoint at the address we will resume at,
2887 step one instruction before inserting breakpoints so that
2888 we do not stop right away (and report a second hit at this
2889 breakpoint).
2890
2891 Note, we don't do this in reverse, because we won't
2892 actually be executing the breakpoint insn anyway.
2893 We'll be (un-)executing the previous instruction. */
2894 cur_thr->stepping_over_breakpoint = 1;
2895 else if (gdbarch_single_step_through_delay_p (gdbarch)
2896 && gdbarch_single_step_through_delay (gdbarch,
2897 get_current_frame ()))
2898 /* We stepped onto an instruction that needs to be stepped
2899 again before re-inserting the breakpoint, do so. */
2900 cur_thr->stepping_over_breakpoint = 1;
2901 }
2902 else
2903 {
2904 regcache_write_pc (regcache, addr);
2905 }
2906
2907 if (siggnal != GDB_SIGNAL_DEFAULT)
2908 cur_thr->suspend.stop_signal = siggnal;
2909
2910 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2911
2912 /* If an exception is thrown from this point on, make sure to
2913 propagate GDB's knowledge of the executing state to the
2914 frontend/user running state. */
2915 scoped_finish_thread_state finish_state (resume_ptid);
2916
2917 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2918 threads (e.g., we might need to set threads stepping over
2919 breakpoints first), from the user/frontend's point of view, all
2920 threads in RESUME_PTID are now running. Unless we're calling an
2921 inferior function, as in that case we pretend the inferior
2922 doesn't run at all. */
2923 if (!cur_thr->control.in_infcall)
2924 set_running (resume_ptid, 1);
2925
2926 if (debug_infrun)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "infrun: proceed (addr=%s, signal=%s)\n",
2929 paddress (gdbarch, addr),
2930 gdb_signal_to_symbol_string (siggnal));
2931
2932 annotate_starting ();
2933
2934 /* Make sure that output from GDB appears before output from the
2935 inferior. */
2936 gdb_flush (gdb_stdout);
2937
2938 /* Since we've marked the inferior running, give it the terminal. A
2939 QUIT/Ctrl-C from here on is forwarded to the target (which can
2940 still detect attempts to unblock a stuck connection with repeated
2941 Ctrl-C from within target_pass_ctrlc). */
2942 target_terminal::inferior ();
2943
2944 /* In a multi-threaded task we may select another thread and
2945 then continue or step.
2946
2947 But if a thread that we're resuming had stopped at a breakpoint,
2948 it will immediately cause another breakpoint stop without any
2949 execution (i.e. it will report a breakpoint hit incorrectly). So
2950 we must step over it first.
2951
2952 Look for threads other than the current (TP) that reported a
2953 breakpoint hit and haven't been resumed yet since. */
2954
2955 /* If scheduler locking applies, we can avoid iterating over all
2956 threads. */
2957 if (!non_stop && !schedlock_applies (cur_thr))
2958 {
2959 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2960 {
2961 /* Ignore the current thread here. It's handled
2962 afterwards. */
2963 if (tp == cur_thr)
2964 continue;
2965
2966 if (!thread_still_needs_step_over (tp))
2967 continue;
2968
2969 gdb_assert (!thread_is_in_step_over_chain (tp));
2970
2971 if (debug_infrun)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "infrun: need to step-over [%s] first\n",
2974 target_pid_to_str (tp->ptid));
2975
2976 thread_step_over_chain_enqueue (tp);
2977 }
2978 }
2979
2980 /* Enqueue the current thread last, so that we move all other
2981 threads over their breakpoints first. */
2982 if (cur_thr->stepping_over_breakpoint)
2983 thread_step_over_chain_enqueue (cur_thr);
2984
2985 /* If the thread isn't started, we'll still need to set its prev_pc,
2986 so that switch_back_to_stepped_thread knows the thread hasn't
2987 advanced. Must do this before resuming any thread, as in
2988 all-stop/remote, once we resume we can't send any other packet
2989 until the target stops again. */
2990 cur_thr->prev_pc = regcache_read_pc (regcache);
2991
2992 {
2993 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2994
2995 started = start_step_over ();
2996
2997 if (step_over_info_valid_p ())
2998 {
2999 /* Either this thread started a new in-line step over, or some
3000 other thread was already doing one. In either case, don't
3001 resume anything else until the step-over is finished. */
3002 }
3003 else if (started && !target_is_non_stop_p ())
3004 {
3005 /* A new displaced stepping sequence was started. In all-stop,
3006 we can't talk to the target anymore until it next stops. */
3007 }
3008 else if (!non_stop && target_is_non_stop_p ())
3009 {
3010 /* In all-stop, but the target is always in non-stop mode.
3011 Start all other threads that are implicitly resumed too. */
3012 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3013 {
3014 if (tp->resumed)
3015 {
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: [%s] resumed\n",
3019 target_pid_to_str (tp->ptid));
3020 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3021 continue;
3022 }
3023
3024 if (thread_is_in_step_over_chain (tp))
3025 {
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "infrun: proceed: [%s] needs step-over\n",
3029 target_pid_to_str (tp->ptid));
3030 continue;
3031 }
3032
3033 if (debug_infrun)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "infrun: proceed: resuming %s\n",
3036 target_pid_to_str (tp->ptid));
3037
3038 reset_ecs (ecs, tp);
3039 switch_to_thread (tp);
3040 keep_going_pass_signal (ecs);
3041 if (!ecs->wait_some_more)
3042 error (_("Command aborted."));
3043 }
3044 }
3045 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3046 {
3047 /* The thread wasn't started, and isn't queued, run it now. */
3048 reset_ecs (ecs, cur_thr);
3049 switch_to_thread (cur_thr);
3050 keep_going_pass_signal (ecs);
3051 if (!ecs->wait_some_more)
3052 error (_("Command aborted."));
3053 }
3054 }
3055
3056 target_commit_resume ();
3057
3058 finish_state.release ();
3059
3060 /* Tell the event loop to wait for it to stop. If the target
3061 supports asynchronous execution, it'll do this from within
3062 target_resume. */
3063 if (!target_can_async_p ())
3064 mark_async_event_handler (infrun_async_inferior_event_token);
3065 }
3066 \f
3067
3068 /* Start remote-debugging of a machine over a serial link. */
3069
3070 void
3071 start_remote (int from_tty)
3072 {
3073 struct inferior *inferior;
3074
3075 inferior = current_inferior ();
3076 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3077
3078 /* Always go on waiting for the target, regardless of the mode. */
3079 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3080 indicate to wait_for_inferior that a target should timeout if
3081 nothing is returned (instead of just blocking). Because of this,
3082 targets expecting an immediate response need to, internally, set
3083 things up so that the target_wait() is forced to eventually
3084 timeout. */
3085 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3086 differentiate to its caller what the state of the target is after
3087 the initial open has been performed. Here we're assuming that
3088 the target has stopped. It should be possible to eventually have
3089 target_open() return to the caller an indication that the target
3090 is currently running and GDB state should be set to the same as
3091 for an async run. */
3092 wait_for_inferior ();
3093
3094 /* Now that the inferior has stopped, do any bookkeeping like
3095 loading shared libraries. We want to do this before normal_stop,
3096 so that the displayed frame is up to date. */
3097 post_create_inferior (current_top_target (), from_tty);
3098
3099 normal_stop ();
3100 }
3101
3102 /* Initialize static vars when a new inferior begins. */
3103
3104 void
3105 init_wait_for_inferior (void)
3106 {
3107 /* These are meaningless until the first time through wait_for_inferior. */
3108
3109 breakpoint_init_inferior (inf_starting);
3110
3111 clear_proceed_status (0);
3112
3113 target_last_wait_ptid = minus_one_ptid;
3114
3115 previous_inferior_ptid = inferior_ptid;
3116 }
3117
3118 \f
3119
3120 static void handle_inferior_event (struct execution_control_state *ecs);
3121
3122 static void handle_step_into_function (struct gdbarch *gdbarch,
3123 struct execution_control_state *ecs);
3124 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3125 struct execution_control_state *ecs);
3126 static void handle_signal_stop (struct execution_control_state *ecs);
3127 static void check_exception_resume (struct execution_control_state *,
3128 struct frame_info *);
3129
3130 static void end_stepping_range (struct execution_control_state *ecs);
3131 static void stop_waiting (struct execution_control_state *ecs);
3132 static void keep_going (struct execution_control_state *ecs);
3133 static void process_event_stop_test (struct execution_control_state *ecs);
3134 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3135
3136 /* This function is attached as a "thread_stop_requested" observer.
3137 Cleanup local state that assumed the PTID was to be resumed, and
3138 report the stop to the frontend. */
3139
3140 static void
3141 infrun_thread_stop_requested (ptid_t ptid)
3142 {
3143 /* PTID was requested to stop. If the thread was already stopped,
3144 but the user/frontend doesn't know about that yet (e.g., the
3145 thread had been temporarily paused for some step-over), set up
3146 for reporting the stop now. */
3147 for (thread_info *tp : all_threads (ptid))
3148 {
3149 if (tp->state != THREAD_RUNNING)
3150 continue;
3151 if (tp->executing)
3152 continue;
3153
3154 /* Remove matching threads from the step-over queue, so
3155 start_step_over doesn't try to resume them
3156 automatically. */
3157 if (thread_is_in_step_over_chain (tp))
3158 thread_step_over_chain_remove (tp);
3159
3160 /* If the thread is stopped, but the user/frontend doesn't
3161 know about that yet, queue a pending event, as if the
3162 thread had just stopped now. Unless the thread already had
3163 a pending event. */
3164 if (!tp->suspend.waitstatus_pending_p)
3165 {
3166 tp->suspend.waitstatus_pending_p = 1;
3167 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3168 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3169 }
3170
3171 /* Clear the inline-frame state, since we're re-processing the
3172 stop. */
3173 clear_inline_frame_state (tp->ptid);
3174
3175 /* If this thread was paused because some other thread was
3176 doing an inline-step over, let that finish first. Once
3177 that happens, we'll restart all threads and consume pending
3178 stop events then. */
3179 if (step_over_info_valid_p ())
3180 continue;
3181
3182 /* Otherwise we can process the (new) pending event now. Set
3183 it so this pending event is considered by
3184 do_target_wait. */
3185 tp->resumed = 1;
3186 }
3187 }
3188
3189 static void
3190 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3191 {
3192 if (target_last_wait_ptid == tp->ptid)
3193 nullify_last_target_wait_ptid ();
3194 }
3195
3196 /* Delete the step resume, single-step and longjmp/exception resume
3197 breakpoints of TP. */
3198
3199 static void
3200 delete_thread_infrun_breakpoints (struct thread_info *tp)
3201 {
3202 delete_step_resume_breakpoint (tp);
3203 delete_exception_resume_breakpoint (tp);
3204 delete_single_step_breakpoints (tp);
3205 }
3206
3207 /* If the target still has execution, call FUNC for each thread that
3208 just stopped. In all-stop, that's all the non-exited threads; in
3209 non-stop, that's the current thread, only. */
3210
3211 typedef void (*for_each_just_stopped_thread_callback_func)
3212 (struct thread_info *tp);
3213
3214 static void
3215 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3216 {
3217 if (!target_has_execution || inferior_ptid == null_ptid)
3218 return;
3219
3220 if (target_is_non_stop_p ())
3221 {
3222 /* If in non-stop mode, only the current thread stopped. */
3223 func (inferior_thread ());
3224 }
3225 else
3226 {
3227 /* In all-stop mode, all threads have stopped. */
3228 for (thread_info *tp : all_non_exited_threads ())
3229 func (tp);
3230 }
3231 }
3232
3233 /* Delete the step resume and longjmp/exception resume breakpoints of
3234 the threads that just stopped. */
3235
3236 static void
3237 delete_just_stopped_threads_infrun_breakpoints (void)
3238 {
3239 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3240 }
3241
3242 /* Delete the single-step breakpoints of the threads that just
3243 stopped. */
3244
3245 static void
3246 delete_just_stopped_threads_single_step_breakpoints (void)
3247 {
3248 for_each_just_stopped_thread (delete_single_step_breakpoints);
3249 }
3250
3251 /* See infrun.h. */
3252
3253 void
3254 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3255 const struct target_waitstatus *ws)
3256 {
3257 std::string status_string = target_waitstatus_to_string (ws);
3258 string_file stb;
3259
3260 /* The text is split over several lines because it was getting too long.
3261 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3262 output as a unit; we want only one timestamp printed if debug_timestamp
3263 is set. */
3264
3265 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3266 waiton_ptid.pid (),
3267 waiton_ptid.lwp (),
3268 waiton_ptid.tid ());
3269 if (waiton_ptid.pid () != -1)
3270 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3271 stb.printf (", status) =\n");
3272 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3273 result_ptid.pid (),
3274 result_ptid.lwp (),
3275 result_ptid.tid (),
3276 target_pid_to_str (result_ptid));
3277 stb.printf ("infrun: %s\n", status_string.c_str ());
3278
3279 /* This uses %s in part to handle %'s in the text, but also to avoid
3280 a gcc error: the format attribute requires a string literal. */
3281 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3282 }
3283
3284 /* Select a thread at random, out of those which are resumed and have
3285 had events. */
3286
3287 static struct thread_info *
3288 random_pending_event_thread (ptid_t waiton_ptid)
3289 {
3290 int num_events = 0;
3291
3292 auto has_event = [] (thread_info *tp)
3293 {
3294 return (tp->resumed
3295 && tp->suspend.waitstatus_pending_p);
3296 };
3297
3298 /* First see how many events we have. Count only resumed threads
3299 that have an event pending. */
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
3302 num_events++;
3303
3304 if (num_events == 0)
3305 return NULL;
3306
3307 /* Now randomly pick a thread out of those that have had events. */
3308 int random_selector = (int) ((num_events * (double) rand ())
3309 / (RAND_MAX + 1.0));
3310
3311 if (debug_infrun && num_events > 1)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: Found %d events, selecting #%d\n",
3314 num_events, random_selector);
3315
3316 /* Select the Nth thread that has had an event. */
3317 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3318 if (has_event (tp))
3319 if (random_selector-- == 0)
3320 return tp;
3321
3322 gdb_assert_not_reached ("event thread not found");
3323 }
3324
3325 /* Wrapper for target_wait that first checks whether threads have
3326 pending statuses to report before actually asking the target for
3327 more events. */
3328
3329 static ptid_t
3330 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3331 {
3332 ptid_t event_ptid;
3333 struct thread_info *tp;
3334
3335 /* First check if there is a resumed thread with a wait status
3336 pending. */
3337 if (ptid == minus_one_ptid || ptid.is_pid ())
3338 {
3339 tp = random_pending_event_thread (ptid);
3340 }
3341 else
3342 {
3343 if (debug_infrun)
3344 fprintf_unfiltered (gdb_stdlog,
3345 "infrun: Waiting for specific thread %s.\n",
3346 target_pid_to_str (ptid));
3347
3348 /* We have a specific thread to check. */
3349 tp = find_thread_ptid (ptid);
3350 gdb_assert (tp != NULL);
3351 if (!tp->suspend.waitstatus_pending_p)
3352 tp = NULL;
3353 }
3354
3355 if (tp != NULL
3356 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3357 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3358 {
3359 struct regcache *regcache = get_thread_regcache (tp);
3360 struct gdbarch *gdbarch = regcache->arch ();
3361 CORE_ADDR pc;
3362 int discard = 0;
3363
3364 pc = regcache_read_pc (regcache);
3365
3366 if (pc != tp->suspend.stop_pc)
3367 {
3368 if (debug_infrun)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "infrun: PC of %s changed. was=%s, now=%s\n",
3371 target_pid_to_str (tp->ptid),
3372 paddress (gdbarch, tp->suspend.stop_pc),
3373 paddress (gdbarch, pc));
3374 discard = 1;
3375 }
3376 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3377 {
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: previous breakpoint of %s, at %s gone\n",
3381 target_pid_to_str (tp->ptid),
3382 paddress (gdbarch, pc));
3383
3384 discard = 1;
3385 }
3386
3387 if (discard)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog,
3391 "infrun: pending event of %s cancelled.\n",
3392 target_pid_to_str (tp->ptid));
3393
3394 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3395 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3396 }
3397 }
3398
3399 if (tp != NULL)
3400 {
3401 if (debug_infrun)
3402 {
3403 std::string statstr
3404 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3405
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: Using pending wait status %s for %s.\n",
3408 statstr.c_str (),
3409 target_pid_to_str (tp->ptid));
3410 }
3411
3412 /* Now that we've selected our final event LWP, un-adjust its PC
3413 if it was a software breakpoint (and the target doesn't
3414 always adjust the PC itself). */
3415 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3416 && !target_supports_stopped_by_sw_breakpoint ())
3417 {
3418 struct regcache *regcache;
3419 struct gdbarch *gdbarch;
3420 int decr_pc;
3421
3422 regcache = get_thread_regcache (tp);
3423 gdbarch = regcache->arch ();
3424
3425 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3426 if (decr_pc != 0)
3427 {
3428 CORE_ADDR pc;
3429
3430 pc = regcache_read_pc (regcache);
3431 regcache_write_pc (regcache, pc + decr_pc);
3432 }
3433 }
3434
3435 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3436 *status = tp->suspend.waitstatus;
3437 tp->suspend.waitstatus_pending_p = 0;
3438
3439 /* Wake up the event loop again, until all pending events are
3440 processed. */
3441 if (target_is_async_p ())
3442 mark_async_event_handler (infrun_async_inferior_event_token);
3443 return tp->ptid;
3444 }
3445
3446 /* But if we don't find one, we'll have to wait. */
3447
3448 if (deprecated_target_wait_hook)
3449 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3450 else
3451 event_ptid = target_wait (ptid, status, options);
3452
3453 return event_ptid;
3454 }
3455
3456 /* Prepare and stabilize the inferior for detaching it. E.g.,
3457 detaching while a thread is displaced stepping is a recipe for
3458 crashing it, as nothing would readjust the PC out of the scratch
3459 pad. */
3460
3461 void
3462 prepare_for_detach (void)
3463 {
3464 struct inferior *inf = current_inferior ();
3465 ptid_t pid_ptid = ptid_t (inf->pid);
3466
3467 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3468
3469 /* Is any thread of this process displaced stepping? If not,
3470 there's nothing else to do. */
3471 if (displaced->step_thread == nullptr)
3472 return;
3473
3474 if (debug_infrun)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "displaced-stepping in-process while detaching");
3477
3478 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3479
3480 while (displaced->step_thread != nullptr)
3481 {
3482 struct execution_control_state ecss;
3483 struct execution_control_state *ecs;
3484
3485 ecs = &ecss;
3486 memset (ecs, 0, sizeof (*ecs));
3487
3488 overlay_cache_invalid = 1;
3489 /* Flush target cache before starting to handle each event.
3490 Target was running and cache could be stale. This is just a
3491 heuristic. Running threads may modify target memory, but we
3492 don't get any event. */
3493 target_dcache_invalidate ();
3494
3495 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3496
3497 if (debug_infrun)
3498 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3499
3500 /* If an error happens while handling the event, propagate GDB's
3501 knowledge of the executing state to the frontend/user running
3502 state. */
3503 scoped_finish_thread_state finish_state (minus_one_ptid);
3504
3505 /* Now figure out what to do with the result of the result. */
3506 handle_inferior_event (ecs);
3507
3508 /* No error, don't finish the state yet. */
3509 finish_state.release ();
3510
3511 /* Breakpoints and watchpoints are not installed on the target
3512 at this point, and signals are passed directly to the
3513 inferior, so this must mean the process is gone. */
3514 if (!ecs->wait_some_more)
3515 {
3516 restore_detaching.release ();
3517 error (_("Program exited while detaching"));
3518 }
3519 }
3520
3521 restore_detaching.release ();
3522 }
3523
3524 /* Wait for control to return from inferior to debugger.
3525
3526 If inferior gets a signal, we may decide to start it up again
3527 instead of returning. That is why there is a loop in this function.
3528 When this function actually returns it means the inferior
3529 should be left stopped and GDB should read more commands. */
3530
3531 void
3532 wait_for_inferior (void)
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered
3536 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3537
3538 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3539
3540 /* If an error happens while handling the event, propagate GDB's
3541 knowledge of the executing state to the frontend/user running
3542 state. */
3543 scoped_finish_thread_state finish_state (minus_one_ptid);
3544
3545 while (1)
3546 {
3547 struct execution_control_state ecss;
3548 struct execution_control_state *ecs = &ecss;
3549 ptid_t waiton_ptid = minus_one_ptid;
3550
3551 memset (ecs, 0, sizeof (*ecs));
3552
3553 overlay_cache_invalid = 1;
3554
3555 /* Flush target cache before starting to handle each event.
3556 Target was running and cache could be stale. This is just a
3557 heuristic. Running threads may modify target memory, but we
3558 don't get any event. */
3559 target_dcache_invalidate ();
3560
3561 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3562
3563 if (debug_infrun)
3564 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3565
3566 /* Now figure out what to do with the result of the result. */
3567 handle_inferior_event (ecs);
3568
3569 if (!ecs->wait_some_more)
3570 break;
3571 }
3572
3573 /* No error, don't finish the state yet. */
3574 finish_state.release ();
3575 }
3576
3577 /* Cleanup that reinstalls the readline callback handler, if the
3578 target is running in the background. If while handling the target
3579 event something triggered a secondary prompt, like e.g., a
3580 pagination prompt, we'll have removed the callback handler (see
3581 gdb_readline_wrapper_line). Need to do this as we go back to the
3582 event loop, ready to process further input. Note this has no
3583 effect if the handler hasn't actually been removed, because calling
3584 rl_callback_handler_install resets the line buffer, thus losing
3585 input. */
3586
3587 static void
3588 reinstall_readline_callback_handler_cleanup (void *arg)
3589 {
3590 struct ui *ui = current_ui;
3591
3592 if (!ui->async)
3593 {
3594 /* We're not going back to the top level event loop yet. Don't
3595 install the readline callback, as it'd prep the terminal,
3596 readline-style (raw, noecho) (e.g., --batch). We'll install
3597 it the next time the prompt is displayed, when we're ready
3598 for input. */
3599 return;
3600 }
3601
3602 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3603 gdb_rl_callback_handler_reinstall ();
3604 }
3605
3606 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3607 that's just the event thread. In all-stop, that's all threads. */
3608
3609 static void
3610 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3611 {
3612 if (ecs->event_thread != NULL
3613 && ecs->event_thread->thread_fsm != NULL)
3614 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3615 ecs->event_thread);
3616
3617 if (!non_stop)
3618 {
3619 for (thread_info *thr : all_non_exited_threads ())
3620 {
3621 if (thr->thread_fsm == NULL)
3622 continue;
3623 if (thr == ecs->event_thread)
3624 continue;
3625
3626 switch_to_thread (thr);
3627 thread_fsm_clean_up (thr->thread_fsm, thr);
3628 }
3629
3630 if (ecs->event_thread != NULL)
3631 switch_to_thread (ecs->event_thread);
3632 }
3633 }
3634
3635 /* Helper for all_uis_check_sync_execution_done that works on the
3636 current UI. */
3637
3638 static void
3639 check_curr_ui_sync_execution_done (void)
3640 {
3641 struct ui *ui = current_ui;
3642
3643 if (ui->prompt_state == PROMPT_NEEDED
3644 && ui->async
3645 && !gdb_in_secondary_prompt_p (ui))
3646 {
3647 target_terminal::ours ();
3648 gdb::observers::sync_execution_done.notify ();
3649 ui_register_input_event_handler (ui);
3650 }
3651 }
3652
3653 /* See infrun.h. */
3654
3655 void
3656 all_uis_check_sync_execution_done (void)
3657 {
3658 SWITCH_THRU_ALL_UIS ()
3659 {
3660 check_curr_ui_sync_execution_done ();
3661 }
3662 }
3663
3664 /* See infrun.h. */
3665
3666 void
3667 all_uis_on_sync_execution_starting (void)
3668 {
3669 SWITCH_THRU_ALL_UIS ()
3670 {
3671 if (current_ui->prompt_state == PROMPT_NEEDED)
3672 async_disable_stdin ();
3673 }
3674 }
3675
3676 /* Asynchronous version of wait_for_inferior. It is called by the
3677 event loop whenever a change of state is detected on the file
3678 descriptor corresponding to the target. It can be called more than
3679 once to complete a single execution command. In such cases we need
3680 to keep the state in a global variable ECSS. If it is the last time
3681 that this function is called for a single execution command, then
3682 report to the user that the inferior has stopped, and do the
3683 necessary cleanups. */
3684
3685 void
3686 fetch_inferior_event (void *client_data)
3687 {
3688 struct execution_control_state ecss;
3689 struct execution_control_state *ecs = &ecss;
3690 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3691 int cmd_done = 0;
3692 ptid_t waiton_ptid = minus_one_ptid;
3693
3694 memset (ecs, 0, sizeof (*ecs));
3695
3696 /* Events are always processed with the main UI as current UI. This
3697 way, warnings, debug output, etc. are always consistently sent to
3698 the main console. */
3699 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3700
3701 /* End up with readline processing input, if necessary. */
3702 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3703
3704 /* We're handling a live event, so make sure we're doing live
3705 debugging. If we're looking at traceframes while the target is
3706 running, we're going to need to get back to that mode after
3707 handling the event. */
3708 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3709 if (non_stop)
3710 {
3711 maybe_restore_traceframe.emplace ();
3712 set_current_traceframe (-1);
3713 }
3714
3715 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3716
3717 if (non_stop)
3718 /* In non-stop mode, the user/frontend should not notice a thread
3719 switch due to internal events. Make sure we reverse to the
3720 user selected thread and frame after handling the event and
3721 running any breakpoint commands. */
3722 maybe_restore_thread.emplace ();
3723
3724 overlay_cache_invalid = 1;
3725 /* Flush target cache before starting to handle each event. Target
3726 was running and cache could be stale. This is just a heuristic.
3727 Running threads may modify target memory, but we don't get any
3728 event. */
3729 target_dcache_invalidate ();
3730
3731 scoped_restore save_exec_dir
3732 = make_scoped_restore (&execution_direction, target_execution_direction ());
3733
3734 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3735 target_can_async_p () ? TARGET_WNOHANG : 0);
3736
3737 if (debug_infrun)
3738 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3744 scoped_finish_thread_state finish_state (finish_ptid);
3745
3746 /* Get executed before make_cleanup_restore_current_thread above to apply
3747 still for the thread which has thrown the exception. */
3748 auto defer_bpstat_clear
3749 = make_scope_exit (bpstat_clear_actions);
3750 auto defer_delete_threads
3751 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3752
3753 /* Now figure out what to do with the result of the result. */
3754 handle_inferior_event (ecs);
3755
3756 if (!ecs->wait_some_more)
3757 {
3758 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3759 int should_stop = 1;
3760 struct thread_info *thr = ecs->event_thread;
3761
3762 delete_just_stopped_threads_infrun_breakpoints ();
3763
3764 if (thr != NULL)
3765 {
3766 struct thread_fsm *thread_fsm = thr->thread_fsm;
3767
3768 if (thread_fsm != NULL)
3769 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3770 }
3771
3772 if (!should_stop)
3773 {
3774 keep_going (ecs);
3775 }
3776 else
3777 {
3778 int should_notify_stop = 1;
3779 int proceeded = 0;
3780
3781 clean_up_just_stopped_threads_fsms (ecs);
3782
3783 if (thr != NULL && thr->thread_fsm != NULL)
3784 {
3785 should_notify_stop
3786 = thread_fsm_should_notify_stop (thr->thread_fsm);
3787 }
3788
3789 if (should_notify_stop)
3790 {
3791 /* We may not find an inferior if this was a process exit. */
3792 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3793 proceeded = normal_stop ();
3794 }
3795
3796 if (!proceeded)
3797 {
3798 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3799 cmd_done = 1;
3800 }
3801 }
3802 }
3803
3804 defer_delete_threads.release ();
3805 defer_bpstat_clear.release ();
3806
3807 /* No error, don't finish the thread states yet. */
3808 finish_state.release ();
3809
3810 /* Revert thread and frame. */
3811 do_cleanups (old_chain);
3812
3813 /* If a UI was in sync execution mode, and now isn't, restore its
3814 prompt (a synchronous execution command has finished, and we're
3815 ready for input). */
3816 all_uis_check_sync_execution_done ();
3817
3818 if (cmd_done
3819 && exec_done_display_p
3820 && (inferior_ptid == null_ptid
3821 || inferior_thread ()->state != THREAD_RUNNING))
3822 printf_unfiltered (_("completed.\n"));
3823 }
3824
3825 /* Record the frame and location we're currently stepping through. */
3826 void
3827 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3828 {
3829 struct thread_info *tp = inferior_thread ();
3830
3831 tp->control.step_frame_id = get_frame_id (frame);
3832 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3833
3834 tp->current_symtab = sal.symtab;
3835 tp->current_line = sal.line;
3836 }
3837
3838 /* Clear context switchable stepping state. */
3839
3840 void
3841 init_thread_stepping_state (struct thread_info *tss)
3842 {
3843 tss->stepped_breakpoint = 0;
3844 tss->stepping_over_breakpoint = 0;
3845 tss->stepping_over_watchpoint = 0;
3846 tss->step_after_step_resume_breakpoint = 0;
3847 }
3848
3849 /* Set the cached copy of the last ptid/waitstatus. */
3850
3851 void
3852 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3853 {
3854 target_last_wait_ptid = ptid;
3855 target_last_waitstatus = status;
3856 }
3857
3858 /* Return the cached copy of the last pid/waitstatus returned by
3859 target_wait()/deprecated_target_wait_hook(). The data is actually
3860 cached by handle_inferior_event(), which gets called immediately
3861 after target_wait()/deprecated_target_wait_hook(). */
3862
3863 void
3864 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3865 {
3866 *ptidp = target_last_wait_ptid;
3867 *status = target_last_waitstatus;
3868 }
3869
3870 void
3871 nullify_last_target_wait_ptid (void)
3872 {
3873 target_last_wait_ptid = minus_one_ptid;
3874 }
3875
3876 /* Switch thread contexts. */
3877
3878 static void
3879 context_switch (execution_control_state *ecs)
3880 {
3881 if (debug_infrun
3882 && ecs->ptid != inferior_ptid
3883 && ecs->event_thread != inferior_thread ())
3884 {
3885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3886 target_pid_to_str (inferior_ptid));
3887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3888 target_pid_to_str (ecs->ptid));
3889 }
3890
3891 switch_to_thread (ecs->event_thread);
3892 }
3893
3894 /* If the target can't tell whether we've hit breakpoints
3895 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3896 check whether that could have been caused by a breakpoint. If so,
3897 adjust the PC, per gdbarch_decr_pc_after_break. */
3898
3899 static void
3900 adjust_pc_after_break (struct thread_info *thread,
3901 struct target_waitstatus *ws)
3902 {
3903 struct regcache *regcache;
3904 struct gdbarch *gdbarch;
3905 CORE_ADDR breakpoint_pc, decr_pc;
3906
3907 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3908 we aren't, just return.
3909
3910 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3911 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3912 implemented by software breakpoints should be handled through the normal
3913 breakpoint layer.
3914
3915 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3916 different signals (SIGILL or SIGEMT for instance), but it is less
3917 clear where the PC is pointing afterwards. It may not match
3918 gdbarch_decr_pc_after_break. I don't know any specific target that
3919 generates these signals at breakpoints (the code has been in GDB since at
3920 least 1992) so I can not guess how to handle them here.
3921
3922 In earlier versions of GDB, a target with
3923 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3924 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3925 target with both of these set in GDB history, and it seems unlikely to be
3926 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3927
3928 if (ws->kind != TARGET_WAITKIND_STOPPED)
3929 return;
3930
3931 if (ws->value.sig != GDB_SIGNAL_TRAP)
3932 return;
3933
3934 /* In reverse execution, when a breakpoint is hit, the instruction
3935 under it has already been de-executed. The reported PC always
3936 points at the breakpoint address, so adjusting it further would
3937 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3938 architecture:
3939
3940 B1 0x08000000 : INSN1
3941 B2 0x08000001 : INSN2
3942 0x08000002 : INSN3
3943 PC -> 0x08000003 : INSN4
3944
3945 Say you're stopped at 0x08000003 as above. Reverse continuing
3946 from that point should hit B2 as below. Reading the PC when the
3947 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3948 been de-executed already.
3949
3950 B1 0x08000000 : INSN1
3951 B2 PC -> 0x08000001 : INSN2
3952 0x08000002 : INSN3
3953 0x08000003 : INSN4
3954
3955 We can't apply the same logic as for forward execution, because
3956 we would wrongly adjust the PC to 0x08000000, since there's a
3957 breakpoint at PC - 1. We'd then report a hit on B1, although
3958 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3959 behaviour. */
3960 if (execution_direction == EXEC_REVERSE)
3961 return;
3962
3963 /* If the target can tell whether the thread hit a SW breakpoint,
3964 trust it. Targets that can tell also adjust the PC
3965 themselves. */
3966 if (target_supports_stopped_by_sw_breakpoint ())
3967 return;
3968
3969 /* Note that relying on whether a breakpoint is planted in memory to
3970 determine this can fail. E.g,. the breakpoint could have been
3971 removed since. Or the thread could have been told to step an
3972 instruction the size of a breakpoint instruction, and only
3973 _after_ was a breakpoint inserted at its address. */
3974
3975 /* If this target does not decrement the PC after breakpoints, then
3976 we have nothing to do. */
3977 regcache = get_thread_regcache (thread);
3978 gdbarch = regcache->arch ();
3979
3980 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3981 if (decr_pc == 0)
3982 return;
3983
3984 const address_space *aspace = regcache->aspace ();
3985
3986 /* Find the location where (if we've hit a breakpoint) the
3987 breakpoint would be. */
3988 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3989
3990 /* If the target can't tell whether a software breakpoint triggered,
3991 fallback to figuring it out based on breakpoints we think were
3992 inserted in the target, and on whether the thread was stepped or
3993 continued. */
3994
3995 /* Check whether there actually is a software breakpoint inserted at
3996 that location.
3997
3998 If in non-stop mode, a race condition is possible where we've
3999 removed a breakpoint, but stop events for that breakpoint were
4000 already queued and arrive later. To suppress those spurious
4001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4002 and retire them after a number of stop events are reported. Note
4003 this is an heuristic and can thus get confused. The real fix is
4004 to get the "stopped by SW BP and needs adjustment" info out of
4005 the target/kernel (and thus never reach here; see above). */
4006 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4007 || (target_is_non_stop_p ()
4008 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4009 {
4010 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4011
4012 if (record_full_is_used ())
4013 restore_operation_disable.emplace
4014 (record_full_gdb_operation_disable_set ());
4015
4016 /* When using hardware single-step, a SIGTRAP is reported for both
4017 a completed single-step and a software breakpoint. Need to
4018 differentiate between the two, as the latter needs adjusting
4019 but the former does not.
4020
4021 The SIGTRAP can be due to a completed hardware single-step only if
4022 - we didn't insert software single-step breakpoints
4023 - this thread is currently being stepped
4024
4025 If any of these events did not occur, we must have stopped due
4026 to hitting a software breakpoint, and have to back up to the
4027 breakpoint address.
4028
4029 As a special case, we could have hardware single-stepped a
4030 software breakpoint. In this case (prev_pc == breakpoint_pc),
4031 we also need to back up to the breakpoint address. */
4032
4033 if (thread_has_single_step_breakpoints_set (thread)
4034 || !currently_stepping (thread)
4035 || (thread->stepped_breakpoint
4036 && thread->prev_pc == breakpoint_pc))
4037 regcache_write_pc (regcache, breakpoint_pc);
4038 }
4039 }
4040
4041 static int
4042 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4043 {
4044 for (frame = get_prev_frame (frame);
4045 frame != NULL;
4046 frame = get_prev_frame (frame))
4047 {
4048 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4049 return 1;
4050 if (get_frame_type (frame) != INLINE_FRAME)
4051 break;
4052 }
4053
4054 return 0;
4055 }
4056
4057 /* If the event thread has the stop requested flag set, pretend it
4058 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4059 target_stop). */
4060
4061 static bool
4062 handle_stop_requested (struct execution_control_state *ecs)
4063 {
4064 if (ecs->event_thread->stop_requested)
4065 {
4066 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4067 ecs->ws.value.sig = GDB_SIGNAL_0;
4068 handle_signal_stop (ecs);
4069 return true;
4070 }
4071 return false;
4072 }
4073
4074 /* Auxiliary function that handles syscall entry/return events.
4075 It returns 1 if the inferior should keep going (and GDB
4076 should ignore the event), or 0 if the event deserves to be
4077 processed. */
4078
4079 static int
4080 handle_syscall_event (struct execution_control_state *ecs)
4081 {
4082 struct regcache *regcache;
4083 int syscall_number;
4084
4085 context_switch (ecs);
4086
4087 regcache = get_thread_regcache (ecs->event_thread);
4088 syscall_number = ecs->ws.value.syscall_number;
4089 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4090
4091 if (catch_syscall_enabled () > 0
4092 && catching_syscall_number (syscall_number) > 0)
4093 {
4094 if (debug_infrun)
4095 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4096 syscall_number);
4097
4098 ecs->event_thread->control.stop_bpstat
4099 = bpstat_stop_status (regcache->aspace (),
4100 ecs->event_thread->suspend.stop_pc,
4101 ecs->event_thread, &ecs->ws);
4102
4103 if (handle_stop_requested (ecs))
4104 return 0;
4105
4106 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4107 {
4108 /* Catchpoint hit. */
4109 return 0;
4110 }
4111 }
4112
4113 if (handle_stop_requested (ecs))
4114 return 0;
4115
4116 /* If no catchpoint triggered for this, then keep going. */
4117 keep_going (ecs);
4118 return 1;
4119 }
4120
4121 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4122
4123 static void
4124 fill_in_stop_func (struct gdbarch *gdbarch,
4125 struct execution_control_state *ecs)
4126 {
4127 if (!ecs->stop_func_filled_in)
4128 {
4129 /* Don't care about return value; stop_func_start and stop_func_name
4130 will both be 0 if it doesn't work. */
4131 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4132 &ecs->stop_func_name,
4133 &ecs->stop_func_start,
4134 &ecs->stop_func_end);
4135 ecs->stop_func_start
4136 += gdbarch_deprecated_function_start_offset (gdbarch);
4137
4138 if (gdbarch_skip_entrypoint_p (gdbarch))
4139 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4140 ecs->stop_func_start);
4141
4142 ecs->stop_func_filled_in = 1;
4143 }
4144 }
4145
4146
4147 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4148
4149 static enum stop_kind
4150 get_inferior_stop_soon (execution_control_state *ecs)
4151 {
4152 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4153
4154 gdb_assert (inf != NULL);
4155 return inf->control.stop_soon;
4156 }
4157
4158 /* Wait for one event. Store the resulting waitstatus in WS, and
4159 return the event ptid. */
4160
4161 static ptid_t
4162 wait_one (struct target_waitstatus *ws)
4163 {
4164 ptid_t event_ptid;
4165 ptid_t wait_ptid = minus_one_ptid;
4166
4167 overlay_cache_invalid = 1;
4168
4169 /* Flush target cache before starting to handle each event.
4170 Target was running and cache could be stale. This is just a
4171 heuristic. Running threads may modify target memory, but we
4172 don't get any event. */
4173 target_dcache_invalidate ();
4174
4175 if (deprecated_target_wait_hook)
4176 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4177 else
4178 event_ptid = target_wait (wait_ptid, ws, 0);
4179
4180 if (debug_infrun)
4181 print_target_wait_results (wait_ptid, event_ptid, ws);
4182
4183 return event_ptid;
4184 }
4185
4186 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4187 instead of the current thread. */
4188 #define THREAD_STOPPED_BY(REASON) \
4189 static int \
4190 thread_stopped_by_ ## REASON (ptid_t ptid) \
4191 { \
4192 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4193 inferior_ptid = ptid; \
4194 \
4195 return target_stopped_by_ ## REASON (); \
4196 }
4197
4198 /* Generate thread_stopped_by_watchpoint. */
4199 THREAD_STOPPED_BY (watchpoint)
4200 /* Generate thread_stopped_by_sw_breakpoint. */
4201 THREAD_STOPPED_BY (sw_breakpoint)
4202 /* Generate thread_stopped_by_hw_breakpoint. */
4203 THREAD_STOPPED_BY (hw_breakpoint)
4204
4205 /* Save the thread's event and stop reason to process it later. */
4206
4207 static void
4208 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4209 {
4210 if (debug_infrun)
4211 {
4212 std::string statstr = target_waitstatus_to_string (ws);
4213
4214 fprintf_unfiltered (gdb_stdlog,
4215 "infrun: saving status %s for %d.%ld.%ld\n",
4216 statstr.c_str (),
4217 tp->ptid.pid (),
4218 tp->ptid.lwp (),
4219 tp->ptid.tid ());
4220 }
4221
4222 /* Record for later. */
4223 tp->suspend.waitstatus = *ws;
4224 tp->suspend.waitstatus_pending_p = 1;
4225
4226 struct regcache *regcache = get_thread_regcache (tp);
4227 const address_space *aspace = regcache->aspace ();
4228
4229 if (ws->kind == TARGET_WAITKIND_STOPPED
4230 && ws->value.sig == GDB_SIGNAL_TRAP)
4231 {
4232 CORE_ADDR pc = regcache_read_pc (regcache);
4233
4234 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4235
4236 if (thread_stopped_by_watchpoint (tp->ptid))
4237 {
4238 tp->suspend.stop_reason
4239 = TARGET_STOPPED_BY_WATCHPOINT;
4240 }
4241 else if (target_supports_stopped_by_sw_breakpoint ()
4242 && thread_stopped_by_sw_breakpoint (tp->ptid))
4243 {
4244 tp->suspend.stop_reason
4245 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4246 }
4247 else if (target_supports_stopped_by_hw_breakpoint ()
4248 && thread_stopped_by_hw_breakpoint (tp->ptid))
4249 {
4250 tp->suspend.stop_reason
4251 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4252 }
4253 else if (!target_supports_stopped_by_hw_breakpoint ()
4254 && hardware_breakpoint_inserted_here_p (aspace,
4255 pc))
4256 {
4257 tp->suspend.stop_reason
4258 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4259 }
4260 else if (!target_supports_stopped_by_sw_breakpoint ()
4261 && software_breakpoint_inserted_here_p (aspace,
4262 pc))
4263 {
4264 tp->suspend.stop_reason
4265 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4266 }
4267 else if (!thread_has_single_step_breakpoints_set (tp)
4268 && currently_stepping (tp))
4269 {
4270 tp->suspend.stop_reason
4271 = TARGET_STOPPED_BY_SINGLE_STEP;
4272 }
4273 }
4274 }
4275
4276 /* See infrun.h. */
4277
4278 void
4279 stop_all_threads (void)
4280 {
4281 /* We may need multiple passes to discover all threads. */
4282 int pass;
4283 int iterations = 0;
4284
4285 gdb_assert (target_is_non_stop_p ());
4286
4287 if (debug_infrun)
4288 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4289
4290 scoped_restore_current_thread restore_thread;
4291
4292 target_thread_events (1);
4293 SCOPE_EXIT { target_thread_events (0); };
4294
4295 /* Request threads to stop, and then wait for the stops. Because
4296 threads we already know about can spawn more threads while we're
4297 trying to stop them, and we only learn about new threads when we
4298 update the thread list, do this in a loop, and keep iterating
4299 until two passes find no threads that need to be stopped. */
4300 for (pass = 0; pass < 2; pass++, iterations++)
4301 {
4302 if (debug_infrun)
4303 fprintf_unfiltered (gdb_stdlog,
4304 "infrun: stop_all_threads, pass=%d, "
4305 "iterations=%d\n", pass, iterations);
4306 while (1)
4307 {
4308 ptid_t event_ptid;
4309 struct target_waitstatus ws;
4310 int need_wait = 0;
4311
4312 update_thread_list ();
4313
4314 /* Go through all threads looking for threads that we need
4315 to tell the target to stop. */
4316 for (thread_info *t : all_non_exited_threads ())
4317 {
4318 if (t->executing)
4319 {
4320 /* If already stopping, don't request a stop again.
4321 We just haven't seen the notification yet. */
4322 if (!t->stop_requested)
4323 {
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: %s executing, "
4327 "need stop\n",
4328 target_pid_to_str (t->ptid));
4329 target_stop (t->ptid);
4330 t->stop_requested = 1;
4331 }
4332 else
4333 {
4334 if (debug_infrun)
4335 fprintf_unfiltered (gdb_stdlog,
4336 "infrun: %s executing, "
4337 "already stopping\n",
4338 target_pid_to_str (t->ptid));
4339 }
4340
4341 if (t->stop_requested)
4342 need_wait = 1;
4343 }
4344 else
4345 {
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: %s not executing\n",
4349 target_pid_to_str (t->ptid));
4350
4351 /* The thread may be not executing, but still be
4352 resumed with a pending status to process. */
4353 t->resumed = 0;
4354 }
4355 }
4356
4357 if (!need_wait)
4358 break;
4359
4360 /* If we find new threads on the second iteration, restart
4361 over. We want to see two iterations in a row with all
4362 threads stopped. */
4363 if (pass > 0)
4364 pass = -1;
4365
4366 event_ptid = wait_one (&ws);
4367
4368 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4369 {
4370 /* All resumed threads exited. */
4371 }
4372 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4373 || ws.kind == TARGET_WAITKIND_EXITED
4374 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4375 {
4376 if (debug_infrun)
4377 {
4378 ptid_t ptid = ptid_t (ws.value.integer);
4379
4380 fprintf_unfiltered (gdb_stdlog,
4381 "infrun: %s exited while "
4382 "stopping threads\n",
4383 target_pid_to_str (ptid));
4384 }
4385 }
4386 else
4387 {
4388 thread_info *t = find_thread_ptid (event_ptid);
4389 if (t == NULL)
4390 t = add_thread (event_ptid);
4391
4392 t->stop_requested = 0;
4393 t->executing = 0;
4394 t->resumed = 0;
4395 t->control.may_range_step = 0;
4396
4397 /* This may be the first time we see the inferior report
4398 a stop. */
4399 inferior *inf = find_inferior_ptid (event_ptid);
4400 if (inf->needs_setup)
4401 {
4402 switch_to_thread_no_regs (t);
4403 setup_inferior (0);
4404 }
4405
4406 if (ws.kind == TARGET_WAITKIND_STOPPED
4407 && ws.value.sig == GDB_SIGNAL_0)
4408 {
4409 /* We caught the event that we intended to catch, so
4410 there's no event pending. */
4411 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4412 t->suspend.waitstatus_pending_p = 0;
4413
4414 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4415 {
4416 /* Add it back to the step-over queue. */
4417 if (debug_infrun)
4418 {
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: displaced-step of %s "
4421 "canceled: adding back to the "
4422 "step-over queue\n",
4423 target_pid_to_str (t->ptid));
4424 }
4425 t->control.trap_expected = 0;
4426 thread_step_over_chain_enqueue (t);
4427 }
4428 }
4429 else
4430 {
4431 enum gdb_signal sig;
4432 struct regcache *regcache;
4433
4434 if (debug_infrun)
4435 {
4436 std::string statstr = target_waitstatus_to_string (&ws);
4437
4438 fprintf_unfiltered (gdb_stdlog,
4439 "infrun: target_wait %s, saving "
4440 "status for %d.%ld.%ld\n",
4441 statstr.c_str (),
4442 t->ptid.pid (),
4443 t->ptid.lwp (),
4444 t->ptid.tid ());
4445 }
4446
4447 /* Record for later. */
4448 save_waitstatus (t, &ws);
4449
4450 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4451 ? ws.value.sig : GDB_SIGNAL_0);
4452
4453 if (displaced_step_fixup (t, sig) < 0)
4454 {
4455 /* Add it back to the step-over queue. */
4456 t->control.trap_expected = 0;
4457 thread_step_over_chain_enqueue (t);
4458 }
4459
4460 regcache = get_thread_regcache (t);
4461 t->suspend.stop_pc = regcache_read_pc (regcache);
4462
4463 if (debug_infrun)
4464 {
4465 fprintf_unfiltered (gdb_stdlog,
4466 "infrun: saved stop_pc=%s for %s "
4467 "(currently_stepping=%d)\n",
4468 paddress (target_gdbarch (),
4469 t->suspend.stop_pc),
4470 target_pid_to_str (t->ptid),
4471 currently_stepping (t));
4472 }
4473 }
4474 }
4475 }
4476 }
4477
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4480 }
4481
4482 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4483
4484 static int
4485 handle_no_resumed (struct execution_control_state *ecs)
4486 {
4487 if (target_can_async_p ())
4488 {
4489 struct ui *ui;
4490 int any_sync = 0;
4491
4492 ALL_UIS (ui)
4493 {
4494 if (ui->prompt_state == PROMPT_BLOCKED)
4495 {
4496 any_sync = 1;
4497 break;
4498 }
4499 }
4500 if (!any_sync)
4501 {
4502 /* There were no unwaited-for children left in the target, but,
4503 we're not synchronously waiting for events either. Just
4504 ignore. */
4505
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: TARGET_WAITKIND_NO_RESUMED "
4509 "(ignoring: bg)\n");
4510 prepare_to_wait (ecs);
4511 return 1;
4512 }
4513 }
4514
4515 /* Otherwise, if we were running a synchronous execution command, we
4516 may need to cancel it and give the user back the terminal.
4517
4518 In non-stop mode, the target can't tell whether we've already
4519 consumed previous stop events, so it can end up sending us a
4520 no-resumed event like so:
4521
4522 #0 - thread 1 is left stopped
4523
4524 #1 - thread 2 is resumed and hits breakpoint
4525 -> TARGET_WAITKIND_STOPPED
4526
4527 #2 - thread 3 is resumed and exits
4528 this is the last resumed thread, so
4529 -> TARGET_WAITKIND_NO_RESUMED
4530
4531 #3 - gdb processes stop for thread 2 and decides to re-resume
4532 it.
4533
4534 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4535 thread 2 is now resumed, so the event should be ignored.
4536
4537 IOW, if the stop for thread 2 doesn't end a foreground command,
4538 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4539 event. But it could be that the event meant that thread 2 itself
4540 (or whatever other thread was the last resumed thread) exited.
4541
4542 To address this we refresh the thread list and check whether we
4543 have resumed threads _now_. In the example above, this removes
4544 thread 3 from the thread list. If thread 2 was re-resumed, we
4545 ignore this event. If we find no thread resumed, then we cancel
4546 the synchronous command show "no unwaited-for " to the user. */
4547 update_thread_list ();
4548
4549 for (thread_info *thread : all_non_exited_threads ())
4550 {
4551 if (thread->executing
4552 || thread->suspend.waitstatus_pending_p)
4553 {
4554 /* There were no unwaited-for children left in the target at
4555 some point, but there are now. Just ignore. */
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "infrun: TARGET_WAITKIND_NO_RESUMED "
4559 "(ignoring: found resumed)\n");
4560 prepare_to_wait (ecs);
4561 return 1;
4562 }
4563 }
4564
4565 /* Note however that we may find no resumed thread because the whole
4566 process exited meanwhile (thus updating the thread list results
4567 in an empty thread list). In this case we know we'll be getting
4568 a process exit event shortly. */
4569 for (inferior *inf : all_inferiors ())
4570 {
4571 if (inf->pid == 0)
4572 continue;
4573
4574 thread_info *thread = any_live_thread_of_inferior (inf);
4575 if (thread == NULL)
4576 {
4577 if (debug_infrun)
4578 fprintf_unfiltered (gdb_stdlog,
4579 "infrun: TARGET_WAITKIND_NO_RESUMED "
4580 "(expect process exit)\n");
4581 prepare_to_wait (ecs);
4582 return 1;
4583 }
4584 }
4585
4586 /* Go ahead and report the event. */
4587 return 0;
4588 }
4589
4590 /* Given an execution control state that has been freshly filled in by
4591 an event from the inferior, figure out what it means and take
4592 appropriate action.
4593
4594 The alternatives are:
4595
4596 1) stop_waiting and return; to really stop and return to the
4597 debugger.
4598
4599 2) keep_going and return; to wait for the next event (set
4600 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4601 once). */
4602
4603 static void
4604 handle_inferior_event_1 (struct execution_control_state *ecs)
4605 {
4606 enum stop_kind stop_soon;
4607
4608 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4609 {
4610 /* We had an event in the inferior, but we are not interested in
4611 handling it at this level. The lower layers have already
4612 done what needs to be done, if anything.
4613
4614 One of the possible circumstances for this is when the
4615 inferior produces output for the console. The inferior has
4616 not stopped, and we are ignoring the event. Another possible
4617 circumstance is any event which the lower level knows will be
4618 reported multiple times without an intervening resume. */
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4621 prepare_to_wait (ecs);
4622 return;
4623 }
4624
4625 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4626 {
4627 if (debug_infrun)
4628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4634 && handle_no_resumed (ecs))
4635 return;
4636
4637 /* Cache the last pid/waitstatus. */
4638 set_last_target_status (ecs->ptid, ecs->ws);
4639
4640 /* Always clear state belonging to the previous time we stopped. */
4641 stop_stack_dummy = STOP_NONE;
4642
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4649
4650 stop_print_frame = 0;
4651 stop_waiting (ecs);
4652 return;
4653 }
4654
4655 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4656 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4657 {
4658 ecs->event_thread = find_thread_ptid (ecs->ptid);
4659 /* If it's a new thread, add it to the thread database. */
4660 if (ecs->event_thread == NULL)
4661 ecs->event_thread = add_thread (ecs->ptid);
4662
4663 /* Disable range stepping. If the next step request could use a
4664 range, this will be end up re-enabled then. */
4665 ecs->event_thread->control.may_range_step = 0;
4666 }
4667
4668 /* Dependent on valid ECS->EVENT_THREAD. */
4669 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4670
4671 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4672 reinit_frame_cache ();
4673
4674 breakpoint_retire_moribund ();
4675
4676 /* First, distinguish signals caused by the debugger from signals
4677 that have to do with the program's own actions. Note that
4678 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4679 on the operating system version. Here we detect when a SIGILL or
4680 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4681 something similar for SIGSEGV, since a SIGSEGV will be generated
4682 when we're trying to execute a breakpoint instruction on a
4683 non-executable stack. This happens for call dummy breakpoints
4684 for architectures like SPARC that place call dummies on the
4685 stack. */
4686 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4687 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4688 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4689 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4690 {
4691 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4692
4693 if (breakpoint_inserted_here_p (regcache->aspace (),
4694 regcache_read_pc (regcache)))
4695 {
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog,
4698 "infrun: Treating signal as SIGTRAP\n");
4699 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4700 }
4701 }
4702
4703 /* Mark the non-executing threads accordingly. In all-stop, all
4704 threads of all processes are stopped when we get any event
4705 reported. In non-stop mode, only the event thread stops. */
4706 {
4707 ptid_t mark_ptid;
4708
4709 if (!target_is_non_stop_p ())
4710 mark_ptid = minus_one_ptid;
4711 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4712 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4713 {
4714 /* If we're handling a process exit in non-stop mode, even
4715 though threads haven't been deleted yet, one would think
4716 that there is nothing to do, as threads of the dead process
4717 will be soon deleted, and threads of any other process were
4718 left running. However, on some targets, threads survive a
4719 process exit event. E.g., for the "checkpoint" command,
4720 when the current checkpoint/fork exits, linux-fork.c
4721 automatically switches to another fork from within
4722 target_mourn_inferior, by associating the same
4723 inferior/thread to another fork. We haven't mourned yet at
4724 this point, but we must mark any threads left in the
4725 process as not-executing so that finish_thread_state marks
4726 them stopped (in the user's perspective) if/when we present
4727 the stop to the user. */
4728 mark_ptid = ptid_t (ecs->ptid.pid ());
4729 }
4730 else
4731 mark_ptid = ecs->ptid;
4732
4733 set_executing (mark_ptid, 0);
4734
4735 /* Likewise the resumed flag. */
4736 set_resumed (mark_ptid, 0);
4737 }
4738
4739 switch (ecs->ws.kind)
4740 {
4741 case TARGET_WAITKIND_LOADED:
4742 if (debug_infrun)
4743 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4744 context_switch (ecs);
4745 /* Ignore gracefully during startup of the inferior, as it might
4746 be the shell which has just loaded some objects, otherwise
4747 add the symbols for the newly loaded objects. Also ignore at
4748 the beginning of an attach or remote session; we will query
4749 the full list of libraries once the connection is
4750 established. */
4751
4752 stop_soon = get_inferior_stop_soon (ecs);
4753 if (stop_soon == NO_STOP_QUIETLY)
4754 {
4755 struct regcache *regcache;
4756
4757 regcache = get_thread_regcache (ecs->event_thread);
4758
4759 handle_solib_event ();
4760
4761 ecs->event_thread->control.stop_bpstat
4762 = bpstat_stop_status (regcache->aspace (),
4763 ecs->event_thread->suspend.stop_pc,
4764 ecs->event_thread, &ecs->ws);
4765
4766 if (handle_stop_requested (ecs))
4767 return;
4768
4769 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4770 {
4771 /* A catchpoint triggered. */
4772 process_event_stop_test (ecs);
4773 return;
4774 }
4775
4776 /* If requested, stop when the dynamic linker notifies
4777 gdb of events. This allows the user to get control
4778 and place breakpoints in initializer routines for
4779 dynamically loaded objects (among other things). */
4780 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4781 if (stop_on_solib_events)
4782 {
4783 /* Make sure we print "Stopped due to solib-event" in
4784 normal_stop. */
4785 stop_print_frame = 1;
4786
4787 stop_waiting (ecs);
4788 return;
4789 }
4790 }
4791
4792 /* If we are skipping through a shell, or through shared library
4793 loading that we aren't interested in, resume the program. If
4794 we're running the program normally, also resume. */
4795 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4796 {
4797 /* Loading of shared libraries might have changed breakpoint
4798 addresses. Make sure new breakpoints are inserted. */
4799 if (stop_soon == NO_STOP_QUIETLY)
4800 insert_breakpoints ();
4801 resume (GDB_SIGNAL_0);
4802 prepare_to_wait (ecs);
4803 return;
4804 }
4805
4806 /* But stop if we're attaching or setting up a remote
4807 connection. */
4808 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4809 || stop_soon == STOP_QUIETLY_REMOTE)
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4813 stop_waiting (ecs);
4814 return;
4815 }
4816
4817 internal_error (__FILE__, __LINE__,
4818 _("unhandled stop_soon: %d"), (int) stop_soon);
4819
4820 case TARGET_WAITKIND_SPURIOUS:
4821 if (debug_infrun)
4822 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4823 if (handle_stop_requested (ecs))
4824 return;
4825 context_switch (ecs);
4826 resume (GDB_SIGNAL_0);
4827 prepare_to_wait (ecs);
4828 return;
4829
4830 case TARGET_WAITKIND_THREAD_CREATED:
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
4833 if (handle_stop_requested (ecs))
4834 return;
4835 context_switch (ecs);
4836 if (!switch_back_to_stepped_thread (ecs))
4837 keep_going (ecs);
4838 return;
4839
4840 case TARGET_WAITKIND_EXITED:
4841 case TARGET_WAITKIND_SIGNALLED:
4842 if (debug_infrun)
4843 {
4844 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_EXITED\n");
4847 else
4848 fprintf_unfiltered (gdb_stdlog,
4849 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4850 }
4851
4852 inferior_ptid = ecs->ptid;
4853 set_current_inferior (find_inferior_ptid (ecs->ptid));
4854 set_current_program_space (current_inferior ()->pspace);
4855 handle_vfork_child_exec_or_exit (0);
4856 target_terminal::ours (); /* Must do this before mourn anyway. */
4857
4858 /* Clearing any previous state of convenience variables. */
4859 clear_exit_convenience_vars ();
4860
4861 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4862 {
4863 /* Record the exit code in the convenience variable $_exitcode, so
4864 that the user can inspect this again later. */
4865 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4866 (LONGEST) ecs->ws.value.integer);
4867
4868 /* Also record this in the inferior itself. */
4869 current_inferior ()->has_exit_code = 1;
4870 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4871
4872 /* Support the --return-child-result option. */
4873 return_child_result_value = ecs->ws.value.integer;
4874
4875 gdb::observers::exited.notify (ecs->ws.value.integer);
4876 }
4877 else
4878 {
4879 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4880
4881 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4882 {
4883 /* Set the value of the internal variable $_exitsignal,
4884 which holds the signal uncaught by the inferior. */
4885 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4886 gdbarch_gdb_signal_to_target (gdbarch,
4887 ecs->ws.value.sig));
4888 }
4889 else
4890 {
4891 /* We don't have access to the target's method used for
4892 converting between signal numbers (GDB's internal
4893 representation <-> target's representation).
4894 Therefore, we cannot do a good job at displaying this
4895 information to the user. It's better to just warn
4896 her about it (if infrun debugging is enabled), and
4897 give up. */
4898 if (debug_infrun)
4899 fprintf_filtered (gdb_stdlog, _("\
4900 Cannot fill $_exitsignal with the correct signal number.\n"));
4901 }
4902
4903 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4904 }
4905
4906 gdb_flush (gdb_stdout);
4907 target_mourn_inferior (inferior_ptid);
4908 stop_print_frame = 0;
4909 stop_waiting (ecs);
4910 return;
4911
4912 /* The following are the only cases in which we keep going;
4913 the above cases end in a continue or goto. */
4914 case TARGET_WAITKIND_FORKED:
4915 case TARGET_WAITKIND_VFORKED:
4916 if (debug_infrun)
4917 {
4918 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4920 else
4921 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4922 }
4923
4924 /* Check whether the inferior is displaced stepping. */
4925 {
4926 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4927 struct gdbarch *gdbarch = regcache->arch ();
4928
4929 /* If checking displaced stepping is supported, and thread
4930 ecs->ptid is displaced stepping. */
4931 if (displaced_step_in_progress_thread (ecs->event_thread))
4932 {
4933 struct inferior *parent_inf
4934 = find_inferior_ptid (ecs->ptid);
4935 struct regcache *child_regcache;
4936 CORE_ADDR parent_pc;
4937
4938 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4939 indicating that the displaced stepping of syscall instruction
4940 has been done. Perform cleanup for parent process here. Note
4941 that this operation also cleans up the child process for vfork,
4942 because their pages are shared. */
4943 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4944 /* Start a new step-over in another thread if there's one
4945 that needs it. */
4946 start_step_over ();
4947
4948 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4949 {
4950 struct displaced_step_inferior_state *displaced
4951 = get_displaced_stepping_state (parent_inf);
4952
4953 /* Restore scratch pad for child process. */
4954 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4955 }
4956
4957 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4958 the child's PC is also within the scratchpad. Set the child's PC
4959 to the parent's PC value, which has already been fixed up.
4960 FIXME: we use the parent's aspace here, although we're touching
4961 the child, because the child hasn't been added to the inferior
4962 list yet at this point. */
4963
4964 child_regcache
4965 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4966 gdbarch,
4967 parent_inf->aspace);
4968 /* Read PC value of parent process. */
4969 parent_pc = regcache_read_pc (regcache);
4970
4971 if (debug_displaced)
4972 fprintf_unfiltered (gdb_stdlog,
4973 "displaced: write child pc from %s to %s\n",
4974 paddress (gdbarch,
4975 regcache_read_pc (child_regcache)),
4976 paddress (gdbarch, parent_pc));
4977
4978 regcache_write_pc (child_regcache, parent_pc);
4979 }
4980 }
4981
4982 context_switch (ecs);
4983
4984 /* Immediately detach breakpoints from the child before there's
4985 any chance of letting the user delete breakpoints from the
4986 breakpoint lists. If we don't do this early, it's easy to
4987 leave left over traps in the child, vis: "break foo; catch
4988 fork; c; <fork>; del; c; <child calls foo>". We only follow
4989 the fork on the last `continue', and by that time the
4990 breakpoint at "foo" is long gone from the breakpoint table.
4991 If we vforked, then we don't need to unpatch here, since both
4992 parent and child are sharing the same memory pages; we'll
4993 need to unpatch at follow/detach time instead to be certain
4994 that new breakpoints added between catchpoint hit time and
4995 vfork follow are detached. */
4996 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4997 {
4998 /* This won't actually modify the breakpoint list, but will
4999 physically remove the breakpoints from the child. */
5000 detach_breakpoints (ecs->ws.value.related_pid);
5001 }
5002
5003 delete_just_stopped_threads_single_step_breakpoints ();
5004
5005 /* In case the event is caught by a catchpoint, remember that
5006 the event is to be followed at the next resume of the thread,
5007 and not immediately. */
5008 ecs->event_thread->pending_follow = ecs->ws;
5009
5010 ecs->event_thread->suspend.stop_pc
5011 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5012
5013 ecs->event_thread->control.stop_bpstat
5014 = bpstat_stop_status (get_current_regcache ()->aspace (),
5015 ecs->event_thread->suspend.stop_pc,
5016 ecs->event_thread, &ecs->ws);
5017
5018 if (handle_stop_requested (ecs))
5019 return;
5020
5021 /* If no catchpoint triggered for this, then keep going. Note
5022 that we're interested in knowing the bpstat actually causes a
5023 stop, not just if it may explain the signal. Software
5024 watchpoints, for example, always appear in the bpstat. */
5025 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5026 {
5027 int should_resume;
5028 int follow_child
5029 = (follow_fork_mode_string == follow_fork_mode_child);
5030
5031 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5032
5033 should_resume = follow_fork ();
5034
5035 thread_info *parent = ecs->event_thread;
5036 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5037
5038 /* At this point, the parent is marked running, and the
5039 child is marked stopped. */
5040
5041 /* If not resuming the parent, mark it stopped. */
5042 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5043 parent->set_running (false);
5044
5045 /* If resuming the child, mark it running. */
5046 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5047 child->set_running (true);
5048
5049 /* In non-stop mode, also resume the other branch. */
5050 if (!detach_fork && (non_stop
5051 || (sched_multi && target_is_non_stop_p ())))
5052 {
5053 if (follow_child)
5054 switch_to_thread (parent);
5055 else
5056 switch_to_thread (child);
5057
5058 ecs->event_thread = inferior_thread ();
5059 ecs->ptid = inferior_ptid;
5060 keep_going (ecs);
5061 }
5062
5063 if (follow_child)
5064 switch_to_thread (child);
5065 else
5066 switch_to_thread (parent);
5067
5068 ecs->event_thread = inferior_thread ();
5069 ecs->ptid = inferior_ptid;
5070
5071 if (should_resume)
5072 keep_going (ecs);
5073 else
5074 stop_waiting (ecs);
5075 return;
5076 }
5077 process_event_stop_test (ecs);
5078 return;
5079
5080 case TARGET_WAITKIND_VFORK_DONE:
5081 /* Done with the shared memory region. Re-insert breakpoints in
5082 the parent, and keep going. */
5083
5084 if (debug_infrun)
5085 fprintf_unfiltered (gdb_stdlog,
5086 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5087
5088 context_switch (ecs);
5089
5090 current_inferior ()->waiting_for_vfork_done = 0;
5091 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5092
5093 if (handle_stop_requested (ecs))
5094 return;
5095
5096 /* This also takes care of reinserting breakpoints in the
5097 previously locked inferior. */
5098 keep_going (ecs);
5099 return;
5100
5101 case TARGET_WAITKIND_EXECD:
5102 if (debug_infrun)
5103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5104
5105 /* Note we can't read registers yet (the stop_pc), because we
5106 don't yet know the inferior's post-exec architecture.
5107 'stop_pc' is explicitly read below instead. */
5108 switch_to_thread_no_regs (ecs->event_thread);
5109
5110 /* Do whatever is necessary to the parent branch of the vfork. */
5111 handle_vfork_child_exec_or_exit (1);
5112
5113 /* This causes the eventpoints and symbol table to be reset.
5114 Must do this now, before trying to determine whether to
5115 stop. */
5116 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5117
5118 /* In follow_exec we may have deleted the original thread and
5119 created a new one. Make sure that the event thread is the
5120 execd thread for that case (this is a nop otherwise). */
5121 ecs->event_thread = inferior_thread ();
5122
5123 ecs->event_thread->suspend.stop_pc
5124 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5125
5126 ecs->event_thread->control.stop_bpstat
5127 = bpstat_stop_status (get_current_regcache ()->aspace (),
5128 ecs->event_thread->suspend.stop_pc,
5129 ecs->event_thread, &ecs->ws);
5130
5131 /* Note that this may be referenced from inside
5132 bpstat_stop_status above, through inferior_has_execd. */
5133 xfree (ecs->ws.value.execd_pathname);
5134 ecs->ws.value.execd_pathname = NULL;
5135
5136 if (handle_stop_requested (ecs))
5137 return;
5138
5139 /* If no catchpoint triggered for this, then keep going. */
5140 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5141 {
5142 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5143 keep_going (ecs);
5144 return;
5145 }
5146 process_event_stop_test (ecs);
5147 return;
5148
5149 /* Be careful not to try to gather much state about a thread
5150 that's in a syscall. It's frequently a losing proposition. */
5151 case TARGET_WAITKIND_SYSCALL_ENTRY:
5152 if (debug_infrun)
5153 fprintf_unfiltered (gdb_stdlog,
5154 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5155 /* Getting the current syscall number. */
5156 if (handle_syscall_event (ecs) == 0)
5157 process_event_stop_test (ecs);
5158 return;
5159
5160 /* Before examining the threads further, step this thread to
5161 get it entirely out of the syscall. (We get notice of the
5162 event when the thread is just on the verge of exiting a
5163 syscall. Stepping one instruction seems to get it back
5164 into user code.) */
5165 case TARGET_WAITKIND_SYSCALL_RETURN:
5166 if (debug_infrun)
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5169 if (handle_syscall_event (ecs) == 0)
5170 process_event_stop_test (ecs);
5171 return;
5172
5173 case TARGET_WAITKIND_STOPPED:
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5176 handle_signal_stop (ecs);
5177 return;
5178
5179 case TARGET_WAITKIND_NO_HISTORY:
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5182 /* Reverse execution: target ran out of history info. */
5183
5184 /* Switch to the stopped thread. */
5185 context_switch (ecs);
5186 if (debug_infrun)
5187 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5188
5189 delete_just_stopped_threads_single_step_breakpoints ();
5190 ecs->event_thread->suspend.stop_pc
5191 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5192
5193 if (handle_stop_requested (ecs))
5194 return;
5195
5196 gdb::observers::no_history.notify ();
5197 stop_waiting (ecs);
5198 return;
5199 }
5200 }
5201
5202 /* A wrapper around handle_inferior_event_1, which also makes sure
5203 that all temporary struct value objects that were created during
5204 the handling of the event get deleted at the end. */
5205
5206 static void
5207 handle_inferior_event (struct execution_control_state *ecs)
5208 {
5209 struct value *mark = value_mark ();
5210
5211 handle_inferior_event_1 (ecs);
5212 /* Purge all temporary values created during the event handling,
5213 as it could be a long time before we return to the command level
5214 where such values would otherwise be purged. */
5215 value_free_to_mark (mark);
5216 }
5217
5218 /* Restart threads back to what they were trying to do back when we
5219 paused them for an in-line step-over. The EVENT_THREAD thread is
5220 ignored. */
5221
5222 static void
5223 restart_threads (struct thread_info *event_thread)
5224 {
5225 /* In case the instruction just stepped spawned a new thread. */
5226 update_thread_list ();
5227
5228 for (thread_info *tp : all_non_exited_threads ())
5229 {
5230 if (tp == event_thread)
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: "
5235 "[%s] is event thread\n",
5236 target_pid_to_str (tp->ptid));
5237 continue;
5238 }
5239
5240 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: "
5245 "[%s] not meant to be running\n",
5246 target_pid_to_str (tp->ptid));
5247 continue;
5248 }
5249
5250 if (tp->resumed)
5251 {
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: restart threads: [%s] resumed\n",
5255 target_pid_to_str (tp->ptid));
5256 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5257 continue;
5258 }
5259
5260 if (thread_is_in_step_over_chain (tp))
5261 {
5262 if (debug_infrun)
5263 fprintf_unfiltered (gdb_stdlog,
5264 "infrun: restart threads: "
5265 "[%s] needs step-over\n",
5266 target_pid_to_str (tp->ptid));
5267 gdb_assert (!tp->resumed);
5268 continue;
5269 }
5270
5271
5272 if (tp->suspend.waitstatus_pending_p)
5273 {
5274 if (debug_infrun)
5275 fprintf_unfiltered (gdb_stdlog,
5276 "infrun: restart threads: "
5277 "[%s] has pending status\n",
5278 target_pid_to_str (tp->ptid));
5279 tp->resumed = 1;
5280 continue;
5281 }
5282
5283 gdb_assert (!tp->stop_requested);
5284
5285 /* If some thread needs to start a step-over at this point, it
5286 should still be in the step-over queue, and thus skipped
5287 above. */
5288 if (thread_still_needs_step_over (tp))
5289 {
5290 internal_error (__FILE__, __LINE__,
5291 "thread [%s] needs a step-over, but not in "
5292 "step-over queue\n",
5293 target_pid_to_str (tp->ptid));
5294 }
5295
5296 if (currently_stepping (tp))
5297 {
5298 if (debug_infrun)
5299 fprintf_unfiltered (gdb_stdlog,
5300 "infrun: restart threads: [%s] was stepping\n",
5301 target_pid_to_str (tp->ptid));
5302 keep_going_stepped_thread (tp);
5303 }
5304 else
5305 {
5306 struct execution_control_state ecss;
5307 struct execution_control_state *ecs = &ecss;
5308
5309 if (debug_infrun)
5310 fprintf_unfiltered (gdb_stdlog,
5311 "infrun: restart threads: [%s] continuing\n",
5312 target_pid_to_str (tp->ptid));
5313 reset_ecs (ecs, tp);
5314 switch_to_thread (tp);
5315 keep_going_pass_signal (ecs);
5316 }
5317 }
5318 }
5319
5320 /* Callback for iterate_over_threads. Find a resumed thread that has
5321 a pending waitstatus. */
5322
5323 static int
5324 resumed_thread_with_pending_status (struct thread_info *tp,
5325 void *arg)
5326 {
5327 return (tp->resumed
5328 && tp->suspend.waitstatus_pending_p);
5329 }
5330
5331 /* Called when we get an event that may finish an in-line or
5332 out-of-line (displaced stepping) step-over started previously.
5333 Return true if the event is processed and we should go back to the
5334 event loop; false if the caller should continue processing the
5335 event. */
5336
5337 static int
5338 finish_step_over (struct execution_control_state *ecs)
5339 {
5340 int had_step_over_info;
5341
5342 displaced_step_fixup (ecs->event_thread,
5343 ecs->event_thread->suspend.stop_signal);
5344
5345 had_step_over_info = step_over_info_valid_p ();
5346
5347 if (had_step_over_info)
5348 {
5349 /* If we're stepping over a breakpoint with all threads locked,
5350 then only the thread that was stepped should be reporting
5351 back an event. */
5352 gdb_assert (ecs->event_thread->control.trap_expected);
5353
5354 clear_step_over_info ();
5355 }
5356
5357 if (!target_is_non_stop_p ())
5358 return 0;
5359
5360 /* Start a new step-over in another thread if there's one that
5361 needs it. */
5362 start_step_over ();
5363
5364 /* If we were stepping over a breakpoint before, and haven't started
5365 a new in-line step-over sequence, then restart all other threads
5366 (except the event thread). We can't do this in all-stop, as then
5367 e.g., we wouldn't be able to issue any other remote packet until
5368 these other threads stop. */
5369 if (had_step_over_info && !step_over_info_valid_p ())
5370 {
5371 struct thread_info *pending;
5372
5373 /* If we only have threads with pending statuses, the restart
5374 below won't restart any thread and so nothing re-inserts the
5375 breakpoint we just stepped over. But we need it inserted
5376 when we later process the pending events, otherwise if
5377 another thread has a pending event for this breakpoint too,
5378 we'd discard its event (because the breakpoint that
5379 originally caused the event was no longer inserted). */
5380 context_switch (ecs);
5381 insert_breakpoints ();
5382
5383 restart_threads (ecs->event_thread);
5384
5385 /* If we have events pending, go through handle_inferior_event
5386 again, picking up a pending event at random. This avoids
5387 thread starvation. */
5388
5389 /* But not if we just stepped over a watchpoint in order to let
5390 the instruction execute so we can evaluate its expression.
5391 The set of watchpoints that triggered is recorded in the
5392 breakpoint objects themselves (see bp->watchpoint_triggered).
5393 If we processed another event first, that other event could
5394 clobber this info. */
5395 if (ecs->event_thread->stepping_over_watchpoint)
5396 return 0;
5397
5398 pending = iterate_over_threads (resumed_thread_with_pending_status,
5399 NULL);
5400 if (pending != NULL)
5401 {
5402 struct thread_info *tp = ecs->event_thread;
5403 struct regcache *regcache;
5404
5405 if (debug_infrun)
5406 {
5407 fprintf_unfiltered (gdb_stdlog,
5408 "infrun: found resumed threads with "
5409 "pending events, saving status\n");
5410 }
5411
5412 gdb_assert (pending != tp);
5413
5414 /* Record the event thread's event for later. */
5415 save_waitstatus (tp, &ecs->ws);
5416 /* This was cleared early, by handle_inferior_event. Set it
5417 so this pending event is considered by
5418 do_target_wait. */
5419 tp->resumed = 1;
5420
5421 gdb_assert (!tp->executing);
5422
5423 regcache = get_thread_regcache (tp);
5424 tp->suspend.stop_pc = regcache_read_pc (regcache);
5425
5426 if (debug_infrun)
5427 {
5428 fprintf_unfiltered (gdb_stdlog,
5429 "infrun: saved stop_pc=%s for %s "
5430 "(currently_stepping=%d)\n",
5431 paddress (target_gdbarch (),
5432 tp->suspend.stop_pc),
5433 target_pid_to_str (tp->ptid),
5434 currently_stepping (tp));
5435 }
5436
5437 /* This in-line step-over finished; clear this so we won't
5438 start a new one. This is what handle_signal_stop would
5439 do, if we returned false. */
5440 tp->stepping_over_breakpoint = 0;
5441
5442 /* Wake up the event loop again. */
5443 mark_async_event_handler (infrun_async_inferior_event_token);
5444
5445 prepare_to_wait (ecs);
5446 return 1;
5447 }
5448 }
5449
5450 return 0;
5451 }
5452
5453 /* Come here when the program has stopped with a signal. */
5454
5455 static void
5456 handle_signal_stop (struct execution_control_state *ecs)
5457 {
5458 struct frame_info *frame;
5459 struct gdbarch *gdbarch;
5460 int stopped_by_watchpoint;
5461 enum stop_kind stop_soon;
5462 int random_signal;
5463
5464 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5465
5466 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5467
5468 /* Do we need to clean up the state of a thread that has
5469 completed a displaced single-step? (Doing so usually affects
5470 the PC, so do it here, before we set stop_pc.) */
5471 if (finish_step_over (ecs))
5472 return;
5473
5474 /* If we either finished a single-step or hit a breakpoint, but
5475 the user wanted this thread to be stopped, pretend we got a
5476 SIG0 (generic unsignaled stop). */
5477 if (ecs->event_thread->stop_requested
5478 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5479 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5480
5481 ecs->event_thread->suspend.stop_pc
5482 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5483
5484 if (debug_infrun)
5485 {
5486 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5487 struct gdbarch *reg_gdbarch = regcache->arch ();
5488 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5489
5490 inferior_ptid = ecs->ptid;
5491
5492 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5493 paddress (reg_gdbarch,
5494 ecs->event_thread->suspend.stop_pc));
5495 if (target_stopped_by_watchpoint ())
5496 {
5497 CORE_ADDR addr;
5498
5499 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5500
5501 if (target_stopped_data_address (current_top_target (), &addr))
5502 fprintf_unfiltered (gdb_stdlog,
5503 "infrun: stopped data address = %s\n",
5504 paddress (reg_gdbarch, addr));
5505 else
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: (no data address available)\n");
5508 }
5509 }
5510
5511 /* This is originated from start_remote(), start_inferior() and
5512 shared libraries hook functions. */
5513 stop_soon = get_inferior_stop_soon (ecs);
5514 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5515 {
5516 context_switch (ecs);
5517 if (debug_infrun)
5518 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5519 stop_print_frame = 1;
5520 stop_waiting (ecs);
5521 return;
5522 }
5523
5524 /* This originates from attach_command(). We need to overwrite
5525 the stop_signal here, because some kernels don't ignore a
5526 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5527 See more comments in inferior.h. On the other hand, if we
5528 get a non-SIGSTOP, report it to the user - assume the backend
5529 will handle the SIGSTOP if it should show up later.
5530
5531 Also consider that the attach is complete when we see a
5532 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5533 target extended-remote report it instead of a SIGSTOP
5534 (e.g. gdbserver). We already rely on SIGTRAP being our
5535 signal, so this is no exception.
5536
5537 Also consider that the attach is complete when we see a
5538 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5539 the target to stop all threads of the inferior, in case the
5540 low level attach operation doesn't stop them implicitly. If
5541 they weren't stopped implicitly, then the stub will report a
5542 GDB_SIGNAL_0, meaning: stopped for no particular reason
5543 other than GDB's request. */
5544 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5545 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5546 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5547 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5548 {
5549 stop_print_frame = 1;
5550 stop_waiting (ecs);
5551 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5552 return;
5553 }
5554
5555 /* See if something interesting happened to the non-current thread. If
5556 so, then switch to that thread. */
5557 if (ecs->ptid != inferior_ptid)
5558 {
5559 if (debug_infrun)
5560 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5561
5562 context_switch (ecs);
5563
5564 if (deprecated_context_hook)
5565 deprecated_context_hook (ecs->event_thread->global_num);
5566 }
5567
5568 /* At this point, get hold of the now-current thread's frame. */
5569 frame = get_current_frame ();
5570 gdbarch = get_frame_arch (frame);
5571
5572 /* Pull the single step breakpoints out of the target. */
5573 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5574 {
5575 struct regcache *regcache;
5576 CORE_ADDR pc;
5577
5578 regcache = get_thread_regcache (ecs->event_thread);
5579 const address_space *aspace = regcache->aspace ();
5580
5581 pc = regcache_read_pc (regcache);
5582
5583 /* However, before doing so, if this single-step breakpoint was
5584 actually for another thread, set this thread up for moving
5585 past it. */
5586 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5587 aspace, pc))
5588 {
5589 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5590 {
5591 if (debug_infrun)
5592 {
5593 fprintf_unfiltered (gdb_stdlog,
5594 "infrun: [%s] hit another thread's "
5595 "single-step breakpoint\n",
5596 target_pid_to_str (ecs->ptid));
5597 }
5598 ecs->hit_singlestep_breakpoint = 1;
5599 }
5600 }
5601 else
5602 {
5603 if (debug_infrun)
5604 {
5605 fprintf_unfiltered (gdb_stdlog,
5606 "infrun: [%s] hit its "
5607 "single-step breakpoint\n",
5608 target_pid_to_str (ecs->ptid));
5609 }
5610 }
5611 }
5612 delete_just_stopped_threads_single_step_breakpoints ();
5613
5614 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5615 && ecs->event_thread->control.trap_expected
5616 && ecs->event_thread->stepping_over_watchpoint)
5617 stopped_by_watchpoint = 0;
5618 else
5619 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5620
5621 /* If necessary, step over this watchpoint. We'll be back to display
5622 it in a moment. */
5623 if (stopped_by_watchpoint
5624 && (target_have_steppable_watchpoint
5625 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5626 {
5627 /* At this point, we are stopped at an instruction which has
5628 attempted to write to a piece of memory under control of
5629 a watchpoint. The instruction hasn't actually executed
5630 yet. If we were to evaluate the watchpoint expression
5631 now, we would get the old value, and therefore no change
5632 would seem to have occurred.
5633
5634 In order to make watchpoints work `right', we really need
5635 to complete the memory write, and then evaluate the
5636 watchpoint expression. We do this by single-stepping the
5637 target.
5638
5639 It may not be necessary to disable the watchpoint to step over
5640 it. For example, the PA can (with some kernel cooperation)
5641 single step over a watchpoint without disabling the watchpoint.
5642
5643 It is far more common to need to disable a watchpoint to step
5644 the inferior over it. If we have non-steppable watchpoints,
5645 we must disable the current watchpoint; it's simplest to
5646 disable all watchpoints.
5647
5648 Any breakpoint at PC must also be stepped over -- if there's
5649 one, it will have already triggered before the watchpoint
5650 triggered, and we either already reported it to the user, or
5651 it didn't cause a stop and we called keep_going. In either
5652 case, if there was a breakpoint at PC, we must be trying to
5653 step past it. */
5654 ecs->event_thread->stepping_over_watchpoint = 1;
5655 keep_going (ecs);
5656 return;
5657 }
5658
5659 ecs->event_thread->stepping_over_breakpoint = 0;
5660 ecs->event_thread->stepping_over_watchpoint = 0;
5661 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5662 ecs->event_thread->control.stop_step = 0;
5663 stop_print_frame = 1;
5664 stopped_by_random_signal = 0;
5665 bpstat stop_chain = NULL;
5666
5667 /* Hide inlined functions starting here, unless we just performed stepi or
5668 nexti. After stepi and nexti, always show the innermost frame (not any
5669 inline function call sites). */
5670 if (ecs->event_thread->control.step_range_end != 1)
5671 {
5672 const address_space *aspace
5673 = get_thread_regcache (ecs->event_thread)->aspace ();
5674
5675 /* skip_inline_frames is expensive, so we avoid it if we can
5676 determine that the address is one where functions cannot have
5677 been inlined. This improves performance with inferiors that
5678 load a lot of shared libraries, because the solib event
5679 breakpoint is defined as the address of a function (i.e. not
5680 inline). Note that we have to check the previous PC as well
5681 as the current one to catch cases when we have just
5682 single-stepped off a breakpoint prior to reinstating it.
5683 Note that we're assuming that the code we single-step to is
5684 not inline, but that's not definitive: there's nothing
5685 preventing the event breakpoint function from containing
5686 inlined code, and the single-step ending up there. If the
5687 user had set a breakpoint on that inlined code, the missing
5688 skip_inline_frames call would break things. Fortunately
5689 that's an extremely unlikely scenario. */
5690 if (!pc_at_non_inline_function (aspace,
5691 ecs->event_thread->suspend.stop_pc,
5692 &ecs->ws)
5693 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5694 && ecs->event_thread->control.trap_expected
5695 && pc_at_non_inline_function (aspace,
5696 ecs->event_thread->prev_pc,
5697 &ecs->ws)))
5698 {
5699 stop_chain = build_bpstat_chain (aspace,
5700 ecs->event_thread->suspend.stop_pc,
5701 &ecs->ws);
5702 skip_inline_frames (ecs->event_thread, stop_chain);
5703
5704 /* Re-fetch current thread's frame in case that invalidated
5705 the frame cache. */
5706 frame = get_current_frame ();
5707 gdbarch = get_frame_arch (frame);
5708 }
5709 }
5710
5711 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5712 && ecs->event_thread->control.trap_expected
5713 && gdbarch_single_step_through_delay_p (gdbarch)
5714 && currently_stepping (ecs->event_thread))
5715 {
5716 /* We're trying to step off a breakpoint. Turns out that we're
5717 also on an instruction that needs to be stepped multiple
5718 times before it's been fully executing. E.g., architectures
5719 with a delay slot. It needs to be stepped twice, once for
5720 the instruction and once for the delay slot. */
5721 int step_through_delay
5722 = gdbarch_single_step_through_delay (gdbarch, frame);
5723
5724 if (debug_infrun && step_through_delay)
5725 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5726 if (ecs->event_thread->control.step_range_end == 0
5727 && step_through_delay)
5728 {
5729 /* The user issued a continue when stopped at a breakpoint.
5730 Set up for another trap and get out of here. */
5731 ecs->event_thread->stepping_over_breakpoint = 1;
5732 keep_going (ecs);
5733 return;
5734 }
5735 else if (step_through_delay)
5736 {
5737 /* The user issued a step when stopped at a breakpoint.
5738 Maybe we should stop, maybe we should not - the delay
5739 slot *might* correspond to a line of source. In any
5740 case, don't decide that here, just set
5741 ecs->stepping_over_breakpoint, making sure we
5742 single-step again before breakpoints are re-inserted. */
5743 ecs->event_thread->stepping_over_breakpoint = 1;
5744 }
5745 }
5746
5747 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5748 handles this event. */
5749 ecs->event_thread->control.stop_bpstat
5750 = bpstat_stop_status (get_current_regcache ()->aspace (),
5751 ecs->event_thread->suspend.stop_pc,
5752 ecs->event_thread, &ecs->ws, stop_chain);
5753
5754 /* Following in case break condition called a
5755 function. */
5756 stop_print_frame = 1;
5757
5758 /* This is where we handle "moribund" watchpoints. Unlike
5759 software breakpoints traps, hardware watchpoint traps are
5760 always distinguishable from random traps. If no high-level
5761 watchpoint is associated with the reported stop data address
5762 anymore, then the bpstat does not explain the signal ---
5763 simply make sure to ignore it if `stopped_by_watchpoint' is
5764 set. */
5765
5766 if (debug_infrun
5767 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5768 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5769 GDB_SIGNAL_TRAP)
5770 && stopped_by_watchpoint)
5771 fprintf_unfiltered (gdb_stdlog,
5772 "infrun: no user watchpoint explains "
5773 "watchpoint SIGTRAP, ignoring\n");
5774
5775 /* NOTE: cagney/2003-03-29: These checks for a random signal
5776 at one stage in the past included checks for an inferior
5777 function call's call dummy's return breakpoint. The original
5778 comment, that went with the test, read:
5779
5780 ``End of a stack dummy. Some systems (e.g. Sony news) give
5781 another signal besides SIGTRAP, so check here as well as
5782 above.''
5783
5784 If someone ever tries to get call dummys on a
5785 non-executable stack to work (where the target would stop
5786 with something like a SIGSEGV), then those tests might need
5787 to be re-instated. Given, however, that the tests were only
5788 enabled when momentary breakpoints were not being used, I
5789 suspect that it won't be the case.
5790
5791 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5792 be necessary for call dummies on a non-executable stack on
5793 SPARC. */
5794
5795 /* See if the breakpoints module can explain the signal. */
5796 random_signal
5797 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5798 ecs->event_thread->suspend.stop_signal);
5799
5800 /* Maybe this was a trap for a software breakpoint that has since
5801 been removed. */
5802 if (random_signal && target_stopped_by_sw_breakpoint ())
5803 {
5804 if (program_breakpoint_here_p (gdbarch,
5805 ecs->event_thread->suspend.stop_pc))
5806 {
5807 struct regcache *regcache;
5808 int decr_pc;
5809
5810 /* Re-adjust PC to what the program would see if GDB was not
5811 debugging it. */
5812 regcache = get_thread_regcache (ecs->event_thread);
5813 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5814 if (decr_pc != 0)
5815 {
5816 gdb::optional<scoped_restore_tmpl<int>>
5817 restore_operation_disable;
5818
5819 if (record_full_is_used ())
5820 restore_operation_disable.emplace
5821 (record_full_gdb_operation_disable_set ());
5822
5823 regcache_write_pc (regcache,
5824 ecs->event_thread->suspend.stop_pc + decr_pc);
5825 }
5826 }
5827 else
5828 {
5829 /* A delayed software breakpoint event. Ignore the trap. */
5830 if (debug_infrun)
5831 fprintf_unfiltered (gdb_stdlog,
5832 "infrun: delayed software breakpoint "
5833 "trap, ignoring\n");
5834 random_signal = 0;
5835 }
5836 }
5837
5838 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5839 has since been removed. */
5840 if (random_signal && target_stopped_by_hw_breakpoint ())
5841 {
5842 /* A delayed hardware breakpoint event. Ignore the trap. */
5843 if (debug_infrun)
5844 fprintf_unfiltered (gdb_stdlog,
5845 "infrun: delayed hardware breakpoint/watchpoint "
5846 "trap, ignoring\n");
5847 random_signal = 0;
5848 }
5849
5850 /* If not, perhaps stepping/nexting can. */
5851 if (random_signal)
5852 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5853 && currently_stepping (ecs->event_thread));
5854
5855 /* Perhaps the thread hit a single-step breakpoint of _another_
5856 thread. Single-step breakpoints are transparent to the
5857 breakpoints module. */
5858 if (random_signal)
5859 random_signal = !ecs->hit_singlestep_breakpoint;
5860
5861 /* No? Perhaps we got a moribund watchpoint. */
5862 if (random_signal)
5863 random_signal = !stopped_by_watchpoint;
5864
5865 /* Always stop if the user explicitly requested this thread to
5866 remain stopped. */
5867 if (ecs->event_thread->stop_requested)
5868 {
5869 random_signal = 1;
5870 if (debug_infrun)
5871 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5872 }
5873
5874 /* For the program's own signals, act according to
5875 the signal handling tables. */
5876
5877 if (random_signal)
5878 {
5879 /* Signal not for debugging purposes. */
5880 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5881 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5882
5883 if (debug_infrun)
5884 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5885 gdb_signal_to_symbol_string (stop_signal));
5886
5887 stopped_by_random_signal = 1;
5888
5889 /* Always stop on signals if we're either just gaining control
5890 of the program, or the user explicitly requested this thread
5891 to remain stopped. */
5892 if (stop_soon != NO_STOP_QUIETLY
5893 || ecs->event_thread->stop_requested
5894 || (!inf->detaching
5895 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5896 {
5897 stop_waiting (ecs);
5898 return;
5899 }
5900
5901 /* Notify observers the signal has "handle print" set. Note we
5902 returned early above if stopping; normal_stop handles the
5903 printing in that case. */
5904 if (signal_print[ecs->event_thread->suspend.stop_signal])
5905 {
5906 /* The signal table tells us to print about this signal. */
5907 target_terminal::ours_for_output ();
5908 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5909 target_terminal::inferior ();
5910 }
5911
5912 /* Clear the signal if it should not be passed. */
5913 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5914 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5915
5916 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5917 && ecs->event_thread->control.trap_expected
5918 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5919 {
5920 /* We were just starting a new sequence, attempting to
5921 single-step off of a breakpoint and expecting a SIGTRAP.
5922 Instead this signal arrives. This signal will take us out
5923 of the stepping range so GDB needs to remember to, when
5924 the signal handler returns, resume stepping off that
5925 breakpoint. */
5926 /* To simplify things, "continue" is forced to use the same
5927 code paths as single-step - set a breakpoint at the
5928 signal return address and then, once hit, step off that
5929 breakpoint. */
5930 if (debug_infrun)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: signal arrived while stepping over "
5933 "breakpoint\n");
5934
5935 insert_hp_step_resume_breakpoint_at_frame (frame);
5936 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5937 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5938 ecs->event_thread->control.trap_expected = 0;
5939
5940 /* If we were nexting/stepping some other thread, switch to
5941 it, so that we don't continue it, losing control. */
5942 if (!switch_back_to_stepped_thread (ecs))
5943 keep_going (ecs);
5944 return;
5945 }
5946
5947 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5948 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5949 ecs->event_thread)
5950 || ecs->event_thread->control.step_range_end == 1)
5951 && frame_id_eq (get_stack_frame_id (frame),
5952 ecs->event_thread->control.step_stack_frame_id)
5953 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5954 {
5955 /* The inferior is about to take a signal that will take it
5956 out of the single step range. Set a breakpoint at the
5957 current PC (which is presumably where the signal handler
5958 will eventually return) and then allow the inferior to
5959 run free.
5960
5961 Note that this is only needed for a signal delivered
5962 while in the single-step range. Nested signals aren't a
5963 problem as they eventually all return. */
5964 if (debug_infrun)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: signal may take us out of "
5967 "single-step range\n");
5968
5969 clear_step_over_info ();
5970 insert_hp_step_resume_breakpoint_at_frame (frame);
5971 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5972 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5973 ecs->event_thread->control.trap_expected = 0;
5974 keep_going (ecs);
5975 return;
5976 }
5977
5978 /* Note: step_resume_breakpoint may be non-NULL. This occures
5979 when either there's a nested signal, or when there's a
5980 pending signal enabled just as the signal handler returns
5981 (leaving the inferior at the step-resume-breakpoint without
5982 actually executing it). Either way continue until the
5983 breakpoint is really hit. */
5984
5985 if (!switch_back_to_stepped_thread (ecs))
5986 {
5987 if (debug_infrun)
5988 fprintf_unfiltered (gdb_stdlog,
5989 "infrun: random signal, keep going\n");
5990
5991 keep_going (ecs);
5992 }
5993 return;
5994 }
5995
5996 process_event_stop_test (ecs);
5997 }
5998
5999 /* Come here when we've got some debug event / signal we can explain
6000 (IOW, not a random signal), and test whether it should cause a
6001 stop, or whether we should resume the inferior (transparently).
6002 E.g., could be a breakpoint whose condition evaluates false; we
6003 could be still stepping within the line; etc. */
6004
6005 static void
6006 process_event_stop_test (struct execution_control_state *ecs)
6007 {
6008 struct symtab_and_line stop_pc_sal;
6009 struct frame_info *frame;
6010 struct gdbarch *gdbarch;
6011 CORE_ADDR jmp_buf_pc;
6012 struct bpstat_what what;
6013
6014 /* Handle cases caused by hitting a breakpoint. */
6015
6016 frame = get_current_frame ();
6017 gdbarch = get_frame_arch (frame);
6018
6019 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6020
6021 if (what.call_dummy)
6022 {
6023 stop_stack_dummy = what.call_dummy;
6024 }
6025
6026 /* A few breakpoint types have callbacks associated (e.g.,
6027 bp_jit_event). Run them now. */
6028 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6029
6030 /* If we hit an internal event that triggers symbol changes, the
6031 current frame will be invalidated within bpstat_what (e.g., if we
6032 hit an internal solib event). Re-fetch it. */
6033 frame = get_current_frame ();
6034 gdbarch = get_frame_arch (frame);
6035
6036 switch (what.main_action)
6037 {
6038 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6039 /* If we hit the breakpoint at longjmp while stepping, we
6040 install a momentary breakpoint at the target of the
6041 jmp_buf. */
6042
6043 if (debug_infrun)
6044 fprintf_unfiltered (gdb_stdlog,
6045 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6046
6047 ecs->event_thread->stepping_over_breakpoint = 1;
6048
6049 if (what.is_longjmp)
6050 {
6051 struct value *arg_value;
6052
6053 /* If we set the longjmp breakpoint via a SystemTap probe,
6054 then use it to extract the arguments. The destination PC
6055 is the third argument to the probe. */
6056 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6057 if (arg_value)
6058 {
6059 jmp_buf_pc = value_as_address (arg_value);
6060 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6061 }
6062 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6063 || !gdbarch_get_longjmp_target (gdbarch,
6064 frame, &jmp_buf_pc))
6065 {
6066 if (debug_infrun)
6067 fprintf_unfiltered (gdb_stdlog,
6068 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6069 "(!gdbarch_get_longjmp_target)\n");
6070 keep_going (ecs);
6071 return;
6072 }
6073
6074 /* Insert a breakpoint at resume address. */
6075 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6076 }
6077 else
6078 check_exception_resume (ecs, frame);
6079 keep_going (ecs);
6080 return;
6081
6082 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6083 {
6084 struct frame_info *init_frame;
6085
6086 /* There are several cases to consider.
6087
6088 1. The initiating frame no longer exists. In this case we
6089 must stop, because the exception or longjmp has gone too
6090 far.
6091
6092 2. The initiating frame exists, and is the same as the
6093 current frame. We stop, because the exception or longjmp
6094 has been caught.
6095
6096 3. The initiating frame exists and is different from the
6097 current frame. This means the exception or longjmp has
6098 been caught beneath the initiating frame, so keep going.
6099
6100 4. longjmp breakpoint has been placed just to protect
6101 against stale dummy frames and user is not interested in
6102 stopping around longjmps. */
6103
6104 if (debug_infrun)
6105 fprintf_unfiltered (gdb_stdlog,
6106 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6107
6108 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6109 != NULL);
6110 delete_exception_resume_breakpoint (ecs->event_thread);
6111
6112 if (what.is_longjmp)
6113 {
6114 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6115
6116 if (!frame_id_p (ecs->event_thread->initiating_frame))
6117 {
6118 /* Case 4. */
6119 keep_going (ecs);
6120 return;
6121 }
6122 }
6123
6124 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6125
6126 if (init_frame)
6127 {
6128 struct frame_id current_id
6129 = get_frame_id (get_current_frame ());
6130 if (frame_id_eq (current_id,
6131 ecs->event_thread->initiating_frame))
6132 {
6133 /* Case 2. Fall through. */
6134 }
6135 else
6136 {
6137 /* Case 3. */
6138 keep_going (ecs);
6139 return;
6140 }
6141 }
6142
6143 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6144 exists. */
6145 delete_step_resume_breakpoint (ecs->event_thread);
6146
6147 end_stepping_range (ecs);
6148 }
6149 return;
6150
6151 case BPSTAT_WHAT_SINGLE:
6152 if (debug_infrun)
6153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6154 ecs->event_thread->stepping_over_breakpoint = 1;
6155 /* Still need to check other stuff, at least the case where we
6156 are stepping and step out of the right range. */
6157 break;
6158
6159 case BPSTAT_WHAT_STEP_RESUME:
6160 if (debug_infrun)
6161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6162
6163 delete_step_resume_breakpoint (ecs->event_thread);
6164 if (ecs->event_thread->control.proceed_to_finish
6165 && execution_direction == EXEC_REVERSE)
6166 {
6167 struct thread_info *tp = ecs->event_thread;
6168
6169 /* We are finishing a function in reverse, and just hit the
6170 step-resume breakpoint at the start address of the
6171 function, and we're almost there -- just need to back up
6172 by one more single-step, which should take us back to the
6173 function call. */
6174 tp->control.step_range_start = tp->control.step_range_end = 1;
6175 keep_going (ecs);
6176 return;
6177 }
6178 fill_in_stop_func (gdbarch, ecs);
6179 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6180 && execution_direction == EXEC_REVERSE)
6181 {
6182 /* We are stepping over a function call in reverse, and just
6183 hit the step-resume breakpoint at the start address of
6184 the function. Go back to single-stepping, which should
6185 take us back to the function call. */
6186 ecs->event_thread->stepping_over_breakpoint = 1;
6187 keep_going (ecs);
6188 return;
6189 }
6190 break;
6191
6192 case BPSTAT_WHAT_STOP_NOISY:
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6195 stop_print_frame = 1;
6196
6197 /* Assume the thread stopped for a breapoint. We'll still check
6198 whether a/the breakpoint is there when the thread is next
6199 resumed. */
6200 ecs->event_thread->stepping_over_breakpoint = 1;
6201
6202 stop_waiting (ecs);
6203 return;
6204
6205 case BPSTAT_WHAT_STOP_SILENT:
6206 if (debug_infrun)
6207 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6208 stop_print_frame = 0;
6209
6210 /* Assume the thread stopped for a breapoint. We'll still check
6211 whether a/the breakpoint is there when the thread is next
6212 resumed. */
6213 ecs->event_thread->stepping_over_breakpoint = 1;
6214 stop_waiting (ecs);
6215 return;
6216
6217 case BPSTAT_WHAT_HP_STEP_RESUME:
6218 if (debug_infrun)
6219 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6220
6221 delete_step_resume_breakpoint (ecs->event_thread);
6222 if (ecs->event_thread->step_after_step_resume_breakpoint)
6223 {
6224 /* Back when the step-resume breakpoint was inserted, we
6225 were trying to single-step off a breakpoint. Go back to
6226 doing that. */
6227 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6228 ecs->event_thread->stepping_over_breakpoint = 1;
6229 keep_going (ecs);
6230 return;
6231 }
6232 break;
6233
6234 case BPSTAT_WHAT_KEEP_CHECKING:
6235 break;
6236 }
6237
6238 /* If we stepped a permanent breakpoint and we had a high priority
6239 step-resume breakpoint for the address we stepped, but we didn't
6240 hit it, then we must have stepped into the signal handler. The
6241 step-resume was only necessary to catch the case of _not_
6242 stepping into the handler, so delete it, and fall through to
6243 checking whether the step finished. */
6244 if (ecs->event_thread->stepped_breakpoint)
6245 {
6246 struct breakpoint *sr_bp
6247 = ecs->event_thread->control.step_resume_breakpoint;
6248
6249 if (sr_bp != NULL
6250 && sr_bp->loc->permanent
6251 && sr_bp->type == bp_hp_step_resume
6252 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6253 {
6254 if (debug_infrun)
6255 fprintf_unfiltered (gdb_stdlog,
6256 "infrun: stepped permanent breakpoint, stopped in "
6257 "handler\n");
6258 delete_step_resume_breakpoint (ecs->event_thread);
6259 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6260 }
6261 }
6262
6263 /* We come here if we hit a breakpoint but should not stop for it.
6264 Possibly we also were stepping and should stop for that. So fall
6265 through and test for stepping. But, if not stepping, do not
6266 stop. */
6267
6268 /* In all-stop mode, if we're currently stepping but have stopped in
6269 some other thread, we need to switch back to the stepped thread. */
6270 if (switch_back_to_stepped_thread (ecs))
6271 return;
6272
6273 if (ecs->event_thread->control.step_resume_breakpoint)
6274 {
6275 if (debug_infrun)
6276 fprintf_unfiltered (gdb_stdlog,
6277 "infrun: step-resume breakpoint is inserted\n");
6278
6279 /* Having a step-resume breakpoint overrides anything
6280 else having to do with stepping commands until
6281 that breakpoint is reached. */
6282 keep_going (ecs);
6283 return;
6284 }
6285
6286 if (ecs->event_thread->control.step_range_end == 0)
6287 {
6288 if (debug_infrun)
6289 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6290 /* Likewise if we aren't even stepping. */
6291 keep_going (ecs);
6292 return;
6293 }
6294
6295 /* Re-fetch current thread's frame in case the code above caused
6296 the frame cache to be re-initialized, making our FRAME variable
6297 a dangling pointer. */
6298 frame = get_current_frame ();
6299 gdbarch = get_frame_arch (frame);
6300 fill_in_stop_func (gdbarch, ecs);
6301
6302 /* If stepping through a line, keep going if still within it.
6303
6304 Note that step_range_end is the address of the first instruction
6305 beyond the step range, and NOT the address of the last instruction
6306 within it!
6307
6308 Note also that during reverse execution, we may be stepping
6309 through a function epilogue and therefore must detect when
6310 the current-frame changes in the middle of a line. */
6311
6312 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6313 ecs->event_thread)
6314 && (execution_direction != EXEC_REVERSE
6315 || frame_id_eq (get_frame_id (frame),
6316 ecs->event_thread->control.step_frame_id)))
6317 {
6318 if (debug_infrun)
6319 fprintf_unfiltered
6320 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6321 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6322 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6323
6324 /* Tentatively re-enable range stepping; `resume' disables it if
6325 necessary (e.g., if we're stepping over a breakpoint or we
6326 have software watchpoints). */
6327 ecs->event_thread->control.may_range_step = 1;
6328
6329 /* When stepping backward, stop at beginning of line range
6330 (unless it's the function entry point, in which case
6331 keep going back to the call point). */
6332 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6333 if (stop_pc == ecs->event_thread->control.step_range_start
6334 && stop_pc != ecs->stop_func_start
6335 && execution_direction == EXEC_REVERSE)
6336 end_stepping_range (ecs);
6337 else
6338 keep_going (ecs);
6339
6340 return;
6341 }
6342
6343 /* We stepped out of the stepping range. */
6344
6345 /* If we are stepping at the source level and entered the runtime
6346 loader dynamic symbol resolution code...
6347
6348 EXEC_FORWARD: we keep on single stepping until we exit the run
6349 time loader code and reach the callee's address.
6350
6351 EXEC_REVERSE: we've already executed the callee (backward), and
6352 the runtime loader code is handled just like any other
6353 undebuggable function call. Now we need only keep stepping
6354 backward through the trampoline code, and that's handled further
6355 down, so there is nothing for us to do here. */
6356
6357 if (execution_direction != EXEC_REVERSE
6358 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6359 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6360 {
6361 CORE_ADDR pc_after_resolver =
6362 gdbarch_skip_solib_resolver (gdbarch,
6363 ecs->event_thread->suspend.stop_pc);
6364
6365 if (debug_infrun)
6366 fprintf_unfiltered (gdb_stdlog,
6367 "infrun: stepped into dynsym resolve code\n");
6368
6369 if (pc_after_resolver)
6370 {
6371 /* Set up a step-resume breakpoint at the address
6372 indicated by SKIP_SOLIB_RESOLVER. */
6373 symtab_and_line sr_sal;
6374 sr_sal.pc = pc_after_resolver;
6375 sr_sal.pspace = get_frame_program_space (frame);
6376
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
6379 }
6380
6381 keep_going (ecs);
6382 return;
6383 }
6384
6385 /* Step through an indirect branch thunk. */
6386 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6387 && gdbarch_in_indirect_branch_thunk (gdbarch,
6388 ecs->event_thread->suspend.stop_pc))
6389 {
6390 if (debug_infrun)
6391 fprintf_unfiltered (gdb_stdlog,
6392 "infrun: stepped into indirect branch thunk\n");
6393 keep_going (ecs);
6394 return;
6395 }
6396
6397 if (ecs->event_thread->control.step_range_end != 1
6398 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6399 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6400 && get_frame_type (frame) == SIGTRAMP_FRAME)
6401 {
6402 if (debug_infrun)
6403 fprintf_unfiltered (gdb_stdlog,
6404 "infrun: stepped into signal trampoline\n");
6405 /* The inferior, while doing a "step" or "next", has ended up in
6406 a signal trampoline (either by a signal being delivered or by
6407 the signal handler returning). Just single-step until the
6408 inferior leaves the trampoline (either by calling the handler
6409 or returning). */
6410 keep_going (ecs);
6411 return;
6412 }
6413
6414 /* If we're in the return path from a shared library trampoline,
6415 we want to proceed through the trampoline when stepping. */
6416 /* macro/2012-04-25: This needs to come before the subroutine
6417 call check below as on some targets return trampolines look
6418 like subroutine calls (MIPS16 return thunks). */
6419 if (gdbarch_in_solib_return_trampoline (gdbarch,
6420 ecs->event_thread->suspend.stop_pc,
6421 ecs->stop_func_name)
6422 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6423 {
6424 /* Determine where this trampoline returns. */
6425 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6426 CORE_ADDR real_stop_pc
6427 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6428
6429 if (debug_infrun)
6430 fprintf_unfiltered (gdb_stdlog,
6431 "infrun: stepped into solib return tramp\n");
6432
6433 /* Only proceed through if we know where it's going. */
6434 if (real_stop_pc)
6435 {
6436 /* And put the step-breakpoint there and go until there. */
6437 symtab_and_line sr_sal;
6438 sr_sal.pc = real_stop_pc;
6439 sr_sal.section = find_pc_overlay (sr_sal.pc);
6440 sr_sal.pspace = get_frame_program_space (frame);
6441
6442 /* Do not specify what the fp should be when we stop since
6443 on some machines the prologue is where the new fp value
6444 is established. */
6445 insert_step_resume_breakpoint_at_sal (gdbarch,
6446 sr_sal, null_frame_id);
6447
6448 /* Restart without fiddling with the step ranges or
6449 other state. */
6450 keep_going (ecs);
6451 return;
6452 }
6453 }
6454
6455 /* Check for subroutine calls. The check for the current frame
6456 equalling the step ID is not necessary - the check of the
6457 previous frame's ID is sufficient - but it is a common case and
6458 cheaper than checking the previous frame's ID.
6459
6460 NOTE: frame_id_eq will never report two invalid frame IDs as
6461 being equal, so to get into this block, both the current and
6462 previous frame must have valid frame IDs. */
6463 /* The outer_frame_id check is a heuristic to detect stepping
6464 through startup code. If we step over an instruction which
6465 sets the stack pointer from an invalid value to a valid value,
6466 we may detect that as a subroutine call from the mythical
6467 "outermost" function. This could be fixed by marking
6468 outermost frames as !stack_p,code_p,special_p. Then the
6469 initial outermost frame, before sp was valid, would
6470 have code_addr == &_start. See the comment in frame_id_eq
6471 for more. */
6472 if (!frame_id_eq (get_stack_frame_id (frame),
6473 ecs->event_thread->control.step_stack_frame_id)
6474 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6475 ecs->event_thread->control.step_stack_frame_id)
6476 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6477 outer_frame_id)
6478 || (ecs->event_thread->control.step_start_function
6479 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6480 {
6481 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6482 CORE_ADDR real_stop_pc;
6483
6484 if (debug_infrun)
6485 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6486
6487 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6488 {
6489 /* I presume that step_over_calls is only 0 when we're
6490 supposed to be stepping at the assembly language level
6491 ("stepi"). Just stop. */
6492 /* And this works the same backward as frontward. MVS */
6493 end_stepping_range (ecs);
6494 return;
6495 }
6496
6497 /* Reverse stepping through solib trampolines. */
6498
6499 if (execution_direction == EXEC_REVERSE
6500 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6501 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6502 || (ecs->stop_func_start == 0
6503 && in_solib_dynsym_resolve_code (stop_pc))))
6504 {
6505 /* Any solib trampoline code can be handled in reverse
6506 by simply continuing to single-step. We have already
6507 executed the solib function (backwards), and a few
6508 steps will take us back through the trampoline to the
6509 caller. */
6510 keep_going (ecs);
6511 return;
6512 }
6513
6514 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6515 {
6516 /* We're doing a "next".
6517
6518 Normal (forward) execution: set a breakpoint at the
6519 callee's return address (the address at which the caller
6520 will resume).
6521
6522 Reverse (backward) execution. set the step-resume
6523 breakpoint at the start of the function that we just
6524 stepped into (backwards), and continue to there. When we
6525 get there, we'll need to single-step back to the caller. */
6526
6527 if (execution_direction == EXEC_REVERSE)
6528 {
6529 /* If we're already at the start of the function, we've either
6530 just stepped backward into a single instruction function,
6531 or stepped back out of a signal handler to the first instruction
6532 of the function. Just keep going, which will single-step back
6533 to the caller. */
6534 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6535 {
6536 /* Normal function call return (static or dynamic). */
6537 symtab_and_line sr_sal;
6538 sr_sal.pc = ecs->stop_func_start;
6539 sr_sal.pspace = get_frame_program_space (frame);
6540 insert_step_resume_breakpoint_at_sal (gdbarch,
6541 sr_sal, null_frame_id);
6542 }
6543 }
6544 else
6545 insert_step_resume_breakpoint_at_caller (frame);
6546
6547 keep_going (ecs);
6548 return;
6549 }
6550
6551 /* If we are in a function call trampoline (a stub between the
6552 calling routine and the real function), locate the real
6553 function. That's what tells us (a) whether we want to step
6554 into it at all, and (b) what prologue we want to run to the
6555 end of, if we do step into it. */
6556 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6557 if (real_stop_pc == 0)
6558 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6559 if (real_stop_pc != 0)
6560 ecs->stop_func_start = real_stop_pc;
6561
6562 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6563 {
6564 symtab_and_line sr_sal;
6565 sr_sal.pc = ecs->stop_func_start;
6566 sr_sal.pspace = get_frame_program_space (frame);
6567
6568 insert_step_resume_breakpoint_at_sal (gdbarch,
6569 sr_sal, null_frame_id);
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 /* If we have line number information for the function we are
6575 thinking of stepping into and the function isn't on the skip
6576 list, step into it.
6577
6578 If there are several symtabs at that PC (e.g. with include
6579 files), just want to know whether *any* of them have line
6580 numbers. find_pc_line handles this. */
6581 {
6582 struct symtab_and_line tmp_sal;
6583
6584 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6585 if (tmp_sal.line != 0
6586 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6587 tmp_sal))
6588 {
6589 if (execution_direction == EXEC_REVERSE)
6590 handle_step_into_function_backward (gdbarch, ecs);
6591 else
6592 handle_step_into_function (gdbarch, ecs);
6593 return;
6594 }
6595 }
6596
6597 /* If we have no line number and the step-stop-if-no-debug is
6598 set, we stop the step so that the user has a chance to switch
6599 in assembly mode. */
6600 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6601 && step_stop_if_no_debug)
6602 {
6603 end_stepping_range (ecs);
6604 return;
6605 }
6606
6607 if (execution_direction == EXEC_REVERSE)
6608 {
6609 /* If we're already at the start of the function, we've either just
6610 stepped backward into a single instruction function without line
6611 number info, or stepped back out of a signal handler to the first
6612 instruction of the function without line number info. Just keep
6613 going, which will single-step back to the caller. */
6614 if (ecs->stop_func_start != stop_pc)
6615 {
6616 /* Set a breakpoint at callee's start address.
6617 From there we can step once and be back in the caller. */
6618 symtab_and_line sr_sal;
6619 sr_sal.pc = ecs->stop_func_start;
6620 sr_sal.pspace = get_frame_program_space (frame);
6621 insert_step_resume_breakpoint_at_sal (gdbarch,
6622 sr_sal, null_frame_id);
6623 }
6624 }
6625 else
6626 /* Set a breakpoint at callee's return address (the address
6627 at which the caller will resume). */
6628 insert_step_resume_breakpoint_at_caller (frame);
6629
6630 keep_going (ecs);
6631 return;
6632 }
6633
6634 /* Reverse stepping through solib trampolines. */
6635
6636 if (execution_direction == EXEC_REVERSE
6637 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6638 {
6639 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6640
6641 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6642 || (ecs->stop_func_start == 0
6643 && in_solib_dynsym_resolve_code (stop_pc)))
6644 {
6645 /* Any solib trampoline code can be handled in reverse
6646 by simply continuing to single-step. We have already
6647 executed the solib function (backwards), and a few
6648 steps will take us back through the trampoline to the
6649 caller. */
6650 keep_going (ecs);
6651 return;
6652 }
6653 else if (in_solib_dynsym_resolve_code (stop_pc))
6654 {
6655 /* Stepped backward into the solib dynsym resolver.
6656 Set a breakpoint at its start and continue, then
6657 one more step will take us out. */
6658 symtab_and_line sr_sal;
6659 sr_sal.pc = ecs->stop_func_start;
6660 sr_sal.pspace = get_frame_program_space (frame);
6661 insert_step_resume_breakpoint_at_sal (gdbarch,
6662 sr_sal, null_frame_id);
6663 keep_going (ecs);
6664 return;
6665 }
6666 }
6667
6668 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6669
6670 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6671 the trampoline processing logic, however, there are some trampolines
6672 that have no names, so we should do trampoline handling first. */
6673 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6674 && ecs->stop_func_name == NULL
6675 && stop_pc_sal.line == 0)
6676 {
6677 if (debug_infrun)
6678 fprintf_unfiltered (gdb_stdlog,
6679 "infrun: stepped into undebuggable function\n");
6680
6681 /* The inferior just stepped into, or returned to, an
6682 undebuggable function (where there is no debugging information
6683 and no line number corresponding to the address where the
6684 inferior stopped). Since we want to skip this kind of code,
6685 we keep going until the inferior returns from this
6686 function - unless the user has asked us not to (via
6687 set step-mode) or we no longer know how to get back
6688 to the call site. */
6689 if (step_stop_if_no_debug
6690 || !frame_id_p (frame_unwind_caller_id (frame)))
6691 {
6692 /* If we have no line number and the step-stop-if-no-debug
6693 is set, we stop the step so that the user has a chance to
6694 switch in assembly mode. */
6695 end_stepping_range (ecs);
6696 return;
6697 }
6698 else
6699 {
6700 /* Set a breakpoint at callee's return address (the address
6701 at which the caller will resume). */
6702 insert_step_resume_breakpoint_at_caller (frame);
6703 keep_going (ecs);
6704 return;
6705 }
6706 }
6707
6708 if (ecs->event_thread->control.step_range_end == 1)
6709 {
6710 /* It is stepi or nexti. We always want to stop stepping after
6711 one instruction. */
6712 if (debug_infrun)
6713 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6714 end_stepping_range (ecs);
6715 return;
6716 }
6717
6718 if (stop_pc_sal.line == 0)
6719 {
6720 /* We have no line number information. That means to stop
6721 stepping (does this always happen right after one instruction,
6722 when we do "s" in a function with no line numbers,
6723 or can this happen as a result of a return or longjmp?). */
6724 if (debug_infrun)
6725 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6726 end_stepping_range (ecs);
6727 return;
6728 }
6729
6730 /* Look for "calls" to inlined functions, part one. If the inline
6731 frame machinery detected some skipped call sites, we have entered
6732 a new inline function. */
6733
6734 if (frame_id_eq (get_frame_id (get_current_frame ()),
6735 ecs->event_thread->control.step_frame_id)
6736 && inline_skipped_frames (ecs->event_thread))
6737 {
6738 if (debug_infrun)
6739 fprintf_unfiltered (gdb_stdlog,
6740 "infrun: stepped into inlined function\n");
6741
6742 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6743
6744 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6745 {
6746 /* For "step", we're going to stop. But if the call site
6747 for this inlined function is on the same source line as
6748 we were previously stepping, go down into the function
6749 first. Otherwise stop at the call site. */
6750
6751 if (call_sal.line == ecs->event_thread->current_line
6752 && call_sal.symtab == ecs->event_thread->current_symtab)
6753 step_into_inline_frame (ecs->event_thread);
6754
6755 end_stepping_range (ecs);
6756 return;
6757 }
6758 else
6759 {
6760 /* For "next", we should stop at the call site if it is on a
6761 different source line. Otherwise continue through the
6762 inlined function. */
6763 if (call_sal.line == ecs->event_thread->current_line
6764 && call_sal.symtab == ecs->event_thread->current_symtab)
6765 keep_going (ecs);
6766 else
6767 end_stepping_range (ecs);
6768 return;
6769 }
6770 }
6771
6772 /* Look for "calls" to inlined functions, part two. If we are still
6773 in the same real function we were stepping through, but we have
6774 to go further up to find the exact frame ID, we are stepping
6775 through a more inlined call beyond its call site. */
6776
6777 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6778 && !frame_id_eq (get_frame_id (get_current_frame ()),
6779 ecs->event_thread->control.step_frame_id)
6780 && stepped_in_from (get_current_frame (),
6781 ecs->event_thread->control.step_frame_id))
6782 {
6783 if (debug_infrun)
6784 fprintf_unfiltered (gdb_stdlog,
6785 "infrun: stepping through inlined function\n");
6786
6787 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6788 keep_going (ecs);
6789 else
6790 end_stepping_range (ecs);
6791 return;
6792 }
6793
6794 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6795 && (ecs->event_thread->current_line != stop_pc_sal.line
6796 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6797 {
6798 /* We are at the start of a different line. So stop. Note that
6799 we don't stop if we step into the middle of a different line.
6800 That is said to make things like for (;;) statements work
6801 better. */
6802 if (debug_infrun)
6803 fprintf_unfiltered (gdb_stdlog,
6804 "infrun: stepped to a different line\n");
6805 end_stepping_range (ecs);
6806 return;
6807 }
6808
6809 /* We aren't done stepping.
6810
6811 Optimize by setting the stepping range to the line.
6812 (We might not be in the original line, but if we entered a
6813 new line in mid-statement, we continue stepping. This makes
6814 things like for(;;) statements work better.) */
6815
6816 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6817 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6818 ecs->event_thread->control.may_range_step = 1;
6819 set_step_info (frame, stop_pc_sal);
6820
6821 if (debug_infrun)
6822 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6823 keep_going (ecs);
6824 }
6825
6826 /* In all-stop mode, if we're currently stepping but have stopped in
6827 some other thread, we may need to switch back to the stepped
6828 thread. Returns true we set the inferior running, false if we left
6829 it stopped (and the event needs further processing). */
6830
6831 static int
6832 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6833 {
6834 if (!target_is_non_stop_p ())
6835 {
6836 struct thread_info *stepping_thread;
6837
6838 /* If any thread is blocked on some internal breakpoint, and we
6839 simply need to step over that breakpoint to get it going
6840 again, do that first. */
6841
6842 /* However, if we see an event for the stepping thread, then we
6843 know all other threads have been moved past their breakpoints
6844 already. Let the caller check whether the step is finished,
6845 etc., before deciding to move it past a breakpoint. */
6846 if (ecs->event_thread->control.step_range_end != 0)
6847 return 0;
6848
6849 /* Check if the current thread is blocked on an incomplete
6850 step-over, interrupted by a random signal. */
6851 if (ecs->event_thread->control.trap_expected
6852 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6853 {
6854 if (debug_infrun)
6855 {
6856 fprintf_unfiltered (gdb_stdlog,
6857 "infrun: need to finish step-over of [%s]\n",
6858 target_pid_to_str (ecs->event_thread->ptid));
6859 }
6860 keep_going (ecs);
6861 return 1;
6862 }
6863
6864 /* Check if the current thread is blocked by a single-step
6865 breakpoint of another thread. */
6866 if (ecs->hit_singlestep_breakpoint)
6867 {
6868 if (debug_infrun)
6869 {
6870 fprintf_unfiltered (gdb_stdlog,
6871 "infrun: need to step [%s] over single-step "
6872 "breakpoint\n",
6873 target_pid_to_str (ecs->ptid));
6874 }
6875 keep_going (ecs);
6876 return 1;
6877 }
6878
6879 /* If this thread needs yet another step-over (e.g., stepping
6880 through a delay slot), do it first before moving on to
6881 another thread. */
6882 if (thread_still_needs_step_over (ecs->event_thread))
6883 {
6884 if (debug_infrun)
6885 {
6886 fprintf_unfiltered (gdb_stdlog,
6887 "infrun: thread [%s] still needs step-over\n",
6888 target_pid_to_str (ecs->event_thread->ptid));
6889 }
6890 keep_going (ecs);
6891 return 1;
6892 }
6893
6894 /* If scheduler locking applies even if not stepping, there's no
6895 need to walk over threads. Above we've checked whether the
6896 current thread is stepping. If some other thread not the
6897 event thread is stepping, then it must be that scheduler
6898 locking is not in effect. */
6899 if (schedlock_applies (ecs->event_thread))
6900 return 0;
6901
6902 /* Otherwise, we no longer expect a trap in the current thread.
6903 Clear the trap_expected flag before switching back -- this is
6904 what keep_going does as well, if we call it. */
6905 ecs->event_thread->control.trap_expected = 0;
6906
6907 /* Likewise, clear the signal if it should not be passed. */
6908 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6909 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6910
6911 /* Do all pending step-overs before actually proceeding with
6912 step/next/etc. */
6913 if (start_step_over ())
6914 {
6915 prepare_to_wait (ecs);
6916 return 1;
6917 }
6918
6919 /* Look for the stepping/nexting thread. */
6920 stepping_thread = NULL;
6921
6922 for (thread_info *tp : all_non_exited_threads ())
6923 {
6924 /* Ignore threads of processes the caller is not
6925 resuming. */
6926 if (!sched_multi
6927 && tp->ptid.pid () != ecs->ptid.pid ())
6928 continue;
6929
6930 /* When stepping over a breakpoint, we lock all threads
6931 except the one that needs to move past the breakpoint.
6932 If a non-event thread has this set, the "incomplete
6933 step-over" check above should have caught it earlier. */
6934 if (tp->control.trap_expected)
6935 {
6936 internal_error (__FILE__, __LINE__,
6937 "[%s] has inconsistent state: "
6938 "trap_expected=%d\n",
6939 target_pid_to_str (tp->ptid),
6940 tp->control.trap_expected);
6941 }
6942
6943 /* Did we find the stepping thread? */
6944 if (tp->control.step_range_end)
6945 {
6946 /* Yep. There should only one though. */
6947 gdb_assert (stepping_thread == NULL);
6948
6949 /* The event thread is handled at the top, before we
6950 enter this loop. */
6951 gdb_assert (tp != ecs->event_thread);
6952
6953 /* If some thread other than the event thread is
6954 stepping, then scheduler locking can't be in effect,
6955 otherwise we wouldn't have resumed the current event
6956 thread in the first place. */
6957 gdb_assert (!schedlock_applies (tp));
6958
6959 stepping_thread = tp;
6960 }
6961 }
6962
6963 if (stepping_thread != NULL)
6964 {
6965 if (debug_infrun)
6966 fprintf_unfiltered (gdb_stdlog,
6967 "infrun: switching back to stepped thread\n");
6968
6969 if (keep_going_stepped_thread (stepping_thread))
6970 {
6971 prepare_to_wait (ecs);
6972 return 1;
6973 }
6974 }
6975 }
6976
6977 return 0;
6978 }
6979
6980 /* Set a previously stepped thread back to stepping. Returns true on
6981 success, false if the resume is not possible (e.g., the thread
6982 vanished). */
6983
6984 static int
6985 keep_going_stepped_thread (struct thread_info *tp)
6986 {
6987 struct frame_info *frame;
6988 struct execution_control_state ecss;
6989 struct execution_control_state *ecs = &ecss;
6990
6991 /* If the stepping thread exited, then don't try to switch back and
6992 resume it, which could fail in several different ways depending
6993 on the target. Instead, just keep going.
6994
6995 We can find a stepping dead thread in the thread list in two
6996 cases:
6997
6998 - The target supports thread exit events, and when the target
6999 tries to delete the thread from the thread list, inferior_ptid
7000 pointed at the exiting thread. In such case, calling
7001 delete_thread does not really remove the thread from the list;
7002 instead, the thread is left listed, with 'exited' state.
7003
7004 - The target's debug interface does not support thread exit
7005 events, and so we have no idea whatsoever if the previously
7006 stepping thread is still alive. For that reason, we need to
7007 synchronously query the target now. */
7008
7009 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7010 {
7011 if (debug_infrun)
7012 fprintf_unfiltered (gdb_stdlog,
7013 "infrun: not resuming previously "
7014 "stepped thread, it has vanished\n");
7015
7016 delete_thread (tp);
7017 return 0;
7018 }
7019
7020 if (debug_infrun)
7021 fprintf_unfiltered (gdb_stdlog,
7022 "infrun: resuming previously stepped thread\n");
7023
7024 reset_ecs (ecs, tp);
7025 switch_to_thread (tp);
7026
7027 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7028 frame = get_current_frame ();
7029
7030 /* If the PC of the thread we were trying to single-step has
7031 changed, then that thread has trapped or been signaled, but the
7032 event has not been reported to GDB yet. Re-poll the target
7033 looking for this particular thread's event (i.e. temporarily
7034 enable schedlock) by:
7035
7036 - setting a break at the current PC
7037 - resuming that particular thread, only (by setting trap
7038 expected)
7039
7040 This prevents us continuously moving the single-step breakpoint
7041 forward, one instruction at a time, overstepping. */
7042
7043 if (tp->suspend.stop_pc != tp->prev_pc)
7044 {
7045 ptid_t resume_ptid;
7046
7047 if (debug_infrun)
7048 fprintf_unfiltered (gdb_stdlog,
7049 "infrun: expected thread advanced also (%s -> %s)\n",
7050 paddress (target_gdbarch (), tp->prev_pc),
7051 paddress (target_gdbarch (), tp->suspend.stop_pc));
7052
7053 /* Clear the info of the previous step-over, as it's no longer
7054 valid (if the thread was trying to step over a breakpoint, it
7055 has already succeeded). It's what keep_going would do too,
7056 if we called it. Do this before trying to insert the sss
7057 breakpoint, otherwise if we were previously trying to step
7058 over this exact address in another thread, the breakpoint is
7059 skipped. */
7060 clear_step_over_info ();
7061 tp->control.trap_expected = 0;
7062
7063 insert_single_step_breakpoint (get_frame_arch (frame),
7064 get_frame_address_space (frame),
7065 tp->suspend.stop_pc);
7066
7067 tp->resumed = 1;
7068 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7069 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7070 }
7071 else
7072 {
7073 if (debug_infrun)
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: expected thread still hasn't advanced\n");
7076
7077 keep_going_pass_signal (ecs);
7078 }
7079 return 1;
7080 }
7081
7082 /* Is thread TP in the middle of (software or hardware)
7083 single-stepping? (Note the result of this function must never be
7084 passed directly as target_resume's STEP parameter.) */
7085
7086 static int
7087 currently_stepping (struct thread_info *tp)
7088 {
7089 return ((tp->control.step_range_end
7090 && tp->control.step_resume_breakpoint == NULL)
7091 || tp->control.trap_expected
7092 || tp->stepped_breakpoint
7093 || bpstat_should_step ());
7094 }
7095
7096 /* Inferior has stepped into a subroutine call with source code that
7097 we should not step over. Do step to the first line of code in
7098 it. */
7099
7100 static void
7101 handle_step_into_function (struct gdbarch *gdbarch,
7102 struct execution_control_state *ecs)
7103 {
7104 fill_in_stop_func (gdbarch, ecs);
7105
7106 compunit_symtab *cust
7107 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7108 if (cust != NULL && compunit_language (cust) != language_asm)
7109 ecs->stop_func_start
7110 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7111
7112 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7113 /* Use the step_resume_break to step until the end of the prologue,
7114 even if that involves jumps (as it seems to on the vax under
7115 4.2). */
7116 /* If the prologue ends in the middle of a source line, continue to
7117 the end of that source line (if it is still within the function).
7118 Otherwise, just go to end of prologue. */
7119 if (stop_func_sal.end
7120 && stop_func_sal.pc != ecs->stop_func_start
7121 && stop_func_sal.end < ecs->stop_func_end)
7122 ecs->stop_func_start = stop_func_sal.end;
7123
7124 /* Architectures which require breakpoint adjustment might not be able
7125 to place a breakpoint at the computed address. If so, the test
7126 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7127 ecs->stop_func_start to an address at which a breakpoint may be
7128 legitimately placed.
7129
7130 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7131 made, GDB will enter an infinite loop when stepping through
7132 optimized code consisting of VLIW instructions which contain
7133 subinstructions corresponding to different source lines. On
7134 FR-V, it's not permitted to place a breakpoint on any but the
7135 first subinstruction of a VLIW instruction. When a breakpoint is
7136 set, GDB will adjust the breakpoint address to the beginning of
7137 the VLIW instruction. Thus, we need to make the corresponding
7138 adjustment here when computing the stop address. */
7139
7140 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7141 {
7142 ecs->stop_func_start
7143 = gdbarch_adjust_breakpoint_address (gdbarch,
7144 ecs->stop_func_start);
7145 }
7146
7147 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7148 {
7149 /* We are already there: stop now. */
7150 end_stepping_range (ecs);
7151 return;
7152 }
7153 else
7154 {
7155 /* Put the step-breakpoint there and go until there. */
7156 symtab_and_line sr_sal;
7157 sr_sal.pc = ecs->stop_func_start;
7158 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7159 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7160
7161 /* Do not specify what the fp should be when we stop since on
7162 some machines the prologue is where the new fp value is
7163 established. */
7164 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7165
7166 /* And make sure stepping stops right away then. */
7167 ecs->event_thread->control.step_range_end
7168 = ecs->event_thread->control.step_range_start;
7169 }
7170 keep_going (ecs);
7171 }
7172
7173 /* Inferior has stepped backward into a subroutine call with source
7174 code that we should not step over. Do step to the beginning of the
7175 last line of code in it. */
7176
7177 static void
7178 handle_step_into_function_backward (struct gdbarch *gdbarch,
7179 struct execution_control_state *ecs)
7180 {
7181 struct compunit_symtab *cust;
7182 struct symtab_and_line stop_func_sal;
7183
7184 fill_in_stop_func (gdbarch, ecs);
7185
7186 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7187 if (cust != NULL && compunit_language (cust) != language_asm)
7188 ecs->stop_func_start
7189 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7190
7191 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7192
7193 /* OK, we're just going to keep stepping here. */
7194 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7195 {
7196 /* We're there already. Just stop stepping now. */
7197 end_stepping_range (ecs);
7198 }
7199 else
7200 {
7201 /* Else just reset the step range and keep going.
7202 No step-resume breakpoint, they don't work for
7203 epilogues, which can have multiple entry paths. */
7204 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7205 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7206 keep_going (ecs);
7207 }
7208 return;
7209 }
7210
7211 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7212 This is used to both functions and to skip over code. */
7213
7214 static void
7215 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7216 struct symtab_and_line sr_sal,
7217 struct frame_id sr_id,
7218 enum bptype sr_type)
7219 {
7220 /* There should never be more than one step-resume or longjmp-resume
7221 breakpoint per thread, so we should never be setting a new
7222 step_resume_breakpoint when one is already active. */
7223 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7224 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7225
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: inserting step-resume breakpoint at %s\n",
7229 paddress (gdbarch, sr_sal.pc));
7230
7231 inferior_thread ()->control.step_resume_breakpoint
7232 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7233 }
7234
7235 void
7236 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7237 struct symtab_and_line sr_sal,
7238 struct frame_id sr_id)
7239 {
7240 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7241 sr_sal, sr_id,
7242 bp_step_resume);
7243 }
7244
7245 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7246 This is used to skip a potential signal handler.
7247
7248 This is called with the interrupted function's frame. The signal
7249 handler, when it returns, will resume the interrupted function at
7250 RETURN_FRAME.pc. */
7251
7252 static void
7253 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7254 {
7255 gdb_assert (return_frame != NULL);
7256
7257 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7258
7259 symtab_and_line sr_sal;
7260 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7261 sr_sal.section = find_pc_overlay (sr_sal.pc);
7262 sr_sal.pspace = get_frame_program_space (return_frame);
7263
7264 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7265 get_stack_frame_id (return_frame),
7266 bp_hp_step_resume);
7267 }
7268
7269 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7270 is used to skip a function after stepping into it (for "next" or if
7271 the called function has no debugging information).
7272
7273 The current function has almost always been reached by single
7274 stepping a call or return instruction. NEXT_FRAME belongs to the
7275 current function, and the breakpoint will be set at the caller's
7276 resume address.
7277
7278 This is a separate function rather than reusing
7279 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7280 get_prev_frame, which may stop prematurely (see the implementation
7281 of frame_unwind_caller_id for an example). */
7282
7283 static void
7284 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7285 {
7286 /* We shouldn't have gotten here if we don't know where the call site
7287 is. */
7288 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7289
7290 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7291
7292 symtab_and_line sr_sal;
7293 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7294 frame_unwind_caller_pc (next_frame));
7295 sr_sal.section = find_pc_overlay (sr_sal.pc);
7296 sr_sal.pspace = frame_unwind_program_space (next_frame);
7297
7298 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7299 frame_unwind_caller_id (next_frame));
7300 }
7301
7302 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7303 new breakpoint at the target of a jmp_buf. The handling of
7304 longjmp-resume uses the same mechanisms used for handling
7305 "step-resume" breakpoints. */
7306
7307 static void
7308 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7309 {
7310 /* There should never be more than one longjmp-resume breakpoint per
7311 thread, so we should never be setting a new
7312 longjmp_resume_breakpoint when one is already active. */
7313 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7314
7315 if (debug_infrun)
7316 fprintf_unfiltered (gdb_stdlog,
7317 "infrun: inserting longjmp-resume breakpoint at %s\n",
7318 paddress (gdbarch, pc));
7319
7320 inferior_thread ()->control.exception_resume_breakpoint =
7321 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7322 }
7323
7324 /* Insert an exception resume breakpoint. TP is the thread throwing
7325 the exception. The block B is the block of the unwinder debug hook
7326 function. FRAME is the frame corresponding to the call to this
7327 function. SYM is the symbol of the function argument holding the
7328 target PC of the exception. */
7329
7330 static void
7331 insert_exception_resume_breakpoint (struct thread_info *tp,
7332 const struct block *b,
7333 struct frame_info *frame,
7334 struct symbol *sym)
7335 {
7336 TRY
7337 {
7338 struct block_symbol vsym;
7339 struct value *value;
7340 CORE_ADDR handler;
7341 struct breakpoint *bp;
7342
7343 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7344 b, VAR_DOMAIN);
7345 value = read_var_value (vsym.symbol, vsym.block, frame);
7346 /* If the value was optimized out, revert to the old behavior. */
7347 if (! value_optimized_out (value))
7348 {
7349 handler = value_as_address (value);
7350
7351 if (debug_infrun)
7352 fprintf_unfiltered (gdb_stdlog,
7353 "infrun: exception resume at %lx\n",
7354 (unsigned long) handler);
7355
7356 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7357 handler,
7358 bp_exception_resume).release ();
7359
7360 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7361 frame = NULL;
7362
7363 bp->thread = tp->global_num;
7364 inferior_thread ()->control.exception_resume_breakpoint = bp;
7365 }
7366 }
7367 CATCH (e, RETURN_MASK_ERROR)
7368 {
7369 /* We want to ignore errors here. */
7370 }
7371 END_CATCH
7372 }
7373
7374 /* A helper for check_exception_resume that sets an
7375 exception-breakpoint based on a SystemTap probe. */
7376
7377 static void
7378 insert_exception_resume_from_probe (struct thread_info *tp,
7379 const struct bound_probe *probe,
7380 struct frame_info *frame)
7381 {
7382 struct value *arg_value;
7383 CORE_ADDR handler;
7384 struct breakpoint *bp;
7385
7386 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7387 if (!arg_value)
7388 return;
7389
7390 handler = value_as_address (arg_value);
7391
7392 if (debug_infrun)
7393 fprintf_unfiltered (gdb_stdlog,
7394 "infrun: exception resume at %s\n",
7395 paddress (get_objfile_arch (probe->objfile),
7396 handler));
7397
7398 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7399 handler, bp_exception_resume).release ();
7400 bp->thread = tp->global_num;
7401 inferior_thread ()->control.exception_resume_breakpoint = bp;
7402 }
7403
7404 /* This is called when an exception has been intercepted. Check to
7405 see whether the exception's destination is of interest, and if so,
7406 set an exception resume breakpoint there. */
7407
7408 static void
7409 check_exception_resume (struct execution_control_state *ecs,
7410 struct frame_info *frame)
7411 {
7412 struct bound_probe probe;
7413 struct symbol *func;
7414
7415 /* First see if this exception unwinding breakpoint was set via a
7416 SystemTap probe point. If so, the probe has two arguments: the
7417 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7418 set a breakpoint there. */
7419 probe = find_probe_by_pc (get_frame_pc (frame));
7420 if (probe.prob)
7421 {
7422 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7423 return;
7424 }
7425
7426 func = get_frame_function (frame);
7427 if (!func)
7428 return;
7429
7430 TRY
7431 {
7432 const struct block *b;
7433 struct block_iterator iter;
7434 struct symbol *sym;
7435 int argno = 0;
7436
7437 /* The exception breakpoint is a thread-specific breakpoint on
7438 the unwinder's debug hook, declared as:
7439
7440 void _Unwind_DebugHook (void *cfa, void *handler);
7441
7442 The CFA argument indicates the frame to which control is
7443 about to be transferred. HANDLER is the destination PC.
7444
7445 We ignore the CFA and set a temporary breakpoint at HANDLER.
7446 This is not extremely efficient but it avoids issues in gdb
7447 with computing the DWARF CFA, and it also works even in weird
7448 cases such as throwing an exception from inside a signal
7449 handler. */
7450
7451 b = SYMBOL_BLOCK_VALUE (func);
7452 ALL_BLOCK_SYMBOLS (b, iter, sym)
7453 {
7454 if (!SYMBOL_IS_ARGUMENT (sym))
7455 continue;
7456
7457 if (argno == 0)
7458 ++argno;
7459 else
7460 {
7461 insert_exception_resume_breakpoint (ecs->event_thread,
7462 b, frame, sym);
7463 break;
7464 }
7465 }
7466 }
7467 CATCH (e, RETURN_MASK_ERROR)
7468 {
7469 }
7470 END_CATCH
7471 }
7472
7473 static void
7474 stop_waiting (struct execution_control_state *ecs)
7475 {
7476 if (debug_infrun)
7477 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7478
7479 /* Let callers know we don't want to wait for the inferior anymore. */
7480 ecs->wait_some_more = 0;
7481
7482 /* If all-stop, but the target is always in non-stop mode, stop all
7483 threads now that we're presenting the stop to the user. */
7484 if (!non_stop && target_is_non_stop_p ())
7485 stop_all_threads ();
7486 }
7487
7488 /* Like keep_going, but passes the signal to the inferior, even if the
7489 signal is set to nopass. */
7490
7491 static void
7492 keep_going_pass_signal (struct execution_control_state *ecs)
7493 {
7494 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7495 gdb_assert (!ecs->event_thread->resumed);
7496
7497 /* Save the pc before execution, to compare with pc after stop. */
7498 ecs->event_thread->prev_pc
7499 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7500
7501 if (ecs->event_thread->control.trap_expected)
7502 {
7503 struct thread_info *tp = ecs->event_thread;
7504
7505 if (debug_infrun)
7506 fprintf_unfiltered (gdb_stdlog,
7507 "infrun: %s has trap_expected set, "
7508 "resuming to collect trap\n",
7509 target_pid_to_str (tp->ptid));
7510
7511 /* We haven't yet gotten our trap, and either: intercepted a
7512 non-signal event (e.g., a fork); or took a signal which we
7513 are supposed to pass through to the inferior. Simply
7514 continue. */
7515 resume (ecs->event_thread->suspend.stop_signal);
7516 }
7517 else if (step_over_info_valid_p ())
7518 {
7519 /* Another thread is stepping over a breakpoint in-line. If
7520 this thread needs a step-over too, queue the request. In
7521 either case, this resume must be deferred for later. */
7522 struct thread_info *tp = ecs->event_thread;
7523
7524 if (ecs->hit_singlestep_breakpoint
7525 || thread_still_needs_step_over (tp))
7526 {
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: step-over already in progress: "
7530 "step-over for %s deferred\n",
7531 target_pid_to_str (tp->ptid));
7532 thread_step_over_chain_enqueue (tp);
7533 }
7534 else
7535 {
7536 if (debug_infrun)
7537 fprintf_unfiltered (gdb_stdlog,
7538 "infrun: step-over in progress: "
7539 "resume of %s deferred\n",
7540 target_pid_to_str (tp->ptid));
7541 }
7542 }
7543 else
7544 {
7545 struct regcache *regcache = get_current_regcache ();
7546 int remove_bp;
7547 int remove_wps;
7548 step_over_what step_what;
7549
7550 /* Either the trap was not expected, but we are continuing
7551 anyway (if we got a signal, the user asked it be passed to
7552 the child)
7553 -- or --
7554 We got our expected trap, but decided we should resume from
7555 it.
7556
7557 We're going to run this baby now!
7558
7559 Note that insert_breakpoints won't try to re-insert
7560 already inserted breakpoints. Therefore, we don't
7561 care if breakpoints were already inserted, or not. */
7562
7563 /* If we need to step over a breakpoint, and we're not using
7564 displaced stepping to do so, insert all breakpoints
7565 (watchpoints, etc.) but the one we're stepping over, step one
7566 instruction, and then re-insert the breakpoint when that step
7567 is finished. */
7568
7569 step_what = thread_still_needs_step_over (ecs->event_thread);
7570
7571 remove_bp = (ecs->hit_singlestep_breakpoint
7572 || (step_what & STEP_OVER_BREAKPOINT));
7573 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7574
7575 /* We can't use displaced stepping if we need to step past a
7576 watchpoint. The instruction copied to the scratch pad would
7577 still trigger the watchpoint. */
7578 if (remove_bp
7579 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7580 {
7581 set_step_over_info (regcache->aspace (),
7582 regcache_read_pc (regcache), remove_wps,
7583 ecs->event_thread->global_num);
7584 }
7585 else if (remove_wps)
7586 set_step_over_info (NULL, 0, remove_wps, -1);
7587
7588 /* If we now need to do an in-line step-over, we need to stop
7589 all other threads. Note this must be done before
7590 insert_breakpoints below, because that removes the breakpoint
7591 we're about to step over, otherwise other threads could miss
7592 it. */
7593 if (step_over_info_valid_p () && target_is_non_stop_p ())
7594 stop_all_threads ();
7595
7596 /* Stop stepping if inserting breakpoints fails. */
7597 TRY
7598 {
7599 insert_breakpoints ();
7600 }
7601 CATCH (e, RETURN_MASK_ERROR)
7602 {
7603 exception_print (gdb_stderr, e);
7604 stop_waiting (ecs);
7605 clear_step_over_info ();
7606 return;
7607 }
7608 END_CATCH
7609
7610 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7611
7612 resume (ecs->event_thread->suspend.stop_signal);
7613 }
7614
7615 prepare_to_wait (ecs);
7616 }
7617
7618 /* Called when we should continue running the inferior, because the
7619 current event doesn't cause a user visible stop. This does the
7620 resuming part; waiting for the next event is done elsewhere. */
7621
7622 static void
7623 keep_going (struct execution_control_state *ecs)
7624 {
7625 if (ecs->event_thread->control.trap_expected
7626 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7627 ecs->event_thread->control.trap_expected = 0;
7628
7629 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7630 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7631 keep_going_pass_signal (ecs);
7632 }
7633
7634 /* This function normally comes after a resume, before
7635 handle_inferior_event exits. It takes care of any last bits of
7636 housekeeping, and sets the all-important wait_some_more flag. */
7637
7638 static void
7639 prepare_to_wait (struct execution_control_state *ecs)
7640 {
7641 if (debug_infrun)
7642 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7643
7644 ecs->wait_some_more = 1;
7645
7646 if (!target_is_async_p ())
7647 mark_infrun_async_event_handler ();
7648 }
7649
7650 /* We are done with the step range of a step/next/si/ni command.
7651 Called once for each n of a "step n" operation. */
7652
7653 static void
7654 end_stepping_range (struct execution_control_state *ecs)
7655 {
7656 ecs->event_thread->control.stop_step = 1;
7657 stop_waiting (ecs);
7658 }
7659
7660 /* Several print_*_reason functions to print why the inferior has stopped.
7661 We always print something when the inferior exits, or receives a signal.
7662 The rest of the cases are dealt with later on in normal_stop and
7663 print_it_typical. Ideally there should be a call to one of these
7664 print_*_reason functions functions from handle_inferior_event each time
7665 stop_waiting is called.
7666
7667 Note that we don't call these directly, instead we delegate that to
7668 the interpreters, through observers. Interpreters then call these
7669 with whatever uiout is right. */
7670
7671 void
7672 print_end_stepping_range_reason (struct ui_out *uiout)
7673 {
7674 /* For CLI-like interpreters, print nothing. */
7675
7676 if (uiout->is_mi_like_p ())
7677 {
7678 uiout->field_string ("reason",
7679 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7680 }
7681 }
7682
7683 void
7684 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7685 {
7686 annotate_signalled ();
7687 if (uiout->is_mi_like_p ())
7688 uiout->field_string
7689 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7690 uiout->text ("\nProgram terminated with signal ");
7691 annotate_signal_name ();
7692 uiout->field_string ("signal-name",
7693 gdb_signal_to_name (siggnal));
7694 annotate_signal_name_end ();
7695 uiout->text (", ");
7696 annotate_signal_string ();
7697 uiout->field_string ("signal-meaning",
7698 gdb_signal_to_string (siggnal));
7699 annotate_signal_string_end ();
7700 uiout->text (".\n");
7701 uiout->text ("The program no longer exists.\n");
7702 }
7703
7704 void
7705 print_exited_reason (struct ui_out *uiout, int exitstatus)
7706 {
7707 struct inferior *inf = current_inferior ();
7708 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
7709
7710 annotate_exited (exitstatus);
7711 if (exitstatus)
7712 {
7713 if (uiout->is_mi_like_p ())
7714 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7715 uiout->text ("[Inferior ");
7716 uiout->text (plongest (inf->num));
7717 uiout->text (" (");
7718 uiout->text (pidstr);
7719 uiout->text (") exited with code ");
7720 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7721 uiout->text ("]\n");
7722 }
7723 else
7724 {
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string
7727 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7728 uiout->text ("[Inferior ");
7729 uiout->text (plongest (inf->num));
7730 uiout->text (" (");
7731 uiout->text (pidstr);
7732 uiout->text (") exited normally]\n");
7733 }
7734 }
7735
7736 /* Some targets/architectures can do extra processing/display of
7737 segmentation faults. E.g., Intel MPX boundary faults.
7738 Call the architecture dependent function to handle the fault. */
7739
7740 static void
7741 handle_segmentation_fault (struct ui_out *uiout)
7742 {
7743 struct regcache *regcache = get_current_regcache ();
7744 struct gdbarch *gdbarch = regcache->arch ();
7745
7746 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7747 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7748 }
7749
7750 void
7751 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7752 {
7753 struct thread_info *thr = inferior_thread ();
7754
7755 annotate_signal ();
7756
7757 if (uiout->is_mi_like_p ())
7758 ;
7759 else if (show_thread_that_caused_stop ())
7760 {
7761 const char *name;
7762
7763 uiout->text ("\nThread ");
7764 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7765
7766 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7767 if (name != NULL)
7768 {
7769 uiout->text (" \"");
7770 uiout->field_fmt ("name", "%s", name);
7771 uiout->text ("\"");
7772 }
7773 }
7774 else
7775 uiout->text ("\nProgram");
7776
7777 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7778 uiout->text (" stopped");
7779 else
7780 {
7781 uiout->text (" received signal ");
7782 annotate_signal_name ();
7783 if (uiout->is_mi_like_p ())
7784 uiout->field_string
7785 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7786 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7787 annotate_signal_name_end ();
7788 uiout->text (", ");
7789 annotate_signal_string ();
7790 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7791
7792 if (siggnal == GDB_SIGNAL_SEGV)
7793 handle_segmentation_fault (uiout);
7794
7795 annotate_signal_string_end ();
7796 }
7797 uiout->text (".\n");
7798 }
7799
7800 void
7801 print_no_history_reason (struct ui_out *uiout)
7802 {
7803 uiout->text ("\nNo more reverse-execution history.\n");
7804 }
7805
7806 /* Print current location without a level number, if we have changed
7807 functions or hit a breakpoint. Print source line if we have one.
7808 bpstat_print contains the logic deciding in detail what to print,
7809 based on the event(s) that just occurred. */
7810
7811 static void
7812 print_stop_location (struct target_waitstatus *ws)
7813 {
7814 int bpstat_ret;
7815 enum print_what source_flag;
7816 int do_frame_printing = 1;
7817 struct thread_info *tp = inferior_thread ();
7818
7819 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7820 switch (bpstat_ret)
7821 {
7822 case PRINT_UNKNOWN:
7823 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7824 should) carry around the function and does (or should) use
7825 that when doing a frame comparison. */
7826 if (tp->control.stop_step
7827 && frame_id_eq (tp->control.step_frame_id,
7828 get_frame_id (get_current_frame ()))
7829 && (tp->control.step_start_function
7830 == find_pc_function (tp->suspend.stop_pc)))
7831 {
7832 /* Finished step, just print source line. */
7833 source_flag = SRC_LINE;
7834 }
7835 else
7836 {
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 }
7840 break;
7841 case PRINT_SRC_AND_LOC:
7842 /* Print location and source line. */
7843 source_flag = SRC_AND_LOC;
7844 break;
7845 case PRINT_SRC_ONLY:
7846 source_flag = SRC_LINE;
7847 break;
7848 case PRINT_NOTHING:
7849 /* Something bogus. */
7850 source_flag = SRC_LINE;
7851 do_frame_printing = 0;
7852 break;
7853 default:
7854 internal_error (__FILE__, __LINE__, _("Unknown value."));
7855 }
7856
7857 /* The behavior of this routine with respect to the source
7858 flag is:
7859 SRC_LINE: Print only source line
7860 LOCATION: Print only location
7861 SRC_AND_LOC: Print location and source line. */
7862 if (do_frame_printing)
7863 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7864 }
7865
7866 /* See infrun.h. */
7867
7868 void
7869 print_stop_event (struct ui_out *uiout)
7870 {
7871 struct target_waitstatus last;
7872 ptid_t last_ptid;
7873 struct thread_info *tp;
7874
7875 get_last_target_status (&last_ptid, &last);
7876
7877 {
7878 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7879
7880 print_stop_location (&last);
7881
7882 /* Display the auto-display expressions. */
7883 do_displays ();
7884 }
7885
7886 tp = inferior_thread ();
7887 if (tp->thread_fsm != NULL
7888 && thread_fsm_finished_p (tp->thread_fsm))
7889 {
7890 struct return_value_info *rv;
7891
7892 rv = thread_fsm_return_value (tp->thread_fsm);
7893 if (rv != NULL)
7894 print_return_value (uiout, rv);
7895 }
7896 }
7897
7898 /* See infrun.h. */
7899
7900 void
7901 maybe_remove_breakpoints (void)
7902 {
7903 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7904 {
7905 if (remove_breakpoints ())
7906 {
7907 target_terminal::ours_for_output ();
7908 printf_filtered (_("Cannot remove breakpoints because "
7909 "program is no longer writable.\nFurther "
7910 "execution is probably impossible.\n"));
7911 }
7912 }
7913 }
7914
7915 /* The execution context that just caused a normal stop. */
7916
7917 struct stop_context
7918 {
7919 stop_context ();
7920 ~stop_context ();
7921
7922 DISABLE_COPY_AND_ASSIGN (stop_context);
7923
7924 bool changed () const;
7925
7926 /* The stop ID. */
7927 ULONGEST stop_id;
7928
7929 /* The event PTID. */
7930
7931 ptid_t ptid;
7932
7933 /* If stopp for a thread event, this is the thread that caused the
7934 stop. */
7935 struct thread_info *thread;
7936
7937 /* The inferior that caused the stop. */
7938 int inf_num;
7939 };
7940
7941 /* Initializes a new stop context. If stopped for a thread event, this
7942 takes a strong reference to the thread. */
7943
7944 stop_context::stop_context ()
7945 {
7946 stop_id = get_stop_id ();
7947 ptid = inferior_ptid;
7948 inf_num = current_inferior ()->num;
7949
7950 if (inferior_ptid != null_ptid)
7951 {
7952 /* Take a strong reference so that the thread can't be deleted
7953 yet. */
7954 thread = inferior_thread ();
7955 thread->incref ();
7956 }
7957 else
7958 thread = NULL;
7959 }
7960
7961 /* Release a stop context previously created with save_stop_context.
7962 Releases the strong reference to the thread as well. */
7963
7964 stop_context::~stop_context ()
7965 {
7966 if (thread != NULL)
7967 thread->decref ();
7968 }
7969
7970 /* Return true if the current context no longer matches the saved stop
7971 context. */
7972
7973 bool
7974 stop_context::changed () const
7975 {
7976 if (ptid != inferior_ptid)
7977 return true;
7978 if (inf_num != current_inferior ()->num)
7979 return true;
7980 if (thread != NULL && thread->state != THREAD_STOPPED)
7981 return true;
7982 if (get_stop_id () != stop_id)
7983 return true;
7984 return false;
7985 }
7986
7987 /* See infrun.h. */
7988
7989 int
7990 normal_stop (void)
7991 {
7992 struct target_waitstatus last;
7993 ptid_t last_ptid;
7994
7995 get_last_target_status (&last_ptid, &last);
7996
7997 new_stop_id ();
7998
7999 /* If an exception is thrown from this point on, make sure to
8000 propagate GDB's knowledge of the executing state to the
8001 frontend/user running state. A QUIT is an easy exception to see
8002 here, so do this before any filtered output. */
8003
8004 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8005
8006 if (!non_stop)
8007 maybe_finish_thread_state.emplace (minus_one_ptid);
8008 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8009 || last.kind == TARGET_WAITKIND_EXITED)
8010 {
8011 /* On some targets, we may still have live threads in the
8012 inferior when we get a process exit event. E.g., for
8013 "checkpoint", when the current checkpoint/fork exits,
8014 linux-fork.c automatically switches to another fork from
8015 within target_mourn_inferior. */
8016 if (inferior_ptid != null_ptid)
8017 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8018 }
8019 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8020 maybe_finish_thread_state.emplace (inferior_ptid);
8021
8022 /* As we're presenting a stop, and potentially removing breakpoints,
8023 update the thread list so we can tell whether there are threads
8024 running on the target. With target remote, for example, we can
8025 only learn about new threads when we explicitly update the thread
8026 list. Do this before notifying the interpreters about signal
8027 stops, end of stepping ranges, etc., so that the "new thread"
8028 output is emitted before e.g., "Program received signal FOO",
8029 instead of after. */
8030 update_thread_list ();
8031
8032 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8033 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8034
8035 /* As with the notification of thread events, we want to delay
8036 notifying the user that we've switched thread context until
8037 the inferior actually stops.
8038
8039 There's no point in saying anything if the inferior has exited.
8040 Note that SIGNALLED here means "exited with a signal", not
8041 "received a signal".
8042
8043 Also skip saying anything in non-stop mode. In that mode, as we
8044 don't want GDB to switch threads behind the user's back, to avoid
8045 races where the user is typing a command to apply to thread x,
8046 but GDB switches to thread y before the user finishes entering
8047 the command, fetch_inferior_event installs a cleanup to restore
8048 the current thread back to the thread the user had selected right
8049 after this event is handled, so we're not really switching, only
8050 informing of a stop. */
8051 if (!non_stop
8052 && previous_inferior_ptid != inferior_ptid
8053 && target_has_execution
8054 && last.kind != TARGET_WAITKIND_SIGNALLED
8055 && last.kind != TARGET_WAITKIND_EXITED
8056 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8057 {
8058 SWITCH_THRU_ALL_UIS ()
8059 {
8060 target_terminal::ours_for_output ();
8061 printf_filtered (_("[Switching to %s]\n"),
8062 target_pid_to_str (inferior_ptid));
8063 annotate_thread_changed ();
8064 }
8065 previous_inferior_ptid = inferior_ptid;
8066 }
8067
8068 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8069 {
8070 SWITCH_THRU_ALL_UIS ()
8071 if (current_ui->prompt_state == PROMPT_BLOCKED)
8072 {
8073 target_terminal::ours_for_output ();
8074 printf_filtered (_("No unwaited-for children left.\n"));
8075 }
8076 }
8077
8078 /* Note: this depends on the update_thread_list call above. */
8079 maybe_remove_breakpoints ();
8080
8081 /* If an auto-display called a function and that got a signal,
8082 delete that auto-display to avoid an infinite recursion. */
8083
8084 if (stopped_by_random_signal)
8085 disable_current_display ();
8086
8087 SWITCH_THRU_ALL_UIS ()
8088 {
8089 async_enable_stdin ();
8090 }
8091
8092 /* Let the user/frontend see the threads as stopped. */
8093 maybe_finish_thread_state.reset ();
8094
8095 /* Select innermost stack frame - i.e., current frame is frame 0,
8096 and current location is based on that. Handle the case where the
8097 dummy call is returning after being stopped. E.g. the dummy call
8098 previously hit a breakpoint. (If the dummy call returns
8099 normally, we won't reach here.) Do this before the stop hook is
8100 run, so that it doesn't get to see the temporary dummy frame,
8101 which is not where we'll present the stop. */
8102 if (has_stack_frames ())
8103 {
8104 if (stop_stack_dummy == STOP_STACK_DUMMY)
8105 {
8106 /* Pop the empty frame that contains the stack dummy. This
8107 also restores inferior state prior to the call (struct
8108 infcall_suspend_state). */
8109 struct frame_info *frame = get_current_frame ();
8110
8111 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8112 frame_pop (frame);
8113 /* frame_pop calls reinit_frame_cache as the last thing it
8114 does which means there's now no selected frame. */
8115 }
8116
8117 select_frame (get_current_frame ());
8118
8119 /* Set the current source location. */
8120 set_current_sal_from_frame (get_current_frame ());
8121 }
8122
8123 /* Look up the hook_stop and run it (CLI internally handles problem
8124 of stop_command's pre-hook not existing). */
8125 if (stop_command != NULL)
8126 {
8127 stop_context saved_context;
8128
8129 TRY
8130 {
8131 execute_cmd_pre_hook (stop_command);
8132 }
8133 CATCH (ex, RETURN_MASK_ALL)
8134 {
8135 exception_fprintf (gdb_stderr, ex,
8136 "Error while running hook_stop:\n");
8137 }
8138 END_CATCH
8139
8140 /* If the stop hook resumes the target, then there's no point in
8141 trying to notify about the previous stop; its context is
8142 gone. Likewise if the command switches thread or inferior --
8143 the observers would print a stop for the wrong
8144 thread/inferior. */
8145 if (saved_context.changed ())
8146 return 1;
8147 }
8148
8149 /* Notify observers about the stop. This is where the interpreters
8150 print the stop event. */
8151 if (inferior_ptid != null_ptid)
8152 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8153 stop_print_frame);
8154 else
8155 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8156
8157 annotate_stopped ();
8158
8159 if (target_has_execution)
8160 {
8161 if (last.kind != TARGET_WAITKIND_SIGNALLED
8162 && last.kind != TARGET_WAITKIND_EXITED)
8163 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8164 Delete any breakpoint that is to be deleted at the next stop. */
8165 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8166 }
8167
8168 /* Try to get rid of automatically added inferiors that are no
8169 longer needed. Keeping those around slows down things linearly.
8170 Note that this never removes the current inferior. */
8171 prune_inferiors ();
8172
8173 return 0;
8174 }
8175 \f
8176 int
8177 signal_stop_state (int signo)
8178 {
8179 return signal_stop[signo];
8180 }
8181
8182 int
8183 signal_print_state (int signo)
8184 {
8185 return signal_print[signo];
8186 }
8187
8188 int
8189 signal_pass_state (int signo)
8190 {
8191 return signal_program[signo];
8192 }
8193
8194 static void
8195 signal_cache_update (int signo)
8196 {
8197 if (signo == -1)
8198 {
8199 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8200 signal_cache_update (signo);
8201
8202 return;
8203 }
8204
8205 signal_pass[signo] = (signal_stop[signo] == 0
8206 && signal_print[signo] == 0
8207 && signal_program[signo] == 1
8208 && signal_catch[signo] == 0);
8209 }
8210
8211 int
8212 signal_stop_update (int signo, int state)
8213 {
8214 int ret = signal_stop[signo];
8215
8216 signal_stop[signo] = state;
8217 signal_cache_update (signo);
8218 return ret;
8219 }
8220
8221 int
8222 signal_print_update (int signo, int state)
8223 {
8224 int ret = signal_print[signo];
8225
8226 signal_print[signo] = state;
8227 signal_cache_update (signo);
8228 return ret;
8229 }
8230
8231 int
8232 signal_pass_update (int signo, int state)
8233 {
8234 int ret = signal_program[signo];
8235
8236 signal_program[signo] = state;
8237 signal_cache_update (signo);
8238 return ret;
8239 }
8240
8241 /* Update the global 'signal_catch' from INFO and notify the
8242 target. */
8243
8244 void
8245 signal_catch_update (const unsigned int *info)
8246 {
8247 int i;
8248
8249 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8250 signal_catch[i] = info[i] > 0;
8251 signal_cache_update (-1);
8252 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8253 }
8254
8255 static void
8256 sig_print_header (void)
8257 {
8258 printf_filtered (_("Signal Stop\tPrint\tPass "
8259 "to program\tDescription\n"));
8260 }
8261
8262 static void
8263 sig_print_info (enum gdb_signal oursig)
8264 {
8265 const char *name = gdb_signal_to_name (oursig);
8266 int name_padding = 13 - strlen (name);
8267
8268 if (name_padding <= 0)
8269 name_padding = 0;
8270
8271 printf_filtered ("%s", name);
8272 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8273 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8274 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8275 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8276 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8277 }
8278
8279 /* Specify how various signals in the inferior should be handled. */
8280
8281 static void
8282 handle_command (const char *args, int from_tty)
8283 {
8284 int digits, wordlen;
8285 int sigfirst, siglast;
8286 enum gdb_signal oursig;
8287 int allsigs;
8288 int nsigs;
8289 unsigned char *sigs;
8290
8291 if (args == NULL)
8292 {
8293 error_no_arg (_("signal to handle"));
8294 }
8295
8296 /* Allocate and zero an array of flags for which signals to handle. */
8297
8298 nsigs = (int) GDB_SIGNAL_LAST;
8299 sigs = (unsigned char *) alloca (nsigs);
8300 memset (sigs, 0, nsigs);
8301
8302 /* Break the command line up into args. */
8303
8304 gdb_argv built_argv (args);
8305
8306 /* Walk through the args, looking for signal oursigs, signal names, and
8307 actions. Signal numbers and signal names may be interspersed with
8308 actions, with the actions being performed for all signals cumulatively
8309 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8310
8311 for (char *arg : built_argv)
8312 {
8313 wordlen = strlen (arg);
8314 for (digits = 0; isdigit (arg[digits]); digits++)
8315 {;
8316 }
8317 allsigs = 0;
8318 sigfirst = siglast = -1;
8319
8320 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8321 {
8322 /* Apply action to all signals except those used by the
8323 debugger. Silently skip those. */
8324 allsigs = 1;
8325 sigfirst = 0;
8326 siglast = nsigs - 1;
8327 }
8328 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8329 {
8330 SET_SIGS (nsigs, sigs, signal_stop);
8331 SET_SIGS (nsigs, sigs, signal_print);
8332 }
8333 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8334 {
8335 UNSET_SIGS (nsigs, sigs, signal_program);
8336 }
8337 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8338 {
8339 SET_SIGS (nsigs, sigs, signal_print);
8340 }
8341 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8342 {
8343 SET_SIGS (nsigs, sigs, signal_program);
8344 }
8345 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8346 {
8347 UNSET_SIGS (nsigs, sigs, signal_stop);
8348 }
8349 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8350 {
8351 SET_SIGS (nsigs, sigs, signal_program);
8352 }
8353 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8354 {
8355 UNSET_SIGS (nsigs, sigs, signal_print);
8356 UNSET_SIGS (nsigs, sigs, signal_stop);
8357 }
8358 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8359 {
8360 UNSET_SIGS (nsigs, sigs, signal_program);
8361 }
8362 else if (digits > 0)
8363 {
8364 /* It is numeric. The numeric signal refers to our own
8365 internal signal numbering from target.h, not to host/target
8366 signal number. This is a feature; users really should be
8367 using symbolic names anyway, and the common ones like
8368 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8369
8370 sigfirst = siglast = (int)
8371 gdb_signal_from_command (atoi (arg));
8372 if (arg[digits] == '-')
8373 {
8374 siglast = (int)
8375 gdb_signal_from_command (atoi (arg + digits + 1));
8376 }
8377 if (sigfirst > siglast)
8378 {
8379 /* Bet he didn't figure we'd think of this case... */
8380 std::swap (sigfirst, siglast);
8381 }
8382 }
8383 else
8384 {
8385 oursig = gdb_signal_from_name (arg);
8386 if (oursig != GDB_SIGNAL_UNKNOWN)
8387 {
8388 sigfirst = siglast = (int) oursig;
8389 }
8390 else
8391 {
8392 /* Not a number and not a recognized flag word => complain. */
8393 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8394 }
8395 }
8396
8397 /* If any signal numbers or symbol names were found, set flags for
8398 which signals to apply actions to. */
8399
8400 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8401 {
8402 switch ((enum gdb_signal) signum)
8403 {
8404 case GDB_SIGNAL_TRAP:
8405 case GDB_SIGNAL_INT:
8406 if (!allsigs && !sigs[signum])
8407 {
8408 if (query (_("%s is used by the debugger.\n\
8409 Are you sure you want to change it? "),
8410 gdb_signal_to_name ((enum gdb_signal) signum)))
8411 {
8412 sigs[signum] = 1;
8413 }
8414 else
8415 {
8416 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8417 gdb_flush (gdb_stdout);
8418 }
8419 }
8420 break;
8421 case GDB_SIGNAL_0:
8422 case GDB_SIGNAL_DEFAULT:
8423 case GDB_SIGNAL_UNKNOWN:
8424 /* Make sure that "all" doesn't print these. */
8425 break;
8426 default:
8427 sigs[signum] = 1;
8428 break;
8429 }
8430 }
8431 }
8432
8433 for (int signum = 0; signum < nsigs; signum++)
8434 if (sigs[signum])
8435 {
8436 signal_cache_update (-1);
8437 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8438 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8439
8440 if (from_tty)
8441 {
8442 /* Show the results. */
8443 sig_print_header ();
8444 for (; signum < nsigs; signum++)
8445 if (sigs[signum])
8446 sig_print_info ((enum gdb_signal) signum);
8447 }
8448
8449 break;
8450 }
8451 }
8452
8453 /* Complete the "handle" command. */
8454
8455 static void
8456 handle_completer (struct cmd_list_element *ignore,
8457 completion_tracker &tracker,
8458 const char *text, const char *word)
8459 {
8460 static const char * const keywords[] =
8461 {
8462 "all",
8463 "stop",
8464 "ignore",
8465 "print",
8466 "pass",
8467 "nostop",
8468 "noignore",
8469 "noprint",
8470 "nopass",
8471 NULL,
8472 };
8473
8474 signal_completer (ignore, tracker, text, word);
8475 complete_on_enum (tracker, keywords, word, word);
8476 }
8477
8478 enum gdb_signal
8479 gdb_signal_from_command (int num)
8480 {
8481 if (num >= 1 && num <= 15)
8482 return (enum gdb_signal) num;
8483 error (_("Only signals 1-15 are valid as numeric signals.\n\
8484 Use \"info signals\" for a list of symbolic signals."));
8485 }
8486
8487 /* Print current contents of the tables set by the handle command.
8488 It is possible we should just be printing signals actually used
8489 by the current target (but for things to work right when switching
8490 targets, all signals should be in the signal tables). */
8491
8492 static void
8493 info_signals_command (const char *signum_exp, int from_tty)
8494 {
8495 enum gdb_signal oursig;
8496
8497 sig_print_header ();
8498
8499 if (signum_exp)
8500 {
8501 /* First see if this is a symbol name. */
8502 oursig = gdb_signal_from_name (signum_exp);
8503 if (oursig == GDB_SIGNAL_UNKNOWN)
8504 {
8505 /* No, try numeric. */
8506 oursig =
8507 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8508 }
8509 sig_print_info (oursig);
8510 return;
8511 }
8512
8513 printf_filtered ("\n");
8514 /* These ugly casts brought to you by the native VAX compiler. */
8515 for (oursig = GDB_SIGNAL_FIRST;
8516 (int) oursig < (int) GDB_SIGNAL_LAST;
8517 oursig = (enum gdb_signal) ((int) oursig + 1))
8518 {
8519 QUIT;
8520
8521 if (oursig != GDB_SIGNAL_UNKNOWN
8522 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8523 sig_print_info (oursig);
8524 }
8525
8526 printf_filtered (_("\nUse the \"handle\" command "
8527 "to change these tables.\n"));
8528 }
8529
8530 /* The $_siginfo convenience variable is a bit special. We don't know
8531 for sure the type of the value until we actually have a chance to
8532 fetch the data. The type can change depending on gdbarch, so it is
8533 also dependent on which thread you have selected.
8534
8535 1. making $_siginfo be an internalvar that creates a new value on
8536 access.
8537
8538 2. making the value of $_siginfo be an lval_computed value. */
8539
8540 /* This function implements the lval_computed support for reading a
8541 $_siginfo value. */
8542
8543 static void
8544 siginfo_value_read (struct value *v)
8545 {
8546 LONGEST transferred;
8547
8548 /* If we can access registers, so can we access $_siginfo. Likewise
8549 vice versa. */
8550 validate_registers_access ();
8551
8552 transferred =
8553 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8554 NULL,
8555 value_contents_all_raw (v),
8556 value_offset (v),
8557 TYPE_LENGTH (value_type (v)));
8558
8559 if (transferred != TYPE_LENGTH (value_type (v)))
8560 error (_("Unable to read siginfo"));
8561 }
8562
8563 /* This function implements the lval_computed support for writing a
8564 $_siginfo value. */
8565
8566 static void
8567 siginfo_value_write (struct value *v, struct value *fromval)
8568 {
8569 LONGEST transferred;
8570
8571 /* If we can access registers, so can we access $_siginfo. Likewise
8572 vice versa. */
8573 validate_registers_access ();
8574
8575 transferred = target_write (current_top_target (),
8576 TARGET_OBJECT_SIGNAL_INFO,
8577 NULL,
8578 value_contents_all_raw (fromval),
8579 value_offset (v),
8580 TYPE_LENGTH (value_type (fromval)));
8581
8582 if (transferred != TYPE_LENGTH (value_type (fromval)))
8583 error (_("Unable to write siginfo"));
8584 }
8585
8586 static const struct lval_funcs siginfo_value_funcs =
8587 {
8588 siginfo_value_read,
8589 siginfo_value_write
8590 };
8591
8592 /* Return a new value with the correct type for the siginfo object of
8593 the current thread using architecture GDBARCH. Return a void value
8594 if there's no object available. */
8595
8596 static struct value *
8597 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8598 void *ignore)
8599 {
8600 if (target_has_stack
8601 && inferior_ptid != null_ptid
8602 && gdbarch_get_siginfo_type_p (gdbarch))
8603 {
8604 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8605
8606 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8607 }
8608
8609 return allocate_value (builtin_type (gdbarch)->builtin_void);
8610 }
8611
8612 \f
8613 /* infcall_suspend_state contains state about the program itself like its
8614 registers and any signal it received when it last stopped.
8615 This state must be restored regardless of how the inferior function call
8616 ends (either successfully, or after it hits a breakpoint or signal)
8617 if the program is to properly continue where it left off. */
8618
8619 class infcall_suspend_state
8620 {
8621 public:
8622 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8623 once the inferior function call has finished. */
8624 infcall_suspend_state (struct gdbarch *gdbarch,
8625 const struct thread_info *tp,
8626 struct regcache *regcache)
8627 : m_thread_suspend (tp->suspend),
8628 m_registers (new readonly_detached_regcache (*regcache))
8629 {
8630 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8631
8632 if (gdbarch_get_siginfo_type_p (gdbarch))
8633 {
8634 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8635 size_t len = TYPE_LENGTH (type);
8636
8637 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8638
8639 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8640 siginfo_data.get (), 0, len) != len)
8641 {
8642 /* Errors ignored. */
8643 siginfo_data.reset (nullptr);
8644 }
8645 }
8646
8647 if (siginfo_data)
8648 {
8649 m_siginfo_gdbarch = gdbarch;
8650 m_siginfo_data = std::move (siginfo_data);
8651 }
8652 }
8653
8654 /* Return a pointer to the stored register state. */
8655
8656 readonly_detached_regcache *registers () const
8657 {
8658 return m_registers.get ();
8659 }
8660
8661 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8662
8663 void restore (struct gdbarch *gdbarch,
8664 struct thread_info *tp,
8665 struct regcache *regcache) const
8666 {
8667 tp->suspend = m_thread_suspend;
8668
8669 if (m_siginfo_gdbarch == gdbarch)
8670 {
8671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8672
8673 /* Errors ignored. */
8674 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8675 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8676 }
8677
8678 /* The inferior can be gone if the user types "print exit(0)"
8679 (and perhaps other times). */
8680 if (target_has_execution)
8681 /* NB: The register write goes through to the target. */
8682 regcache->restore (registers ());
8683 }
8684
8685 private:
8686 /* How the current thread stopped before the inferior function call was
8687 executed. */
8688 struct thread_suspend_state m_thread_suspend;
8689
8690 /* The registers before the inferior function call was executed. */
8691 std::unique_ptr<readonly_detached_regcache> m_registers;
8692
8693 /* Format of SIGINFO_DATA or NULL if it is not present. */
8694 struct gdbarch *m_siginfo_gdbarch = nullptr;
8695
8696 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8697 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8698 content would be invalid. */
8699 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8700 };
8701
8702 infcall_suspend_state_up
8703 save_infcall_suspend_state ()
8704 {
8705 struct thread_info *tp = inferior_thread ();
8706 struct regcache *regcache = get_current_regcache ();
8707 struct gdbarch *gdbarch = regcache->arch ();
8708
8709 infcall_suspend_state_up inf_state
8710 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8711
8712 /* Having saved the current state, adjust the thread state, discarding
8713 any stop signal information. The stop signal is not useful when
8714 starting an inferior function call, and run_inferior_call will not use
8715 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8716 tp->suspend.stop_signal = GDB_SIGNAL_0;
8717
8718 return inf_state;
8719 }
8720
8721 /* Restore inferior session state to INF_STATE. */
8722
8723 void
8724 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8725 {
8726 struct thread_info *tp = inferior_thread ();
8727 struct regcache *regcache = get_current_regcache ();
8728 struct gdbarch *gdbarch = regcache->arch ();
8729
8730 inf_state->restore (gdbarch, tp, regcache);
8731 discard_infcall_suspend_state (inf_state);
8732 }
8733
8734 void
8735 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8736 {
8737 delete inf_state;
8738 }
8739
8740 readonly_detached_regcache *
8741 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8742 {
8743 return inf_state->registers ();
8744 }
8745
8746 /* infcall_control_state contains state regarding gdb's control of the
8747 inferior itself like stepping control. It also contains session state like
8748 the user's currently selected frame. */
8749
8750 struct infcall_control_state
8751 {
8752 struct thread_control_state thread_control;
8753 struct inferior_control_state inferior_control;
8754
8755 /* Other fields: */
8756 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8757 int stopped_by_random_signal = 0;
8758
8759 /* ID if the selected frame when the inferior function call was made. */
8760 struct frame_id selected_frame_id {};
8761 };
8762
8763 /* Save all of the information associated with the inferior<==>gdb
8764 connection. */
8765
8766 infcall_control_state_up
8767 save_infcall_control_state ()
8768 {
8769 infcall_control_state_up inf_status (new struct infcall_control_state);
8770 struct thread_info *tp = inferior_thread ();
8771 struct inferior *inf = current_inferior ();
8772
8773 inf_status->thread_control = tp->control;
8774 inf_status->inferior_control = inf->control;
8775
8776 tp->control.step_resume_breakpoint = NULL;
8777 tp->control.exception_resume_breakpoint = NULL;
8778
8779 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8780 chain. If caller's caller is walking the chain, they'll be happier if we
8781 hand them back the original chain when restore_infcall_control_state is
8782 called. */
8783 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8784
8785 /* Other fields: */
8786 inf_status->stop_stack_dummy = stop_stack_dummy;
8787 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8788
8789 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8790
8791 return inf_status;
8792 }
8793
8794 static void
8795 restore_selected_frame (const frame_id &fid)
8796 {
8797 frame_info *frame = frame_find_by_id (fid);
8798
8799 /* If inf_status->selected_frame_id is NULL, there was no previously
8800 selected frame. */
8801 if (frame == NULL)
8802 {
8803 warning (_("Unable to restore previously selected frame."));
8804 return;
8805 }
8806
8807 select_frame (frame);
8808 }
8809
8810 /* Restore inferior session state to INF_STATUS. */
8811
8812 void
8813 restore_infcall_control_state (struct infcall_control_state *inf_status)
8814 {
8815 struct thread_info *tp = inferior_thread ();
8816 struct inferior *inf = current_inferior ();
8817
8818 if (tp->control.step_resume_breakpoint)
8819 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8820
8821 if (tp->control.exception_resume_breakpoint)
8822 tp->control.exception_resume_breakpoint->disposition
8823 = disp_del_at_next_stop;
8824
8825 /* Handle the bpstat_copy of the chain. */
8826 bpstat_clear (&tp->control.stop_bpstat);
8827
8828 tp->control = inf_status->thread_control;
8829 inf->control = inf_status->inferior_control;
8830
8831 /* Other fields: */
8832 stop_stack_dummy = inf_status->stop_stack_dummy;
8833 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8834
8835 if (target_has_stack)
8836 {
8837 /* The point of the try/catch is that if the stack is clobbered,
8838 walking the stack might encounter a garbage pointer and
8839 error() trying to dereference it. */
8840 TRY
8841 {
8842 restore_selected_frame (inf_status->selected_frame_id);
8843 }
8844 CATCH (ex, RETURN_MASK_ERROR)
8845 {
8846 exception_fprintf (gdb_stderr, ex,
8847 "Unable to restore previously selected frame:\n");
8848 /* Error in restoring the selected frame. Select the
8849 innermost frame. */
8850 select_frame (get_current_frame ());
8851 }
8852 END_CATCH
8853 }
8854
8855 delete inf_status;
8856 }
8857
8858 void
8859 discard_infcall_control_state (struct infcall_control_state *inf_status)
8860 {
8861 if (inf_status->thread_control.step_resume_breakpoint)
8862 inf_status->thread_control.step_resume_breakpoint->disposition
8863 = disp_del_at_next_stop;
8864
8865 if (inf_status->thread_control.exception_resume_breakpoint)
8866 inf_status->thread_control.exception_resume_breakpoint->disposition
8867 = disp_del_at_next_stop;
8868
8869 /* See save_infcall_control_state for info on stop_bpstat. */
8870 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8871
8872 delete inf_status;
8873 }
8874 \f
8875 /* See infrun.h. */
8876
8877 void
8878 clear_exit_convenience_vars (void)
8879 {
8880 clear_internalvar (lookup_internalvar ("_exitsignal"));
8881 clear_internalvar (lookup_internalvar ("_exitcode"));
8882 }
8883 \f
8884
8885 /* User interface for reverse debugging:
8886 Set exec-direction / show exec-direction commands
8887 (returns error unless target implements to_set_exec_direction method). */
8888
8889 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8890 static const char exec_forward[] = "forward";
8891 static const char exec_reverse[] = "reverse";
8892 static const char *exec_direction = exec_forward;
8893 static const char *const exec_direction_names[] = {
8894 exec_forward,
8895 exec_reverse,
8896 NULL
8897 };
8898
8899 static void
8900 set_exec_direction_func (const char *args, int from_tty,
8901 struct cmd_list_element *cmd)
8902 {
8903 if (target_can_execute_reverse)
8904 {
8905 if (!strcmp (exec_direction, exec_forward))
8906 execution_direction = EXEC_FORWARD;
8907 else if (!strcmp (exec_direction, exec_reverse))
8908 execution_direction = EXEC_REVERSE;
8909 }
8910 else
8911 {
8912 exec_direction = exec_forward;
8913 error (_("Target does not support this operation."));
8914 }
8915 }
8916
8917 static void
8918 show_exec_direction_func (struct ui_file *out, int from_tty,
8919 struct cmd_list_element *cmd, const char *value)
8920 {
8921 switch (execution_direction) {
8922 case EXEC_FORWARD:
8923 fprintf_filtered (out, _("Forward.\n"));
8924 break;
8925 case EXEC_REVERSE:
8926 fprintf_filtered (out, _("Reverse.\n"));
8927 break;
8928 default:
8929 internal_error (__FILE__, __LINE__,
8930 _("bogus execution_direction value: %d"),
8931 (int) execution_direction);
8932 }
8933 }
8934
8935 static void
8936 show_schedule_multiple (struct ui_file *file, int from_tty,
8937 struct cmd_list_element *c, const char *value)
8938 {
8939 fprintf_filtered (file, _("Resuming the execution of threads "
8940 "of all processes is %s.\n"), value);
8941 }
8942
8943 /* Implementation of `siginfo' variable. */
8944
8945 static const struct internalvar_funcs siginfo_funcs =
8946 {
8947 siginfo_make_value,
8948 NULL,
8949 NULL
8950 };
8951
8952 /* Callback for infrun's target events source. This is marked when a
8953 thread has a pending status to process. */
8954
8955 static void
8956 infrun_async_inferior_event_handler (gdb_client_data data)
8957 {
8958 inferior_event_handler (INF_REG_EVENT, NULL);
8959 }
8960
8961 void
8962 _initialize_infrun (void)
8963 {
8964 int i;
8965 int numsigs;
8966 struct cmd_list_element *c;
8967
8968 /* Register extra event sources in the event loop. */
8969 infrun_async_inferior_event_token
8970 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8971
8972 add_info ("signals", info_signals_command, _("\
8973 What debugger does when program gets various signals.\n\
8974 Specify a signal as argument to print info on that signal only."));
8975 add_info_alias ("handle", "signals", 0);
8976
8977 c = add_com ("handle", class_run, handle_command, _("\
8978 Specify how to handle signals.\n\
8979 Usage: handle SIGNAL [ACTIONS]\n\
8980 Args are signals and actions to apply to those signals.\n\
8981 If no actions are specified, the current settings for the specified signals\n\
8982 will be displayed instead.\n\
8983 \n\
8984 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8985 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8986 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8987 The special arg \"all\" is recognized to mean all signals except those\n\
8988 used by the debugger, typically SIGTRAP and SIGINT.\n\
8989 \n\
8990 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8991 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8992 Stop means reenter debugger if this signal happens (implies print).\n\
8993 Print means print a message if this signal happens.\n\
8994 Pass means let program see this signal; otherwise program doesn't know.\n\
8995 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8996 Pass and Stop may be combined.\n\
8997 \n\
8998 Multiple signals may be specified. Signal numbers and signal names\n\
8999 may be interspersed with actions, with the actions being performed for\n\
9000 all signals cumulatively specified."));
9001 set_cmd_completer (c, handle_completer);
9002
9003 if (!dbx_commands)
9004 stop_command = add_cmd ("stop", class_obscure,
9005 not_just_help_class_command, _("\
9006 There is no `stop' command, but you can set a hook on `stop'.\n\
9007 This allows you to set a list of commands to be run each time execution\n\
9008 of the program stops."), &cmdlist);
9009
9010 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9011 Set inferior debugging."), _("\
9012 Show inferior debugging."), _("\
9013 When non-zero, inferior specific debugging is enabled."),
9014 NULL,
9015 show_debug_infrun,
9016 &setdebuglist, &showdebuglist);
9017
9018 add_setshow_boolean_cmd ("displaced", class_maintenance,
9019 &debug_displaced, _("\
9020 Set displaced stepping debugging."), _("\
9021 Show displaced stepping debugging."), _("\
9022 When non-zero, displaced stepping specific debugging is enabled."),
9023 NULL,
9024 show_debug_displaced,
9025 &setdebuglist, &showdebuglist);
9026
9027 add_setshow_boolean_cmd ("non-stop", no_class,
9028 &non_stop_1, _("\
9029 Set whether gdb controls the inferior in non-stop mode."), _("\
9030 Show whether gdb controls the inferior in non-stop mode."), _("\
9031 When debugging a multi-threaded program and this setting is\n\
9032 off (the default, also called all-stop mode), when one thread stops\n\
9033 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9034 all other threads in the program while you interact with the thread of\n\
9035 interest. When you continue or step a thread, you can allow the other\n\
9036 threads to run, or have them remain stopped, but while you inspect any\n\
9037 thread's state, all threads stop.\n\
9038 \n\
9039 In non-stop mode, when one thread stops, other threads can continue\n\
9040 to run freely. You'll be able to step each thread independently,\n\
9041 leave it stopped or free to run as needed."),
9042 set_non_stop,
9043 show_non_stop,
9044 &setlist,
9045 &showlist);
9046
9047 numsigs = (int) GDB_SIGNAL_LAST;
9048 signal_stop = XNEWVEC (unsigned char, numsigs);
9049 signal_print = XNEWVEC (unsigned char, numsigs);
9050 signal_program = XNEWVEC (unsigned char, numsigs);
9051 signal_catch = XNEWVEC (unsigned char, numsigs);
9052 signal_pass = XNEWVEC (unsigned char, numsigs);
9053 for (i = 0; i < numsigs; i++)
9054 {
9055 signal_stop[i] = 1;
9056 signal_print[i] = 1;
9057 signal_program[i] = 1;
9058 signal_catch[i] = 0;
9059 }
9060
9061 /* Signals caused by debugger's own actions should not be given to
9062 the program afterwards.
9063
9064 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9065 explicitly specifies that it should be delivered to the target
9066 program. Typically, that would occur when a user is debugging a
9067 target monitor on a simulator: the target monitor sets a
9068 breakpoint; the simulator encounters this breakpoint and halts
9069 the simulation handing control to GDB; GDB, noting that the stop
9070 address doesn't map to any known breakpoint, returns control back
9071 to the simulator; the simulator then delivers the hardware
9072 equivalent of a GDB_SIGNAL_TRAP to the program being
9073 debugged. */
9074 signal_program[GDB_SIGNAL_TRAP] = 0;
9075 signal_program[GDB_SIGNAL_INT] = 0;
9076
9077 /* Signals that are not errors should not normally enter the debugger. */
9078 signal_stop[GDB_SIGNAL_ALRM] = 0;
9079 signal_print[GDB_SIGNAL_ALRM] = 0;
9080 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9081 signal_print[GDB_SIGNAL_VTALRM] = 0;
9082 signal_stop[GDB_SIGNAL_PROF] = 0;
9083 signal_print[GDB_SIGNAL_PROF] = 0;
9084 signal_stop[GDB_SIGNAL_CHLD] = 0;
9085 signal_print[GDB_SIGNAL_CHLD] = 0;
9086 signal_stop[GDB_SIGNAL_IO] = 0;
9087 signal_print[GDB_SIGNAL_IO] = 0;
9088 signal_stop[GDB_SIGNAL_POLL] = 0;
9089 signal_print[GDB_SIGNAL_POLL] = 0;
9090 signal_stop[GDB_SIGNAL_URG] = 0;
9091 signal_print[GDB_SIGNAL_URG] = 0;
9092 signal_stop[GDB_SIGNAL_WINCH] = 0;
9093 signal_print[GDB_SIGNAL_WINCH] = 0;
9094 signal_stop[GDB_SIGNAL_PRIO] = 0;
9095 signal_print[GDB_SIGNAL_PRIO] = 0;
9096
9097 /* These signals are used internally by user-level thread
9098 implementations. (See signal(5) on Solaris.) Like the above
9099 signals, a healthy program receives and handles them as part of
9100 its normal operation. */
9101 signal_stop[GDB_SIGNAL_LWP] = 0;
9102 signal_print[GDB_SIGNAL_LWP] = 0;
9103 signal_stop[GDB_SIGNAL_WAITING] = 0;
9104 signal_print[GDB_SIGNAL_WAITING] = 0;
9105 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9106 signal_print[GDB_SIGNAL_CANCEL] = 0;
9107 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9108 signal_print[GDB_SIGNAL_LIBRT] = 0;
9109
9110 /* Update cached state. */
9111 signal_cache_update (-1);
9112
9113 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9114 &stop_on_solib_events, _("\
9115 Set stopping for shared library events."), _("\
9116 Show stopping for shared library events."), _("\
9117 If nonzero, gdb will give control to the user when the dynamic linker\n\
9118 notifies gdb of shared library events. The most common event of interest\n\
9119 to the user would be loading/unloading of a new library."),
9120 set_stop_on_solib_events,
9121 show_stop_on_solib_events,
9122 &setlist, &showlist);
9123
9124 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9125 follow_fork_mode_kind_names,
9126 &follow_fork_mode_string, _("\
9127 Set debugger response to a program call of fork or vfork."), _("\
9128 Show debugger response to a program call of fork or vfork."), _("\
9129 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9130 parent - the original process is debugged after a fork\n\
9131 child - the new process is debugged after a fork\n\
9132 The unfollowed process will continue to run.\n\
9133 By default, the debugger will follow the parent process."),
9134 NULL,
9135 show_follow_fork_mode_string,
9136 &setlist, &showlist);
9137
9138 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9139 follow_exec_mode_names,
9140 &follow_exec_mode_string, _("\
9141 Set debugger response to a program call of exec."), _("\
9142 Show debugger response to a program call of exec."), _("\
9143 An exec call replaces the program image of a process.\n\
9144 \n\
9145 follow-exec-mode can be:\n\
9146 \n\
9147 new - the debugger creates a new inferior and rebinds the process\n\
9148 to this new inferior. The program the process was running before\n\
9149 the exec call can be restarted afterwards by restarting the original\n\
9150 inferior.\n\
9151 \n\
9152 same - the debugger keeps the process bound to the same inferior.\n\
9153 The new executable image replaces the previous executable loaded in\n\
9154 the inferior. Restarting the inferior after the exec call restarts\n\
9155 the executable the process was running after the exec call.\n\
9156 \n\
9157 By default, the debugger will use the same inferior."),
9158 NULL,
9159 show_follow_exec_mode_string,
9160 &setlist, &showlist);
9161
9162 add_setshow_enum_cmd ("scheduler-locking", class_run,
9163 scheduler_enums, &scheduler_mode, _("\
9164 Set mode for locking scheduler during execution."), _("\
9165 Show mode for locking scheduler during execution."), _("\
9166 off == no locking (threads may preempt at any time)\n\
9167 on == full locking (no thread except the current thread may run)\n\
9168 This applies to both normal execution and replay mode.\n\
9169 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9170 In this mode, other threads may run during other commands.\n\
9171 This applies to both normal execution and replay mode.\n\
9172 replay == scheduler locked in replay mode and unlocked during normal execution."),
9173 set_schedlock_func, /* traps on target vector */
9174 show_scheduler_mode,
9175 &setlist, &showlist);
9176
9177 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9178 Set mode for resuming threads of all processes."), _("\
9179 Show mode for resuming threads of all processes."), _("\
9180 When on, execution commands (such as 'continue' or 'next') resume all\n\
9181 threads of all processes. When off (which is the default), execution\n\
9182 commands only resume the threads of the current process. The set of\n\
9183 threads that are resumed is further refined by the scheduler-locking\n\
9184 mode (see help set scheduler-locking)."),
9185 NULL,
9186 show_schedule_multiple,
9187 &setlist, &showlist);
9188
9189 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9190 Set mode of the step operation."), _("\
9191 Show mode of the step operation."), _("\
9192 When set, doing a step over a function without debug line information\n\
9193 will stop at the first instruction of that function. Otherwise, the\n\
9194 function is skipped and the step command stops at a different source line."),
9195 NULL,
9196 show_step_stop_if_no_debug,
9197 &setlist, &showlist);
9198
9199 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9200 &can_use_displaced_stepping, _("\
9201 Set debugger's willingness to use displaced stepping."), _("\
9202 Show debugger's willingness to use displaced stepping."), _("\
9203 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9204 supported by the target architecture. If off, gdb will not use displaced\n\
9205 stepping to step over breakpoints, even if such is supported by the target\n\
9206 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9207 if the target architecture supports it and non-stop mode is active, but will not\n\
9208 use it in all-stop mode (see help set non-stop)."),
9209 NULL,
9210 show_can_use_displaced_stepping,
9211 &setlist, &showlist);
9212
9213 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9214 &exec_direction, _("Set direction of execution.\n\
9215 Options are 'forward' or 'reverse'."),
9216 _("Show direction of execution (forward/reverse)."),
9217 _("Tells gdb whether to execute forward or backward."),
9218 set_exec_direction_func, show_exec_direction_func,
9219 &setlist, &showlist);
9220
9221 /* Set/show detach-on-fork: user-settable mode. */
9222
9223 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9224 Set whether gdb will detach the child of a fork."), _("\
9225 Show whether gdb will detach the child of a fork."), _("\
9226 Tells gdb whether to detach the child of a fork."),
9227 NULL, NULL, &setlist, &showlist);
9228
9229 /* Set/show disable address space randomization mode. */
9230
9231 add_setshow_boolean_cmd ("disable-randomization", class_support,
9232 &disable_randomization, _("\
9233 Set disabling of debuggee's virtual address space randomization."), _("\
9234 Show disabling of debuggee's virtual address space randomization."), _("\
9235 When this mode is on (which is the default), randomization of the virtual\n\
9236 address space is disabled. Standalone programs run with the randomization\n\
9237 enabled by default on some platforms."),
9238 &set_disable_randomization,
9239 &show_disable_randomization,
9240 &setlist, &showlist);
9241
9242 /* ptid initializations */
9243 inferior_ptid = null_ptid;
9244 target_last_wait_ptid = minus_one_ptid;
9245
9246 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9247 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9248 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9249 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9250
9251 /* Explicitly create without lookup, since that tries to create a
9252 value with a void typed value, and when we get here, gdbarch
9253 isn't initialized yet. At this point, we're quite sure there
9254 isn't another convenience variable of the same name. */
9255 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9256
9257 add_setshow_boolean_cmd ("observer", no_class,
9258 &observer_mode_1, _("\
9259 Set whether gdb controls the inferior in observer mode."), _("\
9260 Show whether gdb controls the inferior in observer mode."), _("\
9261 In observer mode, GDB can get data from the inferior, but not\n\
9262 affect its execution. Registers and memory may not be changed,\n\
9263 breakpoints may not be set, and the program cannot be interrupted\n\
9264 or signalled."),
9265 set_observer_mode,
9266 show_observer_mode,
9267 &setlist,
9268 &showlist);
9269 }
This page took 0.245712 seconds and 5 git commands to generate.