2008-05-01 Daniel Jacobowitz <dan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 static int debug_infrun = 0;
107 static void
108 show_debug_infrun (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
112 }
113
114 /* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
152
153 /* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161 #ifndef SOLIB_IN_DYNAMIC_LINKER
162 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163 #endif
164
165
166 /* Convert the #defines into values. This is temporary until wfi control
167 flow is completely sorted out. */
168
169 #ifndef CANNOT_STEP_HW_WATCHPOINTS
170 #define CANNOT_STEP_HW_WATCHPOINTS 0
171 #else
172 #undef CANNOT_STEP_HW_WATCHPOINTS
173 #define CANNOT_STEP_HW_WATCHPOINTS 1
174 #endif
175
176 /* Tables of how to react to signals; the user sets them. */
177
178 static unsigned char *signal_stop;
179 static unsigned char *signal_print;
180 static unsigned char *signal_program;
181
182 #define SET_SIGS(nsigs,sigs,flags) \
183 do { \
184 int signum = (nsigs); \
185 while (signum-- > 0) \
186 if ((sigs)[signum]) \
187 (flags)[signum] = 1; \
188 } while (0)
189
190 #define UNSET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 0; \
196 } while (0)
197
198 /* Value to pass to target_resume() to cause all threads to resume */
199
200 #define RESUME_ALL (pid_to_ptid (-1))
201
202 /* Command list pointer for the "stop" placeholder. */
203
204 static struct cmd_list_element *stop_command;
205
206 /* Function inferior was in as of last step command. */
207
208 static struct symbol *step_start_function;
209
210 /* Nonzero if we are presently stepping over a breakpoint.
211
212 If we hit a breakpoint or watchpoint, and then continue,
213 we need to single step the current thread with breakpoints
214 disabled, to avoid hitting the same breakpoint or
215 watchpoint again. And we should step just a single
216 thread and keep other threads stopped, so that
217 other threads don't miss breakpoints while they are removed.
218
219 So, this variable simultaneously means that we need to single
220 step the current thread, keep other threads stopped, and that
221 breakpoints should be removed while we step.
222
223 This variable is set either:
224 - in proceed, when we resume inferior on user's explicit request
225 - in keep_going, if handle_inferior_event decides we need to
226 step over breakpoint.
227
228 The variable is cleared in clear_proceed_status, called every
229 time before we call proceed. The proceed calls wait_for_inferior,
230 which calls handle_inferior_event in a loop, and until
231 wait_for_inferior exits, this variable is changed only by keep_going. */
232
233 static int stepping_over_breakpoint;
234
235 /* Nonzero if we want to give control to the user when we're notified
236 of shared library events by the dynamic linker. */
237 static int stop_on_solib_events;
238 static void
239 show_stop_on_solib_events (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 value);
244 }
245
246 /* Nonzero means expecting a trace trap
247 and should stop the inferior and return silently when it happens. */
248
249 int stop_after_trap;
250
251 /* Nonzero means expecting a trap and caller will handle it themselves.
252 It is used after attach, due to attaching to a process;
253 when running in the shell before the child program has been exec'd;
254 and when running some kinds of remote stuff (FIXME?). */
255
256 enum stop_kind stop_soon;
257
258 /* Nonzero if proceed is being used for a "finish" command or a similar
259 situation when stop_registers should be saved. */
260
261 int proceed_to_finish;
262
263 /* Save register contents here when about to pop a stack dummy frame,
264 if-and-only-if proceed_to_finish is set.
265 Thus this contains the return value from the called function (assuming
266 values are returned in a register). */
267
268 struct regcache *stop_registers;
269
270 /* Nonzero after stop if current stack frame should be printed. */
271
272 static int stop_print_frame;
273
274 static struct breakpoint *step_resume_breakpoint = NULL;
275
276 /* This is a cached copy of the pid/waitstatus of the last event
277 returned by target_wait()/deprecated_target_wait_hook(). This
278 information is returned by get_last_target_status(). */
279 static ptid_t target_last_wait_ptid;
280 static struct target_waitstatus target_last_waitstatus;
281
282 /* This is used to remember when a fork, vfork or exec event
283 was caught by a catchpoint, and thus the event is to be
284 followed at the next resume of the inferior, and not
285 immediately. */
286 static struct
287 {
288 enum target_waitkind kind;
289 struct
290 {
291 int parent_pid;
292 int child_pid;
293 }
294 fork_event;
295 char *execd_pathname;
296 }
297 pending_follow;
298
299 static const char follow_fork_mode_child[] = "child";
300 static const char follow_fork_mode_parent[] = "parent";
301
302 static const char *follow_fork_mode_kind_names[] = {
303 follow_fork_mode_child,
304 follow_fork_mode_parent,
305 NULL
306 };
307
308 static const char *follow_fork_mode_string = follow_fork_mode_parent;
309 static void
310 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
311 struct cmd_list_element *c, const char *value)
312 {
313 fprintf_filtered (file, _("\
314 Debugger response to a program call of fork or vfork is \"%s\".\n"),
315 value);
316 }
317 \f
318
319 static int
320 follow_fork (void)
321 {
322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
323
324 return target_follow_fork (follow_child);
325 }
326
327 void
328 follow_inferior_reset_breakpoints (void)
329 {
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
351 }
352
353 /* EXECD_PATHNAME is assumed to be non-NULL. */
354
355 static void
356 follow_exec (int pid, char *execd_pathname)
357 {
358 int saved_pid = pid;
359 struct target_ops *tgt;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 gdb_flush (gdb_stdout);
396 generic_mourn_inferior ();
397 /* Because mourn_inferior resets inferior_ptid. */
398 inferior_ptid = pid_to_ptid (saved_pid);
399
400 if (gdb_sysroot && *gdb_sysroot)
401 {
402 char *name = alloca (strlen (gdb_sysroot)
403 + strlen (execd_pathname)
404 + 1);
405 strcpy (name, gdb_sysroot);
406 strcat (name, execd_pathname);
407 execd_pathname = name;
408 }
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
414 symbol_file_add_main (execd_pathname, 0);
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
419 no_shared_libraries (NULL, 0);
420 #ifdef SOLIB_CREATE_INFERIOR_HOOK
421 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
422 #else
423 solib_create_inferior_hook ();
424 #endif
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
435 }
436
437 /* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440 static int singlestep_breakpoints_inserted_p = 0;
441
442 /* The thread we inserted single-step breakpoints for. */
443 static ptid_t singlestep_ptid;
444
445 /* PC when we started this single-step. */
446 static CORE_ADDR singlestep_pc;
447
448 /* If another thread hit the singlestep breakpoint, we save the original
449 thread here so that we can resume single-stepping it later. */
450 static ptid_t saved_singlestep_ptid;
451 static int stepping_past_singlestep_breakpoint;
452
453 /* If not equal to null_ptid, this means that after stepping over breakpoint
454 is finished, we need to switch to deferred_step_ptid, and step it.
455
456 The use case is when one thread has hit a breakpoint, and then the user
457 has switched to another thread and issued 'step'. We need to step over
458 breakpoint in the thread which hit the breakpoint, but then continue
459 stepping the thread user has selected. */
460 static ptid_t deferred_step_ptid;
461 \f
462
463 /* Things to clean up if we QUIT out of resume (). */
464 static void
465 resume_cleanups (void *ignore)
466 {
467 normal_stop ();
468 }
469
470 static const char schedlock_off[] = "off";
471 static const char schedlock_on[] = "on";
472 static const char schedlock_step[] = "step";
473 static const char *scheduler_enums[] = {
474 schedlock_off,
475 schedlock_on,
476 schedlock_step,
477 NULL
478 };
479 static const char *scheduler_mode = schedlock_off;
480 static void
481 show_scheduler_mode (struct ui_file *file, int from_tty,
482 struct cmd_list_element *c, const char *value)
483 {
484 fprintf_filtered (file, _("\
485 Mode for locking scheduler during execution is \"%s\".\n"),
486 value);
487 }
488
489 static void
490 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
491 {
492 if (!target_can_lock_scheduler)
493 {
494 scheduler_mode = schedlock_off;
495 error (_("Target '%s' cannot support this command."), target_shortname);
496 }
497 }
498
499
500 /* Resume the inferior, but allow a QUIT. This is useful if the user
501 wants to interrupt some lengthy single-stepping operation
502 (for child processes, the SIGINT goes to the inferior, and so
503 we get a SIGINT random_signal, but for remote debugging and perhaps
504 other targets, that's not true).
505
506 STEP nonzero if we should step (zero to continue instead).
507 SIG is the signal to give the inferior (zero for none). */
508 void
509 resume (int step, enum target_signal sig)
510 {
511 int should_resume = 1;
512 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
513 QUIT;
514
515 if (debug_infrun)
516 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
517 step, sig);
518
519 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
520
521
522 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
523 over an instruction that causes a page fault without triggering
524 a hardware watchpoint. The kernel properly notices that it shouldn't
525 stop, because the hardware watchpoint is not triggered, but it forgets
526 the step request and continues the program normally.
527 Work around the problem by removing hardware watchpoints if a step is
528 requested, GDB will check for a hardware watchpoint trigger after the
529 step anyway. */
530 if (CANNOT_STEP_HW_WATCHPOINTS && step)
531 remove_hw_watchpoints ();
532
533
534 /* Normally, by the time we reach `resume', the breakpoints are either
535 removed or inserted, as appropriate. The exception is if we're sitting
536 at a permanent breakpoint; we need to step over it, but permanent
537 breakpoints can't be removed. So we have to test for it here. */
538 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
539 {
540 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
541 gdbarch_skip_permanent_breakpoint (current_gdbarch,
542 get_current_regcache ());
543 else
544 error (_("\
545 The program is stopped at a permanent breakpoint, but GDB does not know\n\
546 how to step past a permanent breakpoint on this architecture. Try using\n\
547 a command like `return' or `jump' to continue execution."));
548 }
549
550 if (step && gdbarch_software_single_step_p (current_gdbarch))
551 {
552 /* Do it the hard way, w/temp breakpoints */
553 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
554 {
555 /* ...and don't ask hardware to do it. */
556 step = 0;
557 /* and do not pull these breakpoints until after a `wait' in
558 `wait_for_inferior' */
559 singlestep_breakpoints_inserted_p = 1;
560 singlestep_ptid = inferior_ptid;
561 singlestep_pc = read_pc ();
562 }
563 }
564
565 /* If there were any forks/vforks/execs that were caught and are
566 now to be followed, then do so. */
567 switch (pending_follow.kind)
568 {
569 case TARGET_WAITKIND_FORKED:
570 case TARGET_WAITKIND_VFORKED:
571 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
572 if (follow_fork ())
573 should_resume = 0;
574 break;
575
576 case TARGET_WAITKIND_EXECD:
577 /* follow_exec is called as soon as the exec event is seen. */
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 break;
580
581 default:
582 break;
583 }
584
585 /* Install inferior's terminal modes. */
586 target_terminal_inferior ();
587
588 if (should_resume)
589 {
590 ptid_t resume_ptid;
591
592 resume_ptid = RESUME_ALL; /* Default */
593
594 /* If STEP is set, it's a request to use hardware stepping
595 facilities. But in that case, we should never
596 use singlestep breakpoint. */
597 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
598
599 if (singlestep_breakpoints_inserted_p
600 && stepping_past_singlestep_breakpoint)
601 {
602 /* The situation here is as follows. In thread T1 we wanted to
603 single-step. Lacking hardware single-stepping we've
604 set breakpoint at the PC of the next instruction -- call it
605 P. After resuming, we've hit that breakpoint in thread T2.
606 Now we've removed original breakpoint, inserted breakpoint
607 at P+1, and try to step to advance T2 past breakpoint.
608 We need to step only T2, as if T1 is allowed to freely run,
609 it can run past P, and if other threads are allowed to run,
610 they can hit breakpoint at P+1, and nested hits of single-step
611 breakpoints is not something we'd want -- that's complicated
612 to support, and has no value. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if ((step || singlestep_breakpoints_inserted_p)
617 && stepping_over_breakpoint)
618 {
619 /* We're allowing a thread to run past a breakpoint it has
620 hit, by single-stepping the thread with the breakpoint
621 removed. In which case, we need to single-step only this
622 thread, and keep others stopped, as they can miss this
623 breakpoint if allowed to run.
624
625 The current code actually removes all breakpoints when
626 doing this, not just the one being stepped over, so if we
627 let other threads run, we can actually miss any
628 breakpoint, not just the one at PC. */
629 resume_ptid = inferior_ptid;
630 }
631
632 if ((scheduler_mode == schedlock_on)
633 || (scheduler_mode == schedlock_step
634 && (step || singlestep_breakpoints_inserted_p)))
635 {
636 /* User-settable 'scheduler' mode requires solo thread resume. */
637 resume_ptid = inferior_ptid;
638 }
639
640 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
641 {
642 /* Most targets can step a breakpoint instruction, thus
643 executing it normally. But if this one cannot, just
644 continue and we will hit it anyway. */
645 if (step && breakpoint_inserted_here_p (read_pc ()))
646 step = 0;
647 }
648 target_resume (resume_ptid, step, sig);
649 }
650
651 discard_cleanups (old_cleanups);
652 }
653 \f
654
655 /* Clear out all variables saying what to do when inferior is continued.
656 First do this, then set the ones you want, then call `proceed'. */
657
658 void
659 clear_proceed_status (void)
660 {
661 stepping_over_breakpoint = 0;
662 step_range_start = 0;
663 step_range_end = 0;
664 step_frame_id = null_frame_id;
665 step_over_calls = STEP_OVER_UNDEBUGGABLE;
666 stop_after_trap = 0;
667 stop_soon = NO_STOP_QUIETLY;
668 proceed_to_finish = 0;
669 breakpoint_proceeded = 1; /* We're about to proceed... */
670
671 if (stop_registers)
672 {
673 regcache_xfree (stop_registers);
674 stop_registers = NULL;
675 }
676
677 /* Discard any remaining commands or status from previous stop. */
678 bpstat_clear (&stop_bpstat);
679 }
680
681 /* This should be suitable for any targets that support threads. */
682
683 static int
684 prepare_to_proceed (int step)
685 {
686 ptid_t wait_ptid;
687 struct target_waitstatus wait_status;
688
689 /* Get the last target status returned by target_wait(). */
690 get_last_target_status (&wait_ptid, &wait_status);
691
692 /* Make sure we were stopped at a breakpoint. */
693 if (wait_status.kind != TARGET_WAITKIND_STOPPED
694 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
695 {
696 return 0;
697 }
698
699 /* Switched over from WAIT_PID. */
700 if (!ptid_equal (wait_ptid, minus_one_ptid)
701 && !ptid_equal (inferior_ptid, wait_ptid)
702 && breakpoint_here_p (read_pc_pid (wait_ptid)))
703 {
704 /* If stepping, remember current thread to switch back to. */
705 if (step)
706 {
707 deferred_step_ptid = inferior_ptid;
708 }
709
710 /* Switch back to WAIT_PID thread. */
711 switch_to_thread (wait_ptid);
712
713 /* We return 1 to indicate that there is a breakpoint here,
714 so we need to step over it before continuing to avoid
715 hitting it straight away. */
716 return 1;
717 }
718
719 return 0;
720 }
721
722 /* Record the pc of the program the last time it stopped. This is
723 just used internally by wait_for_inferior, but need to be preserved
724 over calls to it and cleared when the inferior is started. */
725 static CORE_ADDR prev_pc;
726
727 /* Basic routine for continuing the program in various fashions.
728
729 ADDR is the address to resume at, or -1 for resume where stopped.
730 SIGGNAL is the signal to give it, or 0 for none,
731 or -1 for act according to how it stopped.
732 STEP is nonzero if should trap after one instruction.
733 -1 means return after that and print nothing.
734 You should probably set various step_... variables
735 before calling here, if you are stepping.
736
737 You should call clear_proceed_status before calling proceed. */
738
739 void
740 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
741 {
742 int oneproc = 0;
743
744 if (step > 0)
745 step_start_function = find_pc_function (read_pc ());
746 if (step < 0)
747 stop_after_trap = 1;
748
749 if (addr == (CORE_ADDR) -1)
750 {
751 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
752 /* There is a breakpoint at the address we will resume at,
753 step one instruction before inserting breakpoints so that
754 we do not stop right away (and report a second hit at this
755 breakpoint). */
756 oneproc = 1;
757 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
758 && gdbarch_single_step_through_delay (current_gdbarch,
759 get_current_frame ()))
760 /* We stepped onto an instruction that needs to be stepped
761 again before re-inserting the breakpoint, do so. */
762 oneproc = 1;
763 }
764 else
765 {
766 write_pc (addr);
767 }
768
769 if (debug_infrun)
770 fprintf_unfiltered (gdb_stdlog,
771 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
772 paddr_nz (addr), siggnal, step);
773
774 /* In a multi-threaded task we may select another thread
775 and then continue or step.
776
777 But if the old thread was stopped at a breakpoint, it
778 will immediately cause another breakpoint stop without
779 any execution (i.e. it will report a breakpoint hit
780 incorrectly). So we must step over it first.
781
782 prepare_to_proceed checks the current thread against the thread
783 that reported the most recent event. If a step-over is required
784 it returns TRUE and sets the current thread to the old thread. */
785 if (prepare_to_proceed (step))
786 oneproc = 1;
787
788 if (oneproc)
789 {
790 /* We will get a trace trap after one instruction.
791 Continue it automatically and insert breakpoints then. */
792 stepping_over_breakpoint = 1;
793 /* FIXME: if breakpoints are always inserted, we'll trap
794 if trying to single-step over breakpoint. Disable
795 all breakpoints. In future, we'd need to invent some
796 smart way of stepping over breakpoint instruction without
797 hitting breakpoint. */
798 remove_breakpoints ();
799 }
800 else
801 insert_breakpoints ();
802
803 if (siggnal != TARGET_SIGNAL_DEFAULT)
804 stop_signal = siggnal;
805 /* If this signal should not be seen by program,
806 give it zero. Used for debugging signals. */
807 else if (!signal_program[stop_signal])
808 stop_signal = TARGET_SIGNAL_0;
809
810 annotate_starting ();
811
812 /* Make sure that output from GDB appears before output from the
813 inferior. */
814 gdb_flush (gdb_stdout);
815
816 /* Refresh prev_pc value just prior to resuming. This used to be
817 done in stop_stepping, however, setting prev_pc there did not handle
818 scenarios such as inferior function calls or returning from
819 a function via the return command. In those cases, the prev_pc
820 value was not set properly for subsequent commands. The prev_pc value
821 is used to initialize the starting line number in the ecs. With an
822 invalid value, the gdb next command ends up stopping at the position
823 represented by the next line table entry past our start position.
824 On platforms that generate one line table entry per line, this
825 is not a problem. However, on the ia64, the compiler generates
826 extraneous line table entries that do not increase the line number.
827 When we issue the gdb next command on the ia64 after an inferior call
828 or a return command, we often end up a few instructions forward, still
829 within the original line we started.
830
831 An attempt was made to have init_execution_control_state () refresh
832 the prev_pc value before calculating the line number. This approach
833 did not work because on platforms that use ptrace, the pc register
834 cannot be read unless the inferior is stopped. At that point, we
835 are not guaranteed the inferior is stopped and so the read_pc ()
836 call can fail. Setting the prev_pc value here ensures the value is
837 updated correctly when the inferior is stopped. */
838 prev_pc = read_pc ();
839
840 /* Resume inferior. */
841 resume (oneproc || step || bpstat_should_step (), stop_signal);
842
843 /* Wait for it to stop (if not standalone)
844 and in any case decode why it stopped, and act accordingly. */
845 /* Do this only if we are not using the event loop, or if the target
846 does not support asynchronous execution. */
847 if (!target_can_async_p ())
848 {
849 wait_for_inferior (0);
850 normal_stop ();
851 }
852 }
853 \f
854
855 /* Start remote-debugging of a machine over a serial link. */
856
857 void
858 start_remote (int from_tty)
859 {
860 init_thread_list ();
861 init_wait_for_inferior ();
862 stop_soon = STOP_QUIETLY_REMOTE;
863 stepping_over_breakpoint = 0;
864
865 /* Always go on waiting for the target, regardless of the mode. */
866 /* FIXME: cagney/1999-09-23: At present it isn't possible to
867 indicate to wait_for_inferior that a target should timeout if
868 nothing is returned (instead of just blocking). Because of this,
869 targets expecting an immediate response need to, internally, set
870 things up so that the target_wait() is forced to eventually
871 timeout. */
872 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
873 differentiate to its caller what the state of the target is after
874 the initial open has been performed. Here we're assuming that
875 the target has stopped. It should be possible to eventually have
876 target_open() return to the caller an indication that the target
877 is currently running and GDB state should be set to the same as
878 for an async run. */
879 wait_for_inferior (0);
880
881 /* Now that the inferior has stopped, do any bookkeeping like
882 loading shared libraries. We want to do this before normal_stop,
883 so that the displayed frame is up to date. */
884 post_create_inferior (&current_target, from_tty);
885
886 normal_stop ();
887 }
888
889 /* Initialize static vars when a new inferior begins. */
890
891 void
892 init_wait_for_inferior (void)
893 {
894 /* These are meaningless until the first time through wait_for_inferior. */
895 prev_pc = 0;
896
897 breakpoint_init_inferior (inf_starting);
898
899 /* Don't confuse first call to proceed(). */
900 stop_signal = TARGET_SIGNAL_0;
901
902 /* The first resume is not following a fork/vfork/exec. */
903 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
904
905 clear_proceed_status ();
906
907 stepping_past_singlestep_breakpoint = 0;
908 deferred_step_ptid = null_ptid;
909
910 target_last_wait_ptid = minus_one_ptid;
911 }
912 \f
913 /* This enum encodes possible reasons for doing a target_wait, so that
914 wfi can call target_wait in one place. (Ultimately the call will be
915 moved out of the infinite loop entirely.) */
916
917 enum infwait_states
918 {
919 infwait_normal_state,
920 infwait_thread_hop_state,
921 infwait_step_watch_state,
922 infwait_nonstep_watch_state
923 };
924
925 /* Why did the inferior stop? Used to print the appropriate messages
926 to the interface from within handle_inferior_event(). */
927 enum inferior_stop_reason
928 {
929 /* Step, next, nexti, stepi finished. */
930 END_STEPPING_RANGE,
931 /* Inferior terminated by signal. */
932 SIGNAL_EXITED,
933 /* Inferior exited. */
934 EXITED,
935 /* Inferior received signal, and user asked to be notified. */
936 SIGNAL_RECEIVED
937 };
938
939 /* This structure contains what used to be local variables in
940 wait_for_inferior. Probably many of them can return to being
941 locals in handle_inferior_event. */
942
943 struct execution_control_state
944 {
945 struct target_waitstatus ws;
946 struct target_waitstatus *wp;
947 /* Should we step over breakpoint next time keep_going
948 is called? */
949 int stepping_over_breakpoint;
950 int random_signal;
951 CORE_ADDR stop_func_start;
952 CORE_ADDR stop_func_end;
953 char *stop_func_name;
954 struct symtab_and_line sal;
955 int current_line;
956 struct symtab *current_symtab;
957 int handling_longjmp; /* FIXME */
958 ptid_t ptid;
959 ptid_t saved_inferior_ptid;
960 int step_after_step_resume_breakpoint;
961 int stepping_through_solib_after_catch;
962 bpstat stepping_through_solib_catchpoints;
963 int new_thread_event;
964 struct target_waitstatus tmpstatus;
965 enum infwait_states infwait_state;
966 ptid_t waiton_ptid;
967 int wait_some_more;
968 };
969
970 void init_execution_control_state (struct execution_control_state *ecs);
971
972 void handle_inferior_event (struct execution_control_state *ecs);
973
974 static void step_into_function (struct execution_control_state *ecs);
975 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
976 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
977 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
978 struct frame_id sr_id);
979 static void stop_stepping (struct execution_control_state *ecs);
980 static void prepare_to_wait (struct execution_control_state *ecs);
981 static void keep_going (struct execution_control_state *ecs);
982 static void print_stop_reason (enum inferior_stop_reason stop_reason,
983 int stop_info);
984
985 /* Wait for control to return from inferior to debugger.
986
987 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
988 as if they were SIGTRAP signals. This can be useful during
989 the startup sequence on some targets such as HP/UX, where
990 we receive an EXEC event instead of the expected SIGTRAP.
991
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (int treat_exec_as_sigtrap)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered
1006 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1007 treat_exec_as_sigtrap);
1008
1009 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1010 &step_resume_breakpoint);
1011
1012 /* wfi still stays in a loop, so it's OK just to take the address of
1013 a local to get the ecs pointer. */
1014 ecs = &ecss;
1015
1016 /* Fill in with reasonable starting values. */
1017 init_execution_control_state (ecs);
1018
1019 /* We'll update this if & when we switch to a new thread. */
1020 previous_inferior_ptid = inferior_ptid;
1021
1022 overlay_cache_invalid = 1;
1023
1024 /* We have to invalidate the registers BEFORE calling target_wait
1025 because they can be loaded from the target while in target_wait.
1026 This makes remote debugging a bit more efficient for those
1027 targets that provide critical registers as part of their normal
1028 status mechanism. */
1029
1030 registers_changed ();
1031
1032 while (1)
1033 {
1034 if (deprecated_target_wait_hook)
1035 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1036 else
1037 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1038
1039 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1040 {
1041 xfree (ecs->ws.value.execd_pathname);
1042 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1043 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1044 }
1045
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (ecs);
1048
1049 if (!ecs->wait_some_more)
1050 break;
1051 }
1052 do_cleanups (old_cleanups);
1053 }
1054
1055 /* Asynchronous version of wait_for_inferior. It is called by the
1056 event loop whenever a change of state is detected on the file
1057 descriptor corresponding to the target. It can be called more than
1058 once to complete a single execution command. In such cases we need
1059 to keep the state in a global variable ASYNC_ECSS. If it is the
1060 last time that this function is called for a single execution
1061 command, then report to the user that the inferior has stopped, and
1062 do the necessary cleanups. */
1063
1064 struct execution_control_state async_ecss;
1065 struct execution_control_state *async_ecs;
1066
1067 void
1068 fetch_inferior_event (void *client_data)
1069 {
1070 static struct cleanup *old_cleanups;
1071
1072 async_ecs = &async_ecss;
1073
1074 if (!async_ecs->wait_some_more)
1075 {
1076 /* Fill in with reasonable starting values. */
1077 init_execution_control_state (async_ecs);
1078
1079 /* We'll update this if & when we switch to a new thread. */
1080 previous_inferior_ptid = inferior_ptid;
1081
1082 overlay_cache_invalid = 1;
1083
1084 /* We have to invalidate the registers BEFORE calling target_wait
1085 because they can be loaded from the target while in target_wait.
1086 This makes remote debugging a bit more efficient for those
1087 targets that provide critical registers as part of their normal
1088 status mechanism. */
1089
1090 registers_changed ();
1091 }
1092
1093 if (deprecated_target_wait_hook)
1094 async_ecs->ptid =
1095 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1096 else
1097 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1098
1099 /* Now figure out what to do with the result of the result. */
1100 handle_inferior_event (async_ecs);
1101
1102 if (!async_ecs->wait_some_more)
1103 {
1104 delete_step_resume_breakpoint (&step_resume_breakpoint);
1105
1106 normal_stop ();
1107 if (step_multi && stop_step)
1108 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1109 else
1110 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1111 }
1112 }
1113
1114 /* Prepare an execution control state for looping through a
1115 wait_for_inferior-type loop. */
1116
1117 void
1118 init_execution_control_state (struct execution_control_state *ecs)
1119 {
1120 ecs->stepping_over_breakpoint = 0;
1121 ecs->random_signal = 0;
1122 ecs->step_after_step_resume_breakpoint = 0;
1123 ecs->handling_longjmp = 0; /* FIXME */
1124 ecs->stepping_through_solib_after_catch = 0;
1125 ecs->stepping_through_solib_catchpoints = NULL;
1126 ecs->sal = find_pc_line (prev_pc, 0);
1127 ecs->current_line = ecs->sal.line;
1128 ecs->current_symtab = ecs->sal.symtab;
1129 ecs->infwait_state = infwait_normal_state;
1130 ecs->waiton_ptid = pid_to_ptid (-1);
1131 ecs->wp = &(ecs->ws);
1132 }
1133
1134 /* Return the cached copy of the last pid/waitstatus returned by
1135 target_wait()/deprecated_target_wait_hook(). The data is actually
1136 cached by handle_inferior_event(), which gets called immediately
1137 after target_wait()/deprecated_target_wait_hook(). */
1138
1139 void
1140 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1141 {
1142 *ptidp = target_last_wait_ptid;
1143 *status = target_last_waitstatus;
1144 }
1145
1146 void
1147 nullify_last_target_wait_ptid (void)
1148 {
1149 target_last_wait_ptid = minus_one_ptid;
1150 }
1151
1152 /* Switch thread contexts, maintaining "infrun state". */
1153
1154 static void
1155 context_switch (struct execution_control_state *ecs)
1156 {
1157 /* Caution: it may happen that the new thread (or the old one!)
1158 is not in the thread list. In this case we must not attempt
1159 to "switch context", or we run the risk that our context may
1160 be lost. This may happen as a result of the target module
1161 mishandling thread creation. */
1162
1163 if (debug_infrun)
1164 {
1165 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1166 target_pid_to_str (inferior_ptid));
1167 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1168 target_pid_to_str (ecs->ptid));
1169 }
1170
1171 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1172 { /* Perform infrun state context switch: */
1173 /* Save infrun state for the old thread. */
1174 save_infrun_state (inferior_ptid, prev_pc,
1175 stepping_over_breakpoint, step_resume_breakpoint,
1176 step_range_start,
1177 step_range_end, &step_frame_id,
1178 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1179 ecs->stepping_through_solib_after_catch,
1180 ecs->stepping_through_solib_catchpoints,
1181 ecs->current_line, ecs->current_symtab);
1182
1183 /* Load infrun state for the new thread. */
1184 load_infrun_state (ecs->ptid, &prev_pc,
1185 &stepping_over_breakpoint, &step_resume_breakpoint,
1186 &step_range_start,
1187 &step_range_end, &step_frame_id,
1188 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1189 &ecs->stepping_through_solib_after_catch,
1190 &ecs->stepping_through_solib_catchpoints,
1191 &ecs->current_line, &ecs->current_symtab);
1192 }
1193
1194 switch_to_thread (ecs->ptid);
1195 }
1196
1197 static void
1198 adjust_pc_after_break (struct execution_control_state *ecs)
1199 {
1200 CORE_ADDR breakpoint_pc;
1201
1202 /* If this target does not decrement the PC after breakpoints, then
1203 we have nothing to do. */
1204 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1205 return;
1206
1207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1208 we aren't, just return.
1209
1210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1212 implemented by software breakpoints should be handled through the normal
1213 breakpoint layer.
1214
1215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1216 different signals (SIGILL or SIGEMT for instance), but it is less
1217 clear where the PC is pointing afterwards. It may not match
1218 gdbarch_decr_pc_after_break. I don't know any specific target that
1219 generates these signals at breakpoints (the code has been in GDB since at
1220 least 1992) so I can not guess how to handle them here.
1221
1222 In earlier versions of GDB, a target with
1223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1225 target with both of these set in GDB history, and it seems unlikely to be
1226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1227
1228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1229 return;
1230
1231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1232 return;
1233
1234 /* Find the location where (if we've hit a breakpoint) the
1235 breakpoint would be. */
1236 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1237 (current_gdbarch);
1238
1239 /* Check whether there actually is a software breakpoint inserted
1240 at that location. */
1241 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1242 {
1243 /* When using hardware single-step, a SIGTRAP is reported for both
1244 a completed single-step and a software breakpoint. Need to
1245 differentiate between the two, as the latter needs adjusting
1246 but the former does not.
1247
1248 The SIGTRAP can be due to a completed hardware single-step only if
1249 - we didn't insert software single-step breakpoints
1250 - the thread to be examined is still the current thread
1251 - this thread is currently being stepped
1252
1253 If any of these events did not occur, we must have stopped due
1254 to hitting a software breakpoint, and have to back up to the
1255 breakpoint address.
1256
1257 As a special case, we could have hardware single-stepped a
1258 software breakpoint. In this case (prev_pc == breakpoint_pc),
1259 we also need to back up to the breakpoint address. */
1260
1261 if (singlestep_breakpoints_inserted_p
1262 || !ptid_equal (ecs->ptid, inferior_ptid)
1263 || !currently_stepping (ecs)
1264 || prev_pc == breakpoint_pc)
1265 write_pc_pid (breakpoint_pc, ecs->ptid);
1266 }
1267 }
1268
1269 /* Given an execution control state that has been freshly filled in
1270 by an event from the inferior, figure out what it means and take
1271 appropriate action. */
1272
1273 void
1274 handle_inferior_event (struct execution_control_state *ecs)
1275 {
1276 int sw_single_step_trap_p = 0;
1277 int stopped_by_watchpoint;
1278 int stepped_after_stopped_by_watchpoint = 0;
1279
1280 /* Cache the last pid/waitstatus. */
1281 target_last_wait_ptid = ecs->ptid;
1282 target_last_waitstatus = *ecs->wp;
1283
1284 /* Always clear state belonging to the previous time we stopped. */
1285 stop_stack_dummy = 0;
1286
1287 adjust_pc_after_break (ecs);
1288
1289 switch (ecs->infwait_state)
1290 {
1291 case infwait_thread_hop_state:
1292 if (debug_infrun)
1293 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1294 /* Cancel the waiton_ptid. */
1295 ecs->waiton_ptid = pid_to_ptid (-1);
1296 break;
1297
1298 case infwait_normal_state:
1299 if (debug_infrun)
1300 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1301 break;
1302
1303 case infwait_step_watch_state:
1304 if (debug_infrun)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "infrun: infwait_step_watch_state\n");
1307
1308 stepped_after_stopped_by_watchpoint = 1;
1309 break;
1310
1311 case infwait_nonstep_watch_state:
1312 if (debug_infrun)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "infrun: infwait_nonstep_watch_state\n");
1315 insert_breakpoints ();
1316
1317 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1318 handle things like signals arriving and other things happening
1319 in combination correctly? */
1320 stepped_after_stopped_by_watchpoint = 1;
1321 break;
1322
1323 default:
1324 internal_error (__FILE__, __LINE__, _("bad switch"));
1325 }
1326 ecs->infwait_state = infwait_normal_state;
1327
1328 reinit_frame_cache ();
1329
1330 /* If it's a new process, add it to the thread database */
1331
1332 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1333 && !ptid_equal (ecs->ptid, minus_one_ptid)
1334 && !in_thread_list (ecs->ptid));
1335
1336 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1337 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1338 add_thread (ecs->ptid);
1339
1340 switch (ecs->ws.kind)
1341 {
1342 case TARGET_WAITKIND_LOADED:
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1345 /* Ignore gracefully during startup of the inferior, as it might
1346 be the shell which has just loaded some objects, otherwise
1347 add the symbols for the newly loaded objects. Also ignore at
1348 the beginning of an attach or remote session; we will query
1349 the full list of libraries once the connection is
1350 established. */
1351 if (stop_soon == NO_STOP_QUIETLY)
1352 {
1353 /* Check for any newly added shared libraries if we're
1354 supposed to be adding them automatically. Switch
1355 terminal for any messages produced by
1356 breakpoint_re_set. */
1357 target_terminal_ours_for_output ();
1358 /* NOTE: cagney/2003-11-25: Make certain that the target
1359 stack's section table is kept up-to-date. Architectures,
1360 (e.g., PPC64), use the section table to perform
1361 operations such as address => section name and hence
1362 require the table to contain all sections (including
1363 those found in shared libraries). */
1364 /* NOTE: cagney/2003-11-25: Pass current_target and not
1365 exec_ops to SOLIB_ADD. This is because current GDB is
1366 only tooled to propagate section_table changes out from
1367 the "current_target" (see target_resize_to_sections), and
1368 not up from the exec stratum. This, of course, isn't
1369 right. "infrun.c" should only interact with the
1370 exec/process stratum, instead relying on the target stack
1371 to propagate relevant changes (stop, section table
1372 changed, ...) up to other layers. */
1373 #ifdef SOLIB_ADD
1374 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1375 #else
1376 solib_add (NULL, 0, &current_target, auto_solib_add);
1377 #endif
1378 target_terminal_inferior ();
1379
1380 /* If requested, stop when the dynamic linker notifies
1381 gdb of events. This allows the user to get control
1382 and place breakpoints in initializer routines for
1383 dynamically loaded objects (among other things). */
1384 if (stop_on_solib_events)
1385 {
1386 stop_stepping (ecs);
1387 return;
1388 }
1389
1390 /* NOTE drow/2007-05-11: This might be a good place to check
1391 for "catch load". */
1392 }
1393
1394 /* If we are skipping through a shell, or through shared library
1395 loading that we aren't interested in, resume the program. If
1396 we're running the program normally, also resume. But stop if
1397 we're attaching or setting up a remote connection. */
1398 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1399 {
1400 /* Loading of shared libraries might have changed breakpoint
1401 addresses. Make sure new breakpoints are inserted. */
1402 if (!breakpoints_always_inserted_mode ())
1403 insert_breakpoints ();
1404 resume (0, TARGET_SIGNAL_0);
1405 prepare_to_wait (ecs);
1406 return;
1407 }
1408
1409 break;
1410
1411 case TARGET_WAITKIND_SPURIOUS:
1412 if (debug_infrun)
1413 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1414 resume (0, TARGET_SIGNAL_0);
1415 prepare_to_wait (ecs);
1416 return;
1417
1418 case TARGET_WAITKIND_EXITED:
1419 if (debug_infrun)
1420 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1421 target_terminal_ours (); /* Must do this before mourn anyway */
1422 print_stop_reason (EXITED, ecs->ws.value.integer);
1423
1424 /* Record the exit code in the convenience variable $_exitcode, so
1425 that the user can inspect this again later. */
1426 set_internalvar (lookup_internalvar ("_exitcode"),
1427 value_from_longest (builtin_type_int,
1428 (LONGEST) ecs->ws.value.integer));
1429 gdb_flush (gdb_stdout);
1430 target_mourn_inferior ();
1431 singlestep_breakpoints_inserted_p = 0;
1432 stop_print_frame = 0;
1433 stop_stepping (ecs);
1434 return;
1435
1436 case TARGET_WAITKIND_SIGNALLED:
1437 if (debug_infrun)
1438 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1439 stop_print_frame = 0;
1440 stop_signal = ecs->ws.value.sig;
1441 target_terminal_ours (); /* Must do this before mourn anyway */
1442
1443 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1444 reach here unless the inferior is dead. However, for years
1445 target_kill() was called here, which hints that fatal signals aren't
1446 really fatal on some systems. If that's true, then some changes
1447 may be needed. */
1448 target_mourn_inferior ();
1449
1450 print_stop_reason (SIGNAL_EXITED, stop_signal);
1451 singlestep_breakpoints_inserted_p = 0;
1452 stop_stepping (ecs);
1453 return;
1454
1455 /* The following are the only cases in which we keep going;
1456 the above cases end in a continue or goto. */
1457 case TARGET_WAITKIND_FORKED:
1458 case TARGET_WAITKIND_VFORKED:
1459 if (debug_infrun)
1460 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1461 stop_signal = TARGET_SIGNAL_TRAP;
1462 pending_follow.kind = ecs->ws.kind;
1463
1464 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1465 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1466
1467 if (!ptid_equal (ecs->ptid, inferior_ptid))
1468 {
1469 context_switch (ecs);
1470 reinit_frame_cache ();
1471 }
1472
1473 stop_pc = read_pc ();
1474
1475 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1476
1477 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1478
1479 /* If no catchpoint triggered for this, then keep going. */
1480 if (ecs->random_signal)
1481 {
1482 stop_signal = TARGET_SIGNAL_0;
1483 keep_going (ecs);
1484 return;
1485 }
1486 goto process_event_stop_test;
1487
1488 case TARGET_WAITKIND_EXECD:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1491 stop_signal = TARGET_SIGNAL_TRAP;
1492
1493 pending_follow.execd_pathname =
1494 savestring (ecs->ws.value.execd_pathname,
1495 strlen (ecs->ws.value.execd_pathname));
1496
1497 /* This causes the eventpoints and symbol table to be reset. Must
1498 do this now, before trying to determine whether to stop. */
1499 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1500 xfree (pending_follow.execd_pathname);
1501
1502 stop_pc = read_pc_pid (ecs->ptid);
1503 ecs->saved_inferior_ptid = inferior_ptid;
1504 inferior_ptid = ecs->ptid;
1505
1506 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1507
1508 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1509 inferior_ptid = ecs->saved_inferior_ptid;
1510
1511 if (!ptid_equal (ecs->ptid, inferior_ptid))
1512 {
1513 context_switch (ecs);
1514 reinit_frame_cache ();
1515 }
1516
1517 /* If no catchpoint triggered for this, then keep going. */
1518 if (ecs->random_signal)
1519 {
1520 stop_signal = TARGET_SIGNAL_0;
1521 keep_going (ecs);
1522 return;
1523 }
1524 goto process_event_stop_test;
1525
1526 /* Be careful not to try to gather much state about a thread
1527 that's in a syscall. It's frequently a losing proposition. */
1528 case TARGET_WAITKIND_SYSCALL_ENTRY:
1529 if (debug_infrun)
1530 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1531 resume (0, TARGET_SIGNAL_0);
1532 prepare_to_wait (ecs);
1533 return;
1534
1535 /* Before examining the threads further, step this thread to
1536 get it entirely out of the syscall. (We get notice of the
1537 event when the thread is just on the verge of exiting a
1538 syscall. Stepping one instruction seems to get it back
1539 into user code.) */
1540 case TARGET_WAITKIND_SYSCALL_RETURN:
1541 if (debug_infrun)
1542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1543 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546
1547 case TARGET_WAITKIND_STOPPED:
1548 if (debug_infrun)
1549 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1550 stop_signal = ecs->ws.value.sig;
1551 break;
1552
1553 /* We had an event in the inferior, but we are not interested
1554 in handling it at this level. The lower layers have already
1555 done what needs to be done, if anything.
1556
1557 One of the possible circumstances for this is when the
1558 inferior produces output for the console. The inferior has
1559 not stopped, and we are ignoring the event. Another possible
1560 circumstance is any event which the lower level knows will be
1561 reported multiple times without an intervening resume. */
1562 case TARGET_WAITKIND_IGNORE:
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1565 prepare_to_wait (ecs);
1566 return;
1567 }
1568
1569 /* We may want to consider not doing a resume here in order to give
1570 the user a chance to play with the new thread. It might be good
1571 to make that a user-settable option. */
1572
1573 /* At this point, all threads are stopped (happens automatically in
1574 either the OS or the native code). Therefore we need to continue
1575 all threads in order to make progress. */
1576 if (ecs->new_thread_event)
1577 {
1578 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1579 prepare_to_wait (ecs);
1580 return;
1581 }
1582
1583 stop_pc = read_pc_pid (ecs->ptid);
1584
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1587
1588 if (stepping_past_singlestep_breakpoint)
1589 {
1590 gdb_assert (singlestep_breakpoints_inserted_p);
1591 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1592 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1593
1594 stepping_past_singlestep_breakpoint = 0;
1595
1596 /* We've either finished single-stepping past the single-step
1597 breakpoint, or stopped for some other reason. It would be nice if
1598 we could tell, but we can't reliably. */
1599 if (stop_signal == TARGET_SIGNAL_TRAP)
1600 {
1601 if (debug_infrun)
1602 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1603 /* Pull the single step breakpoints out of the target. */
1604 remove_single_step_breakpoints ();
1605 singlestep_breakpoints_inserted_p = 0;
1606
1607 ecs->random_signal = 0;
1608
1609 ecs->ptid = saved_singlestep_ptid;
1610 context_switch (ecs);
1611 if (deprecated_context_hook)
1612 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1613
1614 resume (1, TARGET_SIGNAL_0);
1615 prepare_to_wait (ecs);
1616 return;
1617 }
1618 }
1619
1620 stepping_past_singlestep_breakpoint = 0;
1621
1622 if (!ptid_equal (deferred_step_ptid, null_ptid))
1623 {
1624 /* If we stopped for some other reason than single-stepping, ignore
1625 the fact that we were supposed to switch back. */
1626 if (stop_signal == TARGET_SIGNAL_TRAP)
1627 {
1628 if (debug_infrun)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "infrun: handling deferred step\n");
1631
1632 /* Pull the single step breakpoints out of the target. */
1633 if (singlestep_breakpoints_inserted_p)
1634 {
1635 remove_single_step_breakpoints ();
1636 singlestep_breakpoints_inserted_p = 0;
1637 }
1638
1639 /* Note: We do not call context_switch at this point, as the
1640 context is already set up for stepping the original thread. */
1641 switch_to_thread (deferred_step_ptid);
1642 deferred_step_ptid = null_ptid;
1643 /* Suppress spurious "Switching to ..." message. */
1644 previous_inferior_ptid = inferior_ptid;
1645
1646 resume (1, TARGET_SIGNAL_0);
1647 prepare_to_wait (ecs);
1648 return;
1649 }
1650
1651 deferred_step_ptid = null_ptid;
1652 }
1653
1654 /* See if a thread hit a thread-specific breakpoint that was meant for
1655 another thread. If so, then step that thread past the breakpoint,
1656 and continue it. */
1657
1658 if (stop_signal == TARGET_SIGNAL_TRAP)
1659 {
1660 int thread_hop_needed = 0;
1661
1662 /* Check if a regular breakpoint has been hit before checking
1663 for a potential single step breakpoint. Otherwise, GDB will
1664 not see this breakpoint hit when stepping onto breakpoints. */
1665 if (regular_breakpoint_inserted_here_p (stop_pc))
1666 {
1667 ecs->random_signal = 0;
1668 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1669 thread_hop_needed = 1;
1670 }
1671 else if (singlestep_breakpoints_inserted_p)
1672 {
1673 /* We have not context switched yet, so this should be true
1674 no matter which thread hit the singlestep breakpoint. */
1675 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1678 "trap for %s\n",
1679 target_pid_to_str (ecs->ptid));
1680
1681 ecs->random_signal = 0;
1682 /* The call to in_thread_list is necessary because PTIDs sometimes
1683 change when we go from single-threaded to multi-threaded. If
1684 the singlestep_ptid is still in the list, assume that it is
1685 really different from ecs->ptid. */
1686 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1687 && in_thread_list (singlestep_ptid))
1688 {
1689 /* If the PC of the thread we were trying to single-step
1690 has changed, discard this event (which we were going
1691 to ignore anyway), and pretend we saw that thread
1692 trap. This prevents us continuously moving the
1693 single-step breakpoint forward, one instruction at a
1694 time. If the PC has changed, then the thread we were
1695 trying to single-step has trapped or been signalled,
1696 but the event has not been reported to GDB yet.
1697
1698 There might be some cases where this loses signal
1699 information, if a signal has arrived at exactly the
1700 same time that the PC changed, but this is the best
1701 we can do with the information available. Perhaps we
1702 should arrange to report all events for all threads
1703 when they stop, or to re-poll the remote looking for
1704 this particular thread (i.e. temporarily enable
1705 schedlock). */
1706 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1707 {
1708 if (debug_infrun)
1709 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1710 " but expected thread advanced also\n");
1711
1712 /* The current context still belongs to
1713 singlestep_ptid. Don't swap here, since that's
1714 the context we want to use. Just fudge our
1715 state and continue. */
1716 ecs->ptid = singlestep_ptid;
1717 stop_pc = read_pc_pid (ecs->ptid);
1718 }
1719 else
1720 {
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "infrun: unexpected thread\n");
1724
1725 thread_hop_needed = 1;
1726 stepping_past_singlestep_breakpoint = 1;
1727 saved_singlestep_ptid = singlestep_ptid;
1728 }
1729 }
1730 }
1731
1732 if (thread_hop_needed)
1733 {
1734 int remove_status;
1735
1736 if (debug_infrun)
1737 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1738
1739 /* Saw a breakpoint, but it was hit by the wrong thread.
1740 Just continue. */
1741
1742 if (singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 remove_status = remove_breakpoints ();
1750 /* Did we fail to remove breakpoints? If so, try
1751 to set the PC past the bp. (There's at least
1752 one situation in which we can fail to remove
1753 the bp's: On HP-UX's that use ttrace, we can't
1754 change the address space of a vforking child
1755 process until the child exits (well, okay, not
1756 then either :-) or execs. */
1757 if (remove_status != 0)
1758 error (_("Cannot step over breakpoint hit in wrong thread"));
1759 else
1760 { /* Single step */
1761 if (!ptid_equal (inferior_ptid, ecs->ptid))
1762 context_switch (ecs);
1763 ecs->waiton_ptid = ecs->ptid;
1764 ecs->wp = &(ecs->ws);
1765 ecs->stepping_over_breakpoint = 1;
1766
1767 ecs->infwait_state = infwait_thread_hop_state;
1768 keep_going (ecs);
1769 registers_changed ();
1770 return;
1771 }
1772 }
1773 else if (singlestep_breakpoints_inserted_p)
1774 {
1775 sw_single_step_trap_p = 1;
1776 ecs->random_signal = 0;
1777 }
1778 }
1779 else
1780 ecs->random_signal = 1;
1781
1782 /* See if something interesting happened to the non-current thread. If
1783 so, then switch to that thread. */
1784 if (!ptid_equal (ecs->ptid, inferior_ptid))
1785 {
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1788
1789 context_switch (ecs);
1790
1791 if (deprecated_context_hook)
1792 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1793 }
1794
1795 if (singlestep_breakpoints_inserted_p)
1796 {
1797 /* Pull the single step breakpoints out of the target. */
1798 remove_single_step_breakpoints ();
1799 singlestep_breakpoints_inserted_p = 0;
1800 }
1801
1802 if (stepped_after_stopped_by_watchpoint)
1803 stopped_by_watchpoint = 0;
1804 else
1805 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1806
1807 /* If necessary, step over this watchpoint. We'll be back to display
1808 it in a moment. */
1809 if (stopped_by_watchpoint
1810 && (HAVE_STEPPABLE_WATCHPOINT
1811 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1812 {
1813 if (debug_infrun)
1814 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1815
1816 /* At this point, we are stopped at an instruction which has
1817 attempted to write to a piece of memory under control of
1818 a watchpoint. The instruction hasn't actually executed
1819 yet. If we were to evaluate the watchpoint expression
1820 now, we would get the old value, and therefore no change
1821 would seem to have occurred.
1822
1823 In order to make watchpoints work `right', we really need
1824 to complete the memory write, and then evaluate the
1825 watchpoint expression. We do this by single-stepping the
1826 target.
1827
1828 It may not be necessary to disable the watchpoint to stop over
1829 it. For example, the PA can (with some kernel cooperation)
1830 single step over a watchpoint without disabling the watchpoint.
1831
1832 It is far more common to need to disable a watchpoint to step
1833 the inferior over it. If we have non-steppable watchpoints,
1834 we must disable the current watchpoint; it's simplest to
1835 disable all watchpoints and breakpoints. */
1836
1837 if (!HAVE_STEPPABLE_WATCHPOINT)
1838 remove_breakpoints ();
1839 registers_changed ();
1840 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1841 ecs->waiton_ptid = ecs->ptid;
1842 if (HAVE_STEPPABLE_WATCHPOINT)
1843 ecs->infwait_state = infwait_step_watch_state;
1844 else
1845 ecs->infwait_state = infwait_nonstep_watch_state;
1846 prepare_to_wait (ecs);
1847 return;
1848 }
1849
1850 ecs->stop_func_start = 0;
1851 ecs->stop_func_end = 0;
1852 ecs->stop_func_name = 0;
1853 /* Don't care about return value; stop_func_start and stop_func_name
1854 will both be 0 if it doesn't work. */
1855 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1856 &ecs->stop_func_start, &ecs->stop_func_end);
1857 ecs->stop_func_start
1858 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1859 ecs->stepping_over_breakpoint = 0;
1860 bpstat_clear (&stop_bpstat);
1861 stop_step = 0;
1862 stop_print_frame = 1;
1863 ecs->random_signal = 0;
1864 stopped_by_random_signal = 0;
1865
1866 if (stop_signal == TARGET_SIGNAL_TRAP
1867 && stepping_over_breakpoint
1868 && gdbarch_single_step_through_delay_p (current_gdbarch)
1869 && currently_stepping (ecs))
1870 {
1871 /* We're trying to step off a breakpoint. Turns out that we're
1872 also on an instruction that needs to be stepped multiple
1873 times before it's been fully executing. E.g., architectures
1874 with a delay slot. It needs to be stepped twice, once for
1875 the instruction and once for the delay slot. */
1876 int step_through_delay
1877 = gdbarch_single_step_through_delay (current_gdbarch,
1878 get_current_frame ());
1879 if (debug_infrun && step_through_delay)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1881 if (step_range_end == 0 && step_through_delay)
1882 {
1883 /* The user issued a continue when stopped at a breakpoint.
1884 Set up for another trap and get out of here. */
1885 ecs->stepping_over_breakpoint = 1;
1886 keep_going (ecs);
1887 return;
1888 }
1889 else if (step_through_delay)
1890 {
1891 /* The user issued a step when stopped at a breakpoint.
1892 Maybe we should stop, maybe we should not - the delay
1893 slot *might* correspond to a line of source. In any
1894 case, don't decide that here, just set
1895 ecs->stepping_over_breakpoint, making sure we
1896 single-step again before breakpoints are re-inserted. */
1897 ecs->stepping_over_breakpoint = 1;
1898 }
1899 }
1900
1901 /* Look at the cause of the stop, and decide what to do.
1902 The alternatives are:
1903 1) break; to really stop and return to the debugger,
1904 2) drop through to start up again
1905 (set ecs->stepping_over_breakpoint to 1 to single step once)
1906 3) set ecs->random_signal to 1, and the decision between 1 and 2
1907 will be made according to the signal handling tables. */
1908
1909 /* First, distinguish signals caused by the debugger from signals
1910 that have to do with the program's own actions. Note that
1911 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1912 on the operating system version. Here we detect when a SIGILL or
1913 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1914 something similar for SIGSEGV, since a SIGSEGV will be generated
1915 when we're trying to execute a breakpoint instruction on a
1916 non-executable stack. This happens for call dummy breakpoints
1917 for architectures like SPARC that place call dummies on the
1918 stack. */
1919
1920 if (stop_signal == TARGET_SIGNAL_TRAP
1921 || (breakpoint_inserted_here_p (stop_pc)
1922 && (stop_signal == TARGET_SIGNAL_ILL
1923 || stop_signal == TARGET_SIGNAL_SEGV
1924 || stop_signal == TARGET_SIGNAL_EMT))
1925 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1926 || stop_soon == STOP_QUIETLY_REMOTE)
1927 {
1928 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1929 {
1930 if (debug_infrun)
1931 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1932 stop_print_frame = 0;
1933 stop_stepping (ecs);
1934 return;
1935 }
1936
1937 /* This is originated from start_remote(), start_inferior() and
1938 shared libraries hook functions. */
1939 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1943 stop_stepping (ecs);
1944 return;
1945 }
1946
1947 /* This originates from attach_command(). We need to overwrite
1948 the stop_signal here, because some kernels don't ignore a
1949 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
1950 See more comments in inferior.h. On the other hand, if we
1951 get a non-SIGSTOP, report it to the user - assume the backend
1952 will handle the SIGSTOP if it should show up later. */
1953 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
1954 && stop_signal == TARGET_SIGNAL_STOP)
1955 {
1956 stop_stepping (ecs);
1957 stop_signal = TARGET_SIGNAL_0;
1958 return;
1959 }
1960
1961 /* See if there is a breakpoint at the current PC. */
1962 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1963
1964 /* Following in case break condition called a
1965 function. */
1966 stop_print_frame = 1;
1967
1968 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1969 at one stage in the past included checks for an inferior
1970 function call's call dummy's return breakpoint. The original
1971 comment, that went with the test, read:
1972
1973 ``End of a stack dummy. Some systems (e.g. Sony news) give
1974 another signal besides SIGTRAP, so check here as well as
1975 above.''
1976
1977 If someone ever tries to get get call dummys on a
1978 non-executable stack to work (where the target would stop
1979 with something like a SIGSEGV), then those tests might need
1980 to be re-instated. Given, however, that the tests were only
1981 enabled when momentary breakpoints were not being used, I
1982 suspect that it won't be the case.
1983
1984 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1985 be necessary for call dummies on a non-executable stack on
1986 SPARC. */
1987
1988 if (stop_signal == TARGET_SIGNAL_TRAP)
1989 ecs->random_signal
1990 = !(bpstat_explains_signal (stop_bpstat)
1991 || stepping_over_breakpoint
1992 || (step_range_end && step_resume_breakpoint == NULL));
1993 else
1994 {
1995 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1996 if (!ecs->random_signal)
1997 stop_signal = TARGET_SIGNAL_TRAP;
1998 }
1999 }
2000
2001 /* When we reach this point, we've pretty much decided
2002 that the reason for stopping must've been a random
2003 (unexpected) signal. */
2004
2005 else
2006 ecs->random_signal = 1;
2007
2008 process_event_stop_test:
2009 /* For the program's own signals, act according to
2010 the signal handling tables. */
2011
2012 if (ecs->random_signal)
2013 {
2014 /* Signal not for debugging purposes. */
2015 int printed = 0;
2016
2017 if (debug_infrun)
2018 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2019
2020 stopped_by_random_signal = 1;
2021
2022 if (signal_print[stop_signal])
2023 {
2024 printed = 1;
2025 target_terminal_ours_for_output ();
2026 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2027 }
2028 if (signal_stop_state (stop_signal))
2029 {
2030 stop_stepping (ecs);
2031 return;
2032 }
2033 /* If not going to stop, give terminal back
2034 if we took it away. */
2035 else if (printed)
2036 target_terminal_inferior ();
2037
2038 /* Clear the signal if it should not be passed. */
2039 if (signal_program[stop_signal] == 0)
2040 stop_signal = TARGET_SIGNAL_0;
2041
2042 if (prev_pc == read_pc ()
2043 && stepping_over_breakpoint
2044 && step_resume_breakpoint == NULL)
2045 {
2046 /* We were just starting a new sequence, attempting to
2047 single-step off of a breakpoint and expecting a SIGTRAP.
2048 Intead this signal arrives. This signal will take us out
2049 of the stepping range so GDB needs to remember to, when
2050 the signal handler returns, resume stepping off that
2051 breakpoint. */
2052 /* To simplify things, "continue" is forced to use the same
2053 code paths as single-step - set a breakpoint at the
2054 signal return address and then, once hit, step off that
2055 breakpoint. */
2056
2057 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2058 ecs->step_after_step_resume_breakpoint = 1;
2059 keep_going (ecs);
2060 return;
2061 }
2062
2063 if (step_range_end != 0
2064 && stop_signal != TARGET_SIGNAL_0
2065 && stop_pc >= step_range_start && stop_pc < step_range_end
2066 && frame_id_eq (get_frame_id (get_current_frame ()),
2067 step_frame_id)
2068 && step_resume_breakpoint == NULL)
2069 {
2070 /* The inferior is about to take a signal that will take it
2071 out of the single step range. Set a breakpoint at the
2072 current PC (which is presumably where the signal handler
2073 will eventually return) and then allow the inferior to
2074 run free.
2075
2076 Note that this is only needed for a signal delivered
2077 while in the single-step range. Nested signals aren't a
2078 problem as they eventually all return. */
2079 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2080 keep_going (ecs);
2081 return;
2082 }
2083
2084 /* Note: step_resume_breakpoint may be non-NULL. This occures
2085 when either there's a nested signal, or when there's a
2086 pending signal enabled just as the signal handler returns
2087 (leaving the inferior at the step-resume-breakpoint without
2088 actually executing it). Either way continue until the
2089 breakpoint is really hit. */
2090 keep_going (ecs);
2091 return;
2092 }
2093
2094 /* Handle cases caused by hitting a breakpoint. */
2095 {
2096 CORE_ADDR jmp_buf_pc;
2097 struct bpstat_what what;
2098
2099 what = bpstat_what (stop_bpstat);
2100
2101 if (what.call_dummy)
2102 {
2103 stop_stack_dummy = 1;
2104 }
2105
2106 switch (what.main_action)
2107 {
2108 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2109 /* If we hit the breakpoint at longjmp, disable it for the
2110 duration of this command. Then, install a temporary
2111 breakpoint at the target of the jmp_buf. */
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2114 disable_longjmp_breakpoint ();
2115 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2116 || !gdbarch_get_longjmp_target (current_gdbarch,
2117 get_current_frame (), &jmp_buf_pc))
2118 {
2119 keep_going (ecs);
2120 return;
2121 }
2122
2123 /* Need to blow away step-resume breakpoint, as it
2124 interferes with us */
2125 if (step_resume_breakpoint != NULL)
2126 {
2127 delete_step_resume_breakpoint (&step_resume_breakpoint);
2128 }
2129
2130 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2131 ecs->handling_longjmp = 1; /* FIXME */
2132 keep_going (ecs);
2133 return;
2134
2135 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2138 disable_longjmp_breakpoint ();
2139 ecs->handling_longjmp = 0; /* FIXME */
2140 break;
2141
2142 case BPSTAT_WHAT_SINGLE:
2143 if (debug_infrun)
2144 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2145 ecs->stepping_over_breakpoint = 1;
2146 /* Still need to check other stuff, at least the case
2147 where we are stepping and step out of the right range. */
2148 break;
2149
2150 case BPSTAT_WHAT_STOP_NOISY:
2151 if (debug_infrun)
2152 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2153 stop_print_frame = 1;
2154
2155 /* We are about to nuke the step_resume_breakpointt via the
2156 cleanup chain, so no need to worry about it here. */
2157
2158 stop_stepping (ecs);
2159 return;
2160
2161 case BPSTAT_WHAT_STOP_SILENT:
2162 if (debug_infrun)
2163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2164 stop_print_frame = 0;
2165
2166 /* We are about to nuke the step_resume_breakpoin via the
2167 cleanup chain, so no need to worry about it here. */
2168
2169 stop_stepping (ecs);
2170 return;
2171
2172 case BPSTAT_WHAT_STEP_RESUME:
2173 /* This proably demands a more elegant solution, but, yeah
2174 right...
2175
2176 This function's use of the simple variable
2177 step_resume_breakpoint doesn't seem to accomodate
2178 simultaneously active step-resume bp's, although the
2179 breakpoint list certainly can.
2180
2181 If we reach here and step_resume_breakpoint is already
2182 NULL, then apparently we have multiple active
2183 step-resume bp's. We'll just delete the breakpoint we
2184 stopped at, and carry on.
2185
2186 Correction: what the code currently does is delete a
2187 step-resume bp, but it makes no effort to ensure that
2188 the one deleted is the one currently stopped at. MVS */
2189
2190 if (debug_infrun)
2191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2192
2193 if (step_resume_breakpoint == NULL)
2194 {
2195 step_resume_breakpoint =
2196 bpstat_find_step_resume_breakpoint (stop_bpstat);
2197 }
2198 delete_step_resume_breakpoint (&step_resume_breakpoint);
2199 if (ecs->step_after_step_resume_breakpoint)
2200 {
2201 /* Back when the step-resume breakpoint was inserted, we
2202 were trying to single-step off a breakpoint. Go back
2203 to doing that. */
2204 ecs->step_after_step_resume_breakpoint = 0;
2205 ecs->stepping_over_breakpoint = 1;
2206 keep_going (ecs);
2207 return;
2208 }
2209 break;
2210
2211 case BPSTAT_WHAT_CHECK_SHLIBS:
2212 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2213 {
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2216
2217 /* Check for any newly added shared libraries if we're
2218 supposed to be adding them automatically. Switch
2219 terminal for any messages produced by
2220 breakpoint_re_set. */
2221 target_terminal_ours_for_output ();
2222 /* NOTE: cagney/2003-11-25: Make certain that the target
2223 stack's section table is kept up-to-date. Architectures,
2224 (e.g., PPC64), use the section table to perform
2225 operations such as address => section name and hence
2226 require the table to contain all sections (including
2227 those found in shared libraries). */
2228 /* NOTE: cagney/2003-11-25: Pass current_target and not
2229 exec_ops to SOLIB_ADD. This is because current GDB is
2230 only tooled to propagate section_table changes out from
2231 the "current_target" (see target_resize_to_sections), and
2232 not up from the exec stratum. This, of course, isn't
2233 right. "infrun.c" should only interact with the
2234 exec/process stratum, instead relying on the target stack
2235 to propagate relevant changes (stop, section table
2236 changed, ...) up to other layers. */
2237 #ifdef SOLIB_ADD
2238 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2239 #else
2240 solib_add (NULL, 0, &current_target, auto_solib_add);
2241 #endif
2242 target_terminal_inferior ();
2243
2244 /* If requested, stop when the dynamic linker notifies
2245 gdb of events. This allows the user to get control
2246 and place breakpoints in initializer routines for
2247 dynamically loaded objects (among other things). */
2248 if (stop_on_solib_events || stop_stack_dummy)
2249 {
2250 stop_stepping (ecs);
2251 return;
2252 }
2253
2254 /* If we stopped due to an explicit catchpoint, then the
2255 (see above) call to SOLIB_ADD pulled in any symbols
2256 from a newly-loaded library, if appropriate.
2257
2258 We do want the inferior to stop, but not where it is
2259 now, which is in the dynamic linker callback. Rather,
2260 we would like it stop in the user's program, just after
2261 the call that caused this catchpoint to trigger. That
2262 gives the user a more useful vantage from which to
2263 examine their program's state. */
2264 else if (what.main_action
2265 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2266 {
2267 /* ??rehrauer: If I could figure out how to get the
2268 right return PC from here, we could just set a temp
2269 breakpoint and resume. I'm not sure we can without
2270 cracking open the dld's shared libraries and sniffing
2271 their unwind tables and text/data ranges, and that's
2272 not a terribly portable notion.
2273
2274 Until that time, we must step the inferior out of the
2275 dld callback, and also out of the dld itself (and any
2276 code or stubs in libdld.sl, such as "shl_load" and
2277 friends) until we reach non-dld code. At that point,
2278 we can stop stepping. */
2279 bpstat_get_triggered_catchpoints (stop_bpstat,
2280 &ecs->
2281 stepping_through_solib_catchpoints);
2282 ecs->stepping_through_solib_after_catch = 1;
2283
2284 /* Be sure to lift all breakpoints, so the inferior does
2285 actually step past this point... */
2286 ecs->stepping_over_breakpoint = 1;
2287 break;
2288 }
2289 else
2290 {
2291 /* We want to step over this breakpoint, then keep going. */
2292 ecs->stepping_over_breakpoint = 1;
2293 break;
2294 }
2295 }
2296 break;
2297
2298 case BPSTAT_WHAT_LAST:
2299 /* Not a real code, but listed here to shut up gcc -Wall. */
2300
2301 case BPSTAT_WHAT_KEEP_CHECKING:
2302 break;
2303 }
2304 }
2305
2306 /* We come here if we hit a breakpoint but should not
2307 stop for it. Possibly we also were stepping
2308 and should stop for that. So fall through and
2309 test for stepping. But, if not stepping,
2310 do not stop. */
2311
2312 /* Are we stepping to get the inferior out of the dynamic linker's
2313 hook (and possibly the dld itself) after catching a shlib
2314 event? */
2315 if (ecs->stepping_through_solib_after_catch)
2316 {
2317 #if defined(SOLIB_ADD)
2318 /* Have we reached our destination? If not, keep going. */
2319 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2320 {
2321 if (debug_infrun)
2322 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2323 ecs->stepping_over_breakpoint = 1;
2324 keep_going (ecs);
2325 return;
2326 }
2327 #endif
2328 if (debug_infrun)
2329 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2330 /* Else, stop and report the catchpoint(s) whose triggering
2331 caused us to begin stepping. */
2332 ecs->stepping_through_solib_after_catch = 0;
2333 bpstat_clear (&stop_bpstat);
2334 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2335 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2336 stop_print_frame = 1;
2337 stop_stepping (ecs);
2338 return;
2339 }
2340
2341 if (step_resume_breakpoint)
2342 {
2343 if (debug_infrun)
2344 fprintf_unfiltered (gdb_stdlog,
2345 "infrun: step-resume breakpoint is inserted\n");
2346
2347 /* Having a step-resume breakpoint overrides anything
2348 else having to do with stepping commands until
2349 that breakpoint is reached. */
2350 keep_going (ecs);
2351 return;
2352 }
2353
2354 if (step_range_end == 0)
2355 {
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2358 /* Likewise if we aren't even stepping. */
2359 keep_going (ecs);
2360 return;
2361 }
2362
2363 /* If stepping through a line, keep going if still within it.
2364
2365 Note that step_range_end is the address of the first instruction
2366 beyond the step range, and NOT the address of the last instruction
2367 within it! */
2368 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2369 {
2370 if (debug_infrun)
2371 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2372 paddr_nz (step_range_start),
2373 paddr_nz (step_range_end));
2374 keep_going (ecs);
2375 return;
2376 }
2377
2378 /* We stepped out of the stepping range. */
2379
2380 /* If we are stepping at the source level and entered the runtime
2381 loader dynamic symbol resolution code, we keep on single stepping
2382 until we exit the run time loader code and reach the callee's
2383 address. */
2384 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2385 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2386 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2387 #else
2388 && in_solib_dynsym_resolve_code (stop_pc)
2389 #endif
2390 )
2391 {
2392 CORE_ADDR pc_after_resolver =
2393 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2394
2395 if (debug_infrun)
2396 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2397
2398 if (pc_after_resolver)
2399 {
2400 /* Set up a step-resume breakpoint at the address
2401 indicated by SKIP_SOLIB_RESOLVER. */
2402 struct symtab_and_line sr_sal;
2403 init_sal (&sr_sal);
2404 sr_sal.pc = pc_after_resolver;
2405
2406 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2407 }
2408
2409 keep_going (ecs);
2410 return;
2411 }
2412
2413 if (step_range_end != 1
2414 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2415 || step_over_calls == STEP_OVER_ALL)
2416 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2417 {
2418 if (debug_infrun)
2419 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2420 /* The inferior, while doing a "step" or "next", has ended up in
2421 a signal trampoline (either by a signal being delivered or by
2422 the signal handler returning). Just single-step until the
2423 inferior leaves the trampoline (either by calling the handler
2424 or returning). */
2425 keep_going (ecs);
2426 return;
2427 }
2428
2429 /* Check for subroutine calls. The check for the current frame
2430 equalling the step ID is not necessary - the check of the
2431 previous frame's ID is sufficient - but it is a common case and
2432 cheaper than checking the previous frame's ID.
2433
2434 NOTE: frame_id_eq will never report two invalid frame IDs as
2435 being equal, so to get into this block, both the current and
2436 previous frame must have valid frame IDs. */
2437 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2438 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2439 {
2440 CORE_ADDR real_stop_pc;
2441
2442 if (debug_infrun)
2443 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2444
2445 if ((step_over_calls == STEP_OVER_NONE)
2446 || ((step_range_end == 1)
2447 && in_prologue (prev_pc, ecs->stop_func_start)))
2448 {
2449 /* I presume that step_over_calls is only 0 when we're
2450 supposed to be stepping at the assembly language level
2451 ("stepi"). Just stop. */
2452 /* Also, maybe we just did a "nexti" inside a prolog, so we
2453 thought it was a subroutine call but it was not. Stop as
2454 well. FENN */
2455 stop_step = 1;
2456 print_stop_reason (END_STEPPING_RANGE, 0);
2457 stop_stepping (ecs);
2458 return;
2459 }
2460
2461 if (step_over_calls == STEP_OVER_ALL)
2462 {
2463 /* We're doing a "next", set a breakpoint at callee's return
2464 address (the address at which the caller will
2465 resume). */
2466 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2467 keep_going (ecs);
2468 return;
2469 }
2470
2471 /* If we are in a function call trampoline (a stub between the
2472 calling routine and the real function), locate the real
2473 function. That's what tells us (a) whether we want to step
2474 into it at all, and (b) what prologue we want to run to the
2475 end of, if we do step into it. */
2476 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2477 if (real_stop_pc == 0)
2478 real_stop_pc = gdbarch_skip_trampoline_code
2479 (current_gdbarch, get_current_frame (), stop_pc);
2480 if (real_stop_pc != 0)
2481 ecs->stop_func_start = real_stop_pc;
2482
2483 if (
2484 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2485 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2486 #else
2487 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2488 #endif
2489 )
2490 {
2491 struct symtab_and_line sr_sal;
2492 init_sal (&sr_sal);
2493 sr_sal.pc = ecs->stop_func_start;
2494
2495 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2496 keep_going (ecs);
2497 return;
2498 }
2499
2500 /* If we have line number information for the function we are
2501 thinking of stepping into, step into it.
2502
2503 If there are several symtabs at that PC (e.g. with include
2504 files), just want to know whether *any* of them have line
2505 numbers. find_pc_line handles this. */
2506 {
2507 struct symtab_and_line tmp_sal;
2508
2509 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2510 if (tmp_sal.line != 0)
2511 {
2512 step_into_function (ecs);
2513 return;
2514 }
2515 }
2516
2517 /* If we have no line number and the step-stop-if-no-debug is
2518 set, we stop the step so that the user has a chance to switch
2519 in assembly mode. */
2520 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2521 {
2522 stop_step = 1;
2523 print_stop_reason (END_STEPPING_RANGE, 0);
2524 stop_stepping (ecs);
2525 return;
2526 }
2527
2528 /* Set a breakpoint at callee's return address (the address at
2529 which the caller will resume). */
2530 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2531 keep_going (ecs);
2532 return;
2533 }
2534
2535 /* If we're in the return path from a shared library trampoline,
2536 we want to proceed through the trampoline when stepping. */
2537 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2538 stop_pc, ecs->stop_func_name))
2539 {
2540 /* Determine where this trampoline returns. */
2541 CORE_ADDR real_stop_pc;
2542 real_stop_pc = gdbarch_skip_trampoline_code
2543 (current_gdbarch, get_current_frame (), stop_pc);
2544
2545 if (debug_infrun)
2546 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2547
2548 /* Only proceed through if we know where it's going. */
2549 if (real_stop_pc)
2550 {
2551 /* And put the step-breakpoint there and go until there. */
2552 struct symtab_and_line sr_sal;
2553
2554 init_sal (&sr_sal); /* initialize to zeroes */
2555 sr_sal.pc = real_stop_pc;
2556 sr_sal.section = find_pc_overlay (sr_sal.pc);
2557
2558 /* Do not specify what the fp should be when we stop since
2559 on some machines the prologue is where the new fp value
2560 is established. */
2561 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2562
2563 /* Restart without fiddling with the step ranges or
2564 other state. */
2565 keep_going (ecs);
2566 return;
2567 }
2568 }
2569
2570 ecs->sal = find_pc_line (stop_pc, 0);
2571
2572 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2573 the trampoline processing logic, however, there are some trampolines
2574 that have no names, so we should do trampoline handling first. */
2575 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2576 && ecs->stop_func_name == NULL
2577 && ecs->sal.line == 0)
2578 {
2579 if (debug_infrun)
2580 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2581
2582 /* The inferior just stepped into, or returned to, an
2583 undebuggable function (where there is no debugging information
2584 and no line number corresponding to the address where the
2585 inferior stopped). Since we want to skip this kind of code,
2586 we keep going until the inferior returns from this
2587 function - unless the user has asked us not to (via
2588 set step-mode) or we no longer know how to get back
2589 to the call site. */
2590 if (step_stop_if_no_debug
2591 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2592 {
2593 /* If we have no line number and the step-stop-if-no-debug
2594 is set, we stop the step so that the user has a chance to
2595 switch in assembly mode. */
2596 stop_step = 1;
2597 print_stop_reason (END_STEPPING_RANGE, 0);
2598 stop_stepping (ecs);
2599 return;
2600 }
2601 else
2602 {
2603 /* Set a breakpoint at callee's return address (the address
2604 at which the caller will resume). */
2605 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2606 keep_going (ecs);
2607 return;
2608 }
2609 }
2610
2611 if (step_range_end == 1)
2612 {
2613 /* It is stepi or nexti. We always want to stop stepping after
2614 one instruction. */
2615 if (debug_infrun)
2616 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2617 stop_step = 1;
2618 print_stop_reason (END_STEPPING_RANGE, 0);
2619 stop_stepping (ecs);
2620 return;
2621 }
2622
2623 if (ecs->sal.line == 0)
2624 {
2625 /* We have no line number information. That means to stop
2626 stepping (does this always happen right after one instruction,
2627 when we do "s" in a function with no line numbers,
2628 or can this happen as a result of a return or longjmp?). */
2629 if (debug_infrun)
2630 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2631 stop_step = 1;
2632 print_stop_reason (END_STEPPING_RANGE, 0);
2633 stop_stepping (ecs);
2634 return;
2635 }
2636
2637 if ((stop_pc == ecs->sal.pc)
2638 && (ecs->current_line != ecs->sal.line
2639 || ecs->current_symtab != ecs->sal.symtab))
2640 {
2641 /* We are at the start of a different line. So stop. Note that
2642 we don't stop if we step into the middle of a different line.
2643 That is said to make things like for (;;) statements work
2644 better. */
2645 if (debug_infrun)
2646 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2647 stop_step = 1;
2648 print_stop_reason (END_STEPPING_RANGE, 0);
2649 stop_stepping (ecs);
2650 return;
2651 }
2652
2653 /* We aren't done stepping.
2654
2655 Optimize by setting the stepping range to the line.
2656 (We might not be in the original line, but if we entered a
2657 new line in mid-statement, we continue stepping. This makes
2658 things like for(;;) statements work better.) */
2659
2660 step_range_start = ecs->sal.pc;
2661 step_range_end = ecs->sal.end;
2662 step_frame_id = get_frame_id (get_current_frame ());
2663 ecs->current_line = ecs->sal.line;
2664 ecs->current_symtab = ecs->sal.symtab;
2665
2666 /* In the case where we just stepped out of a function into the
2667 middle of a line of the caller, continue stepping, but
2668 step_frame_id must be modified to current frame */
2669 #if 0
2670 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2671 generous. It will trigger on things like a step into a frameless
2672 stackless leaf function. I think the logic should instead look
2673 at the unwound frame ID has that should give a more robust
2674 indication of what happened. */
2675 if (step - ID == current - ID)
2676 still stepping in same function;
2677 else if (step - ID == unwind (current - ID))
2678 stepped into a function;
2679 else
2680 stepped out of a function;
2681 /* Of course this assumes that the frame ID unwind code is robust
2682 and we're willing to introduce frame unwind logic into this
2683 function. Fortunately, those days are nearly upon us. */
2684 #endif
2685 {
2686 struct frame_info *frame = get_current_frame ();
2687 struct frame_id current_frame = get_frame_id (frame);
2688 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2689 step_frame_id)))
2690 step_frame_id = current_frame;
2691 }
2692
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2695 keep_going (ecs);
2696 }
2697
2698 /* Are we in the middle of stepping? */
2699
2700 static int
2701 currently_stepping (struct execution_control_state *ecs)
2702 {
2703 return ((!ecs->handling_longjmp
2704 && ((step_range_end && step_resume_breakpoint == NULL)
2705 || stepping_over_breakpoint))
2706 || ecs->stepping_through_solib_after_catch
2707 || bpstat_should_step ());
2708 }
2709
2710 /* Subroutine call with source code we should not step over. Do step
2711 to the first line of code in it. */
2712
2713 static void
2714 step_into_function (struct execution_control_state *ecs)
2715 {
2716 struct symtab *s;
2717 struct symtab_and_line sr_sal;
2718
2719 s = find_pc_symtab (stop_pc);
2720 if (s && s->language != language_asm)
2721 ecs->stop_func_start = gdbarch_skip_prologue
2722 (current_gdbarch, ecs->stop_func_start);
2723
2724 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2725 /* Use the step_resume_break to step until the end of the prologue,
2726 even if that involves jumps (as it seems to on the vax under
2727 4.2). */
2728 /* If the prologue ends in the middle of a source line, continue to
2729 the end of that source line (if it is still within the function).
2730 Otherwise, just go to end of prologue. */
2731 if (ecs->sal.end
2732 && ecs->sal.pc != ecs->stop_func_start
2733 && ecs->sal.end < ecs->stop_func_end)
2734 ecs->stop_func_start = ecs->sal.end;
2735
2736 /* Architectures which require breakpoint adjustment might not be able
2737 to place a breakpoint at the computed address. If so, the test
2738 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2739 ecs->stop_func_start to an address at which a breakpoint may be
2740 legitimately placed.
2741
2742 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2743 made, GDB will enter an infinite loop when stepping through
2744 optimized code consisting of VLIW instructions which contain
2745 subinstructions corresponding to different source lines. On
2746 FR-V, it's not permitted to place a breakpoint on any but the
2747 first subinstruction of a VLIW instruction. When a breakpoint is
2748 set, GDB will adjust the breakpoint address to the beginning of
2749 the VLIW instruction. Thus, we need to make the corresponding
2750 adjustment here when computing the stop address. */
2751
2752 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2753 {
2754 ecs->stop_func_start
2755 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2756 ecs->stop_func_start);
2757 }
2758
2759 if (ecs->stop_func_start == stop_pc)
2760 {
2761 /* We are already there: stop now. */
2762 stop_step = 1;
2763 print_stop_reason (END_STEPPING_RANGE, 0);
2764 stop_stepping (ecs);
2765 return;
2766 }
2767 else
2768 {
2769 /* Put the step-breakpoint there and go until there. */
2770 init_sal (&sr_sal); /* initialize to zeroes */
2771 sr_sal.pc = ecs->stop_func_start;
2772 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2773
2774 /* Do not specify what the fp should be when we stop since on
2775 some machines the prologue is where the new fp value is
2776 established. */
2777 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2778
2779 /* And make sure stepping stops right away then. */
2780 step_range_end = step_range_start;
2781 }
2782 keep_going (ecs);
2783 }
2784
2785 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2786 This is used to both functions and to skip over code. */
2787
2788 static void
2789 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2790 struct frame_id sr_id)
2791 {
2792 /* There should never be more than one step-resume breakpoint per
2793 thread, so we should never be setting a new
2794 step_resume_breakpoint when one is already active. */
2795 gdb_assert (step_resume_breakpoint == NULL);
2796
2797 if (debug_infrun)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "infrun: inserting step-resume breakpoint at 0x%s\n",
2800 paddr_nz (sr_sal.pc));
2801
2802 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2803 bp_step_resume);
2804 }
2805
2806 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2807 to skip a potential signal handler.
2808
2809 This is called with the interrupted function's frame. The signal
2810 handler, when it returns, will resume the interrupted function at
2811 RETURN_FRAME.pc. */
2812
2813 static void
2814 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2815 {
2816 struct symtab_and_line sr_sal;
2817
2818 gdb_assert (return_frame != NULL);
2819 init_sal (&sr_sal); /* initialize to zeros */
2820
2821 sr_sal.pc = gdbarch_addr_bits_remove
2822 (current_gdbarch, get_frame_pc (return_frame));
2823 sr_sal.section = find_pc_overlay (sr_sal.pc);
2824
2825 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2826 }
2827
2828 /* Similar to insert_step_resume_breakpoint_at_frame, except
2829 but a breakpoint at the previous frame's PC. This is used to
2830 skip a function after stepping into it (for "next" or if the called
2831 function has no debugging information).
2832
2833 The current function has almost always been reached by single
2834 stepping a call or return instruction. NEXT_FRAME belongs to the
2835 current function, and the breakpoint will be set at the caller's
2836 resume address.
2837
2838 This is a separate function rather than reusing
2839 insert_step_resume_breakpoint_at_frame in order to avoid
2840 get_prev_frame, which may stop prematurely (see the implementation
2841 of frame_unwind_id for an example). */
2842
2843 static void
2844 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2845 {
2846 struct symtab_and_line sr_sal;
2847
2848 /* We shouldn't have gotten here if we don't know where the call site
2849 is. */
2850 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2851
2852 init_sal (&sr_sal); /* initialize to zeros */
2853
2854 sr_sal.pc = gdbarch_addr_bits_remove
2855 (current_gdbarch, frame_pc_unwind (next_frame));
2856 sr_sal.section = find_pc_overlay (sr_sal.pc);
2857
2858 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2859 }
2860
2861 static void
2862 stop_stepping (struct execution_control_state *ecs)
2863 {
2864 if (debug_infrun)
2865 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2866
2867 /* Let callers know we don't want to wait for the inferior anymore. */
2868 ecs->wait_some_more = 0;
2869 }
2870
2871 /* This function handles various cases where we need to continue
2872 waiting for the inferior. */
2873 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2874
2875 static void
2876 keep_going (struct execution_control_state *ecs)
2877 {
2878 /* Save the pc before execution, to compare with pc after stop. */
2879 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2880
2881 /* If we did not do break;, it means we should keep running the
2882 inferior and not return to debugger. */
2883
2884 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2885 {
2886 /* We took a signal (which we are supposed to pass through to
2887 the inferior, else we'd have done a break above) and we
2888 haven't yet gotten our trap. Simply continue. */
2889 resume (currently_stepping (ecs), stop_signal);
2890 }
2891 else
2892 {
2893 /* Either the trap was not expected, but we are continuing
2894 anyway (the user asked that this signal be passed to the
2895 child)
2896 -- or --
2897 The signal was SIGTRAP, e.g. it was our signal, but we
2898 decided we should resume from it.
2899
2900 We're going to run this baby now!
2901
2902 Note that insert_breakpoints won't try to re-insert
2903 already inserted breakpoints. Therefore, we don't
2904 care if breakpoints were already inserted, or not. */
2905
2906 if (ecs->stepping_over_breakpoint)
2907 {
2908 remove_breakpoints ();
2909 }
2910 else
2911 {
2912 struct gdb_exception e;
2913 /* Stop stepping when inserting breakpoints
2914 has failed. */
2915 TRY_CATCH (e, RETURN_MASK_ERROR)
2916 {
2917 insert_breakpoints ();
2918 }
2919 if (e.reason < 0)
2920 {
2921 stop_stepping (ecs);
2922 return;
2923 }
2924 }
2925
2926 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2927
2928 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2929 specifies that such a signal should be delivered to the
2930 target program).
2931
2932 Typically, this would occure when a user is debugging a
2933 target monitor on a simulator: the target monitor sets a
2934 breakpoint; the simulator encounters this break-point and
2935 halts the simulation handing control to GDB; GDB, noteing
2936 that the break-point isn't valid, returns control back to the
2937 simulator; the simulator then delivers the hardware
2938 equivalent of a SIGNAL_TRAP to the program being debugged. */
2939
2940 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2941 stop_signal = TARGET_SIGNAL_0;
2942
2943
2944 resume (currently_stepping (ecs), stop_signal);
2945 }
2946
2947 prepare_to_wait (ecs);
2948 }
2949
2950 /* This function normally comes after a resume, before
2951 handle_inferior_event exits. It takes care of any last bits of
2952 housekeeping, and sets the all-important wait_some_more flag. */
2953
2954 static void
2955 prepare_to_wait (struct execution_control_state *ecs)
2956 {
2957 if (debug_infrun)
2958 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2959 if (ecs->infwait_state == infwait_normal_state)
2960 {
2961 overlay_cache_invalid = 1;
2962
2963 /* We have to invalidate the registers BEFORE calling
2964 target_wait because they can be loaded from the target while
2965 in target_wait. This makes remote debugging a bit more
2966 efficient for those targets that provide critical registers
2967 as part of their normal status mechanism. */
2968
2969 registers_changed ();
2970 ecs->waiton_ptid = pid_to_ptid (-1);
2971 ecs->wp = &(ecs->ws);
2972 }
2973 /* This is the old end of the while loop. Let everybody know we
2974 want to wait for the inferior some more and get called again
2975 soon. */
2976 ecs->wait_some_more = 1;
2977 }
2978
2979 /* Print why the inferior has stopped. We always print something when
2980 the inferior exits, or receives a signal. The rest of the cases are
2981 dealt with later on in normal_stop() and print_it_typical(). Ideally
2982 there should be a call to this function from handle_inferior_event()
2983 each time stop_stepping() is called.*/
2984 static void
2985 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2986 {
2987 switch (stop_reason)
2988 {
2989 case END_STEPPING_RANGE:
2990 /* We are done with a step/next/si/ni command. */
2991 /* For now print nothing. */
2992 /* Print a message only if not in the middle of doing a "step n"
2993 operation for n > 1 */
2994 if (!step_multi || !stop_step)
2995 if (ui_out_is_mi_like_p (uiout))
2996 ui_out_field_string
2997 (uiout, "reason",
2998 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2999 break;
3000 case SIGNAL_EXITED:
3001 /* The inferior was terminated by a signal. */
3002 annotate_signalled ();
3003 if (ui_out_is_mi_like_p (uiout))
3004 ui_out_field_string
3005 (uiout, "reason",
3006 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3007 ui_out_text (uiout, "\nProgram terminated with signal ");
3008 annotate_signal_name ();
3009 ui_out_field_string (uiout, "signal-name",
3010 target_signal_to_name (stop_info));
3011 annotate_signal_name_end ();
3012 ui_out_text (uiout, ", ");
3013 annotate_signal_string ();
3014 ui_out_field_string (uiout, "signal-meaning",
3015 target_signal_to_string (stop_info));
3016 annotate_signal_string_end ();
3017 ui_out_text (uiout, ".\n");
3018 ui_out_text (uiout, "The program no longer exists.\n");
3019 break;
3020 case EXITED:
3021 /* The inferior program is finished. */
3022 annotate_exited (stop_info);
3023 if (stop_info)
3024 {
3025 if (ui_out_is_mi_like_p (uiout))
3026 ui_out_field_string (uiout, "reason",
3027 async_reason_lookup (EXEC_ASYNC_EXITED));
3028 ui_out_text (uiout, "\nProgram exited with code ");
3029 ui_out_field_fmt (uiout, "exit-code", "0%o",
3030 (unsigned int) stop_info);
3031 ui_out_text (uiout, ".\n");
3032 }
3033 else
3034 {
3035 if (ui_out_is_mi_like_p (uiout))
3036 ui_out_field_string
3037 (uiout, "reason",
3038 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3039 ui_out_text (uiout, "\nProgram exited normally.\n");
3040 }
3041 /* Support the --return-child-result option. */
3042 return_child_result_value = stop_info;
3043 break;
3044 case SIGNAL_RECEIVED:
3045 /* Signal received. The signal table tells us to print about
3046 it. */
3047 annotate_signal ();
3048 ui_out_text (uiout, "\nProgram received signal ");
3049 annotate_signal_name ();
3050 if (ui_out_is_mi_like_p (uiout))
3051 ui_out_field_string
3052 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3053 ui_out_field_string (uiout, "signal-name",
3054 target_signal_to_name (stop_info));
3055 annotate_signal_name_end ();
3056 ui_out_text (uiout, ", ");
3057 annotate_signal_string ();
3058 ui_out_field_string (uiout, "signal-meaning",
3059 target_signal_to_string (stop_info));
3060 annotate_signal_string_end ();
3061 ui_out_text (uiout, ".\n");
3062 break;
3063 default:
3064 internal_error (__FILE__, __LINE__,
3065 _("print_stop_reason: unrecognized enum value"));
3066 break;
3067 }
3068 }
3069 \f
3070
3071 /* Here to return control to GDB when the inferior stops for real.
3072 Print appropriate messages, remove breakpoints, give terminal our modes.
3073
3074 STOP_PRINT_FRAME nonzero means print the executing frame
3075 (pc, function, args, file, line number and line text).
3076 BREAKPOINTS_FAILED nonzero means stop was due to error
3077 attempting to insert breakpoints. */
3078
3079 void
3080 normal_stop (void)
3081 {
3082 struct target_waitstatus last;
3083 ptid_t last_ptid;
3084
3085 get_last_target_status (&last_ptid, &last);
3086
3087 /* As with the notification of thread events, we want to delay
3088 notifying the user that we've switched thread context until
3089 the inferior actually stops.
3090
3091 There's no point in saying anything if the inferior has exited.
3092 Note that SIGNALLED here means "exited with a signal", not
3093 "received a signal". */
3094 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3095 && target_has_execution
3096 && last.kind != TARGET_WAITKIND_SIGNALLED
3097 && last.kind != TARGET_WAITKIND_EXITED)
3098 {
3099 target_terminal_ours_for_output ();
3100 printf_filtered (_("[Switching to %s]\n"),
3101 target_pid_to_str (inferior_ptid));
3102 previous_inferior_ptid = inferior_ptid;
3103 }
3104
3105 /* NOTE drow/2004-01-17: Is this still necessary? */
3106 /* Make sure that the current_frame's pc is correct. This
3107 is a correction for setting up the frame info before doing
3108 gdbarch_decr_pc_after_break */
3109 if (target_has_execution)
3110 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3111 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3112 frame code to check for this and sort out any resultant mess.
3113 gdbarch_decr_pc_after_break needs to just go away. */
3114 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3115
3116 if (!breakpoints_always_inserted_mode () && target_has_execution)
3117 {
3118 if (remove_breakpoints ())
3119 {
3120 target_terminal_ours_for_output ();
3121 printf_filtered (_("\
3122 Cannot remove breakpoints because program is no longer writable.\n\
3123 It might be running in another process.\n\
3124 Further execution is probably impossible.\n"));
3125 }
3126 }
3127
3128 /* If an auto-display called a function and that got a signal,
3129 delete that auto-display to avoid an infinite recursion. */
3130
3131 if (stopped_by_random_signal)
3132 disable_current_display ();
3133
3134 /* Don't print a message if in the middle of doing a "step n"
3135 operation for n > 1 */
3136 if (step_multi && stop_step)
3137 goto done;
3138
3139 target_terminal_ours ();
3140
3141 /* Set the current source location. This will also happen if we
3142 display the frame below, but the current SAL will be incorrect
3143 during a user hook-stop function. */
3144 if (target_has_stack && !stop_stack_dummy)
3145 set_current_sal_from_frame (get_current_frame (), 1);
3146
3147 /* Look up the hook_stop and run it (CLI internally handles problem
3148 of stop_command's pre-hook not existing). */
3149 if (stop_command)
3150 catch_errors (hook_stop_stub, stop_command,
3151 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3152
3153 if (!target_has_stack)
3154 {
3155
3156 goto done;
3157 }
3158
3159 /* Select innermost stack frame - i.e., current frame is frame 0,
3160 and current location is based on that.
3161 Don't do this on return from a stack dummy routine,
3162 or if the program has exited. */
3163
3164 if (!stop_stack_dummy)
3165 {
3166 select_frame (get_current_frame ());
3167
3168 /* Print current location without a level number, if
3169 we have changed functions or hit a breakpoint.
3170 Print source line if we have one.
3171 bpstat_print() contains the logic deciding in detail
3172 what to print, based on the event(s) that just occurred. */
3173
3174 if (stop_print_frame)
3175 {
3176 int bpstat_ret;
3177 int source_flag;
3178 int do_frame_printing = 1;
3179
3180 bpstat_ret = bpstat_print (stop_bpstat);
3181 switch (bpstat_ret)
3182 {
3183 case PRINT_UNKNOWN:
3184 /* If we had hit a shared library event breakpoint,
3185 bpstat_print would print out this message. If we hit
3186 an OS-level shared library event, do the same
3187 thing. */
3188 if (last.kind == TARGET_WAITKIND_LOADED)
3189 {
3190 printf_filtered (_("Stopped due to shared library event\n"));
3191 source_flag = SRC_LINE; /* something bogus */
3192 do_frame_printing = 0;
3193 break;
3194 }
3195
3196 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3197 (or should) carry around the function and does (or
3198 should) use that when doing a frame comparison. */
3199 if (stop_step
3200 && frame_id_eq (step_frame_id,
3201 get_frame_id (get_current_frame ()))
3202 && step_start_function == find_pc_function (stop_pc))
3203 source_flag = SRC_LINE; /* finished step, just print source line */
3204 else
3205 source_flag = SRC_AND_LOC; /* print location and source line */
3206 break;
3207 case PRINT_SRC_AND_LOC:
3208 source_flag = SRC_AND_LOC; /* print location and source line */
3209 break;
3210 case PRINT_SRC_ONLY:
3211 source_flag = SRC_LINE;
3212 break;
3213 case PRINT_NOTHING:
3214 source_flag = SRC_LINE; /* something bogus */
3215 do_frame_printing = 0;
3216 break;
3217 default:
3218 internal_error (__FILE__, __LINE__, _("Unknown value."));
3219 }
3220
3221 if (ui_out_is_mi_like_p (uiout))
3222 ui_out_field_int (uiout, "thread-id",
3223 pid_to_thread_id (inferior_ptid));
3224 /* The behavior of this routine with respect to the source
3225 flag is:
3226 SRC_LINE: Print only source line
3227 LOCATION: Print only location
3228 SRC_AND_LOC: Print location and source line */
3229 if (do_frame_printing)
3230 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3231
3232 /* Display the auto-display expressions. */
3233 do_displays ();
3234 }
3235 }
3236
3237 /* Save the function value return registers, if we care.
3238 We might be about to restore their previous contents. */
3239 if (proceed_to_finish)
3240 {
3241 /* This should not be necessary. */
3242 if (stop_registers)
3243 regcache_xfree (stop_registers);
3244
3245 /* NB: The copy goes through to the target picking up the value of
3246 all the registers. */
3247 stop_registers = regcache_dup (get_current_regcache ());
3248 }
3249
3250 if (stop_stack_dummy)
3251 {
3252 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3253 ends with a setting of the current frame, so we can use that
3254 next. */
3255 frame_pop (get_current_frame ());
3256 /* Set stop_pc to what it was before we called the function.
3257 Can't rely on restore_inferior_status because that only gets
3258 called if we don't stop in the called function. */
3259 stop_pc = read_pc ();
3260 select_frame (get_current_frame ());
3261 }
3262
3263 done:
3264 annotate_stopped ();
3265 observer_notify_normal_stop (stop_bpstat);
3266 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3267 Delete any breakpoint that is to be deleted at the next stop. */
3268 breakpoint_auto_delete (stop_bpstat);
3269 }
3270
3271 static int
3272 hook_stop_stub (void *cmd)
3273 {
3274 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3275 return (0);
3276 }
3277 \f
3278 int
3279 signal_stop_state (int signo)
3280 {
3281 /* Always stop on signals if we're just gaining control of the
3282 program. */
3283 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3284 }
3285
3286 int
3287 signal_print_state (int signo)
3288 {
3289 return signal_print[signo];
3290 }
3291
3292 int
3293 signal_pass_state (int signo)
3294 {
3295 return signal_program[signo];
3296 }
3297
3298 int
3299 signal_stop_update (int signo, int state)
3300 {
3301 int ret = signal_stop[signo];
3302 signal_stop[signo] = state;
3303 return ret;
3304 }
3305
3306 int
3307 signal_print_update (int signo, int state)
3308 {
3309 int ret = signal_print[signo];
3310 signal_print[signo] = state;
3311 return ret;
3312 }
3313
3314 int
3315 signal_pass_update (int signo, int state)
3316 {
3317 int ret = signal_program[signo];
3318 signal_program[signo] = state;
3319 return ret;
3320 }
3321
3322 static void
3323 sig_print_header (void)
3324 {
3325 printf_filtered (_("\
3326 Signal Stop\tPrint\tPass to program\tDescription\n"));
3327 }
3328
3329 static void
3330 sig_print_info (enum target_signal oursig)
3331 {
3332 char *name = target_signal_to_name (oursig);
3333 int name_padding = 13 - strlen (name);
3334
3335 if (name_padding <= 0)
3336 name_padding = 0;
3337
3338 printf_filtered ("%s", name);
3339 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3340 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3341 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3342 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3343 printf_filtered ("%s\n", target_signal_to_string (oursig));
3344 }
3345
3346 /* Specify how various signals in the inferior should be handled. */
3347
3348 static void
3349 handle_command (char *args, int from_tty)
3350 {
3351 char **argv;
3352 int digits, wordlen;
3353 int sigfirst, signum, siglast;
3354 enum target_signal oursig;
3355 int allsigs;
3356 int nsigs;
3357 unsigned char *sigs;
3358 struct cleanup *old_chain;
3359
3360 if (args == NULL)
3361 {
3362 error_no_arg (_("signal to handle"));
3363 }
3364
3365 /* Allocate and zero an array of flags for which signals to handle. */
3366
3367 nsigs = (int) TARGET_SIGNAL_LAST;
3368 sigs = (unsigned char *) alloca (nsigs);
3369 memset (sigs, 0, nsigs);
3370
3371 /* Break the command line up into args. */
3372
3373 argv = buildargv (args);
3374 if (argv == NULL)
3375 {
3376 nomem (0);
3377 }
3378 old_chain = make_cleanup_freeargv (argv);
3379
3380 /* Walk through the args, looking for signal oursigs, signal names, and
3381 actions. Signal numbers and signal names may be interspersed with
3382 actions, with the actions being performed for all signals cumulatively
3383 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3384
3385 while (*argv != NULL)
3386 {
3387 wordlen = strlen (*argv);
3388 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3389 {;
3390 }
3391 allsigs = 0;
3392 sigfirst = siglast = -1;
3393
3394 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3395 {
3396 /* Apply action to all signals except those used by the
3397 debugger. Silently skip those. */
3398 allsigs = 1;
3399 sigfirst = 0;
3400 siglast = nsigs - 1;
3401 }
3402 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3403 {
3404 SET_SIGS (nsigs, sigs, signal_stop);
3405 SET_SIGS (nsigs, sigs, signal_print);
3406 }
3407 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3408 {
3409 UNSET_SIGS (nsigs, sigs, signal_program);
3410 }
3411 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3412 {
3413 SET_SIGS (nsigs, sigs, signal_print);
3414 }
3415 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3416 {
3417 SET_SIGS (nsigs, sigs, signal_program);
3418 }
3419 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3420 {
3421 UNSET_SIGS (nsigs, sigs, signal_stop);
3422 }
3423 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3424 {
3425 SET_SIGS (nsigs, sigs, signal_program);
3426 }
3427 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3428 {
3429 UNSET_SIGS (nsigs, sigs, signal_print);
3430 UNSET_SIGS (nsigs, sigs, signal_stop);
3431 }
3432 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3433 {
3434 UNSET_SIGS (nsigs, sigs, signal_program);
3435 }
3436 else if (digits > 0)
3437 {
3438 /* It is numeric. The numeric signal refers to our own
3439 internal signal numbering from target.h, not to host/target
3440 signal number. This is a feature; users really should be
3441 using symbolic names anyway, and the common ones like
3442 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3443
3444 sigfirst = siglast = (int)
3445 target_signal_from_command (atoi (*argv));
3446 if ((*argv)[digits] == '-')
3447 {
3448 siglast = (int)
3449 target_signal_from_command (atoi ((*argv) + digits + 1));
3450 }
3451 if (sigfirst > siglast)
3452 {
3453 /* Bet he didn't figure we'd think of this case... */
3454 signum = sigfirst;
3455 sigfirst = siglast;
3456 siglast = signum;
3457 }
3458 }
3459 else
3460 {
3461 oursig = target_signal_from_name (*argv);
3462 if (oursig != TARGET_SIGNAL_UNKNOWN)
3463 {
3464 sigfirst = siglast = (int) oursig;
3465 }
3466 else
3467 {
3468 /* Not a number and not a recognized flag word => complain. */
3469 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3470 }
3471 }
3472
3473 /* If any signal numbers or symbol names were found, set flags for
3474 which signals to apply actions to. */
3475
3476 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3477 {
3478 switch ((enum target_signal) signum)
3479 {
3480 case TARGET_SIGNAL_TRAP:
3481 case TARGET_SIGNAL_INT:
3482 if (!allsigs && !sigs[signum])
3483 {
3484 if (query ("%s is used by the debugger.\n\
3485 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3486 {
3487 sigs[signum] = 1;
3488 }
3489 else
3490 {
3491 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3492 gdb_flush (gdb_stdout);
3493 }
3494 }
3495 break;
3496 case TARGET_SIGNAL_0:
3497 case TARGET_SIGNAL_DEFAULT:
3498 case TARGET_SIGNAL_UNKNOWN:
3499 /* Make sure that "all" doesn't print these. */
3500 break;
3501 default:
3502 sigs[signum] = 1;
3503 break;
3504 }
3505 }
3506
3507 argv++;
3508 }
3509
3510 target_notice_signals (inferior_ptid);
3511
3512 if (from_tty)
3513 {
3514 /* Show the results. */
3515 sig_print_header ();
3516 for (signum = 0; signum < nsigs; signum++)
3517 {
3518 if (sigs[signum])
3519 {
3520 sig_print_info (signum);
3521 }
3522 }
3523 }
3524
3525 do_cleanups (old_chain);
3526 }
3527
3528 static void
3529 xdb_handle_command (char *args, int from_tty)
3530 {
3531 char **argv;
3532 struct cleanup *old_chain;
3533
3534 /* Break the command line up into args. */
3535
3536 argv = buildargv (args);
3537 if (argv == NULL)
3538 {
3539 nomem (0);
3540 }
3541 old_chain = make_cleanup_freeargv (argv);
3542 if (argv[1] != (char *) NULL)
3543 {
3544 char *argBuf;
3545 int bufLen;
3546
3547 bufLen = strlen (argv[0]) + 20;
3548 argBuf = (char *) xmalloc (bufLen);
3549 if (argBuf)
3550 {
3551 int validFlag = 1;
3552 enum target_signal oursig;
3553
3554 oursig = target_signal_from_name (argv[0]);
3555 memset (argBuf, 0, bufLen);
3556 if (strcmp (argv[1], "Q") == 0)
3557 sprintf (argBuf, "%s %s", argv[0], "noprint");
3558 else
3559 {
3560 if (strcmp (argv[1], "s") == 0)
3561 {
3562 if (!signal_stop[oursig])
3563 sprintf (argBuf, "%s %s", argv[0], "stop");
3564 else
3565 sprintf (argBuf, "%s %s", argv[0], "nostop");
3566 }
3567 else if (strcmp (argv[1], "i") == 0)
3568 {
3569 if (!signal_program[oursig])
3570 sprintf (argBuf, "%s %s", argv[0], "pass");
3571 else
3572 sprintf (argBuf, "%s %s", argv[0], "nopass");
3573 }
3574 else if (strcmp (argv[1], "r") == 0)
3575 {
3576 if (!signal_print[oursig])
3577 sprintf (argBuf, "%s %s", argv[0], "print");
3578 else
3579 sprintf (argBuf, "%s %s", argv[0], "noprint");
3580 }
3581 else
3582 validFlag = 0;
3583 }
3584 if (validFlag)
3585 handle_command (argBuf, from_tty);
3586 else
3587 printf_filtered (_("Invalid signal handling flag.\n"));
3588 if (argBuf)
3589 xfree (argBuf);
3590 }
3591 }
3592 do_cleanups (old_chain);
3593 }
3594
3595 /* Print current contents of the tables set by the handle command.
3596 It is possible we should just be printing signals actually used
3597 by the current target (but for things to work right when switching
3598 targets, all signals should be in the signal tables). */
3599
3600 static void
3601 signals_info (char *signum_exp, int from_tty)
3602 {
3603 enum target_signal oursig;
3604 sig_print_header ();
3605
3606 if (signum_exp)
3607 {
3608 /* First see if this is a symbol name. */
3609 oursig = target_signal_from_name (signum_exp);
3610 if (oursig == TARGET_SIGNAL_UNKNOWN)
3611 {
3612 /* No, try numeric. */
3613 oursig =
3614 target_signal_from_command (parse_and_eval_long (signum_exp));
3615 }
3616 sig_print_info (oursig);
3617 return;
3618 }
3619
3620 printf_filtered ("\n");
3621 /* These ugly casts brought to you by the native VAX compiler. */
3622 for (oursig = TARGET_SIGNAL_FIRST;
3623 (int) oursig < (int) TARGET_SIGNAL_LAST;
3624 oursig = (enum target_signal) ((int) oursig + 1))
3625 {
3626 QUIT;
3627
3628 if (oursig != TARGET_SIGNAL_UNKNOWN
3629 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3630 sig_print_info (oursig);
3631 }
3632
3633 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3634 }
3635 \f
3636 struct inferior_status
3637 {
3638 enum target_signal stop_signal;
3639 CORE_ADDR stop_pc;
3640 bpstat stop_bpstat;
3641 int stop_step;
3642 int stop_stack_dummy;
3643 int stopped_by_random_signal;
3644 int stepping_over_breakpoint;
3645 CORE_ADDR step_range_start;
3646 CORE_ADDR step_range_end;
3647 struct frame_id step_frame_id;
3648 enum step_over_calls_kind step_over_calls;
3649 CORE_ADDR step_resume_break_address;
3650 int stop_after_trap;
3651 int stop_soon;
3652
3653 /* These are here because if call_function_by_hand has written some
3654 registers and then decides to call error(), we better not have changed
3655 any registers. */
3656 struct regcache *registers;
3657
3658 /* A frame unique identifier. */
3659 struct frame_id selected_frame_id;
3660
3661 int breakpoint_proceeded;
3662 int restore_stack_info;
3663 int proceed_to_finish;
3664 };
3665
3666 void
3667 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3668 LONGEST val)
3669 {
3670 int size = register_size (current_gdbarch, regno);
3671 void *buf = alloca (size);
3672 store_signed_integer (buf, size, val);
3673 regcache_raw_write (inf_status->registers, regno, buf);
3674 }
3675
3676 /* Save all of the information associated with the inferior<==>gdb
3677 connection. INF_STATUS is a pointer to a "struct inferior_status"
3678 (defined in inferior.h). */
3679
3680 struct inferior_status *
3681 save_inferior_status (int restore_stack_info)
3682 {
3683 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3684
3685 inf_status->stop_signal = stop_signal;
3686 inf_status->stop_pc = stop_pc;
3687 inf_status->stop_step = stop_step;
3688 inf_status->stop_stack_dummy = stop_stack_dummy;
3689 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3690 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3691 inf_status->step_range_start = step_range_start;
3692 inf_status->step_range_end = step_range_end;
3693 inf_status->step_frame_id = step_frame_id;
3694 inf_status->step_over_calls = step_over_calls;
3695 inf_status->stop_after_trap = stop_after_trap;
3696 inf_status->stop_soon = stop_soon;
3697 /* Save original bpstat chain here; replace it with copy of chain.
3698 If caller's caller is walking the chain, they'll be happier if we
3699 hand them back the original chain when restore_inferior_status is
3700 called. */
3701 inf_status->stop_bpstat = stop_bpstat;
3702 stop_bpstat = bpstat_copy (stop_bpstat);
3703 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3704 inf_status->restore_stack_info = restore_stack_info;
3705 inf_status->proceed_to_finish = proceed_to_finish;
3706
3707 inf_status->registers = regcache_dup (get_current_regcache ());
3708
3709 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3710 return inf_status;
3711 }
3712
3713 static int
3714 restore_selected_frame (void *args)
3715 {
3716 struct frame_id *fid = (struct frame_id *) args;
3717 struct frame_info *frame;
3718
3719 frame = frame_find_by_id (*fid);
3720
3721 /* If inf_status->selected_frame_id is NULL, there was no previously
3722 selected frame. */
3723 if (frame == NULL)
3724 {
3725 warning (_("Unable to restore previously selected frame."));
3726 return 0;
3727 }
3728
3729 select_frame (frame);
3730
3731 return (1);
3732 }
3733
3734 void
3735 restore_inferior_status (struct inferior_status *inf_status)
3736 {
3737 stop_signal = inf_status->stop_signal;
3738 stop_pc = inf_status->stop_pc;
3739 stop_step = inf_status->stop_step;
3740 stop_stack_dummy = inf_status->stop_stack_dummy;
3741 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3742 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3743 step_range_start = inf_status->step_range_start;
3744 step_range_end = inf_status->step_range_end;
3745 step_frame_id = inf_status->step_frame_id;
3746 step_over_calls = inf_status->step_over_calls;
3747 stop_after_trap = inf_status->stop_after_trap;
3748 stop_soon = inf_status->stop_soon;
3749 bpstat_clear (&stop_bpstat);
3750 stop_bpstat = inf_status->stop_bpstat;
3751 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3752 proceed_to_finish = inf_status->proceed_to_finish;
3753
3754 /* The inferior can be gone if the user types "print exit(0)"
3755 (and perhaps other times). */
3756 if (target_has_execution)
3757 /* NB: The register write goes through to the target. */
3758 regcache_cpy (get_current_regcache (), inf_status->registers);
3759 regcache_xfree (inf_status->registers);
3760
3761 /* FIXME: If we are being called after stopping in a function which
3762 is called from gdb, we should not be trying to restore the
3763 selected frame; it just prints a spurious error message (The
3764 message is useful, however, in detecting bugs in gdb (like if gdb
3765 clobbers the stack)). In fact, should we be restoring the
3766 inferior status at all in that case? . */
3767
3768 if (target_has_stack && inf_status->restore_stack_info)
3769 {
3770 /* The point of catch_errors is that if the stack is clobbered,
3771 walking the stack might encounter a garbage pointer and
3772 error() trying to dereference it. */
3773 if (catch_errors
3774 (restore_selected_frame, &inf_status->selected_frame_id,
3775 "Unable to restore previously selected frame:\n",
3776 RETURN_MASK_ERROR) == 0)
3777 /* Error in restoring the selected frame. Select the innermost
3778 frame. */
3779 select_frame (get_current_frame ());
3780
3781 }
3782
3783 xfree (inf_status);
3784 }
3785
3786 static void
3787 do_restore_inferior_status_cleanup (void *sts)
3788 {
3789 restore_inferior_status (sts);
3790 }
3791
3792 struct cleanup *
3793 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3794 {
3795 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3796 }
3797
3798 void
3799 discard_inferior_status (struct inferior_status *inf_status)
3800 {
3801 /* See save_inferior_status for info on stop_bpstat. */
3802 bpstat_clear (&inf_status->stop_bpstat);
3803 regcache_xfree (inf_status->registers);
3804 xfree (inf_status);
3805 }
3806
3807 int
3808 inferior_has_forked (int pid, int *child_pid)
3809 {
3810 struct target_waitstatus last;
3811 ptid_t last_ptid;
3812
3813 get_last_target_status (&last_ptid, &last);
3814
3815 if (last.kind != TARGET_WAITKIND_FORKED)
3816 return 0;
3817
3818 if (ptid_get_pid (last_ptid) != pid)
3819 return 0;
3820
3821 *child_pid = last.value.related_pid;
3822 return 1;
3823 }
3824
3825 int
3826 inferior_has_vforked (int pid, int *child_pid)
3827 {
3828 struct target_waitstatus last;
3829 ptid_t last_ptid;
3830
3831 get_last_target_status (&last_ptid, &last);
3832
3833 if (last.kind != TARGET_WAITKIND_VFORKED)
3834 return 0;
3835
3836 if (ptid_get_pid (last_ptid) != pid)
3837 return 0;
3838
3839 *child_pid = last.value.related_pid;
3840 return 1;
3841 }
3842
3843 int
3844 inferior_has_execd (int pid, char **execd_pathname)
3845 {
3846 struct target_waitstatus last;
3847 ptid_t last_ptid;
3848
3849 get_last_target_status (&last_ptid, &last);
3850
3851 if (last.kind != TARGET_WAITKIND_EXECD)
3852 return 0;
3853
3854 if (ptid_get_pid (last_ptid) != pid)
3855 return 0;
3856
3857 *execd_pathname = xstrdup (last.value.execd_pathname);
3858 return 1;
3859 }
3860
3861 /* Oft used ptids */
3862 ptid_t null_ptid;
3863 ptid_t minus_one_ptid;
3864
3865 /* Create a ptid given the necessary PID, LWP, and TID components. */
3866
3867 ptid_t
3868 ptid_build (int pid, long lwp, long tid)
3869 {
3870 ptid_t ptid;
3871
3872 ptid.pid = pid;
3873 ptid.lwp = lwp;
3874 ptid.tid = tid;
3875 return ptid;
3876 }
3877
3878 /* Create a ptid from just a pid. */
3879
3880 ptid_t
3881 pid_to_ptid (int pid)
3882 {
3883 return ptid_build (pid, 0, 0);
3884 }
3885
3886 /* Fetch the pid (process id) component from a ptid. */
3887
3888 int
3889 ptid_get_pid (ptid_t ptid)
3890 {
3891 return ptid.pid;
3892 }
3893
3894 /* Fetch the lwp (lightweight process) component from a ptid. */
3895
3896 long
3897 ptid_get_lwp (ptid_t ptid)
3898 {
3899 return ptid.lwp;
3900 }
3901
3902 /* Fetch the tid (thread id) component from a ptid. */
3903
3904 long
3905 ptid_get_tid (ptid_t ptid)
3906 {
3907 return ptid.tid;
3908 }
3909
3910 /* ptid_equal() is used to test equality of two ptids. */
3911
3912 int
3913 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3914 {
3915 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3916 && ptid1.tid == ptid2.tid);
3917 }
3918
3919 /* restore_inferior_ptid() will be used by the cleanup machinery
3920 to restore the inferior_ptid value saved in a call to
3921 save_inferior_ptid(). */
3922
3923 static void
3924 restore_inferior_ptid (void *arg)
3925 {
3926 ptid_t *saved_ptid_ptr = arg;
3927 inferior_ptid = *saved_ptid_ptr;
3928 xfree (arg);
3929 }
3930
3931 /* Save the value of inferior_ptid so that it may be restored by a
3932 later call to do_cleanups(). Returns the struct cleanup pointer
3933 needed for later doing the cleanup. */
3934
3935 struct cleanup *
3936 save_inferior_ptid (void)
3937 {
3938 ptid_t *saved_ptid_ptr;
3939
3940 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3941 *saved_ptid_ptr = inferior_ptid;
3942 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3943 }
3944 \f
3945
3946 void
3947 _initialize_infrun (void)
3948 {
3949 int i;
3950 int numsigs;
3951 struct cmd_list_element *c;
3952
3953 add_info ("signals", signals_info, _("\
3954 What debugger does when program gets various signals.\n\
3955 Specify a signal as argument to print info on that signal only."));
3956 add_info_alias ("handle", "signals", 0);
3957
3958 add_com ("handle", class_run, handle_command, _("\
3959 Specify how to handle a signal.\n\
3960 Args are signals and actions to apply to those signals.\n\
3961 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3962 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3963 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3964 The special arg \"all\" is recognized to mean all signals except those\n\
3965 used by the debugger, typically SIGTRAP and SIGINT.\n\
3966 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3967 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3968 Stop means reenter debugger if this signal happens (implies print).\n\
3969 Print means print a message if this signal happens.\n\
3970 Pass means let program see this signal; otherwise program doesn't know.\n\
3971 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3972 Pass and Stop may be combined."));
3973 if (xdb_commands)
3974 {
3975 add_com ("lz", class_info, signals_info, _("\
3976 What debugger does when program gets various signals.\n\
3977 Specify a signal as argument to print info on that signal only."));
3978 add_com ("z", class_run, xdb_handle_command, _("\
3979 Specify how to handle a signal.\n\
3980 Args are signals and actions to apply to those signals.\n\
3981 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3982 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3983 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3984 The special arg \"all\" is recognized to mean all signals except those\n\
3985 used by the debugger, typically SIGTRAP and SIGINT.\n\
3986 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3987 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3988 nopass), \"Q\" (noprint)\n\
3989 Stop means reenter debugger if this signal happens (implies print).\n\
3990 Print means print a message if this signal happens.\n\
3991 Pass means let program see this signal; otherwise program doesn't know.\n\
3992 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3993 Pass and Stop may be combined."));
3994 }
3995
3996 if (!dbx_commands)
3997 stop_command = add_cmd ("stop", class_obscure,
3998 not_just_help_class_command, _("\
3999 There is no `stop' command, but you can set a hook on `stop'.\n\
4000 This allows you to set a list of commands to be run each time execution\n\
4001 of the program stops."), &cmdlist);
4002
4003 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4004 Set inferior debugging."), _("\
4005 Show inferior debugging."), _("\
4006 When non-zero, inferior specific debugging is enabled."),
4007 NULL,
4008 show_debug_infrun,
4009 &setdebuglist, &showdebuglist);
4010
4011 numsigs = (int) TARGET_SIGNAL_LAST;
4012 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4013 signal_print = (unsigned char *)
4014 xmalloc (sizeof (signal_print[0]) * numsigs);
4015 signal_program = (unsigned char *)
4016 xmalloc (sizeof (signal_program[0]) * numsigs);
4017 for (i = 0; i < numsigs; i++)
4018 {
4019 signal_stop[i] = 1;
4020 signal_print[i] = 1;
4021 signal_program[i] = 1;
4022 }
4023
4024 /* Signals caused by debugger's own actions
4025 should not be given to the program afterwards. */
4026 signal_program[TARGET_SIGNAL_TRAP] = 0;
4027 signal_program[TARGET_SIGNAL_INT] = 0;
4028
4029 /* Signals that are not errors should not normally enter the debugger. */
4030 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4031 signal_print[TARGET_SIGNAL_ALRM] = 0;
4032 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4033 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4034 signal_stop[TARGET_SIGNAL_PROF] = 0;
4035 signal_print[TARGET_SIGNAL_PROF] = 0;
4036 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4037 signal_print[TARGET_SIGNAL_CHLD] = 0;
4038 signal_stop[TARGET_SIGNAL_IO] = 0;
4039 signal_print[TARGET_SIGNAL_IO] = 0;
4040 signal_stop[TARGET_SIGNAL_POLL] = 0;
4041 signal_print[TARGET_SIGNAL_POLL] = 0;
4042 signal_stop[TARGET_SIGNAL_URG] = 0;
4043 signal_print[TARGET_SIGNAL_URG] = 0;
4044 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4045 signal_print[TARGET_SIGNAL_WINCH] = 0;
4046
4047 /* These signals are used internally by user-level thread
4048 implementations. (See signal(5) on Solaris.) Like the above
4049 signals, a healthy program receives and handles them as part of
4050 its normal operation. */
4051 signal_stop[TARGET_SIGNAL_LWP] = 0;
4052 signal_print[TARGET_SIGNAL_LWP] = 0;
4053 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4054 signal_print[TARGET_SIGNAL_WAITING] = 0;
4055 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4056 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4057
4058 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4059 &stop_on_solib_events, _("\
4060 Set stopping for shared library events."), _("\
4061 Show stopping for shared library events."), _("\
4062 If nonzero, gdb will give control to the user when the dynamic linker\n\
4063 notifies gdb of shared library events. The most common event of interest\n\
4064 to the user would be loading/unloading of a new library."),
4065 NULL,
4066 show_stop_on_solib_events,
4067 &setlist, &showlist);
4068
4069 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4070 follow_fork_mode_kind_names,
4071 &follow_fork_mode_string, _("\
4072 Set debugger response to a program call of fork or vfork."), _("\
4073 Show debugger response to a program call of fork or vfork."), _("\
4074 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4075 parent - the original process is debugged after a fork\n\
4076 child - the new process is debugged after a fork\n\
4077 The unfollowed process will continue to run.\n\
4078 By default, the debugger will follow the parent process."),
4079 NULL,
4080 show_follow_fork_mode_string,
4081 &setlist, &showlist);
4082
4083 add_setshow_enum_cmd ("scheduler-locking", class_run,
4084 scheduler_enums, &scheduler_mode, _("\
4085 Set mode for locking scheduler during execution."), _("\
4086 Show mode for locking scheduler during execution."), _("\
4087 off == no locking (threads may preempt at any time)\n\
4088 on == full locking (no thread except the current thread may run)\n\
4089 step == scheduler locked during every single-step operation.\n\
4090 In this mode, no other thread may run during a step command.\n\
4091 Other threads may run while stepping over a function call ('next')."),
4092 set_schedlock_func, /* traps on target vector */
4093 show_scheduler_mode,
4094 &setlist, &showlist);
4095
4096 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4097 Set mode of the step operation."), _("\
4098 Show mode of the step operation."), _("\
4099 When set, doing a step over a function without debug line information\n\
4100 will stop at the first instruction of that function. Otherwise, the\n\
4101 function is skipped and the step command stops at a different source line."),
4102 NULL,
4103 show_step_stop_if_no_debug,
4104 &setlist, &showlist);
4105
4106 /* ptid initializations */
4107 null_ptid = ptid_build (0, 0, 0);
4108 minus_one_ptid = ptid_build (-1, 0, 0);
4109 inferior_ptid = null_ptid;
4110 target_last_wait_ptid = minus_one_ptid;
4111 }
This page took 0.152536 seconds and 5 git commands to generate.