2011-02-16 Yao Qi <yao@qiyaows>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57
58 /* Prototypes for local functions */
59
60 static void signals_info (char *, int);
61
62 static void handle_command (char *, int);
63
64 static void sig_print_info (enum target_signal);
65
66 static void sig_print_header (void);
67
68 static void resume_cleanups (void *);
69
70 static int hook_stop_stub (void *);
71
72 static int restore_selected_frame (void *);
73
74 static int follow_fork (void);
75
76 static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element *c);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
83
84 static void xdb_handle_command (char *args, int from_tty);
85
86 static int prepare_to_proceed (int);
87
88 static void print_exited_reason (int exitstatus);
89
90 static void print_signal_exited_reason (enum target_signal siggnal);
91
92 static void print_no_history_reason (void);
93
94 static void print_signal_received_reason (enum target_signal siggnal);
95
96 static void print_end_stepping_range_reason (void);
97
98 void _initialize_infrun (void);
99
100 void nullify_last_target_wait_ptid (void);
101
102 /* When set, stop the 'step' command if we enter a function which has
103 no line number information. The normal behavior is that we step
104 over such function. */
105 int step_stop_if_no_debug = 0;
106 static void
107 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
111 }
112
113 /* In asynchronous mode, but simulating synchronous execution. */
114
115 int sync_execution = 0;
116
117 /* wait_for_inferior and normal_stop use this to notify the user
118 when the inferior stopped in a different thread than it had been
119 running in. */
120
121 static ptid_t previous_inferior_ptid;
122
123 /* Default behavior is to detach newly forked processes (legacy). */
124 int detach_fork = 1;
125
126 int debug_displaced = 0;
127 static void
128 show_debug_displaced (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
132 }
133
134 int debug_infrun = 0;
135 static void
136 show_debug_infrun (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
140 }
141
142 /* If the program uses ELF-style shared libraries, then calls to
143 functions in shared libraries go through stubs, which live in a
144 table called the PLT (Procedure Linkage Table). The first time the
145 function is called, the stub sends control to the dynamic linker,
146 which looks up the function's real address, patches the stub so
147 that future calls will go directly to the function, and then passes
148 control to the function.
149
150 If we are stepping at the source level, we don't want to see any of
151 this --- we just want to skip over the stub and the dynamic linker.
152 The simple approach is to single-step until control leaves the
153 dynamic linker.
154
155 However, on some systems (e.g., Red Hat's 5.2 distribution) the
156 dynamic linker calls functions in the shared C library, so you
157 can't tell from the PC alone whether the dynamic linker is still
158 running. In this case, we use a step-resume breakpoint to get us
159 past the dynamic linker, as if we were using "next" to step over a
160 function call.
161
162 in_solib_dynsym_resolve_code() says whether we're in the dynamic
163 linker code or not. Normally, this means we single-step. However,
164 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
165 address where we can place a step-resume breakpoint to get past the
166 linker's symbol resolution function.
167
168 in_solib_dynsym_resolve_code() can generally be implemented in a
169 pretty portable way, by comparing the PC against the address ranges
170 of the dynamic linker's sections.
171
172 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
173 it depends on internal details of the dynamic linker. It's usually
174 not too hard to figure out where to put a breakpoint, but it
175 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
176 sanity checking. If it can't figure things out, returning zero and
177 getting the (possibly confusing) stepping behavior is better than
178 signalling an error, which will obscure the change in the
179 inferior's state. */
180
181 /* This function returns TRUE if pc is the address of an instruction
182 that lies within the dynamic linker (such as the event hook, or the
183 dld itself).
184
185 This function must be used only when a dynamic linker event has
186 been caught, and the inferior is being stepped out of the hook, or
187 undefined results are guaranteed. */
188
189 #ifndef SOLIB_IN_DYNAMIC_LINKER
190 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
191 #endif
192
193 /* "Observer mode" is somewhat like a more extreme version of
194 non-stop, in which all GDB operations that might affect the
195 target's execution have been disabled. */
196
197 static int non_stop_1 = 0;
198
199 int observer_mode = 0;
200 static int observer_mode_1 = 0;
201
202 static void
203 set_observer_mode (char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 extern int pagination_enabled;
207
208 if (target_has_execution)
209 {
210 observer_mode_1 = observer_mode;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 observer_mode = observer_mode_1;
215
216 may_write_registers = !observer_mode;
217 may_write_memory = !observer_mode;
218 may_insert_breakpoints = !observer_mode;
219 may_insert_tracepoints = !observer_mode;
220 /* We can insert fast tracepoints in or out of observer mode,
221 but enable them if we're going into this mode. */
222 if (observer_mode)
223 may_insert_fast_tracepoints = 1;
224 may_stop = !observer_mode;
225 update_target_permissions ();
226
227 /* Going *into* observer mode we must force non-stop, then
228 going out we leave it that way. */
229 if (observer_mode)
230 {
231 target_async_permitted = 1;
232 pagination_enabled = 0;
233 non_stop = non_stop_1 = 1;
234 }
235
236 if (from_tty)
237 printf_filtered (_("Observer mode is now %s.\n"),
238 (observer_mode ? "on" : "off"));
239 }
240
241 static void
242 show_observer_mode (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
246 }
247
248 /* This updates the value of observer mode based on changes in
249 permissions. Note that we are deliberately ignoring the values of
250 may-write-registers and may-write-memory, since the user may have
251 reason to enable these during a session, for instance to turn on a
252 debugging-related global. */
253
254 void
255 update_observer_mode (void)
256 {
257 int newval;
258
259 newval = (!may_insert_breakpoints
260 && !may_insert_tracepoints
261 && may_insert_fast_tracepoints
262 && !may_stop
263 && non_stop);
264
265 /* Let the user know if things change. */
266 if (newval != observer_mode)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (newval ? "on" : "off"));
269
270 observer_mode = observer_mode_1 = newval;
271 }
272
273 /* Tables of how to react to signals; the user sets them. */
274
275 static unsigned char *signal_stop;
276 static unsigned char *signal_print;
277 static unsigned char *signal_program;
278
279 #define SET_SIGS(nsigs,sigs,flags) \
280 do { \
281 int signum = (nsigs); \
282 while (signum-- > 0) \
283 if ((sigs)[signum]) \
284 (flags)[signum] = 1; \
285 } while (0)
286
287 #define UNSET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 0; \
293 } while (0)
294
295 /* Value to pass to target_resume() to cause all threads to resume. */
296
297 #define RESUME_ALL minus_one_ptid
298
299 /* Command list pointer for the "stop" placeholder. */
300
301 static struct cmd_list_element *stop_command;
302
303 /* Function inferior was in as of last step command. */
304
305 static struct symbol *step_start_function;
306
307 /* Nonzero if we want to give control to the user when we're notified
308 of shared library events by the dynamic linker. */
309 int stop_on_solib_events;
310 static void
311 show_stop_on_solib_events (struct ui_file *file, int from_tty,
312 struct cmd_list_element *c, const char *value)
313 {
314 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
315 value);
316 }
317
318 /* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321 int stop_after_trap;
322
323 /* Save register contents here when executing a "finish" command or are
324 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
325 Thus this contains the return value from the called function (assuming
326 values are returned in a register). */
327
328 struct regcache *stop_registers;
329
330 /* Nonzero after stop if current stack frame should be printed. */
331
332 static int stop_print_frame;
333
334 /* This is a cached copy of the pid/waitstatus of the last event
335 returned by target_wait()/deprecated_target_wait_hook(). This
336 information is returned by get_last_target_status(). */
337 static ptid_t target_last_wait_ptid;
338 static struct target_waitstatus target_last_waitstatus;
339
340 static void context_switch (ptid_t ptid);
341
342 void init_thread_stepping_state (struct thread_info *tss);
343
344 void init_infwait_state (void);
345
346 static const char follow_fork_mode_child[] = "child";
347 static const char follow_fork_mode_parent[] = "parent";
348
349 static const char *follow_fork_mode_kind_names[] = {
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
353 };
354
355 static const char *follow_fork_mode_string = follow_fork_mode_parent;
356 static void
357 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file,
361 _("Debugger response to a program "
362 "call of fork or vfork is \"%s\".\n"),
363 value);
364 }
365 \f
366
367 /* Tell the target to follow the fork we're stopped at. Returns true
368 if the inferior should be resumed; false, if the target for some
369 reason decided it's best not to resume. */
370
371 static int
372 follow_fork (void)
373 {
374 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
375 int should_resume = 1;
376 struct thread_info *tp;
377
378 /* Copy user stepping state to the new inferior thread. FIXME: the
379 followed fork child thread should have a copy of most of the
380 parent thread structure's run control related fields, not just these.
381 Initialized to avoid "may be used uninitialized" warnings from gcc. */
382 struct breakpoint *step_resume_breakpoint = NULL;
383 struct breakpoint *exception_resume_breakpoint = NULL;
384 CORE_ADDR step_range_start = 0;
385 CORE_ADDR step_range_end = 0;
386 struct frame_id step_frame_id = { 0 };
387
388 if (!non_stop)
389 {
390 ptid_t wait_ptid;
391 struct target_waitstatus wait_status;
392
393 /* Get the last target status returned by target_wait(). */
394 get_last_target_status (&wait_ptid, &wait_status);
395
396 /* If not stopped at a fork event, then there's nothing else to
397 do. */
398 if (wait_status.kind != TARGET_WAITKIND_FORKED
399 && wait_status.kind != TARGET_WAITKIND_VFORKED)
400 return 1;
401
402 /* Check if we switched over from WAIT_PTID, since the event was
403 reported. */
404 if (!ptid_equal (wait_ptid, minus_one_ptid)
405 && !ptid_equal (inferior_ptid, wait_ptid))
406 {
407 /* We did. Switch back to WAIT_PTID thread, to tell the
408 target to follow it (in either direction). We'll
409 afterwards refuse to resume, and inform the user what
410 happened. */
411 switch_to_thread (wait_ptid);
412 should_resume = 0;
413 }
414 }
415
416 tp = inferior_thread ();
417
418 /* If there were any forks/vforks that were caught and are now to be
419 followed, then do so now. */
420 switch (tp->pending_follow.kind)
421 {
422 case TARGET_WAITKIND_FORKED:
423 case TARGET_WAITKIND_VFORKED:
424 {
425 ptid_t parent, child;
426
427 /* If the user did a next/step, etc, over a fork call,
428 preserve the stepping state in the fork child. */
429 if (follow_child && should_resume)
430 {
431 step_resume_breakpoint = clone_momentary_breakpoint
432 (tp->control.step_resume_breakpoint);
433 step_range_start = tp->control.step_range_start;
434 step_range_end = tp->control.step_range_end;
435 step_frame_id = tp->control.step_frame_id;
436 exception_resume_breakpoint
437 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
438
439 /* For now, delete the parent's sr breakpoint, otherwise,
440 parent/child sr breakpoints are considered duplicates,
441 and the child version will not be installed. Remove
442 this when the breakpoints module becomes aware of
443 inferiors and address spaces. */
444 delete_step_resume_breakpoint (tp);
445 tp->control.step_range_start = 0;
446 tp->control.step_range_end = 0;
447 tp->control.step_frame_id = null_frame_id;
448 delete_exception_resume_breakpoint (tp);
449 }
450
451 parent = inferior_ptid;
452 child = tp->pending_follow.value.related_pid;
453
454 /* Tell the target to do whatever is necessary to follow
455 either parent or child. */
456 if (target_follow_fork (follow_child))
457 {
458 /* Target refused to follow, or there's some other reason
459 we shouldn't resume. */
460 should_resume = 0;
461 }
462 else
463 {
464 /* This pending follow fork event is now handled, one way
465 or another. The previous selected thread may be gone
466 from the lists by now, but if it is still around, need
467 to clear the pending follow request. */
468 tp = find_thread_ptid (parent);
469 if (tp)
470 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
471
472 /* This makes sure we don't try to apply the "Switched
473 over from WAIT_PID" logic above. */
474 nullify_last_target_wait_ptid ();
475
476 /* If we followed the child, switch to it... */
477 if (follow_child)
478 {
479 switch_to_thread (child);
480
481 /* ... and preserve the stepping state, in case the
482 user was stepping over the fork call. */
483 if (should_resume)
484 {
485 tp = inferior_thread ();
486 tp->control.step_resume_breakpoint
487 = step_resume_breakpoint;
488 tp->control.step_range_start = step_range_start;
489 tp->control.step_range_end = step_range_end;
490 tp->control.step_frame_id = step_frame_id;
491 tp->control.exception_resume_breakpoint
492 = exception_resume_breakpoint;
493 }
494 else
495 {
496 /* If we get here, it was because we're trying to
497 resume from a fork catchpoint, but, the user
498 has switched threads away from the thread that
499 forked. In that case, the resume command
500 issued is most likely not applicable to the
501 child, so just warn, and refuse to resume. */
502 warning (_("Not resuming: switched threads "
503 "before following fork child.\n"));
504 }
505
506 /* Reset breakpoints in the child as appropriate. */
507 follow_inferior_reset_breakpoints ();
508 }
509 else
510 switch_to_thread (parent);
511 }
512 }
513 break;
514 case TARGET_WAITKIND_SPURIOUS:
515 /* Nothing to follow. */
516 break;
517 default:
518 internal_error (__FILE__, __LINE__,
519 "Unexpected pending_follow.kind %d\n",
520 tp->pending_follow.kind);
521 break;
522 }
523
524 return should_resume;
525 }
526
527 void
528 follow_inferior_reset_breakpoints (void)
529 {
530 struct thread_info *tp = inferior_thread ();
531
532 /* Was there a step_resume breakpoint? (There was if the user
533 did a "next" at the fork() call.) If so, explicitly reset its
534 thread number.
535
536 step_resumes are a form of bp that are made to be per-thread.
537 Since we created the step_resume bp when the parent process
538 was being debugged, and now are switching to the child process,
539 from the breakpoint package's viewpoint, that's a switch of
540 "threads". We must update the bp's notion of which thread
541 it is for, or it'll be ignored when it triggers. */
542
543 if (tp->control.step_resume_breakpoint)
544 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
545
546 if (tp->control.exception_resume_breakpoint)
547 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
548
549 /* Reinsert all breakpoints in the child. The user may have set
550 breakpoints after catching the fork, in which case those
551 were never set in the child, but only in the parent. This makes
552 sure the inserted breakpoints match the breakpoint list. */
553
554 breakpoint_re_set ();
555 insert_breakpoints ();
556 }
557
558 /* The child has exited or execed: resume threads of the parent the
559 user wanted to be executing. */
560
561 static int
562 proceed_after_vfork_done (struct thread_info *thread,
563 void *arg)
564 {
565 int pid = * (int *) arg;
566
567 if (ptid_get_pid (thread->ptid) == pid
568 && is_running (thread->ptid)
569 && !is_executing (thread->ptid)
570 && !thread->stop_requested
571 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
572 {
573 if (debug_infrun)
574 fprintf_unfiltered (gdb_stdlog,
575 "infrun: resuming vfork parent thread %s\n",
576 target_pid_to_str (thread->ptid));
577
578 switch_to_thread (thread->ptid);
579 clear_proceed_status ();
580 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
581 }
582
583 return 0;
584 }
585
586 /* Called whenever we notice an exec or exit event, to handle
587 detaching or resuming a vfork parent. */
588
589 static void
590 handle_vfork_child_exec_or_exit (int exec)
591 {
592 struct inferior *inf = current_inferior ();
593
594 if (inf->vfork_parent)
595 {
596 int resume_parent = -1;
597
598 /* This exec or exit marks the end of the shared memory region
599 between the parent and the child. If the user wanted to
600 detach from the parent, now is the time. */
601
602 if (inf->vfork_parent->pending_detach)
603 {
604 struct thread_info *tp;
605 struct cleanup *old_chain;
606 struct program_space *pspace;
607 struct address_space *aspace;
608
609 /* follow-fork child, detach-on-fork on. */
610
611 old_chain = make_cleanup_restore_current_thread ();
612
613 /* We're letting loose of the parent. */
614 tp = any_live_thread_of_process (inf->vfork_parent->pid);
615 switch_to_thread (tp->ptid);
616
617 /* We're about to detach from the parent, which implicitly
618 removes breakpoints from its address space. There's a
619 catch here: we want to reuse the spaces for the child,
620 but, parent/child are still sharing the pspace at this
621 point, although the exec in reality makes the kernel give
622 the child a fresh set of new pages. The problem here is
623 that the breakpoints module being unaware of this, would
624 likely chose the child process to write to the parent
625 address space. Swapping the child temporarily away from
626 the spaces has the desired effect. Yes, this is "sort
627 of" a hack. */
628
629 pspace = inf->pspace;
630 aspace = inf->aspace;
631 inf->aspace = NULL;
632 inf->pspace = NULL;
633
634 if (debug_infrun || info_verbose)
635 {
636 target_terminal_ours ();
637
638 if (exec)
639 fprintf_filtered (gdb_stdlog,
640 "Detaching vfork parent process "
641 "%d after child exec.\n",
642 inf->vfork_parent->pid);
643 else
644 fprintf_filtered (gdb_stdlog,
645 "Detaching vfork parent process "
646 "%d after child exit.\n",
647 inf->vfork_parent->pid);
648 }
649
650 target_detach (NULL, 0);
651
652 /* Put it back. */
653 inf->pspace = pspace;
654 inf->aspace = aspace;
655
656 do_cleanups (old_chain);
657 }
658 else if (exec)
659 {
660 /* We're staying attached to the parent, so, really give the
661 child a new address space. */
662 inf->pspace = add_program_space (maybe_new_address_space ());
663 inf->aspace = inf->pspace->aspace;
664 inf->removable = 1;
665 set_current_program_space (inf->pspace);
666
667 resume_parent = inf->vfork_parent->pid;
668
669 /* Break the bonds. */
670 inf->vfork_parent->vfork_child = NULL;
671 }
672 else
673 {
674 struct cleanup *old_chain;
675 struct program_space *pspace;
676
677 /* If this is a vfork child exiting, then the pspace and
678 aspaces were shared with the parent. Since we're
679 reporting the process exit, we'll be mourning all that is
680 found in the address space, and switching to null_ptid,
681 preparing to start a new inferior. But, since we don't
682 want to clobber the parent's address/program spaces, we
683 go ahead and create a new one for this exiting
684 inferior. */
685
686 /* Switch to null_ptid, so that clone_program_space doesn't want
687 to read the selected frame of a dead process. */
688 old_chain = save_inferior_ptid ();
689 inferior_ptid = null_ptid;
690
691 /* This inferior is dead, so avoid giving the breakpoints
692 module the option to write through to it (cloning a
693 program space resets breakpoints). */
694 inf->aspace = NULL;
695 inf->pspace = NULL;
696 pspace = add_program_space (maybe_new_address_space ());
697 set_current_program_space (pspace);
698 inf->removable = 1;
699 clone_program_space (pspace, inf->vfork_parent->pspace);
700 inf->pspace = pspace;
701 inf->aspace = pspace->aspace;
702
703 /* Put back inferior_ptid. We'll continue mourning this
704 inferior. */
705 do_cleanups (old_chain);
706
707 resume_parent = inf->vfork_parent->pid;
708 /* Break the bonds. */
709 inf->vfork_parent->vfork_child = NULL;
710 }
711
712 inf->vfork_parent = NULL;
713
714 gdb_assert (current_program_space == inf->pspace);
715
716 if (non_stop && resume_parent != -1)
717 {
718 /* If the user wanted the parent to be running, let it go
719 free now. */
720 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
721
722 if (debug_infrun)
723 fprintf_unfiltered (gdb_stdlog,
724 "infrun: resuming vfork parent process %d\n",
725 resume_parent);
726
727 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
728
729 do_cleanups (old_chain);
730 }
731 }
732 }
733
734 /* Enum strings for "set|show displaced-stepping". */
735
736 static const char follow_exec_mode_new[] = "new";
737 static const char follow_exec_mode_same[] = "same";
738 static const char *follow_exec_mode_names[] =
739 {
740 follow_exec_mode_new,
741 follow_exec_mode_same,
742 NULL,
743 };
744
745 static const char *follow_exec_mode_string = follow_exec_mode_same;
746 static void
747 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
748 struct cmd_list_element *c, const char *value)
749 {
750 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
751 }
752
753 /* EXECD_PATHNAME is assumed to be non-NULL. */
754
755 static void
756 follow_exec (ptid_t pid, char *execd_pathname)
757 {
758 struct thread_info *th = inferior_thread ();
759 struct inferior *inf = current_inferior ();
760
761 /* This is an exec event that we actually wish to pay attention to.
762 Refresh our symbol table to the newly exec'd program, remove any
763 momentary bp's, etc.
764
765 If there are breakpoints, they aren't really inserted now,
766 since the exec() transformed our inferior into a fresh set
767 of instructions.
768
769 We want to preserve symbolic breakpoints on the list, since
770 we have hopes that they can be reset after the new a.out's
771 symbol table is read.
772
773 However, any "raw" breakpoints must be removed from the list
774 (e.g., the solib bp's), since their address is probably invalid
775 now.
776
777 And, we DON'T want to call delete_breakpoints() here, since
778 that may write the bp's "shadow contents" (the instruction
779 value that was overwritten witha TRAP instruction). Since
780 we now have a new a.out, those shadow contents aren't valid. */
781
782 mark_breakpoints_out ();
783
784 update_breakpoints_after_exec ();
785
786 /* If there was one, it's gone now. We cannot truly step-to-next
787 statement through an exec(). */
788 th->control.step_resume_breakpoint = NULL;
789 th->control.exception_resume_breakpoint = NULL;
790 th->control.step_range_start = 0;
791 th->control.step_range_end = 0;
792
793 /* The target reports the exec event to the main thread, even if
794 some other thread does the exec, and even if the main thread was
795 already stopped --- if debugging in non-stop mode, it's possible
796 the user had the main thread held stopped in the previous image
797 --- release it now. This is the same behavior as step-over-exec
798 with scheduler-locking on in all-stop mode. */
799 th->stop_requested = 0;
800
801 /* What is this a.out's name? */
802 printf_unfiltered (_("%s is executing new program: %s\n"),
803 target_pid_to_str (inferior_ptid),
804 execd_pathname);
805
806 /* We've followed the inferior through an exec. Therefore, the
807 inferior has essentially been killed & reborn. */
808
809 gdb_flush (gdb_stdout);
810
811 breakpoint_init_inferior (inf_execd);
812
813 if (gdb_sysroot && *gdb_sysroot)
814 {
815 char *name = alloca (strlen (gdb_sysroot)
816 + strlen (execd_pathname)
817 + 1);
818
819 strcpy (name, gdb_sysroot);
820 strcat (name, execd_pathname);
821 execd_pathname = name;
822 }
823
824 /* Reset the shared library package. This ensures that we get a
825 shlib event when the child reaches "_start", at which point the
826 dld will have had a chance to initialize the child. */
827 /* Also, loading a symbol file below may trigger symbol lookups, and
828 we don't want those to be satisfied by the libraries of the
829 previous incarnation of this process. */
830 no_shared_libraries (NULL, 0);
831
832 if (follow_exec_mode_string == follow_exec_mode_new)
833 {
834 struct program_space *pspace;
835
836 /* The user wants to keep the old inferior and program spaces
837 around. Create a new fresh one, and switch to it. */
838
839 inf = add_inferior (current_inferior ()->pid);
840 pspace = add_program_space (maybe_new_address_space ());
841 inf->pspace = pspace;
842 inf->aspace = pspace->aspace;
843
844 exit_inferior_num_silent (current_inferior ()->num);
845
846 set_current_inferior (inf);
847 set_current_program_space (pspace);
848 }
849
850 gdb_assert (current_program_space == inf->pspace);
851
852 /* That a.out is now the one to use. */
853 exec_file_attach (execd_pathname, 0);
854
855 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
856 (Position Independent Executable) main symbol file will get applied by
857 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
858 the breakpoints with the zero displacement. */
859
860 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
861 NULL, 0);
862
863 set_initial_language ();
864
865 #ifdef SOLIB_CREATE_INFERIOR_HOOK
866 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
867 #else
868 solib_create_inferior_hook (0);
869 #endif
870
871 jit_inferior_created_hook ();
872
873 breakpoint_re_set ();
874
875 /* Reinsert all breakpoints. (Those which were symbolic have
876 been reset to the proper address in the new a.out, thanks
877 to symbol_file_command...). */
878 insert_breakpoints ();
879
880 /* The next resume of this inferior should bring it to the shlib
881 startup breakpoints. (If the user had also set bp's on
882 "main" from the old (parent) process, then they'll auto-
883 matically get reset there in the new process.). */
884 }
885
886 /* Non-zero if we just simulating a single-step. This is needed
887 because we cannot remove the breakpoints in the inferior process
888 until after the `wait' in `wait_for_inferior'. */
889 static int singlestep_breakpoints_inserted_p = 0;
890
891 /* The thread we inserted single-step breakpoints for. */
892 static ptid_t singlestep_ptid;
893
894 /* PC when we started this single-step. */
895 static CORE_ADDR singlestep_pc;
896
897 /* If another thread hit the singlestep breakpoint, we save the original
898 thread here so that we can resume single-stepping it later. */
899 static ptid_t saved_singlestep_ptid;
900 static int stepping_past_singlestep_breakpoint;
901
902 /* If not equal to null_ptid, this means that after stepping over breakpoint
903 is finished, we need to switch to deferred_step_ptid, and step it.
904
905 The use case is when one thread has hit a breakpoint, and then the user
906 has switched to another thread and issued 'step'. We need to step over
907 breakpoint in the thread which hit the breakpoint, but then continue
908 stepping the thread user has selected. */
909 static ptid_t deferred_step_ptid;
910 \f
911 /* Displaced stepping. */
912
913 /* In non-stop debugging mode, we must take special care to manage
914 breakpoints properly; in particular, the traditional strategy for
915 stepping a thread past a breakpoint it has hit is unsuitable.
916 'Displaced stepping' is a tactic for stepping one thread past a
917 breakpoint it has hit while ensuring that other threads running
918 concurrently will hit the breakpoint as they should.
919
920 The traditional way to step a thread T off a breakpoint in a
921 multi-threaded program in all-stop mode is as follows:
922
923 a0) Initially, all threads are stopped, and breakpoints are not
924 inserted.
925 a1) We single-step T, leaving breakpoints uninserted.
926 a2) We insert breakpoints, and resume all threads.
927
928 In non-stop debugging, however, this strategy is unsuitable: we
929 don't want to have to stop all threads in the system in order to
930 continue or step T past a breakpoint. Instead, we use displaced
931 stepping:
932
933 n0) Initially, T is stopped, other threads are running, and
934 breakpoints are inserted.
935 n1) We copy the instruction "under" the breakpoint to a separate
936 location, outside the main code stream, making any adjustments
937 to the instruction, register, and memory state as directed by
938 T's architecture.
939 n2) We single-step T over the instruction at its new location.
940 n3) We adjust the resulting register and memory state as directed
941 by T's architecture. This includes resetting T's PC to point
942 back into the main instruction stream.
943 n4) We resume T.
944
945 This approach depends on the following gdbarch methods:
946
947 - gdbarch_max_insn_length and gdbarch_displaced_step_location
948 indicate where to copy the instruction, and how much space must
949 be reserved there. We use these in step n1.
950
951 - gdbarch_displaced_step_copy_insn copies a instruction to a new
952 address, and makes any necessary adjustments to the instruction,
953 register contents, and memory. We use this in step n1.
954
955 - gdbarch_displaced_step_fixup adjusts registers and memory after
956 we have successfuly single-stepped the instruction, to yield the
957 same effect the instruction would have had if we had executed it
958 at its original address. We use this in step n3.
959
960 - gdbarch_displaced_step_free_closure provides cleanup.
961
962 The gdbarch_displaced_step_copy_insn and
963 gdbarch_displaced_step_fixup functions must be written so that
964 copying an instruction with gdbarch_displaced_step_copy_insn,
965 single-stepping across the copied instruction, and then applying
966 gdbarch_displaced_insn_fixup should have the same effects on the
967 thread's memory and registers as stepping the instruction in place
968 would have. Exactly which responsibilities fall to the copy and
969 which fall to the fixup is up to the author of those functions.
970
971 See the comments in gdbarch.sh for details.
972
973 Note that displaced stepping and software single-step cannot
974 currently be used in combination, although with some care I think
975 they could be made to. Software single-step works by placing
976 breakpoints on all possible subsequent instructions; if the
977 displaced instruction is a PC-relative jump, those breakpoints
978 could fall in very strange places --- on pages that aren't
979 executable, or at addresses that are not proper instruction
980 boundaries. (We do generally let other threads run while we wait
981 to hit the software single-step breakpoint, and they might
982 encounter such a corrupted instruction.) One way to work around
983 this would be to have gdbarch_displaced_step_copy_insn fully
984 simulate the effect of PC-relative instructions (and return NULL)
985 on architectures that use software single-stepping.
986
987 In non-stop mode, we can have independent and simultaneous step
988 requests, so more than one thread may need to simultaneously step
989 over a breakpoint. The current implementation assumes there is
990 only one scratch space per process. In this case, we have to
991 serialize access to the scratch space. If thread A wants to step
992 over a breakpoint, but we are currently waiting for some other
993 thread to complete a displaced step, we leave thread A stopped and
994 place it in the displaced_step_request_queue. Whenever a displaced
995 step finishes, we pick the next thread in the queue and start a new
996 displaced step operation on it. See displaced_step_prepare and
997 displaced_step_fixup for details. */
998
999 struct displaced_step_request
1000 {
1001 ptid_t ptid;
1002 struct displaced_step_request *next;
1003 };
1004
1005 /* Per-inferior displaced stepping state. */
1006 struct displaced_step_inferior_state
1007 {
1008 /* Pointer to next in linked list. */
1009 struct displaced_step_inferior_state *next;
1010
1011 /* The process this displaced step state refers to. */
1012 int pid;
1013
1014 /* A queue of pending displaced stepping requests. One entry per
1015 thread that needs to do a displaced step. */
1016 struct displaced_step_request *step_request_queue;
1017
1018 /* If this is not null_ptid, this is the thread carrying out a
1019 displaced single-step in process PID. This thread's state will
1020 require fixing up once it has completed its step. */
1021 ptid_t step_ptid;
1022
1023 /* The architecture the thread had when we stepped it. */
1024 struct gdbarch *step_gdbarch;
1025
1026 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1027 for post-step cleanup. */
1028 struct displaced_step_closure *step_closure;
1029
1030 /* The address of the original instruction, and the copy we
1031 made. */
1032 CORE_ADDR step_original, step_copy;
1033
1034 /* Saved contents of copy area. */
1035 gdb_byte *step_saved_copy;
1036 };
1037
1038 /* The list of states of processes involved in displaced stepping
1039 presently. */
1040 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1041
1042 /* Get the displaced stepping state of process PID. */
1043
1044 static struct displaced_step_inferior_state *
1045 get_displaced_stepping_state (int pid)
1046 {
1047 struct displaced_step_inferior_state *state;
1048
1049 for (state = displaced_step_inferior_states;
1050 state != NULL;
1051 state = state->next)
1052 if (state->pid == pid)
1053 return state;
1054
1055 return NULL;
1056 }
1057
1058 /* Add a new displaced stepping state for process PID to the displaced
1059 stepping state list, or return a pointer to an already existing
1060 entry, if it already exists. Never returns NULL. */
1061
1062 static struct displaced_step_inferior_state *
1063 add_displaced_stepping_state (int pid)
1064 {
1065 struct displaced_step_inferior_state *state;
1066
1067 for (state = displaced_step_inferior_states;
1068 state != NULL;
1069 state = state->next)
1070 if (state->pid == pid)
1071 return state;
1072
1073 state = xcalloc (1, sizeof (*state));
1074 state->pid = pid;
1075 state->next = displaced_step_inferior_states;
1076 displaced_step_inferior_states = state;
1077
1078 return state;
1079 }
1080
1081 /* If inferior is in displaced stepping, and ADDR equals to starting address
1082 of copy area, return corresponding displaced_step_closure. Otherwise,
1083 return NULL. */
1084
1085 struct displaced_step_closure*
1086 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1087 {
1088 struct displaced_step_inferior_state *displaced
1089 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1090
1091 /* If checking the mode of displaced instruction in copy area. */
1092 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1093 && (displaced->step_copy == addr))
1094 return displaced->step_closure;
1095
1096 return NULL;
1097 }
1098
1099 /* Remove the displaced stepping state of process PID. */
1100
1101 static void
1102 remove_displaced_stepping_state (int pid)
1103 {
1104 struct displaced_step_inferior_state *it, **prev_next_p;
1105
1106 gdb_assert (pid != 0);
1107
1108 it = displaced_step_inferior_states;
1109 prev_next_p = &displaced_step_inferior_states;
1110 while (it)
1111 {
1112 if (it->pid == pid)
1113 {
1114 *prev_next_p = it->next;
1115 xfree (it);
1116 return;
1117 }
1118
1119 prev_next_p = &it->next;
1120 it = *prev_next_p;
1121 }
1122 }
1123
1124 static void
1125 infrun_inferior_exit (struct inferior *inf)
1126 {
1127 remove_displaced_stepping_state (inf->pid);
1128 }
1129
1130 /* Enum strings for "set|show displaced-stepping". */
1131
1132 static const char can_use_displaced_stepping_auto[] = "auto";
1133 static const char can_use_displaced_stepping_on[] = "on";
1134 static const char can_use_displaced_stepping_off[] = "off";
1135 static const char *can_use_displaced_stepping_enum[] =
1136 {
1137 can_use_displaced_stepping_auto,
1138 can_use_displaced_stepping_on,
1139 can_use_displaced_stepping_off,
1140 NULL,
1141 };
1142
1143 /* If ON, and the architecture supports it, GDB will use displaced
1144 stepping to step over breakpoints. If OFF, or if the architecture
1145 doesn't support it, GDB will instead use the traditional
1146 hold-and-step approach. If AUTO (which is the default), GDB will
1147 decide which technique to use to step over breakpoints depending on
1148 which of all-stop or non-stop mode is active --- displaced stepping
1149 in non-stop mode; hold-and-step in all-stop mode. */
1150
1151 static const char *can_use_displaced_stepping =
1152 can_use_displaced_stepping_auto;
1153
1154 static void
1155 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1156 struct cmd_list_element *c,
1157 const char *value)
1158 {
1159 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1160 fprintf_filtered (file,
1161 _("Debugger's willingness to use displaced stepping "
1162 "to step over breakpoints is %s (currently %s).\n"),
1163 value, non_stop ? "on" : "off");
1164 else
1165 fprintf_filtered (file,
1166 _("Debugger's willingness to use displaced stepping "
1167 "to step over breakpoints is %s.\n"), value);
1168 }
1169
1170 /* Return non-zero if displaced stepping can/should be used to step
1171 over breakpoints. */
1172
1173 static int
1174 use_displaced_stepping (struct gdbarch *gdbarch)
1175 {
1176 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1177 && non_stop)
1178 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1179 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1180 && !RECORD_IS_USED);
1181 }
1182
1183 /* Clean out any stray displaced stepping state. */
1184 static void
1185 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1186 {
1187 /* Indicate that there is no cleanup pending. */
1188 displaced->step_ptid = null_ptid;
1189
1190 if (displaced->step_closure)
1191 {
1192 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1193 displaced->step_closure);
1194 displaced->step_closure = NULL;
1195 }
1196 }
1197
1198 static void
1199 displaced_step_clear_cleanup (void *arg)
1200 {
1201 struct displaced_step_inferior_state *state = arg;
1202
1203 displaced_step_clear (state);
1204 }
1205
1206 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1207 void
1208 displaced_step_dump_bytes (struct ui_file *file,
1209 const gdb_byte *buf,
1210 size_t len)
1211 {
1212 int i;
1213
1214 for (i = 0; i < len; i++)
1215 fprintf_unfiltered (file, "%02x ", buf[i]);
1216 fputs_unfiltered ("\n", file);
1217 }
1218
1219 /* Prepare to single-step, using displaced stepping.
1220
1221 Note that we cannot use displaced stepping when we have a signal to
1222 deliver. If we have a signal to deliver and an instruction to step
1223 over, then after the step, there will be no indication from the
1224 target whether the thread entered a signal handler or ignored the
1225 signal and stepped over the instruction successfully --- both cases
1226 result in a simple SIGTRAP. In the first case we mustn't do a
1227 fixup, and in the second case we must --- but we can't tell which.
1228 Comments in the code for 'random signals' in handle_inferior_event
1229 explain how we handle this case instead.
1230
1231 Returns 1 if preparing was successful -- this thread is going to be
1232 stepped now; or 0 if displaced stepping this thread got queued. */
1233 static int
1234 displaced_step_prepare (ptid_t ptid)
1235 {
1236 struct cleanup *old_cleanups, *ignore_cleanups;
1237 struct regcache *regcache = get_thread_regcache (ptid);
1238 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1239 CORE_ADDR original, copy;
1240 ULONGEST len;
1241 struct displaced_step_closure *closure;
1242 struct displaced_step_inferior_state *displaced;
1243
1244 /* We should never reach this function if the architecture does not
1245 support displaced stepping. */
1246 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1247
1248 /* We have to displaced step one thread at a time, as we only have
1249 access to a single scratch space per inferior. */
1250
1251 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1252
1253 if (!ptid_equal (displaced->step_ptid, null_ptid))
1254 {
1255 /* Already waiting for a displaced step to finish. Defer this
1256 request and place in queue. */
1257 struct displaced_step_request *req, *new_req;
1258
1259 if (debug_displaced)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "displaced: defering step of %s\n",
1262 target_pid_to_str (ptid));
1263
1264 new_req = xmalloc (sizeof (*new_req));
1265 new_req->ptid = ptid;
1266 new_req->next = NULL;
1267
1268 if (displaced->step_request_queue)
1269 {
1270 for (req = displaced->step_request_queue;
1271 req && req->next;
1272 req = req->next)
1273 ;
1274 req->next = new_req;
1275 }
1276 else
1277 displaced->step_request_queue = new_req;
1278
1279 return 0;
1280 }
1281 else
1282 {
1283 if (debug_displaced)
1284 fprintf_unfiltered (gdb_stdlog,
1285 "displaced: stepping %s now\n",
1286 target_pid_to_str (ptid));
1287 }
1288
1289 displaced_step_clear (displaced);
1290
1291 old_cleanups = save_inferior_ptid ();
1292 inferior_ptid = ptid;
1293
1294 original = regcache_read_pc (regcache);
1295
1296 copy = gdbarch_displaced_step_location (gdbarch);
1297 len = gdbarch_max_insn_length (gdbarch);
1298
1299 /* Save the original contents of the copy area. */
1300 displaced->step_saved_copy = xmalloc (len);
1301 ignore_cleanups = make_cleanup (free_current_contents,
1302 &displaced->step_saved_copy);
1303 read_memory (copy, displaced->step_saved_copy, len);
1304 if (debug_displaced)
1305 {
1306 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1307 paddress (gdbarch, copy));
1308 displaced_step_dump_bytes (gdb_stdlog,
1309 displaced->step_saved_copy,
1310 len);
1311 };
1312
1313 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1314 original, copy, regcache);
1315
1316 /* We don't support the fully-simulated case at present. */
1317 gdb_assert (closure);
1318
1319 /* Save the information we need to fix things up if the step
1320 succeeds. */
1321 displaced->step_ptid = ptid;
1322 displaced->step_gdbarch = gdbarch;
1323 displaced->step_closure = closure;
1324 displaced->step_original = original;
1325 displaced->step_copy = copy;
1326
1327 make_cleanup (displaced_step_clear_cleanup, displaced);
1328
1329 /* Resume execution at the copy. */
1330 regcache_write_pc (regcache, copy);
1331
1332 discard_cleanups (ignore_cleanups);
1333
1334 do_cleanups (old_cleanups);
1335
1336 if (debug_displaced)
1337 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1338 paddress (gdbarch, copy));
1339
1340 return 1;
1341 }
1342
1343 static void
1344 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1345 const gdb_byte *myaddr, int len)
1346 {
1347 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1348
1349 inferior_ptid = ptid;
1350 write_memory (memaddr, myaddr, len);
1351 do_cleanups (ptid_cleanup);
1352 }
1353
1354 static void
1355 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1356 {
1357 struct cleanup *old_cleanups;
1358 struct displaced_step_inferior_state *displaced
1359 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1360
1361 /* Was any thread of this process doing a displaced step? */
1362 if (displaced == NULL)
1363 return;
1364
1365 /* Was this event for the pid we displaced? */
1366 if (ptid_equal (displaced->step_ptid, null_ptid)
1367 || ! ptid_equal (displaced->step_ptid, event_ptid))
1368 return;
1369
1370 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1371
1372 /* Restore the contents of the copy area. */
1373 {
1374 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1375
1376 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1377 displaced->step_saved_copy, len);
1378 if (debug_displaced)
1379 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1380 paddress (displaced->step_gdbarch,
1381 displaced->step_copy));
1382 }
1383
1384 /* Did the instruction complete successfully? */
1385 if (signal == TARGET_SIGNAL_TRAP)
1386 {
1387 /* Fix up the resulting state. */
1388 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1389 displaced->step_closure,
1390 displaced->step_original,
1391 displaced->step_copy,
1392 get_thread_regcache (displaced->step_ptid));
1393 }
1394 else
1395 {
1396 /* Since the instruction didn't complete, all we can do is
1397 relocate the PC. */
1398 struct regcache *regcache = get_thread_regcache (event_ptid);
1399 CORE_ADDR pc = regcache_read_pc (regcache);
1400
1401 pc = displaced->step_original + (pc - displaced->step_copy);
1402 regcache_write_pc (regcache, pc);
1403 }
1404
1405 do_cleanups (old_cleanups);
1406
1407 displaced->step_ptid = null_ptid;
1408
1409 /* Are there any pending displaced stepping requests? If so, run
1410 one now. Leave the state object around, since we're likely to
1411 need it again soon. */
1412 while (displaced->step_request_queue)
1413 {
1414 struct displaced_step_request *head;
1415 ptid_t ptid;
1416 struct regcache *regcache;
1417 struct gdbarch *gdbarch;
1418 CORE_ADDR actual_pc;
1419 struct address_space *aspace;
1420
1421 head = displaced->step_request_queue;
1422 ptid = head->ptid;
1423 displaced->step_request_queue = head->next;
1424 xfree (head);
1425
1426 context_switch (ptid);
1427
1428 regcache = get_thread_regcache (ptid);
1429 actual_pc = regcache_read_pc (regcache);
1430 aspace = get_regcache_aspace (regcache);
1431
1432 if (breakpoint_here_p (aspace, actual_pc))
1433 {
1434 if (debug_displaced)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "displaced: stepping queued %s now\n",
1437 target_pid_to_str (ptid));
1438
1439 displaced_step_prepare (ptid);
1440
1441 gdbarch = get_regcache_arch (regcache);
1442
1443 if (debug_displaced)
1444 {
1445 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1446 gdb_byte buf[4];
1447
1448 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1449 paddress (gdbarch, actual_pc));
1450 read_memory (actual_pc, buf, sizeof (buf));
1451 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1452 }
1453
1454 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1455 displaced->step_closure))
1456 target_resume (ptid, 1, TARGET_SIGNAL_0);
1457 else
1458 target_resume (ptid, 0, TARGET_SIGNAL_0);
1459
1460 /* Done, we're stepping a thread. */
1461 break;
1462 }
1463 else
1464 {
1465 int step;
1466 struct thread_info *tp = inferior_thread ();
1467
1468 /* The breakpoint we were sitting under has since been
1469 removed. */
1470 tp->control.trap_expected = 0;
1471
1472 /* Go back to what we were trying to do. */
1473 step = currently_stepping (tp);
1474
1475 if (debug_displaced)
1476 fprintf_unfiltered (gdb_stdlog,
1477 "breakpoint is gone %s: step(%d)\n",
1478 target_pid_to_str (tp->ptid), step);
1479
1480 target_resume (ptid, step, TARGET_SIGNAL_0);
1481 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1482
1483 /* This request was discarded. See if there's any other
1484 thread waiting for its turn. */
1485 }
1486 }
1487 }
1488
1489 /* Update global variables holding ptids to hold NEW_PTID if they were
1490 holding OLD_PTID. */
1491 static void
1492 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1493 {
1494 struct displaced_step_request *it;
1495 struct displaced_step_inferior_state *displaced;
1496
1497 if (ptid_equal (inferior_ptid, old_ptid))
1498 inferior_ptid = new_ptid;
1499
1500 if (ptid_equal (singlestep_ptid, old_ptid))
1501 singlestep_ptid = new_ptid;
1502
1503 if (ptid_equal (deferred_step_ptid, old_ptid))
1504 deferred_step_ptid = new_ptid;
1505
1506 for (displaced = displaced_step_inferior_states;
1507 displaced;
1508 displaced = displaced->next)
1509 {
1510 if (ptid_equal (displaced->step_ptid, old_ptid))
1511 displaced->step_ptid = new_ptid;
1512
1513 for (it = displaced->step_request_queue; it; it = it->next)
1514 if (ptid_equal (it->ptid, old_ptid))
1515 it->ptid = new_ptid;
1516 }
1517 }
1518
1519 \f
1520 /* Resuming. */
1521
1522 /* Things to clean up if we QUIT out of resume (). */
1523 static void
1524 resume_cleanups (void *ignore)
1525 {
1526 normal_stop ();
1527 }
1528
1529 static const char schedlock_off[] = "off";
1530 static const char schedlock_on[] = "on";
1531 static const char schedlock_step[] = "step";
1532 static const char *scheduler_enums[] = {
1533 schedlock_off,
1534 schedlock_on,
1535 schedlock_step,
1536 NULL
1537 };
1538 static const char *scheduler_mode = schedlock_off;
1539 static void
1540 show_scheduler_mode (struct ui_file *file, int from_tty,
1541 struct cmd_list_element *c, const char *value)
1542 {
1543 fprintf_filtered (file,
1544 _("Mode for locking scheduler "
1545 "during execution is \"%s\".\n"),
1546 value);
1547 }
1548
1549 static void
1550 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1551 {
1552 if (!target_can_lock_scheduler)
1553 {
1554 scheduler_mode = schedlock_off;
1555 error (_("Target '%s' cannot support this command."), target_shortname);
1556 }
1557 }
1558
1559 /* True if execution commands resume all threads of all processes by
1560 default; otherwise, resume only threads of the current inferior
1561 process. */
1562 int sched_multi = 0;
1563
1564 /* Try to setup for software single stepping over the specified location.
1565 Return 1 if target_resume() should use hardware single step.
1566
1567 GDBARCH the current gdbarch.
1568 PC the location to step over. */
1569
1570 static int
1571 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1572 {
1573 int hw_step = 1;
1574
1575 if (execution_direction == EXEC_FORWARD
1576 && gdbarch_software_single_step_p (gdbarch)
1577 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1578 {
1579 hw_step = 0;
1580 /* Do not pull these breakpoints until after a `wait' in
1581 `wait_for_inferior'. */
1582 singlestep_breakpoints_inserted_p = 1;
1583 singlestep_ptid = inferior_ptid;
1584 singlestep_pc = pc;
1585 }
1586 return hw_step;
1587 }
1588
1589 /* Resume the inferior, but allow a QUIT. This is useful if the user
1590 wants to interrupt some lengthy single-stepping operation
1591 (for child processes, the SIGINT goes to the inferior, and so
1592 we get a SIGINT random_signal, but for remote debugging and perhaps
1593 other targets, that's not true).
1594
1595 STEP nonzero if we should step (zero to continue instead).
1596 SIG is the signal to give the inferior (zero for none). */
1597 void
1598 resume (int step, enum target_signal sig)
1599 {
1600 int should_resume = 1;
1601 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1602 struct regcache *regcache = get_current_regcache ();
1603 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1604 struct thread_info *tp = inferior_thread ();
1605 CORE_ADDR pc = regcache_read_pc (regcache);
1606 struct address_space *aspace = get_regcache_aspace (regcache);
1607
1608 QUIT;
1609
1610 if (current_inferior ()->waiting_for_vfork_done)
1611 {
1612 /* Don't try to single-step a vfork parent that is waiting for
1613 the child to get out of the shared memory region (by exec'ing
1614 or exiting). This is particularly important on software
1615 single-step archs, as the child process would trip on the
1616 software single step breakpoint inserted for the parent
1617 process. Since the parent will not actually execute any
1618 instruction until the child is out of the shared region (such
1619 are vfork's semantics), it is safe to simply continue it.
1620 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1621 the parent, and tell it to `keep_going', which automatically
1622 re-sets it stepping. */
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "infrun: resume : clear step\n");
1626 step = 0;
1627 }
1628
1629 if (debug_infrun)
1630 fprintf_unfiltered (gdb_stdlog,
1631 "infrun: resume (step=%d, signal=%d), "
1632 "trap_expected=%d\n",
1633 step, sig, tp->control.trap_expected);
1634
1635 /* Normally, by the time we reach `resume', the breakpoints are either
1636 removed or inserted, as appropriate. The exception is if we're sitting
1637 at a permanent breakpoint; we need to step over it, but permanent
1638 breakpoints can't be removed. So we have to test for it here. */
1639 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1640 {
1641 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1642 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1643 else
1644 error (_("\
1645 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1646 how to step past a permanent breakpoint on this architecture. Try using\n\
1647 a command like `return' or `jump' to continue execution."));
1648 }
1649
1650 /* If enabled, step over breakpoints by executing a copy of the
1651 instruction at a different address.
1652
1653 We can't use displaced stepping when we have a signal to deliver;
1654 the comments for displaced_step_prepare explain why. The
1655 comments in the handle_inferior event for dealing with 'random
1656 signals' explain what we do instead.
1657
1658 We can't use displaced stepping when we are waiting for vfork_done
1659 event, displaced stepping breaks the vfork child similarly as single
1660 step software breakpoint. */
1661 if (use_displaced_stepping (gdbarch)
1662 && (tp->control.trap_expected
1663 || (step && gdbarch_software_single_step_p (gdbarch)))
1664 && sig == TARGET_SIGNAL_0
1665 && !current_inferior ()->waiting_for_vfork_done)
1666 {
1667 struct displaced_step_inferior_state *displaced;
1668
1669 if (!displaced_step_prepare (inferior_ptid))
1670 {
1671 /* Got placed in displaced stepping queue. Will be resumed
1672 later when all the currently queued displaced stepping
1673 requests finish. The thread is not executing at this point,
1674 and the call to set_executing will be made later. But we
1675 need to call set_running here, since from frontend point of view,
1676 the thread is running. */
1677 set_running (inferior_ptid, 1);
1678 discard_cleanups (old_cleanups);
1679 return;
1680 }
1681
1682 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1683 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1684 displaced->step_closure);
1685 }
1686
1687 /* Do we need to do it the hard way, w/temp breakpoints? */
1688 else if (step)
1689 step = maybe_software_singlestep (gdbarch, pc);
1690
1691 if (should_resume)
1692 {
1693 ptid_t resume_ptid;
1694
1695 /* If STEP is set, it's a request to use hardware stepping
1696 facilities. But in that case, we should never
1697 use singlestep breakpoint. */
1698 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1699
1700 /* Decide the set of threads to ask the target to resume. Start
1701 by assuming everything will be resumed, than narrow the set
1702 by applying increasingly restricting conditions. */
1703
1704 /* By default, resume all threads of all processes. */
1705 resume_ptid = RESUME_ALL;
1706
1707 /* Maybe resume only all threads of the current process. */
1708 if (!sched_multi && target_supports_multi_process ())
1709 {
1710 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1711 }
1712
1713 /* Maybe resume a single thread after all. */
1714 if (singlestep_breakpoints_inserted_p
1715 && stepping_past_singlestep_breakpoint)
1716 {
1717 /* The situation here is as follows. In thread T1 we wanted to
1718 single-step. Lacking hardware single-stepping we've
1719 set breakpoint at the PC of the next instruction -- call it
1720 P. After resuming, we've hit that breakpoint in thread T2.
1721 Now we've removed original breakpoint, inserted breakpoint
1722 at P+1, and try to step to advance T2 past breakpoint.
1723 We need to step only T2, as if T1 is allowed to freely run,
1724 it can run past P, and if other threads are allowed to run,
1725 they can hit breakpoint at P+1, and nested hits of single-step
1726 breakpoints is not something we'd want -- that's complicated
1727 to support, and has no value. */
1728 resume_ptid = inferior_ptid;
1729 }
1730 else if ((step || singlestep_breakpoints_inserted_p)
1731 && tp->control.trap_expected)
1732 {
1733 /* We're allowing a thread to run past a breakpoint it has
1734 hit, by single-stepping the thread with the breakpoint
1735 removed. In which case, we need to single-step only this
1736 thread, and keep others stopped, as they can miss this
1737 breakpoint if allowed to run.
1738
1739 The current code actually removes all breakpoints when
1740 doing this, not just the one being stepped over, so if we
1741 let other threads run, we can actually miss any
1742 breakpoint, not just the one at PC. */
1743 resume_ptid = inferior_ptid;
1744 }
1745 else if (non_stop)
1746 {
1747 /* With non-stop mode on, threads are always handled
1748 individually. */
1749 resume_ptid = inferior_ptid;
1750 }
1751 else if ((scheduler_mode == schedlock_on)
1752 || (scheduler_mode == schedlock_step
1753 && (step || singlestep_breakpoints_inserted_p)))
1754 {
1755 /* User-settable 'scheduler' mode requires solo thread resume. */
1756 resume_ptid = inferior_ptid;
1757 }
1758
1759 if (gdbarch_cannot_step_breakpoint (gdbarch))
1760 {
1761 /* Most targets can step a breakpoint instruction, thus
1762 executing it normally. But if this one cannot, just
1763 continue and we will hit it anyway. */
1764 if (step && breakpoint_inserted_here_p (aspace, pc))
1765 step = 0;
1766 }
1767
1768 if (debug_displaced
1769 && use_displaced_stepping (gdbarch)
1770 && tp->control.trap_expected)
1771 {
1772 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1773 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1774 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1775 gdb_byte buf[4];
1776
1777 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1778 paddress (resume_gdbarch, actual_pc));
1779 read_memory (actual_pc, buf, sizeof (buf));
1780 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1781 }
1782
1783 /* Install inferior's terminal modes. */
1784 target_terminal_inferior ();
1785
1786 /* Avoid confusing the next resume, if the next stop/resume
1787 happens to apply to another thread. */
1788 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1789
1790 target_resume (resume_ptid, step, sig);
1791 }
1792
1793 discard_cleanups (old_cleanups);
1794 }
1795 \f
1796 /* Proceeding. */
1797
1798 /* Clear out all variables saying what to do when inferior is continued.
1799 First do this, then set the ones you want, then call `proceed'. */
1800
1801 static void
1802 clear_proceed_status_thread (struct thread_info *tp)
1803 {
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "infrun: clear_proceed_status_thread (%s)\n",
1807 target_pid_to_str (tp->ptid));
1808
1809 tp->control.trap_expected = 0;
1810 tp->control.step_range_start = 0;
1811 tp->control.step_range_end = 0;
1812 tp->control.step_frame_id = null_frame_id;
1813 tp->control.step_stack_frame_id = null_frame_id;
1814 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1815 tp->stop_requested = 0;
1816
1817 tp->control.stop_step = 0;
1818
1819 tp->control.proceed_to_finish = 0;
1820
1821 /* Discard any remaining commands or status from previous stop. */
1822 bpstat_clear (&tp->control.stop_bpstat);
1823 }
1824
1825 static int
1826 clear_proceed_status_callback (struct thread_info *tp, void *data)
1827 {
1828 if (is_exited (tp->ptid))
1829 return 0;
1830
1831 clear_proceed_status_thread (tp);
1832 return 0;
1833 }
1834
1835 void
1836 clear_proceed_status (void)
1837 {
1838 if (!non_stop)
1839 {
1840 /* In all-stop mode, delete the per-thread status of all
1841 threads, even if inferior_ptid is null_ptid, there may be
1842 threads on the list. E.g., we may be launching a new
1843 process, while selecting the executable. */
1844 iterate_over_threads (clear_proceed_status_callback, NULL);
1845 }
1846
1847 if (!ptid_equal (inferior_ptid, null_ptid))
1848 {
1849 struct inferior *inferior;
1850
1851 if (non_stop)
1852 {
1853 /* If in non-stop mode, only delete the per-thread status of
1854 the current thread. */
1855 clear_proceed_status_thread (inferior_thread ());
1856 }
1857
1858 inferior = current_inferior ();
1859 inferior->control.stop_soon = NO_STOP_QUIETLY;
1860 }
1861
1862 stop_after_trap = 0;
1863
1864 observer_notify_about_to_proceed ();
1865
1866 if (stop_registers)
1867 {
1868 regcache_xfree (stop_registers);
1869 stop_registers = NULL;
1870 }
1871 }
1872
1873 /* Check the current thread against the thread that reported the most recent
1874 event. If a step-over is required return TRUE and set the current thread
1875 to the old thread. Otherwise return FALSE.
1876
1877 This should be suitable for any targets that support threads. */
1878
1879 static int
1880 prepare_to_proceed (int step)
1881 {
1882 ptid_t wait_ptid;
1883 struct target_waitstatus wait_status;
1884 int schedlock_enabled;
1885
1886 /* With non-stop mode on, threads are always handled individually. */
1887 gdb_assert (! non_stop);
1888
1889 /* Get the last target status returned by target_wait(). */
1890 get_last_target_status (&wait_ptid, &wait_status);
1891
1892 /* Make sure we were stopped at a breakpoint. */
1893 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1894 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1895 && wait_status.value.sig != TARGET_SIGNAL_ILL
1896 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1897 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1898 {
1899 return 0;
1900 }
1901
1902 schedlock_enabled = (scheduler_mode == schedlock_on
1903 || (scheduler_mode == schedlock_step
1904 && step));
1905
1906 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1907 if (schedlock_enabled)
1908 return 0;
1909
1910 /* Don't switch over if we're about to resume some other process
1911 other than WAIT_PTID's, and schedule-multiple is off. */
1912 if (!sched_multi
1913 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1914 return 0;
1915
1916 /* Switched over from WAIT_PID. */
1917 if (!ptid_equal (wait_ptid, minus_one_ptid)
1918 && !ptid_equal (inferior_ptid, wait_ptid))
1919 {
1920 struct regcache *regcache = get_thread_regcache (wait_ptid);
1921
1922 if (breakpoint_here_p (get_regcache_aspace (regcache),
1923 regcache_read_pc (regcache)))
1924 {
1925 /* If stepping, remember current thread to switch back to. */
1926 if (step)
1927 deferred_step_ptid = inferior_ptid;
1928
1929 /* Switch back to WAIT_PID thread. */
1930 switch_to_thread (wait_ptid);
1931
1932 /* We return 1 to indicate that there is a breakpoint here,
1933 so we need to step over it before continuing to avoid
1934 hitting it straight away. */
1935 return 1;
1936 }
1937 }
1938
1939 return 0;
1940 }
1941
1942 /* Basic routine for continuing the program in various fashions.
1943
1944 ADDR is the address to resume at, or -1 for resume where stopped.
1945 SIGGNAL is the signal to give it, or 0 for none,
1946 or -1 for act according to how it stopped.
1947 STEP is nonzero if should trap after one instruction.
1948 -1 means return after that and print nothing.
1949 You should probably set various step_... variables
1950 before calling here, if you are stepping.
1951
1952 You should call clear_proceed_status before calling proceed. */
1953
1954 void
1955 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1956 {
1957 struct regcache *regcache;
1958 struct gdbarch *gdbarch;
1959 struct thread_info *tp;
1960 CORE_ADDR pc;
1961 struct address_space *aspace;
1962 int oneproc = 0;
1963
1964 /* If we're stopped at a fork/vfork, follow the branch set by the
1965 "set follow-fork-mode" command; otherwise, we'll just proceed
1966 resuming the current thread. */
1967 if (!follow_fork ())
1968 {
1969 /* The target for some reason decided not to resume. */
1970 normal_stop ();
1971 return;
1972 }
1973
1974 regcache = get_current_regcache ();
1975 gdbarch = get_regcache_arch (regcache);
1976 aspace = get_regcache_aspace (regcache);
1977 pc = regcache_read_pc (regcache);
1978
1979 if (step > 0)
1980 step_start_function = find_pc_function (pc);
1981 if (step < 0)
1982 stop_after_trap = 1;
1983
1984 if (addr == (CORE_ADDR) -1)
1985 {
1986 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1987 && execution_direction != EXEC_REVERSE)
1988 /* There is a breakpoint at the address we will resume at,
1989 step one instruction before inserting breakpoints so that
1990 we do not stop right away (and report a second hit at this
1991 breakpoint).
1992
1993 Note, we don't do this in reverse, because we won't
1994 actually be executing the breakpoint insn anyway.
1995 We'll be (un-)executing the previous instruction. */
1996
1997 oneproc = 1;
1998 else if (gdbarch_single_step_through_delay_p (gdbarch)
1999 && gdbarch_single_step_through_delay (gdbarch,
2000 get_current_frame ()))
2001 /* We stepped onto an instruction that needs to be stepped
2002 again before re-inserting the breakpoint, do so. */
2003 oneproc = 1;
2004 }
2005 else
2006 {
2007 regcache_write_pc (regcache, addr);
2008 }
2009
2010 if (debug_infrun)
2011 fprintf_unfiltered (gdb_stdlog,
2012 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2013 paddress (gdbarch, addr), siggnal, step);
2014
2015 if (non_stop)
2016 /* In non-stop, each thread is handled individually. The context
2017 must already be set to the right thread here. */
2018 ;
2019 else
2020 {
2021 /* In a multi-threaded task we may select another thread and
2022 then continue or step.
2023
2024 But if the old thread was stopped at a breakpoint, it will
2025 immediately cause another breakpoint stop without any
2026 execution (i.e. it will report a breakpoint hit incorrectly).
2027 So we must step over it first.
2028
2029 prepare_to_proceed checks the current thread against the
2030 thread that reported the most recent event. If a step-over
2031 is required it returns TRUE and sets the current thread to
2032 the old thread. */
2033 if (prepare_to_proceed (step))
2034 oneproc = 1;
2035 }
2036
2037 /* prepare_to_proceed may change the current thread. */
2038 tp = inferior_thread ();
2039
2040 if (oneproc)
2041 {
2042 tp->control.trap_expected = 1;
2043 /* If displaced stepping is enabled, we can step over the
2044 breakpoint without hitting it, so leave all breakpoints
2045 inserted. Otherwise we need to disable all breakpoints, step
2046 one instruction, and then re-add them when that step is
2047 finished. */
2048 if (!use_displaced_stepping (gdbarch))
2049 remove_breakpoints ();
2050 }
2051
2052 /* We can insert breakpoints if we're not trying to step over one,
2053 or if we are stepping over one but we're using displaced stepping
2054 to do so. */
2055 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2056 insert_breakpoints ();
2057
2058 if (!non_stop)
2059 {
2060 /* Pass the last stop signal to the thread we're resuming,
2061 irrespective of whether the current thread is the thread that
2062 got the last event or not. This was historically GDB's
2063 behaviour before keeping a stop_signal per thread. */
2064
2065 struct thread_info *last_thread;
2066 ptid_t last_ptid;
2067 struct target_waitstatus last_status;
2068
2069 get_last_target_status (&last_ptid, &last_status);
2070 if (!ptid_equal (inferior_ptid, last_ptid)
2071 && !ptid_equal (last_ptid, null_ptid)
2072 && !ptid_equal (last_ptid, minus_one_ptid))
2073 {
2074 last_thread = find_thread_ptid (last_ptid);
2075 if (last_thread)
2076 {
2077 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2078 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2079 }
2080 }
2081 }
2082
2083 if (siggnal != TARGET_SIGNAL_DEFAULT)
2084 tp->suspend.stop_signal = siggnal;
2085 /* If this signal should not be seen by program,
2086 give it zero. Used for debugging signals. */
2087 else if (!signal_program[tp->suspend.stop_signal])
2088 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2089
2090 annotate_starting ();
2091
2092 /* Make sure that output from GDB appears before output from the
2093 inferior. */
2094 gdb_flush (gdb_stdout);
2095
2096 /* Refresh prev_pc value just prior to resuming. This used to be
2097 done in stop_stepping, however, setting prev_pc there did not handle
2098 scenarios such as inferior function calls or returning from
2099 a function via the return command. In those cases, the prev_pc
2100 value was not set properly for subsequent commands. The prev_pc value
2101 is used to initialize the starting line number in the ecs. With an
2102 invalid value, the gdb next command ends up stopping at the position
2103 represented by the next line table entry past our start position.
2104 On platforms that generate one line table entry per line, this
2105 is not a problem. However, on the ia64, the compiler generates
2106 extraneous line table entries that do not increase the line number.
2107 When we issue the gdb next command on the ia64 after an inferior call
2108 or a return command, we often end up a few instructions forward, still
2109 within the original line we started.
2110
2111 An attempt was made to refresh the prev_pc at the same time the
2112 execution_control_state is initialized (for instance, just before
2113 waiting for an inferior event). But this approach did not work
2114 because of platforms that use ptrace, where the pc register cannot
2115 be read unless the inferior is stopped. At that point, we are not
2116 guaranteed the inferior is stopped and so the regcache_read_pc() call
2117 can fail. Setting the prev_pc value here ensures the value is updated
2118 correctly when the inferior is stopped. */
2119 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2120
2121 /* Fill in with reasonable starting values. */
2122 init_thread_stepping_state (tp);
2123
2124 /* Reset to normal state. */
2125 init_infwait_state ();
2126
2127 /* Resume inferior. */
2128 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2129
2130 /* Wait for it to stop (if not standalone)
2131 and in any case decode why it stopped, and act accordingly. */
2132 /* Do this only if we are not using the event loop, or if the target
2133 does not support asynchronous execution. */
2134 if (!target_can_async_p ())
2135 {
2136 wait_for_inferior (0);
2137 normal_stop ();
2138 }
2139 }
2140 \f
2141
2142 /* Start remote-debugging of a machine over a serial link. */
2143
2144 void
2145 start_remote (int from_tty)
2146 {
2147 struct inferior *inferior;
2148
2149 init_wait_for_inferior ();
2150 inferior = current_inferior ();
2151 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2152
2153 /* Always go on waiting for the target, regardless of the mode. */
2154 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2155 indicate to wait_for_inferior that a target should timeout if
2156 nothing is returned (instead of just blocking). Because of this,
2157 targets expecting an immediate response need to, internally, set
2158 things up so that the target_wait() is forced to eventually
2159 timeout. */
2160 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2161 differentiate to its caller what the state of the target is after
2162 the initial open has been performed. Here we're assuming that
2163 the target has stopped. It should be possible to eventually have
2164 target_open() return to the caller an indication that the target
2165 is currently running and GDB state should be set to the same as
2166 for an async run. */
2167 wait_for_inferior (0);
2168
2169 /* Now that the inferior has stopped, do any bookkeeping like
2170 loading shared libraries. We want to do this before normal_stop,
2171 so that the displayed frame is up to date. */
2172 post_create_inferior (&current_target, from_tty);
2173
2174 normal_stop ();
2175 }
2176
2177 /* Initialize static vars when a new inferior begins. */
2178
2179 void
2180 init_wait_for_inferior (void)
2181 {
2182 /* These are meaningless until the first time through wait_for_inferior. */
2183
2184 breakpoint_init_inferior (inf_starting);
2185
2186 clear_proceed_status ();
2187
2188 stepping_past_singlestep_breakpoint = 0;
2189 deferred_step_ptid = null_ptid;
2190
2191 target_last_wait_ptid = minus_one_ptid;
2192
2193 previous_inferior_ptid = null_ptid;
2194 init_infwait_state ();
2195
2196 /* Discard any skipped inlined frames. */
2197 clear_inline_frame_state (minus_one_ptid);
2198 }
2199
2200 \f
2201 /* This enum encodes possible reasons for doing a target_wait, so that
2202 wfi can call target_wait in one place. (Ultimately the call will be
2203 moved out of the infinite loop entirely.) */
2204
2205 enum infwait_states
2206 {
2207 infwait_normal_state,
2208 infwait_thread_hop_state,
2209 infwait_step_watch_state,
2210 infwait_nonstep_watch_state
2211 };
2212
2213 /* The PTID we'll do a target_wait on.*/
2214 ptid_t waiton_ptid;
2215
2216 /* Current inferior wait state. */
2217 enum infwait_states infwait_state;
2218
2219 /* Data to be passed around while handling an event. This data is
2220 discarded between events. */
2221 struct execution_control_state
2222 {
2223 ptid_t ptid;
2224 /* The thread that got the event, if this was a thread event; NULL
2225 otherwise. */
2226 struct thread_info *event_thread;
2227
2228 struct target_waitstatus ws;
2229 int random_signal;
2230 CORE_ADDR stop_func_start;
2231 CORE_ADDR stop_func_end;
2232 char *stop_func_name;
2233 int new_thread_event;
2234 int wait_some_more;
2235 };
2236
2237 static void handle_inferior_event (struct execution_control_state *ecs);
2238
2239 static void handle_step_into_function (struct gdbarch *gdbarch,
2240 struct execution_control_state *ecs);
2241 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2242 struct execution_control_state *ecs);
2243 static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
2244 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2245 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
2246 struct symtab_and_line ,
2247 struct frame_id);
2248 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2249 static void check_exception_resume (struct execution_control_state *,
2250 struct frame_info *, struct symbol *);
2251
2252 static void stop_stepping (struct execution_control_state *ecs);
2253 static void prepare_to_wait (struct execution_control_state *ecs);
2254 static void keep_going (struct execution_control_state *ecs);
2255
2256 /* Callback for iterate over threads. If the thread is stopped, but
2257 the user/frontend doesn't know about that yet, go through
2258 normal_stop, as if the thread had just stopped now. ARG points at
2259 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2260 ptid_is_pid(PTID) is true, applies to all threads of the process
2261 pointed at by PTID. Otherwise, apply only to the thread pointed by
2262 PTID. */
2263
2264 static int
2265 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2266 {
2267 ptid_t ptid = * (ptid_t *) arg;
2268
2269 if ((ptid_equal (info->ptid, ptid)
2270 || ptid_equal (minus_one_ptid, ptid)
2271 || (ptid_is_pid (ptid)
2272 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2273 && is_running (info->ptid)
2274 && !is_executing (info->ptid))
2275 {
2276 struct cleanup *old_chain;
2277 struct execution_control_state ecss;
2278 struct execution_control_state *ecs = &ecss;
2279
2280 memset (ecs, 0, sizeof (*ecs));
2281
2282 old_chain = make_cleanup_restore_current_thread ();
2283
2284 switch_to_thread (info->ptid);
2285
2286 /* Go through handle_inferior_event/normal_stop, so we always
2287 have consistent output as if the stop event had been
2288 reported. */
2289 ecs->ptid = info->ptid;
2290 ecs->event_thread = find_thread_ptid (info->ptid);
2291 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2292 ecs->ws.value.sig = TARGET_SIGNAL_0;
2293
2294 handle_inferior_event (ecs);
2295
2296 if (!ecs->wait_some_more)
2297 {
2298 struct thread_info *tp;
2299
2300 normal_stop ();
2301
2302 /* Finish off the continuations. The continations
2303 themselves are responsible for realising the thread
2304 didn't finish what it was supposed to do. */
2305 tp = inferior_thread ();
2306 do_all_intermediate_continuations_thread (tp);
2307 do_all_continuations_thread (tp);
2308 }
2309
2310 do_cleanups (old_chain);
2311 }
2312
2313 return 0;
2314 }
2315
2316 /* This function is attached as a "thread_stop_requested" observer.
2317 Cleanup local state that assumed the PTID was to be resumed, and
2318 report the stop to the frontend. */
2319
2320 static void
2321 infrun_thread_stop_requested (ptid_t ptid)
2322 {
2323 struct displaced_step_inferior_state *displaced;
2324
2325 /* PTID was requested to stop. Remove it from the displaced
2326 stepping queue, so we don't try to resume it automatically. */
2327
2328 for (displaced = displaced_step_inferior_states;
2329 displaced;
2330 displaced = displaced->next)
2331 {
2332 struct displaced_step_request *it, **prev_next_p;
2333
2334 it = displaced->step_request_queue;
2335 prev_next_p = &displaced->step_request_queue;
2336 while (it)
2337 {
2338 if (ptid_match (it->ptid, ptid))
2339 {
2340 *prev_next_p = it->next;
2341 it->next = NULL;
2342 xfree (it);
2343 }
2344 else
2345 {
2346 prev_next_p = &it->next;
2347 }
2348
2349 it = *prev_next_p;
2350 }
2351 }
2352
2353 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2354 }
2355
2356 static void
2357 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2358 {
2359 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2360 nullify_last_target_wait_ptid ();
2361 }
2362
2363 /* Callback for iterate_over_threads. */
2364
2365 static int
2366 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2367 {
2368 if (is_exited (info->ptid))
2369 return 0;
2370
2371 delete_step_resume_breakpoint (info);
2372 delete_exception_resume_breakpoint (info);
2373 return 0;
2374 }
2375
2376 /* In all-stop, delete the step resume breakpoint of any thread that
2377 had one. In non-stop, delete the step resume breakpoint of the
2378 thread that just stopped. */
2379
2380 static void
2381 delete_step_thread_step_resume_breakpoint (void)
2382 {
2383 if (!target_has_execution
2384 || ptid_equal (inferior_ptid, null_ptid))
2385 /* If the inferior has exited, we have already deleted the step
2386 resume breakpoints out of GDB's lists. */
2387 return;
2388
2389 if (non_stop)
2390 {
2391 /* If in non-stop mode, only delete the step-resume or
2392 longjmp-resume breakpoint of the thread that just stopped
2393 stepping. */
2394 struct thread_info *tp = inferior_thread ();
2395
2396 delete_step_resume_breakpoint (tp);
2397 delete_exception_resume_breakpoint (tp);
2398 }
2399 else
2400 /* In all-stop mode, delete all step-resume and longjmp-resume
2401 breakpoints of any thread that had them. */
2402 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2403 }
2404
2405 /* A cleanup wrapper. */
2406
2407 static void
2408 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2409 {
2410 delete_step_thread_step_resume_breakpoint ();
2411 }
2412
2413 /* Pretty print the results of target_wait, for debugging purposes. */
2414
2415 static void
2416 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2417 const struct target_waitstatus *ws)
2418 {
2419 char *status_string = target_waitstatus_to_string (ws);
2420 struct ui_file *tmp_stream = mem_fileopen ();
2421 char *text;
2422
2423 /* The text is split over several lines because it was getting too long.
2424 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2425 output as a unit; we want only one timestamp printed if debug_timestamp
2426 is set. */
2427
2428 fprintf_unfiltered (tmp_stream,
2429 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2430 if (PIDGET (waiton_ptid) != -1)
2431 fprintf_unfiltered (tmp_stream,
2432 " [%s]", target_pid_to_str (waiton_ptid));
2433 fprintf_unfiltered (tmp_stream, ", status) =\n");
2434 fprintf_unfiltered (tmp_stream,
2435 "infrun: %d [%s],\n",
2436 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2437 fprintf_unfiltered (tmp_stream,
2438 "infrun: %s\n",
2439 status_string);
2440
2441 text = ui_file_xstrdup (tmp_stream, NULL);
2442
2443 /* This uses %s in part to handle %'s in the text, but also to avoid
2444 a gcc error: the format attribute requires a string literal. */
2445 fprintf_unfiltered (gdb_stdlog, "%s", text);
2446
2447 xfree (status_string);
2448 xfree (text);
2449 ui_file_delete (tmp_stream);
2450 }
2451
2452 /* Prepare and stabilize the inferior for detaching it. E.g.,
2453 detaching while a thread is displaced stepping is a recipe for
2454 crashing it, as nothing would readjust the PC out of the scratch
2455 pad. */
2456
2457 void
2458 prepare_for_detach (void)
2459 {
2460 struct inferior *inf = current_inferior ();
2461 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2462 struct cleanup *old_chain_1;
2463 struct displaced_step_inferior_state *displaced;
2464
2465 displaced = get_displaced_stepping_state (inf->pid);
2466
2467 /* Is any thread of this process displaced stepping? If not,
2468 there's nothing else to do. */
2469 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2470 return;
2471
2472 if (debug_infrun)
2473 fprintf_unfiltered (gdb_stdlog,
2474 "displaced-stepping in-process while detaching");
2475
2476 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2477 inf->detaching = 1;
2478
2479 while (!ptid_equal (displaced->step_ptid, null_ptid))
2480 {
2481 struct cleanup *old_chain_2;
2482 struct execution_control_state ecss;
2483 struct execution_control_state *ecs;
2484
2485 ecs = &ecss;
2486 memset (ecs, 0, sizeof (*ecs));
2487
2488 overlay_cache_invalid = 1;
2489
2490 /* We have to invalidate the registers BEFORE calling
2491 target_wait because they can be loaded from the target while
2492 in target_wait. This makes remote debugging a bit more
2493 efficient for those targets that provide critical registers
2494 as part of their normal status mechanism. */
2495
2496 registers_changed ();
2497
2498 if (deprecated_target_wait_hook)
2499 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2500 else
2501 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2502
2503 if (debug_infrun)
2504 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2505
2506 /* If an error happens while handling the event, propagate GDB's
2507 knowledge of the executing state to the frontend/user running
2508 state. */
2509 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2510 &minus_one_ptid);
2511
2512 /* In non-stop mode, each thread is handled individually.
2513 Switch early, so the global state is set correctly for this
2514 thread. */
2515 if (non_stop
2516 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2517 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2518 context_switch (ecs->ptid);
2519
2520 /* Now figure out what to do with the result of the result. */
2521 handle_inferior_event (ecs);
2522
2523 /* No error, don't finish the state yet. */
2524 discard_cleanups (old_chain_2);
2525
2526 /* Breakpoints and watchpoints are not installed on the target
2527 at this point, and signals are passed directly to the
2528 inferior, so this must mean the process is gone. */
2529 if (!ecs->wait_some_more)
2530 {
2531 discard_cleanups (old_chain_1);
2532 error (_("Program exited while detaching"));
2533 }
2534 }
2535
2536 discard_cleanups (old_chain_1);
2537 }
2538
2539 /* Wait for control to return from inferior to debugger.
2540
2541 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2542 as if they were SIGTRAP signals. This can be useful during
2543 the startup sequence on some targets such as HP/UX, where
2544 we receive an EXEC event instead of the expected SIGTRAP.
2545
2546 If inferior gets a signal, we may decide to start it up again
2547 instead of returning. That is why there is a loop in this function.
2548 When this function actually returns it means the inferior
2549 should be left stopped and GDB should read more commands. */
2550
2551 void
2552 wait_for_inferior (int treat_exec_as_sigtrap)
2553 {
2554 struct cleanup *old_cleanups;
2555 struct execution_control_state ecss;
2556 struct execution_control_state *ecs;
2557
2558 if (debug_infrun)
2559 fprintf_unfiltered
2560 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2561 treat_exec_as_sigtrap);
2562
2563 old_cleanups =
2564 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2565
2566 ecs = &ecss;
2567 memset (ecs, 0, sizeof (*ecs));
2568
2569 /* We'll update this if & when we switch to a new thread. */
2570 previous_inferior_ptid = inferior_ptid;
2571
2572 while (1)
2573 {
2574 struct cleanup *old_chain;
2575
2576 /* We have to invalidate the registers BEFORE calling target_wait
2577 because they can be loaded from the target while in target_wait.
2578 This makes remote debugging a bit more efficient for those
2579 targets that provide critical registers as part of their normal
2580 status mechanism. */
2581
2582 overlay_cache_invalid = 1;
2583 registers_changed ();
2584
2585 if (deprecated_target_wait_hook)
2586 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2587 else
2588 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2589
2590 if (debug_infrun)
2591 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2592
2593 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2594 {
2595 xfree (ecs->ws.value.execd_pathname);
2596 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2597 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2598 }
2599
2600 /* If an error happens while handling the event, propagate GDB's
2601 knowledge of the executing state to the frontend/user running
2602 state. */
2603 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2604
2605 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2606 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2607 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2608
2609 /* Now figure out what to do with the result of the result. */
2610 handle_inferior_event (ecs);
2611
2612 /* No error, don't finish the state yet. */
2613 discard_cleanups (old_chain);
2614
2615 if (!ecs->wait_some_more)
2616 break;
2617 }
2618
2619 do_cleanups (old_cleanups);
2620 }
2621
2622 /* Asynchronous version of wait_for_inferior. It is called by the
2623 event loop whenever a change of state is detected on the file
2624 descriptor corresponding to the target. It can be called more than
2625 once to complete a single execution command. In such cases we need
2626 to keep the state in a global variable ECSS. If it is the last time
2627 that this function is called for a single execution command, then
2628 report to the user that the inferior has stopped, and do the
2629 necessary cleanups. */
2630
2631 void
2632 fetch_inferior_event (void *client_data)
2633 {
2634 struct execution_control_state ecss;
2635 struct execution_control_state *ecs = &ecss;
2636 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2637 struct cleanup *ts_old_chain;
2638 int was_sync = sync_execution;
2639
2640 memset (ecs, 0, sizeof (*ecs));
2641
2642 /* We'll update this if & when we switch to a new thread. */
2643 previous_inferior_ptid = inferior_ptid;
2644
2645 /* We're handling a live event, so make sure we're doing live
2646 debugging. If we're looking at traceframes while the target is
2647 running, we're going to need to get back to that mode after
2648 handling the event. */
2649 if (non_stop)
2650 {
2651 make_cleanup_restore_current_traceframe ();
2652 set_current_traceframe (-1);
2653 }
2654
2655 if (non_stop)
2656 /* In non-stop mode, the user/frontend should not notice a thread
2657 switch due to internal events. Make sure we reverse to the
2658 user selected thread and frame after handling the event and
2659 running any breakpoint commands. */
2660 make_cleanup_restore_current_thread ();
2661
2662 /* We have to invalidate the registers BEFORE calling target_wait
2663 because they can be loaded from the target while in target_wait.
2664 This makes remote debugging a bit more efficient for those
2665 targets that provide critical registers as part of their normal
2666 status mechanism. */
2667
2668 overlay_cache_invalid = 1;
2669 registers_changed ();
2670
2671 if (deprecated_target_wait_hook)
2672 ecs->ptid =
2673 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2674 else
2675 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2676
2677 if (debug_infrun)
2678 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2679
2680 if (non_stop
2681 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2682 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2683 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2684 /* In non-stop mode, each thread is handled individually. Switch
2685 early, so the global state is set correctly for this
2686 thread. */
2687 context_switch (ecs->ptid);
2688
2689 /* If an error happens while handling the event, propagate GDB's
2690 knowledge of the executing state to the frontend/user running
2691 state. */
2692 if (!non_stop)
2693 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2694 else
2695 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2696
2697 /* Now figure out what to do with the result of the result. */
2698 handle_inferior_event (ecs);
2699
2700 if (!ecs->wait_some_more)
2701 {
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703
2704 delete_step_thread_step_resume_breakpoint ();
2705
2706 /* We may not find an inferior if this was a process exit. */
2707 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2708 normal_stop ();
2709
2710 if (target_has_execution
2711 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2712 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2713 && ecs->event_thread->step_multi
2714 && ecs->event_thread->control.stop_step)
2715 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2716 else
2717 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2718 }
2719
2720 /* No error, don't finish the thread states yet. */
2721 discard_cleanups (ts_old_chain);
2722
2723 /* Revert thread and frame. */
2724 do_cleanups (old_chain);
2725
2726 /* If the inferior was in sync execution mode, and now isn't,
2727 restore the prompt. */
2728 if (was_sync && !sync_execution)
2729 display_gdb_prompt (0);
2730 }
2731
2732 /* Record the frame and location we're currently stepping through. */
2733 void
2734 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2735 {
2736 struct thread_info *tp = inferior_thread ();
2737
2738 tp->control.step_frame_id = get_frame_id (frame);
2739 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2740
2741 tp->current_symtab = sal.symtab;
2742 tp->current_line = sal.line;
2743 }
2744
2745 /* Clear context switchable stepping state. */
2746
2747 void
2748 init_thread_stepping_state (struct thread_info *tss)
2749 {
2750 tss->stepping_over_breakpoint = 0;
2751 tss->step_after_step_resume_breakpoint = 0;
2752 tss->stepping_through_solib_after_catch = 0;
2753 tss->stepping_through_solib_catchpoints = NULL;
2754 }
2755
2756 /* Return the cached copy of the last pid/waitstatus returned by
2757 target_wait()/deprecated_target_wait_hook(). The data is actually
2758 cached by handle_inferior_event(), which gets called immediately
2759 after target_wait()/deprecated_target_wait_hook(). */
2760
2761 void
2762 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2763 {
2764 *ptidp = target_last_wait_ptid;
2765 *status = target_last_waitstatus;
2766 }
2767
2768 void
2769 nullify_last_target_wait_ptid (void)
2770 {
2771 target_last_wait_ptid = minus_one_ptid;
2772 }
2773
2774 /* Switch thread contexts. */
2775
2776 static void
2777 context_switch (ptid_t ptid)
2778 {
2779 if (debug_infrun)
2780 {
2781 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2782 target_pid_to_str (inferior_ptid));
2783 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2784 target_pid_to_str (ptid));
2785 }
2786
2787 switch_to_thread (ptid);
2788 }
2789
2790 static void
2791 adjust_pc_after_break (struct execution_control_state *ecs)
2792 {
2793 struct regcache *regcache;
2794 struct gdbarch *gdbarch;
2795 struct address_space *aspace;
2796 CORE_ADDR breakpoint_pc;
2797
2798 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2799 we aren't, just return.
2800
2801 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2802 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2803 implemented by software breakpoints should be handled through the normal
2804 breakpoint layer.
2805
2806 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2807 different signals (SIGILL or SIGEMT for instance), but it is less
2808 clear where the PC is pointing afterwards. It may not match
2809 gdbarch_decr_pc_after_break. I don't know any specific target that
2810 generates these signals at breakpoints (the code has been in GDB since at
2811 least 1992) so I can not guess how to handle them here.
2812
2813 In earlier versions of GDB, a target with
2814 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2815 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2816 target with both of these set in GDB history, and it seems unlikely to be
2817 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2818
2819 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2820 return;
2821
2822 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2823 return;
2824
2825 /* In reverse execution, when a breakpoint is hit, the instruction
2826 under it has already been de-executed. The reported PC always
2827 points at the breakpoint address, so adjusting it further would
2828 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2829 architecture:
2830
2831 B1 0x08000000 : INSN1
2832 B2 0x08000001 : INSN2
2833 0x08000002 : INSN3
2834 PC -> 0x08000003 : INSN4
2835
2836 Say you're stopped at 0x08000003 as above. Reverse continuing
2837 from that point should hit B2 as below. Reading the PC when the
2838 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2839 been de-executed already.
2840
2841 B1 0x08000000 : INSN1
2842 B2 PC -> 0x08000001 : INSN2
2843 0x08000002 : INSN3
2844 0x08000003 : INSN4
2845
2846 We can't apply the same logic as for forward execution, because
2847 we would wrongly adjust the PC to 0x08000000, since there's a
2848 breakpoint at PC - 1. We'd then report a hit on B1, although
2849 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2850 behaviour. */
2851 if (execution_direction == EXEC_REVERSE)
2852 return;
2853
2854 /* If this target does not decrement the PC after breakpoints, then
2855 we have nothing to do. */
2856 regcache = get_thread_regcache (ecs->ptid);
2857 gdbarch = get_regcache_arch (regcache);
2858 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2859 return;
2860
2861 aspace = get_regcache_aspace (regcache);
2862
2863 /* Find the location where (if we've hit a breakpoint) the
2864 breakpoint would be. */
2865 breakpoint_pc = regcache_read_pc (regcache)
2866 - gdbarch_decr_pc_after_break (gdbarch);
2867
2868 /* Check whether there actually is a software breakpoint inserted at
2869 that location.
2870
2871 If in non-stop mode, a race condition is possible where we've
2872 removed a breakpoint, but stop events for that breakpoint were
2873 already queued and arrive later. To suppress those spurious
2874 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2875 and retire them after a number of stop events are reported. */
2876 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2877 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2878 {
2879 struct cleanup *old_cleanups = NULL;
2880
2881 if (RECORD_IS_USED)
2882 old_cleanups = record_gdb_operation_disable_set ();
2883
2884 /* When using hardware single-step, a SIGTRAP is reported for both
2885 a completed single-step and a software breakpoint. Need to
2886 differentiate between the two, as the latter needs adjusting
2887 but the former does not.
2888
2889 The SIGTRAP can be due to a completed hardware single-step only if
2890 - we didn't insert software single-step breakpoints
2891 - the thread to be examined is still the current thread
2892 - this thread is currently being stepped
2893
2894 If any of these events did not occur, we must have stopped due
2895 to hitting a software breakpoint, and have to back up to the
2896 breakpoint address.
2897
2898 As a special case, we could have hardware single-stepped a
2899 software breakpoint. In this case (prev_pc == breakpoint_pc),
2900 we also need to back up to the breakpoint address. */
2901
2902 if (singlestep_breakpoints_inserted_p
2903 || !ptid_equal (ecs->ptid, inferior_ptid)
2904 || !currently_stepping (ecs->event_thread)
2905 || ecs->event_thread->prev_pc == breakpoint_pc)
2906 regcache_write_pc (regcache, breakpoint_pc);
2907
2908 if (RECORD_IS_USED)
2909 do_cleanups (old_cleanups);
2910 }
2911 }
2912
2913 void
2914 init_infwait_state (void)
2915 {
2916 waiton_ptid = pid_to_ptid (-1);
2917 infwait_state = infwait_normal_state;
2918 }
2919
2920 void
2921 error_is_running (void)
2922 {
2923 error (_("Cannot execute this command while "
2924 "the selected thread is running."));
2925 }
2926
2927 void
2928 ensure_not_running (void)
2929 {
2930 if (is_running (inferior_ptid))
2931 error_is_running ();
2932 }
2933
2934 static int
2935 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2936 {
2937 for (frame = get_prev_frame (frame);
2938 frame != NULL;
2939 frame = get_prev_frame (frame))
2940 {
2941 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2942 return 1;
2943 if (get_frame_type (frame) != INLINE_FRAME)
2944 break;
2945 }
2946
2947 return 0;
2948 }
2949
2950 /* Auxiliary function that handles syscall entry/return events.
2951 It returns 1 if the inferior should keep going (and GDB
2952 should ignore the event), or 0 if the event deserves to be
2953 processed. */
2954
2955 static int
2956 handle_syscall_event (struct execution_control_state *ecs)
2957 {
2958 struct regcache *regcache;
2959 struct gdbarch *gdbarch;
2960 int syscall_number;
2961
2962 if (!ptid_equal (ecs->ptid, inferior_ptid))
2963 context_switch (ecs->ptid);
2964
2965 regcache = get_thread_regcache (ecs->ptid);
2966 gdbarch = get_regcache_arch (regcache);
2967 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2968 stop_pc = regcache_read_pc (regcache);
2969
2970 target_last_waitstatus.value.syscall_number = syscall_number;
2971
2972 if (catch_syscall_enabled () > 0
2973 && catching_syscall_number (syscall_number) > 0)
2974 {
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2977 syscall_number);
2978
2979 ecs->event_thread->control.stop_bpstat
2980 = bpstat_stop_status (get_regcache_aspace (regcache),
2981 stop_pc, ecs->ptid);
2982 ecs->random_signal
2983 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
2984
2985 if (!ecs->random_signal)
2986 {
2987 /* Catchpoint hit. */
2988 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
2989 return 0;
2990 }
2991 }
2992
2993 /* If no catchpoint triggered for this, then keep going. */
2994 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2995 keep_going (ecs);
2996 return 1;
2997 }
2998
2999 /* Given an execution control state that has been freshly filled in
3000 by an event from the inferior, figure out what it means and take
3001 appropriate action. */
3002
3003 static void
3004 handle_inferior_event (struct execution_control_state *ecs)
3005 {
3006 struct frame_info *frame;
3007 struct gdbarch *gdbarch;
3008 int sw_single_step_trap_p = 0;
3009 int stopped_by_watchpoint;
3010 int stepped_after_stopped_by_watchpoint = 0;
3011 struct symtab_and_line stop_pc_sal;
3012 enum stop_kind stop_soon;
3013
3014 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3015 {
3016 /* We had an event in the inferior, but we are not interested in
3017 handling it at this level. The lower layers have already
3018 done what needs to be done, if anything.
3019
3020 One of the possible circumstances for this is when the
3021 inferior produces output for the console. The inferior has
3022 not stopped, and we are ignoring the event. Another possible
3023 circumstance is any event which the lower level knows will be
3024 reported multiple times without an intervening resume. */
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3027 prepare_to_wait (ecs);
3028 return;
3029 }
3030
3031 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3032 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3033 {
3034 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3035
3036 gdb_assert (inf);
3037 stop_soon = inf->control.stop_soon;
3038 }
3039 else
3040 stop_soon = NO_STOP_QUIETLY;
3041
3042 /* Cache the last pid/waitstatus. */
3043 target_last_wait_ptid = ecs->ptid;
3044 target_last_waitstatus = ecs->ws;
3045
3046 /* Always clear state belonging to the previous time we stopped. */
3047 stop_stack_dummy = STOP_NONE;
3048
3049 /* If it's a new process, add it to the thread database. */
3050
3051 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3052 && !ptid_equal (ecs->ptid, minus_one_ptid)
3053 && !in_thread_list (ecs->ptid));
3054
3055 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3056 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3057 add_thread (ecs->ptid);
3058
3059 ecs->event_thread = find_thread_ptid (ecs->ptid);
3060
3061 /* Dependent on valid ECS->EVENT_THREAD. */
3062 adjust_pc_after_break (ecs);
3063
3064 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3065 reinit_frame_cache ();
3066
3067 breakpoint_retire_moribund ();
3068
3069 /* First, distinguish signals caused by the debugger from signals
3070 that have to do with the program's own actions. Note that
3071 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3072 on the operating system version. Here we detect when a SIGILL or
3073 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3074 something similar for SIGSEGV, since a SIGSEGV will be generated
3075 when we're trying to execute a breakpoint instruction on a
3076 non-executable stack. This happens for call dummy breakpoints
3077 for architectures like SPARC that place call dummies on the
3078 stack. */
3079 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3080 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3081 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3082 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3083 {
3084 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3085
3086 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3087 regcache_read_pc (regcache)))
3088 {
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: Treating signal as SIGTRAP\n");
3092 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3093 }
3094 }
3095
3096 /* Mark the non-executing threads accordingly. In all-stop, all
3097 threads of all processes are stopped when we get any event
3098 reported. In non-stop mode, only the event thread stops. If
3099 we're handling a process exit in non-stop mode, there's nothing
3100 to do, as threads of the dead process are gone, and threads of
3101 any other process were left running. */
3102 if (!non_stop)
3103 set_executing (minus_one_ptid, 0);
3104 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3105 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3106 set_executing (inferior_ptid, 0);
3107
3108 switch (infwait_state)
3109 {
3110 case infwait_thread_hop_state:
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3113 break;
3114
3115 case infwait_normal_state:
3116 if (debug_infrun)
3117 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3118 break;
3119
3120 case infwait_step_watch_state:
3121 if (debug_infrun)
3122 fprintf_unfiltered (gdb_stdlog,
3123 "infrun: infwait_step_watch_state\n");
3124
3125 stepped_after_stopped_by_watchpoint = 1;
3126 break;
3127
3128 case infwait_nonstep_watch_state:
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: infwait_nonstep_watch_state\n");
3132 insert_breakpoints ();
3133
3134 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3135 handle things like signals arriving and other things happening
3136 in combination correctly? */
3137 stepped_after_stopped_by_watchpoint = 1;
3138 break;
3139
3140 default:
3141 internal_error (__FILE__, __LINE__, _("bad switch"));
3142 }
3143
3144 infwait_state = infwait_normal_state;
3145 waiton_ptid = pid_to_ptid (-1);
3146
3147 switch (ecs->ws.kind)
3148 {
3149 case TARGET_WAITKIND_LOADED:
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3152 /* Ignore gracefully during startup of the inferior, as it might
3153 be the shell which has just loaded some objects, otherwise
3154 add the symbols for the newly loaded objects. Also ignore at
3155 the beginning of an attach or remote session; we will query
3156 the full list of libraries once the connection is
3157 established. */
3158 if (stop_soon == NO_STOP_QUIETLY)
3159 {
3160 /* Check for any newly added shared libraries if we're
3161 supposed to be adding them automatically. Switch
3162 terminal for any messages produced by
3163 breakpoint_re_set. */
3164 target_terminal_ours_for_output ();
3165 /* NOTE: cagney/2003-11-25: Make certain that the target
3166 stack's section table is kept up-to-date. Architectures,
3167 (e.g., PPC64), use the section table to perform
3168 operations such as address => section name and hence
3169 require the table to contain all sections (including
3170 those found in shared libraries). */
3171 #ifdef SOLIB_ADD
3172 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3173 #else
3174 solib_add (NULL, 0, &current_target, auto_solib_add);
3175 #endif
3176 target_terminal_inferior ();
3177
3178 /* If requested, stop when the dynamic linker notifies
3179 gdb of events. This allows the user to get control
3180 and place breakpoints in initializer routines for
3181 dynamically loaded objects (among other things). */
3182 if (stop_on_solib_events)
3183 {
3184 /* Make sure we print "Stopped due to solib-event" in
3185 normal_stop. */
3186 stop_print_frame = 1;
3187
3188 stop_stepping (ecs);
3189 return;
3190 }
3191
3192 /* NOTE drow/2007-05-11: This might be a good place to check
3193 for "catch load". */
3194 }
3195
3196 /* If we are skipping through a shell, or through shared library
3197 loading that we aren't interested in, resume the program. If
3198 we're running the program normally, also resume. But stop if
3199 we're attaching or setting up a remote connection. */
3200 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3201 {
3202 /* Loading of shared libraries might have changed breakpoint
3203 addresses. Make sure new breakpoints are inserted. */
3204 if (stop_soon == NO_STOP_QUIETLY
3205 && !breakpoints_always_inserted_mode ())
3206 insert_breakpoints ();
3207 resume (0, TARGET_SIGNAL_0);
3208 prepare_to_wait (ecs);
3209 return;
3210 }
3211
3212 break;
3213
3214 case TARGET_WAITKIND_SPURIOUS:
3215 if (debug_infrun)
3216 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3217 resume (0, TARGET_SIGNAL_0);
3218 prepare_to_wait (ecs);
3219 return;
3220
3221 case TARGET_WAITKIND_EXITED:
3222 if (debug_infrun)
3223 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3224 inferior_ptid = ecs->ptid;
3225 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3226 set_current_program_space (current_inferior ()->pspace);
3227 handle_vfork_child_exec_or_exit (0);
3228 target_terminal_ours (); /* Must do this before mourn anyway. */
3229 print_exited_reason (ecs->ws.value.integer);
3230
3231 /* Record the exit code in the convenience variable $_exitcode, so
3232 that the user can inspect this again later. */
3233 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3234 (LONGEST) ecs->ws.value.integer);
3235 gdb_flush (gdb_stdout);
3236 target_mourn_inferior ();
3237 singlestep_breakpoints_inserted_p = 0;
3238 cancel_single_step_breakpoints ();
3239 stop_print_frame = 0;
3240 stop_stepping (ecs);
3241 return;
3242
3243 case TARGET_WAITKIND_SIGNALLED:
3244 if (debug_infrun)
3245 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3246 inferior_ptid = ecs->ptid;
3247 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3248 set_current_program_space (current_inferior ()->pspace);
3249 handle_vfork_child_exec_or_exit (0);
3250 stop_print_frame = 0;
3251 target_terminal_ours (); /* Must do this before mourn anyway. */
3252
3253 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3254 reach here unless the inferior is dead. However, for years
3255 target_kill() was called here, which hints that fatal signals aren't
3256 really fatal on some systems. If that's true, then some changes
3257 may be needed. */
3258 target_mourn_inferior ();
3259
3260 print_signal_exited_reason (ecs->ws.value.sig);
3261 singlestep_breakpoints_inserted_p = 0;
3262 cancel_single_step_breakpoints ();
3263 stop_stepping (ecs);
3264 return;
3265
3266 /* The following are the only cases in which we keep going;
3267 the above cases end in a continue or goto. */
3268 case TARGET_WAITKIND_FORKED:
3269 case TARGET_WAITKIND_VFORKED:
3270 if (debug_infrun)
3271 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3272
3273 if (!ptid_equal (ecs->ptid, inferior_ptid))
3274 {
3275 context_switch (ecs->ptid);
3276 reinit_frame_cache ();
3277 }
3278
3279 /* Immediately detach breakpoints from the child before there's
3280 any chance of letting the user delete breakpoints from the
3281 breakpoint lists. If we don't do this early, it's easy to
3282 leave left over traps in the child, vis: "break foo; catch
3283 fork; c; <fork>; del; c; <child calls foo>". We only follow
3284 the fork on the last `continue', and by that time the
3285 breakpoint at "foo" is long gone from the breakpoint table.
3286 If we vforked, then we don't need to unpatch here, since both
3287 parent and child are sharing the same memory pages; we'll
3288 need to unpatch at follow/detach time instead to be certain
3289 that new breakpoints added between catchpoint hit time and
3290 vfork follow are detached. */
3291 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3292 {
3293 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3294
3295 /* This won't actually modify the breakpoint list, but will
3296 physically remove the breakpoints from the child. */
3297 detach_breakpoints (child_pid);
3298 }
3299
3300 if (singlestep_breakpoints_inserted_p)
3301 {
3302 /* Pull the single step breakpoints out of the target. */
3303 remove_single_step_breakpoints ();
3304 singlestep_breakpoints_inserted_p = 0;
3305 }
3306
3307 /* In case the event is caught by a catchpoint, remember that
3308 the event is to be followed at the next resume of the thread,
3309 and not immediately. */
3310 ecs->event_thread->pending_follow = ecs->ws;
3311
3312 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3313
3314 ecs->event_thread->control.stop_bpstat
3315 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3316 stop_pc, ecs->ptid);
3317
3318 /* Note that we're interested in knowing the bpstat actually
3319 causes a stop, not just if it may explain the signal.
3320 Software watchpoints, for example, always appear in the
3321 bpstat. */
3322 ecs->random_signal
3323 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3324
3325 /* If no catchpoint triggered for this, then keep going. */
3326 if (ecs->random_signal)
3327 {
3328 ptid_t parent;
3329 ptid_t child;
3330 int should_resume;
3331 int follow_child
3332 = (follow_fork_mode_string == follow_fork_mode_child);
3333
3334 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3335
3336 should_resume = follow_fork ();
3337
3338 parent = ecs->ptid;
3339 child = ecs->ws.value.related_pid;
3340
3341 /* In non-stop mode, also resume the other branch. */
3342 if (non_stop && !detach_fork)
3343 {
3344 if (follow_child)
3345 switch_to_thread (parent);
3346 else
3347 switch_to_thread (child);
3348
3349 ecs->event_thread = inferior_thread ();
3350 ecs->ptid = inferior_ptid;
3351 keep_going (ecs);
3352 }
3353
3354 if (follow_child)
3355 switch_to_thread (child);
3356 else
3357 switch_to_thread (parent);
3358
3359 ecs->event_thread = inferior_thread ();
3360 ecs->ptid = inferior_ptid;
3361
3362 if (should_resume)
3363 keep_going (ecs);
3364 else
3365 stop_stepping (ecs);
3366 return;
3367 }
3368 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3369 goto process_event_stop_test;
3370
3371 case TARGET_WAITKIND_VFORK_DONE:
3372 /* Done with the shared memory region. Re-insert breakpoints in
3373 the parent, and keep going. */
3374
3375 if (debug_infrun)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3378
3379 if (!ptid_equal (ecs->ptid, inferior_ptid))
3380 context_switch (ecs->ptid);
3381
3382 current_inferior ()->waiting_for_vfork_done = 0;
3383 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3384 /* This also takes care of reinserting breakpoints in the
3385 previously locked inferior. */
3386 keep_going (ecs);
3387 return;
3388
3389 case TARGET_WAITKIND_EXECD:
3390 if (debug_infrun)
3391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3392
3393 if (!ptid_equal (ecs->ptid, inferior_ptid))
3394 {
3395 context_switch (ecs->ptid);
3396 reinit_frame_cache ();
3397 }
3398
3399 singlestep_breakpoints_inserted_p = 0;
3400 cancel_single_step_breakpoints ();
3401
3402 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3403
3404 /* Do whatever is necessary to the parent branch of the vfork. */
3405 handle_vfork_child_exec_or_exit (1);
3406
3407 /* This causes the eventpoints and symbol table to be reset.
3408 Must do this now, before trying to determine whether to
3409 stop. */
3410 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3411
3412 ecs->event_thread->control.stop_bpstat
3413 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3414 stop_pc, ecs->ptid);
3415 ecs->random_signal
3416 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3417
3418 /* Note that this may be referenced from inside
3419 bpstat_stop_status above, through inferior_has_execd. */
3420 xfree (ecs->ws.value.execd_pathname);
3421 ecs->ws.value.execd_pathname = NULL;
3422
3423 /* If no catchpoint triggered for this, then keep going. */
3424 if (ecs->random_signal)
3425 {
3426 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3427 keep_going (ecs);
3428 return;
3429 }
3430 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3431 goto process_event_stop_test;
3432
3433 /* Be careful not to try to gather much state about a thread
3434 that's in a syscall. It's frequently a losing proposition. */
3435 case TARGET_WAITKIND_SYSCALL_ENTRY:
3436 if (debug_infrun)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3439 /* Getting the current syscall number. */
3440 if (handle_syscall_event (ecs) != 0)
3441 return;
3442 goto process_event_stop_test;
3443
3444 /* Before examining the threads further, step this thread to
3445 get it entirely out of the syscall. (We get notice of the
3446 event when the thread is just on the verge of exiting a
3447 syscall. Stepping one instruction seems to get it back
3448 into user code.) */
3449 case TARGET_WAITKIND_SYSCALL_RETURN:
3450 if (debug_infrun)
3451 fprintf_unfiltered (gdb_stdlog,
3452 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3453 if (handle_syscall_event (ecs) != 0)
3454 return;
3455 goto process_event_stop_test;
3456
3457 case TARGET_WAITKIND_STOPPED:
3458 if (debug_infrun)
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3460 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3461 break;
3462
3463 case TARGET_WAITKIND_NO_HISTORY:
3464 /* Reverse execution: target ran out of history info. */
3465 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3466 print_no_history_reason ();
3467 stop_stepping (ecs);
3468 return;
3469 }
3470
3471 if (ecs->new_thread_event)
3472 {
3473 if (non_stop)
3474 /* Non-stop assumes that the target handles adding new threads
3475 to the thread list. */
3476 internal_error (__FILE__, __LINE__,
3477 "targets should add new threads to the thread "
3478 "list themselves in non-stop mode.");
3479
3480 /* We may want to consider not doing a resume here in order to
3481 give the user a chance to play with the new thread. It might
3482 be good to make that a user-settable option. */
3483
3484 /* At this point, all threads are stopped (happens automatically
3485 in either the OS or the native code). Therefore we need to
3486 continue all threads in order to make progress. */
3487
3488 if (!ptid_equal (ecs->ptid, inferior_ptid))
3489 context_switch (ecs->ptid);
3490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3491 prepare_to_wait (ecs);
3492 return;
3493 }
3494
3495 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3496 {
3497 /* Do we need to clean up the state of a thread that has
3498 completed a displaced single-step? (Doing so usually affects
3499 the PC, so do it here, before we set stop_pc.) */
3500 displaced_step_fixup (ecs->ptid,
3501 ecs->event_thread->suspend.stop_signal);
3502
3503 /* If we either finished a single-step or hit a breakpoint, but
3504 the user wanted this thread to be stopped, pretend we got a
3505 SIG0 (generic unsignaled stop). */
3506
3507 if (ecs->event_thread->stop_requested
3508 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3509 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3510 }
3511
3512 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3513
3514 if (debug_infrun)
3515 {
3516 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3517 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3518 struct cleanup *old_chain = save_inferior_ptid ();
3519
3520 inferior_ptid = ecs->ptid;
3521
3522 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3523 paddress (gdbarch, stop_pc));
3524 if (target_stopped_by_watchpoint ())
3525 {
3526 CORE_ADDR addr;
3527
3528 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3529
3530 if (target_stopped_data_address (&current_target, &addr))
3531 fprintf_unfiltered (gdb_stdlog,
3532 "infrun: stopped data address = %s\n",
3533 paddress (gdbarch, addr));
3534 else
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: (no data address available)\n");
3537 }
3538
3539 do_cleanups (old_chain);
3540 }
3541
3542 if (stepping_past_singlestep_breakpoint)
3543 {
3544 gdb_assert (singlestep_breakpoints_inserted_p);
3545 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3546 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3547
3548 stepping_past_singlestep_breakpoint = 0;
3549
3550 /* We've either finished single-stepping past the single-step
3551 breakpoint, or stopped for some other reason. It would be nice if
3552 we could tell, but we can't reliably. */
3553 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3554 {
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: stepping_past_"
3558 "singlestep_breakpoint\n");
3559 /* Pull the single step breakpoints out of the target. */
3560 remove_single_step_breakpoints ();
3561 singlestep_breakpoints_inserted_p = 0;
3562
3563 ecs->random_signal = 0;
3564 ecs->event_thread->control.trap_expected = 0;
3565
3566 context_switch (saved_singlestep_ptid);
3567 if (deprecated_context_hook)
3568 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3569
3570 resume (1, TARGET_SIGNAL_0);
3571 prepare_to_wait (ecs);
3572 return;
3573 }
3574 }
3575
3576 if (!ptid_equal (deferred_step_ptid, null_ptid))
3577 {
3578 /* In non-stop mode, there's never a deferred_step_ptid set. */
3579 gdb_assert (!non_stop);
3580
3581 /* If we stopped for some other reason than single-stepping, ignore
3582 the fact that we were supposed to switch back. */
3583 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3584 {
3585 if (debug_infrun)
3586 fprintf_unfiltered (gdb_stdlog,
3587 "infrun: handling deferred step\n");
3588
3589 /* Pull the single step breakpoints out of the target. */
3590 if (singlestep_breakpoints_inserted_p)
3591 {
3592 remove_single_step_breakpoints ();
3593 singlestep_breakpoints_inserted_p = 0;
3594 }
3595
3596 /* Note: We do not call context_switch at this point, as the
3597 context is already set up for stepping the original thread. */
3598 switch_to_thread (deferred_step_ptid);
3599 deferred_step_ptid = null_ptid;
3600 /* Suppress spurious "Switching to ..." message. */
3601 previous_inferior_ptid = inferior_ptid;
3602
3603 resume (1, TARGET_SIGNAL_0);
3604 prepare_to_wait (ecs);
3605 return;
3606 }
3607
3608 deferred_step_ptid = null_ptid;
3609 }
3610
3611 /* See if a thread hit a thread-specific breakpoint that was meant for
3612 another thread. If so, then step that thread past the breakpoint,
3613 and continue it. */
3614
3615 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3616 {
3617 int thread_hop_needed = 0;
3618 struct address_space *aspace =
3619 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3620
3621 /* Check if a regular breakpoint has been hit before checking
3622 for a potential single step breakpoint. Otherwise, GDB will
3623 not see this breakpoint hit when stepping onto breakpoints. */
3624 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3625 {
3626 ecs->random_signal = 0;
3627 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3628 thread_hop_needed = 1;
3629 }
3630 else if (singlestep_breakpoints_inserted_p)
3631 {
3632 /* We have not context switched yet, so this should be true
3633 no matter which thread hit the singlestep breakpoint. */
3634 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3637 "trap for %s\n",
3638 target_pid_to_str (ecs->ptid));
3639
3640 ecs->random_signal = 0;
3641 /* The call to in_thread_list is necessary because PTIDs sometimes
3642 change when we go from single-threaded to multi-threaded. If
3643 the singlestep_ptid is still in the list, assume that it is
3644 really different from ecs->ptid. */
3645 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3646 && in_thread_list (singlestep_ptid))
3647 {
3648 /* If the PC of the thread we were trying to single-step
3649 has changed, discard this event (which we were going
3650 to ignore anyway), and pretend we saw that thread
3651 trap. This prevents us continuously moving the
3652 single-step breakpoint forward, one instruction at a
3653 time. If the PC has changed, then the thread we were
3654 trying to single-step has trapped or been signalled,
3655 but the event has not been reported to GDB yet.
3656
3657 There might be some cases where this loses signal
3658 information, if a signal has arrived at exactly the
3659 same time that the PC changed, but this is the best
3660 we can do with the information available. Perhaps we
3661 should arrange to report all events for all threads
3662 when they stop, or to re-poll the remote looking for
3663 this particular thread (i.e. temporarily enable
3664 schedlock). */
3665
3666 CORE_ADDR new_singlestep_pc
3667 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3668
3669 if (new_singlestep_pc != singlestep_pc)
3670 {
3671 enum target_signal stop_signal;
3672
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3675 " but expected thread advanced also\n");
3676
3677 /* The current context still belongs to
3678 singlestep_ptid. Don't swap here, since that's
3679 the context we want to use. Just fudge our
3680 state and continue. */
3681 stop_signal = ecs->event_thread->suspend.stop_signal;
3682 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3683 ecs->ptid = singlestep_ptid;
3684 ecs->event_thread = find_thread_ptid (ecs->ptid);
3685 ecs->event_thread->suspend.stop_signal = stop_signal;
3686 stop_pc = new_singlestep_pc;
3687 }
3688 else
3689 {
3690 if (debug_infrun)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "infrun: unexpected thread\n");
3693
3694 thread_hop_needed = 1;
3695 stepping_past_singlestep_breakpoint = 1;
3696 saved_singlestep_ptid = singlestep_ptid;
3697 }
3698 }
3699 }
3700
3701 if (thread_hop_needed)
3702 {
3703 struct regcache *thread_regcache;
3704 int remove_status = 0;
3705
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3708
3709 /* Switch context before touching inferior memory, the
3710 previous thread may have exited. */
3711 if (!ptid_equal (inferior_ptid, ecs->ptid))
3712 context_switch (ecs->ptid);
3713
3714 /* Saw a breakpoint, but it was hit by the wrong thread.
3715 Just continue. */
3716
3717 if (singlestep_breakpoints_inserted_p)
3718 {
3719 /* Pull the single step breakpoints out of the target. */
3720 remove_single_step_breakpoints ();
3721 singlestep_breakpoints_inserted_p = 0;
3722 }
3723
3724 /* If the arch can displace step, don't remove the
3725 breakpoints. */
3726 thread_regcache = get_thread_regcache (ecs->ptid);
3727 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3728 remove_status = remove_breakpoints ();
3729
3730 /* Did we fail to remove breakpoints? If so, try
3731 to set the PC past the bp. (There's at least
3732 one situation in which we can fail to remove
3733 the bp's: On HP-UX's that use ttrace, we can't
3734 change the address space of a vforking child
3735 process until the child exits (well, okay, not
3736 then either :-) or execs. */
3737 if (remove_status != 0)
3738 error (_("Cannot step over breakpoint hit in wrong thread"));
3739 else
3740 { /* Single step */
3741 if (!non_stop)
3742 {
3743 /* Only need to require the next event from this
3744 thread in all-stop mode. */
3745 waiton_ptid = ecs->ptid;
3746 infwait_state = infwait_thread_hop_state;
3747 }
3748
3749 ecs->event_thread->stepping_over_breakpoint = 1;
3750 keep_going (ecs);
3751 return;
3752 }
3753 }
3754 else if (singlestep_breakpoints_inserted_p)
3755 {
3756 sw_single_step_trap_p = 1;
3757 ecs->random_signal = 0;
3758 }
3759 }
3760 else
3761 ecs->random_signal = 1;
3762
3763 /* See if something interesting happened to the non-current thread. If
3764 so, then switch to that thread. */
3765 if (!ptid_equal (ecs->ptid, inferior_ptid))
3766 {
3767 if (debug_infrun)
3768 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3769
3770 context_switch (ecs->ptid);
3771
3772 if (deprecated_context_hook)
3773 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3774 }
3775
3776 /* At this point, get hold of the now-current thread's frame. */
3777 frame = get_current_frame ();
3778 gdbarch = get_frame_arch (frame);
3779
3780 if (singlestep_breakpoints_inserted_p)
3781 {
3782 /* Pull the single step breakpoints out of the target. */
3783 remove_single_step_breakpoints ();
3784 singlestep_breakpoints_inserted_p = 0;
3785 }
3786
3787 if (stepped_after_stopped_by_watchpoint)
3788 stopped_by_watchpoint = 0;
3789 else
3790 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3791
3792 /* If necessary, step over this watchpoint. We'll be back to display
3793 it in a moment. */
3794 if (stopped_by_watchpoint
3795 && (target_have_steppable_watchpoint
3796 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3797 {
3798 /* At this point, we are stopped at an instruction which has
3799 attempted to write to a piece of memory under control of
3800 a watchpoint. The instruction hasn't actually executed
3801 yet. If we were to evaluate the watchpoint expression
3802 now, we would get the old value, and therefore no change
3803 would seem to have occurred.
3804
3805 In order to make watchpoints work `right', we really need
3806 to complete the memory write, and then evaluate the
3807 watchpoint expression. We do this by single-stepping the
3808 target.
3809
3810 It may not be necessary to disable the watchpoint to stop over
3811 it. For example, the PA can (with some kernel cooperation)
3812 single step over a watchpoint without disabling the watchpoint.
3813
3814 It is far more common to need to disable a watchpoint to step
3815 the inferior over it. If we have non-steppable watchpoints,
3816 we must disable the current watchpoint; it's simplest to
3817 disable all watchpoints and breakpoints. */
3818 int hw_step = 1;
3819
3820 if (!target_have_steppable_watchpoint)
3821 remove_breakpoints ();
3822 /* Single step */
3823 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3824 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3825 waiton_ptid = ecs->ptid;
3826 if (target_have_steppable_watchpoint)
3827 infwait_state = infwait_step_watch_state;
3828 else
3829 infwait_state = infwait_nonstep_watch_state;
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833
3834 ecs->stop_func_start = 0;
3835 ecs->stop_func_end = 0;
3836 ecs->stop_func_name = 0;
3837 /* Don't care about return value; stop_func_start and stop_func_name
3838 will both be 0 if it doesn't work. */
3839 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3840 &ecs->stop_func_start, &ecs->stop_func_end);
3841 ecs->stop_func_start
3842 += gdbarch_deprecated_function_start_offset (gdbarch);
3843 ecs->event_thread->stepping_over_breakpoint = 0;
3844 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3845 ecs->event_thread->control.stop_step = 0;
3846 stop_print_frame = 1;
3847 ecs->random_signal = 0;
3848 stopped_by_random_signal = 0;
3849
3850 /* Hide inlined functions starting here, unless we just performed stepi or
3851 nexti. After stepi and nexti, always show the innermost frame (not any
3852 inline function call sites). */
3853 if (ecs->event_thread->control.step_range_end != 1)
3854 skip_inline_frames (ecs->ptid);
3855
3856 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3857 && ecs->event_thread->control.trap_expected
3858 && gdbarch_single_step_through_delay_p (gdbarch)
3859 && currently_stepping (ecs->event_thread))
3860 {
3861 /* We're trying to step off a breakpoint. Turns out that we're
3862 also on an instruction that needs to be stepped multiple
3863 times before it's been fully executing. E.g., architectures
3864 with a delay slot. It needs to be stepped twice, once for
3865 the instruction and once for the delay slot. */
3866 int step_through_delay
3867 = gdbarch_single_step_through_delay (gdbarch, frame);
3868
3869 if (debug_infrun && step_through_delay)
3870 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3871 if (ecs->event_thread->control.step_range_end == 0
3872 && step_through_delay)
3873 {
3874 /* The user issued a continue when stopped at a breakpoint.
3875 Set up for another trap and get out of here. */
3876 ecs->event_thread->stepping_over_breakpoint = 1;
3877 keep_going (ecs);
3878 return;
3879 }
3880 else if (step_through_delay)
3881 {
3882 /* The user issued a step when stopped at a breakpoint.
3883 Maybe we should stop, maybe we should not - the delay
3884 slot *might* correspond to a line of source. In any
3885 case, don't decide that here, just set
3886 ecs->stepping_over_breakpoint, making sure we
3887 single-step again before breakpoints are re-inserted. */
3888 ecs->event_thread->stepping_over_breakpoint = 1;
3889 }
3890 }
3891
3892 /* Look at the cause of the stop, and decide what to do.
3893 The alternatives are:
3894 1) stop_stepping and return; to really stop and return to the debugger,
3895 2) keep_going and return to start up again
3896 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3897 3) set ecs->random_signal to 1, and the decision between 1 and 2
3898 will be made according to the signal handling tables. */
3899
3900 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3901 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3902 || stop_soon == STOP_QUIETLY_REMOTE)
3903 {
3904 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3905 && stop_after_trap)
3906 {
3907 if (debug_infrun)
3908 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3909 stop_print_frame = 0;
3910 stop_stepping (ecs);
3911 return;
3912 }
3913
3914 /* This is originated from start_remote(), start_inferior() and
3915 shared libraries hook functions. */
3916 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3920 stop_stepping (ecs);
3921 return;
3922 }
3923
3924 /* This originates from attach_command(). We need to overwrite
3925 the stop_signal here, because some kernels don't ignore a
3926 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3927 See more comments in inferior.h. On the other hand, if we
3928 get a non-SIGSTOP, report it to the user - assume the backend
3929 will handle the SIGSTOP if it should show up later.
3930
3931 Also consider that the attach is complete when we see a
3932 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3933 target extended-remote report it instead of a SIGSTOP
3934 (e.g. gdbserver). We already rely on SIGTRAP being our
3935 signal, so this is no exception.
3936
3937 Also consider that the attach is complete when we see a
3938 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3939 the target to stop all threads of the inferior, in case the
3940 low level attach operation doesn't stop them implicitly. If
3941 they weren't stopped implicitly, then the stub will report a
3942 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3943 other than GDB's request. */
3944 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3945 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
3946 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3947 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
3948 {
3949 stop_stepping (ecs);
3950 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3951 return;
3952 }
3953
3954 /* See if there is a breakpoint at the current PC. */
3955 ecs->event_thread->control.stop_bpstat
3956 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3957 stop_pc, ecs->ptid);
3958
3959 /* Following in case break condition called a
3960 function. */
3961 stop_print_frame = 1;
3962
3963 /* This is where we handle "moribund" watchpoints. Unlike
3964 software breakpoints traps, hardware watchpoint traps are
3965 always distinguishable from random traps. If no high-level
3966 watchpoint is associated with the reported stop data address
3967 anymore, then the bpstat does not explain the signal ---
3968 simply make sure to ignore it if `stopped_by_watchpoint' is
3969 set. */
3970
3971 if (debug_infrun
3972 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3973 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3974 && stopped_by_watchpoint)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: no user watchpoint explains "
3977 "watchpoint SIGTRAP, ignoring\n");
3978
3979 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3980 at one stage in the past included checks for an inferior
3981 function call's call dummy's return breakpoint. The original
3982 comment, that went with the test, read:
3983
3984 ``End of a stack dummy. Some systems (e.g. Sony news) give
3985 another signal besides SIGTRAP, so check here as well as
3986 above.''
3987
3988 If someone ever tries to get call dummys on a
3989 non-executable stack to work (where the target would stop
3990 with something like a SIGSEGV), then those tests might need
3991 to be re-instated. Given, however, that the tests were only
3992 enabled when momentary breakpoints were not being used, I
3993 suspect that it won't be the case.
3994
3995 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3996 be necessary for call dummies on a non-executable stack on
3997 SPARC. */
3998
3999 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4000 ecs->random_signal
4001 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4002 || stopped_by_watchpoint
4003 || ecs->event_thread->control.trap_expected
4004 || (ecs->event_thread->control.step_range_end
4005 && (ecs->event_thread->control.step_resume_breakpoint
4006 == NULL)));
4007 else
4008 {
4009 ecs->random_signal = !bpstat_explains_signal
4010 (ecs->event_thread->control.stop_bpstat);
4011 if (!ecs->random_signal)
4012 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4013 }
4014 }
4015
4016 /* When we reach this point, we've pretty much decided
4017 that the reason for stopping must've been a random
4018 (unexpected) signal. */
4019
4020 else
4021 ecs->random_signal = 1;
4022
4023 process_event_stop_test:
4024
4025 /* Re-fetch current thread's frame in case we did a
4026 "goto process_event_stop_test" above. */
4027 frame = get_current_frame ();
4028 gdbarch = get_frame_arch (frame);
4029
4030 /* For the program's own signals, act according to
4031 the signal handling tables. */
4032
4033 if (ecs->random_signal)
4034 {
4035 /* Signal not for debugging purposes. */
4036 int printed = 0;
4037 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4038
4039 if (debug_infrun)
4040 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4041 ecs->event_thread->suspend.stop_signal);
4042
4043 stopped_by_random_signal = 1;
4044
4045 if (signal_print[ecs->event_thread->suspend.stop_signal])
4046 {
4047 printed = 1;
4048 target_terminal_ours_for_output ();
4049 print_signal_received_reason
4050 (ecs->event_thread->suspend.stop_signal);
4051 }
4052 /* Always stop on signals if we're either just gaining control
4053 of the program, or the user explicitly requested this thread
4054 to remain stopped. */
4055 if (stop_soon != NO_STOP_QUIETLY
4056 || ecs->event_thread->stop_requested
4057 || (!inf->detaching
4058 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4059 {
4060 stop_stepping (ecs);
4061 return;
4062 }
4063 /* If not going to stop, give terminal back
4064 if we took it away. */
4065 else if (printed)
4066 target_terminal_inferior ();
4067
4068 /* Clear the signal if it should not be passed. */
4069 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4070 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4071
4072 if (ecs->event_thread->prev_pc == stop_pc
4073 && ecs->event_thread->control.trap_expected
4074 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4075 {
4076 /* We were just starting a new sequence, attempting to
4077 single-step off of a breakpoint and expecting a SIGTRAP.
4078 Instead this signal arrives. This signal will take us out
4079 of the stepping range so GDB needs to remember to, when
4080 the signal handler returns, resume stepping off that
4081 breakpoint. */
4082 /* To simplify things, "continue" is forced to use the same
4083 code paths as single-step - set a breakpoint at the
4084 signal return address and then, once hit, step off that
4085 breakpoint. */
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog,
4088 "infrun: signal arrived while stepping over "
4089 "breakpoint\n");
4090
4091 insert_step_resume_breakpoint_at_frame (frame);
4092 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4093 keep_going (ecs);
4094 return;
4095 }
4096
4097 if (ecs->event_thread->control.step_range_end != 0
4098 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4099 && (ecs->event_thread->control.step_range_start <= stop_pc
4100 && stop_pc < ecs->event_thread->control.step_range_end)
4101 && frame_id_eq (get_stack_frame_id (frame),
4102 ecs->event_thread->control.step_stack_frame_id)
4103 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4104 {
4105 /* The inferior is about to take a signal that will take it
4106 out of the single step range. Set a breakpoint at the
4107 current PC (which is presumably where the signal handler
4108 will eventually return) and then allow the inferior to
4109 run free.
4110
4111 Note that this is only needed for a signal delivered
4112 while in the single-step range. Nested signals aren't a
4113 problem as they eventually all return. */
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog,
4116 "infrun: signal may take us out of "
4117 "single-step range\n");
4118
4119 insert_step_resume_breakpoint_at_frame (frame);
4120 keep_going (ecs);
4121 return;
4122 }
4123
4124 /* Note: step_resume_breakpoint may be non-NULL. This occures
4125 when either there's a nested signal, or when there's a
4126 pending signal enabled just as the signal handler returns
4127 (leaving the inferior at the step-resume-breakpoint without
4128 actually executing it). Either way continue until the
4129 breakpoint is really hit. */
4130 keep_going (ecs);
4131 return;
4132 }
4133
4134 /* Handle cases caused by hitting a breakpoint. */
4135 {
4136 CORE_ADDR jmp_buf_pc;
4137 struct bpstat_what what;
4138
4139 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4140
4141 if (what.call_dummy)
4142 {
4143 stop_stack_dummy = what.call_dummy;
4144 }
4145
4146 /* If we hit an internal event that triggers symbol changes, the
4147 current frame will be invalidated within bpstat_what (e.g., if
4148 we hit an internal solib event). Re-fetch it. */
4149 frame = get_current_frame ();
4150 gdbarch = get_frame_arch (frame);
4151
4152 switch (what.main_action)
4153 {
4154 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4155 /* If we hit the breakpoint at longjmp while stepping, we
4156 install a momentary breakpoint at the target of the
4157 jmp_buf. */
4158
4159 if (debug_infrun)
4160 fprintf_unfiltered (gdb_stdlog,
4161 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4162
4163 ecs->event_thread->stepping_over_breakpoint = 1;
4164
4165 if (what.is_longjmp)
4166 {
4167 if (!gdbarch_get_longjmp_target_p (gdbarch)
4168 || !gdbarch_get_longjmp_target (gdbarch,
4169 frame, &jmp_buf_pc))
4170 {
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog,
4173 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4174 "(!gdbarch_get_longjmp_target)\n");
4175 keep_going (ecs);
4176 return;
4177 }
4178
4179 /* We're going to replace the current step-resume breakpoint
4180 with a longjmp-resume breakpoint. */
4181 delete_step_resume_breakpoint (ecs->event_thread);
4182
4183 /* Insert a breakpoint at resume address. */
4184 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4185 }
4186 else
4187 {
4188 struct symbol *func = get_frame_function (frame);
4189
4190 if (func)
4191 check_exception_resume (ecs, frame, func);
4192 }
4193 keep_going (ecs);
4194 return;
4195
4196 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4197 if (debug_infrun)
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4200
4201 if (what.is_longjmp)
4202 {
4203 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4204 != NULL);
4205 delete_step_resume_breakpoint (ecs->event_thread);
4206 }
4207 else
4208 {
4209 /* There are several cases to consider.
4210
4211 1. The initiating frame no longer exists. In this case
4212 we must stop, because the exception has gone too far.
4213
4214 2. The initiating frame exists, and is the same as the
4215 current frame. We stop, because the exception has been
4216 caught.
4217
4218 3. The initiating frame exists and is different from
4219 the current frame. This means the exception has been
4220 caught beneath the initiating frame, so keep going. */
4221 struct frame_info *init_frame
4222 = frame_find_by_id (ecs->event_thread->initiating_frame);
4223
4224 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4225 != NULL);
4226 delete_exception_resume_breakpoint (ecs->event_thread);
4227
4228 if (init_frame)
4229 {
4230 struct frame_id current_id
4231 = get_frame_id (get_current_frame ());
4232 if (frame_id_eq (current_id,
4233 ecs->event_thread->initiating_frame))
4234 {
4235 /* Case 2. Fall through. */
4236 }
4237 else
4238 {
4239 /* Case 3. */
4240 keep_going (ecs);
4241 return;
4242 }
4243 }
4244
4245 /* For Cases 1 and 2, remove the step-resume breakpoint,
4246 if it exists. */
4247 delete_step_resume_breakpoint (ecs->event_thread);
4248 }
4249
4250 ecs->event_thread->control.stop_step = 1;
4251 print_end_stepping_range_reason ();
4252 stop_stepping (ecs);
4253 return;
4254
4255 case BPSTAT_WHAT_SINGLE:
4256 if (debug_infrun)
4257 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4258 ecs->event_thread->stepping_over_breakpoint = 1;
4259 /* Still need to check other stuff, at least the case
4260 where we are stepping and step out of the right range. */
4261 break;
4262
4263 case BPSTAT_WHAT_STOP_NOISY:
4264 if (debug_infrun)
4265 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4266 stop_print_frame = 1;
4267
4268 /* We are about to nuke the step_resume_breakpointt via the
4269 cleanup chain, so no need to worry about it here. */
4270
4271 stop_stepping (ecs);
4272 return;
4273
4274 case BPSTAT_WHAT_STOP_SILENT:
4275 if (debug_infrun)
4276 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4277 stop_print_frame = 0;
4278
4279 /* We are about to nuke the step_resume_breakpoin via the
4280 cleanup chain, so no need to worry about it here. */
4281
4282 stop_stepping (ecs);
4283 return;
4284
4285 case BPSTAT_WHAT_STEP_RESUME:
4286 if (debug_infrun)
4287 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4288
4289 delete_step_resume_breakpoint (ecs->event_thread);
4290 if (ecs->event_thread->step_after_step_resume_breakpoint)
4291 {
4292 /* Back when the step-resume breakpoint was inserted, we
4293 were trying to single-step off a breakpoint. Go back
4294 to doing that. */
4295 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4296 ecs->event_thread->stepping_over_breakpoint = 1;
4297 keep_going (ecs);
4298 return;
4299 }
4300 if (stop_pc == ecs->stop_func_start
4301 && execution_direction == EXEC_REVERSE)
4302 {
4303 /* We are stepping over a function call in reverse, and
4304 just hit the step-resume breakpoint at the start
4305 address of the function. Go back to single-stepping,
4306 which should take us back to the function call. */
4307 ecs->event_thread->stepping_over_breakpoint = 1;
4308 keep_going (ecs);
4309 return;
4310 }
4311 break;
4312
4313 case BPSTAT_WHAT_KEEP_CHECKING:
4314 break;
4315 }
4316 }
4317
4318 /* We come here if we hit a breakpoint but should not
4319 stop for it. Possibly we also were stepping
4320 and should stop for that. So fall through and
4321 test for stepping. But, if not stepping,
4322 do not stop. */
4323
4324 /* In all-stop mode, if we're currently stepping but have stopped in
4325 some other thread, we need to switch back to the stepped thread. */
4326 if (!non_stop)
4327 {
4328 struct thread_info *tp;
4329
4330 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4331 ecs->event_thread);
4332 if (tp)
4333 {
4334 /* However, if the current thread is blocked on some internal
4335 breakpoint, and we simply need to step over that breakpoint
4336 to get it going again, do that first. */
4337 if ((ecs->event_thread->control.trap_expected
4338 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4339 || ecs->event_thread->stepping_over_breakpoint)
4340 {
4341 keep_going (ecs);
4342 return;
4343 }
4344
4345 /* If the stepping thread exited, then don't try to switch
4346 back and resume it, which could fail in several different
4347 ways depending on the target. Instead, just keep going.
4348
4349 We can find a stepping dead thread in the thread list in
4350 two cases:
4351
4352 - The target supports thread exit events, and when the
4353 target tries to delete the thread from the thread list,
4354 inferior_ptid pointed at the exiting thread. In such
4355 case, calling delete_thread does not really remove the
4356 thread from the list; instead, the thread is left listed,
4357 with 'exited' state.
4358
4359 - The target's debug interface does not support thread
4360 exit events, and so we have no idea whatsoever if the
4361 previously stepping thread is still alive. For that
4362 reason, we need to synchronously query the target
4363 now. */
4364 if (is_exited (tp->ptid)
4365 || !target_thread_alive (tp->ptid))
4366 {
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: not switching back to "
4370 "stepped thread, it has vanished\n");
4371
4372 delete_thread (tp->ptid);
4373 keep_going (ecs);
4374 return;
4375 }
4376
4377 /* Otherwise, we no longer expect a trap in the current thread.
4378 Clear the trap_expected flag before switching back -- this is
4379 what keep_going would do as well, if we called it. */
4380 ecs->event_thread->control.trap_expected = 0;
4381
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog,
4384 "infrun: switching back to stepped thread\n");
4385
4386 ecs->event_thread = tp;
4387 ecs->ptid = tp->ptid;
4388 context_switch (ecs->ptid);
4389 keep_going (ecs);
4390 return;
4391 }
4392 }
4393
4394 /* Are we stepping to get the inferior out of the dynamic linker's
4395 hook (and possibly the dld itself) after catching a shlib
4396 event? */
4397 if (ecs->event_thread->stepping_through_solib_after_catch)
4398 {
4399 #if defined(SOLIB_ADD)
4400 /* Have we reached our destination? If not, keep going. */
4401 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4402 {
4403 if (debug_infrun)
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: stepping in dynamic linker\n");
4406 ecs->event_thread->stepping_over_breakpoint = 1;
4407 keep_going (ecs);
4408 return;
4409 }
4410 #endif
4411 if (debug_infrun)
4412 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4413 /* Else, stop and report the catchpoint(s) whose triggering
4414 caused us to begin stepping. */
4415 ecs->event_thread->stepping_through_solib_after_catch = 0;
4416 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4417 ecs->event_thread->control.stop_bpstat
4418 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4419 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4420 stop_print_frame = 1;
4421 stop_stepping (ecs);
4422 return;
4423 }
4424
4425 if (ecs->event_thread->control.step_resume_breakpoint)
4426 {
4427 if (debug_infrun)
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: step-resume breakpoint is inserted\n");
4430
4431 /* Having a step-resume breakpoint overrides anything
4432 else having to do with stepping commands until
4433 that breakpoint is reached. */
4434 keep_going (ecs);
4435 return;
4436 }
4437
4438 if (ecs->event_thread->control.step_range_end == 0)
4439 {
4440 if (debug_infrun)
4441 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4442 /* Likewise if we aren't even stepping. */
4443 keep_going (ecs);
4444 return;
4445 }
4446
4447 /* Re-fetch current thread's frame in case the code above caused
4448 the frame cache to be re-initialized, making our FRAME variable
4449 a dangling pointer. */
4450 frame = get_current_frame ();
4451 gdbarch = get_frame_arch (frame);
4452
4453 /* If stepping through a line, keep going if still within it.
4454
4455 Note that step_range_end is the address of the first instruction
4456 beyond the step range, and NOT the address of the last instruction
4457 within it!
4458
4459 Note also that during reverse execution, we may be stepping
4460 through a function epilogue and therefore must detect when
4461 the current-frame changes in the middle of a line. */
4462
4463 if (stop_pc >= ecs->event_thread->control.step_range_start
4464 && stop_pc < ecs->event_thread->control.step_range_end
4465 && (execution_direction != EXEC_REVERSE
4466 || frame_id_eq (get_frame_id (frame),
4467 ecs->event_thread->control.step_frame_id)))
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered
4471 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4472 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4473 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4474
4475 /* When stepping backward, stop at beginning of line range
4476 (unless it's the function entry point, in which case
4477 keep going back to the call point). */
4478 if (stop_pc == ecs->event_thread->control.step_range_start
4479 && stop_pc != ecs->stop_func_start
4480 && execution_direction == EXEC_REVERSE)
4481 {
4482 ecs->event_thread->control.stop_step = 1;
4483 print_end_stepping_range_reason ();
4484 stop_stepping (ecs);
4485 }
4486 else
4487 keep_going (ecs);
4488
4489 return;
4490 }
4491
4492 /* We stepped out of the stepping range. */
4493
4494 /* If we are stepping at the source level and entered the runtime
4495 loader dynamic symbol resolution code...
4496
4497 EXEC_FORWARD: we keep on single stepping until we exit the run
4498 time loader code and reach the callee's address.
4499
4500 EXEC_REVERSE: we've already executed the callee (backward), and
4501 the runtime loader code is handled just like any other
4502 undebuggable function call. Now we need only keep stepping
4503 backward through the trampoline code, and that's handled further
4504 down, so there is nothing for us to do here. */
4505
4506 if (execution_direction != EXEC_REVERSE
4507 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4508 && in_solib_dynsym_resolve_code (stop_pc))
4509 {
4510 CORE_ADDR pc_after_resolver =
4511 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4512
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: stepped into dynsym resolve code\n");
4516
4517 if (pc_after_resolver)
4518 {
4519 /* Set up a step-resume breakpoint at the address
4520 indicated by SKIP_SOLIB_RESOLVER. */
4521 struct symtab_and_line sr_sal;
4522
4523 init_sal (&sr_sal);
4524 sr_sal.pc = pc_after_resolver;
4525 sr_sal.pspace = get_frame_program_space (frame);
4526
4527 insert_step_resume_breakpoint_at_sal (gdbarch,
4528 sr_sal, null_frame_id);
4529 }
4530
4531 keep_going (ecs);
4532 return;
4533 }
4534
4535 if (ecs->event_thread->control.step_range_end != 1
4536 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4537 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4538 && get_frame_type (frame) == SIGTRAMP_FRAME)
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: stepped into signal trampoline\n");
4543 /* The inferior, while doing a "step" or "next", has ended up in
4544 a signal trampoline (either by a signal being delivered or by
4545 the signal handler returning). Just single-step until the
4546 inferior leaves the trampoline (either by calling the handler
4547 or returning). */
4548 keep_going (ecs);
4549 return;
4550 }
4551
4552 /* Check for subroutine calls. The check for the current frame
4553 equalling the step ID is not necessary - the check of the
4554 previous frame's ID is sufficient - but it is a common case and
4555 cheaper than checking the previous frame's ID.
4556
4557 NOTE: frame_id_eq will never report two invalid frame IDs as
4558 being equal, so to get into this block, both the current and
4559 previous frame must have valid frame IDs. */
4560 /* The outer_frame_id check is a heuristic to detect stepping
4561 through startup code. If we step over an instruction which
4562 sets the stack pointer from an invalid value to a valid value,
4563 we may detect that as a subroutine call from the mythical
4564 "outermost" function. This could be fixed by marking
4565 outermost frames as !stack_p,code_p,special_p. Then the
4566 initial outermost frame, before sp was valid, would
4567 have code_addr == &_start. See the comment in frame_id_eq
4568 for more. */
4569 if (!frame_id_eq (get_stack_frame_id (frame),
4570 ecs->event_thread->control.step_stack_frame_id)
4571 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4572 ecs->event_thread->control.step_stack_frame_id)
4573 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4574 outer_frame_id)
4575 || step_start_function != find_pc_function (stop_pc))))
4576 {
4577 CORE_ADDR real_stop_pc;
4578
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4581
4582 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4583 || ((ecs->event_thread->control.step_range_end == 1)
4584 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4585 ecs->stop_func_start)))
4586 {
4587 /* I presume that step_over_calls is only 0 when we're
4588 supposed to be stepping at the assembly language level
4589 ("stepi"). Just stop. */
4590 /* Also, maybe we just did a "nexti" inside a prolog, so we
4591 thought it was a subroutine call but it was not. Stop as
4592 well. FENN */
4593 /* And this works the same backward as frontward. MVS */
4594 ecs->event_thread->control.stop_step = 1;
4595 print_end_stepping_range_reason ();
4596 stop_stepping (ecs);
4597 return;
4598 }
4599
4600 /* Reverse stepping through solib trampolines. */
4601
4602 if (execution_direction == EXEC_REVERSE
4603 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4604 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4605 || (ecs->stop_func_start == 0
4606 && in_solib_dynsym_resolve_code (stop_pc))))
4607 {
4608 /* Any solib trampoline code can be handled in reverse
4609 by simply continuing to single-step. We have already
4610 executed the solib function (backwards), and a few
4611 steps will take us back through the trampoline to the
4612 caller. */
4613 keep_going (ecs);
4614 return;
4615 }
4616
4617 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4618 {
4619 /* We're doing a "next".
4620
4621 Normal (forward) execution: set a breakpoint at the
4622 callee's return address (the address at which the caller
4623 will resume).
4624
4625 Reverse (backward) execution. set the step-resume
4626 breakpoint at the start of the function that we just
4627 stepped into (backwards), and continue to there. When we
4628 get there, we'll need to single-step back to the caller. */
4629
4630 if (execution_direction == EXEC_REVERSE)
4631 {
4632 struct symtab_and_line sr_sal;
4633
4634 /* Normal function call return (static or dynamic). */
4635 init_sal (&sr_sal);
4636 sr_sal.pc = ecs->stop_func_start;
4637 sr_sal.pspace = get_frame_program_space (frame);
4638 insert_step_resume_breakpoint_at_sal (gdbarch,
4639 sr_sal, null_frame_id);
4640 }
4641 else
4642 insert_step_resume_breakpoint_at_caller (frame);
4643
4644 keep_going (ecs);
4645 return;
4646 }
4647
4648 /* If we are in a function call trampoline (a stub between the
4649 calling routine and the real function), locate the real
4650 function. That's what tells us (a) whether we want to step
4651 into it at all, and (b) what prologue we want to run to the
4652 end of, if we do step into it. */
4653 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4654 if (real_stop_pc == 0)
4655 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4656 if (real_stop_pc != 0)
4657 ecs->stop_func_start = real_stop_pc;
4658
4659 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4660 {
4661 struct symtab_and_line sr_sal;
4662
4663 init_sal (&sr_sal);
4664 sr_sal.pc = ecs->stop_func_start;
4665 sr_sal.pspace = get_frame_program_space (frame);
4666
4667 insert_step_resume_breakpoint_at_sal (gdbarch,
4668 sr_sal, null_frame_id);
4669 keep_going (ecs);
4670 return;
4671 }
4672
4673 /* If we have line number information for the function we are
4674 thinking of stepping into, step into it.
4675
4676 If there are several symtabs at that PC (e.g. with include
4677 files), just want to know whether *any* of them have line
4678 numbers. find_pc_line handles this. */
4679 {
4680 struct symtab_and_line tmp_sal;
4681
4682 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4683 tmp_sal.pspace = get_frame_program_space (frame);
4684 if (tmp_sal.line != 0)
4685 {
4686 if (execution_direction == EXEC_REVERSE)
4687 handle_step_into_function_backward (gdbarch, ecs);
4688 else
4689 handle_step_into_function (gdbarch, ecs);
4690 return;
4691 }
4692 }
4693
4694 /* If we have no line number and the step-stop-if-no-debug is
4695 set, we stop the step so that the user has a chance to switch
4696 in assembly mode. */
4697 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4698 && step_stop_if_no_debug)
4699 {
4700 ecs->event_thread->control.stop_step = 1;
4701 print_end_stepping_range_reason ();
4702 stop_stepping (ecs);
4703 return;
4704 }
4705
4706 if (execution_direction == EXEC_REVERSE)
4707 {
4708 /* Set a breakpoint at callee's start address.
4709 From there we can step once and be back in the caller. */
4710 struct symtab_and_line sr_sal;
4711
4712 init_sal (&sr_sal);
4713 sr_sal.pc = ecs->stop_func_start;
4714 sr_sal.pspace = get_frame_program_space (frame);
4715 insert_step_resume_breakpoint_at_sal (gdbarch,
4716 sr_sal, null_frame_id);
4717 }
4718 else
4719 /* Set a breakpoint at callee's return address (the address
4720 at which the caller will resume). */
4721 insert_step_resume_breakpoint_at_caller (frame);
4722
4723 keep_going (ecs);
4724 return;
4725 }
4726
4727 /* Reverse stepping through solib trampolines. */
4728
4729 if (execution_direction == EXEC_REVERSE
4730 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4731 {
4732 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4733 || (ecs->stop_func_start == 0
4734 && in_solib_dynsym_resolve_code (stop_pc)))
4735 {
4736 /* Any solib trampoline code can be handled in reverse
4737 by simply continuing to single-step. We have already
4738 executed the solib function (backwards), and a few
4739 steps will take us back through the trampoline to the
4740 caller. */
4741 keep_going (ecs);
4742 return;
4743 }
4744 else if (in_solib_dynsym_resolve_code (stop_pc))
4745 {
4746 /* Stepped backward into the solib dynsym resolver.
4747 Set a breakpoint at its start and continue, then
4748 one more step will take us out. */
4749 struct symtab_and_line sr_sal;
4750
4751 init_sal (&sr_sal);
4752 sr_sal.pc = ecs->stop_func_start;
4753 sr_sal.pspace = get_frame_program_space (frame);
4754 insert_step_resume_breakpoint_at_sal (gdbarch,
4755 sr_sal, null_frame_id);
4756 keep_going (ecs);
4757 return;
4758 }
4759 }
4760
4761 /* If we're in the return path from a shared library trampoline,
4762 we want to proceed through the trampoline when stepping. */
4763 if (gdbarch_in_solib_return_trampoline (gdbarch,
4764 stop_pc, ecs->stop_func_name))
4765 {
4766 /* Determine where this trampoline returns. */
4767 CORE_ADDR real_stop_pc;
4768
4769 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4770
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: stepped into solib return tramp\n");
4774
4775 /* Only proceed through if we know where it's going. */
4776 if (real_stop_pc)
4777 {
4778 /* And put the step-breakpoint there and go until there. */
4779 struct symtab_and_line sr_sal;
4780
4781 init_sal (&sr_sal); /* initialize to zeroes */
4782 sr_sal.pc = real_stop_pc;
4783 sr_sal.section = find_pc_overlay (sr_sal.pc);
4784 sr_sal.pspace = get_frame_program_space (frame);
4785
4786 /* Do not specify what the fp should be when we stop since
4787 on some machines the prologue is where the new fp value
4788 is established. */
4789 insert_step_resume_breakpoint_at_sal (gdbarch,
4790 sr_sal, null_frame_id);
4791
4792 /* Restart without fiddling with the step ranges or
4793 other state. */
4794 keep_going (ecs);
4795 return;
4796 }
4797 }
4798
4799 stop_pc_sal = find_pc_line (stop_pc, 0);
4800
4801 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4802 the trampoline processing logic, however, there are some trampolines
4803 that have no names, so we should do trampoline handling first. */
4804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4805 && ecs->stop_func_name == NULL
4806 && stop_pc_sal.line == 0)
4807 {
4808 if (debug_infrun)
4809 fprintf_unfiltered (gdb_stdlog,
4810 "infrun: stepped into undebuggable function\n");
4811
4812 /* The inferior just stepped into, or returned to, an
4813 undebuggable function (where there is no debugging information
4814 and no line number corresponding to the address where the
4815 inferior stopped). Since we want to skip this kind of code,
4816 we keep going until the inferior returns from this
4817 function - unless the user has asked us not to (via
4818 set step-mode) or we no longer know how to get back
4819 to the call site. */
4820 if (step_stop_if_no_debug
4821 || !frame_id_p (frame_unwind_caller_id (frame)))
4822 {
4823 /* If we have no line number and the step-stop-if-no-debug
4824 is set, we stop the step so that the user has a chance to
4825 switch in assembly mode. */
4826 ecs->event_thread->control.stop_step = 1;
4827 print_end_stepping_range_reason ();
4828 stop_stepping (ecs);
4829 return;
4830 }
4831 else
4832 {
4833 /* Set a breakpoint at callee's return address (the address
4834 at which the caller will resume). */
4835 insert_step_resume_breakpoint_at_caller (frame);
4836 keep_going (ecs);
4837 return;
4838 }
4839 }
4840
4841 if (ecs->event_thread->control.step_range_end == 1)
4842 {
4843 /* It is stepi or nexti. We always want to stop stepping after
4844 one instruction. */
4845 if (debug_infrun)
4846 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4847 ecs->event_thread->control.stop_step = 1;
4848 print_end_stepping_range_reason ();
4849 stop_stepping (ecs);
4850 return;
4851 }
4852
4853 if (stop_pc_sal.line == 0)
4854 {
4855 /* We have no line number information. That means to stop
4856 stepping (does this always happen right after one instruction,
4857 when we do "s" in a function with no line numbers,
4858 or can this happen as a result of a return or longjmp?). */
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4861 ecs->event_thread->control.stop_step = 1;
4862 print_end_stepping_range_reason ();
4863 stop_stepping (ecs);
4864 return;
4865 }
4866
4867 /* Look for "calls" to inlined functions, part one. If the inline
4868 frame machinery detected some skipped call sites, we have entered
4869 a new inline function. */
4870
4871 if (frame_id_eq (get_frame_id (get_current_frame ()),
4872 ecs->event_thread->control.step_frame_id)
4873 && inline_skipped_frames (ecs->ptid))
4874 {
4875 struct symtab_and_line call_sal;
4876
4877 if (debug_infrun)
4878 fprintf_unfiltered (gdb_stdlog,
4879 "infrun: stepped into inlined function\n");
4880
4881 find_frame_sal (get_current_frame (), &call_sal);
4882
4883 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4884 {
4885 /* For "step", we're going to stop. But if the call site
4886 for this inlined function is on the same source line as
4887 we were previously stepping, go down into the function
4888 first. Otherwise stop at the call site. */
4889
4890 if (call_sal.line == ecs->event_thread->current_line
4891 && call_sal.symtab == ecs->event_thread->current_symtab)
4892 step_into_inline_frame (ecs->ptid);
4893
4894 ecs->event_thread->control.stop_step = 1;
4895 print_end_stepping_range_reason ();
4896 stop_stepping (ecs);
4897 return;
4898 }
4899 else
4900 {
4901 /* For "next", we should stop at the call site if it is on a
4902 different source line. Otherwise continue through the
4903 inlined function. */
4904 if (call_sal.line == ecs->event_thread->current_line
4905 && call_sal.symtab == ecs->event_thread->current_symtab)
4906 keep_going (ecs);
4907 else
4908 {
4909 ecs->event_thread->control.stop_step = 1;
4910 print_end_stepping_range_reason ();
4911 stop_stepping (ecs);
4912 }
4913 return;
4914 }
4915 }
4916
4917 /* Look for "calls" to inlined functions, part two. If we are still
4918 in the same real function we were stepping through, but we have
4919 to go further up to find the exact frame ID, we are stepping
4920 through a more inlined call beyond its call site. */
4921
4922 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4923 && !frame_id_eq (get_frame_id (get_current_frame ()),
4924 ecs->event_thread->control.step_frame_id)
4925 && stepped_in_from (get_current_frame (),
4926 ecs->event_thread->control.step_frame_id))
4927 {
4928 if (debug_infrun)
4929 fprintf_unfiltered (gdb_stdlog,
4930 "infrun: stepping through inlined function\n");
4931
4932 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4933 keep_going (ecs);
4934 else
4935 {
4936 ecs->event_thread->control.stop_step = 1;
4937 print_end_stepping_range_reason ();
4938 stop_stepping (ecs);
4939 }
4940 return;
4941 }
4942
4943 if ((stop_pc == stop_pc_sal.pc)
4944 && (ecs->event_thread->current_line != stop_pc_sal.line
4945 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4946 {
4947 /* We are at the start of a different line. So stop. Note that
4948 we don't stop if we step into the middle of a different line.
4949 That is said to make things like for (;;) statements work
4950 better. */
4951 if (debug_infrun)
4952 fprintf_unfiltered (gdb_stdlog,
4953 "infrun: stepped to a different line\n");
4954 ecs->event_thread->control.stop_step = 1;
4955 print_end_stepping_range_reason ();
4956 stop_stepping (ecs);
4957 return;
4958 }
4959
4960 /* We aren't done stepping.
4961
4962 Optimize by setting the stepping range to the line.
4963 (We might not be in the original line, but if we entered a
4964 new line in mid-statement, we continue stepping. This makes
4965 things like for(;;) statements work better.) */
4966
4967 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
4968 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
4969 set_step_info (frame, stop_pc_sal);
4970
4971 if (debug_infrun)
4972 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4973 keep_going (ecs);
4974 }
4975
4976 /* Is thread TP in the middle of single-stepping? */
4977
4978 static int
4979 currently_stepping (struct thread_info *tp)
4980 {
4981 return ((tp->control.step_range_end
4982 && tp->control.step_resume_breakpoint == NULL)
4983 || tp->control.trap_expected
4984 || tp->stepping_through_solib_after_catch
4985 || bpstat_should_step ());
4986 }
4987
4988 /* Returns true if any thread *but* the one passed in "data" is in the
4989 middle of stepping or of handling a "next". */
4990
4991 static int
4992 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4993 {
4994 if (tp == data)
4995 return 0;
4996
4997 return (tp->control.step_range_end
4998 || tp->control.trap_expected
4999 || tp->stepping_through_solib_after_catch);
5000 }
5001
5002 /* Inferior has stepped into a subroutine call with source code that
5003 we should not step over. Do step to the first line of code in
5004 it. */
5005
5006 static void
5007 handle_step_into_function (struct gdbarch *gdbarch,
5008 struct execution_control_state *ecs)
5009 {
5010 struct symtab *s;
5011 struct symtab_and_line stop_func_sal, sr_sal;
5012
5013 s = find_pc_symtab (stop_pc);
5014 if (s && s->language != language_asm)
5015 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5016 ecs->stop_func_start);
5017
5018 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5019 /* Use the step_resume_break to step until the end of the prologue,
5020 even if that involves jumps (as it seems to on the vax under
5021 4.2). */
5022 /* If the prologue ends in the middle of a source line, continue to
5023 the end of that source line (if it is still within the function).
5024 Otherwise, just go to end of prologue. */
5025 if (stop_func_sal.end
5026 && stop_func_sal.pc != ecs->stop_func_start
5027 && stop_func_sal.end < ecs->stop_func_end)
5028 ecs->stop_func_start = stop_func_sal.end;
5029
5030 /* Architectures which require breakpoint adjustment might not be able
5031 to place a breakpoint at the computed address. If so, the test
5032 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5033 ecs->stop_func_start to an address at which a breakpoint may be
5034 legitimately placed.
5035
5036 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5037 made, GDB will enter an infinite loop when stepping through
5038 optimized code consisting of VLIW instructions which contain
5039 subinstructions corresponding to different source lines. On
5040 FR-V, it's not permitted to place a breakpoint on any but the
5041 first subinstruction of a VLIW instruction. When a breakpoint is
5042 set, GDB will adjust the breakpoint address to the beginning of
5043 the VLIW instruction. Thus, we need to make the corresponding
5044 adjustment here when computing the stop address. */
5045
5046 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5047 {
5048 ecs->stop_func_start
5049 = gdbarch_adjust_breakpoint_address (gdbarch,
5050 ecs->stop_func_start);
5051 }
5052
5053 if (ecs->stop_func_start == stop_pc)
5054 {
5055 /* We are already there: stop now. */
5056 ecs->event_thread->control.stop_step = 1;
5057 print_end_stepping_range_reason ();
5058 stop_stepping (ecs);
5059 return;
5060 }
5061 else
5062 {
5063 /* Put the step-breakpoint there and go until there. */
5064 init_sal (&sr_sal); /* initialize to zeroes */
5065 sr_sal.pc = ecs->stop_func_start;
5066 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5067 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5068
5069 /* Do not specify what the fp should be when we stop since on
5070 some machines the prologue is where the new fp value is
5071 established. */
5072 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5073
5074 /* And make sure stepping stops right away then. */
5075 ecs->event_thread->control.step_range_end
5076 = ecs->event_thread->control.step_range_start;
5077 }
5078 keep_going (ecs);
5079 }
5080
5081 /* Inferior has stepped backward into a subroutine call with source
5082 code that we should not step over. Do step to the beginning of the
5083 last line of code in it. */
5084
5085 static void
5086 handle_step_into_function_backward (struct gdbarch *gdbarch,
5087 struct execution_control_state *ecs)
5088 {
5089 struct symtab *s;
5090 struct symtab_and_line stop_func_sal;
5091
5092 s = find_pc_symtab (stop_pc);
5093 if (s && s->language != language_asm)
5094 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5095 ecs->stop_func_start);
5096
5097 stop_func_sal = find_pc_line (stop_pc, 0);
5098
5099 /* OK, we're just going to keep stepping here. */
5100 if (stop_func_sal.pc == stop_pc)
5101 {
5102 /* We're there already. Just stop stepping now. */
5103 ecs->event_thread->control.stop_step = 1;
5104 print_end_stepping_range_reason ();
5105 stop_stepping (ecs);
5106 }
5107 else
5108 {
5109 /* Else just reset the step range and keep going.
5110 No step-resume breakpoint, they don't work for
5111 epilogues, which can have multiple entry paths. */
5112 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5113 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5114 keep_going (ecs);
5115 }
5116 return;
5117 }
5118
5119 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5120 This is used to both functions and to skip over code. */
5121
5122 static void
5123 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5124 struct symtab_and_line sr_sal,
5125 struct frame_id sr_id)
5126 {
5127 /* There should never be more than one step-resume or longjmp-resume
5128 breakpoint per thread, so we should never be setting a new
5129 step_resume_breakpoint when one is already active. */
5130 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5131
5132 if (debug_infrun)
5133 fprintf_unfiltered (gdb_stdlog,
5134 "infrun: inserting step-resume breakpoint at %s\n",
5135 paddress (gdbarch, sr_sal.pc));
5136
5137 inferior_thread ()->control.step_resume_breakpoint
5138 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
5139 }
5140
5141 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
5142 to skip a potential signal handler.
5143
5144 This is called with the interrupted function's frame. The signal
5145 handler, when it returns, will resume the interrupted function at
5146 RETURN_FRAME.pc. */
5147
5148 static void
5149 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5150 {
5151 struct symtab_and_line sr_sal;
5152 struct gdbarch *gdbarch;
5153
5154 gdb_assert (return_frame != NULL);
5155 init_sal (&sr_sal); /* initialize to zeros */
5156
5157 gdbarch = get_frame_arch (return_frame);
5158 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5159 sr_sal.section = find_pc_overlay (sr_sal.pc);
5160 sr_sal.pspace = get_frame_program_space (return_frame);
5161
5162 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5163 get_stack_frame_id (return_frame));
5164 }
5165
5166 /* Similar to insert_step_resume_breakpoint_at_frame, except
5167 but a breakpoint at the previous frame's PC. This is used to
5168 skip a function after stepping into it (for "next" or if the called
5169 function has no debugging information).
5170
5171 The current function has almost always been reached by single
5172 stepping a call or return instruction. NEXT_FRAME belongs to the
5173 current function, and the breakpoint will be set at the caller's
5174 resume address.
5175
5176 This is a separate function rather than reusing
5177 insert_step_resume_breakpoint_at_frame in order to avoid
5178 get_prev_frame, which may stop prematurely (see the implementation
5179 of frame_unwind_caller_id for an example). */
5180
5181 static void
5182 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5183 {
5184 struct symtab_and_line sr_sal;
5185 struct gdbarch *gdbarch;
5186
5187 /* We shouldn't have gotten here if we don't know where the call site
5188 is. */
5189 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5190
5191 init_sal (&sr_sal); /* initialize to zeros */
5192
5193 gdbarch = frame_unwind_caller_arch (next_frame);
5194 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5195 frame_unwind_caller_pc (next_frame));
5196 sr_sal.section = find_pc_overlay (sr_sal.pc);
5197 sr_sal.pspace = frame_unwind_program_space (next_frame);
5198
5199 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5200 frame_unwind_caller_id (next_frame));
5201 }
5202
5203 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5204 new breakpoint at the target of a jmp_buf. The handling of
5205 longjmp-resume uses the same mechanisms used for handling
5206 "step-resume" breakpoints. */
5207
5208 static void
5209 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5210 {
5211 /* There should never be more than one step-resume or longjmp-resume
5212 breakpoint per thread, so we should never be setting a new
5213 longjmp_resume_breakpoint when one is already active. */
5214 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5215
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog,
5218 "infrun: inserting longjmp-resume breakpoint at %s\n",
5219 paddress (gdbarch, pc));
5220
5221 inferior_thread ()->control.step_resume_breakpoint =
5222 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5223 }
5224
5225 /* Insert an exception resume breakpoint. TP is the thread throwing
5226 the exception. The block B is the block of the unwinder debug hook
5227 function. FRAME is the frame corresponding to the call to this
5228 function. SYM is the symbol of the function argument holding the
5229 target PC of the exception. */
5230
5231 static void
5232 insert_exception_resume_breakpoint (struct thread_info *tp,
5233 struct block *b,
5234 struct frame_info *frame,
5235 struct symbol *sym)
5236 {
5237 struct gdb_exception e;
5238
5239 /* We want to ignore errors here. */
5240 TRY_CATCH (e, RETURN_MASK_ERROR)
5241 {
5242 struct symbol *vsym;
5243 struct value *value;
5244 CORE_ADDR handler;
5245 struct breakpoint *bp;
5246
5247 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5248 value = read_var_value (vsym, frame);
5249 /* If the value was optimized out, revert to the old behavior. */
5250 if (! value_optimized_out (value))
5251 {
5252 handler = value_as_address (value);
5253
5254 if (debug_infrun)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "infrun: exception resume at %lx\n",
5257 (unsigned long) handler);
5258
5259 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5260 handler, bp_exception_resume);
5261 bp->thread = tp->num;
5262 inferior_thread ()->control.exception_resume_breakpoint = bp;
5263 }
5264 }
5265 }
5266
5267 /* This is called when an exception has been intercepted. Check to
5268 see whether the exception's destination is of interest, and if so,
5269 set an exception resume breakpoint there. */
5270
5271 static void
5272 check_exception_resume (struct execution_control_state *ecs,
5273 struct frame_info *frame, struct symbol *func)
5274 {
5275 struct gdb_exception e;
5276
5277 TRY_CATCH (e, RETURN_MASK_ERROR)
5278 {
5279 struct block *b;
5280 struct dict_iterator iter;
5281 struct symbol *sym;
5282 int argno = 0;
5283
5284 /* The exception breakpoint is a thread-specific breakpoint on
5285 the unwinder's debug hook, declared as:
5286
5287 void _Unwind_DebugHook (void *cfa, void *handler);
5288
5289 The CFA argument indicates the frame to which control is
5290 about to be transferred. HANDLER is the destination PC.
5291
5292 We ignore the CFA and set a temporary breakpoint at HANDLER.
5293 This is not extremely efficient but it avoids issues in gdb
5294 with computing the DWARF CFA, and it also works even in weird
5295 cases such as throwing an exception from inside a signal
5296 handler. */
5297
5298 b = SYMBOL_BLOCK_VALUE (func);
5299 ALL_BLOCK_SYMBOLS (b, iter, sym)
5300 {
5301 if (!SYMBOL_IS_ARGUMENT (sym))
5302 continue;
5303
5304 if (argno == 0)
5305 ++argno;
5306 else
5307 {
5308 insert_exception_resume_breakpoint (ecs->event_thread,
5309 b, frame, sym);
5310 break;
5311 }
5312 }
5313 }
5314 }
5315
5316 static void
5317 stop_stepping (struct execution_control_state *ecs)
5318 {
5319 if (debug_infrun)
5320 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5321
5322 /* Let callers know we don't want to wait for the inferior anymore. */
5323 ecs->wait_some_more = 0;
5324 }
5325
5326 /* This function handles various cases where we need to continue
5327 waiting for the inferior. */
5328 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5329
5330 static void
5331 keep_going (struct execution_control_state *ecs)
5332 {
5333 /* Make sure normal_stop is called if we get a QUIT handled before
5334 reaching resume. */
5335 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5336
5337 /* Save the pc before execution, to compare with pc after stop. */
5338 ecs->event_thread->prev_pc
5339 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5340
5341 /* If we did not do break;, it means we should keep running the
5342 inferior and not return to debugger. */
5343
5344 if (ecs->event_thread->control.trap_expected
5345 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5346 {
5347 /* We took a signal (which we are supposed to pass through to
5348 the inferior, else we'd not get here) and we haven't yet
5349 gotten our trap. Simply continue. */
5350
5351 discard_cleanups (old_cleanups);
5352 resume (currently_stepping (ecs->event_thread),
5353 ecs->event_thread->suspend.stop_signal);
5354 }
5355 else
5356 {
5357 /* Either the trap was not expected, but we are continuing
5358 anyway (the user asked that this signal be passed to the
5359 child)
5360 -- or --
5361 The signal was SIGTRAP, e.g. it was our signal, but we
5362 decided we should resume from it.
5363
5364 We're going to run this baby now!
5365
5366 Note that insert_breakpoints won't try to re-insert
5367 already inserted breakpoints. Therefore, we don't
5368 care if breakpoints were already inserted, or not. */
5369
5370 if (ecs->event_thread->stepping_over_breakpoint)
5371 {
5372 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5373
5374 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5375 /* Since we can't do a displaced step, we have to remove
5376 the breakpoint while we step it. To keep things
5377 simple, we remove them all. */
5378 remove_breakpoints ();
5379 }
5380 else
5381 {
5382 struct gdb_exception e;
5383
5384 /* Stop stepping when inserting breakpoints
5385 has failed. */
5386 TRY_CATCH (e, RETURN_MASK_ERROR)
5387 {
5388 insert_breakpoints ();
5389 }
5390 if (e.reason < 0)
5391 {
5392 exception_print (gdb_stderr, e);
5393 stop_stepping (ecs);
5394 return;
5395 }
5396 }
5397
5398 ecs->event_thread->control.trap_expected
5399 = ecs->event_thread->stepping_over_breakpoint;
5400
5401 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5402 specifies that such a signal should be delivered to the
5403 target program).
5404
5405 Typically, this would occure when a user is debugging a
5406 target monitor on a simulator: the target monitor sets a
5407 breakpoint; the simulator encounters this break-point and
5408 halts the simulation handing control to GDB; GDB, noteing
5409 that the break-point isn't valid, returns control back to the
5410 simulator; the simulator then delivers the hardware
5411 equivalent of a SIGNAL_TRAP to the program being debugged. */
5412
5413 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5414 && !signal_program[ecs->event_thread->suspend.stop_signal])
5415 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5416
5417 discard_cleanups (old_cleanups);
5418 resume (currently_stepping (ecs->event_thread),
5419 ecs->event_thread->suspend.stop_signal);
5420 }
5421
5422 prepare_to_wait (ecs);
5423 }
5424
5425 /* This function normally comes after a resume, before
5426 handle_inferior_event exits. It takes care of any last bits of
5427 housekeeping, and sets the all-important wait_some_more flag. */
5428
5429 static void
5430 prepare_to_wait (struct execution_control_state *ecs)
5431 {
5432 if (debug_infrun)
5433 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5434
5435 /* This is the old end of the while loop. Let everybody know we
5436 want to wait for the inferior some more and get called again
5437 soon. */
5438 ecs->wait_some_more = 1;
5439 }
5440
5441 /* Several print_*_reason functions to print why the inferior has stopped.
5442 We always print something when the inferior exits, or receives a signal.
5443 The rest of the cases are dealt with later on in normal_stop and
5444 print_it_typical. Ideally there should be a call to one of these
5445 print_*_reason functions functions from handle_inferior_event each time
5446 stop_stepping is called. */
5447
5448 /* Print why the inferior has stopped.
5449 We are done with a step/next/si/ni command, print why the inferior has
5450 stopped. For now print nothing. Print a message only if not in the middle
5451 of doing a "step n" operation for n > 1. */
5452
5453 static void
5454 print_end_stepping_range_reason (void)
5455 {
5456 if ((!inferior_thread ()->step_multi
5457 || !inferior_thread ()->control.stop_step)
5458 && ui_out_is_mi_like_p (uiout))
5459 ui_out_field_string (uiout, "reason",
5460 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5461 }
5462
5463 /* The inferior was terminated by a signal, print why it stopped. */
5464
5465 static void
5466 print_signal_exited_reason (enum target_signal siggnal)
5467 {
5468 annotate_signalled ();
5469 if (ui_out_is_mi_like_p (uiout))
5470 ui_out_field_string
5471 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5472 ui_out_text (uiout, "\nProgram terminated with signal ");
5473 annotate_signal_name ();
5474 ui_out_field_string (uiout, "signal-name",
5475 target_signal_to_name (siggnal));
5476 annotate_signal_name_end ();
5477 ui_out_text (uiout, ", ");
5478 annotate_signal_string ();
5479 ui_out_field_string (uiout, "signal-meaning",
5480 target_signal_to_string (siggnal));
5481 annotate_signal_string_end ();
5482 ui_out_text (uiout, ".\n");
5483 ui_out_text (uiout, "The program no longer exists.\n");
5484 }
5485
5486 /* The inferior program is finished, print why it stopped. */
5487
5488 static void
5489 print_exited_reason (int exitstatus)
5490 {
5491 annotate_exited (exitstatus);
5492 if (exitstatus)
5493 {
5494 if (ui_out_is_mi_like_p (uiout))
5495 ui_out_field_string (uiout, "reason",
5496 async_reason_lookup (EXEC_ASYNC_EXITED));
5497 ui_out_text (uiout, "\nProgram exited with code ");
5498 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5499 ui_out_text (uiout, ".\n");
5500 }
5501 else
5502 {
5503 if (ui_out_is_mi_like_p (uiout))
5504 ui_out_field_string
5505 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5506 ui_out_text (uiout, "\nProgram exited normally.\n");
5507 }
5508 /* Support the --return-child-result option. */
5509 return_child_result_value = exitstatus;
5510 }
5511
5512 /* Signal received, print why the inferior has stopped. The signal table
5513 tells us to print about it. */
5514
5515 static void
5516 print_signal_received_reason (enum target_signal siggnal)
5517 {
5518 annotate_signal ();
5519
5520 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5521 {
5522 struct thread_info *t = inferior_thread ();
5523
5524 ui_out_text (uiout, "\n[");
5525 ui_out_field_string (uiout, "thread-name",
5526 target_pid_to_str (t->ptid));
5527 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5528 ui_out_text (uiout, " stopped");
5529 }
5530 else
5531 {
5532 ui_out_text (uiout, "\nProgram received signal ");
5533 annotate_signal_name ();
5534 if (ui_out_is_mi_like_p (uiout))
5535 ui_out_field_string
5536 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5537 ui_out_field_string (uiout, "signal-name",
5538 target_signal_to_name (siggnal));
5539 annotate_signal_name_end ();
5540 ui_out_text (uiout, ", ");
5541 annotate_signal_string ();
5542 ui_out_field_string (uiout, "signal-meaning",
5543 target_signal_to_string (siggnal));
5544 annotate_signal_string_end ();
5545 }
5546 ui_out_text (uiout, ".\n");
5547 }
5548
5549 /* Reverse execution: target ran out of history info, print why the inferior
5550 has stopped. */
5551
5552 static void
5553 print_no_history_reason (void)
5554 {
5555 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5556 }
5557
5558 /* Here to return control to GDB when the inferior stops for real.
5559 Print appropriate messages, remove breakpoints, give terminal our modes.
5560
5561 STOP_PRINT_FRAME nonzero means print the executing frame
5562 (pc, function, args, file, line number and line text).
5563 BREAKPOINTS_FAILED nonzero means stop was due to error
5564 attempting to insert breakpoints. */
5565
5566 void
5567 normal_stop (void)
5568 {
5569 struct target_waitstatus last;
5570 ptid_t last_ptid;
5571 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5572
5573 get_last_target_status (&last_ptid, &last);
5574
5575 /* If an exception is thrown from this point on, make sure to
5576 propagate GDB's knowledge of the executing state to the
5577 frontend/user running state. A QUIT is an easy exception to see
5578 here, so do this before any filtered output. */
5579 if (!non_stop)
5580 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5581 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5582 && last.kind != TARGET_WAITKIND_EXITED)
5583 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5584
5585 /* In non-stop mode, we don't want GDB to switch threads behind the
5586 user's back, to avoid races where the user is typing a command to
5587 apply to thread x, but GDB switches to thread y before the user
5588 finishes entering the command. */
5589
5590 /* As with the notification of thread events, we want to delay
5591 notifying the user that we've switched thread context until
5592 the inferior actually stops.
5593
5594 There's no point in saying anything if the inferior has exited.
5595 Note that SIGNALLED here means "exited with a signal", not
5596 "received a signal". */
5597 if (!non_stop
5598 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5599 && target_has_execution
5600 && last.kind != TARGET_WAITKIND_SIGNALLED
5601 && last.kind != TARGET_WAITKIND_EXITED)
5602 {
5603 target_terminal_ours_for_output ();
5604 printf_filtered (_("[Switching to %s]\n"),
5605 target_pid_to_str (inferior_ptid));
5606 annotate_thread_changed ();
5607 previous_inferior_ptid = inferior_ptid;
5608 }
5609
5610 if (!breakpoints_always_inserted_mode () && target_has_execution)
5611 {
5612 if (remove_breakpoints ())
5613 {
5614 target_terminal_ours_for_output ();
5615 printf_filtered (_("Cannot remove breakpoints because "
5616 "program is no longer writable.\nFurther "
5617 "execution is probably impossible.\n"));
5618 }
5619 }
5620
5621 /* If an auto-display called a function and that got a signal,
5622 delete that auto-display to avoid an infinite recursion. */
5623
5624 if (stopped_by_random_signal)
5625 disable_current_display ();
5626
5627 /* Don't print a message if in the middle of doing a "step n"
5628 operation for n > 1 */
5629 if (target_has_execution
5630 && last.kind != TARGET_WAITKIND_SIGNALLED
5631 && last.kind != TARGET_WAITKIND_EXITED
5632 && inferior_thread ()->step_multi
5633 && inferior_thread ()->control.stop_step)
5634 goto done;
5635
5636 target_terminal_ours ();
5637
5638 /* Set the current source location. This will also happen if we
5639 display the frame below, but the current SAL will be incorrect
5640 during a user hook-stop function. */
5641 if (has_stack_frames () && !stop_stack_dummy)
5642 set_current_sal_from_frame (get_current_frame (), 1);
5643
5644 /* Let the user/frontend see the threads as stopped. */
5645 do_cleanups (old_chain);
5646
5647 /* Look up the hook_stop and run it (CLI internally handles problem
5648 of stop_command's pre-hook not existing). */
5649 if (stop_command)
5650 catch_errors (hook_stop_stub, stop_command,
5651 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5652
5653 if (!has_stack_frames ())
5654 goto done;
5655
5656 if (last.kind == TARGET_WAITKIND_SIGNALLED
5657 || last.kind == TARGET_WAITKIND_EXITED)
5658 goto done;
5659
5660 /* Select innermost stack frame - i.e., current frame is frame 0,
5661 and current location is based on that.
5662 Don't do this on return from a stack dummy routine,
5663 or if the program has exited. */
5664
5665 if (!stop_stack_dummy)
5666 {
5667 select_frame (get_current_frame ());
5668
5669 /* Print current location without a level number, if
5670 we have changed functions or hit a breakpoint.
5671 Print source line if we have one.
5672 bpstat_print() contains the logic deciding in detail
5673 what to print, based on the event(s) that just occurred. */
5674
5675 /* If --batch-silent is enabled then there's no need to print the current
5676 source location, and to try risks causing an error message about
5677 missing source files. */
5678 if (stop_print_frame && !batch_silent)
5679 {
5680 int bpstat_ret;
5681 int source_flag;
5682 int do_frame_printing = 1;
5683 struct thread_info *tp = inferior_thread ();
5684
5685 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5686 switch (bpstat_ret)
5687 {
5688 case PRINT_UNKNOWN:
5689 /* If we had hit a shared library event breakpoint,
5690 bpstat_print would print out this message. If we hit
5691 an OS-level shared library event, do the same
5692 thing. */
5693 if (last.kind == TARGET_WAITKIND_LOADED)
5694 {
5695 printf_filtered (_("Stopped due to shared library event\n"));
5696 source_flag = SRC_LINE; /* something bogus */
5697 do_frame_printing = 0;
5698 break;
5699 }
5700
5701 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5702 (or should) carry around the function and does (or
5703 should) use that when doing a frame comparison. */
5704 if (tp->control.stop_step
5705 && frame_id_eq (tp->control.step_frame_id,
5706 get_frame_id (get_current_frame ()))
5707 && step_start_function == find_pc_function (stop_pc))
5708 source_flag = SRC_LINE; /* Finished step, just
5709 print source line. */
5710 else
5711 source_flag = SRC_AND_LOC; /* Print location and
5712 source line. */
5713 break;
5714 case PRINT_SRC_AND_LOC:
5715 source_flag = SRC_AND_LOC; /* Print location and
5716 source line. */
5717 break;
5718 case PRINT_SRC_ONLY:
5719 source_flag = SRC_LINE;
5720 break;
5721 case PRINT_NOTHING:
5722 source_flag = SRC_LINE; /* something bogus */
5723 do_frame_printing = 0;
5724 break;
5725 default:
5726 internal_error (__FILE__, __LINE__, _("Unknown value."));
5727 }
5728
5729 /* The behavior of this routine with respect to the source
5730 flag is:
5731 SRC_LINE: Print only source line
5732 LOCATION: Print only location
5733 SRC_AND_LOC: Print location and source line. */
5734 if (do_frame_printing)
5735 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5736
5737 /* Display the auto-display expressions. */
5738 do_displays ();
5739 }
5740 }
5741
5742 /* Save the function value return registers, if we care.
5743 We might be about to restore their previous contents. */
5744 if (inferior_thread ()->control.proceed_to_finish)
5745 {
5746 /* This should not be necessary. */
5747 if (stop_registers)
5748 regcache_xfree (stop_registers);
5749
5750 /* NB: The copy goes through to the target picking up the value of
5751 all the registers. */
5752 stop_registers = regcache_dup (get_current_regcache ());
5753 }
5754
5755 if (stop_stack_dummy == STOP_STACK_DUMMY)
5756 {
5757 /* Pop the empty frame that contains the stack dummy.
5758 This also restores inferior state prior to the call
5759 (struct infcall_suspend_state). */
5760 struct frame_info *frame = get_current_frame ();
5761
5762 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5763 frame_pop (frame);
5764 /* frame_pop() calls reinit_frame_cache as the last thing it
5765 does which means there's currently no selected frame. We
5766 don't need to re-establish a selected frame if the dummy call
5767 returns normally, that will be done by
5768 restore_infcall_control_state. However, we do have to handle
5769 the case where the dummy call is returning after being
5770 stopped (e.g. the dummy call previously hit a breakpoint).
5771 We can't know which case we have so just always re-establish
5772 a selected frame here. */
5773 select_frame (get_current_frame ());
5774 }
5775
5776 done:
5777 annotate_stopped ();
5778
5779 /* Suppress the stop observer if we're in the middle of:
5780
5781 - a step n (n > 1), as there still more steps to be done.
5782
5783 - a "finish" command, as the observer will be called in
5784 finish_command_continuation, so it can include the inferior
5785 function's return value.
5786
5787 - calling an inferior function, as we pretend we inferior didn't
5788 run at all. The return value of the call is handled by the
5789 expression evaluator, through call_function_by_hand. */
5790
5791 if (!target_has_execution
5792 || last.kind == TARGET_WAITKIND_SIGNALLED
5793 || last.kind == TARGET_WAITKIND_EXITED
5794 || (!inferior_thread ()->step_multi
5795 && !(inferior_thread ()->control.stop_bpstat
5796 && inferior_thread ()->control.proceed_to_finish)
5797 && !inferior_thread ()->control.in_infcall))
5798 {
5799 if (!ptid_equal (inferior_ptid, null_ptid))
5800 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5801 stop_print_frame);
5802 else
5803 observer_notify_normal_stop (NULL, stop_print_frame);
5804 }
5805
5806 if (target_has_execution)
5807 {
5808 if (last.kind != TARGET_WAITKIND_SIGNALLED
5809 && last.kind != TARGET_WAITKIND_EXITED)
5810 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5811 Delete any breakpoint that is to be deleted at the next stop. */
5812 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5813 }
5814
5815 /* Try to get rid of automatically added inferiors that are no
5816 longer needed. Keeping those around slows down things linearly.
5817 Note that this never removes the current inferior. */
5818 prune_inferiors ();
5819 }
5820
5821 static int
5822 hook_stop_stub (void *cmd)
5823 {
5824 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5825 return (0);
5826 }
5827 \f
5828 int
5829 signal_stop_state (int signo)
5830 {
5831 return signal_stop[signo];
5832 }
5833
5834 int
5835 signal_print_state (int signo)
5836 {
5837 return signal_print[signo];
5838 }
5839
5840 int
5841 signal_pass_state (int signo)
5842 {
5843 return signal_program[signo];
5844 }
5845
5846 int
5847 signal_stop_update (int signo, int state)
5848 {
5849 int ret = signal_stop[signo];
5850
5851 signal_stop[signo] = state;
5852 return ret;
5853 }
5854
5855 int
5856 signal_print_update (int signo, int state)
5857 {
5858 int ret = signal_print[signo];
5859
5860 signal_print[signo] = state;
5861 return ret;
5862 }
5863
5864 int
5865 signal_pass_update (int signo, int state)
5866 {
5867 int ret = signal_program[signo];
5868
5869 signal_program[signo] = state;
5870 return ret;
5871 }
5872
5873 static void
5874 sig_print_header (void)
5875 {
5876 printf_filtered (_("Signal Stop\tPrint\tPass "
5877 "to program\tDescription\n"));
5878 }
5879
5880 static void
5881 sig_print_info (enum target_signal oursig)
5882 {
5883 const char *name = target_signal_to_name (oursig);
5884 int name_padding = 13 - strlen (name);
5885
5886 if (name_padding <= 0)
5887 name_padding = 0;
5888
5889 printf_filtered ("%s", name);
5890 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5891 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5892 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5893 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5894 printf_filtered ("%s\n", target_signal_to_string (oursig));
5895 }
5896
5897 /* Specify how various signals in the inferior should be handled. */
5898
5899 static void
5900 handle_command (char *args, int from_tty)
5901 {
5902 char **argv;
5903 int digits, wordlen;
5904 int sigfirst, signum, siglast;
5905 enum target_signal oursig;
5906 int allsigs;
5907 int nsigs;
5908 unsigned char *sigs;
5909 struct cleanup *old_chain;
5910
5911 if (args == NULL)
5912 {
5913 error_no_arg (_("signal to handle"));
5914 }
5915
5916 /* Allocate and zero an array of flags for which signals to handle. */
5917
5918 nsigs = (int) TARGET_SIGNAL_LAST;
5919 sigs = (unsigned char *) alloca (nsigs);
5920 memset (sigs, 0, nsigs);
5921
5922 /* Break the command line up into args. */
5923
5924 argv = gdb_buildargv (args);
5925 old_chain = make_cleanup_freeargv (argv);
5926
5927 /* Walk through the args, looking for signal oursigs, signal names, and
5928 actions. Signal numbers and signal names may be interspersed with
5929 actions, with the actions being performed for all signals cumulatively
5930 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5931
5932 while (*argv != NULL)
5933 {
5934 wordlen = strlen (*argv);
5935 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5936 {;
5937 }
5938 allsigs = 0;
5939 sigfirst = siglast = -1;
5940
5941 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5942 {
5943 /* Apply action to all signals except those used by the
5944 debugger. Silently skip those. */
5945 allsigs = 1;
5946 sigfirst = 0;
5947 siglast = nsigs - 1;
5948 }
5949 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5950 {
5951 SET_SIGS (nsigs, sigs, signal_stop);
5952 SET_SIGS (nsigs, sigs, signal_print);
5953 }
5954 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5955 {
5956 UNSET_SIGS (nsigs, sigs, signal_program);
5957 }
5958 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5959 {
5960 SET_SIGS (nsigs, sigs, signal_print);
5961 }
5962 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5963 {
5964 SET_SIGS (nsigs, sigs, signal_program);
5965 }
5966 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5967 {
5968 UNSET_SIGS (nsigs, sigs, signal_stop);
5969 }
5970 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5971 {
5972 SET_SIGS (nsigs, sigs, signal_program);
5973 }
5974 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5975 {
5976 UNSET_SIGS (nsigs, sigs, signal_print);
5977 UNSET_SIGS (nsigs, sigs, signal_stop);
5978 }
5979 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5980 {
5981 UNSET_SIGS (nsigs, sigs, signal_program);
5982 }
5983 else if (digits > 0)
5984 {
5985 /* It is numeric. The numeric signal refers to our own
5986 internal signal numbering from target.h, not to host/target
5987 signal number. This is a feature; users really should be
5988 using symbolic names anyway, and the common ones like
5989 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5990
5991 sigfirst = siglast = (int)
5992 target_signal_from_command (atoi (*argv));
5993 if ((*argv)[digits] == '-')
5994 {
5995 siglast = (int)
5996 target_signal_from_command (atoi ((*argv) + digits + 1));
5997 }
5998 if (sigfirst > siglast)
5999 {
6000 /* Bet he didn't figure we'd think of this case... */
6001 signum = sigfirst;
6002 sigfirst = siglast;
6003 siglast = signum;
6004 }
6005 }
6006 else
6007 {
6008 oursig = target_signal_from_name (*argv);
6009 if (oursig != TARGET_SIGNAL_UNKNOWN)
6010 {
6011 sigfirst = siglast = (int) oursig;
6012 }
6013 else
6014 {
6015 /* Not a number and not a recognized flag word => complain. */
6016 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6017 }
6018 }
6019
6020 /* If any signal numbers or symbol names were found, set flags for
6021 which signals to apply actions to. */
6022
6023 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6024 {
6025 switch ((enum target_signal) signum)
6026 {
6027 case TARGET_SIGNAL_TRAP:
6028 case TARGET_SIGNAL_INT:
6029 if (!allsigs && !sigs[signum])
6030 {
6031 if (query (_("%s is used by the debugger.\n\
6032 Are you sure you want to change it? "),
6033 target_signal_to_name ((enum target_signal) signum)))
6034 {
6035 sigs[signum] = 1;
6036 }
6037 else
6038 {
6039 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6040 gdb_flush (gdb_stdout);
6041 }
6042 }
6043 break;
6044 case TARGET_SIGNAL_0:
6045 case TARGET_SIGNAL_DEFAULT:
6046 case TARGET_SIGNAL_UNKNOWN:
6047 /* Make sure that "all" doesn't print these. */
6048 break;
6049 default:
6050 sigs[signum] = 1;
6051 break;
6052 }
6053 }
6054
6055 argv++;
6056 }
6057
6058 for (signum = 0; signum < nsigs; signum++)
6059 if (sigs[signum])
6060 {
6061 target_notice_signals (inferior_ptid);
6062
6063 if (from_tty)
6064 {
6065 /* Show the results. */
6066 sig_print_header ();
6067 for (; signum < nsigs; signum++)
6068 if (sigs[signum])
6069 sig_print_info (signum);
6070 }
6071
6072 break;
6073 }
6074
6075 do_cleanups (old_chain);
6076 }
6077
6078 static void
6079 xdb_handle_command (char *args, int from_tty)
6080 {
6081 char **argv;
6082 struct cleanup *old_chain;
6083
6084 if (args == NULL)
6085 error_no_arg (_("xdb command"));
6086
6087 /* Break the command line up into args. */
6088
6089 argv = gdb_buildargv (args);
6090 old_chain = make_cleanup_freeargv (argv);
6091 if (argv[1] != (char *) NULL)
6092 {
6093 char *argBuf;
6094 int bufLen;
6095
6096 bufLen = strlen (argv[0]) + 20;
6097 argBuf = (char *) xmalloc (bufLen);
6098 if (argBuf)
6099 {
6100 int validFlag = 1;
6101 enum target_signal oursig;
6102
6103 oursig = target_signal_from_name (argv[0]);
6104 memset (argBuf, 0, bufLen);
6105 if (strcmp (argv[1], "Q") == 0)
6106 sprintf (argBuf, "%s %s", argv[0], "noprint");
6107 else
6108 {
6109 if (strcmp (argv[1], "s") == 0)
6110 {
6111 if (!signal_stop[oursig])
6112 sprintf (argBuf, "%s %s", argv[0], "stop");
6113 else
6114 sprintf (argBuf, "%s %s", argv[0], "nostop");
6115 }
6116 else if (strcmp (argv[1], "i") == 0)
6117 {
6118 if (!signal_program[oursig])
6119 sprintf (argBuf, "%s %s", argv[0], "pass");
6120 else
6121 sprintf (argBuf, "%s %s", argv[0], "nopass");
6122 }
6123 else if (strcmp (argv[1], "r") == 0)
6124 {
6125 if (!signal_print[oursig])
6126 sprintf (argBuf, "%s %s", argv[0], "print");
6127 else
6128 sprintf (argBuf, "%s %s", argv[0], "noprint");
6129 }
6130 else
6131 validFlag = 0;
6132 }
6133 if (validFlag)
6134 handle_command (argBuf, from_tty);
6135 else
6136 printf_filtered (_("Invalid signal handling flag.\n"));
6137 if (argBuf)
6138 xfree (argBuf);
6139 }
6140 }
6141 do_cleanups (old_chain);
6142 }
6143
6144 /* Print current contents of the tables set by the handle command.
6145 It is possible we should just be printing signals actually used
6146 by the current target (but for things to work right when switching
6147 targets, all signals should be in the signal tables). */
6148
6149 static void
6150 signals_info (char *signum_exp, int from_tty)
6151 {
6152 enum target_signal oursig;
6153
6154 sig_print_header ();
6155
6156 if (signum_exp)
6157 {
6158 /* First see if this is a symbol name. */
6159 oursig = target_signal_from_name (signum_exp);
6160 if (oursig == TARGET_SIGNAL_UNKNOWN)
6161 {
6162 /* No, try numeric. */
6163 oursig =
6164 target_signal_from_command (parse_and_eval_long (signum_exp));
6165 }
6166 sig_print_info (oursig);
6167 return;
6168 }
6169
6170 printf_filtered ("\n");
6171 /* These ugly casts brought to you by the native VAX compiler. */
6172 for (oursig = TARGET_SIGNAL_FIRST;
6173 (int) oursig < (int) TARGET_SIGNAL_LAST;
6174 oursig = (enum target_signal) ((int) oursig + 1))
6175 {
6176 QUIT;
6177
6178 if (oursig != TARGET_SIGNAL_UNKNOWN
6179 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6180 sig_print_info (oursig);
6181 }
6182
6183 printf_filtered (_("\nUse the \"handle\" command "
6184 "to change these tables.\n"));
6185 }
6186
6187 /* The $_siginfo convenience variable is a bit special. We don't know
6188 for sure the type of the value until we actually have a chance to
6189 fetch the data. The type can change depending on gdbarch, so it it
6190 also dependent on which thread you have selected.
6191
6192 1. making $_siginfo be an internalvar that creates a new value on
6193 access.
6194
6195 2. making the value of $_siginfo be an lval_computed value. */
6196
6197 /* This function implements the lval_computed support for reading a
6198 $_siginfo value. */
6199
6200 static void
6201 siginfo_value_read (struct value *v)
6202 {
6203 LONGEST transferred;
6204
6205 transferred =
6206 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6207 NULL,
6208 value_contents_all_raw (v),
6209 value_offset (v),
6210 TYPE_LENGTH (value_type (v)));
6211
6212 if (transferred != TYPE_LENGTH (value_type (v)))
6213 error (_("Unable to read siginfo"));
6214 }
6215
6216 /* This function implements the lval_computed support for writing a
6217 $_siginfo value. */
6218
6219 static void
6220 siginfo_value_write (struct value *v, struct value *fromval)
6221 {
6222 LONGEST transferred;
6223
6224 transferred = target_write (&current_target,
6225 TARGET_OBJECT_SIGNAL_INFO,
6226 NULL,
6227 value_contents_all_raw (fromval),
6228 value_offset (v),
6229 TYPE_LENGTH (value_type (fromval)));
6230
6231 if (transferred != TYPE_LENGTH (value_type (fromval)))
6232 error (_("Unable to write siginfo"));
6233 }
6234
6235 static struct lval_funcs siginfo_value_funcs =
6236 {
6237 siginfo_value_read,
6238 siginfo_value_write
6239 };
6240
6241 /* Return a new value with the correct type for the siginfo object of
6242 the current thread using architecture GDBARCH. Return a void value
6243 if there's no object available. */
6244
6245 static struct value *
6246 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6247 {
6248 if (target_has_stack
6249 && !ptid_equal (inferior_ptid, null_ptid)
6250 && gdbarch_get_siginfo_type_p (gdbarch))
6251 {
6252 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6253
6254 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6255 }
6256
6257 return allocate_value (builtin_type (gdbarch)->builtin_void);
6258 }
6259
6260 \f
6261 /* infcall_suspend_state contains state about the program itself like its
6262 registers and any signal it received when it last stopped.
6263 This state must be restored regardless of how the inferior function call
6264 ends (either successfully, or after it hits a breakpoint or signal)
6265 if the program is to properly continue where it left off. */
6266
6267 struct infcall_suspend_state
6268 {
6269 struct thread_suspend_state thread_suspend;
6270 struct inferior_suspend_state inferior_suspend;
6271
6272 /* Other fields: */
6273 CORE_ADDR stop_pc;
6274 struct regcache *registers;
6275
6276 /* Format of SIGINFO_DATA or NULL if it is not present. */
6277 struct gdbarch *siginfo_gdbarch;
6278
6279 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6280 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6281 content would be invalid. */
6282 gdb_byte *siginfo_data;
6283 };
6284
6285 struct infcall_suspend_state *
6286 save_infcall_suspend_state (void)
6287 {
6288 struct infcall_suspend_state *inf_state;
6289 struct thread_info *tp = inferior_thread ();
6290 struct inferior *inf = current_inferior ();
6291 struct regcache *regcache = get_current_regcache ();
6292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6293 gdb_byte *siginfo_data = NULL;
6294
6295 if (gdbarch_get_siginfo_type_p (gdbarch))
6296 {
6297 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6298 size_t len = TYPE_LENGTH (type);
6299 struct cleanup *back_to;
6300
6301 siginfo_data = xmalloc (len);
6302 back_to = make_cleanup (xfree, siginfo_data);
6303
6304 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6305 siginfo_data, 0, len) == len)
6306 discard_cleanups (back_to);
6307 else
6308 {
6309 /* Errors ignored. */
6310 do_cleanups (back_to);
6311 siginfo_data = NULL;
6312 }
6313 }
6314
6315 inf_state = XZALLOC (struct infcall_suspend_state);
6316
6317 if (siginfo_data)
6318 {
6319 inf_state->siginfo_gdbarch = gdbarch;
6320 inf_state->siginfo_data = siginfo_data;
6321 }
6322
6323 inf_state->thread_suspend = tp->suspend;
6324 inf_state->inferior_suspend = inf->suspend;
6325
6326 /* run_inferior_call will not use the signal due to its `proceed' call with
6327 TARGET_SIGNAL_0 anyway. */
6328 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6329
6330 inf_state->stop_pc = stop_pc;
6331
6332 inf_state->registers = regcache_dup (regcache);
6333
6334 return inf_state;
6335 }
6336
6337 /* Restore inferior session state to INF_STATE. */
6338
6339 void
6340 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6341 {
6342 struct thread_info *tp = inferior_thread ();
6343 struct inferior *inf = current_inferior ();
6344 struct regcache *regcache = get_current_regcache ();
6345 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6346
6347 tp->suspend = inf_state->thread_suspend;
6348 inf->suspend = inf_state->inferior_suspend;
6349
6350 stop_pc = inf_state->stop_pc;
6351
6352 if (inf_state->siginfo_gdbarch == gdbarch)
6353 {
6354 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6355 size_t len = TYPE_LENGTH (type);
6356
6357 /* Errors ignored. */
6358 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6359 inf_state->siginfo_data, 0, len);
6360 }
6361
6362 /* The inferior can be gone if the user types "print exit(0)"
6363 (and perhaps other times). */
6364 if (target_has_execution)
6365 /* NB: The register write goes through to the target. */
6366 regcache_cpy (regcache, inf_state->registers);
6367
6368 discard_infcall_suspend_state (inf_state);
6369 }
6370
6371 static void
6372 do_restore_infcall_suspend_state_cleanup (void *state)
6373 {
6374 restore_infcall_suspend_state (state);
6375 }
6376
6377 struct cleanup *
6378 make_cleanup_restore_infcall_suspend_state
6379 (struct infcall_suspend_state *inf_state)
6380 {
6381 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6382 }
6383
6384 void
6385 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6386 {
6387 regcache_xfree (inf_state->registers);
6388 xfree (inf_state->siginfo_data);
6389 xfree (inf_state);
6390 }
6391
6392 struct regcache *
6393 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6394 {
6395 return inf_state->registers;
6396 }
6397
6398 /* infcall_control_state contains state regarding gdb's control of the
6399 inferior itself like stepping control. It also contains session state like
6400 the user's currently selected frame. */
6401
6402 struct infcall_control_state
6403 {
6404 struct thread_control_state thread_control;
6405 struct inferior_control_state inferior_control;
6406
6407 /* Other fields: */
6408 enum stop_stack_kind stop_stack_dummy;
6409 int stopped_by_random_signal;
6410 int stop_after_trap;
6411
6412 /* ID if the selected frame when the inferior function call was made. */
6413 struct frame_id selected_frame_id;
6414 };
6415
6416 /* Save all of the information associated with the inferior<==>gdb
6417 connection. */
6418
6419 struct infcall_control_state *
6420 save_infcall_control_state (void)
6421 {
6422 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6423 struct thread_info *tp = inferior_thread ();
6424 struct inferior *inf = current_inferior ();
6425
6426 inf_status->thread_control = tp->control;
6427 inf_status->inferior_control = inf->control;
6428
6429 tp->control.step_resume_breakpoint = NULL;
6430 tp->control.exception_resume_breakpoint = NULL;
6431
6432 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6433 chain. If caller's caller is walking the chain, they'll be happier if we
6434 hand them back the original chain when restore_infcall_control_state is
6435 called. */
6436 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6437
6438 /* Other fields: */
6439 inf_status->stop_stack_dummy = stop_stack_dummy;
6440 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6441 inf_status->stop_after_trap = stop_after_trap;
6442
6443 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6444
6445 return inf_status;
6446 }
6447
6448 static int
6449 restore_selected_frame (void *args)
6450 {
6451 struct frame_id *fid = (struct frame_id *) args;
6452 struct frame_info *frame;
6453
6454 frame = frame_find_by_id (*fid);
6455
6456 /* If inf_status->selected_frame_id is NULL, there was no previously
6457 selected frame. */
6458 if (frame == NULL)
6459 {
6460 warning (_("Unable to restore previously selected frame."));
6461 return 0;
6462 }
6463
6464 select_frame (frame);
6465
6466 return (1);
6467 }
6468
6469 /* Restore inferior session state to INF_STATUS. */
6470
6471 void
6472 restore_infcall_control_state (struct infcall_control_state *inf_status)
6473 {
6474 struct thread_info *tp = inferior_thread ();
6475 struct inferior *inf = current_inferior ();
6476
6477 if (tp->control.step_resume_breakpoint)
6478 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6479
6480 if (tp->control.exception_resume_breakpoint)
6481 tp->control.exception_resume_breakpoint->disposition
6482 = disp_del_at_next_stop;
6483
6484 /* Handle the bpstat_copy of the chain. */
6485 bpstat_clear (&tp->control.stop_bpstat);
6486
6487 tp->control = inf_status->thread_control;
6488 inf->control = inf_status->inferior_control;
6489
6490 /* Other fields: */
6491 stop_stack_dummy = inf_status->stop_stack_dummy;
6492 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6493 stop_after_trap = inf_status->stop_after_trap;
6494
6495 if (target_has_stack)
6496 {
6497 /* The point of catch_errors is that if the stack is clobbered,
6498 walking the stack might encounter a garbage pointer and
6499 error() trying to dereference it. */
6500 if (catch_errors
6501 (restore_selected_frame, &inf_status->selected_frame_id,
6502 "Unable to restore previously selected frame:\n",
6503 RETURN_MASK_ERROR) == 0)
6504 /* Error in restoring the selected frame. Select the innermost
6505 frame. */
6506 select_frame (get_current_frame ());
6507 }
6508
6509 xfree (inf_status);
6510 }
6511
6512 static void
6513 do_restore_infcall_control_state_cleanup (void *sts)
6514 {
6515 restore_infcall_control_state (sts);
6516 }
6517
6518 struct cleanup *
6519 make_cleanup_restore_infcall_control_state
6520 (struct infcall_control_state *inf_status)
6521 {
6522 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6523 }
6524
6525 void
6526 discard_infcall_control_state (struct infcall_control_state *inf_status)
6527 {
6528 if (inf_status->thread_control.step_resume_breakpoint)
6529 inf_status->thread_control.step_resume_breakpoint->disposition
6530 = disp_del_at_next_stop;
6531
6532 if (inf_status->thread_control.exception_resume_breakpoint)
6533 inf_status->thread_control.exception_resume_breakpoint->disposition
6534 = disp_del_at_next_stop;
6535
6536 /* See save_infcall_control_state for info on stop_bpstat. */
6537 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6538
6539 xfree (inf_status);
6540 }
6541 \f
6542 int
6543 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6544 {
6545 struct target_waitstatus last;
6546 ptid_t last_ptid;
6547
6548 get_last_target_status (&last_ptid, &last);
6549
6550 if (last.kind != TARGET_WAITKIND_FORKED)
6551 return 0;
6552
6553 if (!ptid_equal (last_ptid, pid))
6554 return 0;
6555
6556 *child_pid = last.value.related_pid;
6557 return 1;
6558 }
6559
6560 int
6561 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6562 {
6563 struct target_waitstatus last;
6564 ptid_t last_ptid;
6565
6566 get_last_target_status (&last_ptid, &last);
6567
6568 if (last.kind != TARGET_WAITKIND_VFORKED)
6569 return 0;
6570
6571 if (!ptid_equal (last_ptid, pid))
6572 return 0;
6573
6574 *child_pid = last.value.related_pid;
6575 return 1;
6576 }
6577
6578 int
6579 inferior_has_execd (ptid_t pid, char **execd_pathname)
6580 {
6581 struct target_waitstatus last;
6582 ptid_t last_ptid;
6583
6584 get_last_target_status (&last_ptid, &last);
6585
6586 if (last.kind != TARGET_WAITKIND_EXECD)
6587 return 0;
6588
6589 if (!ptid_equal (last_ptid, pid))
6590 return 0;
6591
6592 *execd_pathname = xstrdup (last.value.execd_pathname);
6593 return 1;
6594 }
6595
6596 int
6597 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6598 {
6599 struct target_waitstatus last;
6600 ptid_t last_ptid;
6601
6602 get_last_target_status (&last_ptid, &last);
6603
6604 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6605 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6606 return 0;
6607
6608 if (!ptid_equal (last_ptid, pid))
6609 return 0;
6610
6611 *syscall_number = last.value.syscall_number;
6612 return 1;
6613 }
6614
6615 /* Oft used ptids */
6616 ptid_t null_ptid;
6617 ptid_t minus_one_ptid;
6618
6619 /* Create a ptid given the necessary PID, LWP, and TID components. */
6620
6621 ptid_t
6622 ptid_build (int pid, long lwp, long tid)
6623 {
6624 ptid_t ptid;
6625
6626 ptid.pid = pid;
6627 ptid.lwp = lwp;
6628 ptid.tid = tid;
6629 return ptid;
6630 }
6631
6632 /* Create a ptid from just a pid. */
6633
6634 ptid_t
6635 pid_to_ptid (int pid)
6636 {
6637 return ptid_build (pid, 0, 0);
6638 }
6639
6640 /* Fetch the pid (process id) component from a ptid. */
6641
6642 int
6643 ptid_get_pid (ptid_t ptid)
6644 {
6645 return ptid.pid;
6646 }
6647
6648 /* Fetch the lwp (lightweight process) component from a ptid. */
6649
6650 long
6651 ptid_get_lwp (ptid_t ptid)
6652 {
6653 return ptid.lwp;
6654 }
6655
6656 /* Fetch the tid (thread id) component from a ptid. */
6657
6658 long
6659 ptid_get_tid (ptid_t ptid)
6660 {
6661 return ptid.tid;
6662 }
6663
6664 /* ptid_equal() is used to test equality of two ptids. */
6665
6666 int
6667 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6668 {
6669 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6670 && ptid1.tid == ptid2.tid);
6671 }
6672
6673 /* Returns true if PTID represents a process. */
6674
6675 int
6676 ptid_is_pid (ptid_t ptid)
6677 {
6678 if (ptid_equal (minus_one_ptid, ptid))
6679 return 0;
6680 if (ptid_equal (null_ptid, ptid))
6681 return 0;
6682
6683 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6684 }
6685
6686 int
6687 ptid_match (ptid_t ptid, ptid_t filter)
6688 {
6689 /* Since both parameters have the same type, prevent easy mistakes
6690 from happening. */
6691 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
6692 && !ptid_equal (ptid, null_ptid));
6693
6694 if (ptid_equal (filter, minus_one_ptid))
6695 return 1;
6696 if (ptid_is_pid (filter)
6697 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6698 return 1;
6699 else if (ptid_equal (ptid, filter))
6700 return 1;
6701
6702 return 0;
6703 }
6704
6705 /* restore_inferior_ptid() will be used by the cleanup machinery
6706 to restore the inferior_ptid value saved in a call to
6707 save_inferior_ptid(). */
6708
6709 static void
6710 restore_inferior_ptid (void *arg)
6711 {
6712 ptid_t *saved_ptid_ptr = arg;
6713
6714 inferior_ptid = *saved_ptid_ptr;
6715 xfree (arg);
6716 }
6717
6718 /* Save the value of inferior_ptid so that it may be restored by a
6719 later call to do_cleanups(). Returns the struct cleanup pointer
6720 needed for later doing the cleanup. */
6721
6722 struct cleanup *
6723 save_inferior_ptid (void)
6724 {
6725 ptid_t *saved_ptid_ptr;
6726
6727 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6728 *saved_ptid_ptr = inferior_ptid;
6729 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6730 }
6731 \f
6732
6733 /* User interface for reverse debugging:
6734 Set exec-direction / show exec-direction commands
6735 (returns error unless target implements to_set_exec_direction method). */
6736
6737 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6738 static const char exec_forward[] = "forward";
6739 static const char exec_reverse[] = "reverse";
6740 static const char *exec_direction = exec_forward;
6741 static const char *exec_direction_names[] = {
6742 exec_forward,
6743 exec_reverse,
6744 NULL
6745 };
6746
6747 static void
6748 set_exec_direction_func (char *args, int from_tty,
6749 struct cmd_list_element *cmd)
6750 {
6751 if (target_can_execute_reverse)
6752 {
6753 if (!strcmp (exec_direction, exec_forward))
6754 execution_direction = EXEC_FORWARD;
6755 else if (!strcmp (exec_direction, exec_reverse))
6756 execution_direction = EXEC_REVERSE;
6757 }
6758 else
6759 {
6760 exec_direction = exec_forward;
6761 error (_("Target does not support this operation."));
6762 }
6763 }
6764
6765 static void
6766 show_exec_direction_func (struct ui_file *out, int from_tty,
6767 struct cmd_list_element *cmd, const char *value)
6768 {
6769 switch (execution_direction) {
6770 case EXEC_FORWARD:
6771 fprintf_filtered (out, _("Forward.\n"));
6772 break;
6773 case EXEC_REVERSE:
6774 fprintf_filtered (out, _("Reverse.\n"));
6775 break;
6776 case EXEC_ERROR:
6777 default:
6778 fprintf_filtered (out, _("Forward (target `%s' does not "
6779 "support exec-direction).\n"),
6780 target_shortname);
6781 break;
6782 }
6783 }
6784
6785 /* User interface for non-stop mode. */
6786
6787 int non_stop = 0;
6788
6789 static void
6790 set_non_stop (char *args, int from_tty,
6791 struct cmd_list_element *c)
6792 {
6793 if (target_has_execution)
6794 {
6795 non_stop_1 = non_stop;
6796 error (_("Cannot change this setting while the inferior is running."));
6797 }
6798
6799 non_stop = non_stop_1;
6800 }
6801
6802 static void
6803 show_non_stop (struct ui_file *file, int from_tty,
6804 struct cmd_list_element *c, const char *value)
6805 {
6806 fprintf_filtered (file,
6807 _("Controlling the inferior in non-stop mode is %s.\n"),
6808 value);
6809 }
6810
6811 static void
6812 show_schedule_multiple (struct ui_file *file, int from_tty,
6813 struct cmd_list_element *c, const char *value)
6814 {
6815 fprintf_filtered (file, _("Resuming the execution of threads "
6816 "of all processes is %s.\n"), value);
6817 }
6818
6819 void
6820 _initialize_infrun (void)
6821 {
6822 int i;
6823 int numsigs;
6824
6825 add_info ("signals", signals_info, _("\
6826 What debugger does when program gets various signals.\n\
6827 Specify a signal as argument to print info on that signal only."));
6828 add_info_alias ("handle", "signals", 0);
6829
6830 add_com ("handle", class_run, handle_command, _("\
6831 Specify how to handle a signal.\n\
6832 Args are signals and actions to apply to those signals.\n\
6833 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6834 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6835 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6836 The special arg \"all\" is recognized to mean all signals except those\n\
6837 used by the debugger, typically SIGTRAP and SIGINT.\n\
6838 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6839 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6840 Stop means reenter debugger if this signal happens (implies print).\n\
6841 Print means print a message if this signal happens.\n\
6842 Pass means let program see this signal; otherwise program doesn't know.\n\
6843 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6844 Pass and Stop may be combined."));
6845 if (xdb_commands)
6846 {
6847 add_com ("lz", class_info, signals_info, _("\
6848 What debugger does when program gets various signals.\n\
6849 Specify a signal as argument to print info on that signal only."));
6850 add_com ("z", class_run, xdb_handle_command, _("\
6851 Specify how to handle a signal.\n\
6852 Args are signals and actions to apply to those signals.\n\
6853 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6854 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6855 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6856 The special arg \"all\" is recognized to mean all signals except those\n\
6857 used by the debugger, typically SIGTRAP and SIGINT.\n\
6858 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6859 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6860 nopass), \"Q\" (noprint)\n\
6861 Stop means reenter debugger if this signal happens (implies print).\n\
6862 Print means print a message if this signal happens.\n\
6863 Pass means let program see this signal; otherwise program doesn't know.\n\
6864 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6865 Pass and Stop may be combined."));
6866 }
6867
6868 if (!dbx_commands)
6869 stop_command = add_cmd ("stop", class_obscure,
6870 not_just_help_class_command, _("\
6871 There is no `stop' command, but you can set a hook on `stop'.\n\
6872 This allows you to set a list of commands to be run each time execution\n\
6873 of the program stops."), &cmdlist);
6874
6875 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6876 Set inferior debugging."), _("\
6877 Show inferior debugging."), _("\
6878 When non-zero, inferior specific debugging is enabled."),
6879 NULL,
6880 show_debug_infrun,
6881 &setdebuglist, &showdebuglist);
6882
6883 add_setshow_boolean_cmd ("displaced", class_maintenance,
6884 &debug_displaced, _("\
6885 Set displaced stepping debugging."), _("\
6886 Show displaced stepping debugging."), _("\
6887 When non-zero, displaced stepping specific debugging is enabled."),
6888 NULL,
6889 show_debug_displaced,
6890 &setdebuglist, &showdebuglist);
6891
6892 add_setshow_boolean_cmd ("non-stop", no_class,
6893 &non_stop_1, _("\
6894 Set whether gdb controls the inferior in non-stop mode."), _("\
6895 Show whether gdb controls the inferior in non-stop mode."), _("\
6896 When debugging a multi-threaded program and this setting is\n\
6897 off (the default, also called all-stop mode), when one thread stops\n\
6898 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6899 all other threads in the program while you interact with the thread of\n\
6900 interest. When you continue or step a thread, you can allow the other\n\
6901 threads to run, or have them remain stopped, but while you inspect any\n\
6902 thread's state, all threads stop.\n\
6903 \n\
6904 In non-stop mode, when one thread stops, other threads can continue\n\
6905 to run freely. You'll be able to step each thread independently,\n\
6906 leave it stopped or free to run as needed."),
6907 set_non_stop,
6908 show_non_stop,
6909 &setlist,
6910 &showlist);
6911
6912 numsigs = (int) TARGET_SIGNAL_LAST;
6913 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6914 signal_print = (unsigned char *)
6915 xmalloc (sizeof (signal_print[0]) * numsigs);
6916 signal_program = (unsigned char *)
6917 xmalloc (sizeof (signal_program[0]) * numsigs);
6918 for (i = 0; i < numsigs; i++)
6919 {
6920 signal_stop[i] = 1;
6921 signal_print[i] = 1;
6922 signal_program[i] = 1;
6923 }
6924
6925 /* Signals caused by debugger's own actions
6926 should not be given to the program afterwards. */
6927 signal_program[TARGET_SIGNAL_TRAP] = 0;
6928 signal_program[TARGET_SIGNAL_INT] = 0;
6929
6930 /* Signals that are not errors should not normally enter the debugger. */
6931 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6932 signal_print[TARGET_SIGNAL_ALRM] = 0;
6933 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6934 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6935 signal_stop[TARGET_SIGNAL_PROF] = 0;
6936 signal_print[TARGET_SIGNAL_PROF] = 0;
6937 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6938 signal_print[TARGET_SIGNAL_CHLD] = 0;
6939 signal_stop[TARGET_SIGNAL_IO] = 0;
6940 signal_print[TARGET_SIGNAL_IO] = 0;
6941 signal_stop[TARGET_SIGNAL_POLL] = 0;
6942 signal_print[TARGET_SIGNAL_POLL] = 0;
6943 signal_stop[TARGET_SIGNAL_URG] = 0;
6944 signal_print[TARGET_SIGNAL_URG] = 0;
6945 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6946 signal_print[TARGET_SIGNAL_WINCH] = 0;
6947 signal_stop[TARGET_SIGNAL_PRIO] = 0;
6948 signal_print[TARGET_SIGNAL_PRIO] = 0;
6949
6950 /* These signals are used internally by user-level thread
6951 implementations. (See signal(5) on Solaris.) Like the above
6952 signals, a healthy program receives and handles them as part of
6953 its normal operation. */
6954 signal_stop[TARGET_SIGNAL_LWP] = 0;
6955 signal_print[TARGET_SIGNAL_LWP] = 0;
6956 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6957 signal_print[TARGET_SIGNAL_WAITING] = 0;
6958 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6959 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6960
6961 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6962 &stop_on_solib_events, _("\
6963 Set stopping for shared library events."), _("\
6964 Show stopping for shared library events."), _("\
6965 If nonzero, gdb will give control to the user when the dynamic linker\n\
6966 notifies gdb of shared library events. The most common event of interest\n\
6967 to the user would be loading/unloading of a new library."),
6968 NULL,
6969 show_stop_on_solib_events,
6970 &setlist, &showlist);
6971
6972 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6973 follow_fork_mode_kind_names,
6974 &follow_fork_mode_string, _("\
6975 Set debugger response to a program call of fork or vfork."), _("\
6976 Show debugger response to a program call of fork or vfork."), _("\
6977 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6978 parent - the original process is debugged after a fork\n\
6979 child - the new process is debugged after a fork\n\
6980 The unfollowed process will continue to run.\n\
6981 By default, the debugger will follow the parent process."),
6982 NULL,
6983 show_follow_fork_mode_string,
6984 &setlist, &showlist);
6985
6986 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6987 follow_exec_mode_names,
6988 &follow_exec_mode_string, _("\
6989 Set debugger response to a program call of exec."), _("\
6990 Show debugger response to a program call of exec."), _("\
6991 An exec call replaces the program image of a process.\n\
6992 \n\
6993 follow-exec-mode can be:\n\
6994 \n\
6995 new - the debugger creates a new inferior and rebinds the process\n\
6996 to this new inferior. The program the process was running before\n\
6997 the exec call can be restarted afterwards by restarting the original\n\
6998 inferior.\n\
6999 \n\
7000 same - the debugger keeps the process bound to the same inferior.\n\
7001 The new executable image replaces the previous executable loaded in\n\
7002 the inferior. Restarting the inferior after the exec call restarts\n\
7003 the executable the process was running after the exec call.\n\
7004 \n\
7005 By default, the debugger will use the same inferior."),
7006 NULL,
7007 show_follow_exec_mode_string,
7008 &setlist, &showlist);
7009
7010 add_setshow_enum_cmd ("scheduler-locking", class_run,
7011 scheduler_enums, &scheduler_mode, _("\
7012 Set mode for locking scheduler during execution."), _("\
7013 Show mode for locking scheduler during execution."), _("\
7014 off == no locking (threads may preempt at any time)\n\
7015 on == full locking (no thread except the current thread may run)\n\
7016 step == scheduler locked during every single-step operation.\n\
7017 In this mode, no other thread may run during a step command.\n\
7018 Other threads may run while stepping over a function call ('next')."),
7019 set_schedlock_func, /* traps on target vector */
7020 show_scheduler_mode,
7021 &setlist, &showlist);
7022
7023 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7024 Set mode for resuming threads of all processes."), _("\
7025 Show mode for resuming threads of all processes."), _("\
7026 When on, execution commands (such as 'continue' or 'next') resume all\n\
7027 threads of all processes. When off (which is the default), execution\n\
7028 commands only resume the threads of the current process. The set of\n\
7029 threads that are resumed is further refined by the scheduler-locking\n\
7030 mode (see help set scheduler-locking)."),
7031 NULL,
7032 show_schedule_multiple,
7033 &setlist, &showlist);
7034
7035 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7036 Set mode of the step operation."), _("\
7037 Show mode of the step operation."), _("\
7038 When set, doing a step over a function without debug line information\n\
7039 will stop at the first instruction of that function. Otherwise, the\n\
7040 function is skipped and the step command stops at a different source line."),
7041 NULL,
7042 show_step_stop_if_no_debug,
7043 &setlist, &showlist);
7044
7045 add_setshow_enum_cmd ("displaced-stepping", class_run,
7046 can_use_displaced_stepping_enum,
7047 &can_use_displaced_stepping, _("\
7048 Set debugger's willingness to use displaced stepping."), _("\
7049 Show debugger's willingness to use displaced stepping."), _("\
7050 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7051 supported by the target architecture. If off, gdb will not use displaced\n\
7052 stepping to step over breakpoints, even if such is supported by the target\n\
7053 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7054 if the target architecture supports it and non-stop mode is active, but will not\n\
7055 use it in all-stop mode (see help set non-stop)."),
7056 NULL,
7057 show_can_use_displaced_stepping,
7058 &setlist, &showlist);
7059
7060 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7061 &exec_direction, _("Set direction of execution.\n\
7062 Options are 'forward' or 'reverse'."),
7063 _("Show direction of execution (forward/reverse)."),
7064 _("Tells gdb whether to execute forward or backward."),
7065 set_exec_direction_func, show_exec_direction_func,
7066 &setlist, &showlist);
7067
7068 /* Set/show detach-on-fork: user-settable mode. */
7069
7070 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7071 Set whether gdb will detach the child of a fork."), _("\
7072 Show whether gdb will detach the child of a fork."), _("\
7073 Tells gdb whether to detach the child of a fork."),
7074 NULL, NULL, &setlist, &showlist);
7075
7076 /* ptid initializations */
7077 null_ptid = ptid_build (0, 0, 0);
7078 minus_one_ptid = ptid_build (-1, 0, 0);
7079 inferior_ptid = null_ptid;
7080 target_last_wait_ptid = minus_one_ptid;
7081
7082 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7083 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7084 observer_attach_thread_exit (infrun_thread_thread_exit);
7085 observer_attach_inferior_exit (infrun_inferior_exit);
7086
7087 /* Explicitly create without lookup, since that tries to create a
7088 value with a void typed value, and when we get here, gdbarch
7089 isn't initialized yet. At this point, we're quite sure there
7090 isn't another convenience variable of the same name. */
7091 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7092
7093 add_setshow_boolean_cmd ("observer", no_class,
7094 &observer_mode_1, _("\
7095 Set whether gdb controls the inferior in observer mode."), _("\
7096 Show whether gdb controls the inferior in observer mode."), _("\
7097 In observer mode, GDB can get data from the inferior, but not\n\
7098 affect its execution. Registers and memory may not be changed,\n\
7099 breakpoints may not be set, and the program cannot be interrupted\n\
7100 or signalled."),
7101 set_observer_mode,
7102 show_observer_mode,
7103 &setlist,
7104 &showlist);
7105 }
This page took 0.169084 seconds and 5 git commands to generate.