Remove spurious exceptions.h inclusions
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Function inferior was in as of last step command. */
330
331 static struct symbol *step_start_function;
332
333 /* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
335 int stop_on_solib_events;
336
337 /* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343 update_solib_breakpoints ();
344 }
345
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349 {
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352 }
353
354 /* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357 int stop_after_trap;
358
359 /* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
364 struct regcache *stop_registers;
365
366 /* Nonzero after stop if current stack frame should be printed. */
367
368 static int stop_print_frame;
369
370 /* This is a cached copy of the pid/waitstatus of the last event
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375
376 static void context_switch (ptid_t ptid);
377
378 void init_thread_stepping_state (struct thread_info *tss);
379
380 static void init_infwait_state (void);
381
382 static const char follow_fork_mode_child[] = "child";
383 static const char follow_fork_mode_parent[] = "parent";
384
385 static const char *const follow_fork_mode_kind_names[] = {
386 follow_fork_mode_child,
387 follow_fork_mode_parent,
388 NULL
389 };
390
391 static const char *follow_fork_mode_string = follow_fork_mode_parent;
392 static void
393 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
394 struct cmd_list_element *c, const char *value)
395 {
396 fprintf_filtered (file,
397 _("Debugger response to a program "
398 "call of fork or vfork is \"%s\".\n"),
399 value);
400 }
401 \f
402
403 /* Handle changes to the inferior list based on the type of fork,
404 which process is being followed, and whether the other process
405 should be detached. On entry inferior_ptid must be the ptid of
406 the fork parent. At return inferior_ptid is the ptid of the
407 followed inferior. */
408
409 static int
410 follow_fork_inferior (int follow_child, int detach_fork)
411 {
412 int has_vforked;
413 int parent_pid, child_pid;
414
415 has_vforked = (inferior_thread ()->pending_follow.kind
416 == TARGET_WAITKIND_VFORKED);
417 parent_pid = ptid_get_lwp (inferior_ptid);
418 if (parent_pid == 0)
419 parent_pid = ptid_get_pid (inferior_ptid);
420 child_pid
421 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
422
423 if (has_vforked
424 && !non_stop /* Non-stop always resumes both branches. */
425 && (!target_is_async_p () || sync_execution)
426 && !(follow_child || detach_fork || sched_multi))
427 {
428 /* The parent stays blocked inside the vfork syscall until the
429 child execs or exits. If we don't let the child run, then
430 the parent stays blocked. If we're telling the parent to run
431 in the foreground, the user will not be able to ctrl-c to get
432 back the terminal, effectively hanging the debug session. */
433 fprintf_filtered (gdb_stderr, _("\
434 Can not resume the parent process over vfork in the foreground while\n\
435 holding the child stopped. Try \"set detach-on-fork\" or \
436 \"set schedule-multiple\".\n"));
437 /* FIXME output string > 80 columns. */
438 return 1;
439 }
440
441 if (!follow_child)
442 {
443 /* Detach new forked process? */
444 if (detach_fork)
445 {
446 struct cleanup *old_chain;
447
448 /* Before detaching from the child, remove all breakpoints
449 from it. If we forked, then this has already been taken
450 care of by infrun.c. If we vforked however, any
451 breakpoint inserted in the parent is visible in the
452 child, even those added while stopped in a vfork
453 catchpoint. This will remove the breakpoints from the
454 parent also, but they'll be reinserted below. */
455 if (has_vforked)
456 {
457 /* Keep breakpoints list in sync. */
458 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
459 }
460
461 if (info_verbose || debug_infrun)
462 {
463 target_terminal_ours ();
464 fprintf_filtered (gdb_stdlog,
465 "Detaching after fork from "
466 "child process %d.\n",
467 child_pid);
468 }
469 }
470 else
471 {
472 struct inferior *parent_inf, *child_inf;
473 struct cleanup *old_chain;
474
475 /* Add process to GDB's tables. */
476 child_inf = add_inferior (child_pid);
477
478 parent_inf = current_inferior ();
479 child_inf->attach_flag = parent_inf->attach_flag;
480 copy_terminal_info (child_inf, parent_inf);
481 child_inf->gdbarch = parent_inf->gdbarch;
482 copy_inferior_target_desc_info (child_inf, parent_inf);
483
484 old_chain = save_inferior_ptid ();
485 save_current_program_space ();
486
487 inferior_ptid = ptid_build (child_pid, child_pid, 0);
488 add_thread (inferior_ptid);
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 /* The parent will be frozen until the child is done
499 with the shared region. Keep track of the
500 parent. */
501 child_inf->vfork_parent = parent_inf;
502 child_inf->pending_detach = 0;
503 parent_inf->vfork_child = child_inf;
504 parent_inf->pending_detach = 0;
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = add_program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* Let the shared library layer (e.g., solib-svr4) learn
515 about this new process, relocate the cloned exec, pull
516 in shared libraries, and install the solib event
517 breakpoint. If a "cloned-VM" event was propagated
518 better throughout the core, this wouldn't be
519 required. */
520 solib_create_inferior_hook (0);
521 }
522
523 do_cleanups (old_chain);
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
549 if (info_verbose || debug_infrun)
550 {
551 target_terminal_ours ();
552 if (has_vforked)
553 fprintf_filtered (gdb_stdlog,
554 _("Attaching after process %d "
555 "vfork to child process %d.\n"),
556 parent_pid, child_pid);
557 else
558 fprintf_filtered (gdb_stdlog,
559 _("Attaching after process %d "
560 "fork to child process %d.\n"),
561 parent_pid, child_pid);
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
567 child_inf = add_inferior (child_pid);
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 /* If we're vforking, we want to hold on to the parent until the
578 child exits or execs. At child exec or exit time we can
579 remove the old breakpoints from the parent and detach or
580 resume debugging it. Otherwise, detach the parent now; we'll
581 want to reuse it's program/address spaces, but we can't set
582 them to the child before removing breakpoints from the
583 parent, otherwise, the breakpoints module could decide to
584 remove breakpoints from the wrong process (since they'd be
585 assigned to the same address space). */
586
587 if (has_vforked)
588 {
589 gdb_assert (child_inf->vfork_parent == NULL);
590 gdb_assert (parent_inf->vfork_child == NULL);
591 child_inf->vfork_parent = parent_inf;
592 child_inf->pending_detach = 0;
593 parent_inf->vfork_child = child_inf;
594 parent_inf->pending_detach = detach_fork;
595 parent_inf->waiting_for_vfork_done = 0;
596 }
597 else if (detach_fork)
598 target_detach (NULL, 0);
599
600 /* Note that the detach above makes PARENT_INF dangling. */
601
602 /* Add the child thread to the appropriate lists, and switch to
603 this new thread, before cloning the program space, and
604 informing the solib layer about this new process. */
605
606 inferior_ptid = ptid_build (child_pid, child_pid, 0);
607 add_thread (inferior_ptid);
608
609 /* If this is a vfork child, then the address-space is shared
610 with the parent. If we detached from the parent, then we can
611 reuse the parent's program/address spaces. */
612 if (has_vforked || detach_fork)
613 {
614 child_inf->pspace = parent_pspace;
615 child_inf->aspace = child_inf->pspace->aspace;
616 }
617 else
618 {
619 child_inf->aspace = new_address_space ();
620 child_inf->pspace = add_program_space (child_inf->aspace);
621 child_inf->removable = 1;
622 child_inf->symfile_flags = SYMFILE_NO_READ;
623 set_current_program_space (child_inf->pspace);
624 clone_program_space (child_inf->pspace, parent_pspace);
625
626 /* Let the shared library layer (e.g., solib-svr4) learn
627 about this new process, relocate the cloned exec, pull in
628 shared libraries, and install the solib event breakpoint.
629 If a "cloned-VM" event was propagated better throughout
630 the core, this wouldn't be required. */
631 solib_create_inferior_hook (0);
632 }
633 }
634
635 return target_follow_fork (follow_child, detach_fork);
636 }
637
638 /* Tell the target to follow the fork we're stopped at. Returns true
639 if the inferior should be resumed; false, if the target for some
640 reason decided it's best not to resume. */
641
642 static int
643 follow_fork (void)
644 {
645 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
646 int should_resume = 1;
647 struct thread_info *tp;
648
649 /* Copy user stepping state to the new inferior thread. FIXME: the
650 followed fork child thread should have a copy of most of the
651 parent thread structure's run control related fields, not just these.
652 Initialized to avoid "may be used uninitialized" warnings from gcc. */
653 struct breakpoint *step_resume_breakpoint = NULL;
654 struct breakpoint *exception_resume_breakpoint = NULL;
655 CORE_ADDR step_range_start = 0;
656 CORE_ADDR step_range_end = 0;
657 struct frame_id step_frame_id = { 0 };
658 struct interp *command_interp = NULL;
659
660 if (!non_stop)
661 {
662 ptid_t wait_ptid;
663 struct target_waitstatus wait_status;
664
665 /* Get the last target status returned by target_wait(). */
666 get_last_target_status (&wait_ptid, &wait_status);
667
668 /* If not stopped at a fork event, then there's nothing else to
669 do. */
670 if (wait_status.kind != TARGET_WAITKIND_FORKED
671 && wait_status.kind != TARGET_WAITKIND_VFORKED)
672 return 1;
673
674 /* Check if we switched over from WAIT_PTID, since the event was
675 reported. */
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* We did. Switch back to WAIT_PTID thread, to tell the
680 target to follow it (in either direction). We'll
681 afterwards refuse to resume, and inform the user what
682 happened. */
683 switch_to_thread (wait_ptid);
684 should_resume = 0;
685 }
686 }
687
688 tp = inferior_thread ();
689
690 /* If there were any forks/vforks that were caught and are now to be
691 followed, then do so now. */
692 switch (tp->pending_follow.kind)
693 {
694 case TARGET_WAITKIND_FORKED:
695 case TARGET_WAITKIND_VFORKED:
696 {
697 ptid_t parent, child;
698
699 /* If the user did a next/step, etc, over a fork call,
700 preserve the stepping state in the fork child. */
701 if (follow_child && should_resume)
702 {
703 step_resume_breakpoint = clone_momentary_breakpoint
704 (tp->control.step_resume_breakpoint);
705 step_range_start = tp->control.step_range_start;
706 step_range_end = tp->control.step_range_end;
707 step_frame_id = tp->control.step_frame_id;
708 exception_resume_breakpoint
709 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
710 command_interp = tp->control.command_interp;
711
712 /* For now, delete the parent's sr breakpoint, otherwise,
713 parent/child sr breakpoints are considered duplicates,
714 and the child version will not be installed. Remove
715 this when the breakpoints module becomes aware of
716 inferiors and address spaces. */
717 delete_step_resume_breakpoint (tp);
718 tp->control.step_range_start = 0;
719 tp->control.step_range_end = 0;
720 tp->control.step_frame_id = null_frame_id;
721 delete_exception_resume_breakpoint (tp);
722 tp->control.command_interp = NULL;
723 }
724
725 parent = inferior_ptid;
726 child = tp->pending_follow.value.related_pid;
727
728 /* Set up inferior(s) as specified by the caller, and tell the
729 target to do whatever is necessary to follow either parent
730 or child. */
731 if (follow_fork_inferior (follow_child, detach_fork))
732 {
733 /* Target refused to follow, or there's some other reason
734 we shouldn't resume. */
735 should_resume = 0;
736 }
737 else
738 {
739 /* This pending follow fork event is now handled, one way
740 or another. The previous selected thread may be gone
741 from the lists by now, but if it is still around, need
742 to clear the pending follow request. */
743 tp = find_thread_ptid (parent);
744 if (tp)
745 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
746
747 /* This makes sure we don't try to apply the "Switched
748 over from WAIT_PID" logic above. */
749 nullify_last_target_wait_ptid ();
750
751 /* If we followed the child, switch to it... */
752 if (follow_child)
753 {
754 switch_to_thread (child);
755
756 /* ... and preserve the stepping state, in case the
757 user was stepping over the fork call. */
758 if (should_resume)
759 {
760 tp = inferior_thread ();
761 tp->control.step_resume_breakpoint
762 = step_resume_breakpoint;
763 tp->control.step_range_start = step_range_start;
764 tp->control.step_range_end = step_range_end;
765 tp->control.step_frame_id = step_frame_id;
766 tp->control.exception_resume_breakpoint
767 = exception_resume_breakpoint;
768 tp->control.command_interp = command_interp;
769 }
770 else
771 {
772 /* If we get here, it was because we're trying to
773 resume from a fork catchpoint, but, the user
774 has switched threads away from the thread that
775 forked. In that case, the resume command
776 issued is most likely not applicable to the
777 child, so just warn, and refuse to resume. */
778 warning (_("Not resuming: switched threads "
779 "before following fork child.\n"));
780 }
781
782 /* Reset breakpoints in the child as appropriate. */
783 follow_inferior_reset_breakpoints ();
784 }
785 else
786 switch_to_thread (parent);
787 }
788 }
789 break;
790 case TARGET_WAITKIND_SPURIOUS:
791 /* Nothing to follow. */
792 break;
793 default:
794 internal_error (__FILE__, __LINE__,
795 "Unexpected pending_follow.kind %d\n",
796 tp->pending_follow.kind);
797 break;
798 }
799
800 return should_resume;
801 }
802
803 static void
804 follow_inferior_reset_breakpoints (void)
805 {
806 struct thread_info *tp = inferior_thread ();
807
808 /* Was there a step_resume breakpoint? (There was if the user
809 did a "next" at the fork() call.) If so, explicitly reset its
810 thread number. Cloned step_resume breakpoints are disabled on
811 creation, so enable it here now that it is associated with the
812 correct thread.
813
814 step_resumes are a form of bp that are made to be per-thread.
815 Since we created the step_resume bp when the parent process
816 was being debugged, and now are switching to the child process,
817 from the breakpoint package's viewpoint, that's a switch of
818 "threads". We must update the bp's notion of which thread
819 it is for, or it'll be ignored when it triggers. */
820
821 if (tp->control.step_resume_breakpoint)
822 {
823 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
824 tp->control.step_resume_breakpoint->loc->enabled = 1;
825 }
826
827 /* Treat exception_resume breakpoints like step_resume breakpoints. */
828 if (tp->control.exception_resume_breakpoint)
829 {
830 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
831 tp->control.exception_resume_breakpoint->loc->enabled = 1;
832 }
833
834 /* Reinsert all breakpoints in the child. The user may have set
835 breakpoints after catching the fork, in which case those
836 were never set in the child, but only in the parent. This makes
837 sure the inserted breakpoints match the breakpoint list. */
838
839 breakpoint_re_set ();
840 insert_breakpoints ();
841 }
842
843 /* The child has exited or execed: resume threads of the parent the
844 user wanted to be executing. */
845
846 static int
847 proceed_after_vfork_done (struct thread_info *thread,
848 void *arg)
849 {
850 int pid = * (int *) arg;
851
852 if (ptid_get_pid (thread->ptid) == pid
853 && is_running (thread->ptid)
854 && !is_executing (thread->ptid)
855 && !thread->stop_requested
856 && thread->suspend.stop_signal == GDB_SIGNAL_0)
857 {
858 if (debug_infrun)
859 fprintf_unfiltered (gdb_stdlog,
860 "infrun: resuming vfork parent thread %s\n",
861 target_pid_to_str (thread->ptid));
862
863 switch_to_thread (thread->ptid);
864 clear_proceed_status (0);
865 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
866 }
867
868 return 0;
869 }
870
871 /* Called whenever we notice an exec or exit event, to handle
872 detaching or resuming a vfork parent. */
873
874 static void
875 handle_vfork_child_exec_or_exit (int exec)
876 {
877 struct inferior *inf = current_inferior ();
878
879 if (inf->vfork_parent)
880 {
881 int resume_parent = -1;
882
883 /* This exec or exit marks the end of the shared memory region
884 between the parent and the child. If the user wanted to
885 detach from the parent, now is the time. */
886
887 if (inf->vfork_parent->pending_detach)
888 {
889 struct thread_info *tp;
890 struct cleanup *old_chain;
891 struct program_space *pspace;
892 struct address_space *aspace;
893
894 /* follow-fork child, detach-on-fork on. */
895
896 inf->vfork_parent->pending_detach = 0;
897
898 if (!exec)
899 {
900 /* If we're handling a child exit, then inferior_ptid
901 points at the inferior's pid, not to a thread. */
902 old_chain = save_inferior_ptid ();
903 save_current_program_space ();
904 save_current_inferior ();
905 }
906 else
907 old_chain = save_current_space_and_thread ();
908
909 /* We're letting loose of the parent. */
910 tp = any_live_thread_of_process (inf->vfork_parent->pid);
911 switch_to_thread (tp->ptid);
912
913 /* We're about to detach from the parent, which implicitly
914 removes breakpoints from its address space. There's a
915 catch here: we want to reuse the spaces for the child,
916 but, parent/child are still sharing the pspace at this
917 point, although the exec in reality makes the kernel give
918 the child a fresh set of new pages. The problem here is
919 that the breakpoints module being unaware of this, would
920 likely chose the child process to write to the parent
921 address space. Swapping the child temporarily away from
922 the spaces has the desired effect. Yes, this is "sort
923 of" a hack. */
924
925 pspace = inf->pspace;
926 aspace = inf->aspace;
927 inf->aspace = NULL;
928 inf->pspace = NULL;
929
930 if (debug_infrun || info_verbose)
931 {
932 target_terminal_ours ();
933
934 if (exec)
935 fprintf_filtered (gdb_stdlog,
936 "Detaching vfork parent process "
937 "%d after child exec.\n",
938 inf->vfork_parent->pid);
939 else
940 fprintf_filtered (gdb_stdlog,
941 "Detaching vfork parent process "
942 "%d after child exit.\n",
943 inf->vfork_parent->pid);
944 }
945
946 target_detach (NULL, 0);
947
948 /* Put it back. */
949 inf->pspace = pspace;
950 inf->aspace = aspace;
951
952 do_cleanups (old_chain);
953 }
954 else if (exec)
955 {
956 /* We're staying attached to the parent, so, really give the
957 child a new address space. */
958 inf->pspace = add_program_space (maybe_new_address_space ());
959 inf->aspace = inf->pspace->aspace;
960 inf->removable = 1;
961 set_current_program_space (inf->pspace);
962
963 resume_parent = inf->vfork_parent->pid;
964
965 /* Break the bonds. */
966 inf->vfork_parent->vfork_child = NULL;
967 }
968 else
969 {
970 struct cleanup *old_chain;
971 struct program_space *pspace;
972
973 /* If this is a vfork child exiting, then the pspace and
974 aspaces were shared with the parent. Since we're
975 reporting the process exit, we'll be mourning all that is
976 found in the address space, and switching to null_ptid,
977 preparing to start a new inferior. But, since we don't
978 want to clobber the parent's address/program spaces, we
979 go ahead and create a new one for this exiting
980 inferior. */
981
982 /* Switch to null_ptid, so that clone_program_space doesn't want
983 to read the selected frame of a dead process. */
984 old_chain = save_inferior_ptid ();
985 inferior_ptid = null_ptid;
986
987 /* This inferior is dead, so avoid giving the breakpoints
988 module the option to write through to it (cloning a
989 program space resets breakpoints). */
990 inf->aspace = NULL;
991 inf->pspace = NULL;
992 pspace = add_program_space (maybe_new_address_space ());
993 set_current_program_space (pspace);
994 inf->removable = 1;
995 inf->symfile_flags = SYMFILE_NO_READ;
996 clone_program_space (pspace, inf->vfork_parent->pspace);
997 inf->pspace = pspace;
998 inf->aspace = pspace->aspace;
999
1000 /* Put back inferior_ptid. We'll continue mourning this
1001 inferior. */
1002 do_cleanups (old_chain);
1003
1004 resume_parent = inf->vfork_parent->pid;
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008
1009 inf->vfork_parent = NULL;
1010
1011 gdb_assert (current_program_space == inf->pspace);
1012
1013 if (non_stop && resume_parent != -1)
1014 {
1015 /* If the user wanted the parent to be running, let it go
1016 free now. */
1017 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1018
1019 if (debug_infrun)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "infrun: resuming vfork parent process %d\n",
1022 resume_parent);
1023
1024 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1025
1026 do_cleanups (old_chain);
1027 }
1028 }
1029 }
1030
1031 /* Enum strings for "set|show follow-exec-mode". */
1032
1033 static const char follow_exec_mode_new[] = "new";
1034 static const char follow_exec_mode_same[] = "same";
1035 static const char *const follow_exec_mode_names[] =
1036 {
1037 follow_exec_mode_new,
1038 follow_exec_mode_same,
1039 NULL,
1040 };
1041
1042 static const char *follow_exec_mode_string = follow_exec_mode_same;
1043 static void
1044 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1045 struct cmd_list_element *c, const char *value)
1046 {
1047 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1048 }
1049
1050 /* EXECD_PATHNAME is assumed to be non-NULL. */
1051
1052 static void
1053 follow_exec (ptid_t pid, char *execd_pathname)
1054 {
1055 struct thread_info *th = inferior_thread ();
1056 struct inferior *inf = current_inferior ();
1057
1058 /* This is an exec event that we actually wish to pay attention to.
1059 Refresh our symbol table to the newly exec'd program, remove any
1060 momentary bp's, etc.
1061
1062 If there are breakpoints, they aren't really inserted now,
1063 since the exec() transformed our inferior into a fresh set
1064 of instructions.
1065
1066 We want to preserve symbolic breakpoints on the list, since
1067 we have hopes that they can be reset after the new a.out's
1068 symbol table is read.
1069
1070 However, any "raw" breakpoints must be removed from the list
1071 (e.g., the solib bp's), since their address is probably invalid
1072 now.
1073
1074 And, we DON'T want to call delete_breakpoints() here, since
1075 that may write the bp's "shadow contents" (the instruction
1076 value that was overwritten witha TRAP instruction). Since
1077 we now have a new a.out, those shadow contents aren't valid. */
1078
1079 mark_breakpoints_out ();
1080
1081 update_breakpoints_after_exec ();
1082
1083 /* If there was one, it's gone now. We cannot truly step-to-next
1084 statement through an exec(). */
1085 th->control.step_resume_breakpoint = NULL;
1086 th->control.exception_resume_breakpoint = NULL;
1087 th->control.step_range_start = 0;
1088 th->control.step_range_end = 0;
1089
1090 /* The target reports the exec event to the main thread, even if
1091 some other thread does the exec, and even if the main thread was
1092 already stopped --- if debugging in non-stop mode, it's possible
1093 the user had the main thread held stopped in the previous image
1094 --- release it now. This is the same behavior as step-over-exec
1095 with scheduler-locking on in all-stop mode. */
1096 th->stop_requested = 0;
1097
1098 /* What is this a.out's name? */
1099 printf_unfiltered (_("%s is executing new program: %s\n"),
1100 target_pid_to_str (inferior_ptid),
1101 execd_pathname);
1102
1103 /* We've followed the inferior through an exec. Therefore, the
1104 inferior has essentially been killed & reborn. */
1105
1106 gdb_flush (gdb_stdout);
1107
1108 breakpoint_init_inferior (inf_execd);
1109
1110 if (gdb_sysroot && *gdb_sysroot)
1111 {
1112 char *name = alloca (strlen (gdb_sysroot)
1113 + strlen (execd_pathname)
1114 + 1);
1115
1116 strcpy (name, gdb_sysroot);
1117 strcat (name, execd_pathname);
1118 execd_pathname = name;
1119 }
1120
1121 /* Reset the shared library package. This ensures that we get a
1122 shlib event when the child reaches "_start", at which point the
1123 dld will have had a chance to initialize the child. */
1124 /* Also, loading a symbol file below may trigger symbol lookups, and
1125 we don't want those to be satisfied by the libraries of the
1126 previous incarnation of this process. */
1127 no_shared_libraries (NULL, 0);
1128
1129 if (follow_exec_mode_string == follow_exec_mode_new)
1130 {
1131 struct program_space *pspace;
1132
1133 /* The user wants to keep the old inferior and program spaces
1134 around. Create a new fresh one, and switch to it. */
1135
1136 inf = add_inferior (current_inferior ()->pid);
1137 pspace = add_program_space (maybe_new_address_space ());
1138 inf->pspace = pspace;
1139 inf->aspace = pspace->aspace;
1140
1141 exit_inferior_num_silent (current_inferior ()->num);
1142
1143 set_current_inferior (inf);
1144 set_current_program_space (pspace);
1145 }
1146 else
1147 {
1148 /* The old description may no longer be fit for the new image.
1149 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1150 old description; we'll read a new one below. No need to do
1151 this on "follow-exec-mode new", as the old inferior stays
1152 around (its description is later cleared/refetched on
1153 restart). */
1154 target_clear_description ();
1155 }
1156
1157 gdb_assert (current_program_space == inf->pspace);
1158
1159 /* That a.out is now the one to use. */
1160 exec_file_attach (execd_pathname, 0);
1161
1162 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1163 (Position Independent Executable) main symbol file will get applied by
1164 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1165 the breakpoints with the zero displacement. */
1166
1167 symbol_file_add (execd_pathname,
1168 (inf->symfile_flags
1169 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1170 NULL, 0);
1171
1172 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1173 set_initial_language ();
1174
1175 /* If the target can specify a description, read it. Must do this
1176 after flipping to the new executable (because the target supplied
1177 description must be compatible with the executable's
1178 architecture, and the old executable may e.g., be 32-bit, while
1179 the new one 64-bit), and before anything involving memory or
1180 registers. */
1181 target_find_description ();
1182
1183 solib_create_inferior_hook (0);
1184
1185 jit_inferior_created_hook ();
1186
1187 breakpoint_re_set ();
1188
1189 /* Reinsert all breakpoints. (Those which were symbolic have
1190 been reset to the proper address in the new a.out, thanks
1191 to symbol_file_command...). */
1192 insert_breakpoints ();
1193
1194 /* The next resume of this inferior should bring it to the shlib
1195 startup breakpoints. (If the user had also set bp's on
1196 "main" from the old (parent) process, then they'll auto-
1197 matically get reset there in the new process.). */
1198 }
1199
1200 /* Non-zero if we just simulating a single-step. This is needed
1201 because we cannot remove the breakpoints in the inferior process
1202 until after the `wait' in `wait_for_inferior'. */
1203 static int singlestep_breakpoints_inserted_p = 0;
1204
1205 /* The thread we inserted single-step breakpoints for. */
1206 static ptid_t singlestep_ptid;
1207
1208 /* PC when we started this single-step. */
1209 static CORE_ADDR singlestep_pc;
1210
1211 /* Info about an instruction that is being stepped over. Invalid if
1212 ASPACE is NULL. */
1213
1214 struct step_over_info
1215 {
1216 /* The instruction's address space. */
1217 struct address_space *aspace;
1218
1219 /* The instruction's address. */
1220 CORE_ADDR address;
1221 };
1222
1223 /* The step-over info of the location that is being stepped over.
1224
1225 Note that with async/breakpoint always-inserted mode, a user might
1226 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1227 being stepped over. As setting a new breakpoint inserts all
1228 breakpoints, we need to make sure the breakpoint being stepped over
1229 isn't inserted then. We do that by only clearing the step-over
1230 info when the step-over is actually finished (or aborted).
1231
1232 Presently GDB can only step over one breakpoint at any given time.
1233 Given threads that can't run code in the same address space as the
1234 breakpoint's can't really miss the breakpoint, GDB could be taught
1235 to step-over at most one breakpoint per address space (so this info
1236 could move to the address space object if/when GDB is extended).
1237 The set of breakpoints being stepped over will normally be much
1238 smaller than the set of all breakpoints, so a flag in the
1239 breakpoint location structure would be wasteful. A separate list
1240 also saves complexity and run-time, as otherwise we'd have to go
1241 through all breakpoint locations clearing their flag whenever we
1242 start a new sequence. Similar considerations weigh against storing
1243 this info in the thread object. Plus, not all step overs actually
1244 have breakpoint locations -- e.g., stepping past a single-step
1245 breakpoint, or stepping to complete a non-continuable
1246 watchpoint. */
1247 static struct step_over_info step_over_info;
1248
1249 /* Record the address of the breakpoint/instruction we're currently
1250 stepping over. */
1251
1252 static void
1253 set_step_over_info (struct address_space *aspace, CORE_ADDR address)
1254 {
1255 step_over_info.aspace = aspace;
1256 step_over_info.address = address;
1257 }
1258
1259 /* Called when we're not longer stepping over a breakpoint / an
1260 instruction, so all breakpoints are free to be (re)inserted. */
1261
1262 static void
1263 clear_step_over_info (void)
1264 {
1265 step_over_info.aspace = NULL;
1266 step_over_info.address = 0;
1267 }
1268
1269 /* See infrun.h. */
1270
1271 int
1272 stepping_past_instruction_at (struct address_space *aspace,
1273 CORE_ADDR address)
1274 {
1275 return (step_over_info.aspace != NULL
1276 && breakpoint_address_match (aspace, address,
1277 step_over_info.aspace,
1278 step_over_info.address));
1279 }
1280
1281 \f
1282 /* Displaced stepping. */
1283
1284 /* In non-stop debugging mode, we must take special care to manage
1285 breakpoints properly; in particular, the traditional strategy for
1286 stepping a thread past a breakpoint it has hit is unsuitable.
1287 'Displaced stepping' is a tactic for stepping one thread past a
1288 breakpoint it has hit while ensuring that other threads running
1289 concurrently will hit the breakpoint as they should.
1290
1291 The traditional way to step a thread T off a breakpoint in a
1292 multi-threaded program in all-stop mode is as follows:
1293
1294 a0) Initially, all threads are stopped, and breakpoints are not
1295 inserted.
1296 a1) We single-step T, leaving breakpoints uninserted.
1297 a2) We insert breakpoints, and resume all threads.
1298
1299 In non-stop debugging, however, this strategy is unsuitable: we
1300 don't want to have to stop all threads in the system in order to
1301 continue or step T past a breakpoint. Instead, we use displaced
1302 stepping:
1303
1304 n0) Initially, T is stopped, other threads are running, and
1305 breakpoints are inserted.
1306 n1) We copy the instruction "under" the breakpoint to a separate
1307 location, outside the main code stream, making any adjustments
1308 to the instruction, register, and memory state as directed by
1309 T's architecture.
1310 n2) We single-step T over the instruction at its new location.
1311 n3) We adjust the resulting register and memory state as directed
1312 by T's architecture. This includes resetting T's PC to point
1313 back into the main instruction stream.
1314 n4) We resume T.
1315
1316 This approach depends on the following gdbarch methods:
1317
1318 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1319 indicate where to copy the instruction, and how much space must
1320 be reserved there. We use these in step n1.
1321
1322 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1323 address, and makes any necessary adjustments to the instruction,
1324 register contents, and memory. We use this in step n1.
1325
1326 - gdbarch_displaced_step_fixup adjusts registers and memory after
1327 we have successfuly single-stepped the instruction, to yield the
1328 same effect the instruction would have had if we had executed it
1329 at its original address. We use this in step n3.
1330
1331 - gdbarch_displaced_step_free_closure provides cleanup.
1332
1333 The gdbarch_displaced_step_copy_insn and
1334 gdbarch_displaced_step_fixup functions must be written so that
1335 copying an instruction with gdbarch_displaced_step_copy_insn,
1336 single-stepping across the copied instruction, and then applying
1337 gdbarch_displaced_insn_fixup should have the same effects on the
1338 thread's memory and registers as stepping the instruction in place
1339 would have. Exactly which responsibilities fall to the copy and
1340 which fall to the fixup is up to the author of those functions.
1341
1342 See the comments in gdbarch.sh for details.
1343
1344 Note that displaced stepping and software single-step cannot
1345 currently be used in combination, although with some care I think
1346 they could be made to. Software single-step works by placing
1347 breakpoints on all possible subsequent instructions; if the
1348 displaced instruction is a PC-relative jump, those breakpoints
1349 could fall in very strange places --- on pages that aren't
1350 executable, or at addresses that are not proper instruction
1351 boundaries. (We do generally let other threads run while we wait
1352 to hit the software single-step breakpoint, and they might
1353 encounter such a corrupted instruction.) One way to work around
1354 this would be to have gdbarch_displaced_step_copy_insn fully
1355 simulate the effect of PC-relative instructions (and return NULL)
1356 on architectures that use software single-stepping.
1357
1358 In non-stop mode, we can have independent and simultaneous step
1359 requests, so more than one thread may need to simultaneously step
1360 over a breakpoint. The current implementation assumes there is
1361 only one scratch space per process. In this case, we have to
1362 serialize access to the scratch space. If thread A wants to step
1363 over a breakpoint, but we are currently waiting for some other
1364 thread to complete a displaced step, we leave thread A stopped and
1365 place it in the displaced_step_request_queue. Whenever a displaced
1366 step finishes, we pick the next thread in the queue and start a new
1367 displaced step operation on it. See displaced_step_prepare and
1368 displaced_step_fixup for details. */
1369
1370 struct displaced_step_request
1371 {
1372 ptid_t ptid;
1373 struct displaced_step_request *next;
1374 };
1375
1376 /* Per-inferior displaced stepping state. */
1377 struct displaced_step_inferior_state
1378 {
1379 /* Pointer to next in linked list. */
1380 struct displaced_step_inferior_state *next;
1381
1382 /* The process this displaced step state refers to. */
1383 int pid;
1384
1385 /* A queue of pending displaced stepping requests. One entry per
1386 thread that needs to do a displaced step. */
1387 struct displaced_step_request *step_request_queue;
1388
1389 /* If this is not null_ptid, this is the thread carrying out a
1390 displaced single-step in process PID. This thread's state will
1391 require fixing up once it has completed its step. */
1392 ptid_t step_ptid;
1393
1394 /* The architecture the thread had when we stepped it. */
1395 struct gdbarch *step_gdbarch;
1396
1397 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1398 for post-step cleanup. */
1399 struct displaced_step_closure *step_closure;
1400
1401 /* The address of the original instruction, and the copy we
1402 made. */
1403 CORE_ADDR step_original, step_copy;
1404
1405 /* Saved contents of copy area. */
1406 gdb_byte *step_saved_copy;
1407 };
1408
1409 /* The list of states of processes involved in displaced stepping
1410 presently. */
1411 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1412
1413 /* Get the displaced stepping state of process PID. */
1414
1415 static struct displaced_step_inferior_state *
1416 get_displaced_stepping_state (int pid)
1417 {
1418 struct displaced_step_inferior_state *state;
1419
1420 for (state = displaced_step_inferior_states;
1421 state != NULL;
1422 state = state->next)
1423 if (state->pid == pid)
1424 return state;
1425
1426 return NULL;
1427 }
1428
1429 /* Add a new displaced stepping state for process PID to the displaced
1430 stepping state list, or return a pointer to an already existing
1431 entry, if it already exists. Never returns NULL. */
1432
1433 static struct displaced_step_inferior_state *
1434 add_displaced_stepping_state (int pid)
1435 {
1436 struct displaced_step_inferior_state *state;
1437
1438 for (state = displaced_step_inferior_states;
1439 state != NULL;
1440 state = state->next)
1441 if (state->pid == pid)
1442 return state;
1443
1444 state = xcalloc (1, sizeof (*state));
1445 state->pid = pid;
1446 state->next = displaced_step_inferior_states;
1447 displaced_step_inferior_states = state;
1448
1449 return state;
1450 }
1451
1452 /* If inferior is in displaced stepping, and ADDR equals to starting address
1453 of copy area, return corresponding displaced_step_closure. Otherwise,
1454 return NULL. */
1455
1456 struct displaced_step_closure*
1457 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1458 {
1459 struct displaced_step_inferior_state *displaced
1460 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1461
1462 /* If checking the mode of displaced instruction in copy area. */
1463 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1464 && (displaced->step_copy == addr))
1465 return displaced->step_closure;
1466
1467 return NULL;
1468 }
1469
1470 /* Remove the displaced stepping state of process PID. */
1471
1472 static void
1473 remove_displaced_stepping_state (int pid)
1474 {
1475 struct displaced_step_inferior_state *it, **prev_next_p;
1476
1477 gdb_assert (pid != 0);
1478
1479 it = displaced_step_inferior_states;
1480 prev_next_p = &displaced_step_inferior_states;
1481 while (it)
1482 {
1483 if (it->pid == pid)
1484 {
1485 *prev_next_p = it->next;
1486 xfree (it);
1487 return;
1488 }
1489
1490 prev_next_p = &it->next;
1491 it = *prev_next_p;
1492 }
1493 }
1494
1495 static void
1496 infrun_inferior_exit (struct inferior *inf)
1497 {
1498 remove_displaced_stepping_state (inf->pid);
1499 }
1500
1501 /* If ON, and the architecture supports it, GDB will use displaced
1502 stepping to step over breakpoints. If OFF, or if the architecture
1503 doesn't support it, GDB will instead use the traditional
1504 hold-and-step approach. If AUTO (which is the default), GDB will
1505 decide which technique to use to step over breakpoints depending on
1506 which of all-stop or non-stop mode is active --- displaced stepping
1507 in non-stop mode; hold-and-step in all-stop mode. */
1508
1509 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1510
1511 static void
1512 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1513 struct cmd_list_element *c,
1514 const char *value)
1515 {
1516 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1517 fprintf_filtered (file,
1518 _("Debugger's willingness to use displaced stepping "
1519 "to step over breakpoints is %s (currently %s).\n"),
1520 value, non_stop ? "on" : "off");
1521 else
1522 fprintf_filtered (file,
1523 _("Debugger's willingness to use displaced stepping "
1524 "to step over breakpoints is %s.\n"), value);
1525 }
1526
1527 /* Return non-zero if displaced stepping can/should be used to step
1528 over breakpoints. */
1529
1530 static int
1531 use_displaced_stepping (struct gdbarch *gdbarch)
1532 {
1533 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1534 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1535 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1536 && find_record_target () == NULL);
1537 }
1538
1539 /* Clean out any stray displaced stepping state. */
1540 static void
1541 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1542 {
1543 /* Indicate that there is no cleanup pending. */
1544 displaced->step_ptid = null_ptid;
1545
1546 if (displaced->step_closure)
1547 {
1548 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1549 displaced->step_closure);
1550 displaced->step_closure = NULL;
1551 }
1552 }
1553
1554 static void
1555 displaced_step_clear_cleanup (void *arg)
1556 {
1557 struct displaced_step_inferior_state *state = arg;
1558
1559 displaced_step_clear (state);
1560 }
1561
1562 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1563 void
1564 displaced_step_dump_bytes (struct ui_file *file,
1565 const gdb_byte *buf,
1566 size_t len)
1567 {
1568 int i;
1569
1570 for (i = 0; i < len; i++)
1571 fprintf_unfiltered (file, "%02x ", buf[i]);
1572 fputs_unfiltered ("\n", file);
1573 }
1574
1575 /* Prepare to single-step, using displaced stepping.
1576
1577 Note that we cannot use displaced stepping when we have a signal to
1578 deliver. If we have a signal to deliver and an instruction to step
1579 over, then after the step, there will be no indication from the
1580 target whether the thread entered a signal handler or ignored the
1581 signal and stepped over the instruction successfully --- both cases
1582 result in a simple SIGTRAP. In the first case we mustn't do a
1583 fixup, and in the second case we must --- but we can't tell which.
1584 Comments in the code for 'random signals' in handle_inferior_event
1585 explain how we handle this case instead.
1586
1587 Returns 1 if preparing was successful -- this thread is going to be
1588 stepped now; or 0 if displaced stepping this thread got queued. */
1589 static int
1590 displaced_step_prepare (ptid_t ptid)
1591 {
1592 struct cleanup *old_cleanups, *ignore_cleanups;
1593 struct thread_info *tp = find_thread_ptid (ptid);
1594 struct regcache *regcache = get_thread_regcache (ptid);
1595 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1596 CORE_ADDR original, copy;
1597 ULONGEST len;
1598 struct displaced_step_closure *closure;
1599 struct displaced_step_inferior_state *displaced;
1600 int status;
1601
1602 /* We should never reach this function if the architecture does not
1603 support displaced stepping. */
1604 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1605
1606 /* Disable range stepping while executing in the scratch pad. We
1607 want a single-step even if executing the displaced instruction in
1608 the scratch buffer lands within the stepping range (e.g., a
1609 jump/branch). */
1610 tp->control.may_range_step = 0;
1611
1612 /* We have to displaced step one thread at a time, as we only have
1613 access to a single scratch space per inferior. */
1614
1615 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1616
1617 if (!ptid_equal (displaced->step_ptid, null_ptid))
1618 {
1619 /* Already waiting for a displaced step to finish. Defer this
1620 request and place in queue. */
1621 struct displaced_step_request *req, *new_req;
1622
1623 if (debug_displaced)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "displaced: defering step of %s\n",
1626 target_pid_to_str (ptid));
1627
1628 new_req = xmalloc (sizeof (*new_req));
1629 new_req->ptid = ptid;
1630 new_req->next = NULL;
1631
1632 if (displaced->step_request_queue)
1633 {
1634 for (req = displaced->step_request_queue;
1635 req && req->next;
1636 req = req->next)
1637 ;
1638 req->next = new_req;
1639 }
1640 else
1641 displaced->step_request_queue = new_req;
1642
1643 return 0;
1644 }
1645 else
1646 {
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: stepping %s now\n",
1650 target_pid_to_str (ptid));
1651 }
1652
1653 displaced_step_clear (displaced);
1654
1655 old_cleanups = save_inferior_ptid ();
1656 inferior_ptid = ptid;
1657
1658 original = regcache_read_pc (regcache);
1659
1660 copy = gdbarch_displaced_step_location (gdbarch);
1661 len = gdbarch_max_insn_length (gdbarch);
1662
1663 /* Save the original contents of the copy area. */
1664 displaced->step_saved_copy = xmalloc (len);
1665 ignore_cleanups = make_cleanup (free_current_contents,
1666 &displaced->step_saved_copy);
1667 status = target_read_memory (copy, displaced->step_saved_copy, len);
1668 if (status != 0)
1669 throw_error (MEMORY_ERROR,
1670 _("Error accessing memory address %s (%s) for "
1671 "displaced-stepping scratch space."),
1672 paddress (gdbarch, copy), safe_strerror (status));
1673 if (debug_displaced)
1674 {
1675 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1676 paddress (gdbarch, copy));
1677 displaced_step_dump_bytes (gdb_stdlog,
1678 displaced->step_saved_copy,
1679 len);
1680 };
1681
1682 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1683 original, copy, regcache);
1684
1685 /* We don't support the fully-simulated case at present. */
1686 gdb_assert (closure);
1687
1688 /* Save the information we need to fix things up if the step
1689 succeeds. */
1690 displaced->step_ptid = ptid;
1691 displaced->step_gdbarch = gdbarch;
1692 displaced->step_closure = closure;
1693 displaced->step_original = original;
1694 displaced->step_copy = copy;
1695
1696 make_cleanup (displaced_step_clear_cleanup, displaced);
1697
1698 /* Resume execution at the copy. */
1699 regcache_write_pc (regcache, copy);
1700
1701 discard_cleanups (ignore_cleanups);
1702
1703 do_cleanups (old_cleanups);
1704
1705 if (debug_displaced)
1706 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1707 paddress (gdbarch, copy));
1708
1709 return 1;
1710 }
1711
1712 static void
1713 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1714 const gdb_byte *myaddr, int len)
1715 {
1716 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1717
1718 inferior_ptid = ptid;
1719 write_memory (memaddr, myaddr, len);
1720 do_cleanups (ptid_cleanup);
1721 }
1722
1723 /* Restore the contents of the copy area for thread PTID. */
1724
1725 static void
1726 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1727 ptid_t ptid)
1728 {
1729 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1730
1731 write_memory_ptid (ptid, displaced->step_copy,
1732 displaced->step_saved_copy, len);
1733 if (debug_displaced)
1734 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1735 target_pid_to_str (ptid),
1736 paddress (displaced->step_gdbarch,
1737 displaced->step_copy));
1738 }
1739
1740 static void
1741 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1742 {
1743 struct cleanup *old_cleanups;
1744 struct displaced_step_inferior_state *displaced
1745 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1746
1747 /* Was any thread of this process doing a displaced step? */
1748 if (displaced == NULL)
1749 return;
1750
1751 /* Was this event for the pid we displaced? */
1752 if (ptid_equal (displaced->step_ptid, null_ptid)
1753 || ! ptid_equal (displaced->step_ptid, event_ptid))
1754 return;
1755
1756 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1757
1758 displaced_step_restore (displaced, displaced->step_ptid);
1759
1760 /* Did the instruction complete successfully? */
1761 if (signal == GDB_SIGNAL_TRAP)
1762 {
1763 /* Fix up the resulting state. */
1764 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1765 displaced->step_closure,
1766 displaced->step_original,
1767 displaced->step_copy,
1768 get_thread_regcache (displaced->step_ptid));
1769 }
1770 else
1771 {
1772 /* Since the instruction didn't complete, all we can do is
1773 relocate the PC. */
1774 struct regcache *regcache = get_thread_regcache (event_ptid);
1775 CORE_ADDR pc = regcache_read_pc (regcache);
1776
1777 pc = displaced->step_original + (pc - displaced->step_copy);
1778 regcache_write_pc (regcache, pc);
1779 }
1780
1781 do_cleanups (old_cleanups);
1782
1783 displaced->step_ptid = null_ptid;
1784
1785 /* Are there any pending displaced stepping requests? If so, run
1786 one now. Leave the state object around, since we're likely to
1787 need it again soon. */
1788 while (displaced->step_request_queue)
1789 {
1790 struct displaced_step_request *head;
1791 ptid_t ptid;
1792 struct regcache *regcache;
1793 struct gdbarch *gdbarch;
1794 CORE_ADDR actual_pc;
1795 struct address_space *aspace;
1796
1797 head = displaced->step_request_queue;
1798 ptid = head->ptid;
1799 displaced->step_request_queue = head->next;
1800 xfree (head);
1801
1802 context_switch (ptid);
1803
1804 regcache = get_thread_regcache (ptid);
1805 actual_pc = regcache_read_pc (regcache);
1806 aspace = get_regcache_aspace (regcache);
1807
1808 if (breakpoint_here_p (aspace, actual_pc))
1809 {
1810 if (debug_displaced)
1811 fprintf_unfiltered (gdb_stdlog,
1812 "displaced: stepping queued %s now\n",
1813 target_pid_to_str (ptid));
1814
1815 displaced_step_prepare (ptid);
1816
1817 gdbarch = get_regcache_arch (regcache);
1818
1819 if (debug_displaced)
1820 {
1821 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1822 gdb_byte buf[4];
1823
1824 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1825 paddress (gdbarch, actual_pc));
1826 read_memory (actual_pc, buf, sizeof (buf));
1827 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1828 }
1829
1830 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1831 displaced->step_closure))
1832 target_resume (ptid, 1, GDB_SIGNAL_0);
1833 else
1834 target_resume (ptid, 0, GDB_SIGNAL_0);
1835
1836 /* Done, we're stepping a thread. */
1837 break;
1838 }
1839 else
1840 {
1841 int step;
1842 struct thread_info *tp = inferior_thread ();
1843
1844 /* The breakpoint we were sitting under has since been
1845 removed. */
1846 tp->control.trap_expected = 0;
1847
1848 /* Go back to what we were trying to do. */
1849 step = currently_stepping (tp);
1850
1851 if (debug_displaced)
1852 fprintf_unfiltered (gdb_stdlog,
1853 "displaced: breakpoint is gone: %s, step(%d)\n",
1854 target_pid_to_str (tp->ptid), step);
1855
1856 target_resume (ptid, step, GDB_SIGNAL_0);
1857 tp->suspend.stop_signal = GDB_SIGNAL_0;
1858
1859 /* This request was discarded. See if there's any other
1860 thread waiting for its turn. */
1861 }
1862 }
1863 }
1864
1865 /* Update global variables holding ptids to hold NEW_PTID if they were
1866 holding OLD_PTID. */
1867 static void
1868 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1869 {
1870 struct displaced_step_request *it;
1871 struct displaced_step_inferior_state *displaced;
1872
1873 if (ptid_equal (inferior_ptid, old_ptid))
1874 inferior_ptid = new_ptid;
1875
1876 if (ptid_equal (singlestep_ptid, old_ptid))
1877 singlestep_ptid = new_ptid;
1878
1879 for (displaced = displaced_step_inferior_states;
1880 displaced;
1881 displaced = displaced->next)
1882 {
1883 if (ptid_equal (displaced->step_ptid, old_ptid))
1884 displaced->step_ptid = new_ptid;
1885
1886 for (it = displaced->step_request_queue; it; it = it->next)
1887 if (ptid_equal (it->ptid, old_ptid))
1888 it->ptid = new_ptid;
1889 }
1890 }
1891
1892 \f
1893 /* Resuming. */
1894
1895 /* Things to clean up if we QUIT out of resume (). */
1896 static void
1897 resume_cleanups (void *ignore)
1898 {
1899 normal_stop ();
1900 }
1901
1902 static const char schedlock_off[] = "off";
1903 static const char schedlock_on[] = "on";
1904 static const char schedlock_step[] = "step";
1905 static const char *const scheduler_enums[] = {
1906 schedlock_off,
1907 schedlock_on,
1908 schedlock_step,
1909 NULL
1910 };
1911 static const char *scheduler_mode = schedlock_off;
1912 static void
1913 show_scheduler_mode (struct ui_file *file, int from_tty,
1914 struct cmd_list_element *c, const char *value)
1915 {
1916 fprintf_filtered (file,
1917 _("Mode for locking scheduler "
1918 "during execution is \"%s\".\n"),
1919 value);
1920 }
1921
1922 static void
1923 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1924 {
1925 if (!target_can_lock_scheduler)
1926 {
1927 scheduler_mode = schedlock_off;
1928 error (_("Target '%s' cannot support this command."), target_shortname);
1929 }
1930 }
1931
1932 /* True if execution commands resume all threads of all processes by
1933 default; otherwise, resume only threads of the current inferior
1934 process. */
1935 int sched_multi = 0;
1936
1937 /* Try to setup for software single stepping over the specified location.
1938 Return 1 if target_resume() should use hardware single step.
1939
1940 GDBARCH the current gdbarch.
1941 PC the location to step over. */
1942
1943 static int
1944 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1945 {
1946 int hw_step = 1;
1947
1948 if (execution_direction == EXEC_FORWARD
1949 && gdbarch_software_single_step_p (gdbarch)
1950 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1951 {
1952 hw_step = 0;
1953 /* Do not pull these breakpoints until after a `wait' in
1954 `wait_for_inferior'. */
1955 singlestep_breakpoints_inserted_p = 1;
1956 singlestep_ptid = inferior_ptid;
1957 singlestep_pc = pc;
1958 }
1959 return hw_step;
1960 }
1961
1962 ptid_t
1963 user_visible_resume_ptid (int step)
1964 {
1965 /* By default, resume all threads of all processes. */
1966 ptid_t resume_ptid = RESUME_ALL;
1967
1968 /* Maybe resume only all threads of the current process. */
1969 if (!sched_multi && target_supports_multi_process ())
1970 {
1971 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1972 }
1973
1974 /* Maybe resume a single thread after all. */
1975 if (non_stop)
1976 {
1977 /* With non-stop mode on, threads are always handled
1978 individually. */
1979 resume_ptid = inferior_ptid;
1980 }
1981 else if ((scheduler_mode == schedlock_on)
1982 || (scheduler_mode == schedlock_step && step))
1983 {
1984 /* User-settable 'scheduler' mode requires solo thread resume. */
1985 resume_ptid = inferior_ptid;
1986 }
1987
1988 /* We may actually resume fewer threads at first, e.g., if a thread
1989 is stopped at a breakpoint that needs stepping-off, but that
1990 should not be visible to the user/frontend, and neither should
1991 the frontend/user be allowed to proceed any of the threads that
1992 happen to be stopped for internal run control handling, if a
1993 previous command wanted them resumed. */
1994 return resume_ptid;
1995 }
1996
1997 /* Resume the inferior, but allow a QUIT. This is useful if the user
1998 wants to interrupt some lengthy single-stepping operation
1999 (for child processes, the SIGINT goes to the inferior, and so
2000 we get a SIGINT random_signal, but for remote debugging and perhaps
2001 other targets, that's not true).
2002
2003 STEP nonzero if we should step (zero to continue instead).
2004 SIG is the signal to give the inferior (zero for none). */
2005 void
2006 resume (int step, enum gdb_signal sig)
2007 {
2008 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2009 struct regcache *regcache = get_current_regcache ();
2010 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2011 struct thread_info *tp = inferior_thread ();
2012 CORE_ADDR pc = regcache_read_pc (regcache);
2013 struct address_space *aspace = get_regcache_aspace (regcache);
2014 ptid_t resume_ptid;
2015 /* From here on, this represents the caller's step vs continue
2016 request, while STEP represents what we'll actually request the
2017 target to do. STEP can decay from a step to a continue, if e.g.,
2018 we need to implement single-stepping with breakpoints (software
2019 single-step). When deciding whether "set scheduler-locking step"
2020 applies, it's the callers intention that counts. */
2021 const int entry_step = step;
2022
2023 QUIT;
2024
2025 if (current_inferior ()->waiting_for_vfork_done)
2026 {
2027 /* Don't try to single-step a vfork parent that is waiting for
2028 the child to get out of the shared memory region (by exec'ing
2029 or exiting). This is particularly important on software
2030 single-step archs, as the child process would trip on the
2031 software single step breakpoint inserted for the parent
2032 process. Since the parent will not actually execute any
2033 instruction until the child is out of the shared region (such
2034 are vfork's semantics), it is safe to simply continue it.
2035 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2036 the parent, and tell it to `keep_going', which automatically
2037 re-sets it stepping. */
2038 if (debug_infrun)
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: resume : clear step\n");
2041 step = 0;
2042 }
2043
2044 if (debug_infrun)
2045 fprintf_unfiltered (gdb_stdlog,
2046 "infrun: resume (step=%d, signal=%s), "
2047 "trap_expected=%d, current thread [%s] at %s\n",
2048 step, gdb_signal_to_symbol_string (sig),
2049 tp->control.trap_expected,
2050 target_pid_to_str (inferior_ptid),
2051 paddress (gdbarch, pc));
2052
2053 /* Normally, by the time we reach `resume', the breakpoints are either
2054 removed or inserted, as appropriate. The exception is if we're sitting
2055 at a permanent breakpoint; we need to step over it, but permanent
2056 breakpoints can't be removed. So we have to test for it here. */
2057 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2058 {
2059 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2060 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2061 else
2062 error (_("\
2063 The program is stopped at a permanent breakpoint, but GDB does not know\n\
2064 how to step past a permanent breakpoint on this architecture. Try using\n\
2065 a command like `return' or `jump' to continue execution."));
2066 }
2067
2068 /* If we have a breakpoint to step over, make sure to do a single
2069 step only. Same if we have software watchpoints. */
2070 if (tp->control.trap_expected || bpstat_should_step ())
2071 tp->control.may_range_step = 0;
2072
2073 /* If enabled, step over breakpoints by executing a copy of the
2074 instruction at a different address.
2075
2076 We can't use displaced stepping when we have a signal to deliver;
2077 the comments for displaced_step_prepare explain why. The
2078 comments in the handle_inferior event for dealing with 'random
2079 signals' explain what we do instead.
2080
2081 We can't use displaced stepping when we are waiting for vfork_done
2082 event, displaced stepping breaks the vfork child similarly as single
2083 step software breakpoint. */
2084 if (use_displaced_stepping (gdbarch)
2085 && (tp->control.trap_expected
2086 || (step && gdbarch_software_single_step_p (gdbarch)))
2087 && sig == GDB_SIGNAL_0
2088 && !current_inferior ()->waiting_for_vfork_done)
2089 {
2090 struct displaced_step_inferior_state *displaced;
2091
2092 if (!displaced_step_prepare (inferior_ptid))
2093 {
2094 /* Got placed in displaced stepping queue. Will be resumed
2095 later when all the currently queued displaced stepping
2096 requests finish. The thread is not executing at this
2097 point, and the call to set_executing will be made later.
2098 But we need to call set_running here, since from the
2099 user/frontend's point of view, threads were set running.
2100 Unless we're calling an inferior function, as in that
2101 case we pretend the inferior doesn't run at all. */
2102 if (!tp->control.in_infcall)
2103 set_running (user_visible_resume_ptid (entry_step), 1);
2104 discard_cleanups (old_cleanups);
2105 return;
2106 }
2107
2108 /* Update pc to reflect the new address from which we will execute
2109 instructions due to displaced stepping. */
2110 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2111
2112 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2113 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2114 displaced->step_closure);
2115 }
2116
2117 /* Do we need to do it the hard way, w/temp breakpoints? */
2118 else if (step)
2119 step = maybe_software_singlestep (gdbarch, pc);
2120
2121 /* Currently, our software single-step implementation leads to different
2122 results than hardware single-stepping in one situation: when stepping
2123 into delivering a signal which has an associated signal handler,
2124 hardware single-step will stop at the first instruction of the handler,
2125 while software single-step will simply skip execution of the handler.
2126
2127 For now, this difference in behavior is accepted since there is no
2128 easy way to actually implement single-stepping into a signal handler
2129 without kernel support.
2130
2131 However, there is one scenario where this difference leads to follow-on
2132 problems: if we're stepping off a breakpoint by removing all breakpoints
2133 and then single-stepping. In this case, the software single-step
2134 behavior means that even if there is a *breakpoint* in the signal
2135 handler, GDB still would not stop.
2136
2137 Fortunately, we can at least fix this particular issue. We detect
2138 here the case where we are about to deliver a signal while software
2139 single-stepping with breakpoints removed. In this situation, we
2140 revert the decisions to remove all breakpoints and insert single-
2141 step breakpoints, and instead we install a step-resume breakpoint
2142 at the current address, deliver the signal without stepping, and
2143 once we arrive back at the step-resume breakpoint, actually step
2144 over the breakpoint we originally wanted to step over. */
2145 if (singlestep_breakpoints_inserted_p
2146 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
2147 {
2148 /* If we have nested signals or a pending signal is delivered
2149 immediately after a handler returns, might might already have
2150 a step-resume breakpoint set on the earlier handler. We cannot
2151 set another step-resume breakpoint; just continue on until the
2152 original breakpoint is hit. */
2153 if (tp->control.step_resume_breakpoint == NULL)
2154 {
2155 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2156 tp->step_after_step_resume_breakpoint = 1;
2157 }
2158
2159 remove_single_step_breakpoints ();
2160 singlestep_breakpoints_inserted_p = 0;
2161
2162 clear_step_over_info ();
2163 tp->control.trap_expected = 0;
2164
2165 insert_breakpoints ();
2166 }
2167
2168 /* If STEP is set, it's a request to use hardware stepping
2169 facilities. But in that case, we should never
2170 use singlestep breakpoint. */
2171 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
2172
2173 /* Decide the set of threads to ask the target to resume. Start
2174 by assuming everything will be resumed, than narrow the set
2175 by applying increasingly restricting conditions. */
2176 resume_ptid = user_visible_resume_ptid (entry_step);
2177
2178 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2179 (e.g., we might need to step over a breakpoint), from the
2180 user/frontend's point of view, all threads in RESUME_PTID are now
2181 running. Unless we're calling an inferior function, as in that
2182 case pretend we inferior doesn't run at all. */
2183 if (!tp->control.in_infcall)
2184 set_running (resume_ptid, 1);
2185
2186 /* Maybe resume a single thread after all. */
2187 if ((step || singlestep_breakpoints_inserted_p)
2188 && tp->control.trap_expected)
2189 {
2190 /* We're allowing a thread to run past a breakpoint it has
2191 hit, by single-stepping the thread with the breakpoint
2192 removed. In which case, we need to single-step only this
2193 thread, and keep others stopped, as they can miss this
2194 breakpoint if allowed to run. */
2195 resume_ptid = inferior_ptid;
2196 }
2197
2198 if (gdbarch_cannot_step_breakpoint (gdbarch))
2199 {
2200 /* Most targets can step a breakpoint instruction, thus
2201 executing it normally. But if this one cannot, just
2202 continue and we will hit it anyway. */
2203 if (step && breakpoint_inserted_here_p (aspace, pc))
2204 step = 0;
2205 }
2206
2207 if (debug_displaced
2208 && use_displaced_stepping (gdbarch)
2209 && tp->control.trap_expected)
2210 {
2211 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2212 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2213 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2214 gdb_byte buf[4];
2215
2216 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2217 paddress (resume_gdbarch, actual_pc));
2218 read_memory (actual_pc, buf, sizeof (buf));
2219 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2220 }
2221
2222 if (tp->control.may_range_step)
2223 {
2224 /* If we're resuming a thread with the PC out of the step
2225 range, then we're doing some nested/finer run control
2226 operation, like stepping the thread out of the dynamic
2227 linker or the displaced stepping scratch pad. We
2228 shouldn't have allowed a range step then. */
2229 gdb_assert (pc_in_thread_step_range (pc, tp));
2230 }
2231
2232 /* Install inferior's terminal modes. */
2233 target_terminal_inferior ();
2234
2235 /* Avoid confusing the next resume, if the next stop/resume
2236 happens to apply to another thread. */
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
2239 /* Advise target which signals may be handled silently. If we have
2240 removed breakpoints because we are stepping over one (which can
2241 happen only if we are not using displaced stepping), we need to
2242 receive all signals to avoid accidentally skipping a breakpoint
2243 during execution of a signal handler. */
2244 if ((step || singlestep_breakpoints_inserted_p)
2245 && tp->control.trap_expected
2246 && !use_displaced_stepping (gdbarch))
2247 target_pass_signals (0, NULL);
2248 else
2249 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2250
2251 target_resume (resume_ptid, step, sig);
2252
2253 discard_cleanups (old_cleanups);
2254 }
2255 \f
2256 /* Proceeding. */
2257
2258 /* Clear out all variables saying what to do when inferior is continued.
2259 First do this, then set the ones you want, then call `proceed'. */
2260
2261 static void
2262 clear_proceed_status_thread (struct thread_info *tp)
2263 {
2264 if (debug_infrun)
2265 fprintf_unfiltered (gdb_stdlog,
2266 "infrun: clear_proceed_status_thread (%s)\n",
2267 target_pid_to_str (tp->ptid));
2268
2269 /* If this signal should not be seen by program, give it zero.
2270 Used for debugging signals. */
2271 if (!signal_pass_state (tp->suspend.stop_signal))
2272 tp->suspend.stop_signal = GDB_SIGNAL_0;
2273
2274 tp->control.trap_expected = 0;
2275 tp->control.step_range_start = 0;
2276 tp->control.step_range_end = 0;
2277 tp->control.may_range_step = 0;
2278 tp->control.step_frame_id = null_frame_id;
2279 tp->control.step_stack_frame_id = null_frame_id;
2280 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2281 tp->stop_requested = 0;
2282
2283 tp->control.stop_step = 0;
2284
2285 tp->control.proceed_to_finish = 0;
2286
2287 tp->control.command_interp = NULL;
2288
2289 /* Discard any remaining commands or status from previous stop. */
2290 bpstat_clear (&tp->control.stop_bpstat);
2291 }
2292
2293 void
2294 clear_proceed_status (int step)
2295 {
2296 if (!non_stop)
2297 {
2298 struct thread_info *tp;
2299 ptid_t resume_ptid;
2300
2301 resume_ptid = user_visible_resume_ptid (step);
2302
2303 /* In all-stop mode, delete the per-thread status of all threads
2304 we're about to resume, implicitly and explicitly. */
2305 ALL_NON_EXITED_THREADS (tp)
2306 {
2307 if (!ptid_match (tp->ptid, resume_ptid))
2308 continue;
2309 clear_proceed_status_thread (tp);
2310 }
2311 }
2312
2313 if (!ptid_equal (inferior_ptid, null_ptid))
2314 {
2315 struct inferior *inferior;
2316
2317 if (non_stop)
2318 {
2319 /* If in non-stop mode, only delete the per-thread status of
2320 the current thread. */
2321 clear_proceed_status_thread (inferior_thread ());
2322 }
2323
2324 inferior = current_inferior ();
2325 inferior->control.stop_soon = NO_STOP_QUIETLY;
2326 }
2327
2328 stop_after_trap = 0;
2329
2330 clear_step_over_info ();
2331
2332 observer_notify_about_to_proceed ();
2333
2334 if (stop_registers)
2335 {
2336 regcache_xfree (stop_registers);
2337 stop_registers = NULL;
2338 }
2339 }
2340
2341 /* Returns true if TP is still stopped at a breakpoint that needs
2342 stepping-over in order to make progress. If the breakpoint is gone
2343 meanwhile, we can skip the whole step-over dance. */
2344
2345 static int
2346 thread_still_needs_step_over (struct thread_info *tp)
2347 {
2348 if (tp->stepping_over_breakpoint)
2349 {
2350 struct regcache *regcache = get_thread_regcache (tp->ptid);
2351
2352 if (breakpoint_here_p (get_regcache_aspace (regcache),
2353 regcache_read_pc (regcache)))
2354 return 1;
2355
2356 tp->stepping_over_breakpoint = 0;
2357 }
2358
2359 return 0;
2360 }
2361
2362 /* Returns true if scheduler locking applies. STEP indicates whether
2363 we're about to do a step/next-like command to a thread. */
2364
2365 static int
2366 schedlock_applies (int step)
2367 {
2368 return (scheduler_mode == schedlock_on
2369 || (scheduler_mode == schedlock_step
2370 && step));
2371 }
2372
2373 /* Look a thread other than EXCEPT that has previously reported a
2374 breakpoint event, and thus needs a step-over in order to make
2375 progress. Returns NULL is none is found. STEP indicates whether
2376 we're about to step the current thread, in order to decide whether
2377 "set scheduler-locking step" applies. */
2378
2379 static struct thread_info *
2380 find_thread_needs_step_over (int step, struct thread_info *except)
2381 {
2382 struct thread_info *tp, *current;
2383
2384 /* With non-stop mode on, threads are always handled individually. */
2385 gdb_assert (! non_stop);
2386
2387 current = inferior_thread ();
2388
2389 /* If scheduler locking applies, we can avoid iterating over all
2390 threads. */
2391 if (schedlock_applies (step))
2392 {
2393 if (except != current
2394 && thread_still_needs_step_over (current))
2395 return current;
2396
2397 return NULL;
2398 }
2399
2400 ALL_NON_EXITED_THREADS (tp)
2401 {
2402 /* Ignore the EXCEPT thread. */
2403 if (tp == except)
2404 continue;
2405 /* Ignore threads of processes we're not resuming. */
2406 if (!sched_multi
2407 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2408 continue;
2409
2410 if (thread_still_needs_step_over (tp))
2411 return tp;
2412 }
2413
2414 return NULL;
2415 }
2416
2417 /* Basic routine for continuing the program in various fashions.
2418
2419 ADDR is the address to resume at, or -1 for resume where stopped.
2420 SIGGNAL is the signal to give it, or 0 for none,
2421 or -1 for act according to how it stopped.
2422 STEP is nonzero if should trap after one instruction.
2423 -1 means return after that and print nothing.
2424 You should probably set various step_... variables
2425 before calling here, if you are stepping.
2426
2427 You should call clear_proceed_status before calling proceed. */
2428
2429 void
2430 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2431 {
2432 struct regcache *regcache;
2433 struct gdbarch *gdbarch;
2434 struct thread_info *tp;
2435 CORE_ADDR pc;
2436 struct address_space *aspace;
2437
2438 /* If we're stopped at a fork/vfork, follow the branch set by the
2439 "set follow-fork-mode" command; otherwise, we'll just proceed
2440 resuming the current thread. */
2441 if (!follow_fork ())
2442 {
2443 /* The target for some reason decided not to resume. */
2444 normal_stop ();
2445 if (target_can_async_p ())
2446 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2447 return;
2448 }
2449
2450 /* We'll update this if & when we switch to a new thread. */
2451 previous_inferior_ptid = inferior_ptid;
2452
2453 regcache = get_current_regcache ();
2454 gdbarch = get_regcache_arch (regcache);
2455 aspace = get_regcache_aspace (regcache);
2456 pc = regcache_read_pc (regcache);
2457 tp = inferior_thread ();
2458
2459 if (step > 0)
2460 step_start_function = find_pc_function (pc);
2461 if (step < 0)
2462 stop_after_trap = 1;
2463
2464 /* Fill in with reasonable starting values. */
2465 init_thread_stepping_state (tp);
2466
2467 if (addr == (CORE_ADDR) -1)
2468 {
2469 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2470 && execution_direction != EXEC_REVERSE)
2471 /* There is a breakpoint at the address we will resume at,
2472 step one instruction before inserting breakpoints so that
2473 we do not stop right away (and report a second hit at this
2474 breakpoint).
2475
2476 Note, we don't do this in reverse, because we won't
2477 actually be executing the breakpoint insn anyway.
2478 We'll be (un-)executing the previous instruction. */
2479 tp->stepping_over_breakpoint = 1;
2480 else if (gdbarch_single_step_through_delay_p (gdbarch)
2481 && gdbarch_single_step_through_delay (gdbarch,
2482 get_current_frame ()))
2483 /* We stepped onto an instruction that needs to be stepped
2484 again before re-inserting the breakpoint, do so. */
2485 tp->stepping_over_breakpoint = 1;
2486 }
2487 else
2488 {
2489 regcache_write_pc (regcache, addr);
2490 }
2491
2492 if (siggnal != GDB_SIGNAL_DEFAULT)
2493 tp->suspend.stop_signal = siggnal;
2494
2495 /* Record the interpreter that issued the execution command that
2496 caused this thread to resume. If the top level interpreter is
2497 MI/async, and the execution command was a CLI command
2498 (next/step/etc.), we'll want to print stop event output to the MI
2499 console channel (the stepped-to line, etc.), as if the user
2500 entered the execution command on a real GDB console. */
2501 inferior_thread ()->control.command_interp = command_interp ();
2502
2503 if (debug_infrun)
2504 fprintf_unfiltered (gdb_stdlog,
2505 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2506 paddress (gdbarch, addr),
2507 gdb_signal_to_symbol_string (siggnal), step);
2508
2509 if (non_stop)
2510 /* In non-stop, each thread is handled individually. The context
2511 must already be set to the right thread here. */
2512 ;
2513 else
2514 {
2515 struct thread_info *step_over;
2516
2517 /* In a multi-threaded task we may select another thread and
2518 then continue or step.
2519
2520 But if the old thread was stopped at a breakpoint, it will
2521 immediately cause another breakpoint stop without any
2522 execution (i.e. it will report a breakpoint hit incorrectly).
2523 So we must step over it first.
2524
2525 Look for a thread other than the current (TP) that reported a
2526 breakpoint hit and hasn't been resumed yet since. */
2527 step_over = find_thread_needs_step_over (step, tp);
2528 if (step_over != NULL)
2529 {
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog,
2532 "infrun: need to step-over [%s] first\n",
2533 target_pid_to_str (step_over->ptid));
2534
2535 /* Store the prev_pc for the stepping thread too, needed by
2536 switch_back_to_stepping thread. */
2537 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2538 switch_to_thread (step_over->ptid);
2539 tp = step_over;
2540 }
2541 }
2542
2543 /* If we need to step over a breakpoint, and we're not using
2544 displaced stepping to do so, insert all breakpoints (watchpoints,
2545 etc.) but the one we're stepping over, step one instruction, and
2546 then re-insert the breakpoint when that step is finished. */
2547 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2548 {
2549 struct regcache *regcache = get_current_regcache ();
2550
2551 set_step_over_info (get_regcache_aspace (regcache),
2552 regcache_read_pc (regcache));
2553 }
2554 else
2555 clear_step_over_info ();
2556
2557 insert_breakpoints ();
2558
2559 tp->control.trap_expected = tp->stepping_over_breakpoint;
2560
2561 annotate_starting ();
2562
2563 /* Make sure that output from GDB appears before output from the
2564 inferior. */
2565 gdb_flush (gdb_stdout);
2566
2567 /* Refresh prev_pc value just prior to resuming. This used to be
2568 done in stop_waiting, however, setting prev_pc there did not handle
2569 scenarios such as inferior function calls or returning from
2570 a function via the return command. In those cases, the prev_pc
2571 value was not set properly for subsequent commands. The prev_pc value
2572 is used to initialize the starting line number in the ecs. With an
2573 invalid value, the gdb next command ends up stopping at the position
2574 represented by the next line table entry past our start position.
2575 On platforms that generate one line table entry per line, this
2576 is not a problem. However, on the ia64, the compiler generates
2577 extraneous line table entries that do not increase the line number.
2578 When we issue the gdb next command on the ia64 after an inferior call
2579 or a return command, we often end up a few instructions forward, still
2580 within the original line we started.
2581
2582 An attempt was made to refresh the prev_pc at the same time the
2583 execution_control_state is initialized (for instance, just before
2584 waiting for an inferior event). But this approach did not work
2585 because of platforms that use ptrace, where the pc register cannot
2586 be read unless the inferior is stopped. At that point, we are not
2587 guaranteed the inferior is stopped and so the regcache_read_pc() call
2588 can fail. Setting the prev_pc value here ensures the value is updated
2589 correctly when the inferior is stopped. */
2590 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2591
2592 /* Reset to normal state. */
2593 init_infwait_state ();
2594
2595 /* Resume inferior. */
2596 resume (tp->control.trap_expected || step || bpstat_should_step (),
2597 tp->suspend.stop_signal);
2598
2599 /* Wait for it to stop (if not standalone)
2600 and in any case decode why it stopped, and act accordingly. */
2601 /* Do this only if we are not using the event loop, or if the target
2602 does not support asynchronous execution. */
2603 if (!target_can_async_p ())
2604 {
2605 wait_for_inferior ();
2606 normal_stop ();
2607 }
2608 }
2609 \f
2610
2611 /* Start remote-debugging of a machine over a serial link. */
2612
2613 void
2614 start_remote (int from_tty)
2615 {
2616 struct inferior *inferior;
2617
2618 inferior = current_inferior ();
2619 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2620
2621 /* Always go on waiting for the target, regardless of the mode. */
2622 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2623 indicate to wait_for_inferior that a target should timeout if
2624 nothing is returned (instead of just blocking). Because of this,
2625 targets expecting an immediate response need to, internally, set
2626 things up so that the target_wait() is forced to eventually
2627 timeout. */
2628 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2629 differentiate to its caller what the state of the target is after
2630 the initial open has been performed. Here we're assuming that
2631 the target has stopped. It should be possible to eventually have
2632 target_open() return to the caller an indication that the target
2633 is currently running and GDB state should be set to the same as
2634 for an async run. */
2635 wait_for_inferior ();
2636
2637 /* Now that the inferior has stopped, do any bookkeeping like
2638 loading shared libraries. We want to do this before normal_stop,
2639 so that the displayed frame is up to date. */
2640 post_create_inferior (&current_target, from_tty);
2641
2642 normal_stop ();
2643 }
2644
2645 /* Initialize static vars when a new inferior begins. */
2646
2647 void
2648 init_wait_for_inferior (void)
2649 {
2650 /* These are meaningless until the first time through wait_for_inferior. */
2651
2652 breakpoint_init_inferior (inf_starting);
2653
2654 clear_proceed_status (0);
2655
2656 target_last_wait_ptid = minus_one_ptid;
2657
2658 previous_inferior_ptid = inferior_ptid;
2659 init_infwait_state ();
2660
2661 /* Discard any skipped inlined frames. */
2662 clear_inline_frame_state (minus_one_ptid);
2663
2664 singlestep_ptid = null_ptid;
2665 singlestep_pc = 0;
2666 }
2667
2668 \f
2669 /* This enum encodes possible reasons for doing a target_wait, so that
2670 wfi can call target_wait in one place. (Ultimately the call will be
2671 moved out of the infinite loop entirely.) */
2672
2673 enum infwait_states
2674 {
2675 infwait_normal_state,
2676 infwait_step_watch_state,
2677 infwait_nonstep_watch_state
2678 };
2679
2680 /* The PTID we'll do a target_wait on.*/
2681 ptid_t waiton_ptid;
2682
2683 /* Current inferior wait state. */
2684 static enum infwait_states infwait_state;
2685
2686 /* Data to be passed around while handling an event. This data is
2687 discarded between events. */
2688 struct execution_control_state
2689 {
2690 ptid_t ptid;
2691 /* The thread that got the event, if this was a thread event; NULL
2692 otherwise. */
2693 struct thread_info *event_thread;
2694
2695 struct target_waitstatus ws;
2696 int stop_func_filled_in;
2697 CORE_ADDR stop_func_start;
2698 CORE_ADDR stop_func_end;
2699 const char *stop_func_name;
2700 int wait_some_more;
2701
2702 /* We were in infwait_step_watch_state or
2703 infwait_nonstep_watch_state state, and the thread reported an
2704 event. */
2705 int stepped_after_stopped_by_watchpoint;
2706
2707 /* True if the event thread hit the single-step breakpoint of
2708 another thread. Thus the event doesn't cause a stop, the thread
2709 needs to be single-stepped past the single-step breakpoint before
2710 we can switch back to the original stepping thread. */
2711 int hit_singlestep_breakpoint;
2712 };
2713
2714 static void handle_inferior_event (struct execution_control_state *ecs);
2715
2716 static void handle_step_into_function (struct gdbarch *gdbarch,
2717 struct execution_control_state *ecs);
2718 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2719 struct execution_control_state *ecs);
2720 static void handle_signal_stop (struct execution_control_state *ecs);
2721 static void check_exception_resume (struct execution_control_state *,
2722 struct frame_info *);
2723
2724 static void end_stepping_range (struct execution_control_state *ecs);
2725 static void stop_waiting (struct execution_control_state *ecs);
2726 static void prepare_to_wait (struct execution_control_state *ecs);
2727 static void keep_going (struct execution_control_state *ecs);
2728 static void process_event_stop_test (struct execution_control_state *ecs);
2729 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2730
2731 /* Callback for iterate over threads. If the thread is stopped, but
2732 the user/frontend doesn't know about that yet, go through
2733 normal_stop, as if the thread had just stopped now. ARG points at
2734 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2735 ptid_is_pid(PTID) is true, applies to all threads of the process
2736 pointed at by PTID. Otherwise, apply only to the thread pointed by
2737 PTID. */
2738
2739 static int
2740 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2741 {
2742 ptid_t ptid = * (ptid_t *) arg;
2743
2744 if ((ptid_equal (info->ptid, ptid)
2745 || ptid_equal (minus_one_ptid, ptid)
2746 || (ptid_is_pid (ptid)
2747 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2748 && is_running (info->ptid)
2749 && !is_executing (info->ptid))
2750 {
2751 struct cleanup *old_chain;
2752 struct execution_control_state ecss;
2753 struct execution_control_state *ecs = &ecss;
2754
2755 memset (ecs, 0, sizeof (*ecs));
2756
2757 old_chain = make_cleanup_restore_current_thread ();
2758
2759 overlay_cache_invalid = 1;
2760 /* Flush target cache before starting to handle each event.
2761 Target was running and cache could be stale. This is just a
2762 heuristic. Running threads may modify target memory, but we
2763 don't get any event. */
2764 target_dcache_invalidate ();
2765
2766 /* Go through handle_inferior_event/normal_stop, so we always
2767 have consistent output as if the stop event had been
2768 reported. */
2769 ecs->ptid = info->ptid;
2770 ecs->event_thread = find_thread_ptid (info->ptid);
2771 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2772 ecs->ws.value.sig = GDB_SIGNAL_0;
2773
2774 handle_inferior_event (ecs);
2775
2776 if (!ecs->wait_some_more)
2777 {
2778 struct thread_info *tp;
2779
2780 normal_stop ();
2781
2782 /* Finish off the continuations. */
2783 tp = inferior_thread ();
2784 do_all_intermediate_continuations_thread (tp, 1);
2785 do_all_continuations_thread (tp, 1);
2786 }
2787
2788 do_cleanups (old_chain);
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* This function is attached as a "thread_stop_requested" observer.
2795 Cleanup local state that assumed the PTID was to be resumed, and
2796 report the stop to the frontend. */
2797
2798 static void
2799 infrun_thread_stop_requested (ptid_t ptid)
2800 {
2801 struct displaced_step_inferior_state *displaced;
2802
2803 /* PTID was requested to stop. Remove it from the displaced
2804 stepping queue, so we don't try to resume it automatically. */
2805
2806 for (displaced = displaced_step_inferior_states;
2807 displaced;
2808 displaced = displaced->next)
2809 {
2810 struct displaced_step_request *it, **prev_next_p;
2811
2812 it = displaced->step_request_queue;
2813 prev_next_p = &displaced->step_request_queue;
2814 while (it)
2815 {
2816 if (ptid_match (it->ptid, ptid))
2817 {
2818 *prev_next_p = it->next;
2819 it->next = NULL;
2820 xfree (it);
2821 }
2822 else
2823 {
2824 prev_next_p = &it->next;
2825 }
2826
2827 it = *prev_next_p;
2828 }
2829 }
2830
2831 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2832 }
2833
2834 static void
2835 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2836 {
2837 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2838 nullify_last_target_wait_ptid ();
2839 }
2840
2841 /* Callback for iterate_over_threads. */
2842
2843 static int
2844 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2845 {
2846 if (is_exited (info->ptid))
2847 return 0;
2848
2849 delete_step_resume_breakpoint (info);
2850 delete_exception_resume_breakpoint (info);
2851 return 0;
2852 }
2853
2854 /* In all-stop, delete the step resume breakpoint of any thread that
2855 had one. In non-stop, delete the step resume breakpoint of the
2856 thread that just stopped. */
2857
2858 static void
2859 delete_step_thread_step_resume_breakpoint (void)
2860 {
2861 if (!target_has_execution
2862 || ptid_equal (inferior_ptid, null_ptid))
2863 /* If the inferior has exited, we have already deleted the step
2864 resume breakpoints out of GDB's lists. */
2865 return;
2866
2867 if (non_stop)
2868 {
2869 /* If in non-stop mode, only delete the step-resume or
2870 longjmp-resume breakpoint of the thread that just stopped
2871 stepping. */
2872 struct thread_info *tp = inferior_thread ();
2873
2874 delete_step_resume_breakpoint (tp);
2875 delete_exception_resume_breakpoint (tp);
2876 }
2877 else
2878 /* In all-stop mode, delete all step-resume and longjmp-resume
2879 breakpoints of any thread that had them. */
2880 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2881 }
2882
2883 /* A cleanup wrapper. */
2884
2885 static void
2886 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2887 {
2888 delete_step_thread_step_resume_breakpoint ();
2889 }
2890
2891 /* Pretty print the results of target_wait, for debugging purposes. */
2892
2893 static void
2894 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2895 const struct target_waitstatus *ws)
2896 {
2897 char *status_string = target_waitstatus_to_string (ws);
2898 struct ui_file *tmp_stream = mem_fileopen ();
2899 char *text;
2900
2901 /* The text is split over several lines because it was getting too long.
2902 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2903 output as a unit; we want only one timestamp printed if debug_timestamp
2904 is set. */
2905
2906 fprintf_unfiltered (tmp_stream,
2907 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2908 if (ptid_get_pid (waiton_ptid) != -1)
2909 fprintf_unfiltered (tmp_stream,
2910 " [%s]", target_pid_to_str (waiton_ptid));
2911 fprintf_unfiltered (tmp_stream, ", status) =\n");
2912 fprintf_unfiltered (tmp_stream,
2913 "infrun: %d [%s],\n",
2914 ptid_get_pid (result_ptid),
2915 target_pid_to_str (result_ptid));
2916 fprintf_unfiltered (tmp_stream,
2917 "infrun: %s\n",
2918 status_string);
2919
2920 text = ui_file_xstrdup (tmp_stream, NULL);
2921
2922 /* This uses %s in part to handle %'s in the text, but also to avoid
2923 a gcc error: the format attribute requires a string literal. */
2924 fprintf_unfiltered (gdb_stdlog, "%s", text);
2925
2926 xfree (status_string);
2927 xfree (text);
2928 ui_file_delete (tmp_stream);
2929 }
2930
2931 /* Prepare and stabilize the inferior for detaching it. E.g.,
2932 detaching while a thread is displaced stepping is a recipe for
2933 crashing it, as nothing would readjust the PC out of the scratch
2934 pad. */
2935
2936 void
2937 prepare_for_detach (void)
2938 {
2939 struct inferior *inf = current_inferior ();
2940 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2941 struct cleanup *old_chain_1;
2942 struct displaced_step_inferior_state *displaced;
2943
2944 displaced = get_displaced_stepping_state (inf->pid);
2945
2946 /* Is any thread of this process displaced stepping? If not,
2947 there's nothing else to do. */
2948 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2949 return;
2950
2951 if (debug_infrun)
2952 fprintf_unfiltered (gdb_stdlog,
2953 "displaced-stepping in-process while detaching");
2954
2955 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2956 inf->detaching = 1;
2957
2958 while (!ptid_equal (displaced->step_ptid, null_ptid))
2959 {
2960 struct cleanup *old_chain_2;
2961 struct execution_control_state ecss;
2962 struct execution_control_state *ecs;
2963
2964 ecs = &ecss;
2965 memset (ecs, 0, sizeof (*ecs));
2966
2967 overlay_cache_invalid = 1;
2968 /* Flush target cache before starting to handle each event.
2969 Target was running and cache could be stale. This is just a
2970 heuristic. Running threads may modify target memory, but we
2971 don't get any event. */
2972 target_dcache_invalidate ();
2973
2974 if (deprecated_target_wait_hook)
2975 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2976 else
2977 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2978
2979 if (debug_infrun)
2980 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2981
2982 /* If an error happens while handling the event, propagate GDB's
2983 knowledge of the executing state to the frontend/user running
2984 state. */
2985 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2986 &minus_one_ptid);
2987
2988 /* Now figure out what to do with the result of the result. */
2989 handle_inferior_event (ecs);
2990
2991 /* No error, don't finish the state yet. */
2992 discard_cleanups (old_chain_2);
2993
2994 /* Breakpoints and watchpoints are not installed on the target
2995 at this point, and signals are passed directly to the
2996 inferior, so this must mean the process is gone. */
2997 if (!ecs->wait_some_more)
2998 {
2999 discard_cleanups (old_chain_1);
3000 error (_("Program exited while detaching"));
3001 }
3002 }
3003
3004 discard_cleanups (old_chain_1);
3005 }
3006
3007 /* Wait for control to return from inferior to debugger.
3008
3009 If inferior gets a signal, we may decide to start it up again
3010 instead of returning. That is why there is a loop in this function.
3011 When this function actually returns it means the inferior
3012 should be left stopped and GDB should read more commands. */
3013
3014 void
3015 wait_for_inferior (void)
3016 {
3017 struct cleanup *old_cleanups;
3018
3019 if (debug_infrun)
3020 fprintf_unfiltered
3021 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3022
3023 old_cleanups =
3024 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
3025
3026 while (1)
3027 {
3028 struct execution_control_state ecss;
3029 struct execution_control_state *ecs = &ecss;
3030 struct cleanup *old_chain;
3031
3032 memset (ecs, 0, sizeof (*ecs));
3033
3034 overlay_cache_invalid = 1;
3035
3036 /* Flush target cache before starting to handle each event.
3037 Target was running and cache could be stale. This is just a
3038 heuristic. Running threads may modify target memory, but we
3039 don't get any event. */
3040 target_dcache_invalidate ();
3041
3042 if (deprecated_target_wait_hook)
3043 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3044 else
3045 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3046
3047 if (debug_infrun)
3048 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3049
3050 /* If an error happens while handling the event, propagate GDB's
3051 knowledge of the executing state to the frontend/user running
3052 state. */
3053 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3054
3055 /* Now figure out what to do with the result of the result. */
3056 handle_inferior_event (ecs);
3057
3058 /* No error, don't finish the state yet. */
3059 discard_cleanups (old_chain);
3060
3061 if (!ecs->wait_some_more)
3062 break;
3063 }
3064
3065 do_cleanups (old_cleanups);
3066 }
3067
3068 /* Asynchronous version of wait_for_inferior. It is called by the
3069 event loop whenever a change of state is detected on the file
3070 descriptor corresponding to the target. It can be called more than
3071 once to complete a single execution command. In such cases we need
3072 to keep the state in a global variable ECSS. If it is the last time
3073 that this function is called for a single execution command, then
3074 report to the user that the inferior has stopped, and do the
3075 necessary cleanups. */
3076
3077 void
3078 fetch_inferior_event (void *client_data)
3079 {
3080 struct execution_control_state ecss;
3081 struct execution_control_state *ecs = &ecss;
3082 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3083 struct cleanup *ts_old_chain;
3084 int was_sync = sync_execution;
3085 int cmd_done = 0;
3086
3087 memset (ecs, 0, sizeof (*ecs));
3088
3089 /* We're handling a live event, so make sure we're doing live
3090 debugging. If we're looking at traceframes while the target is
3091 running, we're going to need to get back to that mode after
3092 handling the event. */
3093 if (non_stop)
3094 {
3095 make_cleanup_restore_current_traceframe ();
3096 set_current_traceframe (-1);
3097 }
3098
3099 if (non_stop)
3100 /* In non-stop mode, the user/frontend should not notice a thread
3101 switch due to internal events. Make sure we reverse to the
3102 user selected thread and frame after handling the event and
3103 running any breakpoint commands. */
3104 make_cleanup_restore_current_thread ();
3105
3106 overlay_cache_invalid = 1;
3107 /* Flush target cache before starting to handle each event. Target
3108 was running and cache could be stale. This is just a heuristic.
3109 Running threads may modify target memory, but we don't get any
3110 event. */
3111 target_dcache_invalidate ();
3112
3113 make_cleanup_restore_integer (&execution_direction);
3114 execution_direction = target_execution_direction ();
3115
3116 if (deprecated_target_wait_hook)
3117 ecs->ptid =
3118 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3119 else
3120 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3121
3122 if (debug_infrun)
3123 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3124
3125 /* If an error happens while handling the event, propagate GDB's
3126 knowledge of the executing state to the frontend/user running
3127 state. */
3128 if (!non_stop)
3129 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3130 else
3131 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3132
3133 /* Get executed before make_cleanup_restore_current_thread above to apply
3134 still for the thread which has thrown the exception. */
3135 make_bpstat_clear_actions_cleanup ();
3136
3137 /* Now figure out what to do with the result of the result. */
3138 handle_inferior_event (ecs);
3139
3140 if (!ecs->wait_some_more)
3141 {
3142 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3143
3144 delete_step_thread_step_resume_breakpoint ();
3145
3146 /* We may not find an inferior if this was a process exit. */
3147 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3148 normal_stop ();
3149
3150 if (target_has_execution
3151 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3152 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3153 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3154 && ecs->event_thread->step_multi
3155 && ecs->event_thread->control.stop_step)
3156 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3157 else
3158 {
3159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3160 cmd_done = 1;
3161 }
3162 }
3163
3164 /* No error, don't finish the thread states yet. */
3165 discard_cleanups (ts_old_chain);
3166
3167 /* Revert thread and frame. */
3168 do_cleanups (old_chain);
3169
3170 /* If the inferior was in sync execution mode, and now isn't,
3171 restore the prompt (a synchronous execution command has finished,
3172 and we're ready for input). */
3173 if (interpreter_async && was_sync && !sync_execution)
3174 observer_notify_sync_execution_done ();
3175
3176 if (cmd_done
3177 && !was_sync
3178 && exec_done_display_p
3179 && (ptid_equal (inferior_ptid, null_ptid)
3180 || !is_running (inferior_ptid)))
3181 printf_unfiltered (_("completed.\n"));
3182 }
3183
3184 /* Record the frame and location we're currently stepping through. */
3185 void
3186 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3187 {
3188 struct thread_info *tp = inferior_thread ();
3189
3190 tp->control.step_frame_id = get_frame_id (frame);
3191 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3192
3193 tp->current_symtab = sal.symtab;
3194 tp->current_line = sal.line;
3195 }
3196
3197 /* Clear context switchable stepping state. */
3198
3199 void
3200 init_thread_stepping_state (struct thread_info *tss)
3201 {
3202 tss->stepping_over_breakpoint = 0;
3203 tss->step_after_step_resume_breakpoint = 0;
3204 }
3205
3206 /* Set the cached copy of the last ptid/waitstatus. */
3207
3208 static void
3209 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3210 {
3211 target_last_wait_ptid = ptid;
3212 target_last_waitstatus = status;
3213 }
3214
3215 /* Return the cached copy of the last pid/waitstatus returned by
3216 target_wait()/deprecated_target_wait_hook(). The data is actually
3217 cached by handle_inferior_event(), which gets called immediately
3218 after target_wait()/deprecated_target_wait_hook(). */
3219
3220 void
3221 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3222 {
3223 *ptidp = target_last_wait_ptid;
3224 *status = target_last_waitstatus;
3225 }
3226
3227 void
3228 nullify_last_target_wait_ptid (void)
3229 {
3230 target_last_wait_ptid = minus_one_ptid;
3231 }
3232
3233 /* Switch thread contexts. */
3234
3235 static void
3236 context_switch (ptid_t ptid)
3237 {
3238 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3239 {
3240 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3241 target_pid_to_str (inferior_ptid));
3242 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3243 target_pid_to_str (ptid));
3244 }
3245
3246 switch_to_thread (ptid);
3247 }
3248
3249 static void
3250 adjust_pc_after_break (struct execution_control_state *ecs)
3251 {
3252 struct regcache *regcache;
3253 struct gdbarch *gdbarch;
3254 struct address_space *aspace;
3255 CORE_ADDR breakpoint_pc, decr_pc;
3256
3257 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3258 we aren't, just return.
3259
3260 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3261 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3262 implemented by software breakpoints should be handled through the normal
3263 breakpoint layer.
3264
3265 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3266 different signals (SIGILL or SIGEMT for instance), but it is less
3267 clear where the PC is pointing afterwards. It may not match
3268 gdbarch_decr_pc_after_break. I don't know any specific target that
3269 generates these signals at breakpoints (the code has been in GDB since at
3270 least 1992) so I can not guess how to handle them here.
3271
3272 In earlier versions of GDB, a target with
3273 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3274 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3275 target with both of these set in GDB history, and it seems unlikely to be
3276 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3277
3278 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3279 return;
3280
3281 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3282 return;
3283
3284 /* In reverse execution, when a breakpoint is hit, the instruction
3285 under it has already been de-executed. The reported PC always
3286 points at the breakpoint address, so adjusting it further would
3287 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3288 architecture:
3289
3290 B1 0x08000000 : INSN1
3291 B2 0x08000001 : INSN2
3292 0x08000002 : INSN3
3293 PC -> 0x08000003 : INSN4
3294
3295 Say you're stopped at 0x08000003 as above. Reverse continuing
3296 from that point should hit B2 as below. Reading the PC when the
3297 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3298 been de-executed already.
3299
3300 B1 0x08000000 : INSN1
3301 B2 PC -> 0x08000001 : INSN2
3302 0x08000002 : INSN3
3303 0x08000003 : INSN4
3304
3305 We can't apply the same logic as for forward execution, because
3306 we would wrongly adjust the PC to 0x08000000, since there's a
3307 breakpoint at PC - 1. We'd then report a hit on B1, although
3308 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3309 behaviour. */
3310 if (execution_direction == EXEC_REVERSE)
3311 return;
3312
3313 /* If this target does not decrement the PC after breakpoints, then
3314 we have nothing to do. */
3315 regcache = get_thread_regcache (ecs->ptid);
3316 gdbarch = get_regcache_arch (regcache);
3317
3318 decr_pc = target_decr_pc_after_break (gdbarch);
3319 if (decr_pc == 0)
3320 return;
3321
3322 aspace = get_regcache_aspace (regcache);
3323
3324 /* Find the location where (if we've hit a breakpoint) the
3325 breakpoint would be. */
3326 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3327
3328 /* Check whether there actually is a software breakpoint inserted at
3329 that location.
3330
3331 If in non-stop mode, a race condition is possible where we've
3332 removed a breakpoint, but stop events for that breakpoint were
3333 already queued and arrive later. To suppress those spurious
3334 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3335 and retire them after a number of stop events are reported. */
3336 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3337 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3338 {
3339 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3340
3341 if (record_full_is_used ())
3342 record_full_gdb_operation_disable_set ();
3343
3344 /* When using hardware single-step, a SIGTRAP is reported for both
3345 a completed single-step and a software breakpoint. Need to
3346 differentiate between the two, as the latter needs adjusting
3347 but the former does not.
3348
3349 The SIGTRAP can be due to a completed hardware single-step only if
3350 - we didn't insert software single-step breakpoints
3351 - the thread to be examined is still the current thread
3352 - this thread is currently being stepped
3353
3354 If any of these events did not occur, we must have stopped due
3355 to hitting a software breakpoint, and have to back up to the
3356 breakpoint address.
3357
3358 As a special case, we could have hardware single-stepped a
3359 software breakpoint. In this case (prev_pc == breakpoint_pc),
3360 we also need to back up to the breakpoint address. */
3361
3362 if (singlestep_breakpoints_inserted_p
3363 || !ptid_equal (ecs->ptid, inferior_ptid)
3364 || !currently_stepping (ecs->event_thread)
3365 || ecs->event_thread->prev_pc == breakpoint_pc)
3366 regcache_write_pc (regcache, breakpoint_pc);
3367
3368 do_cleanups (old_cleanups);
3369 }
3370 }
3371
3372 static void
3373 init_infwait_state (void)
3374 {
3375 waiton_ptid = pid_to_ptid (-1);
3376 infwait_state = infwait_normal_state;
3377 }
3378
3379 static int
3380 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3381 {
3382 for (frame = get_prev_frame (frame);
3383 frame != NULL;
3384 frame = get_prev_frame (frame))
3385 {
3386 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3387 return 1;
3388 if (get_frame_type (frame) != INLINE_FRAME)
3389 break;
3390 }
3391
3392 return 0;
3393 }
3394
3395 /* Auxiliary function that handles syscall entry/return events.
3396 It returns 1 if the inferior should keep going (and GDB
3397 should ignore the event), or 0 if the event deserves to be
3398 processed. */
3399
3400 static int
3401 handle_syscall_event (struct execution_control_state *ecs)
3402 {
3403 struct regcache *regcache;
3404 int syscall_number;
3405
3406 if (!ptid_equal (ecs->ptid, inferior_ptid))
3407 context_switch (ecs->ptid);
3408
3409 regcache = get_thread_regcache (ecs->ptid);
3410 syscall_number = ecs->ws.value.syscall_number;
3411 stop_pc = regcache_read_pc (regcache);
3412
3413 if (catch_syscall_enabled () > 0
3414 && catching_syscall_number (syscall_number) > 0)
3415 {
3416 if (debug_infrun)
3417 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3418 syscall_number);
3419
3420 ecs->event_thread->control.stop_bpstat
3421 = bpstat_stop_status (get_regcache_aspace (regcache),
3422 stop_pc, ecs->ptid, &ecs->ws);
3423
3424 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3425 {
3426 /* Catchpoint hit. */
3427 return 0;
3428 }
3429 }
3430
3431 /* If no catchpoint triggered for this, then keep going. */
3432 keep_going (ecs);
3433 return 1;
3434 }
3435
3436 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3437
3438 static void
3439 fill_in_stop_func (struct gdbarch *gdbarch,
3440 struct execution_control_state *ecs)
3441 {
3442 if (!ecs->stop_func_filled_in)
3443 {
3444 /* Don't care about return value; stop_func_start and stop_func_name
3445 will both be 0 if it doesn't work. */
3446 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3447 &ecs->stop_func_start, &ecs->stop_func_end);
3448 ecs->stop_func_start
3449 += gdbarch_deprecated_function_start_offset (gdbarch);
3450
3451 if (gdbarch_skip_entrypoint_p (gdbarch))
3452 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3453 ecs->stop_func_start);
3454
3455 ecs->stop_func_filled_in = 1;
3456 }
3457 }
3458
3459
3460 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3461
3462 static enum stop_kind
3463 get_inferior_stop_soon (ptid_t ptid)
3464 {
3465 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3466
3467 gdb_assert (inf != NULL);
3468 return inf->control.stop_soon;
3469 }
3470
3471 /* Given an execution control state that has been freshly filled in by
3472 an event from the inferior, figure out what it means and take
3473 appropriate action.
3474
3475 The alternatives are:
3476
3477 1) stop_waiting and return; to really stop and return to the
3478 debugger.
3479
3480 2) keep_going and return; to wait for the next event (set
3481 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3482 once). */
3483
3484 static void
3485 handle_inferior_event (struct execution_control_state *ecs)
3486 {
3487 enum stop_kind stop_soon;
3488
3489 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3490 {
3491 /* We had an event in the inferior, but we are not interested in
3492 handling it at this level. The lower layers have already
3493 done what needs to be done, if anything.
3494
3495 One of the possible circumstances for this is when the
3496 inferior produces output for the console. The inferior has
3497 not stopped, and we are ignoring the event. Another possible
3498 circumstance is any event which the lower level knows will be
3499 reported multiple times without an intervening resume. */
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3502 prepare_to_wait (ecs);
3503 return;
3504 }
3505
3506 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3507 && target_can_async_p () && !sync_execution)
3508 {
3509 /* There were no unwaited-for children left in the target, but,
3510 we're not synchronously waiting for events either. Just
3511 ignore. Otherwise, if we were running a synchronous
3512 execution command, we need to cancel it and give the user
3513 back the terminal. */
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3517 prepare_to_wait (ecs);
3518 return;
3519 }
3520
3521 /* Cache the last pid/waitstatus. */
3522 set_last_target_status (ecs->ptid, ecs->ws);
3523
3524 /* Always clear state belonging to the previous time we stopped. */
3525 stop_stack_dummy = STOP_NONE;
3526
3527 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3528 {
3529 /* No unwaited-for children left. IOW, all resumed children
3530 have exited. */
3531 if (debug_infrun)
3532 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3533
3534 stop_print_frame = 0;
3535 stop_waiting (ecs);
3536 return;
3537 }
3538
3539 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3540 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3541 {
3542 ecs->event_thread = find_thread_ptid (ecs->ptid);
3543 /* If it's a new thread, add it to the thread database. */
3544 if (ecs->event_thread == NULL)
3545 ecs->event_thread = add_thread (ecs->ptid);
3546
3547 /* Disable range stepping. If the next step request could use a
3548 range, this will be end up re-enabled then. */
3549 ecs->event_thread->control.may_range_step = 0;
3550 }
3551
3552 /* Dependent on valid ECS->EVENT_THREAD. */
3553 adjust_pc_after_break (ecs);
3554
3555 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3556 reinit_frame_cache ();
3557
3558 breakpoint_retire_moribund ();
3559
3560 /* First, distinguish signals caused by the debugger from signals
3561 that have to do with the program's own actions. Note that
3562 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3563 on the operating system version. Here we detect when a SIGILL or
3564 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3565 something similar for SIGSEGV, since a SIGSEGV will be generated
3566 when we're trying to execute a breakpoint instruction on a
3567 non-executable stack. This happens for call dummy breakpoints
3568 for architectures like SPARC that place call dummies on the
3569 stack. */
3570 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3571 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3572 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3573 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3574 {
3575 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3576
3577 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3578 regcache_read_pc (regcache)))
3579 {
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: Treating signal as SIGTRAP\n");
3583 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3584 }
3585 }
3586
3587 /* Mark the non-executing threads accordingly. In all-stop, all
3588 threads of all processes are stopped when we get any event
3589 reported. In non-stop mode, only the event thread stops. If
3590 we're handling a process exit in non-stop mode, there's nothing
3591 to do, as threads of the dead process are gone, and threads of
3592 any other process were left running. */
3593 if (!non_stop)
3594 set_executing (minus_one_ptid, 0);
3595 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3596 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3597 set_executing (ecs->ptid, 0);
3598
3599 switch (infwait_state)
3600 {
3601 case infwait_normal_state:
3602 if (debug_infrun)
3603 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3604 break;
3605
3606 case infwait_step_watch_state:
3607 if (debug_infrun)
3608 fprintf_unfiltered (gdb_stdlog,
3609 "infrun: infwait_step_watch_state\n");
3610
3611 ecs->stepped_after_stopped_by_watchpoint = 1;
3612 break;
3613
3614 case infwait_nonstep_watch_state:
3615 if (debug_infrun)
3616 fprintf_unfiltered (gdb_stdlog,
3617 "infrun: infwait_nonstep_watch_state\n");
3618 insert_breakpoints ();
3619
3620 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3621 handle things like signals arriving and other things happening
3622 in combination correctly? */
3623 ecs->stepped_after_stopped_by_watchpoint = 1;
3624 break;
3625
3626 default:
3627 internal_error (__FILE__, __LINE__, _("bad switch"));
3628 }
3629
3630 infwait_state = infwait_normal_state;
3631 waiton_ptid = pid_to_ptid (-1);
3632
3633 switch (ecs->ws.kind)
3634 {
3635 case TARGET_WAITKIND_LOADED:
3636 if (debug_infrun)
3637 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3638 if (!ptid_equal (ecs->ptid, inferior_ptid))
3639 context_switch (ecs->ptid);
3640 /* Ignore gracefully during startup of the inferior, as it might
3641 be the shell which has just loaded some objects, otherwise
3642 add the symbols for the newly loaded objects. Also ignore at
3643 the beginning of an attach or remote session; we will query
3644 the full list of libraries once the connection is
3645 established. */
3646
3647 stop_soon = get_inferior_stop_soon (ecs->ptid);
3648 if (stop_soon == NO_STOP_QUIETLY)
3649 {
3650 struct regcache *regcache;
3651
3652 regcache = get_thread_regcache (ecs->ptid);
3653
3654 handle_solib_event ();
3655
3656 ecs->event_thread->control.stop_bpstat
3657 = bpstat_stop_status (get_regcache_aspace (regcache),
3658 stop_pc, ecs->ptid, &ecs->ws);
3659
3660 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3661 {
3662 /* A catchpoint triggered. */
3663 process_event_stop_test (ecs);
3664 return;
3665 }
3666
3667 /* If requested, stop when the dynamic linker notifies
3668 gdb of events. This allows the user to get control
3669 and place breakpoints in initializer routines for
3670 dynamically loaded objects (among other things). */
3671 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3672 if (stop_on_solib_events)
3673 {
3674 /* Make sure we print "Stopped due to solib-event" in
3675 normal_stop. */
3676 stop_print_frame = 1;
3677
3678 stop_waiting (ecs);
3679 return;
3680 }
3681 }
3682
3683 /* If we are skipping through a shell, or through shared library
3684 loading that we aren't interested in, resume the program. If
3685 we're running the program normally, also resume. */
3686 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3687 {
3688 /* Loading of shared libraries might have changed breakpoint
3689 addresses. Make sure new breakpoints are inserted. */
3690 if (stop_soon == NO_STOP_QUIETLY)
3691 insert_breakpoints ();
3692 resume (0, GDB_SIGNAL_0);
3693 prepare_to_wait (ecs);
3694 return;
3695 }
3696
3697 /* But stop if we're attaching or setting up a remote
3698 connection. */
3699 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3700 || stop_soon == STOP_QUIETLY_REMOTE)
3701 {
3702 if (debug_infrun)
3703 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3704 stop_waiting (ecs);
3705 return;
3706 }
3707
3708 internal_error (__FILE__, __LINE__,
3709 _("unhandled stop_soon: %d"), (int) stop_soon);
3710
3711 case TARGET_WAITKIND_SPURIOUS:
3712 if (debug_infrun)
3713 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3714 if (!ptid_equal (ecs->ptid, inferior_ptid))
3715 context_switch (ecs->ptid);
3716 resume (0, GDB_SIGNAL_0);
3717 prepare_to_wait (ecs);
3718 return;
3719
3720 case TARGET_WAITKIND_EXITED:
3721 case TARGET_WAITKIND_SIGNALLED:
3722 if (debug_infrun)
3723 {
3724 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3725 fprintf_unfiltered (gdb_stdlog,
3726 "infrun: TARGET_WAITKIND_EXITED\n");
3727 else
3728 fprintf_unfiltered (gdb_stdlog,
3729 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3730 }
3731
3732 inferior_ptid = ecs->ptid;
3733 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3734 set_current_program_space (current_inferior ()->pspace);
3735 handle_vfork_child_exec_or_exit (0);
3736 target_terminal_ours (); /* Must do this before mourn anyway. */
3737
3738 /* Clearing any previous state of convenience variables. */
3739 clear_exit_convenience_vars ();
3740
3741 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3742 {
3743 /* Record the exit code in the convenience variable $_exitcode, so
3744 that the user can inspect this again later. */
3745 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3746 (LONGEST) ecs->ws.value.integer);
3747
3748 /* Also record this in the inferior itself. */
3749 current_inferior ()->has_exit_code = 1;
3750 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3751
3752 /* Support the --return-child-result option. */
3753 return_child_result_value = ecs->ws.value.integer;
3754
3755 observer_notify_exited (ecs->ws.value.integer);
3756 }
3757 else
3758 {
3759 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3760 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3761
3762 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3763 {
3764 /* Set the value of the internal variable $_exitsignal,
3765 which holds the signal uncaught by the inferior. */
3766 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3767 gdbarch_gdb_signal_to_target (gdbarch,
3768 ecs->ws.value.sig));
3769 }
3770 else
3771 {
3772 /* We don't have access to the target's method used for
3773 converting between signal numbers (GDB's internal
3774 representation <-> target's representation).
3775 Therefore, we cannot do a good job at displaying this
3776 information to the user. It's better to just warn
3777 her about it (if infrun debugging is enabled), and
3778 give up. */
3779 if (debug_infrun)
3780 fprintf_filtered (gdb_stdlog, _("\
3781 Cannot fill $_exitsignal with the correct signal number.\n"));
3782 }
3783
3784 observer_notify_signal_exited (ecs->ws.value.sig);
3785 }
3786
3787 gdb_flush (gdb_stdout);
3788 target_mourn_inferior ();
3789 singlestep_breakpoints_inserted_p = 0;
3790 cancel_single_step_breakpoints ();
3791 stop_print_frame = 0;
3792 stop_waiting (ecs);
3793 return;
3794
3795 /* The following are the only cases in which we keep going;
3796 the above cases end in a continue or goto. */
3797 case TARGET_WAITKIND_FORKED:
3798 case TARGET_WAITKIND_VFORKED:
3799 if (debug_infrun)
3800 {
3801 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3802 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3803 else
3804 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3805 }
3806
3807 /* Check whether the inferior is displaced stepping. */
3808 {
3809 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3810 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3811 struct displaced_step_inferior_state *displaced
3812 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3813
3814 /* If checking displaced stepping is supported, and thread
3815 ecs->ptid is displaced stepping. */
3816 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3817 {
3818 struct inferior *parent_inf
3819 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3820 struct regcache *child_regcache;
3821 CORE_ADDR parent_pc;
3822
3823 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3824 indicating that the displaced stepping of syscall instruction
3825 has been done. Perform cleanup for parent process here. Note
3826 that this operation also cleans up the child process for vfork,
3827 because their pages are shared. */
3828 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3829
3830 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3831 {
3832 /* Restore scratch pad for child process. */
3833 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3834 }
3835
3836 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3837 the child's PC is also within the scratchpad. Set the child's PC
3838 to the parent's PC value, which has already been fixed up.
3839 FIXME: we use the parent's aspace here, although we're touching
3840 the child, because the child hasn't been added to the inferior
3841 list yet at this point. */
3842
3843 child_regcache
3844 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3845 gdbarch,
3846 parent_inf->aspace);
3847 /* Read PC value of parent process. */
3848 parent_pc = regcache_read_pc (regcache);
3849
3850 if (debug_displaced)
3851 fprintf_unfiltered (gdb_stdlog,
3852 "displaced: write child pc from %s to %s\n",
3853 paddress (gdbarch,
3854 regcache_read_pc (child_regcache)),
3855 paddress (gdbarch, parent_pc));
3856
3857 regcache_write_pc (child_regcache, parent_pc);
3858 }
3859 }
3860
3861 if (!ptid_equal (ecs->ptid, inferior_ptid))
3862 context_switch (ecs->ptid);
3863
3864 /* Immediately detach breakpoints from the child before there's
3865 any chance of letting the user delete breakpoints from the
3866 breakpoint lists. If we don't do this early, it's easy to
3867 leave left over traps in the child, vis: "break foo; catch
3868 fork; c; <fork>; del; c; <child calls foo>". We only follow
3869 the fork on the last `continue', and by that time the
3870 breakpoint at "foo" is long gone from the breakpoint table.
3871 If we vforked, then we don't need to unpatch here, since both
3872 parent and child are sharing the same memory pages; we'll
3873 need to unpatch at follow/detach time instead to be certain
3874 that new breakpoints added between catchpoint hit time and
3875 vfork follow are detached. */
3876 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3877 {
3878 /* This won't actually modify the breakpoint list, but will
3879 physically remove the breakpoints from the child. */
3880 detach_breakpoints (ecs->ws.value.related_pid);
3881 }
3882
3883 if (singlestep_breakpoints_inserted_p)
3884 {
3885 /* Pull the single step breakpoints out of the target. */
3886 remove_single_step_breakpoints ();
3887 singlestep_breakpoints_inserted_p = 0;
3888 }
3889
3890 /* In case the event is caught by a catchpoint, remember that
3891 the event is to be followed at the next resume of the thread,
3892 and not immediately. */
3893 ecs->event_thread->pending_follow = ecs->ws;
3894
3895 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3896
3897 ecs->event_thread->control.stop_bpstat
3898 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3899 stop_pc, ecs->ptid, &ecs->ws);
3900
3901 /* If no catchpoint triggered for this, then keep going. Note
3902 that we're interested in knowing the bpstat actually causes a
3903 stop, not just if it may explain the signal. Software
3904 watchpoints, for example, always appear in the bpstat. */
3905 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3906 {
3907 ptid_t parent;
3908 ptid_t child;
3909 int should_resume;
3910 int follow_child
3911 = (follow_fork_mode_string == follow_fork_mode_child);
3912
3913 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3914
3915 should_resume = follow_fork ();
3916
3917 parent = ecs->ptid;
3918 child = ecs->ws.value.related_pid;
3919
3920 /* In non-stop mode, also resume the other branch. */
3921 if (non_stop && !detach_fork)
3922 {
3923 if (follow_child)
3924 switch_to_thread (parent);
3925 else
3926 switch_to_thread (child);
3927
3928 ecs->event_thread = inferior_thread ();
3929 ecs->ptid = inferior_ptid;
3930 keep_going (ecs);
3931 }
3932
3933 if (follow_child)
3934 switch_to_thread (child);
3935 else
3936 switch_to_thread (parent);
3937
3938 ecs->event_thread = inferior_thread ();
3939 ecs->ptid = inferior_ptid;
3940
3941 if (should_resume)
3942 keep_going (ecs);
3943 else
3944 stop_waiting (ecs);
3945 return;
3946 }
3947 process_event_stop_test (ecs);
3948 return;
3949
3950 case TARGET_WAITKIND_VFORK_DONE:
3951 /* Done with the shared memory region. Re-insert breakpoints in
3952 the parent, and keep going. */
3953
3954 if (debug_infrun)
3955 fprintf_unfiltered (gdb_stdlog,
3956 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3957
3958 if (!ptid_equal (ecs->ptid, inferior_ptid))
3959 context_switch (ecs->ptid);
3960
3961 current_inferior ()->waiting_for_vfork_done = 0;
3962 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3963 /* This also takes care of reinserting breakpoints in the
3964 previously locked inferior. */
3965 keep_going (ecs);
3966 return;
3967
3968 case TARGET_WAITKIND_EXECD:
3969 if (debug_infrun)
3970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3971
3972 if (!ptid_equal (ecs->ptid, inferior_ptid))
3973 context_switch (ecs->ptid);
3974
3975 singlestep_breakpoints_inserted_p = 0;
3976 cancel_single_step_breakpoints ();
3977
3978 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3979
3980 /* Do whatever is necessary to the parent branch of the vfork. */
3981 handle_vfork_child_exec_or_exit (1);
3982
3983 /* This causes the eventpoints and symbol table to be reset.
3984 Must do this now, before trying to determine whether to
3985 stop. */
3986 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3987
3988 ecs->event_thread->control.stop_bpstat
3989 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3990 stop_pc, ecs->ptid, &ecs->ws);
3991
3992 /* Note that this may be referenced from inside
3993 bpstat_stop_status above, through inferior_has_execd. */
3994 xfree (ecs->ws.value.execd_pathname);
3995 ecs->ws.value.execd_pathname = NULL;
3996
3997 /* If no catchpoint triggered for this, then keep going. */
3998 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3999 {
4000 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4001 keep_going (ecs);
4002 return;
4003 }
4004 process_event_stop_test (ecs);
4005 return;
4006
4007 /* Be careful not to try to gather much state about a thread
4008 that's in a syscall. It's frequently a losing proposition. */
4009 case TARGET_WAITKIND_SYSCALL_ENTRY:
4010 if (debug_infrun)
4011 fprintf_unfiltered (gdb_stdlog,
4012 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4013 /* Getting the current syscall number. */
4014 if (handle_syscall_event (ecs) == 0)
4015 process_event_stop_test (ecs);
4016 return;
4017
4018 /* Before examining the threads further, step this thread to
4019 get it entirely out of the syscall. (We get notice of the
4020 event when the thread is just on the verge of exiting a
4021 syscall. Stepping one instruction seems to get it back
4022 into user code.) */
4023 case TARGET_WAITKIND_SYSCALL_RETURN:
4024 if (debug_infrun)
4025 fprintf_unfiltered (gdb_stdlog,
4026 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4027 if (handle_syscall_event (ecs) == 0)
4028 process_event_stop_test (ecs);
4029 return;
4030
4031 case TARGET_WAITKIND_STOPPED:
4032 if (debug_infrun)
4033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4034 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4035 handle_signal_stop (ecs);
4036 return;
4037
4038 case TARGET_WAITKIND_NO_HISTORY:
4039 if (debug_infrun)
4040 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4041 /* Reverse execution: target ran out of history info. */
4042
4043 /* Pull the single step breakpoints out of the target. */
4044 if (singlestep_breakpoints_inserted_p)
4045 {
4046 if (!ptid_equal (ecs->ptid, inferior_ptid))
4047 context_switch (ecs->ptid);
4048 remove_single_step_breakpoints ();
4049 singlestep_breakpoints_inserted_p = 0;
4050 }
4051 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4052 observer_notify_no_history ();
4053 stop_waiting (ecs);
4054 return;
4055 }
4056 }
4057
4058 /* Come here when the program has stopped with a signal. */
4059
4060 static void
4061 handle_signal_stop (struct execution_control_state *ecs)
4062 {
4063 struct frame_info *frame;
4064 struct gdbarch *gdbarch;
4065 int stopped_by_watchpoint;
4066 enum stop_kind stop_soon;
4067 int random_signal;
4068
4069 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4070
4071 /* Do we need to clean up the state of a thread that has
4072 completed a displaced single-step? (Doing so usually affects
4073 the PC, so do it here, before we set stop_pc.) */
4074 displaced_step_fixup (ecs->ptid,
4075 ecs->event_thread->suspend.stop_signal);
4076
4077 /* If we either finished a single-step or hit a breakpoint, but
4078 the user wanted this thread to be stopped, pretend we got a
4079 SIG0 (generic unsignaled stop). */
4080 if (ecs->event_thread->stop_requested
4081 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4083
4084 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4085
4086 if (debug_infrun)
4087 {
4088 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4089 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4090 struct cleanup *old_chain = save_inferior_ptid ();
4091
4092 inferior_ptid = ecs->ptid;
4093
4094 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4095 paddress (gdbarch, stop_pc));
4096 if (target_stopped_by_watchpoint ())
4097 {
4098 CORE_ADDR addr;
4099
4100 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4101
4102 if (target_stopped_data_address (&current_target, &addr))
4103 fprintf_unfiltered (gdb_stdlog,
4104 "infrun: stopped data address = %s\n",
4105 paddress (gdbarch, addr));
4106 else
4107 fprintf_unfiltered (gdb_stdlog,
4108 "infrun: (no data address available)\n");
4109 }
4110
4111 do_cleanups (old_chain);
4112 }
4113
4114 /* This is originated from start_remote(), start_inferior() and
4115 shared libraries hook functions. */
4116 stop_soon = get_inferior_stop_soon (ecs->ptid);
4117 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4118 {
4119 if (!ptid_equal (ecs->ptid, inferior_ptid))
4120 context_switch (ecs->ptid);
4121 if (debug_infrun)
4122 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4123 stop_print_frame = 1;
4124 stop_waiting (ecs);
4125 return;
4126 }
4127
4128 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4129 && stop_after_trap)
4130 {
4131 if (!ptid_equal (ecs->ptid, inferior_ptid))
4132 context_switch (ecs->ptid);
4133 if (debug_infrun)
4134 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4135 stop_print_frame = 0;
4136 stop_waiting (ecs);
4137 return;
4138 }
4139
4140 /* This originates from attach_command(). We need to overwrite
4141 the stop_signal here, because some kernels don't ignore a
4142 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4143 See more comments in inferior.h. On the other hand, if we
4144 get a non-SIGSTOP, report it to the user - assume the backend
4145 will handle the SIGSTOP if it should show up later.
4146
4147 Also consider that the attach is complete when we see a
4148 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4149 target extended-remote report it instead of a SIGSTOP
4150 (e.g. gdbserver). We already rely on SIGTRAP being our
4151 signal, so this is no exception.
4152
4153 Also consider that the attach is complete when we see a
4154 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4155 the target to stop all threads of the inferior, in case the
4156 low level attach operation doesn't stop them implicitly. If
4157 they weren't stopped implicitly, then the stub will report a
4158 GDB_SIGNAL_0, meaning: stopped for no particular reason
4159 other than GDB's request. */
4160 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4161 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4162 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4163 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4164 {
4165 stop_print_frame = 1;
4166 stop_waiting (ecs);
4167 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4168 return;
4169 }
4170
4171 /* See if something interesting happened to the non-current thread. If
4172 so, then switch to that thread. */
4173 if (!ptid_equal (ecs->ptid, inferior_ptid))
4174 {
4175 if (debug_infrun)
4176 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4177
4178 context_switch (ecs->ptid);
4179
4180 if (deprecated_context_hook)
4181 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4182 }
4183
4184 /* At this point, get hold of the now-current thread's frame. */
4185 frame = get_current_frame ();
4186 gdbarch = get_frame_arch (frame);
4187
4188 /* Pull the single step breakpoints out of the target. */
4189 if (singlestep_breakpoints_inserted_p)
4190 {
4191 /* However, before doing so, if this single-step breakpoint was
4192 actually for another thread, set this thread up for moving
4193 past it. */
4194 if (!ptid_equal (ecs->ptid, singlestep_ptid)
4195 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4196 {
4197 struct regcache *regcache;
4198 struct address_space *aspace;
4199 CORE_ADDR pc;
4200
4201 regcache = get_thread_regcache (ecs->ptid);
4202 aspace = get_regcache_aspace (regcache);
4203 pc = regcache_read_pc (regcache);
4204 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4205 {
4206 if (debug_infrun)
4207 {
4208 fprintf_unfiltered (gdb_stdlog,
4209 "infrun: [%s] hit step over single-step"
4210 " breakpoint of [%s]\n",
4211 target_pid_to_str (ecs->ptid),
4212 target_pid_to_str (singlestep_ptid));
4213 }
4214 ecs->hit_singlestep_breakpoint = 1;
4215 }
4216 }
4217
4218 remove_single_step_breakpoints ();
4219 singlestep_breakpoints_inserted_p = 0;
4220 }
4221
4222 if (ecs->stepped_after_stopped_by_watchpoint)
4223 stopped_by_watchpoint = 0;
4224 else
4225 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4226
4227 /* If necessary, step over this watchpoint. We'll be back to display
4228 it in a moment. */
4229 if (stopped_by_watchpoint
4230 && (target_have_steppable_watchpoint
4231 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4232 {
4233 /* At this point, we are stopped at an instruction which has
4234 attempted to write to a piece of memory under control of
4235 a watchpoint. The instruction hasn't actually executed
4236 yet. If we were to evaluate the watchpoint expression
4237 now, we would get the old value, and therefore no change
4238 would seem to have occurred.
4239
4240 In order to make watchpoints work `right', we really need
4241 to complete the memory write, and then evaluate the
4242 watchpoint expression. We do this by single-stepping the
4243 target.
4244
4245 It may not be necessary to disable the watchpoint to step over
4246 it. For example, the PA can (with some kernel cooperation)
4247 single step over a watchpoint without disabling the watchpoint.
4248
4249 It is far more common to need to disable a watchpoint to step
4250 the inferior over it. If we have non-steppable watchpoints,
4251 we must disable the current watchpoint; it's simplest to
4252 disable all watchpoints and breakpoints. */
4253 int hw_step = 1;
4254
4255 if (!target_have_steppable_watchpoint)
4256 {
4257 remove_breakpoints ();
4258 /* See comment in resume why we need to stop bypassing signals
4259 while breakpoints have been removed. */
4260 target_pass_signals (0, NULL);
4261 }
4262 /* Single step */
4263 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4264 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4265 waiton_ptid = ecs->ptid;
4266 if (target_have_steppable_watchpoint)
4267 infwait_state = infwait_step_watch_state;
4268 else
4269 infwait_state = infwait_nonstep_watch_state;
4270 prepare_to_wait (ecs);
4271 return;
4272 }
4273
4274 ecs->event_thread->stepping_over_breakpoint = 0;
4275 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4276 ecs->event_thread->control.stop_step = 0;
4277 stop_print_frame = 1;
4278 stopped_by_random_signal = 0;
4279
4280 /* Hide inlined functions starting here, unless we just performed stepi or
4281 nexti. After stepi and nexti, always show the innermost frame (not any
4282 inline function call sites). */
4283 if (ecs->event_thread->control.step_range_end != 1)
4284 {
4285 struct address_space *aspace =
4286 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4287
4288 /* skip_inline_frames is expensive, so we avoid it if we can
4289 determine that the address is one where functions cannot have
4290 been inlined. This improves performance with inferiors that
4291 load a lot of shared libraries, because the solib event
4292 breakpoint is defined as the address of a function (i.e. not
4293 inline). Note that we have to check the previous PC as well
4294 as the current one to catch cases when we have just
4295 single-stepped off a breakpoint prior to reinstating it.
4296 Note that we're assuming that the code we single-step to is
4297 not inline, but that's not definitive: there's nothing
4298 preventing the event breakpoint function from containing
4299 inlined code, and the single-step ending up there. If the
4300 user had set a breakpoint on that inlined code, the missing
4301 skip_inline_frames call would break things. Fortunately
4302 that's an extremely unlikely scenario. */
4303 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4304 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4305 && ecs->event_thread->control.trap_expected
4306 && pc_at_non_inline_function (aspace,
4307 ecs->event_thread->prev_pc,
4308 &ecs->ws)))
4309 {
4310 skip_inline_frames (ecs->ptid);
4311
4312 /* Re-fetch current thread's frame in case that invalidated
4313 the frame cache. */
4314 frame = get_current_frame ();
4315 gdbarch = get_frame_arch (frame);
4316 }
4317 }
4318
4319 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4320 && ecs->event_thread->control.trap_expected
4321 && gdbarch_single_step_through_delay_p (gdbarch)
4322 && currently_stepping (ecs->event_thread))
4323 {
4324 /* We're trying to step off a breakpoint. Turns out that we're
4325 also on an instruction that needs to be stepped multiple
4326 times before it's been fully executing. E.g., architectures
4327 with a delay slot. It needs to be stepped twice, once for
4328 the instruction and once for the delay slot. */
4329 int step_through_delay
4330 = gdbarch_single_step_through_delay (gdbarch, frame);
4331
4332 if (debug_infrun && step_through_delay)
4333 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4334 if (ecs->event_thread->control.step_range_end == 0
4335 && step_through_delay)
4336 {
4337 /* The user issued a continue when stopped at a breakpoint.
4338 Set up for another trap and get out of here. */
4339 ecs->event_thread->stepping_over_breakpoint = 1;
4340 keep_going (ecs);
4341 return;
4342 }
4343 else if (step_through_delay)
4344 {
4345 /* The user issued a step when stopped at a breakpoint.
4346 Maybe we should stop, maybe we should not - the delay
4347 slot *might* correspond to a line of source. In any
4348 case, don't decide that here, just set
4349 ecs->stepping_over_breakpoint, making sure we
4350 single-step again before breakpoints are re-inserted. */
4351 ecs->event_thread->stepping_over_breakpoint = 1;
4352 }
4353 }
4354
4355 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4356 handles this event. */
4357 ecs->event_thread->control.stop_bpstat
4358 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4359 stop_pc, ecs->ptid, &ecs->ws);
4360
4361 /* Following in case break condition called a
4362 function. */
4363 stop_print_frame = 1;
4364
4365 /* This is where we handle "moribund" watchpoints. Unlike
4366 software breakpoints traps, hardware watchpoint traps are
4367 always distinguishable from random traps. If no high-level
4368 watchpoint is associated with the reported stop data address
4369 anymore, then the bpstat does not explain the signal ---
4370 simply make sure to ignore it if `stopped_by_watchpoint' is
4371 set. */
4372
4373 if (debug_infrun
4374 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4375 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4376 GDB_SIGNAL_TRAP)
4377 && stopped_by_watchpoint)
4378 fprintf_unfiltered (gdb_stdlog,
4379 "infrun: no user watchpoint explains "
4380 "watchpoint SIGTRAP, ignoring\n");
4381
4382 /* NOTE: cagney/2003-03-29: These checks for a random signal
4383 at one stage in the past included checks for an inferior
4384 function call's call dummy's return breakpoint. The original
4385 comment, that went with the test, read:
4386
4387 ``End of a stack dummy. Some systems (e.g. Sony news) give
4388 another signal besides SIGTRAP, so check here as well as
4389 above.''
4390
4391 If someone ever tries to get call dummys on a
4392 non-executable stack to work (where the target would stop
4393 with something like a SIGSEGV), then those tests might need
4394 to be re-instated. Given, however, that the tests were only
4395 enabled when momentary breakpoints were not being used, I
4396 suspect that it won't be the case.
4397
4398 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4399 be necessary for call dummies on a non-executable stack on
4400 SPARC. */
4401
4402 /* See if the breakpoints module can explain the signal. */
4403 random_signal
4404 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4405 ecs->event_thread->suspend.stop_signal);
4406
4407 /* If not, perhaps stepping/nexting can. */
4408 if (random_signal)
4409 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4410 && currently_stepping (ecs->event_thread));
4411
4412 /* Perhaps the thread hit a single-step breakpoint of _another_
4413 thread. Single-step breakpoints are transparent to the
4414 breakpoints module. */
4415 if (random_signal)
4416 random_signal = !ecs->hit_singlestep_breakpoint;
4417
4418 /* No? Perhaps we got a moribund watchpoint. */
4419 if (random_signal)
4420 random_signal = !stopped_by_watchpoint;
4421
4422 /* For the program's own signals, act according to
4423 the signal handling tables. */
4424
4425 if (random_signal)
4426 {
4427 /* Signal not for debugging purposes. */
4428 int printed = 0;
4429 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4430 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4431
4432 if (debug_infrun)
4433 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4434 gdb_signal_to_symbol_string (stop_signal));
4435
4436 stopped_by_random_signal = 1;
4437
4438 /* Always stop on signals if we're either just gaining control
4439 of the program, or the user explicitly requested this thread
4440 to remain stopped. */
4441 if (stop_soon != NO_STOP_QUIETLY
4442 || ecs->event_thread->stop_requested
4443 || (!inf->detaching
4444 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4445 {
4446 stop_waiting (ecs);
4447 return;
4448 }
4449
4450 /* Notify observers the signal has "handle print" set. Note we
4451 returned early above if stopping; normal_stop handles the
4452 printing in that case. */
4453 if (signal_print[ecs->event_thread->suspend.stop_signal])
4454 {
4455 /* The signal table tells us to print about this signal. */
4456 target_terminal_ours_for_output ();
4457 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4458 target_terminal_inferior ();
4459 }
4460
4461 /* Clear the signal if it should not be passed. */
4462 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4463 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4464
4465 if (ecs->event_thread->prev_pc == stop_pc
4466 && ecs->event_thread->control.trap_expected
4467 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4468 {
4469 /* We were just starting a new sequence, attempting to
4470 single-step off of a breakpoint and expecting a SIGTRAP.
4471 Instead this signal arrives. This signal will take us out
4472 of the stepping range so GDB needs to remember to, when
4473 the signal handler returns, resume stepping off that
4474 breakpoint. */
4475 /* To simplify things, "continue" is forced to use the same
4476 code paths as single-step - set a breakpoint at the
4477 signal return address and then, once hit, step off that
4478 breakpoint. */
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog,
4481 "infrun: signal arrived while stepping over "
4482 "breakpoint\n");
4483
4484 insert_hp_step_resume_breakpoint_at_frame (frame);
4485 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4486 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4487 ecs->event_thread->control.trap_expected = 0;
4488
4489 /* If we were nexting/stepping some other thread, switch to
4490 it, so that we don't continue it, losing control. */
4491 if (!switch_back_to_stepped_thread (ecs))
4492 keep_going (ecs);
4493 return;
4494 }
4495
4496 if (ecs->event_thread->control.step_range_end != 0
4497 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4498 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4499 && frame_id_eq (get_stack_frame_id (frame),
4500 ecs->event_thread->control.step_stack_frame_id)
4501 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4502 {
4503 /* The inferior is about to take a signal that will take it
4504 out of the single step range. Set a breakpoint at the
4505 current PC (which is presumably where the signal handler
4506 will eventually return) and then allow the inferior to
4507 run free.
4508
4509 Note that this is only needed for a signal delivered
4510 while in the single-step range. Nested signals aren't a
4511 problem as they eventually all return. */
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: signal may take us out of "
4515 "single-step range\n");
4516
4517 insert_hp_step_resume_breakpoint_at_frame (frame);
4518 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4519 ecs->event_thread->control.trap_expected = 0;
4520 keep_going (ecs);
4521 return;
4522 }
4523
4524 /* Note: step_resume_breakpoint may be non-NULL. This occures
4525 when either there's a nested signal, or when there's a
4526 pending signal enabled just as the signal handler returns
4527 (leaving the inferior at the step-resume-breakpoint without
4528 actually executing it). Either way continue until the
4529 breakpoint is really hit. */
4530
4531 if (!switch_back_to_stepped_thread (ecs))
4532 {
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog,
4535 "infrun: random signal, keep going\n");
4536
4537 keep_going (ecs);
4538 }
4539 return;
4540 }
4541
4542 process_event_stop_test (ecs);
4543 }
4544
4545 /* Come here when we've got some debug event / signal we can explain
4546 (IOW, not a random signal), and test whether it should cause a
4547 stop, or whether we should resume the inferior (transparently).
4548 E.g., could be a breakpoint whose condition evaluates false; we
4549 could be still stepping within the line; etc. */
4550
4551 static void
4552 process_event_stop_test (struct execution_control_state *ecs)
4553 {
4554 struct symtab_and_line stop_pc_sal;
4555 struct frame_info *frame;
4556 struct gdbarch *gdbarch;
4557 CORE_ADDR jmp_buf_pc;
4558 struct bpstat_what what;
4559
4560 /* Handle cases caused by hitting a breakpoint. */
4561
4562 frame = get_current_frame ();
4563 gdbarch = get_frame_arch (frame);
4564
4565 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4566
4567 if (what.call_dummy)
4568 {
4569 stop_stack_dummy = what.call_dummy;
4570 }
4571
4572 /* If we hit an internal event that triggers symbol changes, the
4573 current frame will be invalidated within bpstat_what (e.g., if we
4574 hit an internal solib event). Re-fetch it. */
4575 frame = get_current_frame ();
4576 gdbarch = get_frame_arch (frame);
4577
4578 switch (what.main_action)
4579 {
4580 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4581 /* If we hit the breakpoint at longjmp while stepping, we
4582 install a momentary breakpoint at the target of the
4583 jmp_buf. */
4584
4585 if (debug_infrun)
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4588
4589 ecs->event_thread->stepping_over_breakpoint = 1;
4590
4591 if (what.is_longjmp)
4592 {
4593 struct value *arg_value;
4594
4595 /* If we set the longjmp breakpoint via a SystemTap probe,
4596 then use it to extract the arguments. The destination PC
4597 is the third argument to the probe. */
4598 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4599 if (arg_value)
4600 jmp_buf_pc = value_as_address (arg_value);
4601 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4602 || !gdbarch_get_longjmp_target (gdbarch,
4603 frame, &jmp_buf_pc))
4604 {
4605 if (debug_infrun)
4606 fprintf_unfiltered (gdb_stdlog,
4607 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4608 "(!gdbarch_get_longjmp_target)\n");
4609 keep_going (ecs);
4610 return;
4611 }
4612
4613 /* Insert a breakpoint at resume address. */
4614 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4615 }
4616 else
4617 check_exception_resume (ecs, frame);
4618 keep_going (ecs);
4619 return;
4620
4621 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4622 {
4623 struct frame_info *init_frame;
4624
4625 /* There are several cases to consider.
4626
4627 1. The initiating frame no longer exists. In this case we
4628 must stop, because the exception or longjmp has gone too
4629 far.
4630
4631 2. The initiating frame exists, and is the same as the
4632 current frame. We stop, because the exception or longjmp
4633 has been caught.
4634
4635 3. The initiating frame exists and is different from the
4636 current frame. This means the exception or longjmp has
4637 been caught beneath the initiating frame, so keep going.
4638
4639 4. longjmp breakpoint has been placed just to protect
4640 against stale dummy frames and user is not interested in
4641 stopping around longjmps. */
4642
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4646
4647 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4648 != NULL);
4649 delete_exception_resume_breakpoint (ecs->event_thread);
4650
4651 if (what.is_longjmp)
4652 {
4653 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4654
4655 if (!frame_id_p (ecs->event_thread->initiating_frame))
4656 {
4657 /* Case 4. */
4658 keep_going (ecs);
4659 return;
4660 }
4661 }
4662
4663 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4664
4665 if (init_frame)
4666 {
4667 struct frame_id current_id
4668 = get_frame_id (get_current_frame ());
4669 if (frame_id_eq (current_id,
4670 ecs->event_thread->initiating_frame))
4671 {
4672 /* Case 2. Fall through. */
4673 }
4674 else
4675 {
4676 /* Case 3. */
4677 keep_going (ecs);
4678 return;
4679 }
4680 }
4681
4682 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4683 exists. */
4684 delete_step_resume_breakpoint (ecs->event_thread);
4685
4686 end_stepping_range (ecs);
4687 }
4688 return;
4689
4690 case BPSTAT_WHAT_SINGLE:
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4693 ecs->event_thread->stepping_over_breakpoint = 1;
4694 /* Still need to check other stuff, at least the case where we
4695 are stepping and step out of the right range. */
4696 break;
4697
4698 case BPSTAT_WHAT_STEP_RESUME:
4699 if (debug_infrun)
4700 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4701
4702 delete_step_resume_breakpoint (ecs->event_thread);
4703 if (ecs->event_thread->control.proceed_to_finish
4704 && execution_direction == EXEC_REVERSE)
4705 {
4706 struct thread_info *tp = ecs->event_thread;
4707
4708 /* We are finishing a function in reverse, and just hit the
4709 step-resume breakpoint at the start address of the
4710 function, and we're almost there -- just need to back up
4711 by one more single-step, which should take us back to the
4712 function call. */
4713 tp->control.step_range_start = tp->control.step_range_end = 1;
4714 keep_going (ecs);
4715 return;
4716 }
4717 fill_in_stop_func (gdbarch, ecs);
4718 if (stop_pc == ecs->stop_func_start
4719 && execution_direction == EXEC_REVERSE)
4720 {
4721 /* We are stepping over a function call in reverse, and just
4722 hit the step-resume breakpoint at the start address of
4723 the function. Go back to single-stepping, which should
4724 take us back to the function call. */
4725 ecs->event_thread->stepping_over_breakpoint = 1;
4726 keep_going (ecs);
4727 return;
4728 }
4729 break;
4730
4731 case BPSTAT_WHAT_STOP_NOISY:
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4734 stop_print_frame = 1;
4735
4736 /* Assume the thread stopped for a breapoint. We'll still check
4737 whether a/the breakpoint is there when the thread is next
4738 resumed. */
4739 ecs->event_thread->stepping_over_breakpoint = 1;
4740
4741 stop_waiting (ecs);
4742 return;
4743
4744 case BPSTAT_WHAT_STOP_SILENT:
4745 if (debug_infrun)
4746 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4747 stop_print_frame = 0;
4748
4749 /* Assume the thread stopped for a breapoint. We'll still check
4750 whether a/the breakpoint is there when the thread is next
4751 resumed. */
4752 ecs->event_thread->stepping_over_breakpoint = 1;
4753 stop_waiting (ecs);
4754 return;
4755
4756 case BPSTAT_WHAT_HP_STEP_RESUME:
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4759
4760 delete_step_resume_breakpoint (ecs->event_thread);
4761 if (ecs->event_thread->step_after_step_resume_breakpoint)
4762 {
4763 /* Back when the step-resume breakpoint was inserted, we
4764 were trying to single-step off a breakpoint. Go back to
4765 doing that. */
4766 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4767 ecs->event_thread->stepping_over_breakpoint = 1;
4768 keep_going (ecs);
4769 return;
4770 }
4771 break;
4772
4773 case BPSTAT_WHAT_KEEP_CHECKING:
4774 break;
4775 }
4776
4777 /* We come here if we hit a breakpoint but should not stop for it.
4778 Possibly we also were stepping and should stop for that. So fall
4779 through and test for stepping. But, if not stepping, do not
4780 stop. */
4781
4782 /* In all-stop mode, if we're currently stepping but have stopped in
4783 some other thread, we need to switch back to the stepped thread. */
4784 if (switch_back_to_stepped_thread (ecs))
4785 return;
4786
4787 if (ecs->event_thread->control.step_resume_breakpoint)
4788 {
4789 if (debug_infrun)
4790 fprintf_unfiltered (gdb_stdlog,
4791 "infrun: step-resume breakpoint is inserted\n");
4792
4793 /* Having a step-resume breakpoint overrides anything
4794 else having to do with stepping commands until
4795 that breakpoint is reached. */
4796 keep_going (ecs);
4797 return;
4798 }
4799
4800 if (ecs->event_thread->control.step_range_end == 0)
4801 {
4802 if (debug_infrun)
4803 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4804 /* Likewise if we aren't even stepping. */
4805 keep_going (ecs);
4806 return;
4807 }
4808
4809 /* Re-fetch current thread's frame in case the code above caused
4810 the frame cache to be re-initialized, making our FRAME variable
4811 a dangling pointer. */
4812 frame = get_current_frame ();
4813 gdbarch = get_frame_arch (frame);
4814 fill_in_stop_func (gdbarch, ecs);
4815
4816 /* If stepping through a line, keep going if still within it.
4817
4818 Note that step_range_end is the address of the first instruction
4819 beyond the step range, and NOT the address of the last instruction
4820 within it!
4821
4822 Note also that during reverse execution, we may be stepping
4823 through a function epilogue and therefore must detect when
4824 the current-frame changes in the middle of a line. */
4825
4826 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4827 && (execution_direction != EXEC_REVERSE
4828 || frame_id_eq (get_frame_id (frame),
4829 ecs->event_thread->control.step_frame_id)))
4830 {
4831 if (debug_infrun)
4832 fprintf_unfiltered
4833 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4834 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4835 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4836
4837 /* Tentatively re-enable range stepping; `resume' disables it if
4838 necessary (e.g., if we're stepping over a breakpoint or we
4839 have software watchpoints). */
4840 ecs->event_thread->control.may_range_step = 1;
4841
4842 /* When stepping backward, stop at beginning of line range
4843 (unless it's the function entry point, in which case
4844 keep going back to the call point). */
4845 if (stop_pc == ecs->event_thread->control.step_range_start
4846 && stop_pc != ecs->stop_func_start
4847 && execution_direction == EXEC_REVERSE)
4848 end_stepping_range (ecs);
4849 else
4850 keep_going (ecs);
4851
4852 return;
4853 }
4854
4855 /* We stepped out of the stepping range. */
4856
4857 /* If we are stepping at the source level and entered the runtime
4858 loader dynamic symbol resolution code...
4859
4860 EXEC_FORWARD: we keep on single stepping until we exit the run
4861 time loader code and reach the callee's address.
4862
4863 EXEC_REVERSE: we've already executed the callee (backward), and
4864 the runtime loader code is handled just like any other
4865 undebuggable function call. Now we need only keep stepping
4866 backward through the trampoline code, and that's handled further
4867 down, so there is nothing for us to do here. */
4868
4869 if (execution_direction != EXEC_REVERSE
4870 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4871 && in_solib_dynsym_resolve_code (stop_pc))
4872 {
4873 CORE_ADDR pc_after_resolver =
4874 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4875
4876 if (debug_infrun)
4877 fprintf_unfiltered (gdb_stdlog,
4878 "infrun: stepped into dynsym resolve code\n");
4879
4880 if (pc_after_resolver)
4881 {
4882 /* Set up a step-resume breakpoint at the address
4883 indicated by SKIP_SOLIB_RESOLVER. */
4884 struct symtab_and_line sr_sal;
4885
4886 init_sal (&sr_sal);
4887 sr_sal.pc = pc_after_resolver;
4888 sr_sal.pspace = get_frame_program_space (frame);
4889
4890 insert_step_resume_breakpoint_at_sal (gdbarch,
4891 sr_sal, null_frame_id);
4892 }
4893
4894 keep_going (ecs);
4895 return;
4896 }
4897
4898 if (ecs->event_thread->control.step_range_end != 1
4899 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4900 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4901 && get_frame_type (frame) == SIGTRAMP_FRAME)
4902 {
4903 if (debug_infrun)
4904 fprintf_unfiltered (gdb_stdlog,
4905 "infrun: stepped into signal trampoline\n");
4906 /* The inferior, while doing a "step" or "next", has ended up in
4907 a signal trampoline (either by a signal being delivered or by
4908 the signal handler returning). Just single-step until the
4909 inferior leaves the trampoline (either by calling the handler
4910 or returning). */
4911 keep_going (ecs);
4912 return;
4913 }
4914
4915 /* If we're in the return path from a shared library trampoline,
4916 we want to proceed through the trampoline when stepping. */
4917 /* macro/2012-04-25: This needs to come before the subroutine
4918 call check below as on some targets return trampolines look
4919 like subroutine calls (MIPS16 return thunks). */
4920 if (gdbarch_in_solib_return_trampoline (gdbarch,
4921 stop_pc, ecs->stop_func_name)
4922 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4923 {
4924 /* Determine where this trampoline returns. */
4925 CORE_ADDR real_stop_pc;
4926
4927 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4928
4929 if (debug_infrun)
4930 fprintf_unfiltered (gdb_stdlog,
4931 "infrun: stepped into solib return tramp\n");
4932
4933 /* Only proceed through if we know where it's going. */
4934 if (real_stop_pc)
4935 {
4936 /* And put the step-breakpoint there and go until there. */
4937 struct symtab_and_line sr_sal;
4938
4939 init_sal (&sr_sal); /* initialize to zeroes */
4940 sr_sal.pc = real_stop_pc;
4941 sr_sal.section = find_pc_overlay (sr_sal.pc);
4942 sr_sal.pspace = get_frame_program_space (frame);
4943
4944 /* Do not specify what the fp should be when we stop since
4945 on some machines the prologue is where the new fp value
4946 is established. */
4947 insert_step_resume_breakpoint_at_sal (gdbarch,
4948 sr_sal, null_frame_id);
4949
4950 /* Restart without fiddling with the step ranges or
4951 other state. */
4952 keep_going (ecs);
4953 return;
4954 }
4955 }
4956
4957 /* Check for subroutine calls. The check for the current frame
4958 equalling the step ID is not necessary - the check of the
4959 previous frame's ID is sufficient - but it is a common case and
4960 cheaper than checking the previous frame's ID.
4961
4962 NOTE: frame_id_eq will never report two invalid frame IDs as
4963 being equal, so to get into this block, both the current and
4964 previous frame must have valid frame IDs. */
4965 /* The outer_frame_id check is a heuristic to detect stepping
4966 through startup code. If we step over an instruction which
4967 sets the stack pointer from an invalid value to a valid value,
4968 we may detect that as a subroutine call from the mythical
4969 "outermost" function. This could be fixed by marking
4970 outermost frames as !stack_p,code_p,special_p. Then the
4971 initial outermost frame, before sp was valid, would
4972 have code_addr == &_start. See the comment in frame_id_eq
4973 for more. */
4974 if (!frame_id_eq (get_stack_frame_id (frame),
4975 ecs->event_thread->control.step_stack_frame_id)
4976 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4977 ecs->event_thread->control.step_stack_frame_id)
4978 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4979 outer_frame_id)
4980 || step_start_function != find_pc_function (stop_pc))))
4981 {
4982 CORE_ADDR real_stop_pc;
4983
4984 if (debug_infrun)
4985 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4986
4987 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4988 || ((ecs->event_thread->control.step_range_end == 1)
4989 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4990 ecs->stop_func_start)))
4991 {
4992 /* I presume that step_over_calls is only 0 when we're
4993 supposed to be stepping at the assembly language level
4994 ("stepi"). Just stop. */
4995 /* Also, maybe we just did a "nexti" inside a prolog, so we
4996 thought it was a subroutine call but it was not. Stop as
4997 well. FENN */
4998 /* And this works the same backward as frontward. MVS */
4999 end_stepping_range (ecs);
5000 return;
5001 }
5002
5003 /* Reverse stepping through solib trampolines. */
5004
5005 if (execution_direction == EXEC_REVERSE
5006 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5007 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5008 || (ecs->stop_func_start == 0
5009 && in_solib_dynsym_resolve_code (stop_pc))))
5010 {
5011 /* Any solib trampoline code can be handled in reverse
5012 by simply continuing to single-step. We have already
5013 executed the solib function (backwards), and a few
5014 steps will take us back through the trampoline to the
5015 caller. */
5016 keep_going (ecs);
5017 return;
5018 }
5019
5020 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5021 {
5022 /* We're doing a "next".
5023
5024 Normal (forward) execution: set a breakpoint at the
5025 callee's return address (the address at which the caller
5026 will resume).
5027
5028 Reverse (backward) execution. set the step-resume
5029 breakpoint at the start of the function that we just
5030 stepped into (backwards), and continue to there. When we
5031 get there, we'll need to single-step back to the caller. */
5032
5033 if (execution_direction == EXEC_REVERSE)
5034 {
5035 /* If we're already at the start of the function, we've either
5036 just stepped backward into a single instruction function,
5037 or stepped back out of a signal handler to the first instruction
5038 of the function. Just keep going, which will single-step back
5039 to the caller. */
5040 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5041 {
5042 struct symtab_and_line sr_sal;
5043
5044 /* Normal function call return (static or dynamic). */
5045 init_sal (&sr_sal);
5046 sr_sal.pc = ecs->stop_func_start;
5047 sr_sal.pspace = get_frame_program_space (frame);
5048 insert_step_resume_breakpoint_at_sal (gdbarch,
5049 sr_sal, null_frame_id);
5050 }
5051 }
5052 else
5053 insert_step_resume_breakpoint_at_caller (frame);
5054
5055 keep_going (ecs);
5056 return;
5057 }
5058
5059 /* If we are in a function call trampoline (a stub between the
5060 calling routine and the real function), locate the real
5061 function. That's what tells us (a) whether we want to step
5062 into it at all, and (b) what prologue we want to run to the
5063 end of, if we do step into it. */
5064 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5065 if (real_stop_pc == 0)
5066 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5067 if (real_stop_pc != 0)
5068 ecs->stop_func_start = real_stop_pc;
5069
5070 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5071 {
5072 struct symtab_and_line sr_sal;
5073
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
5076 sr_sal.pspace = get_frame_program_space (frame);
5077
5078 insert_step_resume_breakpoint_at_sal (gdbarch,
5079 sr_sal, null_frame_id);
5080 keep_going (ecs);
5081 return;
5082 }
5083
5084 /* If we have line number information for the function we are
5085 thinking of stepping into and the function isn't on the skip
5086 list, step into it.
5087
5088 If there are several symtabs at that PC (e.g. with include
5089 files), just want to know whether *any* of them have line
5090 numbers. find_pc_line handles this. */
5091 {
5092 struct symtab_and_line tmp_sal;
5093
5094 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5095 if (tmp_sal.line != 0
5096 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5097 &tmp_sal))
5098 {
5099 if (execution_direction == EXEC_REVERSE)
5100 handle_step_into_function_backward (gdbarch, ecs);
5101 else
5102 handle_step_into_function (gdbarch, ecs);
5103 return;
5104 }
5105 }
5106
5107 /* If we have no line number and the step-stop-if-no-debug is
5108 set, we stop the step so that the user has a chance to switch
5109 in assembly mode. */
5110 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5111 && step_stop_if_no_debug)
5112 {
5113 end_stepping_range (ecs);
5114 return;
5115 }
5116
5117 if (execution_direction == EXEC_REVERSE)
5118 {
5119 /* If we're already at the start of the function, we've either just
5120 stepped backward into a single instruction function without line
5121 number info, or stepped back out of a signal handler to the first
5122 instruction of the function without line number info. Just keep
5123 going, which will single-step back to the caller. */
5124 if (ecs->stop_func_start != stop_pc)
5125 {
5126 /* Set a breakpoint at callee's start address.
5127 From there we can step once and be back in the caller. */
5128 struct symtab_and_line sr_sal;
5129
5130 init_sal (&sr_sal);
5131 sr_sal.pc = ecs->stop_func_start;
5132 sr_sal.pspace = get_frame_program_space (frame);
5133 insert_step_resume_breakpoint_at_sal (gdbarch,
5134 sr_sal, null_frame_id);
5135 }
5136 }
5137 else
5138 /* Set a breakpoint at callee's return address (the address
5139 at which the caller will resume). */
5140 insert_step_resume_breakpoint_at_caller (frame);
5141
5142 keep_going (ecs);
5143 return;
5144 }
5145
5146 /* Reverse stepping through solib trampolines. */
5147
5148 if (execution_direction == EXEC_REVERSE
5149 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5150 {
5151 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5152 || (ecs->stop_func_start == 0
5153 && in_solib_dynsym_resolve_code (stop_pc)))
5154 {
5155 /* Any solib trampoline code can be handled in reverse
5156 by simply continuing to single-step. We have already
5157 executed the solib function (backwards), and a few
5158 steps will take us back through the trampoline to the
5159 caller. */
5160 keep_going (ecs);
5161 return;
5162 }
5163 else if (in_solib_dynsym_resolve_code (stop_pc))
5164 {
5165 /* Stepped backward into the solib dynsym resolver.
5166 Set a breakpoint at its start and continue, then
5167 one more step will take us out. */
5168 struct symtab_and_line sr_sal;
5169
5170 init_sal (&sr_sal);
5171 sr_sal.pc = ecs->stop_func_start;
5172 sr_sal.pspace = get_frame_program_space (frame);
5173 insert_step_resume_breakpoint_at_sal (gdbarch,
5174 sr_sal, null_frame_id);
5175 keep_going (ecs);
5176 return;
5177 }
5178 }
5179
5180 stop_pc_sal = find_pc_line (stop_pc, 0);
5181
5182 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5183 the trampoline processing logic, however, there are some trampolines
5184 that have no names, so we should do trampoline handling first. */
5185 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5186 && ecs->stop_func_name == NULL
5187 && stop_pc_sal.line == 0)
5188 {
5189 if (debug_infrun)
5190 fprintf_unfiltered (gdb_stdlog,
5191 "infrun: stepped into undebuggable function\n");
5192
5193 /* The inferior just stepped into, or returned to, an
5194 undebuggable function (where there is no debugging information
5195 and no line number corresponding to the address where the
5196 inferior stopped). Since we want to skip this kind of code,
5197 we keep going until the inferior returns from this
5198 function - unless the user has asked us not to (via
5199 set step-mode) or we no longer know how to get back
5200 to the call site. */
5201 if (step_stop_if_no_debug
5202 || !frame_id_p (frame_unwind_caller_id (frame)))
5203 {
5204 /* If we have no line number and the step-stop-if-no-debug
5205 is set, we stop the step so that the user has a chance to
5206 switch in assembly mode. */
5207 end_stepping_range (ecs);
5208 return;
5209 }
5210 else
5211 {
5212 /* Set a breakpoint at callee's return address (the address
5213 at which the caller will resume). */
5214 insert_step_resume_breakpoint_at_caller (frame);
5215 keep_going (ecs);
5216 return;
5217 }
5218 }
5219
5220 if (ecs->event_thread->control.step_range_end == 1)
5221 {
5222 /* It is stepi or nexti. We always want to stop stepping after
5223 one instruction. */
5224 if (debug_infrun)
5225 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5226 end_stepping_range (ecs);
5227 return;
5228 }
5229
5230 if (stop_pc_sal.line == 0)
5231 {
5232 /* We have no line number information. That means to stop
5233 stepping (does this always happen right after one instruction,
5234 when we do "s" in a function with no line numbers,
5235 or can this happen as a result of a return or longjmp?). */
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5238 end_stepping_range (ecs);
5239 return;
5240 }
5241
5242 /* Look for "calls" to inlined functions, part one. If the inline
5243 frame machinery detected some skipped call sites, we have entered
5244 a new inline function. */
5245
5246 if (frame_id_eq (get_frame_id (get_current_frame ()),
5247 ecs->event_thread->control.step_frame_id)
5248 && inline_skipped_frames (ecs->ptid))
5249 {
5250 struct symtab_and_line call_sal;
5251
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: stepped into inlined function\n");
5255
5256 find_frame_sal (get_current_frame (), &call_sal);
5257
5258 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5259 {
5260 /* For "step", we're going to stop. But if the call site
5261 for this inlined function is on the same source line as
5262 we were previously stepping, go down into the function
5263 first. Otherwise stop at the call site. */
5264
5265 if (call_sal.line == ecs->event_thread->current_line
5266 && call_sal.symtab == ecs->event_thread->current_symtab)
5267 step_into_inline_frame (ecs->ptid);
5268
5269 end_stepping_range (ecs);
5270 return;
5271 }
5272 else
5273 {
5274 /* For "next", we should stop at the call site if it is on a
5275 different source line. Otherwise continue through the
5276 inlined function. */
5277 if (call_sal.line == ecs->event_thread->current_line
5278 && call_sal.symtab == ecs->event_thread->current_symtab)
5279 keep_going (ecs);
5280 else
5281 end_stepping_range (ecs);
5282 return;
5283 }
5284 }
5285
5286 /* Look for "calls" to inlined functions, part two. If we are still
5287 in the same real function we were stepping through, but we have
5288 to go further up to find the exact frame ID, we are stepping
5289 through a more inlined call beyond its call site. */
5290
5291 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5292 && !frame_id_eq (get_frame_id (get_current_frame ()),
5293 ecs->event_thread->control.step_frame_id)
5294 && stepped_in_from (get_current_frame (),
5295 ecs->event_thread->control.step_frame_id))
5296 {
5297 if (debug_infrun)
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: stepping through inlined function\n");
5300
5301 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5302 keep_going (ecs);
5303 else
5304 end_stepping_range (ecs);
5305 return;
5306 }
5307
5308 if ((stop_pc == stop_pc_sal.pc)
5309 && (ecs->event_thread->current_line != stop_pc_sal.line
5310 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5311 {
5312 /* We are at the start of a different line. So stop. Note that
5313 we don't stop if we step into the middle of a different line.
5314 That is said to make things like for (;;) statements work
5315 better. */
5316 if (debug_infrun)
5317 fprintf_unfiltered (gdb_stdlog,
5318 "infrun: stepped to a different line\n");
5319 end_stepping_range (ecs);
5320 return;
5321 }
5322
5323 /* We aren't done stepping.
5324
5325 Optimize by setting the stepping range to the line.
5326 (We might not be in the original line, but if we entered a
5327 new line in mid-statement, we continue stepping. This makes
5328 things like for(;;) statements work better.) */
5329
5330 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5331 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5332 ecs->event_thread->control.may_range_step = 1;
5333 set_step_info (frame, stop_pc_sal);
5334
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5337 keep_going (ecs);
5338 }
5339
5340 /* In all-stop mode, if we're currently stepping but have stopped in
5341 some other thread, we may need to switch back to the stepped
5342 thread. Returns true we set the inferior running, false if we left
5343 it stopped (and the event needs further processing). */
5344
5345 static int
5346 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5347 {
5348 if (!non_stop)
5349 {
5350 struct thread_info *tp;
5351 struct thread_info *stepping_thread;
5352 struct thread_info *step_over;
5353
5354 /* If any thread is blocked on some internal breakpoint, and we
5355 simply need to step over that breakpoint to get it going
5356 again, do that first. */
5357
5358 /* However, if we see an event for the stepping thread, then we
5359 know all other threads have been moved past their breakpoints
5360 already. Let the caller check whether the step is finished,
5361 etc., before deciding to move it past a breakpoint. */
5362 if (ecs->event_thread->control.step_range_end != 0)
5363 return 0;
5364
5365 /* Check if the current thread is blocked on an incomplete
5366 step-over, interrupted by a random signal. */
5367 if (ecs->event_thread->control.trap_expected
5368 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5369 {
5370 if (debug_infrun)
5371 {
5372 fprintf_unfiltered (gdb_stdlog,
5373 "infrun: need to finish step-over of [%s]\n",
5374 target_pid_to_str (ecs->event_thread->ptid));
5375 }
5376 keep_going (ecs);
5377 return 1;
5378 }
5379
5380 /* Check if the current thread is blocked by a single-step
5381 breakpoint of another thread. */
5382 if (ecs->hit_singlestep_breakpoint)
5383 {
5384 if (debug_infrun)
5385 {
5386 fprintf_unfiltered (gdb_stdlog,
5387 "infrun: need to step [%s] over single-step "
5388 "breakpoint\n",
5389 target_pid_to_str (ecs->ptid));
5390 }
5391 keep_going (ecs);
5392 return 1;
5393 }
5394
5395 /* Otherwise, we no longer expect a trap in the current thread.
5396 Clear the trap_expected flag before switching back -- this is
5397 what keep_going does as well, if we call it. */
5398 ecs->event_thread->control.trap_expected = 0;
5399
5400 /* Likewise, clear the signal if it should not be passed. */
5401 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5402 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5403
5404 /* If scheduler locking applies even if not stepping, there's no
5405 need to walk over threads. Above we've checked whether the
5406 current thread is stepping. If some other thread not the
5407 event thread is stepping, then it must be that scheduler
5408 locking is not in effect. */
5409 if (schedlock_applies (0))
5410 return 0;
5411
5412 /* Look for the stepping/nexting thread, and check if any other
5413 thread other than the stepping thread needs to start a
5414 step-over. Do all step-overs before actually proceeding with
5415 step/next/etc. */
5416 stepping_thread = NULL;
5417 step_over = NULL;
5418 ALL_NON_EXITED_THREADS (tp)
5419 {
5420 /* Ignore threads of processes we're not resuming. */
5421 if (!sched_multi
5422 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5423 continue;
5424
5425 /* When stepping over a breakpoint, we lock all threads
5426 except the one that needs to move past the breakpoint.
5427 If a non-event thread has this set, the "incomplete
5428 step-over" check above should have caught it earlier. */
5429 gdb_assert (!tp->control.trap_expected);
5430
5431 /* Did we find the stepping thread? */
5432 if (tp->control.step_range_end)
5433 {
5434 /* Yep. There should only one though. */
5435 gdb_assert (stepping_thread == NULL);
5436
5437 /* The event thread is handled at the top, before we
5438 enter this loop. */
5439 gdb_assert (tp != ecs->event_thread);
5440
5441 /* If some thread other than the event thread is
5442 stepping, then scheduler locking can't be in effect,
5443 otherwise we wouldn't have resumed the current event
5444 thread in the first place. */
5445 gdb_assert (!schedlock_applies (1));
5446
5447 stepping_thread = tp;
5448 }
5449 else if (thread_still_needs_step_over (tp))
5450 {
5451 step_over = tp;
5452
5453 /* At the top we've returned early if the event thread
5454 is stepping. If some other thread not the event
5455 thread is stepping, then scheduler locking can't be
5456 in effect, and we can resume this thread. No need to
5457 keep looking for the stepping thread then. */
5458 break;
5459 }
5460 }
5461
5462 if (step_over != NULL)
5463 {
5464 tp = step_over;
5465 if (debug_infrun)
5466 {
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: need to step-over [%s]\n",
5469 target_pid_to_str (tp->ptid));
5470 }
5471
5472 /* Only the stepping thread should have this set. */
5473 gdb_assert (tp->control.step_range_end == 0);
5474
5475 ecs->ptid = tp->ptid;
5476 ecs->event_thread = tp;
5477 switch_to_thread (ecs->ptid);
5478 keep_going (ecs);
5479 return 1;
5480 }
5481
5482 if (stepping_thread != NULL)
5483 {
5484 struct frame_info *frame;
5485 struct gdbarch *gdbarch;
5486
5487 tp = stepping_thread;
5488
5489 /* If the stepping thread exited, then don't try to switch
5490 back and resume it, which could fail in several different
5491 ways depending on the target. Instead, just keep going.
5492
5493 We can find a stepping dead thread in the thread list in
5494 two cases:
5495
5496 - The target supports thread exit events, and when the
5497 target tries to delete the thread from the thread list,
5498 inferior_ptid pointed at the exiting thread. In such
5499 case, calling delete_thread does not really remove the
5500 thread from the list; instead, the thread is left listed,
5501 with 'exited' state.
5502
5503 - The target's debug interface does not support thread
5504 exit events, and so we have no idea whatsoever if the
5505 previously stepping thread is still alive. For that
5506 reason, we need to synchronously query the target
5507 now. */
5508 if (is_exited (tp->ptid)
5509 || !target_thread_alive (tp->ptid))
5510 {
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: not switching back to "
5514 "stepped thread, it has vanished\n");
5515
5516 delete_thread (tp->ptid);
5517 keep_going (ecs);
5518 return 1;
5519 }
5520
5521 if (debug_infrun)
5522 fprintf_unfiltered (gdb_stdlog,
5523 "infrun: switching back to stepped thread\n");
5524
5525 ecs->event_thread = tp;
5526 ecs->ptid = tp->ptid;
5527 context_switch (ecs->ptid);
5528
5529 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5530 frame = get_current_frame ();
5531 gdbarch = get_frame_arch (frame);
5532
5533 /* If the PC of the thread we were trying to single-step has
5534 changed, then that thread has trapped or been signaled,
5535 but the event has not been reported to GDB yet. Re-poll
5536 the target looking for this particular thread's event
5537 (i.e. temporarily enable schedlock) by:
5538
5539 - setting a break at the current PC
5540 - resuming that particular thread, only (by setting
5541 trap expected)
5542
5543 This prevents us continuously moving the single-step
5544 breakpoint forward, one instruction at a time,
5545 overstepping. */
5546
5547 if (gdbarch_software_single_step_p (gdbarch)
5548 && stop_pc != tp->prev_pc)
5549 {
5550 if (debug_infrun)
5551 fprintf_unfiltered (gdb_stdlog,
5552 "infrun: expected thread advanced also\n");
5553
5554 insert_single_step_breakpoint (get_frame_arch (frame),
5555 get_frame_address_space (frame),
5556 stop_pc);
5557 singlestep_breakpoints_inserted_p = 1;
5558 ecs->event_thread->control.trap_expected = 1;
5559 singlestep_ptid = inferior_ptid;
5560 singlestep_pc = stop_pc;
5561
5562 resume (0, GDB_SIGNAL_0);
5563 prepare_to_wait (ecs);
5564 }
5565 else
5566 {
5567 if (debug_infrun)
5568 fprintf_unfiltered (gdb_stdlog,
5569 "infrun: expected thread still "
5570 "hasn't advanced\n");
5571 keep_going (ecs);
5572 }
5573
5574 return 1;
5575 }
5576 }
5577 return 0;
5578 }
5579
5580 /* Is thread TP in the middle of single-stepping? */
5581
5582 static int
5583 currently_stepping (struct thread_info *tp)
5584 {
5585 return ((tp->control.step_range_end
5586 && tp->control.step_resume_breakpoint == NULL)
5587 || tp->control.trap_expected
5588 || bpstat_should_step ());
5589 }
5590
5591 /* Inferior has stepped into a subroutine call with source code that
5592 we should not step over. Do step to the first line of code in
5593 it. */
5594
5595 static void
5596 handle_step_into_function (struct gdbarch *gdbarch,
5597 struct execution_control_state *ecs)
5598 {
5599 struct symtab *s;
5600 struct symtab_and_line stop_func_sal, sr_sal;
5601
5602 fill_in_stop_func (gdbarch, ecs);
5603
5604 s = find_pc_symtab (stop_pc);
5605 if (s && s->language != language_asm)
5606 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5607 ecs->stop_func_start);
5608
5609 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5610 /* Use the step_resume_break to step until the end of the prologue,
5611 even if that involves jumps (as it seems to on the vax under
5612 4.2). */
5613 /* If the prologue ends in the middle of a source line, continue to
5614 the end of that source line (if it is still within the function).
5615 Otherwise, just go to end of prologue. */
5616 if (stop_func_sal.end
5617 && stop_func_sal.pc != ecs->stop_func_start
5618 && stop_func_sal.end < ecs->stop_func_end)
5619 ecs->stop_func_start = stop_func_sal.end;
5620
5621 /* Architectures which require breakpoint adjustment might not be able
5622 to place a breakpoint at the computed address. If so, the test
5623 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5624 ecs->stop_func_start to an address at which a breakpoint may be
5625 legitimately placed.
5626
5627 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5628 made, GDB will enter an infinite loop when stepping through
5629 optimized code consisting of VLIW instructions which contain
5630 subinstructions corresponding to different source lines. On
5631 FR-V, it's not permitted to place a breakpoint on any but the
5632 first subinstruction of a VLIW instruction. When a breakpoint is
5633 set, GDB will adjust the breakpoint address to the beginning of
5634 the VLIW instruction. Thus, we need to make the corresponding
5635 adjustment here when computing the stop address. */
5636
5637 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5638 {
5639 ecs->stop_func_start
5640 = gdbarch_adjust_breakpoint_address (gdbarch,
5641 ecs->stop_func_start);
5642 }
5643
5644 if (ecs->stop_func_start == stop_pc)
5645 {
5646 /* We are already there: stop now. */
5647 end_stepping_range (ecs);
5648 return;
5649 }
5650 else
5651 {
5652 /* Put the step-breakpoint there and go until there. */
5653 init_sal (&sr_sal); /* initialize to zeroes */
5654 sr_sal.pc = ecs->stop_func_start;
5655 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5656 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5657
5658 /* Do not specify what the fp should be when we stop since on
5659 some machines the prologue is where the new fp value is
5660 established. */
5661 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5662
5663 /* And make sure stepping stops right away then. */
5664 ecs->event_thread->control.step_range_end
5665 = ecs->event_thread->control.step_range_start;
5666 }
5667 keep_going (ecs);
5668 }
5669
5670 /* Inferior has stepped backward into a subroutine call with source
5671 code that we should not step over. Do step to the beginning of the
5672 last line of code in it. */
5673
5674 static void
5675 handle_step_into_function_backward (struct gdbarch *gdbarch,
5676 struct execution_control_state *ecs)
5677 {
5678 struct symtab *s;
5679 struct symtab_and_line stop_func_sal;
5680
5681 fill_in_stop_func (gdbarch, ecs);
5682
5683 s = find_pc_symtab (stop_pc);
5684 if (s && s->language != language_asm)
5685 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5686 ecs->stop_func_start);
5687
5688 stop_func_sal = find_pc_line (stop_pc, 0);
5689
5690 /* OK, we're just going to keep stepping here. */
5691 if (stop_func_sal.pc == stop_pc)
5692 {
5693 /* We're there already. Just stop stepping now. */
5694 end_stepping_range (ecs);
5695 }
5696 else
5697 {
5698 /* Else just reset the step range and keep going.
5699 No step-resume breakpoint, they don't work for
5700 epilogues, which can have multiple entry paths. */
5701 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5702 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5703 keep_going (ecs);
5704 }
5705 return;
5706 }
5707
5708 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5709 This is used to both functions and to skip over code. */
5710
5711 static void
5712 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5713 struct symtab_and_line sr_sal,
5714 struct frame_id sr_id,
5715 enum bptype sr_type)
5716 {
5717 /* There should never be more than one step-resume or longjmp-resume
5718 breakpoint per thread, so we should never be setting a new
5719 step_resume_breakpoint when one is already active. */
5720 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5721 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5722
5723 if (debug_infrun)
5724 fprintf_unfiltered (gdb_stdlog,
5725 "infrun: inserting step-resume breakpoint at %s\n",
5726 paddress (gdbarch, sr_sal.pc));
5727
5728 inferior_thread ()->control.step_resume_breakpoint
5729 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5730 }
5731
5732 void
5733 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5734 struct symtab_and_line sr_sal,
5735 struct frame_id sr_id)
5736 {
5737 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5738 sr_sal, sr_id,
5739 bp_step_resume);
5740 }
5741
5742 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5743 This is used to skip a potential signal handler.
5744
5745 This is called with the interrupted function's frame. The signal
5746 handler, when it returns, will resume the interrupted function at
5747 RETURN_FRAME.pc. */
5748
5749 static void
5750 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5751 {
5752 struct symtab_and_line sr_sal;
5753 struct gdbarch *gdbarch;
5754
5755 gdb_assert (return_frame != NULL);
5756 init_sal (&sr_sal); /* initialize to zeros */
5757
5758 gdbarch = get_frame_arch (return_frame);
5759 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5760 sr_sal.section = find_pc_overlay (sr_sal.pc);
5761 sr_sal.pspace = get_frame_program_space (return_frame);
5762
5763 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5764 get_stack_frame_id (return_frame),
5765 bp_hp_step_resume);
5766 }
5767
5768 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5769 is used to skip a function after stepping into it (for "next" or if
5770 the called function has no debugging information).
5771
5772 The current function has almost always been reached by single
5773 stepping a call or return instruction. NEXT_FRAME belongs to the
5774 current function, and the breakpoint will be set at the caller's
5775 resume address.
5776
5777 This is a separate function rather than reusing
5778 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5779 get_prev_frame, which may stop prematurely (see the implementation
5780 of frame_unwind_caller_id for an example). */
5781
5782 static void
5783 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5784 {
5785 struct symtab_and_line sr_sal;
5786 struct gdbarch *gdbarch;
5787
5788 /* We shouldn't have gotten here if we don't know where the call site
5789 is. */
5790 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5791
5792 init_sal (&sr_sal); /* initialize to zeros */
5793
5794 gdbarch = frame_unwind_caller_arch (next_frame);
5795 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5796 frame_unwind_caller_pc (next_frame));
5797 sr_sal.section = find_pc_overlay (sr_sal.pc);
5798 sr_sal.pspace = frame_unwind_program_space (next_frame);
5799
5800 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5801 frame_unwind_caller_id (next_frame));
5802 }
5803
5804 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5805 new breakpoint at the target of a jmp_buf. The handling of
5806 longjmp-resume uses the same mechanisms used for handling
5807 "step-resume" breakpoints. */
5808
5809 static void
5810 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5811 {
5812 /* There should never be more than one longjmp-resume breakpoint per
5813 thread, so we should never be setting a new
5814 longjmp_resume_breakpoint when one is already active. */
5815 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5816
5817 if (debug_infrun)
5818 fprintf_unfiltered (gdb_stdlog,
5819 "infrun: inserting longjmp-resume breakpoint at %s\n",
5820 paddress (gdbarch, pc));
5821
5822 inferior_thread ()->control.exception_resume_breakpoint =
5823 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5824 }
5825
5826 /* Insert an exception resume breakpoint. TP is the thread throwing
5827 the exception. The block B is the block of the unwinder debug hook
5828 function. FRAME is the frame corresponding to the call to this
5829 function. SYM is the symbol of the function argument holding the
5830 target PC of the exception. */
5831
5832 static void
5833 insert_exception_resume_breakpoint (struct thread_info *tp,
5834 const struct block *b,
5835 struct frame_info *frame,
5836 struct symbol *sym)
5837 {
5838 volatile struct gdb_exception e;
5839
5840 /* We want to ignore errors here. */
5841 TRY_CATCH (e, RETURN_MASK_ERROR)
5842 {
5843 struct symbol *vsym;
5844 struct value *value;
5845 CORE_ADDR handler;
5846 struct breakpoint *bp;
5847
5848 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5849 value = read_var_value (vsym, frame);
5850 /* If the value was optimized out, revert to the old behavior. */
5851 if (! value_optimized_out (value))
5852 {
5853 handler = value_as_address (value);
5854
5855 if (debug_infrun)
5856 fprintf_unfiltered (gdb_stdlog,
5857 "infrun: exception resume at %lx\n",
5858 (unsigned long) handler);
5859
5860 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5861 handler, bp_exception_resume);
5862
5863 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5864 frame = NULL;
5865
5866 bp->thread = tp->num;
5867 inferior_thread ()->control.exception_resume_breakpoint = bp;
5868 }
5869 }
5870 }
5871
5872 /* A helper for check_exception_resume that sets an
5873 exception-breakpoint based on a SystemTap probe. */
5874
5875 static void
5876 insert_exception_resume_from_probe (struct thread_info *tp,
5877 const struct bound_probe *probe,
5878 struct frame_info *frame)
5879 {
5880 struct value *arg_value;
5881 CORE_ADDR handler;
5882 struct breakpoint *bp;
5883
5884 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5885 if (!arg_value)
5886 return;
5887
5888 handler = value_as_address (arg_value);
5889
5890 if (debug_infrun)
5891 fprintf_unfiltered (gdb_stdlog,
5892 "infrun: exception resume at %s\n",
5893 paddress (get_objfile_arch (probe->objfile),
5894 handler));
5895
5896 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5897 handler, bp_exception_resume);
5898 bp->thread = tp->num;
5899 inferior_thread ()->control.exception_resume_breakpoint = bp;
5900 }
5901
5902 /* This is called when an exception has been intercepted. Check to
5903 see whether the exception's destination is of interest, and if so,
5904 set an exception resume breakpoint there. */
5905
5906 static void
5907 check_exception_resume (struct execution_control_state *ecs,
5908 struct frame_info *frame)
5909 {
5910 volatile struct gdb_exception e;
5911 struct bound_probe probe;
5912 struct symbol *func;
5913
5914 /* First see if this exception unwinding breakpoint was set via a
5915 SystemTap probe point. If so, the probe has two arguments: the
5916 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5917 set a breakpoint there. */
5918 probe = find_probe_by_pc (get_frame_pc (frame));
5919 if (probe.probe)
5920 {
5921 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
5922 return;
5923 }
5924
5925 func = get_frame_function (frame);
5926 if (!func)
5927 return;
5928
5929 TRY_CATCH (e, RETURN_MASK_ERROR)
5930 {
5931 const struct block *b;
5932 struct block_iterator iter;
5933 struct symbol *sym;
5934 int argno = 0;
5935
5936 /* The exception breakpoint is a thread-specific breakpoint on
5937 the unwinder's debug hook, declared as:
5938
5939 void _Unwind_DebugHook (void *cfa, void *handler);
5940
5941 The CFA argument indicates the frame to which control is
5942 about to be transferred. HANDLER is the destination PC.
5943
5944 We ignore the CFA and set a temporary breakpoint at HANDLER.
5945 This is not extremely efficient but it avoids issues in gdb
5946 with computing the DWARF CFA, and it also works even in weird
5947 cases such as throwing an exception from inside a signal
5948 handler. */
5949
5950 b = SYMBOL_BLOCK_VALUE (func);
5951 ALL_BLOCK_SYMBOLS (b, iter, sym)
5952 {
5953 if (!SYMBOL_IS_ARGUMENT (sym))
5954 continue;
5955
5956 if (argno == 0)
5957 ++argno;
5958 else
5959 {
5960 insert_exception_resume_breakpoint (ecs->event_thread,
5961 b, frame, sym);
5962 break;
5963 }
5964 }
5965 }
5966 }
5967
5968 static void
5969 stop_waiting (struct execution_control_state *ecs)
5970 {
5971 if (debug_infrun)
5972 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
5973
5974 clear_step_over_info ();
5975
5976 /* Let callers know we don't want to wait for the inferior anymore. */
5977 ecs->wait_some_more = 0;
5978 }
5979
5980 /* Called when we should continue running the inferior, because the
5981 current event doesn't cause a user visible stop. This does the
5982 resuming part; waiting for the next event is done elsewhere. */
5983
5984 static void
5985 keep_going (struct execution_control_state *ecs)
5986 {
5987 /* Make sure normal_stop is called if we get a QUIT handled before
5988 reaching resume. */
5989 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5990
5991 /* Save the pc before execution, to compare with pc after stop. */
5992 ecs->event_thread->prev_pc
5993 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5994
5995 if (ecs->event_thread->control.trap_expected
5996 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5997 {
5998 /* We haven't yet gotten our trap, and either: intercepted a
5999 non-signal event (e.g., a fork); or took a signal which we
6000 are supposed to pass through to the inferior. Simply
6001 continue. */
6002 discard_cleanups (old_cleanups);
6003 resume (currently_stepping (ecs->event_thread),
6004 ecs->event_thread->suspend.stop_signal);
6005 }
6006 else
6007 {
6008 volatile struct gdb_exception e;
6009 struct regcache *regcache = get_current_regcache ();
6010
6011 /* Either the trap was not expected, but we are continuing
6012 anyway (if we got a signal, the user asked it be passed to
6013 the child)
6014 -- or --
6015 We got our expected trap, but decided we should resume from
6016 it.
6017
6018 We're going to run this baby now!
6019
6020 Note that insert_breakpoints won't try to re-insert
6021 already inserted breakpoints. Therefore, we don't
6022 care if breakpoints were already inserted, or not. */
6023
6024 /* If we need to step over a breakpoint, and we're not using
6025 displaced stepping to do so, insert all breakpoints
6026 (watchpoints, etc.) but the one we're stepping over, step one
6027 instruction, and then re-insert the breakpoint when that step
6028 is finished. */
6029 if ((ecs->hit_singlestep_breakpoint
6030 || thread_still_needs_step_over (ecs->event_thread))
6031 && !use_displaced_stepping (get_regcache_arch (regcache)))
6032 {
6033 set_step_over_info (get_regcache_aspace (regcache),
6034 regcache_read_pc (regcache));
6035 }
6036 else
6037 clear_step_over_info ();
6038
6039 /* Stop stepping if inserting breakpoints fails. */
6040 TRY_CATCH (e, RETURN_MASK_ERROR)
6041 {
6042 insert_breakpoints ();
6043 }
6044 if (e.reason < 0)
6045 {
6046 exception_print (gdb_stderr, e);
6047 stop_waiting (ecs);
6048 return;
6049 }
6050
6051 ecs->event_thread->control.trap_expected
6052 = (ecs->event_thread->stepping_over_breakpoint
6053 || ecs->hit_singlestep_breakpoint);
6054
6055 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6056 explicitly specifies that such a signal should be delivered
6057 to the target program). Typically, that would occur when a
6058 user is debugging a target monitor on a simulator: the target
6059 monitor sets a breakpoint; the simulator encounters this
6060 breakpoint and halts the simulation handing control to GDB;
6061 GDB, noting that the stop address doesn't map to any known
6062 breakpoint, returns control back to the simulator; the
6063 simulator then delivers the hardware equivalent of a
6064 GDB_SIGNAL_TRAP to the program being debugged. */
6065 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6066 && !signal_program[ecs->event_thread->suspend.stop_signal])
6067 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6068
6069 discard_cleanups (old_cleanups);
6070 resume (currently_stepping (ecs->event_thread),
6071 ecs->event_thread->suspend.stop_signal);
6072 }
6073
6074 prepare_to_wait (ecs);
6075 }
6076
6077 /* This function normally comes after a resume, before
6078 handle_inferior_event exits. It takes care of any last bits of
6079 housekeeping, and sets the all-important wait_some_more flag. */
6080
6081 static void
6082 prepare_to_wait (struct execution_control_state *ecs)
6083 {
6084 if (debug_infrun)
6085 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6086
6087 /* This is the old end of the while loop. Let everybody know we
6088 want to wait for the inferior some more and get called again
6089 soon. */
6090 ecs->wait_some_more = 1;
6091 }
6092
6093 /* We are done with the step range of a step/next/si/ni command.
6094 Called once for each n of a "step n" operation. */
6095
6096 static void
6097 end_stepping_range (struct execution_control_state *ecs)
6098 {
6099 ecs->event_thread->control.stop_step = 1;
6100 stop_waiting (ecs);
6101 }
6102
6103 /* Several print_*_reason functions to print why the inferior has stopped.
6104 We always print something when the inferior exits, or receives a signal.
6105 The rest of the cases are dealt with later on in normal_stop and
6106 print_it_typical. Ideally there should be a call to one of these
6107 print_*_reason functions functions from handle_inferior_event each time
6108 stop_waiting is called.
6109
6110 Note that we don't call these directly, instead we delegate that to
6111 the interpreters, through observers. Interpreters then call these
6112 with whatever uiout is right. */
6113
6114 void
6115 print_end_stepping_range_reason (struct ui_out *uiout)
6116 {
6117 /* For CLI-like interpreters, print nothing. */
6118
6119 if (ui_out_is_mi_like_p (uiout))
6120 {
6121 ui_out_field_string (uiout, "reason",
6122 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6123 }
6124 }
6125
6126 void
6127 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6128 {
6129 annotate_signalled ();
6130 if (ui_out_is_mi_like_p (uiout))
6131 ui_out_field_string
6132 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6133 ui_out_text (uiout, "\nProgram terminated with signal ");
6134 annotate_signal_name ();
6135 ui_out_field_string (uiout, "signal-name",
6136 gdb_signal_to_name (siggnal));
6137 annotate_signal_name_end ();
6138 ui_out_text (uiout, ", ");
6139 annotate_signal_string ();
6140 ui_out_field_string (uiout, "signal-meaning",
6141 gdb_signal_to_string (siggnal));
6142 annotate_signal_string_end ();
6143 ui_out_text (uiout, ".\n");
6144 ui_out_text (uiout, "The program no longer exists.\n");
6145 }
6146
6147 void
6148 print_exited_reason (struct ui_out *uiout, int exitstatus)
6149 {
6150 struct inferior *inf = current_inferior ();
6151 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6152
6153 annotate_exited (exitstatus);
6154 if (exitstatus)
6155 {
6156 if (ui_out_is_mi_like_p (uiout))
6157 ui_out_field_string (uiout, "reason",
6158 async_reason_lookup (EXEC_ASYNC_EXITED));
6159 ui_out_text (uiout, "[Inferior ");
6160 ui_out_text (uiout, plongest (inf->num));
6161 ui_out_text (uiout, " (");
6162 ui_out_text (uiout, pidstr);
6163 ui_out_text (uiout, ") exited with code ");
6164 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6165 ui_out_text (uiout, "]\n");
6166 }
6167 else
6168 {
6169 if (ui_out_is_mi_like_p (uiout))
6170 ui_out_field_string
6171 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6172 ui_out_text (uiout, "[Inferior ");
6173 ui_out_text (uiout, plongest (inf->num));
6174 ui_out_text (uiout, " (");
6175 ui_out_text (uiout, pidstr);
6176 ui_out_text (uiout, ") exited normally]\n");
6177 }
6178 }
6179
6180 void
6181 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6182 {
6183 annotate_signal ();
6184
6185 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6186 {
6187 struct thread_info *t = inferior_thread ();
6188
6189 ui_out_text (uiout, "\n[");
6190 ui_out_field_string (uiout, "thread-name",
6191 target_pid_to_str (t->ptid));
6192 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6193 ui_out_text (uiout, " stopped");
6194 }
6195 else
6196 {
6197 ui_out_text (uiout, "\nProgram received signal ");
6198 annotate_signal_name ();
6199 if (ui_out_is_mi_like_p (uiout))
6200 ui_out_field_string
6201 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6202 ui_out_field_string (uiout, "signal-name",
6203 gdb_signal_to_name (siggnal));
6204 annotate_signal_name_end ();
6205 ui_out_text (uiout, ", ");
6206 annotate_signal_string ();
6207 ui_out_field_string (uiout, "signal-meaning",
6208 gdb_signal_to_string (siggnal));
6209 annotate_signal_string_end ();
6210 }
6211 ui_out_text (uiout, ".\n");
6212 }
6213
6214 void
6215 print_no_history_reason (struct ui_out *uiout)
6216 {
6217 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6218 }
6219
6220 /* Print current location without a level number, if we have changed
6221 functions or hit a breakpoint. Print source line if we have one.
6222 bpstat_print contains the logic deciding in detail what to print,
6223 based on the event(s) that just occurred. */
6224
6225 void
6226 print_stop_event (struct target_waitstatus *ws)
6227 {
6228 int bpstat_ret;
6229 int source_flag;
6230 int do_frame_printing = 1;
6231 struct thread_info *tp = inferior_thread ();
6232
6233 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6234 switch (bpstat_ret)
6235 {
6236 case PRINT_UNKNOWN:
6237 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6238 should) carry around the function and does (or should) use
6239 that when doing a frame comparison. */
6240 if (tp->control.stop_step
6241 && frame_id_eq (tp->control.step_frame_id,
6242 get_frame_id (get_current_frame ()))
6243 && step_start_function == find_pc_function (stop_pc))
6244 {
6245 /* Finished step, just print source line. */
6246 source_flag = SRC_LINE;
6247 }
6248 else
6249 {
6250 /* Print location and source line. */
6251 source_flag = SRC_AND_LOC;
6252 }
6253 break;
6254 case PRINT_SRC_AND_LOC:
6255 /* Print location and source line. */
6256 source_flag = SRC_AND_LOC;
6257 break;
6258 case PRINT_SRC_ONLY:
6259 source_flag = SRC_LINE;
6260 break;
6261 case PRINT_NOTHING:
6262 /* Something bogus. */
6263 source_flag = SRC_LINE;
6264 do_frame_printing = 0;
6265 break;
6266 default:
6267 internal_error (__FILE__, __LINE__, _("Unknown value."));
6268 }
6269
6270 /* The behavior of this routine with respect to the source
6271 flag is:
6272 SRC_LINE: Print only source line
6273 LOCATION: Print only location
6274 SRC_AND_LOC: Print location and source line. */
6275 if (do_frame_printing)
6276 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6277
6278 /* Display the auto-display expressions. */
6279 do_displays ();
6280 }
6281
6282 /* Here to return control to GDB when the inferior stops for real.
6283 Print appropriate messages, remove breakpoints, give terminal our modes.
6284
6285 STOP_PRINT_FRAME nonzero means print the executing frame
6286 (pc, function, args, file, line number and line text).
6287 BREAKPOINTS_FAILED nonzero means stop was due to error
6288 attempting to insert breakpoints. */
6289
6290 void
6291 normal_stop (void)
6292 {
6293 struct target_waitstatus last;
6294 ptid_t last_ptid;
6295 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6296
6297 get_last_target_status (&last_ptid, &last);
6298
6299 /* If an exception is thrown from this point on, make sure to
6300 propagate GDB's knowledge of the executing state to the
6301 frontend/user running state. A QUIT is an easy exception to see
6302 here, so do this before any filtered output. */
6303 if (!non_stop)
6304 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6305 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6306 && last.kind != TARGET_WAITKIND_EXITED
6307 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6308 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6309
6310 /* As we're presenting a stop, and potentially removing breakpoints,
6311 update the thread list so we can tell whether there are threads
6312 running on the target. With target remote, for example, we can
6313 only learn about new threads when we explicitly update the thread
6314 list. Do this before notifying the interpreters about signal
6315 stops, end of stepping ranges, etc., so that the "new thread"
6316 output is emitted before e.g., "Program received signal FOO",
6317 instead of after. */
6318 update_thread_list ();
6319
6320 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6321 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6322
6323 /* As with the notification of thread events, we want to delay
6324 notifying the user that we've switched thread context until
6325 the inferior actually stops.
6326
6327 There's no point in saying anything if the inferior has exited.
6328 Note that SIGNALLED here means "exited with a signal", not
6329 "received a signal".
6330
6331 Also skip saying anything in non-stop mode. In that mode, as we
6332 don't want GDB to switch threads behind the user's back, to avoid
6333 races where the user is typing a command to apply to thread x,
6334 but GDB switches to thread y before the user finishes entering
6335 the command, fetch_inferior_event installs a cleanup to restore
6336 the current thread back to the thread the user had selected right
6337 after this event is handled, so we're not really switching, only
6338 informing of a stop. */
6339 if (!non_stop
6340 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6341 && target_has_execution
6342 && last.kind != TARGET_WAITKIND_SIGNALLED
6343 && last.kind != TARGET_WAITKIND_EXITED
6344 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6345 {
6346 target_terminal_ours_for_output ();
6347 printf_filtered (_("[Switching to %s]\n"),
6348 target_pid_to_str (inferior_ptid));
6349 annotate_thread_changed ();
6350 previous_inferior_ptid = inferior_ptid;
6351 }
6352
6353 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6354 {
6355 gdb_assert (sync_execution || !target_can_async_p ());
6356
6357 target_terminal_ours_for_output ();
6358 printf_filtered (_("No unwaited-for children left.\n"));
6359 }
6360
6361 /* Note: this depends on the update_thread_list call above. */
6362 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6363 {
6364 if (remove_breakpoints ())
6365 {
6366 target_terminal_ours_for_output ();
6367 printf_filtered (_("Cannot remove breakpoints because "
6368 "program is no longer writable.\nFurther "
6369 "execution is probably impossible.\n"));
6370 }
6371 }
6372
6373 /* If an auto-display called a function and that got a signal,
6374 delete that auto-display to avoid an infinite recursion. */
6375
6376 if (stopped_by_random_signal)
6377 disable_current_display ();
6378
6379 /* Notify observers if we finished a "step"-like command, etc. */
6380 if (target_has_execution
6381 && last.kind != TARGET_WAITKIND_SIGNALLED
6382 && last.kind != TARGET_WAITKIND_EXITED
6383 && inferior_thread ()->control.stop_step)
6384 {
6385 /* But not if if in the middle of doing a "step n" operation for
6386 n > 1 */
6387 if (inferior_thread ()->step_multi)
6388 goto done;
6389
6390 observer_notify_end_stepping_range ();
6391 }
6392
6393 target_terminal_ours ();
6394 async_enable_stdin ();
6395
6396 /* Set the current source location. This will also happen if we
6397 display the frame below, but the current SAL will be incorrect
6398 during a user hook-stop function. */
6399 if (has_stack_frames () && !stop_stack_dummy)
6400 set_current_sal_from_frame (get_current_frame ());
6401
6402 /* Let the user/frontend see the threads as stopped, but do nothing
6403 if the thread was running an infcall. We may be e.g., evaluating
6404 a breakpoint condition. In that case, the thread had state
6405 THREAD_RUNNING before the infcall, and shall remain set to
6406 running, all without informing the user/frontend about state
6407 transition changes. If this is actually a call command, then the
6408 thread was originally already stopped, so there's no state to
6409 finish either. */
6410 if (target_has_execution && inferior_thread ()->control.in_infcall)
6411 discard_cleanups (old_chain);
6412 else
6413 do_cleanups (old_chain);
6414
6415 /* Look up the hook_stop and run it (CLI internally handles problem
6416 of stop_command's pre-hook not existing). */
6417 if (stop_command)
6418 catch_errors (hook_stop_stub, stop_command,
6419 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6420
6421 if (!has_stack_frames ())
6422 goto done;
6423
6424 if (last.kind == TARGET_WAITKIND_SIGNALLED
6425 || last.kind == TARGET_WAITKIND_EXITED)
6426 goto done;
6427
6428 /* Select innermost stack frame - i.e., current frame is frame 0,
6429 and current location is based on that.
6430 Don't do this on return from a stack dummy routine,
6431 or if the program has exited. */
6432
6433 if (!stop_stack_dummy)
6434 {
6435 select_frame (get_current_frame ());
6436
6437 /* If --batch-silent is enabled then there's no need to print the current
6438 source location, and to try risks causing an error message about
6439 missing source files. */
6440 if (stop_print_frame && !batch_silent)
6441 print_stop_event (&last);
6442 }
6443
6444 /* Save the function value return registers, if we care.
6445 We might be about to restore their previous contents. */
6446 if (inferior_thread ()->control.proceed_to_finish
6447 && execution_direction != EXEC_REVERSE)
6448 {
6449 /* This should not be necessary. */
6450 if (stop_registers)
6451 regcache_xfree (stop_registers);
6452
6453 /* NB: The copy goes through to the target picking up the value of
6454 all the registers. */
6455 stop_registers = regcache_dup (get_current_regcache ());
6456 }
6457
6458 if (stop_stack_dummy == STOP_STACK_DUMMY)
6459 {
6460 /* Pop the empty frame that contains the stack dummy.
6461 This also restores inferior state prior to the call
6462 (struct infcall_suspend_state). */
6463 struct frame_info *frame = get_current_frame ();
6464
6465 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6466 frame_pop (frame);
6467 /* frame_pop() calls reinit_frame_cache as the last thing it
6468 does which means there's currently no selected frame. We
6469 don't need to re-establish a selected frame if the dummy call
6470 returns normally, that will be done by
6471 restore_infcall_control_state. However, we do have to handle
6472 the case where the dummy call is returning after being
6473 stopped (e.g. the dummy call previously hit a breakpoint).
6474 We can't know which case we have so just always re-establish
6475 a selected frame here. */
6476 select_frame (get_current_frame ());
6477 }
6478
6479 done:
6480 annotate_stopped ();
6481
6482 /* Suppress the stop observer if we're in the middle of:
6483
6484 - a step n (n > 1), as there still more steps to be done.
6485
6486 - a "finish" command, as the observer will be called in
6487 finish_command_continuation, so it can include the inferior
6488 function's return value.
6489
6490 - calling an inferior function, as we pretend we inferior didn't
6491 run at all. The return value of the call is handled by the
6492 expression evaluator, through call_function_by_hand. */
6493
6494 if (!target_has_execution
6495 || last.kind == TARGET_WAITKIND_SIGNALLED
6496 || last.kind == TARGET_WAITKIND_EXITED
6497 || last.kind == TARGET_WAITKIND_NO_RESUMED
6498 || (!(inferior_thread ()->step_multi
6499 && inferior_thread ()->control.stop_step)
6500 && !(inferior_thread ()->control.stop_bpstat
6501 && inferior_thread ()->control.proceed_to_finish)
6502 && !inferior_thread ()->control.in_infcall))
6503 {
6504 if (!ptid_equal (inferior_ptid, null_ptid))
6505 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6506 stop_print_frame);
6507 else
6508 observer_notify_normal_stop (NULL, stop_print_frame);
6509 }
6510
6511 if (target_has_execution)
6512 {
6513 if (last.kind != TARGET_WAITKIND_SIGNALLED
6514 && last.kind != TARGET_WAITKIND_EXITED)
6515 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6516 Delete any breakpoint that is to be deleted at the next stop. */
6517 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6518 }
6519
6520 /* Try to get rid of automatically added inferiors that are no
6521 longer needed. Keeping those around slows down things linearly.
6522 Note that this never removes the current inferior. */
6523 prune_inferiors ();
6524 }
6525
6526 static int
6527 hook_stop_stub (void *cmd)
6528 {
6529 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6530 return (0);
6531 }
6532 \f
6533 int
6534 signal_stop_state (int signo)
6535 {
6536 return signal_stop[signo];
6537 }
6538
6539 int
6540 signal_print_state (int signo)
6541 {
6542 return signal_print[signo];
6543 }
6544
6545 int
6546 signal_pass_state (int signo)
6547 {
6548 return signal_program[signo];
6549 }
6550
6551 static void
6552 signal_cache_update (int signo)
6553 {
6554 if (signo == -1)
6555 {
6556 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6557 signal_cache_update (signo);
6558
6559 return;
6560 }
6561
6562 signal_pass[signo] = (signal_stop[signo] == 0
6563 && signal_print[signo] == 0
6564 && signal_program[signo] == 1
6565 && signal_catch[signo] == 0);
6566 }
6567
6568 int
6569 signal_stop_update (int signo, int state)
6570 {
6571 int ret = signal_stop[signo];
6572
6573 signal_stop[signo] = state;
6574 signal_cache_update (signo);
6575 return ret;
6576 }
6577
6578 int
6579 signal_print_update (int signo, int state)
6580 {
6581 int ret = signal_print[signo];
6582
6583 signal_print[signo] = state;
6584 signal_cache_update (signo);
6585 return ret;
6586 }
6587
6588 int
6589 signal_pass_update (int signo, int state)
6590 {
6591 int ret = signal_program[signo];
6592
6593 signal_program[signo] = state;
6594 signal_cache_update (signo);
6595 return ret;
6596 }
6597
6598 /* Update the global 'signal_catch' from INFO and notify the
6599 target. */
6600
6601 void
6602 signal_catch_update (const unsigned int *info)
6603 {
6604 int i;
6605
6606 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6607 signal_catch[i] = info[i] > 0;
6608 signal_cache_update (-1);
6609 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6610 }
6611
6612 static void
6613 sig_print_header (void)
6614 {
6615 printf_filtered (_("Signal Stop\tPrint\tPass "
6616 "to program\tDescription\n"));
6617 }
6618
6619 static void
6620 sig_print_info (enum gdb_signal oursig)
6621 {
6622 const char *name = gdb_signal_to_name (oursig);
6623 int name_padding = 13 - strlen (name);
6624
6625 if (name_padding <= 0)
6626 name_padding = 0;
6627
6628 printf_filtered ("%s", name);
6629 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6630 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6631 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6632 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6633 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6634 }
6635
6636 /* Specify how various signals in the inferior should be handled. */
6637
6638 static void
6639 handle_command (char *args, int from_tty)
6640 {
6641 char **argv;
6642 int digits, wordlen;
6643 int sigfirst, signum, siglast;
6644 enum gdb_signal oursig;
6645 int allsigs;
6646 int nsigs;
6647 unsigned char *sigs;
6648 struct cleanup *old_chain;
6649
6650 if (args == NULL)
6651 {
6652 error_no_arg (_("signal to handle"));
6653 }
6654
6655 /* Allocate and zero an array of flags for which signals to handle. */
6656
6657 nsigs = (int) GDB_SIGNAL_LAST;
6658 sigs = (unsigned char *) alloca (nsigs);
6659 memset (sigs, 0, nsigs);
6660
6661 /* Break the command line up into args. */
6662
6663 argv = gdb_buildargv (args);
6664 old_chain = make_cleanup_freeargv (argv);
6665
6666 /* Walk through the args, looking for signal oursigs, signal names, and
6667 actions. Signal numbers and signal names may be interspersed with
6668 actions, with the actions being performed for all signals cumulatively
6669 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6670
6671 while (*argv != NULL)
6672 {
6673 wordlen = strlen (*argv);
6674 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6675 {;
6676 }
6677 allsigs = 0;
6678 sigfirst = siglast = -1;
6679
6680 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6681 {
6682 /* Apply action to all signals except those used by the
6683 debugger. Silently skip those. */
6684 allsigs = 1;
6685 sigfirst = 0;
6686 siglast = nsigs - 1;
6687 }
6688 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6689 {
6690 SET_SIGS (nsigs, sigs, signal_stop);
6691 SET_SIGS (nsigs, sigs, signal_print);
6692 }
6693 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6694 {
6695 UNSET_SIGS (nsigs, sigs, signal_program);
6696 }
6697 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6698 {
6699 SET_SIGS (nsigs, sigs, signal_print);
6700 }
6701 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6702 {
6703 SET_SIGS (nsigs, sigs, signal_program);
6704 }
6705 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6706 {
6707 UNSET_SIGS (nsigs, sigs, signal_stop);
6708 }
6709 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6710 {
6711 SET_SIGS (nsigs, sigs, signal_program);
6712 }
6713 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6714 {
6715 UNSET_SIGS (nsigs, sigs, signal_print);
6716 UNSET_SIGS (nsigs, sigs, signal_stop);
6717 }
6718 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6719 {
6720 UNSET_SIGS (nsigs, sigs, signal_program);
6721 }
6722 else if (digits > 0)
6723 {
6724 /* It is numeric. The numeric signal refers to our own
6725 internal signal numbering from target.h, not to host/target
6726 signal number. This is a feature; users really should be
6727 using symbolic names anyway, and the common ones like
6728 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6729
6730 sigfirst = siglast = (int)
6731 gdb_signal_from_command (atoi (*argv));
6732 if ((*argv)[digits] == '-')
6733 {
6734 siglast = (int)
6735 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6736 }
6737 if (sigfirst > siglast)
6738 {
6739 /* Bet he didn't figure we'd think of this case... */
6740 signum = sigfirst;
6741 sigfirst = siglast;
6742 siglast = signum;
6743 }
6744 }
6745 else
6746 {
6747 oursig = gdb_signal_from_name (*argv);
6748 if (oursig != GDB_SIGNAL_UNKNOWN)
6749 {
6750 sigfirst = siglast = (int) oursig;
6751 }
6752 else
6753 {
6754 /* Not a number and not a recognized flag word => complain. */
6755 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6756 }
6757 }
6758
6759 /* If any signal numbers or symbol names were found, set flags for
6760 which signals to apply actions to. */
6761
6762 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6763 {
6764 switch ((enum gdb_signal) signum)
6765 {
6766 case GDB_SIGNAL_TRAP:
6767 case GDB_SIGNAL_INT:
6768 if (!allsigs && !sigs[signum])
6769 {
6770 if (query (_("%s is used by the debugger.\n\
6771 Are you sure you want to change it? "),
6772 gdb_signal_to_name ((enum gdb_signal) signum)))
6773 {
6774 sigs[signum] = 1;
6775 }
6776 else
6777 {
6778 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6779 gdb_flush (gdb_stdout);
6780 }
6781 }
6782 break;
6783 case GDB_SIGNAL_0:
6784 case GDB_SIGNAL_DEFAULT:
6785 case GDB_SIGNAL_UNKNOWN:
6786 /* Make sure that "all" doesn't print these. */
6787 break;
6788 default:
6789 sigs[signum] = 1;
6790 break;
6791 }
6792 }
6793
6794 argv++;
6795 }
6796
6797 for (signum = 0; signum < nsigs; signum++)
6798 if (sigs[signum])
6799 {
6800 signal_cache_update (-1);
6801 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6802 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6803
6804 if (from_tty)
6805 {
6806 /* Show the results. */
6807 sig_print_header ();
6808 for (; signum < nsigs; signum++)
6809 if (sigs[signum])
6810 sig_print_info (signum);
6811 }
6812
6813 break;
6814 }
6815
6816 do_cleanups (old_chain);
6817 }
6818
6819 /* Complete the "handle" command. */
6820
6821 static VEC (char_ptr) *
6822 handle_completer (struct cmd_list_element *ignore,
6823 const char *text, const char *word)
6824 {
6825 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6826 static const char * const keywords[] =
6827 {
6828 "all",
6829 "stop",
6830 "ignore",
6831 "print",
6832 "pass",
6833 "nostop",
6834 "noignore",
6835 "noprint",
6836 "nopass",
6837 NULL,
6838 };
6839
6840 vec_signals = signal_completer (ignore, text, word);
6841 vec_keywords = complete_on_enum (keywords, word, word);
6842
6843 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6844 VEC_free (char_ptr, vec_signals);
6845 VEC_free (char_ptr, vec_keywords);
6846 return return_val;
6847 }
6848
6849 static void
6850 xdb_handle_command (char *args, int from_tty)
6851 {
6852 char **argv;
6853 struct cleanup *old_chain;
6854
6855 if (args == NULL)
6856 error_no_arg (_("xdb command"));
6857
6858 /* Break the command line up into args. */
6859
6860 argv = gdb_buildargv (args);
6861 old_chain = make_cleanup_freeargv (argv);
6862 if (argv[1] != (char *) NULL)
6863 {
6864 char *argBuf;
6865 int bufLen;
6866
6867 bufLen = strlen (argv[0]) + 20;
6868 argBuf = (char *) xmalloc (bufLen);
6869 if (argBuf)
6870 {
6871 int validFlag = 1;
6872 enum gdb_signal oursig;
6873
6874 oursig = gdb_signal_from_name (argv[0]);
6875 memset (argBuf, 0, bufLen);
6876 if (strcmp (argv[1], "Q") == 0)
6877 sprintf (argBuf, "%s %s", argv[0], "noprint");
6878 else
6879 {
6880 if (strcmp (argv[1], "s") == 0)
6881 {
6882 if (!signal_stop[oursig])
6883 sprintf (argBuf, "%s %s", argv[0], "stop");
6884 else
6885 sprintf (argBuf, "%s %s", argv[0], "nostop");
6886 }
6887 else if (strcmp (argv[1], "i") == 0)
6888 {
6889 if (!signal_program[oursig])
6890 sprintf (argBuf, "%s %s", argv[0], "pass");
6891 else
6892 sprintf (argBuf, "%s %s", argv[0], "nopass");
6893 }
6894 else if (strcmp (argv[1], "r") == 0)
6895 {
6896 if (!signal_print[oursig])
6897 sprintf (argBuf, "%s %s", argv[0], "print");
6898 else
6899 sprintf (argBuf, "%s %s", argv[0], "noprint");
6900 }
6901 else
6902 validFlag = 0;
6903 }
6904 if (validFlag)
6905 handle_command (argBuf, from_tty);
6906 else
6907 printf_filtered (_("Invalid signal handling flag.\n"));
6908 if (argBuf)
6909 xfree (argBuf);
6910 }
6911 }
6912 do_cleanups (old_chain);
6913 }
6914
6915 enum gdb_signal
6916 gdb_signal_from_command (int num)
6917 {
6918 if (num >= 1 && num <= 15)
6919 return (enum gdb_signal) num;
6920 error (_("Only signals 1-15 are valid as numeric signals.\n\
6921 Use \"info signals\" for a list of symbolic signals."));
6922 }
6923
6924 /* Print current contents of the tables set by the handle command.
6925 It is possible we should just be printing signals actually used
6926 by the current target (but for things to work right when switching
6927 targets, all signals should be in the signal tables). */
6928
6929 static void
6930 signals_info (char *signum_exp, int from_tty)
6931 {
6932 enum gdb_signal oursig;
6933
6934 sig_print_header ();
6935
6936 if (signum_exp)
6937 {
6938 /* First see if this is a symbol name. */
6939 oursig = gdb_signal_from_name (signum_exp);
6940 if (oursig == GDB_SIGNAL_UNKNOWN)
6941 {
6942 /* No, try numeric. */
6943 oursig =
6944 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6945 }
6946 sig_print_info (oursig);
6947 return;
6948 }
6949
6950 printf_filtered ("\n");
6951 /* These ugly casts brought to you by the native VAX compiler. */
6952 for (oursig = GDB_SIGNAL_FIRST;
6953 (int) oursig < (int) GDB_SIGNAL_LAST;
6954 oursig = (enum gdb_signal) ((int) oursig + 1))
6955 {
6956 QUIT;
6957
6958 if (oursig != GDB_SIGNAL_UNKNOWN
6959 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6960 sig_print_info (oursig);
6961 }
6962
6963 printf_filtered (_("\nUse the \"handle\" command "
6964 "to change these tables.\n"));
6965 }
6966
6967 /* Check if it makes sense to read $_siginfo from the current thread
6968 at this point. If not, throw an error. */
6969
6970 static void
6971 validate_siginfo_access (void)
6972 {
6973 /* No current inferior, no siginfo. */
6974 if (ptid_equal (inferior_ptid, null_ptid))
6975 error (_("No thread selected."));
6976
6977 /* Don't try to read from a dead thread. */
6978 if (is_exited (inferior_ptid))
6979 error (_("The current thread has terminated"));
6980
6981 /* ... or from a spinning thread. */
6982 if (is_running (inferior_ptid))
6983 error (_("Selected thread is running."));
6984 }
6985
6986 /* The $_siginfo convenience variable is a bit special. We don't know
6987 for sure the type of the value until we actually have a chance to
6988 fetch the data. The type can change depending on gdbarch, so it is
6989 also dependent on which thread you have selected.
6990
6991 1. making $_siginfo be an internalvar that creates a new value on
6992 access.
6993
6994 2. making the value of $_siginfo be an lval_computed value. */
6995
6996 /* This function implements the lval_computed support for reading a
6997 $_siginfo value. */
6998
6999 static void
7000 siginfo_value_read (struct value *v)
7001 {
7002 LONGEST transferred;
7003
7004 validate_siginfo_access ();
7005
7006 transferred =
7007 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7008 NULL,
7009 value_contents_all_raw (v),
7010 value_offset (v),
7011 TYPE_LENGTH (value_type (v)));
7012
7013 if (transferred != TYPE_LENGTH (value_type (v)))
7014 error (_("Unable to read siginfo"));
7015 }
7016
7017 /* This function implements the lval_computed support for writing a
7018 $_siginfo value. */
7019
7020 static void
7021 siginfo_value_write (struct value *v, struct value *fromval)
7022 {
7023 LONGEST transferred;
7024
7025 validate_siginfo_access ();
7026
7027 transferred = target_write (&current_target,
7028 TARGET_OBJECT_SIGNAL_INFO,
7029 NULL,
7030 value_contents_all_raw (fromval),
7031 value_offset (v),
7032 TYPE_LENGTH (value_type (fromval)));
7033
7034 if (transferred != TYPE_LENGTH (value_type (fromval)))
7035 error (_("Unable to write siginfo"));
7036 }
7037
7038 static const struct lval_funcs siginfo_value_funcs =
7039 {
7040 siginfo_value_read,
7041 siginfo_value_write
7042 };
7043
7044 /* Return a new value with the correct type for the siginfo object of
7045 the current thread using architecture GDBARCH. Return a void value
7046 if there's no object available. */
7047
7048 static struct value *
7049 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7050 void *ignore)
7051 {
7052 if (target_has_stack
7053 && !ptid_equal (inferior_ptid, null_ptid)
7054 && gdbarch_get_siginfo_type_p (gdbarch))
7055 {
7056 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7057
7058 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7059 }
7060
7061 return allocate_value (builtin_type (gdbarch)->builtin_void);
7062 }
7063
7064 \f
7065 /* infcall_suspend_state contains state about the program itself like its
7066 registers and any signal it received when it last stopped.
7067 This state must be restored regardless of how the inferior function call
7068 ends (either successfully, or after it hits a breakpoint or signal)
7069 if the program is to properly continue where it left off. */
7070
7071 struct infcall_suspend_state
7072 {
7073 struct thread_suspend_state thread_suspend;
7074 #if 0 /* Currently unused and empty structures are not valid C. */
7075 struct inferior_suspend_state inferior_suspend;
7076 #endif
7077
7078 /* Other fields: */
7079 CORE_ADDR stop_pc;
7080 struct regcache *registers;
7081
7082 /* Format of SIGINFO_DATA or NULL if it is not present. */
7083 struct gdbarch *siginfo_gdbarch;
7084
7085 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7086 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7087 content would be invalid. */
7088 gdb_byte *siginfo_data;
7089 };
7090
7091 struct infcall_suspend_state *
7092 save_infcall_suspend_state (void)
7093 {
7094 struct infcall_suspend_state *inf_state;
7095 struct thread_info *tp = inferior_thread ();
7096 #if 0
7097 struct inferior *inf = current_inferior ();
7098 #endif
7099 struct regcache *regcache = get_current_regcache ();
7100 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7101 gdb_byte *siginfo_data = NULL;
7102
7103 if (gdbarch_get_siginfo_type_p (gdbarch))
7104 {
7105 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7106 size_t len = TYPE_LENGTH (type);
7107 struct cleanup *back_to;
7108
7109 siginfo_data = xmalloc (len);
7110 back_to = make_cleanup (xfree, siginfo_data);
7111
7112 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7113 siginfo_data, 0, len) == len)
7114 discard_cleanups (back_to);
7115 else
7116 {
7117 /* Errors ignored. */
7118 do_cleanups (back_to);
7119 siginfo_data = NULL;
7120 }
7121 }
7122
7123 inf_state = XCNEW (struct infcall_suspend_state);
7124
7125 if (siginfo_data)
7126 {
7127 inf_state->siginfo_gdbarch = gdbarch;
7128 inf_state->siginfo_data = siginfo_data;
7129 }
7130
7131 inf_state->thread_suspend = tp->suspend;
7132 #if 0 /* Currently unused and empty structures are not valid C. */
7133 inf_state->inferior_suspend = inf->suspend;
7134 #endif
7135
7136 /* run_inferior_call will not use the signal due to its `proceed' call with
7137 GDB_SIGNAL_0 anyway. */
7138 tp->suspend.stop_signal = GDB_SIGNAL_0;
7139
7140 inf_state->stop_pc = stop_pc;
7141
7142 inf_state->registers = regcache_dup (regcache);
7143
7144 return inf_state;
7145 }
7146
7147 /* Restore inferior session state to INF_STATE. */
7148
7149 void
7150 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7151 {
7152 struct thread_info *tp = inferior_thread ();
7153 #if 0
7154 struct inferior *inf = current_inferior ();
7155 #endif
7156 struct regcache *regcache = get_current_regcache ();
7157 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7158
7159 tp->suspend = inf_state->thread_suspend;
7160 #if 0 /* Currently unused and empty structures are not valid C. */
7161 inf->suspend = inf_state->inferior_suspend;
7162 #endif
7163
7164 stop_pc = inf_state->stop_pc;
7165
7166 if (inf_state->siginfo_gdbarch == gdbarch)
7167 {
7168 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7169
7170 /* Errors ignored. */
7171 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7172 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7173 }
7174
7175 /* The inferior can be gone if the user types "print exit(0)"
7176 (and perhaps other times). */
7177 if (target_has_execution)
7178 /* NB: The register write goes through to the target. */
7179 regcache_cpy (regcache, inf_state->registers);
7180
7181 discard_infcall_suspend_state (inf_state);
7182 }
7183
7184 static void
7185 do_restore_infcall_suspend_state_cleanup (void *state)
7186 {
7187 restore_infcall_suspend_state (state);
7188 }
7189
7190 struct cleanup *
7191 make_cleanup_restore_infcall_suspend_state
7192 (struct infcall_suspend_state *inf_state)
7193 {
7194 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7195 }
7196
7197 void
7198 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7199 {
7200 regcache_xfree (inf_state->registers);
7201 xfree (inf_state->siginfo_data);
7202 xfree (inf_state);
7203 }
7204
7205 struct regcache *
7206 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7207 {
7208 return inf_state->registers;
7209 }
7210
7211 /* infcall_control_state contains state regarding gdb's control of the
7212 inferior itself like stepping control. It also contains session state like
7213 the user's currently selected frame. */
7214
7215 struct infcall_control_state
7216 {
7217 struct thread_control_state thread_control;
7218 struct inferior_control_state inferior_control;
7219
7220 /* Other fields: */
7221 enum stop_stack_kind stop_stack_dummy;
7222 int stopped_by_random_signal;
7223 int stop_after_trap;
7224
7225 /* ID if the selected frame when the inferior function call was made. */
7226 struct frame_id selected_frame_id;
7227 };
7228
7229 /* Save all of the information associated with the inferior<==>gdb
7230 connection. */
7231
7232 struct infcall_control_state *
7233 save_infcall_control_state (void)
7234 {
7235 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7236 struct thread_info *tp = inferior_thread ();
7237 struct inferior *inf = current_inferior ();
7238
7239 inf_status->thread_control = tp->control;
7240 inf_status->inferior_control = inf->control;
7241
7242 tp->control.step_resume_breakpoint = NULL;
7243 tp->control.exception_resume_breakpoint = NULL;
7244
7245 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7246 chain. If caller's caller is walking the chain, they'll be happier if we
7247 hand them back the original chain when restore_infcall_control_state is
7248 called. */
7249 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7250
7251 /* Other fields: */
7252 inf_status->stop_stack_dummy = stop_stack_dummy;
7253 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7254 inf_status->stop_after_trap = stop_after_trap;
7255
7256 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7257
7258 return inf_status;
7259 }
7260
7261 static int
7262 restore_selected_frame (void *args)
7263 {
7264 struct frame_id *fid = (struct frame_id *) args;
7265 struct frame_info *frame;
7266
7267 frame = frame_find_by_id (*fid);
7268
7269 /* If inf_status->selected_frame_id is NULL, there was no previously
7270 selected frame. */
7271 if (frame == NULL)
7272 {
7273 warning (_("Unable to restore previously selected frame."));
7274 return 0;
7275 }
7276
7277 select_frame (frame);
7278
7279 return (1);
7280 }
7281
7282 /* Restore inferior session state to INF_STATUS. */
7283
7284 void
7285 restore_infcall_control_state (struct infcall_control_state *inf_status)
7286 {
7287 struct thread_info *tp = inferior_thread ();
7288 struct inferior *inf = current_inferior ();
7289
7290 if (tp->control.step_resume_breakpoint)
7291 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7292
7293 if (tp->control.exception_resume_breakpoint)
7294 tp->control.exception_resume_breakpoint->disposition
7295 = disp_del_at_next_stop;
7296
7297 /* Handle the bpstat_copy of the chain. */
7298 bpstat_clear (&tp->control.stop_bpstat);
7299
7300 tp->control = inf_status->thread_control;
7301 inf->control = inf_status->inferior_control;
7302
7303 /* Other fields: */
7304 stop_stack_dummy = inf_status->stop_stack_dummy;
7305 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7306 stop_after_trap = inf_status->stop_after_trap;
7307
7308 if (target_has_stack)
7309 {
7310 /* The point of catch_errors is that if the stack is clobbered,
7311 walking the stack might encounter a garbage pointer and
7312 error() trying to dereference it. */
7313 if (catch_errors
7314 (restore_selected_frame, &inf_status->selected_frame_id,
7315 "Unable to restore previously selected frame:\n",
7316 RETURN_MASK_ERROR) == 0)
7317 /* Error in restoring the selected frame. Select the innermost
7318 frame. */
7319 select_frame (get_current_frame ());
7320 }
7321
7322 xfree (inf_status);
7323 }
7324
7325 static void
7326 do_restore_infcall_control_state_cleanup (void *sts)
7327 {
7328 restore_infcall_control_state (sts);
7329 }
7330
7331 struct cleanup *
7332 make_cleanup_restore_infcall_control_state
7333 (struct infcall_control_state *inf_status)
7334 {
7335 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7336 }
7337
7338 void
7339 discard_infcall_control_state (struct infcall_control_state *inf_status)
7340 {
7341 if (inf_status->thread_control.step_resume_breakpoint)
7342 inf_status->thread_control.step_resume_breakpoint->disposition
7343 = disp_del_at_next_stop;
7344
7345 if (inf_status->thread_control.exception_resume_breakpoint)
7346 inf_status->thread_control.exception_resume_breakpoint->disposition
7347 = disp_del_at_next_stop;
7348
7349 /* See save_infcall_control_state for info on stop_bpstat. */
7350 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7351
7352 xfree (inf_status);
7353 }
7354 \f
7355 /* restore_inferior_ptid() will be used by the cleanup machinery
7356 to restore the inferior_ptid value saved in a call to
7357 save_inferior_ptid(). */
7358
7359 static void
7360 restore_inferior_ptid (void *arg)
7361 {
7362 ptid_t *saved_ptid_ptr = arg;
7363
7364 inferior_ptid = *saved_ptid_ptr;
7365 xfree (arg);
7366 }
7367
7368 /* Save the value of inferior_ptid so that it may be restored by a
7369 later call to do_cleanups(). Returns the struct cleanup pointer
7370 needed for later doing the cleanup. */
7371
7372 struct cleanup *
7373 save_inferior_ptid (void)
7374 {
7375 ptid_t *saved_ptid_ptr;
7376
7377 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7378 *saved_ptid_ptr = inferior_ptid;
7379 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7380 }
7381
7382 /* See infrun.h. */
7383
7384 void
7385 clear_exit_convenience_vars (void)
7386 {
7387 clear_internalvar (lookup_internalvar ("_exitsignal"));
7388 clear_internalvar (lookup_internalvar ("_exitcode"));
7389 }
7390 \f
7391
7392 /* User interface for reverse debugging:
7393 Set exec-direction / show exec-direction commands
7394 (returns error unless target implements to_set_exec_direction method). */
7395
7396 int execution_direction = EXEC_FORWARD;
7397 static const char exec_forward[] = "forward";
7398 static const char exec_reverse[] = "reverse";
7399 static const char *exec_direction = exec_forward;
7400 static const char *const exec_direction_names[] = {
7401 exec_forward,
7402 exec_reverse,
7403 NULL
7404 };
7405
7406 static void
7407 set_exec_direction_func (char *args, int from_tty,
7408 struct cmd_list_element *cmd)
7409 {
7410 if (target_can_execute_reverse)
7411 {
7412 if (!strcmp (exec_direction, exec_forward))
7413 execution_direction = EXEC_FORWARD;
7414 else if (!strcmp (exec_direction, exec_reverse))
7415 execution_direction = EXEC_REVERSE;
7416 }
7417 else
7418 {
7419 exec_direction = exec_forward;
7420 error (_("Target does not support this operation."));
7421 }
7422 }
7423
7424 static void
7425 show_exec_direction_func (struct ui_file *out, int from_tty,
7426 struct cmd_list_element *cmd, const char *value)
7427 {
7428 switch (execution_direction) {
7429 case EXEC_FORWARD:
7430 fprintf_filtered (out, _("Forward.\n"));
7431 break;
7432 case EXEC_REVERSE:
7433 fprintf_filtered (out, _("Reverse.\n"));
7434 break;
7435 default:
7436 internal_error (__FILE__, __LINE__,
7437 _("bogus execution_direction value: %d"),
7438 (int) execution_direction);
7439 }
7440 }
7441
7442 static void
7443 show_schedule_multiple (struct ui_file *file, int from_tty,
7444 struct cmd_list_element *c, const char *value)
7445 {
7446 fprintf_filtered (file, _("Resuming the execution of threads "
7447 "of all processes is %s.\n"), value);
7448 }
7449
7450 /* Implementation of `siginfo' variable. */
7451
7452 static const struct internalvar_funcs siginfo_funcs =
7453 {
7454 siginfo_make_value,
7455 NULL,
7456 NULL
7457 };
7458
7459 void
7460 _initialize_infrun (void)
7461 {
7462 int i;
7463 int numsigs;
7464 struct cmd_list_element *c;
7465
7466 add_info ("signals", signals_info, _("\
7467 What debugger does when program gets various signals.\n\
7468 Specify a signal as argument to print info on that signal only."));
7469 add_info_alias ("handle", "signals", 0);
7470
7471 c = add_com ("handle", class_run, handle_command, _("\
7472 Specify how to handle signals.\n\
7473 Usage: handle SIGNAL [ACTIONS]\n\
7474 Args are signals and actions to apply to those signals.\n\
7475 If no actions are specified, the current settings for the specified signals\n\
7476 will be displayed instead.\n\
7477 \n\
7478 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7479 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7480 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7481 The special arg \"all\" is recognized to mean all signals except those\n\
7482 used by the debugger, typically SIGTRAP and SIGINT.\n\
7483 \n\
7484 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7485 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7486 Stop means reenter debugger if this signal happens (implies print).\n\
7487 Print means print a message if this signal happens.\n\
7488 Pass means let program see this signal; otherwise program doesn't know.\n\
7489 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7490 Pass and Stop may be combined.\n\
7491 \n\
7492 Multiple signals may be specified. Signal numbers and signal names\n\
7493 may be interspersed with actions, with the actions being performed for\n\
7494 all signals cumulatively specified."));
7495 set_cmd_completer (c, handle_completer);
7496
7497 if (xdb_commands)
7498 {
7499 add_com ("lz", class_info, signals_info, _("\
7500 What debugger does when program gets various signals.\n\
7501 Specify a signal as argument to print info on that signal only."));
7502 add_com ("z", class_run, xdb_handle_command, _("\
7503 Specify how to handle a signal.\n\
7504 Args are signals and actions to apply to those signals.\n\
7505 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7506 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7507 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7508 The special arg \"all\" is recognized to mean all signals except those\n\
7509 used by the debugger, typically SIGTRAP and SIGINT.\n\
7510 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7511 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7512 nopass), \"Q\" (noprint)\n\
7513 Stop means reenter debugger if this signal happens (implies print).\n\
7514 Print means print a message if this signal happens.\n\
7515 Pass means let program see this signal; otherwise program doesn't know.\n\
7516 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7517 Pass and Stop may be combined."));
7518 }
7519
7520 if (!dbx_commands)
7521 stop_command = add_cmd ("stop", class_obscure,
7522 not_just_help_class_command, _("\
7523 There is no `stop' command, but you can set a hook on `stop'.\n\
7524 This allows you to set a list of commands to be run each time execution\n\
7525 of the program stops."), &cmdlist);
7526
7527 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7528 Set inferior debugging."), _("\
7529 Show inferior debugging."), _("\
7530 When non-zero, inferior specific debugging is enabled."),
7531 NULL,
7532 show_debug_infrun,
7533 &setdebuglist, &showdebuglist);
7534
7535 add_setshow_boolean_cmd ("displaced", class_maintenance,
7536 &debug_displaced, _("\
7537 Set displaced stepping debugging."), _("\
7538 Show displaced stepping debugging."), _("\
7539 When non-zero, displaced stepping specific debugging is enabled."),
7540 NULL,
7541 show_debug_displaced,
7542 &setdebuglist, &showdebuglist);
7543
7544 add_setshow_boolean_cmd ("non-stop", no_class,
7545 &non_stop_1, _("\
7546 Set whether gdb controls the inferior in non-stop mode."), _("\
7547 Show whether gdb controls the inferior in non-stop mode."), _("\
7548 When debugging a multi-threaded program and this setting is\n\
7549 off (the default, also called all-stop mode), when one thread stops\n\
7550 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7551 all other threads in the program while you interact with the thread of\n\
7552 interest. When you continue or step a thread, you can allow the other\n\
7553 threads to run, or have them remain stopped, but while you inspect any\n\
7554 thread's state, all threads stop.\n\
7555 \n\
7556 In non-stop mode, when one thread stops, other threads can continue\n\
7557 to run freely. You'll be able to step each thread independently,\n\
7558 leave it stopped or free to run as needed."),
7559 set_non_stop,
7560 show_non_stop,
7561 &setlist,
7562 &showlist);
7563
7564 numsigs = (int) GDB_SIGNAL_LAST;
7565 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7566 signal_print = (unsigned char *)
7567 xmalloc (sizeof (signal_print[0]) * numsigs);
7568 signal_program = (unsigned char *)
7569 xmalloc (sizeof (signal_program[0]) * numsigs);
7570 signal_catch = (unsigned char *)
7571 xmalloc (sizeof (signal_catch[0]) * numsigs);
7572 signal_pass = (unsigned char *)
7573 xmalloc (sizeof (signal_pass[0]) * numsigs);
7574 for (i = 0; i < numsigs; i++)
7575 {
7576 signal_stop[i] = 1;
7577 signal_print[i] = 1;
7578 signal_program[i] = 1;
7579 signal_catch[i] = 0;
7580 }
7581
7582 /* Signals caused by debugger's own actions
7583 should not be given to the program afterwards. */
7584 signal_program[GDB_SIGNAL_TRAP] = 0;
7585 signal_program[GDB_SIGNAL_INT] = 0;
7586
7587 /* Signals that are not errors should not normally enter the debugger. */
7588 signal_stop[GDB_SIGNAL_ALRM] = 0;
7589 signal_print[GDB_SIGNAL_ALRM] = 0;
7590 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7591 signal_print[GDB_SIGNAL_VTALRM] = 0;
7592 signal_stop[GDB_SIGNAL_PROF] = 0;
7593 signal_print[GDB_SIGNAL_PROF] = 0;
7594 signal_stop[GDB_SIGNAL_CHLD] = 0;
7595 signal_print[GDB_SIGNAL_CHLD] = 0;
7596 signal_stop[GDB_SIGNAL_IO] = 0;
7597 signal_print[GDB_SIGNAL_IO] = 0;
7598 signal_stop[GDB_SIGNAL_POLL] = 0;
7599 signal_print[GDB_SIGNAL_POLL] = 0;
7600 signal_stop[GDB_SIGNAL_URG] = 0;
7601 signal_print[GDB_SIGNAL_URG] = 0;
7602 signal_stop[GDB_SIGNAL_WINCH] = 0;
7603 signal_print[GDB_SIGNAL_WINCH] = 0;
7604 signal_stop[GDB_SIGNAL_PRIO] = 0;
7605 signal_print[GDB_SIGNAL_PRIO] = 0;
7606
7607 /* These signals are used internally by user-level thread
7608 implementations. (See signal(5) on Solaris.) Like the above
7609 signals, a healthy program receives and handles them as part of
7610 its normal operation. */
7611 signal_stop[GDB_SIGNAL_LWP] = 0;
7612 signal_print[GDB_SIGNAL_LWP] = 0;
7613 signal_stop[GDB_SIGNAL_WAITING] = 0;
7614 signal_print[GDB_SIGNAL_WAITING] = 0;
7615 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7616 signal_print[GDB_SIGNAL_CANCEL] = 0;
7617
7618 /* Update cached state. */
7619 signal_cache_update (-1);
7620
7621 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7622 &stop_on_solib_events, _("\
7623 Set stopping for shared library events."), _("\
7624 Show stopping for shared library events."), _("\
7625 If nonzero, gdb will give control to the user when the dynamic linker\n\
7626 notifies gdb of shared library events. The most common event of interest\n\
7627 to the user would be loading/unloading of a new library."),
7628 set_stop_on_solib_events,
7629 show_stop_on_solib_events,
7630 &setlist, &showlist);
7631
7632 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7633 follow_fork_mode_kind_names,
7634 &follow_fork_mode_string, _("\
7635 Set debugger response to a program call of fork or vfork."), _("\
7636 Show debugger response to a program call of fork or vfork."), _("\
7637 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7638 parent - the original process is debugged after a fork\n\
7639 child - the new process is debugged after a fork\n\
7640 The unfollowed process will continue to run.\n\
7641 By default, the debugger will follow the parent process."),
7642 NULL,
7643 show_follow_fork_mode_string,
7644 &setlist, &showlist);
7645
7646 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7647 follow_exec_mode_names,
7648 &follow_exec_mode_string, _("\
7649 Set debugger response to a program call of exec."), _("\
7650 Show debugger response to a program call of exec."), _("\
7651 An exec call replaces the program image of a process.\n\
7652 \n\
7653 follow-exec-mode can be:\n\
7654 \n\
7655 new - the debugger creates a new inferior and rebinds the process\n\
7656 to this new inferior. The program the process was running before\n\
7657 the exec call can be restarted afterwards by restarting the original\n\
7658 inferior.\n\
7659 \n\
7660 same - the debugger keeps the process bound to the same inferior.\n\
7661 The new executable image replaces the previous executable loaded in\n\
7662 the inferior. Restarting the inferior after the exec call restarts\n\
7663 the executable the process was running after the exec call.\n\
7664 \n\
7665 By default, the debugger will use the same inferior."),
7666 NULL,
7667 show_follow_exec_mode_string,
7668 &setlist, &showlist);
7669
7670 add_setshow_enum_cmd ("scheduler-locking", class_run,
7671 scheduler_enums, &scheduler_mode, _("\
7672 Set mode for locking scheduler during execution."), _("\
7673 Show mode for locking scheduler during execution."), _("\
7674 off == no locking (threads may preempt at any time)\n\
7675 on == full locking (no thread except the current thread may run)\n\
7676 step == scheduler locked during every single-step operation.\n\
7677 In this mode, no other thread may run during a step command.\n\
7678 Other threads may run while stepping over a function call ('next')."),
7679 set_schedlock_func, /* traps on target vector */
7680 show_scheduler_mode,
7681 &setlist, &showlist);
7682
7683 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7684 Set mode for resuming threads of all processes."), _("\
7685 Show mode for resuming threads of all processes."), _("\
7686 When on, execution commands (such as 'continue' or 'next') resume all\n\
7687 threads of all processes. When off (which is the default), execution\n\
7688 commands only resume the threads of the current process. The set of\n\
7689 threads that are resumed is further refined by the scheduler-locking\n\
7690 mode (see help set scheduler-locking)."),
7691 NULL,
7692 show_schedule_multiple,
7693 &setlist, &showlist);
7694
7695 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7696 Set mode of the step operation."), _("\
7697 Show mode of the step operation."), _("\
7698 When set, doing a step over a function without debug line information\n\
7699 will stop at the first instruction of that function. Otherwise, the\n\
7700 function is skipped and the step command stops at a different source line."),
7701 NULL,
7702 show_step_stop_if_no_debug,
7703 &setlist, &showlist);
7704
7705 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7706 &can_use_displaced_stepping, _("\
7707 Set debugger's willingness to use displaced stepping."), _("\
7708 Show debugger's willingness to use displaced stepping."), _("\
7709 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7710 supported by the target architecture. If off, gdb will not use displaced\n\
7711 stepping to step over breakpoints, even if such is supported by the target\n\
7712 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7713 if the target architecture supports it and non-stop mode is active, but will not\n\
7714 use it in all-stop mode (see help set non-stop)."),
7715 NULL,
7716 show_can_use_displaced_stepping,
7717 &setlist, &showlist);
7718
7719 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7720 &exec_direction, _("Set direction of execution.\n\
7721 Options are 'forward' or 'reverse'."),
7722 _("Show direction of execution (forward/reverse)."),
7723 _("Tells gdb whether to execute forward or backward."),
7724 set_exec_direction_func, show_exec_direction_func,
7725 &setlist, &showlist);
7726
7727 /* Set/show detach-on-fork: user-settable mode. */
7728
7729 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7730 Set whether gdb will detach the child of a fork."), _("\
7731 Show whether gdb will detach the child of a fork."), _("\
7732 Tells gdb whether to detach the child of a fork."),
7733 NULL, NULL, &setlist, &showlist);
7734
7735 /* Set/show disable address space randomization mode. */
7736
7737 add_setshow_boolean_cmd ("disable-randomization", class_support,
7738 &disable_randomization, _("\
7739 Set disabling of debuggee's virtual address space randomization."), _("\
7740 Show disabling of debuggee's virtual address space randomization."), _("\
7741 When this mode is on (which is the default), randomization of the virtual\n\
7742 address space is disabled. Standalone programs run with the randomization\n\
7743 enabled by default on some platforms."),
7744 &set_disable_randomization,
7745 &show_disable_randomization,
7746 &setlist, &showlist);
7747
7748 /* ptid initializations */
7749 inferior_ptid = null_ptid;
7750 target_last_wait_ptid = minus_one_ptid;
7751
7752 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7753 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7754 observer_attach_thread_exit (infrun_thread_thread_exit);
7755 observer_attach_inferior_exit (infrun_inferior_exit);
7756
7757 /* Explicitly create without lookup, since that tries to create a
7758 value with a void typed value, and when we get here, gdbarch
7759 isn't initialized yet. At this point, we're quite sure there
7760 isn't another convenience variable of the same name. */
7761 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7762
7763 add_setshow_boolean_cmd ("observer", no_class,
7764 &observer_mode_1, _("\
7765 Set whether gdb controls the inferior in observer mode."), _("\
7766 Show whether gdb controls the inferior in observer mode."), _("\
7767 In observer mode, GDB can get data from the inferior, but not\n\
7768 affect its execution. Registers and memory may not be changed,\n\
7769 breakpoints may not be set, and the program cannot be interrupted\n\
7770 or signalled."),
7771 set_observer_mode,
7772 show_observer_mode,
7773 &setlist,
7774 &showlist);
7775 }
This page took 0.181387 seconds and 5 git commands to generate.