* infrun.c (handle_inferior_event): Don't
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are expecting a trace trap and should proceed from it. */
222
223 static int trap_expected;
224
225 /* Nonzero if we want to give control to the user when we're notified
226 of shared library events by the dynamic linker. */
227 static int stop_on_solib_events;
228 static void
229 show_stop_on_solib_events (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
233 value);
234 }
235
236 /* Nonzero means expecting a trace trap
237 and should stop the inferior and return silently when it happens. */
238
239 int stop_after_trap;
240
241 /* Nonzero means expecting a trap and caller will handle it themselves.
242 It is used after attach, due to attaching to a process;
243 when running in the shell before the child program has been exec'd;
244 and when running some kinds of remote stuff (FIXME?). */
245
246 enum stop_kind stop_soon;
247
248 /* Nonzero if proceed is being used for a "finish" command or a similar
249 situation when stop_registers should be saved. */
250
251 int proceed_to_finish;
252
253 /* Save register contents here when about to pop a stack dummy frame,
254 if-and-only-if proceed_to_finish is set.
255 Thus this contains the return value from the called function (assuming
256 values are returned in a register). */
257
258 struct regcache *stop_registers;
259
260 /* Nonzero after stop if current stack frame should be printed. */
261
262 static int stop_print_frame;
263
264 static struct breakpoint *step_resume_breakpoint = NULL;
265
266 /* This is a cached copy of the pid/waitstatus of the last event
267 returned by target_wait()/deprecated_target_wait_hook(). This
268 information is returned by get_last_target_status(). */
269 static ptid_t target_last_wait_ptid;
270 static struct target_waitstatus target_last_waitstatus;
271
272 /* This is used to remember when a fork, vfork or exec event
273 was caught by a catchpoint, and thus the event is to be
274 followed at the next resume of the inferior, and not
275 immediately. */
276 static struct
277 {
278 enum target_waitkind kind;
279 struct
280 {
281 int parent_pid;
282 int child_pid;
283 }
284 fork_event;
285 char *execd_pathname;
286 }
287 pending_follow;
288
289 static const char follow_fork_mode_child[] = "child";
290 static const char follow_fork_mode_parent[] = "parent";
291
292 static const char *follow_fork_mode_kind_names[] = {
293 follow_fork_mode_child,
294 follow_fork_mode_parent,
295 NULL
296 };
297
298 static const char *follow_fork_mode_string = follow_fork_mode_parent;
299 static void
300 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
301 struct cmd_list_element *c, const char *value)
302 {
303 fprintf_filtered (file, _("\
304 Debugger response to a program call of fork or vfork is \"%s\".\n"),
305 value);
306 }
307 \f
308
309 static int
310 follow_fork (void)
311 {
312 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
313
314 return target_follow_fork (follow_child);
315 }
316
317 void
318 follow_inferior_reset_breakpoints (void)
319 {
320 /* Was there a step_resume breakpoint? (There was if the user
321 did a "next" at the fork() call.) If so, explicitly reset its
322 thread number.
323
324 step_resumes are a form of bp that are made to be per-thread.
325 Since we created the step_resume bp when the parent process
326 was being debugged, and now are switching to the child process,
327 from the breakpoint package's viewpoint, that's a switch of
328 "threads". We must update the bp's notion of which thread
329 it is for, or it'll be ignored when it triggers. */
330
331 if (step_resume_breakpoint)
332 breakpoint_re_set_thread (step_resume_breakpoint);
333
334 /* Reinsert all breakpoints in the child. The user may have set
335 breakpoints after catching the fork, in which case those
336 were never set in the child, but only in the parent. This makes
337 sure the inserted breakpoints match the breakpoint list. */
338
339 breakpoint_re_set ();
340 insert_breakpoints ();
341 }
342
343 /* EXECD_PATHNAME is assumed to be non-NULL. */
344
345 static void
346 follow_exec (int pid, char *execd_pathname)
347 {
348 int saved_pid = pid;
349 struct target_ops *tgt;
350
351 if (!may_follow_exec)
352 return;
353
354 /* This is an exec event that we actually wish to pay attention to.
355 Refresh our symbol table to the newly exec'd program, remove any
356 momentary bp's, etc.
357
358 If there are breakpoints, they aren't really inserted now,
359 since the exec() transformed our inferior into a fresh set
360 of instructions.
361
362 We want to preserve symbolic breakpoints on the list, since
363 we have hopes that they can be reset after the new a.out's
364 symbol table is read.
365
366 However, any "raw" breakpoints must be removed from the list
367 (e.g., the solib bp's), since their address is probably invalid
368 now.
369
370 And, we DON'T want to call delete_breakpoints() here, since
371 that may write the bp's "shadow contents" (the instruction
372 value that was overwritten witha TRAP instruction). Since
373 we now have a new a.out, those shadow contents aren't valid. */
374 update_breakpoints_after_exec ();
375
376 /* If there was one, it's gone now. We cannot truly step-to-next
377 statement through an exec(). */
378 step_resume_breakpoint = NULL;
379 step_range_start = 0;
380 step_range_end = 0;
381
382 /* What is this a.out's name? */
383 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
384
385 /* We've followed the inferior through an exec. Therefore, the
386 inferior has essentially been killed & reborn. */
387
388 /* First collect the run target in effect. */
389 tgt = find_run_target ();
390 /* If we can't find one, things are in a very strange state... */
391 if (tgt == NULL)
392 error (_("Could find run target to save before following exec"));
393
394 gdb_flush (gdb_stdout);
395 target_mourn_inferior ();
396 inferior_ptid = pid_to_ptid (saved_pid);
397 /* Because mourn_inferior resets inferior_ptid. */
398 push_target (tgt);
399
400 /* That a.out is now the one to use. */
401 exec_file_attach (execd_pathname, 0);
402
403 /* And also is where symbols can be found. */
404 symbol_file_add_main (execd_pathname, 0);
405
406 /* Reset the shared library package. This ensures that we get
407 a shlib event when the child reaches "_start", at which point
408 the dld will have had a chance to initialize the child. */
409 #if defined(SOLIB_RESTART)
410 SOLIB_RESTART ();
411 #endif
412 #ifdef SOLIB_CREATE_INFERIOR_HOOK
413 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
414 #else
415 solib_create_inferior_hook ();
416 #endif
417
418 /* Reinsert all breakpoints. (Those which were symbolic have
419 been reset to the proper address in the new a.out, thanks
420 to symbol_file_command...) */
421 insert_breakpoints ();
422
423 /* The next resume of this inferior should bring it to the shlib
424 startup breakpoints. (If the user had also set bp's on
425 "main" from the old (parent) process, then they'll auto-
426 matically get reset there in the new process.) */
427 }
428
429 /* Non-zero if we just simulating a single-step. This is needed
430 because we cannot remove the breakpoints in the inferior process
431 until after the `wait' in `wait_for_inferior'. */
432 static int singlestep_breakpoints_inserted_p = 0;
433
434 /* The thread we inserted single-step breakpoints for. */
435 static ptid_t singlestep_ptid;
436
437 /* PC when we started this single-step. */
438 static CORE_ADDR singlestep_pc;
439
440 /* If another thread hit the singlestep breakpoint, we save the original
441 thread here so that we can resume single-stepping it later. */
442 static ptid_t saved_singlestep_ptid;
443 static int stepping_past_singlestep_breakpoint;
444
445 /* Similarly, if we are stepping another thread past a breakpoint,
446 save the original thread here so that we can resume stepping it later. */
447 static ptid_t stepping_past_breakpoint_ptid;
448 static int stepping_past_breakpoint;
449 \f
450
451 /* Things to clean up if we QUIT out of resume (). */
452 static void
453 resume_cleanups (void *ignore)
454 {
455 normal_stop ();
456 }
457
458 static const char schedlock_off[] = "off";
459 static const char schedlock_on[] = "on";
460 static const char schedlock_step[] = "step";
461 static const char *scheduler_enums[] = {
462 schedlock_off,
463 schedlock_on,
464 schedlock_step,
465 NULL
466 };
467 static const char *scheduler_mode = schedlock_off;
468 static void
469 show_scheduler_mode (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471 {
472 fprintf_filtered (file, _("\
473 Mode for locking scheduler during execution is \"%s\".\n"),
474 value);
475 }
476
477 static void
478 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
479 {
480 if (!target_can_lock_scheduler)
481 {
482 scheduler_mode = schedlock_off;
483 error (_("Target '%s' cannot support this command."), target_shortname);
484 }
485 }
486
487
488 /* Resume the inferior, but allow a QUIT. This is useful if the user
489 wants to interrupt some lengthy single-stepping operation
490 (for child processes, the SIGINT goes to the inferior, and so
491 we get a SIGINT random_signal, but for remote debugging and perhaps
492 other targets, that's not true).
493
494 STEP nonzero if we should step (zero to continue instead).
495 SIG is the signal to give the inferior (zero for none). */
496 void
497 resume (int step, enum target_signal sig)
498 {
499 int should_resume = 1;
500 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
501 QUIT;
502
503 if (debug_infrun)
504 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
505 step, sig);
506
507 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
508
509
510 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
511 over an instruction that causes a page fault without triggering
512 a hardware watchpoint. The kernel properly notices that it shouldn't
513 stop, because the hardware watchpoint is not triggered, but it forgets
514 the step request and continues the program normally.
515 Work around the problem by removing hardware watchpoints if a step is
516 requested, GDB will check for a hardware watchpoint trigger after the
517 step anyway. */
518 if (CANNOT_STEP_HW_WATCHPOINTS && step)
519 remove_hw_watchpoints ();
520
521
522 /* Normally, by the time we reach `resume', the breakpoints are either
523 removed or inserted, as appropriate. The exception is if we're sitting
524 at a permanent breakpoint; we need to step over it, but permanent
525 breakpoints can't be removed. So we have to test for it here. */
526 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
527 {
528 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
529 gdbarch_skip_permanent_breakpoint (current_gdbarch,
530 get_current_regcache ());
531 else
532 error (_("\
533 The program is stopped at a permanent breakpoint, but GDB does not know\n\
534 how to step past a permanent breakpoint on this architecture. Try using\n\
535 a command like `return' or `jump' to continue execution."));
536 }
537
538 if (step && gdbarch_software_single_step_p (current_gdbarch))
539 {
540 /* Do it the hard way, w/temp breakpoints */
541 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
542 {
543 /* ...and don't ask hardware to do it. */
544 step = 0;
545 /* and do not pull these breakpoints until after a `wait' in
546 `wait_for_inferior' */
547 singlestep_breakpoints_inserted_p = 1;
548 singlestep_ptid = inferior_ptid;
549 singlestep_pc = read_pc ();
550 }
551 }
552
553 /* If there were any forks/vforks/execs that were caught and are
554 now to be followed, then do so. */
555 switch (pending_follow.kind)
556 {
557 case TARGET_WAITKIND_FORKED:
558 case TARGET_WAITKIND_VFORKED:
559 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
560 if (follow_fork ())
561 should_resume = 0;
562 break;
563
564 case TARGET_WAITKIND_EXECD:
565 /* follow_exec is called as soon as the exec event is seen. */
566 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
567 break;
568
569 default:
570 break;
571 }
572
573 /* Install inferior's terminal modes. */
574 target_terminal_inferior ();
575
576 if (should_resume)
577 {
578 ptid_t resume_ptid;
579
580 resume_ptid = RESUME_ALL; /* Default */
581
582 /* If STEP is set, it's a request to use hardware stepping
583 facilities. But in that case, we should never
584 use singlestep breakpoint. */
585 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
586
587 if (singlestep_breakpoints_inserted_p
588 && stepping_past_singlestep_breakpoint)
589 {
590 /* The situation here is as follows. In thread T1 we wanted to
591 single-step. Lacking hardware single-stepping we've
592 set breakpoint at the PC of the next instruction -- call it
593 P. After resuming, we've hit that breakpoint in thread T2.
594 Now we've removed original breakpoint, inserted breakpoint
595 at P+1, and try to step to advance T2 past breakpoint.
596 We need to step only T2, as if T1 is allowed to freely run,
597 it can run past P, and if other threads are allowed to run,
598 they can hit breakpoint at P+1, and nested hits of single-step
599 breakpoints is not something we'd want -- that's complicated
600 to support, and has no value. */
601 resume_ptid = inferior_ptid;
602 }
603
604 if ((step || singlestep_breakpoints_inserted_p)
605 && breakpoint_here_p (read_pc ())
606 && !breakpoint_inserted_here_p (read_pc ()))
607 {
608 /* We're stepping, have breakpoint at PC, and it's
609 not inserted. Most likely, proceed has noticed that
610 we have breakpoint and tries to single-step over it,
611 so that it's not hit. In which case, we need to
612 single-step only this thread, and keep others stopped,
613 as they can miss this breakpoint if allowed to run.
614
615 The current code either has all breakpoints inserted,
616 or all removed, so if we let other threads run,
617 we can actually miss any breakpoint, not the one at PC. */
618 resume_ptid = inferior_ptid;
619 }
620
621 if ((scheduler_mode == schedlock_on)
622 || (scheduler_mode == schedlock_step
623 && (step || singlestep_breakpoints_inserted_p)))
624 {
625 /* User-settable 'scheduler' mode requires solo thread resume. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
630 {
631 /* Most targets can step a breakpoint instruction, thus
632 executing it normally. But if this one cannot, just
633 continue and we will hit it anyway. */
634 if (step && breakpoint_inserted_here_p (read_pc ()))
635 step = 0;
636 }
637 target_resume (resume_ptid, step, sig);
638 }
639
640 discard_cleanups (old_cleanups);
641 }
642 \f
643
644 /* Clear out all variables saying what to do when inferior is continued.
645 First do this, then set the ones you want, then call `proceed'. */
646
647 void
648 clear_proceed_status (void)
649 {
650 trap_expected = 0;
651 step_range_start = 0;
652 step_range_end = 0;
653 step_frame_id = null_frame_id;
654 step_over_calls = STEP_OVER_UNDEBUGGABLE;
655 stop_after_trap = 0;
656 stop_soon = NO_STOP_QUIETLY;
657 proceed_to_finish = 0;
658 breakpoint_proceeded = 1; /* We're about to proceed... */
659
660 if (stop_registers)
661 {
662 regcache_xfree (stop_registers);
663 stop_registers = NULL;
664 }
665
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668 }
669
670 /* This should be suitable for any targets that support threads. */
671
672 static int
673 prepare_to_proceed (int step)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* Make sure we were stopped at a breakpoint. */
682 if (wait_status.kind != TARGET_WAITKIND_STOPPED
683 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
684 {
685 return 0;
686 }
687
688 /* Switched over from WAIT_PID. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid)
691 && breakpoint_here_p (read_pc_pid (wait_ptid)))
692 {
693 /* If stepping, remember current thread to switch back to. */
694 if (step)
695 {
696 stepping_past_breakpoint = 1;
697 stepping_past_breakpoint_ptid = inferior_ptid;
698 }
699
700 /* Switch back to WAIT_PID thread. */
701 switch_to_thread (wait_ptid);
702
703 /* We return 1 to indicate that there is a breakpoint here,
704 so we need to step over it before continuing to avoid
705 hitting it straight away. */
706 return 1;
707 }
708
709 return 0;
710 }
711
712 /* Record the pc of the program the last time it stopped. This is
713 just used internally by wait_for_inferior, but need to be preserved
714 over calls to it and cleared when the inferior is started. */
715 static CORE_ADDR prev_pc;
716
717 /* Basic routine for continuing the program in various fashions.
718
719 ADDR is the address to resume at, or -1 for resume where stopped.
720 SIGGNAL is the signal to give it, or 0 for none,
721 or -1 for act according to how it stopped.
722 STEP is nonzero if should trap after one instruction.
723 -1 means return after that and print nothing.
724 You should probably set various step_... variables
725 before calling here, if you are stepping.
726
727 You should call clear_proceed_status before calling proceed. */
728
729 void
730 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
731 {
732 int oneproc = 0;
733
734 if (step > 0)
735 step_start_function = find_pc_function (read_pc ());
736 if (step < 0)
737 stop_after_trap = 1;
738
739 if (addr == (CORE_ADDR) -1)
740 {
741 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
742 /* There is a breakpoint at the address we will resume at,
743 step one instruction before inserting breakpoints so that
744 we do not stop right away (and report a second hit at this
745 breakpoint). */
746 oneproc = 1;
747 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
748 && gdbarch_single_step_through_delay (current_gdbarch,
749 get_current_frame ()))
750 /* We stepped onto an instruction that needs to be stepped
751 again before re-inserting the breakpoint, do so. */
752 oneproc = 1;
753 }
754 else
755 {
756 write_pc (addr);
757 }
758
759 if (debug_infrun)
760 fprintf_unfiltered (gdb_stdlog,
761 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
762 paddr_nz (addr), siggnal, step);
763
764 /* In a multi-threaded task we may select another thread
765 and then continue or step.
766
767 But if the old thread was stopped at a breakpoint, it
768 will immediately cause another breakpoint stop without
769 any execution (i.e. it will report a breakpoint hit
770 incorrectly). So we must step over it first.
771
772 prepare_to_proceed checks the current thread against the thread
773 that reported the most recent event. If a step-over is required
774 it returns TRUE and sets the current thread to the old thread. */
775 if (prepare_to_proceed (step))
776 oneproc = 1;
777
778 if (oneproc)
779 /* We will get a trace trap after one instruction.
780 Continue it automatically and insert breakpoints then. */
781 trap_expected = 1;
782 else
783 insert_breakpoints ();
784
785 if (siggnal != TARGET_SIGNAL_DEFAULT)
786 stop_signal = siggnal;
787 /* If this signal should not be seen by program,
788 give it zero. Used for debugging signals. */
789 else if (!signal_program[stop_signal])
790 stop_signal = TARGET_SIGNAL_0;
791
792 annotate_starting ();
793
794 /* Make sure that output from GDB appears before output from the
795 inferior. */
796 gdb_flush (gdb_stdout);
797
798 /* Refresh prev_pc value just prior to resuming. This used to be
799 done in stop_stepping, however, setting prev_pc there did not handle
800 scenarios such as inferior function calls or returning from
801 a function via the return command. In those cases, the prev_pc
802 value was not set properly for subsequent commands. The prev_pc value
803 is used to initialize the starting line number in the ecs. With an
804 invalid value, the gdb next command ends up stopping at the position
805 represented by the next line table entry past our start position.
806 On platforms that generate one line table entry per line, this
807 is not a problem. However, on the ia64, the compiler generates
808 extraneous line table entries that do not increase the line number.
809 When we issue the gdb next command on the ia64 after an inferior call
810 or a return command, we often end up a few instructions forward, still
811 within the original line we started.
812
813 An attempt was made to have init_execution_control_state () refresh
814 the prev_pc value before calculating the line number. This approach
815 did not work because on platforms that use ptrace, the pc register
816 cannot be read unless the inferior is stopped. At that point, we
817 are not guaranteed the inferior is stopped and so the read_pc ()
818 call can fail. Setting the prev_pc value here ensures the value is
819 updated correctly when the inferior is stopped. */
820 prev_pc = read_pc ();
821
822 /* Resume inferior. */
823 resume (oneproc || step || bpstat_should_step (), stop_signal);
824
825 /* Wait for it to stop (if not standalone)
826 and in any case decode why it stopped, and act accordingly. */
827 /* Do this only if we are not using the event loop, or if the target
828 does not support asynchronous execution. */
829 if (!target_can_async_p ())
830 {
831 wait_for_inferior ();
832 normal_stop ();
833 }
834 }
835 \f
836
837 /* Start remote-debugging of a machine over a serial link. */
838
839 void
840 start_remote (int from_tty)
841 {
842 init_thread_list ();
843 init_wait_for_inferior ();
844 stop_soon = STOP_QUIETLY_REMOTE;
845 trap_expected = 0;
846
847 /* Always go on waiting for the target, regardless of the mode. */
848 /* FIXME: cagney/1999-09-23: At present it isn't possible to
849 indicate to wait_for_inferior that a target should timeout if
850 nothing is returned (instead of just blocking). Because of this,
851 targets expecting an immediate response need to, internally, set
852 things up so that the target_wait() is forced to eventually
853 timeout. */
854 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
855 differentiate to its caller what the state of the target is after
856 the initial open has been performed. Here we're assuming that
857 the target has stopped. It should be possible to eventually have
858 target_open() return to the caller an indication that the target
859 is currently running and GDB state should be set to the same as
860 for an async run. */
861 wait_for_inferior ();
862
863 /* Now that the inferior has stopped, do any bookkeeping like
864 loading shared libraries. We want to do this before normal_stop,
865 so that the displayed frame is up to date. */
866 post_create_inferior (&current_target, from_tty);
867
868 normal_stop ();
869 }
870
871 /* Initialize static vars when a new inferior begins. */
872
873 void
874 init_wait_for_inferior (void)
875 {
876 /* These are meaningless until the first time through wait_for_inferior. */
877 prev_pc = 0;
878
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
886
887 clear_proceed_status ();
888
889 stepping_past_singlestep_breakpoint = 0;
890 stepping_past_breakpoint = 0;
891 }
892 \f
893 /* This enum encodes possible reasons for doing a target_wait, so that
894 wfi can call target_wait in one place. (Ultimately the call will be
895 moved out of the infinite loop entirely.) */
896
897 enum infwait_states
898 {
899 infwait_normal_state,
900 infwait_thread_hop_state,
901 infwait_step_watch_state,
902 infwait_nonstep_watch_state
903 };
904
905 /* Why did the inferior stop? Used to print the appropriate messages
906 to the interface from within handle_inferior_event(). */
907 enum inferior_stop_reason
908 {
909 /* Step, next, nexti, stepi finished. */
910 END_STEPPING_RANGE,
911 /* Inferior terminated by signal. */
912 SIGNAL_EXITED,
913 /* Inferior exited. */
914 EXITED,
915 /* Inferior received signal, and user asked to be notified. */
916 SIGNAL_RECEIVED
917 };
918
919 /* This structure contains what used to be local variables in
920 wait_for_inferior. Probably many of them can return to being
921 locals in handle_inferior_event. */
922
923 struct execution_control_state
924 {
925 struct target_waitstatus ws;
926 struct target_waitstatus *wp;
927 int another_trap;
928 int random_signal;
929 CORE_ADDR stop_func_start;
930 CORE_ADDR stop_func_end;
931 char *stop_func_name;
932 struct symtab_and_line sal;
933 int current_line;
934 struct symtab *current_symtab;
935 int handling_longjmp; /* FIXME */
936 ptid_t ptid;
937 ptid_t saved_inferior_ptid;
938 int step_after_step_resume_breakpoint;
939 int stepping_through_solib_after_catch;
940 bpstat stepping_through_solib_catchpoints;
941 int new_thread_event;
942 struct target_waitstatus tmpstatus;
943 enum infwait_states infwait_state;
944 ptid_t waiton_ptid;
945 int wait_some_more;
946 };
947
948 void init_execution_control_state (struct execution_control_state *ecs);
949
950 void handle_inferior_event (struct execution_control_state *ecs);
951
952 static void step_into_function (struct execution_control_state *ecs);
953 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
954 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
955 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
956 struct frame_id sr_id);
957 static void stop_stepping (struct execution_control_state *ecs);
958 static void prepare_to_wait (struct execution_control_state *ecs);
959 static void keep_going (struct execution_control_state *ecs);
960 static void print_stop_reason (enum inferior_stop_reason stop_reason,
961 int stop_info);
962
963 /* Wait for control to return from inferior to debugger.
964 If inferior gets a signal, we may decide to start it up again
965 instead of returning. That is why there is a loop in this function.
966 When this function actually returns it means the inferior
967 should be left stopped and GDB should read more commands. */
968
969 void
970 wait_for_inferior (void)
971 {
972 struct cleanup *old_cleanups;
973 struct execution_control_state ecss;
974 struct execution_control_state *ecs;
975
976 if (debug_infrun)
977 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
978
979 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
980 &step_resume_breakpoint);
981
982 /* wfi still stays in a loop, so it's OK just to take the address of
983 a local to get the ecs pointer. */
984 ecs = &ecss;
985
986 /* Fill in with reasonable starting values. */
987 init_execution_control_state (ecs);
988
989 /* We'll update this if & when we switch to a new thread. */
990 previous_inferior_ptid = inferior_ptid;
991
992 overlay_cache_invalid = 1;
993
994 /* We have to invalidate the registers BEFORE calling target_wait
995 because they can be loaded from the target while in target_wait.
996 This makes remote debugging a bit more efficient for those
997 targets that provide critical registers as part of their normal
998 status mechanism. */
999
1000 registers_changed ();
1001
1002 while (1)
1003 {
1004 if (deprecated_target_wait_hook)
1005 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1006 else
1007 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1008
1009 /* Now figure out what to do with the result of the result. */
1010 handle_inferior_event (ecs);
1011
1012 if (!ecs->wait_some_more)
1013 break;
1014 }
1015 do_cleanups (old_cleanups);
1016 }
1017
1018 /* Asynchronous version of wait_for_inferior. It is called by the
1019 event loop whenever a change of state is detected on the file
1020 descriptor corresponding to the target. It can be called more than
1021 once to complete a single execution command. In such cases we need
1022 to keep the state in a global variable ASYNC_ECSS. If it is the
1023 last time that this function is called for a single execution
1024 command, then report to the user that the inferior has stopped, and
1025 do the necessary cleanups. */
1026
1027 struct execution_control_state async_ecss;
1028 struct execution_control_state *async_ecs;
1029
1030 void
1031 fetch_inferior_event (void *client_data)
1032 {
1033 static struct cleanup *old_cleanups;
1034
1035 async_ecs = &async_ecss;
1036
1037 if (!async_ecs->wait_some_more)
1038 {
1039 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1040 &step_resume_breakpoint);
1041
1042 /* Fill in with reasonable starting values. */
1043 init_execution_control_state (async_ecs);
1044
1045 /* We'll update this if & when we switch to a new thread. */
1046 previous_inferior_ptid = inferior_ptid;
1047
1048 overlay_cache_invalid = 1;
1049
1050 /* We have to invalidate the registers BEFORE calling target_wait
1051 because they can be loaded from the target while in target_wait.
1052 This makes remote debugging a bit more efficient for those
1053 targets that provide critical registers as part of their normal
1054 status mechanism. */
1055
1056 registers_changed ();
1057 }
1058
1059 if (deprecated_target_wait_hook)
1060 async_ecs->ptid =
1061 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1062 else
1063 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1064
1065 /* Now figure out what to do with the result of the result. */
1066 handle_inferior_event (async_ecs);
1067
1068 if (!async_ecs->wait_some_more)
1069 {
1070 /* Do only the cleanups that have been added by this
1071 function. Let the continuations for the commands do the rest,
1072 if there are any. */
1073 do_exec_cleanups (old_cleanups);
1074 normal_stop ();
1075 if (step_multi && stop_step)
1076 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1077 else
1078 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1079 }
1080 }
1081
1082 /* Prepare an execution control state for looping through a
1083 wait_for_inferior-type loop. */
1084
1085 void
1086 init_execution_control_state (struct execution_control_state *ecs)
1087 {
1088 ecs->another_trap = 0;
1089 ecs->random_signal = 0;
1090 ecs->step_after_step_resume_breakpoint = 0;
1091 ecs->handling_longjmp = 0; /* FIXME */
1092 ecs->stepping_through_solib_after_catch = 0;
1093 ecs->stepping_through_solib_catchpoints = NULL;
1094 ecs->sal = find_pc_line (prev_pc, 0);
1095 ecs->current_line = ecs->sal.line;
1096 ecs->current_symtab = ecs->sal.symtab;
1097 ecs->infwait_state = infwait_normal_state;
1098 ecs->waiton_ptid = pid_to_ptid (-1);
1099 ecs->wp = &(ecs->ws);
1100 }
1101
1102 /* Return the cached copy of the last pid/waitstatus returned by
1103 target_wait()/deprecated_target_wait_hook(). The data is actually
1104 cached by handle_inferior_event(), which gets called immediately
1105 after target_wait()/deprecated_target_wait_hook(). */
1106
1107 void
1108 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1109 {
1110 *ptidp = target_last_wait_ptid;
1111 *status = target_last_waitstatus;
1112 }
1113
1114 void
1115 nullify_last_target_wait_ptid (void)
1116 {
1117 target_last_wait_ptid = minus_one_ptid;
1118 }
1119
1120 /* Switch thread contexts, maintaining "infrun state". */
1121
1122 static void
1123 context_switch (struct execution_control_state *ecs)
1124 {
1125 /* Caution: it may happen that the new thread (or the old one!)
1126 is not in the thread list. In this case we must not attempt
1127 to "switch context", or we run the risk that our context may
1128 be lost. This may happen as a result of the target module
1129 mishandling thread creation. */
1130
1131 if (debug_infrun)
1132 {
1133 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1134 target_pid_to_str (inferior_ptid));
1135 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1136 target_pid_to_str (ecs->ptid));
1137 }
1138
1139 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1140 { /* Perform infrun state context switch: */
1141 /* Save infrun state for the old thread. */
1142 save_infrun_state (inferior_ptid, prev_pc,
1143 trap_expected, step_resume_breakpoint,
1144 step_range_start,
1145 step_range_end, &step_frame_id,
1146 ecs->handling_longjmp, ecs->another_trap,
1147 ecs->stepping_through_solib_after_catch,
1148 ecs->stepping_through_solib_catchpoints,
1149 ecs->current_line, ecs->current_symtab);
1150
1151 /* Load infrun state for the new thread. */
1152 load_infrun_state (ecs->ptid, &prev_pc,
1153 &trap_expected, &step_resume_breakpoint,
1154 &step_range_start,
1155 &step_range_end, &step_frame_id,
1156 &ecs->handling_longjmp, &ecs->another_trap,
1157 &ecs->stepping_through_solib_after_catch,
1158 &ecs->stepping_through_solib_catchpoints,
1159 &ecs->current_line, &ecs->current_symtab);
1160 }
1161
1162 switch_to_thread (ecs->ptid);
1163 }
1164
1165 static void
1166 adjust_pc_after_break (struct execution_control_state *ecs)
1167 {
1168 CORE_ADDR breakpoint_pc;
1169
1170 /* If this target does not decrement the PC after breakpoints, then
1171 we have nothing to do. */
1172 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1173 return;
1174
1175 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1176 we aren't, just return.
1177
1178 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1179 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1180 implemented by software breakpoints should be handled through the normal
1181 breakpoint layer.
1182
1183 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1184 different signals (SIGILL or SIGEMT for instance), but it is less
1185 clear where the PC is pointing afterwards. It may not match
1186 gdbarch_decr_pc_after_break. I don't know any specific target that
1187 generates these signals at breakpoints (the code has been in GDB since at
1188 least 1992) so I can not guess how to handle them here.
1189
1190 In earlier versions of GDB, a target with
1191 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1192 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1193 target with both of these set in GDB history, and it seems unlikely to be
1194 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1195
1196 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1197 return;
1198
1199 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1200 return;
1201
1202 /* Find the location where (if we've hit a breakpoint) the
1203 breakpoint would be. */
1204 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1205 (current_gdbarch);
1206
1207 /* Check whether there actually is a software breakpoint inserted
1208 at that location. */
1209 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1210 {
1211 /* When using hardware single-step, a SIGTRAP is reported for both
1212 a completed single-step and a software breakpoint. Need to
1213 differentiate between the two, as the latter needs adjusting
1214 but the former does not.
1215
1216 The SIGTRAP can be due to a completed hardware single-step only if
1217 - we didn't insert software single-step breakpoints
1218 - the thread to be examined is still the current thread
1219 - this thread is currently being stepped
1220
1221 If any of these events did not occur, we must have stopped due
1222 to hitting a software breakpoint, and have to back up to the
1223 breakpoint address.
1224
1225 As a special case, we could have hardware single-stepped a
1226 software breakpoint. In this case (prev_pc == breakpoint_pc),
1227 we also need to back up to the breakpoint address. */
1228
1229 if (singlestep_breakpoints_inserted_p
1230 || !ptid_equal (ecs->ptid, inferior_ptid)
1231 || !currently_stepping (ecs)
1232 || prev_pc == breakpoint_pc)
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 }
1236
1237 /* Given an execution control state that has been freshly filled in
1238 by an event from the inferior, figure out what it means and take
1239 appropriate action. */
1240
1241 void
1242 handle_inferior_event (struct execution_control_state *ecs)
1243 {
1244 int sw_single_step_trap_p = 0;
1245 int stopped_by_watchpoint;
1246 int stepped_after_stopped_by_watchpoint = 0;
1247
1248 /* Cache the last pid/waitstatus. */
1249 target_last_wait_ptid = ecs->ptid;
1250 target_last_waitstatus = *ecs->wp;
1251
1252 adjust_pc_after_break (ecs);
1253
1254 switch (ecs->infwait_state)
1255 {
1256 case infwait_thread_hop_state:
1257 if (debug_infrun)
1258 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1259 /* Cancel the waiton_ptid. */
1260 ecs->waiton_ptid = pid_to_ptid (-1);
1261 break;
1262
1263 case infwait_normal_state:
1264 if (debug_infrun)
1265 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1266 break;
1267
1268 case infwait_step_watch_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: infwait_step_watch_state\n");
1272
1273 stepped_after_stopped_by_watchpoint = 1;
1274 break;
1275
1276 case infwait_nonstep_watch_state:
1277 if (debug_infrun)
1278 fprintf_unfiltered (gdb_stdlog,
1279 "infrun: infwait_nonstep_watch_state\n");
1280 insert_breakpoints ();
1281
1282 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1283 handle things like signals arriving and other things happening
1284 in combination correctly? */
1285 stepped_after_stopped_by_watchpoint = 1;
1286 break;
1287
1288 default:
1289 internal_error (__FILE__, __LINE__, _("bad switch"));
1290 }
1291 ecs->infwait_state = infwait_normal_state;
1292
1293 reinit_frame_cache ();
1294
1295 /* If it's a new process, add it to the thread database */
1296
1297 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1298 && !ptid_equal (ecs->ptid, minus_one_ptid)
1299 && !in_thread_list (ecs->ptid));
1300
1301 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1302 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1303 {
1304 add_thread (ecs->ptid);
1305
1306 ui_out_text (uiout, "[New ");
1307 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1308 ui_out_text (uiout, "]\n");
1309 }
1310
1311 switch (ecs->ws.kind)
1312 {
1313 case TARGET_WAITKIND_LOADED:
1314 if (debug_infrun)
1315 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1316 /* Ignore gracefully during startup of the inferior, as it might
1317 be the shell which has just loaded some objects, otherwise
1318 add the symbols for the newly loaded objects. Also ignore at
1319 the beginning of an attach or remote session; we will query
1320 the full list of libraries once the connection is
1321 established. */
1322 if (stop_soon == NO_STOP_QUIETLY)
1323 {
1324 /* Remove breakpoints, SOLIB_ADD might adjust
1325 breakpoint addresses via breakpoint_re_set. */
1326 remove_breakpoints ();
1327
1328 /* Check for any newly added shared libraries if we're
1329 supposed to be adding them automatically. Switch
1330 terminal for any messages produced by
1331 breakpoint_re_set. */
1332 target_terminal_ours_for_output ();
1333 /* NOTE: cagney/2003-11-25: Make certain that the target
1334 stack's section table is kept up-to-date. Architectures,
1335 (e.g., PPC64), use the section table to perform
1336 operations such as address => section name and hence
1337 require the table to contain all sections (including
1338 those found in shared libraries). */
1339 /* NOTE: cagney/2003-11-25: Pass current_target and not
1340 exec_ops to SOLIB_ADD. This is because current GDB is
1341 only tooled to propagate section_table changes out from
1342 the "current_target" (see target_resize_to_sections), and
1343 not up from the exec stratum. This, of course, isn't
1344 right. "infrun.c" should only interact with the
1345 exec/process stratum, instead relying on the target stack
1346 to propagate relevant changes (stop, section table
1347 changed, ...) up to other layers. */
1348 #ifdef SOLIB_ADD
1349 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1350 #else
1351 solib_add (NULL, 0, &current_target, auto_solib_add);
1352 #endif
1353 target_terminal_inferior ();
1354
1355 /* If requested, stop when the dynamic linker notifies
1356 gdb of events. This allows the user to get control
1357 and place breakpoints in initializer routines for
1358 dynamically loaded objects (among other things). */
1359 if (stop_on_solib_events)
1360 {
1361 stop_stepping (ecs);
1362 return;
1363 }
1364
1365 /* NOTE drow/2007-05-11: This might be a good place to check
1366 for "catch load". */
1367
1368 /* Reinsert breakpoints and continue. */
1369 insert_breakpoints ();
1370 }
1371
1372 /* If we are skipping through a shell, or through shared library
1373 loading that we aren't interested in, resume the program. If
1374 we're running the program normally, also resume. But stop if
1375 we're attaching or setting up a remote connection. */
1376 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1377 {
1378 resume (0, TARGET_SIGNAL_0);
1379 prepare_to_wait (ecs);
1380 return;
1381 }
1382
1383 break;
1384
1385 case TARGET_WAITKIND_SPURIOUS:
1386 if (debug_infrun)
1387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1388 resume (0, TARGET_SIGNAL_0);
1389 prepare_to_wait (ecs);
1390 return;
1391
1392 case TARGET_WAITKIND_EXITED:
1393 if (debug_infrun)
1394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396 print_stop_reason (EXITED, ecs->ws.value.integer);
1397
1398 /* Record the exit code in the convenience variable $_exitcode, so
1399 that the user can inspect this again later. */
1400 set_internalvar (lookup_internalvar ("_exitcode"),
1401 value_from_longest (builtin_type_int,
1402 (LONGEST) ecs->ws.value.integer));
1403 gdb_flush (gdb_stdout);
1404 target_mourn_inferior ();
1405 singlestep_breakpoints_inserted_p = 0;
1406 stop_print_frame = 0;
1407 stop_stepping (ecs);
1408 return;
1409
1410 case TARGET_WAITKIND_SIGNALLED:
1411 if (debug_infrun)
1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1413 stop_print_frame = 0;
1414 stop_signal = ecs->ws.value.sig;
1415 target_terminal_ours (); /* Must do this before mourn anyway */
1416
1417 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1418 reach here unless the inferior is dead. However, for years
1419 target_kill() was called here, which hints that fatal signals aren't
1420 really fatal on some systems. If that's true, then some changes
1421 may be needed. */
1422 target_mourn_inferior ();
1423
1424 print_stop_reason (SIGNAL_EXITED, stop_signal);
1425 singlestep_breakpoints_inserted_p = 0;
1426 stop_stepping (ecs);
1427 return;
1428
1429 /* The following are the only cases in which we keep going;
1430 the above cases end in a continue or goto. */
1431 case TARGET_WAITKIND_FORKED:
1432 case TARGET_WAITKIND_VFORKED:
1433 if (debug_infrun)
1434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1435 stop_signal = TARGET_SIGNAL_TRAP;
1436 pending_follow.kind = ecs->ws.kind;
1437
1438 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1439 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1440
1441 if (!ptid_equal (ecs->ptid, inferior_ptid))
1442 {
1443 context_switch (ecs);
1444 reinit_frame_cache ();
1445 }
1446
1447 stop_pc = read_pc ();
1448
1449 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1450
1451 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1452
1453 /* If no catchpoint triggered for this, then keep going. */
1454 if (ecs->random_signal)
1455 {
1456 stop_signal = TARGET_SIGNAL_0;
1457 keep_going (ecs);
1458 return;
1459 }
1460 goto process_event_stop_test;
1461
1462 case TARGET_WAITKIND_EXECD:
1463 if (debug_infrun)
1464 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1465 stop_signal = TARGET_SIGNAL_TRAP;
1466
1467 /* NOTE drow/2002-12-05: This code should be pushed down into the
1468 target_wait function. Until then following vfork on HP/UX 10.20
1469 is probably broken by this. Of course, it's broken anyway. */
1470 /* Is this a target which reports multiple exec events per actual
1471 call to exec()? (HP-UX using ptrace does, for example.) If so,
1472 ignore all but the last one. Just resume the exec'r, and wait
1473 for the next exec event. */
1474 if (inferior_ignoring_leading_exec_events)
1475 {
1476 inferior_ignoring_leading_exec_events--;
1477 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1478 prepare_to_wait (ecs);
1479 return;
1480 }
1481 inferior_ignoring_leading_exec_events =
1482 target_reported_exec_events_per_exec_call () - 1;
1483
1484 pending_follow.execd_pathname =
1485 savestring (ecs->ws.value.execd_pathname,
1486 strlen (ecs->ws.value.execd_pathname));
1487
1488 /* This causes the eventpoints and symbol table to be reset. Must
1489 do this now, before trying to determine whether to stop. */
1490 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1491 xfree (pending_follow.execd_pathname);
1492
1493 stop_pc = read_pc_pid (ecs->ptid);
1494 ecs->saved_inferior_ptid = inferior_ptid;
1495 inferior_ptid = ecs->ptid;
1496
1497 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1498
1499 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1500 inferior_ptid = ecs->saved_inferior_ptid;
1501
1502 if (!ptid_equal (ecs->ptid, inferior_ptid))
1503 {
1504 context_switch (ecs);
1505 reinit_frame_cache ();
1506 }
1507
1508 /* If no catchpoint triggered for this, then keep going. */
1509 if (ecs->random_signal)
1510 {
1511 stop_signal = TARGET_SIGNAL_0;
1512 keep_going (ecs);
1513 return;
1514 }
1515 goto process_event_stop_test;
1516
1517 /* Be careful not to try to gather much state about a thread
1518 that's in a syscall. It's frequently a losing proposition. */
1519 case TARGET_WAITKIND_SYSCALL_ENTRY:
1520 if (debug_infrun)
1521 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1522 resume (0, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
1525
1526 /* Before examining the threads further, step this thread to
1527 get it entirely out of the syscall. (We get notice of the
1528 event when the thread is just on the verge of exiting a
1529 syscall. Stepping one instruction seems to get it back
1530 into user code.) */
1531 case TARGET_WAITKIND_SYSCALL_RETURN:
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1534 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1535 prepare_to_wait (ecs);
1536 return;
1537
1538 case TARGET_WAITKIND_STOPPED:
1539 if (debug_infrun)
1540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1541 stop_signal = ecs->ws.value.sig;
1542 break;
1543
1544 /* We had an event in the inferior, but we are not interested
1545 in handling it at this level. The lower layers have already
1546 done what needs to be done, if anything.
1547
1548 One of the possible circumstances for this is when the
1549 inferior produces output for the console. The inferior has
1550 not stopped, and we are ignoring the event. Another possible
1551 circumstance is any event which the lower level knows will be
1552 reported multiple times without an intervening resume. */
1553 case TARGET_WAITKIND_IGNORE:
1554 if (debug_infrun)
1555 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1556 prepare_to_wait (ecs);
1557 return;
1558 }
1559
1560 /* We may want to consider not doing a resume here in order to give
1561 the user a chance to play with the new thread. It might be good
1562 to make that a user-settable option. */
1563
1564 /* At this point, all threads are stopped (happens automatically in
1565 either the OS or the native code). Therefore we need to continue
1566 all threads in order to make progress. */
1567 if (ecs->new_thread_event)
1568 {
1569 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1570 prepare_to_wait (ecs);
1571 return;
1572 }
1573
1574 stop_pc = read_pc_pid (ecs->ptid);
1575
1576 if (debug_infrun)
1577 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1578
1579 if (stepping_past_singlestep_breakpoint)
1580 {
1581 gdb_assert (singlestep_breakpoints_inserted_p);
1582 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1583 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1584
1585 stepping_past_singlestep_breakpoint = 0;
1586
1587 /* We've either finished single-stepping past the single-step
1588 breakpoint, or stopped for some other reason. It would be nice if
1589 we could tell, but we can't reliably. */
1590 if (stop_signal == TARGET_SIGNAL_TRAP)
1591 {
1592 if (debug_infrun)
1593 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1594 /* Pull the single step breakpoints out of the target. */
1595 remove_single_step_breakpoints ();
1596 singlestep_breakpoints_inserted_p = 0;
1597
1598 ecs->random_signal = 0;
1599
1600 ecs->ptid = saved_singlestep_ptid;
1601 context_switch (ecs);
1602 if (deprecated_context_hook)
1603 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1604
1605 resume (1, TARGET_SIGNAL_0);
1606 prepare_to_wait (ecs);
1607 return;
1608 }
1609 }
1610
1611 stepping_past_singlestep_breakpoint = 0;
1612
1613 if (stepping_past_breakpoint)
1614 {
1615 stepping_past_breakpoint = 0;
1616
1617 /* If we stopped for some other reason than single-stepping, ignore
1618 the fact that we were supposed to switch back. */
1619 if (stop_signal == TARGET_SIGNAL_TRAP)
1620 {
1621 if (debug_infrun)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "infrun: stepping_past_breakpoint\n");
1624
1625 /* Pull the single step breakpoints out of the target. */
1626 if (singlestep_breakpoints_inserted_p)
1627 {
1628 remove_single_step_breakpoints ();
1629 singlestep_breakpoints_inserted_p = 0;
1630 }
1631
1632 /* Note: We do not call context_switch at this point, as the
1633 context is already set up for stepping the original thread. */
1634 switch_to_thread (stepping_past_breakpoint_ptid);
1635 /* Suppress spurious "Switching to ..." message. */
1636 previous_inferior_ptid = inferior_ptid;
1637
1638 resume (1, TARGET_SIGNAL_0);
1639 prepare_to_wait (ecs);
1640 return;
1641 }
1642 }
1643
1644 /* See if a thread hit a thread-specific breakpoint that was meant for
1645 another thread. If so, then step that thread past the breakpoint,
1646 and continue it. */
1647
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
1650 int thread_hop_needed = 0;
1651
1652 /* Check if a regular breakpoint has been hit before checking
1653 for a potential single step breakpoint. Otherwise, GDB will
1654 not see this breakpoint hit when stepping onto breakpoints. */
1655 if (regular_breakpoint_inserted_here_p (stop_pc))
1656 {
1657 ecs->random_signal = 0;
1658 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1659 thread_hop_needed = 1;
1660 }
1661 else if (singlestep_breakpoints_inserted_p)
1662 {
1663 /* We have not context switched yet, so this should be true
1664 no matter which thread hit the singlestep breakpoint. */
1665 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1666 if (debug_infrun)
1667 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1668 "trap for %s\n",
1669 target_pid_to_str (ecs->ptid));
1670
1671 ecs->random_signal = 0;
1672 /* The call to in_thread_list is necessary because PTIDs sometimes
1673 change when we go from single-threaded to multi-threaded. If
1674 the singlestep_ptid is still in the list, assume that it is
1675 really different from ecs->ptid. */
1676 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1677 && in_thread_list (singlestep_ptid))
1678 {
1679 /* If the PC of the thread we were trying to single-step
1680 has changed, discard this event (which we were going
1681 to ignore anyway), and pretend we saw that thread
1682 trap. This prevents us continuously moving the
1683 single-step breakpoint forward, one instruction at a
1684 time. If the PC has changed, then the thread we were
1685 trying to single-step has trapped or been signalled,
1686 but the event has not been reported to GDB yet.
1687
1688 There might be some cases where this loses signal
1689 information, if a signal has arrived at exactly the
1690 same time that the PC changed, but this is the best
1691 we can do with the information available. Perhaps we
1692 should arrange to report all events for all threads
1693 when they stop, or to re-poll the remote looking for
1694 this particular thread (i.e. temporarily enable
1695 schedlock). */
1696 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1697 {
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1700 " but expected thread advanced also\n");
1701
1702 /* The current context still belongs to
1703 singlestep_ptid. Don't swap here, since that's
1704 the context we want to use. Just fudge our
1705 state and continue. */
1706 ecs->ptid = singlestep_ptid;
1707 stop_pc = read_pc_pid (ecs->ptid);
1708 }
1709 else
1710 {
1711 if (debug_infrun)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "infrun: unexpected thread\n");
1714
1715 thread_hop_needed = 1;
1716 stepping_past_singlestep_breakpoint = 1;
1717 saved_singlestep_ptid = singlestep_ptid;
1718 }
1719 }
1720 }
1721
1722 if (thread_hop_needed)
1723 {
1724 int remove_status;
1725
1726 if (debug_infrun)
1727 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1728
1729 /* Saw a breakpoint, but it was hit by the wrong thread.
1730 Just continue. */
1731
1732 if (singlestep_breakpoints_inserted_p)
1733 {
1734 /* Pull the single step breakpoints out of the target. */
1735 remove_single_step_breakpoints ();
1736 singlestep_breakpoints_inserted_p = 0;
1737 }
1738
1739 remove_status = remove_breakpoints ();
1740 /* Did we fail to remove breakpoints? If so, try
1741 to set the PC past the bp. (There's at least
1742 one situation in which we can fail to remove
1743 the bp's: On HP-UX's that use ttrace, we can't
1744 change the address space of a vforking child
1745 process until the child exits (well, okay, not
1746 then either :-) or execs. */
1747 if (remove_status != 0)
1748 {
1749 /* FIXME! This is obviously non-portable! */
1750 write_pc_pid (stop_pc + 4, ecs->ptid);
1751 /* We need to restart all the threads now,
1752 * unles we're running in scheduler-locked mode.
1753 * Use currently_stepping to determine whether to
1754 * step or continue.
1755 */
1756 /* FIXME MVS: is there any reason not to call resume()? */
1757 if (scheduler_mode == schedlock_on)
1758 target_resume (ecs->ptid,
1759 currently_stepping (ecs), TARGET_SIGNAL_0);
1760 else
1761 target_resume (RESUME_ALL,
1762 currently_stepping (ecs), TARGET_SIGNAL_0);
1763 prepare_to_wait (ecs);
1764 return;
1765 }
1766 else
1767 { /* Single step */
1768 if (!ptid_equal (inferior_ptid, ecs->ptid))
1769 context_switch (ecs);
1770 ecs->waiton_ptid = ecs->ptid;
1771 ecs->wp = &(ecs->ws);
1772 ecs->another_trap = 1;
1773
1774 ecs->infwait_state = infwait_thread_hop_state;
1775 keep_going (ecs);
1776 registers_changed ();
1777 return;
1778 }
1779 }
1780 else if (singlestep_breakpoints_inserted_p)
1781 {
1782 sw_single_step_trap_p = 1;
1783 ecs->random_signal = 0;
1784 }
1785 }
1786 else
1787 ecs->random_signal = 1;
1788
1789 /* See if something interesting happened to the non-current thread. If
1790 so, then switch to that thread. */
1791 if (!ptid_equal (ecs->ptid, inferior_ptid))
1792 {
1793 if (debug_infrun)
1794 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1795
1796 context_switch (ecs);
1797
1798 if (deprecated_context_hook)
1799 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1800 }
1801
1802 if (singlestep_breakpoints_inserted_p)
1803 {
1804 /* Pull the single step breakpoints out of the target. */
1805 remove_single_step_breakpoints ();
1806 singlestep_breakpoints_inserted_p = 0;
1807 }
1808
1809 if (stepped_after_stopped_by_watchpoint)
1810 stopped_by_watchpoint = 0;
1811 else
1812 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1813
1814 /* If necessary, step over this watchpoint. We'll be back to display
1815 it in a moment. */
1816 if (stopped_by_watchpoint
1817 && (HAVE_STEPPABLE_WATCHPOINT
1818 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1819 {
1820 if (debug_infrun)
1821 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1822
1823 /* At this point, we are stopped at an instruction which has
1824 attempted to write to a piece of memory under control of
1825 a watchpoint. The instruction hasn't actually executed
1826 yet. If we were to evaluate the watchpoint expression
1827 now, we would get the old value, and therefore no change
1828 would seem to have occurred.
1829
1830 In order to make watchpoints work `right', we really need
1831 to complete the memory write, and then evaluate the
1832 watchpoint expression. We do this by single-stepping the
1833 target.
1834
1835 It may not be necessary to disable the watchpoint to stop over
1836 it. For example, the PA can (with some kernel cooperation)
1837 single step over a watchpoint without disabling the watchpoint.
1838
1839 It is far more common to need to disable a watchpoint to step
1840 the inferior over it. If we have non-steppable watchpoints,
1841 we must disable the current watchpoint; it's simplest to
1842 disable all watchpoints and breakpoints. */
1843
1844 if (!HAVE_STEPPABLE_WATCHPOINT)
1845 remove_breakpoints ();
1846 registers_changed ();
1847 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1848 ecs->waiton_ptid = ecs->ptid;
1849 if (HAVE_STEPPABLE_WATCHPOINT)
1850 ecs->infwait_state = infwait_step_watch_state;
1851 else
1852 ecs->infwait_state = infwait_nonstep_watch_state;
1853 prepare_to_wait (ecs);
1854 return;
1855 }
1856
1857 ecs->stop_func_start = 0;
1858 ecs->stop_func_end = 0;
1859 ecs->stop_func_name = 0;
1860 /* Don't care about return value; stop_func_start and stop_func_name
1861 will both be 0 if it doesn't work. */
1862 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1863 &ecs->stop_func_start, &ecs->stop_func_end);
1864 ecs->stop_func_start
1865 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1866 ecs->another_trap = 0;
1867 bpstat_clear (&stop_bpstat);
1868 stop_step = 0;
1869 stop_stack_dummy = 0;
1870 stop_print_frame = 1;
1871 ecs->random_signal = 0;
1872 stopped_by_random_signal = 0;
1873
1874 if (stop_signal == TARGET_SIGNAL_TRAP
1875 && trap_expected
1876 && gdbarch_single_step_through_delay_p (current_gdbarch)
1877 && currently_stepping (ecs))
1878 {
1879 /* We're trying to step of a breakpoint. Turns out that we're
1880 also on an instruction that needs to be stepped multiple
1881 times before it's been fully executing. E.g., architectures
1882 with a delay slot. It needs to be stepped twice, once for
1883 the instruction and once for the delay slot. */
1884 int step_through_delay
1885 = gdbarch_single_step_through_delay (current_gdbarch,
1886 get_current_frame ());
1887 if (debug_infrun && step_through_delay)
1888 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1889 if (step_range_end == 0 && step_through_delay)
1890 {
1891 /* The user issued a continue when stopped at a breakpoint.
1892 Set up for another trap and get out of here. */
1893 ecs->another_trap = 1;
1894 keep_going (ecs);
1895 return;
1896 }
1897 else if (step_through_delay)
1898 {
1899 /* The user issued a step when stopped at a breakpoint.
1900 Maybe we should stop, maybe we should not - the delay
1901 slot *might* correspond to a line of source. In any
1902 case, don't decide that here, just set ecs->another_trap,
1903 making sure we single-step again before breakpoints are
1904 re-inserted. */
1905 ecs->another_trap = 1;
1906 }
1907 }
1908
1909 /* Look at the cause of the stop, and decide what to do.
1910 The alternatives are:
1911 1) break; to really stop and return to the debugger,
1912 2) drop through to start up again
1913 (set ecs->another_trap to 1 to single step once)
1914 3) set ecs->random_signal to 1, and the decision between 1 and 2
1915 will be made according to the signal handling tables. */
1916
1917 /* First, distinguish signals caused by the debugger from signals
1918 that have to do with the program's own actions. Note that
1919 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1920 on the operating system version. Here we detect when a SIGILL or
1921 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1922 something similar for SIGSEGV, since a SIGSEGV will be generated
1923 when we're trying to execute a breakpoint instruction on a
1924 non-executable stack. This happens for call dummy breakpoints
1925 for architectures like SPARC that place call dummies on the
1926 stack. */
1927
1928 if (stop_signal == TARGET_SIGNAL_TRAP
1929 || (breakpoint_inserted_here_p (stop_pc)
1930 && (stop_signal == TARGET_SIGNAL_ILL
1931 || stop_signal == TARGET_SIGNAL_SEGV
1932 || stop_signal == TARGET_SIGNAL_EMT))
1933 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1934 || stop_soon == STOP_QUIETLY_REMOTE)
1935 {
1936 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1937 {
1938 if (debug_infrun)
1939 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1940 stop_print_frame = 0;
1941 stop_stepping (ecs);
1942 return;
1943 }
1944
1945 /* This is originated from start_remote(), start_inferior() and
1946 shared libraries hook functions. */
1947 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1948 {
1949 if (debug_infrun)
1950 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1951 stop_stepping (ecs);
1952 return;
1953 }
1954
1955 /* This originates from attach_command(). We need to overwrite
1956 the stop_signal here, because some kernels don't ignore a
1957 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1958 See more comments in inferior.h. */
1959 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1960 {
1961 stop_stepping (ecs);
1962 if (stop_signal == TARGET_SIGNAL_STOP)
1963 stop_signal = TARGET_SIGNAL_0;
1964 return;
1965 }
1966
1967 /* See if there is a breakpoint at the current PC. */
1968 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1969
1970 /* Following in case break condition called a
1971 function. */
1972 stop_print_frame = 1;
1973
1974 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1975 at one stage in the past included checks for an inferior
1976 function call's call dummy's return breakpoint. The original
1977 comment, that went with the test, read:
1978
1979 ``End of a stack dummy. Some systems (e.g. Sony news) give
1980 another signal besides SIGTRAP, so check here as well as
1981 above.''
1982
1983 If someone ever tries to get get call dummys on a
1984 non-executable stack to work (where the target would stop
1985 with something like a SIGSEGV), then those tests might need
1986 to be re-instated. Given, however, that the tests were only
1987 enabled when momentary breakpoints were not being used, I
1988 suspect that it won't be the case.
1989
1990 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1991 be necessary for call dummies on a non-executable stack on
1992 SPARC. */
1993
1994 if (stop_signal == TARGET_SIGNAL_TRAP)
1995 ecs->random_signal
1996 = !(bpstat_explains_signal (stop_bpstat)
1997 || trap_expected
1998 || (step_range_end && step_resume_breakpoint == NULL));
1999 else
2000 {
2001 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2002 if (!ecs->random_signal)
2003 stop_signal = TARGET_SIGNAL_TRAP;
2004 }
2005 }
2006
2007 /* When we reach this point, we've pretty much decided
2008 that the reason for stopping must've been a random
2009 (unexpected) signal. */
2010
2011 else
2012 ecs->random_signal = 1;
2013
2014 process_event_stop_test:
2015 /* For the program's own signals, act according to
2016 the signal handling tables. */
2017
2018 if (ecs->random_signal)
2019 {
2020 /* Signal not for debugging purposes. */
2021 int printed = 0;
2022
2023 if (debug_infrun)
2024 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2025
2026 stopped_by_random_signal = 1;
2027
2028 if (signal_print[stop_signal])
2029 {
2030 printed = 1;
2031 target_terminal_ours_for_output ();
2032 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2033 }
2034 if (signal_stop[stop_signal])
2035 {
2036 stop_stepping (ecs);
2037 return;
2038 }
2039 /* If not going to stop, give terminal back
2040 if we took it away. */
2041 else if (printed)
2042 target_terminal_inferior ();
2043
2044 /* Clear the signal if it should not be passed. */
2045 if (signal_program[stop_signal] == 0)
2046 stop_signal = TARGET_SIGNAL_0;
2047
2048 if (prev_pc == read_pc ()
2049 && breakpoint_here_p (read_pc ())
2050 && !breakpoint_inserted_here_p (read_pc ())
2051 && step_resume_breakpoint == NULL)
2052 {
2053 /* We were just starting a new sequence, attempting to
2054 single-step off of a breakpoint and expecting a SIGTRAP.
2055 Intead this signal arrives. This signal will take us out
2056 of the stepping range so GDB needs to remember to, when
2057 the signal handler returns, resume stepping off that
2058 breakpoint. */
2059 /* To simplify things, "continue" is forced to use the same
2060 code paths as single-step - set a breakpoint at the
2061 signal return address and then, once hit, step off that
2062 breakpoint. */
2063
2064 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2065 ecs->step_after_step_resume_breakpoint = 1;
2066 keep_going (ecs);
2067 return;
2068 }
2069
2070 if (step_range_end != 0
2071 && stop_signal != TARGET_SIGNAL_0
2072 && stop_pc >= step_range_start && stop_pc < step_range_end
2073 && frame_id_eq (get_frame_id (get_current_frame ()),
2074 step_frame_id)
2075 && step_resume_breakpoint == NULL)
2076 {
2077 /* The inferior is about to take a signal that will take it
2078 out of the single step range. Set a breakpoint at the
2079 current PC (which is presumably where the signal handler
2080 will eventually return) and then allow the inferior to
2081 run free.
2082
2083 Note that this is only needed for a signal delivered
2084 while in the single-step range. Nested signals aren't a
2085 problem as they eventually all return. */
2086 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2087 keep_going (ecs);
2088 return;
2089 }
2090
2091 /* Note: step_resume_breakpoint may be non-NULL. This occures
2092 when either there's a nested signal, or when there's a
2093 pending signal enabled just as the signal handler returns
2094 (leaving the inferior at the step-resume-breakpoint without
2095 actually executing it). Either way continue until the
2096 breakpoint is really hit. */
2097 keep_going (ecs);
2098 return;
2099 }
2100
2101 /* Handle cases caused by hitting a breakpoint. */
2102 {
2103 CORE_ADDR jmp_buf_pc;
2104 struct bpstat_what what;
2105
2106 what = bpstat_what (stop_bpstat);
2107
2108 if (what.call_dummy)
2109 {
2110 stop_stack_dummy = 1;
2111 }
2112
2113 switch (what.main_action)
2114 {
2115 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2116 /* If we hit the breakpoint at longjmp, disable it for the
2117 duration of this command. Then, install a temporary
2118 breakpoint at the target of the jmp_buf. */
2119 if (debug_infrun)
2120 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2121 disable_longjmp_breakpoint ();
2122 remove_breakpoints ();
2123 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2124 || !gdbarch_get_longjmp_target (current_gdbarch,
2125 get_current_frame (), &jmp_buf_pc))
2126 {
2127 keep_going (ecs);
2128 return;
2129 }
2130
2131 /* Need to blow away step-resume breakpoint, as it
2132 interferes with us */
2133 if (step_resume_breakpoint != NULL)
2134 {
2135 delete_step_resume_breakpoint (&step_resume_breakpoint);
2136 }
2137
2138 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2139 ecs->handling_longjmp = 1; /* FIXME */
2140 keep_going (ecs);
2141 return;
2142
2143 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2144 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2145 if (debug_infrun)
2146 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2147 remove_breakpoints ();
2148 disable_longjmp_breakpoint ();
2149 ecs->handling_longjmp = 0; /* FIXME */
2150 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2151 break;
2152 /* else fallthrough */
2153
2154 case BPSTAT_WHAT_SINGLE:
2155 if (debug_infrun)
2156 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2157 remove_breakpoints ();
2158 ecs->another_trap = 1;
2159 /* Still need to check other stuff, at least the case
2160 where we are stepping and step out of the right range. */
2161 break;
2162
2163 case BPSTAT_WHAT_STOP_NOISY:
2164 if (debug_infrun)
2165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2166 stop_print_frame = 1;
2167
2168 /* We are about to nuke the step_resume_breakpointt via the
2169 cleanup chain, so no need to worry about it here. */
2170
2171 stop_stepping (ecs);
2172 return;
2173
2174 case BPSTAT_WHAT_STOP_SILENT:
2175 if (debug_infrun)
2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2177 stop_print_frame = 0;
2178
2179 /* We are about to nuke the step_resume_breakpoin via the
2180 cleanup chain, so no need to worry about it here. */
2181
2182 stop_stepping (ecs);
2183 return;
2184
2185 case BPSTAT_WHAT_STEP_RESUME:
2186 /* This proably demands a more elegant solution, but, yeah
2187 right...
2188
2189 This function's use of the simple variable
2190 step_resume_breakpoint doesn't seem to accomodate
2191 simultaneously active step-resume bp's, although the
2192 breakpoint list certainly can.
2193
2194 If we reach here and step_resume_breakpoint is already
2195 NULL, then apparently we have multiple active
2196 step-resume bp's. We'll just delete the breakpoint we
2197 stopped at, and carry on.
2198
2199 Correction: what the code currently does is delete a
2200 step-resume bp, but it makes no effort to ensure that
2201 the one deleted is the one currently stopped at. MVS */
2202
2203 if (debug_infrun)
2204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2205
2206 if (step_resume_breakpoint == NULL)
2207 {
2208 step_resume_breakpoint =
2209 bpstat_find_step_resume_breakpoint (stop_bpstat);
2210 }
2211 delete_step_resume_breakpoint (&step_resume_breakpoint);
2212 if (ecs->step_after_step_resume_breakpoint)
2213 {
2214 /* Back when the step-resume breakpoint was inserted, we
2215 were trying to single-step off a breakpoint. Go back
2216 to doing that. */
2217 ecs->step_after_step_resume_breakpoint = 0;
2218 remove_breakpoints ();
2219 ecs->another_trap = 1;
2220 keep_going (ecs);
2221 return;
2222 }
2223 break;
2224
2225 case BPSTAT_WHAT_CHECK_SHLIBS:
2226 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2227 {
2228 if (debug_infrun)
2229 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2230 /* Remove breakpoints, we eventually want to step over the
2231 shlib event breakpoint, and SOLIB_ADD might adjust
2232 breakpoint addresses via breakpoint_re_set. */
2233 remove_breakpoints ();
2234
2235 /* Check for any newly added shared libraries if we're
2236 supposed to be adding them automatically. Switch
2237 terminal for any messages produced by
2238 breakpoint_re_set. */
2239 target_terminal_ours_for_output ();
2240 /* NOTE: cagney/2003-11-25: Make certain that the target
2241 stack's section table is kept up-to-date. Architectures,
2242 (e.g., PPC64), use the section table to perform
2243 operations such as address => section name and hence
2244 require the table to contain all sections (including
2245 those found in shared libraries). */
2246 /* NOTE: cagney/2003-11-25: Pass current_target and not
2247 exec_ops to SOLIB_ADD. This is because current GDB is
2248 only tooled to propagate section_table changes out from
2249 the "current_target" (see target_resize_to_sections), and
2250 not up from the exec stratum. This, of course, isn't
2251 right. "infrun.c" should only interact with the
2252 exec/process stratum, instead relying on the target stack
2253 to propagate relevant changes (stop, section table
2254 changed, ...) up to other layers. */
2255 #ifdef SOLIB_ADD
2256 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2257 #else
2258 solib_add (NULL, 0, &current_target, auto_solib_add);
2259 #endif
2260 target_terminal_inferior ();
2261
2262 /* If requested, stop when the dynamic linker notifies
2263 gdb of events. This allows the user to get control
2264 and place breakpoints in initializer routines for
2265 dynamically loaded objects (among other things). */
2266 if (stop_on_solib_events || stop_stack_dummy)
2267 {
2268 stop_stepping (ecs);
2269 return;
2270 }
2271
2272 /* If we stopped due to an explicit catchpoint, then the
2273 (see above) call to SOLIB_ADD pulled in any symbols
2274 from a newly-loaded library, if appropriate.
2275
2276 We do want the inferior to stop, but not where it is
2277 now, which is in the dynamic linker callback. Rather,
2278 we would like it stop in the user's program, just after
2279 the call that caused this catchpoint to trigger. That
2280 gives the user a more useful vantage from which to
2281 examine their program's state. */
2282 else if (what.main_action
2283 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2284 {
2285 /* ??rehrauer: If I could figure out how to get the
2286 right return PC from here, we could just set a temp
2287 breakpoint and resume. I'm not sure we can without
2288 cracking open the dld's shared libraries and sniffing
2289 their unwind tables and text/data ranges, and that's
2290 not a terribly portable notion.
2291
2292 Until that time, we must step the inferior out of the
2293 dld callback, and also out of the dld itself (and any
2294 code or stubs in libdld.sl, such as "shl_load" and
2295 friends) until we reach non-dld code. At that point,
2296 we can stop stepping. */
2297 bpstat_get_triggered_catchpoints (stop_bpstat,
2298 &ecs->
2299 stepping_through_solib_catchpoints);
2300 ecs->stepping_through_solib_after_catch = 1;
2301
2302 /* Be sure to lift all breakpoints, so the inferior does
2303 actually step past this point... */
2304 ecs->another_trap = 1;
2305 break;
2306 }
2307 else
2308 {
2309 /* We want to step over this breakpoint, then keep going. */
2310 ecs->another_trap = 1;
2311 break;
2312 }
2313 }
2314 break;
2315
2316 case BPSTAT_WHAT_LAST:
2317 /* Not a real code, but listed here to shut up gcc -Wall. */
2318
2319 case BPSTAT_WHAT_KEEP_CHECKING:
2320 break;
2321 }
2322 }
2323
2324 /* We come here if we hit a breakpoint but should not
2325 stop for it. Possibly we also were stepping
2326 and should stop for that. So fall through and
2327 test for stepping. But, if not stepping,
2328 do not stop. */
2329
2330 /* Are we stepping to get the inferior out of the dynamic linker's
2331 hook (and possibly the dld itself) after catching a shlib
2332 event? */
2333 if (ecs->stepping_through_solib_after_catch)
2334 {
2335 #if defined(SOLIB_ADD)
2336 /* Have we reached our destination? If not, keep going. */
2337 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2338 {
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2341 ecs->another_trap = 1;
2342 keep_going (ecs);
2343 return;
2344 }
2345 #endif
2346 if (debug_infrun)
2347 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2348 /* Else, stop and report the catchpoint(s) whose triggering
2349 caused us to begin stepping. */
2350 ecs->stepping_through_solib_after_catch = 0;
2351 bpstat_clear (&stop_bpstat);
2352 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2353 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2354 stop_print_frame = 1;
2355 stop_stepping (ecs);
2356 return;
2357 }
2358
2359 if (step_resume_breakpoint)
2360 {
2361 if (debug_infrun)
2362 fprintf_unfiltered (gdb_stdlog,
2363 "infrun: step-resume breakpoint is inserted\n");
2364
2365 /* Having a step-resume breakpoint overrides anything
2366 else having to do with stepping commands until
2367 that breakpoint is reached. */
2368 keep_going (ecs);
2369 return;
2370 }
2371
2372 if (step_range_end == 0)
2373 {
2374 if (debug_infrun)
2375 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2376 /* Likewise if we aren't even stepping. */
2377 keep_going (ecs);
2378 return;
2379 }
2380
2381 /* If stepping through a line, keep going if still within it.
2382
2383 Note that step_range_end is the address of the first instruction
2384 beyond the step range, and NOT the address of the last instruction
2385 within it! */
2386 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2387 {
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2390 paddr_nz (step_range_start),
2391 paddr_nz (step_range_end));
2392 keep_going (ecs);
2393 return;
2394 }
2395
2396 /* We stepped out of the stepping range. */
2397
2398 /* If we are stepping at the source level and entered the runtime
2399 loader dynamic symbol resolution code, we keep on single stepping
2400 until we exit the run time loader code and reach the callee's
2401 address. */
2402 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2403 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2404 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2405 #else
2406 && in_solib_dynsym_resolve_code (stop_pc)
2407 #endif
2408 )
2409 {
2410 CORE_ADDR pc_after_resolver =
2411 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2412
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2415
2416 if (pc_after_resolver)
2417 {
2418 /* Set up a step-resume breakpoint at the address
2419 indicated by SKIP_SOLIB_RESOLVER. */
2420 struct symtab_and_line sr_sal;
2421 init_sal (&sr_sal);
2422 sr_sal.pc = pc_after_resolver;
2423
2424 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2425 }
2426
2427 keep_going (ecs);
2428 return;
2429 }
2430
2431 if (step_range_end != 1
2432 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2433 || step_over_calls == STEP_OVER_ALL)
2434 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2435 {
2436 if (debug_infrun)
2437 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2438 /* The inferior, while doing a "step" or "next", has ended up in
2439 a signal trampoline (either by a signal being delivered or by
2440 the signal handler returning). Just single-step until the
2441 inferior leaves the trampoline (either by calling the handler
2442 or returning). */
2443 keep_going (ecs);
2444 return;
2445 }
2446
2447 /* Check for subroutine calls. The check for the current frame
2448 equalling the step ID is not necessary - the check of the
2449 previous frame's ID is sufficient - but it is a common case and
2450 cheaper than checking the previous frame's ID.
2451
2452 NOTE: frame_id_eq will never report two invalid frame IDs as
2453 being equal, so to get into this block, both the current and
2454 previous frame must have valid frame IDs. */
2455 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2456 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2457 {
2458 CORE_ADDR real_stop_pc;
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2462
2463 if ((step_over_calls == STEP_OVER_NONE)
2464 || ((step_range_end == 1)
2465 && in_prologue (prev_pc, ecs->stop_func_start)))
2466 {
2467 /* I presume that step_over_calls is only 0 when we're
2468 supposed to be stepping at the assembly language level
2469 ("stepi"). Just stop. */
2470 /* Also, maybe we just did a "nexti" inside a prolog, so we
2471 thought it was a subroutine call but it was not. Stop as
2472 well. FENN */
2473 stop_step = 1;
2474 print_stop_reason (END_STEPPING_RANGE, 0);
2475 stop_stepping (ecs);
2476 return;
2477 }
2478
2479 if (step_over_calls == STEP_OVER_ALL)
2480 {
2481 /* We're doing a "next", set a breakpoint at callee's return
2482 address (the address at which the caller will
2483 resume). */
2484 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2485 keep_going (ecs);
2486 return;
2487 }
2488
2489 /* If we are in a function call trampoline (a stub between the
2490 calling routine and the real function), locate the real
2491 function. That's what tells us (a) whether we want to step
2492 into it at all, and (b) what prologue we want to run to the
2493 end of, if we do step into it. */
2494 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2495 if (real_stop_pc == 0)
2496 real_stop_pc = gdbarch_skip_trampoline_code
2497 (current_gdbarch, get_current_frame (), stop_pc);
2498 if (real_stop_pc != 0)
2499 ecs->stop_func_start = real_stop_pc;
2500
2501 if (
2502 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2503 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2504 #else
2505 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2506 #endif
2507 )
2508 {
2509 struct symtab_and_line sr_sal;
2510 init_sal (&sr_sal);
2511 sr_sal.pc = ecs->stop_func_start;
2512
2513 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2514 keep_going (ecs);
2515 return;
2516 }
2517
2518 /* If we have line number information for the function we are
2519 thinking of stepping into, step into it.
2520
2521 If there are several symtabs at that PC (e.g. with include
2522 files), just want to know whether *any* of them have line
2523 numbers. find_pc_line handles this. */
2524 {
2525 struct symtab_and_line tmp_sal;
2526
2527 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2528 if (tmp_sal.line != 0)
2529 {
2530 step_into_function (ecs);
2531 return;
2532 }
2533 }
2534
2535 /* If we have no line number and the step-stop-if-no-debug is
2536 set, we stop the step so that the user has a chance to switch
2537 in assembly mode. */
2538 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2539 {
2540 stop_step = 1;
2541 print_stop_reason (END_STEPPING_RANGE, 0);
2542 stop_stepping (ecs);
2543 return;
2544 }
2545
2546 /* Set a breakpoint at callee's return address (the address at
2547 which the caller will resume). */
2548 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2549 keep_going (ecs);
2550 return;
2551 }
2552
2553 /* If we're in the return path from a shared library trampoline,
2554 we want to proceed through the trampoline when stepping. */
2555 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2556 stop_pc, ecs->stop_func_name))
2557 {
2558 /* Determine where this trampoline returns. */
2559 CORE_ADDR real_stop_pc;
2560 real_stop_pc = gdbarch_skip_trampoline_code
2561 (current_gdbarch, get_current_frame (), stop_pc);
2562
2563 if (debug_infrun)
2564 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2565
2566 /* Only proceed through if we know where it's going. */
2567 if (real_stop_pc)
2568 {
2569 /* And put the step-breakpoint there and go until there. */
2570 struct symtab_and_line sr_sal;
2571
2572 init_sal (&sr_sal); /* initialize to zeroes */
2573 sr_sal.pc = real_stop_pc;
2574 sr_sal.section = find_pc_overlay (sr_sal.pc);
2575
2576 /* Do not specify what the fp should be when we stop since
2577 on some machines the prologue is where the new fp value
2578 is established. */
2579 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2580
2581 /* Restart without fiddling with the step ranges or
2582 other state. */
2583 keep_going (ecs);
2584 return;
2585 }
2586 }
2587
2588 ecs->sal = find_pc_line (stop_pc, 0);
2589
2590 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2591 the trampoline processing logic, however, there are some trampolines
2592 that have no names, so we should do trampoline handling first. */
2593 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2594 && ecs->stop_func_name == NULL
2595 && ecs->sal.line == 0)
2596 {
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2599
2600 /* The inferior just stepped into, or returned to, an
2601 undebuggable function (where there is no debugging information
2602 and no line number corresponding to the address where the
2603 inferior stopped). Since we want to skip this kind of code,
2604 we keep going until the inferior returns from this
2605 function - unless the user has asked us not to (via
2606 set step-mode) or we no longer know how to get back
2607 to the call site. */
2608 if (step_stop_if_no_debug
2609 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2610 {
2611 /* If we have no line number and the step-stop-if-no-debug
2612 is set, we stop the step so that the user has a chance to
2613 switch in assembly mode. */
2614 stop_step = 1;
2615 print_stop_reason (END_STEPPING_RANGE, 0);
2616 stop_stepping (ecs);
2617 return;
2618 }
2619 else
2620 {
2621 /* Set a breakpoint at callee's return address (the address
2622 at which the caller will resume). */
2623 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2624 keep_going (ecs);
2625 return;
2626 }
2627 }
2628
2629 if (step_range_end == 1)
2630 {
2631 /* It is stepi or nexti. We always want to stop stepping after
2632 one instruction. */
2633 if (debug_infrun)
2634 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2635 stop_step = 1;
2636 print_stop_reason (END_STEPPING_RANGE, 0);
2637 stop_stepping (ecs);
2638 return;
2639 }
2640
2641 if (ecs->sal.line == 0)
2642 {
2643 /* We have no line number information. That means to stop
2644 stepping (does this always happen right after one instruction,
2645 when we do "s" in a function with no line numbers,
2646 or can this happen as a result of a return or longjmp?). */
2647 if (debug_infrun)
2648 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2649 stop_step = 1;
2650 print_stop_reason (END_STEPPING_RANGE, 0);
2651 stop_stepping (ecs);
2652 return;
2653 }
2654
2655 if ((stop_pc == ecs->sal.pc)
2656 && (ecs->current_line != ecs->sal.line
2657 || ecs->current_symtab != ecs->sal.symtab))
2658 {
2659 /* We are at the start of a different line. So stop. Note that
2660 we don't stop if we step into the middle of a different line.
2661 That is said to make things like for (;;) statements work
2662 better. */
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2665 stop_step = 1;
2666 print_stop_reason (END_STEPPING_RANGE, 0);
2667 stop_stepping (ecs);
2668 return;
2669 }
2670
2671 /* We aren't done stepping.
2672
2673 Optimize by setting the stepping range to the line.
2674 (We might not be in the original line, but if we entered a
2675 new line in mid-statement, we continue stepping. This makes
2676 things like for(;;) statements work better.) */
2677
2678 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2679 {
2680 /* If this is the last line of the function, don't keep stepping
2681 (it would probably step us out of the function).
2682 This is particularly necessary for a one-line function,
2683 in which after skipping the prologue we better stop even though
2684 we will be in mid-line. */
2685 if (debug_infrun)
2686 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2687 stop_step = 1;
2688 print_stop_reason (END_STEPPING_RANGE, 0);
2689 stop_stepping (ecs);
2690 return;
2691 }
2692 step_range_start = ecs->sal.pc;
2693 step_range_end = ecs->sal.end;
2694 step_frame_id = get_frame_id (get_current_frame ());
2695 ecs->current_line = ecs->sal.line;
2696 ecs->current_symtab = ecs->sal.symtab;
2697
2698 /* In the case where we just stepped out of a function into the
2699 middle of a line of the caller, continue stepping, but
2700 step_frame_id must be modified to current frame */
2701 #if 0
2702 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2703 generous. It will trigger on things like a step into a frameless
2704 stackless leaf function. I think the logic should instead look
2705 at the unwound frame ID has that should give a more robust
2706 indication of what happened. */
2707 if (step - ID == current - ID)
2708 still stepping in same function;
2709 else if (step - ID == unwind (current - ID))
2710 stepped into a function;
2711 else
2712 stepped out of a function;
2713 /* Of course this assumes that the frame ID unwind code is robust
2714 and we're willing to introduce frame unwind logic into this
2715 function. Fortunately, those days are nearly upon us. */
2716 #endif
2717 {
2718 struct frame_info *frame = get_current_frame ();
2719 struct frame_id current_frame = get_frame_id (frame);
2720 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2721 step_frame_id)))
2722 step_frame_id = current_frame;
2723 }
2724
2725 if (debug_infrun)
2726 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2727 keep_going (ecs);
2728 }
2729
2730 /* Are we in the middle of stepping? */
2731
2732 static int
2733 currently_stepping (struct execution_control_state *ecs)
2734 {
2735 return ((!ecs->handling_longjmp
2736 && ((step_range_end && step_resume_breakpoint == NULL)
2737 || trap_expected))
2738 || ecs->stepping_through_solib_after_catch
2739 || bpstat_should_step ());
2740 }
2741
2742 /* Subroutine call with source code we should not step over. Do step
2743 to the first line of code in it. */
2744
2745 static void
2746 step_into_function (struct execution_control_state *ecs)
2747 {
2748 struct symtab *s;
2749 struct symtab_and_line sr_sal;
2750
2751 s = find_pc_symtab (stop_pc);
2752 if (s && s->language != language_asm)
2753 ecs->stop_func_start = gdbarch_skip_prologue
2754 (current_gdbarch, ecs->stop_func_start);
2755
2756 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2757 /* Use the step_resume_break to step until the end of the prologue,
2758 even if that involves jumps (as it seems to on the vax under
2759 4.2). */
2760 /* If the prologue ends in the middle of a source line, continue to
2761 the end of that source line (if it is still within the function).
2762 Otherwise, just go to end of prologue. */
2763 if (ecs->sal.end
2764 && ecs->sal.pc != ecs->stop_func_start
2765 && ecs->sal.end < ecs->stop_func_end)
2766 ecs->stop_func_start = ecs->sal.end;
2767
2768 /* Architectures which require breakpoint adjustment might not be able
2769 to place a breakpoint at the computed address. If so, the test
2770 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2771 ecs->stop_func_start to an address at which a breakpoint may be
2772 legitimately placed.
2773
2774 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2775 made, GDB will enter an infinite loop when stepping through
2776 optimized code consisting of VLIW instructions which contain
2777 subinstructions corresponding to different source lines. On
2778 FR-V, it's not permitted to place a breakpoint on any but the
2779 first subinstruction of a VLIW instruction. When a breakpoint is
2780 set, GDB will adjust the breakpoint address to the beginning of
2781 the VLIW instruction. Thus, we need to make the corresponding
2782 adjustment here when computing the stop address. */
2783
2784 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2785 {
2786 ecs->stop_func_start
2787 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2788 ecs->stop_func_start);
2789 }
2790
2791 if (ecs->stop_func_start == stop_pc)
2792 {
2793 /* We are already there: stop now. */
2794 stop_step = 1;
2795 print_stop_reason (END_STEPPING_RANGE, 0);
2796 stop_stepping (ecs);
2797 return;
2798 }
2799 else
2800 {
2801 /* Put the step-breakpoint there and go until there. */
2802 init_sal (&sr_sal); /* initialize to zeroes */
2803 sr_sal.pc = ecs->stop_func_start;
2804 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2805
2806 /* Do not specify what the fp should be when we stop since on
2807 some machines the prologue is where the new fp value is
2808 established. */
2809 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2810
2811 /* And make sure stepping stops right away then. */
2812 step_range_end = step_range_start;
2813 }
2814 keep_going (ecs);
2815 }
2816
2817 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2818 This is used to both functions and to skip over code. */
2819
2820 static void
2821 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2822 struct frame_id sr_id)
2823 {
2824 /* There should never be more than one step-resume breakpoint per
2825 thread, so we should never be setting a new
2826 step_resume_breakpoint when one is already active. */
2827 gdb_assert (step_resume_breakpoint == NULL);
2828
2829 if (debug_infrun)
2830 fprintf_unfiltered (gdb_stdlog,
2831 "infrun: inserting step-resume breakpoint at 0x%s\n",
2832 paddr_nz (sr_sal.pc));
2833
2834 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2835 bp_step_resume);
2836 }
2837
2838 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2839 to skip a potential signal handler.
2840
2841 This is called with the interrupted function's frame. The signal
2842 handler, when it returns, will resume the interrupted function at
2843 RETURN_FRAME.pc. */
2844
2845 static void
2846 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2847 {
2848 struct symtab_and_line sr_sal;
2849
2850 gdb_assert (return_frame != NULL);
2851 init_sal (&sr_sal); /* initialize to zeros */
2852
2853 sr_sal.pc = gdbarch_addr_bits_remove
2854 (current_gdbarch, get_frame_pc (return_frame));
2855 sr_sal.section = find_pc_overlay (sr_sal.pc);
2856
2857 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2858 }
2859
2860 /* Similar to insert_step_resume_breakpoint_at_frame, except
2861 but a breakpoint at the previous frame's PC. This is used to
2862 skip a function after stepping into it (for "next" or if the called
2863 function has no debugging information).
2864
2865 The current function has almost always been reached by single
2866 stepping a call or return instruction. NEXT_FRAME belongs to the
2867 current function, and the breakpoint will be set at the caller's
2868 resume address.
2869
2870 This is a separate function rather than reusing
2871 insert_step_resume_breakpoint_at_frame in order to avoid
2872 get_prev_frame, which may stop prematurely (see the implementation
2873 of frame_unwind_id for an example). */
2874
2875 static void
2876 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2877 {
2878 struct symtab_and_line sr_sal;
2879
2880 /* We shouldn't have gotten here if we don't know where the call site
2881 is. */
2882 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2883
2884 init_sal (&sr_sal); /* initialize to zeros */
2885
2886 sr_sal.pc = gdbarch_addr_bits_remove
2887 (current_gdbarch, frame_pc_unwind (next_frame));
2888 sr_sal.section = find_pc_overlay (sr_sal.pc);
2889
2890 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2891 }
2892
2893 static void
2894 stop_stepping (struct execution_control_state *ecs)
2895 {
2896 if (debug_infrun)
2897 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2898
2899 /* Let callers know we don't want to wait for the inferior anymore. */
2900 ecs->wait_some_more = 0;
2901 }
2902
2903 /* This function handles various cases where we need to continue
2904 waiting for the inferior. */
2905 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2906
2907 static void
2908 keep_going (struct execution_control_state *ecs)
2909 {
2910 /* Save the pc before execution, to compare with pc after stop. */
2911 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2912
2913 /* If we did not do break;, it means we should keep running the
2914 inferior and not return to debugger. */
2915
2916 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2917 {
2918 /* We took a signal (which we are supposed to pass through to
2919 the inferior, else we'd have done a break above) and we
2920 haven't yet gotten our trap. Simply continue. */
2921 resume (currently_stepping (ecs), stop_signal);
2922 }
2923 else
2924 {
2925 /* Either the trap was not expected, but we are continuing
2926 anyway (the user asked that this signal be passed to the
2927 child)
2928 -- or --
2929 The signal was SIGTRAP, e.g. it was our signal, but we
2930 decided we should resume from it.
2931
2932 We're going to run this baby now!
2933
2934 Note that insert_breakpoints won't try to re-insert
2935 already inserted breakpoints. Therefore, we don't
2936 care if breakpoints were already inserted, or not. */
2937
2938 if (!ecs->another_trap)
2939 {
2940 struct gdb_exception e;
2941 /* Stop stepping when inserting breakpoints
2942 has failed. */
2943 TRY_CATCH (e, RETURN_MASK_ERROR)
2944 {
2945 insert_breakpoints ();
2946 }
2947 if (e.reason < 0)
2948 {
2949 stop_stepping (ecs);
2950 return;
2951 }
2952 }
2953
2954 trap_expected = ecs->another_trap;
2955
2956 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2957 specifies that such a signal should be delivered to the
2958 target program).
2959
2960 Typically, this would occure when a user is debugging a
2961 target monitor on a simulator: the target monitor sets a
2962 breakpoint; the simulator encounters this break-point and
2963 halts the simulation handing control to GDB; GDB, noteing
2964 that the break-point isn't valid, returns control back to the
2965 simulator; the simulator then delivers the hardware
2966 equivalent of a SIGNAL_TRAP to the program being debugged. */
2967
2968 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2969 stop_signal = TARGET_SIGNAL_0;
2970
2971
2972 resume (currently_stepping (ecs), stop_signal);
2973 }
2974
2975 prepare_to_wait (ecs);
2976 }
2977
2978 /* This function normally comes after a resume, before
2979 handle_inferior_event exits. It takes care of any last bits of
2980 housekeeping, and sets the all-important wait_some_more flag. */
2981
2982 static void
2983 prepare_to_wait (struct execution_control_state *ecs)
2984 {
2985 if (debug_infrun)
2986 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2987 if (ecs->infwait_state == infwait_normal_state)
2988 {
2989 overlay_cache_invalid = 1;
2990
2991 /* We have to invalidate the registers BEFORE calling
2992 target_wait because they can be loaded from the target while
2993 in target_wait. This makes remote debugging a bit more
2994 efficient for those targets that provide critical registers
2995 as part of their normal status mechanism. */
2996
2997 registers_changed ();
2998 ecs->waiton_ptid = pid_to_ptid (-1);
2999 ecs->wp = &(ecs->ws);
3000 }
3001 /* This is the old end of the while loop. Let everybody know we
3002 want to wait for the inferior some more and get called again
3003 soon. */
3004 ecs->wait_some_more = 1;
3005 }
3006
3007 /* Print why the inferior has stopped. We always print something when
3008 the inferior exits, or receives a signal. The rest of the cases are
3009 dealt with later on in normal_stop() and print_it_typical(). Ideally
3010 there should be a call to this function from handle_inferior_event()
3011 each time stop_stepping() is called.*/
3012 static void
3013 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3014 {
3015 switch (stop_reason)
3016 {
3017 case END_STEPPING_RANGE:
3018 /* We are done with a step/next/si/ni command. */
3019 /* For now print nothing. */
3020 /* Print a message only if not in the middle of doing a "step n"
3021 operation for n > 1 */
3022 if (!step_multi || !stop_step)
3023 if (ui_out_is_mi_like_p (uiout))
3024 ui_out_field_string
3025 (uiout, "reason",
3026 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3027 break;
3028 case SIGNAL_EXITED:
3029 /* The inferior was terminated by a signal. */
3030 annotate_signalled ();
3031 if (ui_out_is_mi_like_p (uiout))
3032 ui_out_field_string
3033 (uiout, "reason",
3034 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3035 ui_out_text (uiout, "\nProgram terminated with signal ");
3036 annotate_signal_name ();
3037 ui_out_field_string (uiout, "signal-name",
3038 target_signal_to_name (stop_info));
3039 annotate_signal_name_end ();
3040 ui_out_text (uiout, ", ");
3041 annotate_signal_string ();
3042 ui_out_field_string (uiout, "signal-meaning",
3043 target_signal_to_string (stop_info));
3044 annotate_signal_string_end ();
3045 ui_out_text (uiout, ".\n");
3046 ui_out_text (uiout, "The program no longer exists.\n");
3047 break;
3048 case EXITED:
3049 /* The inferior program is finished. */
3050 annotate_exited (stop_info);
3051 if (stop_info)
3052 {
3053 if (ui_out_is_mi_like_p (uiout))
3054 ui_out_field_string (uiout, "reason",
3055 async_reason_lookup (EXEC_ASYNC_EXITED));
3056 ui_out_text (uiout, "\nProgram exited with code ");
3057 ui_out_field_fmt (uiout, "exit-code", "0%o",
3058 (unsigned int) stop_info);
3059 ui_out_text (uiout, ".\n");
3060 }
3061 else
3062 {
3063 if (ui_out_is_mi_like_p (uiout))
3064 ui_out_field_string
3065 (uiout, "reason",
3066 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3067 ui_out_text (uiout, "\nProgram exited normally.\n");
3068 }
3069 /* Support the --return-child-result option. */
3070 return_child_result_value = stop_info;
3071 break;
3072 case SIGNAL_RECEIVED:
3073 /* Signal received. The signal table tells us to print about
3074 it. */
3075 annotate_signal ();
3076 ui_out_text (uiout, "\nProgram received signal ");
3077 annotate_signal_name ();
3078 if (ui_out_is_mi_like_p (uiout))
3079 ui_out_field_string
3080 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3081 ui_out_field_string (uiout, "signal-name",
3082 target_signal_to_name (stop_info));
3083 annotate_signal_name_end ();
3084 ui_out_text (uiout, ", ");
3085 annotate_signal_string ();
3086 ui_out_field_string (uiout, "signal-meaning",
3087 target_signal_to_string (stop_info));
3088 annotate_signal_string_end ();
3089 ui_out_text (uiout, ".\n");
3090 break;
3091 default:
3092 internal_error (__FILE__, __LINE__,
3093 _("print_stop_reason: unrecognized enum value"));
3094 break;
3095 }
3096 }
3097 \f
3098
3099 /* Here to return control to GDB when the inferior stops for real.
3100 Print appropriate messages, remove breakpoints, give terminal our modes.
3101
3102 STOP_PRINT_FRAME nonzero means print the executing frame
3103 (pc, function, args, file, line number and line text).
3104 BREAKPOINTS_FAILED nonzero means stop was due to error
3105 attempting to insert breakpoints. */
3106
3107 void
3108 normal_stop (void)
3109 {
3110 struct target_waitstatus last;
3111 ptid_t last_ptid;
3112
3113 get_last_target_status (&last_ptid, &last);
3114
3115 /* As with the notification of thread events, we want to delay
3116 notifying the user that we've switched thread context until
3117 the inferior actually stops.
3118
3119 There's no point in saying anything if the inferior has exited.
3120 Note that SIGNALLED here means "exited with a signal", not
3121 "received a signal". */
3122 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3123 && target_has_execution
3124 && last.kind != TARGET_WAITKIND_SIGNALLED
3125 && last.kind != TARGET_WAITKIND_EXITED)
3126 {
3127 target_terminal_ours_for_output ();
3128 printf_filtered (_("[Switching to %s]\n"),
3129 target_pid_or_tid_to_str (inferior_ptid));
3130 previous_inferior_ptid = inferior_ptid;
3131 }
3132
3133 /* NOTE drow/2004-01-17: Is this still necessary? */
3134 /* Make sure that the current_frame's pc is correct. This
3135 is a correction for setting up the frame info before doing
3136 gdbarch_decr_pc_after_break */
3137 if (target_has_execution)
3138 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3139 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3140 frame code to check for this and sort out any resultant mess.
3141 gdbarch_decr_pc_after_break needs to just go away. */
3142 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3143
3144 if (target_has_execution)
3145 {
3146 if (remove_breakpoints ())
3147 {
3148 target_terminal_ours_for_output ();
3149 printf_filtered (_("\
3150 Cannot remove breakpoints because program is no longer writable.\n\
3151 It might be running in another process.\n\
3152 Further execution is probably impossible.\n"));
3153 }
3154 }
3155
3156 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3157 Delete any breakpoint that is to be deleted at the next stop. */
3158
3159 breakpoint_auto_delete (stop_bpstat);
3160
3161 /* If an auto-display called a function and that got a signal,
3162 delete that auto-display to avoid an infinite recursion. */
3163
3164 if (stopped_by_random_signal)
3165 disable_current_display ();
3166
3167 /* Don't print a message if in the middle of doing a "step n"
3168 operation for n > 1 */
3169 if (step_multi && stop_step)
3170 goto done;
3171
3172 target_terminal_ours ();
3173
3174 /* Set the current source location. This will also happen if we
3175 display the frame below, but the current SAL will be incorrect
3176 during a user hook-stop function. */
3177 if (target_has_stack && !stop_stack_dummy)
3178 set_current_sal_from_frame (get_current_frame (), 1);
3179
3180 /* Look up the hook_stop and run it (CLI internally handles problem
3181 of stop_command's pre-hook not existing). */
3182 if (stop_command)
3183 catch_errors (hook_stop_stub, stop_command,
3184 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3185
3186 if (!target_has_stack)
3187 {
3188
3189 goto done;
3190 }
3191
3192 /* Select innermost stack frame - i.e., current frame is frame 0,
3193 and current location is based on that.
3194 Don't do this on return from a stack dummy routine,
3195 or if the program has exited. */
3196
3197 if (!stop_stack_dummy)
3198 {
3199 select_frame (get_current_frame ());
3200
3201 /* Print current location without a level number, if
3202 we have changed functions or hit a breakpoint.
3203 Print source line if we have one.
3204 bpstat_print() contains the logic deciding in detail
3205 what to print, based on the event(s) that just occurred. */
3206
3207 if (stop_print_frame)
3208 {
3209 int bpstat_ret;
3210 int source_flag;
3211 int do_frame_printing = 1;
3212
3213 bpstat_ret = bpstat_print (stop_bpstat);
3214 switch (bpstat_ret)
3215 {
3216 case PRINT_UNKNOWN:
3217 /* If we had hit a shared library event breakpoint,
3218 bpstat_print would print out this message. If we hit
3219 an OS-level shared library event, do the same
3220 thing. */
3221 if (last.kind == TARGET_WAITKIND_LOADED)
3222 {
3223 printf_filtered (_("Stopped due to shared library event\n"));
3224 source_flag = SRC_LINE; /* something bogus */
3225 do_frame_printing = 0;
3226 break;
3227 }
3228
3229 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3230 (or should) carry around the function and does (or
3231 should) use that when doing a frame comparison. */
3232 if (stop_step
3233 && frame_id_eq (step_frame_id,
3234 get_frame_id (get_current_frame ()))
3235 && step_start_function == find_pc_function (stop_pc))
3236 source_flag = SRC_LINE; /* finished step, just print source line */
3237 else
3238 source_flag = SRC_AND_LOC; /* print location and source line */
3239 break;
3240 case PRINT_SRC_AND_LOC:
3241 source_flag = SRC_AND_LOC; /* print location and source line */
3242 break;
3243 case PRINT_SRC_ONLY:
3244 source_flag = SRC_LINE;
3245 break;
3246 case PRINT_NOTHING:
3247 source_flag = SRC_LINE; /* something bogus */
3248 do_frame_printing = 0;
3249 break;
3250 default:
3251 internal_error (__FILE__, __LINE__, _("Unknown value."));
3252 }
3253
3254 if (ui_out_is_mi_like_p (uiout))
3255 ui_out_field_int (uiout, "thread-id",
3256 pid_to_thread_id (inferior_ptid));
3257 /* The behavior of this routine with respect to the source
3258 flag is:
3259 SRC_LINE: Print only source line
3260 LOCATION: Print only location
3261 SRC_AND_LOC: Print location and source line */
3262 if (do_frame_printing)
3263 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3264
3265 /* Display the auto-display expressions. */
3266 do_displays ();
3267 }
3268 }
3269
3270 /* Save the function value return registers, if we care.
3271 We might be about to restore their previous contents. */
3272 if (proceed_to_finish)
3273 {
3274 /* This should not be necessary. */
3275 if (stop_registers)
3276 regcache_xfree (stop_registers);
3277
3278 /* NB: The copy goes through to the target picking up the value of
3279 all the registers. */
3280 stop_registers = regcache_dup (get_current_regcache ());
3281 }
3282
3283 if (stop_stack_dummy)
3284 {
3285 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3286 ends with a setting of the current frame, so we can use that
3287 next. */
3288 frame_pop (get_current_frame ());
3289 /* Set stop_pc to what it was before we called the function.
3290 Can't rely on restore_inferior_status because that only gets
3291 called if we don't stop in the called function. */
3292 stop_pc = read_pc ();
3293 select_frame (get_current_frame ());
3294 }
3295
3296 done:
3297 annotate_stopped ();
3298 observer_notify_normal_stop (stop_bpstat);
3299 }
3300
3301 static int
3302 hook_stop_stub (void *cmd)
3303 {
3304 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3305 return (0);
3306 }
3307 \f
3308 int
3309 signal_stop_state (int signo)
3310 {
3311 return signal_stop[signo];
3312 }
3313
3314 int
3315 signal_print_state (int signo)
3316 {
3317 return signal_print[signo];
3318 }
3319
3320 int
3321 signal_pass_state (int signo)
3322 {
3323 return signal_program[signo];
3324 }
3325
3326 int
3327 signal_stop_update (int signo, int state)
3328 {
3329 int ret = signal_stop[signo];
3330 signal_stop[signo] = state;
3331 return ret;
3332 }
3333
3334 int
3335 signal_print_update (int signo, int state)
3336 {
3337 int ret = signal_print[signo];
3338 signal_print[signo] = state;
3339 return ret;
3340 }
3341
3342 int
3343 signal_pass_update (int signo, int state)
3344 {
3345 int ret = signal_program[signo];
3346 signal_program[signo] = state;
3347 return ret;
3348 }
3349
3350 static void
3351 sig_print_header (void)
3352 {
3353 printf_filtered (_("\
3354 Signal Stop\tPrint\tPass to program\tDescription\n"));
3355 }
3356
3357 static void
3358 sig_print_info (enum target_signal oursig)
3359 {
3360 char *name = target_signal_to_name (oursig);
3361 int name_padding = 13 - strlen (name);
3362
3363 if (name_padding <= 0)
3364 name_padding = 0;
3365
3366 printf_filtered ("%s", name);
3367 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3368 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3369 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3370 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3371 printf_filtered ("%s\n", target_signal_to_string (oursig));
3372 }
3373
3374 /* Specify how various signals in the inferior should be handled. */
3375
3376 static void
3377 handle_command (char *args, int from_tty)
3378 {
3379 char **argv;
3380 int digits, wordlen;
3381 int sigfirst, signum, siglast;
3382 enum target_signal oursig;
3383 int allsigs;
3384 int nsigs;
3385 unsigned char *sigs;
3386 struct cleanup *old_chain;
3387
3388 if (args == NULL)
3389 {
3390 error_no_arg (_("signal to handle"));
3391 }
3392
3393 /* Allocate and zero an array of flags for which signals to handle. */
3394
3395 nsigs = (int) TARGET_SIGNAL_LAST;
3396 sigs = (unsigned char *) alloca (nsigs);
3397 memset (sigs, 0, nsigs);
3398
3399 /* Break the command line up into args. */
3400
3401 argv = buildargv (args);
3402 if (argv == NULL)
3403 {
3404 nomem (0);
3405 }
3406 old_chain = make_cleanup_freeargv (argv);
3407
3408 /* Walk through the args, looking for signal oursigs, signal names, and
3409 actions. Signal numbers and signal names may be interspersed with
3410 actions, with the actions being performed for all signals cumulatively
3411 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3412
3413 while (*argv != NULL)
3414 {
3415 wordlen = strlen (*argv);
3416 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3417 {;
3418 }
3419 allsigs = 0;
3420 sigfirst = siglast = -1;
3421
3422 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3423 {
3424 /* Apply action to all signals except those used by the
3425 debugger. Silently skip those. */
3426 allsigs = 1;
3427 sigfirst = 0;
3428 siglast = nsigs - 1;
3429 }
3430 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3431 {
3432 SET_SIGS (nsigs, sigs, signal_stop);
3433 SET_SIGS (nsigs, sigs, signal_print);
3434 }
3435 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3436 {
3437 UNSET_SIGS (nsigs, sigs, signal_program);
3438 }
3439 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3440 {
3441 SET_SIGS (nsigs, sigs, signal_print);
3442 }
3443 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3444 {
3445 SET_SIGS (nsigs, sigs, signal_program);
3446 }
3447 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3448 {
3449 UNSET_SIGS (nsigs, sigs, signal_stop);
3450 }
3451 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3452 {
3453 SET_SIGS (nsigs, sigs, signal_program);
3454 }
3455 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3456 {
3457 UNSET_SIGS (nsigs, sigs, signal_print);
3458 UNSET_SIGS (nsigs, sigs, signal_stop);
3459 }
3460 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3461 {
3462 UNSET_SIGS (nsigs, sigs, signal_program);
3463 }
3464 else if (digits > 0)
3465 {
3466 /* It is numeric. The numeric signal refers to our own
3467 internal signal numbering from target.h, not to host/target
3468 signal number. This is a feature; users really should be
3469 using symbolic names anyway, and the common ones like
3470 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3471
3472 sigfirst = siglast = (int)
3473 target_signal_from_command (atoi (*argv));
3474 if ((*argv)[digits] == '-')
3475 {
3476 siglast = (int)
3477 target_signal_from_command (atoi ((*argv) + digits + 1));
3478 }
3479 if (sigfirst > siglast)
3480 {
3481 /* Bet he didn't figure we'd think of this case... */
3482 signum = sigfirst;
3483 sigfirst = siglast;
3484 siglast = signum;
3485 }
3486 }
3487 else
3488 {
3489 oursig = target_signal_from_name (*argv);
3490 if (oursig != TARGET_SIGNAL_UNKNOWN)
3491 {
3492 sigfirst = siglast = (int) oursig;
3493 }
3494 else
3495 {
3496 /* Not a number and not a recognized flag word => complain. */
3497 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3498 }
3499 }
3500
3501 /* If any signal numbers or symbol names were found, set flags for
3502 which signals to apply actions to. */
3503
3504 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3505 {
3506 switch ((enum target_signal) signum)
3507 {
3508 case TARGET_SIGNAL_TRAP:
3509 case TARGET_SIGNAL_INT:
3510 if (!allsigs && !sigs[signum])
3511 {
3512 if (query ("%s is used by the debugger.\n\
3513 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3514 {
3515 sigs[signum] = 1;
3516 }
3517 else
3518 {
3519 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3520 gdb_flush (gdb_stdout);
3521 }
3522 }
3523 break;
3524 case TARGET_SIGNAL_0:
3525 case TARGET_SIGNAL_DEFAULT:
3526 case TARGET_SIGNAL_UNKNOWN:
3527 /* Make sure that "all" doesn't print these. */
3528 break;
3529 default:
3530 sigs[signum] = 1;
3531 break;
3532 }
3533 }
3534
3535 argv++;
3536 }
3537
3538 target_notice_signals (inferior_ptid);
3539
3540 if (from_tty)
3541 {
3542 /* Show the results. */
3543 sig_print_header ();
3544 for (signum = 0; signum < nsigs; signum++)
3545 {
3546 if (sigs[signum])
3547 {
3548 sig_print_info (signum);
3549 }
3550 }
3551 }
3552
3553 do_cleanups (old_chain);
3554 }
3555
3556 static void
3557 xdb_handle_command (char *args, int from_tty)
3558 {
3559 char **argv;
3560 struct cleanup *old_chain;
3561
3562 /* Break the command line up into args. */
3563
3564 argv = buildargv (args);
3565 if (argv == NULL)
3566 {
3567 nomem (0);
3568 }
3569 old_chain = make_cleanup_freeargv (argv);
3570 if (argv[1] != (char *) NULL)
3571 {
3572 char *argBuf;
3573 int bufLen;
3574
3575 bufLen = strlen (argv[0]) + 20;
3576 argBuf = (char *) xmalloc (bufLen);
3577 if (argBuf)
3578 {
3579 int validFlag = 1;
3580 enum target_signal oursig;
3581
3582 oursig = target_signal_from_name (argv[0]);
3583 memset (argBuf, 0, bufLen);
3584 if (strcmp (argv[1], "Q") == 0)
3585 sprintf (argBuf, "%s %s", argv[0], "noprint");
3586 else
3587 {
3588 if (strcmp (argv[1], "s") == 0)
3589 {
3590 if (!signal_stop[oursig])
3591 sprintf (argBuf, "%s %s", argv[0], "stop");
3592 else
3593 sprintf (argBuf, "%s %s", argv[0], "nostop");
3594 }
3595 else if (strcmp (argv[1], "i") == 0)
3596 {
3597 if (!signal_program[oursig])
3598 sprintf (argBuf, "%s %s", argv[0], "pass");
3599 else
3600 sprintf (argBuf, "%s %s", argv[0], "nopass");
3601 }
3602 else if (strcmp (argv[1], "r") == 0)
3603 {
3604 if (!signal_print[oursig])
3605 sprintf (argBuf, "%s %s", argv[0], "print");
3606 else
3607 sprintf (argBuf, "%s %s", argv[0], "noprint");
3608 }
3609 else
3610 validFlag = 0;
3611 }
3612 if (validFlag)
3613 handle_command (argBuf, from_tty);
3614 else
3615 printf_filtered (_("Invalid signal handling flag.\n"));
3616 if (argBuf)
3617 xfree (argBuf);
3618 }
3619 }
3620 do_cleanups (old_chain);
3621 }
3622
3623 /* Print current contents of the tables set by the handle command.
3624 It is possible we should just be printing signals actually used
3625 by the current target (but for things to work right when switching
3626 targets, all signals should be in the signal tables). */
3627
3628 static void
3629 signals_info (char *signum_exp, int from_tty)
3630 {
3631 enum target_signal oursig;
3632 sig_print_header ();
3633
3634 if (signum_exp)
3635 {
3636 /* First see if this is a symbol name. */
3637 oursig = target_signal_from_name (signum_exp);
3638 if (oursig == TARGET_SIGNAL_UNKNOWN)
3639 {
3640 /* No, try numeric. */
3641 oursig =
3642 target_signal_from_command (parse_and_eval_long (signum_exp));
3643 }
3644 sig_print_info (oursig);
3645 return;
3646 }
3647
3648 printf_filtered ("\n");
3649 /* These ugly casts brought to you by the native VAX compiler. */
3650 for (oursig = TARGET_SIGNAL_FIRST;
3651 (int) oursig < (int) TARGET_SIGNAL_LAST;
3652 oursig = (enum target_signal) ((int) oursig + 1))
3653 {
3654 QUIT;
3655
3656 if (oursig != TARGET_SIGNAL_UNKNOWN
3657 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3658 sig_print_info (oursig);
3659 }
3660
3661 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3662 }
3663 \f
3664 struct inferior_status
3665 {
3666 enum target_signal stop_signal;
3667 CORE_ADDR stop_pc;
3668 bpstat stop_bpstat;
3669 int stop_step;
3670 int stop_stack_dummy;
3671 int stopped_by_random_signal;
3672 int trap_expected;
3673 CORE_ADDR step_range_start;
3674 CORE_ADDR step_range_end;
3675 struct frame_id step_frame_id;
3676 enum step_over_calls_kind step_over_calls;
3677 CORE_ADDR step_resume_break_address;
3678 int stop_after_trap;
3679 int stop_soon;
3680
3681 /* These are here because if call_function_by_hand has written some
3682 registers and then decides to call error(), we better not have changed
3683 any registers. */
3684 struct regcache *registers;
3685
3686 /* A frame unique identifier. */
3687 struct frame_id selected_frame_id;
3688
3689 int breakpoint_proceeded;
3690 int restore_stack_info;
3691 int proceed_to_finish;
3692 };
3693
3694 void
3695 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3696 LONGEST val)
3697 {
3698 int size = register_size (current_gdbarch, regno);
3699 void *buf = alloca (size);
3700 store_signed_integer (buf, size, val);
3701 regcache_raw_write (inf_status->registers, regno, buf);
3702 }
3703
3704 /* Save all of the information associated with the inferior<==>gdb
3705 connection. INF_STATUS is a pointer to a "struct inferior_status"
3706 (defined in inferior.h). */
3707
3708 struct inferior_status *
3709 save_inferior_status (int restore_stack_info)
3710 {
3711 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3712
3713 inf_status->stop_signal = stop_signal;
3714 inf_status->stop_pc = stop_pc;
3715 inf_status->stop_step = stop_step;
3716 inf_status->stop_stack_dummy = stop_stack_dummy;
3717 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3718 inf_status->trap_expected = trap_expected;
3719 inf_status->step_range_start = step_range_start;
3720 inf_status->step_range_end = step_range_end;
3721 inf_status->step_frame_id = step_frame_id;
3722 inf_status->step_over_calls = step_over_calls;
3723 inf_status->stop_after_trap = stop_after_trap;
3724 inf_status->stop_soon = stop_soon;
3725 /* Save original bpstat chain here; replace it with copy of chain.
3726 If caller's caller is walking the chain, they'll be happier if we
3727 hand them back the original chain when restore_inferior_status is
3728 called. */
3729 inf_status->stop_bpstat = stop_bpstat;
3730 stop_bpstat = bpstat_copy (stop_bpstat);
3731 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3732 inf_status->restore_stack_info = restore_stack_info;
3733 inf_status->proceed_to_finish = proceed_to_finish;
3734
3735 inf_status->registers = regcache_dup (get_current_regcache ());
3736
3737 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3738 return inf_status;
3739 }
3740
3741 static int
3742 restore_selected_frame (void *args)
3743 {
3744 struct frame_id *fid = (struct frame_id *) args;
3745 struct frame_info *frame;
3746
3747 frame = frame_find_by_id (*fid);
3748
3749 /* If inf_status->selected_frame_id is NULL, there was no previously
3750 selected frame. */
3751 if (frame == NULL)
3752 {
3753 warning (_("Unable to restore previously selected frame."));
3754 return 0;
3755 }
3756
3757 select_frame (frame);
3758
3759 return (1);
3760 }
3761
3762 void
3763 restore_inferior_status (struct inferior_status *inf_status)
3764 {
3765 stop_signal = inf_status->stop_signal;
3766 stop_pc = inf_status->stop_pc;
3767 stop_step = inf_status->stop_step;
3768 stop_stack_dummy = inf_status->stop_stack_dummy;
3769 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3770 trap_expected = inf_status->trap_expected;
3771 step_range_start = inf_status->step_range_start;
3772 step_range_end = inf_status->step_range_end;
3773 step_frame_id = inf_status->step_frame_id;
3774 step_over_calls = inf_status->step_over_calls;
3775 stop_after_trap = inf_status->stop_after_trap;
3776 stop_soon = inf_status->stop_soon;
3777 bpstat_clear (&stop_bpstat);
3778 stop_bpstat = inf_status->stop_bpstat;
3779 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3780 proceed_to_finish = inf_status->proceed_to_finish;
3781
3782 /* The inferior can be gone if the user types "print exit(0)"
3783 (and perhaps other times). */
3784 if (target_has_execution)
3785 /* NB: The register write goes through to the target. */
3786 regcache_cpy (get_current_regcache (), inf_status->registers);
3787 regcache_xfree (inf_status->registers);
3788
3789 /* FIXME: If we are being called after stopping in a function which
3790 is called from gdb, we should not be trying to restore the
3791 selected frame; it just prints a spurious error message (The
3792 message is useful, however, in detecting bugs in gdb (like if gdb
3793 clobbers the stack)). In fact, should we be restoring the
3794 inferior status at all in that case? . */
3795
3796 if (target_has_stack && inf_status->restore_stack_info)
3797 {
3798 /* The point of catch_errors is that if the stack is clobbered,
3799 walking the stack might encounter a garbage pointer and
3800 error() trying to dereference it. */
3801 if (catch_errors
3802 (restore_selected_frame, &inf_status->selected_frame_id,
3803 "Unable to restore previously selected frame:\n",
3804 RETURN_MASK_ERROR) == 0)
3805 /* Error in restoring the selected frame. Select the innermost
3806 frame. */
3807 select_frame (get_current_frame ());
3808
3809 }
3810
3811 xfree (inf_status);
3812 }
3813
3814 static void
3815 do_restore_inferior_status_cleanup (void *sts)
3816 {
3817 restore_inferior_status (sts);
3818 }
3819
3820 struct cleanup *
3821 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3822 {
3823 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3824 }
3825
3826 void
3827 discard_inferior_status (struct inferior_status *inf_status)
3828 {
3829 /* See save_inferior_status for info on stop_bpstat. */
3830 bpstat_clear (&inf_status->stop_bpstat);
3831 regcache_xfree (inf_status->registers);
3832 xfree (inf_status);
3833 }
3834
3835 int
3836 inferior_has_forked (int pid, int *child_pid)
3837 {
3838 struct target_waitstatus last;
3839 ptid_t last_ptid;
3840
3841 get_last_target_status (&last_ptid, &last);
3842
3843 if (last.kind != TARGET_WAITKIND_FORKED)
3844 return 0;
3845
3846 if (ptid_get_pid (last_ptid) != pid)
3847 return 0;
3848
3849 *child_pid = last.value.related_pid;
3850 return 1;
3851 }
3852
3853 int
3854 inferior_has_vforked (int pid, int *child_pid)
3855 {
3856 struct target_waitstatus last;
3857 ptid_t last_ptid;
3858
3859 get_last_target_status (&last_ptid, &last);
3860
3861 if (last.kind != TARGET_WAITKIND_VFORKED)
3862 return 0;
3863
3864 if (ptid_get_pid (last_ptid) != pid)
3865 return 0;
3866
3867 *child_pid = last.value.related_pid;
3868 return 1;
3869 }
3870
3871 int
3872 inferior_has_execd (int pid, char **execd_pathname)
3873 {
3874 struct target_waitstatus last;
3875 ptid_t last_ptid;
3876
3877 get_last_target_status (&last_ptid, &last);
3878
3879 if (last.kind != TARGET_WAITKIND_EXECD)
3880 return 0;
3881
3882 if (ptid_get_pid (last_ptid) != pid)
3883 return 0;
3884
3885 *execd_pathname = xstrdup (last.value.execd_pathname);
3886 return 1;
3887 }
3888
3889 /* Oft used ptids */
3890 ptid_t null_ptid;
3891 ptid_t minus_one_ptid;
3892
3893 /* Create a ptid given the necessary PID, LWP, and TID components. */
3894
3895 ptid_t
3896 ptid_build (int pid, long lwp, long tid)
3897 {
3898 ptid_t ptid;
3899
3900 ptid.pid = pid;
3901 ptid.lwp = lwp;
3902 ptid.tid = tid;
3903 return ptid;
3904 }
3905
3906 /* Create a ptid from just a pid. */
3907
3908 ptid_t
3909 pid_to_ptid (int pid)
3910 {
3911 return ptid_build (pid, 0, 0);
3912 }
3913
3914 /* Fetch the pid (process id) component from a ptid. */
3915
3916 int
3917 ptid_get_pid (ptid_t ptid)
3918 {
3919 return ptid.pid;
3920 }
3921
3922 /* Fetch the lwp (lightweight process) component from a ptid. */
3923
3924 long
3925 ptid_get_lwp (ptid_t ptid)
3926 {
3927 return ptid.lwp;
3928 }
3929
3930 /* Fetch the tid (thread id) component from a ptid. */
3931
3932 long
3933 ptid_get_tid (ptid_t ptid)
3934 {
3935 return ptid.tid;
3936 }
3937
3938 /* ptid_equal() is used to test equality of two ptids. */
3939
3940 int
3941 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3942 {
3943 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3944 && ptid1.tid == ptid2.tid);
3945 }
3946
3947 /* restore_inferior_ptid() will be used by the cleanup machinery
3948 to restore the inferior_ptid value saved in a call to
3949 save_inferior_ptid(). */
3950
3951 static void
3952 restore_inferior_ptid (void *arg)
3953 {
3954 ptid_t *saved_ptid_ptr = arg;
3955 inferior_ptid = *saved_ptid_ptr;
3956 xfree (arg);
3957 }
3958
3959 /* Save the value of inferior_ptid so that it may be restored by a
3960 later call to do_cleanups(). Returns the struct cleanup pointer
3961 needed for later doing the cleanup. */
3962
3963 struct cleanup *
3964 save_inferior_ptid (void)
3965 {
3966 ptid_t *saved_ptid_ptr;
3967
3968 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3969 *saved_ptid_ptr = inferior_ptid;
3970 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3971 }
3972 \f
3973
3974 void
3975 _initialize_infrun (void)
3976 {
3977 int i;
3978 int numsigs;
3979 struct cmd_list_element *c;
3980
3981 add_info ("signals", signals_info, _("\
3982 What debugger does when program gets various signals.\n\
3983 Specify a signal as argument to print info on that signal only."));
3984 add_info_alias ("handle", "signals", 0);
3985
3986 add_com ("handle", class_run, handle_command, _("\
3987 Specify how to handle a signal.\n\
3988 Args are signals and actions to apply to those signals.\n\
3989 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3990 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3991 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3992 The special arg \"all\" is recognized to mean all signals except those\n\
3993 used by the debugger, typically SIGTRAP and SIGINT.\n\
3994 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3995 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3996 Stop means reenter debugger if this signal happens (implies print).\n\
3997 Print means print a message if this signal happens.\n\
3998 Pass means let program see this signal; otherwise program doesn't know.\n\
3999 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4000 Pass and Stop may be combined."));
4001 if (xdb_commands)
4002 {
4003 add_com ("lz", class_info, signals_info, _("\
4004 What debugger does when program gets various signals.\n\
4005 Specify a signal as argument to print info on that signal only."));
4006 add_com ("z", class_run, xdb_handle_command, _("\
4007 Specify how to handle a signal.\n\
4008 Args are signals and actions to apply to those signals.\n\
4009 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4010 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4011 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4012 The special arg \"all\" is recognized to mean all signals except those\n\
4013 used by the debugger, typically SIGTRAP and SIGINT.\n\
4014 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4015 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4016 nopass), \"Q\" (noprint)\n\
4017 Stop means reenter debugger if this signal happens (implies print).\n\
4018 Print means print a message if this signal happens.\n\
4019 Pass means let program see this signal; otherwise program doesn't know.\n\
4020 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4021 Pass and Stop may be combined."));
4022 }
4023
4024 if (!dbx_commands)
4025 stop_command = add_cmd ("stop", class_obscure,
4026 not_just_help_class_command, _("\
4027 There is no `stop' command, but you can set a hook on `stop'.\n\
4028 This allows you to set a list of commands to be run each time execution\n\
4029 of the program stops."), &cmdlist);
4030
4031 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4032 Set inferior debugging."), _("\
4033 Show inferior debugging."), _("\
4034 When non-zero, inferior specific debugging is enabled."),
4035 NULL,
4036 show_debug_infrun,
4037 &setdebuglist, &showdebuglist);
4038
4039 numsigs = (int) TARGET_SIGNAL_LAST;
4040 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4041 signal_print = (unsigned char *)
4042 xmalloc (sizeof (signal_print[0]) * numsigs);
4043 signal_program = (unsigned char *)
4044 xmalloc (sizeof (signal_program[0]) * numsigs);
4045 for (i = 0; i < numsigs; i++)
4046 {
4047 signal_stop[i] = 1;
4048 signal_print[i] = 1;
4049 signal_program[i] = 1;
4050 }
4051
4052 /* Signals caused by debugger's own actions
4053 should not be given to the program afterwards. */
4054 signal_program[TARGET_SIGNAL_TRAP] = 0;
4055 signal_program[TARGET_SIGNAL_INT] = 0;
4056
4057 /* Signals that are not errors should not normally enter the debugger. */
4058 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4059 signal_print[TARGET_SIGNAL_ALRM] = 0;
4060 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4061 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4062 signal_stop[TARGET_SIGNAL_PROF] = 0;
4063 signal_print[TARGET_SIGNAL_PROF] = 0;
4064 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4065 signal_print[TARGET_SIGNAL_CHLD] = 0;
4066 signal_stop[TARGET_SIGNAL_IO] = 0;
4067 signal_print[TARGET_SIGNAL_IO] = 0;
4068 signal_stop[TARGET_SIGNAL_POLL] = 0;
4069 signal_print[TARGET_SIGNAL_POLL] = 0;
4070 signal_stop[TARGET_SIGNAL_URG] = 0;
4071 signal_print[TARGET_SIGNAL_URG] = 0;
4072 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4073 signal_print[TARGET_SIGNAL_WINCH] = 0;
4074
4075 /* These signals are used internally by user-level thread
4076 implementations. (See signal(5) on Solaris.) Like the above
4077 signals, a healthy program receives and handles them as part of
4078 its normal operation. */
4079 signal_stop[TARGET_SIGNAL_LWP] = 0;
4080 signal_print[TARGET_SIGNAL_LWP] = 0;
4081 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4082 signal_print[TARGET_SIGNAL_WAITING] = 0;
4083 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4084 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4085
4086 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4087 &stop_on_solib_events, _("\
4088 Set stopping for shared library events."), _("\
4089 Show stopping for shared library events."), _("\
4090 If nonzero, gdb will give control to the user when the dynamic linker\n\
4091 notifies gdb of shared library events. The most common event of interest\n\
4092 to the user would be loading/unloading of a new library."),
4093 NULL,
4094 show_stop_on_solib_events,
4095 &setlist, &showlist);
4096
4097 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4098 follow_fork_mode_kind_names,
4099 &follow_fork_mode_string, _("\
4100 Set debugger response to a program call of fork or vfork."), _("\
4101 Show debugger response to a program call of fork or vfork."), _("\
4102 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4103 parent - the original process is debugged after a fork\n\
4104 child - the new process is debugged after a fork\n\
4105 The unfollowed process will continue to run.\n\
4106 By default, the debugger will follow the parent process."),
4107 NULL,
4108 show_follow_fork_mode_string,
4109 &setlist, &showlist);
4110
4111 add_setshow_enum_cmd ("scheduler-locking", class_run,
4112 scheduler_enums, &scheduler_mode, _("\
4113 Set mode for locking scheduler during execution."), _("\
4114 Show mode for locking scheduler during execution."), _("\
4115 off == no locking (threads may preempt at any time)\n\
4116 on == full locking (no thread except the current thread may run)\n\
4117 step == scheduler locked during every single-step operation.\n\
4118 In this mode, no other thread may run during a step command.\n\
4119 Other threads may run while stepping over a function call ('next')."),
4120 set_schedlock_func, /* traps on target vector */
4121 show_scheduler_mode,
4122 &setlist, &showlist);
4123
4124 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4125 Set mode of the step operation."), _("\
4126 Show mode of the step operation."), _("\
4127 When set, doing a step over a function without debug line information\n\
4128 will stop at the first instruction of that function. Otherwise, the\n\
4129 function is skipped and the step command stops at a different source line."),
4130 NULL,
4131 show_step_stop_if_no_debug,
4132 &setlist, &showlist);
4133
4134 /* ptid initializations */
4135 null_ptid = ptid_build (0, 0, 0);
4136 minus_one_ptid = ptid_build (-1, 0, 0);
4137 inferior_ptid = null_ptid;
4138 target_last_wait_ptid = minus_one_ptid;
4139 }
This page took 0.137976 seconds and 5 git commands to generate.