Use class to manage BFD reference counts
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static const char *jit_reader_dir = NULL;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static const struct program_space_data *jit_program_space_data = NULL;
54
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57
58 /* An unwinder is registered for every gdbarch. This key is used to
59 remember if the unwinder has been registered for a particular
60 gdbarch. */
61
62 static struct gdbarch_data *jit_gdbarch_data;
63
64 /* Non-zero if we want to see trace of jit level stuff. */
65
66 static unsigned int jit_debug = 0;
67
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74
75 struct target_buffer
76 {
77 CORE_ADDR base;
78 ULONGEST size;
79 };
80
81 /* Openning the file is a no-op. */
82
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86 return open_closure;
87 }
88
89 /* Closing the file is just freeing the base/size pair on our side. */
90
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94 xfree (stream);
95
96 /* Zero means success. */
97 return 0;
98 }
99
100 /* For reading the file, we just need to pass through to target_read_memory and
101 fix up the arguments and return values. */
102
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105 file_ptr nbytes, file_ptr offset)
106 {
107 int err;
108 struct target_buffer *buffer = (struct target_buffer *) stream;
109
110 /* If this read will read all of the file, limit it to just the rest. */
111 if (offset + nbytes > buffer->size)
112 nbytes = buffer->size - offset;
113
114 /* If there are no more bytes left, we've reached EOF. */
115 if (nbytes == 0)
116 return 0;
117
118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119 if (err)
120 return -1;
121
122 return nbytes;
123 }
124
125 /* For statting the file, we only support the st_size attribute. */
126
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130 struct target_buffer *buffer = (struct target_buffer*) stream;
131
132 memset (sb, 0, sizeof (struct stat));
133 sb->st_size = buffer->size;
134 return 0;
135 }
136
137 /* Open a BFD from the target's memory. */
138
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142 struct target_buffer *buffer = XNEW (struct target_buffer);
143
144 buffer->base = addr;
145 buffer->size = size;
146 return gdb_bfd_openr_iovec ("<in-memory>", target,
147 mem_bfd_iovec_open,
148 buffer,
149 mem_bfd_iovec_pread,
150 mem_bfd_iovec_close,
151 mem_bfd_iovec_stat);
152 }
153
154 /* One reader that has been loaded successfully, and can potentially be used to
155 parse debug info. */
156
157 static struct jit_reader
158 {
159 struct gdb_reader_funcs *functions;
160 void *handle;
161 } *loaded_jit_reader = NULL;
162
163 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
164 static const char *reader_init_fn_sym = "gdb_init_reader";
165
166 /* Try to load FILE_NAME as a JIT debug info reader. */
167
168 static struct jit_reader *
169 jit_reader_load (const char *file_name)
170 {
171 void *so;
172 reader_init_fn_type *init_fn;
173 struct jit_reader *new_reader = NULL;
174 struct gdb_reader_funcs *funcs = NULL;
175 struct cleanup *old_cleanups;
176
177 if (jit_debug)
178 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
179 file_name);
180 so = gdb_dlopen (file_name);
181 old_cleanups = make_cleanup_dlclose (so);
182
183 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
184 if (!init_fn)
185 error (_("Could not locate initialization function: %s."),
186 reader_init_fn_sym);
187
188 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
189 error (_("Reader not GPL compatible."));
190
191 funcs = init_fn ();
192 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
193 error (_("Reader version does not match GDB version."));
194
195 new_reader = XCNEW (struct jit_reader);
196 new_reader->functions = funcs;
197 new_reader->handle = so;
198
199 discard_cleanups (old_cleanups);
200 return new_reader;
201 }
202
203 /* Provides the jit-reader-load command. */
204
205 static void
206 jit_reader_load_command (char *args, int from_tty)
207 {
208 char *so_name;
209 struct cleanup *prev_cleanup;
210
211 if (args == NULL)
212 error (_("No reader name provided."));
213 args = tilde_expand (args);
214 prev_cleanup = make_cleanup (xfree, args);
215
216 if (loaded_jit_reader != NULL)
217 error (_("JIT reader already loaded. Run jit-reader-unload first."));
218
219 if (IS_ABSOLUTE_PATH (args))
220 so_name = args;
221 else
222 {
223 so_name = xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING, args);
224 make_cleanup (xfree, so_name);
225 }
226
227 loaded_jit_reader = jit_reader_load (so_name);
228 reinit_frame_cache ();
229 jit_inferior_created_hook ();
230 do_cleanups (prev_cleanup);
231 }
232
233 /* Provides the jit-reader-unload command. */
234
235 static void
236 jit_reader_unload_command (char *args, int from_tty)
237 {
238 if (!loaded_jit_reader)
239 error (_("No JIT reader loaded."));
240
241 reinit_frame_cache ();
242 jit_inferior_exit_hook (current_inferior ());
243 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
244
245 gdb_dlclose (loaded_jit_reader->handle);
246 xfree (loaded_jit_reader);
247 loaded_jit_reader = NULL;
248 }
249
250 /* Per-program space structure recording which objfile has the JIT
251 symbols. */
252
253 struct jit_program_space_data
254 {
255 /* The objfile. This is NULL if no objfile holds the JIT
256 symbols. */
257
258 struct objfile *objfile;
259
260 /* If this program space has __jit_debug_register_code, this is the
261 cached address from the minimal symbol. This is used to detect
262 relocations requiring the breakpoint to be re-created. */
263
264 CORE_ADDR cached_code_address;
265
266 /* This is the JIT event breakpoint, or NULL if it has not been
267 set. */
268
269 struct breakpoint *jit_breakpoint;
270 };
271
272 /* Per-objfile structure recording the addresses in the program space.
273 This object serves two purposes: for ordinary objfiles, it may
274 cache some symbols related to the JIT interface; and for
275 JIT-created objfiles, it holds some information about the
276 jit_code_entry. */
277
278 struct jit_objfile_data
279 {
280 /* Symbol for __jit_debug_register_code. */
281 struct minimal_symbol *register_code;
282
283 /* Symbol for __jit_debug_descriptor. */
284 struct minimal_symbol *descriptor;
285
286 /* Address of struct jit_code_entry in this objfile. This is only
287 non-zero for objfiles that represent code created by the JIT. */
288 CORE_ADDR addr;
289 };
290
291 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
292 yet, make a new structure and attach it. */
293
294 static struct jit_objfile_data *
295 get_jit_objfile_data (struct objfile *objf)
296 {
297 struct jit_objfile_data *objf_data;
298
299 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
300 if (objf_data == NULL)
301 {
302 objf_data = XCNEW (struct jit_objfile_data);
303 set_objfile_data (objf, jit_objfile_data, objf_data);
304 }
305
306 return objf_data;
307 }
308
309 /* Remember OBJFILE has been created for struct jit_code_entry located
310 at inferior address ENTRY. */
311
312 static void
313 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
314 {
315 struct jit_objfile_data *objf_data;
316
317 objf_data = get_jit_objfile_data (objfile);
318 objf_data->addr = entry;
319 }
320
321 /* Return jit_program_space_data for current program space. Allocate
322 if not already present. */
323
324 static struct jit_program_space_data *
325 get_jit_program_space_data (void)
326 {
327 struct jit_program_space_data *ps_data;
328
329 ps_data
330 = ((struct jit_program_space_data *)
331 program_space_data (current_program_space, jit_program_space_data));
332 if (ps_data == NULL)
333 {
334 ps_data = XCNEW (struct jit_program_space_data);
335 set_program_space_data (current_program_space, jit_program_space_data,
336 ps_data);
337 }
338
339 return ps_data;
340 }
341
342 static void
343 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
344 {
345 xfree (arg);
346 }
347
348 /* Helper function for reading the global JIT descriptor from remote
349 memory. Returns 1 if all went well, 0 otherwise. */
350
351 static int
352 jit_read_descriptor (struct gdbarch *gdbarch,
353 struct jit_descriptor *descriptor,
354 struct jit_program_space_data *ps_data)
355 {
356 int err;
357 struct type *ptr_type;
358 int ptr_size;
359 int desc_size;
360 gdb_byte *desc_buf;
361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
362 struct jit_objfile_data *objf_data;
363
364 if (ps_data->objfile == NULL)
365 return 0;
366 objf_data = get_jit_objfile_data (ps_data->objfile);
367 if (objf_data->descriptor == NULL)
368 return 0;
369
370 if (jit_debug)
371 fprintf_unfiltered (gdb_stdlog,
372 "jit_read_descriptor, descriptor_addr = %s\n",
373 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
374 objf_data->descriptor)));
375
376 /* Figure out how big the descriptor is on the remote and how to read it. */
377 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
378 ptr_size = TYPE_LENGTH (ptr_type);
379 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
380 desc_buf = (gdb_byte *) alloca (desc_size);
381
382 /* Read the descriptor. */
383 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
384 objf_data->descriptor),
385 desc_buf, desc_size);
386 if (err)
387 {
388 printf_unfiltered (_("Unable to read JIT descriptor from "
389 "remote memory\n"));
390 return 0;
391 }
392
393 /* Fix the endianness to match the host. */
394 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
395 descriptor->action_flag =
396 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
397 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
398 descriptor->first_entry =
399 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
400
401 return 1;
402 }
403
404 /* Helper function for reading a JITed code entry from remote memory. */
405
406 static void
407 jit_read_code_entry (struct gdbarch *gdbarch,
408 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
409 {
410 int err, off;
411 struct type *ptr_type;
412 int ptr_size;
413 int entry_size;
414 int align_bytes;
415 gdb_byte *entry_buf;
416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
417
418 /* Figure out how big the entry is on the remote and how to read it. */
419 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
420 ptr_size = TYPE_LENGTH (ptr_type);
421
422 /* Figure out where the longlong value will be. */
423 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
424 off = 3 * ptr_size;
425 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
426
427 entry_size = off + 8; /* Three pointers and one 64-bit int. */
428 entry_buf = (gdb_byte *) alloca (entry_size);
429
430 /* Read the entry. */
431 err = target_read_memory (code_addr, entry_buf, entry_size);
432 if (err)
433 error (_("Unable to read JIT code entry from remote memory!"));
434
435 /* Fix the endianness to match the host. */
436 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
437 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
438 code_entry->prev_entry =
439 extract_typed_address (&entry_buf[ptr_size], ptr_type);
440 code_entry->symfile_addr =
441 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
442 code_entry->symfile_size =
443 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
444 }
445
446 /* Proxy object for building a block. */
447
448 struct gdb_block
449 {
450 /* gdb_blocks are linked into a tree structure. Next points to the
451 next node at the same depth as this block and parent to the
452 parent gdb_block. */
453 struct gdb_block *next, *parent;
454
455 /* Points to the "real" block that is being built out of this
456 instance. This block will be added to a blockvector, which will
457 then be added to a symtab. */
458 struct block *real_block;
459
460 /* The first and last code address corresponding to this block. */
461 CORE_ADDR begin, end;
462
463 /* The name of this block (if any). If this is non-NULL, the
464 FUNCTION symbol symbol is set to this value. */
465 const char *name;
466 };
467
468 /* Proxy object for building a symtab. */
469
470 struct gdb_symtab
471 {
472 /* The list of blocks in this symtab. These will eventually be
473 converted to real blocks. */
474 struct gdb_block *blocks;
475
476 /* The number of blocks inserted. */
477 int nblocks;
478
479 /* A mapping between line numbers to PC. */
480 struct linetable *linetable;
481
482 /* The source file for this symtab. */
483 const char *file_name;
484 struct gdb_symtab *next;
485 };
486
487 /* Proxy object for building an object. */
488
489 struct gdb_object
490 {
491 struct gdb_symtab *symtabs;
492 };
493
494 /* The type of the `private' data passed around by the callback
495 functions. */
496
497 typedef CORE_ADDR jit_dbg_reader_data;
498
499 /* The reader calls into this function to read data off the targets
500 address space. */
501
502 static enum gdb_status
503 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
504 {
505 int result = target_read_memory ((CORE_ADDR) target_mem,
506 (gdb_byte *) gdb_buf, len);
507 if (result == 0)
508 return GDB_SUCCESS;
509 else
510 return GDB_FAIL;
511 }
512
513 /* The reader calls into this function to create a new gdb_object
514 which it can then pass around to the other callbacks. Right now,
515 all that is required is allocating the memory. */
516
517 static struct gdb_object *
518 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
519 {
520 /* CB is not required right now, but sometime in the future we might
521 need a handle to it, and we'd like to do that without breaking
522 the ABI. */
523 return XCNEW (struct gdb_object);
524 }
525
526 /* Readers call into this function to open a new gdb_symtab, which,
527 again, is passed around to other callbacks. */
528
529 static struct gdb_symtab *
530 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
531 struct gdb_object *object,
532 const char *file_name)
533 {
534 struct gdb_symtab *ret;
535
536 /* CB stays unused. See comment in jit_object_open_impl. */
537
538 ret = XCNEW (struct gdb_symtab);
539 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
540 ret->next = object->symtabs;
541 object->symtabs = ret;
542 return ret;
543 }
544
545 /* Returns true if the block corresponding to old should be placed
546 before the block corresponding to new in the final blockvector. */
547
548 static int
549 compare_block (const struct gdb_block *const old,
550 const struct gdb_block *const newobj)
551 {
552 if (old == NULL)
553 return 1;
554 if (old->begin < newobj->begin)
555 return 1;
556 else if (old->begin == newobj->begin)
557 {
558 if (old->end > newobj->end)
559 return 1;
560 else
561 return 0;
562 }
563 else
564 return 0;
565 }
566
567 /* Called by readers to open a new gdb_block. This function also
568 inserts the new gdb_block in the correct place in the corresponding
569 gdb_symtab. */
570
571 static struct gdb_block *
572 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
573 struct gdb_symtab *symtab, struct gdb_block *parent,
574 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
575 {
576 struct gdb_block *block = XCNEW (struct gdb_block);
577
578 block->next = symtab->blocks;
579 block->begin = (CORE_ADDR) begin;
580 block->end = (CORE_ADDR) end;
581 block->name = name ? xstrdup (name) : NULL;
582 block->parent = parent;
583
584 /* Ensure that the blocks are inserted in the correct (reverse of
585 the order expected by blockvector). */
586 if (compare_block (symtab->blocks, block))
587 {
588 symtab->blocks = block;
589 }
590 else
591 {
592 struct gdb_block *i = symtab->blocks;
593
594 for (;; i = i->next)
595 {
596 /* Guaranteed to terminate, since compare_block (NULL, _)
597 returns 1. */
598 if (compare_block (i->next, block))
599 {
600 block->next = i->next;
601 i->next = block;
602 break;
603 }
604 }
605 }
606 symtab->nblocks++;
607
608 return block;
609 }
610
611 /* Readers call this to add a line mapping (from PC to line number) to
612 a gdb_symtab. */
613
614 static void
615 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
616 struct gdb_symtab *stab, int nlines,
617 struct gdb_line_mapping *map)
618 {
619 int i;
620 int alloc_len;
621
622 if (nlines < 1)
623 return;
624
625 alloc_len = sizeof (struct linetable)
626 + (nlines - 1) * sizeof (struct linetable_entry);
627 stab->linetable = (struct linetable *) xmalloc (alloc_len);
628 stab->linetable->nitems = nlines;
629 for (i = 0; i < nlines; i++)
630 {
631 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
632 stab->linetable->item[i].line = map[i].line;
633 }
634 }
635
636 /* Called by readers to close a gdb_symtab. Does not need to do
637 anything as of now. */
638
639 static void
640 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
641 struct gdb_symtab *stab)
642 {
643 /* Right now nothing needs to be done here. We may need to do some
644 cleanup here in the future (again, without breaking the plugin
645 ABI). */
646 }
647
648 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
649
650 static void
651 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
652 {
653 struct compunit_symtab *cust;
654 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
655 struct block *block_iter;
656 int actual_nblocks, i;
657 size_t blockvector_size;
658 CORE_ADDR begin, end;
659 struct blockvector *bv;
660
661 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
662
663 cust = allocate_compunit_symtab (objfile, stab->file_name);
664 allocate_symtab (cust, stab->file_name);
665 add_compunit_symtab_to_objfile (cust);
666
667 /* JIT compilers compile in memory. */
668 COMPUNIT_DIRNAME (cust) = NULL;
669
670 /* Copy over the linetable entry if one was provided. */
671 if (stab->linetable)
672 {
673 size_t size = ((stab->linetable->nitems - 1)
674 * sizeof (struct linetable_entry)
675 + sizeof (struct linetable));
676 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
677 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
678 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
679 size);
680 }
681
682 blockvector_size = (sizeof (struct blockvector)
683 + (actual_nblocks - 1) * sizeof (struct block *));
684 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
685 blockvector_size);
686 COMPUNIT_BLOCKVECTOR (cust) = bv;
687
688 /* (begin, end) will contain the PC range this entire blockvector
689 spans. */
690 BLOCKVECTOR_MAP (bv) = NULL;
691 begin = stab->blocks->begin;
692 end = stab->blocks->end;
693 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
694
695 /* First run over all the gdb_block objects, creating a real block
696 object for each. Simultaneously, keep setting the real_block
697 fields. */
698 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
699 i >= FIRST_LOCAL_BLOCK;
700 i--, gdb_block_iter = gdb_block_iter->next)
701 {
702 struct block *new_block = allocate_block (&objfile->objfile_obstack);
703 struct symbol *block_name = allocate_symbol (objfile);
704 struct type *block_type = arch_type (get_objfile_arch (objfile),
705 TYPE_CODE_VOID,
706 1,
707 "void");
708
709 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
710 NULL);
711 /* The address range. */
712 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
713 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
714
715 /* The name. */
716 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
717 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
718 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
719 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
720 SYMBOL_BLOCK_VALUE (block_name) = new_block;
721
722 block_name->ginfo.name
723 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
724 gdb_block_iter->name,
725 strlen (gdb_block_iter->name));
726
727 BLOCK_FUNCTION (new_block) = block_name;
728
729 BLOCKVECTOR_BLOCK (bv, i) = new_block;
730 if (begin > BLOCK_START (new_block))
731 begin = BLOCK_START (new_block);
732 if (end < BLOCK_END (new_block))
733 end = BLOCK_END (new_block);
734
735 gdb_block_iter->real_block = new_block;
736 }
737
738 /* Now add the special blocks. */
739 block_iter = NULL;
740 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
741 {
742 struct block *new_block;
743
744 new_block = (i == GLOBAL_BLOCK
745 ? allocate_global_block (&objfile->objfile_obstack)
746 : allocate_block (&objfile->objfile_obstack));
747 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
748 NULL);
749 BLOCK_SUPERBLOCK (new_block) = block_iter;
750 block_iter = new_block;
751
752 BLOCK_START (new_block) = (CORE_ADDR) begin;
753 BLOCK_END (new_block) = (CORE_ADDR) end;
754
755 BLOCKVECTOR_BLOCK (bv, i) = new_block;
756
757 if (i == GLOBAL_BLOCK)
758 set_block_compunit_symtab (new_block, cust);
759 }
760
761 /* Fill up the superblock fields for the real blocks, using the
762 real_block fields populated earlier. */
763 for (gdb_block_iter = stab->blocks;
764 gdb_block_iter;
765 gdb_block_iter = gdb_block_iter->next)
766 {
767 if (gdb_block_iter->parent != NULL)
768 {
769 /* If the plugin specifically mentioned a parent block, we
770 use that. */
771 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
772 gdb_block_iter->parent->real_block;
773 }
774 else
775 {
776 /* And if not, we set a default parent block. */
777 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
778 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
779 }
780 }
781
782 /* Free memory. */
783 gdb_block_iter = stab->blocks;
784
785 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
786 gdb_block_iter;
787 gdb_block_iter = gdb_block_iter_tmp)
788 {
789 xfree ((void *) gdb_block_iter->name);
790 xfree (gdb_block_iter);
791 }
792 xfree (stab->linetable);
793 xfree ((char *) stab->file_name);
794 xfree (stab);
795 }
796
797 /* Called when closing a gdb_objfile. Converts OBJ to a proper
798 objfile. */
799
800 static void
801 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
802 struct gdb_object *obj)
803 {
804 struct gdb_symtab *i, *j;
805 struct objfile *objfile;
806 jit_dbg_reader_data *priv_data;
807
808 priv_data = (jit_dbg_reader_data *) cb->priv_data;
809
810 objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
811 OBJF_NOT_FILENAME);
812 objfile->per_bfd->gdbarch = target_gdbarch ();
813
814 terminate_minimal_symbol_table (objfile);
815
816 j = NULL;
817 for (i = obj->symtabs; i; i = j)
818 {
819 j = i->next;
820 finalize_symtab (i, objfile);
821 }
822 add_objfile_entry (objfile, *priv_data);
823 xfree (obj);
824 }
825
826 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
827 ENTRY_ADDR is the address of the struct jit_code_entry in the
828 inferior address space. */
829
830 static int
831 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
832 CORE_ADDR entry_addr)
833 {
834 gdb_byte *gdb_mem;
835 int status;
836 jit_dbg_reader_data priv_data;
837 struct gdb_reader_funcs *funcs;
838 struct gdb_symbol_callbacks callbacks =
839 {
840 jit_object_open_impl,
841 jit_symtab_open_impl,
842 jit_block_open_impl,
843 jit_symtab_close_impl,
844 jit_object_close_impl,
845
846 jit_symtab_line_mapping_add_impl,
847 jit_target_read_impl,
848
849 &priv_data
850 };
851
852 priv_data = entry_addr;
853
854 if (!loaded_jit_reader)
855 return 0;
856
857 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
858
859 status = 1;
860 TRY
861 {
862 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
863 code_entry->symfile_size))
864 status = 0;
865 }
866 CATCH (e, RETURN_MASK_ALL)
867 {
868 status = 0;
869 }
870 END_CATCH
871
872 if (status)
873 {
874 funcs = loaded_jit_reader->functions;
875 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
876 != GDB_SUCCESS)
877 status = 0;
878 }
879
880 xfree (gdb_mem);
881 if (jit_debug && status == 0)
882 fprintf_unfiltered (gdb_stdlog,
883 "Could not read symtab using the loaded JIT reader.\n");
884 return status;
885 }
886
887 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
888 struct jit_code_entry in the inferior address space. */
889
890 static void
891 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
892 CORE_ADDR entry_addr,
893 struct gdbarch *gdbarch)
894 {
895 struct section_addr_info *sai;
896 struct bfd_section *sec;
897 struct objfile *objfile;
898 struct cleanup *old_cleanups;
899 int i;
900 const struct bfd_arch_info *b;
901
902 if (jit_debug)
903 fprintf_unfiltered (gdb_stdlog,
904 "jit_register_code, symfile_addr = %s, "
905 "symfile_size = %s\n",
906 paddress (gdbarch, code_entry->symfile_addr),
907 pulongest (code_entry->symfile_size));
908
909 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
910 code_entry->symfile_size,
911 gnutarget));
912 if (nbfd == NULL)
913 {
914 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
915 return;
916 }
917
918 /* Check the format. NOTE: This initializes important data that GDB uses!
919 We would segfault later without this line. */
920 if (!bfd_check_format (nbfd.get (), bfd_object))
921 {
922 printf_unfiltered (_("\
923 JITed symbol file is not an object file, ignoring it.\n"));
924 return;
925 }
926
927 /* Check bfd arch. */
928 b = gdbarch_bfd_arch_info (gdbarch);
929 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
930 warning (_("JITed object file architecture %s is not compatible "
931 "with target architecture %s."),
932 bfd_get_arch_info (nbfd.get ())->printable_name,
933 b->printable_name);
934
935 /* Read the section address information out of the symbol file. Since the
936 file is generated by the JIT at runtime, it should all of the absolute
937 addresses that we care about. */
938 sai = alloc_section_addr_info (bfd_count_sections (nbfd.get ()));
939 old_cleanups = make_cleanup_free_section_addr_info (sai);
940 i = 0;
941 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
942 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
943 {
944 /* We assume that these virtual addresses are absolute, and do not
945 treat them as offsets. */
946 sai->other[i].addr = bfd_get_section_vma (nbfd.get (), sec);
947 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd.get (), sec));
948 sai->other[i].sectindex = sec->index;
949 ++i;
950 }
951 sai->num_sections = i;
952
953 /* This call does not take ownership of SAI. */
954 objfile = symbol_file_add_from_bfd (nbfd.get (),
955 bfd_get_filename (nbfd.get ()), 0, sai,
956 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
957
958 do_cleanups (old_cleanups);
959 add_objfile_entry (objfile, entry_addr);
960 }
961
962 /* This function registers code associated with a JIT code entry. It uses the
963 pointer and size pair in the entry to read the symbol file from the remote
964 and then calls symbol_file_add_from_local_memory to add it as though it were
965 a symbol file added by the user. */
966
967 static void
968 jit_register_code (struct gdbarch *gdbarch,
969 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
970 {
971 int success;
972
973 if (jit_debug)
974 fprintf_unfiltered (gdb_stdlog,
975 "jit_register_code, symfile_addr = %s, "
976 "symfile_size = %s\n",
977 paddress (gdbarch, code_entry->symfile_addr),
978 pulongest (code_entry->symfile_size));
979
980 success = jit_reader_try_read_symtab (code_entry, entry_addr);
981
982 if (!success)
983 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
984 }
985
986 /* This function unregisters JITed code and frees the corresponding
987 objfile. */
988
989 static void
990 jit_unregister_code (struct objfile *objfile)
991 {
992 free_objfile (objfile);
993 }
994
995 /* Look up the objfile with this code entry address. */
996
997 static struct objfile *
998 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
999 {
1000 struct objfile *objf;
1001
1002 ALL_OBJFILES (objf)
1003 {
1004 struct jit_objfile_data *objf_data;
1005
1006 objf_data
1007 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1008 if (objf_data != NULL && objf_data->addr == entry_addr)
1009 return objf;
1010 }
1011 return NULL;
1012 }
1013
1014 /* This is called when a breakpoint is deleted. It updates the
1015 inferior's cache, if needed. */
1016
1017 static void
1018 jit_breakpoint_deleted (struct breakpoint *b)
1019 {
1020 struct bp_location *iter;
1021
1022 if (b->type != bp_jit_event)
1023 return;
1024
1025 for (iter = b->loc; iter != NULL; iter = iter->next)
1026 {
1027 struct jit_program_space_data *ps_data;
1028
1029 ps_data = ((struct jit_program_space_data *)
1030 program_space_data (iter->pspace, jit_program_space_data));
1031 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1032 {
1033 ps_data->cached_code_address = 0;
1034 ps_data->jit_breakpoint = NULL;
1035 }
1036 }
1037 }
1038
1039 /* (Re-)Initialize the jit breakpoint if necessary.
1040 Return 0 if the jit breakpoint has been successfully initialized. */
1041
1042 static int
1043 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1044 struct jit_program_space_data *ps_data)
1045 {
1046 struct bound_minimal_symbol reg_symbol;
1047 struct bound_minimal_symbol desc_symbol;
1048 struct jit_objfile_data *objf_data;
1049 CORE_ADDR addr;
1050
1051 if (ps_data->objfile == NULL)
1052 {
1053 /* Lookup the registration symbol. If it is missing, then we
1054 assume we are not attached to a JIT. */
1055 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1056 if (reg_symbol.minsym == NULL
1057 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1058 return 1;
1059
1060 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1061 reg_symbol.objfile);
1062 if (desc_symbol.minsym == NULL
1063 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1064 return 1;
1065
1066 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1067 objf_data->register_code = reg_symbol.minsym;
1068 objf_data->descriptor = desc_symbol.minsym;
1069
1070 ps_data->objfile = reg_symbol.objfile;
1071 }
1072 else
1073 objf_data = get_jit_objfile_data (ps_data->objfile);
1074
1075 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1076
1077 if (jit_debug)
1078 fprintf_unfiltered (gdb_stdlog,
1079 "jit_breakpoint_re_set_internal, "
1080 "breakpoint_addr = %s\n",
1081 paddress (gdbarch, addr));
1082
1083 if (ps_data->cached_code_address == addr)
1084 return 0;
1085
1086 /* Delete the old breakpoint. */
1087 if (ps_data->jit_breakpoint != NULL)
1088 delete_breakpoint (ps_data->jit_breakpoint);
1089
1090 /* Put a breakpoint in the registration symbol. */
1091 ps_data->cached_code_address = addr;
1092 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1093
1094 return 0;
1095 }
1096
1097 /* The private data passed around in the frame unwind callback
1098 functions. */
1099
1100 struct jit_unwind_private
1101 {
1102 /* Cached register values. See jit_frame_sniffer to see how this
1103 works. */
1104 struct regcache *regcache;
1105
1106 /* The frame being unwound. */
1107 struct frame_info *this_frame;
1108 };
1109
1110 /* Sets the value of a particular register in this frame. */
1111
1112 static void
1113 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1114 struct gdb_reg_value *value)
1115 {
1116 struct jit_unwind_private *priv;
1117 int gdb_reg;
1118
1119 priv = (struct jit_unwind_private *) cb->priv_data;
1120
1121 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1122 dwarf_regnum);
1123 if (gdb_reg == -1)
1124 {
1125 if (jit_debug)
1126 fprintf_unfiltered (gdb_stdlog,
1127 _("Could not recognize DWARF regnum %d"),
1128 dwarf_regnum);
1129 value->free (value);
1130 return;
1131 }
1132
1133 regcache_raw_set_cached_value (priv->regcache, gdb_reg, value->value);
1134 value->free (value);
1135 }
1136
1137 static void
1138 reg_value_free_impl (struct gdb_reg_value *value)
1139 {
1140 xfree (value);
1141 }
1142
1143 /* Get the value of register REGNUM in the previous frame. */
1144
1145 static struct gdb_reg_value *
1146 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1147 {
1148 struct jit_unwind_private *priv;
1149 struct gdb_reg_value *value;
1150 int gdb_reg, size;
1151 struct gdbarch *frame_arch;
1152
1153 priv = (struct jit_unwind_private *) cb->priv_data;
1154 frame_arch = get_frame_arch (priv->this_frame);
1155
1156 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1157 size = register_size (frame_arch, gdb_reg);
1158 value = ((struct gdb_reg_value *)
1159 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1160 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1161 value->value);
1162 value->size = size;
1163 value->free = reg_value_free_impl;
1164 return value;
1165 }
1166
1167 /* gdb_reg_value has a free function, which must be called on each
1168 saved register value. */
1169
1170 static void
1171 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1172 {
1173 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1174
1175 gdb_assert (priv_data->regcache != NULL);
1176 regcache_xfree (priv_data->regcache);
1177 xfree (priv_data);
1178 }
1179
1180 /* The frame sniffer for the pseudo unwinder.
1181
1182 While this is nominally a frame sniffer, in the case where the JIT
1183 reader actually recognizes the frame, it does a lot more work -- it
1184 unwinds the frame and saves the corresponding register values in
1185 the cache. jit_frame_prev_register simply returns the saved
1186 register values. */
1187
1188 static int
1189 jit_frame_sniffer (const struct frame_unwind *self,
1190 struct frame_info *this_frame, void **cache)
1191 {
1192 struct jit_unwind_private *priv_data;
1193 struct gdb_unwind_callbacks callbacks;
1194 struct gdb_reader_funcs *funcs;
1195 struct address_space *aspace;
1196 struct gdbarch *gdbarch;
1197
1198 callbacks.reg_get = jit_unwind_reg_get_impl;
1199 callbacks.reg_set = jit_unwind_reg_set_impl;
1200 callbacks.target_read = jit_target_read_impl;
1201
1202 if (loaded_jit_reader == NULL)
1203 return 0;
1204
1205 funcs = loaded_jit_reader->functions;
1206
1207 gdb_assert (!*cache);
1208
1209 aspace = get_frame_address_space (this_frame);
1210 gdbarch = get_frame_arch (this_frame);
1211
1212 *cache = XCNEW (struct jit_unwind_private);
1213 priv_data = (struct jit_unwind_private *) *cache;
1214 priv_data->regcache = regcache_xmalloc (gdbarch, aspace);
1215 priv_data->this_frame = this_frame;
1216
1217 callbacks.priv_data = priv_data;
1218
1219 /* Try to coax the provided unwinder to unwind the stack */
1220 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1221 {
1222 if (jit_debug)
1223 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1224 "JIT reader.\n"));
1225 return 1;
1226 }
1227 if (jit_debug)
1228 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1229 "JIT reader.\n"));
1230
1231 jit_dealloc_cache (this_frame, *cache);
1232 *cache = NULL;
1233
1234 return 0;
1235 }
1236
1237
1238 /* The frame_id function for the pseudo unwinder. Relays the call to
1239 the loaded plugin. */
1240
1241 static void
1242 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1243 struct frame_id *this_id)
1244 {
1245 struct jit_unwind_private priv;
1246 struct gdb_frame_id frame_id;
1247 struct gdb_reader_funcs *funcs;
1248 struct gdb_unwind_callbacks callbacks;
1249
1250 priv.regcache = NULL;
1251 priv.this_frame = this_frame;
1252
1253 /* We don't expect the frame_id function to set any registers, so we
1254 set reg_set to NULL. */
1255 callbacks.reg_get = jit_unwind_reg_get_impl;
1256 callbacks.reg_set = NULL;
1257 callbacks.target_read = jit_target_read_impl;
1258 callbacks.priv_data = &priv;
1259
1260 gdb_assert (loaded_jit_reader);
1261 funcs = loaded_jit_reader->functions;
1262
1263 frame_id = funcs->get_frame_id (funcs, &callbacks);
1264 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1265 }
1266
1267 /* Pseudo unwinder function. Reads the previously fetched value for
1268 the register from the cache. */
1269
1270 static struct value *
1271 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1272 {
1273 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1274 struct gdbarch *gdbarch;
1275
1276 if (priv == NULL)
1277 return frame_unwind_got_optimized (this_frame, reg);
1278
1279 gdbarch = get_regcache_arch (priv->regcache);
1280 if (reg < gdbarch_num_regs (gdbarch))
1281 {
1282 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1283 enum register_status status;
1284
1285 status = regcache_raw_read (priv->regcache, reg, buf);
1286 if (status == REG_VALID)
1287 return frame_unwind_got_bytes (this_frame, reg, buf);
1288 else
1289 return frame_unwind_got_optimized (this_frame, reg);
1290 }
1291 else
1292 return gdbarch_pseudo_register_read_value (gdbarch, priv->regcache, reg);
1293 }
1294
1295 /* Relay everything back to the unwinder registered by the JIT debug
1296 info reader.*/
1297
1298 static const struct frame_unwind jit_frame_unwind =
1299 {
1300 NORMAL_FRAME,
1301 default_frame_unwind_stop_reason,
1302 jit_frame_this_id,
1303 jit_frame_prev_register,
1304 NULL,
1305 jit_frame_sniffer,
1306 jit_dealloc_cache
1307 };
1308
1309
1310 /* This is the information that is stored at jit_gdbarch_data for each
1311 architecture. */
1312
1313 struct jit_gdbarch_data_type
1314 {
1315 /* Has the (pseudo) unwinder been prepended? */
1316 int unwinder_registered;
1317 };
1318
1319 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1320
1321 static void
1322 jit_prepend_unwinder (struct gdbarch *gdbarch)
1323 {
1324 struct jit_gdbarch_data_type *data;
1325
1326 data
1327 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1328 if (!data->unwinder_registered)
1329 {
1330 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1331 data->unwinder_registered = 1;
1332 }
1333 }
1334
1335 /* Register any already created translations. */
1336
1337 static void
1338 jit_inferior_init (struct gdbarch *gdbarch)
1339 {
1340 struct jit_descriptor descriptor;
1341 struct jit_code_entry cur_entry;
1342 struct jit_program_space_data *ps_data;
1343 CORE_ADDR cur_entry_addr;
1344
1345 if (jit_debug)
1346 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1347
1348 jit_prepend_unwinder (gdbarch);
1349
1350 ps_data = get_jit_program_space_data ();
1351 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1352 return;
1353
1354 /* Read the descriptor so we can check the version number and load
1355 any already JITed functions. */
1356 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1357 return;
1358
1359 /* Check that the version number agrees with that we support. */
1360 if (descriptor.version != 1)
1361 {
1362 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1363 "in descriptor (expected 1)\n"),
1364 (long) descriptor.version);
1365 return;
1366 }
1367
1368 /* If we've attached to a running program, we need to check the descriptor
1369 to register any functions that were already generated. */
1370 for (cur_entry_addr = descriptor.first_entry;
1371 cur_entry_addr != 0;
1372 cur_entry_addr = cur_entry.next_entry)
1373 {
1374 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1375
1376 /* This hook may be called many times during setup, so make sure we don't
1377 add the same symbol file twice. */
1378 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1379 continue;
1380
1381 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1382 }
1383 }
1384
1385 /* inferior_created observer. */
1386
1387 static void
1388 jit_inferior_created (struct target_ops *ops, int from_tty)
1389 {
1390 jit_inferior_created_hook ();
1391 }
1392
1393 /* Exported routine to call when an inferior has been created. */
1394
1395 void
1396 jit_inferior_created_hook (void)
1397 {
1398 jit_inferior_init (target_gdbarch ());
1399 }
1400
1401 /* Exported routine to call to re-set the jit breakpoints,
1402 e.g. when a program is rerun. */
1403
1404 void
1405 jit_breakpoint_re_set (void)
1406 {
1407 jit_breakpoint_re_set_internal (target_gdbarch (),
1408 get_jit_program_space_data ());
1409 }
1410
1411 /* This function cleans up any code entries left over when the
1412 inferior exits. We get left over code when the inferior exits
1413 without unregistering its code, for example when it crashes. */
1414
1415 static void
1416 jit_inferior_exit_hook (struct inferior *inf)
1417 {
1418 struct objfile *objf;
1419 struct objfile *temp;
1420
1421 ALL_OBJFILES_SAFE (objf, temp)
1422 {
1423 struct jit_objfile_data *objf_data
1424 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1425
1426 if (objf_data != NULL && objf_data->addr != 0)
1427 jit_unregister_code (objf);
1428 }
1429 }
1430
1431 void
1432 jit_event_handler (struct gdbarch *gdbarch)
1433 {
1434 struct jit_descriptor descriptor;
1435 struct jit_code_entry code_entry;
1436 CORE_ADDR entry_addr;
1437 struct objfile *objf;
1438
1439 /* Read the descriptor from remote memory. */
1440 if (!jit_read_descriptor (gdbarch, &descriptor,
1441 get_jit_program_space_data ()))
1442 return;
1443 entry_addr = descriptor.relevant_entry;
1444
1445 /* Do the corresponding action. */
1446 switch (descriptor.action_flag)
1447 {
1448 case JIT_NOACTION:
1449 break;
1450 case JIT_REGISTER:
1451 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1452 jit_register_code (gdbarch, entry_addr, &code_entry);
1453 break;
1454 case JIT_UNREGISTER:
1455 objf = jit_find_objf_with_entry_addr (entry_addr);
1456 if (objf == NULL)
1457 printf_unfiltered (_("Unable to find JITed code "
1458 "entry at address: %s\n"),
1459 paddress (gdbarch, entry_addr));
1460 else
1461 jit_unregister_code (objf);
1462
1463 break;
1464 default:
1465 error (_("Unknown action_flag value in JIT descriptor!"));
1466 break;
1467 }
1468 }
1469
1470 /* Called to free the data allocated to the jit_program_space_data slot. */
1471
1472 static void
1473 free_objfile_data (struct objfile *objfile, void *data)
1474 {
1475 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1476
1477 if (objf_data->register_code != NULL)
1478 {
1479 struct jit_program_space_data *ps_data;
1480
1481 ps_data
1482 = ((struct jit_program_space_data *)
1483 program_space_data (objfile->pspace, jit_program_space_data));
1484 if (ps_data != NULL && ps_data->objfile == objfile)
1485 {
1486 ps_data->objfile = NULL;
1487 delete_breakpoint (ps_data->jit_breakpoint);
1488 ps_data->cached_code_address = 0;
1489 }
1490 }
1491
1492 xfree (data);
1493 }
1494
1495 /* Initialize the jit_gdbarch_data slot with an instance of struct
1496 jit_gdbarch_data_type */
1497
1498 static void *
1499 jit_gdbarch_data_init (struct obstack *obstack)
1500 {
1501 struct jit_gdbarch_data_type *data =
1502 XOBNEW (obstack, struct jit_gdbarch_data_type);
1503
1504 data->unwinder_registered = 0;
1505
1506 return data;
1507 }
1508
1509 /* Provide a prototype to silence -Wmissing-prototypes. */
1510
1511 extern void _initialize_jit (void);
1512
1513 void
1514 _initialize_jit (void)
1515 {
1516 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1517 JIT_READER_DIR_RELOCATABLE);
1518 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1519 _("Set JIT debugging."),
1520 _("Show JIT debugging."),
1521 _("When non-zero, JIT debugging is enabled."),
1522 NULL,
1523 show_jit_debug,
1524 &setdebuglist, &showdebuglist);
1525
1526 observer_attach_inferior_created (jit_inferior_created);
1527 observer_attach_inferior_exit (jit_inferior_exit_hook);
1528 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1529
1530 jit_objfile_data =
1531 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1532 jit_program_space_data =
1533 register_program_space_data_with_cleanup (NULL,
1534 jit_program_space_data_cleanup);
1535 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1536 if (is_dl_available ())
1537 {
1538 struct cmd_list_element *c;
1539
1540 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1541 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1542 Usage: jit-reader-load FILE\n\
1543 Try to load file FILE as a debug info reader (and unwinder) for\n\
1544 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1545 relocated relative to the GDB executable if required."));
1546 set_cmd_completer (c, filename_completer);
1547
1548 c = add_com ("jit-reader-unload", no_class,
1549 jit_reader_unload_command, _("\
1550 Unload the currently loaded JIT debug info reader.\n\
1551 Usage: jit-reader-unload\n\n\
1552 Do \"help jit-reader-load\" for info on loading debug info readers."));
1553 set_cmd_completer (c, noop_completer);
1554 }
1555 }
This page took 0.082307 seconds and 5 git commands to generate.