Remove unnecessary function prototypes.
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static const char *jit_reader_dir = NULL;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static const struct program_space_data *jit_program_space_data = NULL;
54
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57
58 /* An unwinder is registered for every gdbarch. This key is used to
59 remember if the unwinder has been registered for a particular
60 gdbarch. */
61
62 static struct gdbarch_data *jit_gdbarch_data;
63
64 /* Non-zero if we want to see trace of jit level stuff. */
65
66 static unsigned int jit_debug = 0;
67
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74
75 struct target_buffer
76 {
77 CORE_ADDR base;
78 ULONGEST size;
79 };
80
81 /* Openning the file is a no-op. */
82
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86 return open_closure;
87 }
88
89 /* Closing the file is just freeing the base/size pair on our side. */
90
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94 xfree (stream);
95
96 /* Zero means success. */
97 return 0;
98 }
99
100 /* For reading the file, we just need to pass through to target_read_memory and
101 fix up the arguments and return values. */
102
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105 file_ptr nbytes, file_ptr offset)
106 {
107 int err;
108 struct target_buffer *buffer = (struct target_buffer *) stream;
109
110 /* If this read will read all of the file, limit it to just the rest. */
111 if (offset + nbytes > buffer->size)
112 nbytes = buffer->size - offset;
113
114 /* If there are no more bytes left, we've reached EOF. */
115 if (nbytes == 0)
116 return 0;
117
118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119 if (err)
120 return -1;
121
122 return nbytes;
123 }
124
125 /* For statting the file, we only support the st_size attribute. */
126
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130 struct target_buffer *buffer = (struct target_buffer*) stream;
131
132 memset (sb, 0, sizeof (struct stat));
133 sb->st_size = buffer->size;
134 return 0;
135 }
136
137 /* Open a BFD from the target's memory. */
138
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142 struct target_buffer *buffer = XNEW (struct target_buffer);
143
144 buffer->base = addr;
145 buffer->size = size;
146 return gdb_bfd_openr_iovec ("<in-memory>", target,
147 mem_bfd_iovec_open,
148 buffer,
149 mem_bfd_iovec_pread,
150 mem_bfd_iovec_close,
151 mem_bfd_iovec_stat);
152 }
153
154 struct jit_reader
155 {
156 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
157 : functions (f), handle (std::move (h))
158 {
159 }
160
161 ~jit_reader ()
162 {
163 functions->destroy (functions);
164 }
165
166 jit_reader (const jit_reader &) = delete;
167 jit_reader &operator= (const jit_reader &) = delete;
168
169 struct gdb_reader_funcs *functions;
170 gdb_dlhandle_up handle;
171 };
172
173 /* One reader that has been loaded successfully, and can potentially be used to
174 parse debug info. */
175
176 static struct jit_reader *loaded_jit_reader = NULL;
177
178 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
179 static const char *reader_init_fn_sym = "gdb_init_reader";
180
181 /* Try to load FILE_NAME as a JIT debug info reader. */
182
183 static struct jit_reader *
184 jit_reader_load (const char *file_name)
185 {
186 reader_init_fn_type *init_fn;
187 struct gdb_reader_funcs *funcs = NULL;
188
189 if (jit_debug)
190 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
191 file_name);
192 gdb_dlhandle_up so = gdb_dlopen (file_name);
193
194 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
195 if (!init_fn)
196 error (_("Could not locate initialization function: %s."),
197 reader_init_fn_sym);
198
199 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
200 error (_("Reader not GPL compatible."));
201
202 funcs = init_fn ();
203 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
204 error (_("Reader version does not match GDB version."));
205
206 return new jit_reader (funcs, std::move (so));
207 }
208
209 /* Provides the jit-reader-load command. */
210
211 static void
212 jit_reader_load_command (char *args, int from_tty)
213 {
214 if (args == NULL)
215 error (_("No reader name provided."));
216 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
217
218 if (loaded_jit_reader != NULL)
219 error (_("JIT reader already loaded. Run jit-reader-unload first."));
220
221 if (!IS_ABSOLUTE_PATH (file.get ()))
222 file.reset (xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING,
223 file.get ()));
224
225 loaded_jit_reader = jit_reader_load (file.get ());
226 reinit_frame_cache ();
227 jit_inferior_created_hook ();
228 }
229
230 /* Provides the jit-reader-unload command. */
231
232 static void
233 jit_reader_unload_command (char *args, int from_tty)
234 {
235 if (!loaded_jit_reader)
236 error (_("No JIT reader loaded."));
237
238 reinit_frame_cache ();
239 jit_inferior_exit_hook (current_inferior ());
240
241 delete loaded_jit_reader;
242 loaded_jit_reader = NULL;
243 }
244
245 /* Per-program space structure recording which objfile has the JIT
246 symbols. */
247
248 struct jit_program_space_data
249 {
250 /* The objfile. This is NULL if no objfile holds the JIT
251 symbols. */
252
253 struct objfile *objfile;
254
255 /* If this program space has __jit_debug_register_code, this is the
256 cached address from the minimal symbol. This is used to detect
257 relocations requiring the breakpoint to be re-created. */
258
259 CORE_ADDR cached_code_address;
260
261 /* This is the JIT event breakpoint, or NULL if it has not been
262 set. */
263
264 struct breakpoint *jit_breakpoint;
265 };
266
267 /* Per-objfile structure recording the addresses in the program space.
268 This object serves two purposes: for ordinary objfiles, it may
269 cache some symbols related to the JIT interface; and for
270 JIT-created objfiles, it holds some information about the
271 jit_code_entry. */
272
273 struct jit_objfile_data
274 {
275 /* Symbol for __jit_debug_register_code. */
276 struct minimal_symbol *register_code;
277
278 /* Symbol for __jit_debug_descriptor. */
279 struct minimal_symbol *descriptor;
280
281 /* Address of struct jit_code_entry in this objfile. This is only
282 non-zero for objfiles that represent code created by the JIT. */
283 CORE_ADDR addr;
284 };
285
286 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
287 yet, make a new structure and attach it. */
288
289 static struct jit_objfile_data *
290 get_jit_objfile_data (struct objfile *objf)
291 {
292 struct jit_objfile_data *objf_data;
293
294 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
295 if (objf_data == NULL)
296 {
297 objf_data = XCNEW (struct jit_objfile_data);
298 set_objfile_data (objf, jit_objfile_data, objf_data);
299 }
300
301 return objf_data;
302 }
303
304 /* Remember OBJFILE has been created for struct jit_code_entry located
305 at inferior address ENTRY. */
306
307 static void
308 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
309 {
310 struct jit_objfile_data *objf_data;
311
312 objf_data = get_jit_objfile_data (objfile);
313 objf_data->addr = entry;
314 }
315
316 /* Return jit_program_space_data for current program space. Allocate
317 if not already present. */
318
319 static struct jit_program_space_data *
320 get_jit_program_space_data (void)
321 {
322 struct jit_program_space_data *ps_data;
323
324 ps_data
325 = ((struct jit_program_space_data *)
326 program_space_data (current_program_space, jit_program_space_data));
327 if (ps_data == NULL)
328 {
329 ps_data = XCNEW (struct jit_program_space_data);
330 set_program_space_data (current_program_space, jit_program_space_data,
331 ps_data);
332 }
333
334 return ps_data;
335 }
336
337 static void
338 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
339 {
340 xfree (arg);
341 }
342
343 /* Helper function for reading the global JIT descriptor from remote
344 memory. Returns 1 if all went well, 0 otherwise. */
345
346 static int
347 jit_read_descriptor (struct gdbarch *gdbarch,
348 struct jit_descriptor *descriptor,
349 struct jit_program_space_data *ps_data)
350 {
351 int err;
352 struct type *ptr_type;
353 int ptr_size;
354 int desc_size;
355 gdb_byte *desc_buf;
356 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
357 struct jit_objfile_data *objf_data;
358
359 if (ps_data->objfile == NULL)
360 return 0;
361 objf_data = get_jit_objfile_data (ps_data->objfile);
362 if (objf_data->descriptor == NULL)
363 return 0;
364
365 if (jit_debug)
366 fprintf_unfiltered (gdb_stdlog,
367 "jit_read_descriptor, descriptor_addr = %s\n",
368 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
369 objf_data->descriptor)));
370
371 /* Figure out how big the descriptor is on the remote and how to read it. */
372 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
373 ptr_size = TYPE_LENGTH (ptr_type);
374 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
375 desc_buf = (gdb_byte *) alloca (desc_size);
376
377 /* Read the descriptor. */
378 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
379 objf_data->descriptor),
380 desc_buf, desc_size);
381 if (err)
382 {
383 printf_unfiltered (_("Unable to read JIT descriptor from "
384 "remote memory\n"));
385 return 0;
386 }
387
388 /* Fix the endianness to match the host. */
389 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
390 descriptor->action_flag =
391 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
392 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
393 descriptor->first_entry =
394 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
395
396 return 1;
397 }
398
399 /* Helper function for reading a JITed code entry from remote memory. */
400
401 static void
402 jit_read_code_entry (struct gdbarch *gdbarch,
403 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
404 {
405 int err, off;
406 struct type *ptr_type;
407 int ptr_size;
408 int entry_size;
409 int align_bytes;
410 gdb_byte *entry_buf;
411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
412
413 /* Figure out how big the entry is on the remote and how to read it. */
414 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
415 ptr_size = TYPE_LENGTH (ptr_type);
416
417 /* Figure out where the longlong value will be. */
418 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
419 off = 3 * ptr_size;
420 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
421
422 entry_size = off + 8; /* Three pointers and one 64-bit int. */
423 entry_buf = (gdb_byte *) alloca (entry_size);
424
425 /* Read the entry. */
426 err = target_read_memory (code_addr, entry_buf, entry_size);
427 if (err)
428 error (_("Unable to read JIT code entry from remote memory!"));
429
430 /* Fix the endianness to match the host. */
431 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
432 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
433 code_entry->prev_entry =
434 extract_typed_address (&entry_buf[ptr_size], ptr_type);
435 code_entry->symfile_addr =
436 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
437 code_entry->symfile_size =
438 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
439 }
440
441 /* Proxy object for building a block. */
442
443 struct gdb_block
444 {
445 /* gdb_blocks are linked into a tree structure. Next points to the
446 next node at the same depth as this block and parent to the
447 parent gdb_block. */
448 struct gdb_block *next, *parent;
449
450 /* Points to the "real" block that is being built out of this
451 instance. This block will be added to a blockvector, which will
452 then be added to a symtab. */
453 struct block *real_block;
454
455 /* The first and last code address corresponding to this block. */
456 CORE_ADDR begin, end;
457
458 /* The name of this block (if any). If this is non-NULL, the
459 FUNCTION symbol symbol is set to this value. */
460 const char *name;
461 };
462
463 /* Proxy object for building a symtab. */
464
465 struct gdb_symtab
466 {
467 /* The list of blocks in this symtab. These will eventually be
468 converted to real blocks. */
469 struct gdb_block *blocks;
470
471 /* The number of blocks inserted. */
472 int nblocks;
473
474 /* A mapping between line numbers to PC. */
475 struct linetable *linetable;
476
477 /* The source file for this symtab. */
478 const char *file_name;
479 struct gdb_symtab *next;
480 };
481
482 /* Proxy object for building an object. */
483
484 struct gdb_object
485 {
486 struct gdb_symtab *symtabs;
487 };
488
489 /* The type of the `private' data passed around by the callback
490 functions. */
491
492 typedef CORE_ADDR jit_dbg_reader_data;
493
494 /* The reader calls into this function to read data off the targets
495 address space. */
496
497 static enum gdb_status
498 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
499 {
500 int result = target_read_memory ((CORE_ADDR) target_mem,
501 (gdb_byte *) gdb_buf, len);
502 if (result == 0)
503 return GDB_SUCCESS;
504 else
505 return GDB_FAIL;
506 }
507
508 /* The reader calls into this function to create a new gdb_object
509 which it can then pass around to the other callbacks. Right now,
510 all that is required is allocating the memory. */
511
512 static struct gdb_object *
513 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
514 {
515 /* CB is not required right now, but sometime in the future we might
516 need a handle to it, and we'd like to do that without breaking
517 the ABI. */
518 return XCNEW (struct gdb_object);
519 }
520
521 /* Readers call into this function to open a new gdb_symtab, which,
522 again, is passed around to other callbacks. */
523
524 static struct gdb_symtab *
525 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
526 struct gdb_object *object,
527 const char *file_name)
528 {
529 struct gdb_symtab *ret;
530
531 /* CB stays unused. See comment in jit_object_open_impl. */
532
533 ret = XCNEW (struct gdb_symtab);
534 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
535 ret->next = object->symtabs;
536 object->symtabs = ret;
537 return ret;
538 }
539
540 /* Returns true if the block corresponding to old should be placed
541 before the block corresponding to new in the final blockvector. */
542
543 static int
544 compare_block (const struct gdb_block *const old,
545 const struct gdb_block *const newobj)
546 {
547 if (old == NULL)
548 return 1;
549 if (old->begin < newobj->begin)
550 return 1;
551 else if (old->begin == newobj->begin)
552 {
553 if (old->end > newobj->end)
554 return 1;
555 else
556 return 0;
557 }
558 else
559 return 0;
560 }
561
562 /* Called by readers to open a new gdb_block. This function also
563 inserts the new gdb_block in the correct place in the corresponding
564 gdb_symtab. */
565
566 static struct gdb_block *
567 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
568 struct gdb_symtab *symtab, struct gdb_block *parent,
569 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
570 {
571 struct gdb_block *block = XCNEW (struct gdb_block);
572
573 block->next = symtab->blocks;
574 block->begin = (CORE_ADDR) begin;
575 block->end = (CORE_ADDR) end;
576 block->name = name ? xstrdup (name) : NULL;
577 block->parent = parent;
578
579 /* Ensure that the blocks are inserted in the correct (reverse of
580 the order expected by blockvector). */
581 if (compare_block (symtab->blocks, block))
582 {
583 symtab->blocks = block;
584 }
585 else
586 {
587 struct gdb_block *i = symtab->blocks;
588
589 for (;; i = i->next)
590 {
591 /* Guaranteed to terminate, since compare_block (NULL, _)
592 returns 1. */
593 if (compare_block (i->next, block))
594 {
595 block->next = i->next;
596 i->next = block;
597 break;
598 }
599 }
600 }
601 symtab->nblocks++;
602
603 return block;
604 }
605
606 /* Readers call this to add a line mapping (from PC to line number) to
607 a gdb_symtab. */
608
609 static void
610 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
611 struct gdb_symtab *stab, int nlines,
612 struct gdb_line_mapping *map)
613 {
614 int i;
615 int alloc_len;
616
617 if (nlines < 1)
618 return;
619
620 alloc_len = sizeof (struct linetable)
621 + (nlines - 1) * sizeof (struct linetable_entry);
622 stab->linetable = (struct linetable *) xmalloc (alloc_len);
623 stab->linetable->nitems = nlines;
624 for (i = 0; i < nlines; i++)
625 {
626 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
627 stab->linetable->item[i].line = map[i].line;
628 }
629 }
630
631 /* Called by readers to close a gdb_symtab. Does not need to do
632 anything as of now. */
633
634 static void
635 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
636 struct gdb_symtab *stab)
637 {
638 /* Right now nothing needs to be done here. We may need to do some
639 cleanup here in the future (again, without breaking the plugin
640 ABI). */
641 }
642
643 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
644
645 static void
646 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
647 {
648 struct compunit_symtab *cust;
649 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
650 struct block *block_iter;
651 int actual_nblocks, i;
652 size_t blockvector_size;
653 CORE_ADDR begin, end;
654 struct blockvector *bv;
655
656 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
657
658 cust = allocate_compunit_symtab (objfile, stab->file_name);
659 allocate_symtab (cust, stab->file_name);
660 add_compunit_symtab_to_objfile (cust);
661
662 /* JIT compilers compile in memory. */
663 COMPUNIT_DIRNAME (cust) = NULL;
664
665 /* Copy over the linetable entry if one was provided. */
666 if (stab->linetable)
667 {
668 size_t size = ((stab->linetable->nitems - 1)
669 * sizeof (struct linetable_entry)
670 + sizeof (struct linetable));
671 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
672 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
673 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
674 size);
675 }
676
677 blockvector_size = (sizeof (struct blockvector)
678 + (actual_nblocks - 1) * sizeof (struct block *));
679 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
680 blockvector_size);
681 COMPUNIT_BLOCKVECTOR (cust) = bv;
682
683 /* (begin, end) will contain the PC range this entire blockvector
684 spans. */
685 BLOCKVECTOR_MAP (bv) = NULL;
686 begin = stab->blocks->begin;
687 end = stab->blocks->end;
688 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
689
690 /* First run over all the gdb_block objects, creating a real block
691 object for each. Simultaneously, keep setting the real_block
692 fields. */
693 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
694 i >= FIRST_LOCAL_BLOCK;
695 i--, gdb_block_iter = gdb_block_iter->next)
696 {
697 struct block *new_block = allocate_block (&objfile->objfile_obstack);
698 struct symbol *block_name = allocate_symbol (objfile);
699 struct type *block_type = arch_type (get_objfile_arch (objfile),
700 TYPE_CODE_VOID,
701 1,
702 "void");
703
704 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
705 NULL);
706 /* The address range. */
707 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
708 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
709
710 /* The name. */
711 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
712 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
713 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
714 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
715 SYMBOL_BLOCK_VALUE (block_name) = new_block;
716
717 block_name->ginfo.name
718 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
719 gdb_block_iter->name,
720 strlen (gdb_block_iter->name));
721
722 BLOCK_FUNCTION (new_block) = block_name;
723
724 BLOCKVECTOR_BLOCK (bv, i) = new_block;
725 if (begin > BLOCK_START (new_block))
726 begin = BLOCK_START (new_block);
727 if (end < BLOCK_END (new_block))
728 end = BLOCK_END (new_block);
729
730 gdb_block_iter->real_block = new_block;
731 }
732
733 /* Now add the special blocks. */
734 block_iter = NULL;
735 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
736 {
737 struct block *new_block;
738
739 new_block = (i == GLOBAL_BLOCK
740 ? allocate_global_block (&objfile->objfile_obstack)
741 : allocate_block (&objfile->objfile_obstack));
742 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
743 NULL);
744 BLOCK_SUPERBLOCK (new_block) = block_iter;
745 block_iter = new_block;
746
747 BLOCK_START (new_block) = (CORE_ADDR) begin;
748 BLOCK_END (new_block) = (CORE_ADDR) end;
749
750 BLOCKVECTOR_BLOCK (bv, i) = new_block;
751
752 if (i == GLOBAL_BLOCK)
753 set_block_compunit_symtab (new_block, cust);
754 }
755
756 /* Fill up the superblock fields for the real blocks, using the
757 real_block fields populated earlier. */
758 for (gdb_block_iter = stab->blocks;
759 gdb_block_iter;
760 gdb_block_iter = gdb_block_iter->next)
761 {
762 if (gdb_block_iter->parent != NULL)
763 {
764 /* If the plugin specifically mentioned a parent block, we
765 use that. */
766 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
767 gdb_block_iter->parent->real_block;
768 }
769 else
770 {
771 /* And if not, we set a default parent block. */
772 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
773 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
774 }
775 }
776
777 /* Free memory. */
778 gdb_block_iter = stab->blocks;
779
780 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
781 gdb_block_iter;
782 gdb_block_iter = gdb_block_iter_tmp)
783 {
784 xfree ((void *) gdb_block_iter->name);
785 xfree (gdb_block_iter);
786 }
787 xfree (stab->linetable);
788 xfree ((char *) stab->file_name);
789 xfree (stab);
790 }
791
792 /* Called when closing a gdb_objfile. Converts OBJ to a proper
793 objfile. */
794
795 static void
796 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
797 struct gdb_object *obj)
798 {
799 struct gdb_symtab *i, *j;
800 struct objfile *objfile;
801 jit_dbg_reader_data *priv_data;
802
803 priv_data = (jit_dbg_reader_data *) cb->priv_data;
804
805 objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
806 OBJF_NOT_FILENAME);
807 objfile->per_bfd->gdbarch = target_gdbarch ();
808
809 terminate_minimal_symbol_table (objfile);
810
811 j = NULL;
812 for (i = obj->symtabs; i; i = j)
813 {
814 j = i->next;
815 finalize_symtab (i, objfile);
816 }
817 add_objfile_entry (objfile, *priv_data);
818 xfree (obj);
819 }
820
821 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
822 ENTRY_ADDR is the address of the struct jit_code_entry in the
823 inferior address space. */
824
825 static int
826 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
827 CORE_ADDR entry_addr)
828 {
829 gdb_byte *gdb_mem;
830 int status;
831 jit_dbg_reader_data priv_data;
832 struct gdb_reader_funcs *funcs;
833 struct gdb_symbol_callbacks callbacks =
834 {
835 jit_object_open_impl,
836 jit_symtab_open_impl,
837 jit_block_open_impl,
838 jit_symtab_close_impl,
839 jit_object_close_impl,
840
841 jit_symtab_line_mapping_add_impl,
842 jit_target_read_impl,
843
844 &priv_data
845 };
846
847 priv_data = entry_addr;
848
849 if (!loaded_jit_reader)
850 return 0;
851
852 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
853
854 status = 1;
855 TRY
856 {
857 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
858 code_entry->symfile_size))
859 status = 0;
860 }
861 CATCH (e, RETURN_MASK_ALL)
862 {
863 status = 0;
864 }
865 END_CATCH
866
867 if (status)
868 {
869 funcs = loaded_jit_reader->functions;
870 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
871 != GDB_SUCCESS)
872 status = 0;
873 }
874
875 xfree (gdb_mem);
876 if (jit_debug && status == 0)
877 fprintf_unfiltered (gdb_stdlog,
878 "Could not read symtab using the loaded JIT reader.\n");
879 return status;
880 }
881
882 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
883 struct jit_code_entry in the inferior address space. */
884
885 static void
886 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
887 CORE_ADDR entry_addr,
888 struct gdbarch *gdbarch)
889 {
890 struct section_addr_info *sai;
891 struct bfd_section *sec;
892 struct objfile *objfile;
893 struct cleanup *old_cleanups;
894 int i;
895 const struct bfd_arch_info *b;
896
897 if (jit_debug)
898 fprintf_unfiltered (gdb_stdlog,
899 "jit_register_code, symfile_addr = %s, "
900 "symfile_size = %s\n",
901 paddress (gdbarch, code_entry->symfile_addr),
902 pulongest (code_entry->symfile_size));
903
904 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
905 code_entry->symfile_size,
906 gnutarget));
907 if (nbfd == NULL)
908 {
909 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
910 return;
911 }
912
913 /* Check the format. NOTE: This initializes important data that GDB uses!
914 We would segfault later without this line. */
915 if (!bfd_check_format (nbfd.get (), bfd_object))
916 {
917 printf_unfiltered (_("\
918 JITed symbol file is not an object file, ignoring it.\n"));
919 return;
920 }
921
922 /* Check bfd arch. */
923 b = gdbarch_bfd_arch_info (gdbarch);
924 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
925 warning (_("JITed object file architecture %s is not compatible "
926 "with target architecture %s."),
927 bfd_get_arch_info (nbfd.get ())->printable_name,
928 b->printable_name);
929
930 /* Read the section address information out of the symbol file. Since the
931 file is generated by the JIT at runtime, it should all of the absolute
932 addresses that we care about. */
933 sai = alloc_section_addr_info (bfd_count_sections (nbfd.get ()));
934 old_cleanups = make_cleanup_free_section_addr_info (sai);
935 i = 0;
936 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
937 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
938 {
939 /* We assume that these virtual addresses are absolute, and do not
940 treat them as offsets. */
941 sai->other[i].addr = bfd_get_section_vma (nbfd.get (), sec);
942 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd.get (), sec));
943 sai->other[i].sectindex = sec->index;
944 ++i;
945 }
946 sai->num_sections = i;
947
948 /* This call does not take ownership of SAI. */
949 objfile = symbol_file_add_from_bfd (nbfd.get (),
950 bfd_get_filename (nbfd.get ()), 0, sai,
951 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
952
953 do_cleanups (old_cleanups);
954 add_objfile_entry (objfile, entry_addr);
955 }
956
957 /* This function registers code associated with a JIT code entry. It uses the
958 pointer and size pair in the entry to read the symbol file from the remote
959 and then calls symbol_file_add_from_local_memory to add it as though it were
960 a symbol file added by the user. */
961
962 static void
963 jit_register_code (struct gdbarch *gdbarch,
964 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
965 {
966 int success;
967
968 if (jit_debug)
969 fprintf_unfiltered (gdb_stdlog,
970 "jit_register_code, symfile_addr = %s, "
971 "symfile_size = %s\n",
972 paddress (gdbarch, code_entry->symfile_addr),
973 pulongest (code_entry->symfile_size));
974
975 success = jit_reader_try_read_symtab (code_entry, entry_addr);
976
977 if (!success)
978 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
979 }
980
981 /* This function unregisters JITed code and frees the corresponding
982 objfile. */
983
984 static void
985 jit_unregister_code (struct objfile *objfile)
986 {
987 free_objfile (objfile);
988 }
989
990 /* Look up the objfile with this code entry address. */
991
992 static struct objfile *
993 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
994 {
995 struct objfile *objf;
996
997 ALL_OBJFILES (objf)
998 {
999 struct jit_objfile_data *objf_data;
1000
1001 objf_data
1002 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1003 if (objf_data != NULL && objf_data->addr == entry_addr)
1004 return objf;
1005 }
1006 return NULL;
1007 }
1008
1009 /* This is called when a breakpoint is deleted. It updates the
1010 inferior's cache, if needed. */
1011
1012 static void
1013 jit_breakpoint_deleted (struct breakpoint *b)
1014 {
1015 struct bp_location *iter;
1016
1017 if (b->type != bp_jit_event)
1018 return;
1019
1020 for (iter = b->loc; iter != NULL; iter = iter->next)
1021 {
1022 struct jit_program_space_data *ps_data;
1023
1024 ps_data = ((struct jit_program_space_data *)
1025 program_space_data (iter->pspace, jit_program_space_data));
1026 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1027 {
1028 ps_data->cached_code_address = 0;
1029 ps_data->jit_breakpoint = NULL;
1030 }
1031 }
1032 }
1033
1034 /* (Re-)Initialize the jit breakpoint if necessary.
1035 Return 0 if the jit breakpoint has been successfully initialized. */
1036
1037 static int
1038 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1039 struct jit_program_space_data *ps_data)
1040 {
1041 struct bound_minimal_symbol reg_symbol;
1042 struct bound_minimal_symbol desc_symbol;
1043 struct jit_objfile_data *objf_data;
1044 CORE_ADDR addr;
1045
1046 if (ps_data->objfile == NULL)
1047 {
1048 /* Lookup the registration symbol. If it is missing, then we
1049 assume we are not attached to a JIT. */
1050 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1051 if (reg_symbol.minsym == NULL
1052 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1053 return 1;
1054
1055 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1056 reg_symbol.objfile);
1057 if (desc_symbol.minsym == NULL
1058 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1059 return 1;
1060
1061 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1062 objf_data->register_code = reg_symbol.minsym;
1063 objf_data->descriptor = desc_symbol.minsym;
1064
1065 ps_data->objfile = reg_symbol.objfile;
1066 }
1067 else
1068 objf_data = get_jit_objfile_data (ps_data->objfile);
1069
1070 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1071
1072 if (jit_debug)
1073 fprintf_unfiltered (gdb_stdlog,
1074 "jit_breakpoint_re_set_internal, "
1075 "breakpoint_addr = %s\n",
1076 paddress (gdbarch, addr));
1077
1078 if (ps_data->cached_code_address == addr)
1079 return 0;
1080
1081 /* Delete the old breakpoint. */
1082 if (ps_data->jit_breakpoint != NULL)
1083 delete_breakpoint (ps_data->jit_breakpoint);
1084
1085 /* Put a breakpoint in the registration symbol. */
1086 ps_data->cached_code_address = addr;
1087 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1088
1089 return 0;
1090 }
1091
1092 /* The private data passed around in the frame unwind callback
1093 functions. */
1094
1095 struct jit_unwind_private
1096 {
1097 /* Cached register values. See jit_frame_sniffer to see how this
1098 works. */
1099 struct regcache *regcache;
1100
1101 /* The frame being unwound. */
1102 struct frame_info *this_frame;
1103 };
1104
1105 /* Sets the value of a particular register in this frame. */
1106
1107 static void
1108 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1109 struct gdb_reg_value *value)
1110 {
1111 struct jit_unwind_private *priv;
1112 int gdb_reg;
1113
1114 priv = (struct jit_unwind_private *) cb->priv_data;
1115
1116 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1117 dwarf_regnum);
1118 if (gdb_reg == -1)
1119 {
1120 if (jit_debug)
1121 fprintf_unfiltered (gdb_stdlog,
1122 _("Could not recognize DWARF regnum %d"),
1123 dwarf_regnum);
1124 value->free (value);
1125 return;
1126 }
1127
1128 regcache_raw_set_cached_value (priv->regcache, gdb_reg, value->value);
1129 value->free (value);
1130 }
1131
1132 static void
1133 reg_value_free_impl (struct gdb_reg_value *value)
1134 {
1135 xfree (value);
1136 }
1137
1138 /* Get the value of register REGNUM in the previous frame. */
1139
1140 static struct gdb_reg_value *
1141 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1142 {
1143 struct jit_unwind_private *priv;
1144 struct gdb_reg_value *value;
1145 int gdb_reg, size;
1146 struct gdbarch *frame_arch;
1147
1148 priv = (struct jit_unwind_private *) cb->priv_data;
1149 frame_arch = get_frame_arch (priv->this_frame);
1150
1151 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1152 size = register_size (frame_arch, gdb_reg);
1153 value = ((struct gdb_reg_value *)
1154 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1155 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1156 value->value);
1157 value->size = size;
1158 value->free = reg_value_free_impl;
1159 return value;
1160 }
1161
1162 /* gdb_reg_value has a free function, which must be called on each
1163 saved register value. */
1164
1165 static void
1166 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1167 {
1168 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1169
1170 gdb_assert (priv_data->regcache != NULL);
1171 regcache_xfree (priv_data->regcache);
1172 xfree (priv_data);
1173 }
1174
1175 /* The frame sniffer for the pseudo unwinder.
1176
1177 While this is nominally a frame sniffer, in the case where the JIT
1178 reader actually recognizes the frame, it does a lot more work -- it
1179 unwinds the frame and saves the corresponding register values in
1180 the cache. jit_frame_prev_register simply returns the saved
1181 register values. */
1182
1183 static int
1184 jit_frame_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **cache)
1186 {
1187 struct jit_unwind_private *priv_data;
1188 struct gdb_unwind_callbacks callbacks;
1189 struct gdb_reader_funcs *funcs;
1190 struct address_space *aspace;
1191 struct gdbarch *gdbarch;
1192
1193 callbacks.reg_get = jit_unwind_reg_get_impl;
1194 callbacks.reg_set = jit_unwind_reg_set_impl;
1195 callbacks.target_read = jit_target_read_impl;
1196
1197 if (loaded_jit_reader == NULL)
1198 return 0;
1199
1200 funcs = loaded_jit_reader->functions;
1201
1202 gdb_assert (!*cache);
1203
1204 aspace = get_frame_address_space (this_frame);
1205 gdbarch = get_frame_arch (this_frame);
1206
1207 *cache = XCNEW (struct jit_unwind_private);
1208 priv_data = (struct jit_unwind_private *) *cache;
1209 priv_data->regcache = regcache_xmalloc (gdbarch, aspace);
1210 priv_data->this_frame = this_frame;
1211
1212 callbacks.priv_data = priv_data;
1213
1214 /* Try to coax the provided unwinder to unwind the stack */
1215 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1216 {
1217 if (jit_debug)
1218 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1219 "JIT reader.\n"));
1220 return 1;
1221 }
1222 if (jit_debug)
1223 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1224 "JIT reader.\n"));
1225
1226 jit_dealloc_cache (this_frame, *cache);
1227 *cache = NULL;
1228
1229 return 0;
1230 }
1231
1232
1233 /* The frame_id function for the pseudo unwinder. Relays the call to
1234 the loaded plugin. */
1235
1236 static void
1237 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1238 struct frame_id *this_id)
1239 {
1240 struct jit_unwind_private priv;
1241 struct gdb_frame_id frame_id;
1242 struct gdb_reader_funcs *funcs;
1243 struct gdb_unwind_callbacks callbacks;
1244
1245 priv.regcache = NULL;
1246 priv.this_frame = this_frame;
1247
1248 /* We don't expect the frame_id function to set any registers, so we
1249 set reg_set to NULL. */
1250 callbacks.reg_get = jit_unwind_reg_get_impl;
1251 callbacks.reg_set = NULL;
1252 callbacks.target_read = jit_target_read_impl;
1253 callbacks.priv_data = &priv;
1254
1255 gdb_assert (loaded_jit_reader);
1256 funcs = loaded_jit_reader->functions;
1257
1258 frame_id = funcs->get_frame_id (funcs, &callbacks);
1259 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1260 }
1261
1262 /* Pseudo unwinder function. Reads the previously fetched value for
1263 the register from the cache. */
1264
1265 static struct value *
1266 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1267 {
1268 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1269 struct gdbarch *gdbarch;
1270
1271 if (priv == NULL)
1272 return frame_unwind_got_optimized (this_frame, reg);
1273
1274 gdbarch = get_regcache_arch (priv->regcache);
1275 if (reg < gdbarch_num_regs (gdbarch))
1276 {
1277 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1278 enum register_status status;
1279
1280 status = regcache_raw_read (priv->regcache, reg, buf);
1281 if (status == REG_VALID)
1282 return frame_unwind_got_bytes (this_frame, reg, buf);
1283 else
1284 return frame_unwind_got_optimized (this_frame, reg);
1285 }
1286 else
1287 return gdbarch_pseudo_register_read_value (gdbarch, priv->regcache, reg);
1288 }
1289
1290 /* Relay everything back to the unwinder registered by the JIT debug
1291 info reader.*/
1292
1293 static const struct frame_unwind jit_frame_unwind =
1294 {
1295 NORMAL_FRAME,
1296 default_frame_unwind_stop_reason,
1297 jit_frame_this_id,
1298 jit_frame_prev_register,
1299 NULL,
1300 jit_frame_sniffer,
1301 jit_dealloc_cache
1302 };
1303
1304
1305 /* This is the information that is stored at jit_gdbarch_data for each
1306 architecture. */
1307
1308 struct jit_gdbarch_data_type
1309 {
1310 /* Has the (pseudo) unwinder been prepended? */
1311 int unwinder_registered;
1312 };
1313
1314 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1315
1316 static void
1317 jit_prepend_unwinder (struct gdbarch *gdbarch)
1318 {
1319 struct jit_gdbarch_data_type *data;
1320
1321 data
1322 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1323 if (!data->unwinder_registered)
1324 {
1325 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1326 data->unwinder_registered = 1;
1327 }
1328 }
1329
1330 /* Register any already created translations. */
1331
1332 static void
1333 jit_inferior_init (struct gdbarch *gdbarch)
1334 {
1335 struct jit_descriptor descriptor;
1336 struct jit_code_entry cur_entry;
1337 struct jit_program_space_data *ps_data;
1338 CORE_ADDR cur_entry_addr;
1339
1340 if (jit_debug)
1341 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1342
1343 jit_prepend_unwinder (gdbarch);
1344
1345 ps_data = get_jit_program_space_data ();
1346 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1347 return;
1348
1349 /* Read the descriptor so we can check the version number and load
1350 any already JITed functions. */
1351 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1352 return;
1353
1354 /* Check that the version number agrees with that we support. */
1355 if (descriptor.version != 1)
1356 {
1357 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1358 "in descriptor (expected 1)\n"),
1359 (long) descriptor.version);
1360 return;
1361 }
1362
1363 /* If we've attached to a running program, we need to check the descriptor
1364 to register any functions that were already generated. */
1365 for (cur_entry_addr = descriptor.first_entry;
1366 cur_entry_addr != 0;
1367 cur_entry_addr = cur_entry.next_entry)
1368 {
1369 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1370
1371 /* This hook may be called many times during setup, so make sure we don't
1372 add the same symbol file twice. */
1373 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1374 continue;
1375
1376 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1377 }
1378 }
1379
1380 /* inferior_created observer. */
1381
1382 static void
1383 jit_inferior_created (struct target_ops *ops, int from_tty)
1384 {
1385 jit_inferior_created_hook ();
1386 }
1387
1388 /* Exported routine to call when an inferior has been created. */
1389
1390 void
1391 jit_inferior_created_hook (void)
1392 {
1393 jit_inferior_init (target_gdbarch ());
1394 }
1395
1396 /* Exported routine to call to re-set the jit breakpoints,
1397 e.g. when a program is rerun. */
1398
1399 void
1400 jit_breakpoint_re_set (void)
1401 {
1402 jit_breakpoint_re_set_internal (target_gdbarch (),
1403 get_jit_program_space_data ());
1404 }
1405
1406 /* This function cleans up any code entries left over when the
1407 inferior exits. We get left over code when the inferior exits
1408 without unregistering its code, for example when it crashes. */
1409
1410 static void
1411 jit_inferior_exit_hook (struct inferior *inf)
1412 {
1413 struct objfile *objf;
1414 struct objfile *temp;
1415
1416 ALL_OBJFILES_SAFE (objf, temp)
1417 {
1418 struct jit_objfile_data *objf_data
1419 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1420
1421 if (objf_data != NULL && objf_data->addr != 0)
1422 jit_unregister_code (objf);
1423 }
1424 }
1425
1426 void
1427 jit_event_handler (struct gdbarch *gdbarch)
1428 {
1429 struct jit_descriptor descriptor;
1430 struct jit_code_entry code_entry;
1431 CORE_ADDR entry_addr;
1432 struct objfile *objf;
1433
1434 /* Read the descriptor from remote memory. */
1435 if (!jit_read_descriptor (gdbarch, &descriptor,
1436 get_jit_program_space_data ()))
1437 return;
1438 entry_addr = descriptor.relevant_entry;
1439
1440 /* Do the corresponding action. */
1441 switch (descriptor.action_flag)
1442 {
1443 case JIT_NOACTION:
1444 break;
1445 case JIT_REGISTER:
1446 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1447 jit_register_code (gdbarch, entry_addr, &code_entry);
1448 break;
1449 case JIT_UNREGISTER:
1450 objf = jit_find_objf_with_entry_addr (entry_addr);
1451 if (objf == NULL)
1452 printf_unfiltered (_("Unable to find JITed code "
1453 "entry at address: %s\n"),
1454 paddress (gdbarch, entry_addr));
1455 else
1456 jit_unregister_code (objf);
1457
1458 break;
1459 default:
1460 error (_("Unknown action_flag value in JIT descriptor!"));
1461 break;
1462 }
1463 }
1464
1465 /* Called to free the data allocated to the jit_program_space_data slot. */
1466
1467 static void
1468 free_objfile_data (struct objfile *objfile, void *data)
1469 {
1470 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1471
1472 if (objf_data->register_code != NULL)
1473 {
1474 struct jit_program_space_data *ps_data;
1475
1476 ps_data
1477 = ((struct jit_program_space_data *)
1478 program_space_data (objfile->pspace, jit_program_space_data));
1479 if (ps_data != NULL && ps_data->objfile == objfile)
1480 {
1481 ps_data->objfile = NULL;
1482 delete_breakpoint (ps_data->jit_breakpoint);
1483 ps_data->cached_code_address = 0;
1484 }
1485 }
1486
1487 xfree (data);
1488 }
1489
1490 /* Initialize the jit_gdbarch_data slot with an instance of struct
1491 jit_gdbarch_data_type */
1492
1493 static void *
1494 jit_gdbarch_data_init (struct obstack *obstack)
1495 {
1496 struct jit_gdbarch_data_type *data =
1497 XOBNEW (obstack, struct jit_gdbarch_data_type);
1498
1499 data->unwinder_registered = 0;
1500
1501 return data;
1502 }
1503
1504 void
1505 _initialize_jit (void)
1506 {
1507 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1508 JIT_READER_DIR_RELOCATABLE);
1509 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1510 _("Set JIT debugging."),
1511 _("Show JIT debugging."),
1512 _("When non-zero, JIT debugging is enabled."),
1513 NULL,
1514 show_jit_debug,
1515 &setdebuglist, &showdebuglist);
1516
1517 observer_attach_inferior_created (jit_inferior_created);
1518 observer_attach_inferior_exit (jit_inferior_exit_hook);
1519 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1520
1521 jit_objfile_data =
1522 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1523 jit_program_space_data =
1524 register_program_space_data_with_cleanup (NULL,
1525 jit_program_space_data_cleanup);
1526 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1527 if (is_dl_available ())
1528 {
1529 struct cmd_list_element *c;
1530
1531 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1532 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1533 Usage: jit-reader-load FILE\n\
1534 Try to load file FILE as a debug info reader (and unwinder) for\n\
1535 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1536 relocated relative to the GDB executable if required."));
1537 set_cmd_completer (c, filename_completer);
1538
1539 c = add_com ("jit-reader-unload", no_class,
1540 jit_reader_unload_command, _("\
1541 Unload the currently loaded JIT debug info reader.\n\
1542 Usage: jit-reader-unload\n\n\
1543 Do \"help jit-reader-load\" for info on loading debug info readers."));
1544 set_cmd_completer (c, noop_completer);
1545 }
1546 }
This page took 0.078955 seconds and 5 git commands to generate.