add short-circuit logic to elfread.c
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include <string.h>
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "buffer.h"
68 #include "target-descriptions.h"
69 #include "filestuff.h"
70 #include "objfiles.h"
71
72 #ifndef SPUFS_MAGIC
73 #define SPUFS_MAGIC 0x23c9b64e
74 #endif
75
76 #ifdef HAVE_PERSONALITY
77 # include <sys/personality.h>
78 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
79 # define ADDR_NO_RANDOMIZE 0x0040000
80 # endif
81 #endif /* HAVE_PERSONALITY */
82
83 /* This comment documents high-level logic of this file.
84
85 Waiting for events in sync mode
86 ===============================
87
88 When waiting for an event in a specific thread, we just use waitpid, passing
89 the specific pid, and not passing WNOHANG.
90
91 When waiting for an event in all threads, waitpid is not quite good. Prior to
92 version 2.4, Linux can either wait for event in main thread, or in secondary
93 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
94 miss an event. The solution is to use non-blocking waitpid, together with
95 sigsuspend. First, we use non-blocking waitpid to get an event in the main
96 process, if any. Second, we use non-blocking waitpid with the __WCLONED
97 flag to check for events in cloned processes. If nothing is found, we use
98 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
99 happened to a child process -- and SIGCHLD will be delivered both for events
100 in main debugged process and in cloned processes. As soon as we know there's
101 an event, we get back to calling nonblocking waitpid with and without
102 __WCLONED.
103
104 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
105 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
106 blocked, the signal becomes pending and sigsuspend immediately
107 notices it and returns.
108
109 Waiting for events in async mode
110 ================================
111
112 In async mode, GDB should always be ready to handle both user input
113 and target events, so neither blocking waitpid nor sigsuspend are
114 viable options. Instead, we should asynchronously notify the GDB main
115 event loop whenever there's an unprocessed event from the target. We
116 detect asynchronous target events by handling SIGCHLD signals. To
117 notify the event loop about target events, the self-pipe trick is used
118 --- a pipe is registered as waitable event source in the event loop,
119 the event loop select/poll's on the read end of this pipe (as well on
120 other event sources, e.g., stdin), and the SIGCHLD handler writes a
121 byte to this pipe. This is more portable than relying on
122 pselect/ppoll, since on kernels that lack those syscalls, libc
123 emulates them with select/poll+sigprocmask, and that is racy
124 (a.k.a. plain broken).
125
126 Obviously, if we fail to notify the event loop if there's a target
127 event, it's bad. OTOH, if we notify the event loop when there's no
128 event from the target, linux_nat_wait will detect that there's no real
129 event to report, and return event of type TARGET_WAITKIND_IGNORE.
130 This is mostly harmless, but it will waste time and is better avoided.
131
132 The main design point is that every time GDB is outside linux-nat.c,
133 we have a SIGCHLD handler installed that is called when something
134 happens to the target and notifies the GDB event loop. Whenever GDB
135 core decides to handle the event, and calls into linux-nat.c, we
136 process things as in sync mode, except that the we never block in
137 sigsuspend.
138
139 While processing an event, we may end up momentarily blocked in
140 waitpid calls. Those waitpid calls, while blocking, are guarantied to
141 return quickly. E.g., in all-stop mode, before reporting to the core
142 that an LWP hit a breakpoint, all LWPs are stopped by sending them
143 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
144 Note that this is different from blocking indefinitely waiting for the
145 next event --- here, we're already handling an event.
146
147 Use of signals
148 ==============
149
150 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
151 signal is not entirely significant; we just need for a signal to be delivered,
152 so that we can intercept it. SIGSTOP's advantage is that it can not be
153 blocked. A disadvantage is that it is not a real-time signal, so it can only
154 be queued once; we do not keep track of other sources of SIGSTOP.
155
156 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
157 use them, because they have special behavior when the signal is generated -
158 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
159 kills the entire thread group.
160
161 A delivered SIGSTOP would stop the entire thread group, not just the thread we
162 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
163 cancel it (by PTRACE_CONT without passing SIGSTOP).
164
165 We could use a real-time signal instead. This would solve those problems; we
166 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
167 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
168 generates it, and there are races with trying to find a signal that is not
169 blocked. */
170
171 #ifndef O_LARGEFILE
172 #define O_LARGEFILE 0
173 #endif
174
175 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
176 the use of the multi-threaded target. */
177 static struct target_ops *linux_ops;
178 static struct target_ops linux_ops_saved;
179
180 /* The method to call, if any, when a new thread is attached. */
181 static void (*linux_nat_new_thread) (struct lwp_info *);
182
183 /* The method to call, if any, when a new fork is attached. */
184 static linux_nat_new_fork_ftype *linux_nat_new_fork;
185
186 /* The method to call, if any, when a process is no longer
187 attached. */
188 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
189
190 /* Hook to call prior to resuming a thread. */
191 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
192
193 /* The method to call, if any, when the siginfo object needs to be
194 converted between the layout returned by ptrace, and the layout in
195 the architecture of the inferior. */
196 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
197 gdb_byte *,
198 int);
199
200 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
201 Called by our to_xfer_partial. */
202 static target_xfer_partial_ftype *super_xfer_partial;
203
204 static unsigned int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* Async mode support. */
222
223 /* The read/write ends of the pipe registered as waitable file in the
224 event loop. */
225 static int linux_nat_event_pipe[2] = { -1, -1 };
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp, void *data);
269
270 static void block_child_signals (sigset_t *prev_mask);
271 static void restore_child_signals_mask (sigset_t *prev_mask);
272
273 struct lwp_info;
274 static struct lwp_info *add_lwp (ptid_t ptid);
275 static void purge_lwp_list (int pid);
276 static void delete_lwp (ptid_t ptid);
277 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278
279 \f
280 /* Trivial list manipulation functions to keep track of a list of
281 new stopped processes. */
282 static void
283 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
284 {
285 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
286
287 new_pid->pid = pid;
288 new_pid->status = status;
289 new_pid->next = *listp;
290 *listp = new_pid;
291 }
292
293 static int
294 in_pid_list_p (struct simple_pid_list *list, int pid)
295 {
296 struct simple_pid_list *p;
297
298 for (p = list; p != NULL; p = p->next)
299 if (p->pid == pid)
300 return 1;
301 return 0;
302 }
303
304 static int
305 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
306 {
307 struct simple_pid_list **p;
308
309 for (p = listp; *p != NULL; p = &(*p)->next)
310 if ((*p)->pid == pid)
311 {
312 struct simple_pid_list *next = (*p)->next;
313
314 *statusp = (*p)->status;
315 xfree (*p);
316 *p = next;
317 return 1;
318 }
319 return 0;
320 }
321
322 /* Initialize ptrace warnings and check for supported ptrace
323 features given PID. */
324
325 static void
326 linux_init_ptrace (pid_t pid)
327 {
328 linux_enable_event_reporting (pid);
329 linux_ptrace_init_warnings ();
330 }
331
332 static void
333 linux_child_post_attach (struct target_ops *self, int pid)
334 {
335 linux_init_ptrace (pid);
336 }
337
338 static void
339 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
340 {
341 linux_init_ptrace (ptid_get_pid (ptid));
342 }
343
344 /* Return the number of known LWPs in the tgid given by PID. */
345
346 static int
347 num_lwps (int pid)
348 {
349 int count = 0;
350 struct lwp_info *lp;
351
352 for (lp = lwp_list; lp; lp = lp->next)
353 if (ptid_get_pid (lp->ptid) == pid)
354 count++;
355
356 return count;
357 }
358
359 /* Call delete_lwp with prototype compatible for make_cleanup. */
360
361 static void
362 delete_lwp_cleanup (void *lp_voidp)
363 {
364 struct lwp_info *lp = lp_voidp;
365
366 delete_lwp (lp->ptid);
367 }
368
369 static int
370 linux_child_follow_fork (struct target_ops *ops, int follow_child,
371 int detach_fork)
372 {
373 int has_vforked;
374 int parent_pid, child_pid;
375
376 has_vforked = (inferior_thread ()->pending_follow.kind
377 == TARGET_WAITKIND_VFORKED);
378 parent_pid = ptid_get_lwp (inferior_ptid);
379 if (parent_pid == 0)
380 parent_pid = ptid_get_pid (inferior_ptid);
381 child_pid
382 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
383
384 if (has_vforked
385 && !non_stop /* Non-stop always resumes both branches. */
386 && (!target_is_async_p () || sync_execution)
387 && !(follow_child || detach_fork || sched_multi))
388 {
389 /* The parent stays blocked inside the vfork syscall until the
390 child execs or exits. If we don't let the child run, then
391 the parent stays blocked. If we're telling the parent to run
392 in the foreground, the user will not be able to ctrl-c to get
393 back the terminal, effectively hanging the debug session. */
394 fprintf_filtered (gdb_stderr, _("\
395 Can not resume the parent process over vfork in the foreground while\n\
396 holding the child stopped. Try \"set detach-on-fork\" or \
397 \"set schedule-multiple\".\n"));
398 /* FIXME output string > 80 columns. */
399 return 1;
400 }
401
402 if (! follow_child)
403 {
404 struct lwp_info *child_lp = NULL;
405
406 /* We're already attached to the parent, by default. */
407
408 /* Detach new forked process? */
409 if (detach_fork)
410 {
411 struct cleanup *old_chain;
412
413 /* Before detaching from the child, remove all breakpoints
414 from it. If we forked, then this has already been taken
415 care of by infrun.c. If we vforked however, any
416 breakpoint inserted in the parent is visible in the
417 child, even those added while stopped in a vfork
418 catchpoint. This will remove the breakpoints from the
419 parent also, but they'll be reinserted below. */
420 if (has_vforked)
421 {
422 /* keep breakpoints list in sync. */
423 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
424 }
425
426 if (info_verbose || debug_linux_nat)
427 {
428 target_terminal_ours ();
429 fprintf_filtered (gdb_stdlog,
430 "Detaching after fork from "
431 "child process %d.\n",
432 child_pid);
433 }
434
435 old_chain = save_inferior_ptid ();
436 inferior_ptid = ptid_build (child_pid, child_pid, 0);
437
438 child_lp = add_lwp (inferior_ptid);
439 child_lp->stopped = 1;
440 child_lp->last_resume_kind = resume_stop;
441 make_cleanup (delete_lwp_cleanup, child_lp);
442
443 if (linux_nat_prepare_to_resume != NULL)
444 linux_nat_prepare_to_resume (child_lp);
445 ptrace (PTRACE_DETACH, child_pid, 0, 0);
446
447 do_cleanups (old_chain);
448 }
449 else
450 {
451 struct inferior *parent_inf, *child_inf;
452 struct cleanup *old_chain;
453
454 /* Add process to GDB's tables. */
455 child_inf = add_inferior (child_pid);
456
457 parent_inf = current_inferior ();
458 child_inf->attach_flag = parent_inf->attach_flag;
459 copy_terminal_info (child_inf, parent_inf);
460 child_inf->gdbarch = parent_inf->gdbarch;
461 copy_inferior_target_desc_info (child_inf, parent_inf);
462
463 old_chain = save_inferior_ptid ();
464 save_current_program_space ();
465
466 inferior_ptid = ptid_build (child_pid, child_pid, 0);
467 add_thread (inferior_ptid);
468 child_lp = add_lwp (inferior_ptid);
469 child_lp->stopped = 1;
470 child_lp->last_resume_kind = resume_stop;
471 child_inf->symfile_flags = SYMFILE_NO_READ;
472
473 /* If this is a vfork child, then the address-space is
474 shared with the parent. */
475 if (has_vforked)
476 {
477 child_inf->pspace = parent_inf->pspace;
478 child_inf->aspace = parent_inf->aspace;
479
480 /* The parent will be frozen until the child is done
481 with the shared region. Keep track of the
482 parent. */
483 child_inf->vfork_parent = parent_inf;
484 child_inf->pending_detach = 0;
485 parent_inf->vfork_child = child_inf;
486 parent_inf->pending_detach = 0;
487 }
488 else
489 {
490 child_inf->aspace = new_address_space ();
491 child_inf->pspace = add_program_space (child_inf->aspace);
492 child_inf->removable = 1;
493 set_current_program_space (child_inf->pspace);
494 clone_program_space (child_inf->pspace, parent_inf->pspace);
495
496 /* Let the shared library layer (solib-svr4) learn about
497 this new process, relocate the cloned exec, pull in
498 shared libraries, and install the solib event
499 breakpoint. If a "cloned-VM" event was propagated
500 better throughout the core, this wouldn't be
501 required. */
502 solib_create_inferior_hook (0);
503 }
504
505 /* Let the thread_db layer learn about this new process. */
506 check_for_thread_db ();
507
508 do_cleanups (old_chain);
509 }
510
511 if (has_vforked)
512 {
513 struct lwp_info *parent_lp;
514 struct inferior *parent_inf;
515
516 parent_inf = current_inferior ();
517
518 /* If we detached from the child, then we have to be careful
519 to not insert breakpoints in the parent until the child
520 is done with the shared memory region. However, if we're
521 staying attached to the child, then we can and should
522 insert breakpoints, so that we can debug it. A
523 subsequent child exec or exit is enough to know when does
524 the child stops using the parent's address space. */
525 parent_inf->waiting_for_vfork_done = detach_fork;
526 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
527
528 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
529 gdb_assert (linux_supports_tracefork () >= 0);
530
531 if (linux_supports_tracevforkdone ())
532 {
533 if (debug_linux_nat)
534 fprintf_unfiltered (gdb_stdlog,
535 "LCFF: waiting for VFORK_DONE on %d\n",
536 parent_pid);
537 parent_lp->stopped = 1;
538
539 /* We'll handle the VFORK_DONE event like any other
540 event, in target_wait. */
541 }
542 else
543 {
544 /* We can't insert breakpoints until the child has
545 finished with the shared memory region. We need to
546 wait until that happens. Ideal would be to just
547 call:
548 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
549 - waitpid (parent_pid, &status, __WALL);
550 However, most architectures can't handle a syscall
551 being traced on the way out if it wasn't traced on
552 the way in.
553
554 We might also think to loop, continuing the child
555 until it exits or gets a SIGTRAP. One problem is
556 that the child might call ptrace with PTRACE_TRACEME.
557
558 There's no simple and reliable way to figure out when
559 the vforked child will be done with its copy of the
560 shared memory. We could step it out of the syscall,
561 two instructions, let it go, and then single-step the
562 parent once. When we have hardware single-step, this
563 would work; with software single-step it could still
564 be made to work but we'd have to be able to insert
565 single-step breakpoints in the child, and we'd have
566 to insert -just- the single-step breakpoint in the
567 parent. Very awkward.
568
569 In the end, the best we can do is to make sure it
570 runs for a little while. Hopefully it will be out of
571 range of any breakpoints we reinsert. Usually this
572 is only the single-step breakpoint at vfork's return
573 point. */
574
575 if (debug_linux_nat)
576 fprintf_unfiltered (gdb_stdlog,
577 "LCFF: no VFORK_DONE "
578 "support, sleeping a bit\n");
579
580 usleep (10000);
581
582 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
583 and leave it pending. The next linux_nat_resume call
584 will notice a pending event, and bypasses actually
585 resuming the inferior. */
586 parent_lp->status = 0;
587 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
588 parent_lp->stopped = 1;
589
590 /* If we're in async mode, need to tell the event loop
591 there's something here to process. */
592 if (target_can_async_p ())
593 async_file_mark ();
594 }
595 }
596 }
597 else
598 {
599 struct inferior *parent_inf, *child_inf;
600 struct lwp_info *child_lp;
601 struct program_space *parent_pspace;
602
603 if (info_verbose || debug_linux_nat)
604 {
605 target_terminal_ours ();
606 if (has_vforked)
607 fprintf_filtered (gdb_stdlog,
608 _("Attaching after process %d "
609 "vfork to child process %d.\n"),
610 parent_pid, child_pid);
611 else
612 fprintf_filtered (gdb_stdlog,
613 _("Attaching after process %d "
614 "fork to child process %d.\n"),
615 parent_pid, child_pid);
616 }
617
618 /* Add the new inferior first, so that the target_detach below
619 doesn't unpush the target. */
620
621 child_inf = add_inferior (child_pid);
622
623 parent_inf = current_inferior ();
624 child_inf->attach_flag = parent_inf->attach_flag;
625 copy_terminal_info (child_inf, parent_inf);
626 child_inf->gdbarch = parent_inf->gdbarch;
627 copy_inferior_target_desc_info (child_inf, parent_inf);
628
629 parent_pspace = parent_inf->pspace;
630
631 /* If we're vforking, we want to hold on to the parent until the
632 child exits or execs. At child exec or exit time we can
633 remove the old breakpoints from the parent and detach or
634 resume debugging it. Otherwise, detach the parent now; we'll
635 want to reuse it's program/address spaces, but we can't set
636 them to the child before removing breakpoints from the
637 parent, otherwise, the breakpoints module could decide to
638 remove breakpoints from the wrong process (since they'd be
639 assigned to the same address space). */
640
641 if (has_vforked)
642 {
643 gdb_assert (child_inf->vfork_parent == NULL);
644 gdb_assert (parent_inf->vfork_child == NULL);
645 child_inf->vfork_parent = parent_inf;
646 child_inf->pending_detach = 0;
647 parent_inf->vfork_child = child_inf;
648 parent_inf->pending_detach = detach_fork;
649 parent_inf->waiting_for_vfork_done = 0;
650 }
651 else if (detach_fork)
652 target_detach (NULL, 0);
653
654 /* Note that the detach above makes PARENT_INF dangling. */
655
656 /* Add the child thread to the appropriate lists, and switch to
657 this new thread, before cloning the program space, and
658 informing the solib layer about this new process. */
659
660 inferior_ptid = ptid_build (child_pid, child_pid, 0);
661 add_thread (inferior_ptid);
662 child_lp = add_lwp (inferior_ptid);
663 child_lp->stopped = 1;
664 child_lp->last_resume_kind = resume_stop;
665
666 /* If this is a vfork child, then the address-space is shared
667 with the parent. If we detached from the parent, then we can
668 reuse the parent's program/address spaces. */
669 if (has_vforked || detach_fork)
670 {
671 child_inf->pspace = parent_pspace;
672 child_inf->aspace = child_inf->pspace->aspace;
673 }
674 else
675 {
676 child_inf->aspace = new_address_space ();
677 child_inf->pspace = add_program_space (child_inf->aspace);
678 child_inf->removable = 1;
679 child_inf->symfile_flags = SYMFILE_NO_READ;
680 set_current_program_space (child_inf->pspace);
681 clone_program_space (child_inf->pspace, parent_pspace);
682
683 /* Let the shared library layer (solib-svr4) learn about
684 this new process, relocate the cloned exec, pull in
685 shared libraries, and install the solib event breakpoint.
686 If a "cloned-VM" event was propagated better throughout
687 the core, this wouldn't be required. */
688 solib_create_inferior_hook (0);
689 }
690
691 /* Let the thread_db layer learn about this new process. */
692 check_for_thread_db ();
693 }
694
695 return 0;
696 }
697
698 \f
699 static int
700 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
701 {
702 return !linux_supports_tracefork ();
703 }
704
705 static int
706 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
707 {
708 return 0;
709 }
710
711 static int
712 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
713 {
714 return !linux_supports_tracefork ();
715 }
716
717 static int
718 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
719 {
720 return 0;
721 }
722
723 static int
724 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
725 {
726 return !linux_supports_tracefork ();
727 }
728
729 static int
730 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
731 {
732 return 0;
733 }
734
735 static int
736 linux_child_set_syscall_catchpoint (struct target_ops *self,
737 int pid, int needed, int any_count,
738 int table_size, int *table)
739 {
740 if (!linux_supports_tracesysgood ())
741 return 1;
742
743 /* On GNU/Linux, we ignore the arguments. It means that we only
744 enable the syscall catchpoints, but do not disable them.
745
746 Also, we do not use the `table' information because we do not
747 filter system calls here. We let GDB do the logic for us. */
748 return 0;
749 }
750
751 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
752 are processes sharing the same VM space. A multi-threaded process
753 is basically a group of such processes. However, such a grouping
754 is almost entirely a user-space issue; the kernel doesn't enforce
755 such a grouping at all (this might change in the future). In
756 general, we'll rely on the threads library (i.e. the GNU/Linux
757 Threads library) to provide such a grouping.
758
759 It is perfectly well possible to write a multi-threaded application
760 without the assistance of a threads library, by using the clone
761 system call directly. This module should be able to give some
762 rudimentary support for debugging such applications if developers
763 specify the CLONE_PTRACE flag in the clone system call, and are
764 using the Linux kernel 2.4 or above.
765
766 Note that there are some peculiarities in GNU/Linux that affect
767 this code:
768
769 - In general one should specify the __WCLONE flag to waitpid in
770 order to make it report events for any of the cloned processes
771 (and leave it out for the initial process). However, if a cloned
772 process has exited the exit status is only reported if the
773 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
774 we cannot use it since GDB must work on older systems too.
775
776 - When a traced, cloned process exits and is waited for by the
777 debugger, the kernel reassigns it to the original parent and
778 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
779 library doesn't notice this, which leads to the "zombie problem":
780 When debugged a multi-threaded process that spawns a lot of
781 threads will run out of processes, even if the threads exit,
782 because the "zombies" stay around. */
783
784 /* List of known LWPs. */
785 struct lwp_info *lwp_list;
786 \f
787
788 /* Original signal mask. */
789 static sigset_t normal_mask;
790
791 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
792 _initialize_linux_nat. */
793 static sigset_t suspend_mask;
794
795 /* Signals to block to make that sigsuspend work. */
796 static sigset_t blocked_mask;
797
798 /* SIGCHLD action. */
799 struct sigaction sigchld_action;
800
801 /* Block child signals (SIGCHLD and linux threads signals), and store
802 the previous mask in PREV_MASK. */
803
804 static void
805 block_child_signals (sigset_t *prev_mask)
806 {
807 /* Make sure SIGCHLD is blocked. */
808 if (!sigismember (&blocked_mask, SIGCHLD))
809 sigaddset (&blocked_mask, SIGCHLD);
810
811 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
812 }
813
814 /* Restore child signals mask, previously returned by
815 block_child_signals. */
816
817 static void
818 restore_child_signals_mask (sigset_t *prev_mask)
819 {
820 sigprocmask (SIG_SETMASK, prev_mask, NULL);
821 }
822
823 /* Mask of signals to pass directly to the inferior. */
824 static sigset_t pass_mask;
825
826 /* Update signals to pass to the inferior. */
827 static void
828 linux_nat_pass_signals (struct target_ops *self,
829 int numsigs, unsigned char *pass_signals)
830 {
831 int signo;
832
833 sigemptyset (&pass_mask);
834
835 for (signo = 1; signo < NSIG; signo++)
836 {
837 int target_signo = gdb_signal_from_host (signo);
838 if (target_signo < numsigs && pass_signals[target_signo])
839 sigaddset (&pass_mask, signo);
840 }
841 }
842
843 \f
844
845 /* Prototypes for local functions. */
846 static int stop_wait_callback (struct lwp_info *lp, void *data);
847 static int linux_thread_alive (ptid_t ptid);
848 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
849
850 \f
851 /* Convert wait status STATUS to a string. Used for printing debug
852 messages only. */
853
854 static char *
855 status_to_str (int status)
856 {
857 static char buf[64];
858
859 if (WIFSTOPPED (status))
860 {
861 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
862 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
863 strsignal (SIGTRAP));
864 else
865 snprintf (buf, sizeof (buf), "%s (stopped)",
866 strsignal (WSTOPSIG (status)));
867 }
868 else if (WIFSIGNALED (status))
869 snprintf (buf, sizeof (buf), "%s (terminated)",
870 strsignal (WTERMSIG (status)));
871 else
872 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
873
874 return buf;
875 }
876
877 /* Destroy and free LP. */
878
879 static void
880 lwp_free (struct lwp_info *lp)
881 {
882 xfree (lp->arch_private);
883 xfree (lp);
884 }
885
886 /* Remove all LWPs belong to PID from the lwp list. */
887
888 static void
889 purge_lwp_list (int pid)
890 {
891 struct lwp_info *lp, *lpprev, *lpnext;
892
893 lpprev = NULL;
894
895 for (lp = lwp_list; lp; lp = lpnext)
896 {
897 lpnext = lp->next;
898
899 if (ptid_get_pid (lp->ptid) == pid)
900 {
901 if (lp == lwp_list)
902 lwp_list = lp->next;
903 else
904 lpprev->next = lp->next;
905
906 lwp_free (lp);
907 }
908 else
909 lpprev = lp;
910 }
911 }
912
913 /* Add the LWP specified by PTID to the list. PTID is the first LWP
914 in the process. Return a pointer to the structure describing the
915 new LWP.
916
917 This differs from add_lwp in that we don't let the arch specific
918 bits know about this new thread. Current clients of this callback
919 take the opportunity to install watchpoints in the new thread, and
920 we shouldn't do that for the first thread. If we're spawning a
921 child ("run"), the thread executes the shell wrapper first, and we
922 shouldn't touch it until it execs the program we want to debug.
923 For "attach", it'd be okay to call the callback, but it's not
924 necessary, because watchpoints can't yet have been inserted into
925 the inferior. */
926
927 static struct lwp_info *
928 add_initial_lwp (ptid_t ptid)
929 {
930 struct lwp_info *lp;
931
932 gdb_assert (ptid_lwp_p (ptid));
933
934 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
935
936 memset (lp, 0, sizeof (struct lwp_info));
937
938 lp->last_resume_kind = resume_continue;
939 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
940
941 lp->ptid = ptid;
942 lp->core = -1;
943
944 lp->next = lwp_list;
945 lwp_list = lp;
946
947 return lp;
948 }
949
950 /* Add the LWP specified by PID to the list. Return a pointer to the
951 structure describing the new LWP. The LWP should already be
952 stopped. */
953
954 static struct lwp_info *
955 add_lwp (ptid_t ptid)
956 {
957 struct lwp_info *lp;
958
959 lp = add_initial_lwp (ptid);
960
961 /* Let the arch specific bits know about this new thread. Current
962 clients of this callback take the opportunity to install
963 watchpoints in the new thread. We don't do this for the first
964 thread though. See add_initial_lwp. */
965 if (linux_nat_new_thread != NULL)
966 linux_nat_new_thread (lp);
967
968 return lp;
969 }
970
971 /* Remove the LWP specified by PID from the list. */
972
973 static void
974 delete_lwp (ptid_t ptid)
975 {
976 struct lwp_info *lp, *lpprev;
977
978 lpprev = NULL;
979
980 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
981 if (ptid_equal (lp->ptid, ptid))
982 break;
983
984 if (!lp)
985 return;
986
987 if (lpprev)
988 lpprev->next = lp->next;
989 else
990 lwp_list = lp->next;
991
992 lwp_free (lp);
993 }
994
995 /* Return a pointer to the structure describing the LWP corresponding
996 to PID. If no corresponding LWP could be found, return NULL. */
997
998 static struct lwp_info *
999 find_lwp_pid (ptid_t ptid)
1000 {
1001 struct lwp_info *lp;
1002 int lwp;
1003
1004 if (ptid_lwp_p (ptid))
1005 lwp = ptid_get_lwp (ptid);
1006 else
1007 lwp = ptid_get_pid (ptid);
1008
1009 for (lp = lwp_list; lp; lp = lp->next)
1010 if (lwp == ptid_get_lwp (lp->ptid))
1011 return lp;
1012
1013 return NULL;
1014 }
1015
1016 /* Call CALLBACK with its second argument set to DATA for every LWP in
1017 the list. If CALLBACK returns 1 for a particular LWP, return a
1018 pointer to the structure describing that LWP immediately.
1019 Otherwise return NULL. */
1020
1021 struct lwp_info *
1022 iterate_over_lwps (ptid_t filter,
1023 int (*callback) (struct lwp_info *, void *),
1024 void *data)
1025 {
1026 struct lwp_info *lp, *lpnext;
1027
1028 for (lp = lwp_list; lp; lp = lpnext)
1029 {
1030 lpnext = lp->next;
1031
1032 if (ptid_match (lp->ptid, filter))
1033 {
1034 if ((*callback) (lp, data))
1035 return lp;
1036 }
1037 }
1038
1039 return NULL;
1040 }
1041
1042 /* Update our internal state when changing from one checkpoint to
1043 another indicated by NEW_PTID. We can only switch single-threaded
1044 applications, so we only create one new LWP, and the previous list
1045 is discarded. */
1046
1047 void
1048 linux_nat_switch_fork (ptid_t new_ptid)
1049 {
1050 struct lwp_info *lp;
1051
1052 purge_lwp_list (ptid_get_pid (inferior_ptid));
1053
1054 lp = add_lwp (new_ptid);
1055 lp->stopped = 1;
1056
1057 /* This changes the thread's ptid while preserving the gdb thread
1058 num. Also changes the inferior pid, while preserving the
1059 inferior num. */
1060 thread_change_ptid (inferior_ptid, new_ptid);
1061
1062 /* We've just told GDB core that the thread changed target id, but,
1063 in fact, it really is a different thread, with different register
1064 contents. */
1065 registers_changed ();
1066 }
1067
1068 /* Handle the exit of a single thread LP. */
1069
1070 static void
1071 exit_lwp (struct lwp_info *lp)
1072 {
1073 struct thread_info *th = find_thread_ptid (lp->ptid);
1074
1075 if (th)
1076 {
1077 if (print_thread_events)
1078 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1079
1080 delete_thread (lp->ptid);
1081 }
1082
1083 delete_lwp (lp->ptid);
1084 }
1085
1086 /* Wait for the LWP specified by LP, which we have just attached to.
1087 Returns a wait status for that LWP, to cache. */
1088
1089 static int
1090 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1091 int *signalled)
1092 {
1093 pid_t new_pid, pid = ptid_get_lwp (ptid);
1094 int status;
1095
1096 if (linux_proc_pid_is_stopped (pid))
1097 {
1098 if (debug_linux_nat)
1099 fprintf_unfiltered (gdb_stdlog,
1100 "LNPAW: Attaching to a stopped process\n");
1101
1102 /* The process is definitely stopped. It is in a job control
1103 stop, unless the kernel predates the TASK_STOPPED /
1104 TASK_TRACED distinction, in which case it might be in a
1105 ptrace stop. Make sure it is in a ptrace stop; from there we
1106 can kill it, signal it, et cetera.
1107
1108 First make sure there is a pending SIGSTOP. Since we are
1109 already attached, the process can not transition from stopped
1110 to running without a PTRACE_CONT; so we know this signal will
1111 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1112 probably already in the queue (unless this kernel is old
1113 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1114 is not an RT signal, it can only be queued once. */
1115 kill_lwp (pid, SIGSTOP);
1116
1117 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1118 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1119 ptrace (PTRACE_CONT, pid, 0, 0);
1120 }
1121
1122 /* Make sure the initial process is stopped. The user-level threads
1123 layer might want to poke around in the inferior, and that won't
1124 work if things haven't stabilized yet. */
1125 new_pid = my_waitpid (pid, &status, 0);
1126 if (new_pid == -1 && errno == ECHILD)
1127 {
1128 if (first)
1129 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1130
1131 /* Try again with __WCLONE to check cloned processes. */
1132 new_pid = my_waitpid (pid, &status, __WCLONE);
1133 *cloned = 1;
1134 }
1135
1136 gdb_assert (pid == new_pid);
1137
1138 if (!WIFSTOPPED (status))
1139 {
1140 /* The pid we tried to attach has apparently just exited. */
1141 if (debug_linux_nat)
1142 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1143 pid, status_to_str (status));
1144 return status;
1145 }
1146
1147 if (WSTOPSIG (status) != SIGSTOP)
1148 {
1149 *signalled = 1;
1150 if (debug_linux_nat)
1151 fprintf_unfiltered (gdb_stdlog,
1152 "LNPAW: Received %s after attaching\n",
1153 status_to_str (status));
1154 }
1155
1156 return status;
1157 }
1158
1159 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1160 the new LWP could not be attached, or 1 if we're already auto
1161 attached to this thread, but haven't processed the
1162 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1163 its existance, without considering it an error. */
1164
1165 int
1166 lin_lwp_attach_lwp (ptid_t ptid)
1167 {
1168 struct lwp_info *lp;
1169 int lwpid;
1170
1171 gdb_assert (ptid_lwp_p (ptid));
1172
1173 lp = find_lwp_pid (ptid);
1174 lwpid = ptid_get_lwp (ptid);
1175
1176 /* We assume that we're already attached to any LWP that has an id
1177 equal to the overall process id, and to any LWP that is already
1178 in our list of LWPs. If we're not seeing exit events from threads
1179 and we've had PID wraparound since we last tried to stop all threads,
1180 this assumption might be wrong; fortunately, this is very unlikely
1181 to happen. */
1182 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1183 {
1184 int status, cloned = 0, signalled = 0;
1185
1186 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1187 {
1188 if (linux_supports_tracefork ())
1189 {
1190 /* If we haven't stopped all threads when we get here,
1191 we may have seen a thread listed in thread_db's list,
1192 but not processed the PTRACE_EVENT_CLONE yet. If
1193 that's the case, ignore this new thread, and let
1194 normal event handling discover it later. */
1195 if (in_pid_list_p (stopped_pids, lwpid))
1196 {
1197 /* We've already seen this thread stop, but we
1198 haven't seen the PTRACE_EVENT_CLONE extended
1199 event yet. */
1200 return 0;
1201 }
1202 else
1203 {
1204 int new_pid;
1205 int status;
1206
1207 /* See if we've got a stop for this new child
1208 pending. If so, we're already attached. */
1209 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1210 if (new_pid == -1 && errno == ECHILD)
1211 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1212 if (new_pid != -1)
1213 {
1214 if (WIFSTOPPED (status))
1215 add_to_pid_list (&stopped_pids, lwpid, status);
1216 return 1;
1217 }
1218 }
1219 }
1220
1221 /* If we fail to attach to the thread, issue a warning,
1222 but continue. One way this can happen is if thread
1223 creation is interrupted; as of Linux kernel 2.6.19, a
1224 bug may place threads in the thread list and then fail
1225 to create them. */
1226 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1227 safe_strerror (errno));
1228 return -1;
1229 }
1230
1231 if (debug_linux_nat)
1232 fprintf_unfiltered (gdb_stdlog,
1233 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1234 target_pid_to_str (ptid));
1235
1236 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1237 if (!WIFSTOPPED (status))
1238 return 1;
1239
1240 lp = add_lwp (ptid);
1241 lp->stopped = 1;
1242 lp->cloned = cloned;
1243 lp->signalled = signalled;
1244 if (WSTOPSIG (status) != SIGSTOP)
1245 {
1246 lp->resumed = 1;
1247 lp->status = status;
1248 }
1249
1250 target_post_attach (ptid_get_lwp (lp->ptid));
1251
1252 if (debug_linux_nat)
1253 {
1254 fprintf_unfiltered (gdb_stdlog,
1255 "LLAL: waitpid %s received %s\n",
1256 target_pid_to_str (ptid),
1257 status_to_str (status));
1258 }
1259 }
1260 else
1261 {
1262 /* We assume that the LWP representing the original process is
1263 already stopped. Mark it as stopped in the data structure
1264 that the GNU/linux ptrace layer uses to keep track of
1265 threads. Note that this won't have already been done since
1266 the main thread will have, we assume, been stopped by an
1267 attach from a different layer. */
1268 if (lp == NULL)
1269 lp = add_lwp (ptid);
1270 lp->stopped = 1;
1271 }
1272
1273 lp->last_resume_kind = resume_stop;
1274 return 0;
1275 }
1276
1277 static void
1278 linux_nat_create_inferior (struct target_ops *ops,
1279 char *exec_file, char *allargs, char **env,
1280 int from_tty)
1281 {
1282 #ifdef HAVE_PERSONALITY
1283 int personality_orig = 0, personality_set = 0;
1284 #endif /* HAVE_PERSONALITY */
1285
1286 /* The fork_child mechanism is synchronous and calls target_wait, so
1287 we have to mask the async mode. */
1288
1289 #ifdef HAVE_PERSONALITY
1290 if (disable_randomization)
1291 {
1292 errno = 0;
1293 personality_orig = personality (0xffffffff);
1294 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1295 {
1296 personality_set = 1;
1297 personality (personality_orig | ADDR_NO_RANDOMIZE);
1298 }
1299 if (errno != 0 || (personality_set
1300 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1301 warning (_("Error disabling address space randomization: %s"),
1302 safe_strerror (errno));
1303 }
1304 #endif /* HAVE_PERSONALITY */
1305
1306 /* Make sure we report all signals during startup. */
1307 linux_nat_pass_signals (ops, 0, NULL);
1308
1309 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1310
1311 #ifdef HAVE_PERSONALITY
1312 if (personality_set)
1313 {
1314 errno = 0;
1315 personality (personality_orig);
1316 if (errno != 0)
1317 warning (_("Error restoring address space randomization: %s"),
1318 safe_strerror (errno));
1319 }
1320 #endif /* HAVE_PERSONALITY */
1321 }
1322
1323 static void
1324 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1325 {
1326 struct lwp_info *lp;
1327 int status;
1328 ptid_t ptid;
1329 volatile struct gdb_exception ex;
1330
1331 /* Make sure we report all signals during attach. */
1332 linux_nat_pass_signals (ops, 0, NULL);
1333
1334 TRY_CATCH (ex, RETURN_MASK_ERROR)
1335 {
1336 linux_ops->to_attach (ops, args, from_tty);
1337 }
1338 if (ex.reason < 0)
1339 {
1340 pid_t pid = parse_pid_to_attach (args);
1341 struct buffer buffer;
1342 char *message, *buffer_s;
1343
1344 message = xstrdup (ex.message);
1345 make_cleanup (xfree, message);
1346
1347 buffer_init (&buffer);
1348 linux_ptrace_attach_warnings (pid, &buffer);
1349
1350 buffer_grow_str0 (&buffer, "");
1351 buffer_s = buffer_finish (&buffer);
1352 make_cleanup (xfree, buffer_s);
1353
1354 throw_error (ex.error, "%s%s", buffer_s, message);
1355 }
1356
1357 /* The ptrace base target adds the main thread with (pid,0,0)
1358 format. Decorate it with lwp info. */
1359 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1360 ptid_get_pid (inferior_ptid),
1361 0);
1362 thread_change_ptid (inferior_ptid, ptid);
1363
1364 /* Add the initial process as the first LWP to the list. */
1365 lp = add_initial_lwp (ptid);
1366
1367 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1368 &lp->signalled);
1369 if (!WIFSTOPPED (status))
1370 {
1371 if (WIFEXITED (status))
1372 {
1373 int exit_code = WEXITSTATUS (status);
1374
1375 target_terminal_ours ();
1376 target_mourn_inferior ();
1377 if (exit_code == 0)
1378 error (_("Unable to attach: program exited normally."));
1379 else
1380 error (_("Unable to attach: program exited with code %d."),
1381 exit_code);
1382 }
1383 else if (WIFSIGNALED (status))
1384 {
1385 enum gdb_signal signo;
1386
1387 target_terminal_ours ();
1388 target_mourn_inferior ();
1389
1390 signo = gdb_signal_from_host (WTERMSIG (status));
1391 error (_("Unable to attach: program terminated with signal "
1392 "%s, %s."),
1393 gdb_signal_to_name (signo),
1394 gdb_signal_to_string (signo));
1395 }
1396
1397 internal_error (__FILE__, __LINE__,
1398 _("unexpected status %d for PID %ld"),
1399 status, (long) ptid_get_lwp (ptid));
1400 }
1401
1402 lp->stopped = 1;
1403
1404 /* Save the wait status to report later. */
1405 lp->resumed = 1;
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog,
1408 "LNA: waitpid %ld, saving status %s\n",
1409 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1410
1411 lp->status = status;
1412
1413 if (target_can_async_p ())
1414 target_async (inferior_event_handler, 0);
1415 }
1416
1417 /* Get pending status of LP. */
1418 static int
1419 get_pending_status (struct lwp_info *lp, int *status)
1420 {
1421 enum gdb_signal signo = GDB_SIGNAL_0;
1422
1423 /* If we paused threads momentarily, we may have stored pending
1424 events in lp->status or lp->waitstatus (see stop_wait_callback),
1425 and GDB core hasn't seen any signal for those threads.
1426 Otherwise, the last signal reported to the core is found in the
1427 thread object's stop_signal.
1428
1429 There's a corner case that isn't handled here at present. Only
1430 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1431 stop_signal make sense as a real signal to pass to the inferior.
1432 Some catchpoint related events, like
1433 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1434 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1435 those traps are debug API (ptrace in our case) related and
1436 induced; the inferior wouldn't see them if it wasn't being
1437 traced. Hence, we should never pass them to the inferior, even
1438 when set to pass state. Since this corner case isn't handled by
1439 infrun.c when proceeding with a signal, for consistency, neither
1440 do we handle it here (or elsewhere in the file we check for
1441 signal pass state). Normally SIGTRAP isn't set to pass state, so
1442 this is really a corner case. */
1443
1444 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1445 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1446 else if (lp->status)
1447 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1448 else if (non_stop && !is_executing (lp->ptid))
1449 {
1450 struct thread_info *tp = find_thread_ptid (lp->ptid);
1451
1452 signo = tp->suspend.stop_signal;
1453 }
1454 else if (!non_stop)
1455 {
1456 struct target_waitstatus last;
1457 ptid_t last_ptid;
1458
1459 get_last_target_status (&last_ptid, &last);
1460
1461 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1462 {
1463 struct thread_info *tp = find_thread_ptid (lp->ptid);
1464
1465 signo = tp->suspend.stop_signal;
1466 }
1467 }
1468
1469 *status = 0;
1470
1471 if (signo == GDB_SIGNAL_0)
1472 {
1473 if (debug_linux_nat)
1474 fprintf_unfiltered (gdb_stdlog,
1475 "GPT: lwp %s has no pending signal\n",
1476 target_pid_to_str (lp->ptid));
1477 }
1478 else if (!signal_pass_state (signo))
1479 {
1480 if (debug_linux_nat)
1481 fprintf_unfiltered (gdb_stdlog,
1482 "GPT: lwp %s had signal %s, "
1483 "but it is in no pass state\n",
1484 target_pid_to_str (lp->ptid),
1485 gdb_signal_to_string (signo));
1486 }
1487 else
1488 {
1489 *status = W_STOPCODE (gdb_signal_to_host (signo));
1490
1491 if (debug_linux_nat)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "GPT: lwp %s has pending signal %s\n",
1494 target_pid_to_str (lp->ptid),
1495 gdb_signal_to_string (signo));
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int
1502 detach_callback (struct lwp_info *lp, void *data)
1503 {
1504 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1505
1506 if (debug_linux_nat && lp->status)
1507 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1508 strsignal (WSTOPSIG (lp->status)),
1509 target_pid_to_str (lp->ptid));
1510
1511 /* If there is a pending SIGSTOP, get rid of it. */
1512 if (lp->signalled)
1513 {
1514 if (debug_linux_nat)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "DC: Sending SIGCONT to %s\n",
1517 target_pid_to_str (lp->ptid));
1518
1519 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1520 lp->signalled = 0;
1521 }
1522
1523 /* We don't actually detach from the LWP that has an id equal to the
1524 overall process id just yet. */
1525 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1526 {
1527 int status = 0;
1528
1529 /* Pass on any pending signal for this LWP. */
1530 get_pending_status (lp, &status);
1531
1532 if (linux_nat_prepare_to_resume != NULL)
1533 linux_nat_prepare_to_resume (lp);
1534 errno = 0;
1535 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1536 WSTOPSIG (status)) < 0)
1537 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1538 safe_strerror (errno));
1539
1540 if (debug_linux_nat)
1541 fprintf_unfiltered (gdb_stdlog,
1542 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1543 target_pid_to_str (lp->ptid),
1544 strsignal (WSTOPSIG (status)));
1545
1546 delete_lwp (lp->ptid);
1547 }
1548
1549 return 0;
1550 }
1551
1552 static void
1553 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1554 {
1555 int pid;
1556 int status;
1557 struct lwp_info *main_lwp;
1558
1559 pid = ptid_get_pid (inferior_ptid);
1560
1561 /* Don't unregister from the event loop, as there may be other
1562 inferiors running. */
1563
1564 /* Stop all threads before detaching. ptrace requires that the
1565 thread is stopped to sucessfully detach. */
1566 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1567 /* ... and wait until all of them have reported back that
1568 they're no longer running. */
1569 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1570
1571 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1572
1573 /* Only the initial process should be left right now. */
1574 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1575
1576 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1577
1578 /* Pass on any pending signal for the last LWP. */
1579 if ((args == NULL || *args == '\0')
1580 && get_pending_status (main_lwp, &status) != -1
1581 && WIFSTOPPED (status))
1582 {
1583 char *tem;
1584
1585 /* Put the signal number in ARGS so that inf_ptrace_detach will
1586 pass it along with PTRACE_DETACH. */
1587 tem = alloca (8);
1588 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1589 args = tem;
1590 if (debug_linux_nat)
1591 fprintf_unfiltered (gdb_stdlog,
1592 "LND: Sending signal %s to %s\n",
1593 args,
1594 target_pid_to_str (main_lwp->ptid));
1595 }
1596
1597 if (linux_nat_prepare_to_resume != NULL)
1598 linux_nat_prepare_to_resume (main_lwp);
1599 delete_lwp (main_lwp->ptid);
1600
1601 if (forks_exist_p ())
1602 {
1603 /* Multi-fork case. The current inferior_ptid is being detached
1604 from, but there are other viable forks to debug. Detach from
1605 the current fork, and context-switch to the first
1606 available. */
1607 linux_fork_detach (args, from_tty);
1608 }
1609 else
1610 linux_ops->to_detach (ops, args, from_tty);
1611 }
1612
1613 /* Resume LP. */
1614
1615 static void
1616 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1617 {
1618 if (lp->stopped)
1619 {
1620 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1621
1622 if (inf->vfork_child != NULL)
1623 {
1624 if (debug_linux_nat)
1625 fprintf_unfiltered (gdb_stdlog,
1626 "RC: Not resuming %s (vfork parent)\n",
1627 target_pid_to_str (lp->ptid));
1628 }
1629 else if (lp->status == 0
1630 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1631 {
1632 if (debug_linux_nat)
1633 fprintf_unfiltered (gdb_stdlog,
1634 "RC: Resuming sibling %s, %s, %s\n",
1635 target_pid_to_str (lp->ptid),
1636 (signo != GDB_SIGNAL_0
1637 ? strsignal (gdb_signal_to_host (signo))
1638 : "0"),
1639 step ? "step" : "resume");
1640
1641 if (linux_nat_prepare_to_resume != NULL)
1642 linux_nat_prepare_to_resume (lp);
1643 linux_ops->to_resume (linux_ops,
1644 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1645 step, signo);
1646 lp->stopped = 0;
1647 lp->step = step;
1648 lp->stopped_by_watchpoint = 0;
1649 }
1650 else
1651 {
1652 if (debug_linux_nat)
1653 fprintf_unfiltered (gdb_stdlog,
1654 "RC: Not resuming sibling %s (has pending)\n",
1655 target_pid_to_str (lp->ptid));
1656 }
1657 }
1658 else
1659 {
1660 if (debug_linux_nat)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "RC: Not resuming sibling %s (not stopped)\n",
1663 target_pid_to_str (lp->ptid));
1664 }
1665 }
1666
1667 /* Resume LWP, with the last stop signal, if it is in pass state. */
1668
1669 static int
1670 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1671 {
1672 enum gdb_signal signo = GDB_SIGNAL_0;
1673
1674 if (lp->stopped)
1675 {
1676 struct thread_info *thread;
1677
1678 thread = find_thread_ptid (lp->ptid);
1679 if (thread != NULL)
1680 {
1681 if (signal_pass_state (thread->suspend.stop_signal))
1682 signo = thread->suspend.stop_signal;
1683 thread->suspend.stop_signal = GDB_SIGNAL_0;
1684 }
1685 }
1686
1687 resume_lwp (lp, 0, signo);
1688 return 0;
1689 }
1690
1691 static int
1692 resume_clear_callback (struct lwp_info *lp, void *data)
1693 {
1694 lp->resumed = 0;
1695 lp->last_resume_kind = resume_stop;
1696 return 0;
1697 }
1698
1699 static int
1700 resume_set_callback (struct lwp_info *lp, void *data)
1701 {
1702 lp->resumed = 1;
1703 lp->last_resume_kind = resume_continue;
1704 return 0;
1705 }
1706
1707 static void
1708 linux_nat_resume (struct target_ops *ops,
1709 ptid_t ptid, int step, enum gdb_signal signo)
1710 {
1711 struct lwp_info *lp;
1712 int resume_many;
1713
1714 if (debug_linux_nat)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1717 step ? "step" : "resume",
1718 target_pid_to_str (ptid),
1719 (signo != GDB_SIGNAL_0
1720 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1721 target_pid_to_str (inferior_ptid));
1722
1723 /* A specific PTID means `step only this process id'. */
1724 resume_many = (ptid_equal (minus_one_ptid, ptid)
1725 || ptid_is_pid (ptid));
1726
1727 /* Mark the lwps we're resuming as resumed. */
1728 iterate_over_lwps (ptid, resume_set_callback, NULL);
1729
1730 /* See if it's the current inferior that should be handled
1731 specially. */
1732 if (resume_many)
1733 lp = find_lwp_pid (inferior_ptid);
1734 else
1735 lp = find_lwp_pid (ptid);
1736 gdb_assert (lp != NULL);
1737
1738 /* Remember if we're stepping. */
1739 lp->step = step;
1740 lp->last_resume_kind = step ? resume_step : resume_continue;
1741
1742 /* If we have a pending wait status for this thread, there is no
1743 point in resuming the process. But first make sure that
1744 linux_nat_wait won't preemptively handle the event - we
1745 should never take this short-circuit if we are going to
1746 leave LP running, since we have skipped resuming all the
1747 other threads. This bit of code needs to be synchronized
1748 with linux_nat_wait. */
1749
1750 if (lp->status && WIFSTOPPED (lp->status))
1751 {
1752 if (!lp->step
1753 && WSTOPSIG (lp->status)
1754 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1755 {
1756 if (debug_linux_nat)
1757 fprintf_unfiltered (gdb_stdlog,
1758 "LLR: Not short circuiting for ignored "
1759 "status 0x%x\n", lp->status);
1760
1761 /* FIXME: What should we do if we are supposed to continue
1762 this thread with a signal? */
1763 gdb_assert (signo == GDB_SIGNAL_0);
1764 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1765 lp->status = 0;
1766 }
1767 }
1768
1769 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1770 {
1771 /* FIXME: What should we do if we are supposed to continue
1772 this thread with a signal? */
1773 gdb_assert (signo == GDB_SIGNAL_0);
1774
1775 if (debug_linux_nat)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "LLR: Short circuiting for status 0x%x\n",
1778 lp->status);
1779
1780 if (target_can_async_p ())
1781 {
1782 target_async (inferior_event_handler, 0);
1783 /* Tell the event loop we have something to process. */
1784 async_file_mark ();
1785 }
1786 return;
1787 }
1788
1789 /* Mark LWP as not stopped to prevent it from being continued by
1790 linux_nat_resume_callback. */
1791 lp->stopped = 0;
1792
1793 if (resume_many)
1794 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1795
1796 /* Convert to something the lower layer understands. */
1797 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1798
1799 if (linux_nat_prepare_to_resume != NULL)
1800 linux_nat_prepare_to_resume (lp);
1801 linux_ops->to_resume (linux_ops, ptid, step, signo);
1802 lp->stopped_by_watchpoint = 0;
1803
1804 if (debug_linux_nat)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "LLR: %s %s, %s (resume event thread)\n",
1807 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1808 target_pid_to_str (ptid),
1809 (signo != GDB_SIGNAL_0
1810 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1811
1812 if (target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1814 }
1815
1816 /* Send a signal to an LWP. */
1817
1818 static int
1819 kill_lwp (int lwpid, int signo)
1820 {
1821 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1822 fails, then we are not using nptl threads and we should be using kill. */
1823
1824 #ifdef HAVE_TKILL_SYSCALL
1825 {
1826 static int tkill_failed;
1827
1828 if (!tkill_failed)
1829 {
1830 int ret;
1831
1832 errno = 0;
1833 ret = syscall (__NR_tkill, lwpid, signo);
1834 if (errno != ENOSYS)
1835 return ret;
1836 tkill_failed = 1;
1837 }
1838 }
1839 #endif
1840
1841 return kill (lwpid, signo);
1842 }
1843
1844 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1845 event, check if the core is interested in it: if not, ignore the
1846 event, and keep waiting; otherwise, we need to toggle the LWP's
1847 syscall entry/exit status, since the ptrace event itself doesn't
1848 indicate it, and report the trap to higher layers. */
1849
1850 static int
1851 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1852 {
1853 struct target_waitstatus *ourstatus = &lp->waitstatus;
1854 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1855 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1856
1857 if (stopping)
1858 {
1859 /* If we're stopping threads, there's a SIGSTOP pending, which
1860 makes it so that the LWP reports an immediate syscall return,
1861 followed by the SIGSTOP. Skip seeing that "return" using
1862 PTRACE_CONT directly, and let stop_wait_callback collect the
1863 SIGSTOP. Later when the thread is resumed, a new syscall
1864 entry event. If we didn't do this (and returned 0), we'd
1865 leave a syscall entry pending, and our caller, by using
1866 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1867 itself. Later, when the user re-resumes this LWP, we'd see
1868 another syscall entry event and we'd mistake it for a return.
1869
1870 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1871 (leaving immediately with LWP->signalled set, without issuing
1872 a PTRACE_CONT), it would still be problematic to leave this
1873 syscall enter pending, as later when the thread is resumed,
1874 it would then see the same syscall exit mentioned above,
1875 followed by the delayed SIGSTOP, while the syscall didn't
1876 actually get to execute. It seems it would be even more
1877 confusing to the user. */
1878
1879 if (debug_linux_nat)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "LHST: ignoring syscall %d "
1882 "for LWP %ld (stopping threads), "
1883 "resuming with PTRACE_CONT for SIGSTOP\n",
1884 syscall_number,
1885 ptid_get_lwp (lp->ptid));
1886
1887 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1888 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1889 return 1;
1890 }
1891
1892 if (catch_syscall_enabled ())
1893 {
1894 /* Always update the entry/return state, even if this particular
1895 syscall isn't interesting to the core now. In async mode,
1896 the user could install a new catchpoint for this syscall
1897 between syscall enter/return, and we'll need to know to
1898 report a syscall return if that happens. */
1899 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1900 ? TARGET_WAITKIND_SYSCALL_RETURN
1901 : TARGET_WAITKIND_SYSCALL_ENTRY);
1902
1903 if (catching_syscall_number (syscall_number))
1904 {
1905 /* Alright, an event to report. */
1906 ourstatus->kind = lp->syscall_state;
1907 ourstatus->value.syscall_number = syscall_number;
1908
1909 if (debug_linux_nat)
1910 fprintf_unfiltered (gdb_stdlog,
1911 "LHST: stopping for %s of syscall %d"
1912 " for LWP %ld\n",
1913 lp->syscall_state
1914 == TARGET_WAITKIND_SYSCALL_ENTRY
1915 ? "entry" : "return",
1916 syscall_number,
1917 ptid_get_lwp (lp->ptid));
1918 return 0;
1919 }
1920
1921 if (debug_linux_nat)
1922 fprintf_unfiltered (gdb_stdlog,
1923 "LHST: ignoring %s of syscall %d "
1924 "for LWP %ld\n",
1925 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1926 ? "entry" : "return",
1927 syscall_number,
1928 ptid_get_lwp (lp->ptid));
1929 }
1930 else
1931 {
1932 /* If we had been syscall tracing, and hence used PT_SYSCALL
1933 before on this LWP, it could happen that the user removes all
1934 syscall catchpoints before we get to process this event.
1935 There are two noteworthy issues here:
1936
1937 - When stopped at a syscall entry event, resuming with
1938 PT_STEP still resumes executing the syscall and reports a
1939 syscall return.
1940
1941 - Only PT_SYSCALL catches syscall enters. If we last
1942 single-stepped this thread, then this event can't be a
1943 syscall enter. If we last single-stepped this thread, this
1944 has to be a syscall exit.
1945
1946 The points above mean that the next resume, be it PT_STEP or
1947 PT_CONTINUE, can not trigger a syscall trace event. */
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LHST: caught syscall event "
1951 "with no syscall catchpoints."
1952 " %d for LWP %ld, ignoring\n",
1953 syscall_number,
1954 ptid_get_lwp (lp->ptid));
1955 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1956 }
1957
1958 /* The core isn't interested in this event. For efficiency, avoid
1959 stopping all threads only to have the core resume them all again.
1960 Since we're not stopping threads, if we're still syscall tracing
1961 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1962 subsequent syscall. Simply resume using the inf-ptrace layer,
1963 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1964
1965 /* Note that gdbarch_get_syscall_number may access registers, hence
1966 fill a regcache. */
1967 registers_changed ();
1968 if (linux_nat_prepare_to_resume != NULL)
1969 linux_nat_prepare_to_resume (lp);
1970 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1971 lp->step, GDB_SIGNAL_0);
1972 return 1;
1973 }
1974
1975 /* Handle a GNU/Linux extended wait response. If we see a clone
1976 event, we need to add the new LWP to our list (and not report the
1977 trap to higher layers). This function returns non-zero if the
1978 event should be ignored and we should wait again. If STOPPING is
1979 true, the new LWP remains stopped, otherwise it is continued. */
1980
1981 static int
1982 linux_handle_extended_wait (struct lwp_info *lp, int status,
1983 int stopping)
1984 {
1985 int pid = ptid_get_lwp (lp->ptid);
1986 struct target_waitstatus *ourstatus = &lp->waitstatus;
1987 int event = status >> 16;
1988
1989 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1990 || event == PTRACE_EVENT_CLONE)
1991 {
1992 unsigned long new_pid;
1993 int ret;
1994
1995 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1996
1997 /* If we haven't already seen the new PID stop, wait for it now. */
1998 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1999 {
2000 /* The new child has a pending SIGSTOP. We can't affect it until it
2001 hits the SIGSTOP, but we're already attached. */
2002 ret = my_waitpid (new_pid, &status,
2003 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2004 if (ret == -1)
2005 perror_with_name (_("waiting for new child"));
2006 else if (ret != new_pid)
2007 internal_error (__FILE__, __LINE__,
2008 _("wait returned unexpected PID %d"), ret);
2009 else if (!WIFSTOPPED (status))
2010 internal_error (__FILE__, __LINE__,
2011 _("wait returned unexpected status 0x%x"), status);
2012 }
2013
2014 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2015
2016 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2017 {
2018 /* The arch-specific native code may need to know about new
2019 forks even if those end up never mapped to an
2020 inferior. */
2021 if (linux_nat_new_fork != NULL)
2022 linux_nat_new_fork (lp, new_pid);
2023 }
2024
2025 if (event == PTRACE_EVENT_FORK
2026 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2027 {
2028 /* Handle checkpointing by linux-fork.c here as a special
2029 case. We don't want the follow-fork-mode or 'catch fork'
2030 to interfere with this. */
2031
2032 /* This won't actually modify the breakpoint list, but will
2033 physically remove the breakpoints from the child. */
2034 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2035
2036 /* Retain child fork in ptrace (stopped) state. */
2037 if (!find_fork_pid (new_pid))
2038 add_fork (new_pid);
2039
2040 /* Report as spurious, so that infrun doesn't want to follow
2041 this fork. We're actually doing an infcall in
2042 linux-fork.c. */
2043 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2044
2045 /* Report the stop to the core. */
2046 return 0;
2047 }
2048
2049 if (event == PTRACE_EVENT_FORK)
2050 ourstatus->kind = TARGET_WAITKIND_FORKED;
2051 else if (event == PTRACE_EVENT_VFORK)
2052 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2053 else
2054 {
2055 struct lwp_info *new_lp;
2056
2057 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2058
2059 if (debug_linux_nat)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "LHEW: Got clone event "
2062 "from LWP %d, new child is LWP %ld\n",
2063 pid, new_pid);
2064
2065 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2066 new_lp->cloned = 1;
2067 new_lp->stopped = 1;
2068
2069 if (WSTOPSIG (status) != SIGSTOP)
2070 {
2071 /* This can happen if someone starts sending signals to
2072 the new thread before it gets a chance to run, which
2073 have a lower number than SIGSTOP (e.g. SIGUSR1).
2074 This is an unlikely case, and harder to handle for
2075 fork / vfork than for clone, so we do not try - but
2076 we handle it for clone events here. We'll send
2077 the other signal on to the thread below. */
2078
2079 new_lp->signalled = 1;
2080 }
2081 else
2082 {
2083 struct thread_info *tp;
2084
2085 /* When we stop for an event in some other thread, and
2086 pull the thread list just as this thread has cloned,
2087 we'll have seen the new thread in the thread_db list
2088 before handling the CLONE event (glibc's
2089 pthread_create adds the new thread to the thread list
2090 before clone'ing, and has the kernel fill in the
2091 thread's tid on the clone call with
2092 CLONE_PARENT_SETTID). If that happened, and the core
2093 had requested the new thread to stop, we'll have
2094 killed it with SIGSTOP. But since SIGSTOP is not an
2095 RT signal, it can only be queued once. We need to be
2096 careful to not resume the LWP if we wanted it to
2097 stop. In that case, we'll leave the SIGSTOP pending.
2098 It will later be reported as GDB_SIGNAL_0. */
2099 tp = find_thread_ptid (new_lp->ptid);
2100 if (tp != NULL && tp->stop_requested)
2101 new_lp->last_resume_kind = resume_stop;
2102 else
2103 status = 0;
2104 }
2105
2106 if (non_stop)
2107 {
2108 /* Add the new thread to GDB's lists as soon as possible
2109 so that:
2110
2111 1) the frontend doesn't have to wait for a stop to
2112 display them, and,
2113
2114 2) we tag it with the correct running state. */
2115
2116 /* If the thread_db layer is active, let it know about
2117 this new thread, and add it to GDB's list. */
2118 if (!thread_db_attach_lwp (new_lp->ptid))
2119 {
2120 /* We're not using thread_db. Add it to GDB's
2121 list. */
2122 target_post_attach (ptid_get_lwp (new_lp->ptid));
2123 add_thread (new_lp->ptid);
2124 }
2125
2126 if (!stopping)
2127 {
2128 set_running (new_lp->ptid, 1);
2129 set_executing (new_lp->ptid, 1);
2130 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2131 resume_stop. */
2132 new_lp->last_resume_kind = resume_continue;
2133 }
2134 }
2135
2136 if (status != 0)
2137 {
2138 /* We created NEW_LP so it cannot yet contain STATUS. */
2139 gdb_assert (new_lp->status == 0);
2140
2141 /* Save the wait status to report later. */
2142 if (debug_linux_nat)
2143 fprintf_unfiltered (gdb_stdlog,
2144 "LHEW: waitpid of new LWP %ld, "
2145 "saving status %s\n",
2146 (long) ptid_get_lwp (new_lp->ptid),
2147 status_to_str (status));
2148 new_lp->status = status;
2149 }
2150
2151 /* Note the need to use the low target ops to resume, to
2152 handle resuming with PT_SYSCALL if we have syscall
2153 catchpoints. */
2154 if (!stopping)
2155 {
2156 new_lp->resumed = 1;
2157
2158 if (status == 0)
2159 {
2160 gdb_assert (new_lp->last_resume_kind == resume_continue);
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog,
2163 "LHEW: resuming new LWP %ld\n",
2164 ptid_get_lwp (new_lp->ptid));
2165 if (linux_nat_prepare_to_resume != NULL)
2166 linux_nat_prepare_to_resume (new_lp);
2167 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2168 0, GDB_SIGNAL_0);
2169 new_lp->stopped = 0;
2170 }
2171 }
2172
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "LHEW: resuming parent LWP %d\n", pid);
2176 if (linux_nat_prepare_to_resume != NULL)
2177 linux_nat_prepare_to_resume (lp);
2178 linux_ops->to_resume (linux_ops,
2179 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2180 0, GDB_SIGNAL_0);
2181
2182 return 1;
2183 }
2184
2185 return 0;
2186 }
2187
2188 if (event == PTRACE_EVENT_EXEC)
2189 {
2190 if (debug_linux_nat)
2191 fprintf_unfiltered (gdb_stdlog,
2192 "LHEW: Got exec event from LWP %ld\n",
2193 ptid_get_lwp (lp->ptid));
2194
2195 ourstatus->kind = TARGET_WAITKIND_EXECD;
2196 ourstatus->value.execd_pathname
2197 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2198
2199 return 0;
2200 }
2201
2202 if (event == PTRACE_EVENT_VFORK_DONE)
2203 {
2204 if (current_inferior ()->waiting_for_vfork_done)
2205 {
2206 if (debug_linux_nat)
2207 fprintf_unfiltered (gdb_stdlog,
2208 "LHEW: Got expected PTRACE_EVENT_"
2209 "VFORK_DONE from LWP %ld: stopping\n",
2210 ptid_get_lwp (lp->ptid));
2211
2212 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2213 return 0;
2214 }
2215
2216 if (debug_linux_nat)
2217 fprintf_unfiltered (gdb_stdlog,
2218 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2219 "from LWP %ld: resuming\n",
2220 ptid_get_lwp (lp->ptid));
2221 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2222 return 1;
2223 }
2224
2225 internal_error (__FILE__, __LINE__,
2226 _("unknown ptrace event %d"), event);
2227 }
2228
2229 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2230 exited. */
2231
2232 static int
2233 wait_lwp (struct lwp_info *lp)
2234 {
2235 pid_t pid;
2236 int status = 0;
2237 int thread_dead = 0;
2238 sigset_t prev_mask;
2239
2240 gdb_assert (!lp->stopped);
2241 gdb_assert (lp->status == 0);
2242
2243 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2244 block_child_signals (&prev_mask);
2245
2246 for (;;)
2247 {
2248 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2249 was right and we should just call sigsuspend. */
2250
2251 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2252 if (pid == -1 && errno == ECHILD)
2253 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2254 if (pid == -1 && errno == ECHILD)
2255 {
2256 /* The thread has previously exited. We need to delete it
2257 now because, for some vendor 2.4 kernels with NPTL
2258 support backported, there won't be an exit event unless
2259 it is the main thread. 2.6 kernels will report an exit
2260 event for each thread that exits, as expected. */
2261 thread_dead = 1;
2262 if (debug_linux_nat)
2263 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2264 target_pid_to_str (lp->ptid));
2265 }
2266 if (pid != 0)
2267 break;
2268
2269 /* Bugs 10970, 12702.
2270 Thread group leader may have exited in which case we'll lock up in
2271 waitpid if there are other threads, even if they are all zombies too.
2272 Basically, we're not supposed to use waitpid this way.
2273 __WCLONE is not applicable for the leader so we can't use that.
2274 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2275 process; it gets ESRCH both for the zombie and for running processes.
2276
2277 As a workaround, check if we're waiting for the thread group leader and
2278 if it's a zombie, and avoid calling waitpid if it is.
2279
2280 This is racy, what if the tgl becomes a zombie right after we check?
2281 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2282 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2283
2284 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2285 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2286 {
2287 thread_dead = 1;
2288 if (debug_linux_nat)
2289 fprintf_unfiltered (gdb_stdlog,
2290 "WL: Thread group leader %s vanished.\n",
2291 target_pid_to_str (lp->ptid));
2292 break;
2293 }
2294
2295 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2296 get invoked despite our caller had them intentionally blocked by
2297 block_child_signals. This is sensitive only to the loop of
2298 linux_nat_wait_1 and there if we get called my_waitpid gets called
2299 again before it gets to sigsuspend so we can safely let the handlers
2300 get executed here. */
2301
2302 sigsuspend (&suspend_mask);
2303 }
2304
2305 restore_child_signals_mask (&prev_mask);
2306
2307 if (!thread_dead)
2308 {
2309 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2310
2311 if (debug_linux_nat)
2312 {
2313 fprintf_unfiltered (gdb_stdlog,
2314 "WL: waitpid %s received %s\n",
2315 target_pid_to_str (lp->ptid),
2316 status_to_str (status));
2317 }
2318
2319 /* Check if the thread has exited. */
2320 if (WIFEXITED (status) || WIFSIGNALED (status))
2321 {
2322 thread_dead = 1;
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2325 target_pid_to_str (lp->ptid));
2326 }
2327 }
2328
2329 if (thread_dead)
2330 {
2331 exit_lwp (lp);
2332 return 0;
2333 }
2334
2335 gdb_assert (WIFSTOPPED (status));
2336
2337 /* Handle GNU/Linux's syscall SIGTRAPs. */
2338 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2339 {
2340 /* No longer need the sysgood bit. The ptrace event ends up
2341 recorded in lp->waitstatus if we care for it. We can carry
2342 on handling the event like a regular SIGTRAP from here
2343 on. */
2344 status = W_STOPCODE (SIGTRAP);
2345 if (linux_handle_syscall_trap (lp, 1))
2346 return wait_lwp (lp);
2347 }
2348
2349 /* Handle GNU/Linux's extended waitstatus for trace events. */
2350 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2351 {
2352 if (debug_linux_nat)
2353 fprintf_unfiltered (gdb_stdlog,
2354 "WL: Handling extended status 0x%06x\n",
2355 status);
2356 if (linux_handle_extended_wait (lp, status, 1))
2357 return wait_lwp (lp);
2358 }
2359
2360 return status;
2361 }
2362
2363 /* Send a SIGSTOP to LP. */
2364
2365 static int
2366 stop_callback (struct lwp_info *lp, void *data)
2367 {
2368 if (!lp->stopped && !lp->signalled)
2369 {
2370 int ret;
2371
2372 if (debug_linux_nat)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "SC: kill %s **<SIGSTOP>**\n",
2376 target_pid_to_str (lp->ptid));
2377 }
2378 errno = 0;
2379 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2380 if (debug_linux_nat)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "SC: lwp kill %d %s\n",
2384 ret,
2385 errno ? safe_strerror (errno) : "ERRNO-OK");
2386 }
2387
2388 lp->signalled = 1;
2389 gdb_assert (lp->status == 0);
2390 }
2391
2392 return 0;
2393 }
2394
2395 /* Request a stop on LWP. */
2396
2397 void
2398 linux_stop_lwp (struct lwp_info *lwp)
2399 {
2400 stop_callback (lwp, NULL);
2401 }
2402
2403 /* Return non-zero if LWP PID has a pending SIGINT. */
2404
2405 static int
2406 linux_nat_has_pending_sigint (int pid)
2407 {
2408 sigset_t pending, blocked, ignored;
2409
2410 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2411
2412 if (sigismember (&pending, SIGINT)
2413 && !sigismember (&ignored, SIGINT))
2414 return 1;
2415
2416 return 0;
2417 }
2418
2419 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2420
2421 static int
2422 set_ignore_sigint (struct lwp_info *lp, void *data)
2423 {
2424 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2425 flag to consume the next one. */
2426 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2427 && WSTOPSIG (lp->status) == SIGINT)
2428 lp->status = 0;
2429 else
2430 lp->ignore_sigint = 1;
2431
2432 return 0;
2433 }
2434
2435 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2436 This function is called after we know the LWP has stopped; if the LWP
2437 stopped before the expected SIGINT was delivered, then it will never have
2438 arrived. Also, if the signal was delivered to a shared queue and consumed
2439 by a different thread, it will never be delivered to this LWP. */
2440
2441 static void
2442 maybe_clear_ignore_sigint (struct lwp_info *lp)
2443 {
2444 if (!lp->ignore_sigint)
2445 return;
2446
2447 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2448 {
2449 if (debug_linux_nat)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "MCIS: Clearing bogus flag for %s\n",
2452 target_pid_to_str (lp->ptid));
2453 lp->ignore_sigint = 0;
2454 }
2455 }
2456
2457 /* Fetch the possible triggered data watchpoint info and store it in
2458 LP.
2459
2460 On some archs, like x86, that use debug registers to set
2461 watchpoints, it's possible that the way to know which watched
2462 address trapped, is to check the register that is used to select
2463 which address to watch. Problem is, between setting the watchpoint
2464 and reading back which data address trapped, the user may change
2465 the set of watchpoints, and, as a consequence, GDB changes the
2466 debug registers in the inferior. To avoid reading back a stale
2467 stopped-data-address when that happens, we cache in LP the fact
2468 that a watchpoint trapped, and the corresponding data address, as
2469 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2470 registers meanwhile, we have the cached data we can rely on. */
2471
2472 static void
2473 save_sigtrap (struct lwp_info *lp)
2474 {
2475 struct cleanup *old_chain;
2476
2477 if (linux_ops->to_stopped_by_watchpoint == NULL)
2478 {
2479 lp->stopped_by_watchpoint = 0;
2480 return;
2481 }
2482
2483 old_chain = save_inferior_ptid ();
2484 inferior_ptid = lp->ptid;
2485
2486 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2487
2488 if (lp->stopped_by_watchpoint)
2489 {
2490 if (linux_ops->to_stopped_data_address != NULL)
2491 lp->stopped_data_address_p =
2492 linux_ops->to_stopped_data_address (&current_target,
2493 &lp->stopped_data_address);
2494 else
2495 lp->stopped_data_address_p = 0;
2496 }
2497
2498 do_cleanups (old_chain);
2499 }
2500
2501 /* See save_sigtrap. */
2502
2503 static int
2504 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2505 {
2506 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2507
2508 gdb_assert (lp != NULL);
2509
2510 return lp->stopped_by_watchpoint;
2511 }
2512
2513 static int
2514 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2515 {
2516 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2517
2518 gdb_assert (lp != NULL);
2519
2520 *addr_p = lp->stopped_data_address;
2521
2522 return lp->stopped_data_address_p;
2523 }
2524
2525 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2526
2527 static int
2528 sigtrap_is_event (int status)
2529 {
2530 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2531 }
2532
2533 /* SIGTRAP-like events recognizer. */
2534
2535 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2536
2537 /* Check for SIGTRAP-like events in LP. */
2538
2539 static int
2540 linux_nat_lp_status_is_event (struct lwp_info *lp)
2541 {
2542 /* We check for lp->waitstatus in addition to lp->status, because we can
2543 have pending process exits recorded in lp->status
2544 and W_EXITCODE(0,0) == 0. We should probably have an additional
2545 lp->status_p flag. */
2546
2547 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2548 && linux_nat_status_is_event (lp->status));
2549 }
2550
2551 /* Set alternative SIGTRAP-like events recognizer. If
2552 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2553 applied. */
2554
2555 void
2556 linux_nat_set_status_is_event (struct target_ops *t,
2557 int (*status_is_event) (int status))
2558 {
2559 linux_nat_status_is_event = status_is_event;
2560 }
2561
2562 /* Wait until LP is stopped. */
2563
2564 static int
2565 stop_wait_callback (struct lwp_info *lp, void *data)
2566 {
2567 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2568
2569 /* If this is a vfork parent, bail out, it is not going to report
2570 any SIGSTOP until the vfork is done with. */
2571 if (inf->vfork_child != NULL)
2572 return 0;
2573
2574 if (!lp->stopped)
2575 {
2576 int status;
2577
2578 status = wait_lwp (lp);
2579 if (status == 0)
2580 return 0;
2581
2582 if (lp->ignore_sigint && WIFSTOPPED (status)
2583 && WSTOPSIG (status) == SIGINT)
2584 {
2585 lp->ignore_sigint = 0;
2586
2587 errno = 0;
2588 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2589 if (debug_linux_nat)
2590 fprintf_unfiltered (gdb_stdlog,
2591 "PTRACE_CONT %s, 0, 0 (%s) "
2592 "(discarding SIGINT)\n",
2593 target_pid_to_str (lp->ptid),
2594 errno ? safe_strerror (errno) : "OK");
2595
2596 return stop_wait_callback (lp, NULL);
2597 }
2598
2599 maybe_clear_ignore_sigint (lp);
2600
2601 if (WSTOPSIG (status) != SIGSTOP)
2602 {
2603 /* The thread was stopped with a signal other than SIGSTOP. */
2604
2605 save_sigtrap (lp);
2606
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "SWC: Pending event %s in %s\n",
2610 status_to_str ((int) status),
2611 target_pid_to_str (lp->ptid));
2612
2613 /* Save the sigtrap event. */
2614 lp->status = status;
2615 gdb_assert (!lp->stopped);
2616 gdb_assert (lp->signalled);
2617 lp->stopped = 1;
2618 }
2619 else
2620 {
2621 /* We caught the SIGSTOP that we intended to catch, so
2622 there's no SIGSTOP pending. */
2623
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SWC: Delayed SIGSTOP caught for %s.\n",
2627 target_pid_to_str (lp->ptid));
2628
2629 lp->stopped = 1;
2630
2631 /* Reset SIGNALLED only after the stop_wait_callback call
2632 above as it does gdb_assert on SIGNALLED. */
2633 lp->signalled = 0;
2634 }
2635 }
2636
2637 return 0;
2638 }
2639
2640 /* Return non-zero if LP has a wait status pending. */
2641
2642 static int
2643 status_callback (struct lwp_info *lp, void *data)
2644 {
2645 /* Only report a pending wait status if we pretend that this has
2646 indeed been resumed. */
2647 if (!lp->resumed)
2648 return 0;
2649
2650 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2651 {
2652 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2653 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2654 0', so a clean process exit can not be stored pending in
2655 lp->status, it is indistinguishable from
2656 no-pending-status. */
2657 return 1;
2658 }
2659
2660 if (lp->status != 0)
2661 return 1;
2662
2663 return 0;
2664 }
2665
2666 /* Return non-zero if LP isn't stopped. */
2667
2668 static int
2669 running_callback (struct lwp_info *lp, void *data)
2670 {
2671 return (!lp->stopped
2672 || ((lp->status != 0
2673 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2674 && lp->resumed));
2675 }
2676
2677 /* Count the LWP's that have had events. */
2678
2679 static int
2680 count_events_callback (struct lwp_info *lp, void *data)
2681 {
2682 int *count = data;
2683
2684 gdb_assert (count != NULL);
2685
2686 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2687 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2688 (*count)++;
2689
2690 return 0;
2691 }
2692
2693 /* Select the LWP (if any) that is currently being single-stepped. */
2694
2695 static int
2696 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2697 {
2698 if (lp->last_resume_kind == resume_step
2699 && lp->status != 0)
2700 return 1;
2701 else
2702 return 0;
2703 }
2704
2705 /* Select the Nth LWP that has had a SIGTRAP event. */
2706
2707 static int
2708 select_event_lwp_callback (struct lwp_info *lp, void *data)
2709 {
2710 int *selector = data;
2711
2712 gdb_assert (selector != NULL);
2713
2714 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2715 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2716 if ((*selector)-- == 0)
2717 return 1;
2718
2719 return 0;
2720 }
2721
2722 static int
2723 cancel_breakpoint (struct lwp_info *lp)
2724 {
2725 /* Arrange for a breakpoint to be hit again later. We don't keep
2726 the SIGTRAP status and don't forward the SIGTRAP signal to the
2727 LWP. We will handle the current event, eventually we will resume
2728 this LWP, and this breakpoint will trap again.
2729
2730 If we do not do this, then we run the risk that the user will
2731 delete or disable the breakpoint, but the LWP will have already
2732 tripped on it. */
2733
2734 struct regcache *regcache = get_thread_regcache (lp->ptid);
2735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2736 CORE_ADDR pc;
2737
2738 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2739 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2740 {
2741 if (debug_linux_nat)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "CB: Push back breakpoint for %s\n",
2744 target_pid_to_str (lp->ptid));
2745
2746 /* Back up the PC if necessary. */
2747 if (target_decr_pc_after_break (gdbarch))
2748 regcache_write_pc (regcache, pc);
2749
2750 return 1;
2751 }
2752 return 0;
2753 }
2754
2755 static int
2756 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2757 {
2758 struct lwp_info *event_lp = data;
2759
2760 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2761 if (lp == event_lp)
2762 return 0;
2763
2764 /* If a LWP other than the LWP that we're reporting an event for has
2765 hit a GDB breakpoint (as opposed to some random trap signal),
2766 then just arrange for it to hit it again later. We don't keep
2767 the SIGTRAP status and don't forward the SIGTRAP signal to the
2768 LWP. We will handle the current event, eventually we will resume
2769 all LWPs, and this one will get its breakpoint trap again.
2770
2771 If we do not do this, then we run the risk that the user will
2772 delete or disable the breakpoint, but the LWP will have already
2773 tripped on it. */
2774
2775 if (linux_nat_lp_status_is_event (lp)
2776 && cancel_breakpoint (lp))
2777 /* Throw away the SIGTRAP. */
2778 lp->status = 0;
2779
2780 return 0;
2781 }
2782
2783 /* Select one LWP out of those that have events pending. */
2784
2785 static void
2786 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2787 {
2788 int num_events = 0;
2789 int random_selector;
2790 struct lwp_info *event_lp;
2791
2792 /* Record the wait status for the original LWP. */
2793 (*orig_lp)->status = *status;
2794
2795 /* Give preference to any LWP that is being single-stepped. */
2796 event_lp = iterate_over_lwps (filter,
2797 select_singlestep_lwp_callback, NULL);
2798 if (event_lp != NULL)
2799 {
2800 if (debug_linux_nat)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "SEL: Select single-step %s\n",
2803 target_pid_to_str (event_lp->ptid));
2804 }
2805 else
2806 {
2807 /* No single-stepping LWP. Select one at random, out of those
2808 which have had SIGTRAP events. */
2809
2810 /* First see how many SIGTRAP events we have. */
2811 iterate_over_lwps (filter, count_events_callback, &num_events);
2812
2813 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2814 random_selector = (int)
2815 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2816
2817 if (debug_linux_nat && num_events > 1)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2820 num_events, random_selector);
2821
2822 event_lp = iterate_over_lwps (filter,
2823 select_event_lwp_callback,
2824 &random_selector);
2825 }
2826
2827 if (event_lp != NULL)
2828 {
2829 /* Switch the event LWP. */
2830 *orig_lp = event_lp;
2831 *status = event_lp->status;
2832 }
2833
2834 /* Flush the wait status for the event LWP. */
2835 (*orig_lp)->status = 0;
2836 }
2837
2838 /* Return non-zero if LP has been resumed. */
2839
2840 static int
2841 resumed_callback (struct lwp_info *lp, void *data)
2842 {
2843 return lp->resumed;
2844 }
2845
2846 /* Stop an active thread, verify it still exists, then resume it. If
2847 the thread ends up with a pending status, then it is not resumed,
2848 and *DATA (really a pointer to int), is set. */
2849
2850 static int
2851 stop_and_resume_callback (struct lwp_info *lp, void *data)
2852 {
2853 int *new_pending_p = data;
2854
2855 if (!lp->stopped)
2856 {
2857 ptid_t ptid = lp->ptid;
2858
2859 stop_callback (lp, NULL);
2860 stop_wait_callback (lp, NULL);
2861
2862 /* Resume if the lwp still exists, and the core wanted it
2863 running. */
2864 lp = find_lwp_pid (ptid);
2865 if (lp != NULL)
2866 {
2867 if (lp->last_resume_kind == resume_stop
2868 && lp->status == 0)
2869 {
2870 /* The core wanted the LWP to stop. Even if it stopped
2871 cleanly (with SIGSTOP), leave the event pending. */
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SARC: core wanted LWP %ld stopped "
2875 "(leaving SIGSTOP pending)\n",
2876 ptid_get_lwp (lp->ptid));
2877 lp->status = W_STOPCODE (SIGSTOP);
2878 }
2879
2880 if (lp->status == 0)
2881 {
2882 if (debug_linux_nat)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "SARC: re-resuming LWP %ld\n",
2885 ptid_get_lwp (lp->ptid));
2886 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2887 }
2888 else
2889 {
2890 if (debug_linux_nat)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "SARC: not re-resuming LWP %ld "
2893 "(has pending)\n",
2894 ptid_get_lwp (lp->ptid));
2895 if (new_pending_p)
2896 *new_pending_p = 1;
2897 }
2898 }
2899 }
2900 return 0;
2901 }
2902
2903 /* Check if we should go on and pass this event to common code.
2904 Return the affected lwp if we are, or NULL otherwise. If we stop
2905 all lwps temporarily, we may end up with new pending events in some
2906 other lwp. In that case set *NEW_PENDING_P to true. */
2907
2908 static struct lwp_info *
2909 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2910 {
2911 struct lwp_info *lp;
2912
2913 *new_pending_p = 0;
2914
2915 lp = find_lwp_pid (pid_to_ptid (lwpid));
2916
2917 /* Check for stop events reported by a process we didn't already
2918 know about - anything not already in our LWP list.
2919
2920 If we're expecting to receive stopped processes after
2921 fork, vfork, and clone events, then we'll just add the
2922 new one to our list and go back to waiting for the event
2923 to be reported - the stopped process might be returned
2924 from waitpid before or after the event is.
2925
2926 But note the case of a non-leader thread exec'ing after the
2927 leader having exited, and gone from our lists. The non-leader
2928 thread changes its tid to the tgid. */
2929
2930 if (WIFSTOPPED (status) && lp == NULL
2931 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2932 {
2933 /* A multi-thread exec after we had seen the leader exiting. */
2934 if (debug_linux_nat)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "LLW: Re-adding thread group leader LWP %d.\n",
2937 lwpid);
2938
2939 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2940 lp->stopped = 1;
2941 lp->resumed = 1;
2942 add_thread (lp->ptid);
2943 }
2944
2945 if (WIFSTOPPED (status) && !lp)
2946 {
2947 add_to_pid_list (&stopped_pids, lwpid, status);
2948 return NULL;
2949 }
2950
2951 /* Make sure we don't report an event for the exit of an LWP not in
2952 our list, i.e. not part of the current process. This can happen
2953 if we detach from a program we originally forked and then it
2954 exits. */
2955 if (!WIFSTOPPED (status) && !lp)
2956 return NULL;
2957
2958 /* Handle GNU/Linux's syscall SIGTRAPs. */
2959 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2960 {
2961 /* No longer need the sysgood bit. The ptrace event ends up
2962 recorded in lp->waitstatus if we care for it. We can carry
2963 on handling the event like a regular SIGTRAP from here
2964 on. */
2965 status = W_STOPCODE (SIGTRAP);
2966 if (linux_handle_syscall_trap (lp, 0))
2967 return NULL;
2968 }
2969
2970 /* Handle GNU/Linux's extended waitstatus for trace events. */
2971 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2972 {
2973 if (debug_linux_nat)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "LLW: Handling extended status 0x%06x\n",
2976 status);
2977 if (linux_handle_extended_wait (lp, status, 0))
2978 return NULL;
2979 }
2980
2981 if (linux_nat_status_is_event (status))
2982 save_sigtrap (lp);
2983
2984 /* Check if the thread has exited. */
2985 if ((WIFEXITED (status) || WIFSIGNALED (status))
2986 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2987 {
2988 /* If this is the main thread, we must stop all threads and verify
2989 if they are still alive. This is because in the nptl thread model
2990 on Linux 2.4, there is no signal issued for exiting LWPs
2991 other than the main thread. We only get the main thread exit
2992 signal once all child threads have already exited. If we
2993 stop all the threads and use the stop_wait_callback to check
2994 if they have exited we can determine whether this signal
2995 should be ignored or whether it means the end of the debugged
2996 application, regardless of which threading model is being
2997 used. */
2998 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2999 {
3000 lp->stopped = 1;
3001 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3002 stop_and_resume_callback, new_pending_p);
3003 }
3004
3005 if (debug_linux_nat)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "LLW: %s exited.\n",
3008 target_pid_to_str (lp->ptid));
3009
3010 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3011 {
3012 /* If there is at least one more LWP, then the exit signal
3013 was not the end of the debugged application and should be
3014 ignored. */
3015 exit_lwp (lp);
3016 return NULL;
3017 }
3018 }
3019
3020 /* Check if the current LWP has previously exited. In the nptl
3021 thread model, LWPs other than the main thread do not issue
3022 signals when they exit so we must check whenever the thread has
3023 stopped. A similar check is made in stop_wait_callback(). */
3024 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3025 {
3026 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3027
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLW: %s exited.\n",
3031 target_pid_to_str (lp->ptid));
3032
3033 exit_lwp (lp);
3034
3035 /* Make sure there is at least one thread running. */
3036 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3037
3038 /* Discard the event. */
3039 return NULL;
3040 }
3041
3042 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3043 an attempt to stop an LWP. */
3044 if (lp->signalled
3045 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3046 {
3047 if (debug_linux_nat)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "LLW: Delayed SIGSTOP caught for %s.\n",
3050 target_pid_to_str (lp->ptid));
3051
3052 lp->signalled = 0;
3053
3054 if (lp->last_resume_kind != resume_stop)
3055 {
3056 /* This is a delayed SIGSTOP. */
3057
3058 registers_changed ();
3059
3060 if (linux_nat_prepare_to_resume != NULL)
3061 linux_nat_prepare_to_resume (lp);
3062 linux_ops->to_resume (linux_ops,
3063 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3064 lp->step, GDB_SIGNAL_0);
3065 if (debug_linux_nat)
3066 fprintf_unfiltered (gdb_stdlog,
3067 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3068 lp->step ?
3069 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3070 target_pid_to_str (lp->ptid));
3071
3072 lp->stopped = 0;
3073 gdb_assert (lp->resumed);
3074
3075 /* Discard the event. */
3076 return NULL;
3077 }
3078 }
3079
3080 /* Make sure we don't report a SIGINT that we have already displayed
3081 for another thread. */
3082 if (lp->ignore_sigint
3083 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3084 {
3085 if (debug_linux_nat)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "LLW: Delayed SIGINT caught for %s.\n",
3088 target_pid_to_str (lp->ptid));
3089
3090 /* This is a delayed SIGINT. */
3091 lp->ignore_sigint = 0;
3092
3093 registers_changed ();
3094 if (linux_nat_prepare_to_resume != NULL)
3095 linux_nat_prepare_to_resume (lp);
3096 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3097 lp->step, GDB_SIGNAL_0);
3098 if (debug_linux_nat)
3099 fprintf_unfiltered (gdb_stdlog,
3100 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3101 lp->step ?
3102 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3103 target_pid_to_str (lp->ptid));
3104
3105 lp->stopped = 0;
3106 gdb_assert (lp->resumed);
3107
3108 /* Discard the event. */
3109 return NULL;
3110 }
3111
3112 /* An interesting event. */
3113 gdb_assert (lp);
3114 lp->status = status;
3115 return lp;
3116 }
3117
3118 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3119 their exits until all other threads in the group have exited. */
3120
3121 static void
3122 check_zombie_leaders (void)
3123 {
3124 struct inferior *inf;
3125
3126 ALL_INFERIORS (inf)
3127 {
3128 struct lwp_info *leader_lp;
3129
3130 if (inf->pid == 0)
3131 continue;
3132
3133 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3134 if (leader_lp != NULL
3135 /* Check if there are other threads in the group, as we may
3136 have raced with the inferior simply exiting. */
3137 && num_lwps (inf->pid) > 1
3138 && linux_proc_pid_is_zombie (inf->pid))
3139 {
3140 if (debug_linux_nat)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "CZL: Thread group leader %d zombie "
3143 "(it exited, or another thread execd).\n",
3144 inf->pid);
3145
3146 /* A leader zombie can mean one of two things:
3147
3148 - It exited, and there's an exit status pending
3149 available, or only the leader exited (not the whole
3150 program). In the latter case, we can't waitpid the
3151 leader's exit status until all other threads are gone.
3152
3153 - There are 3 or more threads in the group, and a thread
3154 other than the leader exec'd. On an exec, the Linux
3155 kernel destroys all other threads (except the execing
3156 one) in the thread group, and resets the execing thread's
3157 tid to the tgid. No exit notification is sent for the
3158 execing thread -- from the ptracer's perspective, it
3159 appears as though the execing thread just vanishes.
3160 Until we reap all other threads except the leader and the
3161 execing thread, the leader will be zombie, and the
3162 execing thread will be in `D (disc sleep)'. As soon as
3163 all other threads are reaped, the execing thread changes
3164 it's tid to the tgid, and the previous (zombie) leader
3165 vanishes, giving place to the "new" leader. We could try
3166 distinguishing the exit and exec cases, by waiting once
3167 more, and seeing if something comes out, but it doesn't
3168 sound useful. The previous leader _does_ go away, and
3169 we'll re-add the new one once we see the exec event
3170 (which is just the same as what would happen if the
3171 previous leader did exit voluntarily before some other
3172 thread execs). */
3173
3174 if (debug_linux_nat)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "CZL: Thread group leader %d vanished.\n",
3177 inf->pid);
3178 exit_lwp (leader_lp);
3179 }
3180 }
3181 }
3182
3183 static ptid_t
3184 linux_nat_wait_1 (struct target_ops *ops,
3185 ptid_t ptid, struct target_waitstatus *ourstatus,
3186 int target_options)
3187 {
3188 static sigset_t prev_mask;
3189 enum resume_kind last_resume_kind;
3190 struct lwp_info *lp;
3191 int status;
3192
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3195
3196 /* The first time we get here after starting a new inferior, we may
3197 not have added it to the LWP list yet - this is the earliest
3198 moment at which we know its PID. */
3199 if (ptid_is_pid (inferior_ptid))
3200 {
3201 /* Upgrade the main thread's ptid. */
3202 thread_change_ptid (inferior_ptid,
3203 ptid_build (ptid_get_pid (inferior_ptid),
3204 ptid_get_pid (inferior_ptid), 0));
3205
3206 lp = add_initial_lwp (inferior_ptid);
3207 lp->resumed = 1;
3208 }
3209
3210 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3211 block_child_signals (&prev_mask);
3212
3213 retry:
3214 lp = NULL;
3215 status = 0;
3216
3217 /* First check if there is a LWP with a wait status pending. */
3218 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3219 {
3220 /* Any LWP in the PTID group that's been resumed will do. */
3221 lp = iterate_over_lwps (ptid, status_callback, NULL);
3222 if (lp)
3223 {
3224 if (debug_linux_nat && lp->status)
3225 fprintf_unfiltered (gdb_stdlog,
3226 "LLW: Using pending wait status %s for %s.\n",
3227 status_to_str (lp->status),
3228 target_pid_to_str (lp->ptid));
3229 }
3230 }
3231 else if (ptid_lwp_p (ptid))
3232 {
3233 if (debug_linux_nat)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "LLW: Waiting for specific LWP %s.\n",
3236 target_pid_to_str (ptid));
3237
3238 /* We have a specific LWP to check. */
3239 lp = find_lwp_pid (ptid);
3240 gdb_assert (lp);
3241
3242 if (debug_linux_nat && lp->status)
3243 fprintf_unfiltered (gdb_stdlog,
3244 "LLW: Using pending wait status %s for %s.\n",
3245 status_to_str (lp->status),
3246 target_pid_to_str (lp->ptid));
3247
3248 /* We check for lp->waitstatus in addition to lp->status,
3249 because we can have pending process exits recorded in
3250 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3251 an additional lp->status_p flag. */
3252 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3253 lp = NULL;
3254 }
3255
3256 if (!target_can_async_p ())
3257 {
3258 /* Causes SIGINT to be passed on to the attached process. */
3259 set_sigint_trap ();
3260 }
3261
3262 /* But if we don't find a pending event, we'll have to wait. */
3263
3264 while (lp == NULL)
3265 {
3266 pid_t lwpid;
3267
3268 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3269 quirks:
3270
3271 - If the thread group leader exits while other threads in the
3272 thread group still exist, waitpid(TGID, ...) hangs. That
3273 waitpid won't return an exit status until the other threads
3274 in the group are reapped.
3275
3276 - When a non-leader thread execs, that thread just vanishes
3277 without reporting an exit (so we'd hang if we waited for it
3278 explicitly in that case). The exec event is reported to
3279 the TGID pid. */
3280
3281 errno = 0;
3282 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3283 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3284 lwpid = my_waitpid (-1, &status, WNOHANG);
3285
3286 if (debug_linux_nat)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "LNW: waitpid(-1, ...) returned %d, %s\n",
3289 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3290
3291 if (lwpid > 0)
3292 {
3293 /* If this is true, then we paused LWPs momentarily, and may
3294 now have pending events to handle. */
3295 int new_pending;
3296
3297 if (debug_linux_nat)
3298 {
3299 fprintf_unfiltered (gdb_stdlog,
3300 "LLW: waitpid %ld received %s\n",
3301 (long) lwpid, status_to_str (status));
3302 }
3303
3304 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3305
3306 /* STATUS is now no longer valid, use LP->STATUS instead. */
3307 status = 0;
3308
3309 if (lp && !ptid_match (lp->ptid, ptid))
3310 {
3311 gdb_assert (lp->resumed);
3312
3313 if (debug_linux_nat)
3314 fprintf (stderr,
3315 "LWP %ld got an event %06x, leaving pending.\n",
3316 ptid_get_lwp (lp->ptid), lp->status);
3317
3318 if (WIFSTOPPED (lp->status))
3319 {
3320 if (WSTOPSIG (lp->status) != SIGSTOP)
3321 {
3322 /* Cancel breakpoint hits. The breakpoint may
3323 be removed before we fetch events from this
3324 process to report to the core. It is best
3325 not to assume the moribund breakpoints
3326 heuristic always handles these cases --- it
3327 could be too many events go through to the
3328 core before this one is handled. All-stop
3329 always cancels breakpoint hits in all
3330 threads. */
3331 if (non_stop
3332 && linux_nat_lp_status_is_event (lp)
3333 && cancel_breakpoint (lp))
3334 {
3335 /* Throw away the SIGTRAP. */
3336 lp->status = 0;
3337
3338 if (debug_linux_nat)
3339 fprintf (stderr,
3340 "LLW: LWP %ld hit a breakpoint while"
3341 " waiting for another process;"
3342 " cancelled it\n",
3343 ptid_get_lwp (lp->ptid));
3344 }
3345 lp->stopped = 1;
3346 }
3347 else
3348 {
3349 lp->stopped = 1;
3350 lp->signalled = 0;
3351 }
3352 }
3353 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3354 {
3355 if (debug_linux_nat)
3356 fprintf (stderr,
3357 "Process %ld exited while stopping LWPs\n",
3358 ptid_get_lwp (lp->ptid));
3359
3360 /* This was the last lwp in the process. Since
3361 events are serialized to GDB core, and we can't
3362 report this one right now, but GDB core and the
3363 other target layers will want to be notified
3364 about the exit code/signal, leave the status
3365 pending for the next time we're able to report
3366 it. */
3367
3368 /* Prevent trying to stop this thread again. We'll
3369 never try to resume it because it has a pending
3370 status. */
3371 lp->stopped = 1;
3372
3373 /* Dead LWP's aren't expected to reported a pending
3374 sigstop. */
3375 lp->signalled = 0;
3376
3377 /* Store the pending event in the waitstatus as
3378 well, because W_EXITCODE(0,0) == 0. */
3379 store_waitstatus (&lp->waitstatus, lp->status);
3380 }
3381
3382 /* Keep looking. */
3383 lp = NULL;
3384 }
3385
3386 if (new_pending)
3387 {
3388 /* Some LWP now has a pending event. Go all the way
3389 back to check it. */
3390 goto retry;
3391 }
3392
3393 if (lp)
3394 {
3395 /* We got an event to report to the core. */
3396 break;
3397 }
3398
3399 /* Retry until nothing comes out of waitpid. A single
3400 SIGCHLD can indicate more than one child stopped. */
3401 continue;
3402 }
3403
3404 /* Check for zombie thread group leaders. Those can't be reaped
3405 until all other threads in the thread group are. */
3406 check_zombie_leaders ();
3407
3408 /* If there are no resumed children left, bail. We'd be stuck
3409 forever in the sigsuspend call below otherwise. */
3410 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3411 {
3412 if (debug_linux_nat)
3413 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3414
3415 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3416
3417 if (!target_can_async_p ())
3418 clear_sigint_trap ();
3419
3420 restore_child_signals_mask (&prev_mask);
3421 return minus_one_ptid;
3422 }
3423
3424 /* No interesting event to report to the core. */
3425
3426 if (target_options & TARGET_WNOHANG)
3427 {
3428 if (debug_linux_nat)
3429 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3430
3431 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3432 restore_child_signals_mask (&prev_mask);
3433 return minus_one_ptid;
3434 }
3435
3436 /* We shouldn't end up here unless we want to try again. */
3437 gdb_assert (lp == NULL);
3438
3439 /* Block until we get an event reported with SIGCHLD. */
3440 sigsuspend (&suspend_mask);
3441 }
3442
3443 if (!target_can_async_p ())
3444 clear_sigint_trap ();
3445
3446 gdb_assert (lp);
3447
3448 status = lp->status;
3449 lp->status = 0;
3450
3451 /* Don't report signals that GDB isn't interested in, such as
3452 signals that are neither printed nor stopped upon. Stopping all
3453 threads can be a bit time-consuming so if we want decent
3454 performance with heavily multi-threaded programs, especially when
3455 they're using a high frequency timer, we'd better avoid it if we
3456 can. */
3457
3458 if (WIFSTOPPED (status))
3459 {
3460 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3461
3462 /* When using hardware single-step, we need to report every signal.
3463 Otherwise, signals in pass_mask may be short-circuited. */
3464 if (!lp->step
3465 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3466 {
3467 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3468 here? It is not clear we should. GDB may not expect
3469 other threads to run. On the other hand, not resuming
3470 newly attached threads may cause an unwanted delay in
3471 getting them running. */
3472 registers_changed ();
3473 if (linux_nat_prepare_to_resume != NULL)
3474 linux_nat_prepare_to_resume (lp);
3475 linux_ops->to_resume (linux_ops,
3476 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3477 lp->step, signo);
3478 if (debug_linux_nat)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "LLW: %s %s, %s (preempt 'handle')\n",
3481 lp->step ?
3482 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3483 target_pid_to_str (lp->ptid),
3484 (signo != GDB_SIGNAL_0
3485 ? strsignal (gdb_signal_to_host (signo))
3486 : "0"));
3487 lp->stopped = 0;
3488 goto retry;
3489 }
3490
3491 if (!non_stop)
3492 {
3493 /* Only do the below in all-stop, as we currently use SIGINT
3494 to implement target_stop (see linux_nat_stop) in
3495 non-stop. */
3496 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3497 {
3498 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3499 forwarded to the entire process group, that is, all LWPs
3500 will receive it - unless they're using CLONE_THREAD to
3501 share signals. Since we only want to report it once, we
3502 mark it as ignored for all LWPs except this one. */
3503 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3504 set_ignore_sigint, NULL);
3505 lp->ignore_sigint = 0;
3506 }
3507 else
3508 maybe_clear_ignore_sigint (lp);
3509 }
3510 }
3511
3512 /* This LWP is stopped now. */
3513 lp->stopped = 1;
3514
3515 if (debug_linux_nat)
3516 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3517 status_to_str (status), target_pid_to_str (lp->ptid));
3518
3519 if (!non_stop)
3520 {
3521 /* Now stop all other LWP's ... */
3522 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3523
3524 /* ... and wait until all of them have reported back that
3525 they're no longer running. */
3526 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3527
3528 /* If we're not waiting for a specific LWP, choose an event LWP
3529 from among those that have had events. Giving equal priority
3530 to all LWPs that have had events helps prevent
3531 starvation. */
3532 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3533 select_event_lwp (ptid, &lp, &status);
3534
3535 /* Now that we've selected our final event LWP, cancel any
3536 breakpoints in other LWPs that have hit a GDB breakpoint.
3537 See the comment in cancel_breakpoints_callback to find out
3538 why. */
3539 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3540
3541 /* We'll need this to determine whether to report a SIGSTOP as
3542 TARGET_WAITKIND_0. Need to take a copy because
3543 resume_clear_callback clears it. */
3544 last_resume_kind = lp->last_resume_kind;
3545
3546 /* In all-stop, from the core's perspective, all LWPs are now
3547 stopped until a new resume action is sent over. */
3548 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3549 }
3550 else
3551 {
3552 /* See above. */
3553 last_resume_kind = lp->last_resume_kind;
3554 resume_clear_callback (lp, NULL);
3555 }
3556
3557 if (linux_nat_status_is_event (status))
3558 {
3559 if (debug_linux_nat)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "LLW: trap ptid is %s.\n",
3562 target_pid_to_str (lp->ptid));
3563 }
3564
3565 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3566 {
3567 *ourstatus = lp->waitstatus;
3568 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3569 }
3570 else
3571 store_waitstatus (ourstatus, status);
3572
3573 if (debug_linux_nat)
3574 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3575
3576 restore_child_signals_mask (&prev_mask);
3577
3578 if (last_resume_kind == resume_stop
3579 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3580 && WSTOPSIG (status) == SIGSTOP)
3581 {
3582 /* A thread that has been requested to stop by GDB with
3583 target_stop, and it stopped cleanly, so report as SIG0. The
3584 use of SIGSTOP is an implementation detail. */
3585 ourstatus->value.sig = GDB_SIGNAL_0;
3586 }
3587
3588 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3589 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3590 lp->core = -1;
3591 else
3592 lp->core = linux_common_core_of_thread (lp->ptid);
3593
3594 return lp->ptid;
3595 }
3596
3597 /* Resume LWPs that are currently stopped without any pending status
3598 to report, but are resumed from the core's perspective. */
3599
3600 static int
3601 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3602 {
3603 ptid_t *wait_ptid_p = data;
3604
3605 if (lp->stopped
3606 && lp->resumed
3607 && lp->status == 0
3608 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3609 {
3610 struct regcache *regcache = get_thread_regcache (lp->ptid);
3611 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3612 CORE_ADDR pc = regcache_read_pc (regcache);
3613
3614 gdb_assert (is_executing (lp->ptid));
3615
3616 /* Don't bother if there's a breakpoint at PC that we'd hit
3617 immediately, and we're not waiting for this LWP. */
3618 if (!ptid_match (lp->ptid, *wait_ptid_p))
3619 {
3620 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3621 return 0;
3622 }
3623
3624 if (debug_linux_nat)
3625 fprintf_unfiltered (gdb_stdlog,
3626 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3627 target_pid_to_str (lp->ptid),
3628 paddress (gdbarch, pc),
3629 lp->step);
3630
3631 registers_changed ();
3632 if (linux_nat_prepare_to_resume != NULL)
3633 linux_nat_prepare_to_resume (lp);
3634 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3635 lp->step, GDB_SIGNAL_0);
3636 lp->stopped = 0;
3637 lp->stopped_by_watchpoint = 0;
3638 }
3639
3640 return 0;
3641 }
3642
3643 static ptid_t
3644 linux_nat_wait (struct target_ops *ops,
3645 ptid_t ptid, struct target_waitstatus *ourstatus,
3646 int target_options)
3647 {
3648 ptid_t event_ptid;
3649
3650 if (debug_linux_nat)
3651 {
3652 char *options_string;
3653
3654 options_string = target_options_to_string (target_options);
3655 fprintf_unfiltered (gdb_stdlog,
3656 "linux_nat_wait: [%s], [%s]\n",
3657 target_pid_to_str (ptid),
3658 options_string);
3659 xfree (options_string);
3660 }
3661
3662 /* Flush the async file first. */
3663 if (target_can_async_p ())
3664 async_file_flush ();
3665
3666 /* Resume LWPs that are currently stopped without any pending status
3667 to report, but are resumed from the core's perspective. LWPs get
3668 in this state if we find them stopping at a time we're not
3669 interested in reporting the event (target_wait on a
3670 specific_process, for example, see linux_nat_wait_1), and
3671 meanwhile the event became uninteresting. Don't bother resuming
3672 LWPs we're not going to wait for if they'd stop immediately. */
3673 if (non_stop)
3674 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3675
3676 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3677
3678 /* If we requested any event, and something came out, assume there
3679 may be more. If we requested a specific lwp or process, also
3680 assume there may be more. */
3681 if (target_can_async_p ()
3682 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3683 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3684 || !ptid_equal (ptid, minus_one_ptid)))
3685 async_file_mark ();
3686
3687 /* Get ready for the next event. */
3688 if (target_can_async_p ())
3689 target_async (inferior_event_handler, 0);
3690
3691 return event_ptid;
3692 }
3693
3694 static int
3695 kill_callback (struct lwp_info *lp, void *data)
3696 {
3697 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3698
3699 errno = 0;
3700 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3701 if (debug_linux_nat)
3702 fprintf_unfiltered (gdb_stdlog,
3703 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3704 target_pid_to_str (lp->ptid),
3705 errno ? safe_strerror (errno) : "OK");
3706
3707 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3708
3709 errno = 0;
3710 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3711 if (debug_linux_nat)
3712 fprintf_unfiltered (gdb_stdlog,
3713 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3714 target_pid_to_str (lp->ptid),
3715 errno ? safe_strerror (errno) : "OK");
3716
3717 return 0;
3718 }
3719
3720 static int
3721 kill_wait_callback (struct lwp_info *lp, void *data)
3722 {
3723 pid_t pid;
3724
3725 /* We must make sure that there are no pending events (delayed
3726 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3727 program doesn't interfere with any following debugging session. */
3728
3729 /* For cloned processes we must check both with __WCLONE and
3730 without, since the exit status of a cloned process isn't reported
3731 with __WCLONE. */
3732 if (lp->cloned)
3733 {
3734 do
3735 {
3736 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3737 if (pid != (pid_t) -1)
3738 {
3739 if (debug_linux_nat)
3740 fprintf_unfiltered (gdb_stdlog,
3741 "KWC: wait %s received unknown.\n",
3742 target_pid_to_str (lp->ptid));
3743 /* The Linux kernel sometimes fails to kill a thread
3744 completely after PTRACE_KILL; that goes from the stop
3745 point in do_fork out to the one in
3746 get_signal_to_deliever and waits again. So kill it
3747 again. */
3748 kill_callback (lp, NULL);
3749 }
3750 }
3751 while (pid == ptid_get_lwp (lp->ptid));
3752
3753 gdb_assert (pid == -1 && errno == ECHILD);
3754 }
3755
3756 do
3757 {
3758 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3759 if (pid != (pid_t) -1)
3760 {
3761 if (debug_linux_nat)
3762 fprintf_unfiltered (gdb_stdlog,
3763 "KWC: wait %s received unk.\n",
3764 target_pid_to_str (lp->ptid));
3765 /* See the call to kill_callback above. */
3766 kill_callback (lp, NULL);
3767 }
3768 }
3769 while (pid == ptid_get_lwp (lp->ptid));
3770
3771 gdb_assert (pid == -1 && errno == ECHILD);
3772 return 0;
3773 }
3774
3775 static void
3776 linux_nat_kill (struct target_ops *ops)
3777 {
3778 struct target_waitstatus last;
3779 ptid_t last_ptid;
3780 int status;
3781
3782 /* If we're stopped while forking and we haven't followed yet,
3783 kill the other task. We need to do this first because the
3784 parent will be sleeping if this is a vfork. */
3785
3786 get_last_target_status (&last_ptid, &last);
3787
3788 if (last.kind == TARGET_WAITKIND_FORKED
3789 || last.kind == TARGET_WAITKIND_VFORKED)
3790 {
3791 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3792 wait (&status);
3793
3794 /* Let the arch-specific native code know this process is
3795 gone. */
3796 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3797 }
3798
3799 if (forks_exist_p ())
3800 linux_fork_killall ();
3801 else
3802 {
3803 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3804
3805 /* Stop all threads before killing them, since ptrace requires
3806 that the thread is stopped to sucessfully PTRACE_KILL. */
3807 iterate_over_lwps (ptid, stop_callback, NULL);
3808 /* ... and wait until all of them have reported back that
3809 they're no longer running. */
3810 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3811
3812 /* Kill all LWP's ... */
3813 iterate_over_lwps (ptid, kill_callback, NULL);
3814
3815 /* ... and wait until we've flushed all events. */
3816 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3817 }
3818
3819 target_mourn_inferior ();
3820 }
3821
3822 static void
3823 linux_nat_mourn_inferior (struct target_ops *ops)
3824 {
3825 int pid = ptid_get_pid (inferior_ptid);
3826
3827 purge_lwp_list (pid);
3828
3829 if (! forks_exist_p ())
3830 /* Normal case, no other forks available. */
3831 linux_ops->to_mourn_inferior (ops);
3832 else
3833 /* Multi-fork case. The current inferior_ptid has exited, but
3834 there are other viable forks to debug. Delete the exiting
3835 one and context-switch to the first available. */
3836 linux_fork_mourn_inferior ();
3837
3838 /* Let the arch-specific native code know this process is gone. */
3839 linux_nat_forget_process (pid);
3840 }
3841
3842 /* Convert a native/host siginfo object, into/from the siginfo in the
3843 layout of the inferiors' architecture. */
3844
3845 static void
3846 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3847 {
3848 int done = 0;
3849
3850 if (linux_nat_siginfo_fixup != NULL)
3851 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3852
3853 /* If there was no callback, or the callback didn't do anything,
3854 then just do a straight memcpy. */
3855 if (!done)
3856 {
3857 if (direction == 1)
3858 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3859 else
3860 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3861 }
3862 }
3863
3864 static enum target_xfer_status
3865 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3866 const char *annex, gdb_byte *readbuf,
3867 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3868 ULONGEST *xfered_len)
3869 {
3870 int pid;
3871 siginfo_t siginfo;
3872 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3873
3874 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3875 gdb_assert (readbuf || writebuf);
3876
3877 pid = ptid_get_lwp (inferior_ptid);
3878 if (pid == 0)
3879 pid = ptid_get_pid (inferior_ptid);
3880
3881 if (offset > sizeof (siginfo))
3882 return TARGET_XFER_E_IO;
3883
3884 errno = 0;
3885 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3886 if (errno != 0)
3887 return TARGET_XFER_E_IO;
3888
3889 /* When GDB is built as a 64-bit application, ptrace writes into
3890 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3891 inferior with a 64-bit GDB should look the same as debugging it
3892 with a 32-bit GDB, we need to convert it. GDB core always sees
3893 the converted layout, so any read/write will have to be done
3894 post-conversion. */
3895 siginfo_fixup (&siginfo, inf_siginfo, 0);
3896
3897 if (offset + len > sizeof (siginfo))
3898 len = sizeof (siginfo) - offset;
3899
3900 if (readbuf != NULL)
3901 memcpy (readbuf, inf_siginfo + offset, len);
3902 else
3903 {
3904 memcpy (inf_siginfo + offset, writebuf, len);
3905
3906 /* Convert back to ptrace layout before flushing it out. */
3907 siginfo_fixup (&siginfo, inf_siginfo, 1);
3908
3909 errno = 0;
3910 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3911 if (errno != 0)
3912 return TARGET_XFER_E_IO;
3913 }
3914
3915 *xfered_len = len;
3916 return TARGET_XFER_OK;
3917 }
3918
3919 static enum target_xfer_status
3920 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3921 const char *annex, gdb_byte *readbuf,
3922 const gdb_byte *writebuf,
3923 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3924 {
3925 struct cleanup *old_chain;
3926 enum target_xfer_status xfer;
3927
3928 if (object == TARGET_OBJECT_SIGNAL_INFO)
3929 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3930 offset, len, xfered_len);
3931
3932 /* The target is connected but no live inferior is selected. Pass
3933 this request down to a lower stratum (e.g., the executable
3934 file). */
3935 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3936 return TARGET_XFER_EOF;
3937
3938 old_chain = save_inferior_ptid ();
3939
3940 if (ptid_lwp_p (inferior_ptid))
3941 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3942
3943 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3944 offset, len, xfered_len);
3945
3946 do_cleanups (old_chain);
3947 return xfer;
3948 }
3949
3950 static int
3951 linux_thread_alive (ptid_t ptid)
3952 {
3953 int err, tmp_errno;
3954
3955 gdb_assert (ptid_lwp_p (ptid));
3956
3957 /* Send signal 0 instead of anything ptrace, because ptracing a
3958 running thread errors out claiming that the thread doesn't
3959 exist. */
3960 err = kill_lwp (ptid_get_lwp (ptid), 0);
3961 tmp_errno = errno;
3962 if (debug_linux_nat)
3963 fprintf_unfiltered (gdb_stdlog,
3964 "LLTA: KILL(SIG0) %s (%s)\n",
3965 target_pid_to_str (ptid),
3966 err ? safe_strerror (tmp_errno) : "OK");
3967
3968 if (err != 0)
3969 return 0;
3970
3971 return 1;
3972 }
3973
3974 static int
3975 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3976 {
3977 return linux_thread_alive (ptid);
3978 }
3979
3980 static char *
3981 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3982 {
3983 static char buf[64];
3984
3985 if (ptid_lwp_p (ptid)
3986 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3987 || num_lwps (ptid_get_pid (ptid)) > 1))
3988 {
3989 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3990 return buf;
3991 }
3992
3993 return normal_pid_to_str (ptid);
3994 }
3995
3996 static char *
3997 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3998 {
3999 int pid = ptid_get_pid (thr->ptid);
4000 long lwp = ptid_get_lwp (thr->ptid);
4001 #define FORMAT "/proc/%d/task/%ld/comm"
4002 char buf[sizeof (FORMAT) + 30];
4003 FILE *comm_file;
4004 char *result = NULL;
4005
4006 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4007 comm_file = gdb_fopen_cloexec (buf, "r");
4008 if (comm_file)
4009 {
4010 /* Not exported by the kernel, so we define it here. */
4011 #define COMM_LEN 16
4012 static char line[COMM_LEN + 1];
4013
4014 if (fgets (line, sizeof (line), comm_file))
4015 {
4016 char *nl = strchr (line, '\n');
4017
4018 if (nl)
4019 *nl = '\0';
4020 if (*line != '\0')
4021 result = line;
4022 }
4023
4024 fclose (comm_file);
4025 }
4026
4027 #undef COMM_LEN
4028 #undef FORMAT
4029
4030 return result;
4031 }
4032
4033 /* Accepts an integer PID; Returns a string representing a file that
4034 can be opened to get the symbols for the child process. */
4035
4036 static char *
4037 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4038 {
4039 char *name1, *name2;
4040
4041 name1 = xmalloc (PATH_MAX);
4042 name2 = xmalloc (PATH_MAX);
4043 make_cleanup (xfree, name1);
4044 make_cleanup (xfree, name2);
4045 memset (name2, 0, PATH_MAX);
4046
4047 xsnprintf (name1, PATH_MAX, "/proc/%d/exe", pid);
4048 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4049 return name2;
4050 else
4051 return name1;
4052 }
4053
4054 /* Records the thread's register state for the corefile note
4055 section. */
4056
4057 static char *
4058 linux_nat_collect_thread_registers (const struct regcache *regcache,
4059 ptid_t ptid, bfd *obfd,
4060 char *note_data, int *note_size,
4061 enum gdb_signal stop_signal)
4062 {
4063 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4064 const struct regset *regset;
4065 int core_regset_p;
4066 gdb_gregset_t gregs;
4067 gdb_fpregset_t fpregs;
4068
4069 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4070
4071 if (core_regset_p
4072 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4073 sizeof (gregs)))
4074 != NULL && regset->collect_regset != NULL)
4075 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4076 else
4077 fill_gregset (regcache, &gregs, -1);
4078
4079 note_data = (char *) elfcore_write_prstatus
4080 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4081 gdb_signal_to_host (stop_signal), &gregs);
4082
4083 if (core_regset_p
4084 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4085 sizeof (fpregs)))
4086 != NULL && regset->collect_regset != NULL)
4087 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4088 else
4089 fill_fpregset (regcache, &fpregs, -1);
4090
4091 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4092 &fpregs, sizeof (fpregs));
4093
4094 return note_data;
4095 }
4096
4097 /* Fills the "to_make_corefile_note" target vector. Builds the note
4098 section for a corefile, and returns it in a malloc buffer. */
4099
4100 static char *
4101 linux_nat_make_corefile_notes (struct target_ops *self,
4102 bfd *obfd, int *note_size)
4103 {
4104 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4105 converted to gdbarch_core_regset_sections, this function can go away. */
4106 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4107 linux_nat_collect_thread_registers);
4108 }
4109
4110 /* Implement the to_xfer_partial interface for memory reads using the /proc
4111 filesystem. Because we can use a single read() call for /proc, this
4112 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4113 but it doesn't support writes. */
4114
4115 static enum target_xfer_status
4116 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4117 const char *annex, gdb_byte *readbuf,
4118 const gdb_byte *writebuf,
4119 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4120 {
4121 LONGEST ret;
4122 int fd;
4123 char filename[64];
4124
4125 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4126 return 0;
4127
4128 /* Don't bother for one word. */
4129 if (len < 3 * sizeof (long))
4130 return TARGET_XFER_EOF;
4131
4132 /* We could keep this file open and cache it - possibly one per
4133 thread. That requires some juggling, but is even faster. */
4134 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4135 ptid_get_pid (inferior_ptid));
4136 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4137 if (fd == -1)
4138 return TARGET_XFER_EOF;
4139
4140 /* If pread64 is available, use it. It's faster if the kernel
4141 supports it (only one syscall), and it's 64-bit safe even on
4142 32-bit platforms (for instance, SPARC debugging a SPARC64
4143 application). */
4144 #ifdef HAVE_PREAD64
4145 if (pread64 (fd, readbuf, len, offset) != len)
4146 #else
4147 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4148 #endif
4149 ret = 0;
4150 else
4151 ret = len;
4152
4153 close (fd);
4154
4155 if (ret == 0)
4156 return TARGET_XFER_EOF;
4157 else
4158 {
4159 *xfered_len = ret;
4160 return TARGET_XFER_OK;
4161 }
4162 }
4163
4164
4165 /* Enumerate spufs IDs for process PID. */
4166 static LONGEST
4167 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4168 {
4169 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4170 LONGEST pos = 0;
4171 LONGEST written = 0;
4172 char path[128];
4173 DIR *dir;
4174 struct dirent *entry;
4175
4176 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4177 dir = opendir (path);
4178 if (!dir)
4179 return -1;
4180
4181 rewinddir (dir);
4182 while ((entry = readdir (dir)) != NULL)
4183 {
4184 struct stat st;
4185 struct statfs stfs;
4186 int fd;
4187
4188 fd = atoi (entry->d_name);
4189 if (!fd)
4190 continue;
4191
4192 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4193 if (stat (path, &st) != 0)
4194 continue;
4195 if (!S_ISDIR (st.st_mode))
4196 continue;
4197
4198 if (statfs (path, &stfs) != 0)
4199 continue;
4200 if (stfs.f_type != SPUFS_MAGIC)
4201 continue;
4202
4203 if (pos >= offset && pos + 4 <= offset + len)
4204 {
4205 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4206 written += 4;
4207 }
4208 pos += 4;
4209 }
4210
4211 closedir (dir);
4212 return written;
4213 }
4214
4215 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4216 object type, using the /proc file system. */
4217
4218 static enum target_xfer_status
4219 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4220 const char *annex, gdb_byte *readbuf,
4221 const gdb_byte *writebuf,
4222 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4223 {
4224 char buf[128];
4225 int fd = 0;
4226 int ret = -1;
4227 int pid = ptid_get_pid (inferior_ptid);
4228
4229 if (!annex)
4230 {
4231 if (!readbuf)
4232 return TARGET_XFER_E_IO;
4233 else
4234 {
4235 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4236
4237 if (l < 0)
4238 return TARGET_XFER_E_IO;
4239 else if (l == 0)
4240 return TARGET_XFER_EOF;
4241 else
4242 {
4243 *xfered_len = (ULONGEST) l;
4244 return TARGET_XFER_OK;
4245 }
4246 }
4247 }
4248
4249 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4250 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4251 if (fd <= 0)
4252 return TARGET_XFER_E_IO;
4253
4254 if (offset != 0
4255 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4256 {
4257 close (fd);
4258 return TARGET_XFER_EOF;
4259 }
4260
4261 if (writebuf)
4262 ret = write (fd, writebuf, (size_t) len);
4263 else if (readbuf)
4264 ret = read (fd, readbuf, (size_t) len);
4265
4266 close (fd);
4267
4268 if (ret < 0)
4269 return TARGET_XFER_E_IO;
4270 else if (ret == 0)
4271 return TARGET_XFER_EOF;
4272 else
4273 {
4274 *xfered_len = (ULONGEST) ret;
4275 return TARGET_XFER_OK;
4276 }
4277 }
4278
4279
4280 /* Parse LINE as a signal set and add its set bits to SIGS. */
4281
4282 static void
4283 add_line_to_sigset (const char *line, sigset_t *sigs)
4284 {
4285 int len = strlen (line) - 1;
4286 const char *p;
4287 int signum;
4288
4289 if (line[len] != '\n')
4290 error (_("Could not parse signal set: %s"), line);
4291
4292 p = line;
4293 signum = len * 4;
4294 while (len-- > 0)
4295 {
4296 int digit;
4297
4298 if (*p >= '0' && *p <= '9')
4299 digit = *p - '0';
4300 else if (*p >= 'a' && *p <= 'f')
4301 digit = *p - 'a' + 10;
4302 else
4303 error (_("Could not parse signal set: %s"), line);
4304
4305 signum -= 4;
4306
4307 if (digit & 1)
4308 sigaddset (sigs, signum + 1);
4309 if (digit & 2)
4310 sigaddset (sigs, signum + 2);
4311 if (digit & 4)
4312 sigaddset (sigs, signum + 3);
4313 if (digit & 8)
4314 sigaddset (sigs, signum + 4);
4315
4316 p++;
4317 }
4318 }
4319
4320 /* Find process PID's pending signals from /proc/pid/status and set
4321 SIGS to match. */
4322
4323 void
4324 linux_proc_pending_signals (int pid, sigset_t *pending,
4325 sigset_t *blocked, sigset_t *ignored)
4326 {
4327 FILE *procfile;
4328 char buffer[PATH_MAX], fname[PATH_MAX];
4329 struct cleanup *cleanup;
4330
4331 sigemptyset (pending);
4332 sigemptyset (blocked);
4333 sigemptyset (ignored);
4334 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4335 procfile = gdb_fopen_cloexec (fname, "r");
4336 if (procfile == NULL)
4337 error (_("Could not open %s"), fname);
4338 cleanup = make_cleanup_fclose (procfile);
4339
4340 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4341 {
4342 /* Normal queued signals are on the SigPnd line in the status
4343 file. However, 2.6 kernels also have a "shared" pending
4344 queue for delivering signals to a thread group, so check for
4345 a ShdPnd line also.
4346
4347 Unfortunately some Red Hat kernels include the shared pending
4348 queue but not the ShdPnd status field. */
4349
4350 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4351 add_line_to_sigset (buffer + 8, pending);
4352 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4353 add_line_to_sigset (buffer + 8, pending);
4354 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4355 add_line_to_sigset (buffer + 8, blocked);
4356 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4357 add_line_to_sigset (buffer + 8, ignored);
4358 }
4359
4360 do_cleanups (cleanup);
4361 }
4362
4363 static enum target_xfer_status
4364 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4365 const char *annex, gdb_byte *readbuf,
4366 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4367 ULONGEST *xfered_len)
4368 {
4369 gdb_assert (object == TARGET_OBJECT_OSDATA);
4370
4371 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4372 if (*xfered_len == 0)
4373 return TARGET_XFER_EOF;
4374 else
4375 return TARGET_XFER_OK;
4376 }
4377
4378 static enum target_xfer_status
4379 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4380 const char *annex, gdb_byte *readbuf,
4381 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4382 ULONGEST *xfered_len)
4383 {
4384 enum target_xfer_status xfer;
4385
4386 if (object == TARGET_OBJECT_AUXV)
4387 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4388 offset, len, xfered_len);
4389
4390 if (object == TARGET_OBJECT_OSDATA)
4391 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4392 offset, len, xfered_len);
4393
4394 if (object == TARGET_OBJECT_SPU)
4395 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4396 offset, len, xfered_len);
4397
4398 /* GDB calculates all the addresses in possibly larget width of the address.
4399 Address width needs to be masked before its final use - either by
4400 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4401
4402 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4403
4404 if (object == TARGET_OBJECT_MEMORY)
4405 {
4406 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4407
4408 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4409 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4410 }
4411
4412 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4413 offset, len, xfered_len);
4414 if (xfer != TARGET_XFER_EOF)
4415 return xfer;
4416
4417 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4418 offset, len, xfered_len);
4419 }
4420
4421 static void
4422 cleanup_target_stop (void *arg)
4423 {
4424 ptid_t *ptid = (ptid_t *) arg;
4425
4426 gdb_assert (arg != NULL);
4427
4428 /* Unpause all */
4429 target_resume (*ptid, 0, GDB_SIGNAL_0);
4430 }
4431
4432 static VEC(static_tracepoint_marker_p) *
4433 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4434 const char *strid)
4435 {
4436 char s[IPA_CMD_BUF_SIZE];
4437 struct cleanup *old_chain;
4438 int pid = ptid_get_pid (inferior_ptid);
4439 VEC(static_tracepoint_marker_p) *markers = NULL;
4440 struct static_tracepoint_marker *marker = NULL;
4441 char *p = s;
4442 ptid_t ptid = ptid_build (pid, 0, 0);
4443
4444 /* Pause all */
4445 target_stop (ptid);
4446
4447 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4448 s[sizeof ("qTfSTM")] = 0;
4449
4450 agent_run_command (pid, s, strlen (s) + 1);
4451
4452 old_chain = make_cleanup (free_current_marker, &marker);
4453 make_cleanup (cleanup_target_stop, &ptid);
4454
4455 while (*p++ == 'm')
4456 {
4457 if (marker == NULL)
4458 marker = XCNEW (struct static_tracepoint_marker);
4459
4460 do
4461 {
4462 parse_static_tracepoint_marker_definition (p, &p, marker);
4463
4464 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4465 {
4466 VEC_safe_push (static_tracepoint_marker_p,
4467 markers, marker);
4468 marker = NULL;
4469 }
4470 else
4471 {
4472 release_static_tracepoint_marker (marker);
4473 memset (marker, 0, sizeof (*marker));
4474 }
4475 }
4476 while (*p++ == ','); /* comma-separated list */
4477
4478 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4479 s[sizeof ("qTsSTM")] = 0;
4480 agent_run_command (pid, s, strlen (s) + 1);
4481 p = s;
4482 }
4483
4484 do_cleanups (old_chain);
4485
4486 return markers;
4487 }
4488
4489 /* Create a prototype generic GNU/Linux target. The client can override
4490 it with local methods. */
4491
4492 static void
4493 linux_target_install_ops (struct target_ops *t)
4494 {
4495 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4496 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4497 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4498 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4499 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4500 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4501 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4502 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4503 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4504 t->to_post_attach = linux_child_post_attach;
4505 t->to_follow_fork = linux_child_follow_fork;
4506 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4507
4508 super_xfer_partial = t->to_xfer_partial;
4509 t->to_xfer_partial = linux_xfer_partial;
4510
4511 t->to_static_tracepoint_markers_by_strid
4512 = linux_child_static_tracepoint_markers_by_strid;
4513 }
4514
4515 struct target_ops *
4516 linux_target (void)
4517 {
4518 struct target_ops *t;
4519
4520 t = inf_ptrace_target ();
4521 linux_target_install_ops (t);
4522
4523 return t;
4524 }
4525
4526 struct target_ops *
4527 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4528 {
4529 struct target_ops *t;
4530
4531 t = inf_ptrace_trad_target (register_u_offset);
4532 linux_target_install_ops (t);
4533
4534 return t;
4535 }
4536
4537 /* target_is_async_p implementation. */
4538
4539 static int
4540 linux_nat_is_async_p (struct target_ops *ops)
4541 {
4542 /* NOTE: palves 2008-03-21: We're only async when the user requests
4543 it explicitly with the "set target-async" command.
4544 Someday, linux will always be async. */
4545 return target_async_permitted;
4546 }
4547
4548 /* target_can_async_p implementation. */
4549
4550 static int
4551 linux_nat_can_async_p (struct target_ops *ops)
4552 {
4553 /* NOTE: palves 2008-03-21: We're only async when the user requests
4554 it explicitly with the "set target-async" command.
4555 Someday, linux will always be async. */
4556 return target_async_permitted;
4557 }
4558
4559 static int
4560 linux_nat_supports_non_stop (struct target_ops *self)
4561 {
4562 return 1;
4563 }
4564
4565 /* True if we want to support multi-process. To be removed when GDB
4566 supports multi-exec. */
4567
4568 int linux_multi_process = 1;
4569
4570 static int
4571 linux_nat_supports_multi_process (struct target_ops *self)
4572 {
4573 return linux_multi_process;
4574 }
4575
4576 static int
4577 linux_nat_supports_disable_randomization (struct target_ops *self)
4578 {
4579 #ifdef HAVE_PERSONALITY
4580 return 1;
4581 #else
4582 return 0;
4583 #endif
4584 }
4585
4586 static int async_terminal_is_ours = 1;
4587
4588 /* target_terminal_inferior implementation. */
4589
4590 static void
4591 linux_nat_terminal_inferior (struct target_ops *self)
4592 {
4593 if (!target_is_async_p ())
4594 {
4595 /* Async mode is disabled. */
4596 terminal_inferior (self);
4597 return;
4598 }
4599
4600 terminal_inferior (self);
4601
4602 /* Calls to target_terminal_*() are meant to be idempotent. */
4603 if (!async_terminal_is_ours)
4604 return;
4605
4606 delete_file_handler (input_fd);
4607 async_terminal_is_ours = 0;
4608 set_sigint_trap ();
4609 }
4610
4611 /* target_terminal_ours implementation. */
4612
4613 static void
4614 linux_nat_terminal_ours (struct target_ops *self)
4615 {
4616 if (!target_is_async_p ())
4617 {
4618 /* Async mode is disabled. */
4619 terminal_ours (self);
4620 return;
4621 }
4622
4623 /* GDB should never give the terminal to the inferior if the
4624 inferior is running in the background (run&, continue&, etc.),
4625 but claiming it sure should. */
4626 terminal_ours (self);
4627
4628 if (async_terminal_is_ours)
4629 return;
4630
4631 clear_sigint_trap ();
4632 add_file_handler (input_fd, stdin_event_handler, 0);
4633 async_terminal_is_ours = 1;
4634 }
4635
4636 static void (*async_client_callback) (enum inferior_event_type event_type,
4637 void *context);
4638 static void *async_client_context;
4639
4640 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4641 so we notice when any child changes state, and notify the
4642 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4643 above to wait for the arrival of a SIGCHLD. */
4644
4645 static void
4646 sigchld_handler (int signo)
4647 {
4648 int old_errno = errno;
4649
4650 if (debug_linux_nat)
4651 ui_file_write_async_safe (gdb_stdlog,
4652 "sigchld\n", sizeof ("sigchld\n") - 1);
4653
4654 if (signo == SIGCHLD
4655 && linux_nat_event_pipe[0] != -1)
4656 async_file_mark (); /* Let the event loop know that there are
4657 events to handle. */
4658
4659 errno = old_errno;
4660 }
4661
4662 /* Callback registered with the target events file descriptor. */
4663
4664 static void
4665 handle_target_event (int error, gdb_client_data client_data)
4666 {
4667 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4668 }
4669
4670 /* Create/destroy the target events pipe. Returns previous state. */
4671
4672 static int
4673 linux_async_pipe (int enable)
4674 {
4675 int previous = (linux_nat_event_pipe[0] != -1);
4676
4677 if (previous != enable)
4678 {
4679 sigset_t prev_mask;
4680
4681 /* Block child signals while we create/destroy the pipe, as
4682 their handler writes to it. */
4683 block_child_signals (&prev_mask);
4684
4685 if (enable)
4686 {
4687 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4688 internal_error (__FILE__, __LINE__,
4689 "creating event pipe failed.");
4690
4691 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4692 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4693 }
4694 else
4695 {
4696 close (linux_nat_event_pipe[0]);
4697 close (linux_nat_event_pipe[1]);
4698 linux_nat_event_pipe[0] = -1;
4699 linux_nat_event_pipe[1] = -1;
4700 }
4701
4702 restore_child_signals_mask (&prev_mask);
4703 }
4704
4705 return previous;
4706 }
4707
4708 /* target_async implementation. */
4709
4710 static void
4711 linux_nat_async (struct target_ops *ops,
4712 void (*callback) (enum inferior_event_type event_type,
4713 void *context),
4714 void *context)
4715 {
4716 if (callback != NULL)
4717 {
4718 async_client_callback = callback;
4719 async_client_context = context;
4720 if (!linux_async_pipe (1))
4721 {
4722 add_file_handler (linux_nat_event_pipe[0],
4723 handle_target_event, NULL);
4724 /* There may be pending events to handle. Tell the event loop
4725 to poll them. */
4726 async_file_mark ();
4727 }
4728 }
4729 else
4730 {
4731 async_client_callback = callback;
4732 async_client_context = context;
4733 delete_file_handler (linux_nat_event_pipe[0]);
4734 linux_async_pipe (0);
4735 }
4736 return;
4737 }
4738
4739 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4740 event came out. */
4741
4742 static int
4743 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4744 {
4745 if (!lwp->stopped)
4746 {
4747 if (debug_linux_nat)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "LNSL: running -> suspending %s\n",
4750 target_pid_to_str (lwp->ptid));
4751
4752
4753 if (lwp->last_resume_kind == resume_stop)
4754 {
4755 if (debug_linux_nat)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "linux-nat: already stopping LWP %ld at "
4758 "GDB's request\n",
4759 ptid_get_lwp (lwp->ptid));
4760 return 0;
4761 }
4762
4763 stop_callback (lwp, NULL);
4764 lwp->last_resume_kind = resume_stop;
4765 }
4766 else
4767 {
4768 /* Already known to be stopped; do nothing. */
4769
4770 if (debug_linux_nat)
4771 {
4772 if (find_thread_ptid (lwp->ptid)->stop_requested)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "LNSL: already stopped/stop_requested %s\n",
4775 target_pid_to_str (lwp->ptid));
4776 else
4777 fprintf_unfiltered (gdb_stdlog,
4778 "LNSL: already stopped/no "
4779 "stop_requested yet %s\n",
4780 target_pid_to_str (lwp->ptid));
4781 }
4782 }
4783 return 0;
4784 }
4785
4786 static void
4787 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4788 {
4789 if (non_stop)
4790 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4791 else
4792 linux_ops->to_stop (linux_ops, ptid);
4793 }
4794
4795 static void
4796 linux_nat_close (struct target_ops *self)
4797 {
4798 /* Unregister from the event loop. */
4799 if (linux_nat_is_async_p (NULL))
4800 linux_nat_async (NULL, NULL, 0);
4801
4802 if (linux_ops->to_close)
4803 linux_ops->to_close (linux_ops);
4804 }
4805
4806 /* When requests are passed down from the linux-nat layer to the
4807 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4808 used. The address space pointer is stored in the inferior object,
4809 but the common code that is passed such ptid can't tell whether
4810 lwpid is a "main" process id or not (it assumes so). We reverse
4811 look up the "main" process id from the lwp here. */
4812
4813 static struct address_space *
4814 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4815 {
4816 struct lwp_info *lwp;
4817 struct inferior *inf;
4818 int pid;
4819
4820 pid = ptid_get_lwp (ptid);
4821 if (ptid_get_lwp (ptid) == 0)
4822 {
4823 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4824 tgid. */
4825 lwp = find_lwp_pid (ptid);
4826 pid = ptid_get_pid (lwp->ptid);
4827 }
4828 else
4829 {
4830 /* A (pid,lwpid,0) ptid. */
4831 pid = ptid_get_pid (ptid);
4832 }
4833
4834 inf = find_inferior_pid (pid);
4835 gdb_assert (inf != NULL);
4836 return inf->aspace;
4837 }
4838
4839 /* Return the cached value of the processor core for thread PTID. */
4840
4841 static int
4842 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4843 {
4844 struct lwp_info *info = find_lwp_pid (ptid);
4845
4846 if (info)
4847 return info->core;
4848 return -1;
4849 }
4850
4851 void
4852 linux_nat_add_target (struct target_ops *t)
4853 {
4854 /* Save the provided single-threaded target. We save this in a separate
4855 variable because another target we've inherited from (e.g. inf-ptrace)
4856 may have saved a pointer to T; we want to use it for the final
4857 process stratum target. */
4858 linux_ops_saved = *t;
4859 linux_ops = &linux_ops_saved;
4860
4861 /* Override some methods for multithreading. */
4862 t->to_create_inferior = linux_nat_create_inferior;
4863 t->to_attach = linux_nat_attach;
4864 t->to_detach = linux_nat_detach;
4865 t->to_resume = linux_nat_resume;
4866 t->to_wait = linux_nat_wait;
4867 t->to_pass_signals = linux_nat_pass_signals;
4868 t->to_xfer_partial = linux_nat_xfer_partial;
4869 t->to_kill = linux_nat_kill;
4870 t->to_mourn_inferior = linux_nat_mourn_inferior;
4871 t->to_thread_alive = linux_nat_thread_alive;
4872 t->to_pid_to_str = linux_nat_pid_to_str;
4873 t->to_thread_name = linux_nat_thread_name;
4874 t->to_has_thread_control = tc_schedlock;
4875 t->to_thread_address_space = linux_nat_thread_address_space;
4876 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4877 t->to_stopped_data_address = linux_nat_stopped_data_address;
4878
4879 t->to_can_async_p = linux_nat_can_async_p;
4880 t->to_is_async_p = linux_nat_is_async_p;
4881 t->to_supports_non_stop = linux_nat_supports_non_stop;
4882 t->to_async = linux_nat_async;
4883 t->to_terminal_inferior = linux_nat_terminal_inferior;
4884 t->to_terminal_ours = linux_nat_terminal_ours;
4885 t->to_close = linux_nat_close;
4886
4887 /* Methods for non-stop support. */
4888 t->to_stop = linux_nat_stop;
4889
4890 t->to_supports_multi_process = linux_nat_supports_multi_process;
4891
4892 t->to_supports_disable_randomization
4893 = linux_nat_supports_disable_randomization;
4894
4895 t->to_core_of_thread = linux_nat_core_of_thread;
4896
4897 /* We don't change the stratum; this target will sit at
4898 process_stratum and thread_db will set at thread_stratum. This
4899 is a little strange, since this is a multi-threaded-capable
4900 target, but we want to be on the stack below thread_db, and we
4901 also want to be used for single-threaded processes. */
4902
4903 add_target (t);
4904 }
4905
4906 /* Register a method to call whenever a new thread is attached. */
4907 void
4908 linux_nat_set_new_thread (struct target_ops *t,
4909 void (*new_thread) (struct lwp_info *))
4910 {
4911 /* Save the pointer. We only support a single registered instance
4912 of the GNU/Linux native target, so we do not need to map this to
4913 T. */
4914 linux_nat_new_thread = new_thread;
4915 }
4916
4917 /* See declaration in linux-nat.h. */
4918
4919 void
4920 linux_nat_set_new_fork (struct target_ops *t,
4921 linux_nat_new_fork_ftype *new_fork)
4922 {
4923 /* Save the pointer. */
4924 linux_nat_new_fork = new_fork;
4925 }
4926
4927 /* See declaration in linux-nat.h. */
4928
4929 void
4930 linux_nat_set_forget_process (struct target_ops *t,
4931 linux_nat_forget_process_ftype *fn)
4932 {
4933 /* Save the pointer. */
4934 linux_nat_forget_process_hook = fn;
4935 }
4936
4937 /* See declaration in linux-nat.h. */
4938
4939 void
4940 linux_nat_forget_process (pid_t pid)
4941 {
4942 if (linux_nat_forget_process_hook != NULL)
4943 linux_nat_forget_process_hook (pid);
4944 }
4945
4946 /* Register a method that converts a siginfo object between the layout
4947 that ptrace returns, and the layout in the architecture of the
4948 inferior. */
4949 void
4950 linux_nat_set_siginfo_fixup (struct target_ops *t,
4951 int (*siginfo_fixup) (siginfo_t *,
4952 gdb_byte *,
4953 int))
4954 {
4955 /* Save the pointer. */
4956 linux_nat_siginfo_fixup = siginfo_fixup;
4957 }
4958
4959 /* Register a method to call prior to resuming a thread. */
4960
4961 void
4962 linux_nat_set_prepare_to_resume (struct target_ops *t,
4963 void (*prepare_to_resume) (struct lwp_info *))
4964 {
4965 /* Save the pointer. */
4966 linux_nat_prepare_to_resume = prepare_to_resume;
4967 }
4968
4969 /* See linux-nat.h. */
4970
4971 int
4972 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4973 {
4974 int pid;
4975
4976 pid = ptid_get_lwp (ptid);
4977 if (pid == 0)
4978 pid = ptid_get_pid (ptid);
4979
4980 errno = 0;
4981 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4982 if (errno != 0)
4983 {
4984 memset (siginfo, 0, sizeof (*siginfo));
4985 return 0;
4986 }
4987 return 1;
4988 }
4989
4990 /* Provide a prototype to silence -Wmissing-prototypes. */
4991 extern initialize_file_ftype _initialize_linux_nat;
4992
4993 void
4994 _initialize_linux_nat (void)
4995 {
4996 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4997 &debug_linux_nat, _("\
4998 Set debugging of GNU/Linux lwp module."), _("\
4999 Show debugging of GNU/Linux lwp module."), _("\
5000 Enables printf debugging output."),
5001 NULL,
5002 show_debug_linux_nat,
5003 &setdebuglist, &showdebuglist);
5004
5005 /* Save this mask as the default. */
5006 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5007
5008 /* Install a SIGCHLD handler. */
5009 sigchld_action.sa_handler = sigchld_handler;
5010 sigemptyset (&sigchld_action.sa_mask);
5011 sigchld_action.sa_flags = SA_RESTART;
5012
5013 /* Make it the default. */
5014 sigaction (SIGCHLD, &sigchld_action, NULL);
5015
5016 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5017 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5018 sigdelset (&suspend_mask, SIGCHLD);
5019
5020 sigemptyset (&blocked_mask);
5021 }
5022 \f
5023
5024 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5025 the GNU/Linux Threads library and therefore doesn't really belong
5026 here. */
5027
5028 /* Read variable NAME in the target and return its value if found.
5029 Otherwise return zero. It is assumed that the type of the variable
5030 is `int'. */
5031
5032 static int
5033 get_signo (const char *name)
5034 {
5035 struct bound_minimal_symbol ms;
5036 int signo;
5037
5038 ms = lookup_minimal_symbol (name, NULL, NULL);
5039 if (ms.minsym == NULL)
5040 return 0;
5041
5042 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5043 sizeof (signo)) != 0)
5044 return 0;
5045
5046 return signo;
5047 }
5048
5049 /* Return the set of signals used by the threads library in *SET. */
5050
5051 void
5052 lin_thread_get_thread_signals (sigset_t *set)
5053 {
5054 struct sigaction action;
5055 int restart, cancel;
5056
5057 sigemptyset (&blocked_mask);
5058 sigemptyset (set);
5059
5060 restart = get_signo ("__pthread_sig_restart");
5061 cancel = get_signo ("__pthread_sig_cancel");
5062
5063 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5064 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5065 not provide any way for the debugger to query the signal numbers -
5066 fortunately they don't change! */
5067
5068 if (restart == 0)
5069 restart = __SIGRTMIN;
5070
5071 if (cancel == 0)
5072 cancel = __SIGRTMIN + 1;
5073
5074 sigaddset (set, restart);
5075 sigaddset (set, cancel);
5076
5077 /* The GNU/Linux Threads library makes terminating threads send a
5078 special "cancel" signal instead of SIGCHLD. Make sure we catch
5079 those (to prevent them from terminating GDB itself, which is
5080 likely to be their default action) and treat them the same way as
5081 SIGCHLD. */
5082
5083 action.sa_handler = sigchld_handler;
5084 sigemptyset (&action.sa_mask);
5085 action.sa_flags = SA_RESTART;
5086 sigaction (cancel, &action, NULL);
5087
5088 /* We block the "cancel" signal throughout this code ... */
5089 sigaddset (&blocked_mask, cancel);
5090 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5091
5092 /* ... except during a sigsuspend. */
5093 sigdelset (&suspend_mask, cancel);
5094 }
This page took 0.184187 seconds and 4 git commands to generate.