gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif /* HAVE_PERSONALITY */
69
70 /* This comment documents high-level logic of this file.
71
72 Waiting for events in sync mode
73 ===============================
74
75 When waiting for an event in a specific thread, we just use waitpid, passing
76 the specific pid, and not passing WNOHANG.
77
78 When waiting for an event in all threads, waitpid is not quite good. Prior to
79 version 2.4, Linux can either wait for event in main thread, or in secondary
80 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
81 miss an event. The solution is to use non-blocking waitpid, together with
82 sigsuspend. First, we use non-blocking waitpid to get an event in the main
83 process, if any. Second, we use non-blocking waitpid with the __WCLONED
84 flag to check for events in cloned processes. If nothing is found, we use
85 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
86 happened to a child process -- and SIGCHLD will be delivered both for events
87 in main debugged process and in cloned processes. As soon as we know there's
88 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
89
90 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
91 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
92 blocked, the signal becomes pending and sigsuspend immediately
93 notices it and returns.
94
95 Waiting for events in async mode
96 ================================
97
98 In async mode, GDB should always be ready to handle both user input
99 and target events, so neither blocking waitpid nor sigsuspend are
100 viable options. Instead, we should asynchronously notify the GDB main
101 event loop whenever there's an unprocessed event from the target. We
102 detect asynchronous target events by handling SIGCHLD signals. To
103 notify the event loop about target events, the self-pipe trick is used
104 --- a pipe is registered as waitable event source in the event loop,
105 the event loop select/poll's on the read end of this pipe (as well on
106 other event sources, e.g., stdin), and the SIGCHLD handler writes a
107 byte to this pipe. This is more portable than relying on
108 pselect/ppoll, since on kernels that lack those syscalls, libc
109 emulates them with select/poll+sigprocmask, and that is racy
110 (a.k.a. plain broken).
111
112 Obviously, if we fail to notify the event loop if there's a target
113 event, it's bad. OTOH, if we notify the event loop when there's no
114 event from the target, linux_nat_wait will detect that there's no real
115 event to report, and return event of type TARGET_WAITKIND_IGNORE.
116 This is mostly harmless, but it will waste time and is better avoided.
117
118 The main design point is that every time GDB is outside linux-nat.c,
119 we have a SIGCHLD handler installed that is called when something
120 happens to the target and notifies the GDB event loop. Whenever GDB
121 core decides to handle the event, and calls into linux-nat.c, we
122 process things as in sync mode, except that the we never block in
123 sigsuspend.
124
125 While processing an event, we may end up momentarily blocked in
126 waitpid calls. Those waitpid calls, while blocking, are guarantied to
127 return quickly. E.g., in all-stop mode, before reporting to the core
128 that an LWP hit a breakpoint, all LWPs are stopped by sending them
129 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
130 Note that this is different from blocking indefinitely waiting for the
131 next event --- here, we're already handling an event.
132
133 Use of signals
134 ==============
135
136 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
137 signal is not entirely significant; we just need for a signal to be delivered,
138 so that we can intercept it. SIGSTOP's advantage is that it can not be
139 blocked. A disadvantage is that it is not a real-time signal, so it can only
140 be queued once; we do not keep track of other sources of SIGSTOP.
141
142 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
143 use them, because they have special behavior when the signal is generated -
144 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
145 kills the entire thread group.
146
147 A delivered SIGSTOP would stop the entire thread group, not just the thread we
148 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
149 cancel it (by PTRACE_CONT without passing SIGSTOP).
150
151 We could use a real-time signal instead. This would solve those problems; we
152 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
153 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
154 generates it, and there are races with trying to find a signal that is not
155 blocked. */
156
157 #ifndef O_LARGEFILE
158 #define O_LARGEFILE 0
159 #endif
160
161 /* If the system headers did not provide the constants, hard-code the normal
162 values. */
163 #ifndef PTRACE_EVENT_FORK
164
165 #define PTRACE_SETOPTIONS 0x4200
166 #define PTRACE_GETEVENTMSG 0x4201
167
168 /* options set using PTRACE_SETOPTIONS */
169 #define PTRACE_O_TRACESYSGOOD 0x00000001
170 #define PTRACE_O_TRACEFORK 0x00000002
171 #define PTRACE_O_TRACEVFORK 0x00000004
172 #define PTRACE_O_TRACECLONE 0x00000008
173 #define PTRACE_O_TRACEEXEC 0x00000010
174 #define PTRACE_O_TRACEVFORKDONE 0x00000020
175 #define PTRACE_O_TRACEEXIT 0x00000040
176
177 /* Wait extended result codes for the above trace options. */
178 #define PTRACE_EVENT_FORK 1
179 #define PTRACE_EVENT_VFORK 2
180 #define PTRACE_EVENT_CLONE 3
181 #define PTRACE_EVENT_EXEC 4
182 #define PTRACE_EVENT_VFORK_DONE 5
183 #define PTRACE_EVENT_EXIT 6
184
185 #endif /* PTRACE_EVENT_FORK */
186
187 /* We can't always assume that this flag is available, but all systems
188 with the ptrace event handlers also have __WALL, so it's safe to use
189 here. */
190 #ifndef __WALL
191 #define __WALL 0x40000000 /* Wait for any child. */
192 #endif
193
194 #ifndef PTRACE_GETSIGINFO
195 # define PTRACE_GETSIGINFO 0x4202
196 # define PTRACE_SETSIGINFO 0x4203
197 #endif
198
199 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
200 the use of the multi-threaded target. */
201 static struct target_ops *linux_ops;
202 static struct target_ops linux_ops_saved;
203
204 /* The method to call, if any, when a new thread is attached. */
205 static void (*linux_nat_new_thread) (ptid_t);
206
207 /* The method to call, if any, when the siginfo object needs to be
208 converted between the layout returned by ptrace, and the layout in
209 the architecture of the inferior. */
210 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
211 gdb_byte *,
212 int);
213
214 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
215 Called by our to_xfer_partial. */
216 static LONGEST (*super_xfer_partial) (struct target_ops *,
217 enum target_object,
218 const char *, gdb_byte *,
219 const gdb_byte *,
220 ULONGEST, LONGEST);
221
222 static int debug_linux_nat;
223 static void
224 show_debug_linux_nat (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
228 value);
229 }
230
231 static int debug_linux_nat_async = 0;
232 static void
233 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
237 value);
238 }
239
240 static int disable_randomization = 1;
241
242 static void
243 show_disable_randomization (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 #ifdef HAVE_PERSONALITY
247 fprintf_filtered (file, _("\
248 Disabling randomization of debuggee's virtual address space is %s.\n"),
249 value);
250 #else /* !HAVE_PERSONALITY */
251 fputs_filtered (_("\
252 Disabling randomization of debuggee's virtual address space is unsupported on\n\
253 this platform.\n"), file);
254 #endif /* !HAVE_PERSONALITY */
255 }
256
257 static void
258 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
259 {
260 #ifndef HAVE_PERSONALITY
261 error (_("\
262 Disabling randomization of debuggee's virtual address space is unsupported on\n\
263 this platform."));
264 #endif /* !HAVE_PERSONALITY */
265 }
266
267 static int linux_parent_pid;
268
269 struct simple_pid_list
270 {
271 int pid;
272 int status;
273 struct simple_pid_list *next;
274 };
275 struct simple_pid_list *stopped_pids;
276
277 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
278 can not be used, 1 if it can. */
279
280 static int linux_supports_tracefork_flag = -1;
281
282 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
283 PTRACE_O_TRACEVFORKDONE. */
284
285 static int linux_supports_tracevforkdone_flag = -1;
286
287 /* Async mode support */
288
289 /* Zero if the async mode, although enabled, is masked, which means
290 linux_nat_wait should behave as if async mode was off. */
291 static int linux_nat_async_mask_value = 1;
292
293 /* The read/write ends of the pipe registered as waitable file in the
294 event loop. */
295 static int linux_nat_event_pipe[2] = { -1, -1 };
296
297 /* Flush the event pipe. */
298
299 static void
300 async_file_flush (void)
301 {
302 int ret;
303 char buf;
304
305 do
306 {
307 ret = read (linux_nat_event_pipe[0], &buf, 1);
308 }
309 while (ret >= 0 || (ret == -1 && errno == EINTR));
310 }
311
312 /* Put something (anything, doesn't matter what, or how much) in event
313 pipe, so that the select/poll in the event-loop realizes we have
314 something to process. */
315
316 static void
317 async_file_mark (void)
318 {
319 int ret;
320
321 /* It doesn't really matter what the pipe contains, as long we end
322 up with something in it. Might as well flush the previous
323 left-overs. */
324 async_file_flush ();
325
326 do
327 {
328 ret = write (linux_nat_event_pipe[1], "+", 1);
329 }
330 while (ret == -1 && errno == EINTR);
331
332 /* Ignore EAGAIN. If the pipe is full, the event loop will already
333 be awakened anyway. */
334 }
335
336 static void linux_nat_async (void (*callback)
337 (enum inferior_event_type event_type, void *context),
338 void *context);
339 static int linux_nat_async_mask (int mask);
340 static int kill_lwp (int lwpid, int signo);
341
342 static int stop_callback (struct lwp_info *lp, void *data);
343
344 static void block_child_signals (sigset_t *prev_mask);
345 static void restore_child_signals_mask (sigset_t *prev_mask);
346
347 struct lwp_info;
348 static struct lwp_info *add_lwp (ptid_t ptid);
349 static void purge_lwp_list (int pid);
350 static struct lwp_info *find_lwp_pid (ptid_t ptid);
351
352 \f
353 /* Trivial list manipulation functions to keep track of a list of
354 new stopped processes. */
355 static void
356 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
357 {
358 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
359 new_pid->pid = pid;
360 new_pid->status = status;
361 new_pid->next = *listp;
362 *listp = new_pid;
363 }
364
365 static int
366 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
367 {
368 struct simple_pid_list **p;
369
370 for (p = listp; *p != NULL; p = &(*p)->next)
371 if ((*p)->pid == pid)
372 {
373 struct simple_pid_list *next = (*p)->next;
374 *status = (*p)->status;
375 xfree (*p);
376 *p = next;
377 return 1;
378 }
379 return 0;
380 }
381
382 static void
383 linux_record_stopped_pid (int pid, int status)
384 {
385 add_to_pid_list (&stopped_pids, pid, status);
386 }
387
388 \f
389 /* A helper function for linux_test_for_tracefork, called after fork (). */
390
391 static void
392 linux_tracefork_child (void)
393 {
394 int ret;
395
396 ptrace (PTRACE_TRACEME, 0, 0, 0);
397 kill (getpid (), SIGSTOP);
398 fork ();
399 _exit (0);
400 }
401
402 /* Wrapper function for waitpid which handles EINTR. */
403
404 static int
405 my_waitpid (int pid, int *status, int flags)
406 {
407 int ret;
408
409 do
410 {
411 ret = waitpid (pid, status, flags);
412 }
413 while (ret == -1 && errno == EINTR);
414
415 return ret;
416 }
417
418 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
419
420 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
421 we know that the feature is not available. This may change the tracing
422 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
423
424 However, if it succeeds, we don't know for sure that the feature is
425 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
426 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
427 fork tracing, and let it fork. If the process exits, we assume that we
428 can't use TRACEFORK; if we get the fork notification, and we can extract
429 the new child's PID, then we assume that we can. */
430
431 static void
432 linux_test_for_tracefork (int original_pid)
433 {
434 int child_pid, ret, status;
435 long second_pid;
436 sigset_t prev_mask;
437
438 /* We don't want those ptrace calls to be interrupted. */
439 block_child_signals (&prev_mask);
440
441 linux_supports_tracefork_flag = 0;
442 linux_supports_tracevforkdone_flag = 0;
443
444 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
445 if (ret != 0)
446 {
447 restore_child_signals_mask (&prev_mask);
448 return;
449 }
450
451 child_pid = fork ();
452 if (child_pid == -1)
453 perror_with_name (("fork"));
454
455 if (child_pid == 0)
456 linux_tracefork_child ();
457
458 ret = my_waitpid (child_pid, &status, 0);
459 if (ret == -1)
460 perror_with_name (("waitpid"));
461 else if (ret != child_pid)
462 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
463 if (! WIFSTOPPED (status))
464 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
465
466 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
467 if (ret != 0)
468 {
469 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
470 if (ret != 0)
471 {
472 warning (_("linux_test_for_tracefork: failed to kill child"));
473 restore_child_signals_mask (&prev_mask);
474 return;
475 }
476
477 ret = my_waitpid (child_pid, &status, 0);
478 if (ret != child_pid)
479 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
480 else if (!WIFSIGNALED (status))
481 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
482 "killed child"), status);
483
484 restore_child_signals_mask (&prev_mask);
485 return;
486 }
487
488 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
489 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
490 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
491 linux_supports_tracevforkdone_flag = (ret == 0);
492
493 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
494 if (ret != 0)
495 warning (_("linux_test_for_tracefork: failed to resume child"));
496
497 ret = my_waitpid (child_pid, &status, 0);
498
499 if (ret == child_pid && WIFSTOPPED (status)
500 && status >> 16 == PTRACE_EVENT_FORK)
501 {
502 second_pid = 0;
503 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
504 if (ret == 0 && second_pid != 0)
505 {
506 int second_status;
507
508 linux_supports_tracefork_flag = 1;
509 my_waitpid (second_pid, &second_status, 0);
510 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
511 if (ret != 0)
512 warning (_("linux_test_for_tracefork: failed to kill second child"));
513 my_waitpid (second_pid, &status, 0);
514 }
515 }
516 else
517 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
518 "(%d, status 0x%x)"), ret, status);
519
520 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
521 if (ret != 0)
522 warning (_("linux_test_for_tracefork: failed to kill child"));
523 my_waitpid (child_pid, &status, 0);
524
525 restore_child_signals_mask (&prev_mask);
526 }
527
528 /* Return non-zero iff we have tracefork functionality available.
529 This function also sets linux_supports_tracefork_flag. */
530
531 static int
532 linux_supports_tracefork (int pid)
533 {
534 if (linux_supports_tracefork_flag == -1)
535 linux_test_for_tracefork (pid);
536 return linux_supports_tracefork_flag;
537 }
538
539 static int
540 linux_supports_tracevforkdone (int pid)
541 {
542 if (linux_supports_tracefork_flag == -1)
543 linux_test_for_tracefork (pid);
544 return linux_supports_tracevforkdone_flag;
545 }
546
547 \f
548 void
549 linux_enable_event_reporting (ptid_t ptid)
550 {
551 int pid = ptid_get_lwp (ptid);
552 int options;
553
554 if (pid == 0)
555 pid = ptid_get_pid (ptid);
556
557 if (! linux_supports_tracefork (pid))
558 return;
559
560 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
561 | PTRACE_O_TRACECLONE;
562 if (linux_supports_tracevforkdone (pid))
563 options |= PTRACE_O_TRACEVFORKDONE;
564
565 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
566 read-only process state. */
567
568 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
569 }
570
571 static void
572 linux_child_post_attach (int pid)
573 {
574 linux_enable_event_reporting (pid_to_ptid (pid));
575 check_for_thread_db ();
576 }
577
578 static void
579 linux_child_post_startup_inferior (ptid_t ptid)
580 {
581 linux_enable_event_reporting (ptid);
582 check_for_thread_db ();
583 }
584
585 static int
586 linux_child_follow_fork (struct target_ops *ops, int follow_child)
587 {
588 sigset_t prev_mask;
589 int has_vforked;
590 int parent_pid, child_pid;
591
592 block_child_signals (&prev_mask);
593
594 has_vforked = (inferior_thread ()->pending_follow.kind
595 == TARGET_WAITKIND_VFORKED);
596 parent_pid = ptid_get_lwp (inferior_ptid);
597 if (parent_pid == 0)
598 parent_pid = ptid_get_pid (inferior_ptid);
599 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
600
601 if (!detach_fork)
602 linux_enable_event_reporting (pid_to_ptid (child_pid));
603
604 if (! follow_child)
605 {
606 /* We're already attached to the parent, by default. */
607
608 /* Before detaching from the child, remove all breakpoints from
609 it. If we forked, then this has already been taken care of
610 by infrun.c. If we vforked however, any breakpoint inserted
611 in the parent is visible in the child, even those added while
612 stopped in a vfork catchpoint. This won't actually modify
613 the breakpoint list, but will physically remove the
614 breakpoints from the child. This will remove the breakpoints
615 from the parent also, but they'll be reinserted below. */
616 if (has_vforked)
617 detach_breakpoints (child_pid);
618
619 /* Detach new forked process? */
620 if (detach_fork)
621 {
622 if (info_verbose || debug_linux_nat)
623 {
624 target_terminal_ours ();
625 fprintf_filtered (gdb_stdlog,
626 "Detaching after fork from child process %d.\n",
627 child_pid);
628 }
629
630 ptrace (PTRACE_DETACH, child_pid, 0, 0);
631 }
632 else
633 {
634 struct inferior *parent_inf, *child_inf;
635 struct lwp_info *lp;
636 struct cleanup *old_chain;
637
638 /* Add process to GDB's tables. */
639 child_inf = add_inferior (child_pid);
640
641 parent_inf = current_inferior ();
642 child_inf->attach_flag = parent_inf->attach_flag;
643 copy_terminal_info (child_inf, parent_inf);
644
645 old_chain = save_inferior_ptid ();
646
647 inferior_ptid = ptid_build (child_pid, child_pid, 0);
648 add_thread (inferior_ptid);
649 lp = add_lwp (inferior_ptid);
650 lp->stopped = 1;
651
652 check_for_thread_db ();
653
654 do_cleanups (old_chain);
655 }
656
657 if (has_vforked)
658 {
659 gdb_assert (linux_supports_tracefork_flag >= 0);
660 if (linux_supports_tracevforkdone (0))
661 {
662 int status;
663
664 ptrace (PTRACE_CONT, parent_pid, 0, 0);
665 my_waitpid (parent_pid, &status, __WALL);
666 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
667 warning (_("Unexpected waitpid result %06x when waiting for "
668 "vfork-done"), status);
669 }
670 else
671 {
672 /* We can't insert breakpoints until the child has
673 finished with the shared memory region. We need to
674 wait until that happens. Ideal would be to just
675 call:
676 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
677 - waitpid (parent_pid, &status, __WALL);
678 However, most architectures can't handle a syscall
679 being traced on the way out if it wasn't traced on
680 the way in.
681
682 We might also think to loop, continuing the child
683 until it exits or gets a SIGTRAP. One problem is
684 that the child might call ptrace with PTRACE_TRACEME.
685
686 There's no simple and reliable way to figure out when
687 the vforked child will be done with its copy of the
688 shared memory. We could step it out of the syscall,
689 two instructions, let it go, and then single-step the
690 parent once. When we have hardware single-step, this
691 would work; with software single-step it could still
692 be made to work but we'd have to be able to insert
693 single-step breakpoints in the child, and we'd have
694 to insert -just- the single-step breakpoint in the
695 parent. Very awkward.
696
697 In the end, the best we can do is to make sure it
698 runs for a little while. Hopefully it will be out of
699 range of any breakpoints we reinsert. Usually this
700 is only the single-step breakpoint at vfork's return
701 point. */
702
703 usleep (10000);
704 }
705
706 /* Since we vforked, breakpoints were removed in the parent
707 too. Put them back. */
708 reattach_breakpoints (parent_pid);
709 }
710 }
711 else
712 {
713 struct thread_info *tp;
714 struct inferior *parent_inf, *child_inf;
715 struct lwp_info *lp;
716
717 /* Before detaching from the parent, remove all breakpoints from it. */
718 remove_breakpoints ();
719
720 if (info_verbose || debug_linux_nat)
721 {
722 target_terminal_ours ();
723 fprintf_filtered (gdb_stdlog,
724 "Attaching after fork to child process %d.\n",
725 child_pid);
726 }
727
728 /* Add the new inferior first, so that the target_detach below
729 doesn't unpush the target. */
730
731 child_inf = add_inferior (child_pid);
732
733 parent_inf = current_inferior ();
734 child_inf->attach_flag = parent_inf->attach_flag;
735 copy_terminal_info (child_inf, parent_inf);
736
737 /* If we're vforking, we may want to hold on to the parent until
738 the child exits or execs. At exec time we can remove the old
739 breakpoints from the parent and detach it; at exit time we
740 could do the same (or even, sneakily, resume debugging it - the
741 child's exec has failed, or something similar).
742
743 This doesn't clean up "properly", because we can't call
744 target_detach, but that's OK; if the current target is "child",
745 then it doesn't need any further cleanups, and lin_lwp will
746 generally not encounter vfork (vfork is defined to fork
747 in libpthread.so).
748
749 The holding part is very easy if we have VFORKDONE events;
750 but keeping track of both processes is beyond GDB at the
751 moment. So we don't expose the parent to the rest of GDB.
752 Instead we quietly hold onto it until such time as we can
753 safely resume it. */
754
755 if (has_vforked)
756 {
757 struct lwp_info *parent_lwp;
758
759 linux_parent_pid = parent_pid;
760
761 /* Get rid of the inferior on the core side as well. */
762 inferior_ptid = null_ptid;
763 detach_inferior (parent_pid);
764
765 /* Also get rid of all its lwps. We will detach from this
766 inferior soon-ish, but, we will still get an exit event
767 reported through waitpid when it exits. If we didn't get
768 rid of the lwps from our list, we would end up reporting
769 the inferior exit to the core, which would then try to
770 mourn a non-existing (from the core's perspective)
771 inferior. */
772 parent_lwp = find_lwp_pid (pid_to_ptid (parent_pid));
773 purge_lwp_list (GET_PID (parent_lwp->ptid));
774 linux_parent_pid = parent_pid;
775 }
776 else if (detach_fork)
777 target_detach (NULL, 0);
778
779 inferior_ptid = ptid_build (child_pid, child_pid, 0);
780 add_thread (inferior_ptid);
781 lp = add_lwp (inferior_ptid);
782 lp->stopped = 1;
783
784 check_for_thread_db ();
785 }
786
787 restore_child_signals_mask (&prev_mask);
788 return 0;
789 }
790
791 \f
792 static void
793 linux_child_insert_fork_catchpoint (int pid)
794 {
795 if (! linux_supports_tracefork (pid))
796 error (_("Your system does not support fork catchpoints."));
797 }
798
799 static void
800 linux_child_insert_vfork_catchpoint (int pid)
801 {
802 if (!linux_supports_tracefork (pid))
803 error (_("Your system does not support vfork catchpoints."));
804 }
805
806 static void
807 linux_child_insert_exec_catchpoint (int pid)
808 {
809 if (!linux_supports_tracefork (pid))
810 error (_("Your system does not support exec catchpoints."));
811 }
812
813 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
814 are processes sharing the same VM space. A multi-threaded process
815 is basically a group of such processes. However, such a grouping
816 is almost entirely a user-space issue; the kernel doesn't enforce
817 such a grouping at all (this might change in the future). In
818 general, we'll rely on the threads library (i.e. the GNU/Linux
819 Threads library) to provide such a grouping.
820
821 It is perfectly well possible to write a multi-threaded application
822 without the assistance of a threads library, by using the clone
823 system call directly. This module should be able to give some
824 rudimentary support for debugging such applications if developers
825 specify the CLONE_PTRACE flag in the clone system call, and are
826 using the Linux kernel 2.4 or above.
827
828 Note that there are some peculiarities in GNU/Linux that affect
829 this code:
830
831 - In general one should specify the __WCLONE flag to waitpid in
832 order to make it report events for any of the cloned processes
833 (and leave it out for the initial process). However, if a cloned
834 process has exited the exit status is only reported if the
835 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
836 we cannot use it since GDB must work on older systems too.
837
838 - When a traced, cloned process exits and is waited for by the
839 debugger, the kernel reassigns it to the original parent and
840 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
841 library doesn't notice this, which leads to the "zombie problem":
842 When debugged a multi-threaded process that spawns a lot of
843 threads will run out of processes, even if the threads exit,
844 because the "zombies" stay around. */
845
846 /* List of known LWPs. */
847 struct lwp_info *lwp_list;
848 \f
849
850 /* Original signal mask. */
851 static sigset_t normal_mask;
852
853 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
854 _initialize_linux_nat. */
855 static sigset_t suspend_mask;
856
857 /* Signals to block to make that sigsuspend work. */
858 static sigset_t blocked_mask;
859
860 /* SIGCHLD action. */
861 struct sigaction sigchld_action;
862
863 /* Block child signals (SIGCHLD and linux threads signals), and store
864 the previous mask in PREV_MASK. */
865
866 static void
867 block_child_signals (sigset_t *prev_mask)
868 {
869 /* Make sure SIGCHLD is blocked. */
870 if (!sigismember (&blocked_mask, SIGCHLD))
871 sigaddset (&blocked_mask, SIGCHLD);
872
873 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
874 }
875
876 /* Restore child signals mask, previously returned by
877 block_child_signals. */
878
879 static void
880 restore_child_signals_mask (sigset_t *prev_mask)
881 {
882 sigprocmask (SIG_SETMASK, prev_mask, NULL);
883 }
884 \f
885
886 /* Prototypes for local functions. */
887 static int stop_wait_callback (struct lwp_info *lp, void *data);
888 static int linux_thread_alive (ptid_t ptid);
889 static char *linux_child_pid_to_exec_file (int pid);
890 static int cancel_breakpoint (struct lwp_info *lp);
891
892 \f
893 /* Convert wait status STATUS to a string. Used for printing debug
894 messages only. */
895
896 static char *
897 status_to_str (int status)
898 {
899 static char buf[64];
900
901 if (WIFSTOPPED (status))
902 snprintf (buf, sizeof (buf), "%s (stopped)",
903 strsignal (WSTOPSIG (status)));
904 else if (WIFSIGNALED (status))
905 snprintf (buf, sizeof (buf), "%s (terminated)",
906 strsignal (WSTOPSIG (status)));
907 else
908 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
909
910 return buf;
911 }
912
913 /* Initialize the list of LWPs. Note that this module, contrary to
914 what GDB's generic threads layer does for its thread list,
915 re-initializes the LWP lists whenever we mourn or detach (which
916 doesn't involve mourning) the inferior. */
917
918 static void
919 init_lwp_list (void)
920 {
921 struct lwp_info *lp, *lpnext;
922
923 for (lp = lwp_list; lp; lp = lpnext)
924 {
925 lpnext = lp->next;
926 xfree (lp);
927 }
928
929 lwp_list = NULL;
930 }
931
932 /* Remove all LWPs belong to PID from the lwp list. */
933
934 static void
935 purge_lwp_list (int pid)
936 {
937 struct lwp_info *lp, *lpprev, *lpnext;
938
939 lpprev = NULL;
940
941 for (lp = lwp_list; lp; lp = lpnext)
942 {
943 lpnext = lp->next;
944
945 if (ptid_get_pid (lp->ptid) == pid)
946 {
947 if (lp == lwp_list)
948 lwp_list = lp->next;
949 else
950 lpprev->next = lp->next;
951
952 xfree (lp);
953 }
954 else
955 lpprev = lp;
956 }
957 }
958
959 /* Return the number of known LWPs in the tgid given by PID. */
960
961 static int
962 num_lwps (int pid)
963 {
964 int count = 0;
965 struct lwp_info *lp;
966
967 for (lp = lwp_list; lp; lp = lp->next)
968 if (ptid_get_pid (lp->ptid) == pid)
969 count++;
970
971 return count;
972 }
973
974 /* Add the LWP specified by PID to the list. Return a pointer to the
975 structure describing the new LWP. The LWP should already be stopped
976 (with an exception for the very first LWP). */
977
978 static struct lwp_info *
979 add_lwp (ptid_t ptid)
980 {
981 struct lwp_info *lp;
982
983 gdb_assert (is_lwp (ptid));
984
985 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
986
987 memset (lp, 0, sizeof (struct lwp_info));
988
989 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
990
991 lp->ptid = ptid;
992
993 lp->next = lwp_list;
994 lwp_list = lp;
995
996 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
997 linux_nat_new_thread (ptid);
998
999 return lp;
1000 }
1001
1002 /* Remove the LWP specified by PID from the list. */
1003
1004 static void
1005 delete_lwp (ptid_t ptid)
1006 {
1007 struct lwp_info *lp, *lpprev;
1008
1009 lpprev = NULL;
1010
1011 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1012 if (ptid_equal (lp->ptid, ptid))
1013 break;
1014
1015 if (!lp)
1016 return;
1017
1018 if (lpprev)
1019 lpprev->next = lp->next;
1020 else
1021 lwp_list = lp->next;
1022
1023 xfree (lp);
1024 }
1025
1026 /* Return a pointer to the structure describing the LWP corresponding
1027 to PID. If no corresponding LWP could be found, return NULL. */
1028
1029 static struct lwp_info *
1030 find_lwp_pid (ptid_t ptid)
1031 {
1032 struct lwp_info *lp;
1033 int lwp;
1034
1035 if (is_lwp (ptid))
1036 lwp = GET_LWP (ptid);
1037 else
1038 lwp = GET_PID (ptid);
1039
1040 for (lp = lwp_list; lp; lp = lp->next)
1041 if (lwp == GET_LWP (lp->ptid))
1042 return lp;
1043
1044 return NULL;
1045 }
1046
1047 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1048 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1049 a process (ptid_is_pid returns true), in which case, all lwps of
1050 that give process match, lwps of other process do not; or, it can
1051 represent a specific thread, in which case, only that thread will
1052 match true. PTID must represent an LWP, it can never be a wild
1053 card. */
1054
1055 static int
1056 ptid_match (ptid_t ptid, ptid_t filter)
1057 {
1058 /* Since both parameters have the same type, prevent easy mistakes
1059 from happening. */
1060 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1061 && !ptid_equal (ptid, null_ptid));
1062
1063 if (ptid_equal (filter, minus_one_ptid))
1064 return 1;
1065 if (ptid_is_pid (filter)
1066 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1067 return 1;
1068 else if (ptid_equal (ptid, filter))
1069 return 1;
1070
1071 return 0;
1072 }
1073
1074 /* Call CALLBACK with its second argument set to DATA for every LWP in
1075 the list. If CALLBACK returns 1 for a particular LWP, return a
1076 pointer to the structure describing that LWP immediately.
1077 Otherwise return NULL. */
1078
1079 struct lwp_info *
1080 iterate_over_lwps (ptid_t filter,
1081 int (*callback) (struct lwp_info *, void *),
1082 void *data)
1083 {
1084 struct lwp_info *lp, *lpnext;
1085
1086 for (lp = lwp_list; lp; lp = lpnext)
1087 {
1088 lpnext = lp->next;
1089
1090 if (ptid_match (lp->ptid, filter))
1091 {
1092 if ((*callback) (lp, data))
1093 return lp;
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* Update our internal state when changing from one checkpoint to
1101 another indicated by NEW_PTID. We can only switch single-threaded
1102 applications, so we only create one new LWP, and the previous list
1103 is discarded. */
1104
1105 void
1106 linux_nat_switch_fork (ptid_t new_ptid)
1107 {
1108 struct lwp_info *lp;
1109
1110 purge_lwp_list (GET_PID (inferior_ptid));
1111
1112 lp = add_lwp (new_ptid);
1113 lp->stopped = 1;
1114
1115 /* This changes the thread's ptid while preserving the gdb thread
1116 num. Also changes the inferior pid, while preserving the
1117 inferior num. */
1118 thread_change_ptid (inferior_ptid, new_ptid);
1119
1120 /* We've just told GDB core that the thread changed target id, but,
1121 in fact, it really is a different thread, with different register
1122 contents. */
1123 registers_changed ();
1124 }
1125
1126 /* Handle the exit of a single thread LP. */
1127
1128 static void
1129 exit_lwp (struct lwp_info *lp)
1130 {
1131 struct thread_info *th = find_thread_ptid (lp->ptid);
1132
1133 if (th)
1134 {
1135 if (print_thread_events)
1136 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1137
1138 delete_thread (lp->ptid);
1139 }
1140
1141 delete_lwp (lp->ptid);
1142 }
1143
1144 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1145
1146 int
1147 linux_proc_get_tgid (int lwpid)
1148 {
1149 FILE *status_file;
1150 char buf[100];
1151 int tgid = -1;
1152
1153 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1154 status_file = fopen (buf, "r");
1155 if (status_file != NULL)
1156 {
1157 while (fgets (buf, sizeof (buf), status_file))
1158 {
1159 if (strncmp (buf, "Tgid:", 5) == 0)
1160 {
1161 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1162 break;
1163 }
1164 }
1165
1166 fclose (status_file);
1167 }
1168
1169 return tgid;
1170 }
1171
1172 /* Detect `T (stopped)' in `/proc/PID/status'.
1173 Other states including `T (tracing stop)' are reported as false. */
1174
1175 static int
1176 pid_is_stopped (pid_t pid)
1177 {
1178 FILE *status_file;
1179 char buf[100];
1180 int retval = 0;
1181
1182 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1183 status_file = fopen (buf, "r");
1184 if (status_file != NULL)
1185 {
1186 int have_state = 0;
1187
1188 while (fgets (buf, sizeof (buf), status_file))
1189 {
1190 if (strncmp (buf, "State:", 6) == 0)
1191 {
1192 have_state = 1;
1193 break;
1194 }
1195 }
1196 if (have_state && strstr (buf, "T (stopped)") != NULL)
1197 retval = 1;
1198 fclose (status_file);
1199 }
1200 return retval;
1201 }
1202
1203 /* Wait for the LWP specified by LP, which we have just attached to.
1204 Returns a wait status for that LWP, to cache. */
1205
1206 static int
1207 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1208 int *signalled)
1209 {
1210 pid_t new_pid, pid = GET_LWP (ptid);
1211 int status;
1212
1213 if (pid_is_stopped (pid))
1214 {
1215 if (debug_linux_nat)
1216 fprintf_unfiltered (gdb_stdlog,
1217 "LNPAW: Attaching to a stopped process\n");
1218
1219 /* The process is definitely stopped. It is in a job control
1220 stop, unless the kernel predates the TASK_STOPPED /
1221 TASK_TRACED distinction, in which case it might be in a
1222 ptrace stop. Make sure it is in a ptrace stop; from there we
1223 can kill it, signal it, et cetera.
1224
1225 First make sure there is a pending SIGSTOP. Since we are
1226 already attached, the process can not transition from stopped
1227 to running without a PTRACE_CONT; so we know this signal will
1228 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1229 probably already in the queue (unless this kernel is old
1230 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1231 is not an RT signal, it can only be queued once. */
1232 kill_lwp (pid, SIGSTOP);
1233
1234 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1235 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1236 ptrace (PTRACE_CONT, pid, 0, 0);
1237 }
1238
1239 /* Make sure the initial process is stopped. The user-level threads
1240 layer might want to poke around in the inferior, and that won't
1241 work if things haven't stabilized yet. */
1242 new_pid = my_waitpid (pid, &status, 0);
1243 if (new_pid == -1 && errno == ECHILD)
1244 {
1245 if (first)
1246 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1247
1248 /* Try again with __WCLONE to check cloned processes. */
1249 new_pid = my_waitpid (pid, &status, __WCLONE);
1250 *cloned = 1;
1251 }
1252
1253 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1254
1255 if (WSTOPSIG (status) != SIGSTOP)
1256 {
1257 *signalled = 1;
1258 if (debug_linux_nat)
1259 fprintf_unfiltered (gdb_stdlog,
1260 "LNPAW: Received %s after attaching\n",
1261 status_to_str (status));
1262 }
1263
1264 return status;
1265 }
1266
1267 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1268 if the new LWP could not be attached. */
1269
1270 int
1271 lin_lwp_attach_lwp (ptid_t ptid)
1272 {
1273 struct lwp_info *lp;
1274 sigset_t prev_mask;
1275
1276 gdb_assert (is_lwp (ptid));
1277
1278 block_child_signals (&prev_mask);
1279
1280 lp = find_lwp_pid (ptid);
1281
1282 /* We assume that we're already attached to any LWP that has an id
1283 equal to the overall process id, and to any LWP that is already
1284 in our list of LWPs. If we're not seeing exit events from threads
1285 and we've had PID wraparound since we last tried to stop all threads,
1286 this assumption might be wrong; fortunately, this is very unlikely
1287 to happen. */
1288 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1289 {
1290 int status, cloned = 0, signalled = 0;
1291
1292 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1293 {
1294 /* If we fail to attach to the thread, issue a warning,
1295 but continue. One way this can happen is if thread
1296 creation is interrupted; as of Linux kernel 2.6.19, a
1297 bug may place threads in the thread list and then fail
1298 to create them. */
1299 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1300 safe_strerror (errno));
1301 restore_child_signals_mask (&prev_mask);
1302 return -1;
1303 }
1304
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1308 target_pid_to_str (ptid));
1309
1310 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1311 lp = add_lwp (ptid);
1312 lp->stopped = 1;
1313 lp->cloned = cloned;
1314 lp->signalled = signalled;
1315 if (WSTOPSIG (status) != SIGSTOP)
1316 {
1317 lp->resumed = 1;
1318 lp->status = status;
1319 }
1320
1321 target_post_attach (GET_LWP (lp->ptid));
1322
1323 if (debug_linux_nat)
1324 {
1325 fprintf_unfiltered (gdb_stdlog,
1326 "LLAL: waitpid %s received %s\n",
1327 target_pid_to_str (ptid),
1328 status_to_str (status));
1329 }
1330 }
1331 else
1332 {
1333 /* We assume that the LWP representing the original process is
1334 already stopped. Mark it as stopped in the data structure
1335 that the GNU/linux ptrace layer uses to keep track of
1336 threads. Note that this won't have already been done since
1337 the main thread will have, we assume, been stopped by an
1338 attach from a different layer. */
1339 if (lp == NULL)
1340 lp = add_lwp (ptid);
1341 lp->stopped = 1;
1342 }
1343
1344 restore_child_signals_mask (&prev_mask);
1345 return 0;
1346 }
1347
1348 static void
1349 linux_nat_create_inferior (struct target_ops *ops,
1350 char *exec_file, char *allargs, char **env,
1351 int from_tty)
1352 {
1353 #ifdef HAVE_PERSONALITY
1354 int personality_orig = 0, personality_set = 0;
1355 #endif /* HAVE_PERSONALITY */
1356
1357 /* The fork_child mechanism is synchronous and calls target_wait, so
1358 we have to mask the async mode. */
1359
1360 #ifdef HAVE_PERSONALITY
1361 if (disable_randomization)
1362 {
1363 errno = 0;
1364 personality_orig = personality (0xffffffff);
1365 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1366 {
1367 personality_set = 1;
1368 personality (personality_orig | ADDR_NO_RANDOMIZE);
1369 }
1370 if (errno != 0 || (personality_set
1371 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1372 warning (_("Error disabling address space randomization: %s"),
1373 safe_strerror (errno));
1374 }
1375 #endif /* HAVE_PERSONALITY */
1376
1377 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1378
1379 #ifdef HAVE_PERSONALITY
1380 if (personality_set)
1381 {
1382 errno = 0;
1383 personality (personality_orig);
1384 if (errno != 0)
1385 warning (_("Error restoring address space randomization: %s"),
1386 safe_strerror (errno));
1387 }
1388 #endif /* HAVE_PERSONALITY */
1389 }
1390
1391 static void
1392 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1393 {
1394 struct lwp_info *lp;
1395 int status;
1396 ptid_t ptid;
1397
1398 linux_ops->to_attach (ops, args, from_tty);
1399
1400 /* The ptrace base target adds the main thread with (pid,0,0)
1401 format. Decorate it with lwp info. */
1402 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1403 thread_change_ptid (inferior_ptid, ptid);
1404
1405 /* Add the initial process as the first LWP to the list. */
1406 lp = add_lwp (ptid);
1407
1408 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1409 &lp->signalled);
1410 lp->stopped = 1;
1411
1412 /* Save the wait status to report later. */
1413 lp->resumed = 1;
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNA: waitpid %ld, saving status %s\n",
1417 (long) GET_PID (lp->ptid), status_to_str (status));
1418
1419 lp->status = status;
1420
1421 if (target_can_async_p ())
1422 target_async (inferior_event_handler, 0);
1423 }
1424
1425 /* Get pending status of LP. */
1426 static int
1427 get_pending_status (struct lwp_info *lp, int *status)
1428 {
1429 struct target_waitstatus last;
1430 ptid_t last_ptid;
1431
1432 get_last_target_status (&last_ptid, &last);
1433
1434 /* If this lwp is the ptid that GDB is processing an event from, the
1435 signal will be in stop_signal. Otherwise, we may cache pending
1436 events in lp->status while trying to stop all threads (see
1437 stop_wait_callback). */
1438
1439 *status = 0;
1440
1441 if (non_stop)
1442 {
1443 enum target_signal signo = TARGET_SIGNAL_0;
1444
1445 if (is_executing (lp->ptid))
1446 {
1447 /* If the core thought this lwp was executing --- e.g., the
1448 executing property hasn't been updated yet, but the
1449 thread has been stopped with a stop_callback /
1450 stop_wait_callback sequence (see linux_nat_detach for
1451 example) --- we can only have pending events in the local
1452 queue. */
1453 signo = target_signal_from_host (WSTOPSIG (lp->status));
1454 }
1455 else
1456 {
1457 /* If the core knows the thread is not executing, then we
1458 have the last signal recorded in
1459 thread_info->stop_signal. */
1460
1461 struct thread_info *tp = find_thread_ptid (lp->ptid);
1462 signo = tp->stop_signal;
1463 }
1464
1465 if (signo != TARGET_SIGNAL_0
1466 && !signal_pass_state (signo))
1467 {
1468 if (debug_linux_nat)
1469 fprintf_unfiltered (gdb_stdlog, "\
1470 GPT: lwp %s had signal %s, but it is in no pass state\n",
1471 target_pid_to_str (lp->ptid),
1472 target_signal_to_string (signo));
1473 }
1474 else
1475 {
1476 if (signo != TARGET_SIGNAL_0)
1477 *status = W_STOPCODE (target_signal_to_host (signo));
1478
1479 if (debug_linux_nat)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "GPT: lwp %s as pending signal %s\n",
1482 target_pid_to_str (lp->ptid),
1483 target_signal_to_string (signo));
1484 }
1485 }
1486 else
1487 {
1488 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1489 {
1490 struct thread_info *tp = find_thread_ptid (lp->ptid);
1491 if (tp->stop_signal != TARGET_SIGNAL_0
1492 && signal_pass_state (tp->stop_signal))
1493 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
1494 }
1495 else
1496 *status = lp->status;
1497 }
1498
1499 return 0;
1500 }
1501
1502 static int
1503 detach_callback (struct lwp_info *lp, void *data)
1504 {
1505 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1506
1507 if (debug_linux_nat && lp->status)
1508 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1509 strsignal (WSTOPSIG (lp->status)),
1510 target_pid_to_str (lp->ptid));
1511
1512 /* If there is a pending SIGSTOP, get rid of it. */
1513 if (lp->signalled)
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog,
1517 "DC: Sending SIGCONT to %s\n",
1518 target_pid_to_str (lp->ptid));
1519
1520 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1521 lp->signalled = 0;
1522 }
1523
1524 /* We don't actually detach from the LWP that has an id equal to the
1525 overall process id just yet. */
1526 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1527 {
1528 int status = 0;
1529
1530 /* Pass on any pending signal for this LWP. */
1531 get_pending_status (lp, &status);
1532
1533 errno = 0;
1534 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1535 WSTOPSIG (status)) < 0)
1536 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1537 safe_strerror (errno));
1538
1539 if (debug_linux_nat)
1540 fprintf_unfiltered (gdb_stdlog,
1541 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1542 target_pid_to_str (lp->ptid),
1543 strsignal (WSTOPSIG (status)));
1544
1545 delete_lwp (lp->ptid);
1546 }
1547
1548 return 0;
1549 }
1550
1551 static void
1552 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1553 {
1554 int pid;
1555 int status;
1556 enum target_signal sig;
1557 struct lwp_info *main_lwp;
1558
1559 pid = GET_PID (inferior_ptid);
1560
1561 if (target_can_async_p ())
1562 linux_nat_async (NULL, 0);
1563
1564 /* Stop all threads before detaching. ptrace requires that the
1565 thread is stopped to sucessfully detach. */
1566 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1567 /* ... and wait until all of them have reported back that
1568 they're no longer running. */
1569 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1570
1571 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1572
1573 /* Only the initial process should be left right now. */
1574 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1575
1576 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1577
1578 /* Pass on any pending signal for the last LWP. */
1579 if ((args == NULL || *args == '\0')
1580 && get_pending_status (main_lwp, &status) != -1
1581 && WIFSTOPPED (status))
1582 {
1583 /* Put the signal number in ARGS so that inf_ptrace_detach will
1584 pass it along with PTRACE_DETACH. */
1585 args = alloca (8);
1586 sprintf (args, "%d", (int) WSTOPSIG (status));
1587 fprintf_unfiltered (gdb_stdlog,
1588 "LND: Sending signal %s to %s\n",
1589 args,
1590 target_pid_to_str (main_lwp->ptid));
1591 }
1592
1593 delete_lwp (main_lwp->ptid);
1594
1595 if (forks_exist_p ())
1596 {
1597 /* Multi-fork case. The current inferior_ptid is being detached
1598 from, but there are other viable forks to debug. Detach from
1599 the current fork, and context-switch to the first
1600 available. */
1601 linux_fork_detach (args, from_tty);
1602
1603 if (non_stop && target_can_async_p ())
1604 target_async (inferior_event_handler, 0);
1605 }
1606 else
1607 linux_ops->to_detach (ops, args, from_tty);
1608 }
1609
1610 /* Resume LP. */
1611
1612 static int
1613 resume_callback (struct lwp_info *lp, void *data)
1614 {
1615 if (lp->stopped && lp->status == 0)
1616 {
1617 if (debug_linux_nat)
1618 fprintf_unfiltered (gdb_stdlog,
1619 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1620 target_pid_to_str (lp->ptid));
1621
1622 linux_ops->to_resume (linux_ops,
1623 pid_to_ptid (GET_LWP (lp->ptid)),
1624 0, TARGET_SIGNAL_0);
1625 if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1628 target_pid_to_str (lp->ptid));
1629 lp->stopped = 0;
1630 lp->step = 0;
1631 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1632 }
1633 else if (lp->stopped && debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1635 target_pid_to_str (lp->ptid));
1636 else if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1638 target_pid_to_str (lp->ptid));
1639
1640 return 0;
1641 }
1642
1643 static int
1644 resume_clear_callback (struct lwp_info *lp, void *data)
1645 {
1646 lp->resumed = 0;
1647 return 0;
1648 }
1649
1650 static int
1651 resume_set_callback (struct lwp_info *lp, void *data)
1652 {
1653 lp->resumed = 1;
1654 return 0;
1655 }
1656
1657 static void
1658 linux_nat_resume (struct target_ops *ops,
1659 ptid_t ptid, int step, enum target_signal signo)
1660 {
1661 sigset_t prev_mask;
1662 struct lwp_info *lp;
1663 int resume_many;
1664
1665 if (debug_linux_nat)
1666 fprintf_unfiltered (gdb_stdlog,
1667 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1668 step ? "step" : "resume",
1669 target_pid_to_str (ptid),
1670 signo ? strsignal (signo) : "0",
1671 target_pid_to_str (inferior_ptid));
1672
1673 block_child_signals (&prev_mask);
1674
1675 /* A specific PTID means `step only this process id'. */
1676 resume_many = (ptid_equal (minus_one_ptid, ptid)
1677 || ptid_is_pid (ptid));
1678
1679 if (!non_stop)
1680 {
1681 /* Mark the lwps we're resuming as resumed. */
1682 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1683 iterate_over_lwps (ptid, resume_set_callback, NULL);
1684 }
1685 else
1686 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1687
1688 /* See if it's the current inferior that should be handled
1689 specially. */
1690 if (resume_many)
1691 lp = find_lwp_pid (inferior_ptid);
1692 else
1693 lp = find_lwp_pid (ptid);
1694 gdb_assert (lp != NULL);
1695
1696 /* Remember if we're stepping. */
1697 lp->step = step;
1698
1699 /* If we have a pending wait status for this thread, there is no
1700 point in resuming the process. But first make sure that
1701 linux_nat_wait won't preemptively handle the event - we
1702 should never take this short-circuit if we are going to
1703 leave LP running, since we have skipped resuming all the
1704 other threads. This bit of code needs to be synchronized
1705 with linux_nat_wait. */
1706
1707 if (lp->status && WIFSTOPPED (lp->status))
1708 {
1709 int saved_signo;
1710 struct inferior *inf;
1711
1712 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1713 gdb_assert (inf);
1714 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1715
1716 /* Defer to common code if we're gaining control of the
1717 inferior. */
1718 if (inf->stop_soon == NO_STOP_QUIETLY
1719 && signal_stop_state (saved_signo) == 0
1720 && signal_print_state (saved_signo) == 0
1721 && signal_pass_state (saved_signo) == 1)
1722 {
1723 if (debug_linux_nat)
1724 fprintf_unfiltered (gdb_stdlog,
1725 "LLR: Not short circuiting for ignored "
1726 "status 0x%x\n", lp->status);
1727
1728 /* FIXME: What should we do if we are supposed to continue
1729 this thread with a signal? */
1730 gdb_assert (signo == TARGET_SIGNAL_0);
1731 signo = saved_signo;
1732 lp->status = 0;
1733 }
1734 }
1735
1736 if (lp->status)
1737 {
1738 /* FIXME: What should we do if we are supposed to continue
1739 this thread with a signal? */
1740 gdb_assert (signo == TARGET_SIGNAL_0);
1741
1742 if (debug_linux_nat)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "LLR: Short circuiting for status 0x%x\n",
1745 lp->status);
1746
1747 restore_child_signals_mask (&prev_mask);
1748 if (target_can_async_p ())
1749 {
1750 target_async (inferior_event_handler, 0);
1751 /* Tell the event loop we have something to process. */
1752 async_file_mark ();
1753 }
1754 return;
1755 }
1756
1757 /* Mark LWP as not stopped to prevent it from being continued by
1758 resume_callback. */
1759 lp->stopped = 0;
1760
1761 if (resume_many)
1762 iterate_over_lwps (ptid, resume_callback, NULL);
1763
1764 /* Convert to something the lower layer understands. */
1765 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1766
1767 linux_ops->to_resume (linux_ops, ptid, step, signo);
1768 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1769
1770 if (debug_linux_nat)
1771 fprintf_unfiltered (gdb_stdlog,
1772 "LLR: %s %s, %s (resume event thread)\n",
1773 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1774 target_pid_to_str (ptid),
1775 signo ? strsignal (signo) : "0");
1776
1777 restore_child_signals_mask (&prev_mask);
1778 if (target_can_async_p ())
1779 target_async (inferior_event_handler, 0);
1780 }
1781
1782 /* Issue kill to specified lwp. */
1783
1784 static int tkill_failed;
1785
1786 static int
1787 kill_lwp (int lwpid, int signo)
1788 {
1789 errno = 0;
1790
1791 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1792 fails, then we are not using nptl threads and we should be using kill. */
1793
1794 #ifdef HAVE_TKILL_SYSCALL
1795 if (!tkill_failed)
1796 {
1797 int ret = syscall (__NR_tkill, lwpid, signo);
1798 if (errno != ENOSYS)
1799 return ret;
1800 errno = 0;
1801 tkill_failed = 1;
1802 }
1803 #endif
1804
1805 return kill (lwpid, signo);
1806 }
1807
1808 /* Handle a GNU/Linux extended wait response. If we see a clone
1809 event, we need to add the new LWP to our list (and not report the
1810 trap to higher layers). This function returns non-zero if the
1811 event should be ignored and we should wait again. If STOPPING is
1812 true, the new LWP remains stopped, otherwise it is continued. */
1813
1814 static int
1815 linux_handle_extended_wait (struct lwp_info *lp, int status,
1816 int stopping)
1817 {
1818 int pid = GET_LWP (lp->ptid);
1819 struct target_waitstatus *ourstatus = &lp->waitstatus;
1820 struct lwp_info *new_lp = NULL;
1821 int event = status >> 16;
1822
1823 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1824 || event == PTRACE_EVENT_CLONE)
1825 {
1826 unsigned long new_pid;
1827 int ret;
1828
1829 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1830
1831 /* If we haven't already seen the new PID stop, wait for it now. */
1832 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1833 {
1834 /* The new child has a pending SIGSTOP. We can't affect it until it
1835 hits the SIGSTOP, but we're already attached. */
1836 ret = my_waitpid (new_pid, &status,
1837 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1838 if (ret == -1)
1839 perror_with_name (_("waiting for new child"));
1840 else if (ret != new_pid)
1841 internal_error (__FILE__, __LINE__,
1842 _("wait returned unexpected PID %d"), ret);
1843 else if (!WIFSTOPPED (status))
1844 internal_error (__FILE__, __LINE__,
1845 _("wait returned unexpected status 0x%x"), status);
1846 }
1847
1848 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1849
1850 if (event == PTRACE_EVENT_FORK
1851 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
1852 {
1853 struct fork_info *fp;
1854
1855 /* Handle checkpointing by linux-fork.c here as a special
1856 case. We don't want the follow-fork-mode or 'catch fork'
1857 to interfere with this. */
1858
1859 /* This won't actually modify the breakpoint list, but will
1860 physically remove the breakpoints from the child. */
1861 detach_breakpoints (new_pid);
1862
1863 /* Retain child fork in ptrace (stopped) state. */
1864 fp = find_fork_pid (new_pid);
1865 if (!fp)
1866 fp = add_fork (new_pid);
1867
1868 /* Report as spurious, so that infrun doesn't want to follow
1869 this fork. We're actually doing an infcall in
1870 linux-fork.c. */
1871 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1872 linux_enable_event_reporting (pid_to_ptid (new_pid));
1873
1874 /* Report the stop to the core. */
1875 return 0;
1876 }
1877
1878 if (event == PTRACE_EVENT_FORK)
1879 ourstatus->kind = TARGET_WAITKIND_FORKED;
1880 else if (event == PTRACE_EVENT_VFORK)
1881 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1882 else
1883 {
1884 struct cleanup *old_chain;
1885
1886 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1887 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
1888 new_lp->cloned = 1;
1889 new_lp->stopped = 1;
1890
1891 if (WSTOPSIG (status) != SIGSTOP)
1892 {
1893 /* This can happen if someone starts sending signals to
1894 the new thread before it gets a chance to run, which
1895 have a lower number than SIGSTOP (e.g. SIGUSR1).
1896 This is an unlikely case, and harder to handle for
1897 fork / vfork than for clone, so we do not try - but
1898 we handle it for clone events here. We'll send
1899 the other signal on to the thread below. */
1900
1901 new_lp->signalled = 1;
1902 }
1903 else
1904 status = 0;
1905
1906 if (non_stop)
1907 {
1908 /* Add the new thread to GDB's lists as soon as possible
1909 so that:
1910
1911 1) the frontend doesn't have to wait for a stop to
1912 display them, and,
1913
1914 2) we tag it with the correct running state. */
1915
1916 /* If the thread_db layer is active, let it know about
1917 this new thread, and add it to GDB's list. */
1918 if (!thread_db_attach_lwp (new_lp->ptid))
1919 {
1920 /* We're not using thread_db. Add it to GDB's
1921 list. */
1922 target_post_attach (GET_LWP (new_lp->ptid));
1923 add_thread (new_lp->ptid);
1924 }
1925
1926 if (!stopping)
1927 {
1928 set_running (new_lp->ptid, 1);
1929 set_executing (new_lp->ptid, 1);
1930 }
1931 }
1932
1933 if (!stopping)
1934 {
1935 new_lp->stopped = 0;
1936 new_lp->resumed = 1;
1937 ptrace (PTRACE_CONT, new_pid, 0,
1938 status ? WSTOPSIG (status) : 0);
1939 }
1940
1941 if (debug_linux_nat)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "LHEW: Got clone event from LWP %ld, resuming\n",
1944 GET_LWP (lp->ptid));
1945 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1946
1947 return 1;
1948 }
1949
1950 return 0;
1951 }
1952
1953 if (event == PTRACE_EVENT_EXEC)
1954 {
1955 if (debug_linux_nat)
1956 fprintf_unfiltered (gdb_stdlog,
1957 "LHEW: Got exec event from LWP %ld\n",
1958 GET_LWP (lp->ptid));
1959
1960 ourstatus->kind = TARGET_WAITKIND_EXECD;
1961 ourstatus->value.execd_pathname
1962 = xstrdup (linux_child_pid_to_exec_file (pid));
1963
1964 if (linux_parent_pid)
1965 {
1966 detach_breakpoints (linux_parent_pid);
1967 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1968
1969 linux_parent_pid = 0;
1970 }
1971
1972 /* At this point, all inserted breakpoints are gone. Doing this
1973 as soon as we detect an exec prevents the badness of deleting
1974 a breakpoint writing the current "shadow contents" to lift
1975 the bp. That shadow is NOT valid after an exec.
1976
1977 Note that we have to do this after the detach_breakpoints
1978 call above, otherwise breakpoints wouldn't be lifted from the
1979 parent on a vfork, because detach_breakpoints would think
1980 that breakpoints are not inserted. */
1981 mark_breakpoints_out ();
1982 return 0;
1983 }
1984
1985 internal_error (__FILE__, __LINE__,
1986 _("unknown ptrace event %d"), event);
1987 }
1988
1989 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1990 exited. */
1991
1992 static int
1993 wait_lwp (struct lwp_info *lp)
1994 {
1995 pid_t pid;
1996 int status;
1997 int thread_dead = 0;
1998
1999 gdb_assert (!lp->stopped);
2000 gdb_assert (lp->status == 0);
2001
2002 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2003 if (pid == -1 && errno == ECHILD)
2004 {
2005 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2006 if (pid == -1 && errno == ECHILD)
2007 {
2008 /* The thread has previously exited. We need to delete it
2009 now because, for some vendor 2.4 kernels with NPTL
2010 support backported, there won't be an exit event unless
2011 it is the main thread. 2.6 kernels will report an exit
2012 event for each thread that exits, as expected. */
2013 thread_dead = 1;
2014 if (debug_linux_nat)
2015 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2016 target_pid_to_str (lp->ptid));
2017 }
2018 }
2019
2020 if (!thread_dead)
2021 {
2022 gdb_assert (pid == GET_LWP (lp->ptid));
2023
2024 if (debug_linux_nat)
2025 {
2026 fprintf_unfiltered (gdb_stdlog,
2027 "WL: waitpid %s received %s\n",
2028 target_pid_to_str (lp->ptid),
2029 status_to_str (status));
2030 }
2031 }
2032
2033 /* Check if the thread has exited. */
2034 if (WIFEXITED (status) || WIFSIGNALED (status))
2035 {
2036 thread_dead = 1;
2037 if (debug_linux_nat)
2038 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2039 target_pid_to_str (lp->ptid));
2040 }
2041
2042 if (thread_dead)
2043 {
2044 exit_lwp (lp);
2045 return 0;
2046 }
2047
2048 gdb_assert (WIFSTOPPED (status));
2049
2050 /* Handle GNU/Linux's extended waitstatus for trace events. */
2051 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2052 {
2053 if (debug_linux_nat)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "WL: Handling extended status 0x%06x\n",
2056 status);
2057 if (linux_handle_extended_wait (lp, status, 1))
2058 return wait_lwp (lp);
2059 }
2060
2061 return status;
2062 }
2063
2064 /* Save the most recent siginfo for LP. This is currently only called
2065 for SIGTRAP; some ports use the si_addr field for
2066 target_stopped_data_address. In the future, it may also be used to
2067 restore the siginfo of requeued signals. */
2068
2069 static void
2070 save_siginfo (struct lwp_info *lp)
2071 {
2072 errno = 0;
2073 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2074 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2075
2076 if (errno != 0)
2077 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2078 }
2079
2080 /* Send a SIGSTOP to LP. */
2081
2082 static int
2083 stop_callback (struct lwp_info *lp, void *data)
2084 {
2085 if (!lp->stopped && !lp->signalled)
2086 {
2087 int ret;
2088
2089 if (debug_linux_nat)
2090 {
2091 fprintf_unfiltered (gdb_stdlog,
2092 "SC: kill %s **<SIGSTOP>**\n",
2093 target_pid_to_str (lp->ptid));
2094 }
2095 errno = 0;
2096 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2097 if (debug_linux_nat)
2098 {
2099 fprintf_unfiltered (gdb_stdlog,
2100 "SC: lwp kill %d %s\n",
2101 ret,
2102 errno ? safe_strerror (errno) : "ERRNO-OK");
2103 }
2104
2105 lp->signalled = 1;
2106 gdb_assert (lp->status == 0);
2107 }
2108
2109 return 0;
2110 }
2111
2112 /* Return non-zero if LWP PID has a pending SIGINT. */
2113
2114 static int
2115 linux_nat_has_pending_sigint (int pid)
2116 {
2117 sigset_t pending, blocked, ignored;
2118 int i;
2119
2120 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2121
2122 if (sigismember (&pending, SIGINT)
2123 && !sigismember (&ignored, SIGINT))
2124 return 1;
2125
2126 return 0;
2127 }
2128
2129 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2130
2131 static int
2132 set_ignore_sigint (struct lwp_info *lp, void *data)
2133 {
2134 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2135 flag to consume the next one. */
2136 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2137 && WSTOPSIG (lp->status) == SIGINT)
2138 lp->status = 0;
2139 else
2140 lp->ignore_sigint = 1;
2141
2142 return 0;
2143 }
2144
2145 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2146 This function is called after we know the LWP has stopped; if the LWP
2147 stopped before the expected SIGINT was delivered, then it will never have
2148 arrived. Also, if the signal was delivered to a shared queue and consumed
2149 by a different thread, it will never be delivered to this LWP. */
2150
2151 static void
2152 maybe_clear_ignore_sigint (struct lwp_info *lp)
2153 {
2154 if (!lp->ignore_sigint)
2155 return;
2156
2157 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2158 {
2159 if (debug_linux_nat)
2160 fprintf_unfiltered (gdb_stdlog,
2161 "MCIS: Clearing bogus flag for %s\n",
2162 target_pid_to_str (lp->ptid));
2163 lp->ignore_sigint = 0;
2164 }
2165 }
2166
2167 /* Wait until LP is stopped. */
2168
2169 static int
2170 stop_wait_callback (struct lwp_info *lp, void *data)
2171 {
2172 if (!lp->stopped)
2173 {
2174 int status;
2175
2176 status = wait_lwp (lp);
2177 if (status == 0)
2178 return 0;
2179
2180 if (lp->ignore_sigint && WIFSTOPPED (status)
2181 && WSTOPSIG (status) == SIGINT)
2182 {
2183 lp->ignore_sigint = 0;
2184
2185 errno = 0;
2186 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2187 if (debug_linux_nat)
2188 fprintf_unfiltered (gdb_stdlog,
2189 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2190 target_pid_to_str (lp->ptid),
2191 errno ? safe_strerror (errno) : "OK");
2192
2193 return stop_wait_callback (lp, NULL);
2194 }
2195
2196 maybe_clear_ignore_sigint (lp);
2197
2198 if (WSTOPSIG (status) != SIGSTOP)
2199 {
2200 if (WSTOPSIG (status) == SIGTRAP)
2201 {
2202 /* If a LWP other than the LWP that we're reporting an
2203 event for has hit a GDB breakpoint (as opposed to
2204 some random trap signal), then just arrange for it to
2205 hit it again later. We don't keep the SIGTRAP status
2206 and don't forward the SIGTRAP signal to the LWP. We
2207 will handle the current event, eventually we will
2208 resume all LWPs, and this one will get its breakpoint
2209 trap again.
2210
2211 If we do not do this, then we run the risk that the
2212 user will delete or disable the breakpoint, but the
2213 thread will have already tripped on it. */
2214
2215 /* Save the trap's siginfo in case we need it later. */
2216 save_siginfo (lp);
2217
2218 /* Now resume this LWP and get the SIGSTOP event. */
2219 errno = 0;
2220 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2221 if (debug_linux_nat)
2222 {
2223 fprintf_unfiltered (gdb_stdlog,
2224 "PTRACE_CONT %s, 0, 0 (%s)\n",
2225 target_pid_to_str (lp->ptid),
2226 errno ? safe_strerror (errno) : "OK");
2227
2228 fprintf_unfiltered (gdb_stdlog,
2229 "SWC: Candidate SIGTRAP event in %s\n",
2230 target_pid_to_str (lp->ptid));
2231 }
2232 /* Hold this event/waitstatus while we check to see if
2233 there are any more (we still want to get that SIGSTOP). */
2234 stop_wait_callback (lp, NULL);
2235
2236 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2237 there's another event, throw it back into the
2238 queue. */
2239 if (lp->status)
2240 {
2241 if (debug_linux_nat)
2242 fprintf_unfiltered (gdb_stdlog,
2243 "SWC: kill %s, %s\n",
2244 target_pid_to_str (lp->ptid),
2245 status_to_str ((int) status));
2246 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2247 }
2248
2249 /* Save the sigtrap event. */
2250 lp->status = status;
2251 return 0;
2252 }
2253 else
2254 {
2255 /* The thread was stopped with a signal other than
2256 SIGSTOP, and didn't accidentally trip a breakpoint. */
2257
2258 if (debug_linux_nat)
2259 {
2260 fprintf_unfiltered (gdb_stdlog,
2261 "SWC: Pending event %s in %s\n",
2262 status_to_str ((int) status),
2263 target_pid_to_str (lp->ptid));
2264 }
2265 /* Now resume this LWP and get the SIGSTOP event. */
2266 errno = 0;
2267 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2268 if (debug_linux_nat)
2269 fprintf_unfiltered (gdb_stdlog,
2270 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2271 target_pid_to_str (lp->ptid),
2272 errno ? safe_strerror (errno) : "OK");
2273
2274 /* Hold this event/waitstatus while we check to see if
2275 there are any more (we still want to get that SIGSTOP). */
2276 stop_wait_callback (lp, NULL);
2277
2278 /* If the lp->status field is still empty, use it to
2279 hold this event. If not, then this event must be
2280 returned to the event queue of the LWP. */
2281 if (lp->status)
2282 {
2283 if (debug_linux_nat)
2284 {
2285 fprintf_unfiltered (gdb_stdlog,
2286 "SWC: kill %s, %s\n",
2287 target_pid_to_str (lp->ptid),
2288 status_to_str ((int) status));
2289 }
2290 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2291 }
2292 else
2293 lp->status = status;
2294 return 0;
2295 }
2296 }
2297 else
2298 {
2299 /* We caught the SIGSTOP that we intended to catch, so
2300 there's no SIGSTOP pending. */
2301 lp->stopped = 1;
2302 lp->signalled = 0;
2303 }
2304 }
2305
2306 return 0;
2307 }
2308
2309 /* Return non-zero if LP has a wait status pending. */
2310
2311 static int
2312 status_callback (struct lwp_info *lp, void *data)
2313 {
2314 /* Only report a pending wait status if we pretend that this has
2315 indeed been resumed. */
2316 /* We check for lp->waitstatus in addition to lp->status, because we
2317 can have pending process exits recorded in lp->waitstatus, and
2318 W_EXITCODE(0,0) == 0. */
2319 return ((lp->status != 0
2320 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2321 && lp->resumed);
2322 }
2323
2324 /* Return non-zero if LP isn't stopped. */
2325
2326 static int
2327 running_callback (struct lwp_info *lp, void *data)
2328 {
2329 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2330 }
2331
2332 /* Count the LWP's that have had events. */
2333
2334 static int
2335 count_events_callback (struct lwp_info *lp, void *data)
2336 {
2337 int *count = data;
2338
2339 gdb_assert (count != NULL);
2340
2341 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2342 if (lp->status != 0 && lp->resumed
2343 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2344 (*count)++;
2345
2346 return 0;
2347 }
2348
2349 /* Select the LWP (if any) that is currently being single-stepped. */
2350
2351 static int
2352 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2353 {
2354 if (lp->step && lp->status != 0)
2355 return 1;
2356 else
2357 return 0;
2358 }
2359
2360 /* Select the Nth LWP that has had a SIGTRAP event. */
2361
2362 static int
2363 select_event_lwp_callback (struct lwp_info *lp, void *data)
2364 {
2365 int *selector = data;
2366
2367 gdb_assert (selector != NULL);
2368
2369 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2370 if (lp->status != 0 && lp->resumed
2371 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2372 if ((*selector)-- == 0)
2373 return 1;
2374
2375 return 0;
2376 }
2377
2378 static int
2379 cancel_breakpoint (struct lwp_info *lp)
2380 {
2381 /* Arrange for a breakpoint to be hit again later. We don't keep
2382 the SIGTRAP status and don't forward the SIGTRAP signal to the
2383 LWP. We will handle the current event, eventually we will resume
2384 this LWP, and this breakpoint will trap again.
2385
2386 If we do not do this, then we run the risk that the user will
2387 delete or disable the breakpoint, but the LWP will have already
2388 tripped on it. */
2389
2390 struct regcache *regcache = get_thread_regcache (lp->ptid);
2391 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2392 CORE_ADDR pc;
2393
2394 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2395 if (breakpoint_inserted_here_p (pc))
2396 {
2397 if (debug_linux_nat)
2398 fprintf_unfiltered (gdb_stdlog,
2399 "CB: Push back breakpoint for %s\n",
2400 target_pid_to_str (lp->ptid));
2401
2402 /* Back up the PC if necessary. */
2403 if (gdbarch_decr_pc_after_break (gdbarch))
2404 regcache_write_pc (regcache, pc);
2405
2406 return 1;
2407 }
2408 return 0;
2409 }
2410
2411 static int
2412 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2413 {
2414 struct lwp_info *event_lp = data;
2415
2416 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2417 if (lp == event_lp)
2418 return 0;
2419
2420 /* If a LWP other than the LWP that we're reporting an event for has
2421 hit a GDB breakpoint (as opposed to some random trap signal),
2422 then just arrange for it to hit it again later. We don't keep
2423 the SIGTRAP status and don't forward the SIGTRAP signal to the
2424 LWP. We will handle the current event, eventually we will resume
2425 all LWPs, and this one will get its breakpoint trap again.
2426
2427 If we do not do this, then we run the risk that the user will
2428 delete or disable the breakpoint, but the LWP will have already
2429 tripped on it. */
2430
2431 if (lp->status != 0
2432 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2433 && cancel_breakpoint (lp))
2434 /* Throw away the SIGTRAP. */
2435 lp->status = 0;
2436
2437 return 0;
2438 }
2439
2440 /* Select one LWP out of those that have events pending. */
2441
2442 static void
2443 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2444 {
2445 int num_events = 0;
2446 int random_selector;
2447 struct lwp_info *event_lp;
2448
2449 /* Record the wait status for the original LWP. */
2450 (*orig_lp)->status = *status;
2451
2452 /* Give preference to any LWP that is being single-stepped. */
2453 event_lp = iterate_over_lwps (filter,
2454 select_singlestep_lwp_callback, NULL);
2455 if (event_lp != NULL)
2456 {
2457 if (debug_linux_nat)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "SEL: Select single-step %s\n",
2460 target_pid_to_str (event_lp->ptid));
2461 }
2462 else
2463 {
2464 /* No single-stepping LWP. Select one at random, out of those
2465 which have had SIGTRAP events. */
2466
2467 /* First see how many SIGTRAP events we have. */
2468 iterate_over_lwps (filter, count_events_callback, &num_events);
2469
2470 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2471 random_selector = (int)
2472 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2473
2474 if (debug_linux_nat && num_events > 1)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2477 num_events, random_selector);
2478
2479 event_lp = iterate_over_lwps (filter,
2480 select_event_lwp_callback,
2481 &random_selector);
2482 }
2483
2484 if (event_lp != NULL)
2485 {
2486 /* Switch the event LWP. */
2487 *orig_lp = event_lp;
2488 *status = event_lp->status;
2489 }
2490
2491 /* Flush the wait status for the event LWP. */
2492 (*orig_lp)->status = 0;
2493 }
2494
2495 /* Return non-zero if LP has been resumed. */
2496
2497 static int
2498 resumed_callback (struct lwp_info *lp, void *data)
2499 {
2500 return lp->resumed;
2501 }
2502
2503 /* Stop an active thread, verify it still exists, then resume it. */
2504
2505 static int
2506 stop_and_resume_callback (struct lwp_info *lp, void *data)
2507 {
2508 struct lwp_info *ptr;
2509
2510 if (!lp->stopped && !lp->signalled)
2511 {
2512 stop_callback (lp, NULL);
2513 stop_wait_callback (lp, NULL);
2514 /* Resume if the lwp still exists. */
2515 for (ptr = lwp_list; ptr; ptr = ptr->next)
2516 if (lp == ptr)
2517 {
2518 resume_callback (lp, NULL);
2519 resume_set_callback (lp, NULL);
2520 }
2521 }
2522 return 0;
2523 }
2524
2525 /* Check if we should go on and pass this event to common code.
2526 Return the affected lwp if we are, or NULL otherwise. */
2527 static struct lwp_info *
2528 linux_nat_filter_event (int lwpid, int status, int options)
2529 {
2530 struct lwp_info *lp;
2531
2532 lp = find_lwp_pid (pid_to_ptid (lwpid));
2533
2534 /* Check for stop events reported by a process we didn't already
2535 know about - anything not already in our LWP list.
2536
2537 If we're expecting to receive stopped processes after
2538 fork, vfork, and clone events, then we'll just add the
2539 new one to our list and go back to waiting for the event
2540 to be reported - the stopped process might be returned
2541 from waitpid before or after the event is. */
2542 if (WIFSTOPPED (status) && !lp)
2543 {
2544 linux_record_stopped_pid (lwpid, status);
2545 return NULL;
2546 }
2547
2548 /* Make sure we don't report an event for the exit of an LWP not in
2549 our list, i.e. not part of the current process. This can happen
2550 if we detach from a program we original forked and then it
2551 exits. */
2552 if (!WIFSTOPPED (status) && !lp)
2553 return NULL;
2554
2555 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2556 CLONE_PTRACE processes which do not use the thread library -
2557 otherwise we wouldn't find the new LWP this way. That doesn't
2558 currently work, and the following code is currently unreachable
2559 due to the two blocks above. If it's fixed some day, this code
2560 should be broken out into a function so that we can also pick up
2561 LWPs from the new interface. */
2562 if (!lp)
2563 {
2564 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2565 if (options & __WCLONE)
2566 lp->cloned = 1;
2567
2568 gdb_assert (WIFSTOPPED (status)
2569 && WSTOPSIG (status) == SIGSTOP);
2570 lp->signalled = 1;
2571
2572 if (!in_thread_list (inferior_ptid))
2573 {
2574 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2575 GET_PID (inferior_ptid));
2576 add_thread (inferior_ptid);
2577 }
2578
2579 add_thread (lp->ptid);
2580 }
2581
2582 /* Save the trap's siginfo in case we need it later. */
2583 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2584 save_siginfo (lp);
2585
2586 /* Handle GNU/Linux's extended waitstatus for trace events. */
2587 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2588 {
2589 if (debug_linux_nat)
2590 fprintf_unfiltered (gdb_stdlog,
2591 "LLW: Handling extended status 0x%06x\n",
2592 status);
2593 if (linux_handle_extended_wait (lp, status, 0))
2594 return NULL;
2595 }
2596
2597 /* Check if the thread has exited. */
2598 if ((WIFEXITED (status) || WIFSIGNALED (status))
2599 && num_lwps (GET_PID (lp->ptid)) > 1)
2600 {
2601 /* If this is the main thread, we must stop all threads and verify
2602 if they are still alive. This is because in the nptl thread model
2603 on Linux 2.4, there is no signal issued for exiting LWPs
2604 other than the main thread. We only get the main thread exit
2605 signal once all child threads have already exited. If we
2606 stop all the threads and use the stop_wait_callback to check
2607 if they have exited we can determine whether this signal
2608 should be ignored or whether it means the end of the debugged
2609 application, regardless of which threading model is being
2610 used. */
2611 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2612 {
2613 lp->stopped = 1;
2614 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
2615 stop_and_resume_callback, NULL);
2616 }
2617
2618 if (debug_linux_nat)
2619 fprintf_unfiltered (gdb_stdlog,
2620 "LLW: %s exited.\n",
2621 target_pid_to_str (lp->ptid));
2622
2623 if (num_lwps (GET_PID (lp->ptid)) > 1)
2624 {
2625 /* If there is at least one more LWP, then the exit signal
2626 was not the end of the debugged application and should be
2627 ignored. */
2628 exit_lwp (lp);
2629 return NULL;
2630 }
2631 }
2632
2633 /* Check if the current LWP has previously exited. In the nptl
2634 thread model, LWPs other than the main thread do not issue
2635 signals when they exit so we must check whenever the thread has
2636 stopped. A similar check is made in stop_wait_callback(). */
2637 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2638 {
2639 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
2640
2641 if (debug_linux_nat)
2642 fprintf_unfiltered (gdb_stdlog,
2643 "LLW: %s exited.\n",
2644 target_pid_to_str (lp->ptid));
2645
2646 exit_lwp (lp);
2647
2648 /* Make sure there is at least one thread running. */
2649 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
2650
2651 /* Discard the event. */
2652 return NULL;
2653 }
2654
2655 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2656 an attempt to stop an LWP. */
2657 if (lp->signalled
2658 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2659 {
2660 if (debug_linux_nat)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "LLW: Delayed SIGSTOP caught for %s.\n",
2663 target_pid_to_str (lp->ptid));
2664
2665 /* This is a delayed SIGSTOP. */
2666 lp->signalled = 0;
2667
2668 registers_changed ();
2669
2670 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2671 lp->step, TARGET_SIGNAL_0);
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2675 lp->step ?
2676 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2677 target_pid_to_str (lp->ptid));
2678
2679 lp->stopped = 0;
2680 gdb_assert (lp->resumed);
2681
2682 /* Discard the event. */
2683 return NULL;
2684 }
2685
2686 /* Make sure we don't report a SIGINT that we have already displayed
2687 for another thread. */
2688 if (lp->ignore_sigint
2689 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2690 {
2691 if (debug_linux_nat)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "LLW: Delayed SIGINT caught for %s.\n",
2694 target_pid_to_str (lp->ptid));
2695
2696 /* This is a delayed SIGINT. */
2697 lp->ignore_sigint = 0;
2698
2699 registers_changed ();
2700 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2701 lp->step, TARGET_SIGNAL_0);
2702 if (debug_linux_nat)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2705 lp->step ?
2706 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2707 target_pid_to_str (lp->ptid));
2708
2709 lp->stopped = 0;
2710 gdb_assert (lp->resumed);
2711
2712 /* Discard the event. */
2713 return NULL;
2714 }
2715
2716 /* An interesting event. */
2717 gdb_assert (lp);
2718 return lp;
2719 }
2720
2721 static ptid_t
2722 linux_nat_wait_1 (struct target_ops *ops,
2723 ptid_t ptid, struct target_waitstatus *ourstatus,
2724 int target_options)
2725 {
2726 static sigset_t prev_mask;
2727 struct lwp_info *lp = NULL;
2728 int options = 0;
2729 int status = 0;
2730 pid_t pid;
2731
2732 if (debug_linux_nat_async)
2733 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2734
2735 /* The first time we get here after starting a new inferior, we may
2736 not have added it to the LWP list yet - this is the earliest
2737 moment at which we know its PID. */
2738 if (ptid_is_pid (inferior_ptid))
2739 {
2740 /* Upgrade the main thread's ptid. */
2741 thread_change_ptid (inferior_ptid,
2742 BUILD_LWP (GET_PID (inferior_ptid),
2743 GET_PID (inferior_ptid)));
2744
2745 lp = add_lwp (inferior_ptid);
2746 lp->resumed = 1;
2747 }
2748
2749 /* Make sure SIGCHLD is blocked. */
2750 block_child_signals (&prev_mask);
2751
2752 if (ptid_equal (ptid, minus_one_ptid))
2753 pid = -1;
2754 else if (ptid_is_pid (ptid))
2755 /* A request to wait for a specific tgid. This is not possible
2756 with waitpid, so instead, we wait for any child, and leave
2757 children we're not interested in right now with a pending
2758 status to report later. */
2759 pid = -1;
2760 else
2761 pid = GET_LWP (ptid);
2762
2763 retry:
2764 lp = NULL;
2765 status = 0;
2766
2767 /* Make sure there is at least one LWP that has been resumed. */
2768 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
2769
2770 /* First check if there is a LWP with a wait status pending. */
2771 if (pid == -1)
2772 {
2773 /* Any LWP that's been resumed will do. */
2774 lp = iterate_over_lwps (ptid, status_callback, NULL);
2775 if (lp)
2776 {
2777 status = lp->status;
2778 lp->status = 0;
2779
2780 if (debug_linux_nat && status)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "LLW: Using pending wait status %s for %s.\n",
2783 status_to_str (status),
2784 target_pid_to_str (lp->ptid));
2785 }
2786
2787 /* But if we don't find one, we'll have to wait, and check both
2788 cloned and uncloned processes. We start with the cloned
2789 processes. */
2790 options = __WCLONE | WNOHANG;
2791 }
2792 else if (is_lwp (ptid))
2793 {
2794 if (debug_linux_nat)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "LLW: Waiting for specific LWP %s.\n",
2797 target_pid_to_str (ptid));
2798
2799 /* We have a specific LWP to check. */
2800 lp = find_lwp_pid (ptid);
2801 gdb_assert (lp);
2802 status = lp->status;
2803 lp->status = 0;
2804
2805 if (debug_linux_nat && status)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "LLW: Using pending wait status %s for %s.\n",
2808 status_to_str (status),
2809 target_pid_to_str (lp->ptid));
2810
2811 /* If we have to wait, take into account whether PID is a cloned
2812 process or not. And we have to convert it to something that
2813 the layer beneath us can understand. */
2814 options = lp->cloned ? __WCLONE : 0;
2815 pid = GET_LWP (ptid);
2816
2817 /* We check for lp->waitstatus in addition to lp->status,
2818 because we can have pending process exits recorded in
2819 lp->status and W_EXITCODE(0,0) == 0. We should probably have
2820 an additional lp->status_p flag. */
2821 if (status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
2822 lp = NULL;
2823 }
2824
2825 if (lp && lp->signalled)
2826 {
2827 /* A pending SIGSTOP may interfere with the normal stream of
2828 events. In a typical case where interference is a problem,
2829 we have a SIGSTOP signal pending for LWP A while
2830 single-stepping it, encounter an event in LWP B, and take the
2831 pending SIGSTOP while trying to stop LWP A. After processing
2832 the event in LWP B, LWP A is continued, and we'll never see
2833 the SIGTRAP associated with the last time we were
2834 single-stepping LWP A. */
2835
2836 /* Resume the thread. It should halt immediately returning the
2837 pending SIGSTOP. */
2838 registers_changed ();
2839 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2840 lp->step, TARGET_SIGNAL_0);
2841 if (debug_linux_nat)
2842 fprintf_unfiltered (gdb_stdlog,
2843 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2844 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2845 target_pid_to_str (lp->ptid));
2846 lp->stopped = 0;
2847 gdb_assert (lp->resumed);
2848
2849 /* This should catch the pending SIGSTOP. */
2850 stop_wait_callback (lp, NULL);
2851 }
2852
2853 if (!target_can_async_p ())
2854 {
2855 /* Causes SIGINT to be passed on to the attached process. */
2856 set_sigint_trap ();
2857 }
2858
2859 /* Translate generic target_wait options into waitpid options. */
2860 if (target_options & TARGET_WNOHANG)
2861 options |= WNOHANG;
2862
2863 while (lp == NULL)
2864 {
2865 pid_t lwpid;
2866
2867 lwpid = my_waitpid (pid, &status, options);
2868
2869 if (lwpid > 0)
2870 {
2871 gdb_assert (pid == -1 || lwpid == pid);
2872
2873 if (debug_linux_nat)
2874 {
2875 fprintf_unfiltered (gdb_stdlog,
2876 "LLW: waitpid %ld received %s\n",
2877 (long) lwpid, status_to_str (status));
2878 }
2879
2880 lp = linux_nat_filter_event (lwpid, status, options);
2881
2882 if (lp
2883 && ptid_is_pid (ptid)
2884 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
2885 {
2886 if (debug_linux_nat)
2887 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
2888 ptid_get_lwp (lp->ptid), status);
2889
2890 if (WIFSTOPPED (status))
2891 {
2892 if (WSTOPSIG (status) != SIGSTOP)
2893 {
2894 lp->status = status;
2895
2896 stop_callback (lp, NULL);
2897
2898 /* Resume in order to collect the sigstop. */
2899 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2900
2901 stop_wait_callback (lp, NULL);
2902 }
2903 else
2904 {
2905 lp->stopped = 1;
2906 lp->signalled = 0;
2907 }
2908 }
2909 else if (WIFEXITED (status) || WIFSIGNALED (status))
2910 {
2911 if (debug_linux_nat)
2912 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
2913 ptid_get_lwp (lp->ptid));
2914
2915 /* This was the last lwp in the process. Since
2916 events are serialized to GDB core, and we can't
2917 report this one right now, but GDB core and the
2918 other target layers will want to be notified
2919 about the exit code/signal, leave the status
2920 pending for the next time we're able to report
2921 it. */
2922 lp->status = status;
2923
2924 /* Prevent trying to stop this thread again. We'll
2925 never try to resume it because it has a pending
2926 status. */
2927 lp->stopped = 1;
2928
2929 /* Dead LWP's aren't expected to reported a pending
2930 sigstop. */
2931 lp->signalled = 0;
2932
2933 /* Store the pending event in the waitstatus as
2934 well, because W_EXITCODE(0,0) == 0. */
2935 store_waitstatus (&lp->waitstatus, status);
2936 }
2937
2938 /* Keep looking. */
2939 lp = NULL;
2940 continue;
2941 }
2942
2943 if (lp)
2944 break;
2945 else
2946 {
2947 if (pid == -1)
2948 {
2949 /* waitpid did return something. Restart over. */
2950 options |= __WCLONE;
2951 }
2952 continue;
2953 }
2954 }
2955
2956 if (pid == -1)
2957 {
2958 /* Alternate between checking cloned and uncloned processes. */
2959 options ^= __WCLONE;
2960
2961 /* And every time we have checked both:
2962 In async mode, return to event loop;
2963 In sync mode, suspend waiting for a SIGCHLD signal. */
2964 if (options & __WCLONE)
2965 {
2966 if (target_options & TARGET_WNOHANG)
2967 {
2968 /* No interesting event. */
2969 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2970
2971 if (debug_linux_nat_async)
2972 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2973
2974 restore_child_signals_mask (&prev_mask);
2975 return minus_one_ptid;
2976 }
2977
2978 sigsuspend (&suspend_mask);
2979 }
2980 }
2981
2982 /* We shouldn't end up here unless we want to try again. */
2983 gdb_assert (lp == NULL);
2984 }
2985
2986 if (!target_can_async_p ())
2987 clear_sigint_trap ();
2988
2989 gdb_assert (lp);
2990
2991 /* Don't report signals that GDB isn't interested in, such as
2992 signals that are neither printed nor stopped upon. Stopping all
2993 threads can be a bit time-consuming so if we want decent
2994 performance with heavily multi-threaded programs, especially when
2995 they're using a high frequency timer, we'd better avoid it if we
2996 can. */
2997
2998 if (WIFSTOPPED (status))
2999 {
3000 int signo = target_signal_from_host (WSTOPSIG (status));
3001 struct inferior *inf;
3002
3003 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3004 gdb_assert (inf);
3005
3006 /* Defer to common code if we get a signal while
3007 single-stepping, since that may need special care, e.g. to
3008 skip the signal handler, or, if we're gaining control of the
3009 inferior. */
3010 if (!lp->step
3011 && inf->stop_soon == NO_STOP_QUIETLY
3012 && signal_stop_state (signo) == 0
3013 && signal_print_state (signo) == 0
3014 && signal_pass_state (signo) == 1)
3015 {
3016 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3017 here? It is not clear we should. GDB may not expect
3018 other threads to run. On the other hand, not resuming
3019 newly attached threads may cause an unwanted delay in
3020 getting them running. */
3021 registers_changed ();
3022 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3023 lp->step, signo);
3024 if (debug_linux_nat)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "LLW: %s %s, %s (preempt 'handle')\n",
3027 lp->step ?
3028 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3029 target_pid_to_str (lp->ptid),
3030 signo ? strsignal (signo) : "0");
3031 lp->stopped = 0;
3032 goto retry;
3033 }
3034
3035 if (!non_stop)
3036 {
3037 /* Only do the below in all-stop, as we currently use SIGINT
3038 to implement target_stop (see linux_nat_stop) in
3039 non-stop. */
3040 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3041 {
3042 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3043 forwarded to the entire process group, that is, all LWPs
3044 will receive it - unless they're using CLONE_THREAD to
3045 share signals. Since we only want to report it once, we
3046 mark it as ignored for all LWPs except this one. */
3047 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3048 set_ignore_sigint, NULL);
3049 lp->ignore_sigint = 0;
3050 }
3051 else
3052 maybe_clear_ignore_sigint (lp);
3053 }
3054 }
3055
3056 /* This LWP is stopped now. */
3057 lp->stopped = 1;
3058
3059 if (debug_linux_nat)
3060 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3061 status_to_str (status), target_pid_to_str (lp->ptid));
3062
3063 if (!non_stop)
3064 {
3065 /* Now stop all other LWP's ... */
3066 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3067
3068 /* ... and wait until all of them have reported back that
3069 they're no longer running. */
3070 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3071
3072 /* If we're not waiting for a specific LWP, choose an event LWP
3073 from among those that have had events. Giving equal priority
3074 to all LWPs that have had events helps prevent
3075 starvation. */
3076 if (pid == -1)
3077 select_event_lwp (ptid, &lp, &status);
3078 }
3079
3080 /* Now that we've selected our final event LWP, cancel any
3081 breakpoints in other LWPs that have hit a GDB breakpoint. See
3082 the comment in cancel_breakpoints_callback to find out why. */
3083 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3084
3085 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3086 {
3087 if (debug_linux_nat)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "LLW: trap ptid is %s.\n",
3090 target_pid_to_str (lp->ptid));
3091 }
3092
3093 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3094 {
3095 *ourstatus = lp->waitstatus;
3096 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3097 }
3098 else
3099 store_waitstatus (ourstatus, status);
3100
3101 if (debug_linux_nat_async)
3102 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3103
3104 restore_child_signals_mask (&prev_mask);
3105 return lp->ptid;
3106 }
3107
3108 static ptid_t
3109 linux_nat_wait (struct target_ops *ops,
3110 ptid_t ptid, struct target_waitstatus *ourstatus,
3111 int target_options)
3112 {
3113 ptid_t event_ptid;
3114
3115 if (debug_linux_nat)
3116 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3117
3118 /* Flush the async file first. */
3119 if (target_can_async_p ())
3120 async_file_flush ();
3121
3122 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3123
3124 /* If we requested any event, and something came out, assume there
3125 may be more. If we requested a specific lwp or process, also
3126 assume there may be more. */
3127 if (target_can_async_p ()
3128 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3129 || !ptid_equal (ptid, minus_one_ptid)))
3130 async_file_mark ();
3131
3132 /* Get ready for the next event. */
3133 if (target_can_async_p ())
3134 target_async (inferior_event_handler, 0);
3135
3136 return event_ptid;
3137 }
3138
3139 static int
3140 kill_callback (struct lwp_info *lp, void *data)
3141 {
3142 errno = 0;
3143 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3144 if (debug_linux_nat)
3145 fprintf_unfiltered (gdb_stdlog,
3146 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3147 target_pid_to_str (lp->ptid),
3148 errno ? safe_strerror (errno) : "OK");
3149
3150 return 0;
3151 }
3152
3153 static int
3154 kill_wait_callback (struct lwp_info *lp, void *data)
3155 {
3156 pid_t pid;
3157
3158 /* We must make sure that there are no pending events (delayed
3159 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3160 program doesn't interfere with any following debugging session. */
3161
3162 /* For cloned processes we must check both with __WCLONE and
3163 without, since the exit status of a cloned process isn't reported
3164 with __WCLONE. */
3165 if (lp->cloned)
3166 {
3167 do
3168 {
3169 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3170 if (pid != (pid_t) -1)
3171 {
3172 if (debug_linux_nat)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "KWC: wait %s received unknown.\n",
3175 target_pid_to_str (lp->ptid));
3176 /* The Linux kernel sometimes fails to kill a thread
3177 completely after PTRACE_KILL; that goes from the stop
3178 point in do_fork out to the one in
3179 get_signal_to_deliever and waits again. So kill it
3180 again. */
3181 kill_callback (lp, NULL);
3182 }
3183 }
3184 while (pid == GET_LWP (lp->ptid));
3185
3186 gdb_assert (pid == -1 && errno == ECHILD);
3187 }
3188
3189 do
3190 {
3191 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3192 if (pid != (pid_t) -1)
3193 {
3194 if (debug_linux_nat)
3195 fprintf_unfiltered (gdb_stdlog,
3196 "KWC: wait %s received unk.\n",
3197 target_pid_to_str (lp->ptid));
3198 /* See the call to kill_callback above. */
3199 kill_callback (lp, NULL);
3200 }
3201 }
3202 while (pid == GET_LWP (lp->ptid));
3203
3204 gdb_assert (pid == -1 && errno == ECHILD);
3205 return 0;
3206 }
3207
3208 static void
3209 linux_nat_kill (struct target_ops *ops)
3210 {
3211 struct target_waitstatus last;
3212 ptid_t last_ptid;
3213 int status;
3214
3215 /* If we're stopped while forking and we haven't followed yet,
3216 kill the other task. We need to do this first because the
3217 parent will be sleeping if this is a vfork. */
3218
3219 get_last_target_status (&last_ptid, &last);
3220
3221 if (last.kind == TARGET_WAITKIND_FORKED
3222 || last.kind == TARGET_WAITKIND_VFORKED)
3223 {
3224 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3225 wait (&status);
3226 }
3227
3228 if (forks_exist_p ())
3229 linux_fork_killall ();
3230 else
3231 {
3232 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3233 /* Stop all threads before killing them, since ptrace requires
3234 that the thread is stopped to sucessfully PTRACE_KILL. */
3235 iterate_over_lwps (ptid, stop_callback, NULL);
3236 /* ... and wait until all of them have reported back that
3237 they're no longer running. */
3238 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3239
3240 /* Kill all LWP's ... */
3241 iterate_over_lwps (ptid, kill_callback, NULL);
3242
3243 /* ... and wait until we've flushed all events. */
3244 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3245 }
3246
3247 target_mourn_inferior ();
3248 }
3249
3250 static void
3251 linux_nat_mourn_inferior (struct target_ops *ops)
3252 {
3253 purge_lwp_list (ptid_get_pid (inferior_ptid));
3254
3255 if (! forks_exist_p ())
3256 /* Normal case, no other forks available. */
3257 linux_ops->to_mourn_inferior (ops);
3258 else
3259 /* Multi-fork case. The current inferior_ptid has exited, but
3260 there are other viable forks to debug. Delete the exiting
3261 one and context-switch to the first available. */
3262 linux_fork_mourn_inferior ();
3263 }
3264
3265 /* Convert a native/host siginfo object, into/from the siginfo in the
3266 layout of the inferiors' architecture. */
3267
3268 static void
3269 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3270 {
3271 int done = 0;
3272
3273 if (linux_nat_siginfo_fixup != NULL)
3274 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3275
3276 /* If there was no callback, or the callback didn't do anything,
3277 then just do a straight memcpy. */
3278 if (!done)
3279 {
3280 if (direction == 1)
3281 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3282 else
3283 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3284 }
3285 }
3286
3287 static LONGEST
3288 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3289 const char *annex, gdb_byte *readbuf,
3290 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3291 {
3292 int pid;
3293 struct siginfo siginfo;
3294 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3295
3296 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3297 gdb_assert (readbuf || writebuf);
3298
3299 pid = GET_LWP (inferior_ptid);
3300 if (pid == 0)
3301 pid = GET_PID (inferior_ptid);
3302
3303 if (offset > sizeof (siginfo))
3304 return -1;
3305
3306 errno = 0;
3307 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3308 if (errno != 0)
3309 return -1;
3310
3311 /* When GDB is built as a 64-bit application, ptrace writes into
3312 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3313 inferior with a 64-bit GDB should look the same as debugging it
3314 with a 32-bit GDB, we need to convert it. GDB core always sees
3315 the converted layout, so any read/write will have to be done
3316 post-conversion. */
3317 siginfo_fixup (&siginfo, inf_siginfo, 0);
3318
3319 if (offset + len > sizeof (siginfo))
3320 len = sizeof (siginfo) - offset;
3321
3322 if (readbuf != NULL)
3323 memcpy (readbuf, inf_siginfo + offset, len);
3324 else
3325 {
3326 memcpy (inf_siginfo + offset, writebuf, len);
3327
3328 /* Convert back to ptrace layout before flushing it out. */
3329 siginfo_fixup (&siginfo, inf_siginfo, 1);
3330
3331 errno = 0;
3332 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3333 if (errno != 0)
3334 return -1;
3335 }
3336
3337 return len;
3338 }
3339
3340 static LONGEST
3341 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3342 const char *annex, gdb_byte *readbuf,
3343 const gdb_byte *writebuf,
3344 ULONGEST offset, LONGEST len)
3345 {
3346 struct cleanup *old_chain;
3347 LONGEST xfer;
3348
3349 if (object == TARGET_OBJECT_SIGNAL_INFO)
3350 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3351 offset, len);
3352
3353 /* The target is connected but no live inferior is selected. Pass
3354 this request down to a lower stratum (e.g., the executable
3355 file). */
3356 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3357 return 0;
3358
3359 old_chain = save_inferior_ptid ();
3360
3361 if (is_lwp (inferior_ptid))
3362 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3363
3364 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3365 offset, len);
3366
3367 do_cleanups (old_chain);
3368 return xfer;
3369 }
3370
3371 static int
3372 linux_thread_alive (ptid_t ptid)
3373 {
3374 int err;
3375
3376 gdb_assert (is_lwp (ptid));
3377
3378 /* Send signal 0 instead of anything ptrace, because ptracing a
3379 running thread errors out claiming that the thread doesn't
3380 exist. */
3381 err = kill_lwp (GET_LWP (ptid), 0);
3382
3383 if (debug_linux_nat)
3384 fprintf_unfiltered (gdb_stdlog,
3385 "LLTA: KILL(SIG0) %s (%s)\n",
3386 target_pid_to_str (ptid),
3387 err ? safe_strerror (err) : "OK");
3388
3389 if (err != 0)
3390 return 0;
3391
3392 return 1;
3393 }
3394
3395 static int
3396 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3397 {
3398 return linux_thread_alive (ptid);
3399 }
3400
3401 static char *
3402 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3403 {
3404 static char buf[64];
3405
3406 if (is_lwp (ptid)
3407 && (GET_PID (ptid) != GET_LWP (ptid)
3408 || num_lwps (GET_PID (ptid)) > 1))
3409 {
3410 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3411 return buf;
3412 }
3413
3414 return normal_pid_to_str (ptid);
3415 }
3416
3417 /* Accepts an integer PID; Returns a string representing a file that
3418 can be opened to get the symbols for the child process. */
3419
3420 static char *
3421 linux_child_pid_to_exec_file (int pid)
3422 {
3423 char *name1, *name2;
3424
3425 name1 = xmalloc (MAXPATHLEN);
3426 name2 = xmalloc (MAXPATHLEN);
3427 make_cleanup (xfree, name1);
3428 make_cleanup (xfree, name2);
3429 memset (name2, 0, MAXPATHLEN);
3430
3431 sprintf (name1, "/proc/%d/exe", pid);
3432 if (readlink (name1, name2, MAXPATHLEN) > 0)
3433 return name2;
3434 else
3435 return name1;
3436 }
3437
3438 /* Service function for corefiles and info proc. */
3439
3440 static int
3441 read_mapping (FILE *mapfile,
3442 long long *addr,
3443 long long *endaddr,
3444 char *permissions,
3445 long long *offset,
3446 char *device, long long *inode, char *filename)
3447 {
3448 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3449 addr, endaddr, permissions, offset, device, inode);
3450
3451 filename[0] = '\0';
3452 if (ret > 0 && ret != EOF)
3453 {
3454 /* Eat everything up to EOL for the filename. This will prevent
3455 weird filenames (such as one with embedded whitespace) from
3456 confusing this code. It also makes this code more robust in
3457 respect to annotations the kernel may add after the filename.
3458
3459 Note the filename is used for informational purposes
3460 only. */
3461 ret += fscanf (mapfile, "%[^\n]\n", filename);
3462 }
3463
3464 return (ret != 0 && ret != EOF);
3465 }
3466
3467 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3468 regions in the inferior for a corefile. */
3469
3470 static int
3471 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3472 unsigned long,
3473 int, int, int, void *), void *obfd)
3474 {
3475 int pid = PIDGET (inferior_ptid);
3476 char mapsfilename[MAXPATHLEN];
3477 FILE *mapsfile;
3478 long long addr, endaddr, size, offset, inode;
3479 char permissions[8], device[8], filename[MAXPATHLEN];
3480 int read, write, exec;
3481 int ret;
3482 struct cleanup *cleanup;
3483
3484 /* Compose the filename for the /proc memory map, and open it. */
3485 sprintf (mapsfilename, "/proc/%d/maps", pid);
3486 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3487 error (_("Could not open %s."), mapsfilename);
3488 cleanup = make_cleanup_fclose (mapsfile);
3489
3490 if (info_verbose)
3491 fprintf_filtered (gdb_stdout,
3492 "Reading memory regions from %s\n", mapsfilename);
3493
3494 /* Now iterate until end-of-file. */
3495 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3496 &offset, &device[0], &inode, &filename[0]))
3497 {
3498 size = endaddr - addr;
3499
3500 /* Get the segment's permissions. */
3501 read = (strchr (permissions, 'r') != 0);
3502 write = (strchr (permissions, 'w') != 0);
3503 exec = (strchr (permissions, 'x') != 0);
3504
3505 if (info_verbose)
3506 {
3507 fprintf_filtered (gdb_stdout,
3508 "Save segment, %lld bytes at %s (%c%c%c)",
3509 size, paddress (target_gdbarch, addr),
3510 read ? 'r' : ' ',
3511 write ? 'w' : ' ', exec ? 'x' : ' ');
3512 if (filename[0])
3513 fprintf_filtered (gdb_stdout, " for %s", filename);
3514 fprintf_filtered (gdb_stdout, "\n");
3515 }
3516
3517 /* Invoke the callback function to create the corefile
3518 segment. */
3519 func (addr, size, read, write, exec, obfd);
3520 }
3521 do_cleanups (cleanup);
3522 return 0;
3523 }
3524
3525 static int
3526 find_signalled_thread (struct thread_info *info, void *data)
3527 {
3528 if (info->stop_signal != TARGET_SIGNAL_0
3529 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3530 return 1;
3531
3532 return 0;
3533 }
3534
3535 static enum target_signal
3536 find_stop_signal (void)
3537 {
3538 struct thread_info *info =
3539 iterate_over_threads (find_signalled_thread, NULL);
3540
3541 if (info)
3542 return info->stop_signal;
3543 else
3544 return TARGET_SIGNAL_0;
3545 }
3546
3547 /* Records the thread's register state for the corefile note
3548 section. */
3549
3550 static char *
3551 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3552 char *note_data, int *note_size,
3553 enum target_signal stop_signal)
3554 {
3555 gdb_gregset_t gregs;
3556 gdb_fpregset_t fpregs;
3557 unsigned long lwp = ptid_get_lwp (ptid);
3558 struct gdbarch *gdbarch = target_gdbarch;
3559 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
3560 const struct regset *regset;
3561 int core_regset_p;
3562 struct cleanup *old_chain;
3563 struct core_regset_section *sect_list;
3564 char *gdb_regset;
3565
3566 old_chain = save_inferior_ptid ();
3567 inferior_ptid = ptid;
3568 target_fetch_registers (regcache, -1);
3569 do_cleanups (old_chain);
3570
3571 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3572 sect_list = gdbarch_core_regset_sections (gdbarch);
3573
3574 if (core_regset_p
3575 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3576 sizeof (gregs))) != NULL
3577 && regset->collect_regset != NULL)
3578 regset->collect_regset (regset, regcache, -1,
3579 &gregs, sizeof (gregs));
3580 else
3581 fill_gregset (regcache, &gregs, -1);
3582
3583 note_data = (char *) elfcore_write_prstatus (obfd,
3584 note_data,
3585 note_size,
3586 lwp,
3587 stop_signal, &gregs);
3588
3589 /* The loop below uses the new struct core_regset_section, which stores
3590 the supported section names and sizes for the core file. Note that
3591 note PRSTATUS needs to be treated specially. But the other notes are
3592 structurally the same, so they can benefit from the new struct. */
3593 if (core_regset_p && sect_list != NULL)
3594 while (sect_list->sect_name != NULL)
3595 {
3596 /* .reg was already handled above. */
3597 if (strcmp (sect_list->sect_name, ".reg") == 0)
3598 {
3599 sect_list++;
3600 continue;
3601 }
3602 regset = gdbarch_regset_from_core_section (gdbarch,
3603 sect_list->sect_name,
3604 sect_list->size);
3605 gdb_assert (regset && regset->collect_regset);
3606 gdb_regset = xmalloc (sect_list->size);
3607 regset->collect_regset (regset, regcache, -1,
3608 gdb_regset, sect_list->size);
3609 note_data = (char *) elfcore_write_register_note (obfd,
3610 note_data,
3611 note_size,
3612 sect_list->sect_name,
3613 gdb_regset,
3614 sect_list->size);
3615 xfree (gdb_regset);
3616 sect_list++;
3617 }
3618
3619 /* For architectures that does not have the struct core_regset_section
3620 implemented, we use the old method. When all the architectures have
3621 the new support, the code below should be deleted. */
3622 else
3623 {
3624 if (core_regset_p
3625 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3626 sizeof (fpregs))) != NULL
3627 && regset->collect_regset != NULL)
3628 regset->collect_regset (regset, regcache, -1,
3629 &fpregs, sizeof (fpregs));
3630 else
3631 fill_fpregset (regcache, &fpregs, -1);
3632
3633 note_data = (char *) elfcore_write_prfpreg (obfd,
3634 note_data,
3635 note_size,
3636 &fpregs, sizeof (fpregs));
3637 }
3638
3639 return note_data;
3640 }
3641
3642 struct linux_nat_corefile_thread_data
3643 {
3644 bfd *obfd;
3645 char *note_data;
3646 int *note_size;
3647 int num_notes;
3648 enum target_signal stop_signal;
3649 };
3650
3651 /* Called by gdbthread.c once per thread. Records the thread's
3652 register state for the corefile note section. */
3653
3654 static int
3655 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3656 {
3657 struct linux_nat_corefile_thread_data *args = data;
3658
3659 args->note_data = linux_nat_do_thread_registers (args->obfd,
3660 ti->ptid,
3661 args->note_data,
3662 args->note_size,
3663 args->stop_signal);
3664 args->num_notes++;
3665
3666 return 0;
3667 }
3668
3669 /* Enumerate spufs IDs for process PID. */
3670
3671 static void
3672 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
3673 {
3674 char path[128];
3675 DIR *dir;
3676 struct dirent *entry;
3677
3678 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3679 dir = opendir (path);
3680 if (!dir)
3681 return;
3682
3683 rewinddir (dir);
3684 while ((entry = readdir (dir)) != NULL)
3685 {
3686 struct stat st;
3687 struct statfs stfs;
3688 int fd;
3689
3690 fd = atoi (entry->d_name);
3691 if (!fd)
3692 continue;
3693
3694 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3695 if (stat (path, &st) != 0)
3696 continue;
3697 if (!S_ISDIR (st.st_mode))
3698 continue;
3699
3700 if (statfs (path, &stfs) != 0)
3701 continue;
3702 if (stfs.f_type != SPUFS_MAGIC)
3703 continue;
3704
3705 callback (data, fd);
3706 }
3707
3708 closedir (dir);
3709 }
3710
3711 /* Generate corefile notes for SPU contexts. */
3712
3713 struct linux_spu_corefile_data
3714 {
3715 bfd *obfd;
3716 char *note_data;
3717 int *note_size;
3718 };
3719
3720 static void
3721 linux_spu_corefile_callback (void *data, int fd)
3722 {
3723 struct linux_spu_corefile_data *args = data;
3724 int i;
3725
3726 static const char *spu_files[] =
3727 {
3728 "object-id",
3729 "mem",
3730 "regs",
3731 "fpcr",
3732 "lslr",
3733 "decr",
3734 "decr_status",
3735 "signal1",
3736 "signal1_type",
3737 "signal2",
3738 "signal2_type",
3739 "event_mask",
3740 "event_status",
3741 "mbox_info",
3742 "ibox_info",
3743 "wbox_info",
3744 "dma_info",
3745 "proxydma_info",
3746 };
3747
3748 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
3749 {
3750 char annex[32], note_name[32];
3751 gdb_byte *spu_data;
3752 LONGEST spu_len;
3753
3754 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
3755 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
3756 annex, &spu_data);
3757 if (spu_len > 0)
3758 {
3759 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
3760 args->note_data = elfcore_write_note (args->obfd, args->note_data,
3761 args->note_size, note_name,
3762 NT_SPU, spu_data, spu_len);
3763 xfree (spu_data);
3764 }
3765 }
3766 }
3767
3768 static char *
3769 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
3770 {
3771 struct linux_spu_corefile_data args;
3772 args.obfd = obfd;
3773 args.note_data = note_data;
3774 args.note_size = note_size;
3775
3776 iterate_over_spus (PIDGET (inferior_ptid),
3777 linux_spu_corefile_callback, &args);
3778
3779 return args.note_data;
3780 }
3781
3782 /* Fills the "to_make_corefile_note" target vector. Builds the note
3783 section for a corefile, and returns it in a malloc buffer. */
3784
3785 static char *
3786 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3787 {
3788 struct linux_nat_corefile_thread_data thread_args;
3789 struct cleanup *old_chain;
3790 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3791 char fname[16] = { '\0' };
3792 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3793 char psargs[80] = { '\0' };
3794 char *note_data = NULL;
3795 ptid_t current_ptid = inferior_ptid;
3796 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
3797 gdb_byte *auxv;
3798 int auxv_len;
3799
3800 if (get_exec_file (0))
3801 {
3802 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3803 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3804 if (get_inferior_args ())
3805 {
3806 char *string_end;
3807 char *psargs_end = psargs + sizeof (psargs);
3808
3809 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3810 strings fine. */
3811 string_end = memchr (psargs, 0, sizeof (psargs));
3812 if (string_end != NULL)
3813 {
3814 *string_end++ = ' ';
3815 strncpy (string_end, get_inferior_args (),
3816 psargs_end - string_end);
3817 }
3818 }
3819 note_data = (char *) elfcore_write_prpsinfo (obfd,
3820 note_data,
3821 note_size, fname, psargs);
3822 }
3823
3824 /* Dump information for threads. */
3825 thread_args.obfd = obfd;
3826 thread_args.note_data = note_data;
3827 thread_args.note_size = note_size;
3828 thread_args.num_notes = 0;
3829 thread_args.stop_signal = find_stop_signal ();
3830 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
3831 gdb_assert (thread_args.num_notes != 0);
3832 note_data = thread_args.note_data;
3833
3834 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3835 NULL, &auxv);
3836 if (auxv_len > 0)
3837 {
3838 note_data = elfcore_write_note (obfd, note_data, note_size,
3839 "CORE", NT_AUXV, auxv, auxv_len);
3840 xfree (auxv);
3841 }
3842
3843 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
3844
3845 make_cleanup (xfree, note_data);
3846 return note_data;
3847 }
3848
3849 /* Implement the "info proc" command. */
3850
3851 static void
3852 linux_nat_info_proc_cmd (char *args, int from_tty)
3853 {
3854 /* A long is used for pid instead of an int to avoid a loss of precision
3855 compiler warning from the output of strtoul. */
3856 long pid = PIDGET (inferior_ptid);
3857 FILE *procfile;
3858 char **argv = NULL;
3859 char buffer[MAXPATHLEN];
3860 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3861 int cmdline_f = 1;
3862 int cwd_f = 1;
3863 int exe_f = 1;
3864 int mappings_f = 0;
3865 int environ_f = 0;
3866 int status_f = 0;
3867 int stat_f = 0;
3868 int all = 0;
3869 struct stat dummy;
3870
3871 if (args)
3872 {
3873 /* Break up 'args' into an argv array. */
3874 argv = gdb_buildargv (args);
3875 make_cleanup_freeargv (argv);
3876 }
3877 while (argv != NULL && *argv != NULL)
3878 {
3879 if (isdigit (argv[0][0]))
3880 {
3881 pid = strtoul (argv[0], NULL, 10);
3882 }
3883 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3884 {
3885 mappings_f = 1;
3886 }
3887 else if (strcmp (argv[0], "status") == 0)
3888 {
3889 status_f = 1;
3890 }
3891 else if (strcmp (argv[0], "stat") == 0)
3892 {
3893 stat_f = 1;
3894 }
3895 else if (strcmp (argv[0], "cmd") == 0)
3896 {
3897 cmdline_f = 1;
3898 }
3899 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3900 {
3901 exe_f = 1;
3902 }
3903 else if (strcmp (argv[0], "cwd") == 0)
3904 {
3905 cwd_f = 1;
3906 }
3907 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3908 {
3909 all = 1;
3910 }
3911 else
3912 {
3913 /* [...] (future options here) */
3914 }
3915 argv++;
3916 }
3917 if (pid == 0)
3918 error (_("No current process: you must name one."));
3919
3920 sprintf (fname1, "/proc/%ld", pid);
3921 if (stat (fname1, &dummy) != 0)
3922 error (_("No /proc directory: '%s'"), fname1);
3923
3924 printf_filtered (_("process %ld\n"), pid);
3925 if (cmdline_f || all)
3926 {
3927 sprintf (fname1, "/proc/%ld/cmdline", pid);
3928 if ((procfile = fopen (fname1, "r")) != NULL)
3929 {
3930 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3931 if (fgets (buffer, sizeof (buffer), procfile))
3932 printf_filtered ("cmdline = '%s'\n", buffer);
3933 else
3934 warning (_("unable to read '%s'"), fname1);
3935 do_cleanups (cleanup);
3936 }
3937 else
3938 warning (_("unable to open /proc file '%s'"), fname1);
3939 }
3940 if (cwd_f || all)
3941 {
3942 sprintf (fname1, "/proc/%ld/cwd", pid);
3943 memset (fname2, 0, sizeof (fname2));
3944 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3945 printf_filtered ("cwd = '%s'\n", fname2);
3946 else
3947 warning (_("unable to read link '%s'"), fname1);
3948 }
3949 if (exe_f || all)
3950 {
3951 sprintf (fname1, "/proc/%ld/exe", pid);
3952 memset (fname2, 0, sizeof (fname2));
3953 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3954 printf_filtered ("exe = '%s'\n", fname2);
3955 else
3956 warning (_("unable to read link '%s'"), fname1);
3957 }
3958 if (mappings_f || all)
3959 {
3960 sprintf (fname1, "/proc/%ld/maps", pid);
3961 if ((procfile = fopen (fname1, "r")) != NULL)
3962 {
3963 long long addr, endaddr, size, offset, inode;
3964 char permissions[8], device[8], filename[MAXPATHLEN];
3965 struct cleanup *cleanup;
3966
3967 cleanup = make_cleanup_fclose (procfile);
3968 printf_filtered (_("Mapped address spaces:\n\n"));
3969 if (gdbarch_addr_bit (target_gdbarch) == 32)
3970 {
3971 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3972 "Start Addr",
3973 " End Addr",
3974 " Size", " Offset", "objfile");
3975 }
3976 else
3977 {
3978 printf_filtered (" %18s %18s %10s %10s %7s\n",
3979 "Start Addr",
3980 " End Addr",
3981 " Size", " Offset", "objfile");
3982 }
3983
3984 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3985 &offset, &device[0], &inode, &filename[0]))
3986 {
3987 size = endaddr - addr;
3988
3989 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3990 calls here (and possibly above) should be abstracted
3991 out into their own functions? Andrew suggests using
3992 a generic local_address_string instead to print out
3993 the addresses; that makes sense to me, too. */
3994
3995 if (gdbarch_addr_bit (target_gdbarch) == 32)
3996 {
3997 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3998 (unsigned long) addr, /* FIXME: pr_addr */
3999 (unsigned long) endaddr,
4000 (int) size,
4001 (unsigned int) offset,
4002 filename[0] ? filename : "");
4003 }
4004 else
4005 {
4006 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4007 (unsigned long) addr, /* FIXME: pr_addr */
4008 (unsigned long) endaddr,
4009 (int) size,
4010 (unsigned int) offset,
4011 filename[0] ? filename : "");
4012 }
4013 }
4014
4015 do_cleanups (cleanup);
4016 }
4017 else
4018 warning (_("unable to open /proc file '%s'"), fname1);
4019 }
4020 if (status_f || all)
4021 {
4022 sprintf (fname1, "/proc/%ld/status", pid);
4023 if ((procfile = fopen (fname1, "r")) != NULL)
4024 {
4025 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4026 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4027 puts_filtered (buffer);
4028 do_cleanups (cleanup);
4029 }
4030 else
4031 warning (_("unable to open /proc file '%s'"), fname1);
4032 }
4033 if (stat_f || all)
4034 {
4035 sprintf (fname1, "/proc/%ld/stat", pid);
4036 if ((procfile = fopen (fname1, "r")) != NULL)
4037 {
4038 int itmp;
4039 char ctmp;
4040 long ltmp;
4041 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4042
4043 if (fscanf (procfile, "%d ", &itmp) > 0)
4044 printf_filtered (_("Process: %d\n"), itmp);
4045 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4046 printf_filtered (_("Exec file: %s\n"), buffer);
4047 if (fscanf (procfile, "%c ", &ctmp) > 0)
4048 printf_filtered (_("State: %c\n"), ctmp);
4049 if (fscanf (procfile, "%d ", &itmp) > 0)
4050 printf_filtered (_("Parent process: %d\n"), itmp);
4051 if (fscanf (procfile, "%d ", &itmp) > 0)
4052 printf_filtered (_("Process group: %d\n"), itmp);
4053 if (fscanf (procfile, "%d ", &itmp) > 0)
4054 printf_filtered (_("Session id: %d\n"), itmp);
4055 if (fscanf (procfile, "%d ", &itmp) > 0)
4056 printf_filtered (_("TTY: %d\n"), itmp);
4057 if (fscanf (procfile, "%d ", &itmp) > 0)
4058 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4059 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4060 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4061 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4062 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4063 (unsigned long) ltmp);
4064 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4065 printf_filtered (_("Minor faults, children: %lu\n"),
4066 (unsigned long) ltmp);
4067 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4068 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4069 (unsigned long) ltmp);
4070 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4071 printf_filtered (_("Major faults, children: %lu\n"),
4072 (unsigned long) ltmp);
4073 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4074 printf_filtered (_("utime: %ld\n"), ltmp);
4075 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4076 printf_filtered (_("stime: %ld\n"), ltmp);
4077 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4078 printf_filtered (_("utime, children: %ld\n"), ltmp);
4079 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4080 printf_filtered (_("stime, children: %ld\n"), ltmp);
4081 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4082 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4083 ltmp);
4084 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4085 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4086 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4087 printf_filtered (_("jiffies until next timeout: %lu\n"),
4088 (unsigned long) ltmp);
4089 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4090 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4091 (unsigned long) ltmp);
4092 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4093 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4094 ltmp);
4095 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4096 printf_filtered (_("Virtual memory size: %lu\n"),
4097 (unsigned long) ltmp);
4098 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4099 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4100 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4101 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4102 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4103 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4104 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4105 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4106 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4107 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4108 #if 0 /* Don't know how architecture-dependent the rest is...
4109 Anyway the signal bitmap info is available from "status". */
4110 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4111 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4112 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4113 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4114 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4115 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4116 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4117 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4118 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4119 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4120 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4121 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4122 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4123 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4124 #endif
4125 do_cleanups (cleanup);
4126 }
4127 else
4128 warning (_("unable to open /proc file '%s'"), fname1);
4129 }
4130 }
4131
4132 /* Implement the to_xfer_partial interface for memory reads using the /proc
4133 filesystem. Because we can use a single read() call for /proc, this
4134 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4135 but it doesn't support writes. */
4136
4137 static LONGEST
4138 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4139 const char *annex, gdb_byte *readbuf,
4140 const gdb_byte *writebuf,
4141 ULONGEST offset, LONGEST len)
4142 {
4143 LONGEST ret;
4144 int fd;
4145 char filename[64];
4146
4147 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4148 return 0;
4149
4150 /* Don't bother for one word. */
4151 if (len < 3 * sizeof (long))
4152 return 0;
4153
4154 /* We could keep this file open and cache it - possibly one per
4155 thread. That requires some juggling, but is even faster. */
4156 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4157 fd = open (filename, O_RDONLY | O_LARGEFILE);
4158 if (fd == -1)
4159 return 0;
4160
4161 /* If pread64 is available, use it. It's faster if the kernel
4162 supports it (only one syscall), and it's 64-bit safe even on
4163 32-bit platforms (for instance, SPARC debugging a SPARC64
4164 application). */
4165 #ifdef HAVE_PREAD64
4166 if (pread64 (fd, readbuf, len, offset) != len)
4167 #else
4168 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4169 #endif
4170 ret = 0;
4171 else
4172 ret = len;
4173
4174 close (fd);
4175 return ret;
4176 }
4177
4178
4179 /* Enumerate spufs IDs for process PID. */
4180 static LONGEST
4181 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4182 {
4183 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4184 LONGEST pos = 0;
4185 LONGEST written = 0;
4186 char path[128];
4187 DIR *dir;
4188 struct dirent *entry;
4189
4190 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4191 dir = opendir (path);
4192 if (!dir)
4193 return -1;
4194
4195 rewinddir (dir);
4196 while ((entry = readdir (dir)) != NULL)
4197 {
4198 struct stat st;
4199 struct statfs stfs;
4200 int fd;
4201
4202 fd = atoi (entry->d_name);
4203 if (!fd)
4204 continue;
4205
4206 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4207 if (stat (path, &st) != 0)
4208 continue;
4209 if (!S_ISDIR (st.st_mode))
4210 continue;
4211
4212 if (statfs (path, &stfs) != 0)
4213 continue;
4214 if (stfs.f_type != SPUFS_MAGIC)
4215 continue;
4216
4217 if (pos >= offset && pos + 4 <= offset + len)
4218 {
4219 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4220 written += 4;
4221 }
4222 pos += 4;
4223 }
4224
4225 closedir (dir);
4226 return written;
4227 }
4228
4229 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4230 object type, using the /proc file system. */
4231 static LONGEST
4232 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4233 const char *annex, gdb_byte *readbuf,
4234 const gdb_byte *writebuf,
4235 ULONGEST offset, LONGEST len)
4236 {
4237 char buf[128];
4238 int fd = 0;
4239 int ret = -1;
4240 int pid = PIDGET (inferior_ptid);
4241
4242 if (!annex)
4243 {
4244 if (!readbuf)
4245 return -1;
4246 else
4247 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4248 }
4249
4250 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4251 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4252 if (fd <= 0)
4253 return -1;
4254
4255 if (offset != 0
4256 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4257 {
4258 close (fd);
4259 return 0;
4260 }
4261
4262 if (writebuf)
4263 ret = write (fd, writebuf, (size_t) len);
4264 else if (readbuf)
4265 ret = read (fd, readbuf, (size_t) len);
4266
4267 close (fd);
4268 return ret;
4269 }
4270
4271
4272 /* Parse LINE as a signal set and add its set bits to SIGS. */
4273
4274 static void
4275 add_line_to_sigset (const char *line, sigset_t *sigs)
4276 {
4277 int len = strlen (line) - 1;
4278 const char *p;
4279 int signum;
4280
4281 if (line[len] != '\n')
4282 error (_("Could not parse signal set: %s"), line);
4283
4284 p = line;
4285 signum = len * 4;
4286 while (len-- > 0)
4287 {
4288 int digit;
4289
4290 if (*p >= '0' && *p <= '9')
4291 digit = *p - '0';
4292 else if (*p >= 'a' && *p <= 'f')
4293 digit = *p - 'a' + 10;
4294 else
4295 error (_("Could not parse signal set: %s"), line);
4296
4297 signum -= 4;
4298
4299 if (digit & 1)
4300 sigaddset (sigs, signum + 1);
4301 if (digit & 2)
4302 sigaddset (sigs, signum + 2);
4303 if (digit & 4)
4304 sigaddset (sigs, signum + 3);
4305 if (digit & 8)
4306 sigaddset (sigs, signum + 4);
4307
4308 p++;
4309 }
4310 }
4311
4312 /* Find process PID's pending signals from /proc/pid/status and set
4313 SIGS to match. */
4314
4315 void
4316 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4317 {
4318 FILE *procfile;
4319 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4320 int signum;
4321 struct cleanup *cleanup;
4322
4323 sigemptyset (pending);
4324 sigemptyset (blocked);
4325 sigemptyset (ignored);
4326 sprintf (fname, "/proc/%d/status", pid);
4327 procfile = fopen (fname, "r");
4328 if (procfile == NULL)
4329 error (_("Could not open %s"), fname);
4330 cleanup = make_cleanup_fclose (procfile);
4331
4332 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4333 {
4334 /* Normal queued signals are on the SigPnd line in the status
4335 file. However, 2.6 kernels also have a "shared" pending
4336 queue for delivering signals to a thread group, so check for
4337 a ShdPnd line also.
4338
4339 Unfortunately some Red Hat kernels include the shared pending
4340 queue but not the ShdPnd status field. */
4341
4342 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4343 add_line_to_sigset (buffer + 8, pending);
4344 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4345 add_line_to_sigset (buffer + 8, pending);
4346 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4347 add_line_to_sigset (buffer + 8, blocked);
4348 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4349 add_line_to_sigset (buffer + 8, ignored);
4350 }
4351
4352 do_cleanups (cleanup);
4353 }
4354
4355 static LONGEST
4356 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4357 const char *annex, gdb_byte *readbuf,
4358 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4359 {
4360 /* We make the process list snapshot when the object starts to be
4361 read. */
4362 static const char *buf;
4363 static LONGEST len_avail = -1;
4364 static struct obstack obstack;
4365
4366 DIR *dirp;
4367
4368 gdb_assert (object == TARGET_OBJECT_OSDATA);
4369
4370 if (strcmp (annex, "processes") != 0)
4371 return 0;
4372
4373 gdb_assert (readbuf && !writebuf);
4374
4375 if (offset == 0)
4376 {
4377 if (len_avail != -1 && len_avail != 0)
4378 obstack_free (&obstack, NULL);
4379 len_avail = 0;
4380 buf = NULL;
4381 obstack_init (&obstack);
4382 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4383
4384 dirp = opendir ("/proc");
4385 if (dirp)
4386 {
4387 struct dirent *dp;
4388 while ((dp = readdir (dirp)) != NULL)
4389 {
4390 struct stat statbuf;
4391 char procentry[sizeof ("/proc/4294967295")];
4392
4393 if (!isdigit (dp->d_name[0])
4394 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4395 continue;
4396
4397 sprintf (procentry, "/proc/%s", dp->d_name);
4398 if (stat (procentry, &statbuf) == 0
4399 && S_ISDIR (statbuf.st_mode))
4400 {
4401 char *pathname;
4402 FILE *f;
4403 char cmd[MAXPATHLEN + 1];
4404 struct passwd *entry;
4405
4406 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4407 entry = getpwuid (statbuf.st_uid);
4408
4409 if ((f = fopen (pathname, "r")) != NULL)
4410 {
4411 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4412 if (len > 0)
4413 {
4414 int i;
4415 for (i = 0; i < len; i++)
4416 if (cmd[i] == '\0')
4417 cmd[i] = ' ';
4418 cmd[len] = '\0';
4419
4420 obstack_xml_printf (
4421 &obstack,
4422 "<item>"
4423 "<column name=\"pid\">%s</column>"
4424 "<column name=\"user\">%s</column>"
4425 "<column name=\"command\">%s</column>"
4426 "</item>",
4427 dp->d_name,
4428 entry ? entry->pw_name : "?",
4429 cmd);
4430 }
4431 fclose (f);
4432 }
4433
4434 xfree (pathname);
4435 }
4436 }
4437
4438 closedir (dirp);
4439 }
4440
4441 obstack_grow_str0 (&obstack, "</osdata>\n");
4442 buf = obstack_finish (&obstack);
4443 len_avail = strlen (buf);
4444 }
4445
4446 if (offset >= len_avail)
4447 {
4448 /* Done. Get rid of the obstack. */
4449 obstack_free (&obstack, NULL);
4450 buf = NULL;
4451 len_avail = 0;
4452 return 0;
4453 }
4454
4455 if (len > len_avail - offset)
4456 len = len_avail - offset;
4457 memcpy (readbuf, buf + offset, len);
4458
4459 return len;
4460 }
4461
4462 static LONGEST
4463 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4464 const char *annex, gdb_byte *readbuf,
4465 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4466 {
4467 LONGEST xfer;
4468
4469 if (object == TARGET_OBJECT_AUXV)
4470 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4471 offset, len);
4472
4473 if (object == TARGET_OBJECT_OSDATA)
4474 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4475 offset, len);
4476
4477 if (object == TARGET_OBJECT_SPU)
4478 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4479 offset, len);
4480
4481 /* GDB calculates all the addresses in possibly larget width of the address.
4482 Address width needs to be masked before its final use - either by
4483 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4484
4485 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4486
4487 if (object == TARGET_OBJECT_MEMORY)
4488 {
4489 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4490
4491 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4492 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4493 }
4494
4495 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4496 offset, len);
4497 if (xfer != 0)
4498 return xfer;
4499
4500 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4501 offset, len);
4502 }
4503
4504 /* Create a prototype generic GNU/Linux target. The client can override
4505 it with local methods. */
4506
4507 static void
4508 linux_target_install_ops (struct target_ops *t)
4509 {
4510 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4511 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4512 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4513 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4514 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4515 t->to_post_attach = linux_child_post_attach;
4516 t->to_follow_fork = linux_child_follow_fork;
4517 t->to_find_memory_regions = linux_nat_find_memory_regions;
4518 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4519
4520 super_xfer_partial = t->to_xfer_partial;
4521 t->to_xfer_partial = linux_xfer_partial;
4522 }
4523
4524 struct target_ops *
4525 linux_target (void)
4526 {
4527 struct target_ops *t;
4528
4529 t = inf_ptrace_target ();
4530 linux_target_install_ops (t);
4531
4532 return t;
4533 }
4534
4535 struct target_ops *
4536 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4537 {
4538 struct target_ops *t;
4539
4540 t = inf_ptrace_trad_target (register_u_offset);
4541 linux_target_install_ops (t);
4542
4543 return t;
4544 }
4545
4546 /* target_is_async_p implementation. */
4547
4548 static int
4549 linux_nat_is_async_p (void)
4550 {
4551 /* NOTE: palves 2008-03-21: We're only async when the user requests
4552 it explicitly with the "set target-async" command.
4553 Someday, linux will always be async. */
4554 if (!target_async_permitted)
4555 return 0;
4556
4557 /* See target.h/target_async_mask. */
4558 return linux_nat_async_mask_value;
4559 }
4560
4561 /* target_can_async_p implementation. */
4562
4563 static int
4564 linux_nat_can_async_p (void)
4565 {
4566 /* NOTE: palves 2008-03-21: We're only async when the user requests
4567 it explicitly with the "set target-async" command.
4568 Someday, linux will always be async. */
4569 if (!target_async_permitted)
4570 return 0;
4571
4572 /* See target.h/target_async_mask. */
4573 return linux_nat_async_mask_value;
4574 }
4575
4576 static int
4577 linux_nat_supports_non_stop (void)
4578 {
4579 return 1;
4580 }
4581
4582 /* True if we want to support multi-process. To be removed when GDB
4583 supports multi-exec. */
4584
4585 int linux_multi_process = 1;
4586
4587 static int
4588 linux_nat_supports_multi_process (void)
4589 {
4590 return linux_multi_process;
4591 }
4592
4593 /* target_async_mask implementation. */
4594
4595 static int
4596 linux_nat_async_mask (int new_mask)
4597 {
4598 int curr_mask = linux_nat_async_mask_value;
4599
4600 if (curr_mask != new_mask)
4601 {
4602 if (new_mask == 0)
4603 {
4604 linux_nat_async (NULL, 0);
4605 linux_nat_async_mask_value = new_mask;
4606 }
4607 else
4608 {
4609 linux_nat_async_mask_value = new_mask;
4610
4611 /* If we're going out of async-mask in all-stop, then the
4612 inferior is stopped. The next resume will call
4613 target_async. In non-stop, the target event source
4614 should be always registered in the event loop. Do so
4615 now. */
4616 if (non_stop)
4617 linux_nat_async (inferior_event_handler, 0);
4618 }
4619 }
4620
4621 return curr_mask;
4622 }
4623
4624 static int async_terminal_is_ours = 1;
4625
4626 /* target_terminal_inferior implementation. */
4627
4628 static void
4629 linux_nat_terminal_inferior (void)
4630 {
4631 if (!target_is_async_p ())
4632 {
4633 /* Async mode is disabled. */
4634 terminal_inferior ();
4635 return;
4636 }
4637
4638 terminal_inferior ();
4639
4640 /* Calls to target_terminal_*() are meant to be idempotent. */
4641 if (!async_terminal_is_ours)
4642 return;
4643
4644 delete_file_handler (input_fd);
4645 async_terminal_is_ours = 0;
4646 set_sigint_trap ();
4647 }
4648
4649 /* target_terminal_ours implementation. */
4650
4651 static void
4652 linux_nat_terminal_ours (void)
4653 {
4654 if (!target_is_async_p ())
4655 {
4656 /* Async mode is disabled. */
4657 terminal_ours ();
4658 return;
4659 }
4660
4661 /* GDB should never give the terminal to the inferior if the
4662 inferior is running in the background (run&, continue&, etc.),
4663 but claiming it sure should. */
4664 terminal_ours ();
4665
4666 if (async_terminal_is_ours)
4667 return;
4668
4669 clear_sigint_trap ();
4670 add_file_handler (input_fd, stdin_event_handler, 0);
4671 async_terminal_is_ours = 1;
4672 }
4673
4674 static void (*async_client_callback) (enum inferior_event_type event_type,
4675 void *context);
4676 static void *async_client_context;
4677
4678 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4679 so we notice when any child changes state, and notify the
4680 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4681 above to wait for the arrival of a SIGCHLD. */
4682
4683 static void
4684 sigchld_handler (int signo)
4685 {
4686 int old_errno = errno;
4687
4688 if (debug_linux_nat_async)
4689 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
4690
4691 if (signo == SIGCHLD
4692 && linux_nat_event_pipe[0] != -1)
4693 async_file_mark (); /* Let the event loop know that there are
4694 events to handle. */
4695
4696 errno = old_errno;
4697 }
4698
4699 /* Callback registered with the target events file descriptor. */
4700
4701 static void
4702 handle_target_event (int error, gdb_client_data client_data)
4703 {
4704 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4705 }
4706
4707 /* Create/destroy the target events pipe. Returns previous state. */
4708
4709 static int
4710 linux_async_pipe (int enable)
4711 {
4712 int previous = (linux_nat_event_pipe[0] != -1);
4713
4714 if (previous != enable)
4715 {
4716 sigset_t prev_mask;
4717
4718 block_child_signals (&prev_mask);
4719
4720 if (enable)
4721 {
4722 if (pipe (linux_nat_event_pipe) == -1)
4723 internal_error (__FILE__, __LINE__,
4724 "creating event pipe failed.");
4725
4726 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4727 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4728 }
4729 else
4730 {
4731 close (linux_nat_event_pipe[0]);
4732 close (linux_nat_event_pipe[1]);
4733 linux_nat_event_pipe[0] = -1;
4734 linux_nat_event_pipe[1] = -1;
4735 }
4736
4737 restore_child_signals_mask (&prev_mask);
4738 }
4739
4740 return previous;
4741 }
4742
4743 /* target_async implementation. */
4744
4745 static void
4746 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4747 void *context), void *context)
4748 {
4749 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4750 internal_error (__FILE__, __LINE__,
4751 "Calling target_async when async is masked");
4752
4753 if (callback != NULL)
4754 {
4755 async_client_callback = callback;
4756 async_client_context = context;
4757 if (!linux_async_pipe (1))
4758 {
4759 add_file_handler (linux_nat_event_pipe[0],
4760 handle_target_event, NULL);
4761 /* There may be pending events to handle. Tell the event loop
4762 to poll them. */
4763 async_file_mark ();
4764 }
4765 }
4766 else
4767 {
4768 async_client_callback = callback;
4769 async_client_context = context;
4770 delete_file_handler (linux_nat_event_pipe[0]);
4771 linux_async_pipe (0);
4772 }
4773 return;
4774 }
4775
4776 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4777 event came out. */
4778
4779 static int
4780 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4781 {
4782 if (!lwp->stopped)
4783 {
4784 int pid, status;
4785 ptid_t ptid = lwp->ptid;
4786
4787 if (debug_linux_nat)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "LNSL: running -> suspending %s\n",
4790 target_pid_to_str (lwp->ptid));
4791
4792
4793 stop_callback (lwp, NULL);
4794 stop_wait_callback (lwp, NULL);
4795
4796 /* If the lwp exits while we try to stop it, there's nothing
4797 else to do. */
4798 lwp = find_lwp_pid (ptid);
4799 if (lwp == NULL)
4800 return 0;
4801
4802 /* If we didn't collect any signal other than SIGSTOP while
4803 stopping the LWP, push a SIGNAL_0 event. In either case, the
4804 event-loop will end up calling target_wait which will collect
4805 these. */
4806 if (lwp->status == 0)
4807 lwp->status = W_STOPCODE (0);
4808 async_file_mark ();
4809 }
4810 else
4811 {
4812 /* Already known to be stopped; do nothing. */
4813
4814 if (debug_linux_nat)
4815 {
4816 if (find_thread_ptid (lwp->ptid)->stop_requested)
4817 fprintf_unfiltered (gdb_stdlog, "\
4818 LNSL: already stopped/stop_requested %s\n",
4819 target_pid_to_str (lwp->ptid));
4820 else
4821 fprintf_unfiltered (gdb_stdlog, "\
4822 LNSL: already stopped/no stop_requested yet %s\n",
4823 target_pid_to_str (lwp->ptid));
4824 }
4825 }
4826 return 0;
4827 }
4828
4829 static void
4830 linux_nat_stop (ptid_t ptid)
4831 {
4832 if (non_stop)
4833 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4834 else
4835 linux_ops->to_stop (ptid);
4836 }
4837
4838 static void
4839 linux_nat_close (int quitting)
4840 {
4841 /* Unregister from the event loop. */
4842 if (target_is_async_p ())
4843 target_async (NULL, 0);
4844
4845 /* Reset the async_masking. */
4846 linux_nat_async_mask_value = 1;
4847
4848 if (linux_ops->to_close)
4849 linux_ops->to_close (quitting);
4850 }
4851
4852 void
4853 linux_nat_add_target (struct target_ops *t)
4854 {
4855 /* Save the provided single-threaded target. We save this in a separate
4856 variable because another target we've inherited from (e.g. inf-ptrace)
4857 may have saved a pointer to T; we want to use it for the final
4858 process stratum target. */
4859 linux_ops_saved = *t;
4860 linux_ops = &linux_ops_saved;
4861
4862 /* Override some methods for multithreading. */
4863 t->to_create_inferior = linux_nat_create_inferior;
4864 t->to_attach = linux_nat_attach;
4865 t->to_detach = linux_nat_detach;
4866 t->to_resume = linux_nat_resume;
4867 t->to_wait = linux_nat_wait;
4868 t->to_xfer_partial = linux_nat_xfer_partial;
4869 t->to_kill = linux_nat_kill;
4870 t->to_mourn_inferior = linux_nat_mourn_inferior;
4871 t->to_thread_alive = linux_nat_thread_alive;
4872 t->to_pid_to_str = linux_nat_pid_to_str;
4873 t->to_has_thread_control = tc_schedlock;
4874
4875 t->to_can_async_p = linux_nat_can_async_p;
4876 t->to_is_async_p = linux_nat_is_async_p;
4877 t->to_supports_non_stop = linux_nat_supports_non_stop;
4878 t->to_async = linux_nat_async;
4879 t->to_async_mask = linux_nat_async_mask;
4880 t->to_terminal_inferior = linux_nat_terminal_inferior;
4881 t->to_terminal_ours = linux_nat_terminal_ours;
4882 t->to_close = linux_nat_close;
4883
4884 /* Methods for non-stop support. */
4885 t->to_stop = linux_nat_stop;
4886
4887 t->to_supports_multi_process = linux_nat_supports_multi_process;
4888
4889 /* We don't change the stratum; this target will sit at
4890 process_stratum and thread_db will set at thread_stratum. This
4891 is a little strange, since this is a multi-threaded-capable
4892 target, but we want to be on the stack below thread_db, and we
4893 also want to be used for single-threaded processes. */
4894
4895 add_target (t);
4896 }
4897
4898 /* Register a method to call whenever a new thread is attached. */
4899 void
4900 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4901 {
4902 /* Save the pointer. We only support a single registered instance
4903 of the GNU/Linux native target, so we do not need to map this to
4904 T. */
4905 linux_nat_new_thread = new_thread;
4906 }
4907
4908 /* Register a method that converts a siginfo object between the layout
4909 that ptrace returns, and the layout in the architecture of the
4910 inferior. */
4911 void
4912 linux_nat_set_siginfo_fixup (struct target_ops *t,
4913 int (*siginfo_fixup) (struct siginfo *,
4914 gdb_byte *,
4915 int))
4916 {
4917 /* Save the pointer. */
4918 linux_nat_siginfo_fixup = siginfo_fixup;
4919 }
4920
4921 /* Return the saved siginfo associated with PTID. */
4922 struct siginfo *
4923 linux_nat_get_siginfo (ptid_t ptid)
4924 {
4925 struct lwp_info *lp = find_lwp_pid (ptid);
4926
4927 gdb_assert (lp != NULL);
4928
4929 return &lp->siginfo;
4930 }
4931
4932 /* Provide a prototype to silence -Wmissing-prototypes. */
4933 extern initialize_file_ftype _initialize_linux_nat;
4934
4935 void
4936 _initialize_linux_nat (void)
4937 {
4938 sigset_t mask;
4939
4940 add_info ("proc", linux_nat_info_proc_cmd, _("\
4941 Show /proc process information about any running process.\n\
4942 Specify any process id, or use the program being debugged by default.\n\
4943 Specify any of the following keywords for detailed info:\n\
4944 mappings -- list of mapped memory regions.\n\
4945 stat -- list a bunch of random process info.\n\
4946 status -- list a different bunch of random process info.\n\
4947 all -- list all available /proc info."));
4948
4949 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4950 &debug_linux_nat, _("\
4951 Set debugging of GNU/Linux lwp module."), _("\
4952 Show debugging of GNU/Linux lwp module."), _("\
4953 Enables printf debugging output."),
4954 NULL,
4955 show_debug_linux_nat,
4956 &setdebuglist, &showdebuglist);
4957
4958 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4959 &debug_linux_nat_async, _("\
4960 Set debugging of GNU/Linux async lwp module."), _("\
4961 Show debugging of GNU/Linux async lwp module."), _("\
4962 Enables printf debugging output."),
4963 NULL,
4964 show_debug_linux_nat_async,
4965 &setdebuglist, &showdebuglist);
4966
4967 /* Save this mask as the default. */
4968 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4969
4970 /* Install a SIGCHLD handler. */
4971 sigchld_action.sa_handler = sigchld_handler;
4972 sigemptyset (&sigchld_action.sa_mask);
4973 sigchld_action.sa_flags = SA_RESTART;
4974
4975 /* Make it the default. */
4976 sigaction (SIGCHLD, &sigchld_action, NULL);
4977
4978 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4979 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4980 sigdelset (&suspend_mask, SIGCHLD);
4981
4982 sigemptyset (&blocked_mask);
4983
4984 add_setshow_boolean_cmd ("disable-randomization", class_support,
4985 &disable_randomization, _("\
4986 Set disabling of debuggee's virtual address space randomization."), _("\
4987 Show disabling of debuggee's virtual address space randomization."), _("\
4988 When this mode is on (which is the default), randomization of the virtual\n\
4989 address space is disabled. Standalone programs run with the randomization\n\
4990 enabled by default on some platforms."),
4991 &set_disable_randomization,
4992 &show_disable_randomization,
4993 &setlist, &showlist);
4994 }
4995 \f
4996
4997 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4998 the GNU/Linux Threads library and therefore doesn't really belong
4999 here. */
5000
5001 /* Read variable NAME in the target and return its value if found.
5002 Otherwise return zero. It is assumed that the type of the variable
5003 is `int'. */
5004
5005 static int
5006 get_signo (const char *name)
5007 {
5008 struct minimal_symbol *ms;
5009 int signo;
5010
5011 ms = lookup_minimal_symbol (name, NULL, NULL);
5012 if (ms == NULL)
5013 return 0;
5014
5015 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5016 sizeof (signo)) != 0)
5017 return 0;
5018
5019 return signo;
5020 }
5021
5022 /* Return the set of signals used by the threads library in *SET. */
5023
5024 void
5025 lin_thread_get_thread_signals (sigset_t *set)
5026 {
5027 struct sigaction action;
5028 int restart, cancel;
5029
5030 sigemptyset (&blocked_mask);
5031 sigemptyset (set);
5032
5033 restart = get_signo ("__pthread_sig_restart");
5034 cancel = get_signo ("__pthread_sig_cancel");
5035
5036 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5037 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5038 not provide any way for the debugger to query the signal numbers -
5039 fortunately they don't change! */
5040
5041 if (restart == 0)
5042 restart = __SIGRTMIN;
5043
5044 if (cancel == 0)
5045 cancel = __SIGRTMIN + 1;
5046
5047 sigaddset (set, restart);
5048 sigaddset (set, cancel);
5049
5050 /* The GNU/Linux Threads library makes terminating threads send a
5051 special "cancel" signal instead of SIGCHLD. Make sure we catch
5052 those (to prevent them from terminating GDB itself, which is
5053 likely to be their default action) and treat them the same way as
5054 SIGCHLD. */
5055
5056 action.sa_handler = sigchld_handler;
5057 sigemptyset (&action.sa_mask);
5058 action.sa_flags = SA_RESTART;
5059 sigaction (cancel, &action, NULL);
5060
5061 /* We block the "cancel" signal throughout this code ... */
5062 sigaddset (&blocked_mask, cancel);
5063 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5064
5065 /* ... except during a sigsuspend. */
5066 sigdelset (&suspend_mask, cancel);
5067 }
This page took 0.133794 seconds and 4 git commands to generate.