Adapt `info probes' to support printing probes of different types.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267
268 static void block_child_signals (sigset_t *prev_mask);
269 static void restore_child_signals_mask (sigset_t *prev_mask);
270
271 struct lwp_info;
272 static struct lwp_info *add_lwp (ptid_t ptid);
273 static void purge_lwp_list (int pid);
274 static void delete_lwp (ptid_t ptid);
275 static struct lwp_info *find_lwp_pid (ptid_t ptid);
276
277 static int lwp_status_pending_p (struct lwp_info *lp);
278
279 static int check_stopped_by_breakpoint (struct lwp_info *lp);
280 static int sigtrap_is_event (int status);
281 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
282
283 \f
284 /* Trivial list manipulation functions to keep track of a list of
285 new stopped processes. */
286 static void
287 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
288 {
289 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
290
291 new_pid->pid = pid;
292 new_pid->status = status;
293 new_pid->next = *listp;
294 *listp = new_pid;
295 }
296
297 static int
298 in_pid_list_p (struct simple_pid_list *list, int pid)
299 {
300 struct simple_pid_list *p;
301
302 for (p = list; p != NULL; p = p->next)
303 if (p->pid == pid)
304 return 1;
305 return 0;
306 }
307
308 static int
309 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
310 {
311 struct simple_pid_list **p;
312
313 for (p = listp; *p != NULL; p = &(*p)->next)
314 if ((*p)->pid == pid)
315 {
316 struct simple_pid_list *next = (*p)->next;
317
318 *statusp = (*p)->status;
319 xfree (*p);
320 *p = next;
321 return 1;
322 }
323 return 0;
324 }
325
326 /* Initialize ptrace warnings and check for supported ptrace
327 features given PID.
328
329 ATTACHED should be nonzero iff we attached to the inferior. */
330
331 static void
332 linux_init_ptrace (pid_t pid, int attached)
333 {
334 linux_enable_event_reporting (pid, attached);
335 linux_ptrace_init_warnings ();
336 }
337
338 static void
339 linux_child_post_attach (struct target_ops *self, int pid)
340 {
341 linux_init_ptrace (pid, 1);
342 }
343
344 static void
345 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
346 {
347 linux_init_ptrace (ptid_get_pid (ptid), 0);
348 }
349
350 /* Return the number of known LWPs in the tgid given by PID. */
351
352 static int
353 num_lwps (int pid)
354 {
355 int count = 0;
356 struct lwp_info *lp;
357
358 for (lp = lwp_list; lp; lp = lp->next)
359 if (ptid_get_pid (lp->ptid) == pid)
360 count++;
361
362 return count;
363 }
364
365 /* Call delete_lwp with prototype compatible for make_cleanup. */
366
367 static void
368 delete_lwp_cleanup (void *lp_voidp)
369 {
370 struct lwp_info *lp = lp_voidp;
371
372 delete_lwp (lp->ptid);
373 }
374
375 /* Target hook for follow_fork. On entry inferior_ptid must be the
376 ptid of the followed inferior. At return, inferior_ptid will be
377 unchanged. */
378
379 static int
380 linux_child_follow_fork (struct target_ops *ops, int follow_child,
381 int detach_fork)
382 {
383 if (!follow_child)
384 {
385 struct lwp_info *child_lp = NULL;
386 int status = W_STOPCODE (0);
387 struct cleanup *old_chain;
388 int has_vforked;
389 int parent_pid, child_pid;
390
391 has_vforked = (inferior_thread ()->pending_follow.kind
392 == TARGET_WAITKIND_VFORKED);
393 parent_pid = ptid_get_lwp (inferior_ptid);
394 if (parent_pid == 0)
395 parent_pid = ptid_get_pid (inferior_ptid);
396 child_pid
397 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
398
399
400 /* We're already attached to the parent, by default. */
401 old_chain = save_inferior_ptid ();
402 inferior_ptid = ptid_build (child_pid, child_pid, 0);
403 child_lp = add_lwp (inferior_ptid);
404 child_lp->stopped = 1;
405 child_lp->last_resume_kind = resume_stop;
406
407 /* Detach new forked process? */
408 if (detach_fork)
409 {
410 make_cleanup (delete_lwp_cleanup, child_lp);
411
412 if (linux_nat_prepare_to_resume != NULL)
413 linux_nat_prepare_to_resume (child_lp);
414
415 /* When debugging an inferior in an architecture that supports
416 hardware single stepping on a kernel without commit
417 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
418 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
419 set if the parent process had them set.
420 To work around this, single step the child process
421 once before detaching to clear the flags. */
422
423 if (!gdbarch_software_single_step_p (target_thread_architecture
424 (child_lp->ptid)))
425 {
426 linux_disable_event_reporting (child_pid);
427 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
428 perror_with_name (_("Couldn't do single step"));
429 if (my_waitpid (child_pid, &status, 0) < 0)
430 perror_with_name (_("Couldn't wait vfork process"));
431 }
432
433 if (WIFSTOPPED (status))
434 {
435 int signo;
436
437 signo = WSTOPSIG (status);
438 if (signo != 0
439 && !signal_pass_state (gdb_signal_from_host (signo)))
440 signo = 0;
441 ptrace (PTRACE_DETACH, child_pid, 0, signo);
442 }
443
444 /* Resets value of inferior_ptid to parent ptid. */
445 do_cleanups (old_chain);
446 }
447 else
448 {
449 /* Let the thread_db layer learn about this new process. */
450 check_for_thread_db ();
451 }
452
453 do_cleanups (old_chain);
454
455 if (has_vforked)
456 {
457 struct lwp_info *parent_lp;
458
459 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
460 gdb_assert (linux_supports_tracefork () >= 0);
461
462 if (linux_supports_tracevforkdone ())
463 {
464 if (debug_linux_nat)
465 fprintf_unfiltered (gdb_stdlog,
466 "LCFF: waiting for VFORK_DONE on %d\n",
467 parent_pid);
468 parent_lp->stopped = 1;
469
470 /* We'll handle the VFORK_DONE event like any other
471 event, in target_wait. */
472 }
473 else
474 {
475 /* We can't insert breakpoints until the child has
476 finished with the shared memory region. We need to
477 wait until that happens. Ideal would be to just
478 call:
479 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
480 - waitpid (parent_pid, &status, __WALL);
481 However, most architectures can't handle a syscall
482 being traced on the way out if it wasn't traced on
483 the way in.
484
485 We might also think to loop, continuing the child
486 until it exits or gets a SIGTRAP. One problem is
487 that the child might call ptrace with PTRACE_TRACEME.
488
489 There's no simple and reliable way to figure out when
490 the vforked child will be done with its copy of the
491 shared memory. We could step it out of the syscall,
492 two instructions, let it go, and then single-step the
493 parent once. When we have hardware single-step, this
494 would work; with software single-step it could still
495 be made to work but we'd have to be able to insert
496 single-step breakpoints in the child, and we'd have
497 to insert -just- the single-step breakpoint in the
498 parent. Very awkward.
499
500 In the end, the best we can do is to make sure it
501 runs for a little while. Hopefully it will be out of
502 range of any breakpoints we reinsert. Usually this
503 is only the single-step breakpoint at vfork's return
504 point. */
505
506 if (debug_linux_nat)
507 fprintf_unfiltered (gdb_stdlog,
508 "LCFF: no VFORK_DONE "
509 "support, sleeping a bit\n");
510
511 usleep (10000);
512
513 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
514 and leave it pending. The next linux_nat_resume call
515 will notice a pending event, and bypasses actually
516 resuming the inferior. */
517 parent_lp->status = 0;
518 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
519 parent_lp->stopped = 1;
520
521 /* If we're in async mode, need to tell the event loop
522 there's something here to process. */
523 if (target_is_async_p ())
524 async_file_mark ();
525 }
526 }
527 }
528 else
529 {
530 struct lwp_info *child_lp;
531
532 child_lp = add_lwp (inferior_ptid);
533 child_lp->stopped = 1;
534 child_lp->last_resume_kind = resume_stop;
535
536 /* Let the thread_db layer learn about this new process. */
537 check_for_thread_db ();
538 }
539
540 return 0;
541 }
542
543 \f
544 static int
545 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
546 {
547 return !linux_supports_tracefork ();
548 }
549
550 static int
551 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
552 {
553 return 0;
554 }
555
556 static int
557 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
558 {
559 return !linux_supports_tracefork ();
560 }
561
562 static int
563 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
564 {
565 return 0;
566 }
567
568 static int
569 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
570 {
571 return !linux_supports_tracefork ();
572 }
573
574 static int
575 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
576 {
577 return 0;
578 }
579
580 static int
581 linux_child_set_syscall_catchpoint (struct target_ops *self,
582 int pid, int needed, int any_count,
583 int table_size, int *table)
584 {
585 if (!linux_supports_tracesysgood ())
586 return 1;
587
588 /* On GNU/Linux, we ignore the arguments. It means that we only
589 enable the syscall catchpoints, but do not disable them.
590
591 Also, we do not use the `table' information because we do not
592 filter system calls here. We let GDB do the logic for us. */
593 return 0;
594 }
595
596 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
597 are processes sharing the same VM space. A multi-threaded process
598 is basically a group of such processes. However, such a grouping
599 is almost entirely a user-space issue; the kernel doesn't enforce
600 such a grouping at all (this might change in the future). In
601 general, we'll rely on the threads library (i.e. the GNU/Linux
602 Threads library) to provide such a grouping.
603
604 It is perfectly well possible to write a multi-threaded application
605 without the assistance of a threads library, by using the clone
606 system call directly. This module should be able to give some
607 rudimentary support for debugging such applications if developers
608 specify the CLONE_PTRACE flag in the clone system call, and are
609 using the Linux kernel 2.4 or above.
610
611 Note that there are some peculiarities in GNU/Linux that affect
612 this code:
613
614 - In general one should specify the __WCLONE flag to waitpid in
615 order to make it report events for any of the cloned processes
616 (and leave it out for the initial process). However, if a cloned
617 process has exited the exit status is only reported if the
618 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
619 we cannot use it since GDB must work on older systems too.
620
621 - When a traced, cloned process exits and is waited for by the
622 debugger, the kernel reassigns it to the original parent and
623 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
624 library doesn't notice this, which leads to the "zombie problem":
625 When debugged a multi-threaded process that spawns a lot of
626 threads will run out of processes, even if the threads exit,
627 because the "zombies" stay around. */
628
629 /* List of known LWPs. */
630 struct lwp_info *lwp_list;
631 \f
632
633 /* Original signal mask. */
634 static sigset_t normal_mask;
635
636 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
637 _initialize_linux_nat. */
638 static sigset_t suspend_mask;
639
640 /* Signals to block to make that sigsuspend work. */
641 static sigset_t blocked_mask;
642
643 /* SIGCHLD action. */
644 struct sigaction sigchld_action;
645
646 /* Block child signals (SIGCHLD and linux threads signals), and store
647 the previous mask in PREV_MASK. */
648
649 static void
650 block_child_signals (sigset_t *prev_mask)
651 {
652 /* Make sure SIGCHLD is blocked. */
653 if (!sigismember (&blocked_mask, SIGCHLD))
654 sigaddset (&blocked_mask, SIGCHLD);
655
656 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
657 }
658
659 /* Restore child signals mask, previously returned by
660 block_child_signals. */
661
662 static void
663 restore_child_signals_mask (sigset_t *prev_mask)
664 {
665 sigprocmask (SIG_SETMASK, prev_mask, NULL);
666 }
667
668 /* Mask of signals to pass directly to the inferior. */
669 static sigset_t pass_mask;
670
671 /* Update signals to pass to the inferior. */
672 static void
673 linux_nat_pass_signals (struct target_ops *self,
674 int numsigs, unsigned char *pass_signals)
675 {
676 int signo;
677
678 sigemptyset (&pass_mask);
679
680 for (signo = 1; signo < NSIG; signo++)
681 {
682 int target_signo = gdb_signal_from_host (signo);
683 if (target_signo < numsigs && pass_signals[target_signo])
684 sigaddset (&pass_mask, signo);
685 }
686 }
687
688 \f
689
690 /* Prototypes for local functions. */
691 static int stop_wait_callback (struct lwp_info *lp, void *data);
692 static int linux_thread_alive (ptid_t ptid);
693 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
694 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
695
696 \f
697
698 /* Destroy and free LP. */
699
700 static void
701 lwp_free (struct lwp_info *lp)
702 {
703 xfree (lp->arch_private);
704 xfree (lp);
705 }
706
707 /* Remove all LWPs belong to PID from the lwp list. */
708
709 static void
710 purge_lwp_list (int pid)
711 {
712 struct lwp_info *lp, *lpprev, *lpnext;
713
714 lpprev = NULL;
715
716 for (lp = lwp_list; lp; lp = lpnext)
717 {
718 lpnext = lp->next;
719
720 if (ptid_get_pid (lp->ptid) == pid)
721 {
722 if (lp == lwp_list)
723 lwp_list = lp->next;
724 else
725 lpprev->next = lp->next;
726
727 lwp_free (lp);
728 }
729 else
730 lpprev = lp;
731 }
732 }
733
734 /* Add the LWP specified by PTID to the list. PTID is the first LWP
735 in the process. Return a pointer to the structure describing the
736 new LWP.
737
738 This differs from add_lwp in that we don't let the arch specific
739 bits know about this new thread. Current clients of this callback
740 take the opportunity to install watchpoints in the new thread, and
741 we shouldn't do that for the first thread. If we're spawning a
742 child ("run"), the thread executes the shell wrapper first, and we
743 shouldn't touch it until it execs the program we want to debug.
744 For "attach", it'd be okay to call the callback, but it's not
745 necessary, because watchpoints can't yet have been inserted into
746 the inferior. */
747
748 static struct lwp_info *
749 add_initial_lwp (ptid_t ptid)
750 {
751 struct lwp_info *lp;
752
753 gdb_assert (ptid_lwp_p (ptid));
754
755 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
756
757 memset (lp, 0, sizeof (struct lwp_info));
758
759 lp->last_resume_kind = resume_continue;
760 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
761
762 lp->ptid = ptid;
763 lp->core = -1;
764
765 lp->next = lwp_list;
766 lwp_list = lp;
767
768 return lp;
769 }
770
771 /* Add the LWP specified by PID to the list. Return a pointer to the
772 structure describing the new LWP. The LWP should already be
773 stopped. */
774
775 static struct lwp_info *
776 add_lwp (ptid_t ptid)
777 {
778 struct lwp_info *lp;
779
780 lp = add_initial_lwp (ptid);
781
782 /* Let the arch specific bits know about this new thread. Current
783 clients of this callback take the opportunity to install
784 watchpoints in the new thread. We don't do this for the first
785 thread though. See add_initial_lwp. */
786 if (linux_nat_new_thread != NULL)
787 linux_nat_new_thread (lp);
788
789 return lp;
790 }
791
792 /* Remove the LWP specified by PID from the list. */
793
794 static void
795 delete_lwp (ptid_t ptid)
796 {
797 struct lwp_info *lp, *lpprev;
798
799 lpprev = NULL;
800
801 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
802 if (ptid_equal (lp->ptid, ptid))
803 break;
804
805 if (!lp)
806 return;
807
808 if (lpprev)
809 lpprev->next = lp->next;
810 else
811 lwp_list = lp->next;
812
813 lwp_free (lp);
814 }
815
816 /* Return a pointer to the structure describing the LWP corresponding
817 to PID. If no corresponding LWP could be found, return NULL. */
818
819 static struct lwp_info *
820 find_lwp_pid (ptid_t ptid)
821 {
822 struct lwp_info *lp;
823 int lwp;
824
825 if (ptid_lwp_p (ptid))
826 lwp = ptid_get_lwp (ptid);
827 else
828 lwp = ptid_get_pid (ptid);
829
830 for (lp = lwp_list; lp; lp = lp->next)
831 if (lwp == ptid_get_lwp (lp->ptid))
832 return lp;
833
834 return NULL;
835 }
836
837 /* Call CALLBACK with its second argument set to DATA for every LWP in
838 the list. If CALLBACK returns 1 for a particular LWP, return a
839 pointer to the structure describing that LWP immediately.
840 Otherwise return NULL. */
841
842 struct lwp_info *
843 iterate_over_lwps (ptid_t filter,
844 int (*callback) (struct lwp_info *, void *),
845 void *data)
846 {
847 struct lwp_info *lp, *lpnext;
848
849 for (lp = lwp_list; lp; lp = lpnext)
850 {
851 lpnext = lp->next;
852
853 if (ptid_match (lp->ptid, filter))
854 {
855 if ((*callback) (lp, data))
856 return lp;
857 }
858 }
859
860 return NULL;
861 }
862
863 /* Update our internal state when changing from one checkpoint to
864 another indicated by NEW_PTID. We can only switch single-threaded
865 applications, so we only create one new LWP, and the previous list
866 is discarded. */
867
868 void
869 linux_nat_switch_fork (ptid_t new_ptid)
870 {
871 struct lwp_info *lp;
872
873 purge_lwp_list (ptid_get_pid (inferior_ptid));
874
875 lp = add_lwp (new_ptid);
876 lp->stopped = 1;
877
878 /* This changes the thread's ptid while preserving the gdb thread
879 num. Also changes the inferior pid, while preserving the
880 inferior num. */
881 thread_change_ptid (inferior_ptid, new_ptid);
882
883 /* We've just told GDB core that the thread changed target id, but,
884 in fact, it really is a different thread, with different register
885 contents. */
886 registers_changed ();
887 }
888
889 /* Handle the exit of a single thread LP. */
890
891 static void
892 exit_lwp (struct lwp_info *lp)
893 {
894 struct thread_info *th = find_thread_ptid (lp->ptid);
895
896 if (th)
897 {
898 if (print_thread_events)
899 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
900
901 delete_thread (lp->ptid);
902 }
903
904 delete_lwp (lp->ptid);
905 }
906
907 /* Wait for the LWP specified by LP, which we have just attached to.
908 Returns a wait status for that LWP, to cache. */
909
910 static int
911 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
912 int *signalled)
913 {
914 pid_t new_pid, pid = ptid_get_lwp (ptid);
915 int status;
916
917 if (linux_proc_pid_is_stopped (pid))
918 {
919 if (debug_linux_nat)
920 fprintf_unfiltered (gdb_stdlog,
921 "LNPAW: Attaching to a stopped process\n");
922
923 /* The process is definitely stopped. It is in a job control
924 stop, unless the kernel predates the TASK_STOPPED /
925 TASK_TRACED distinction, in which case it might be in a
926 ptrace stop. Make sure it is in a ptrace stop; from there we
927 can kill it, signal it, et cetera.
928
929 First make sure there is a pending SIGSTOP. Since we are
930 already attached, the process can not transition from stopped
931 to running without a PTRACE_CONT; so we know this signal will
932 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
933 probably already in the queue (unless this kernel is old
934 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
935 is not an RT signal, it can only be queued once. */
936 kill_lwp (pid, SIGSTOP);
937
938 /* Finally, resume the stopped process. This will deliver the SIGSTOP
939 (or a higher priority signal, just like normal PTRACE_ATTACH). */
940 ptrace (PTRACE_CONT, pid, 0, 0);
941 }
942
943 /* Make sure the initial process is stopped. The user-level threads
944 layer might want to poke around in the inferior, and that won't
945 work if things haven't stabilized yet. */
946 new_pid = my_waitpid (pid, &status, 0);
947 if (new_pid == -1 && errno == ECHILD)
948 {
949 if (first)
950 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
951
952 /* Try again with __WCLONE to check cloned processes. */
953 new_pid = my_waitpid (pid, &status, __WCLONE);
954 *cloned = 1;
955 }
956
957 gdb_assert (pid == new_pid);
958
959 if (!WIFSTOPPED (status))
960 {
961 /* The pid we tried to attach has apparently just exited. */
962 if (debug_linux_nat)
963 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
964 pid, status_to_str (status));
965 return status;
966 }
967
968 if (WSTOPSIG (status) != SIGSTOP)
969 {
970 *signalled = 1;
971 if (debug_linux_nat)
972 fprintf_unfiltered (gdb_stdlog,
973 "LNPAW: Received %s after attaching\n",
974 status_to_str (status));
975 }
976
977 return status;
978 }
979
980 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
981 the new LWP could not be attached, or 1 if we're already auto
982 attached to this thread, but haven't processed the
983 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
984 its existance, without considering it an error. */
985
986 int
987 lin_lwp_attach_lwp (ptid_t ptid)
988 {
989 struct lwp_info *lp;
990 int lwpid;
991
992 gdb_assert (ptid_lwp_p (ptid));
993
994 lp = find_lwp_pid (ptid);
995 lwpid = ptid_get_lwp (ptid);
996
997 /* We assume that we're already attached to any LWP that has an id
998 equal to the overall process id, and to any LWP that is already
999 in our list of LWPs. If we're not seeing exit events from threads
1000 and we've had PID wraparound since we last tried to stop all threads,
1001 this assumption might be wrong; fortunately, this is very unlikely
1002 to happen. */
1003 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1004 {
1005 int status, cloned = 0, signalled = 0;
1006
1007 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1008 {
1009 if (linux_supports_tracefork ())
1010 {
1011 /* If we haven't stopped all threads when we get here,
1012 we may have seen a thread listed in thread_db's list,
1013 but not processed the PTRACE_EVENT_CLONE yet. If
1014 that's the case, ignore this new thread, and let
1015 normal event handling discover it later. */
1016 if (in_pid_list_p (stopped_pids, lwpid))
1017 {
1018 /* We've already seen this thread stop, but we
1019 haven't seen the PTRACE_EVENT_CLONE extended
1020 event yet. */
1021 return 0;
1022 }
1023 else
1024 {
1025 int new_pid;
1026 int status;
1027
1028 /* See if we've got a stop for this new child
1029 pending. If so, we're already attached. */
1030 gdb_assert (lwpid > 0);
1031 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1032 if (new_pid == -1 && errno == ECHILD)
1033 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1034 if (new_pid != -1)
1035 {
1036 if (WIFSTOPPED (status))
1037 add_to_pid_list (&stopped_pids, lwpid, status);
1038 return 1;
1039 }
1040 }
1041 }
1042
1043 /* If we fail to attach to the thread, issue a warning,
1044 but continue. One way this can happen is if thread
1045 creation is interrupted; as of Linux kernel 2.6.19, a
1046 bug may place threads in the thread list and then fail
1047 to create them. */
1048 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1049 safe_strerror (errno));
1050 return -1;
1051 }
1052
1053 if (debug_linux_nat)
1054 fprintf_unfiltered (gdb_stdlog,
1055 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1056 target_pid_to_str (ptid));
1057
1058 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1059 if (!WIFSTOPPED (status))
1060 return 1;
1061
1062 lp = add_lwp (ptid);
1063 lp->stopped = 1;
1064 lp->cloned = cloned;
1065 lp->signalled = signalled;
1066 if (WSTOPSIG (status) != SIGSTOP)
1067 {
1068 lp->resumed = 1;
1069 lp->status = status;
1070 }
1071
1072 target_post_attach (ptid_get_lwp (lp->ptid));
1073
1074 if (debug_linux_nat)
1075 {
1076 fprintf_unfiltered (gdb_stdlog,
1077 "LLAL: waitpid %s received %s\n",
1078 target_pid_to_str (ptid),
1079 status_to_str (status));
1080 }
1081 }
1082 else
1083 {
1084 /* We assume that the LWP representing the original process is
1085 already stopped. Mark it as stopped in the data structure
1086 that the GNU/linux ptrace layer uses to keep track of
1087 threads. Note that this won't have already been done since
1088 the main thread will have, we assume, been stopped by an
1089 attach from a different layer. */
1090 if (lp == NULL)
1091 lp = add_lwp (ptid);
1092 lp->stopped = 1;
1093 }
1094
1095 lp->last_resume_kind = resume_stop;
1096 return 0;
1097 }
1098
1099 static void
1100 linux_nat_create_inferior (struct target_ops *ops,
1101 char *exec_file, char *allargs, char **env,
1102 int from_tty)
1103 {
1104 struct cleanup *restore_personality
1105 = maybe_disable_address_space_randomization (disable_randomization);
1106
1107 /* The fork_child mechanism is synchronous and calls target_wait, so
1108 we have to mask the async mode. */
1109
1110 /* Make sure we report all signals during startup. */
1111 linux_nat_pass_signals (ops, 0, NULL);
1112
1113 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1114
1115 do_cleanups (restore_personality);
1116 }
1117
1118 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1119 already attached. Returns true if a new LWP is found, false
1120 otherwise. */
1121
1122 static int
1123 attach_proc_task_lwp_callback (ptid_t ptid)
1124 {
1125 struct lwp_info *lp;
1126
1127 /* Ignore LWPs we're already attached to. */
1128 lp = find_lwp_pid (ptid);
1129 if (lp == NULL)
1130 {
1131 int lwpid = ptid_get_lwp (ptid);
1132
1133 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1134 {
1135 int err = errno;
1136
1137 /* Be quiet if we simply raced with the thread exiting.
1138 EPERM is returned if the thread's task still exists, and
1139 is marked as exited or zombie, as well as other
1140 conditions, so in that case, confirm the status in
1141 /proc/PID/status. */
1142 if (err == ESRCH
1143 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1144 {
1145 if (debug_linux_nat)
1146 {
1147 fprintf_unfiltered (gdb_stdlog,
1148 "Cannot attach to lwp %d: "
1149 "thread is gone (%d: %s)\n",
1150 lwpid, err, safe_strerror (err));
1151 }
1152 }
1153 else
1154 {
1155 warning (_("Cannot attach to lwp %d: %s"),
1156 lwpid,
1157 linux_ptrace_attach_fail_reason_string (ptid,
1158 err));
1159 }
1160 }
1161 else
1162 {
1163 if (debug_linux_nat)
1164 fprintf_unfiltered (gdb_stdlog,
1165 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1166 target_pid_to_str (ptid));
1167
1168 lp = add_lwp (ptid);
1169 lp->cloned = 1;
1170
1171 /* The next time we wait for this LWP we'll see a SIGSTOP as
1172 PTRACE_ATTACH brings it to a halt. */
1173 lp->signalled = 1;
1174
1175 /* We need to wait for a stop before being able to make the
1176 next ptrace call on this LWP. */
1177 lp->must_set_ptrace_flags = 1;
1178 }
1179
1180 return 1;
1181 }
1182 return 0;
1183 }
1184
1185 static void
1186 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1187 {
1188 struct lwp_info *lp;
1189 int status;
1190 ptid_t ptid;
1191 volatile struct gdb_exception ex;
1192
1193 /* Make sure we report all signals during attach. */
1194 linux_nat_pass_signals (ops, 0, NULL);
1195
1196 TRY_CATCH (ex, RETURN_MASK_ERROR)
1197 {
1198 linux_ops->to_attach (ops, args, from_tty);
1199 }
1200 if (ex.reason < 0)
1201 {
1202 pid_t pid = parse_pid_to_attach (args);
1203 struct buffer buffer;
1204 char *message, *buffer_s;
1205
1206 message = xstrdup (ex.message);
1207 make_cleanup (xfree, message);
1208
1209 buffer_init (&buffer);
1210 linux_ptrace_attach_fail_reason (pid, &buffer);
1211
1212 buffer_grow_str0 (&buffer, "");
1213 buffer_s = buffer_finish (&buffer);
1214 make_cleanup (xfree, buffer_s);
1215
1216 if (*buffer_s != '\0')
1217 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1218 else
1219 throw_error (ex.error, "%s", message);
1220 }
1221
1222 /* The ptrace base target adds the main thread with (pid,0,0)
1223 format. Decorate it with lwp info. */
1224 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1225 ptid_get_pid (inferior_ptid),
1226 0);
1227 thread_change_ptid (inferior_ptid, ptid);
1228
1229 /* Add the initial process as the first LWP to the list. */
1230 lp = add_initial_lwp (ptid);
1231
1232 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1233 &lp->signalled);
1234 if (!WIFSTOPPED (status))
1235 {
1236 if (WIFEXITED (status))
1237 {
1238 int exit_code = WEXITSTATUS (status);
1239
1240 target_terminal_ours ();
1241 target_mourn_inferior ();
1242 if (exit_code == 0)
1243 error (_("Unable to attach: program exited normally."));
1244 else
1245 error (_("Unable to attach: program exited with code %d."),
1246 exit_code);
1247 }
1248 else if (WIFSIGNALED (status))
1249 {
1250 enum gdb_signal signo;
1251
1252 target_terminal_ours ();
1253 target_mourn_inferior ();
1254
1255 signo = gdb_signal_from_host (WTERMSIG (status));
1256 error (_("Unable to attach: program terminated with signal "
1257 "%s, %s."),
1258 gdb_signal_to_name (signo),
1259 gdb_signal_to_string (signo));
1260 }
1261
1262 internal_error (__FILE__, __LINE__,
1263 _("unexpected status %d for PID %ld"),
1264 status, (long) ptid_get_lwp (ptid));
1265 }
1266
1267 lp->stopped = 1;
1268
1269 /* Save the wait status to report later. */
1270 lp->resumed = 1;
1271 if (debug_linux_nat)
1272 fprintf_unfiltered (gdb_stdlog,
1273 "LNA: waitpid %ld, saving status %s\n",
1274 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1275
1276 lp->status = status;
1277
1278 /* We must attach to every LWP. If /proc is mounted, use that to
1279 find them now. The inferior may be using raw clone instead of
1280 using pthreads. But even if it is using pthreads, thread_db
1281 walks structures in the inferior's address space to find the list
1282 of threads/LWPs, and those structures may well be corrupted.
1283 Note that once thread_db is loaded, we'll still use it to list
1284 threads and associate pthread info with each LWP. */
1285 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1286 attach_proc_task_lwp_callback);
1287
1288 if (target_can_async_p ())
1289 target_async (inferior_event_handler, 0);
1290 }
1291
1292 /* Get pending status of LP. */
1293 static int
1294 get_pending_status (struct lwp_info *lp, int *status)
1295 {
1296 enum gdb_signal signo = GDB_SIGNAL_0;
1297
1298 /* If we paused threads momentarily, we may have stored pending
1299 events in lp->status or lp->waitstatus (see stop_wait_callback),
1300 and GDB core hasn't seen any signal for those threads.
1301 Otherwise, the last signal reported to the core is found in the
1302 thread object's stop_signal.
1303
1304 There's a corner case that isn't handled here at present. Only
1305 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1306 stop_signal make sense as a real signal to pass to the inferior.
1307 Some catchpoint related events, like
1308 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1309 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1310 those traps are debug API (ptrace in our case) related and
1311 induced; the inferior wouldn't see them if it wasn't being
1312 traced. Hence, we should never pass them to the inferior, even
1313 when set to pass state. Since this corner case isn't handled by
1314 infrun.c when proceeding with a signal, for consistency, neither
1315 do we handle it here (or elsewhere in the file we check for
1316 signal pass state). Normally SIGTRAP isn't set to pass state, so
1317 this is really a corner case. */
1318
1319 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1320 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1321 else if (lp->status)
1322 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1323 else if (non_stop && !is_executing (lp->ptid))
1324 {
1325 struct thread_info *tp = find_thread_ptid (lp->ptid);
1326
1327 signo = tp->suspend.stop_signal;
1328 }
1329 else if (!non_stop)
1330 {
1331 struct target_waitstatus last;
1332 ptid_t last_ptid;
1333
1334 get_last_target_status (&last_ptid, &last);
1335
1336 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1337 {
1338 struct thread_info *tp = find_thread_ptid (lp->ptid);
1339
1340 signo = tp->suspend.stop_signal;
1341 }
1342 }
1343
1344 *status = 0;
1345
1346 if (signo == GDB_SIGNAL_0)
1347 {
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "GPT: lwp %s has no pending signal\n",
1351 target_pid_to_str (lp->ptid));
1352 }
1353 else if (!signal_pass_state (signo))
1354 {
1355 if (debug_linux_nat)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "GPT: lwp %s had signal %s, "
1358 "but it is in no pass state\n",
1359 target_pid_to_str (lp->ptid),
1360 gdb_signal_to_string (signo));
1361 }
1362 else
1363 {
1364 *status = W_STOPCODE (gdb_signal_to_host (signo));
1365
1366 if (debug_linux_nat)
1367 fprintf_unfiltered (gdb_stdlog,
1368 "GPT: lwp %s has pending signal %s\n",
1369 target_pid_to_str (lp->ptid),
1370 gdb_signal_to_string (signo));
1371 }
1372
1373 return 0;
1374 }
1375
1376 static int
1377 detach_callback (struct lwp_info *lp, void *data)
1378 {
1379 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1380
1381 if (debug_linux_nat && lp->status)
1382 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1383 strsignal (WSTOPSIG (lp->status)),
1384 target_pid_to_str (lp->ptid));
1385
1386 /* If there is a pending SIGSTOP, get rid of it. */
1387 if (lp->signalled)
1388 {
1389 if (debug_linux_nat)
1390 fprintf_unfiltered (gdb_stdlog,
1391 "DC: Sending SIGCONT to %s\n",
1392 target_pid_to_str (lp->ptid));
1393
1394 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1395 lp->signalled = 0;
1396 }
1397
1398 /* We don't actually detach from the LWP that has an id equal to the
1399 overall process id just yet. */
1400 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1401 {
1402 int status = 0;
1403
1404 /* Pass on any pending signal for this LWP. */
1405 get_pending_status (lp, &status);
1406
1407 if (linux_nat_prepare_to_resume != NULL)
1408 linux_nat_prepare_to_resume (lp);
1409 errno = 0;
1410 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1411 WSTOPSIG (status)) < 0)
1412 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1413 safe_strerror (errno));
1414
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1418 target_pid_to_str (lp->ptid),
1419 strsignal (WSTOPSIG (status)));
1420
1421 delete_lwp (lp->ptid);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static void
1428 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1429 {
1430 int pid;
1431 int status;
1432 struct lwp_info *main_lwp;
1433
1434 pid = ptid_get_pid (inferior_ptid);
1435
1436 /* Don't unregister from the event loop, as there may be other
1437 inferiors running. */
1438
1439 /* Stop all threads before detaching. ptrace requires that the
1440 thread is stopped to sucessfully detach. */
1441 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1442 /* ... and wait until all of them have reported back that
1443 they're no longer running. */
1444 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1445
1446 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1447
1448 /* Only the initial process should be left right now. */
1449 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1450
1451 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1452
1453 /* Pass on any pending signal for the last LWP. */
1454 if ((args == NULL || *args == '\0')
1455 && get_pending_status (main_lwp, &status) != -1
1456 && WIFSTOPPED (status))
1457 {
1458 char *tem;
1459
1460 /* Put the signal number in ARGS so that inf_ptrace_detach will
1461 pass it along with PTRACE_DETACH. */
1462 tem = alloca (8);
1463 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1464 args = tem;
1465 if (debug_linux_nat)
1466 fprintf_unfiltered (gdb_stdlog,
1467 "LND: Sending signal %s to %s\n",
1468 args,
1469 target_pid_to_str (main_lwp->ptid));
1470 }
1471
1472 if (linux_nat_prepare_to_resume != NULL)
1473 linux_nat_prepare_to_resume (main_lwp);
1474 delete_lwp (main_lwp->ptid);
1475
1476 if (forks_exist_p ())
1477 {
1478 /* Multi-fork case. The current inferior_ptid is being detached
1479 from, but there are other viable forks to debug. Detach from
1480 the current fork, and context-switch to the first
1481 available. */
1482 linux_fork_detach (args, from_tty);
1483 }
1484 else
1485 linux_ops->to_detach (ops, args, from_tty);
1486 }
1487
1488 /* Resume execution of the inferior process. If STEP is nonzero,
1489 single-step it. If SIGNAL is nonzero, give it that signal. */
1490
1491 static void
1492 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1493 {
1494 ptid_t ptid;
1495
1496 lp->step = step;
1497
1498 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1499 We only presently need that if the LWP is stepped though (to
1500 handle the case of stepping a breakpoint instruction). */
1501 if (step)
1502 {
1503 struct regcache *regcache = get_thread_regcache (lp->ptid);
1504
1505 lp->stop_pc = regcache_read_pc (regcache);
1506 }
1507 else
1508 lp->stop_pc = 0;
1509
1510 if (linux_nat_prepare_to_resume != NULL)
1511 linux_nat_prepare_to_resume (lp);
1512 /* Convert to something the lower layer understands. */
1513 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1514 linux_ops->to_resume (linux_ops, ptid, step, signo);
1515 lp->stop_reason = LWP_STOPPED_BY_NO_REASON;
1516 lp->stopped = 0;
1517 registers_changed_ptid (lp->ptid);
1518 }
1519
1520 /* Resume LP. */
1521
1522 static void
1523 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1524 {
1525 if (lp->stopped)
1526 {
1527 struct inferior *inf = find_inferior_ptid (lp->ptid);
1528
1529 if (inf->vfork_child != NULL)
1530 {
1531 if (debug_linux_nat)
1532 fprintf_unfiltered (gdb_stdlog,
1533 "RC: Not resuming %s (vfork parent)\n",
1534 target_pid_to_str (lp->ptid));
1535 }
1536 else if (!lwp_status_pending_p (lp))
1537 {
1538 if (debug_linux_nat)
1539 fprintf_unfiltered (gdb_stdlog,
1540 "RC: Resuming sibling %s, %s, %s\n",
1541 target_pid_to_str (lp->ptid),
1542 (signo != GDB_SIGNAL_0
1543 ? strsignal (gdb_signal_to_host (signo))
1544 : "0"),
1545 step ? "step" : "resume");
1546
1547 linux_resume_one_lwp (lp, step, signo);
1548 }
1549 else
1550 {
1551 if (debug_linux_nat)
1552 fprintf_unfiltered (gdb_stdlog,
1553 "RC: Not resuming sibling %s (has pending)\n",
1554 target_pid_to_str (lp->ptid));
1555 }
1556 }
1557 else
1558 {
1559 if (debug_linux_nat)
1560 fprintf_unfiltered (gdb_stdlog,
1561 "RC: Not resuming sibling %s (not stopped)\n",
1562 target_pid_to_str (lp->ptid));
1563 }
1564 }
1565
1566 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1567 Resume LWP with the last stop signal, if it is in pass state. */
1568
1569 static int
1570 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1571 {
1572 enum gdb_signal signo = GDB_SIGNAL_0;
1573
1574 if (lp == except)
1575 return 0;
1576
1577 if (lp->stopped)
1578 {
1579 struct thread_info *thread;
1580
1581 thread = find_thread_ptid (lp->ptid);
1582 if (thread != NULL)
1583 {
1584 signo = thread->suspend.stop_signal;
1585 thread->suspend.stop_signal = GDB_SIGNAL_0;
1586 }
1587 }
1588
1589 resume_lwp (lp, 0, signo);
1590 return 0;
1591 }
1592
1593 static int
1594 resume_clear_callback (struct lwp_info *lp, void *data)
1595 {
1596 lp->resumed = 0;
1597 lp->last_resume_kind = resume_stop;
1598 return 0;
1599 }
1600
1601 static int
1602 resume_set_callback (struct lwp_info *lp, void *data)
1603 {
1604 lp->resumed = 1;
1605 lp->last_resume_kind = resume_continue;
1606 return 0;
1607 }
1608
1609 static void
1610 linux_nat_resume (struct target_ops *ops,
1611 ptid_t ptid, int step, enum gdb_signal signo)
1612 {
1613 struct lwp_info *lp;
1614 int resume_many;
1615
1616 if (debug_linux_nat)
1617 fprintf_unfiltered (gdb_stdlog,
1618 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1619 step ? "step" : "resume",
1620 target_pid_to_str (ptid),
1621 (signo != GDB_SIGNAL_0
1622 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1623 target_pid_to_str (inferior_ptid));
1624
1625 /* A specific PTID means `step only this process id'. */
1626 resume_many = (ptid_equal (minus_one_ptid, ptid)
1627 || ptid_is_pid (ptid));
1628
1629 /* Mark the lwps we're resuming as resumed. */
1630 iterate_over_lwps (ptid, resume_set_callback, NULL);
1631
1632 /* See if it's the current inferior that should be handled
1633 specially. */
1634 if (resume_many)
1635 lp = find_lwp_pid (inferior_ptid);
1636 else
1637 lp = find_lwp_pid (ptid);
1638 gdb_assert (lp != NULL);
1639
1640 /* Remember if we're stepping. */
1641 lp->last_resume_kind = step ? resume_step : resume_continue;
1642
1643 /* If we have a pending wait status for this thread, there is no
1644 point in resuming the process. But first make sure that
1645 linux_nat_wait won't preemptively handle the event - we
1646 should never take this short-circuit if we are going to
1647 leave LP running, since we have skipped resuming all the
1648 other threads. This bit of code needs to be synchronized
1649 with linux_nat_wait. */
1650
1651 if (lp->status && WIFSTOPPED (lp->status))
1652 {
1653 if (!lp->step
1654 && WSTOPSIG (lp->status)
1655 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1656 {
1657 if (debug_linux_nat)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "LLR: Not short circuiting for ignored "
1660 "status 0x%x\n", lp->status);
1661
1662 /* FIXME: What should we do if we are supposed to continue
1663 this thread with a signal? */
1664 gdb_assert (signo == GDB_SIGNAL_0);
1665 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1666 lp->status = 0;
1667 }
1668 }
1669
1670 if (lwp_status_pending_p (lp))
1671 {
1672 /* FIXME: What should we do if we are supposed to continue
1673 this thread with a signal? */
1674 gdb_assert (signo == GDB_SIGNAL_0);
1675
1676 if (debug_linux_nat)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "LLR: Short circuiting for status 0x%x\n",
1679 lp->status);
1680
1681 if (target_can_async_p ())
1682 {
1683 target_async (inferior_event_handler, 0);
1684 /* Tell the event loop we have something to process. */
1685 async_file_mark ();
1686 }
1687 return;
1688 }
1689
1690 if (resume_many)
1691 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1692
1693 linux_resume_one_lwp (lp, step, signo);
1694
1695 if (debug_linux_nat)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "LLR: %s %s, %s (resume event thread)\n",
1698 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1699 target_pid_to_str (ptid),
1700 (signo != GDB_SIGNAL_0
1701 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1702
1703 if (target_can_async_p ())
1704 target_async (inferior_event_handler, 0);
1705 }
1706
1707 /* Send a signal to an LWP. */
1708
1709 static int
1710 kill_lwp (int lwpid, int signo)
1711 {
1712 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1713 fails, then we are not using nptl threads and we should be using kill. */
1714
1715 #ifdef HAVE_TKILL_SYSCALL
1716 {
1717 static int tkill_failed;
1718
1719 if (!tkill_failed)
1720 {
1721 int ret;
1722
1723 errno = 0;
1724 ret = syscall (__NR_tkill, lwpid, signo);
1725 if (errno != ENOSYS)
1726 return ret;
1727 tkill_failed = 1;
1728 }
1729 }
1730 #endif
1731
1732 return kill (lwpid, signo);
1733 }
1734
1735 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1736 event, check if the core is interested in it: if not, ignore the
1737 event, and keep waiting; otherwise, we need to toggle the LWP's
1738 syscall entry/exit status, since the ptrace event itself doesn't
1739 indicate it, and report the trap to higher layers. */
1740
1741 static int
1742 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1743 {
1744 struct target_waitstatus *ourstatus = &lp->waitstatus;
1745 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1746 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1747
1748 if (stopping)
1749 {
1750 /* If we're stopping threads, there's a SIGSTOP pending, which
1751 makes it so that the LWP reports an immediate syscall return,
1752 followed by the SIGSTOP. Skip seeing that "return" using
1753 PTRACE_CONT directly, and let stop_wait_callback collect the
1754 SIGSTOP. Later when the thread is resumed, a new syscall
1755 entry event. If we didn't do this (and returned 0), we'd
1756 leave a syscall entry pending, and our caller, by using
1757 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1758 itself. Later, when the user re-resumes this LWP, we'd see
1759 another syscall entry event and we'd mistake it for a return.
1760
1761 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1762 (leaving immediately with LWP->signalled set, without issuing
1763 a PTRACE_CONT), it would still be problematic to leave this
1764 syscall enter pending, as later when the thread is resumed,
1765 it would then see the same syscall exit mentioned above,
1766 followed by the delayed SIGSTOP, while the syscall didn't
1767 actually get to execute. It seems it would be even more
1768 confusing to the user. */
1769
1770 if (debug_linux_nat)
1771 fprintf_unfiltered (gdb_stdlog,
1772 "LHST: ignoring syscall %d "
1773 "for LWP %ld (stopping threads), "
1774 "resuming with PTRACE_CONT for SIGSTOP\n",
1775 syscall_number,
1776 ptid_get_lwp (lp->ptid));
1777
1778 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1779 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1780 lp->stopped = 0;
1781 return 1;
1782 }
1783
1784 if (catch_syscall_enabled ())
1785 {
1786 /* Always update the entry/return state, even if this particular
1787 syscall isn't interesting to the core now. In async mode,
1788 the user could install a new catchpoint for this syscall
1789 between syscall enter/return, and we'll need to know to
1790 report a syscall return if that happens. */
1791 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1792 ? TARGET_WAITKIND_SYSCALL_RETURN
1793 : TARGET_WAITKIND_SYSCALL_ENTRY);
1794
1795 if (catching_syscall_number (syscall_number))
1796 {
1797 /* Alright, an event to report. */
1798 ourstatus->kind = lp->syscall_state;
1799 ourstatus->value.syscall_number = syscall_number;
1800
1801 if (debug_linux_nat)
1802 fprintf_unfiltered (gdb_stdlog,
1803 "LHST: stopping for %s of syscall %d"
1804 " for LWP %ld\n",
1805 lp->syscall_state
1806 == TARGET_WAITKIND_SYSCALL_ENTRY
1807 ? "entry" : "return",
1808 syscall_number,
1809 ptid_get_lwp (lp->ptid));
1810 return 0;
1811 }
1812
1813 if (debug_linux_nat)
1814 fprintf_unfiltered (gdb_stdlog,
1815 "LHST: ignoring %s of syscall %d "
1816 "for LWP %ld\n",
1817 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1818 ? "entry" : "return",
1819 syscall_number,
1820 ptid_get_lwp (lp->ptid));
1821 }
1822 else
1823 {
1824 /* If we had been syscall tracing, and hence used PT_SYSCALL
1825 before on this LWP, it could happen that the user removes all
1826 syscall catchpoints before we get to process this event.
1827 There are two noteworthy issues here:
1828
1829 - When stopped at a syscall entry event, resuming with
1830 PT_STEP still resumes executing the syscall and reports a
1831 syscall return.
1832
1833 - Only PT_SYSCALL catches syscall enters. If we last
1834 single-stepped this thread, then this event can't be a
1835 syscall enter. If we last single-stepped this thread, this
1836 has to be a syscall exit.
1837
1838 The points above mean that the next resume, be it PT_STEP or
1839 PT_CONTINUE, can not trigger a syscall trace event. */
1840 if (debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog,
1842 "LHST: caught syscall event "
1843 "with no syscall catchpoints."
1844 " %d for LWP %ld, ignoring\n",
1845 syscall_number,
1846 ptid_get_lwp (lp->ptid));
1847 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1848 }
1849
1850 /* The core isn't interested in this event. For efficiency, avoid
1851 stopping all threads only to have the core resume them all again.
1852 Since we're not stopping threads, if we're still syscall tracing
1853 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1854 subsequent syscall. Simply resume using the inf-ptrace layer,
1855 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1856
1857 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1858 return 1;
1859 }
1860
1861 /* Handle a GNU/Linux extended wait response. If we see a clone
1862 event, we need to add the new LWP to our list (and not report the
1863 trap to higher layers). This function returns non-zero if the
1864 event should be ignored and we should wait again. If STOPPING is
1865 true, the new LWP remains stopped, otherwise it is continued. */
1866
1867 static int
1868 linux_handle_extended_wait (struct lwp_info *lp, int status,
1869 int stopping)
1870 {
1871 int pid = ptid_get_lwp (lp->ptid);
1872 struct target_waitstatus *ourstatus = &lp->waitstatus;
1873 int event = linux_ptrace_get_extended_event (status);
1874
1875 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1876 || event == PTRACE_EVENT_CLONE)
1877 {
1878 unsigned long new_pid;
1879 int ret;
1880
1881 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1882
1883 /* If we haven't already seen the new PID stop, wait for it now. */
1884 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1885 {
1886 /* The new child has a pending SIGSTOP. We can't affect it until it
1887 hits the SIGSTOP, but we're already attached. */
1888 ret = my_waitpid (new_pid, &status,
1889 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1890 if (ret == -1)
1891 perror_with_name (_("waiting for new child"));
1892 else if (ret != new_pid)
1893 internal_error (__FILE__, __LINE__,
1894 _("wait returned unexpected PID %d"), ret);
1895 else if (!WIFSTOPPED (status))
1896 internal_error (__FILE__, __LINE__,
1897 _("wait returned unexpected status 0x%x"), status);
1898 }
1899
1900 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1901
1902 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1903 {
1904 /* The arch-specific native code may need to know about new
1905 forks even if those end up never mapped to an
1906 inferior. */
1907 if (linux_nat_new_fork != NULL)
1908 linux_nat_new_fork (lp, new_pid);
1909 }
1910
1911 if (event == PTRACE_EVENT_FORK
1912 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1913 {
1914 /* Handle checkpointing by linux-fork.c here as a special
1915 case. We don't want the follow-fork-mode or 'catch fork'
1916 to interfere with this. */
1917
1918 /* This won't actually modify the breakpoint list, but will
1919 physically remove the breakpoints from the child. */
1920 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1921
1922 /* Retain child fork in ptrace (stopped) state. */
1923 if (!find_fork_pid (new_pid))
1924 add_fork (new_pid);
1925
1926 /* Report as spurious, so that infrun doesn't want to follow
1927 this fork. We're actually doing an infcall in
1928 linux-fork.c. */
1929 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1930
1931 /* Report the stop to the core. */
1932 return 0;
1933 }
1934
1935 if (event == PTRACE_EVENT_FORK)
1936 ourstatus->kind = TARGET_WAITKIND_FORKED;
1937 else if (event == PTRACE_EVENT_VFORK)
1938 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1939 else
1940 {
1941 struct lwp_info *new_lp;
1942
1943 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1944
1945 if (debug_linux_nat)
1946 fprintf_unfiltered (gdb_stdlog,
1947 "LHEW: Got clone event "
1948 "from LWP %d, new child is LWP %ld\n",
1949 pid, new_pid);
1950
1951 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1952 new_lp->cloned = 1;
1953 new_lp->stopped = 1;
1954
1955 if (WSTOPSIG (status) != SIGSTOP)
1956 {
1957 /* This can happen if someone starts sending signals to
1958 the new thread before it gets a chance to run, which
1959 have a lower number than SIGSTOP (e.g. SIGUSR1).
1960 This is an unlikely case, and harder to handle for
1961 fork / vfork than for clone, so we do not try - but
1962 we handle it for clone events here. We'll send
1963 the other signal on to the thread below. */
1964
1965 new_lp->signalled = 1;
1966 }
1967 else
1968 {
1969 struct thread_info *tp;
1970
1971 /* When we stop for an event in some other thread, and
1972 pull the thread list just as this thread has cloned,
1973 we'll have seen the new thread in the thread_db list
1974 before handling the CLONE event (glibc's
1975 pthread_create adds the new thread to the thread list
1976 before clone'ing, and has the kernel fill in the
1977 thread's tid on the clone call with
1978 CLONE_PARENT_SETTID). If that happened, and the core
1979 had requested the new thread to stop, we'll have
1980 killed it with SIGSTOP. But since SIGSTOP is not an
1981 RT signal, it can only be queued once. We need to be
1982 careful to not resume the LWP if we wanted it to
1983 stop. In that case, we'll leave the SIGSTOP pending.
1984 It will later be reported as GDB_SIGNAL_0. */
1985 tp = find_thread_ptid (new_lp->ptid);
1986 if (tp != NULL && tp->stop_requested)
1987 new_lp->last_resume_kind = resume_stop;
1988 else
1989 status = 0;
1990 }
1991
1992 if (non_stop)
1993 {
1994 /* Add the new thread to GDB's lists as soon as possible
1995 so that:
1996
1997 1) the frontend doesn't have to wait for a stop to
1998 display them, and,
1999
2000 2) we tag it with the correct running state. */
2001
2002 /* If the thread_db layer is active, let it know about
2003 this new thread, and add it to GDB's list. */
2004 if (!thread_db_attach_lwp (new_lp->ptid))
2005 {
2006 /* We're not using thread_db. Add it to GDB's
2007 list. */
2008 target_post_attach (ptid_get_lwp (new_lp->ptid));
2009 add_thread (new_lp->ptid);
2010 }
2011
2012 if (!stopping)
2013 {
2014 set_running (new_lp->ptid, 1);
2015 set_executing (new_lp->ptid, 1);
2016 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2017 resume_stop. */
2018 new_lp->last_resume_kind = resume_continue;
2019 }
2020 }
2021
2022 if (status != 0)
2023 {
2024 /* We created NEW_LP so it cannot yet contain STATUS. */
2025 gdb_assert (new_lp->status == 0);
2026
2027 /* Save the wait status to report later. */
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog,
2030 "LHEW: waitpid of new LWP %ld, "
2031 "saving status %s\n",
2032 (long) ptid_get_lwp (new_lp->ptid),
2033 status_to_str (status));
2034 new_lp->status = status;
2035 }
2036
2037 new_lp->resumed = !stopping;
2038 return 1;
2039 }
2040
2041 return 0;
2042 }
2043
2044 if (event == PTRACE_EVENT_EXEC)
2045 {
2046 if (debug_linux_nat)
2047 fprintf_unfiltered (gdb_stdlog,
2048 "LHEW: Got exec event from LWP %ld\n",
2049 ptid_get_lwp (lp->ptid));
2050
2051 ourstatus->kind = TARGET_WAITKIND_EXECD;
2052 ourstatus->value.execd_pathname
2053 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2054
2055 /* The thread that execed must have been resumed, but, when a
2056 thread execs, it changes its tid to the tgid, and the old
2057 tgid thread might have not been resumed. */
2058 lp->resumed = 1;
2059 return 0;
2060 }
2061
2062 if (event == PTRACE_EVENT_VFORK_DONE)
2063 {
2064 if (current_inferior ()->waiting_for_vfork_done)
2065 {
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LHEW: Got expected PTRACE_EVENT_"
2069 "VFORK_DONE from LWP %ld: stopping\n",
2070 ptid_get_lwp (lp->ptid));
2071
2072 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2073 return 0;
2074 }
2075
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2079 "from LWP %ld: ignoring\n",
2080 ptid_get_lwp (lp->ptid));
2081 return 1;
2082 }
2083
2084 internal_error (__FILE__, __LINE__,
2085 _("unknown ptrace event %d"), event);
2086 }
2087
2088 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2089 exited. */
2090
2091 static int
2092 wait_lwp (struct lwp_info *lp)
2093 {
2094 pid_t pid;
2095 int status = 0;
2096 int thread_dead = 0;
2097 sigset_t prev_mask;
2098
2099 gdb_assert (!lp->stopped);
2100 gdb_assert (lp->status == 0);
2101
2102 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2103 block_child_signals (&prev_mask);
2104
2105 for (;;)
2106 {
2107 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2108 was right and we should just call sigsuspend. */
2109
2110 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2111 if (pid == -1 && errno == ECHILD)
2112 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2113 if (pid == -1 && errno == ECHILD)
2114 {
2115 /* The thread has previously exited. We need to delete it
2116 now because, for some vendor 2.4 kernels with NPTL
2117 support backported, there won't be an exit event unless
2118 it is the main thread. 2.6 kernels will report an exit
2119 event for each thread that exits, as expected. */
2120 thread_dead = 1;
2121 if (debug_linux_nat)
2122 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2123 target_pid_to_str (lp->ptid));
2124 }
2125 if (pid != 0)
2126 break;
2127
2128 /* Bugs 10970, 12702.
2129 Thread group leader may have exited in which case we'll lock up in
2130 waitpid if there are other threads, even if they are all zombies too.
2131 Basically, we're not supposed to use waitpid this way.
2132 __WCLONE is not applicable for the leader so we can't use that.
2133 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2134 process; it gets ESRCH both for the zombie and for running processes.
2135
2136 As a workaround, check if we're waiting for the thread group leader and
2137 if it's a zombie, and avoid calling waitpid if it is.
2138
2139 This is racy, what if the tgl becomes a zombie right after we check?
2140 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2141 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2142
2143 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2144 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2145 {
2146 thread_dead = 1;
2147 if (debug_linux_nat)
2148 fprintf_unfiltered (gdb_stdlog,
2149 "WL: Thread group leader %s vanished.\n",
2150 target_pid_to_str (lp->ptid));
2151 break;
2152 }
2153
2154 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2155 get invoked despite our caller had them intentionally blocked by
2156 block_child_signals. This is sensitive only to the loop of
2157 linux_nat_wait_1 and there if we get called my_waitpid gets called
2158 again before it gets to sigsuspend so we can safely let the handlers
2159 get executed here. */
2160
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2163 sigsuspend (&suspend_mask);
2164 }
2165
2166 restore_child_signals_mask (&prev_mask);
2167
2168 if (!thread_dead)
2169 {
2170 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2171
2172 if (debug_linux_nat)
2173 {
2174 fprintf_unfiltered (gdb_stdlog,
2175 "WL: waitpid %s received %s\n",
2176 target_pid_to_str (lp->ptid),
2177 status_to_str (status));
2178 }
2179
2180 /* Check if the thread has exited. */
2181 if (WIFEXITED (status) || WIFSIGNALED (status))
2182 {
2183 thread_dead = 1;
2184 if (debug_linux_nat)
2185 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2186 target_pid_to_str (lp->ptid));
2187 }
2188 }
2189
2190 if (thread_dead)
2191 {
2192 exit_lwp (lp);
2193 return 0;
2194 }
2195
2196 gdb_assert (WIFSTOPPED (status));
2197 lp->stopped = 1;
2198
2199 if (lp->must_set_ptrace_flags)
2200 {
2201 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2202
2203 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2204 lp->must_set_ptrace_flags = 0;
2205 }
2206
2207 /* Handle GNU/Linux's syscall SIGTRAPs. */
2208 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2209 {
2210 /* No longer need the sysgood bit. The ptrace event ends up
2211 recorded in lp->waitstatus if we care for it. We can carry
2212 on handling the event like a regular SIGTRAP from here
2213 on. */
2214 status = W_STOPCODE (SIGTRAP);
2215 if (linux_handle_syscall_trap (lp, 1))
2216 return wait_lwp (lp);
2217 }
2218
2219 /* Handle GNU/Linux's extended waitstatus for trace events. */
2220 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2221 && linux_is_extended_waitstatus (status))
2222 {
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "WL: Handling extended status 0x%06x\n",
2226 status);
2227 linux_handle_extended_wait (lp, status, 1);
2228 return 0;
2229 }
2230
2231 return status;
2232 }
2233
2234 /* Send a SIGSTOP to LP. */
2235
2236 static int
2237 stop_callback (struct lwp_info *lp, void *data)
2238 {
2239 if (!lp->stopped && !lp->signalled)
2240 {
2241 int ret;
2242
2243 if (debug_linux_nat)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "SC: kill %s **<SIGSTOP>**\n",
2247 target_pid_to_str (lp->ptid));
2248 }
2249 errno = 0;
2250 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2251 if (debug_linux_nat)
2252 {
2253 fprintf_unfiltered (gdb_stdlog,
2254 "SC: lwp kill %d %s\n",
2255 ret,
2256 errno ? safe_strerror (errno) : "ERRNO-OK");
2257 }
2258
2259 lp->signalled = 1;
2260 gdb_assert (lp->status == 0);
2261 }
2262
2263 return 0;
2264 }
2265
2266 /* Request a stop on LWP. */
2267
2268 void
2269 linux_stop_lwp (struct lwp_info *lwp)
2270 {
2271 stop_callback (lwp, NULL);
2272 }
2273
2274 /* Return non-zero if LWP PID has a pending SIGINT. */
2275
2276 static int
2277 linux_nat_has_pending_sigint (int pid)
2278 {
2279 sigset_t pending, blocked, ignored;
2280
2281 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2282
2283 if (sigismember (&pending, SIGINT)
2284 && !sigismember (&ignored, SIGINT))
2285 return 1;
2286
2287 return 0;
2288 }
2289
2290 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2291
2292 static int
2293 set_ignore_sigint (struct lwp_info *lp, void *data)
2294 {
2295 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2296 flag to consume the next one. */
2297 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2298 && WSTOPSIG (lp->status) == SIGINT)
2299 lp->status = 0;
2300 else
2301 lp->ignore_sigint = 1;
2302
2303 return 0;
2304 }
2305
2306 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2307 This function is called after we know the LWP has stopped; if the LWP
2308 stopped before the expected SIGINT was delivered, then it will never have
2309 arrived. Also, if the signal was delivered to a shared queue and consumed
2310 by a different thread, it will never be delivered to this LWP. */
2311
2312 static void
2313 maybe_clear_ignore_sigint (struct lwp_info *lp)
2314 {
2315 if (!lp->ignore_sigint)
2316 return;
2317
2318 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2319 {
2320 if (debug_linux_nat)
2321 fprintf_unfiltered (gdb_stdlog,
2322 "MCIS: Clearing bogus flag for %s\n",
2323 target_pid_to_str (lp->ptid));
2324 lp->ignore_sigint = 0;
2325 }
2326 }
2327
2328 /* Fetch the possible triggered data watchpoint info and store it in
2329 LP.
2330
2331 On some archs, like x86, that use debug registers to set
2332 watchpoints, it's possible that the way to know which watched
2333 address trapped, is to check the register that is used to select
2334 which address to watch. Problem is, between setting the watchpoint
2335 and reading back which data address trapped, the user may change
2336 the set of watchpoints, and, as a consequence, GDB changes the
2337 debug registers in the inferior. To avoid reading back a stale
2338 stopped-data-address when that happens, we cache in LP the fact
2339 that a watchpoint trapped, and the corresponding data address, as
2340 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2341 registers meanwhile, we have the cached data we can rely on. */
2342
2343 static int
2344 check_stopped_by_watchpoint (struct lwp_info *lp)
2345 {
2346 struct cleanup *old_chain;
2347
2348 if (linux_ops->to_stopped_by_watchpoint == NULL)
2349 return 0;
2350
2351 old_chain = save_inferior_ptid ();
2352 inferior_ptid = lp->ptid;
2353
2354 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2355 {
2356 lp->stop_reason = LWP_STOPPED_BY_WATCHPOINT;
2357
2358 if (linux_ops->to_stopped_data_address != NULL)
2359 lp->stopped_data_address_p =
2360 linux_ops->to_stopped_data_address (&current_target,
2361 &lp->stopped_data_address);
2362 else
2363 lp->stopped_data_address_p = 0;
2364 }
2365
2366 do_cleanups (old_chain);
2367
2368 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2369 }
2370
2371 /* Called when the LWP stopped for a trap that could be explained by a
2372 watchpoint or a breakpoint. */
2373
2374 static void
2375 save_sigtrap (struct lwp_info *lp)
2376 {
2377 gdb_assert (lp->stop_reason == LWP_STOPPED_BY_NO_REASON);
2378 gdb_assert (lp->status != 0);
2379
2380 if (check_stopped_by_watchpoint (lp))
2381 return;
2382
2383 if (linux_nat_status_is_event (lp->status))
2384 check_stopped_by_breakpoint (lp);
2385 }
2386
2387 /* Returns true if the LWP had stopped for a watchpoint. */
2388
2389 static int
2390 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2391 {
2392 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2393
2394 gdb_assert (lp != NULL);
2395
2396 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2397 }
2398
2399 static int
2400 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2401 {
2402 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2403
2404 gdb_assert (lp != NULL);
2405
2406 *addr_p = lp->stopped_data_address;
2407
2408 return lp->stopped_data_address_p;
2409 }
2410
2411 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2412
2413 static int
2414 sigtrap_is_event (int status)
2415 {
2416 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2417 }
2418
2419 /* Set alternative SIGTRAP-like events recognizer. If
2420 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2421 applied. */
2422
2423 void
2424 linux_nat_set_status_is_event (struct target_ops *t,
2425 int (*status_is_event) (int status))
2426 {
2427 linux_nat_status_is_event = status_is_event;
2428 }
2429
2430 /* Wait until LP is stopped. */
2431
2432 static int
2433 stop_wait_callback (struct lwp_info *lp, void *data)
2434 {
2435 struct inferior *inf = find_inferior_ptid (lp->ptid);
2436
2437 /* If this is a vfork parent, bail out, it is not going to report
2438 any SIGSTOP until the vfork is done with. */
2439 if (inf->vfork_child != NULL)
2440 return 0;
2441
2442 if (!lp->stopped)
2443 {
2444 int status;
2445
2446 status = wait_lwp (lp);
2447 if (status == 0)
2448 return 0;
2449
2450 if (lp->ignore_sigint && WIFSTOPPED (status)
2451 && WSTOPSIG (status) == SIGINT)
2452 {
2453 lp->ignore_sigint = 0;
2454
2455 errno = 0;
2456 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2457 lp->stopped = 0;
2458 if (debug_linux_nat)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "PTRACE_CONT %s, 0, 0 (%s) "
2461 "(discarding SIGINT)\n",
2462 target_pid_to_str (lp->ptid),
2463 errno ? safe_strerror (errno) : "OK");
2464
2465 return stop_wait_callback (lp, NULL);
2466 }
2467
2468 maybe_clear_ignore_sigint (lp);
2469
2470 if (WSTOPSIG (status) != SIGSTOP)
2471 {
2472 /* The thread was stopped with a signal other than SIGSTOP. */
2473
2474 if (debug_linux_nat)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "SWC: Pending event %s in %s\n",
2477 status_to_str ((int) status),
2478 target_pid_to_str (lp->ptid));
2479
2480 /* Save the sigtrap event. */
2481 lp->status = status;
2482 gdb_assert (lp->signalled);
2483 save_sigtrap (lp);
2484 }
2485 else
2486 {
2487 /* We caught the SIGSTOP that we intended to catch, so
2488 there's no SIGSTOP pending. */
2489
2490 if (debug_linux_nat)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "SWC: Delayed SIGSTOP caught for %s.\n",
2493 target_pid_to_str (lp->ptid));
2494
2495 /* Reset SIGNALLED only after the stop_wait_callback call
2496 above as it does gdb_assert on SIGNALLED. */
2497 lp->signalled = 0;
2498 }
2499 }
2500
2501 return 0;
2502 }
2503
2504 /* Return non-zero if LP has a wait status pending. Discard the
2505 pending event and resume the LWP if the event that originally
2506 caused the stop became uninteresting. */
2507
2508 static int
2509 status_callback (struct lwp_info *lp, void *data)
2510 {
2511 /* Only report a pending wait status if we pretend that this has
2512 indeed been resumed. */
2513 if (!lp->resumed)
2514 return 0;
2515
2516 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT
2517 || lp->stop_reason == LWP_STOPPED_BY_HW_BREAKPOINT)
2518 {
2519 struct regcache *regcache = get_thread_regcache (lp->ptid);
2520 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2521 CORE_ADDR pc;
2522 int discard = 0;
2523
2524 gdb_assert (lp->status != 0);
2525
2526 pc = regcache_read_pc (regcache);
2527
2528 if (pc != lp->stop_pc)
2529 {
2530 if (debug_linux_nat)
2531 fprintf_unfiltered (gdb_stdlog,
2532 "SC: PC of %s changed. was=%s, now=%s\n",
2533 target_pid_to_str (lp->ptid),
2534 paddress (target_gdbarch (), lp->stop_pc),
2535 paddress (target_gdbarch (), pc));
2536 discard = 1;
2537 }
2538 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2539 {
2540 if (debug_linux_nat)
2541 fprintf_unfiltered (gdb_stdlog,
2542 "SC: previous breakpoint of %s, at %s gone\n",
2543 target_pid_to_str (lp->ptid),
2544 paddress (target_gdbarch (), lp->stop_pc));
2545
2546 discard = 1;
2547 }
2548
2549 if (discard)
2550 {
2551 if (debug_linux_nat)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "SC: pending event of %s cancelled.\n",
2554 target_pid_to_str (lp->ptid));
2555
2556 lp->status = 0;
2557 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2558 return 0;
2559 }
2560 return 1;
2561 }
2562
2563 return lwp_status_pending_p (lp);
2564 }
2565
2566 /* Return non-zero if LP isn't stopped. */
2567
2568 static int
2569 running_callback (struct lwp_info *lp, void *data)
2570 {
2571 return (!lp->stopped
2572 || (lwp_status_pending_p (lp) && lp->resumed));
2573 }
2574
2575 /* Count the LWP's that have had events. */
2576
2577 static int
2578 count_events_callback (struct lwp_info *lp, void *data)
2579 {
2580 int *count = data;
2581
2582 gdb_assert (count != NULL);
2583
2584 /* Select only resumed LWPs that have an event pending. */
2585 if (lp->resumed && lwp_status_pending_p (lp))
2586 (*count)++;
2587
2588 return 0;
2589 }
2590
2591 /* Select the LWP (if any) that is currently being single-stepped. */
2592
2593 static int
2594 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2595 {
2596 if (lp->last_resume_kind == resume_step
2597 && lp->status != 0)
2598 return 1;
2599 else
2600 return 0;
2601 }
2602
2603 /* Returns true if LP has a status pending. */
2604
2605 static int
2606 lwp_status_pending_p (struct lwp_info *lp)
2607 {
2608 /* We check for lp->waitstatus in addition to lp->status, because we
2609 can have pending process exits recorded in lp->status and
2610 W_EXITCODE(0,0) happens to be 0. */
2611 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2612 }
2613
2614 /* Select the Nth LWP that has had a SIGTRAP event. */
2615
2616 static int
2617 select_event_lwp_callback (struct lwp_info *lp, void *data)
2618 {
2619 int *selector = data;
2620
2621 gdb_assert (selector != NULL);
2622
2623 /* Select only resumed LWPs that have an event pending. */
2624 if (lp->resumed && lwp_status_pending_p (lp))
2625 if ((*selector)-- == 0)
2626 return 1;
2627
2628 return 0;
2629 }
2630
2631 /* Called when the LWP got a signal/trap that could be explained by a
2632 software or hardware breakpoint. */
2633
2634 static int
2635 check_stopped_by_breakpoint (struct lwp_info *lp)
2636 {
2637 /* Arrange for a breakpoint to be hit again later. We don't keep
2638 the SIGTRAP status and don't forward the SIGTRAP signal to the
2639 LWP. We will handle the current event, eventually we will resume
2640 this LWP, and this breakpoint will trap again.
2641
2642 If we do not do this, then we run the risk that the user will
2643 delete or disable the breakpoint, but the LWP will have already
2644 tripped on it. */
2645
2646 struct regcache *regcache = get_thread_regcache (lp->ptid);
2647 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2648 CORE_ADDR pc;
2649 CORE_ADDR sw_bp_pc;
2650
2651 pc = regcache_read_pc (regcache);
2652 sw_bp_pc = pc - target_decr_pc_after_break (gdbarch);
2653
2654 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2655 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2656 sw_bp_pc))
2657 {
2658 /* The LWP was either continued, or stepped a software
2659 breakpoint instruction. */
2660 if (debug_linux_nat)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "CB: Push back software breakpoint for %s\n",
2663 target_pid_to_str (lp->ptid));
2664
2665 /* Back up the PC if necessary. */
2666 if (pc != sw_bp_pc)
2667 regcache_write_pc (regcache, sw_bp_pc);
2668
2669 lp->stop_pc = sw_bp_pc;
2670 lp->stop_reason = LWP_STOPPED_BY_SW_BREAKPOINT;
2671 return 1;
2672 }
2673
2674 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2675 {
2676 if (debug_linux_nat)
2677 fprintf_unfiltered (gdb_stdlog,
2678 "CB: Push back hardware breakpoint for %s\n",
2679 target_pid_to_str (lp->ptid));
2680
2681 lp->stop_pc = pc;
2682 lp->stop_reason = LWP_STOPPED_BY_HW_BREAKPOINT;
2683 return 1;
2684 }
2685
2686 return 0;
2687 }
2688
2689 /* Select one LWP out of those that have events pending. */
2690
2691 static void
2692 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2693 {
2694 int num_events = 0;
2695 int random_selector;
2696 struct lwp_info *event_lp = NULL;
2697
2698 /* Record the wait status for the original LWP. */
2699 (*orig_lp)->status = *status;
2700
2701 /* In all-stop, give preference to the LWP that is being
2702 single-stepped. There will be at most one, and it will be the
2703 LWP that the core is most interested in. If we didn't do this,
2704 then we'd have to handle pending step SIGTRAPs somehow in case
2705 the core later continues the previously-stepped thread, as
2706 otherwise we'd report the pending SIGTRAP then, and the core, not
2707 having stepped the thread, wouldn't understand what the trap was
2708 for, and therefore would report it to the user as a random
2709 signal. */
2710 if (!non_stop)
2711 {
2712 event_lp = iterate_over_lwps (filter,
2713 select_singlestep_lwp_callback, NULL);
2714 if (event_lp != NULL)
2715 {
2716 if (debug_linux_nat)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "SEL: Select single-step %s\n",
2719 target_pid_to_str (event_lp->ptid));
2720 }
2721 }
2722
2723 if (event_lp == NULL)
2724 {
2725 /* Pick one at random, out of those which have had events. */
2726
2727 /* First see how many events we have. */
2728 iterate_over_lwps (filter, count_events_callback, &num_events);
2729
2730 /* Now randomly pick a LWP out of those that have had
2731 events. */
2732 random_selector = (int)
2733 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2734
2735 if (debug_linux_nat && num_events > 1)
2736 fprintf_unfiltered (gdb_stdlog,
2737 "SEL: Found %d events, selecting #%d\n",
2738 num_events, random_selector);
2739
2740 event_lp = iterate_over_lwps (filter,
2741 select_event_lwp_callback,
2742 &random_selector);
2743 }
2744
2745 if (event_lp != NULL)
2746 {
2747 /* Switch the event LWP. */
2748 *orig_lp = event_lp;
2749 *status = event_lp->status;
2750 }
2751
2752 /* Flush the wait status for the event LWP. */
2753 (*orig_lp)->status = 0;
2754 }
2755
2756 /* Return non-zero if LP has been resumed. */
2757
2758 static int
2759 resumed_callback (struct lwp_info *lp, void *data)
2760 {
2761 return lp->resumed;
2762 }
2763
2764 /* Stop an active thread, verify it still exists, then resume it. If
2765 the thread ends up with a pending status, then it is not resumed,
2766 and *DATA (really a pointer to int), is set. */
2767
2768 static int
2769 stop_and_resume_callback (struct lwp_info *lp, void *data)
2770 {
2771 if (!lp->stopped)
2772 {
2773 ptid_t ptid = lp->ptid;
2774
2775 stop_callback (lp, NULL);
2776 stop_wait_callback (lp, NULL);
2777
2778 /* Resume if the lwp still exists, and the core wanted it
2779 running. */
2780 lp = find_lwp_pid (ptid);
2781 if (lp != NULL)
2782 {
2783 if (lp->last_resume_kind == resume_stop
2784 && !lwp_status_pending_p (lp))
2785 {
2786 /* The core wanted the LWP to stop. Even if it stopped
2787 cleanly (with SIGSTOP), leave the event pending. */
2788 if (debug_linux_nat)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "SARC: core wanted LWP %ld stopped "
2791 "(leaving SIGSTOP pending)\n",
2792 ptid_get_lwp (lp->ptid));
2793 lp->status = W_STOPCODE (SIGSTOP);
2794 }
2795
2796 if (!lwp_status_pending_p (lp))
2797 {
2798 if (debug_linux_nat)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "SARC: re-resuming LWP %ld\n",
2801 ptid_get_lwp (lp->ptid));
2802 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2803 }
2804 else
2805 {
2806 if (debug_linux_nat)
2807 fprintf_unfiltered (gdb_stdlog,
2808 "SARC: not re-resuming LWP %ld "
2809 "(has pending)\n",
2810 ptid_get_lwp (lp->ptid));
2811 }
2812 }
2813 }
2814 return 0;
2815 }
2816
2817 /* Check if we should go on and pass this event to common code.
2818 Return the affected lwp if we are, or NULL otherwise. */
2819
2820 static struct lwp_info *
2821 linux_nat_filter_event (int lwpid, int status)
2822 {
2823 struct lwp_info *lp;
2824 int event = linux_ptrace_get_extended_event (status);
2825
2826 lp = find_lwp_pid (pid_to_ptid (lwpid));
2827
2828 /* Check for stop events reported by a process we didn't already
2829 know about - anything not already in our LWP list.
2830
2831 If we're expecting to receive stopped processes after
2832 fork, vfork, and clone events, then we'll just add the
2833 new one to our list and go back to waiting for the event
2834 to be reported - the stopped process might be returned
2835 from waitpid before or after the event is.
2836
2837 But note the case of a non-leader thread exec'ing after the
2838 leader having exited, and gone from our lists. The non-leader
2839 thread changes its tid to the tgid. */
2840
2841 if (WIFSTOPPED (status) && lp == NULL
2842 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2843 {
2844 /* A multi-thread exec after we had seen the leader exiting. */
2845 if (debug_linux_nat)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "LLW: Re-adding thread group leader LWP %d.\n",
2848 lwpid);
2849
2850 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2851 lp->stopped = 1;
2852 lp->resumed = 1;
2853 add_thread (lp->ptid);
2854 }
2855
2856 if (WIFSTOPPED (status) && !lp)
2857 {
2858 add_to_pid_list (&stopped_pids, lwpid, status);
2859 return NULL;
2860 }
2861
2862 /* Make sure we don't report an event for the exit of an LWP not in
2863 our list, i.e. not part of the current process. This can happen
2864 if we detach from a program we originally forked and then it
2865 exits. */
2866 if (!WIFSTOPPED (status) && !lp)
2867 return NULL;
2868
2869 /* This LWP is stopped now. (And if dead, this prevents it from
2870 ever being continued.) */
2871 lp->stopped = 1;
2872
2873 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2874 {
2875 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2876
2877 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2878 lp->must_set_ptrace_flags = 0;
2879 }
2880
2881 /* Handle GNU/Linux's syscall SIGTRAPs. */
2882 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2883 {
2884 /* No longer need the sysgood bit. The ptrace event ends up
2885 recorded in lp->waitstatus if we care for it. We can carry
2886 on handling the event like a regular SIGTRAP from here
2887 on. */
2888 status = W_STOPCODE (SIGTRAP);
2889 if (linux_handle_syscall_trap (lp, 0))
2890 return NULL;
2891 }
2892
2893 /* Handle GNU/Linux's extended waitstatus for trace events. */
2894 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2895 && linux_is_extended_waitstatus (status))
2896 {
2897 if (debug_linux_nat)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "LLW: Handling extended status 0x%06x\n",
2900 status);
2901 if (linux_handle_extended_wait (lp, status, 0))
2902 return NULL;
2903 }
2904
2905 /* Check if the thread has exited. */
2906 if (WIFEXITED (status) || WIFSIGNALED (status))
2907 {
2908 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2909 {
2910 /* If this is the main thread, we must stop all threads and
2911 verify if they are still alive. This is because in the
2912 nptl thread model on Linux 2.4, there is no signal issued
2913 for exiting LWPs other than the main thread. We only get
2914 the main thread exit signal once all child threads have
2915 already exited. If we stop all the threads and use the
2916 stop_wait_callback to check if they have exited we can
2917 determine whether this signal should be ignored or
2918 whether it means the end of the debugged application,
2919 regardless of which threading model is being used. */
2920 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2921 {
2922 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2923 stop_and_resume_callback, NULL);
2924 }
2925
2926 if (debug_linux_nat)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "LLW: %s exited.\n",
2929 target_pid_to_str (lp->ptid));
2930
2931 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2932 {
2933 /* If there is at least one more LWP, then the exit signal
2934 was not the end of the debugged application and should be
2935 ignored. */
2936 exit_lwp (lp);
2937 return NULL;
2938 }
2939 }
2940
2941 gdb_assert (lp->resumed);
2942
2943 if (debug_linux_nat)
2944 fprintf_unfiltered (gdb_stdlog,
2945 "Process %ld exited\n",
2946 ptid_get_lwp (lp->ptid));
2947
2948 /* This was the last lwp in the process. Since events are
2949 serialized to GDB core, we may not be able report this one
2950 right now, but GDB core and the other target layers will want
2951 to be notified about the exit code/signal, leave the status
2952 pending for the next time we're able to report it. */
2953
2954 /* Dead LWP's aren't expected to reported a pending sigstop. */
2955 lp->signalled = 0;
2956
2957 /* Store the pending event in the waitstatus, because
2958 W_EXITCODE(0,0) == 0. */
2959 store_waitstatus (&lp->waitstatus, status);
2960 return lp;
2961 }
2962
2963 /* Check if the current LWP has previously exited. In the nptl
2964 thread model, LWPs other than the main thread do not issue
2965 signals when they exit so we must check whenever the thread has
2966 stopped. A similar check is made in stop_wait_callback(). */
2967 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2968 {
2969 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
2970
2971 if (debug_linux_nat)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "LLW: %s exited.\n",
2974 target_pid_to_str (lp->ptid));
2975
2976 exit_lwp (lp);
2977
2978 /* Make sure there is at least one thread running. */
2979 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
2980
2981 /* Discard the event. */
2982 return NULL;
2983 }
2984
2985 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2986 an attempt to stop an LWP. */
2987 if (lp->signalled
2988 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2989 {
2990 if (debug_linux_nat)
2991 fprintf_unfiltered (gdb_stdlog,
2992 "LLW: Delayed SIGSTOP caught for %s.\n",
2993 target_pid_to_str (lp->ptid));
2994
2995 lp->signalled = 0;
2996
2997 if (lp->last_resume_kind != resume_stop)
2998 {
2999 /* This is a delayed SIGSTOP. */
3000
3001 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3002 if (debug_linux_nat)
3003 fprintf_unfiltered (gdb_stdlog,
3004 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3005 lp->step ?
3006 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3007 target_pid_to_str (lp->ptid));
3008
3009 gdb_assert (lp->resumed);
3010
3011 /* Discard the event. */
3012 return NULL;
3013 }
3014 }
3015
3016 /* Make sure we don't report a SIGINT that we have already displayed
3017 for another thread. */
3018 if (lp->ignore_sigint
3019 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3020 {
3021 if (debug_linux_nat)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "LLW: Delayed SIGINT caught for %s.\n",
3024 target_pid_to_str (lp->ptid));
3025
3026 /* This is a delayed SIGINT. */
3027 lp->ignore_sigint = 0;
3028
3029 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3030 if (debug_linux_nat)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3033 lp->step ?
3034 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3035 target_pid_to_str (lp->ptid));
3036 gdb_assert (lp->resumed);
3037
3038 /* Discard the event. */
3039 return NULL;
3040 }
3041
3042 /* Don't report signals that GDB isn't interested in, such as
3043 signals that are neither printed nor stopped upon. Stopping all
3044 threads can be a bit time-consuming so if we want decent
3045 performance with heavily multi-threaded programs, especially when
3046 they're using a high frequency timer, we'd better avoid it if we
3047 can. */
3048 if (WIFSTOPPED (status))
3049 {
3050 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3051
3052 if (!non_stop)
3053 {
3054 /* Only do the below in all-stop, as we currently use SIGSTOP
3055 to implement target_stop (see linux_nat_stop) in
3056 non-stop. */
3057 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3058 {
3059 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3060 forwarded to the entire process group, that is, all LWPs
3061 will receive it - unless they're using CLONE_THREAD to
3062 share signals. Since we only want to report it once, we
3063 mark it as ignored for all LWPs except this one. */
3064 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3065 set_ignore_sigint, NULL);
3066 lp->ignore_sigint = 0;
3067 }
3068 else
3069 maybe_clear_ignore_sigint (lp);
3070 }
3071
3072 /* When using hardware single-step, we need to report every signal.
3073 Otherwise, signals in pass_mask may be short-circuited. */
3074 if (!lp->step
3075 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3076 {
3077 linux_resume_one_lwp (lp, lp->step, signo);
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: %s %s, %s (preempt 'handle')\n",
3081 lp->step ?
3082 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3083 target_pid_to_str (lp->ptid),
3084 (signo != GDB_SIGNAL_0
3085 ? strsignal (gdb_signal_to_host (signo))
3086 : "0"));
3087 return NULL;
3088 }
3089 }
3090
3091 /* An interesting event. */
3092 gdb_assert (lp);
3093 lp->status = status;
3094 save_sigtrap (lp);
3095 return lp;
3096 }
3097
3098 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3099 their exits until all other threads in the group have exited. */
3100
3101 static void
3102 check_zombie_leaders (void)
3103 {
3104 struct inferior *inf;
3105
3106 ALL_INFERIORS (inf)
3107 {
3108 struct lwp_info *leader_lp;
3109
3110 if (inf->pid == 0)
3111 continue;
3112
3113 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3114 if (leader_lp != NULL
3115 /* Check if there are other threads in the group, as we may
3116 have raced with the inferior simply exiting. */
3117 && num_lwps (inf->pid) > 1
3118 && linux_proc_pid_is_zombie (inf->pid))
3119 {
3120 if (debug_linux_nat)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "CZL: Thread group leader %d zombie "
3123 "(it exited, or another thread execd).\n",
3124 inf->pid);
3125
3126 /* A leader zombie can mean one of two things:
3127
3128 - It exited, and there's an exit status pending
3129 available, or only the leader exited (not the whole
3130 program). In the latter case, we can't waitpid the
3131 leader's exit status until all other threads are gone.
3132
3133 - There are 3 or more threads in the group, and a thread
3134 other than the leader exec'd. On an exec, the Linux
3135 kernel destroys all other threads (except the execing
3136 one) in the thread group, and resets the execing thread's
3137 tid to the tgid. No exit notification is sent for the
3138 execing thread -- from the ptracer's perspective, it
3139 appears as though the execing thread just vanishes.
3140 Until we reap all other threads except the leader and the
3141 execing thread, the leader will be zombie, and the
3142 execing thread will be in `D (disc sleep)'. As soon as
3143 all other threads are reaped, the execing thread changes
3144 it's tid to the tgid, and the previous (zombie) leader
3145 vanishes, giving place to the "new" leader. We could try
3146 distinguishing the exit and exec cases, by waiting once
3147 more, and seeing if something comes out, but it doesn't
3148 sound useful. The previous leader _does_ go away, and
3149 we'll re-add the new one once we see the exec event
3150 (which is just the same as what would happen if the
3151 previous leader did exit voluntarily before some other
3152 thread execs). */
3153
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "CZL: Thread group leader %d vanished.\n",
3157 inf->pid);
3158 exit_lwp (leader_lp);
3159 }
3160 }
3161 }
3162
3163 static ptid_t
3164 linux_nat_wait_1 (struct target_ops *ops,
3165 ptid_t ptid, struct target_waitstatus *ourstatus,
3166 int target_options)
3167 {
3168 sigset_t prev_mask;
3169 enum resume_kind last_resume_kind;
3170 struct lwp_info *lp;
3171 int status;
3172
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3175
3176 /* The first time we get here after starting a new inferior, we may
3177 not have added it to the LWP list yet - this is the earliest
3178 moment at which we know its PID. */
3179 if (ptid_is_pid (inferior_ptid))
3180 {
3181 /* Upgrade the main thread's ptid. */
3182 thread_change_ptid (inferior_ptid,
3183 ptid_build (ptid_get_pid (inferior_ptid),
3184 ptid_get_pid (inferior_ptid), 0));
3185
3186 lp = add_initial_lwp (inferior_ptid);
3187 lp->resumed = 1;
3188 }
3189
3190 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3191 block_child_signals (&prev_mask);
3192
3193 /* First check if there is a LWP with a wait status pending. */
3194 lp = iterate_over_lwps (ptid, status_callback, NULL);
3195 if (lp != NULL)
3196 {
3197 if (debug_linux_nat)
3198 fprintf_unfiltered (gdb_stdlog,
3199 "LLW: Using pending wait status %s for %s.\n",
3200 status_to_str (lp->status),
3201 target_pid_to_str (lp->ptid));
3202 }
3203
3204 if (!target_is_async_p ())
3205 {
3206 /* Causes SIGINT to be passed on to the attached process. */
3207 set_sigint_trap ();
3208 }
3209
3210 /* But if we don't find a pending event, we'll have to wait. Always
3211 pull all events out of the kernel. We'll randomly select an
3212 event LWP out of all that have events, to prevent starvation. */
3213
3214 while (lp == NULL)
3215 {
3216 pid_t lwpid;
3217
3218 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3219 quirks:
3220
3221 - If the thread group leader exits while other threads in the
3222 thread group still exist, waitpid(TGID, ...) hangs. That
3223 waitpid won't return an exit status until the other threads
3224 in the group are reapped.
3225
3226 - When a non-leader thread execs, that thread just vanishes
3227 without reporting an exit (so we'd hang if we waited for it
3228 explicitly in that case). The exec event is reported to
3229 the TGID pid. */
3230
3231 errno = 0;
3232 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3233 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3234 lwpid = my_waitpid (-1, &status, WNOHANG);
3235
3236 if (debug_linux_nat)
3237 fprintf_unfiltered (gdb_stdlog,
3238 "LNW: waitpid(-1, ...) returned %d, %s\n",
3239 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3240
3241 if (lwpid > 0)
3242 {
3243 if (debug_linux_nat)
3244 {
3245 fprintf_unfiltered (gdb_stdlog,
3246 "LLW: waitpid %ld received %s\n",
3247 (long) lwpid, status_to_str (status));
3248 }
3249
3250 linux_nat_filter_event (lwpid, status);
3251 /* Retry until nothing comes out of waitpid. A single
3252 SIGCHLD can indicate more than one child stopped. */
3253 continue;
3254 }
3255
3256 /* Now that we've pulled all events out of the kernel, resume
3257 LWPs that don't have an interesting event to report. */
3258 iterate_over_lwps (minus_one_ptid,
3259 resume_stopped_resumed_lwps, &minus_one_ptid);
3260
3261 /* ... and find an LWP with a status to report to the core, if
3262 any. */
3263 lp = iterate_over_lwps (ptid, status_callback, NULL);
3264 if (lp != NULL)
3265 break;
3266
3267 /* Check for zombie thread group leaders. Those can't be reaped
3268 until all other threads in the thread group are. */
3269 check_zombie_leaders ();
3270
3271 /* If there are no resumed children left, bail. We'd be stuck
3272 forever in the sigsuspend call below otherwise. */
3273 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3274 {
3275 if (debug_linux_nat)
3276 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3277
3278 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3279
3280 if (!target_is_async_p ())
3281 clear_sigint_trap ();
3282
3283 restore_child_signals_mask (&prev_mask);
3284 return minus_one_ptid;
3285 }
3286
3287 /* No interesting event to report to the core. */
3288
3289 if (target_options & TARGET_WNOHANG)
3290 {
3291 if (debug_linux_nat)
3292 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3293
3294 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3295 restore_child_signals_mask (&prev_mask);
3296 return minus_one_ptid;
3297 }
3298
3299 /* We shouldn't end up here unless we want to try again. */
3300 gdb_assert (lp == NULL);
3301
3302 /* Block until we get an event reported with SIGCHLD. */
3303 if (debug_linux_nat)
3304 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3305 sigsuspend (&suspend_mask);
3306 }
3307
3308 if (!target_is_async_p ())
3309 clear_sigint_trap ();
3310
3311 gdb_assert (lp);
3312
3313 status = lp->status;
3314 lp->status = 0;
3315
3316 if (!non_stop)
3317 {
3318 /* Now stop all other LWP's ... */
3319 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3320
3321 /* ... and wait until all of them have reported back that
3322 they're no longer running. */
3323 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3324 }
3325
3326 /* If we're not waiting for a specific LWP, choose an event LWP from
3327 among those that have had events. Giving equal priority to all
3328 LWPs that have had events helps prevent starvation. */
3329 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3330 select_event_lwp (ptid, &lp, &status);
3331
3332 gdb_assert (lp != NULL);
3333
3334 /* Now that we've selected our final event LWP, un-adjust its PC if
3335 it was a software breakpoint. */
3336 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT)
3337 {
3338 struct regcache *regcache = get_thread_regcache (lp->ptid);
3339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3340 int decr_pc = target_decr_pc_after_break (gdbarch);
3341
3342 if (decr_pc != 0)
3343 {
3344 CORE_ADDR pc;
3345
3346 pc = regcache_read_pc (regcache);
3347 regcache_write_pc (regcache, pc + decr_pc);
3348 }
3349 }
3350
3351 /* We'll need this to determine whether to report a SIGSTOP as
3352 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3353 clears it. */
3354 last_resume_kind = lp->last_resume_kind;
3355
3356 if (!non_stop)
3357 {
3358 /* In all-stop, from the core's perspective, all LWPs are now
3359 stopped until a new resume action is sent over. */
3360 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3361 }
3362 else
3363 {
3364 resume_clear_callback (lp, NULL);
3365 }
3366
3367 if (linux_nat_status_is_event (status))
3368 {
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "LLW: trap ptid is %s.\n",
3372 target_pid_to_str (lp->ptid));
3373 }
3374
3375 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3376 {
3377 *ourstatus = lp->waitstatus;
3378 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3379 }
3380 else
3381 store_waitstatus (ourstatus, status);
3382
3383 if (debug_linux_nat)
3384 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3385
3386 restore_child_signals_mask (&prev_mask);
3387
3388 if (last_resume_kind == resume_stop
3389 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3390 && WSTOPSIG (status) == SIGSTOP)
3391 {
3392 /* A thread that has been requested to stop by GDB with
3393 target_stop, and it stopped cleanly, so report as SIG0. The
3394 use of SIGSTOP is an implementation detail. */
3395 ourstatus->value.sig = GDB_SIGNAL_0;
3396 }
3397
3398 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3399 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3400 lp->core = -1;
3401 else
3402 lp->core = linux_common_core_of_thread (lp->ptid);
3403
3404 return lp->ptid;
3405 }
3406
3407 /* Resume LWPs that are currently stopped without any pending status
3408 to report, but are resumed from the core's perspective. */
3409
3410 static int
3411 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3412 {
3413 ptid_t *wait_ptid_p = data;
3414
3415 if (lp->stopped
3416 && lp->resumed
3417 && !lwp_status_pending_p (lp))
3418 {
3419 struct regcache *regcache = get_thread_regcache (lp->ptid);
3420 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3421 CORE_ADDR pc = regcache_read_pc (regcache);
3422
3423 /* Don't bother if there's a breakpoint at PC that we'd hit
3424 immediately, and we're not waiting for this LWP. */
3425 if (!ptid_match (lp->ptid, *wait_ptid_p))
3426 {
3427 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3428 return 0;
3429 }
3430
3431 if (debug_linux_nat)
3432 fprintf_unfiltered (gdb_stdlog,
3433 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3434 target_pid_to_str (lp->ptid),
3435 paddress (gdbarch, pc),
3436 lp->step);
3437
3438 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3439 }
3440
3441 return 0;
3442 }
3443
3444 static ptid_t
3445 linux_nat_wait (struct target_ops *ops,
3446 ptid_t ptid, struct target_waitstatus *ourstatus,
3447 int target_options)
3448 {
3449 ptid_t event_ptid;
3450
3451 if (debug_linux_nat)
3452 {
3453 char *options_string;
3454
3455 options_string = target_options_to_string (target_options);
3456 fprintf_unfiltered (gdb_stdlog,
3457 "linux_nat_wait: [%s], [%s]\n",
3458 target_pid_to_str (ptid),
3459 options_string);
3460 xfree (options_string);
3461 }
3462
3463 /* Flush the async file first. */
3464 if (target_is_async_p ())
3465 async_file_flush ();
3466
3467 /* Resume LWPs that are currently stopped without any pending status
3468 to report, but are resumed from the core's perspective. LWPs get
3469 in this state if we find them stopping at a time we're not
3470 interested in reporting the event (target_wait on a
3471 specific_process, for example, see linux_nat_wait_1), and
3472 meanwhile the event became uninteresting. Don't bother resuming
3473 LWPs we're not going to wait for if they'd stop immediately. */
3474 if (non_stop)
3475 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3476
3477 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3478
3479 /* If we requested any event, and something came out, assume there
3480 may be more. If we requested a specific lwp or process, also
3481 assume there may be more. */
3482 if (target_is_async_p ()
3483 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3484 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3485 || !ptid_equal (ptid, minus_one_ptid)))
3486 async_file_mark ();
3487
3488 return event_ptid;
3489 }
3490
3491 static int
3492 kill_callback (struct lwp_info *lp, void *data)
3493 {
3494 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3495
3496 errno = 0;
3497 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3498 if (debug_linux_nat)
3499 {
3500 int save_errno = errno;
3501
3502 fprintf_unfiltered (gdb_stdlog,
3503 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3504 target_pid_to_str (lp->ptid),
3505 save_errno ? safe_strerror (save_errno) : "OK");
3506 }
3507
3508 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3509
3510 errno = 0;
3511 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3512 if (debug_linux_nat)
3513 {
3514 int save_errno = errno;
3515
3516 fprintf_unfiltered (gdb_stdlog,
3517 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3518 target_pid_to_str (lp->ptid),
3519 save_errno ? safe_strerror (save_errno) : "OK");
3520 }
3521
3522 return 0;
3523 }
3524
3525 static int
3526 kill_wait_callback (struct lwp_info *lp, void *data)
3527 {
3528 pid_t pid;
3529
3530 /* We must make sure that there are no pending events (delayed
3531 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3532 program doesn't interfere with any following debugging session. */
3533
3534 /* For cloned processes we must check both with __WCLONE and
3535 without, since the exit status of a cloned process isn't reported
3536 with __WCLONE. */
3537 if (lp->cloned)
3538 {
3539 do
3540 {
3541 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3542 if (pid != (pid_t) -1)
3543 {
3544 if (debug_linux_nat)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "KWC: wait %s received unknown.\n",
3547 target_pid_to_str (lp->ptid));
3548 /* The Linux kernel sometimes fails to kill a thread
3549 completely after PTRACE_KILL; that goes from the stop
3550 point in do_fork out to the one in
3551 get_signal_to_deliever and waits again. So kill it
3552 again. */
3553 kill_callback (lp, NULL);
3554 }
3555 }
3556 while (pid == ptid_get_lwp (lp->ptid));
3557
3558 gdb_assert (pid == -1 && errno == ECHILD);
3559 }
3560
3561 do
3562 {
3563 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3564 if (pid != (pid_t) -1)
3565 {
3566 if (debug_linux_nat)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "KWC: wait %s received unk.\n",
3569 target_pid_to_str (lp->ptid));
3570 /* See the call to kill_callback above. */
3571 kill_callback (lp, NULL);
3572 }
3573 }
3574 while (pid == ptid_get_lwp (lp->ptid));
3575
3576 gdb_assert (pid == -1 && errno == ECHILD);
3577 return 0;
3578 }
3579
3580 static void
3581 linux_nat_kill (struct target_ops *ops)
3582 {
3583 struct target_waitstatus last;
3584 ptid_t last_ptid;
3585 int status;
3586
3587 /* If we're stopped while forking and we haven't followed yet,
3588 kill the other task. We need to do this first because the
3589 parent will be sleeping if this is a vfork. */
3590
3591 get_last_target_status (&last_ptid, &last);
3592
3593 if (last.kind == TARGET_WAITKIND_FORKED
3594 || last.kind == TARGET_WAITKIND_VFORKED)
3595 {
3596 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3597 wait (&status);
3598
3599 /* Let the arch-specific native code know this process is
3600 gone. */
3601 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3602 }
3603
3604 if (forks_exist_p ())
3605 linux_fork_killall ();
3606 else
3607 {
3608 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3609
3610 /* Stop all threads before killing them, since ptrace requires
3611 that the thread is stopped to sucessfully PTRACE_KILL. */
3612 iterate_over_lwps (ptid, stop_callback, NULL);
3613 /* ... and wait until all of them have reported back that
3614 they're no longer running. */
3615 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3616
3617 /* Kill all LWP's ... */
3618 iterate_over_lwps (ptid, kill_callback, NULL);
3619
3620 /* ... and wait until we've flushed all events. */
3621 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3622 }
3623
3624 target_mourn_inferior ();
3625 }
3626
3627 static void
3628 linux_nat_mourn_inferior (struct target_ops *ops)
3629 {
3630 int pid = ptid_get_pid (inferior_ptid);
3631
3632 purge_lwp_list (pid);
3633
3634 if (! forks_exist_p ())
3635 /* Normal case, no other forks available. */
3636 linux_ops->to_mourn_inferior (ops);
3637 else
3638 /* Multi-fork case. The current inferior_ptid has exited, but
3639 there are other viable forks to debug. Delete the exiting
3640 one and context-switch to the first available. */
3641 linux_fork_mourn_inferior ();
3642
3643 /* Let the arch-specific native code know this process is gone. */
3644 linux_nat_forget_process (pid);
3645 }
3646
3647 /* Convert a native/host siginfo object, into/from the siginfo in the
3648 layout of the inferiors' architecture. */
3649
3650 static void
3651 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3652 {
3653 int done = 0;
3654
3655 if (linux_nat_siginfo_fixup != NULL)
3656 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3657
3658 /* If there was no callback, or the callback didn't do anything,
3659 then just do a straight memcpy. */
3660 if (!done)
3661 {
3662 if (direction == 1)
3663 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3664 else
3665 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3666 }
3667 }
3668
3669 static enum target_xfer_status
3670 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3671 const char *annex, gdb_byte *readbuf,
3672 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3673 ULONGEST *xfered_len)
3674 {
3675 int pid;
3676 siginfo_t siginfo;
3677 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3678
3679 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3680 gdb_assert (readbuf || writebuf);
3681
3682 pid = ptid_get_lwp (inferior_ptid);
3683 if (pid == 0)
3684 pid = ptid_get_pid (inferior_ptid);
3685
3686 if (offset > sizeof (siginfo))
3687 return TARGET_XFER_E_IO;
3688
3689 errno = 0;
3690 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3691 if (errno != 0)
3692 return TARGET_XFER_E_IO;
3693
3694 /* When GDB is built as a 64-bit application, ptrace writes into
3695 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3696 inferior with a 64-bit GDB should look the same as debugging it
3697 with a 32-bit GDB, we need to convert it. GDB core always sees
3698 the converted layout, so any read/write will have to be done
3699 post-conversion. */
3700 siginfo_fixup (&siginfo, inf_siginfo, 0);
3701
3702 if (offset + len > sizeof (siginfo))
3703 len = sizeof (siginfo) - offset;
3704
3705 if (readbuf != NULL)
3706 memcpy (readbuf, inf_siginfo + offset, len);
3707 else
3708 {
3709 memcpy (inf_siginfo + offset, writebuf, len);
3710
3711 /* Convert back to ptrace layout before flushing it out. */
3712 siginfo_fixup (&siginfo, inf_siginfo, 1);
3713
3714 errno = 0;
3715 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3716 if (errno != 0)
3717 return TARGET_XFER_E_IO;
3718 }
3719
3720 *xfered_len = len;
3721 return TARGET_XFER_OK;
3722 }
3723
3724 static enum target_xfer_status
3725 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3726 const char *annex, gdb_byte *readbuf,
3727 const gdb_byte *writebuf,
3728 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3729 {
3730 struct cleanup *old_chain;
3731 enum target_xfer_status xfer;
3732
3733 if (object == TARGET_OBJECT_SIGNAL_INFO)
3734 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3735 offset, len, xfered_len);
3736
3737 /* The target is connected but no live inferior is selected. Pass
3738 this request down to a lower stratum (e.g., the executable
3739 file). */
3740 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3741 return TARGET_XFER_EOF;
3742
3743 old_chain = save_inferior_ptid ();
3744
3745 if (ptid_lwp_p (inferior_ptid))
3746 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3747
3748 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3749 offset, len, xfered_len);
3750
3751 do_cleanups (old_chain);
3752 return xfer;
3753 }
3754
3755 static int
3756 linux_thread_alive (ptid_t ptid)
3757 {
3758 int err, tmp_errno;
3759
3760 gdb_assert (ptid_lwp_p (ptid));
3761
3762 /* Send signal 0 instead of anything ptrace, because ptracing a
3763 running thread errors out claiming that the thread doesn't
3764 exist. */
3765 err = kill_lwp (ptid_get_lwp (ptid), 0);
3766 tmp_errno = errno;
3767 if (debug_linux_nat)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "LLTA: KILL(SIG0) %s (%s)\n",
3770 target_pid_to_str (ptid),
3771 err ? safe_strerror (tmp_errno) : "OK");
3772
3773 if (err != 0)
3774 return 0;
3775
3776 return 1;
3777 }
3778
3779 static int
3780 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3781 {
3782 return linux_thread_alive (ptid);
3783 }
3784
3785 static char *
3786 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3787 {
3788 static char buf[64];
3789
3790 if (ptid_lwp_p (ptid)
3791 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3792 || num_lwps (ptid_get_pid (ptid)) > 1))
3793 {
3794 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3795 return buf;
3796 }
3797
3798 return normal_pid_to_str (ptid);
3799 }
3800
3801 static char *
3802 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3803 {
3804 int pid = ptid_get_pid (thr->ptid);
3805 long lwp = ptid_get_lwp (thr->ptid);
3806 #define FORMAT "/proc/%d/task/%ld/comm"
3807 char buf[sizeof (FORMAT) + 30];
3808 FILE *comm_file;
3809 char *result = NULL;
3810
3811 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3812 comm_file = gdb_fopen_cloexec (buf, "r");
3813 if (comm_file)
3814 {
3815 /* Not exported by the kernel, so we define it here. */
3816 #define COMM_LEN 16
3817 static char line[COMM_LEN + 1];
3818
3819 if (fgets (line, sizeof (line), comm_file))
3820 {
3821 char *nl = strchr (line, '\n');
3822
3823 if (nl)
3824 *nl = '\0';
3825 if (*line != '\0')
3826 result = line;
3827 }
3828
3829 fclose (comm_file);
3830 }
3831
3832 #undef COMM_LEN
3833 #undef FORMAT
3834
3835 return result;
3836 }
3837
3838 /* Accepts an integer PID; Returns a string representing a file that
3839 can be opened to get the symbols for the child process. */
3840
3841 static char *
3842 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3843 {
3844 static char buf[PATH_MAX];
3845 char name[PATH_MAX];
3846
3847 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3848 memset (buf, 0, PATH_MAX);
3849 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3850 strcpy (buf, name);
3851
3852 return buf;
3853 }
3854
3855 /* Implement the to_xfer_partial interface for memory reads using the /proc
3856 filesystem. Because we can use a single read() call for /proc, this
3857 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3858 but it doesn't support writes. */
3859
3860 static enum target_xfer_status
3861 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3862 const char *annex, gdb_byte *readbuf,
3863 const gdb_byte *writebuf,
3864 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3865 {
3866 LONGEST ret;
3867 int fd;
3868 char filename[64];
3869
3870 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3871 return 0;
3872
3873 /* Don't bother for one word. */
3874 if (len < 3 * sizeof (long))
3875 return TARGET_XFER_EOF;
3876
3877 /* We could keep this file open and cache it - possibly one per
3878 thread. That requires some juggling, but is even faster. */
3879 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3880 ptid_get_pid (inferior_ptid));
3881 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3882 if (fd == -1)
3883 return TARGET_XFER_EOF;
3884
3885 /* If pread64 is available, use it. It's faster if the kernel
3886 supports it (only one syscall), and it's 64-bit safe even on
3887 32-bit platforms (for instance, SPARC debugging a SPARC64
3888 application). */
3889 #ifdef HAVE_PREAD64
3890 if (pread64 (fd, readbuf, len, offset) != len)
3891 #else
3892 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3893 #endif
3894 ret = 0;
3895 else
3896 ret = len;
3897
3898 close (fd);
3899
3900 if (ret == 0)
3901 return TARGET_XFER_EOF;
3902 else
3903 {
3904 *xfered_len = ret;
3905 return TARGET_XFER_OK;
3906 }
3907 }
3908
3909
3910 /* Enumerate spufs IDs for process PID. */
3911 static LONGEST
3912 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3913 {
3914 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3915 LONGEST pos = 0;
3916 LONGEST written = 0;
3917 char path[128];
3918 DIR *dir;
3919 struct dirent *entry;
3920
3921 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3922 dir = opendir (path);
3923 if (!dir)
3924 return -1;
3925
3926 rewinddir (dir);
3927 while ((entry = readdir (dir)) != NULL)
3928 {
3929 struct stat st;
3930 struct statfs stfs;
3931 int fd;
3932
3933 fd = atoi (entry->d_name);
3934 if (!fd)
3935 continue;
3936
3937 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3938 if (stat (path, &st) != 0)
3939 continue;
3940 if (!S_ISDIR (st.st_mode))
3941 continue;
3942
3943 if (statfs (path, &stfs) != 0)
3944 continue;
3945 if (stfs.f_type != SPUFS_MAGIC)
3946 continue;
3947
3948 if (pos >= offset && pos + 4 <= offset + len)
3949 {
3950 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
3951 written += 4;
3952 }
3953 pos += 4;
3954 }
3955
3956 closedir (dir);
3957 return written;
3958 }
3959
3960 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
3961 object type, using the /proc file system. */
3962
3963 static enum target_xfer_status
3964 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
3965 const char *annex, gdb_byte *readbuf,
3966 const gdb_byte *writebuf,
3967 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3968 {
3969 char buf[128];
3970 int fd = 0;
3971 int ret = -1;
3972 int pid = ptid_get_pid (inferior_ptid);
3973
3974 if (!annex)
3975 {
3976 if (!readbuf)
3977 return TARGET_XFER_E_IO;
3978 else
3979 {
3980 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
3981
3982 if (l < 0)
3983 return TARGET_XFER_E_IO;
3984 else if (l == 0)
3985 return TARGET_XFER_EOF;
3986 else
3987 {
3988 *xfered_len = (ULONGEST) l;
3989 return TARGET_XFER_OK;
3990 }
3991 }
3992 }
3993
3994 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
3995 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
3996 if (fd <= 0)
3997 return TARGET_XFER_E_IO;
3998
3999 if (offset != 0
4000 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4001 {
4002 close (fd);
4003 return TARGET_XFER_EOF;
4004 }
4005
4006 if (writebuf)
4007 ret = write (fd, writebuf, (size_t) len);
4008 else if (readbuf)
4009 ret = read (fd, readbuf, (size_t) len);
4010
4011 close (fd);
4012
4013 if (ret < 0)
4014 return TARGET_XFER_E_IO;
4015 else if (ret == 0)
4016 return TARGET_XFER_EOF;
4017 else
4018 {
4019 *xfered_len = (ULONGEST) ret;
4020 return TARGET_XFER_OK;
4021 }
4022 }
4023
4024
4025 /* Parse LINE as a signal set and add its set bits to SIGS. */
4026
4027 static void
4028 add_line_to_sigset (const char *line, sigset_t *sigs)
4029 {
4030 int len = strlen (line) - 1;
4031 const char *p;
4032 int signum;
4033
4034 if (line[len] != '\n')
4035 error (_("Could not parse signal set: %s"), line);
4036
4037 p = line;
4038 signum = len * 4;
4039 while (len-- > 0)
4040 {
4041 int digit;
4042
4043 if (*p >= '0' && *p <= '9')
4044 digit = *p - '0';
4045 else if (*p >= 'a' && *p <= 'f')
4046 digit = *p - 'a' + 10;
4047 else
4048 error (_("Could not parse signal set: %s"), line);
4049
4050 signum -= 4;
4051
4052 if (digit & 1)
4053 sigaddset (sigs, signum + 1);
4054 if (digit & 2)
4055 sigaddset (sigs, signum + 2);
4056 if (digit & 4)
4057 sigaddset (sigs, signum + 3);
4058 if (digit & 8)
4059 sigaddset (sigs, signum + 4);
4060
4061 p++;
4062 }
4063 }
4064
4065 /* Find process PID's pending signals from /proc/pid/status and set
4066 SIGS to match. */
4067
4068 void
4069 linux_proc_pending_signals (int pid, sigset_t *pending,
4070 sigset_t *blocked, sigset_t *ignored)
4071 {
4072 FILE *procfile;
4073 char buffer[PATH_MAX], fname[PATH_MAX];
4074 struct cleanup *cleanup;
4075
4076 sigemptyset (pending);
4077 sigemptyset (blocked);
4078 sigemptyset (ignored);
4079 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4080 procfile = gdb_fopen_cloexec (fname, "r");
4081 if (procfile == NULL)
4082 error (_("Could not open %s"), fname);
4083 cleanup = make_cleanup_fclose (procfile);
4084
4085 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4086 {
4087 /* Normal queued signals are on the SigPnd line in the status
4088 file. However, 2.6 kernels also have a "shared" pending
4089 queue for delivering signals to a thread group, so check for
4090 a ShdPnd line also.
4091
4092 Unfortunately some Red Hat kernels include the shared pending
4093 queue but not the ShdPnd status field. */
4094
4095 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4096 add_line_to_sigset (buffer + 8, pending);
4097 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4098 add_line_to_sigset (buffer + 8, pending);
4099 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4100 add_line_to_sigset (buffer + 8, blocked);
4101 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4102 add_line_to_sigset (buffer + 8, ignored);
4103 }
4104
4105 do_cleanups (cleanup);
4106 }
4107
4108 static enum target_xfer_status
4109 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4110 const char *annex, gdb_byte *readbuf,
4111 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4112 ULONGEST *xfered_len)
4113 {
4114 gdb_assert (object == TARGET_OBJECT_OSDATA);
4115
4116 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4117 if (*xfered_len == 0)
4118 return TARGET_XFER_EOF;
4119 else
4120 return TARGET_XFER_OK;
4121 }
4122
4123 static enum target_xfer_status
4124 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4125 const char *annex, gdb_byte *readbuf,
4126 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4127 ULONGEST *xfered_len)
4128 {
4129 enum target_xfer_status xfer;
4130
4131 if (object == TARGET_OBJECT_AUXV)
4132 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4133 offset, len, xfered_len);
4134
4135 if (object == TARGET_OBJECT_OSDATA)
4136 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4137 offset, len, xfered_len);
4138
4139 if (object == TARGET_OBJECT_SPU)
4140 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4141 offset, len, xfered_len);
4142
4143 /* GDB calculates all the addresses in possibly larget width of the address.
4144 Address width needs to be masked before its final use - either by
4145 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4146
4147 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4148
4149 if (object == TARGET_OBJECT_MEMORY)
4150 {
4151 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4152
4153 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4154 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4155 }
4156
4157 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4158 offset, len, xfered_len);
4159 if (xfer != TARGET_XFER_EOF)
4160 return xfer;
4161
4162 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4163 offset, len, xfered_len);
4164 }
4165
4166 static void
4167 cleanup_target_stop (void *arg)
4168 {
4169 ptid_t *ptid = (ptid_t *) arg;
4170
4171 gdb_assert (arg != NULL);
4172
4173 /* Unpause all */
4174 target_resume (*ptid, 0, GDB_SIGNAL_0);
4175 }
4176
4177 static VEC(static_tracepoint_marker_p) *
4178 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4179 const char *strid)
4180 {
4181 char s[IPA_CMD_BUF_SIZE];
4182 struct cleanup *old_chain;
4183 int pid = ptid_get_pid (inferior_ptid);
4184 VEC(static_tracepoint_marker_p) *markers = NULL;
4185 struct static_tracepoint_marker *marker = NULL;
4186 char *p = s;
4187 ptid_t ptid = ptid_build (pid, 0, 0);
4188
4189 /* Pause all */
4190 target_stop (ptid);
4191
4192 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4193 s[sizeof ("qTfSTM")] = 0;
4194
4195 agent_run_command (pid, s, strlen (s) + 1);
4196
4197 old_chain = make_cleanup (free_current_marker, &marker);
4198 make_cleanup (cleanup_target_stop, &ptid);
4199
4200 while (*p++ == 'm')
4201 {
4202 if (marker == NULL)
4203 marker = XCNEW (struct static_tracepoint_marker);
4204
4205 do
4206 {
4207 parse_static_tracepoint_marker_definition (p, &p, marker);
4208
4209 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4210 {
4211 VEC_safe_push (static_tracepoint_marker_p,
4212 markers, marker);
4213 marker = NULL;
4214 }
4215 else
4216 {
4217 release_static_tracepoint_marker (marker);
4218 memset (marker, 0, sizeof (*marker));
4219 }
4220 }
4221 while (*p++ == ','); /* comma-separated list */
4222
4223 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4224 s[sizeof ("qTsSTM")] = 0;
4225 agent_run_command (pid, s, strlen (s) + 1);
4226 p = s;
4227 }
4228
4229 do_cleanups (old_chain);
4230
4231 return markers;
4232 }
4233
4234 /* Create a prototype generic GNU/Linux target. The client can override
4235 it with local methods. */
4236
4237 static void
4238 linux_target_install_ops (struct target_ops *t)
4239 {
4240 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4241 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4242 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4243 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4244 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4245 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4246 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4247 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4248 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4249 t->to_post_attach = linux_child_post_attach;
4250 t->to_follow_fork = linux_child_follow_fork;
4251
4252 super_xfer_partial = t->to_xfer_partial;
4253 t->to_xfer_partial = linux_xfer_partial;
4254
4255 t->to_static_tracepoint_markers_by_strid
4256 = linux_child_static_tracepoint_markers_by_strid;
4257 }
4258
4259 struct target_ops *
4260 linux_target (void)
4261 {
4262 struct target_ops *t;
4263
4264 t = inf_ptrace_target ();
4265 linux_target_install_ops (t);
4266
4267 return t;
4268 }
4269
4270 struct target_ops *
4271 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4272 {
4273 struct target_ops *t;
4274
4275 t = inf_ptrace_trad_target (register_u_offset);
4276 linux_target_install_ops (t);
4277
4278 return t;
4279 }
4280
4281 /* target_is_async_p implementation. */
4282
4283 static int
4284 linux_nat_is_async_p (struct target_ops *ops)
4285 {
4286 return linux_is_async_p ();
4287 }
4288
4289 /* target_can_async_p implementation. */
4290
4291 static int
4292 linux_nat_can_async_p (struct target_ops *ops)
4293 {
4294 /* NOTE: palves 2008-03-21: We're only async when the user requests
4295 it explicitly with the "set target-async" command.
4296 Someday, linux will always be async. */
4297 return target_async_permitted;
4298 }
4299
4300 static int
4301 linux_nat_supports_non_stop (struct target_ops *self)
4302 {
4303 return 1;
4304 }
4305
4306 /* True if we want to support multi-process. To be removed when GDB
4307 supports multi-exec. */
4308
4309 int linux_multi_process = 1;
4310
4311 static int
4312 linux_nat_supports_multi_process (struct target_ops *self)
4313 {
4314 return linux_multi_process;
4315 }
4316
4317 static int
4318 linux_nat_supports_disable_randomization (struct target_ops *self)
4319 {
4320 #ifdef HAVE_PERSONALITY
4321 return 1;
4322 #else
4323 return 0;
4324 #endif
4325 }
4326
4327 static int async_terminal_is_ours = 1;
4328
4329 /* target_terminal_inferior implementation.
4330
4331 This is a wrapper around child_terminal_inferior to add async support. */
4332
4333 static void
4334 linux_nat_terminal_inferior (struct target_ops *self)
4335 {
4336 /* Like target_terminal_inferior, use target_can_async_p, not
4337 target_is_async_p, since at this point the target is not async
4338 yet. If it can async, then we know it will become async prior to
4339 resume. */
4340 if (!target_can_async_p ())
4341 {
4342 /* Async mode is disabled. */
4343 child_terminal_inferior (self);
4344 return;
4345 }
4346
4347 child_terminal_inferior (self);
4348
4349 /* Calls to target_terminal_*() are meant to be idempotent. */
4350 if (!async_terminal_is_ours)
4351 return;
4352
4353 delete_file_handler (input_fd);
4354 async_terminal_is_ours = 0;
4355 set_sigint_trap ();
4356 }
4357
4358 /* target_terminal_ours implementation.
4359
4360 This is a wrapper around child_terminal_ours to add async support (and
4361 implement the target_terminal_ours vs target_terminal_ours_for_output
4362 distinction). child_terminal_ours is currently no different than
4363 child_terminal_ours_for_output.
4364 We leave target_terminal_ours_for_output alone, leaving it to
4365 child_terminal_ours_for_output. */
4366
4367 static void
4368 linux_nat_terminal_ours (struct target_ops *self)
4369 {
4370 /* GDB should never give the terminal to the inferior if the
4371 inferior is running in the background (run&, continue&, etc.),
4372 but claiming it sure should. */
4373 child_terminal_ours (self);
4374
4375 if (async_terminal_is_ours)
4376 return;
4377
4378 clear_sigint_trap ();
4379 add_file_handler (input_fd, stdin_event_handler, 0);
4380 async_terminal_is_ours = 1;
4381 }
4382
4383 static void (*async_client_callback) (enum inferior_event_type event_type,
4384 void *context);
4385 static void *async_client_context;
4386
4387 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4388 so we notice when any child changes state, and notify the
4389 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4390 above to wait for the arrival of a SIGCHLD. */
4391
4392 static void
4393 sigchld_handler (int signo)
4394 {
4395 int old_errno = errno;
4396
4397 if (debug_linux_nat)
4398 ui_file_write_async_safe (gdb_stdlog,
4399 "sigchld\n", sizeof ("sigchld\n") - 1);
4400
4401 if (signo == SIGCHLD
4402 && linux_nat_event_pipe[0] != -1)
4403 async_file_mark (); /* Let the event loop know that there are
4404 events to handle. */
4405
4406 errno = old_errno;
4407 }
4408
4409 /* Callback registered with the target events file descriptor. */
4410
4411 static void
4412 handle_target_event (int error, gdb_client_data client_data)
4413 {
4414 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4415 }
4416
4417 /* Create/destroy the target events pipe. Returns previous state. */
4418
4419 static int
4420 linux_async_pipe (int enable)
4421 {
4422 int previous = linux_is_async_p ();
4423
4424 if (previous != enable)
4425 {
4426 sigset_t prev_mask;
4427
4428 /* Block child signals while we create/destroy the pipe, as
4429 their handler writes to it. */
4430 block_child_signals (&prev_mask);
4431
4432 if (enable)
4433 {
4434 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4435 internal_error (__FILE__, __LINE__,
4436 "creating event pipe failed.");
4437
4438 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4439 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4440 }
4441 else
4442 {
4443 close (linux_nat_event_pipe[0]);
4444 close (linux_nat_event_pipe[1]);
4445 linux_nat_event_pipe[0] = -1;
4446 linux_nat_event_pipe[1] = -1;
4447 }
4448
4449 restore_child_signals_mask (&prev_mask);
4450 }
4451
4452 return previous;
4453 }
4454
4455 /* target_async implementation. */
4456
4457 static void
4458 linux_nat_async (struct target_ops *ops,
4459 void (*callback) (enum inferior_event_type event_type,
4460 void *context),
4461 void *context)
4462 {
4463 if (callback != NULL)
4464 {
4465 async_client_callback = callback;
4466 async_client_context = context;
4467 if (!linux_async_pipe (1))
4468 {
4469 add_file_handler (linux_nat_event_pipe[0],
4470 handle_target_event, NULL);
4471 /* There may be pending events to handle. Tell the event loop
4472 to poll them. */
4473 async_file_mark ();
4474 }
4475 }
4476 else
4477 {
4478 async_client_callback = callback;
4479 async_client_context = context;
4480 delete_file_handler (linux_nat_event_pipe[0]);
4481 linux_async_pipe (0);
4482 }
4483 return;
4484 }
4485
4486 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4487 event came out. */
4488
4489 static int
4490 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4491 {
4492 if (!lwp->stopped)
4493 {
4494 if (debug_linux_nat)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "LNSL: running -> suspending %s\n",
4497 target_pid_to_str (lwp->ptid));
4498
4499
4500 if (lwp->last_resume_kind == resume_stop)
4501 {
4502 if (debug_linux_nat)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "linux-nat: already stopping LWP %ld at "
4505 "GDB's request\n",
4506 ptid_get_lwp (lwp->ptid));
4507 return 0;
4508 }
4509
4510 stop_callback (lwp, NULL);
4511 lwp->last_resume_kind = resume_stop;
4512 }
4513 else
4514 {
4515 /* Already known to be stopped; do nothing. */
4516
4517 if (debug_linux_nat)
4518 {
4519 if (find_thread_ptid (lwp->ptid)->stop_requested)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "LNSL: already stopped/stop_requested %s\n",
4522 target_pid_to_str (lwp->ptid));
4523 else
4524 fprintf_unfiltered (gdb_stdlog,
4525 "LNSL: already stopped/no "
4526 "stop_requested yet %s\n",
4527 target_pid_to_str (lwp->ptid));
4528 }
4529 }
4530 return 0;
4531 }
4532
4533 static void
4534 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4535 {
4536 if (non_stop)
4537 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4538 else
4539 linux_ops->to_stop (linux_ops, ptid);
4540 }
4541
4542 static void
4543 linux_nat_close (struct target_ops *self)
4544 {
4545 /* Unregister from the event loop. */
4546 if (linux_nat_is_async_p (self))
4547 linux_nat_async (self, NULL, NULL);
4548
4549 if (linux_ops->to_close)
4550 linux_ops->to_close (linux_ops);
4551
4552 super_close (self);
4553 }
4554
4555 /* When requests are passed down from the linux-nat layer to the
4556 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4557 used. The address space pointer is stored in the inferior object,
4558 but the common code that is passed such ptid can't tell whether
4559 lwpid is a "main" process id or not (it assumes so). We reverse
4560 look up the "main" process id from the lwp here. */
4561
4562 static struct address_space *
4563 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4564 {
4565 struct lwp_info *lwp;
4566 struct inferior *inf;
4567 int pid;
4568
4569 if (ptid_get_lwp (ptid) == 0)
4570 {
4571 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4572 tgid. */
4573 lwp = find_lwp_pid (ptid);
4574 pid = ptid_get_pid (lwp->ptid);
4575 }
4576 else
4577 {
4578 /* A (pid,lwpid,0) ptid. */
4579 pid = ptid_get_pid (ptid);
4580 }
4581
4582 inf = find_inferior_pid (pid);
4583 gdb_assert (inf != NULL);
4584 return inf->aspace;
4585 }
4586
4587 /* Return the cached value of the processor core for thread PTID. */
4588
4589 static int
4590 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4591 {
4592 struct lwp_info *info = find_lwp_pid (ptid);
4593
4594 if (info)
4595 return info->core;
4596 return -1;
4597 }
4598
4599 void
4600 linux_nat_add_target (struct target_ops *t)
4601 {
4602 /* Save the provided single-threaded target. We save this in a separate
4603 variable because another target we've inherited from (e.g. inf-ptrace)
4604 may have saved a pointer to T; we want to use it for the final
4605 process stratum target. */
4606 linux_ops_saved = *t;
4607 linux_ops = &linux_ops_saved;
4608
4609 /* Override some methods for multithreading. */
4610 t->to_create_inferior = linux_nat_create_inferior;
4611 t->to_attach = linux_nat_attach;
4612 t->to_detach = linux_nat_detach;
4613 t->to_resume = linux_nat_resume;
4614 t->to_wait = linux_nat_wait;
4615 t->to_pass_signals = linux_nat_pass_signals;
4616 t->to_xfer_partial = linux_nat_xfer_partial;
4617 t->to_kill = linux_nat_kill;
4618 t->to_mourn_inferior = linux_nat_mourn_inferior;
4619 t->to_thread_alive = linux_nat_thread_alive;
4620 t->to_pid_to_str = linux_nat_pid_to_str;
4621 t->to_thread_name = linux_nat_thread_name;
4622 t->to_has_thread_control = tc_schedlock;
4623 t->to_thread_address_space = linux_nat_thread_address_space;
4624 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4625 t->to_stopped_data_address = linux_nat_stopped_data_address;
4626
4627 t->to_can_async_p = linux_nat_can_async_p;
4628 t->to_is_async_p = linux_nat_is_async_p;
4629 t->to_supports_non_stop = linux_nat_supports_non_stop;
4630 t->to_async = linux_nat_async;
4631 t->to_terminal_inferior = linux_nat_terminal_inferior;
4632 t->to_terminal_ours = linux_nat_terminal_ours;
4633
4634 super_close = t->to_close;
4635 t->to_close = linux_nat_close;
4636
4637 /* Methods for non-stop support. */
4638 t->to_stop = linux_nat_stop;
4639
4640 t->to_supports_multi_process = linux_nat_supports_multi_process;
4641
4642 t->to_supports_disable_randomization
4643 = linux_nat_supports_disable_randomization;
4644
4645 t->to_core_of_thread = linux_nat_core_of_thread;
4646
4647 /* We don't change the stratum; this target will sit at
4648 process_stratum and thread_db will set at thread_stratum. This
4649 is a little strange, since this is a multi-threaded-capable
4650 target, but we want to be on the stack below thread_db, and we
4651 also want to be used for single-threaded processes. */
4652
4653 add_target (t);
4654 }
4655
4656 /* Register a method to call whenever a new thread is attached. */
4657 void
4658 linux_nat_set_new_thread (struct target_ops *t,
4659 void (*new_thread) (struct lwp_info *))
4660 {
4661 /* Save the pointer. We only support a single registered instance
4662 of the GNU/Linux native target, so we do not need to map this to
4663 T. */
4664 linux_nat_new_thread = new_thread;
4665 }
4666
4667 /* See declaration in linux-nat.h. */
4668
4669 void
4670 linux_nat_set_new_fork (struct target_ops *t,
4671 linux_nat_new_fork_ftype *new_fork)
4672 {
4673 /* Save the pointer. */
4674 linux_nat_new_fork = new_fork;
4675 }
4676
4677 /* See declaration in linux-nat.h. */
4678
4679 void
4680 linux_nat_set_forget_process (struct target_ops *t,
4681 linux_nat_forget_process_ftype *fn)
4682 {
4683 /* Save the pointer. */
4684 linux_nat_forget_process_hook = fn;
4685 }
4686
4687 /* See declaration in linux-nat.h. */
4688
4689 void
4690 linux_nat_forget_process (pid_t pid)
4691 {
4692 if (linux_nat_forget_process_hook != NULL)
4693 linux_nat_forget_process_hook (pid);
4694 }
4695
4696 /* Register a method that converts a siginfo object between the layout
4697 that ptrace returns, and the layout in the architecture of the
4698 inferior. */
4699 void
4700 linux_nat_set_siginfo_fixup (struct target_ops *t,
4701 int (*siginfo_fixup) (siginfo_t *,
4702 gdb_byte *,
4703 int))
4704 {
4705 /* Save the pointer. */
4706 linux_nat_siginfo_fixup = siginfo_fixup;
4707 }
4708
4709 /* Register a method to call prior to resuming a thread. */
4710
4711 void
4712 linux_nat_set_prepare_to_resume (struct target_ops *t,
4713 void (*prepare_to_resume) (struct lwp_info *))
4714 {
4715 /* Save the pointer. */
4716 linux_nat_prepare_to_resume = prepare_to_resume;
4717 }
4718
4719 /* See linux-nat.h. */
4720
4721 int
4722 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4723 {
4724 int pid;
4725
4726 pid = ptid_get_lwp (ptid);
4727 if (pid == 0)
4728 pid = ptid_get_pid (ptid);
4729
4730 errno = 0;
4731 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4732 if (errno != 0)
4733 {
4734 memset (siginfo, 0, sizeof (*siginfo));
4735 return 0;
4736 }
4737 return 1;
4738 }
4739
4740 /* Provide a prototype to silence -Wmissing-prototypes. */
4741 extern initialize_file_ftype _initialize_linux_nat;
4742
4743 void
4744 _initialize_linux_nat (void)
4745 {
4746 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4747 &debug_linux_nat, _("\
4748 Set debugging of GNU/Linux lwp module."), _("\
4749 Show debugging of GNU/Linux lwp module."), _("\
4750 Enables printf debugging output."),
4751 NULL,
4752 show_debug_linux_nat,
4753 &setdebuglist, &showdebuglist);
4754
4755 /* Save this mask as the default. */
4756 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4757
4758 /* Install a SIGCHLD handler. */
4759 sigchld_action.sa_handler = sigchld_handler;
4760 sigemptyset (&sigchld_action.sa_mask);
4761 sigchld_action.sa_flags = SA_RESTART;
4762
4763 /* Make it the default. */
4764 sigaction (SIGCHLD, &sigchld_action, NULL);
4765
4766 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4767 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4768 sigdelset (&suspend_mask, SIGCHLD);
4769
4770 sigemptyset (&blocked_mask);
4771
4772 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4773 support read-only process state. */
4774 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4775 | PTRACE_O_TRACEVFORKDONE
4776 | PTRACE_O_TRACEVFORK
4777 | PTRACE_O_TRACEFORK
4778 | PTRACE_O_TRACEEXEC);
4779 }
4780 \f
4781
4782 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4783 the GNU/Linux Threads library and therefore doesn't really belong
4784 here. */
4785
4786 /* Read variable NAME in the target and return its value if found.
4787 Otherwise return zero. It is assumed that the type of the variable
4788 is `int'. */
4789
4790 static int
4791 get_signo (const char *name)
4792 {
4793 struct bound_minimal_symbol ms;
4794 int signo;
4795
4796 ms = lookup_minimal_symbol (name, NULL, NULL);
4797 if (ms.minsym == NULL)
4798 return 0;
4799
4800 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4801 sizeof (signo)) != 0)
4802 return 0;
4803
4804 return signo;
4805 }
4806
4807 /* Return the set of signals used by the threads library in *SET. */
4808
4809 void
4810 lin_thread_get_thread_signals (sigset_t *set)
4811 {
4812 struct sigaction action;
4813 int restart, cancel;
4814
4815 sigemptyset (&blocked_mask);
4816 sigemptyset (set);
4817
4818 restart = get_signo ("__pthread_sig_restart");
4819 cancel = get_signo ("__pthread_sig_cancel");
4820
4821 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4822 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4823 not provide any way for the debugger to query the signal numbers -
4824 fortunately they don't change! */
4825
4826 if (restart == 0)
4827 restart = __SIGRTMIN;
4828
4829 if (cancel == 0)
4830 cancel = __SIGRTMIN + 1;
4831
4832 sigaddset (set, restart);
4833 sigaddset (set, cancel);
4834
4835 /* The GNU/Linux Threads library makes terminating threads send a
4836 special "cancel" signal instead of SIGCHLD. Make sure we catch
4837 those (to prevent them from terminating GDB itself, which is
4838 likely to be their default action) and treat them the same way as
4839 SIGCHLD. */
4840
4841 action.sa_handler = sigchld_handler;
4842 sigemptyset (&action.sa_mask);
4843 action.sa_flags = SA_RESTART;
4844 sigaction (cancel, &action, NULL);
4845
4846 /* We block the "cancel" signal throughout this code ... */
4847 sigaddset (&blocked_mask, cancel);
4848 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4849
4850 /* ... except during a sigsuspend. */
4851 sigdelset (&suspend_mask, cancel);
4852 }
This page took 0.197012 seconds and 4 git commands to generate.