* linux-nat.c (linux_nat_find_memory_regions): Result of PIDGET is an
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56
57 #ifdef HAVE_PERSONALITY
58 # include <sys/personality.h>
59 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
60 # define ADDR_NO_RANDOMIZE 0x0040000
61 # endif
62 #endif /* HAVE_PERSONALITY */
63
64 /* This comment documents high-level logic of this file.
65
66 Waiting for events in sync mode
67 ===============================
68
69 When waiting for an event in a specific thread, we just use waitpid, passing
70 the specific pid, and not passing WNOHANG.
71
72 When waiting for an event in all threads, waitpid is not quite good. Prior to
73 version 2.4, Linux can either wait for event in main thread, or in secondary
74 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
75 miss an event. The solution is to use non-blocking waitpid, together with
76 sigsuspend. First, we use non-blocking waitpid to get an event in the main
77 process, if any. Second, we use non-blocking waitpid with the __WCLONED
78 flag to check for events in cloned processes. If nothing is found, we use
79 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
80 happened to a child process -- and SIGCHLD will be delivered both for events
81 in main debugged process and in cloned processes. As soon as we know there's
82 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
83
84 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
85 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
86 blocked, the signal becomes pending and sigsuspend immediately
87 notices it and returns.
88
89 Waiting for events in async mode
90 ================================
91
92 In async mode, GDB should always be ready to handle both user input and target
93 events, so neither blocking waitpid nor sigsuspend are viable
94 options. Instead, we should notify the GDB main event loop whenever there's
95 unprocessed event from the target. The only way to notify this event loop is
96 to make it wait on input from a pipe, and write something to the pipe whenever
97 there's event. Obviously, if we fail to notify the event loop if there's
98 target event, it's bad. If we notify the event loop when there's no event
99 from target, linux-nat.c will detect that there's no event, actually, and
100 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
101 better avoided.
102
103 The main design point is that every time GDB is outside linux-nat.c, we have a
104 SIGCHLD handler installed that is called when something happens to the target
105 and notifies the GDB event loop. Also, the event is extracted from the target
106 using waitpid and stored for future use. Whenever GDB core decides to handle
107 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
108 as in sync mode, except that before waitpid call we check if there are any
109 previously read events.
110
111 It could happen that during event processing, we'll try to get more events
112 than there are events in the local queue, which will result to waitpid call.
113 Those waitpid calls, while blocking, are guarantied to always have
114 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
115 waiting for the lwp to stop.
116
117 The event loop is notified about new events using a pipe. SIGCHLD handler does
118 waitpid and writes the results in to a pipe. GDB event loop has the other end
119 of the pipe among the sources. When event loop starts to process the event
120 and calls a function in linux-nat.c, all events from the pipe are transferred
121 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
122 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
123 from local queue back to the pipe, so that when we get back to event loop,
124 event loop will notice there's something more to do.
125
126 SIGCHLD is blocked when we're inside target_wait, so that should we actually
127 want to wait for some more events, SIGCHLD handler does not steal them from
128 us. Technically, it would be possible to add new events to the local queue but
129 it's about the same amount of work as blocking SIGCHLD.
130
131 This moving of events from pipe into local queue and back into pipe when we
132 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
133 home-grown and incapable to wait on any queue.
134
135 Use of signals
136 ==============
137
138 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139 signal is not entirely significant; we just need for a signal to be delivered,
140 so that we can intercept it. SIGSTOP's advantage is that it can not be
141 blocked. A disadvantage is that it is not a real-time signal, so it can only
142 be queued once; we do not keep track of other sources of SIGSTOP.
143
144 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145 use them, because they have special behavior when the signal is generated -
146 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147 kills the entire thread group.
148
149 A delivered SIGSTOP would stop the entire thread group, not just the thread we
150 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151 cancel it (by PTRACE_CONT without passing SIGSTOP).
152
153 We could use a real-time signal instead. This would solve those problems; we
154 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156 generates it, and there are races with trying to find a signal that is not
157 blocked. */
158
159 #ifndef O_LARGEFILE
160 #define O_LARGEFILE 0
161 #endif
162
163 /* If the system headers did not provide the constants, hard-code the normal
164 values. */
165 #ifndef PTRACE_EVENT_FORK
166
167 #define PTRACE_SETOPTIONS 0x4200
168 #define PTRACE_GETEVENTMSG 0x4201
169
170 /* options set using PTRACE_SETOPTIONS */
171 #define PTRACE_O_TRACESYSGOOD 0x00000001
172 #define PTRACE_O_TRACEFORK 0x00000002
173 #define PTRACE_O_TRACEVFORK 0x00000004
174 #define PTRACE_O_TRACECLONE 0x00000008
175 #define PTRACE_O_TRACEEXEC 0x00000010
176 #define PTRACE_O_TRACEVFORKDONE 0x00000020
177 #define PTRACE_O_TRACEEXIT 0x00000040
178
179 /* Wait extended result codes for the above trace options. */
180 #define PTRACE_EVENT_FORK 1
181 #define PTRACE_EVENT_VFORK 2
182 #define PTRACE_EVENT_CLONE 3
183 #define PTRACE_EVENT_EXEC 4
184 #define PTRACE_EVENT_VFORK_DONE 5
185 #define PTRACE_EVENT_EXIT 6
186
187 #endif /* PTRACE_EVENT_FORK */
188
189 /* We can't always assume that this flag is available, but all systems
190 with the ptrace event handlers also have __WALL, so it's safe to use
191 here. */
192 #ifndef __WALL
193 #define __WALL 0x40000000 /* Wait for any child. */
194 #endif
195
196 #ifndef PTRACE_GETSIGINFO
197 # define PTRACE_GETSIGINFO 0x4202
198 # define PTRACE_SETSIGINFO 0x4203
199 #endif
200
201 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
202 the use of the multi-threaded target. */
203 static struct target_ops *linux_ops;
204 static struct target_ops linux_ops_saved;
205
206 /* The method to call, if any, when a new thread is attached. */
207 static void (*linux_nat_new_thread) (ptid_t);
208
209 /* The method to call, if any, when the siginfo object needs to be
210 converted between the layout returned by ptrace, and the layout in
211 the architecture of the inferior. */
212 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
213 gdb_byte *,
214 int);
215
216 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
217 Called by our to_xfer_partial. */
218 static LONGEST (*super_xfer_partial) (struct target_ops *,
219 enum target_object,
220 const char *, gdb_byte *,
221 const gdb_byte *,
222 ULONGEST, LONGEST);
223
224 static int debug_linux_nat;
225 static void
226 show_debug_linux_nat (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228 {
229 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
230 value);
231 }
232
233 static int debug_linux_nat_async = 0;
234 static void
235 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237 {
238 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
239 value);
240 }
241
242 static int disable_randomization = 1;
243
244 static void
245 show_disable_randomization (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247 {
248 #ifdef HAVE_PERSONALITY
249 fprintf_filtered (file, _("\
250 Disabling randomization of debuggee's virtual address space is %s.\n"),
251 value);
252 #else /* !HAVE_PERSONALITY */
253 fputs_filtered (_("\
254 Disabling randomization of debuggee's virtual address space is unsupported on\n\
255 this platform.\n"), file);
256 #endif /* !HAVE_PERSONALITY */
257 }
258
259 static void
260 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
261 {
262 #ifndef HAVE_PERSONALITY
263 error (_("\
264 Disabling randomization of debuggee's virtual address space is unsupported on\n\
265 this platform."));
266 #endif /* !HAVE_PERSONALITY */
267 }
268
269 static int linux_parent_pid;
270
271 struct simple_pid_list
272 {
273 int pid;
274 int status;
275 struct simple_pid_list *next;
276 };
277 struct simple_pid_list *stopped_pids;
278
279 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
280 can not be used, 1 if it can. */
281
282 static int linux_supports_tracefork_flag = -1;
283
284 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
285 PTRACE_O_TRACEVFORKDONE. */
286
287 static int linux_supports_tracevforkdone_flag = -1;
288
289 /* Async mode support */
290
291 /* Zero if the async mode, although enabled, is masked, which means
292 linux_nat_wait should behave as if async mode was off. */
293 static int linux_nat_async_mask_value = 1;
294
295 /* The read/write ends of the pipe registered as waitable file in the
296 event loop. */
297 static int linux_nat_event_pipe[2] = { -1, -1 };
298
299 /* Number of queued events in the pipe. */
300 static volatile int linux_nat_num_queued_events;
301
302 /* The possible SIGCHLD handling states. */
303
304 enum sigchld_state
305 {
306 /* SIGCHLD disabled, with action set to sigchld_handler, for the
307 sigsuspend in linux_nat_wait. */
308 sigchld_sync,
309 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
310 sigchld_async,
311 /* Set SIGCHLD to default action. Used while creating an
312 inferior. */
313 sigchld_default
314 };
315
316 /* The current SIGCHLD handling state. */
317 static enum sigchld_state linux_nat_async_events_state;
318
319 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
320 static void pipe_to_local_event_queue (void);
321 static void local_event_queue_to_pipe (void);
322 static void linux_nat_event_pipe_push (int pid, int status, int options);
323 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
324 static void linux_nat_set_async_mode (int on);
325 static void linux_nat_async (void (*callback)
326 (enum inferior_event_type event_type, void *context),
327 void *context);
328 static int linux_nat_async_mask (int mask);
329 static int kill_lwp (int lwpid, int signo);
330
331 static int stop_callback (struct lwp_info *lp, void *data);
332
333 /* Captures the result of a successful waitpid call, along with the
334 options used in that call. */
335 struct waitpid_result
336 {
337 int pid;
338 int status;
339 int options;
340 struct waitpid_result *next;
341 };
342
343 /* A singly-linked list of the results of the waitpid calls performed
344 in the async SIGCHLD handler. */
345 static struct waitpid_result *waitpid_queue = NULL;
346
347 /* Similarly to `waitpid', but check the local event queue instead of
348 querying the kernel queue. If PEEK, don't remove the event found
349 from the queue. */
350
351 static int
352 queued_waitpid_1 (int pid, int *status, int flags, int peek)
353 {
354 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
355
356 if (debug_linux_nat_async)
357 fprintf_unfiltered (gdb_stdlog,
358 "\
359 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
360 linux_nat_async_events_state,
361 linux_nat_num_queued_events);
362
363 if (flags & __WALL)
364 {
365 for (; msg; prev = msg, msg = msg->next)
366 if (pid == -1 || pid == msg->pid)
367 break;
368 }
369 else if (flags & __WCLONE)
370 {
371 for (; msg; prev = msg, msg = msg->next)
372 if (msg->options & __WCLONE
373 && (pid == -1 || pid == msg->pid))
374 break;
375 }
376 else
377 {
378 for (; msg; prev = msg, msg = msg->next)
379 if ((msg->options & __WCLONE) == 0
380 && (pid == -1 || pid == msg->pid))
381 break;
382 }
383
384 if (msg)
385 {
386 int pid;
387
388 if (status)
389 *status = msg->status;
390 pid = msg->pid;
391
392 if (debug_linux_nat_async)
393 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
394 pid, msg->status);
395
396 if (!peek)
397 {
398 if (prev)
399 prev->next = msg->next;
400 else
401 waitpid_queue = msg->next;
402
403 msg->next = NULL;
404 xfree (msg);
405 }
406
407 return pid;
408 }
409
410 if (debug_linux_nat_async)
411 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
412
413 if (status)
414 *status = 0;
415 return -1;
416 }
417
418 /* Similarly to `waitpid', but check the local event queue. */
419
420 static int
421 queued_waitpid (int pid, int *status, int flags)
422 {
423 return queued_waitpid_1 (pid, status, flags, 0);
424 }
425
426 static void
427 push_waitpid (int pid, int status, int options)
428 {
429 struct waitpid_result *event, *new_event;
430
431 new_event = xmalloc (sizeof (*new_event));
432 new_event->pid = pid;
433 new_event->status = status;
434 new_event->options = options;
435 new_event->next = NULL;
436
437 if (waitpid_queue)
438 {
439 for (event = waitpid_queue;
440 event && event->next;
441 event = event->next)
442 ;
443
444 event->next = new_event;
445 }
446 else
447 waitpid_queue = new_event;
448 }
449
450 /* Drain all queued events of PID. If PID is -1, the effect is of
451 draining all events. */
452 static void
453 drain_queued_events (int pid)
454 {
455 while (queued_waitpid (pid, NULL, __WALL) != -1)
456 ;
457 }
458
459 \f
460 /* Trivial list manipulation functions to keep track of a list of
461 new stopped processes. */
462 static void
463 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
464 {
465 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
466 new_pid->pid = pid;
467 new_pid->status = status;
468 new_pid->next = *listp;
469 *listp = new_pid;
470 }
471
472 static int
473 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
474 {
475 struct simple_pid_list **p;
476
477 for (p = listp; *p != NULL; p = &(*p)->next)
478 if ((*p)->pid == pid)
479 {
480 struct simple_pid_list *next = (*p)->next;
481 *status = (*p)->status;
482 xfree (*p);
483 *p = next;
484 return 1;
485 }
486 return 0;
487 }
488
489 static void
490 linux_record_stopped_pid (int pid, int status)
491 {
492 add_to_pid_list (&stopped_pids, pid, status);
493 }
494
495 \f
496 /* A helper function for linux_test_for_tracefork, called after fork (). */
497
498 static void
499 linux_tracefork_child (void)
500 {
501 int ret;
502
503 ptrace (PTRACE_TRACEME, 0, 0, 0);
504 kill (getpid (), SIGSTOP);
505 fork ();
506 _exit (0);
507 }
508
509 /* Wrapper function for waitpid which handles EINTR, and checks for
510 locally queued events. */
511
512 static int
513 my_waitpid (int pid, int *status, int flags)
514 {
515 int ret;
516
517 /* There should be no concurrent calls to waitpid. */
518 gdb_assert (linux_nat_async_events_state == sigchld_sync);
519
520 ret = queued_waitpid (pid, status, flags);
521 if (ret != -1)
522 return ret;
523
524 do
525 {
526 ret = waitpid (pid, status, flags);
527 }
528 while (ret == -1 && errno == EINTR);
529
530 return ret;
531 }
532
533 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
534
535 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
536 we know that the feature is not available. This may change the tracing
537 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
538
539 However, if it succeeds, we don't know for sure that the feature is
540 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
541 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
542 fork tracing, and let it fork. If the process exits, we assume that we
543 can't use TRACEFORK; if we get the fork notification, and we can extract
544 the new child's PID, then we assume that we can. */
545
546 static void
547 linux_test_for_tracefork (int original_pid)
548 {
549 int child_pid, ret, status;
550 long second_pid;
551 enum sigchld_state async_events_original_state;
552
553 async_events_original_state = linux_nat_async_events (sigchld_sync);
554
555 linux_supports_tracefork_flag = 0;
556 linux_supports_tracevforkdone_flag = 0;
557
558 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
559 if (ret != 0)
560 return;
561
562 child_pid = fork ();
563 if (child_pid == -1)
564 perror_with_name (("fork"));
565
566 if (child_pid == 0)
567 linux_tracefork_child ();
568
569 ret = my_waitpid (child_pid, &status, 0);
570 if (ret == -1)
571 perror_with_name (("waitpid"));
572 else if (ret != child_pid)
573 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
574 if (! WIFSTOPPED (status))
575 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
576
577 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
578 if (ret != 0)
579 {
580 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
581 if (ret != 0)
582 {
583 warning (_("linux_test_for_tracefork: failed to kill child"));
584 linux_nat_async_events (async_events_original_state);
585 return;
586 }
587
588 ret = my_waitpid (child_pid, &status, 0);
589 if (ret != child_pid)
590 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
591 else if (!WIFSIGNALED (status))
592 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
593 "killed child"), status);
594
595 linux_nat_async_events (async_events_original_state);
596 return;
597 }
598
599 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
600 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
601 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
602 linux_supports_tracevforkdone_flag = (ret == 0);
603
604 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
605 if (ret != 0)
606 warning (_("linux_test_for_tracefork: failed to resume child"));
607
608 ret = my_waitpid (child_pid, &status, 0);
609
610 if (ret == child_pid && WIFSTOPPED (status)
611 && status >> 16 == PTRACE_EVENT_FORK)
612 {
613 second_pid = 0;
614 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
615 if (ret == 0 && second_pid != 0)
616 {
617 int second_status;
618
619 linux_supports_tracefork_flag = 1;
620 my_waitpid (second_pid, &second_status, 0);
621 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
622 if (ret != 0)
623 warning (_("linux_test_for_tracefork: failed to kill second child"));
624 my_waitpid (second_pid, &status, 0);
625 }
626 }
627 else
628 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
629 "(%d, status 0x%x)"), ret, status);
630
631 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
632 if (ret != 0)
633 warning (_("linux_test_for_tracefork: failed to kill child"));
634 my_waitpid (child_pid, &status, 0);
635
636 linux_nat_async_events (async_events_original_state);
637 }
638
639 /* Return non-zero iff we have tracefork functionality available.
640 This function also sets linux_supports_tracefork_flag. */
641
642 static int
643 linux_supports_tracefork (int pid)
644 {
645 if (linux_supports_tracefork_flag == -1)
646 linux_test_for_tracefork (pid);
647 return linux_supports_tracefork_flag;
648 }
649
650 static int
651 linux_supports_tracevforkdone (int pid)
652 {
653 if (linux_supports_tracefork_flag == -1)
654 linux_test_for_tracefork (pid);
655 return linux_supports_tracevforkdone_flag;
656 }
657
658 \f
659 void
660 linux_enable_event_reporting (ptid_t ptid)
661 {
662 int pid = ptid_get_lwp (ptid);
663 int options;
664
665 if (pid == 0)
666 pid = ptid_get_pid (ptid);
667
668 if (! linux_supports_tracefork (pid))
669 return;
670
671 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
672 | PTRACE_O_TRACECLONE;
673 if (linux_supports_tracevforkdone (pid))
674 options |= PTRACE_O_TRACEVFORKDONE;
675
676 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
677 read-only process state. */
678
679 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
680 }
681
682 static void
683 linux_child_post_attach (int pid)
684 {
685 linux_enable_event_reporting (pid_to_ptid (pid));
686 check_for_thread_db ();
687 }
688
689 static void
690 linux_child_post_startup_inferior (ptid_t ptid)
691 {
692 linux_enable_event_reporting (ptid);
693 check_for_thread_db ();
694 }
695
696 static int
697 linux_child_follow_fork (struct target_ops *ops, int follow_child)
698 {
699 ptid_t last_ptid;
700 struct target_waitstatus last_status;
701 int has_vforked;
702 int parent_pid, child_pid;
703
704 if (target_can_async_p ())
705 target_async (NULL, 0);
706
707 get_last_target_status (&last_ptid, &last_status);
708 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
709 parent_pid = ptid_get_lwp (last_ptid);
710 if (parent_pid == 0)
711 parent_pid = ptid_get_pid (last_ptid);
712 child_pid = PIDGET (last_status.value.related_pid);
713
714 if (! follow_child)
715 {
716 /* We're already attached to the parent, by default. */
717
718 /* Before detaching from the child, remove all breakpoints from
719 it. (This won't actually modify the breakpoint list, but will
720 physically remove the breakpoints from the child.) */
721 /* If we vforked this will remove the breakpoints from the parent
722 also, but they'll be reinserted below. */
723 detach_breakpoints (child_pid);
724
725 /* Detach new forked process? */
726 if (detach_fork)
727 {
728 if (info_verbose || debug_linux_nat)
729 {
730 target_terminal_ours ();
731 fprintf_filtered (gdb_stdlog,
732 "Detaching after fork from child process %d.\n",
733 child_pid);
734 }
735
736 ptrace (PTRACE_DETACH, child_pid, 0, 0);
737 }
738 else
739 {
740 struct fork_info *fp;
741 struct inferior *parent_inf, *child_inf;
742
743 /* Add process to GDB's tables. */
744 child_inf = add_inferior (child_pid);
745
746 parent_inf = find_inferior_pid (GET_PID (last_ptid));
747 child_inf->attach_flag = parent_inf->attach_flag;
748
749 /* Retain child fork in ptrace (stopped) state. */
750 fp = find_fork_pid (child_pid);
751 if (!fp)
752 fp = add_fork (child_pid);
753 fork_save_infrun_state (fp, 0);
754 }
755
756 if (has_vforked)
757 {
758 gdb_assert (linux_supports_tracefork_flag >= 0);
759 if (linux_supports_tracevforkdone (0))
760 {
761 int status;
762
763 ptrace (PTRACE_CONT, parent_pid, 0, 0);
764 my_waitpid (parent_pid, &status, __WALL);
765 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
766 warning (_("Unexpected waitpid result %06x when waiting for "
767 "vfork-done"), status);
768 }
769 else
770 {
771 /* We can't insert breakpoints until the child has
772 finished with the shared memory region. We need to
773 wait until that happens. Ideal would be to just
774 call:
775 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
776 - waitpid (parent_pid, &status, __WALL);
777 However, most architectures can't handle a syscall
778 being traced on the way out if it wasn't traced on
779 the way in.
780
781 We might also think to loop, continuing the child
782 until it exits or gets a SIGTRAP. One problem is
783 that the child might call ptrace with PTRACE_TRACEME.
784
785 There's no simple and reliable way to figure out when
786 the vforked child will be done with its copy of the
787 shared memory. We could step it out of the syscall,
788 two instructions, let it go, and then single-step the
789 parent once. When we have hardware single-step, this
790 would work; with software single-step it could still
791 be made to work but we'd have to be able to insert
792 single-step breakpoints in the child, and we'd have
793 to insert -just- the single-step breakpoint in the
794 parent. Very awkward.
795
796 In the end, the best we can do is to make sure it
797 runs for a little while. Hopefully it will be out of
798 range of any breakpoints we reinsert. Usually this
799 is only the single-step breakpoint at vfork's return
800 point. */
801
802 usleep (10000);
803 }
804
805 /* Since we vforked, breakpoints were removed in the parent
806 too. Put them back. */
807 reattach_breakpoints (parent_pid);
808 }
809 }
810 else
811 {
812 struct thread_info *last_tp = find_thread_pid (last_ptid);
813 struct thread_info *tp;
814 char child_pid_spelling[40];
815 struct inferior *parent_inf, *child_inf;
816
817 /* Copy user stepping state to the new inferior thread. */
818 struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
819 CORE_ADDR step_range_start = last_tp->step_range_start;
820 CORE_ADDR step_range_end = last_tp->step_range_end;
821 struct frame_id step_frame_id = last_tp->step_frame_id;
822
823 /* Otherwise, deleting the parent would get rid of this
824 breakpoint. */
825 last_tp->step_resume_breakpoint = NULL;
826
827 /* Needed to keep the breakpoint lists in sync. */
828 if (! has_vforked)
829 detach_breakpoints (child_pid);
830
831 /* Before detaching from the parent, remove all breakpoints from it. */
832 remove_breakpoints ();
833
834 if (info_verbose || debug_linux_nat)
835 {
836 target_terminal_ours ();
837 fprintf_filtered (gdb_stdlog,
838 "Attaching after fork to child process %d.\n",
839 child_pid);
840 }
841
842 /* Add the new inferior first, so that the target_detach below
843 doesn't unpush the target. */
844
845 child_inf = add_inferior (child_pid);
846
847 parent_inf = find_inferior_pid (GET_PID (last_ptid));
848 child_inf->attach_flag = parent_inf->attach_flag;
849
850 /* If we're vforking, we may want to hold on to the parent until
851 the child exits or execs. At exec time we can remove the old
852 breakpoints from the parent and detach it; at exit time we
853 could do the same (or even, sneakily, resume debugging it - the
854 child's exec has failed, or something similar).
855
856 This doesn't clean up "properly", because we can't call
857 target_detach, but that's OK; if the current target is "child",
858 then it doesn't need any further cleanups, and lin_lwp will
859 generally not encounter vfork (vfork is defined to fork
860 in libpthread.so).
861
862 The holding part is very easy if we have VFORKDONE events;
863 but keeping track of both processes is beyond GDB at the
864 moment. So we don't expose the parent to the rest of GDB.
865 Instead we quietly hold onto it until such time as we can
866 safely resume it. */
867
868 if (has_vforked)
869 {
870 linux_parent_pid = parent_pid;
871 detach_inferior (parent_pid);
872 }
873 else if (!detach_fork)
874 {
875 struct fork_info *fp;
876 /* Retain parent fork in ptrace (stopped) state. */
877 fp = find_fork_pid (parent_pid);
878 if (!fp)
879 fp = add_fork (parent_pid);
880 fork_save_infrun_state (fp, 0);
881
882 /* Also add an entry for the child fork. */
883 fp = find_fork_pid (child_pid);
884 if (!fp)
885 fp = add_fork (child_pid);
886 fork_save_infrun_state (fp, 0);
887 }
888 else
889 target_detach (NULL, 0);
890
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892
893 linux_nat_switch_fork (inferior_ptid);
894 check_for_thread_db ();
895
896 tp = inferior_thread ();
897 tp->step_resume_breakpoint = step_resume_breakpoint;
898 tp->step_range_start = step_range_start;
899 tp->step_range_end = step_range_end;
900 tp->step_frame_id = step_frame_id;
901
902 /* Reset breakpoints in the child as appropriate. */
903 follow_inferior_reset_breakpoints ();
904 }
905
906 if (target_can_async_p ())
907 target_async (inferior_event_handler, 0);
908
909 return 0;
910 }
911
912 \f
913 static void
914 linux_child_insert_fork_catchpoint (int pid)
915 {
916 if (! linux_supports_tracefork (pid))
917 error (_("Your system does not support fork catchpoints."));
918 }
919
920 static void
921 linux_child_insert_vfork_catchpoint (int pid)
922 {
923 if (!linux_supports_tracefork (pid))
924 error (_("Your system does not support vfork catchpoints."));
925 }
926
927 static void
928 linux_child_insert_exec_catchpoint (int pid)
929 {
930 if (!linux_supports_tracefork (pid))
931 error (_("Your system does not support exec catchpoints."));
932 }
933
934 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
935 are processes sharing the same VM space. A multi-threaded process
936 is basically a group of such processes. However, such a grouping
937 is almost entirely a user-space issue; the kernel doesn't enforce
938 such a grouping at all (this might change in the future). In
939 general, we'll rely on the threads library (i.e. the GNU/Linux
940 Threads library) to provide such a grouping.
941
942 It is perfectly well possible to write a multi-threaded application
943 without the assistance of a threads library, by using the clone
944 system call directly. This module should be able to give some
945 rudimentary support for debugging such applications if developers
946 specify the CLONE_PTRACE flag in the clone system call, and are
947 using the Linux kernel 2.4 or above.
948
949 Note that there are some peculiarities in GNU/Linux that affect
950 this code:
951
952 - In general one should specify the __WCLONE flag to waitpid in
953 order to make it report events for any of the cloned processes
954 (and leave it out for the initial process). However, if a cloned
955 process has exited the exit status is only reported if the
956 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
957 we cannot use it since GDB must work on older systems too.
958
959 - When a traced, cloned process exits and is waited for by the
960 debugger, the kernel reassigns it to the original parent and
961 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
962 library doesn't notice this, which leads to the "zombie problem":
963 When debugged a multi-threaded process that spawns a lot of
964 threads will run out of processes, even if the threads exit,
965 because the "zombies" stay around. */
966
967 /* List of known LWPs. */
968 struct lwp_info *lwp_list;
969
970 /* Number of LWPs in the list. */
971 static int num_lwps;
972 \f
973
974 /* Original signal mask. */
975 static sigset_t normal_mask;
976
977 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
978 _initialize_linux_nat. */
979 static sigset_t suspend_mask;
980
981 /* SIGCHLD action for synchronous mode. */
982 struct sigaction sync_sigchld_action;
983
984 /* SIGCHLD action for asynchronous mode. */
985 static struct sigaction async_sigchld_action;
986
987 /* SIGCHLD default action, to pass to new inferiors. */
988 static struct sigaction sigchld_default_action;
989 \f
990
991 /* Prototypes for local functions. */
992 static int stop_wait_callback (struct lwp_info *lp, void *data);
993 static int linux_thread_alive (ptid_t ptid);
994 static char *linux_child_pid_to_exec_file (int pid);
995 static int cancel_breakpoint (struct lwp_info *lp);
996
997 \f
998 /* Convert wait status STATUS to a string. Used for printing debug
999 messages only. */
1000
1001 static char *
1002 status_to_str (int status)
1003 {
1004 static char buf[64];
1005
1006 if (WIFSTOPPED (status))
1007 snprintf (buf, sizeof (buf), "%s (stopped)",
1008 strsignal (WSTOPSIG (status)));
1009 else if (WIFSIGNALED (status))
1010 snprintf (buf, sizeof (buf), "%s (terminated)",
1011 strsignal (WSTOPSIG (status)));
1012 else
1013 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1014
1015 return buf;
1016 }
1017
1018 /* Initialize the list of LWPs. Note that this module, contrary to
1019 what GDB's generic threads layer does for its thread list,
1020 re-initializes the LWP lists whenever we mourn or detach (which
1021 doesn't involve mourning) the inferior. */
1022
1023 static void
1024 init_lwp_list (void)
1025 {
1026 struct lwp_info *lp, *lpnext;
1027
1028 for (lp = lwp_list; lp; lp = lpnext)
1029 {
1030 lpnext = lp->next;
1031 xfree (lp);
1032 }
1033
1034 lwp_list = NULL;
1035 num_lwps = 0;
1036 }
1037
1038 /* Add the LWP specified by PID to the list. Return a pointer to the
1039 structure describing the new LWP. The LWP should already be stopped
1040 (with an exception for the very first LWP). */
1041
1042 static struct lwp_info *
1043 add_lwp (ptid_t ptid)
1044 {
1045 struct lwp_info *lp;
1046
1047 gdb_assert (is_lwp (ptid));
1048
1049 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1050
1051 memset (lp, 0, sizeof (struct lwp_info));
1052
1053 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1054
1055 lp->ptid = ptid;
1056
1057 lp->next = lwp_list;
1058 lwp_list = lp;
1059 ++num_lwps;
1060
1061 if (num_lwps > 1 && linux_nat_new_thread != NULL)
1062 linux_nat_new_thread (ptid);
1063
1064 return lp;
1065 }
1066
1067 /* Remove the LWP specified by PID from the list. */
1068
1069 static void
1070 delete_lwp (ptid_t ptid)
1071 {
1072 struct lwp_info *lp, *lpprev;
1073
1074 lpprev = NULL;
1075
1076 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1077 if (ptid_equal (lp->ptid, ptid))
1078 break;
1079
1080 if (!lp)
1081 return;
1082
1083 num_lwps--;
1084
1085 if (lpprev)
1086 lpprev->next = lp->next;
1087 else
1088 lwp_list = lp->next;
1089
1090 xfree (lp);
1091 }
1092
1093 /* Return a pointer to the structure describing the LWP corresponding
1094 to PID. If no corresponding LWP could be found, return NULL. */
1095
1096 static struct lwp_info *
1097 find_lwp_pid (ptid_t ptid)
1098 {
1099 struct lwp_info *lp;
1100 int lwp;
1101
1102 if (is_lwp (ptid))
1103 lwp = GET_LWP (ptid);
1104 else
1105 lwp = GET_PID (ptid);
1106
1107 for (lp = lwp_list; lp; lp = lp->next)
1108 if (lwp == GET_LWP (lp->ptid))
1109 return lp;
1110
1111 return NULL;
1112 }
1113
1114 /* Call CALLBACK with its second argument set to DATA for every LWP in
1115 the list. If CALLBACK returns 1 for a particular LWP, return a
1116 pointer to the structure describing that LWP immediately.
1117 Otherwise return NULL. */
1118
1119 struct lwp_info *
1120 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1121 {
1122 struct lwp_info *lp, *lpnext;
1123
1124 for (lp = lwp_list; lp; lp = lpnext)
1125 {
1126 lpnext = lp->next;
1127 if ((*callback) (lp, data))
1128 return lp;
1129 }
1130
1131 return NULL;
1132 }
1133
1134 /* Update our internal state when changing from one fork (checkpoint,
1135 et cetera) to another indicated by NEW_PTID. We can only switch
1136 single-threaded applications, so we only create one new LWP, and
1137 the previous list is discarded. */
1138
1139 void
1140 linux_nat_switch_fork (ptid_t new_ptid)
1141 {
1142 struct lwp_info *lp;
1143
1144 init_lwp_list ();
1145 lp = add_lwp (new_ptid);
1146 lp->stopped = 1;
1147
1148 init_thread_list ();
1149 add_thread_silent (new_ptid);
1150 }
1151
1152 /* Handle the exit of a single thread LP. */
1153
1154 static void
1155 exit_lwp (struct lwp_info *lp)
1156 {
1157 struct thread_info *th = find_thread_pid (lp->ptid);
1158
1159 if (th)
1160 {
1161 if (print_thread_events)
1162 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1163
1164 delete_thread (lp->ptid);
1165 }
1166
1167 delete_lwp (lp->ptid);
1168 }
1169
1170 /* Detect `T (stopped)' in `/proc/PID/status'.
1171 Other states including `T (tracing stop)' are reported as false. */
1172
1173 static int
1174 pid_is_stopped (pid_t pid)
1175 {
1176 FILE *status_file;
1177 char buf[100];
1178 int retval = 0;
1179
1180 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1181 status_file = fopen (buf, "r");
1182 if (status_file != NULL)
1183 {
1184 int have_state = 0;
1185
1186 while (fgets (buf, sizeof (buf), status_file))
1187 {
1188 if (strncmp (buf, "State:", 6) == 0)
1189 {
1190 have_state = 1;
1191 break;
1192 }
1193 }
1194 if (have_state && strstr (buf, "T (stopped)") != NULL)
1195 retval = 1;
1196 fclose (status_file);
1197 }
1198 return retval;
1199 }
1200
1201 /* Wait for the LWP specified by LP, which we have just attached to.
1202 Returns a wait status for that LWP, to cache. */
1203
1204 static int
1205 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1206 int *signalled)
1207 {
1208 pid_t new_pid, pid = GET_LWP (ptid);
1209 int status;
1210
1211 if (pid_is_stopped (pid))
1212 {
1213 if (debug_linux_nat)
1214 fprintf_unfiltered (gdb_stdlog,
1215 "LNPAW: Attaching to a stopped process\n");
1216
1217 /* The process is definitely stopped. It is in a job control
1218 stop, unless the kernel predates the TASK_STOPPED /
1219 TASK_TRACED distinction, in which case it might be in a
1220 ptrace stop. Make sure it is in a ptrace stop; from there we
1221 can kill it, signal it, et cetera.
1222
1223 First make sure there is a pending SIGSTOP. Since we are
1224 already attached, the process can not transition from stopped
1225 to running without a PTRACE_CONT; so we know this signal will
1226 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1227 probably already in the queue (unless this kernel is old
1228 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1229 is not an RT signal, it can only be queued once. */
1230 kill_lwp (pid, SIGSTOP);
1231
1232 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1233 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1234 ptrace (PTRACE_CONT, pid, 0, 0);
1235 }
1236
1237 /* Make sure the initial process is stopped. The user-level threads
1238 layer might want to poke around in the inferior, and that won't
1239 work if things haven't stabilized yet. */
1240 new_pid = my_waitpid (pid, &status, 0);
1241 if (new_pid == -1 && errno == ECHILD)
1242 {
1243 if (first)
1244 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1245
1246 /* Try again with __WCLONE to check cloned processes. */
1247 new_pid = my_waitpid (pid, &status, __WCLONE);
1248 *cloned = 1;
1249 }
1250
1251 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1252
1253 if (WSTOPSIG (status) != SIGSTOP)
1254 {
1255 *signalled = 1;
1256 if (debug_linux_nat)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LNPAW: Received %s after attaching\n",
1259 status_to_str (status));
1260 }
1261
1262 return status;
1263 }
1264
1265 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1266 if the new LWP could not be attached. */
1267
1268 int
1269 lin_lwp_attach_lwp (ptid_t ptid)
1270 {
1271 struct lwp_info *lp;
1272 enum sigchld_state async_events_original_state;
1273
1274 gdb_assert (is_lwp (ptid));
1275
1276 async_events_original_state = linux_nat_async_events (sigchld_sync);
1277
1278 lp = find_lwp_pid (ptid);
1279
1280 /* We assume that we're already attached to any LWP that has an id
1281 equal to the overall process id, and to any LWP that is already
1282 in our list of LWPs. If we're not seeing exit events from threads
1283 and we've had PID wraparound since we last tried to stop all threads,
1284 this assumption might be wrong; fortunately, this is very unlikely
1285 to happen. */
1286 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1287 {
1288 int status, cloned = 0, signalled = 0;
1289
1290 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1291 {
1292 /* If we fail to attach to the thread, issue a warning,
1293 but continue. One way this can happen is if thread
1294 creation is interrupted; as of Linux kernel 2.6.19, a
1295 bug may place threads in the thread list and then fail
1296 to create them. */
1297 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1298 safe_strerror (errno));
1299 return -1;
1300 }
1301
1302 if (debug_linux_nat)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1305 target_pid_to_str (ptid));
1306
1307 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1308 lp = add_lwp (ptid);
1309 lp->stopped = 1;
1310 lp->cloned = cloned;
1311 lp->signalled = signalled;
1312 if (WSTOPSIG (status) != SIGSTOP)
1313 {
1314 lp->resumed = 1;
1315 lp->status = status;
1316 }
1317
1318 target_post_attach (GET_LWP (lp->ptid));
1319
1320 if (debug_linux_nat)
1321 {
1322 fprintf_unfiltered (gdb_stdlog,
1323 "LLAL: waitpid %s received %s\n",
1324 target_pid_to_str (ptid),
1325 status_to_str (status));
1326 }
1327 }
1328 else
1329 {
1330 /* We assume that the LWP representing the original process is
1331 already stopped. Mark it as stopped in the data structure
1332 that the GNU/linux ptrace layer uses to keep track of
1333 threads. Note that this won't have already been done since
1334 the main thread will have, we assume, been stopped by an
1335 attach from a different layer. */
1336 if (lp == NULL)
1337 lp = add_lwp (ptid);
1338 lp->stopped = 1;
1339 }
1340
1341 linux_nat_async_events (async_events_original_state);
1342 return 0;
1343 }
1344
1345 static void
1346 linux_nat_create_inferior (struct target_ops *ops,
1347 char *exec_file, char *allargs, char **env,
1348 int from_tty)
1349 {
1350 int saved_async = 0;
1351 #ifdef HAVE_PERSONALITY
1352 int personality_orig = 0, personality_set = 0;
1353 #endif /* HAVE_PERSONALITY */
1354
1355 /* The fork_child mechanism is synchronous and calls target_wait, so
1356 we have to mask the async mode. */
1357
1358 if (target_can_async_p ())
1359 /* Mask async mode. Creating a child requires a loop calling
1360 wait_for_inferior currently. */
1361 saved_async = linux_nat_async_mask (0);
1362 else
1363 {
1364 /* Restore the original signal mask. */
1365 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1366 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1367 suspend_mask = normal_mask;
1368 sigdelset (&suspend_mask, SIGCHLD);
1369 }
1370
1371 /* Set SIGCHLD to the default action, until after execing the child,
1372 since the inferior inherits the superior's signal mask. It will
1373 be blocked again in linux_nat_wait, which is only reached after
1374 the inferior execing. */
1375 linux_nat_async_events (sigchld_default);
1376
1377 #ifdef HAVE_PERSONALITY
1378 if (disable_randomization)
1379 {
1380 errno = 0;
1381 personality_orig = personality (0xffffffff);
1382 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1383 {
1384 personality_set = 1;
1385 personality (personality_orig | ADDR_NO_RANDOMIZE);
1386 }
1387 if (errno != 0 || (personality_set
1388 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1389 warning (_("Error disabling address space randomization: %s"),
1390 safe_strerror (errno));
1391 }
1392 #endif /* HAVE_PERSONALITY */
1393
1394 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1395
1396 #ifdef HAVE_PERSONALITY
1397 if (personality_set)
1398 {
1399 errno = 0;
1400 personality (personality_orig);
1401 if (errno != 0)
1402 warning (_("Error restoring address space randomization: %s"),
1403 safe_strerror (errno));
1404 }
1405 #endif /* HAVE_PERSONALITY */
1406
1407 if (saved_async)
1408 linux_nat_async_mask (saved_async);
1409 }
1410
1411 static void
1412 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1413 {
1414 struct lwp_info *lp;
1415 int status;
1416 ptid_t ptid;
1417
1418 /* FIXME: We should probably accept a list of process id's, and
1419 attach all of them. */
1420 linux_ops->to_attach (ops, args, from_tty);
1421
1422 if (!target_can_async_p ())
1423 {
1424 /* Restore the original signal mask. */
1425 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1426 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1427 suspend_mask = normal_mask;
1428 sigdelset (&suspend_mask, SIGCHLD);
1429 }
1430
1431 /* The ptrace base target adds the main thread with (pid,0,0)
1432 format. Decorate it with lwp info. */
1433 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1434 thread_change_ptid (inferior_ptid, ptid);
1435
1436 /* Add the initial process as the first LWP to the list. */
1437 lp = add_lwp (ptid);
1438
1439 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1440 &lp->signalled);
1441 lp->stopped = 1;
1442
1443 /* Save the wait status to report later. */
1444 lp->resumed = 1;
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LNA: waitpid %ld, saving status %s\n",
1448 (long) GET_PID (lp->ptid), status_to_str (status));
1449
1450 if (!target_can_async_p ())
1451 lp->status = status;
1452 else
1453 {
1454 /* We already waited for this LWP, so put the wait result on the
1455 pipe. The event loop will wake up and gets us to handling
1456 this event. */
1457 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1458 lp->cloned ? __WCLONE : 0);
1459 /* Register in the event loop. */
1460 target_async (inferior_event_handler, 0);
1461 }
1462 }
1463
1464 /* Get pending status of LP. */
1465 static int
1466 get_pending_status (struct lwp_info *lp, int *status)
1467 {
1468 struct target_waitstatus last;
1469 ptid_t last_ptid;
1470
1471 get_last_target_status (&last_ptid, &last);
1472
1473 /* If this lwp is the ptid that GDB is processing an event from, the
1474 signal will be in stop_signal. Otherwise, in all-stop + sync
1475 mode, we may cache pending events in lp->status while trying to
1476 stop all threads (see stop_wait_callback). In async mode, the
1477 events are always cached in waitpid_queue. */
1478
1479 *status = 0;
1480
1481 if (non_stop)
1482 {
1483 enum target_signal signo = TARGET_SIGNAL_0;
1484
1485 if (is_executing (lp->ptid))
1486 {
1487 /* If the core thought this lwp was executing --- e.g., the
1488 executing property hasn't been updated yet, but the
1489 thread has been stopped with a stop_callback /
1490 stop_wait_callback sequence (see linux_nat_detach for
1491 example) --- we can only have pending events in the local
1492 queue. */
1493 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1494 {
1495 if (WIFSTOPPED (*status))
1496 signo = target_signal_from_host (WSTOPSIG (*status));
1497
1498 /* If not stopped, then the lwp is gone, no use in
1499 resending a signal. */
1500 }
1501 }
1502 else
1503 {
1504 /* If the core knows the thread is not executing, then we
1505 have the last signal recorded in
1506 thread_info->stop_signal. */
1507
1508 struct thread_info *tp = find_thread_pid (lp->ptid);
1509 signo = tp->stop_signal;
1510 }
1511
1512 if (signo != TARGET_SIGNAL_0
1513 && !signal_pass_state (signo))
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog, "\
1517 GPT: lwp %s had signal %s, but it is in no pass state\n",
1518 target_pid_to_str (lp->ptid),
1519 target_signal_to_string (signo));
1520 }
1521 else
1522 {
1523 if (signo != TARGET_SIGNAL_0)
1524 *status = W_STOPCODE (target_signal_to_host (signo));
1525
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "GPT: lwp %s as pending signal %s\n",
1529 target_pid_to_str (lp->ptid),
1530 target_signal_to_string (signo));
1531 }
1532 }
1533 else
1534 {
1535 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1536 {
1537 struct thread_info *tp = find_thread_pid (lp->ptid);
1538 if (tp->stop_signal != TARGET_SIGNAL_0
1539 && signal_pass_state (tp->stop_signal))
1540 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
1541 }
1542 else if (target_can_async_p ())
1543 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1544 else
1545 *status = lp->status;
1546 }
1547
1548 return 0;
1549 }
1550
1551 static int
1552 detach_callback (struct lwp_info *lp, void *data)
1553 {
1554 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1555
1556 if (debug_linux_nat && lp->status)
1557 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1558 strsignal (WSTOPSIG (lp->status)),
1559 target_pid_to_str (lp->ptid));
1560
1561 /* If there is a pending SIGSTOP, get rid of it. */
1562 if (lp->signalled)
1563 {
1564 if (debug_linux_nat)
1565 fprintf_unfiltered (gdb_stdlog,
1566 "DC: Sending SIGCONT to %s\n",
1567 target_pid_to_str (lp->ptid));
1568
1569 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1570 lp->signalled = 0;
1571 }
1572
1573 /* We don't actually detach from the LWP that has an id equal to the
1574 overall process id just yet. */
1575 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1576 {
1577 int status = 0;
1578
1579 /* Pass on any pending signal for this LWP. */
1580 get_pending_status (lp, &status);
1581
1582 errno = 0;
1583 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1584 WSTOPSIG (status)) < 0)
1585 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1586 safe_strerror (errno));
1587
1588 if (debug_linux_nat)
1589 fprintf_unfiltered (gdb_stdlog,
1590 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1591 target_pid_to_str (lp->ptid),
1592 strsignal (WSTOPSIG (lp->status)));
1593
1594 delete_lwp (lp->ptid);
1595 }
1596
1597 return 0;
1598 }
1599
1600 static void
1601 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1602 {
1603 int pid;
1604 int status;
1605 enum target_signal sig;
1606
1607 if (target_can_async_p ())
1608 linux_nat_async (NULL, 0);
1609
1610 /* Stop all threads before detaching. ptrace requires that the
1611 thread is stopped to sucessfully detach. */
1612 iterate_over_lwps (stop_callback, NULL);
1613 /* ... and wait until all of them have reported back that
1614 they're no longer running. */
1615 iterate_over_lwps (stop_wait_callback, NULL);
1616
1617 iterate_over_lwps (detach_callback, NULL);
1618
1619 /* Only the initial process should be left right now. */
1620 gdb_assert (num_lwps == 1);
1621
1622 /* Pass on any pending signal for the last LWP. */
1623 if ((args == NULL || *args == '\0')
1624 && get_pending_status (lwp_list, &status) != -1
1625 && WIFSTOPPED (status))
1626 {
1627 /* Put the signal number in ARGS so that inf_ptrace_detach will
1628 pass it along with PTRACE_DETACH. */
1629 args = alloca (8);
1630 sprintf (args, "%d", (int) WSTOPSIG (status));
1631 fprintf_unfiltered (gdb_stdlog,
1632 "LND: Sending signal %s to %s\n",
1633 args,
1634 target_pid_to_str (lwp_list->ptid));
1635 }
1636
1637 /* Destroy LWP info; it's no longer valid. */
1638 init_lwp_list ();
1639
1640 pid = ptid_get_pid (inferior_ptid);
1641
1642 if (target_can_async_p ())
1643 drain_queued_events (pid);
1644
1645 if (forks_exist_p ())
1646 {
1647 /* Multi-fork case. The current inferior_ptid is being detached
1648 from, but there are other viable forks to debug. Detach from
1649 the current fork, and context-switch to the first
1650 available. */
1651 linux_fork_detach (args, from_tty);
1652
1653 if (non_stop && target_can_async_p ())
1654 target_async (inferior_event_handler, 0);
1655 }
1656 else
1657 linux_ops->to_detach (ops, args, from_tty);
1658 }
1659
1660 /* Resume LP. */
1661
1662 static int
1663 resume_callback (struct lwp_info *lp, void *data)
1664 {
1665 if (lp->stopped && lp->status == 0)
1666 {
1667 linux_ops->to_resume (linux_ops,
1668 pid_to_ptid (GET_LWP (lp->ptid)),
1669 0, TARGET_SIGNAL_0);
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1673 target_pid_to_str (lp->ptid));
1674 lp->stopped = 0;
1675 lp->step = 0;
1676 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1677 }
1678 else if (lp->stopped && debug_linux_nat)
1679 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1680 target_pid_to_str (lp->ptid));
1681 else if (debug_linux_nat)
1682 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1683 target_pid_to_str (lp->ptid));
1684
1685 return 0;
1686 }
1687
1688 static int
1689 resume_clear_callback (struct lwp_info *lp, void *data)
1690 {
1691 lp->resumed = 0;
1692 return 0;
1693 }
1694
1695 static int
1696 resume_set_callback (struct lwp_info *lp, void *data)
1697 {
1698 lp->resumed = 1;
1699 return 0;
1700 }
1701
1702 static void
1703 linux_nat_resume (struct target_ops *ops,
1704 ptid_t ptid, int step, enum target_signal signo)
1705 {
1706 struct lwp_info *lp;
1707 int resume_all;
1708
1709 if (debug_linux_nat)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1712 step ? "step" : "resume",
1713 target_pid_to_str (ptid),
1714 signo ? strsignal (signo) : "0",
1715 target_pid_to_str (inferior_ptid));
1716
1717 if (target_can_async_p ())
1718 /* Block events while we're here. */
1719 linux_nat_async_events (sigchld_sync);
1720
1721 /* A specific PTID means `step only this process id'. */
1722 resume_all = (PIDGET (ptid) == -1);
1723
1724 if (non_stop && resume_all)
1725 internal_error (__FILE__, __LINE__,
1726 "can't resume all in non-stop mode");
1727
1728 if (!non_stop)
1729 {
1730 if (resume_all)
1731 iterate_over_lwps (resume_set_callback, NULL);
1732 else
1733 iterate_over_lwps (resume_clear_callback, NULL);
1734 }
1735
1736 /* If PID is -1, it's the current inferior that should be
1737 handled specially. */
1738 if (PIDGET (ptid) == -1)
1739 ptid = inferior_ptid;
1740
1741 lp = find_lwp_pid (ptid);
1742 gdb_assert (lp != NULL);
1743
1744 /* Convert to something the lower layer understands. */
1745 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1746
1747 /* Remember if we're stepping. */
1748 lp->step = step;
1749
1750 /* Mark this LWP as resumed. */
1751 lp->resumed = 1;
1752
1753 /* If we have a pending wait status for this thread, there is no
1754 point in resuming the process. But first make sure that
1755 linux_nat_wait won't preemptively handle the event - we
1756 should never take this short-circuit if we are going to
1757 leave LP running, since we have skipped resuming all the
1758 other threads. This bit of code needs to be synchronized
1759 with linux_nat_wait. */
1760
1761 /* In async mode, we never have pending wait status. */
1762 if (target_can_async_p () && lp->status)
1763 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1764
1765 if (lp->status && WIFSTOPPED (lp->status))
1766 {
1767 int saved_signo;
1768 struct inferior *inf;
1769
1770 inf = find_inferior_pid (ptid_get_pid (ptid));
1771 gdb_assert (inf);
1772 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1773
1774 /* Defer to common code if we're gaining control of the
1775 inferior. */
1776 if (inf->stop_soon == NO_STOP_QUIETLY
1777 && signal_stop_state (saved_signo) == 0
1778 && signal_print_state (saved_signo) == 0
1779 && signal_pass_state (saved_signo) == 1)
1780 {
1781 if (debug_linux_nat)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "LLR: Not short circuiting for ignored "
1784 "status 0x%x\n", lp->status);
1785
1786 /* FIXME: What should we do if we are supposed to continue
1787 this thread with a signal? */
1788 gdb_assert (signo == TARGET_SIGNAL_0);
1789 signo = saved_signo;
1790 lp->status = 0;
1791 }
1792 }
1793
1794 if (lp->status)
1795 {
1796 /* FIXME: What should we do if we are supposed to continue
1797 this thread with a signal? */
1798 gdb_assert (signo == TARGET_SIGNAL_0);
1799
1800 if (debug_linux_nat)
1801 fprintf_unfiltered (gdb_stdlog,
1802 "LLR: Short circuiting for status 0x%x\n",
1803 lp->status);
1804
1805 return;
1806 }
1807
1808 /* Mark LWP as not stopped to prevent it from being continued by
1809 resume_callback. */
1810 lp->stopped = 0;
1811
1812 if (resume_all)
1813 iterate_over_lwps (resume_callback, NULL);
1814
1815 linux_ops->to_resume (linux_ops, ptid, step, signo);
1816 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1817
1818 if (debug_linux_nat)
1819 fprintf_unfiltered (gdb_stdlog,
1820 "LLR: %s %s, %s (resume event thread)\n",
1821 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1822 target_pid_to_str (ptid),
1823 signo ? strsignal (signo) : "0");
1824
1825 if (target_can_async_p ())
1826 target_async (inferior_event_handler, 0);
1827 }
1828
1829 /* Issue kill to specified lwp. */
1830
1831 static int tkill_failed;
1832
1833 static int
1834 kill_lwp (int lwpid, int signo)
1835 {
1836 errno = 0;
1837
1838 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1839 fails, then we are not using nptl threads and we should be using kill. */
1840
1841 #ifdef HAVE_TKILL_SYSCALL
1842 if (!tkill_failed)
1843 {
1844 int ret = syscall (__NR_tkill, lwpid, signo);
1845 if (errno != ENOSYS)
1846 return ret;
1847 errno = 0;
1848 tkill_failed = 1;
1849 }
1850 #endif
1851
1852 return kill (lwpid, signo);
1853 }
1854
1855 /* Handle a GNU/Linux extended wait response. If we see a clone
1856 event, we need to add the new LWP to our list (and not report the
1857 trap to higher layers). This function returns non-zero if the
1858 event should be ignored and we should wait again. If STOPPING is
1859 true, the new LWP remains stopped, otherwise it is continued. */
1860
1861 static int
1862 linux_handle_extended_wait (struct lwp_info *lp, int status,
1863 int stopping)
1864 {
1865 int pid = GET_LWP (lp->ptid);
1866 struct target_waitstatus *ourstatus = &lp->waitstatus;
1867 struct lwp_info *new_lp = NULL;
1868 int event = status >> 16;
1869
1870 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1871 || event == PTRACE_EVENT_CLONE)
1872 {
1873 unsigned long new_pid;
1874 int ret;
1875
1876 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1877
1878 /* If we haven't already seen the new PID stop, wait for it now. */
1879 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1880 {
1881 /* The new child has a pending SIGSTOP. We can't affect it until it
1882 hits the SIGSTOP, but we're already attached. */
1883 ret = my_waitpid (new_pid, &status,
1884 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1885 if (ret == -1)
1886 perror_with_name (_("waiting for new child"));
1887 else if (ret != new_pid)
1888 internal_error (__FILE__, __LINE__,
1889 _("wait returned unexpected PID %d"), ret);
1890 else if (!WIFSTOPPED (status))
1891 internal_error (__FILE__, __LINE__,
1892 _("wait returned unexpected status 0x%x"), status);
1893 }
1894
1895 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1896
1897 if (event == PTRACE_EVENT_FORK)
1898 ourstatus->kind = TARGET_WAITKIND_FORKED;
1899 else if (event == PTRACE_EVENT_VFORK)
1900 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1901 else
1902 {
1903 struct cleanup *old_chain;
1904
1905 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1906 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1907 new_lp->cloned = 1;
1908 new_lp->stopped = 1;
1909
1910 if (WSTOPSIG (status) != SIGSTOP)
1911 {
1912 /* This can happen if someone starts sending signals to
1913 the new thread before it gets a chance to run, which
1914 have a lower number than SIGSTOP (e.g. SIGUSR1).
1915 This is an unlikely case, and harder to handle for
1916 fork / vfork than for clone, so we do not try - but
1917 we handle it for clone events here. We'll send
1918 the other signal on to the thread below. */
1919
1920 new_lp->signalled = 1;
1921 }
1922 else
1923 status = 0;
1924
1925 if (non_stop)
1926 {
1927 /* Add the new thread to GDB's lists as soon as possible
1928 so that:
1929
1930 1) the frontend doesn't have to wait for a stop to
1931 display them, and,
1932
1933 2) we tag it with the correct running state. */
1934
1935 /* If the thread_db layer is active, let it know about
1936 this new thread, and add it to GDB's list. */
1937 if (!thread_db_attach_lwp (new_lp->ptid))
1938 {
1939 /* We're not using thread_db. Add it to GDB's
1940 list. */
1941 target_post_attach (GET_LWP (new_lp->ptid));
1942 add_thread (new_lp->ptid);
1943 }
1944
1945 if (!stopping)
1946 {
1947 set_running (new_lp->ptid, 1);
1948 set_executing (new_lp->ptid, 1);
1949 }
1950 }
1951
1952 if (!stopping)
1953 {
1954 new_lp->stopped = 0;
1955 new_lp->resumed = 1;
1956 ptrace (PTRACE_CONT, new_pid, 0,
1957 status ? WSTOPSIG (status) : 0);
1958 }
1959
1960 if (debug_linux_nat)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "LHEW: Got clone event from LWP %ld, resuming\n",
1963 GET_LWP (lp->ptid));
1964 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1965
1966 return 1;
1967 }
1968
1969 return 0;
1970 }
1971
1972 if (event == PTRACE_EVENT_EXEC)
1973 {
1974 ourstatus->kind = TARGET_WAITKIND_EXECD;
1975 ourstatus->value.execd_pathname
1976 = xstrdup (linux_child_pid_to_exec_file (pid));
1977
1978 if (linux_parent_pid)
1979 {
1980 detach_breakpoints (linux_parent_pid);
1981 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1982
1983 linux_parent_pid = 0;
1984 }
1985
1986 /* At this point, all inserted breakpoints are gone. Doing this
1987 as soon as we detect an exec prevents the badness of deleting
1988 a breakpoint writing the current "shadow contents" to lift
1989 the bp. That shadow is NOT valid after an exec.
1990
1991 Note that we have to do this after the detach_breakpoints
1992 call above, otherwise breakpoints wouldn't be lifted from the
1993 parent on a vfork, because detach_breakpoints would think
1994 that breakpoints are not inserted. */
1995 mark_breakpoints_out ();
1996 return 0;
1997 }
1998
1999 internal_error (__FILE__, __LINE__,
2000 _("unknown ptrace event %d"), event);
2001 }
2002
2003 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2004 exited. */
2005
2006 static int
2007 wait_lwp (struct lwp_info *lp)
2008 {
2009 pid_t pid;
2010 int status;
2011 int thread_dead = 0;
2012
2013 gdb_assert (!lp->stopped);
2014 gdb_assert (lp->status == 0);
2015
2016 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2017 if (pid == -1 && errno == ECHILD)
2018 {
2019 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2020 if (pid == -1 && errno == ECHILD)
2021 {
2022 /* The thread has previously exited. We need to delete it
2023 now because, for some vendor 2.4 kernels with NPTL
2024 support backported, there won't be an exit event unless
2025 it is the main thread. 2.6 kernels will report an exit
2026 event for each thread that exits, as expected. */
2027 thread_dead = 1;
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2030 target_pid_to_str (lp->ptid));
2031 }
2032 }
2033
2034 if (!thread_dead)
2035 {
2036 gdb_assert (pid == GET_LWP (lp->ptid));
2037
2038 if (debug_linux_nat)
2039 {
2040 fprintf_unfiltered (gdb_stdlog,
2041 "WL: waitpid %s received %s\n",
2042 target_pid_to_str (lp->ptid),
2043 status_to_str (status));
2044 }
2045 }
2046
2047 /* Check if the thread has exited. */
2048 if (WIFEXITED (status) || WIFSIGNALED (status))
2049 {
2050 thread_dead = 1;
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2053 target_pid_to_str (lp->ptid));
2054 }
2055
2056 if (thread_dead)
2057 {
2058 exit_lwp (lp);
2059 return 0;
2060 }
2061
2062 gdb_assert (WIFSTOPPED (status));
2063
2064 /* Handle GNU/Linux's extended waitstatus for trace events. */
2065 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2066 {
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "WL: Handling extended status 0x%06x\n",
2070 status);
2071 if (linux_handle_extended_wait (lp, status, 1))
2072 return wait_lwp (lp);
2073 }
2074
2075 return status;
2076 }
2077
2078 /* Save the most recent siginfo for LP. This is currently only called
2079 for SIGTRAP; some ports use the si_addr field for
2080 target_stopped_data_address. In the future, it may also be used to
2081 restore the siginfo of requeued signals. */
2082
2083 static void
2084 save_siginfo (struct lwp_info *lp)
2085 {
2086 errno = 0;
2087 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2088 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2089
2090 if (errno != 0)
2091 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2092 }
2093
2094 /* Send a SIGSTOP to LP. */
2095
2096 static int
2097 stop_callback (struct lwp_info *lp, void *data)
2098 {
2099 if (!lp->stopped && !lp->signalled)
2100 {
2101 int ret;
2102
2103 if (debug_linux_nat)
2104 {
2105 fprintf_unfiltered (gdb_stdlog,
2106 "SC: kill %s **<SIGSTOP>**\n",
2107 target_pid_to_str (lp->ptid));
2108 }
2109 errno = 0;
2110 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2111 if (debug_linux_nat)
2112 {
2113 fprintf_unfiltered (gdb_stdlog,
2114 "SC: lwp kill %d %s\n",
2115 ret,
2116 errno ? safe_strerror (errno) : "ERRNO-OK");
2117 }
2118
2119 lp->signalled = 1;
2120 gdb_assert (lp->status == 0);
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* Return non-zero if LWP PID has a pending SIGINT. */
2127
2128 static int
2129 linux_nat_has_pending_sigint (int pid)
2130 {
2131 sigset_t pending, blocked, ignored;
2132 int i;
2133
2134 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2135
2136 if (sigismember (&pending, SIGINT)
2137 && !sigismember (&ignored, SIGINT))
2138 return 1;
2139
2140 return 0;
2141 }
2142
2143 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2144
2145 static int
2146 set_ignore_sigint (struct lwp_info *lp, void *data)
2147 {
2148 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2149 flag to consume the next one. */
2150 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2151 && WSTOPSIG (lp->status) == SIGINT)
2152 lp->status = 0;
2153 else
2154 lp->ignore_sigint = 1;
2155
2156 return 0;
2157 }
2158
2159 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2160 This function is called after we know the LWP has stopped; if the LWP
2161 stopped before the expected SIGINT was delivered, then it will never have
2162 arrived. Also, if the signal was delivered to a shared queue and consumed
2163 by a different thread, it will never be delivered to this LWP. */
2164
2165 static void
2166 maybe_clear_ignore_sigint (struct lwp_info *lp)
2167 {
2168 if (!lp->ignore_sigint)
2169 return;
2170
2171 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2172 {
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "MCIS: Clearing bogus flag for %s\n",
2176 target_pid_to_str (lp->ptid));
2177 lp->ignore_sigint = 0;
2178 }
2179 }
2180
2181 /* Wait until LP is stopped. */
2182
2183 static int
2184 stop_wait_callback (struct lwp_info *lp, void *data)
2185 {
2186 if (!lp->stopped)
2187 {
2188 int status;
2189
2190 status = wait_lwp (lp);
2191 if (status == 0)
2192 return 0;
2193
2194 if (lp->ignore_sigint && WIFSTOPPED (status)
2195 && WSTOPSIG (status) == SIGINT)
2196 {
2197 lp->ignore_sigint = 0;
2198
2199 errno = 0;
2200 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2201 if (debug_linux_nat)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2204 target_pid_to_str (lp->ptid),
2205 errno ? safe_strerror (errno) : "OK");
2206
2207 return stop_wait_callback (lp, NULL);
2208 }
2209
2210 maybe_clear_ignore_sigint (lp);
2211
2212 if (WSTOPSIG (status) != SIGSTOP)
2213 {
2214 if (WSTOPSIG (status) == SIGTRAP)
2215 {
2216 /* If a LWP other than the LWP that we're reporting an
2217 event for has hit a GDB breakpoint (as opposed to
2218 some random trap signal), then just arrange for it to
2219 hit it again later. We don't keep the SIGTRAP status
2220 and don't forward the SIGTRAP signal to the LWP. We
2221 will handle the current event, eventually we will
2222 resume all LWPs, and this one will get its breakpoint
2223 trap again.
2224
2225 If we do not do this, then we run the risk that the
2226 user will delete or disable the breakpoint, but the
2227 thread will have already tripped on it. */
2228
2229 /* Save the trap's siginfo in case we need it later. */
2230 save_siginfo (lp);
2231
2232 /* Now resume this LWP and get the SIGSTOP event. */
2233 errno = 0;
2234 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2235 if (debug_linux_nat)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "PTRACE_CONT %s, 0, 0 (%s)\n",
2239 target_pid_to_str (lp->ptid),
2240 errno ? safe_strerror (errno) : "OK");
2241
2242 fprintf_unfiltered (gdb_stdlog,
2243 "SWC: Candidate SIGTRAP event in %s\n",
2244 target_pid_to_str (lp->ptid));
2245 }
2246 /* Hold this event/waitstatus while we check to see if
2247 there are any more (we still want to get that SIGSTOP). */
2248 stop_wait_callback (lp, NULL);
2249
2250 if (target_can_async_p ())
2251 {
2252 /* Don't leave a pending wait status in async mode.
2253 Retrigger the breakpoint. */
2254 if (!cancel_breakpoint (lp))
2255 {
2256 /* There was no gdb breakpoint set at pc. Put
2257 the event back in the queue. */
2258 if (debug_linux_nat)
2259 fprintf_unfiltered (gdb_stdlog, "\
2260 SWC: leaving SIGTRAP in local queue of %s\n", target_pid_to_str (lp->ptid));
2261 push_waitpid (GET_LWP (lp->ptid),
2262 W_STOPCODE (SIGTRAP),
2263 lp->cloned ? __WCLONE : 0);
2264 }
2265 }
2266 else
2267 {
2268 /* Hold the SIGTRAP for handling by
2269 linux_nat_wait. */
2270 /* If there's another event, throw it back into the
2271 queue. */
2272 if (lp->status)
2273 {
2274 if (debug_linux_nat)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "SWC: kill %s, %s\n",
2277 target_pid_to_str (lp->ptid),
2278 status_to_str ((int) status));
2279 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2280 }
2281 /* Save the sigtrap event. */
2282 lp->status = status;
2283 }
2284 return 0;
2285 }
2286 else
2287 {
2288 /* The thread was stopped with a signal other than
2289 SIGSTOP, and didn't accidentally trip a breakpoint. */
2290
2291 if (debug_linux_nat)
2292 {
2293 fprintf_unfiltered (gdb_stdlog,
2294 "SWC: Pending event %s in %s\n",
2295 status_to_str ((int) status),
2296 target_pid_to_str (lp->ptid));
2297 }
2298 /* Now resume this LWP and get the SIGSTOP event. */
2299 errno = 0;
2300 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog,
2303 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2304 target_pid_to_str (lp->ptid),
2305 errno ? safe_strerror (errno) : "OK");
2306
2307 /* Hold this event/waitstatus while we check to see if
2308 there are any more (we still want to get that SIGSTOP). */
2309 stop_wait_callback (lp, NULL);
2310
2311 /* If the lp->status field is still empty, use it to
2312 hold this event. If not, then this event must be
2313 returned to the event queue of the LWP. */
2314 if (lp->status || target_can_async_p ())
2315 {
2316 if (debug_linux_nat)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "SWC: kill %s, %s\n",
2320 target_pid_to_str (lp->ptid),
2321 status_to_str ((int) status));
2322 }
2323 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2324 }
2325 else
2326 lp->status = status;
2327 return 0;
2328 }
2329 }
2330 else
2331 {
2332 /* We caught the SIGSTOP that we intended to catch, so
2333 there's no SIGSTOP pending. */
2334 lp->stopped = 1;
2335 lp->signalled = 0;
2336 }
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Return non-zero if LP has a wait status pending. */
2343
2344 static int
2345 status_callback (struct lwp_info *lp, void *data)
2346 {
2347 /* Only report a pending wait status if we pretend that this has
2348 indeed been resumed. */
2349 return (lp->status != 0 && lp->resumed);
2350 }
2351
2352 /* Return non-zero if LP isn't stopped. */
2353
2354 static int
2355 running_callback (struct lwp_info *lp, void *data)
2356 {
2357 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2358 }
2359
2360 /* Count the LWP's that have had events. */
2361
2362 static int
2363 count_events_callback (struct lwp_info *lp, void *data)
2364 {
2365 int *count = data;
2366
2367 gdb_assert (count != NULL);
2368
2369 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2370 if (lp->status != 0 && lp->resumed
2371 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2372 (*count)++;
2373
2374 return 0;
2375 }
2376
2377 /* Select the LWP (if any) that is currently being single-stepped. */
2378
2379 static int
2380 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2381 {
2382 if (lp->step && lp->status != 0)
2383 return 1;
2384 else
2385 return 0;
2386 }
2387
2388 /* Select the Nth LWP that has had a SIGTRAP event. */
2389
2390 static int
2391 select_event_lwp_callback (struct lwp_info *lp, void *data)
2392 {
2393 int *selector = data;
2394
2395 gdb_assert (selector != NULL);
2396
2397 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2398 if (lp->status != 0 && lp->resumed
2399 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2400 if ((*selector)-- == 0)
2401 return 1;
2402
2403 return 0;
2404 }
2405
2406 static int
2407 cancel_breakpoint (struct lwp_info *lp)
2408 {
2409 /* Arrange for a breakpoint to be hit again later. We don't keep
2410 the SIGTRAP status and don't forward the SIGTRAP signal to the
2411 LWP. We will handle the current event, eventually we will resume
2412 this LWP, and this breakpoint will trap again.
2413
2414 If we do not do this, then we run the risk that the user will
2415 delete or disable the breakpoint, but the LWP will have already
2416 tripped on it. */
2417
2418 struct regcache *regcache = get_thread_regcache (lp->ptid);
2419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2420 CORE_ADDR pc;
2421
2422 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2423 if (breakpoint_inserted_here_p (pc))
2424 {
2425 if (debug_linux_nat)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "CB: Push back breakpoint for %s\n",
2428 target_pid_to_str (lp->ptid));
2429
2430 /* Back up the PC if necessary. */
2431 if (gdbarch_decr_pc_after_break (gdbarch))
2432 regcache_write_pc (regcache, pc);
2433
2434 return 1;
2435 }
2436 return 0;
2437 }
2438
2439 static int
2440 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2441 {
2442 struct lwp_info *event_lp = data;
2443
2444 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2445 if (lp == event_lp)
2446 return 0;
2447
2448 /* If a LWP other than the LWP that we're reporting an event for has
2449 hit a GDB breakpoint (as opposed to some random trap signal),
2450 then just arrange for it to hit it again later. We don't keep
2451 the SIGTRAP status and don't forward the SIGTRAP signal to the
2452 LWP. We will handle the current event, eventually we will resume
2453 all LWPs, and this one will get its breakpoint trap again.
2454
2455 If we do not do this, then we run the risk that the user will
2456 delete or disable the breakpoint, but the LWP will have already
2457 tripped on it. */
2458
2459 if (lp->status != 0
2460 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2461 && cancel_breakpoint (lp))
2462 /* Throw away the SIGTRAP. */
2463 lp->status = 0;
2464
2465 return 0;
2466 }
2467
2468 /* Select one LWP out of those that have events pending. */
2469
2470 static void
2471 select_event_lwp (struct lwp_info **orig_lp, int *status)
2472 {
2473 int num_events = 0;
2474 int random_selector;
2475 struct lwp_info *event_lp;
2476
2477 /* Record the wait status for the original LWP. */
2478 (*orig_lp)->status = *status;
2479
2480 /* Give preference to any LWP that is being single-stepped. */
2481 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2482 if (event_lp != NULL)
2483 {
2484 if (debug_linux_nat)
2485 fprintf_unfiltered (gdb_stdlog,
2486 "SEL: Select single-step %s\n",
2487 target_pid_to_str (event_lp->ptid));
2488 }
2489 else
2490 {
2491 /* No single-stepping LWP. Select one at random, out of those
2492 which have had SIGTRAP events. */
2493
2494 /* First see how many SIGTRAP events we have. */
2495 iterate_over_lwps (count_events_callback, &num_events);
2496
2497 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2498 random_selector = (int)
2499 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2500
2501 if (debug_linux_nat && num_events > 1)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2504 num_events, random_selector);
2505
2506 event_lp = iterate_over_lwps (select_event_lwp_callback,
2507 &random_selector);
2508 }
2509
2510 if (event_lp != NULL)
2511 {
2512 /* Switch the event LWP. */
2513 *orig_lp = event_lp;
2514 *status = event_lp->status;
2515 }
2516
2517 /* Flush the wait status for the event LWP. */
2518 (*orig_lp)->status = 0;
2519 }
2520
2521 /* Return non-zero if LP has been resumed. */
2522
2523 static int
2524 resumed_callback (struct lwp_info *lp, void *data)
2525 {
2526 return lp->resumed;
2527 }
2528
2529 /* Stop an active thread, verify it still exists, then resume it. */
2530
2531 static int
2532 stop_and_resume_callback (struct lwp_info *lp, void *data)
2533 {
2534 struct lwp_info *ptr;
2535
2536 if (!lp->stopped && !lp->signalled)
2537 {
2538 stop_callback (lp, NULL);
2539 stop_wait_callback (lp, NULL);
2540 /* Resume if the lwp still exists. */
2541 for (ptr = lwp_list; ptr; ptr = ptr->next)
2542 if (lp == ptr)
2543 {
2544 resume_callback (lp, NULL);
2545 resume_set_callback (lp, NULL);
2546 }
2547 }
2548 return 0;
2549 }
2550
2551 /* Check if we should go on and pass this event to common code.
2552 Return the affected lwp if we are, or NULL otherwise. */
2553 static struct lwp_info *
2554 linux_nat_filter_event (int lwpid, int status, int options)
2555 {
2556 struct lwp_info *lp;
2557
2558 lp = find_lwp_pid (pid_to_ptid (lwpid));
2559
2560 /* Check for stop events reported by a process we didn't already
2561 know about - anything not already in our LWP list.
2562
2563 If we're expecting to receive stopped processes after
2564 fork, vfork, and clone events, then we'll just add the
2565 new one to our list and go back to waiting for the event
2566 to be reported - the stopped process might be returned
2567 from waitpid before or after the event is. */
2568 if (WIFSTOPPED (status) && !lp)
2569 {
2570 linux_record_stopped_pid (lwpid, status);
2571 return NULL;
2572 }
2573
2574 /* Make sure we don't report an event for the exit of an LWP not in
2575 our list, i.e. not part of the current process. This can happen
2576 if we detach from a program we original forked and then it
2577 exits. */
2578 if (!WIFSTOPPED (status) && !lp)
2579 return NULL;
2580
2581 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2582 CLONE_PTRACE processes which do not use the thread library -
2583 otherwise we wouldn't find the new LWP this way. That doesn't
2584 currently work, and the following code is currently unreachable
2585 due to the two blocks above. If it's fixed some day, this code
2586 should be broken out into a function so that we can also pick up
2587 LWPs from the new interface. */
2588 if (!lp)
2589 {
2590 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2591 if (options & __WCLONE)
2592 lp->cloned = 1;
2593
2594 gdb_assert (WIFSTOPPED (status)
2595 && WSTOPSIG (status) == SIGSTOP);
2596 lp->signalled = 1;
2597
2598 if (!in_thread_list (inferior_ptid))
2599 {
2600 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2601 GET_PID (inferior_ptid));
2602 add_thread (inferior_ptid);
2603 }
2604
2605 add_thread (lp->ptid);
2606 }
2607
2608 /* Save the trap's siginfo in case we need it later. */
2609 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2610 save_siginfo (lp);
2611
2612 /* Handle GNU/Linux's extended waitstatus for trace events. */
2613 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2614 {
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "LLW: Handling extended status 0x%06x\n",
2618 status);
2619 if (linux_handle_extended_wait (lp, status, 0))
2620 return NULL;
2621 }
2622
2623 /* Check if the thread has exited. */
2624 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2625 {
2626 /* If this is the main thread, we must stop all threads and
2627 verify if they are still alive. This is because in the nptl
2628 thread model, there is no signal issued for exiting LWPs
2629 other than the main thread. We only get the main thread exit
2630 signal once all child threads have already exited. If we
2631 stop all the threads and use the stop_wait_callback to check
2632 if they have exited we can determine whether this signal
2633 should be ignored or whether it means the end of the debugged
2634 application, regardless of which threading model is being
2635 used. */
2636 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2637 {
2638 lp->stopped = 1;
2639 iterate_over_lwps (stop_and_resume_callback, NULL);
2640 }
2641
2642 if (debug_linux_nat)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "LLW: %s exited.\n",
2645 target_pid_to_str (lp->ptid));
2646
2647 exit_lwp (lp);
2648
2649 /* If there is at least one more LWP, then the exit signal was
2650 not the end of the debugged application and should be
2651 ignored. */
2652 if (num_lwps > 0)
2653 return NULL;
2654 }
2655
2656 /* Check if the current LWP has previously exited. In the nptl
2657 thread model, LWPs other than the main thread do not issue
2658 signals when they exit so we must check whenever the thread has
2659 stopped. A similar check is made in stop_wait_callback(). */
2660 if (num_lwps > 1 && !linux_thread_alive (lp->ptid))
2661 {
2662 if (debug_linux_nat)
2663 fprintf_unfiltered (gdb_stdlog,
2664 "LLW: %s exited.\n",
2665 target_pid_to_str (lp->ptid));
2666
2667 exit_lwp (lp);
2668
2669 /* Make sure there is at least one thread running. */
2670 gdb_assert (iterate_over_lwps (running_callback, NULL));
2671
2672 /* Discard the event. */
2673 return NULL;
2674 }
2675
2676 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2677 an attempt to stop an LWP. */
2678 if (lp->signalled
2679 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2680 {
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "LLW: Delayed SIGSTOP caught for %s.\n",
2684 target_pid_to_str (lp->ptid));
2685
2686 /* This is a delayed SIGSTOP. */
2687 lp->signalled = 0;
2688
2689 registers_changed ();
2690
2691 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2692 lp->step, TARGET_SIGNAL_0);
2693 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2696 lp->step ?
2697 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2698 target_pid_to_str (lp->ptid));
2699
2700 lp->stopped = 0;
2701 gdb_assert (lp->resumed);
2702
2703 /* Discard the event. */
2704 return NULL;
2705 }
2706
2707 /* Make sure we don't report a SIGINT that we have already displayed
2708 for another thread. */
2709 if (lp->ignore_sigint
2710 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2711 {
2712 if (debug_linux_nat)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "LLW: Delayed SIGINT caught for %s.\n",
2715 target_pid_to_str (lp->ptid));
2716
2717 /* This is a delayed SIGINT. */
2718 lp->ignore_sigint = 0;
2719
2720 registers_changed ();
2721 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2722 lp->step, TARGET_SIGNAL_0);
2723 if (debug_linux_nat)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2726 lp->step ?
2727 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2728 target_pid_to_str (lp->ptid));
2729
2730 lp->stopped = 0;
2731 gdb_assert (lp->resumed);
2732
2733 /* Discard the event. */
2734 return NULL;
2735 }
2736
2737 /* An interesting event. */
2738 gdb_assert (lp);
2739 return lp;
2740 }
2741
2742 /* Get the events stored in the pipe into the local queue, so they are
2743 accessible to queued_waitpid. We need to do this, since it is not
2744 always the case that the event at the head of the pipe is the event
2745 we want. */
2746
2747 static void
2748 pipe_to_local_event_queue (void)
2749 {
2750 if (debug_linux_nat_async)
2751 fprintf_unfiltered (gdb_stdlog,
2752 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2753 linux_nat_num_queued_events);
2754 while (linux_nat_num_queued_events)
2755 {
2756 int lwpid, status, options;
2757 lwpid = linux_nat_event_pipe_pop (&status, &options);
2758 gdb_assert (lwpid > 0);
2759 push_waitpid (lwpid, status, options);
2760 }
2761 }
2762
2763 /* Get the unprocessed events stored in the local queue back into the
2764 pipe, so the event loop realizes there's something else to
2765 process. */
2766
2767 static void
2768 local_event_queue_to_pipe (void)
2769 {
2770 struct waitpid_result *w = waitpid_queue;
2771 while (w)
2772 {
2773 struct waitpid_result *next = w->next;
2774 linux_nat_event_pipe_push (w->pid,
2775 w->status,
2776 w->options);
2777 xfree (w);
2778 w = next;
2779 }
2780 waitpid_queue = NULL;
2781
2782 if (debug_linux_nat_async)
2783 fprintf_unfiltered (gdb_stdlog,
2784 "LEQTP: linux_nat_num_queued_events(%d)\n",
2785 linux_nat_num_queued_events);
2786 }
2787
2788 static ptid_t
2789 linux_nat_wait (struct target_ops *ops,
2790 ptid_t ptid, struct target_waitstatus *ourstatus)
2791 {
2792 struct lwp_info *lp = NULL;
2793 int options = 0;
2794 int status = 0;
2795 pid_t pid = PIDGET (ptid);
2796
2797 if (debug_linux_nat_async)
2798 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2799
2800 /* The first time we get here after starting a new inferior, we may
2801 not have added it to the LWP list yet - this is the earliest
2802 moment at which we know its PID. */
2803 if (num_lwps == 0)
2804 {
2805 gdb_assert (!is_lwp (inferior_ptid));
2806
2807 /* Upgrade the main thread's ptid. */
2808 thread_change_ptid (inferior_ptid,
2809 BUILD_LWP (GET_PID (inferior_ptid),
2810 GET_PID (inferior_ptid)));
2811
2812 lp = add_lwp (inferior_ptid);
2813 lp->resumed = 1;
2814 }
2815
2816 /* Block events while we're here. */
2817 linux_nat_async_events (sigchld_sync);
2818
2819 retry:
2820
2821 /* Make sure there is at least one LWP that has been resumed. */
2822 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2823
2824 /* First check if there is a LWP with a wait status pending. */
2825 if (pid == -1)
2826 {
2827 /* Any LWP that's been resumed will do. */
2828 lp = iterate_over_lwps (status_callback, NULL);
2829 if (lp)
2830 {
2831 if (target_can_async_p ())
2832 internal_error (__FILE__, __LINE__,
2833 "Found an LWP with a pending status in async mode.");
2834
2835 status = lp->status;
2836 lp->status = 0;
2837
2838 if (debug_linux_nat && status)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "LLW: Using pending wait status %s for %s.\n",
2841 status_to_str (status),
2842 target_pid_to_str (lp->ptid));
2843 }
2844
2845 /* But if we don't find one, we'll have to wait, and check both
2846 cloned and uncloned processes. We start with the cloned
2847 processes. */
2848 options = __WCLONE | WNOHANG;
2849 }
2850 else if (is_lwp (ptid))
2851 {
2852 if (debug_linux_nat)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "LLW: Waiting for specific LWP %s.\n",
2855 target_pid_to_str (ptid));
2856
2857 /* We have a specific LWP to check. */
2858 lp = find_lwp_pid (ptid);
2859 gdb_assert (lp);
2860 status = lp->status;
2861 lp->status = 0;
2862
2863 if (debug_linux_nat && status)
2864 fprintf_unfiltered (gdb_stdlog,
2865 "LLW: Using pending wait status %s for %s.\n",
2866 status_to_str (status),
2867 target_pid_to_str (lp->ptid));
2868
2869 /* If we have to wait, take into account whether PID is a cloned
2870 process or not. And we have to convert it to something that
2871 the layer beneath us can understand. */
2872 options = lp->cloned ? __WCLONE : 0;
2873 pid = GET_LWP (ptid);
2874 }
2875
2876 if (status && lp->signalled)
2877 {
2878 /* A pending SIGSTOP may interfere with the normal stream of
2879 events. In a typical case where interference is a problem,
2880 we have a SIGSTOP signal pending for LWP A while
2881 single-stepping it, encounter an event in LWP B, and take the
2882 pending SIGSTOP while trying to stop LWP A. After processing
2883 the event in LWP B, LWP A is continued, and we'll never see
2884 the SIGTRAP associated with the last time we were
2885 single-stepping LWP A. */
2886
2887 /* Resume the thread. It should halt immediately returning the
2888 pending SIGSTOP. */
2889 registers_changed ();
2890 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2891 lp->step, TARGET_SIGNAL_0);
2892 if (debug_linux_nat)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2895 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2896 target_pid_to_str (lp->ptid));
2897 lp->stopped = 0;
2898 gdb_assert (lp->resumed);
2899
2900 /* This should catch the pending SIGSTOP. */
2901 stop_wait_callback (lp, NULL);
2902 }
2903
2904 if (!target_can_async_p ())
2905 {
2906 /* Causes SIGINT to be passed on to the attached process. */
2907 set_sigint_trap ();
2908 }
2909
2910 while (status == 0)
2911 {
2912 pid_t lwpid;
2913
2914 if (target_can_async_p ())
2915 /* In async mode, don't ever block. Only look at the locally
2916 queued events. */
2917 lwpid = queued_waitpid (pid, &status, options);
2918 else
2919 lwpid = my_waitpid (pid, &status, options);
2920
2921 if (lwpid > 0)
2922 {
2923 gdb_assert (pid == -1 || lwpid == pid);
2924
2925 if (debug_linux_nat)
2926 {
2927 fprintf_unfiltered (gdb_stdlog,
2928 "LLW: waitpid %ld received %s\n",
2929 (long) lwpid, status_to_str (status));
2930 }
2931
2932 lp = linux_nat_filter_event (lwpid, status, options);
2933 if (!lp)
2934 {
2935 /* A discarded event. */
2936 status = 0;
2937 continue;
2938 }
2939
2940 break;
2941 }
2942
2943 if (pid == -1)
2944 {
2945 /* Alternate between checking cloned and uncloned processes. */
2946 options ^= __WCLONE;
2947
2948 /* And every time we have checked both:
2949 In async mode, return to event loop;
2950 In sync mode, suspend waiting for a SIGCHLD signal. */
2951 if (options & __WCLONE)
2952 {
2953 if (target_can_async_p ())
2954 {
2955 /* No interesting event. */
2956 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2957
2958 /* Get ready for the next event. */
2959 target_async (inferior_event_handler, 0);
2960
2961 if (debug_linux_nat_async)
2962 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2963
2964 return minus_one_ptid;
2965 }
2966
2967 sigsuspend (&suspend_mask);
2968 }
2969 }
2970
2971 /* We shouldn't end up here unless we want to try again. */
2972 gdb_assert (status == 0);
2973 }
2974
2975 if (!target_can_async_p ())
2976 clear_sigint_trap ();
2977
2978 gdb_assert (lp);
2979
2980 /* Don't report signals that GDB isn't interested in, such as
2981 signals that are neither printed nor stopped upon. Stopping all
2982 threads can be a bit time-consuming so if we want decent
2983 performance with heavily multi-threaded programs, especially when
2984 they're using a high frequency timer, we'd better avoid it if we
2985 can. */
2986
2987 if (WIFSTOPPED (status))
2988 {
2989 int signo = target_signal_from_host (WSTOPSIG (status));
2990 struct inferior *inf;
2991
2992 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2993 gdb_assert (inf);
2994
2995 /* Defer to common code if we get a signal while
2996 single-stepping, since that may need special care, e.g. to
2997 skip the signal handler, or, if we're gaining control of the
2998 inferior. */
2999 if (!lp->step
3000 && inf->stop_soon == NO_STOP_QUIETLY
3001 && signal_stop_state (signo) == 0
3002 && signal_print_state (signo) == 0
3003 && signal_pass_state (signo) == 1)
3004 {
3005 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3006 here? It is not clear we should. GDB may not expect
3007 other threads to run. On the other hand, not resuming
3008 newly attached threads may cause an unwanted delay in
3009 getting them running. */
3010 registers_changed ();
3011 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3012 lp->step, signo);
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "LLW: %s %s, %s (preempt 'handle')\n",
3016 lp->step ?
3017 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3018 target_pid_to_str (lp->ptid),
3019 signo ? strsignal (signo) : "0");
3020 lp->stopped = 0;
3021 status = 0;
3022 goto retry;
3023 }
3024
3025 if (!non_stop)
3026 {
3027 /* Only do the below in all-stop, as we currently use SIGINT
3028 to implement target_stop (see linux_nat_stop) in
3029 non-stop. */
3030 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3031 {
3032 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3033 forwarded to the entire process group, that is, all LWPs
3034 will receive it - unless they're using CLONE_THREAD to
3035 share signals. Since we only want to report it once, we
3036 mark it as ignored for all LWPs except this one. */
3037 iterate_over_lwps (set_ignore_sigint, NULL);
3038 lp->ignore_sigint = 0;
3039 }
3040 else
3041 maybe_clear_ignore_sigint (lp);
3042 }
3043 }
3044
3045 /* This LWP is stopped now. */
3046 lp->stopped = 1;
3047
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3050 status_to_str (status), target_pid_to_str (lp->ptid));
3051
3052 if (!non_stop)
3053 {
3054 /* Now stop all other LWP's ... */
3055 iterate_over_lwps (stop_callback, NULL);
3056
3057 /* ... and wait until all of them have reported back that
3058 they're no longer running. */
3059 iterate_over_lwps (stop_wait_callback, NULL);
3060
3061 /* If we're not waiting for a specific LWP, choose an event LWP
3062 from among those that have had events. Giving equal priority
3063 to all LWPs that have had events helps prevent
3064 starvation. */
3065 if (pid == -1)
3066 select_event_lwp (&lp, &status);
3067 }
3068
3069 /* Now that we've selected our final event LWP, cancel any
3070 breakpoints in other LWPs that have hit a GDB breakpoint. See
3071 the comment in cancel_breakpoints_callback to find out why. */
3072 iterate_over_lwps (cancel_breakpoints_callback, lp);
3073
3074 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3075 {
3076 if (debug_linux_nat)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "LLW: trap ptid is %s.\n",
3079 target_pid_to_str (lp->ptid));
3080 }
3081
3082 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3083 {
3084 *ourstatus = lp->waitstatus;
3085 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3086 }
3087 else
3088 store_waitstatus (ourstatus, status);
3089
3090 /* Get ready for the next event. */
3091 if (target_can_async_p ())
3092 target_async (inferior_event_handler, 0);
3093
3094 if (debug_linux_nat_async)
3095 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3096
3097 return lp->ptid;
3098 }
3099
3100 static int
3101 kill_callback (struct lwp_info *lp, void *data)
3102 {
3103 errno = 0;
3104 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3105 if (debug_linux_nat)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3108 target_pid_to_str (lp->ptid),
3109 errno ? safe_strerror (errno) : "OK");
3110
3111 return 0;
3112 }
3113
3114 static int
3115 kill_wait_callback (struct lwp_info *lp, void *data)
3116 {
3117 pid_t pid;
3118
3119 /* We must make sure that there are no pending events (delayed
3120 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3121 program doesn't interfere with any following debugging session. */
3122
3123 /* For cloned processes we must check both with __WCLONE and
3124 without, since the exit status of a cloned process isn't reported
3125 with __WCLONE. */
3126 if (lp->cloned)
3127 {
3128 do
3129 {
3130 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3131 if (pid != (pid_t) -1)
3132 {
3133 if (debug_linux_nat)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "KWC: wait %s received unknown.\n",
3136 target_pid_to_str (lp->ptid));
3137 /* The Linux kernel sometimes fails to kill a thread
3138 completely after PTRACE_KILL; that goes from the stop
3139 point in do_fork out to the one in
3140 get_signal_to_deliever and waits again. So kill it
3141 again. */
3142 kill_callback (lp, NULL);
3143 }
3144 }
3145 while (pid == GET_LWP (lp->ptid));
3146
3147 gdb_assert (pid == -1 && errno == ECHILD);
3148 }
3149
3150 do
3151 {
3152 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3153 if (pid != (pid_t) -1)
3154 {
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "KWC: wait %s received unk.\n",
3158 target_pid_to_str (lp->ptid));
3159 /* See the call to kill_callback above. */
3160 kill_callback (lp, NULL);
3161 }
3162 }
3163 while (pid == GET_LWP (lp->ptid));
3164
3165 gdb_assert (pid == -1 && errno == ECHILD);
3166 return 0;
3167 }
3168
3169 static void
3170 linux_nat_kill (struct target_ops *ops)
3171 {
3172 struct target_waitstatus last;
3173 ptid_t last_ptid;
3174 int status;
3175
3176 if (target_can_async_p ())
3177 target_async (NULL, 0);
3178
3179 /* If we're stopped while forking and we haven't followed yet,
3180 kill the other task. We need to do this first because the
3181 parent will be sleeping if this is a vfork. */
3182
3183 get_last_target_status (&last_ptid, &last);
3184
3185 if (last.kind == TARGET_WAITKIND_FORKED
3186 || last.kind == TARGET_WAITKIND_VFORKED)
3187 {
3188 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3189 wait (&status);
3190 }
3191
3192 if (forks_exist_p ())
3193 {
3194 linux_fork_killall ();
3195 drain_queued_events (-1);
3196 }
3197 else
3198 {
3199 /* Stop all threads before killing them, since ptrace requires
3200 that the thread is stopped to sucessfully PTRACE_KILL. */
3201 iterate_over_lwps (stop_callback, NULL);
3202 /* ... and wait until all of them have reported back that
3203 they're no longer running. */
3204 iterate_over_lwps (stop_wait_callback, NULL);
3205
3206 /* Kill all LWP's ... */
3207 iterate_over_lwps (kill_callback, NULL);
3208
3209 /* ... and wait until we've flushed all events. */
3210 iterate_over_lwps (kill_wait_callback, NULL);
3211 }
3212
3213 target_mourn_inferior ();
3214 }
3215
3216 static void
3217 linux_nat_mourn_inferior (struct target_ops *ops)
3218 {
3219 /* Destroy LWP info; it's no longer valid. */
3220 init_lwp_list ();
3221
3222 if (! forks_exist_p ())
3223 {
3224 /* Normal case, no other forks available. */
3225 if (target_can_async_p ())
3226 linux_nat_async (NULL, 0);
3227 linux_ops->to_mourn_inferior (ops);
3228 }
3229 else
3230 /* Multi-fork case. The current inferior_ptid has exited, but
3231 there are other viable forks to debug. Delete the exiting
3232 one and context-switch to the first available. */
3233 linux_fork_mourn_inferior ();
3234 }
3235
3236 /* Convert a native/host siginfo object, into/from the siginfo in the
3237 layout of the inferiors' architecture. */
3238
3239 static void
3240 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3241 {
3242 int done = 0;
3243
3244 if (linux_nat_siginfo_fixup != NULL)
3245 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3246
3247 /* If there was no callback, or the callback didn't do anything,
3248 then just do a straight memcpy. */
3249 if (!done)
3250 {
3251 if (direction == 1)
3252 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3253 else
3254 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3255 }
3256 }
3257
3258 static LONGEST
3259 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3260 const char *annex, gdb_byte *readbuf,
3261 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3262 {
3263 struct lwp_info *lp;
3264 LONGEST n;
3265 int pid;
3266 struct siginfo siginfo;
3267 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3268
3269 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3270 gdb_assert (readbuf || writebuf);
3271
3272 pid = GET_LWP (inferior_ptid);
3273 if (pid == 0)
3274 pid = GET_PID (inferior_ptid);
3275
3276 if (offset > sizeof (siginfo))
3277 return -1;
3278
3279 errno = 0;
3280 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3281 if (errno != 0)
3282 return -1;
3283
3284 /* When GDB is built as a 64-bit application, ptrace writes into
3285 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3286 inferior with a 64-bit GDB should look the same as debugging it
3287 with a 32-bit GDB, we need to convert it. GDB core always sees
3288 the converted layout, so any read/write will have to be done
3289 post-conversion. */
3290 siginfo_fixup (&siginfo, inf_siginfo, 0);
3291
3292 if (offset + len > sizeof (siginfo))
3293 len = sizeof (siginfo) - offset;
3294
3295 if (readbuf != NULL)
3296 memcpy (readbuf, inf_siginfo + offset, len);
3297 else
3298 {
3299 memcpy (inf_siginfo + offset, writebuf, len);
3300
3301 /* Convert back to ptrace layout before flushing it out. */
3302 siginfo_fixup (&siginfo, inf_siginfo, 1);
3303
3304 errno = 0;
3305 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3306 if (errno != 0)
3307 return -1;
3308 }
3309
3310 return len;
3311 }
3312
3313 static LONGEST
3314 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3315 const char *annex, gdb_byte *readbuf,
3316 const gdb_byte *writebuf,
3317 ULONGEST offset, LONGEST len)
3318 {
3319 struct cleanup *old_chain;
3320 LONGEST xfer;
3321
3322 if (object == TARGET_OBJECT_SIGNAL_INFO)
3323 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3324 offset, len);
3325
3326 old_chain = save_inferior_ptid ();
3327
3328 if (is_lwp (inferior_ptid))
3329 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3330
3331 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3332 offset, len);
3333
3334 do_cleanups (old_chain);
3335 return xfer;
3336 }
3337
3338 static int
3339 linux_thread_alive (ptid_t ptid)
3340 {
3341 int err;
3342
3343 gdb_assert (is_lwp (ptid));
3344
3345 /* Send signal 0 instead of anything ptrace, because ptracing a
3346 running thread errors out claiming that the thread doesn't
3347 exist. */
3348 err = kill_lwp (GET_LWP (ptid), 0);
3349
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "LLTA: KILL(SIG0) %s (%s)\n",
3353 target_pid_to_str (ptid),
3354 err ? safe_strerror (err) : "OK");
3355
3356 if (err != 0)
3357 return 0;
3358
3359 return 1;
3360 }
3361
3362 static int
3363 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3364 {
3365 return linux_thread_alive (ptid);
3366 }
3367
3368 static char *
3369 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3370 {
3371 static char buf[64];
3372
3373 if (is_lwp (ptid)
3374 && ((lwp_list && lwp_list->next)
3375 || GET_PID (ptid) != GET_LWP (ptid)))
3376 {
3377 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3378 return buf;
3379 }
3380
3381 return normal_pid_to_str (ptid);
3382 }
3383
3384 static void
3385 sigchld_handler (int signo)
3386 {
3387 if (target_async_permitted
3388 && linux_nat_async_events_state != sigchld_sync
3389 && signo == SIGCHLD)
3390 /* It is *always* a bug to hit this. */
3391 internal_error (__FILE__, __LINE__,
3392 "sigchld_handler called when async events are enabled");
3393
3394 /* Do nothing. The only reason for this handler is that it allows
3395 us to use sigsuspend in linux_nat_wait above to wait for the
3396 arrival of a SIGCHLD. */
3397 }
3398
3399 /* Accepts an integer PID; Returns a string representing a file that
3400 can be opened to get the symbols for the child process. */
3401
3402 static char *
3403 linux_child_pid_to_exec_file (int pid)
3404 {
3405 char *name1, *name2;
3406
3407 name1 = xmalloc (MAXPATHLEN);
3408 name2 = xmalloc (MAXPATHLEN);
3409 make_cleanup (xfree, name1);
3410 make_cleanup (xfree, name2);
3411 memset (name2, 0, MAXPATHLEN);
3412
3413 sprintf (name1, "/proc/%d/exe", pid);
3414 if (readlink (name1, name2, MAXPATHLEN) > 0)
3415 return name2;
3416 else
3417 return name1;
3418 }
3419
3420 /* Service function for corefiles and info proc. */
3421
3422 static int
3423 read_mapping (FILE *mapfile,
3424 long long *addr,
3425 long long *endaddr,
3426 char *permissions,
3427 long long *offset,
3428 char *device, long long *inode, char *filename)
3429 {
3430 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3431 addr, endaddr, permissions, offset, device, inode);
3432
3433 filename[0] = '\0';
3434 if (ret > 0 && ret != EOF)
3435 {
3436 /* Eat everything up to EOL for the filename. This will prevent
3437 weird filenames (such as one with embedded whitespace) from
3438 confusing this code. It also makes this code more robust in
3439 respect to annotations the kernel may add after the filename.
3440
3441 Note the filename is used for informational purposes
3442 only. */
3443 ret += fscanf (mapfile, "%[^\n]\n", filename);
3444 }
3445
3446 return (ret != 0 && ret != EOF);
3447 }
3448
3449 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3450 regions in the inferior for a corefile. */
3451
3452 static int
3453 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3454 unsigned long,
3455 int, int, int, void *), void *obfd)
3456 {
3457 int pid = PIDGET (inferior_ptid);
3458 char mapsfilename[MAXPATHLEN];
3459 FILE *mapsfile;
3460 long long addr, endaddr, size, offset, inode;
3461 char permissions[8], device[8], filename[MAXPATHLEN];
3462 int read, write, exec;
3463 int ret;
3464 struct cleanup *cleanup;
3465
3466 /* Compose the filename for the /proc memory map, and open it. */
3467 sprintf (mapsfilename, "/proc/%d/maps", pid);
3468 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3469 error (_("Could not open %s."), mapsfilename);
3470 cleanup = make_cleanup_fclose (mapsfile);
3471
3472 if (info_verbose)
3473 fprintf_filtered (gdb_stdout,
3474 "Reading memory regions from %s\n", mapsfilename);
3475
3476 /* Now iterate until end-of-file. */
3477 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3478 &offset, &device[0], &inode, &filename[0]))
3479 {
3480 size = endaddr - addr;
3481
3482 /* Get the segment's permissions. */
3483 read = (strchr (permissions, 'r') != 0);
3484 write = (strchr (permissions, 'w') != 0);
3485 exec = (strchr (permissions, 'x') != 0);
3486
3487 if (info_verbose)
3488 {
3489 fprintf_filtered (gdb_stdout,
3490 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3491 size, paddr_nz (addr),
3492 read ? 'r' : ' ',
3493 write ? 'w' : ' ', exec ? 'x' : ' ');
3494 if (filename[0])
3495 fprintf_filtered (gdb_stdout, " for %s", filename);
3496 fprintf_filtered (gdb_stdout, "\n");
3497 }
3498
3499 /* Invoke the callback function to create the corefile
3500 segment. */
3501 func (addr, size, read, write, exec, obfd);
3502 }
3503 do_cleanups (cleanup);
3504 return 0;
3505 }
3506
3507 static int
3508 find_signalled_thread (struct thread_info *info, void *data)
3509 {
3510 if (info->stop_signal != TARGET_SIGNAL_0
3511 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3512 return 1;
3513
3514 return 0;
3515 }
3516
3517 static enum target_signal
3518 find_stop_signal (void)
3519 {
3520 struct thread_info *info =
3521 iterate_over_threads (find_signalled_thread, NULL);
3522
3523 if (info)
3524 return info->stop_signal;
3525 else
3526 return TARGET_SIGNAL_0;
3527 }
3528
3529 /* Records the thread's register state for the corefile note
3530 section. */
3531
3532 static char *
3533 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3534 char *note_data, int *note_size,
3535 enum target_signal stop_signal)
3536 {
3537 gdb_gregset_t gregs;
3538 gdb_fpregset_t fpregs;
3539 unsigned long lwp = ptid_get_lwp (ptid);
3540 struct regcache *regcache = get_thread_regcache (ptid);
3541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3542 const struct regset *regset;
3543 int core_regset_p;
3544 struct cleanup *old_chain;
3545 struct core_regset_section *sect_list;
3546 char *gdb_regset;
3547
3548 old_chain = save_inferior_ptid ();
3549 inferior_ptid = ptid;
3550 target_fetch_registers (regcache, -1);
3551 do_cleanups (old_chain);
3552
3553 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3554 sect_list = gdbarch_core_regset_sections (gdbarch);
3555
3556 if (core_regset_p
3557 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3558 sizeof (gregs))) != NULL
3559 && regset->collect_regset != NULL)
3560 regset->collect_regset (regset, regcache, -1,
3561 &gregs, sizeof (gregs));
3562 else
3563 fill_gregset (regcache, &gregs, -1);
3564
3565 note_data = (char *) elfcore_write_prstatus (obfd,
3566 note_data,
3567 note_size,
3568 lwp,
3569 stop_signal, &gregs);
3570
3571 /* The loop below uses the new struct core_regset_section, which stores
3572 the supported section names and sizes for the core file. Note that
3573 note PRSTATUS needs to be treated specially. But the other notes are
3574 structurally the same, so they can benefit from the new struct. */
3575 if (core_regset_p && sect_list != NULL)
3576 while (sect_list->sect_name != NULL)
3577 {
3578 /* .reg was already handled above. */
3579 if (strcmp (sect_list->sect_name, ".reg") == 0)
3580 {
3581 sect_list++;
3582 continue;
3583 }
3584 regset = gdbarch_regset_from_core_section (gdbarch,
3585 sect_list->sect_name,
3586 sect_list->size);
3587 gdb_assert (regset && regset->collect_regset);
3588 gdb_regset = xmalloc (sect_list->size);
3589 regset->collect_regset (regset, regcache, -1,
3590 gdb_regset, sect_list->size);
3591 note_data = (char *) elfcore_write_register_note (obfd,
3592 note_data,
3593 note_size,
3594 sect_list->sect_name,
3595 gdb_regset,
3596 sect_list->size);
3597 xfree (gdb_regset);
3598 sect_list++;
3599 }
3600
3601 /* For architectures that does not have the struct core_regset_section
3602 implemented, we use the old method. When all the architectures have
3603 the new support, the code below should be deleted. */
3604 else
3605 {
3606 if (core_regset_p
3607 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3608 sizeof (fpregs))) != NULL
3609 && regset->collect_regset != NULL)
3610 regset->collect_regset (regset, regcache, -1,
3611 &fpregs, sizeof (fpregs));
3612 else
3613 fill_fpregset (regcache, &fpregs, -1);
3614
3615 note_data = (char *) elfcore_write_prfpreg (obfd,
3616 note_data,
3617 note_size,
3618 &fpregs, sizeof (fpregs));
3619 }
3620
3621 return note_data;
3622 }
3623
3624 struct linux_nat_corefile_thread_data
3625 {
3626 bfd *obfd;
3627 char *note_data;
3628 int *note_size;
3629 int num_notes;
3630 enum target_signal stop_signal;
3631 };
3632
3633 /* Called by gdbthread.c once per thread. Records the thread's
3634 register state for the corefile note section. */
3635
3636 static int
3637 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3638 {
3639 struct linux_nat_corefile_thread_data *args = data;
3640
3641 args->note_data = linux_nat_do_thread_registers (args->obfd,
3642 ti->ptid,
3643 args->note_data,
3644 args->note_size,
3645 args->stop_signal);
3646 args->num_notes++;
3647
3648 return 0;
3649 }
3650
3651 /* Fills the "to_make_corefile_note" target vector. Builds the note
3652 section for a corefile, and returns it in a malloc buffer. */
3653
3654 static char *
3655 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3656 {
3657 struct linux_nat_corefile_thread_data thread_args;
3658 struct cleanup *old_chain;
3659 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3660 char fname[16] = { '\0' };
3661 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3662 char psargs[80] = { '\0' };
3663 char *note_data = NULL;
3664 ptid_t current_ptid = inferior_ptid;
3665 gdb_byte *auxv;
3666 int auxv_len;
3667
3668 if (get_exec_file (0))
3669 {
3670 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3671 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3672 if (get_inferior_args ())
3673 {
3674 char *string_end;
3675 char *psargs_end = psargs + sizeof (psargs);
3676
3677 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3678 strings fine. */
3679 string_end = memchr (psargs, 0, sizeof (psargs));
3680 if (string_end != NULL)
3681 {
3682 *string_end++ = ' ';
3683 strncpy (string_end, get_inferior_args (),
3684 psargs_end - string_end);
3685 }
3686 }
3687 note_data = (char *) elfcore_write_prpsinfo (obfd,
3688 note_data,
3689 note_size, fname, psargs);
3690 }
3691
3692 /* Dump information for threads. */
3693 thread_args.obfd = obfd;
3694 thread_args.note_data = note_data;
3695 thread_args.note_size = note_size;
3696 thread_args.num_notes = 0;
3697 thread_args.stop_signal = find_stop_signal ();
3698 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3699 gdb_assert (thread_args.num_notes != 0);
3700 note_data = thread_args.note_data;
3701
3702 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3703 NULL, &auxv);
3704 if (auxv_len > 0)
3705 {
3706 note_data = elfcore_write_note (obfd, note_data, note_size,
3707 "CORE", NT_AUXV, auxv, auxv_len);
3708 xfree (auxv);
3709 }
3710
3711 make_cleanup (xfree, note_data);
3712 return note_data;
3713 }
3714
3715 /* Implement the "info proc" command. */
3716
3717 static void
3718 linux_nat_info_proc_cmd (char *args, int from_tty)
3719 {
3720 /* A long is used for pid instead of an int to avoid a loss of precision
3721 compiler warning from the output of strtoul. */
3722 long pid = PIDGET (inferior_ptid);
3723 FILE *procfile;
3724 char **argv = NULL;
3725 char buffer[MAXPATHLEN];
3726 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3727 int cmdline_f = 1;
3728 int cwd_f = 1;
3729 int exe_f = 1;
3730 int mappings_f = 0;
3731 int environ_f = 0;
3732 int status_f = 0;
3733 int stat_f = 0;
3734 int all = 0;
3735 struct stat dummy;
3736
3737 if (args)
3738 {
3739 /* Break up 'args' into an argv array. */
3740 argv = gdb_buildargv (args);
3741 make_cleanup_freeargv (argv);
3742 }
3743 while (argv != NULL && *argv != NULL)
3744 {
3745 if (isdigit (argv[0][0]))
3746 {
3747 pid = strtoul (argv[0], NULL, 10);
3748 }
3749 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3750 {
3751 mappings_f = 1;
3752 }
3753 else if (strcmp (argv[0], "status") == 0)
3754 {
3755 status_f = 1;
3756 }
3757 else if (strcmp (argv[0], "stat") == 0)
3758 {
3759 stat_f = 1;
3760 }
3761 else if (strcmp (argv[0], "cmd") == 0)
3762 {
3763 cmdline_f = 1;
3764 }
3765 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3766 {
3767 exe_f = 1;
3768 }
3769 else if (strcmp (argv[0], "cwd") == 0)
3770 {
3771 cwd_f = 1;
3772 }
3773 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3774 {
3775 all = 1;
3776 }
3777 else
3778 {
3779 /* [...] (future options here) */
3780 }
3781 argv++;
3782 }
3783 if (pid == 0)
3784 error (_("No current process: you must name one."));
3785
3786 sprintf (fname1, "/proc/%ld", pid);
3787 if (stat (fname1, &dummy) != 0)
3788 error (_("No /proc directory: '%s'"), fname1);
3789
3790 printf_filtered (_("process %ld\n"), pid);
3791 if (cmdline_f || all)
3792 {
3793 sprintf (fname1, "/proc/%ld/cmdline", pid);
3794 if ((procfile = fopen (fname1, "r")) != NULL)
3795 {
3796 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3797 if (fgets (buffer, sizeof (buffer), procfile))
3798 printf_filtered ("cmdline = '%s'\n", buffer);
3799 else
3800 warning (_("unable to read '%s'"), fname1);
3801 do_cleanups (cleanup);
3802 }
3803 else
3804 warning (_("unable to open /proc file '%s'"), fname1);
3805 }
3806 if (cwd_f || all)
3807 {
3808 sprintf (fname1, "/proc/%ld/cwd", pid);
3809 memset (fname2, 0, sizeof (fname2));
3810 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3811 printf_filtered ("cwd = '%s'\n", fname2);
3812 else
3813 warning (_("unable to read link '%s'"), fname1);
3814 }
3815 if (exe_f || all)
3816 {
3817 sprintf (fname1, "/proc/%ld/exe", pid);
3818 memset (fname2, 0, sizeof (fname2));
3819 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3820 printf_filtered ("exe = '%s'\n", fname2);
3821 else
3822 warning (_("unable to read link '%s'"), fname1);
3823 }
3824 if (mappings_f || all)
3825 {
3826 sprintf (fname1, "/proc/%ld/maps", pid);
3827 if ((procfile = fopen (fname1, "r")) != NULL)
3828 {
3829 long long addr, endaddr, size, offset, inode;
3830 char permissions[8], device[8], filename[MAXPATHLEN];
3831 struct cleanup *cleanup;
3832
3833 cleanup = make_cleanup_fclose (procfile);
3834 printf_filtered (_("Mapped address spaces:\n\n"));
3835 if (gdbarch_addr_bit (current_gdbarch) == 32)
3836 {
3837 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3838 "Start Addr",
3839 " End Addr",
3840 " Size", " Offset", "objfile");
3841 }
3842 else
3843 {
3844 printf_filtered (" %18s %18s %10s %10s %7s\n",
3845 "Start Addr",
3846 " End Addr",
3847 " Size", " Offset", "objfile");
3848 }
3849
3850 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3851 &offset, &device[0], &inode, &filename[0]))
3852 {
3853 size = endaddr - addr;
3854
3855 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3856 calls here (and possibly above) should be abstracted
3857 out into their own functions? Andrew suggests using
3858 a generic local_address_string instead to print out
3859 the addresses; that makes sense to me, too. */
3860
3861 if (gdbarch_addr_bit (current_gdbarch) == 32)
3862 {
3863 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3864 (unsigned long) addr, /* FIXME: pr_addr */
3865 (unsigned long) endaddr,
3866 (int) size,
3867 (unsigned int) offset,
3868 filename[0] ? filename : "");
3869 }
3870 else
3871 {
3872 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3873 (unsigned long) addr, /* FIXME: pr_addr */
3874 (unsigned long) endaddr,
3875 (int) size,
3876 (unsigned int) offset,
3877 filename[0] ? filename : "");
3878 }
3879 }
3880
3881 do_cleanups (cleanup);
3882 }
3883 else
3884 warning (_("unable to open /proc file '%s'"), fname1);
3885 }
3886 if (status_f || all)
3887 {
3888 sprintf (fname1, "/proc/%ld/status", pid);
3889 if ((procfile = fopen (fname1, "r")) != NULL)
3890 {
3891 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3892 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3893 puts_filtered (buffer);
3894 do_cleanups (cleanup);
3895 }
3896 else
3897 warning (_("unable to open /proc file '%s'"), fname1);
3898 }
3899 if (stat_f || all)
3900 {
3901 sprintf (fname1, "/proc/%ld/stat", pid);
3902 if ((procfile = fopen (fname1, "r")) != NULL)
3903 {
3904 int itmp;
3905 char ctmp;
3906 long ltmp;
3907 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3908
3909 if (fscanf (procfile, "%d ", &itmp) > 0)
3910 printf_filtered (_("Process: %d\n"), itmp);
3911 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3912 printf_filtered (_("Exec file: %s\n"), buffer);
3913 if (fscanf (procfile, "%c ", &ctmp) > 0)
3914 printf_filtered (_("State: %c\n"), ctmp);
3915 if (fscanf (procfile, "%d ", &itmp) > 0)
3916 printf_filtered (_("Parent process: %d\n"), itmp);
3917 if (fscanf (procfile, "%d ", &itmp) > 0)
3918 printf_filtered (_("Process group: %d\n"), itmp);
3919 if (fscanf (procfile, "%d ", &itmp) > 0)
3920 printf_filtered (_("Session id: %d\n"), itmp);
3921 if (fscanf (procfile, "%d ", &itmp) > 0)
3922 printf_filtered (_("TTY: %d\n"), itmp);
3923 if (fscanf (procfile, "%d ", &itmp) > 0)
3924 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3925 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3926 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3927 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3928 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3929 (unsigned long) ltmp);
3930 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3931 printf_filtered (_("Minor faults, children: %lu\n"),
3932 (unsigned long) ltmp);
3933 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3934 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3935 (unsigned long) ltmp);
3936 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3937 printf_filtered (_("Major faults, children: %lu\n"),
3938 (unsigned long) ltmp);
3939 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3940 printf_filtered (_("utime: %ld\n"), ltmp);
3941 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3942 printf_filtered (_("stime: %ld\n"), ltmp);
3943 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3944 printf_filtered (_("utime, children: %ld\n"), ltmp);
3945 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3946 printf_filtered (_("stime, children: %ld\n"), ltmp);
3947 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3948 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3949 ltmp);
3950 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3951 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3952 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3953 printf_filtered (_("jiffies until next timeout: %lu\n"),
3954 (unsigned long) ltmp);
3955 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3956 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3957 (unsigned long) ltmp);
3958 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3959 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3960 ltmp);
3961 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3962 printf_filtered (_("Virtual memory size: %lu\n"),
3963 (unsigned long) ltmp);
3964 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3965 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3966 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3967 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3968 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3969 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3970 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3971 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3972 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3973 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3974 #if 0 /* Don't know how architecture-dependent the rest is...
3975 Anyway the signal bitmap info is available from "status". */
3976 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3977 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3978 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3979 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3980 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3981 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3982 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3983 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3984 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3985 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3986 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3987 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3988 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3989 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3990 #endif
3991 do_cleanups (cleanup);
3992 }
3993 else
3994 warning (_("unable to open /proc file '%s'"), fname1);
3995 }
3996 }
3997
3998 /* Implement the to_xfer_partial interface for memory reads using the /proc
3999 filesystem. Because we can use a single read() call for /proc, this
4000 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4001 but it doesn't support writes. */
4002
4003 static LONGEST
4004 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4005 const char *annex, gdb_byte *readbuf,
4006 const gdb_byte *writebuf,
4007 ULONGEST offset, LONGEST len)
4008 {
4009 LONGEST ret;
4010 int fd;
4011 char filename[64];
4012
4013 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4014 return 0;
4015
4016 /* Don't bother for one word. */
4017 if (len < 3 * sizeof (long))
4018 return 0;
4019
4020 /* We could keep this file open and cache it - possibly one per
4021 thread. That requires some juggling, but is even faster. */
4022 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4023 fd = open (filename, O_RDONLY | O_LARGEFILE);
4024 if (fd == -1)
4025 return 0;
4026
4027 /* If pread64 is available, use it. It's faster if the kernel
4028 supports it (only one syscall), and it's 64-bit safe even on
4029 32-bit platforms (for instance, SPARC debugging a SPARC64
4030 application). */
4031 #ifdef HAVE_PREAD64
4032 if (pread64 (fd, readbuf, len, offset) != len)
4033 #else
4034 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4035 #endif
4036 ret = 0;
4037 else
4038 ret = len;
4039
4040 close (fd);
4041 return ret;
4042 }
4043
4044 /* Parse LINE as a signal set and add its set bits to SIGS. */
4045
4046 static void
4047 add_line_to_sigset (const char *line, sigset_t *sigs)
4048 {
4049 int len = strlen (line) - 1;
4050 const char *p;
4051 int signum;
4052
4053 if (line[len] != '\n')
4054 error (_("Could not parse signal set: %s"), line);
4055
4056 p = line;
4057 signum = len * 4;
4058 while (len-- > 0)
4059 {
4060 int digit;
4061
4062 if (*p >= '0' && *p <= '9')
4063 digit = *p - '0';
4064 else if (*p >= 'a' && *p <= 'f')
4065 digit = *p - 'a' + 10;
4066 else
4067 error (_("Could not parse signal set: %s"), line);
4068
4069 signum -= 4;
4070
4071 if (digit & 1)
4072 sigaddset (sigs, signum + 1);
4073 if (digit & 2)
4074 sigaddset (sigs, signum + 2);
4075 if (digit & 4)
4076 sigaddset (sigs, signum + 3);
4077 if (digit & 8)
4078 sigaddset (sigs, signum + 4);
4079
4080 p++;
4081 }
4082 }
4083
4084 /* Find process PID's pending signals from /proc/pid/status and set
4085 SIGS to match. */
4086
4087 void
4088 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4089 {
4090 FILE *procfile;
4091 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4092 int signum;
4093 struct cleanup *cleanup;
4094
4095 sigemptyset (pending);
4096 sigemptyset (blocked);
4097 sigemptyset (ignored);
4098 sprintf (fname, "/proc/%d/status", pid);
4099 procfile = fopen (fname, "r");
4100 if (procfile == NULL)
4101 error (_("Could not open %s"), fname);
4102 cleanup = make_cleanup_fclose (procfile);
4103
4104 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4105 {
4106 /* Normal queued signals are on the SigPnd line in the status
4107 file. However, 2.6 kernels also have a "shared" pending
4108 queue for delivering signals to a thread group, so check for
4109 a ShdPnd line also.
4110
4111 Unfortunately some Red Hat kernels include the shared pending
4112 queue but not the ShdPnd status field. */
4113
4114 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4115 add_line_to_sigset (buffer + 8, pending);
4116 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4117 add_line_to_sigset (buffer + 8, pending);
4118 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4119 add_line_to_sigset (buffer + 8, blocked);
4120 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4121 add_line_to_sigset (buffer + 8, ignored);
4122 }
4123
4124 do_cleanups (cleanup);
4125 }
4126
4127 static LONGEST
4128 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4129 const char *annex, gdb_byte *readbuf,
4130 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4131 {
4132 /* We make the process list snapshot when the object starts to be
4133 read. */
4134 static const char *buf;
4135 static LONGEST len_avail = -1;
4136 static struct obstack obstack;
4137
4138 DIR *dirp;
4139
4140 gdb_assert (object == TARGET_OBJECT_OSDATA);
4141
4142 if (strcmp (annex, "processes") != 0)
4143 return 0;
4144
4145 gdb_assert (readbuf && !writebuf);
4146
4147 if (offset == 0)
4148 {
4149 if (len_avail != -1 && len_avail != 0)
4150 obstack_free (&obstack, NULL);
4151 len_avail = 0;
4152 buf = NULL;
4153 obstack_init (&obstack);
4154 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4155
4156 dirp = opendir ("/proc");
4157 if (dirp)
4158 {
4159 struct dirent *dp;
4160 while ((dp = readdir (dirp)) != NULL)
4161 {
4162 struct stat statbuf;
4163 char procentry[sizeof ("/proc/4294967295")];
4164
4165 if (!isdigit (dp->d_name[0])
4166 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
4167 continue;
4168
4169 sprintf (procentry, "/proc/%s", dp->d_name);
4170 if (stat (procentry, &statbuf) == 0
4171 && S_ISDIR (statbuf.st_mode))
4172 {
4173 char *pathname;
4174 FILE *f;
4175 char cmd[MAXPATHLEN + 1];
4176 struct passwd *entry;
4177
4178 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4179 entry = getpwuid (statbuf.st_uid);
4180
4181 if ((f = fopen (pathname, "r")) != NULL)
4182 {
4183 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4184 if (len > 0)
4185 {
4186 int i;
4187 for (i = 0; i < len; i++)
4188 if (cmd[i] == '\0')
4189 cmd[i] = ' ';
4190 cmd[len] = '\0';
4191
4192 obstack_xml_printf (
4193 &obstack,
4194 "<item>"
4195 "<column name=\"pid\">%s</column>"
4196 "<column name=\"user\">%s</column>"
4197 "<column name=\"command\">%s</column>"
4198 "</item>",
4199 dp->d_name,
4200 entry ? entry->pw_name : "?",
4201 cmd);
4202 }
4203 fclose (f);
4204 }
4205
4206 xfree (pathname);
4207 }
4208 }
4209
4210 closedir (dirp);
4211 }
4212
4213 obstack_grow_str0 (&obstack, "</osdata>\n");
4214 buf = obstack_finish (&obstack);
4215 len_avail = strlen (buf);
4216 }
4217
4218 if (offset >= len_avail)
4219 {
4220 /* Done. Get rid of the obstack. */
4221 obstack_free (&obstack, NULL);
4222 buf = NULL;
4223 len_avail = 0;
4224 return 0;
4225 }
4226
4227 if (len > len_avail - offset)
4228 len = len_avail - offset;
4229 memcpy (readbuf, buf + offset, len);
4230
4231 return len;
4232 }
4233
4234 static LONGEST
4235 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4236 const char *annex, gdb_byte *readbuf,
4237 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4238 {
4239 LONGEST xfer;
4240
4241 if (object == TARGET_OBJECT_AUXV)
4242 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4243 offset, len);
4244
4245 if (object == TARGET_OBJECT_OSDATA)
4246 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4247 offset, len);
4248
4249 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4250 offset, len);
4251 if (xfer != 0)
4252 return xfer;
4253
4254 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4255 offset, len);
4256 }
4257
4258 /* Create a prototype generic GNU/Linux target. The client can override
4259 it with local methods. */
4260
4261 static void
4262 linux_target_install_ops (struct target_ops *t)
4263 {
4264 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4265 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4266 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4267 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4268 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4269 t->to_post_attach = linux_child_post_attach;
4270 t->to_follow_fork = linux_child_follow_fork;
4271 t->to_find_memory_regions = linux_nat_find_memory_regions;
4272 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4273
4274 super_xfer_partial = t->to_xfer_partial;
4275 t->to_xfer_partial = linux_xfer_partial;
4276 }
4277
4278 struct target_ops *
4279 linux_target (void)
4280 {
4281 struct target_ops *t;
4282
4283 t = inf_ptrace_target ();
4284 linux_target_install_ops (t);
4285
4286 return t;
4287 }
4288
4289 struct target_ops *
4290 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4291 {
4292 struct target_ops *t;
4293
4294 t = inf_ptrace_trad_target (register_u_offset);
4295 linux_target_install_ops (t);
4296
4297 return t;
4298 }
4299
4300 /* target_is_async_p implementation. */
4301
4302 static int
4303 linux_nat_is_async_p (void)
4304 {
4305 /* NOTE: palves 2008-03-21: We're only async when the user requests
4306 it explicitly with the "maintenance set target-async" command.
4307 Someday, linux will always be async. */
4308 if (!target_async_permitted)
4309 return 0;
4310
4311 return 1;
4312 }
4313
4314 /* target_can_async_p implementation. */
4315
4316 static int
4317 linux_nat_can_async_p (void)
4318 {
4319 /* NOTE: palves 2008-03-21: We're only async when the user requests
4320 it explicitly with the "maintenance set target-async" command.
4321 Someday, linux will always be async. */
4322 if (!target_async_permitted)
4323 return 0;
4324
4325 /* See target.h/target_async_mask. */
4326 return linux_nat_async_mask_value;
4327 }
4328
4329 static int
4330 linux_nat_supports_non_stop (void)
4331 {
4332 return 1;
4333 }
4334
4335 /* target_async_mask implementation. */
4336
4337 static int
4338 linux_nat_async_mask (int mask)
4339 {
4340 int current_state;
4341 current_state = linux_nat_async_mask_value;
4342
4343 if (current_state != mask)
4344 {
4345 if (mask == 0)
4346 {
4347 linux_nat_async (NULL, 0);
4348 linux_nat_async_mask_value = mask;
4349 }
4350 else
4351 {
4352 linux_nat_async_mask_value = mask;
4353 linux_nat_async (inferior_event_handler, 0);
4354 }
4355 }
4356
4357 return current_state;
4358 }
4359
4360 /* Pop an event from the event pipe. */
4361
4362 static int
4363 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4364 {
4365 struct waitpid_result event = {0};
4366 int ret;
4367
4368 do
4369 {
4370 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4371 }
4372 while (ret == -1 && errno == EINTR);
4373
4374 gdb_assert (ret == sizeof (event));
4375
4376 *ptr_status = event.status;
4377 *ptr_options = event.options;
4378
4379 linux_nat_num_queued_events--;
4380
4381 return event.pid;
4382 }
4383
4384 /* Push an event into the event pipe. */
4385
4386 static void
4387 linux_nat_event_pipe_push (int pid, int status, int options)
4388 {
4389 int ret;
4390 struct waitpid_result event = {0};
4391 event.pid = pid;
4392 event.status = status;
4393 event.options = options;
4394
4395 do
4396 {
4397 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4398 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4399 } while (ret == -1 && errno == EINTR);
4400
4401 linux_nat_num_queued_events++;
4402 }
4403
4404 static void
4405 get_pending_events (void)
4406 {
4407 int status, options, pid;
4408
4409 if (!target_async_permitted
4410 || linux_nat_async_events_state != sigchld_async)
4411 internal_error (__FILE__, __LINE__,
4412 "get_pending_events called with async masked");
4413
4414 while (1)
4415 {
4416 status = 0;
4417 options = __WCLONE | WNOHANG;
4418
4419 do
4420 {
4421 pid = waitpid (-1, &status, options);
4422 }
4423 while (pid == -1 && errno == EINTR);
4424
4425 if (pid <= 0)
4426 {
4427 options = WNOHANG;
4428 do
4429 {
4430 pid = waitpid (-1, &status, options);
4431 }
4432 while (pid == -1 && errno == EINTR);
4433 }
4434
4435 if (pid <= 0)
4436 /* No more children reporting events. */
4437 break;
4438
4439 if (debug_linux_nat_async)
4440 fprintf_unfiltered (gdb_stdlog, "\
4441 get_pending_events: pid(%d), status(%x), options (%x)\n",
4442 pid, status, options);
4443
4444 linux_nat_event_pipe_push (pid, status, options);
4445 }
4446
4447 if (debug_linux_nat_async)
4448 fprintf_unfiltered (gdb_stdlog, "\
4449 get_pending_events: linux_nat_num_queued_events(%d)\n",
4450 linux_nat_num_queued_events);
4451 }
4452
4453 /* SIGCHLD handler for async mode. */
4454
4455 static void
4456 async_sigchld_handler (int signo)
4457 {
4458 if (debug_linux_nat_async)
4459 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4460
4461 get_pending_events ();
4462 }
4463
4464 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4465
4466 static enum sigchld_state
4467 linux_nat_async_events (enum sigchld_state state)
4468 {
4469 enum sigchld_state current_state = linux_nat_async_events_state;
4470
4471 if (debug_linux_nat_async)
4472 fprintf_unfiltered (gdb_stdlog,
4473 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4474 "linux_nat_num_queued_events(%d)\n",
4475 state, linux_nat_async_events_state,
4476 linux_nat_num_queued_events);
4477
4478 if (current_state != state)
4479 {
4480 sigset_t mask;
4481 sigemptyset (&mask);
4482 sigaddset (&mask, SIGCHLD);
4483
4484 /* Always block before changing state. */
4485 sigprocmask (SIG_BLOCK, &mask, NULL);
4486
4487 /* Set new state. */
4488 linux_nat_async_events_state = state;
4489
4490 switch (state)
4491 {
4492 case sigchld_sync:
4493 {
4494 /* Block target events. */
4495 sigprocmask (SIG_BLOCK, &mask, NULL);
4496 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4497 /* Get events out of queue, and make them available to
4498 queued_waitpid / my_waitpid. */
4499 pipe_to_local_event_queue ();
4500 }
4501 break;
4502 case sigchld_async:
4503 {
4504 /* Unblock target events for async mode. */
4505
4506 sigprocmask (SIG_BLOCK, &mask, NULL);
4507
4508 /* Put events we already waited on, in the pipe first, so
4509 events are FIFO. */
4510 local_event_queue_to_pipe ();
4511 /* While in masked async, we may have not collected all
4512 the pending events. Get them out now. */
4513 get_pending_events ();
4514
4515 /* Let'em come. */
4516 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4517 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4518 }
4519 break;
4520 case sigchld_default:
4521 {
4522 /* SIGCHLD default mode. */
4523 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4524
4525 /* Get events out of queue, and make them available to
4526 queued_waitpid / my_waitpid. */
4527 pipe_to_local_event_queue ();
4528
4529 /* Unblock SIGCHLD. */
4530 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4531 }
4532 break;
4533 }
4534 }
4535
4536 return current_state;
4537 }
4538
4539 static int async_terminal_is_ours = 1;
4540
4541 /* target_terminal_inferior implementation. */
4542
4543 static void
4544 linux_nat_terminal_inferior (void)
4545 {
4546 if (!target_is_async_p ())
4547 {
4548 /* Async mode is disabled. */
4549 terminal_inferior ();
4550 return;
4551 }
4552
4553 /* GDB should never give the terminal to the inferior, if the
4554 inferior is running in the background (run&, continue&, etc.).
4555 This check can be removed when the common code is fixed. */
4556 if (!sync_execution)
4557 return;
4558
4559 terminal_inferior ();
4560
4561 if (!async_terminal_is_ours)
4562 return;
4563
4564 delete_file_handler (input_fd);
4565 async_terminal_is_ours = 0;
4566 set_sigint_trap ();
4567 }
4568
4569 /* target_terminal_ours implementation. */
4570
4571 static void
4572 linux_nat_terminal_ours (void)
4573 {
4574 if (!target_is_async_p ())
4575 {
4576 /* Async mode is disabled. */
4577 terminal_ours ();
4578 return;
4579 }
4580
4581 /* GDB should never give the terminal to the inferior if the
4582 inferior is running in the background (run&, continue&, etc.),
4583 but claiming it sure should. */
4584 terminal_ours ();
4585
4586 if (!sync_execution)
4587 return;
4588
4589 if (async_terminal_is_ours)
4590 return;
4591
4592 clear_sigint_trap ();
4593 add_file_handler (input_fd, stdin_event_handler, 0);
4594 async_terminal_is_ours = 1;
4595 }
4596
4597 static void (*async_client_callback) (enum inferior_event_type event_type,
4598 void *context);
4599 static void *async_client_context;
4600
4601 static void
4602 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4603 {
4604 async_client_callback (INF_REG_EVENT, async_client_context);
4605 }
4606
4607 /* target_async implementation. */
4608
4609 static void
4610 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4611 void *context), void *context)
4612 {
4613 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4614 internal_error (__FILE__, __LINE__,
4615 "Calling target_async when async is masked");
4616
4617 if (callback != NULL)
4618 {
4619 async_client_callback = callback;
4620 async_client_context = context;
4621 add_file_handler (linux_nat_event_pipe[0],
4622 linux_nat_async_file_handler, NULL);
4623
4624 linux_nat_async_events (sigchld_async);
4625 }
4626 else
4627 {
4628 async_client_callback = callback;
4629 async_client_context = context;
4630
4631 linux_nat_async_events (sigchld_sync);
4632 delete_file_handler (linux_nat_event_pipe[0]);
4633 }
4634 return;
4635 }
4636
4637 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4638 event came out. */
4639
4640 static int
4641 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4642 {
4643 ptid_t ptid = * (ptid_t *) data;
4644
4645 if (ptid_equal (lwp->ptid, ptid)
4646 || ptid_equal (minus_one_ptid, ptid)
4647 || (ptid_is_pid (ptid)
4648 && ptid_get_pid (ptid) == ptid_get_pid (lwp->ptid)))
4649 {
4650 if (!lwp->stopped)
4651 {
4652 int pid, status;
4653
4654 if (debug_linux_nat)
4655 fprintf_unfiltered (gdb_stdlog,
4656 "LNSL: running -> suspending %s\n",
4657 target_pid_to_str (lwp->ptid));
4658
4659 /* Peek once, to check if we've already waited for this
4660 LWP. */
4661 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4662 lwp->cloned ? __WCLONE : 0, 1 /* peek */);
4663
4664 if (pid == -1)
4665 {
4666 ptid_t ptid = lwp->ptid;
4667
4668 stop_callback (lwp, NULL);
4669 stop_wait_callback (lwp, NULL);
4670
4671 /* If the lwp exits while we try to stop it, there's
4672 nothing else to do. */
4673 lwp = find_lwp_pid (ptid);
4674 if (lwp == NULL)
4675 return 0;
4676
4677 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4678 lwp->cloned ? __WCLONE : 0,
4679 1 /* peek */);
4680 }
4681
4682 /* If we didn't collect any signal other than SIGSTOP while
4683 stopping the LWP, push a SIGNAL_0 event. In either case,
4684 the event-loop will end up calling target_wait which will
4685 collect these. */
4686 if (pid == -1)
4687 push_waitpid (ptid_get_lwp (lwp->ptid), W_STOPCODE (0),
4688 lwp->cloned ? __WCLONE : 0);
4689 }
4690 else
4691 {
4692 /* Already known to be stopped; do nothing. */
4693
4694 if (debug_linux_nat)
4695 {
4696 if (find_thread_pid (lwp->ptid)->stop_requested)
4697 fprintf_unfiltered (gdb_stdlog, "\
4698 LNSL: already stopped/stop_requested %s\n",
4699 target_pid_to_str (lwp->ptid));
4700 else
4701 fprintf_unfiltered (gdb_stdlog, "\
4702 LNSL: already stopped/no stop_requested yet %s\n",
4703 target_pid_to_str (lwp->ptid));
4704 }
4705 }
4706 }
4707 return 0;
4708 }
4709
4710 static void
4711 linux_nat_stop (ptid_t ptid)
4712 {
4713 if (non_stop)
4714 {
4715 linux_nat_async_events (sigchld_sync);
4716 iterate_over_lwps (linux_nat_stop_lwp, &ptid);
4717 target_async (inferior_event_handler, 0);
4718 }
4719 else
4720 linux_ops->to_stop (ptid);
4721 }
4722
4723 void
4724 linux_nat_add_target (struct target_ops *t)
4725 {
4726 /* Save the provided single-threaded target. We save this in a separate
4727 variable because another target we've inherited from (e.g. inf-ptrace)
4728 may have saved a pointer to T; we want to use it for the final
4729 process stratum target. */
4730 linux_ops_saved = *t;
4731 linux_ops = &linux_ops_saved;
4732
4733 /* Override some methods for multithreading. */
4734 t->to_create_inferior = linux_nat_create_inferior;
4735 t->to_attach = linux_nat_attach;
4736 t->to_detach = linux_nat_detach;
4737 t->to_resume = linux_nat_resume;
4738 t->to_wait = linux_nat_wait;
4739 t->to_xfer_partial = linux_nat_xfer_partial;
4740 t->to_kill = linux_nat_kill;
4741 t->to_mourn_inferior = linux_nat_mourn_inferior;
4742 t->to_thread_alive = linux_nat_thread_alive;
4743 t->to_pid_to_str = linux_nat_pid_to_str;
4744 t->to_has_thread_control = tc_schedlock;
4745
4746 t->to_can_async_p = linux_nat_can_async_p;
4747 t->to_is_async_p = linux_nat_is_async_p;
4748 t->to_supports_non_stop = linux_nat_supports_non_stop;
4749 t->to_async = linux_nat_async;
4750 t->to_async_mask = linux_nat_async_mask;
4751 t->to_terminal_inferior = linux_nat_terminal_inferior;
4752 t->to_terminal_ours = linux_nat_terminal_ours;
4753
4754 /* Methods for non-stop support. */
4755 t->to_stop = linux_nat_stop;
4756
4757 /* We don't change the stratum; this target will sit at
4758 process_stratum and thread_db will set at thread_stratum. This
4759 is a little strange, since this is a multi-threaded-capable
4760 target, but we want to be on the stack below thread_db, and we
4761 also want to be used for single-threaded processes. */
4762
4763 add_target (t);
4764 }
4765
4766 /* Register a method to call whenever a new thread is attached. */
4767 void
4768 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4769 {
4770 /* Save the pointer. We only support a single registered instance
4771 of the GNU/Linux native target, so we do not need to map this to
4772 T. */
4773 linux_nat_new_thread = new_thread;
4774 }
4775
4776 /* Register a method that converts a siginfo object between the layout
4777 that ptrace returns, and the layout in the architecture of the
4778 inferior. */
4779 void
4780 linux_nat_set_siginfo_fixup (struct target_ops *t,
4781 int (*siginfo_fixup) (struct siginfo *,
4782 gdb_byte *,
4783 int))
4784 {
4785 /* Save the pointer. */
4786 linux_nat_siginfo_fixup = siginfo_fixup;
4787 }
4788
4789 /* Return the saved siginfo associated with PTID. */
4790 struct siginfo *
4791 linux_nat_get_siginfo (ptid_t ptid)
4792 {
4793 struct lwp_info *lp = find_lwp_pid (ptid);
4794
4795 gdb_assert (lp != NULL);
4796
4797 return &lp->siginfo;
4798 }
4799
4800 /* Enable/Disable async mode. */
4801
4802 static void
4803 linux_nat_setup_async (void)
4804 {
4805 if (pipe (linux_nat_event_pipe) == -1)
4806 internal_error (__FILE__, __LINE__,
4807 "creating event pipe failed.");
4808 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4809 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4810 }
4811
4812 /* Provide a prototype to silence -Wmissing-prototypes. */
4813 extern initialize_file_ftype _initialize_linux_nat;
4814
4815 void
4816 _initialize_linux_nat (void)
4817 {
4818 sigset_t mask;
4819
4820 add_info ("proc", linux_nat_info_proc_cmd, _("\
4821 Show /proc process information about any running process.\n\
4822 Specify any process id, or use the program being debugged by default.\n\
4823 Specify any of the following keywords for detailed info:\n\
4824 mappings -- list of mapped memory regions.\n\
4825 stat -- list a bunch of random process info.\n\
4826 status -- list a different bunch of random process info.\n\
4827 all -- list all available /proc info."));
4828
4829 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4830 &debug_linux_nat, _("\
4831 Set debugging of GNU/Linux lwp module."), _("\
4832 Show debugging of GNU/Linux lwp module."), _("\
4833 Enables printf debugging output."),
4834 NULL,
4835 show_debug_linux_nat,
4836 &setdebuglist, &showdebuglist);
4837
4838 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4839 &debug_linux_nat_async, _("\
4840 Set debugging of GNU/Linux async lwp module."), _("\
4841 Show debugging of GNU/Linux async lwp module."), _("\
4842 Enables printf debugging output."),
4843 NULL,
4844 show_debug_linux_nat_async,
4845 &setdebuglist, &showdebuglist);
4846
4847 /* Get the default SIGCHLD action. Used while forking an inferior
4848 (see linux_nat_create_inferior/linux_nat_async_events). */
4849 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4850
4851 /* Block SIGCHLD by default. Doing this early prevents it getting
4852 unblocked if an exception is thrown due to an error while the
4853 inferior is starting (sigsetjmp/siglongjmp). */
4854 sigemptyset (&mask);
4855 sigaddset (&mask, SIGCHLD);
4856 sigprocmask (SIG_BLOCK, &mask, NULL);
4857
4858 /* Save this mask as the default. */
4859 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4860
4861 /* The synchronous SIGCHLD handler. */
4862 sync_sigchld_action.sa_handler = sigchld_handler;
4863 sigemptyset (&sync_sigchld_action.sa_mask);
4864 sync_sigchld_action.sa_flags = SA_RESTART;
4865
4866 /* Make it the default. */
4867 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4868
4869 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4870 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4871 sigdelset (&suspend_mask, SIGCHLD);
4872
4873 /* SIGCHLD handler for async mode. */
4874 async_sigchld_action.sa_handler = async_sigchld_handler;
4875 sigemptyset (&async_sigchld_action.sa_mask);
4876 async_sigchld_action.sa_flags = SA_RESTART;
4877
4878 linux_nat_setup_async ();
4879
4880 add_setshow_boolean_cmd ("disable-randomization", class_support,
4881 &disable_randomization, _("\
4882 Set disabling of debuggee's virtual address space randomization."), _("\
4883 Show disabling of debuggee's virtual address space randomization."), _("\
4884 When this mode is on (which is the default), randomization of the virtual\n\
4885 address space is disabled. Standalone programs run with the randomization\n\
4886 enabled by default on some platforms."),
4887 &set_disable_randomization,
4888 &show_disable_randomization,
4889 &setlist, &showlist);
4890 }
4891 \f
4892
4893 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4894 the GNU/Linux Threads library and therefore doesn't really belong
4895 here. */
4896
4897 /* Read variable NAME in the target and return its value if found.
4898 Otherwise return zero. It is assumed that the type of the variable
4899 is `int'. */
4900
4901 static int
4902 get_signo (const char *name)
4903 {
4904 struct minimal_symbol *ms;
4905 int signo;
4906
4907 ms = lookup_minimal_symbol (name, NULL, NULL);
4908 if (ms == NULL)
4909 return 0;
4910
4911 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4912 sizeof (signo)) != 0)
4913 return 0;
4914
4915 return signo;
4916 }
4917
4918 /* Return the set of signals used by the threads library in *SET. */
4919
4920 void
4921 lin_thread_get_thread_signals (sigset_t *set)
4922 {
4923 struct sigaction action;
4924 int restart, cancel;
4925 sigset_t blocked_mask;
4926
4927 sigemptyset (&blocked_mask);
4928 sigemptyset (set);
4929
4930 restart = get_signo ("__pthread_sig_restart");
4931 cancel = get_signo ("__pthread_sig_cancel");
4932
4933 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4934 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4935 not provide any way for the debugger to query the signal numbers -
4936 fortunately they don't change! */
4937
4938 if (restart == 0)
4939 restart = __SIGRTMIN;
4940
4941 if (cancel == 0)
4942 cancel = __SIGRTMIN + 1;
4943
4944 sigaddset (set, restart);
4945 sigaddset (set, cancel);
4946
4947 /* The GNU/Linux Threads library makes terminating threads send a
4948 special "cancel" signal instead of SIGCHLD. Make sure we catch
4949 those (to prevent them from terminating GDB itself, which is
4950 likely to be their default action) and treat them the same way as
4951 SIGCHLD. */
4952
4953 action.sa_handler = sigchld_handler;
4954 sigemptyset (&action.sa_mask);
4955 action.sa_flags = SA_RESTART;
4956 sigaction (cancel, &action, NULL);
4957
4958 /* We block the "cancel" signal throughout this code ... */
4959 sigaddset (&blocked_mask, cancel);
4960 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4961
4962 /* ... except during a sigsuspend. */
4963 sigdelset (&suspend_mask, cancel);
4964 }
This page took 0.131011 seconds and 4 git commands to generate.