Move unwind reasons to an external .def file
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 linux_enable_tracesysgood (pid_to_ptid (pid));
575 }
576
577 static void
578 linux_child_post_startup_inferior (ptid_t ptid)
579 {
580 linux_enable_event_reporting (ptid);
581 linux_enable_tracesysgood (ptid);
582 }
583
584 static int
585 linux_child_follow_fork (struct target_ops *ops, int follow_child)
586 {
587 sigset_t prev_mask;
588 int has_vforked;
589 int parent_pid, child_pid;
590
591 block_child_signals (&prev_mask);
592
593 has_vforked = (inferior_thread ()->pending_follow.kind
594 == TARGET_WAITKIND_VFORKED);
595 parent_pid = ptid_get_lwp (inferior_ptid);
596 if (parent_pid == 0)
597 parent_pid = ptid_get_pid (inferior_ptid);
598 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
599
600 if (!detach_fork)
601 linux_enable_event_reporting (pid_to_ptid (child_pid));
602
603 if (has_vforked
604 && !non_stop /* Non-stop always resumes both branches. */
605 && (!target_is_async_p () || sync_execution)
606 && !(follow_child || detach_fork || sched_multi))
607 {
608 /* The parent stays blocked inside the vfork syscall until the
609 child execs or exits. If we don't let the child run, then
610 the parent stays blocked. If we're telling the parent to run
611 in the foreground, the user will not be able to ctrl-c to get
612 back the terminal, effectively hanging the debug session. */
613 fprintf_filtered (gdb_stderr, _("\
614 Can not resume the parent process over vfork in the foreground while\n\
615 holding the child stopped. Try \"set detach-on-fork\" or \
616 \"set schedule-multiple\".\n"));
617 /* FIXME output string > 80 columns. */
618 return 1;
619 }
620
621 if (! follow_child)
622 {
623 struct lwp_info *child_lp = NULL;
624
625 /* We're already attached to the parent, by default. */
626
627 /* Detach new forked process? */
628 if (detach_fork)
629 {
630 /* Before detaching from the child, remove all breakpoints
631 from it. If we forked, then this has already been taken
632 care of by infrun.c. If we vforked however, any
633 breakpoint inserted in the parent is visible in the
634 child, even those added while stopped in a vfork
635 catchpoint. This will remove the breakpoints from the
636 parent also, but they'll be reinserted below. */
637 if (has_vforked)
638 {
639 /* keep breakpoints list in sync. */
640 remove_breakpoints_pid (GET_PID (inferior_ptid));
641 }
642
643 if (info_verbose || debug_linux_nat)
644 {
645 target_terminal_ours ();
646 fprintf_filtered (gdb_stdlog,
647 "Detaching after fork from "
648 "child process %d.\n",
649 child_pid);
650 }
651
652 ptrace (PTRACE_DETACH, child_pid, 0, 0);
653 }
654 else
655 {
656 struct inferior *parent_inf, *child_inf;
657 struct cleanup *old_chain;
658
659 /* Add process to GDB's tables. */
660 child_inf = add_inferior (child_pid);
661
662 parent_inf = current_inferior ();
663 child_inf->attach_flag = parent_inf->attach_flag;
664 copy_terminal_info (child_inf, parent_inf);
665
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is
676 shared with the parent. */
677 if (has_vforked)
678 {
679 child_inf->pspace = parent_inf->pspace;
680 child_inf->aspace = parent_inf->aspace;
681
682 /* The parent will be frozen until the child is done
683 with the shared region. Keep track of the
684 parent. */
685 child_inf->vfork_parent = parent_inf;
686 child_inf->pending_detach = 0;
687 parent_inf->vfork_child = child_inf;
688 parent_inf->pending_detach = 0;
689 }
690 else
691 {
692 child_inf->aspace = new_address_space ();
693 child_inf->pspace = add_program_space (child_inf->aspace);
694 child_inf->removable = 1;
695 set_current_program_space (child_inf->pspace);
696 clone_program_space (child_inf->pspace, parent_inf->pspace);
697
698 /* Let the shared library layer (solib-svr4) learn about
699 this new process, relocate the cloned exec, pull in
700 shared libraries, and install the solib event
701 breakpoint. If a "cloned-VM" event was propagated
702 better throughout the core, this wouldn't be
703 required. */
704 solib_create_inferior_hook (0);
705 }
706
707 /* Let the thread_db layer learn about this new process. */
708 check_for_thread_db ();
709
710 do_cleanups (old_chain);
711 }
712
713 if (has_vforked)
714 {
715 struct lwp_info *parent_lp;
716 struct inferior *parent_inf;
717
718 parent_inf = current_inferior ();
719
720 /* If we detached from the child, then we have to be careful
721 to not insert breakpoints in the parent until the child
722 is done with the shared memory region. However, if we're
723 staying attached to the child, then we can and should
724 insert breakpoints, so that we can debug it. A
725 subsequent child exec or exit is enough to know when does
726 the child stops using the parent's address space. */
727 parent_inf->waiting_for_vfork_done = detach_fork;
728 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
729
730 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
731 gdb_assert (linux_supports_tracefork_flag >= 0);
732
733 if (linux_supports_tracevforkdone (0))
734 {
735 if (debug_linux_nat)
736 fprintf_unfiltered (gdb_stdlog,
737 "LCFF: waiting for VFORK_DONE on %d\n",
738 parent_pid);
739 parent_lp->stopped = 1;
740
741 /* We'll handle the VFORK_DONE event like any other
742 event, in target_wait. */
743 }
744 else
745 {
746 /* We can't insert breakpoints until the child has
747 finished with the shared memory region. We need to
748 wait until that happens. Ideal would be to just
749 call:
750 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
751 - waitpid (parent_pid, &status, __WALL);
752 However, most architectures can't handle a syscall
753 being traced on the way out if it wasn't traced on
754 the way in.
755
756 We might also think to loop, continuing the child
757 until it exits or gets a SIGTRAP. One problem is
758 that the child might call ptrace with PTRACE_TRACEME.
759
760 There's no simple and reliable way to figure out when
761 the vforked child will be done with its copy of the
762 shared memory. We could step it out of the syscall,
763 two instructions, let it go, and then single-step the
764 parent once. When we have hardware single-step, this
765 would work; with software single-step it could still
766 be made to work but we'd have to be able to insert
767 single-step breakpoints in the child, and we'd have
768 to insert -just- the single-step breakpoint in the
769 parent. Very awkward.
770
771 In the end, the best we can do is to make sure it
772 runs for a little while. Hopefully it will be out of
773 range of any breakpoints we reinsert. Usually this
774 is only the single-step breakpoint at vfork's return
775 point. */
776
777 if (debug_linux_nat)
778 fprintf_unfiltered (gdb_stdlog,
779 "LCFF: no VFORK_DONE "
780 "support, sleeping a bit\n");
781
782 usleep (10000);
783
784 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
785 and leave it pending. The next linux_nat_resume call
786 will notice a pending event, and bypasses actually
787 resuming the inferior. */
788 parent_lp->status = 0;
789 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
790 parent_lp->stopped = 1;
791
792 /* If we're in async mode, need to tell the event loop
793 there's something here to process. */
794 if (target_can_async_p ())
795 async_file_mark ();
796 }
797 }
798 }
799 else
800 {
801 struct inferior *parent_inf, *child_inf;
802 struct lwp_info *child_lp;
803 struct program_space *parent_pspace;
804
805 if (info_verbose || debug_linux_nat)
806 {
807 target_terminal_ours ();
808 if (has_vforked)
809 fprintf_filtered (gdb_stdlog,
810 _("Attaching after process %d "
811 "vfork to child process %d.\n"),
812 parent_pid, child_pid);
813 else
814 fprintf_filtered (gdb_stdlog,
815 _("Attaching after process %d "
816 "fork to child process %d.\n"),
817 parent_pid, child_pid);
818 }
819
820 /* Add the new inferior first, so that the target_detach below
821 doesn't unpush the target. */
822
823 child_inf = add_inferior (child_pid);
824
825 parent_inf = current_inferior ();
826 child_inf->attach_flag = parent_inf->attach_flag;
827 copy_terminal_info (child_inf, parent_inf);
828
829 parent_pspace = parent_inf->pspace;
830
831 /* If we're vforking, we want to hold on to the parent until the
832 child exits or execs. At child exec or exit time we can
833 remove the old breakpoints from the parent and detach or
834 resume debugging it. Otherwise, detach the parent now; we'll
835 want to reuse it's program/address spaces, but we can't set
836 them to the child before removing breakpoints from the
837 parent, otherwise, the breakpoints module could decide to
838 remove breakpoints from the wrong process (since they'd be
839 assigned to the same address space). */
840
841 if (has_vforked)
842 {
843 gdb_assert (child_inf->vfork_parent == NULL);
844 gdb_assert (parent_inf->vfork_child == NULL);
845 child_inf->vfork_parent = parent_inf;
846 child_inf->pending_detach = 0;
847 parent_inf->vfork_child = child_inf;
848 parent_inf->pending_detach = detach_fork;
849 parent_inf->waiting_for_vfork_done = 0;
850 }
851 else if (detach_fork)
852 target_detach (NULL, 0);
853
854 /* Note that the detach above makes PARENT_INF dangling. */
855
856 /* Add the child thread to the appropriate lists, and switch to
857 this new thread, before cloning the program space, and
858 informing the solib layer about this new process. */
859
860 inferior_ptid = ptid_build (child_pid, child_pid, 0);
861 add_thread (inferior_ptid);
862 child_lp = add_lwp (inferior_ptid);
863 child_lp->stopped = 1;
864 child_lp->last_resume_kind = resume_stop;
865
866 /* If this is a vfork child, then the address-space is shared
867 with the parent. If we detached from the parent, then we can
868 reuse the parent's program/address spaces. */
869 if (has_vforked || detach_fork)
870 {
871 child_inf->pspace = parent_pspace;
872 child_inf->aspace = child_inf->pspace->aspace;
873 }
874 else
875 {
876 child_inf->aspace = new_address_space ();
877 child_inf->pspace = add_program_space (child_inf->aspace);
878 child_inf->removable = 1;
879 set_current_program_space (child_inf->pspace);
880 clone_program_space (child_inf->pspace, parent_pspace);
881
882 /* Let the shared library layer (solib-svr4) learn about
883 this new process, relocate the cloned exec, pull in
884 shared libraries, and install the solib event breakpoint.
885 If a "cloned-VM" event was propagated better throughout
886 the core, this wouldn't be required. */
887 solib_create_inferior_hook (0);
888 }
889
890 /* Let the thread_db layer learn about this new process. */
891 check_for_thread_db ();
892 }
893
894 restore_child_signals_mask (&prev_mask);
895 return 0;
896 }
897
898 \f
899 static int
900 linux_child_insert_fork_catchpoint (int pid)
901 {
902 return !linux_supports_tracefork (pid);
903 }
904
905 static int
906 linux_child_remove_fork_catchpoint (int pid)
907 {
908 return 0;
909 }
910
911 static int
912 linux_child_insert_vfork_catchpoint (int pid)
913 {
914 return !linux_supports_tracefork (pid);
915 }
916
917 static int
918 linux_child_remove_vfork_catchpoint (int pid)
919 {
920 return 0;
921 }
922
923 static int
924 linux_child_insert_exec_catchpoint (int pid)
925 {
926 return !linux_supports_tracefork (pid);
927 }
928
929 static int
930 linux_child_remove_exec_catchpoint (int pid)
931 {
932 return 0;
933 }
934
935 static int
936 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
937 int table_size, int *table)
938 {
939 if (!linux_supports_tracesysgood (pid))
940 return 1;
941
942 /* On GNU/Linux, we ignore the arguments. It means that we only
943 enable the syscall catchpoints, but do not disable them.
944
945 Also, we do not use the `table' information because we do not
946 filter system calls here. We let GDB do the logic for us. */
947 return 0;
948 }
949
950 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
951 are processes sharing the same VM space. A multi-threaded process
952 is basically a group of such processes. However, such a grouping
953 is almost entirely a user-space issue; the kernel doesn't enforce
954 such a grouping at all (this might change in the future). In
955 general, we'll rely on the threads library (i.e. the GNU/Linux
956 Threads library) to provide such a grouping.
957
958 It is perfectly well possible to write a multi-threaded application
959 without the assistance of a threads library, by using the clone
960 system call directly. This module should be able to give some
961 rudimentary support for debugging such applications if developers
962 specify the CLONE_PTRACE flag in the clone system call, and are
963 using the Linux kernel 2.4 or above.
964
965 Note that there are some peculiarities in GNU/Linux that affect
966 this code:
967
968 - In general one should specify the __WCLONE flag to waitpid in
969 order to make it report events for any of the cloned processes
970 (and leave it out for the initial process). However, if a cloned
971 process has exited the exit status is only reported if the
972 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
973 we cannot use it since GDB must work on older systems too.
974
975 - When a traced, cloned process exits and is waited for by the
976 debugger, the kernel reassigns it to the original parent and
977 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
978 library doesn't notice this, which leads to the "zombie problem":
979 When debugged a multi-threaded process that spawns a lot of
980 threads will run out of processes, even if the threads exit,
981 because the "zombies" stay around. */
982
983 /* List of known LWPs. */
984 struct lwp_info *lwp_list;
985 \f
986
987 /* Original signal mask. */
988 static sigset_t normal_mask;
989
990 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
991 _initialize_linux_nat. */
992 static sigset_t suspend_mask;
993
994 /* Signals to block to make that sigsuspend work. */
995 static sigset_t blocked_mask;
996
997 /* SIGCHLD action. */
998 struct sigaction sigchld_action;
999
1000 /* Block child signals (SIGCHLD and linux threads signals), and store
1001 the previous mask in PREV_MASK. */
1002
1003 static void
1004 block_child_signals (sigset_t *prev_mask)
1005 {
1006 /* Make sure SIGCHLD is blocked. */
1007 if (!sigismember (&blocked_mask, SIGCHLD))
1008 sigaddset (&blocked_mask, SIGCHLD);
1009
1010 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1011 }
1012
1013 /* Restore child signals mask, previously returned by
1014 block_child_signals. */
1015
1016 static void
1017 restore_child_signals_mask (sigset_t *prev_mask)
1018 {
1019 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1020 }
1021
1022 /* Mask of signals to pass directly to the inferior. */
1023 static sigset_t pass_mask;
1024
1025 /* Update signals to pass to the inferior. */
1026 static void
1027 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1028 {
1029 int signo;
1030
1031 sigemptyset (&pass_mask);
1032
1033 for (signo = 1; signo < NSIG; signo++)
1034 {
1035 int target_signo = target_signal_from_host (signo);
1036 if (target_signo < numsigs && pass_signals[target_signo])
1037 sigaddset (&pass_mask, signo);
1038 }
1039 }
1040
1041 \f
1042
1043 /* Prototypes for local functions. */
1044 static int stop_wait_callback (struct lwp_info *lp, void *data);
1045 static int linux_thread_alive (ptid_t ptid);
1046 static char *linux_child_pid_to_exec_file (int pid);
1047
1048 \f
1049 /* Convert wait status STATUS to a string. Used for printing debug
1050 messages only. */
1051
1052 static char *
1053 status_to_str (int status)
1054 {
1055 static char buf[64];
1056
1057 if (WIFSTOPPED (status))
1058 {
1059 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1060 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1061 strsignal (SIGTRAP));
1062 else
1063 snprintf (buf, sizeof (buf), "%s (stopped)",
1064 strsignal (WSTOPSIG (status)));
1065 }
1066 else if (WIFSIGNALED (status))
1067 snprintf (buf, sizeof (buf), "%s (terminated)",
1068 strsignal (WTERMSIG (status)));
1069 else
1070 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1071
1072 return buf;
1073 }
1074
1075 /* Remove all LWPs belong to PID from the lwp list. */
1076
1077 static void
1078 purge_lwp_list (int pid)
1079 {
1080 struct lwp_info *lp, *lpprev, *lpnext;
1081
1082 lpprev = NULL;
1083
1084 for (lp = lwp_list; lp; lp = lpnext)
1085 {
1086 lpnext = lp->next;
1087
1088 if (ptid_get_pid (lp->ptid) == pid)
1089 {
1090 if (lp == lwp_list)
1091 lwp_list = lp->next;
1092 else
1093 lpprev->next = lp->next;
1094
1095 xfree (lp);
1096 }
1097 else
1098 lpprev = lp;
1099 }
1100 }
1101
1102 /* Return the number of known LWPs in the tgid given by PID. */
1103
1104 static int
1105 num_lwps (int pid)
1106 {
1107 int count = 0;
1108 struct lwp_info *lp;
1109
1110 for (lp = lwp_list; lp; lp = lp->next)
1111 if (ptid_get_pid (lp->ptid) == pid)
1112 count++;
1113
1114 return count;
1115 }
1116
1117 /* Add the LWP specified by PID to the list. Return a pointer to the
1118 structure describing the new LWP. The LWP should already be stopped
1119 (with an exception for the very first LWP). */
1120
1121 static struct lwp_info *
1122 add_lwp (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 gdb_assert (is_lwp (ptid));
1127
1128 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1129
1130 memset (lp, 0, sizeof (struct lwp_info));
1131
1132 lp->last_resume_kind = resume_continue;
1133 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1134
1135 lp->ptid = ptid;
1136 lp->core = -1;
1137
1138 lp->next = lwp_list;
1139 lwp_list = lp;
1140
1141 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1142 linux_nat_new_thread (ptid);
1143
1144 return lp;
1145 }
1146
1147 /* Remove the LWP specified by PID from the list. */
1148
1149 static void
1150 delete_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp, *lpprev;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1157 if (ptid_equal (lp->ptid, ptid))
1158 break;
1159
1160 if (!lp)
1161 return;
1162
1163 if (lpprev)
1164 lpprev->next = lp->next;
1165 else
1166 lwp_list = lp->next;
1167
1168 xfree (lp);
1169 }
1170
1171 /* Return a pointer to the structure describing the LWP corresponding
1172 to PID. If no corresponding LWP could be found, return NULL. */
1173
1174 static struct lwp_info *
1175 find_lwp_pid (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwp;
1179
1180 if (is_lwp (ptid))
1181 lwp = GET_LWP (ptid);
1182 else
1183 lwp = GET_PID (ptid);
1184
1185 for (lp = lwp_list; lp; lp = lp->next)
1186 if (lwp == GET_LWP (lp->ptid))
1187 return lp;
1188
1189 return NULL;
1190 }
1191
1192 /* Call CALLBACK with its second argument set to DATA for every LWP in
1193 the list. If CALLBACK returns 1 for a particular LWP, return a
1194 pointer to the structure describing that LWP immediately.
1195 Otherwise return NULL. */
1196
1197 struct lwp_info *
1198 iterate_over_lwps (ptid_t filter,
1199 int (*callback) (struct lwp_info *, void *),
1200 void *data)
1201 {
1202 struct lwp_info *lp, *lpnext;
1203
1204 for (lp = lwp_list; lp; lp = lpnext)
1205 {
1206 lpnext = lp->next;
1207
1208 if (ptid_match (lp->ptid, filter))
1209 {
1210 if ((*callback) (lp, data))
1211 return lp;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Update our internal state when changing from one checkpoint to
1219 another indicated by NEW_PTID. We can only switch single-threaded
1220 applications, so we only create one new LWP, and the previous list
1221 is discarded. */
1222
1223 void
1224 linux_nat_switch_fork (ptid_t new_ptid)
1225 {
1226 struct lwp_info *lp;
1227
1228 purge_lwp_list (GET_PID (inferior_ptid));
1229
1230 lp = add_lwp (new_ptid);
1231 lp->stopped = 1;
1232
1233 /* This changes the thread's ptid while preserving the gdb thread
1234 num. Also changes the inferior pid, while preserving the
1235 inferior num. */
1236 thread_change_ptid (inferior_ptid, new_ptid);
1237
1238 /* We've just told GDB core that the thread changed target id, but,
1239 in fact, it really is a different thread, with different register
1240 contents. */
1241 registers_changed ();
1242 }
1243
1244 /* Handle the exit of a single thread LP. */
1245
1246 static void
1247 exit_lwp (struct lwp_info *lp)
1248 {
1249 struct thread_info *th = find_thread_ptid (lp->ptid);
1250
1251 if (th)
1252 {
1253 if (print_thread_events)
1254 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1255
1256 delete_thread (lp->ptid);
1257 }
1258
1259 delete_lwp (lp->ptid);
1260 }
1261
1262 /* Detect `T (stopped)' in `/proc/PID/status'.
1263 Other states including `T (tracing stop)' are reported as false. */
1264
1265 static int
1266 pid_is_stopped (pid_t pid)
1267 {
1268 FILE *status_file;
1269 char buf[100];
1270 int retval = 0;
1271
1272 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1273 status_file = fopen (buf, "r");
1274 if (status_file != NULL)
1275 {
1276 int have_state = 0;
1277
1278 while (fgets (buf, sizeof (buf), status_file))
1279 {
1280 if (strncmp (buf, "State:", 6) == 0)
1281 {
1282 have_state = 1;
1283 break;
1284 }
1285 }
1286 if (have_state && strstr (buf, "T (stopped)") != NULL)
1287 retval = 1;
1288 fclose (status_file);
1289 }
1290 return retval;
1291 }
1292
1293 /* Wait for the LWP specified by LP, which we have just attached to.
1294 Returns a wait status for that LWP, to cache. */
1295
1296 static int
1297 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1298 int *signalled)
1299 {
1300 pid_t new_pid, pid = GET_LWP (ptid);
1301 int status;
1302
1303 if (pid_is_stopped (pid))
1304 {
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LNPAW: Attaching to a stopped process\n");
1308
1309 /* The process is definitely stopped. It is in a job control
1310 stop, unless the kernel predates the TASK_STOPPED /
1311 TASK_TRACED distinction, in which case it might be in a
1312 ptrace stop. Make sure it is in a ptrace stop; from there we
1313 can kill it, signal it, et cetera.
1314
1315 First make sure there is a pending SIGSTOP. Since we are
1316 already attached, the process can not transition from stopped
1317 to running without a PTRACE_CONT; so we know this signal will
1318 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1319 probably already in the queue (unless this kernel is old
1320 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1321 is not an RT signal, it can only be queued once. */
1322 kill_lwp (pid, SIGSTOP);
1323
1324 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1325 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1326 ptrace (PTRACE_CONT, pid, 0, 0);
1327 }
1328
1329 /* Make sure the initial process is stopped. The user-level threads
1330 layer might want to poke around in the inferior, and that won't
1331 work if things haven't stabilized yet. */
1332 new_pid = my_waitpid (pid, &status, 0);
1333 if (new_pid == -1 && errno == ECHILD)
1334 {
1335 if (first)
1336 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1337
1338 /* Try again with __WCLONE to check cloned processes. */
1339 new_pid = my_waitpid (pid, &status, __WCLONE);
1340 *cloned = 1;
1341 }
1342
1343 gdb_assert (pid == new_pid);
1344
1345 if (!WIFSTOPPED (status))
1346 {
1347 /* The pid we tried to attach has apparently just exited. */
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1350 pid, status_to_str (status));
1351 return status;
1352 }
1353
1354 if (WSTOPSIG (status) != SIGSTOP)
1355 {
1356 *signalled = 1;
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "LNPAW: Received %s after attaching\n",
1360 status_to_str (status));
1361 }
1362
1363 return status;
1364 }
1365
1366 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1367 the new LWP could not be attached, or 1 if we're already auto
1368 attached to this thread, but haven't processed the
1369 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1370 its existance, without considering it an error. */
1371
1372 int
1373 lin_lwp_attach_lwp (ptid_t ptid)
1374 {
1375 struct lwp_info *lp;
1376 sigset_t prev_mask;
1377 int lwpid;
1378
1379 gdb_assert (is_lwp (ptid));
1380
1381 block_child_signals (&prev_mask);
1382
1383 lp = find_lwp_pid (ptid);
1384 lwpid = GET_LWP (ptid);
1385
1386 /* We assume that we're already attached to any LWP that has an id
1387 equal to the overall process id, and to any LWP that is already
1388 in our list of LWPs. If we're not seeing exit events from threads
1389 and we've had PID wraparound since we last tried to stop all threads,
1390 this assumption might be wrong; fortunately, this is very unlikely
1391 to happen. */
1392 if (lwpid != GET_PID (ptid) && lp == NULL)
1393 {
1394 int status, cloned = 0, signalled = 0;
1395
1396 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1397 {
1398 if (linux_supports_tracefork_flag)
1399 {
1400 /* If we haven't stopped all threads when we get here,
1401 we may have seen a thread listed in thread_db's list,
1402 but not processed the PTRACE_EVENT_CLONE yet. If
1403 that's the case, ignore this new thread, and let
1404 normal event handling discover it later. */
1405 if (in_pid_list_p (stopped_pids, lwpid))
1406 {
1407 /* We've already seen this thread stop, but we
1408 haven't seen the PTRACE_EVENT_CLONE extended
1409 event yet. */
1410 restore_child_signals_mask (&prev_mask);
1411 return 0;
1412 }
1413 else
1414 {
1415 int new_pid;
1416 int status;
1417
1418 /* See if we've got a stop for this new child
1419 pending. If so, we're already attached. */
1420 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1421 if (new_pid == -1 && errno == ECHILD)
1422 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1423 if (new_pid != -1)
1424 {
1425 if (WIFSTOPPED (status))
1426 add_to_pid_list (&stopped_pids, lwpid, status);
1427
1428 restore_child_signals_mask (&prev_mask);
1429 return 1;
1430 }
1431 }
1432 }
1433
1434 /* If we fail to attach to the thread, issue a warning,
1435 but continue. One way this can happen is if thread
1436 creation is interrupted; as of Linux kernel 2.6.19, a
1437 bug may place threads in the thread list and then fail
1438 to create them. */
1439 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1440 safe_strerror (errno));
1441 restore_child_signals_mask (&prev_mask);
1442 return -1;
1443 }
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1448 target_pid_to_str (ptid));
1449
1450 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1451 if (!WIFSTOPPED (status))
1452 {
1453 restore_child_signals_mask (&prev_mask);
1454 return 1;
1455 }
1456
1457 lp = add_lwp (ptid);
1458 lp->stopped = 1;
1459 lp->cloned = cloned;
1460 lp->signalled = signalled;
1461 if (WSTOPSIG (status) != SIGSTOP)
1462 {
1463 lp->resumed = 1;
1464 lp->status = status;
1465 }
1466
1467 target_post_attach (GET_LWP (lp->ptid));
1468
1469 if (debug_linux_nat)
1470 {
1471 fprintf_unfiltered (gdb_stdlog,
1472 "LLAL: waitpid %s received %s\n",
1473 target_pid_to_str (ptid),
1474 status_to_str (status));
1475 }
1476 }
1477 else
1478 {
1479 /* We assume that the LWP representing the original process is
1480 already stopped. Mark it as stopped in the data structure
1481 that the GNU/linux ptrace layer uses to keep track of
1482 threads. Note that this won't have already been done since
1483 the main thread will have, we assume, been stopped by an
1484 attach from a different layer. */
1485 if (lp == NULL)
1486 lp = add_lwp (ptid);
1487 lp->stopped = 1;
1488 }
1489
1490 lp->last_resume_kind = resume_stop;
1491 restore_child_signals_mask (&prev_mask);
1492 return 0;
1493 }
1494
1495 static void
1496 linux_nat_create_inferior (struct target_ops *ops,
1497 char *exec_file, char *allargs, char **env,
1498 int from_tty)
1499 {
1500 #ifdef HAVE_PERSONALITY
1501 int personality_orig = 0, personality_set = 0;
1502 #endif /* HAVE_PERSONALITY */
1503
1504 /* The fork_child mechanism is synchronous and calls target_wait, so
1505 we have to mask the async mode. */
1506
1507 #ifdef HAVE_PERSONALITY
1508 if (disable_randomization)
1509 {
1510 errno = 0;
1511 personality_orig = personality (0xffffffff);
1512 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1513 {
1514 personality_set = 1;
1515 personality (personality_orig | ADDR_NO_RANDOMIZE);
1516 }
1517 if (errno != 0 || (personality_set
1518 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1519 warning (_("Error disabling address space randomization: %s"),
1520 safe_strerror (errno));
1521 }
1522 #endif /* HAVE_PERSONALITY */
1523
1524 /* Make sure we report all signals during startup. */
1525 linux_nat_pass_signals (0, NULL);
1526
1527 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (personality_set)
1531 {
1532 errno = 0;
1533 personality (personality_orig);
1534 if (errno != 0)
1535 warning (_("Error restoring address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539 }
1540
1541 static void
1542 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1543 {
1544 struct lwp_info *lp;
1545 int status;
1546 ptid_t ptid;
1547
1548 /* Make sure we report all signals during attach. */
1549 linux_nat_pass_signals (0, NULL);
1550
1551 linux_ops->to_attach (ops, args, from_tty);
1552
1553 /* The ptrace base target adds the main thread with (pid,0,0)
1554 format. Decorate it with lwp info. */
1555 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1556 thread_change_ptid (inferior_ptid, ptid);
1557
1558 /* Add the initial process as the first LWP to the list. */
1559 lp = add_lwp (ptid);
1560
1561 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1562 &lp->signalled);
1563 if (!WIFSTOPPED (status))
1564 {
1565 if (WIFEXITED (status))
1566 {
1567 int exit_code = WEXITSTATUS (status);
1568
1569 target_terminal_ours ();
1570 target_mourn_inferior ();
1571 if (exit_code == 0)
1572 error (_("Unable to attach: program exited normally."));
1573 else
1574 error (_("Unable to attach: program exited with code %d."),
1575 exit_code);
1576 }
1577 else if (WIFSIGNALED (status))
1578 {
1579 enum target_signal signo;
1580
1581 target_terminal_ours ();
1582 target_mourn_inferior ();
1583
1584 signo = target_signal_from_host (WTERMSIG (status));
1585 error (_("Unable to attach: program terminated with signal "
1586 "%s, %s."),
1587 target_signal_to_name (signo),
1588 target_signal_to_string (signo));
1589 }
1590
1591 internal_error (__FILE__, __LINE__,
1592 _("unexpected status %d for PID %ld"),
1593 status, (long) GET_LWP (ptid));
1594 }
1595
1596 lp->stopped = 1;
1597
1598 /* Save the wait status to report later. */
1599 lp->resumed = 1;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LNA: waitpid %ld, saving status %s\n",
1603 (long) GET_PID (lp->ptid), status_to_str (status));
1604
1605 lp->status = status;
1606
1607 if (target_can_async_p ())
1608 target_async (inferior_event_handler, 0);
1609 }
1610
1611 /* Get pending status of LP. */
1612 static int
1613 get_pending_status (struct lwp_info *lp, int *status)
1614 {
1615 enum target_signal signo = TARGET_SIGNAL_0;
1616
1617 /* If we paused threads momentarily, we may have stored pending
1618 events in lp->status or lp->waitstatus (see stop_wait_callback),
1619 and GDB core hasn't seen any signal for those threads.
1620 Otherwise, the last signal reported to the core is found in the
1621 thread object's stop_signal.
1622
1623 There's a corner case that isn't handled here at present. Only
1624 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1625 stop_signal make sense as a real signal to pass to the inferior.
1626 Some catchpoint related events, like
1627 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1628 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1629 those traps are debug API (ptrace in our case) related and
1630 induced; the inferior wouldn't see them if it wasn't being
1631 traced. Hence, we should never pass them to the inferior, even
1632 when set to pass state. Since this corner case isn't handled by
1633 infrun.c when proceeding with a signal, for consistency, neither
1634 do we handle it here (or elsewhere in the file we check for
1635 signal pass state). Normally SIGTRAP isn't set to pass state, so
1636 this is really a corner case. */
1637
1638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1639 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1640 else if (lp->status)
1641 signo = target_signal_from_host (WSTOPSIG (lp->status));
1642 else if (non_stop && !is_executing (lp->ptid))
1643 {
1644 struct thread_info *tp = find_thread_ptid (lp->ptid);
1645
1646 signo = tp->suspend.stop_signal;
1647 }
1648 else if (!non_stop)
1649 {
1650 struct target_waitstatus last;
1651 ptid_t last_ptid;
1652
1653 get_last_target_status (&last_ptid, &last);
1654
1655 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1656 {
1657 struct thread_info *tp = find_thread_ptid (lp->ptid);
1658
1659 signo = tp->suspend.stop_signal;
1660 }
1661 }
1662
1663 *status = 0;
1664
1665 if (signo == TARGET_SIGNAL_0)
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "GPT: lwp %s has no pending signal\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672 else if (!signal_pass_state (signo))
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s had signal %s, "
1677 "but it is in no pass state\n",
1678 target_pid_to_str (lp->ptid),
1679 target_signal_to_string (signo));
1680 }
1681 else
1682 {
1683 *status = W_STOPCODE (target_signal_to_host (signo));
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "GPT: lwp %s has pending signal %s\n",
1688 target_pid_to_str (lp->ptid),
1689 target_signal_to_string (signo));
1690 }
1691
1692 return 0;
1693 }
1694
1695 static int
1696 detach_callback (struct lwp_info *lp, void *data)
1697 {
1698 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1699
1700 if (debug_linux_nat && lp->status)
1701 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1702 strsignal (WSTOPSIG (lp->status)),
1703 target_pid_to_str (lp->ptid));
1704
1705 /* If there is a pending SIGSTOP, get rid of it. */
1706 if (lp->signalled)
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "DC: Sending SIGCONT to %s\n",
1711 target_pid_to_str (lp->ptid));
1712
1713 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1714 lp->signalled = 0;
1715 }
1716
1717 /* We don't actually detach from the LWP that has an id equal to the
1718 overall process id just yet. */
1719 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1720 {
1721 int status = 0;
1722
1723 /* Pass on any pending signal for this LWP. */
1724 get_pending_status (lp, &status);
1725
1726 errno = 0;
1727 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1728 WSTOPSIG (status)) < 0)
1729 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1730 safe_strerror (errno));
1731
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1735 target_pid_to_str (lp->ptid),
1736 strsignal (WSTOPSIG (status)));
1737
1738 delete_lwp (lp->ptid);
1739 }
1740
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1746 {
1747 int pid;
1748 int status;
1749 struct lwp_info *main_lwp;
1750
1751 pid = GET_PID (inferior_ptid);
1752
1753 if (target_can_async_p ())
1754 linux_nat_async (NULL, 0);
1755
1756 /* Stop all threads before detaching. ptrace requires that the
1757 thread is stopped to sucessfully detach. */
1758 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1759 /* ... and wait until all of them have reported back that
1760 they're no longer running. */
1761 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1762
1763 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1764
1765 /* Only the initial process should be left right now. */
1766 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1767
1768 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1769
1770 /* Pass on any pending signal for the last LWP. */
1771 if ((args == NULL || *args == '\0')
1772 && get_pending_status (main_lwp, &status) != -1
1773 && WIFSTOPPED (status))
1774 {
1775 /* Put the signal number in ARGS so that inf_ptrace_detach will
1776 pass it along with PTRACE_DETACH. */
1777 args = alloca (8);
1778 sprintf (args, "%d", (int) WSTOPSIG (status));
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LND: Sending signal %s to %s\n",
1782 args,
1783 target_pid_to_str (main_lwp->ptid));
1784 }
1785
1786 delete_lwp (main_lwp->ptid);
1787
1788 if (forks_exist_p ())
1789 {
1790 /* Multi-fork case. The current inferior_ptid is being detached
1791 from, but there are other viable forks to debug. Detach from
1792 the current fork, and context-switch to the first
1793 available. */
1794 linux_fork_detach (args, from_tty);
1795
1796 if (non_stop && target_can_async_p ())
1797 target_async (inferior_event_handler, 0);
1798 }
1799 else
1800 linux_ops->to_detach (ops, args, from_tty);
1801 }
1802
1803 /* Resume LP. */
1804
1805 static void
1806 resume_lwp (struct lwp_info *lp, int step)
1807 {
1808 if (lp->stopped)
1809 {
1810 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1811
1812 if (inf->vfork_child != NULL)
1813 {
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "RC: Not resuming %s (vfork parent)\n",
1817 target_pid_to_str (lp->ptid));
1818 }
1819 else if (lp->status == 0
1820 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1821 {
1822 if (debug_linux_nat)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1825 target_pid_to_str (lp->ptid));
1826
1827 linux_ops->to_resume (linux_ops,
1828 pid_to_ptid (GET_LWP (lp->ptid)),
1829 step, TARGET_SIGNAL_0);
1830 lp->stopped = 0;
1831 lp->step = step;
1832 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1833 lp->stopped_by_watchpoint = 0;
1834 }
1835 else
1836 {
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "RC: Not resuming sibling %s (has pending)\n",
1840 target_pid_to_str (lp->ptid));
1841 }
1842 }
1843 else
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 }
1851
1852 static int
1853 resume_callback (struct lwp_info *lp, void *data)
1854 {
1855 resume_lwp (lp, 0);
1856 return 0;
1857 }
1858
1859 static int
1860 resume_clear_callback (struct lwp_info *lp, void *data)
1861 {
1862 lp->resumed = 0;
1863 lp->last_resume_kind = resume_stop;
1864 return 0;
1865 }
1866
1867 static int
1868 resume_set_callback (struct lwp_info *lp, void *data)
1869 {
1870 lp->resumed = 1;
1871 lp->last_resume_kind = resume_continue;
1872 return 0;
1873 }
1874
1875 static void
1876 linux_nat_resume (struct target_ops *ops,
1877 ptid_t ptid, int step, enum target_signal signo)
1878 {
1879 sigset_t prev_mask;
1880 struct lwp_info *lp;
1881 int resume_many;
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1886 step ? "step" : "resume",
1887 target_pid_to_str (ptid),
1888 (signo != TARGET_SIGNAL_0
1889 ? strsignal (target_signal_to_host (signo)) : "0"),
1890 target_pid_to_str (inferior_ptid));
1891
1892 block_child_signals (&prev_mask);
1893
1894 /* A specific PTID means `step only this process id'. */
1895 resume_many = (ptid_equal (minus_one_ptid, ptid)
1896 || ptid_is_pid (ptid));
1897
1898 /* Mark the lwps we're resuming as resumed. */
1899 iterate_over_lwps (ptid, resume_set_callback, NULL);
1900
1901 /* See if it's the current inferior that should be handled
1902 specially. */
1903 if (resume_many)
1904 lp = find_lwp_pid (inferior_ptid);
1905 else
1906 lp = find_lwp_pid (ptid);
1907 gdb_assert (lp != NULL);
1908
1909 /* Remember if we're stepping. */
1910 lp->step = step;
1911 lp->last_resume_kind = step ? resume_step : resume_continue;
1912
1913 /* If we have a pending wait status for this thread, there is no
1914 point in resuming the process. But first make sure that
1915 linux_nat_wait won't preemptively handle the event - we
1916 should never take this short-circuit if we are going to
1917 leave LP running, since we have skipped resuming all the
1918 other threads. This bit of code needs to be synchronized
1919 with linux_nat_wait. */
1920
1921 if (lp->status && WIFSTOPPED (lp->status))
1922 {
1923 if (!lp->step
1924 && WSTOPSIG (lp->status)
1925 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = target_signal_from_host (WSTOPSIG (lp->status));
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 (signo != TARGET_SIGNAL_0
1981 ? strsignal (target_signal_to_host (signo)) : "0"));
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 target_async (inferior_event_handler, 0);
1986 }
1987
1988 /* Send a signal to an LWP. */
1989
1990 static int
1991 kill_lwp (int lwpid, int signo)
1992 {
1993 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1994 fails, then we are not using nptl threads and we should be using kill. */
1995
1996 #ifdef HAVE_TKILL_SYSCALL
1997 {
1998 static int tkill_failed;
1999
2000 if (!tkill_failed)
2001 {
2002 int ret;
2003
2004 errno = 0;
2005 ret = syscall (__NR_tkill, lwpid, signo);
2006 if (errno != ENOSYS)
2007 return ret;
2008 tkill_failed = 1;
2009 }
2010 }
2011 #endif
2012
2013 return kill (lwpid, signo);
2014 }
2015
2016 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2017 event, check if the core is interested in it: if not, ignore the
2018 event, and keep waiting; otherwise, we need to toggle the LWP's
2019 syscall entry/exit status, since the ptrace event itself doesn't
2020 indicate it, and report the trap to higher layers. */
2021
2022 static int
2023 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2024 {
2025 struct target_waitstatus *ourstatus = &lp->waitstatus;
2026 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2027 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028
2029 if (stopping)
2030 {
2031 /* If we're stopping threads, there's a SIGSTOP pending, which
2032 makes it so that the LWP reports an immediate syscall return,
2033 followed by the SIGSTOP. Skip seeing that "return" using
2034 PTRACE_CONT directly, and let stop_wait_callback collect the
2035 SIGSTOP. Later when the thread is resumed, a new syscall
2036 entry event. If we didn't do this (and returned 0), we'd
2037 leave a syscall entry pending, and our caller, by using
2038 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2039 itself. Later, when the user re-resumes this LWP, we'd see
2040 another syscall entry event and we'd mistake it for a return.
2041
2042 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2043 (leaving immediately with LWP->signalled set, without issuing
2044 a PTRACE_CONT), it would still be problematic to leave this
2045 syscall enter pending, as later when the thread is resumed,
2046 it would then see the same syscall exit mentioned above,
2047 followed by the delayed SIGSTOP, while the syscall didn't
2048 actually get to execute. It seems it would be even more
2049 confusing to the user. */
2050
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "LHST: ignoring syscall %d "
2054 "for LWP %ld (stopping threads), "
2055 "resuming with PTRACE_CONT for SIGSTOP\n",
2056 syscall_number,
2057 GET_LWP (lp->ptid));
2058
2059 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2060 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 return 1;
2062 }
2063
2064 if (catch_syscall_enabled ())
2065 {
2066 /* Always update the entry/return state, even if this particular
2067 syscall isn't interesting to the core now. In async mode,
2068 the user could install a new catchpoint for this syscall
2069 between syscall enter/return, and we'll need to know to
2070 report a syscall return if that happens. */
2071 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2072 ? TARGET_WAITKIND_SYSCALL_RETURN
2073 : TARGET_WAITKIND_SYSCALL_ENTRY);
2074
2075 if (catching_syscall_number (syscall_number))
2076 {
2077 /* Alright, an event to report. */
2078 ourstatus->kind = lp->syscall_state;
2079 ourstatus->value.syscall_number = syscall_number;
2080
2081 if (debug_linux_nat)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "LHST: stopping for %s of syscall %d"
2084 " for LWP %ld\n",
2085 lp->syscall_state
2086 == TARGET_WAITKIND_SYSCALL_ENTRY
2087 ? "entry" : "return",
2088 syscall_number,
2089 GET_LWP (lp->ptid));
2090 return 0;
2091 }
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: ignoring %s of syscall %d "
2096 "for LWP %ld\n",
2097 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2098 ? "entry" : "return",
2099 syscall_number,
2100 GET_LWP (lp->ptid));
2101 }
2102 else
2103 {
2104 /* If we had been syscall tracing, and hence used PT_SYSCALL
2105 before on this LWP, it could happen that the user removes all
2106 syscall catchpoints before we get to process this event.
2107 There are two noteworthy issues here:
2108
2109 - When stopped at a syscall entry event, resuming with
2110 PT_STEP still resumes executing the syscall and reports a
2111 syscall return.
2112
2113 - Only PT_SYSCALL catches syscall enters. If we last
2114 single-stepped this thread, then this event can't be a
2115 syscall enter. If we last single-stepped this thread, this
2116 has to be a syscall exit.
2117
2118 The points above mean that the next resume, be it PT_STEP or
2119 PT_CONTINUE, can not trigger a syscall trace event. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHST: caught syscall event "
2123 "with no syscall catchpoints."
2124 " %d for LWP %ld, ignoring\n",
2125 syscall_number,
2126 GET_LWP (lp->ptid));
2127 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2128 }
2129
2130 /* The core isn't interested in this event. For efficiency, avoid
2131 stopping all threads only to have the core resume them all again.
2132 Since we're not stopping threads, if we're still syscall tracing
2133 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2134 subsequent syscall. Simply resume using the inf-ptrace layer,
2135 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2136
2137 /* Note that gdbarch_get_syscall_number may access registers, hence
2138 fill a regcache. */
2139 registers_changed ();
2140 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2141 lp->step, TARGET_SIGNAL_0);
2142 return 1;
2143 }
2144
2145 /* Handle a GNU/Linux extended wait response. If we see a clone
2146 event, we need to add the new LWP to our list (and not report the
2147 trap to higher layers). This function returns non-zero if the
2148 event should be ignored and we should wait again. If STOPPING is
2149 true, the new LWP remains stopped, otherwise it is continued. */
2150
2151 static int
2152 linux_handle_extended_wait (struct lwp_info *lp, int status,
2153 int stopping)
2154 {
2155 int pid = GET_LWP (lp->ptid);
2156 struct target_waitstatus *ourstatus = &lp->waitstatus;
2157 int event = status >> 16;
2158
2159 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2160 || event == PTRACE_EVENT_CLONE)
2161 {
2162 unsigned long new_pid;
2163 int ret;
2164
2165 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2166
2167 /* If we haven't already seen the new PID stop, wait for it now. */
2168 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2169 {
2170 /* The new child has a pending SIGSTOP. We can't affect it until it
2171 hits the SIGSTOP, but we're already attached. */
2172 ret = my_waitpid (new_pid, &status,
2173 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2174 if (ret == -1)
2175 perror_with_name (_("waiting for new child"));
2176 else if (ret != new_pid)
2177 internal_error (__FILE__, __LINE__,
2178 _("wait returned unexpected PID %d"), ret);
2179 else if (!WIFSTOPPED (status))
2180 internal_error (__FILE__, __LINE__,
2181 _("wait returned unexpected status 0x%x"), status);
2182 }
2183
2184 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2185
2186 if (event == PTRACE_EVENT_FORK
2187 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2188 {
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 if (!find_fork_pid (new_pid))
2199 add_fork (new_pid);
2200
2201 /* Report as spurious, so that infrun doesn't want to follow
2202 this fork. We're actually doing an infcall in
2203 linux-fork.c. */
2204 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2205 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206
2207 /* Report the stop to the core. */
2208 return 0;
2209 }
2210
2211 if (event == PTRACE_EVENT_FORK)
2212 ourstatus->kind = TARGET_WAITKIND_FORKED;
2213 else if (event == PTRACE_EVENT_VFORK)
2214 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 else
2216 {
2217 struct lwp_info *new_lp;
2218
2219 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2220
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "LHEW: Got clone event "
2224 "from LWP %d, new child is LWP %ld\n",
2225 pid, new_pid);
2226
2227 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2228 new_lp->cloned = 1;
2229 new_lp->stopped = 1;
2230
2231 if (WSTOPSIG (status) != SIGSTOP)
2232 {
2233 /* This can happen if someone starts sending signals to
2234 the new thread before it gets a chance to run, which
2235 have a lower number than SIGSTOP (e.g. SIGUSR1).
2236 This is an unlikely case, and harder to handle for
2237 fork / vfork than for clone, so we do not try - but
2238 we handle it for clone events here. We'll send
2239 the other signal on to the thread below. */
2240
2241 new_lp->signalled = 1;
2242 }
2243 else
2244 {
2245 struct thread_info *tp;
2246
2247 /* When we stop for an event in some other thread, and
2248 pull the thread list just as this thread has cloned,
2249 we'll have seen the new thread in the thread_db list
2250 before handling the CLONE event (glibc's
2251 pthread_create adds the new thread to the thread list
2252 before clone'ing, and has the kernel fill in the
2253 thread's tid on the clone call with
2254 CLONE_PARENT_SETTID). If that happened, and the core
2255 had requested the new thread to stop, we'll have
2256 killed it with SIGSTOP. But since SIGSTOP is not an
2257 RT signal, it can only be queued once. We need to be
2258 careful to not resume the LWP if we wanted it to
2259 stop. In that case, we'll leave the SIGSTOP pending.
2260 It will later be reported as TARGET_SIGNAL_0. */
2261 tp = find_thread_ptid (new_lp->ptid);
2262 if (tp != NULL && tp->stop_requested)
2263 new_lp->last_resume_kind = resume_stop;
2264 else
2265 status = 0;
2266 }
2267
2268 if (non_stop)
2269 {
2270 /* Add the new thread to GDB's lists as soon as possible
2271 so that:
2272
2273 1) the frontend doesn't have to wait for a stop to
2274 display them, and,
2275
2276 2) we tag it with the correct running state. */
2277
2278 /* If the thread_db layer is active, let it know about
2279 this new thread, and add it to GDB's list. */
2280 if (!thread_db_attach_lwp (new_lp->ptid))
2281 {
2282 /* We're not using thread_db. Add it to GDB's
2283 list. */
2284 target_post_attach (GET_LWP (new_lp->ptid));
2285 add_thread (new_lp->ptid);
2286 }
2287
2288 if (!stopping)
2289 {
2290 set_running (new_lp->ptid, 1);
2291 set_executing (new_lp->ptid, 1);
2292 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2293 resume_stop. */
2294 new_lp->last_resume_kind = resume_continue;
2295 }
2296 }
2297
2298 if (status != 0)
2299 {
2300 /* We created NEW_LP so it cannot yet contain STATUS. */
2301 gdb_assert (new_lp->status == 0);
2302
2303 /* Save the wait status to report later. */
2304 if (debug_linux_nat)
2305 fprintf_unfiltered (gdb_stdlog,
2306 "LHEW: waitpid of new LWP %ld, "
2307 "saving status %s\n",
2308 (long) GET_LWP (new_lp->ptid),
2309 status_to_str (status));
2310 new_lp->status = status;
2311 }
2312
2313 /* Note the need to use the low target ops to resume, to
2314 handle resuming with PT_SYSCALL if we have syscall
2315 catchpoints. */
2316 if (!stopping)
2317 {
2318 new_lp->resumed = 1;
2319
2320 if (status == 0)
2321 {
2322 gdb_assert (new_lp->last_resume_kind == resume_continue);
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog,
2325 "LHEW: resuming new LWP %ld\n",
2326 GET_LWP (new_lp->ptid));
2327 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2328 0, TARGET_SIGNAL_0);
2329 new_lp->stopped = 0;
2330 }
2331 }
2332
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: resuming parent LWP %d\n", pid);
2336 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2337 0, TARGET_SIGNAL_0);
2338
2339 return 1;
2340 }
2341
2342 return 0;
2343 }
2344
2345 if (event == PTRACE_EVENT_EXEC)
2346 {
2347 if (debug_linux_nat)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "LHEW: Got exec event from LWP %ld\n",
2350 GET_LWP (lp->ptid));
2351
2352 ourstatus->kind = TARGET_WAITKIND_EXECD;
2353 ourstatus->value.execd_pathname
2354 = xstrdup (linux_child_pid_to_exec_file (pid));
2355
2356 return 0;
2357 }
2358
2359 if (event == PTRACE_EVENT_VFORK_DONE)
2360 {
2361 if (current_inferior ()->waiting_for_vfork_done)
2362 {
2363 if (debug_linux_nat)
2364 fprintf_unfiltered (gdb_stdlog,
2365 "LHEW: Got expected PTRACE_EVENT_"
2366 "VFORK_DONE from LWP %ld: stopping\n",
2367 GET_LWP (lp->ptid));
2368
2369 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2370 return 0;
2371 }
2372
2373 if (debug_linux_nat)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2376 "from LWP %ld: resuming\n",
2377 GET_LWP (lp->ptid));
2378 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2379 return 1;
2380 }
2381
2382 internal_error (__FILE__, __LINE__,
2383 _("unknown ptrace event %d"), event);
2384 }
2385
2386 /* Return non-zero if LWP is a zombie. */
2387
2388 static int
2389 linux_lwp_is_zombie (long lwp)
2390 {
2391 char buffer[MAXPATHLEN];
2392 FILE *procfile;
2393 int retval;
2394 int have_state;
2395
2396 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2397 procfile = fopen (buffer, "r");
2398 if (procfile == NULL)
2399 {
2400 warning (_("unable to open /proc file '%s'"), buffer);
2401 return 0;
2402 }
2403
2404 have_state = 0;
2405 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2406 if (strncmp (buffer, "State:", 6) == 0)
2407 {
2408 have_state = 1;
2409 break;
2410 }
2411 retval = (have_state
2412 && strcmp (buffer, "State:\tZ (zombie)\n") == 0);
2413 fclose (procfile);
2414 return retval;
2415 }
2416
2417 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2418 exited. */
2419
2420 static int
2421 wait_lwp (struct lwp_info *lp)
2422 {
2423 pid_t pid;
2424 int status = 0;
2425 int thread_dead = 0;
2426 sigset_t prev_mask;
2427
2428 gdb_assert (!lp->stopped);
2429 gdb_assert (lp->status == 0);
2430
2431 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2432 block_child_signals (&prev_mask);
2433
2434 for (;;)
2435 {
2436 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2437 was right and we should just call sigsuspend. */
2438
2439 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2440 if (pid == -1 && errno == ECHILD)
2441 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2442 if (pid == -1 && errno == ECHILD)
2443 {
2444 /* The thread has previously exited. We need to delete it
2445 now because, for some vendor 2.4 kernels with NPTL
2446 support backported, there won't be an exit event unless
2447 it is the main thread. 2.6 kernels will report an exit
2448 event for each thread that exits, as expected. */
2449 thread_dead = 1;
2450 if (debug_linux_nat)
2451 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2452 target_pid_to_str (lp->ptid));
2453 }
2454 if (pid != 0)
2455 break;
2456
2457 /* Bugs 10970, 12702.
2458 Thread group leader may have exited in which case we'll lock up in
2459 waitpid if there are other threads, even if they are all zombies too.
2460 Basically, we're not supposed to use waitpid this way.
2461 __WCLONE is not applicable for the leader so we can't use that.
2462 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2463 process; it gets ESRCH both for the zombie and for running processes.
2464
2465 As a workaround, check if we're waiting for the thread group leader and
2466 if it's a zombie, and avoid calling waitpid if it is.
2467
2468 This is racy, what if the tgl becomes a zombie right after we check?
2469 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2470 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2471
2472 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2473 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2474 {
2475 thread_dead = 1;
2476 if (debug_linux_nat)
2477 fprintf_unfiltered (gdb_stdlog,
2478 "WL: Thread group leader %s vanished.\n",
2479 target_pid_to_str (lp->ptid));
2480 break;
2481 }
2482
2483 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2484 get invoked despite our caller had them intentionally blocked by
2485 block_child_signals. This is sensitive only to the loop of
2486 linux_nat_wait_1 and there if we get called my_waitpid gets called
2487 again before it gets to sigsuspend so we can safely let the handlers
2488 get executed here. */
2489
2490 sigsuspend (&suspend_mask);
2491 }
2492
2493 restore_child_signals_mask (&prev_mask);
2494
2495 if (!thread_dead)
2496 {
2497 gdb_assert (pid == GET_LWP (lp->ptid));
2498
2499 if (debug_linux_nat)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "WL: waitpid %s received %s\n",
2503 target_pid_to_str (lp->ptid),
2504 status_to_str (status));
2505 }
2506
2507 /* Check if the thread has exited. */
2508 if (WIFEXITED (status) || WIFSIGNALED (status))
2509 {
2510 thread_dead = 1;
2511 if (debug_linux_nat)
2512 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2513 target_pid_to_str (lp->ptid));
2514 }
2515 }
2516
2517 if (thread_dead)
2518 {
2519 exit_lwp (lp);
2520 return 0;
2521 }
2522
2523 gdb_assert (WIFSTOPPED (status));
2524
2525 /* Handle GNU/Linux's syscall SIGTRAPs. */
2526 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2527 {
2528 /* No longer need the sysgood bit. The ptrace event ends up
2529 recorded in lp->waitstatus if we care for it. We can carry
2530 on handling the event like a regular SIGTRAP from here
2531 on. */
2532 status = W_STOPCODE (SIGTRAP);
2533 if (linux_handle_syscall_trap (lp, 1))
2534 return wait_lwp (lp);
2535 }
2536
2537 /* Handle GNU/Linux's extended waitstatus for trace events. */
2538 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2539 {
2540 if (debug_linux_nat)
2541 fprintf_unfiltered (gdb_stdlog,
2542 "WL: Handling extended status 0x%06x\n",
2543 status);
2544 if (linux_handle_extended_wait (lp, status, 1))
2545 return wait_lwp (lp);
2546 }
2547
2548 return status;
2549 }
2550
2551 /* Save the most recent siginfo for LP. This is currently only called
2552 for SIGTRAP; some ports use the si_addr field for
2553 target_stopped_data_address. In the future, it may also be used to
2554 restore the siginfo of requeued signals. */
2555
2556 static void
2557 save_siginfo (struct lwp_info *lp)
2558 {
2559 errno = 0;
2560 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2561 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2562
2563 if (errno != 0)
2564 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2565 }
2566
2567 /* Send a SIGSTOP to LP. */
2568
2569 static int
2570 stop_callback (struct lwp_info *lp, void *data)
2571 {
2572 if (!lp->stopped && !lp->signalled)
2573 {
2574 int ret;
2575
2576 if (debug_linux_nat)
2577 {
2578 fprintf_unfiltered (gdb_stdlog,
2579 "SC: kill %s **<SIGSTOP>**\n",
2580 target_pid_to_str (lp->ptid));
2581 }
2582 errno = 0;
2583 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2584 if (debug_linux_nat)
2585 {
2586 fprintf_unfiltered (gdb_stdlog,
2587 "SC: lwp kill %d %s\n",
2588 ret,
2589 errno ? safe_strerror (errno) : "ERRNO-OK");
2590 }
2591
2592 lp->signalled = 1;
2593 gdb_assert (lp->status == 0);
2594 }
2595
2596 return 0;
2597 }
2598
2599 /* Return non-zero if LWP PID has a pending SIGINT. */
2600
2601 static int
2602 linux_nat_has_pending_sigint (int pid)
2603 {
2604 sigset_t pending, blocked, ignored;
2605
2606 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2607
2608 if (sigismember (&pending, SIGINT)
2609 && !sigismember (&ignored, SIGINT))
2610 return 1;
2611
2612 return 0;
2613 }
2614
2615 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2616
2617 static int
2618 set_ignore_sigint (struct lwp_info *lp, void *data)
2619 {
2620 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2621 flag to consume the next one. */
2622 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2623 && WSTOPSIG (lp->status) == SIGINT)
2624 lp->status = 0;
2625 else
2626 lp->ignore_sigint = 1;
2627
2628 return 0;
2629 }
2630
2631 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2632 This function is called after we know the LWP has stopped; if the LWP
2633 stopped before the expected SIGINT was delivered, then it will never have
2634 arrived. Also, if the signal was delivered to a shared queue and consumed
2635 by a different thread, it will never be delivered to this LWP. */
2636
2637 static void
2638 maybe_clear_ignore_sigint (struct lwp_info *lp)
2639 {
2640 if (!lp->ignore_sigint)
2641 return;
2642
2643 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2644 {
2645 if (debug_linux_nat)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "MCIS: Clearing bogus flag for %s\n",
2648 target_pid_to_str (lp->ptid));
2649 lp->ignore_sigint = 0;
2650 }
2651 }
2652
2653 /* Fetch the possible triggered data watchpoint info and store it in
2654 LP.
2655
2656 On some archs, like x86, that use debug registers to set
2657 watchpoints, it's possible that the way to know which watched
2658 address trapped, is to check the register that is used to select
2659 which address to watch. Problem is, between setting the watchpoint
2660 and reading back which data address trapped, the user may change
2661 the set of watchpoints, and, as a consequence, GDB changes the
2662 debug registers in the inferior. To avoid reading back a stale
2663 stopped-data-address when that happens, we cache in LP the fact
2664 that a watchpoint trapped, and the corresponding data address, as
2665 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2666 registers meanwhile, we have the cached data we can rely on. */
2667
2668 static void
2669 save_sigtrap (struct lwp_info *lp)
2670 {
2671 struct cleanup *old_chain;
2672
2673 if (linux_ops->to_stopped_by_watchpoint == NULL)
2674 {
2675 lp->stopped_by_watchpoint = 0;
2676 return;
2677 }
2678
2679 old_chain = save_inferior_ptid ();
2680 inferior_ptid = lp->ptid;
2681
2682 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2683
2684 if (lp->stopped_by_watchpoint)
2685 {
2686 if (linux_ops->to_stopped_data_address != NULL)
2687 lp->stopped_data_address_p =
2688 linux_ops->to_stopped_data_address (&current_target,
2689 &lp->stopped_data_address);
2690 else
2691 lp->stopped_data_address_p = 0;
2692 }
2693
2694 do_cleanups (old_chain);
2695 }
2696
2697 /* See save_sigtrap. */
2698
2699 static int
2700 linux_nat_stopped_by_watchpoint (void)
2701 {
2702 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2703
2704 gdb_assert (lp != NULL);
2705
2706 return lp->stopped_by_watchpoint;
2707 }
2708
2709 static int
2710 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2711 {
2712 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2713
2714 gdb_assert (lp != NULL);
2715
2716 *addr_p = lp->stopped_data_address;
2717
2718 return lp->stopped_data_address_p;
2719 }
2720
2721 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2722
2723 static int
2724 sigtrap_is_event (int status)
2725 {
2726 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2727 }
2728
2729 /* SIGTRAP-like events recognizer. */
2730
2731 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2732
2733 /* Check for SIGTRAP-like events in LP. */
2734
2735 static int
2736 linux_nat_lp_status_is_event (struct lwp_info *lp)
2737 {
2738 /* We check for lp->waitstatus in addition to lp->status, because we can
2739 have pending process exits recorded in lp->status
2740 and W_EXITCODE(0,0) == 0. We should probably have an additional
2741 lp->status_p flag. */
2742
2743 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2744 && linux_nat_status_is_event (lp->status));
2745 }
2746
2747 /* Set alternative SIGTRAP-like events recognizer. If
2748 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2749 applied. */
2750
2751 void
2752 linux_nat_set_status_is_event (struct target_ops *t,
2753 int (*status_is_event) (int status))
2754 {
2755 linux_nat_status_is_event = status_is_event;
2756 }
2757
2758 /* Wait until LP is stopped. */
2759
2760 static int
2761 stop_wait_callback (struct lwp_info *lp, void *data)
2762 {
2763 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2764
2765 /* If this is a vfork parent, bail out, it is not going to report
2766 any SIGSTOP until the vfork is done with. */
2767 if (inf->vfork_child != NULL)
2768 return 0;
2769
2770 if (!lp->stopped)
2771 {
2772 int status;
2773
2774 status = wait_lwp (lp);
2775 if (status == 0)
2776 return 0;
2777
2778 if (lp->ignore_sigint && WIFSTOPPED (status)
2779 && WSTOPSIG (status) == SIGINT)
2780 {
2781 lp->ignore_sigint = 0;
2782
2783 errno = 0;
2784 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2785 if (debug_linux_nat)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "PTRACE_CONT %s, 0, 0 (%s) "
2788 "(discarding SIGINT)\n",
2789 target_pid_to_str (lp->ptid),
2790 errno ? safe_strerror (errno) : "OK");
2791
2792 return stop_wait_callback (lp, NULL);
2793 }
2794
2795 maybe_clear_ignore_sigint (lp);
2796
2797 if (WSTOPSIG (status) != SIGSTOP)
2798 {
2799 if (linux_nat_status_is_event (status))
2800 {
2801 /* If a LWP other than the LWP that we're reporting an
2802 event for has hit a GDB breakpoint (as opposed to
2803 some random trap signal), then just arrange for it to
2804 hit it again later. We don't keep the SIGTRAP status
2805 and don't forward the SIGTRAP signal to the LWP. We
2806 will handle the current event, eventually we will
2807 resume all LWPs, and this one will get its breakpoint
2808 trap again.
2809
2810 If we do not do this, then we run the risk that the
2811 user will delete or disable the breakpoint, but the
2812 thread will have already tripped on it. */
2813
2814 /* Save the trap's siginfo in case we need it later. */
2815 save_siginfo (lp);
2816
2817 save_sigtrap (lp);
2818
2819 /* Now resume this LWP and get the SIGSTOP event. */
2820 errno = 0;
2821 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2822 if (debug_linux_nat)
2823 {
2824 fprintf_unfiltered (gdb_stdlog,
2825 "PTRACE_CONT %s, 0, 0 (%s)\n",
2826 target_pid_to_str (lp->ptid),
2827 errno ? safe_strerror (errno) : "OK");
2828
2829 fprintf_unfiltered (gdb_stdlog,
2830 "SWC: Candidate SIGTRAP event in %s\n",
2831 target_pid_to_str (lp->ptid));
2832 }
2833 /* Hold this event/waitstatus while we check to see if
2834 there are any more (we still want to get that SIGSTOP). */
2835 stop_wait_callback (lp, NULL);
2836
2837 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2838 there's another event, throw it back into the
2839 queue. */
2840 if (lp->status)
2841 {
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "SWC: kill %s, %s\n",
2845 target_pid_to_str (lp->ptid),
2846 status_to_str ((int) status));
2847 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2848 }
2849
2850 /* Save the sigtrap event. */
2851 lp->status = status;
2852 return 0;
2853 }
2854 else
2855 {
2856 /* The thread was stopped with a signal other than
2857 SIGSTOP, and didn't accidentally trip a breakpoint. */
2858
2859 if (debug_linux_nat)
2860 {
2861 fprintf_unfiltered (gdb_stdlog,
2862 "SWC: Pending event %s in %s\n",
2863 status_to_str ((int) status),
2864 target_pid_to_str (lp->ptid));
2865 }
2866 /* Now resume this LWP and get the SIGSTOP event. */
2867 errno = 0;
2868 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2872 target_pid_to_str (lp->ptid),
2873 errno ? safe_strerror (errno) : "OK");
2874
2875 /* Hold this event/waitstatus while we check to see if
2876 there are any more (we still want to get that SIGSTOP). */
2877 stop_wait_callback (lp, NULL);
2878
2879 /* If the lp->status field is still empty, use it to
2880 hold this event. If not, then this event must be
2881 returned to the event queue of the LWP. */
2882 if (lp->status)
2883 {
2884 if (debug_linux_nat)
2885 {
2886 fprintf_unfiltered (gdb_stdlog,
2887 "SWC: kill %s, %s\n",
2888 target_pid_to_str (lp->ptid),
2889 status_to_str ((int) status));
2890 }
2891 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2892 }
2893 else
2894 lp->status = status;
2895 return 0;
2896 }
2897 }
2898 else
2899 {
2900 /* We caught the SIGSTOP that we intended to catch, so
2901 there's no SIGSTOP pending. */
2902 lp->stopped = 1;
2903 lp->signalled = 0;
2904 }
2905 }
2906
2907 return 0;
2908 }
2909
2910 /* Return non-zero if LP has a wait status pending. */
2911
2912 static int
2913 status_callback (struct lwp_info *lp, void *data)
2914 {
2915 /* Only report a pending wait status if we pretend that this has
2916 indeed been resumed. */
2917 if (!lp->resumed)
2918 return 0;
2919
2920 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2921 {
2922 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2923 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2924 0', so a clean process exit can not be stored pending in
2925 lp->status, it is indistinguishable from
2926 no-pending-status. */
2927 return 1;
2928 }
2929
2930 if (lp->status != 0)
2931 return 1;
2932
2933 return 0;
2934 }
2935
2936 /* Return non-zero if LP isn't stopped. */
2937
2938 static int
2939 running_callback (struct lwp_info *lp, void *data)
2940 {
2941 return (!lp->stopped
2942 || ((lp->status != 0
2943 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2944 && lp->resumed));
2945 }
2946
2947 /* Count the LWP's that have had events. */
2948
2949 static int
2950 count_events_callback (struct lwp_info *lp, void *data)
2951 {
2952 int *count = data;
2953
2954 gdb_assert (count != NULL);
2955
2956 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2957 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2958 (*count)++;
2959
2960 return 0;
2961 }
2962
2963 /* Select the LWP (if any) that is currently being single-stepped. */
2964
2965 static int
2966 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2967 {
2968 if (lp->last_resume_kind == resume_step
2969 && lp->status != 0)
2970 return 1;
2971 else
2972 return 0;
2973 }
2974
2975 /* Select the Nth LWP that has had a SIGTRAP event. */
2976
2977 static int
2978 select_event_lwp_callback (struct lwp_info *lp, void *data)
2979 {
2980 int *selector = data;
2981
2982 gdb_assert (selector != NULL);
2983
2984 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2985 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2986 if ((*selector)-- == 0)
2987 return 1;
2988
2989 return 0;
2990 }
2991
2992 static int
2993 cancel_breakpoint (struct lwp_info *lp)
2994 {
2995 /* Arrange for a breakpoint to be hit again later. We don't keep
2996 the SIGTRAP status and don't forward the SIGTRAP signal to the
2997 LWP. We will handle the current event, eventually we will resume
2998 this LWP, and this breakpoint will trap again.
2999
3000 If we do not do this, then we run the risk that the user will
3001 delete or disable the breakpoint, but the LWP will have already
3002 tripped on it. */
3003
3004 struct regcache *regcache = get_thread_regcache (lp->ptid);
3005 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3006 CORE_ADDR pc;
3007
3008 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3009 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3010 {
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "CB: Push back breakpoint for %s\n",
3014 target_pid_to_str (lp->ptid));
3015
3016 /* Back up the PC if necessary. */
3017 if (gdbarch_decr_pc_after_break (gdbarch))
3018 regcache_write_pc (regcache, pc);
3019
3020 return 1;
3021 }
3022 return 0;
3023 }
3024
3025 static int
3026 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3027 {
3028 struct lwp_info *event_lp = data;
3029
3030 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3031 if (lp == event_lp)
3032 return 0;
3033
3034 /* If a LWP other than the LWP that we're reporting an event for has
3035 hit a GDB breakpoint (as opposed to some random trap signal),
3036 then just arrange for it to hit it again later. We don't keep
3037 the SIGTRAP status and don't forward the SIGTRAP signal to the
3038 LWP. We will handle the current event, eventually we will resume
3039 all LWPs, and this one will get its breakpoint trap again.
3040
3041 If we do not do this, then we run the risk that the user will
3042 delete or disable the breakpoint, but the LWP will have already
3043 tripped on it. */
3044
3045 if (linux_nat_lp_status_is_event (lp)
3046 && cancel_breakpoint (lp))
3047 /* Throw away the SIGTRAP. */
3048 lp->status = 0;
3049
3050 return 0;
3051 }
3052
3053 /* Select one LWP out of those that have events pending. */
3054
3055 static void
3056 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3057 {
3058 int num_events = 0;
3059 int random_selector;
3060 struct lwp_info *event_lp;
3061
3062 /* Record the wait status for the original LWP. */
3063 (*orig_lp)->status = *status;
3064
3065 /* Give preference to any LWP that is being single-stepped. */
3066 event_lp = iterate_over_lwps (filter,
3067 select_singlestep_lwp_callback, NULL);
3068 if (event_lp != NULL)
3069 {
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "SEL: Select single-step %s\n",
3073 target_pid_to_str (event_lp->ptid));
3074 }
3075 else
3076 {
3077 /* No single-stepping LWP. Select one at random, out of those
3078 which have had SIGTRAP events. */
3079
3080 /* First see how many SIGTRAP events we have. */
3081 iterate_over_lwps (filter, count_events_callback, &num_events);
3082
3083 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3084 random_selector = (int)
3085 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3086
3087 if (debug_linux_nat && num_events > 1)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3090 num_events, random_selector);
3091
3092 event_lp = iterate_over_lwps (filter,
3093 select_event_lwp_callback,
3094 &random_selector);
3095 }
3096
3097 if (event_lp != NULL)
3098 {
3099 /* Switch the event LWP. */
3100 *orig_lp = event_lp;
3101 *status = event_lp->status;
3102 }
3103
3104 /* Flush the wait status for the event LWP. */
3105 (*orig_lp)->status = 0;
3106 }
3107
3108 /* Return non-zero if LP has been resumed. */
3109
3110 static int
3111 resumed_callback (struct lwp_info *lp, void *data)
3112 {
3113 return lp->resumed;
3114 }
3115
3116 /* Stop an active thread, verify it still exists, then resume it. If
3117 the thread ends up with a pending status, then it is not resumed,
3118 and *DATA (really a pointer to int), is set. */
3119
3120 static int
3121 stop_and_resume_callback (struct lwp_info *lp, void *data)
3122 {
3123 int *new_pending_p = data;
3124
3125 if (!lp->stopped)
3126 {
3127 ptid_t ptid = lp->ptid;
3128
3129 stop_callback (lp, NULL);
3130 stop_wait_callback (lp, NULL);
3131
3132 /* Resume if the lwp still exists, and the core wanted it
3133 running. */
3134 lp = find_lwp_pid (ptid);
3135 if (lp != NULL)
3136 {
3137 if (lp->last_resume_kind == resume_stop
3138 && lp->status == 0)
3139 {
3140 /* The core wanted the LWP to stop. Even if it stopped
3141 cleanly (with SIGSTOP), leave the event pending. */
3142 if (debug_linux_nat)
3143 fprintf_unfiltered (gdb_stdlog,
3144 "SARC: core wanted LWP %ld stopped "
3145 "(leaving SIGSTOP pending)\n",
3146 GET_LWP (lp->ptid));
3147 lp->status = W_STOPCODE (SIGSTOP);
3148 }
3149
3150 if (lp->status == 0)
3151 {
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "SARC: re-resuming LWP %ld\n",
3155 GET_LWP (lp->ptid));
3156 resume_lwp (lp, lp->step);
3157 }
3158 else
3159 {
3160 if (debug_linux_nat)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "SARC: not re-resuming LWP %ld "
3163 "(has pending)\n",
3164 GET_LWP (lp->ptid));
3165 if (new_pending_p)
3166 *new_pending_p = 1;
3167 }
3168 }
3169 }
3170 return 0;
3171 }
3172
3173 /* Check if we should go on and pass this event to common code.
3174 Return the affected lwp if we are, or NULL otherwise. If we stop
3175 all lwps temporarily, we may end up with new pending events in some
3176 other lwp. In that case set *NEW_PENDING_P to true. */
3177
3178 static struct lwp_info *
3179 linux_nat_filter_event (int lwpid, int status, int options, int *new_pending_p)
3180 {
3181 struct lwp_info *lp;
3182
3183 *new_pending_p = 0;
3184
3185 lp = find_lwp_pid (pid_to_ptid (lwpid));
3186
3187 /* Check for stop events reported by a process we didn't already
3188 know about - anything not already in our LWP list.
3189
3190 If we're expecting to receive stopped processes after
3191 fork, vfork, and clone events, then we'll just add the
3192 new one to our list and go back to waiting for the event
3193 to be reported - the stopped process might be returned
3194 from waitpid before or after the event is. */
3195 if (WIFSTOPPED (status) && !lp)
3196 {
3197 add_to_pid_list (&stopped_pids, lwpid, status);
3198 return NULL;
3199 }
3200
3201 /* Make sure we don't report an event for the exit of an LWP not in
3202 our list, i.e. not part of the current process. This can happen
3203 if we detach from a program we originally forked and then it
3204 exits. */
3205 if (!WIFSTOPPED (status) && !lp)
3206 return NULL;
3207
3208 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3209 CLONE_PTRACE processes which do not use the thread library -
3210 otherwise we wouldn't find the new LWP this way. That doesn't
3211 currently work, and the following code is currently unreachable
3212 due to the two blocks above. If it's fixed some day, this code
3213 should be broken out into a function so that we can also pick up
3214 LWPs from the new interface. */
3215 if (!lp)
3216 {
3217 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3218 if (options & __WCLONE)
3219 lp->cloned = 1;
3220
3221 gdb_assert (WIFSTOPPED (status)
3222 && WSTOPSIG (status) == SIGSTOP);
3223 lp->signalled = 1;
3224
3225 if (!in_thread_list (inferior_ptid))
3226 {
3227 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3228 GET_PID (inferior_ptid));
3229 add_thread (inferior_ptid);
3230 }
3231
3232 add_thread (lp->ptid);
3233 }
3234
3235 /* Handle GNU/Linux's syscall SIGTRAPs. */
3236 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3237 {
3238 /* No longer need the sysgood bit. The ptrace event ends up
3239 recorded in lp->waitstatus if we care for it. We can carry
3240 on handling the event like a regular SIGTRAP from here
3241 on. */
3242 status = W_STOPCODE (SIGTRAP);
3243 if (linux_handle_syscall_trap (lp, 0))
3244 return NULL;
3245 }
3246
3247 /* Handle GNU/Linux's extended waitstatus for trace events. */
3248 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3249 {
3250 if (debug_linux_nat)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "LLW: Handling extended status 0x%06x\n",
3253 status);
3254 if (linux_handle_extended_wait (lp, status, 0))
3255 return NULL;
3256 }
3257
3258 if (linux_nat_status_is_event (status))
3259 {
3260 /* Save the trap's siginfo in case we need it later. */
3261 save_siginfo (lp);
3262
3263 save_sigtrap (lp);
3264 }
3265
3266 /* Check if the thread has exited. */
3267 if ((WIFEXITED (status) || WIFSIGNALED (status))
3268 && num_lwps (GET_PID (lp->ptid)) > 1)
3269 {
3270 /* If this is the main thread, we must stop all threads and verify
3271 if they are still alive. This is because in the nptl thread model
3272 on Linux 2.4, there is no signal issued for exiting LWPs
3273 other than the main thread. We only get the main thread exit
3274 signal once all child threads have already exited. If we
3275 stop all the threads and use the stop_wait_callback to check
3276 if they have exited we can determine whether this signal
3277 should be ignored or whether it means the end of the debugged
3278 application, regardless of which threading model is being
3279 used. */
3280 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3281 {
3282 lp->stopped = 1;
3283 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3284 stop_and_resume_callback, new_pending_p);
3285 }
3286
3287 if (debug_linux_nat)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "LLW: %s exited.\n",
3290 target_pid_to_str (lp->ptid));
3291
3292 if (num_lwps (GET_PID (lp->ptid)) > 1)
3293 {
3294 /* If there is at least one more LWP, then the exit signal
3295 was not the end of the debugged application and should be
3296 ignored. */
3297 exit_lwp (lp);
3298 return NULL;
3299 }
3300 }
3301
3302 /* Check if the current LWP has previously exited. In the nptl
3303 thread model, LWPs other than the main thread do not issue
3304 signals when they exit so we must check whenever the thread has
3305 stopped. A similar check is made in stop_wait_callback(). */
3306 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3307 {
3308 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3309
3310 if (debug_linux_nat)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "LLW: %s exited.\n",
3313 target_pid_to_str (lp->ptid));
3314
3315 exit_lwp (lp);
3316
3317 /* Make sure there is at least one thread running. */
3318 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3319
3320 /* Discard the event. */
3321 return NULL;
3322 }
3323
3324 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3325 an attempt to stop an LWP. */
3326 if (lp->signalled
3327 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3328 {
3329 if (debug_linux_nat)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "LLW: Delayed SIGSTOP caught for %s.\n",
3332 target_pid_to_str (lp->ptid));
3333
3334 lp->signalled = 0;
3335
3336 if (lp->last_resume_kind != resume_stop)
3337 {
3338 /* This is a delayed SIGSTOP. */
3339
3340 registers_changed ();
3341
3342 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3343 lp->step, TARGET_SIGNAL_0);
3344 if (debug_linux_nat)
3345 fprintf_unfiltered (gdb_stdlog,
3346 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3347 lp->step ?
3348 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3349 target_pid_to_str (lp->ptid));
3350
3351 lp->stopped = 0;
3352 gdb_assert (lp->resumed);
3353
3354 /* Discard the event. */
3355 return NULL;
3356 }
3357 }
3358
3359 /* Make sure we don't report a SIGINT that we have already displayed
3360 for another thread. */
3361 if (lp->ignore_sigint
3362 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3363 {
3364 if (debug_linux_nat)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "LLW: Delayed SIGINT caught for %s.\n",
3367 target_pid_to_str (lp->ptid));
3368
3369 /* This is a delayed SIGINT. */
3370 lp->ignore_sigint = 0;
3371
3372 registers_changed ();
3373 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3374 lp->step, TARGET_SIGNAL_0);
3375 if (debug_linux_nat)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3378 lp->step ?
3379 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3380 target_pid_to_str (lp->ptid));
3381
3382 lp->stopped = 0;
3383 gdb_assert (lp->resumed);
3384
3385 /* Discard the event. */
3386 return NULL;
3387 }
3388
3389 /* An interesting event. */
3390 gdb_assert (lp);
3391 lp->status = status;
3392 return lp;
3393 }
3394
3395 static ptid_t
3396 linux_nat_wait_1 (struct target_ops *ops,
3397 ptid_t ptid, struct target_waitstatus *ourstatus,
3398 int target_options)
3399 {
3400 static sigset_t prev_mask;
3401 enum resume_kind last_resume_kind;
3402 struct lwp_info *lp;
3403 int options;
3404 int status;
3405 pid_t pid;
3406
3407 if (debug_linux_nat)
3408 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3409
3410 /* The first time we get here after starting a new inferior, we may
3411 not have added it to the LWP list yet - this is the earliest
3412 moment at which we know its PID. */
3413 if (ptid_is_pid (inferior_ptid))
3414 {
3415 /* Upgrade the main thread's ptid. */
3416 thread_change_ptid (inferior_ptid,
3417 BUILD_LWP (GET_PID (inferior_ptid),
3418 GET_PID (inferior_ptid)));
3419
3420 lp = add_lwp (inferior_ptid);
3421 lp->resumed = 1;
3422 }
3423
3424 /* Make sure SIGCHLD is blocked. */
3425 block_child_signals (&prev_mask);
3426
3427 if (ptid_equal (ptid, minus_one_ptid))
3428 pid = -1;
3429 else if (ptid_is_pid (ptid))
3430 /* A request to wait for a specific tgid. This is not possible
3431 with waitpid, so instead, we wait for any child, and leave
3432 children we're not interested in right now with a pending
3433 status to report later. */
3434 pid = -1;
3435 else
3436 pid = GET_LWP (ptid);
3437
3438 retry:
3439 lp = NULL;
3440 status = 0;
3441 options = 0;
3442
3443 /* Make sure that of those LWPs we want to get an event from, there
3444 is at least one LWP that has been resumed. If there's none, just
3445 bail out. The core may just be flushing asynchronously all
3446 events. */
3447 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3448 {
3449 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3450
3451 if (debug_linux_nat)
3452 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3453
3454 restore_child_signals_mask (&prev_mask);
3455 return minus_one_ptid;
3456 }
3457
3458 /* First check if there is a LWP with a wait status pending. */
3459 if (pid == -1)
3460 {
3461 /* Any LWP that's been resumed will do. */
3462 lp = iterate_over_lwps (ptid, status_callback, NULL);
3463 if (lp)
3464 {
3465 if (debug_linux_nat && lp->status)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "LLW: Using pending wait status %s for %s.\n",
3468 status_to_str (lp->status),
3469 target_pid_to_str (lp->ptid));
3470 }
3471
3472 /* But if we don't find one, we'll have to wait, and check both
3473 cloned and uncloned processes. We start with the cloned
3474 processes. */
3475 options = __WCLONE | WNOHANG;
3476 }
3477 else if (is_lwp (ptid))
3478 {
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "LLW: Waiting for specific LWP %s.\n",
3482 target_pid_to_str (ptid));
3483
3484 /* We have a specific LWP to check. */
3485 lp = find_lwp_pid (ptid);
3486 gdb_assert (lp);
3487
3488 if (debug_linux_nat && lp->status)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "LLW: Using pending wait status %s for %s.\n",
3491 status_to_str (lp->status),
3492 target_pid_to_str (lp->ptid));
3493
3494 /* If we have to wait, take into account whether PID is a cloned
3495 process or not. And we have to convert it to something that
3496 the layer beneath us can understand. */
3497 options = lp->cloned ? __WCLONE : 0;
3498 pid = GET_LWP (ptid);
3499
3500 /* We check for lp->waitstatus in addition to lp->status,
3501 because we can have pending process exits recorded in
3502 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3503 an additional lp->status_p flag. */
3504 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3505 lp = NULL;
3506 }
3507
3508 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3509 {
3510 /* A pending SIGSTOP may interfere with the normal stream of
3511 events. In a typical case where interference is a problem,
3512 we have a SIGSTOP signal pending for LWP A while
3513 single-stepping it, encounter an event in LWP B, and take the
3514 pending SIGSTOP while trying to stop LWP A. After processing
3515 the event in LWP B, LWP A is continued, and we'll never see
3516 the SIGTRAP associated with the last time we were
3517 single-stepping LWP A. */
3518
3519 /* Resume the thread. It should halt immediately returning the
3520 pending SIGSTOP. */
3521 registers_changed ();
3522 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3523 lp->step, TARGET_SIGNAL_0);
3524 if (debug_linux_nat)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3527 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3528 target_pid_to_str (lp->ptid));
3529 lp->stopped = 0;
3530 gdb_assert (lp->resumed);
3531
3532 /* Catch the pending SIGSTOP. */
3533 status = lp->status;
3534 lp->status = 0;
3535
3536 stop_wait_callback (lp, NULL);
3537
3538 /* If the lp->status field isn't empty, we caught another signal
3539 while flushing the SIGSTOP. Return it back to the event
3540 queue of the LWP, as we already have an event to handle. */
3541 if (lp->status)
3542 {
3543 if (debug_linux_nat)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "LLW: kill %s, %s\n",
3546 target_pid_to_str (lp->ptid),
3547 status_to_str (lp->status));
3548 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3549 }
3550
3551 lp->status = status;
3552 }
3553
3554 if (!target_can_async_p ())
3555 {
3556 /* Causes SIGINT to be passed on to the attached process. */
3557 set_sigint_trap ();
3558 }
3559
3560 /* Translate generic target_wait options into waitpid options. */
3561 if (target_options & TARGET_WNOHANG)
3562 options |= WNOHANG;
3563
3564 while (lp == NULL)
3565 {
3566 pid_t lwpid;
3567
3568 lwpid = my_waitpid (pid, &status, options);
3569
3570 if (lwpid > 0)
3571 {
3572 /* If this is true, then we paused LWPs momentarily, and may
3573 now have pending events to handle. */
3574 int new_pending;
3575
3576 gdb_assert (pid == -1 || lwpid == pid);
3577
3578 if (debug_linux_nat)
3579 {
3580 fprintf_unfiltered (gdb_stdlog,
3581 "LLW: waitpid %ld received %s\n",
3582 (long) lwpid, status_to_str (status));
3583 }
3584
3585 lp = linux_nat_filter_event (lwpid, status, options, &new_pending);
3586
3587 /* STATUS is now no longer valid, use LP->STATUS instead. */
3588 status = 0;
3589
3590 if (lp
3591 && ptid_is_pid (ptid)
3592 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3593 {
3594 gdb_assert (lp->resumed);
3595
3596 if (debug_linux_nat)
3597 fprintf (stderr,
3598 "LWP %ld got an event %06x, leaving pending.\n",
3599 ptid_get_lwp (lp->ptid), lp->status);
3600
3601 if (WIFSTOPPED (lp->status))
3602 {
3603 if (WSTOPSIG (lp->status) != SIGSTOP)
3604 {
3605 /* Cancel breakpoint hits. The breakpoint may
3606 be removed before we fetch events from this
3607 process to report to the core. It is best
3608 not to assume the moribund breakpoints
3609 heuristic always handles these cases --- it
3610 could be too many events go through to the
3611 core before this one is handled. All-stop
3612 always cancels breakpoint hits in all
3613 threads. */
3614 if (non_stop
3615 && linux_nat_lp_status_is_event (lp)
3616 && cancel_breakpoint (lp))
3617 {
3618 /* Throw away the SIGTRAP. */
3619 lp->status = 0;
3620
3621 if (debug_linux_nat)
3622 fprintf (stderr,
3623 "LLW: LWP %ld hit a breakpoint while"
3624 " waiting for another process;"
3625 " cancelled it\n",
3626 ptid_get_lwp (lp->ptid));
3627 }
3628 lp->stopped = 1;
3629 }
3630 else
3631 {
3632 lp->stopped = 1;
3633 lp->signalled = 0;
3634 }
3635 }
3636 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3637 {
3638 if (debug_linux_nat)
3639 fprintf (stderr,
3640 "Process %ld exited while stopping LWPs\n",
3641 ptid_get_lwp (lp->ptid));
3642
3643 /* This was the last lwp in the process. Since
3644 events are serialized to GDB core, and we can't
3645 report this one right now, but GDB core and the
3646 other target layers will want to be notified
3647 about the exit code/signal, leave the status
3648 pending for the next time we're able to report
3649 it. */
3650
3651 /* Prevent trying to stop this thread again. We'll
3652 never try to resume it because it has a pending
3653 status. */
3654 lp->stopped = 1;
3655
3656 /* Dead LWP's aren't expected to reported a pending
3657 sigstop. */
3658 lp->signalled = 0;
3659
3660 /* Store the pending event in the waitstatus as
3661 well, because W_EXITCODE(0,0) == 0. */
3662 store_waitstatus (&lp->waitstatus, lp->status);
3663 }
3664
3665 if (new_pending)
3666 goto retry;
3667
3668 /* Keep looking. */
3669 lp = NULL;
3670 continue;
3671 }
3672
3673 if (lp)
3674 break;
3675 else
3676 {
3677 if (new_pending)
3678 goto retry;
3679
3680 if (pid == -1)
3681 {
3682 /* waitpid did return something. Restart over. */
3683 options |= __WCLONE;
3684 }
3685 continue;
3686 }
3687 }
3688
3689 if (pid == -1)
3690 {
3691 /* Alternate between checking cloned and uncloned processes. */
3692 options ^= __WCLONE;
3693
3694 /* And every time we have checked both:
3695 In async mode, return to event loop;
3696 In sync mode, suspend waiting for a SIGCHLD signal. */
3697 if (options & __WCLONE)
3698 {
3699 if (target_options & TARGET_WNOHANG)
3700 {
3701 /* No interesting event. */
3702 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3703
3704 if (debug_linux_nat)
3705 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3706
3707 restore_child_signals_mask (&prev_mask);
3708 return minus_one_ptid;
3709 }
3710
3711 sigsuspend (&suspend_mask);
3712 }
3713 }
3714 else if (target_options & TARGET_WNOHANG)
3715 {
3716 /* No interesting event for PID yet. */
3717 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3718
3719 if (debug_linux_nat)
3720 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3721
3722 restore_child_signals_mask (&prev_mask);
3723 return minus_one_ptid;
3724 }
3725
3726 /* We shouldn't end up here unless we want to try again. */
3727 gdb_assert (lp == NULL);
3728 }
3729
3730 if (!target_can_async_p ())
3731 clear_sigint_trap ();
3732
3733 gdb_assert (lp);
3734
3735 status = lp->status;
3736 lp->status = 0;
3737
3738 /* Don't report signals that GDB isn't interested in, such as
3739 signals that are neither printed nor stopped upon. Stopping all
3740 threads can be a bit time-consuming so if we want decent
3741 performance with heavily multi-threaded programs, especially when
3742 they're using a high frequency timer, we'd better avoid it if we
3743 can. */
3744
3745 if (WIFSTOPPED (status))
3746 {
3747 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3748
3749 /* When using hardware single-step, we need to report every signal.
3750 Otherwise, signals in pass_mask may be short-circuited. */
3751 if (!lp->step
3752 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3753 {
3754 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3755 here? It is not clear we should. GDB may not expect
3756 other threads to run. On the other hand, not resuming
3757 newly attached threads may cause an unwanted delay in
3758 getting them running. */
3759 registers_changed ();
3760 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3761 lp->step, signo);
3762 if (debug_linux_nat)
3763 fprintf_unfiltered (gdb_stdlog,
3764 "LLW: %s %s, %s (preempt 'handle')\n",
3765 lp->step ?
3766 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3767 target_pid_to_str (lp->ptid),
3768 (signo != TARGET_SIGNAL_0
3769 ? strsignal (target_signal_to_host (signo))
3770 : "0"));
3771 lp->stopped = 0;
3772 goto retry;
3773 }
3774
3775 if (!non_stop)
3776 {
3777 /* Only do the below in all-stop, as we currently use SIGINT
3778 to implement target_stop (see linux_nat_stop) in
3779 non-stop. */
3780 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3781 {
3782 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3783 forwarded to the entire process group, that is, all LWPs
3784 will receive it - unless they're using CLONE_THREAD to
3785 share signals. Since we only want to report it once, we
3786 mark it as ignored for all LWPs except this one. */
3787 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3788 set_ignore_sigint, NULL);
3789 lp->ignore_sigint = 0;
3790 }
3791 else
3792 maybe_clear_ignore_sigint (lp);
3793 }
3794 }
3795
3796 /* This LWP is stopped now. */
3797 lp->stopped = 1;
3798
3799 if (debug_linux_nat)
3800 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3801 status_to_str (status), target_pid_to_str (lp->ptid));
3802
3803 if (!non_stop)
3804 {
3805 /* Now stop all other LWP's ... */
3806 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3807
3808 /* ... and wait until all of them have reported back that
3809 they're no longer running. */
3810 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3811
3812 /* If we're not waiting for a specific LWP, choose an event LWP
3813 from among those that have had events. Giving equal priority
3814 to all LWPs that have had events helps prevent
3815 starvation. */
3816 if (pid == -1)
3817 select_event_lwp (ptid, &lp, &status);
3818
3819 /* Now that we've selected our final event LWP, cancel any
3820 breakpoints in other LWPs that have hit a GDB breakpoint.
3821 See the comment in cancel_breakpoints_callback to find out
3822 why. */
3823 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3824
3825 /* We'll need this to determine whether to report a SIGSTOP as
3826 TARGET_WAITKIND_0. Need to take a copy because
3827 resume_clear_callback clears it. */
3828 last_resume_kind = lp->last_resume_kind;
3829
3830 /* In all-stop, from the core's perspective, all LWPs are now
3831 stopped until a new resume action is sent over. */
3832 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3833 }
3834 else
3835 {
3836 /* See above. */
3837 last_resume_kind = lp->last_resume_kind;
3838 resume_clear_callback (lp, NULL);
3839 }
3840
3841 if (linux_nat_status_is_event (status))
3842 {
3843 if (debug_linux_nat)
3844 fprintf_unfiltered (gdb_stdlog,
3845 "LLW: trap ptid is %s.\n",
3846 target_pid_to_str (lp->ptid));
3847 }
3848
3849 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3850 {
3851 *ourstatus = lp->waitstatus;
3852 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3853 }
3854 else
3855 store_waitstatus (ourstatus, status);
3856
3857 if (debug_linux_nat)
3858 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3859
3860 restore_child_signals_mask (&prev_mask);
3861
3862 if (last_resume_kind == resume_stop
3863 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3864 && WSTOPSIG (status) == SIGSTOP)
3865 {
3866 /* A thread that has been requested to stop by GDB with
3867 target_stop, and it stopped cleanly, so report as SIG0. The
3868 use of SIGSTOP is an implementation detail. */
3869 ourstatus->value.sig = TARGET_SIGNAL_0;
3870 }
3871
3872 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3873 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3874 lp->core = -1;
3875 else
3876 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3877
3878 return lp->ptid;
3879 }
3880
3881 /* Resume LWPs that are currently stopped without any pending status
3882 to report, but are resumed from the core's perspective. */
3883
3884 static int
3885 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3886 {
3887 ptid_t *wait_ptid_p = data;
3888
3889 if (lp->stopped
3890 && lp->resumed
3891 && lp->status == 0
3892 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3893 {
3894 gdb_assert (is_executing (lp->ptid));
3895
3896 /* Don't bother if there's a breakpoint at PC that we'd hit
3897 immediately, and we're not waiting for this LWP. */
3898 if (!ptid_match (lp->ptid, *wait_ptid_p))
3899 {
3900 struct regcache *regcache = get_thread_regcache (lp->ptid);
3901 CORE_ADDR pc = regcache_read_pc (regcache);
3902
3903 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3904 return 0;
3905 }
3906
3907 if (debug_linux_nat)
3908 fprintf_unfiltered (gdb_stdlog,
3909 "RSRL: resuming stopped-resumed LWP %s\n",
3910 target_pid_to_str (lp->ptid));
3911
3912 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3913 lp->step, TARGET_SIGNAL_0);
3914 lp->stopped = 0;
3915 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3916 lp->stopped_by_watchpoint = 0;
3917 }
3918
3919 return 0;
3920 }
3921
3922 static ptid_t
3923 linux_nat_wait (struct target_ops *ops,
3924 ptid_t ptid, struct target_waitstatus *ourstatus,
3925 int target_options)
3926 {
3927 ptid_t event_ptid;
3928
3929 if (debug_linux_nat)
3930 fprintf_unfiltered (gdb_stdlog,
3931 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3932
3933 /* Flush the async file first. */
3934 if (target_can_async_p ())
3935 async_file_flush ();
3936
3937 /* Resume LWPs that are currently stopped without any pending status
3938 to report, but are resumed from the core's perspective. LWPs get
3939 in this state if we find them stopping at a time we're not
3940 interested in reporting the event (target_wait on a
3941 specific_process, for example, see linux_nat_wait_1), and
3942 meanwhile the event became uninteresting. Don't bother resuming
3943 LWPs we're not going to wait for if they'd stop immediately. */
3944 if (non_stop)
3945 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3946
3947 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3948
3949 /* If we requested any event, and something came out, assume there
3950 may be more. If we requested a specific lwp or process, also
3951 assume there may be more. */
3952 if (target_can_async_p ()
3953 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3954 || !ptid_equal (ptid, minus_one_ptid)))
3955 async_file_mark ();
3956
3957 /* Get ready for the next event. */
3958 if (target_can_async_p ())
3959 target_async (inferior_event_handler, 0);
3960
3961 return event_ptid;
3962 }
3963
3964 static int
3965 kill_callback (struct lwp_info *lp, void *data)
3966 {
3967 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3968
3969 errno = 0;
3970 kill (GET_LWP (lp->ptid), SIGKILL);
3971 if (debug_linux_nat)
3972 fprintf_unfiltered (gdb_stdlog,
3973 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3974 target_pid_to_str (lp->ptid),
3975 errno ? safe_strerror (errno) : "OK");
3976
3977 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3978
3979 errno = 0;
3980 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3981 if (debug_linux_nat)
3982 fprintf_unfiltered (gdb_stdlog,
3983 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3984 target_pid_to_str (lp->ptid),
3985 errno ? safe_strerror (errno) : "OK");
3986
3987 return 0;
3988 }
3989
3990 static int
3991 kill_wait_callback (struct lwp_info *lp, void *data)
3992 {
3993 pid_t pid;
3994
3995 /* We must make sure that there are no pending events (delayed
3996 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3997 program doesn't interfere with any following debugging session. */
3998
3999 /* For cloned processes we must check both with __WCLONE and
4000 without, since the exit status of a cloned process isn't reported
4001 with __WCLONE. */
4002 if (lp->cloned)
4003 {
4004 do
4005 {
4006 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4007 if (pid != (pid_t) -1)
4008 {
4009 if (debug_linux_nat)
4010 fprintf_unfiltered (gdb_stdlog,
4011 "KWC: wait %s received unknown.\n",
4012 target_pid_to_str (lp->ptid));
4013 /* The Linux kernel sometimes fails to kill a thread
4014 completely after PTRACE_KILL; that goes from the stop
4015 point in do_fork out to the one in
4016 get_signal_to_deliever and waits again. So kill it
4017 again. */
4018 kill_callback (lp, NULL);
4019 }
4020 }
4021 while (pid == GET_LWP (lp->ptid));
4022
4023 gdb_assert (pid == -1 && errno == ECHILD);
4024 }
4025
4026 do
4027 {
4028 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4029 if (pid != (pid_t) -1)
4030 {
4031 if (debug_linux_nat)
4032 fprintf_unfiltered (gdb_stdlog,
4033 "KWC: wait %s received unk.\n",
4034 target_pid_to_str (lp->ptid));
4035 /* See the call to kill_callback above. */
4036 kill_callback (lp, NULL);
4037 }
4038 }
4039 while (pid == GET_LWP (lp->ptid));
4040
4041 gdb_assert (pid == -1 && errno == ECHILD);
4042 return 0;
4043 }
4044
4045 static void
4046 linux_nat_kill (struct target_ops *ops)
4047 {
4048 struct target_waitstatus last;
4049 ptid_t last_ptid;
4050 int status;
4051
4052 /* If we're stopped while forking and we haven't followed yet,
4053 kill the other task. We need to do this first because the
4054 parent will be sleeping if this is a vfork. */
4055
4056 get_last_target_status (&last_ptid, &last);
4057
4058 if (last.kind == TARGET_WAITKIND_FORKED
4059 || last.kind == TARGET_WAITKIND_VFORKED)
4060 {
4061 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4062 wait (&status);
4063 }
4064
4065 if (forks_exist_p ())
4066 linux_fork_killall ();
4067 else
4068 {
4069 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4070
4071 /* Stop all threads before killing them, since ptrace requires
4072 that the thread is stopped to sucessfully PTRACE_KILL. */
4073 iterate_over_lwps (ptid, stop_callback, NULL);
4074 /* ... and wait until all of them have reported back that
4075 they're no longer running. */
4076 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4077
4078 /* Kill all LWP's ... */
4079 iterate_over_lwps (ptid, kill_callback, NULL);
4080
4081 /* ... and wait until we've flushed all events. */
4082 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4083 }
4084
4085 target_mourn_inferior ();
4086 }
4087
4088 static void
4089 linux_nat_mourn_inferior (struct target_ops *ops)
4090 {
4091 purge_lwp_list (ptid_get_pid (inferior_ptid));
4092
4093 if (! forks_exist_p ())
4094 /* Normal case, no other forks available. */
4095 linux_ops->to_mourn_inferior (ops);
4096 else
4097 /* Multi-fork case. The current inferior_ptid has exited, but
4098 there are other viable forks to debug. Delete the exiting
4099 one and context-switch to the first available. */
4100 linux_fork_mourn_inferior ();
4101 }
4102
4103 /* Convert a native/host siginfo object, into/from the siginfo in the
4104 layout of the inferiors' architecture. */
4105
4106 static void
4107 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4108 {
4109 int done = 0;
4110
4111 if (linux_nat_siginfo_fixup != NULL)
4112 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4113
4114 /* If there was no callback, or the callback didn't do anything,
4115 then just do a straight memcpy. */
4116 if (!done)
4117 {
4118 if (direction == 1)
4119 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4120 else
4121 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4122 }
4123 }
4124
4125 static LONGEST
4126 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4127 const char *annex, gdb_byte *readbuf,
4128 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4129 {
4130 int pid;
4131 struct siginfo siginfo;
4132 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4133
4134 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4135 gdb_assert (readbuf || writebuf);
4136
4137 pid = GET_LWP (inferior_ptid);
4138 if (pid == 0)
4139 pid = GET_PID (inferior_ptid);
4140
4141 if (offset > sizeof (siginfo))
4142 return -1;
4143
4144 errno = 0;
4145 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4146 if (errno != 0)
4147 return -1;
4148
4149 /* When GDB is built as a 64-bit application, ptrace writes into
4150 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4151 inferior with a 64-bit GDB should look the same as debugging it
4152 with a 32-bit GDB, we need to convert it. GDB core always sees
4153 the converted layout, so any read/write will have to be done
4154 post-conversion. */
4155 siginfo_fixup (&siginfo, inf_siginfo, 0);
4156
4157 if (offset + len > sizeof (siginfo))
4158 len = sizeof (siginfo) - offset;
4159
4160 if (readbuf != NULL)
4161 memcpy (readbuf, inf_siginfo + offset, len);
4162 else
4163 {
4164 memcpy (inf_siginfo + offset, writebuf, len);
4165
4166 /* Convert back to ptrace layout before flushing it out. */
4167 siginfo_fixup (&siginfo, inf_siginfo, 1);
4168
4169 errno = 0;
4170 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4171 if (errno != 0)
4172 return -1;
4173 }
4174
4175 return len;
4176 }
4177
4178 static LONGEST
4179 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4180 const char *annex, gdb_byte *readbuf,
4181 const gdb_byte *writebuf,
4182 ULONGEST offset, LONGEST len)
4183 {
4184 struct cleanup *old_chain;
4185 LONGEST xfer;
4186
4187 if (object == TARGET_OBJECT_SIGNAL_INFO)
4188 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4189 offset, len);
4190
4191 /* The target is connected but no live inferior is selected. Pass
4192 this request down to a lower stratum (e.g., the executable
4193 file). */
4194 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4195 return 0;
4196
4197 old_chain = save_inferior_ptid ();
4198
4199 if (is_lwp (inferior_ptid))
4200 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4201
4202 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4203 offset, len);
4204
4205 do_cleanups (old_chain);
4206 return xfer;
4207 }
4208
4209 static int
4210 linux_thread_alive (ptid_t ptid)
4211 {
4212 int err, tmp_errno;
4213
4214 gdb_assert (is_lwp (ptid));
4215
4216 /* Send signal 0 instead of anything ptrace, because ptracing a
4217 running thread errors out claiming that the thread doesn't
4218 exist. */
4219 err = kill_lwp (GET_LWP (ptid), 0);
4220 tmp_errno = errno;
4221 if (debug_linux_nat)
4222 fprintf_unfiltered (gdb_stdlog,
4223 "LLTA: KILL(SIG0) %s (%s)\n",
4224 target_pid_to_str (ptid),
4225 err ? safe_strerror (tmp_errno) : "OK");
4226
4227 if (err != 0)
4228 return 0;
4229
4230 return 1;
4231 }
4232
4233 static int
4234 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4235 {
4236 return linux_thread_alive (ptid);
4237 }
4238
4239 static char *
4240 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4241 {
4242 static char buf[64];
4243
4244 if (is_lwp (ptid)
4245 && (GET_PID (ptid) != GET_LWP (ptid)
4246 || num_lwps (GET_PID (ptid)) > 1))
4247 {
4248 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4249 return buf;
4250 }
4251
4252 return normal_pid_to_str (ptid);
4253 }
4254
4255 static char *
4256 linux_nat_thread_name (struct thread_info *thr)
4257 {
4258 int pid = ptid_get_pid (thr->ptid);
4259 long lwp = ptid_get_lwp (thr->ptid);
4260 #define FORMAT "/proc/%d/task/%ld/comm"
4261 char buf[sizeof (FORMAT) + 30];
4262 FILE *comm_file;
4263 char *result = NULL;
4264
4265 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4266 comm_file = fopen (buf, "r");
4267 if (comm_file)
4268 {
4269 /* Not exported by the kernel, so we define it here. */
4270 #define COMM_LEN 16
4271 static char line[COMM_LEN + 1];
4272
4273 if (fgets (line, sizeof (line), comm_file))
4274 {
4275 char *nl = strchr (line, '\n');
4276
4277 if (nl)
4278 *nl = '\0';
4279 if (*line != '\0')
4280 result = line;
4281 }
4282
4283 fclose (comm_file);
4284 }
4285
4286 #undef COMM_LEN
4287 #undef FORMAT
4288
4289 return result;
4290 }
4291
4292 /* Accepts an integer PID; Returns a string representing a file that
4293 can be opened to get the symbols for the child process. */
4294
4295 static char *
4296 linux_child_pid_to_exec_file (int pid)
4297 {
4298 char *name1, *name2;
4299
4300 name1 = xmalloc (MAXPATHLEN);
4301 name2 = xmalloc (MAXPATHLEN);
4302 make_cleanup (xfree, name1);
4303 make_cleanup (xfree, name2);
4304 memset (name2, 0, MAXPATHLEN);
4305
4306 sprintf (name1, "/proc/%d/exe", pid);
4307 if (readlink (name1, name2, MAXPATHLEN) > 0)
4308 return name2;
4309 else
4310 return name1;
4311 }
4312
4313 /* Service function for corefiles and info proc. */
4314
4315 static int
4316 read_mapping (FILE *mapfile,
4317 long long *addr,
4318 long long *endaddr,
4319 char *permissions,
4320 long long *offset,
4321 char *device, long long *inode, char *filename)
4322 {
4323 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4324 addr, endaddr, permissions, offset, device, inode);
4325
4326 filename[0] = '\0';
4327 if (ret > 0 && ret != EOF)
4328 {
4329 /* Eat everything up to EOL for the filename. This will prevent
4330 weird filenames (such as one with embedded whitespace) from
4331 confusing this code. It also makes this code more robust in
4332 respect to annotations the kernel may add after the filename.
4333
4334 Note the filename is used for informational purposes
4335 only. */
4336 ret += fscanf (mapfile, "%[^\n]\n", filename);
4337 }
4338
4339 return (ret != 0 && ret != EOF);
4340 }
4341
4342 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4343 regions in the inferior for a corefile. */
4344
4345 static int
4346 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4347 {
4348 int pid = PIDGET (inferior_ptid);
4349 char mapsfilename[MAXPATHLEN];
4350 FILE *mapsfile;
4351 long long addr, endaddr, size, offset, inode;
4352 char permissions[8], device[8], filename[MAXPATHLEN];
4353 int read, write, exec;
4354 struct cleanup *cleanup;
4355
4356 /* Compose the filename for the /proc memory map, and open it. */
4357 sprintf (mapsfilename, "/proc/%d/maps", pid);
4358 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4359 error (_("Could not open %s."), mapsfilename);
4360 cleanup = make_cleanup_fclose (mapsfile);
4361
4362 if (info_verbose)
4363 fprintf_filtered (gdb_stdout,
4364 "Reading memory regions from %s\n", mapsfilename);
4365
4366 /* Now iterate until end-of-file. */
4367 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4368 &offset, &device[0], &inode, &filename[0]))
4369 {
4370 size = endaddr - addr;
4371
4372 /* Get the segment's permissions. */
4373 read = (strchr (permissions, 'r') != 0);
4374 write = (strchr (permissions, 'w') != 0);
4375 exec = (strchr (permissions, 'x') != 0);
4376
4377 if (info_verbose)
4378 {
4379 fprintf_filtered (gdb_stdout,
4380 "Save segment, %s bytes at %s (%c%c%c)",
4381 plongest (size), paddress (target_gdbarch, addr),
4382 read ? 'r' : ' ',
4383 write ? 'w' : ' ', exec ? 'x' : ' ');
4384 if (filename[0])
4385 fprintf_filtered (gdb_stdout, " for %s", filename);
4386 fprintf_filtered (gdb_stdout, "\n");
4387 }
4388
4389 /* Invoke the callback function to create the corefile
4390 segment. */
4391 func (addr, size, read, write, exec, obfd);
4392 }
4393 do_cleanups (cleanup);
4394 return 0;
4395 }
4396
4397 static int
4398 find_signalled_thread (struct thread_info *info, void *data)
4399 {
4400 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4401 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4402 return 1;
4403
4404 return 0;
4405 }
4406
4407 static enum target_signal
4408 find_stop_signal (void)
4409 {
4410 struct thread_info *info =
4411 iterate_over_threads (find_signalled_thread, NULL);
4412
4413 if (info)
4414 return info->suspend.stop_signal;
4415 else
4416 return TARGET_SIGNAL_0;
4417 }
4418
4419 /* Records the thread's register state for the corefile note
4420 section. */
4421
4422 static char *
4423 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4424 char *note_data, int *note_size,
4425 enum target_signal stop_signal)
4426 {
4427 unsigned long lwp = ptid_get_lwp (ptid);
4428 struct gdbarch *gdbarch = target_gdbarch;
4429 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4430 const struct regset *regset;
4431 int core_regset_p;
4432 struct cleanup *old_chain;
4433 struct core_regset_section *sect_list;
4434 char *gdb_regset;
4435
4436 old_chain = save_inferior_ptid ();
4437 inferior_ptid = ptid;
4438 target_fetch_registers (regcache, -1);
4439 do_cleanups (old_chain);
4440
4441 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4442 sect_list = gdbarch_core_regset_sections (gdbarch);
4443
4444 /* The loop below uses the new struct core_regset_section, which stores
4445 the supported section names and sizes for the core file. Note that
4446 note PRSTATUS needs to be treated specially. But the other notes are
4447 structurally the same, so they can benefit from the new struct. */
4448 if (core_regset_p && sect_list != NULL)
4449 while (sect_list->sect_name != NULL)
4450 {
4451 regset = gdbarch_regset_from_core_section (gdbarch,
4452 sect_list->sect_name,
4453 sect_list->size);
4454 gdb_assert (regset && regset->collect_regset);
4455 gdb_regset = xmalloc (sect_list->size);
4456 regset->collect_regset (regset, regcache, -1,
4457 gdb_regset, sect_list->size);
4458
4459 if (strcmp (sect_list->sect_name, ".reg") == 0)
4460 note_data = (char *) elfcore_write_prstatus
4461 (obfd, note_data, note_size,
4462 lwp, target_signal_to_host (stop_signal),
4463 gdb_regset);
4464 else
4465 note_data = (char *) elfcore_write_register_note
4466 (obfd, note_data, note_size,
4467 sect_list->sect_name, gdb_regset,
4468 sect_list->size);
4469 xfree (gdb_regset);
4470 sect_list++;
4471 }
4472
4473 /* For architectures that does not have the struct core_regset_section
4474 implemented, we use the old method. When all the architectures have
4475 the new support, the code below should be deleted. */
4476 else
4477 {
4478 gdb_gregset_t gregs;
4479 gdb_fpregset_t fpregs;
4480
4481 if (core_regset_p
4482 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4483 sizeof (gregs)))
4484 != NULL && regset->collect_regset != NULL)
4485 regset->collect_regset (regset, regcache, -1,
4486 &gregs, sizeof (gregs));
4487 else
4488 fill_gregset (regcache, &gregs, -1);
4489
4490 note_data = (char *) elfcore_write_prstatus
4491 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4492 &gregs);
4493
4494 if (core_regset_p
4495 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4496 sizeof (fpregs)))
4497 != NULL && regset->collect_regset != NULL)
4498 regset->collect_regset (regset, regcache, -1,
4499 &fpregs, sizeof (fpregs));
4500 else
4501 fill_fpregset (regcache, &fpregs, -1);
4502
4503 note_data = (char *) elfcore_write_prfpreg (obfd,
4504 note_data,
4505 note_size,
4506 &fpregs, sizeof (fpregs));
4507 }
4508
4509 return note_data;
4510 }
4511
4512 struct linux_nat_corefile_thread_data
4513 {
4514 bfd *obfd;
4515 char *note_data;
4516 int *note_size;
4517 int num_notes;
4518 enum target_signal stop_signal;
4519 };
4520
4521 /* Called by gdbthread.c once per thread. Records the thread's
4522 register state for the corefile note section. */
4523
4524 static int
4525 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4526 {
4527 struct linux_nat_corefile_thread_data *args = data;
4528
4529 args->note_data = linux_nat_do_thread_registers (args->obfd,
4530 ti->ptid,
4531 args->note_data,
4532 args->note_size,
4533 args->stop_signal);
4534 args->num_notes++;
4535
4536 return 0;
4537 }
4538
4539 /* Enumerate spufs IDs for process PID. */
4540
4541 static void
4542 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4543 {
4544 char path[128];
4545 DIR *dir;
4546 struct dirent *entry;
4547
4548 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4549 dir = opendir (path);
4550 if (!dir)
4551 return;
4552
4553 rewinddir (dir);
4554 while ((entry = readdir (dir)) != NULL)
4555 {
4556 struct stat st;
4557 struct statfs stfs;
4558 int fd;
4559
4560 fd = atoi (entry->d_name);
4561 if (!fd)
4562 continue;
4563
4564 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4565 if (stat (path, &st) != 0)
4566 continue;
4567 if (!S_ISDIR (st.st_mode))
4568 continue;
4569
4570 if (statfs (path, &stfs) != 0)
4571 continue;
4572 if (stfs.f_type != SPUFS_MAGIC)
4573 continue;
4574
4575 callback (data, fd);
4576 }
4577
4578 closedir (dir);
4579 }
4580
4581 /* Generate corefile notes for SPU contexts. */
4582
4583 struct linux_spu_corefile_data
4584 {
4585 bfd *obfd;
4586 char *note_data;
4587 int *note_size;
4588 };
4589
4590 static void
4591 linux_spu_corefile_callback (void *data, int fd)
4592 {
4593 struct linux_spu_corefile_data *args = data;
4594 int i;
4595
4596 static const char *spu_files[] =
4597 {
4598 "object-id",
4599 "mem",
4600 "regs",
4601 "fpcr",
4602 "lslr",
4603 "decr",
4604 "decr_status",
4605 "signal1",
4606 "signal1_type",
4607 "signal2",
4608 "signal2_type",
4609 "event_mask",
4610 "event_status",
4611 "mbox_info",
4612 "ibox_info",
4613 "wbox_info",
4614 "dma_info",
4615 "proxydma_info",
4616 };
4617
4618 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4619 {
4620 char annex[32], note_name[32];
4621 gdb_byte *spu_data;
4622 LONGEST spu_len;
4623
4624 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4625 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4626 annex, &spu_data);
4627 if (spu_len > 0)
4628 {
4629 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4630 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4631 args->note_size, note_name,
4632 NT_SPU, spu_data, spu_len);
4633 xfree (spu_data);
4634 }
4635 }
4636 }
4637
4638 static char *
4639 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4640 {
4641 struct linux_spu_corefile_data args;
4642
4643 args.obfd = obfd;
4644 args.note_data = note_data;
4645 args.note_size = note_size;
4646
4647 iterate_over_spus (PIDGET (inferior_ptid),
4648 linux_spu_corefile_callback, &args);
4649
4650 return args.note_data;
4651 }
4652
4653 /* Fills the "to_make_corefile_note" target vector. Builds the note
4654 section for a corefile, and returns it in a malloc buffer. */
4655
4656 static char *
4657 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4658 {
4659 struct linux_nat_corefile_thread_data thread_args;
4660 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4661 char fname[16] = { '\0' };
4662 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4663 char psargs[80] = { '\0' };
4664 char *note_data = NULL;
4665 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4666 gdb_byte *auxv;
4667 int auxv_len;
4668
4669 if (get_exec_file (0))
4670 {
4671 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4672 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4673 if (get_inferior_args ())
4674 {
4675 char *string_end;
4676 char *psargs_end = psargs + sizeof (psargs);
4677
4678 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4679 strings fine. */
4680 string_end = memchr (psargs, 0, sizeof (psargs));
4681 if (string_end != NULL)
4682 {
4683 *string_end++ = ' ';
4684 strncpy (string_end, get_inferior_args (),
4685 psargs_end - string_end);
4686 }
4687 }
4688 note_data = (char *) elfcore_write_prpsinfo (obfd,
4689 note_data,
4690 note_size, fname, psargs);
4691 }
4692
4693 /* Dump information for threads. */
4694 thread_args.obfd = obfd;
4695 thread_args.note_data = note_data;
4696 thread_args.note_size = note_size;
4697 thread_args.num_notes = 0;
4698 thread_args.stop_signal = find_stop_signal ();
4699 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4700 gdb_assert (thread_args.num_notes != 0);
4701 note_data = thread_args.note_data;
4702
4703 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4704 NULL, &auxv);
4705 if (auxv_len > 0)
4706 {
4707 note_data = elfcore_write_note (obfd, note_data, note_size,
4708 "CORE", NT_AUXV, auxv, auxv_len);
4709 xfree (auxv);
4710 }
4711
4712 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4713
4714 make_cleanup (xfree, note_data);
4715 return note_data;
4716 }
4717
4718 /* Implement the "info proc" command. */
4719
4720 static void
4721 linux_nat_info_proc_cmd (char *args, int from_tty)
4722 {
4723 /* A long is used for pid instead of an int to avoid a loss of precision
4724 compiler warning from the output of strtoul. */
4725 long pid = PIDGET (inferior_ptid);
4726 FILE *procfile;
4727 char **argv = NULL;
4728 char buffer[MAXPATHLEN];
4729 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4730 int cmdline_f = 1;
4731 int cwd_f = 1;
4732 int exe_f = 1;
4733 int mappings_f = 0;
4734 int status_f = 0;
4735 int stat_f = 0;
4736 int all = 0;
4737 struct stat dummy;
4738
4739 if (args)
4740 {
4741 /* Break up 'args' into an argv array. */
4742 argv = gdb_buildargv (args);
4743 make_cleanup_freeargv (argv);
4744 }
4745 while (argv != NULL && *argv != NULL)
4746 {
4747 if (isdigit (argv[0][0]))
4748 {
4749 pid = strtoul (argv[0], NULL, 10);
4750 }
4751 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4752 {
4753 mappings_f = 1;
4754 }
4755 else if (strcmp (argv[0], "status") == 0)
4756 {
4757 status_f = 1;
4758 }
4759 else if (strcmp (argv[0], "stat") == 0)
4760 {
4761 stat_f = 1;
4762 }
4763 else if (strcmp (argv[0], "cmd") == 0)
4764 {
4765 cmdline_f = 1;
4766 }
4767 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4768 {
4769 exe_f = 1;
4770 }
4771 else if (strcmp (argv[0], "cwd") == 0)
4772 {
4773 cwd_f = 1;
4774 }
4775 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4776 {
4777 all = 1;
4778 }
4779 else
4780 {
4781 /* [...] (future options here). */
4782 }
4783 argv++;
4784 }
4785 if (pid == 0)
4786 error (_("No current process: you must name one."));
4787
4788 sprintf (fname1, "/proc/%ld", pid);
4789 if (stat (fname1, &dummy) != 0)
4790 error (_("No /proc directory: '%s'"), fname1);
4791
4792 printf_filtered (_("process %ld\n"), pid);
4793 if (cmdline_f || all)
4794 {
4795 sprintf (fname1, "/proc/%ld/cmdline", pid);
4796 if ((procfile = fopen (fname1, "r")) != NULL)
4797 {
4798 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4799
4800 if (fgets (buffer, sizeof (buffer), procfile))
4801 printf_filtered ("cmdline = '%s'\n", buffer);
4802 else
4803 warning (_("unable to read '%s'"), fname1);
4804 do_cleanups (cleanup);
4805 }
4806 else
4807 warning (_("unable to open /proc file '%s'"), fname1);
4808 }
4809 if (cwd_f || all)
4810 {
4811 sprintf (fname1, "/proc/%ld/cwd", pid);
4812 memset (fname2, 0, sizeof (fname2));
4813 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4814 printf_filtered ("cwd = '%s'\n", fname2);
4815 else
4816 warning (_("unable to read link '%s'"), fname1);
4817 }
4818 if (exe_f || all)
4819 {
4820 sprintf (fname1, "/proc/%ld/exe", pid);
4821 memset (fname2, 0, sizeof (fname2));
4822 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4823 printf_filtered ("exe = '%s'\n", fname2);
4824 else
4825 warning (_("unable to read link '%s'"), fname1);
4826 }
4827 if (mappings_f || all)
4828 {
4829 sprintf (fname1, "/proc/%ld/maps", pid);
4830 if ((procfile = fopen (fname1, "r")) != NULL)
4831 {
4832 long long addr, endaddr, size, offset, inode;
4833 char permissions[8], device[8], filename[MAXPATHLEN];
4834 struct cleanup *cleanup;
4835
4836 cleanup = make_cleanup_fclose (procfile);
4837 printf_filtered (_("Mapped address spaces:\n\n"));
4838 if (gdbarch_addr_bit (target_gdbarch) == 32)
4839 {
4840 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4841 "Start Addr",
4842 " End Addr",
4843 " Size", " Offset", "objfile");
4844 }
4845 else
4846 {
4847 printf_filtered (" %18s %18s %10s %10s %7s\n",
4848 "Start Addr",
4849 " End Addr",
4850 " Size", " Offset", "objfile");
4851 }
4852
4853 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4854 &offset, &device[0], &inode, &filename[0]))
4855 {
4856 size = endaddr - addr;
4857
4858 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4859 calls here (and possibly above) should be abstracted
4860 out into their own functions? Andrew suggests using
4861 a generic local_address_string instead to print out
4862 the addresses; that makes sense to me, too. */
4863
4864 if (gdbarch_addr_bit (target_gdbarch) == 32)
4865 {
4866 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4867 (unsigned long) addr, /* FIXME: pr_addr */
4868 (unsigned long) endaddr,
4869 (int) size,
4870 (unsigned int) offset,
4871 filename[0] ? filename : "");
4872 }
4873 else
4874 {
4875 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4876 (unsigned long) addr, /* FIXME: pr_addr */
4877 (unsigned long) endaddr,
4878 (int) size,
4879 (unsigned int) offset,
4880 filename[0] ? filename : "");
4881 }
4882 }
4883
4884 do_cleanups (cleanup);
4885 }
4886 else
4887 warning (_("unable to open /proc file '%s'"), fname1);
4888 }
4889 if (status_f || all)
4890 {
4891 sprintf (fname1, "/proc/%ld/status", pid);
4892 if ((procfile = fopen (fname1, "r")) != NULL)
4893 {
4894 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4895
4896 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4897 puts_filtered (buffer);
4898 do_cleanups (cleanup);
4899 }
4900 else
4901 warning (_("unable to open /proc file '%s'"), fname1);
4902 }
4903 if (stat_f || all)
4904 {
4905 sprintf (fname1, "/proc/%ld/stat", pid);
4906 if ((procfile = fopen (fname1, "r")) != NULL)
4907 {
4908 int itmp;
4909 char ctmp;
4910 long ltmp;
4911 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4912
4913 if (fscanf (procfile, "%d ", &itmp) > 0)
4914 printf_filtered (_("Process: %d\n"), itmp);
4915 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4916 printf_filtered (_("Exec file: %s\n"), buffer);
4917 if (fscanf (procfile, "%c ", &ctmp) > 0)
4918 printf_filtered (_("State: %c\n"), ctmp);
4919 if (fscanf (procfile, "%d ", &itmp) > 0)
4920 printf_filtered (_("Parent process: %d\n"), itmp);
4921 if (fscanf (procfile, "%d ", &itmp) > 0)
4922 printf_filtered (_("Process group: %d\n"), itmp);
4923 if (fscanf (procfile, "%d ", &itmp) > 0)
4924 printf_filtered (_("Session id: %d\n"), itmp);
4925 if (fscanf (procfile, "%d ", &itmp) > 0)
4926 printf_filtered (_("TTY: %d\n"), itmp);
4927 if (fscanf (procfile, "%d ", &itmp) > 0)
4928 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4929 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4930 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4932 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4933 (unsigned long) ltmp);
4934 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4935 printf_filtered (_("Minor faults, children: %lu\n"),
4936 (unsigned long) ltmp);
4937 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4938 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4939 (unsigned long) ltmp);
4940 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4941 printf_filtered (_("Major faults, children: %lu\n"),
4942 (unsigned long) ltmp);
4943 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4944 printf_filtered (_("utime: %ld\n"), ltmp);
4945 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4946 printf_filtered (_("stime: %ld\n"), ltmp);
4947 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4948 printf_filtered (_("utime, children: %ld\n"), ltmp);
4949 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4950 printf_filtered (_("stime, children: %ld\n"), ltmp);
4951 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4952 printf_filtered (_("jiffies remaining in current "
4953 "time slice: %ld\n"), ltmp);
4954 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4955 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4956 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4957 printf_filtered (_("jiffies until next timeout: %lu\n"),
4958 (unsigned long) ltmp);
4959 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4960 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4961 (unsigned long) ltmp);
4962 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4963 printf_filtered (_("start time (jiffies since "
4964 "system boot): %ld\n"), ltmp);
4965 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4966 printf_filtered (_("Virtual memory size: %lu\n"),
4967 (unsigned long) ltmp);
4968 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4969 printf_filtered (_("Resident set size: %lu\n"),
4970 (unsigned long) ltmp);
4971 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4972 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4973 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4974 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4975 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4976 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4977 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4978 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4979 #if 0 /* Don't know how architecture-dependent the rest is...
4980 Anyway the signal bitmap info is available from "status". */
4981 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4982 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4983 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4984 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4985 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4986 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4987 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4988 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4989 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4990 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4991 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4992 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4993 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4994 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4995 #endif
4996 do_cleanups (cleanup);
4997 }
4998 else
4999 warning (_("unable to open /proc file '%s'"), fname1);
5000 }
5001 }
5002
5003 /* Implement the to_xfer_partial interface for memory reads using the /proc
5004 filesystem. Because we can use a single read() call for /proc, this
5005 can be much more efficient than banging away at PTRACE_PEEKTEXT,
5006 but it doesn't support writes. */
5007
5008 static LONGEST
5009 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
5010 const char *annex, gdb_byte *readbuf,
5011 const gdb_byte *writebuf,
5012 ULONGEST offset, LONGEST len)
5013 {
5014 LONGEST ret;
5015 int fd;
5016 char filename[64];
5017
5018 if (object != TARGET_OBJECT_MEMORY || !readbuf)
5019 return 0;
5020
5021 /* Don't bother for one word. */
5022 if (len < 3 * sizeof (long))
5023 return 0;
5024
5025 /* We could keep this file open and cache it - possibly one per
5026 thread. That requires some juggling, but is even faster. */
5027 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
5028 fd = open (filename, O_RDONLY | O_LARGEFILE);
5029 if (fd == -1)
5030 return 0;
5031
5032 /* If pread64 is available, use it. It's faster if the kernel
5033 supports it (only one syscall), and it's 64-bit safe even on
5034 32-bit platforms (for instance, SPARC debugging a SPARC64
5035 application). */
5036 #ifdef HAVE_PREAD64
5037 if (pread64 (fd, readbuf, len, offset) != len)
5038 #else
5039 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
5040 #endif
5041 ret = 0;
5042 else
5043 ret = len;
5044
5045 close (fd);
5046 return ret;
5047 }
5048
5049
5050 /* Enumerate spufs IDs for process PID. */
5051 static LONGEST
5052 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
5053 {
5054 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
5055 LONGEST pos = 0;
5056 LONGEST written = 0;
5057 char path[128];
5058 DIR *dir;
5059 struct dirent *entry;
5060
5061 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5062 dir = opendir (path);
5063 if (!dir)
5064 return -1;
5065
5066 rewinddir (dir);
5067 while ((entry = readdir (dir)) != NULL)
5068 {
5069 struct stat st;
5070 struct statfs stfs;
5071 int fd;
5072
5073 fd = atoi (entry->d_name);
5074 if (!fd)
5075 continue;
5076
5077 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5078 if (stat (path, &st) != 0)
5079 continue;
5080 if (!S_ISDIR (st.st_mode))
5081 continue;
5082
5083 if (statfs (path, &stfs) != 0)
5084 continue;
5085 if (stfs.f_type != SPUFS_MAGIC)
5086 continue;
5087
5088 if (pos >= offset && pos + 4 <= offset + len)
5089 {
5090 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5091 written += 4;
5092 }
5093 pos += 4;
5094 }
5095
5096 closedir (dir);
5097 return written;
5098 }
5099
5100 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5101 object type, using the /proc file system. */
5102 static LONGEST
5103 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5104 const char *annex, gdb_byte *readbuf,
5105 const gdb_byte *writebuf,
5106 ULONGEST offset, LONGEST len)
5107 {
5108 char buf[128];
5109 int fd = 0;
5110 int ret = -1;
5111 int pid = PIDGET (inferior_ptid);
5112
5113 if (!annex)
5114 {
5115 if (!readbuf)
5116 return -1;
5117 else
5118 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5119 }
5120
5121 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5122 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5123 if (fd <= 0)
5124 return -1;
5125
5126 if (offset != 0
5127 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5128 {
5129 close (fd);
5130 return 0;
5131 }
5132
5133 if (writebuf)
5134 ret = write (fd, writebuf, (size_t) len);
5135 else if (readbuf)
5136 ret = read (fd, readbuf, (size_t) len);
5137
5138 close (fd);
5139 return ret;
5140 }
5141
5142
5143 /* Parse LINE as a signal set and add its set bits to SIGS. */
5144
5145 static void
5146 add_line_to_sigset (const char *line, sigset_t *sigs)
5147 {
5148 int len = strlen (line) - 1;
5149 const char *p;
5150 int signum;
5151
5152 if (line[len] != '\n')
5153 error (_("Could not parse signal set: %s"), line);
5154
5155 p = line;
5156 signum = len * 4;
5157 while (len-- > 0)
5158 {
5159 int digit;
5160
5161 if (*p >= '0' && *p <= '9')
5162 digit = *p - '0';
5163 else if (*p >= 'a' && *p <= 'f')
5164 digit = *p - 'a' + 10;
5165 else
5166 error (_("Could not parse signal set: %s"), line);
5167
5168 signum -= 4;
5169
5170 if (digit & 1)
5171 sigaddset (sigs, signum + 1);
5172 if (digit & 2)
5173 sigaddset (sigs, signum + 2);
5174 if (digit & 4)
5175 sigaddset (sigs, signum + 3);
5176 if (digit & 8)
5177 sigaddset (sigs, signum + 4);
5178
5179 p++;
5180 }
5181 }
5182
5183 /* Find process PID's pending signals from /proc/pid/status and set
5184 SIGS to match. */
5185
5186 void
5187 linux_proc_pending_signals (int pid, sigset_t *pending,
5188 sigset_t *blocked, sigset_t *ignored)
5189 {
5190 FILE *procfile;
5191 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5192 struct cleanup *cleanup;
5193
5194 sigemptyset (pending);
5195 sigemptyset (blocked);
5196 sigemptyset (ignored);
5197 sprintf (fname, "/proc/%d/status", pid);
5198 procfile = fopen (fname, "r");
5199 if (procfile == NULL)
5200 error (_("Could not open %s"), fname);
5201 cleanup = make_cleanup_fclose (procfile);
5202
5203 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5204 {
5205 /* Normal queued signals are on the SigPnd line in the status
5206 file. However, 2.6 kernels also have a "shared" pending
5207 queue for delivering signals to a thread group, so check for
5208 a ShdPnd line also.
5209
5210 Unfortunately some Red Hat kernels include the shared pending
5211 queue but not the ShdPnd status field. */
5212
5213 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5214 add_line_to_sigset (buffer + 8, pending);
5215 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5216 add_line_to_sigset (buffer + 8, pending);
5217 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5218 add_line_to_sigset (buffer + 8, blocked);
5219 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5220 add_line_to_sigset (buffer + 8, ignored);
5221 }
5222
5223 do_cleanups (cleanup);
5224 }
5225
5226 static LONGEST
5227 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5228 const char *annex, gdb_byte *readbuf,
5229 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5230 {
5231 gdb_assert (object == TARGET_OBJECT_OSDATA);
5232
5233 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5234 }
5235
5236 static LONGEST
5237 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5238 const char *annex, gdb_byte *readbuf,
5239 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5240 {
5241 LONGEST xfer;
5242
5243 if (object == TARGET_OBJECT_AUXV)
5244 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5245 offset, len);
5246
5247 if (object == TARGET_OBJECT_OSDATA)
5248 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5249 offset, len);
5250
5251 if (object == TARGET_OBJECT_SPU)
5252 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5253 offset, len);
5254
5255 /* GDB calculates all the addresses in possibly larget width of the address.
5256 Address width needs to be masked before its final use - either by
5257 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5258
5259 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5260
5261 if (object == TARGET_OBJECT_MEMORY)
5262 {
5263 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5264
5265 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5266 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5267 }
5268
5269 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5270 offset, len);
5271 if (xfer != 0)
5272 return xfer;
5273
5274 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5275 offset, len);
5276 }
5277
5278 /* Create a prototype generic GNU/Linux target. The client can override
5279 it with local methods. */
5280
5281 static void
5282 linux_target_install_ops (struct target_ops *t)
5283 {
5284 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5285 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5286 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5287 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5288 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5289 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5290 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5291 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5292 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5293 t->to_post_attach = linux_child_post_attach;
5294 t->to_follow_fork = linux_child_follow_fork;
5295 t->to_find_memory_regions = linux_nat_find_memory_regions;
5296 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5297
5298 super_xfer_partial = t->to_xfer_partial;
5299 t->to_xfer_partial = linux_xfer_partial;
5300 }
5301
5302 struct target_ops *
5303 linux_target (void)
5304 {
5305 struct target_ops *t;
5306
5307 t = inf_ptrace_target ();
5308 linux_target_install_ops (t);
5309
5310 return t;
5311 }
5312
5313 struct target_ops *
5314 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5315 {
5316 struct target_ops *t;
5317
5318 t = inf_ptrace_trad_target (register_u_offset);
5319 linux_target_install_ops (t);
5320
5321 return t;
5322 }
5323
5324 /* target_is_async_p implementation. */
5325
5326 static int
5327 linux_nat_is_async_p (void)
5328 {
5329 /* NOTE: palves 2008-03-21: We're only async when the user requests
5330 it explicitly with the "set target-async" command.
5331 Someday, linux will always be async. */
5332 return target_async_permitted;
5333 }
5334
5335 /* target_can_async_p implementation. */
5336
5337 static int
5338 linux_nat_can_async_p (void)
5339 {
5340 /* NOTE: palves 2008-03-21: We're only async when the user requests
5341 it explicitly with the "set target-async" command.
5342 Someday, linux will always be async. */
5343 return target_async_permitted;
5344 }
5345
5346 static int
5347 linux_nat_supports_non_stop (void)
5348 {
5349 return 1;
5350 }
5351
5352 /* True if we want to support multi-process. To be removed when GDB
5353 supports multi-exec. */
5354
5355 int linux_multi_process = 1;
5356
5357 static int
5358 linux_nat_supports_multi_process (void)
5359 {
5360 return linux_multi_process;
5361 }
5362
5363 static int
5364 linux_nat_supports_disable_randomization (void)
5365 {
5366 #ifdef HAVE_PERSONALITY
5367 return 1;
5368 #else
5369 return 0;
5370 #endif
5371 }
5372
5373 static int async_terminal_is_ours = 1;
5374
5375 /* target_terminal_inferior implementation. */
5376
5377 static void
5378 linux_nat_terminal_inferior (void)
5379 {
5380 if (!target_is_async_p ())
5381 {
5382 /* Async mode is disabled. */
5383 terminal_inferior ();
5384 return;
5385 }
5386
5387 terminal_inferior ();
5388
5389 /* Calls to target_terminal_*() are meant to be idempotent. */
5390 if (!async_terminal_is_ours)
5391 return;
5392
5393 delete_file_handler (input_fd);
5394 async_terminal_is_ours = 0;
5395 set_sigint_trap ();
5396 }
5397
5398 /* target_terminal_ours implementation. */
5399
5400 static void
5401 linux_nat_terminal_ours (void)
5402 {
5403 if (!target_is_async_p ())
5404 {
5405 /* Async mode is disabled. */
5406 terminal_ours ();
5407 return;
5408 }
5409
5410 /* GDB should never give the terminal to the inferior if the
5411 inferior is running in the background (run&, continue&, etc.),
5412 but claiming it sure should. */
5413 terminal_ours ();
5414
5415 if (async_terminal_is_ours)
5416 return;
5417
5418 clear_sigint_trap ();
5419 add_file_handler (input_fd, stdin_event_handler, 0);
5420 async_terminal_is_ours = 1;
5421 }
5422
5423 static void (*async_client_callback) (enum inferior_event_type event_type,
5424 void *context);
5425 static void *async_client_context;
5426
5427 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5428 so we notice when any child changes state, and notify the
5429 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5430 above to wait for the arrival of a SIGCHLD. */
5431
5432 static void
5433 sigchld_handler (int signo)
5434 {
5435 int old_errno = errno;
5436
5437 if (debug_linux_nat)
5438 ui_file_write_async_safe (gdb_stdlog,
5439 "sigchld\n", sizeof ("sigchld\n") - 1);
5440
5441 if (signo == SIGCHLD
5442 && linux_nat_event_pipe[0] != -1)
5443 async_file_mark (); /* Let the event loop know that there are
5444 events to handle. */
5445
5446 errno = old_errno;
5447 }
5448
5449 /* Callback registered with the target events file descriptor. */
5450
5451 static void
5452 handle_target_event (int error, gdb_client_data client_data)
5453 {
5454 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5455 }
5456
5457 /* Create/destroy the target events pipe. Returns previous state. */
5458
5459 static int
5460 linux_async_pipe (int enable)
5461 {
5462 int previous = (linux_nat_event_pipe[0] != -1);
5463
5464 if (previous != enable)
5465 {
5466 sigset_t prev_mask;
5467
5468 block_child_signals (&prev_mask);
5469
5470 if (enable)
5471 {
5472 if (pipe (linux_nat_event_pipe) == -1)
5473 internal_error (__FILE__, __LINE__,
5474 "creating event pipe failed.");
5475
5476 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5477 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5478 }
5479 else
5480 {
5481 close (linux_nat_event_pipe[0]);
5482 close (linux_nat_event_pipe[1]);
5483 linux_nat_event_pipe[0] = -1;
5484 linux_nat_event_pipe[1] = -1;
5485 }
5486
5487 restore_child_signals_mask (&prev_mask);
5488 }
5489
5490 return previous;
5491 }
5492
5493 /* target_async implementation. */
5494
5495 static void
5496 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5497 void *context), void *context)
5498 {
5499 if (callback != NULL)
5500 {
5501 async_client_callback = callback;
5502 async_client_context = context;
5503 if (!linux_async_pipe (1))
5504 {
5505 add_file_handler (linux_nat_event_pipe[0],
5506 handle_target_event, NULL);
5507 /* There may be pending events to handle. Tell the event loop
5508 to poll them. */
5509 async_file_mark ();
5510 }
5511 }
5512 else
5513 {
5514 async_client_callback = callback;
5515 async_client_context = context;
5516 delete_file_handler (linux_nat_event_pipe[0]);
5517 linux_async_pipe (0);
5518 }
5519 return;
5520 }
5521
5522 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5523 event came out. */
5524
5525 static int
5526 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5527 {
5528 if (!lwp->stopped)
5529 {
5530 ptid_t ptid = lwp->ptid;
5531
5532 if (debug_linux_nat)
5533 fprintf_unfiltered (gdb_stdlog,
5534 "LNSL: running -> suspending %s\n",
5535 target_pid_to_str (lwp->ptid));
5536
5537
5538 if (lwp->last_resume_kind == resume_stop)
5539 {
5540 if (debug_linux_nat)
5541 fprintf_unfiltered (gdb_stdlog,
5542 "linux-nat: already stopping LWP %ld at "
5543 "GDB's request\n",
5544 ptid_get_lwp (lwp->ptid));
5545 return 0;
5546 }
5547
5548 stop_callback (lwp, NULL);
5549 lwp->last_resume_kind = resume_stop;
5550 }
5551 else
5552 {
5553 /* Already known to be stopped; do nothing. */
5554
5555 if (debug_linux_nat)
5556 {
5557 if (find_thread_ptid (lwp->ptid)->stop_requested)
5558 fprintf_unfiltered (gdb_stdlog,
5559 "LNSL: already stopped/stop_requested %s\n",
5560 target_pid_to_str (lwp->ptid));
5561 else
5562 fprintf_unfiltered (gdb_stdlog,
5563 "LNSL: already stopped/no "
5564 "stop_requested yet %s\n",
5565 target_pid_to_str (lwp->ptid));
5566 }
5567 }
5568 return 0;
5569 }
5570
5571 static void
5572 linux_nat_stop (ptid_t ptid)
5573 {
5574 if (non_stop)
5575 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5576 else
5577 linux_ops->to_stop (ptid);
5578 }
5579
5580 static void
5581 linux_nat_close (int quitting)
5582 {
5583 /* Unregister from the event loop. */
5584 if (target_is_async_p ())
5585 target_async (NULL, 0);
5586
5587 if (linux_ops->to_close)
5588 linux_ops->to_close (quitting);
5589 }
5590
5591 /* When requests are passed down from the linux-nat layer to the
5592 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5593 used. The address space pointer is stored in the inferior object,
5594 but the common code that is passed such ptid can't tell whether
5595 lwpid is a "main" process id or not (it assumes so). We reverse
5596 look up the "main" process id from the lwp here. */
5597
5598 struct address_space *
5599 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5600 {
5601 struct lwp_info *lwp;
5602 struct inferior *inf;
5603 int pid;
5604
5605 pid = GET_LWP (ptid);
5606 if (GET_LWP (ptid) == 0)
5607 {
5608 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5609 tgid. */
5610 lwp = find_lwp_pid (ptid);
5611 pid = GET_PID (lwp->ptid);
5612 }
5613 else
5614 {
5615 /* A (pid,lwpid,0) ptid. */
5616 pid = GET_PID (ptid);
5617 }
5618
5619 inf = find_inferior_pid (pid);
5620 gdb_assert (inf != NULL);
5621 return inf->aspace;
5622 }
5623
5624 int
5625 linux_nat_core_of_thread_1 (ptid_t ptid)
5626 {
5627 struct cleanup *back_to;
5628 char *filename;
5629 FILE *f;
5630 char *content = NULL;
5631 char *p;
5632 char *ts = 0;
5633 int content_read = 0;
5634 int i;
5635 int core;
5636
5637 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5638 GET_PID (ptid), GET_LWP (ptid));
5639 back_to = make_cleanup (xfree, filename);
5640
5641 f = fopen (filename, "r");
5642 if (!f)
5643 {
5644 do_cleanups (back_to);
5645 return -1;
5646 }
5647
5648 make_cleanup_fclose (f);
5649
5650 for (;;)
5651 {
5652 int n;
5653
5654 content = xrealloc (content, content_read + 1024);
5655 n = fread (content + content_read, 1, 1024, f);
5656 content_read += n;
5657 if (n < 1024)
5658 {
5659 content[content_read] = '\0';
5660 break;
5661 }
5662 }
5663
5664 make_cleanup (xfree, content);
5665
5666 p = strchr (content, '(');
5667
5668 /* Skip ")". */
5669 if (p != NULL)
5670 p = strchr (p, ')');
5671 if (p != NULL)
5672 p++;
5673
5674 /* If the first field after program name has index 0, then core number is
5675 the field with index 36. There's no constant for that anywhere. */
5676 if (p != NULL)
5677 p = strtok_r (p, " ", &ts);
5678 for (i = 0; p != NULL && i != 36; ++i)
5679 p = strtok_r (NULL, " ", &ts);
5680
5681 if (p == NULL || sscanf (p, "%d", &core) == 0)
5682 core = -1;
5683
5684 do_cleanups (back_to);
5685
5686 return core;
5687 }
5688
5689 /* Return the cached value of the processor core for thread PTID. */
5690
5691 int
5692 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5693 {
5694 struct lwp_info *info = find_lwp_pid (ptid);
5695
5696 if (info)
5697 return info->core;
5698 return -1;
5699 }
5700
5701 void
5702 linux_nat_add_target (struct target_ops *t)
5703 {
5704 /* Save the provided single-threaded target. We save this in a separate
5705 variable because another target we've inherited from (e.g. inf-ptrace)
5706 may have saved a pointer to T; we want to use it for the final
5707 process stratum target. */
5708 linux_ops_saved = *t;
5709 linux_ops = &linux_ops_saved;
5710
5711 /* Override some methods for multithreading. */
5712 t->to_create_inferior = linux_nat_create_inferior;
5713 t->to_attach = linux_nat_attach;
5714 t->to_detach = linux_nat_detach;
5715 t->to_resume = linux_nat_resume;
5716 t->to_wait = linux_nat_wait;
5717 t->to_pass_signals = linux_nat_pass_signals;
5718 t->to_xfer_partial = linux_nat_xfer_partial;
5719 t->to_kill = linux_nat_kill;
5720 t->to_mourn_inferior = linux_nat_mourn_inferior;
5721 t->to_thread_alive = linux_nat_thread_alive;
5722 t->to_pid_to_str = linux_nat_pid_to_str;
5723 t->to_thread_name = linux_nat_thread_name;
5724 t->to_has_thread_control = tc_schedlock;
5725 t->to_thread_address_space = linux_nat_thread_address_space;
5726 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5727 t->to_stopped_data_address = linux_nat_stopped_data_address;
5728
5729 t->to_can_async_p = linux_nat_can_async_p;
5730 t->to_is_async_p = linux_nat_is_async_p;
5731 t->to_supports_non_stop = linux_nat_supports_non_stop;
5732 t->to_async = linux_nat_async;
5733 t->to_terminal_inferior = linux_nat_terminal_inferior;
5734 t->to_terminal_ours = linux_nat_terminal_ours;
5735 t->to_close = linux_nat_close;
5736
5737 /* Methods for non-stop support. */
5738 t->to_stop = linux_nat_stop;
5739
5740 t->to_supports_multi_process = linux_nat_supports_multi_process;
5741
5742 t->to_supports_disable_randomization
5743 = linux_nat_supports_disable_randomization;
5744
5745 t->to_core_of_thread = linux_nat_core_of_thread;
5746
5747 /* We don't change the stratum; this target will sit at
5748 process_stratum and thread_db will set at thread_stratum. This
5749 is a little strange, since this is a multi-threaded-capable
5750 target, but we want to be on the stack below thread_db, and we
5751 also want to be used for single-threaded processes. */
5752
5753 add_target (t);
5754 }
5755
5756 /* Register a method to call whenever a new thread is attached. */
5757 void
5758 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5759 {
5760 /* Save the pointer. We only support a single registered instance
5761 of the GNU/Linux native target, so we do not need to map this to
5762 T. */
5763 linux_nat_new_thread = new_thread;
5764 }
5765
5766 /* Register a method that converts a siginfo object between the layout
5767 that ptrace returns, and the layout in the architecture of the
5768 inferior. */
5769 void
5770 linux_nat_set_siginfo_fixup (struct target_ops *t,
5771 int (*siginfo_fixup) (struct siginfo *,
5772 gdb_byte *,
5773 int))
5774 {
5775 /* Save the pointer. */
5776 linux_nat_siginfo_fixup = siginfo_fixup;
5777 }
5778
5779 /* Return the saved siginfo associated with PTID. */
5780 struct siginfo *
5781 linux_nat_get_siginfo (ptid_t ptid)
5782 {
5783 struct lwp_info *lp = find_lwp_pid (ptid);
5784
5785 gdb_assert (lp != NULL);
5786
5787 return &lp->siginfo;
5788 }
5789
5790 /* Provide a prototype to silence -Wmissing-prototypes. */
5791 extern initialize_file_ftype _initialize_linux_nat;
5792
5793 void
5794 _initialize_linux_nat (void)
5795 {
5796 add_info ("proc", linux_nat_info_proc_cmd, _("\
5797 Show /proc process information about any running process.\n\
5798 Specify any process id, or use the program being debugged by default.\n\
5799 Specify any of the following keywords for detailed info:\n\
5800 mappings -- list of mapped memory regions.\n\
5801 stat -- list a bunch of random process info.\n\
5802 status -- list a different bunch of random process info.\n\
5803 all -- list all available /proc info."));
5804
5805 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5806 &debug_linux_nat, _("\
5807 Set debugging of GNU/Linux lwp module."), _("\
5808 Show debugging of GNU/Linux lwp module."), _("\
5809 Enables printf debugging output."),
5810 NULL,
5811 show_debug_linux_nat,
5812 &setdebuglist, &showdebuglist);
5813
5814 /* Save this mask as the default. */
5815 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5816
5817 /* Install a SIGCHLD handler. */
5818 sigchld_action.sa_handler = sigchld_handler;
5819 sigemptyset (&sigchld_action.sa_mask);
5820 sigchld_action.sa_flags = SA_RESTART;
5821
5822 /* Make it the default. */
5823 sigaction (SIGCHLD, &sigchld_action, NULL);
5824
5825 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5826 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5827 sigdelset (&suspend_mask, SIGCHLD);
5828
5829 sigemptyset (&blocked_mask);
5830 }
5831 \f
5832
5833 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5834 the GNU/Linux Threads library and therefore doesn't really belong
5835 here. */
5836
5837 /* Read variable NAME in the target and return its value if found.
5838 Otherwise return zero. It is assumed that the type of the variable
5839 is `int'. */
5840
5841 static int
5842 get_signo (const char *name)
5843 {
5844 struct minimal_symbol *ms;
5845 int signo;
5846
5847 ms = lookup_minimal_symbol (name, NULL, NULL);
5848 if (ms == NULL)
5849 return 0;
5850
5851 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5852 sizeof (signo)) != 0)
5853 return 0;
5854
5855 return signo;
5856 }
5857
5858 /* Return the set of signals used by the threads library in *SET. */
5859
5860 void
5861 lin_thread_get_thread_signals (sigset_t *set)
5862 {
5863 struct sigaction action;
5864 int restart, cancel;
5865
5866 sigemptyset (&blocked_mask);
5867 sigemptyset (set);
5868
5869 restart = get_signo ("__pthread_sig_restart");
5870 cancel = get_signo ("__pthread_sig_cancel");
5871
5872 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5873 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5874 not provide any way for the debugger to query the signal numbers -
5875 fortunately they don't change! */
5876
5877 if (restart == 0)
5878 restart = __SIGRTMIN;
5879
5880 if (cancel == 0)
5881 cancel = __SIGRTMIN + 1;
5882
5883 sigaddset (set, restart);
5884 sigaddset (set, cancel);
5885
5886 /* The GNU/Linux Threads library makes terminating threads send a
5887 special "cancel" signal instead of SIGCHLD. Make sure we catch
5888 those (to prevent them from terminating GDB itself, which is
5889 likely to be their default action) and treat them the same way as
5890 SIGCHLD. */
5891
5892 action.sa_handler = sigchld_handler;
5893 sigemptyset (&action.sa_mask);
5894 action.sa_flags = SA_RESTART;
5895 sigaction (cancel, &action, NULL);
5896
5897 /* We block the "cancel" signal throughout this code ... */
5898 sigaddset (&blocked_mask, cancel);
5899 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5900
5901 /* ... except during a sigsuspend. */
5902 sigdelset (&suspend_mask, cancel);
5903 }
This page took 0.148581 seconds and 4 git commands to generate.