1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
55 #include "xml-support.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
72 /* This comment documents high-level logic of this file.
74 Waiting for events in sync mode
75 ===============================
77 When waiting for an event in a specific thread, we just use waitpid,
78 passing the specific pid, and not passing WNOHANG.
80 When waiting for an event in all threads, waitpid is not quite good:
82 - If the thread group leader exits while other threads in the thread
83 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
84 return an exit status until the other threads in the group are
87 - When a non-leader thread execs, that thread just vanishes without
88 reporting an exit (so we'd hang if we waited for it explicitly in
89 that case). The exec event is instead reported to the TGID pid.
91 The solution is to always use -1 and WNOHANG, together with
94 First, we use non-blocking waitpid to check for events. If nothing is
95 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
96 it means something happened to a child process. As soon as we know
97 there's an event, we get back to calling nonblocking waitpid.
99 Note that SIGCHLD should be blocked between waitpid and sigsuspend
100 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
101 when it's blocked, the signal becomes pending and sigsuspend
102 immediately notices it and returns.
104 Waiting for events in async mode (TARGET_WNOHANG)
105 =================================================
107 In async mode, GDB should always be ready to handle both user input
108 and target events, so neither blocking waitpid nor sigsuspend are
109 viable options. Instead, we should asynchronously notify the GDB main
110 event loop whenever there's an unprocessed event from the target. We
111 detect asynchronous target events by handling SIGCHLD signals. To
112 notify the event loop about target events, the self-pipe trick is used
113 --- a pipe is registered as waitable event source in the event loop,
114 the event loop select/poll's on the read end of this pipe (as well on
115 other event sources, e.g., stdin), and the SIGCHLD handler writes a
116 byte to this pipe. This is more portable than relying on
117 pselect/ppoll, since on kernels that lack those syscalls, libc
118 emulates them with select/poll+sigprocmask, and that is racy
119 (a.k.a. plain broken).
121 Obviously, if we fail to notify the event loop if there's a target
122 event, it's bad. OTOH, if we notify the event loop when there's no
123 event from the target, linux_nat_wait will detect that there's no real
124 event to report, and return event of type TARGET_WAITKIND_IGNORE.
125 This is mostly harmless, but it will waste time and is better avoided.
127 The main design point is that every time GDB is outside linux-nat.c,
128 we have a SIGCHLD handler installed that is called when something
129 happens to the target and notifies the GDB event loop. Whenever GDB
130 core decides to handle the event, and calls into linux-nat.c, we
131 process things as in sync mode, except that the we never block in
134 While processing an event, we may end up momentarily blocked in
135 waitpid calls. Those waitpid calls, while blocking, are guarantied to
136 return quickly. E.g., in all-stop mode, before reporting to the core
137 that an LWP hit a breakpoint, all LWPs are stopped by sending them
138 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
139 Note that this is different from blocking indefinitely waiting for the
140 next event --- here, we're already handling an event.
145 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
146 signal is not entirely significant; we just need for a signal to be delivered,
147 so that we can intercept it. SIGSTOP's advantage is that it can not be
148 blocked. A disadvantage is that it is not a real-time signal, so it can only
149 be queued once; we do not keep track of other sources of SIGSTOP.
151 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
152 use them, because they have special behavior when the signal is generated -
153 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
154 kills the entire thread group.
156 A delivered SIGSTOP would stop the entire thread group, not just the thread we
157 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
158 cancel it (by PTRACE_CONT without passing SIGSTOP).
160 We could use a real-time signal instead. This would solve those problems; we
161 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
162 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
163 generates it, and there are races with trying to find a signal that is not
169 The case of a thread group (process) with 3 or more threads, and a
170 thread other than the leader execs is worth detailing:
172 On an exec, the Linux kernel destroys all threads except the execing
173 one in the thread group, and resets the execing thread's tid to the
174 tgid. No exit notification is sent for the execing thread -- from the
175 ptracer's perspective, it appears as though the execing thread just
176 vanishes. Until we reap all other threads except the leader and the
177 execing thread, the leader will be zombie, and the execing thread will
178 be in `D (disc sleep)' state. As soon as all other threads are
179 reaped, the execing thread changes its tid to the tgid, and the
180 previous (zombie) leader vanishes, giving place to the "new"
184 #define O_LARGEFILE 0
187 struct linux_nat_target
*linux_target
;
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset
= TRIBOOL_UNKNOWN
;
192 static unsigned int debug_linux_nat
;
194 show_debug_linux_nat (struct ui_file
*file
, int from_tty
,
195 struct cmd_list_element
*c
, const char *value
)
197 fprintf_filtered (file
, _("Debugging of GNU/Linux lwp module is %s.\n"),
201 struct simple_pid_list
205 struct simple_pid_list
*next
;
207 struct simple_pid_list
*stopped_pids
;
209 /* Whether target_thread_events is in effect. */
210 static int report_thread_events
;
212 /* Async mode support. */
214 /* The read/write ends of the pipe registered as waitable file in the
216 static int linux_nat_event_pipe
[2] = { -1, -1 };
218 /* True if we're currently in async mode. */
219 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
221 /* Flush the event pipe. */
224 async_file_flush (void)
231 ret
= read (linux_nat_event_pipe
[0], &buf
, 1);
233 while (ret
>= 0 || (ret
== -1 && errno
== EINTR
));
236 /* Put something (anything, doesn't matter what, or how much) in event
237 pipe, so that the select/poll in the event-loop realizes we have
238 something to process. */
241 async_file_mark (void)
245 /* It doesn't really matter what the pipe contains, as long we end
246 up with something in it. Might as well flush the previous
252 ret
= write (linux_nat_event_pipe
[1], "+", 1);
254 while (ret
== -1 && errno
== EINTR
);
256 /* Ignore EAGAIN. If the pipe is full, the event loop will already
257 be awakened anyway. */
260 static int kill_lwp (int lwpid
, int signo
);
262 static int stop_callback (struct lwp_info
*lp
);
264 static void block_child_signals (sigset_t
*prev_mask
);
265 static void restore_child_signals_mask (sigset_t
*prev_mask
);
268 static struct lwp_info
*add_lwp (ptid_t ptid
);
269 static void purge_lwp_list (int pid
);
270 static void delete_lwp (ptid_t ptid
);
271 static struct lwp_info
*find_lwp_pid (ptid_t ptid
);
273 static int lwp_status_pending_p (struct lwp_info
*lp
);
275 static void save_stop_reason (struct lwp_info
*lp
);
280 /* See nat/linux-nat.h. */
283 ptid_of_lwp (struct lwp_info
*lwp
)
288 /* See nat/linux-nat.h. */
291 lwp_set_arch_private_info (struct lwp_info
*lwp
,
292 struct arch_lwp_info
*info
)
294 lwp
->arch_private
= info
;
297 /* See nat/linux-nat.h. */
299 struct arch_lwp_info
*
300 lwp_arch_private_info (struct lwp_info
*lwp
)
302 return lwp
->arch_private
;
305 /* See nat/linux-nat.h. */
308 lwp_is_stopped (struct lwp_info
*lwp
)
313 /* See nat/linux-nat.h. */
315 enum target_stop_reason
316 lwp_stop_reason (struct lwp_info
*lwp
)
318 return lwp
->stop_reason
;
321 /* See nat/linux-nat.h. */
324 lwp_is_stepping (struct lwp_info
*lwp
)
330 /* Trivial list manipulation functions to keep track of a list of
331 new stopped processes. */
333 add_to_pid_list (struct simple_pid_list
**listp
, int pid
, int status
)
335 struct simple_pid_list
*new_pid
= XNEW (struct simple_pid_list
);
338 new_pid
->status
= status
;
339 new_pid
->next
= *listp
;
344 pull_pid_from_list (struct simple_pid_list
**listp
, int pid
, int *statusp
)
346 struct simple_pid_list
**p
;
348 for (p
= listp
; *p
!= NULL
; p
= &(*p
)->next
)
349 if ((*p
)->pid
== pid
)
351 struct simple_pid_list
*next
= (*p
)->next
;
353 *statusp
= (*p
)->status
;
361 /* Return the ptrace options that we want to try to enable. */
364 linux_nat_ptrace_options (int attached
)
369 options
|= PTRACE_O_EXITKILL
;
371 options
|= (PTRACE_O_TRACESYSGOOD
372 | PTRACE_O_TRACEVFORKDONE
373 | PTRACE_O_TRACEVFORK
375 | PTRACE_O_TRACEEXEC
);
380 /* Initialize ptrace and procfs warnings and check for supported
381 ptrace features given PID.
383 ATTACHED should be nonzero iff we attached to the inferior. */
386 linux_init_ptrace_procfs (pid_t pid
, int attached
)
388 int options
= linux_nat_ptrace_options (attached
);
390 linux_enable_event_reporting (pid
, options
);
391 linux_ptrace_init_warnings ();
392 linux_proc_init_warnings ();
395 linux_nat_target::~linux_nat_target ()
399 linux_nat_target::post_attach (int pid
)
401 linux_init_ptrace_procfs (pid
, 1);
405 linux_nat_target::post_startup_inferior (ptid_t ptid
)
407 linux_init_ptrace_procfs (ptid
.pid (), 0);
410 /* Return the number of known LWPs in the tgid given by PID. */
418 for (lp
= lwp_list
; lp
; lp
= lp
->next
)
419 if (lp
->ptid
.pid () == pid
)
425 /* Deleter for lwp_info unique_ptr specialisation. */
429 void operator() (struct lwp_info
*lwp
) const
431 delete_lwp (lwp
->ptid
);
435 /* A unique_ptr specialisation for lwp_info. */
437 typedef std::unique_ptr
<struct lwp_info
, lwp_deleter
> lwp_info_up
;
439 /* Target hook for follow_fork. On entry inferior_ptid must be the
440 ptid of the followed inferior. At return, inferior_ptid will be
444 linux_nat_target::follow_fork (int follow_child
, int detach_fork
)
448 struct lwp_info
*child_lp
= NULL
;
450 ptid_t parent_ptid
, child_ptid
;
451 int parent_pid
, child_pid
;
453 has_vforked
= (inferior_thread ()->pending_follow
.kind
454 == TARGET_WAITKIND_VFORKED
);
455 parent_ptid
= inferior_ptid
;
456 child_ptid
= inferior_thread ()->pending_follow
.value
.related_pid
;
457 parent_pid
= parent_ptid
.lwp ();
458 child_pid
= child_ptid
.lwp ();
460 /* We're already attached to the parent, by default. */
461 child_lp
= add_lwp (child_ptid
);
462 child_lp
->stopped
= 1;
463 child_lp
->last_resume_kind
= resume_stop
;
465 /* Detach new forked process? */
468 int child_stop_signal
= 0;
469 bool detach_child
= true;
471 /* Move CHILD_LP into a unique_ptr and clear the source pointer
472 to prevent us doing anything stupid with it. */
473 lwp_info_up
child_lp_ptr (child_lp
);
476 linux_target
->low_prepare_to_resume (child_lp_ptr
.get ());
478 /* When debugging an inferior in an architecture that supports
479 hardware single stepping on a kernel without commit
480 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
481 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
482 set if the parent process had them set.
483 To work around this, single step the child process
484 once before detaching to clear the flags. */
486 /* Note that we consult the parent's architecture instead of
487 the child's because there's no inferior for the child at
489 if (!gdbarch_software_single_step_p (target_thread_architecture
494 linux_disable_event_reporting (child_pid
);
495 if (ptrace (PTRACE_SINGLESTEP
, child_pid
, 0, 0) < 0)
496 perror_with_name (_("Couldn't do single step"));
497 if (my_waitpid (child_pid
, &status
, 0) < 0)
498 perror_with_name (_("Couldn't wait vfork process"));
501 detach_child
= WIFSTOPPED (status
);
502 child_stop_signal
= WSTOPSIG (status
);
508 int signo
= child_stop_signal
;
511 && !signal_pass_state (gdb_signal_from_host (signo
)))
513 ptrace (PTRACE_DETACH
, child_pid
, 0, signo
);
518 scoped_restore save_inferior_ptid
519 = make_scoped_restore (&inferior_ptid
);
520 inferior_ptid
= child_ptid
;
522 /* Let the thread_db layer learn about this new process. */
523 check_for_thread_db ();
528 struct lwp_info
*parent_lp
;
530 parent_lp
= find_lwp_pid (parent_ptid
);
531 gdb_assert (linux_supports_tracefork () >= 0);
533 if (linux_supports_tracevforkdone ())
536 fprintf_unfiltered (gdb_stdlog
,
537 "LCFF: waiting for VFORK_DONE on %d\n",
539 parent_lp
->stopped
= 1;
541 /* We'll handle the VFORK_DONE event like any other
542 event, in target_wait. */
546 /* We can't insert breakpoints until the child has
547 finished with the shared memory region. We need to
548 wait until that happens. Ideal would be to just
550 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
551 - waitpid (parent_pid, &status, __WALL);
552 However, most architectures can't handle a syscall
553 being traced on the way out if it wasn't traced on
556 We might also think to loop, continuing the child
557 until it exits or gets a SIGTRAP. One problem is
558 that the child might call ptrace with PTRACE_TRACEME.
560 There's no simple and reliable way to figure out when
561 the vforked child will be done with its copy of the
562 shared memory. We could step it out of the syscall,
563 two instructions, let it go, and then single-step the
564 parent once. When we have hardware single-step, this
565 would work; with software single-step it could still
566 be made to work but we'd have to be able to insert
567 single-step breakpoints in the child, and we'd have
568 to insert -just- the single-step breakpoint in the
569 parent. Very awkward.
571 In the end, the best we can do is to make sure it
572 runs for a little while. Hopefully it will be out of
573 range of any breakpoints we reinsert. Usually this
574 is only the single-step breakpoint at vfork's return
578 fprintf_unfiltered (gdb_stdlog
,
579 "LCFF: no VFORK_DONE "
580 "support, sleeping a bit\n");
584 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
585 and leave it pending. The next linux_nat_resume call
586 will notice a pending event, and bypasses actually
587 resuming the inferior. */
588 parent_lp
->status
= 0;
589 parent_lp
->waitstatus
.kind
= TARGET_WAITKIND_VFORK_DONE
;
590 parent_lp
->stopped
= 1;
592 /* If we're in async mode, need to tell the event loop
593 there's something here to process. */
594 if (target_is_async_p ())
601 struct lwp_info
*child_lp
;
603 child_lp
= add_lwp (inferior_ptid
);
604 child_lp
->stopped
= 1;
605 child_lp
->last_resume_kind
= resume_stop
;
607 /* Let the thread_db layer learn about this new process. */
608 check_for_thread_db ();
616 linux_nat_target::insert_fork_catchpoint (int pid
)
618 return !linux_supports_tracefork ();
622 linux_nat_target::remove_fork_catchpoint (int pid
)
628 linux_nat_target::insert_vfork_catchpoint (int pid
)
630 return !linux_supports_tracefork ();
634 linux_nat_target::remove_vfork_catchpoint (int pid
)
640 linux_nat_target::insert_exec_catchpoint (int pid
)
642 return !linux_supports_tracefork ();
646 linux_nat_target::remove_exec_catchpoint (int pid
)
652 linux_nat_target::set_syscall_catchpoint (int pid
, bool needed
, int any_count
,
653 gdb::array_view
<const int> syscall_counts
)
655 if (!linux_supports_tracesysgood ())
658 /* On GNU/Linux, we ignore the arguments. It means that we only
659 enable the syscall catchpoints, but do not disable them.
661 Also, we do not use the `syscall_counts' information because we do not
662 filter system calls here. We let GDB do the logic for us. */
666 /* List of known LWPs, keyed by LWP PID. This speeds up the common
667 case of mapping a PID returned from the kernel to our corresponding
668 lwp_info data structure. */
669 static htab_t lwp_lwpid_htab
;
671 /* Calculate a hash from a lwp_info's LWP PID. */
674 lwp_info_hash (const void *ap
)
676 const struct lwp_info
*lp
= (struct lwp_info
*) ap
;
677 pid_t pid
= lp
->ptid
.lwp ();
679 return iterative_hash_object (pid
, 0);
682 /* Equality function for the lwp_info hash table. Compares the LWP's
686 lwp_lwpid_htab_eq (const void *a
, const void *b
)
688 const struct lwp_info
*entry
= (const struct lwp_info
*) a
;
689 const struct lwp_info
*element
= (const struct lwp_info
*) b
;
691 return entry
->ptid
.lwp () == element
->ptid
.lwp ();
694 /* Create the lwp_lwpid_htab hash table. */
697 lwp_lwpid_htab_create (void)
699 lwp_lwpid_htab
= htab_create (100, lwp_info_hash
, lwp_lwpid_htab_eq
, NULL
);
702 /* Add LP to the hash table. */
705 lwp_lwpid_htab_add_lwp (struct lwp_info
*lp
)
709 slot
= htab_find_slot (lwp_lwpid_htab
, lp
, INSERT
);
710 gdb_assert (slot
!= NULL
&& *slot
== NULL
);
714 /* Head of doubly-linked list of known LWPs. Sorted by reverse
715 creation order. This order is assumed in some cases. E.g.,
716 reaping status after killing alls lwps of a process: the leader LWP
717 must be reaped last. */
718 struct lwp_info
*lwp_list
;
720 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
723 lwp_list_add (struct lwp_info
*lp
)
726 if (lwp_list
!= NULL
)
731 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 lwp_list_remove (struct lwp_info
*lp
)
737 /* Remove from sorted-by-creation-order list. */
738 if (lp
->next
!= NULL
)
739 lp
->next
->prev
= lp
->prev
;
740 if (lp
->prev
!= NULL
)
741 lp
->prev
->next
= lp
->next
;
748 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
749 _initialize_linux_nat. */
750 static sigset_t suspend_mask
;
752 /* Signals to block to make that sigsuspend work. */
753 static sigset_t blocked_mask
;
755 /* SIGCHLD action. */
756 struct sigaction sigchld_action
;
758 /* Block child signals (SIGCHLD and linux threads signals), and store
759 the previous mask in PREV_MASK. */
762 block_child_signals (sigset_t
*prev_mask
)
764 /* Make sure SIGCHLD is blocked. */
765 if (!sigismember (&blocked_mask
, SIGCHLD
))
766 sigaddset (&blocked_mask
, SIGCHLD
);
768 gdb_sigmask (SIG_BLOCK
, &blocked_mask
, prev_mask
);
771 /* Restore child signals mask, previously returned by
772 block_child_signals. */
775 restore_child_signals_mask (sigset_t
*prev_mask
)
777 gdb_sigmask (SIG_SETMASK
, prev_mask
, NULL
);
780 /* Mask of signals to pass directly to the inferior. */
781 static sigset_t pass_mask
;
783 /* Update signals to pass to the inferior. */
785 linux_nat_target::pass_signals
786 (gdb::array_view
<const unsigned char> pass_signals
)
790 sigemptyset (&pass_mask
);
792 for (signo
= 1; signo
< NSIG
; signo
++)
794 int target_signo
= gdb_signal_from_host (signo
);
795 if (target_signo
< pass_signals
.size () && pass_signals
[target_signo
])
796 sigaddset (&pass_mask
, signo
);
802 /* Prototypes for local functions. */
803 static int stop_wait_callback (struct lwp_info
*lp
);
804 static int resume_stopped_resumed_lwps (struct lwp_info
*lp
, const ptid_t wait_ptid
);
805 static int check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
);
809 /* Destroy and free LP. */
812 lwp_free (struct lwp_info
*lp
)
814 /* Let the arch specific bits release arch_lwp_info. */
815 linux_target
->low_delete_thread (lp
->arch_private
);
820 /* Traversal function for purge_lwp_list. */
823 lwp_lwpid_htab_remove_pid (void **slot
, void *info
)
825 struct lwp_info
*lp
= (struct lwp_info
*) *slot
;
826 int pid
= *(int *) info
;
828 if (lp
->ptid
.pid () == pid
)
830 htab_clear_slot (lwp_lwpid_htab
, slot
);
831 lwp_list_remove (lp
);
838 /* Remove all LWPs belong to PID from the lwp list. */
841 purge_lwp_list (int pid
)
843 htab_traverse_noresize (lwp_lwpid_htab
, lwp_lwpid_htab_remove_pid
, &pid
);
846 /* Add the LWP specified by PTID to the list. PTID is the first LWP
847 in the process. Return a pointer to the structure describing the
850 This differs from add_lwp in that we don't let the arch specific
851 bits know about this new thread. Current clients of this callback
852 take the opportunity to install watchpoints in the new thread, and
853 we shouldn't do that for the first thread. If we're spawning a
854 child ("run"), the thread executes the shell wrapper first, and we
855 shouldn't touch it until it execs the program we want to debug.
856 For "attach", it'd be okay to call the callback, but it's not
857 necessary, because watchpoints can't yet have been inserted into
860 static struct lwp_info
*
861 add_initial_lwp (ptid_t ptid
)
865 gdb_assert (ptid
.lwp_p ());
867 lp
= XNEW (struct lwp_info
);
869 memset (lp
, 0, sizeof (struct lwp_info
));
871 lp
->last_resume_kind
= resume_continue
;
872 lp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
877 /* Add to sorted-by-reverse-creation-order list. */
880 /* Add to keyed-by-pid htab. */
881 lwp_lwpid_htab_add_lwp (lp
);
886 /* Add the LWP specified by PID to the list. Return a pointer to the
887 structure describing the new LWP. The LWP should already be
890 static struct lwp_info
*
891 add_lwp (ptid_t ptid
)
895 lp
= add_initial_lwp (ptid
);
897 /* Let the arch specific bits know about this new thread. Current
898 clients of this callback take the opportunity to install
899 watchpoints in the new thread. We don't do this for the first
900 thread though. See add_initial_lwp. */
901 linux_target
->low_new_thread (lp
);
906 /* Remove the LWP specified by PID from the list. */
909 delete_lwp (ptid_t ptid
)
913 struct lwp_info dummy
;
916 slot
= htab_find_slot (lwp_lwpid_htab
, &dummy
, NO_INSERT
);
920 lp
= *(struct lwp_info
**) slot
;
921 gdb_assert (lp
!= NULL
);
923 htab_clear_slot (lwp_lwpid_htab
, slot
);
925 /* Remove from sorted-by-creation-order list. */
926 lwp_list_remove (lp
);
932 /* Return a pointer to the structure describing the LWP corresponding
933 to PID. If no corresponding LWP could be found, return NULL. */
935 static struct lwp_info
*
936 find_lwp_pid (ptid_t ptid
)
940 struct lwp_info dummy
;
947 dummy
.ptid
= ptid_t (0, lwp
, 0);
948 lp
= (struct lwp_info
*) htab_find (lwp_lwpid_htab
, &dummy
);
952 /* See nat/linux-nat.h. */
955 iterate_over_lwps (ptid_t filter
,
956 gdb::function_view
<iterate_over_lwps_ftype
> callback
)
958 struct lwp_info
*lp
, *lpnext
;
960 for (lp
= lwp_list
; lp
; lp
= lpnext
)
964 if (lp
->ptid
.matches (filter
))
966 if (callback (lp
) != 0)
974 /* Update our internal state when changing from one checkpoint to
975 another indicated by NEW_PTID. We can only switch single-threaded
976 applications, so we only create one new LWP, and the previous list
980 linux_nat_switch_fork (ptid_t new_ptid
)
984 purge_lwp_list (inferior_ptid
.pid ());
986 lp
= add_lwp (new_ptid
);
989 /* This changes the thread's ptid while preserving the gdb thread
990 num. Also changes the inferior pid, while preserving the
992 thread_change_ptid (inferior_ptid
, new_ptid
);
994 /* We've just told GDB core that the thread changed target id, but,
995 in fact, it really is a different thread, with different register
997 registers_changed ();
1000 /* Handle the exit of a single thread LP. */
1003 exit_lwp (struct lwp_info
*lp
)
1005 struct thread_info
*th
= find_thread_ptid (lp
->ptid
);
1009 if (print_thread_events
)
1010 printf_unfiltered (_("[%s exited]\n"),
1011 target_pid_to_str (lp
->ptid
).c_str ());
1016 delete_lwp (lp
->ptid
);
1019 /* Wait for the LWP specified by LP, which we have just attached to.
1020 Returns a wait status for that LWP, to cache. */
1023 linux_nat_post_attach_wait (ptid_t ptid
, int *signalled
)
1025 pid_t new_pid
, pid
= ptid
.lwp ();
1028 if (linux_proc_pid_is_stopped (pid
))
1030 if (debug_linux_nat
)
1031 fprintf_unfiltered (gdb_stdlog
,
1032 "LNPAW: Attaching to a stopped process\n");
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1046 is not an RT signal, it can only be queued once. */
1047 kill_lwp (pid
, SIGSTOP
);
1049 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1050 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1051 ptrace (PTRACE_CONT
, pid
, 0, 0);
1054 /* Make sure the initial process is stopped. The user-level threads
1055 layer might want to poke around in the inferior, and that won't
1056 work if things haven't stabilized yet. */
1057 new_pid
= my_waitpid (pid
, &status
, __WALL
);
1058 gdb_assert (pid
== new_pid
);
1060 if (!WIFSTOPPED (status
))
1062 /* The pid we tried to attach has apparently just exited. */
1063 if (debug_linux_nat
)
1064 fprintf_unfiltered (gdb_stdlog
, "LNPAW: Failed to stop %d: %s",
1065 pid
, status_to_str (status
));
1069 if (WSTOPSIG (status
) != SIGSTOP
)
1072 if (debug_linux_nat
)
1073 fprintf_unfiltered (gdb_stdlog
,
1074 "LNPAW: Received %s after attaching\n",
1075 status_to_str (status
));
1082 linux_nat_target::create_inferior (const char *exec_file
,
1083 const std::string
&allargs
,
1084 char **env
, int from_tty
)
1086 maybe_disable_address_space_randomization restore_personality
1087 (disable_randomization
);
1089 /* The fork_child mechanism is synchronous and calls target_wait, so
1090 we have to mask the async mode. */
1092 /* Make sure we report all signals during startup. */
1095 inf_ptrace_target::create_inferior (exec_file
, allargs
, env
, from_tty
);
1098 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1099 already attached. Returns true if a new LWP is found, false
1103 attach_proc_task_lwp_callback (ptid_t ptid
)
1105 struct lwp_info
*lp
;
1107 /* Ignore LWPs we're already attached to. */
1108 lp
= find_lwp_pid (ptid
);
1111 int lwpid
= ptid
.lwp ();
1113 if (ptrace (PTRACE_ATTACH
, lwpid
, 0, 0) < 0)
1117 /* Be quiet if we simply raced with the thread exiting.
1118 EPERM is returned if the thread's task still exists, and
1119 is marked as exited or zombie, as well as other
1120 conditions, so in that case, confirm the status in
1121 /proc/PID/status. */
1123 || (err
== EPERM
&& linux_proc_pid_is_gone (lwpid
)))
1125 if (debug_linux_nat
)
1127 fprintf_unfiltered (gdb_stdlog
,
1128 "Cannot attach to lwp %d: "
1129 "thread is gone (%d: %s)\n",
1130 lwpid
, err
, safe_strerror (err
));
1136 = linux_ptrace_attach_fail_reason_string (ptid
, err
);
1138 warning (_("Cannot attach to lwp %d: %s"),
1139 lwpid
, reason
.c_str ());
1144 if (debug_linux_nat
)
1145 fprintf_unfiltered (gdb_stdlog
,
1146 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1147 target_pid_to_str (ptid
).c_str ());
1149 lp
= add_lwp (ptid
);
1151 /* The next time we wait for this LWP we'll see a SIGSTOP as
1152 PTRACE_ATTACH brings it to a halt. */
1155 /* We need to wait for a stop before being able to make the
1156 next ptrace call on this LWP. */
1157 lp
->must_set_ptrace_flags
= 1;
1159 /* So that wait collects the SIGSTOP. */
1162 /* Also add the LWP to gdb's thread list, in case a
1163 matching libthread_db is not found (or the process uses
1165 add_thread (lp
->ptid
);
1166 set_running (lp
->ptid
, 1);
1167 set_executing (lp
->ptid
, 1);
1176 linux_nat_target::attach (const char *args
, int from_tty
)
1178 struct lwp_info
*lp
;
1182 /* Make sure we report all signals during attach. */
1187 inf_ptrace_target::attach (args
, from_tty
);
1189 catch (const gdb_exception_error
&ex
)
1191 pid_t pid
= parse_pid_to_attach (args
);
1192 std::string reason
= linux_ptrace_attach_fail_reason (pid
);
1194 if (!reason
.empty ())
1195 throw_error (ex
.error
, "warning: %s\n%s", reason
.c_str (),
1198 throw_error (ex
.error
, "%s", ex
.what ());
1201 /* The ptrace base target adds the main thread with (pid,0,0)
1202 format. Decorate it with lwp info. */
1203 ptid
= ptid_t (inferior_ptid
.pid (),
1204 inferior_ptid
.pid (),
1206 thread_change_ptid (inferior_ptid
, ptid
);
1208 /* Add the initial process as the first LWP to the list. */
1209 lp
= add_initial_lwp (ptid
);
1211 status
= linux_nat_post_attach_wait (lp
->ptid
, &lp
->signalled
);
1212 if (!WIFSTOPPED (status
))
1214 if (WIFEXITED (status
))
1216 int exit_code
= WEXITSTATUS (status
);
1218 target_terminal::ours ();
1219 target_mourn_inferior (inferior_ptid
);
1221 error (_("Unable to attach: program exited normally."));
1223 error (_("Unable to attach: program exited with code %d."),
1226 else if (WIFSIGNALED (status
))
1228 enum gdb_signal signo
;
1230 target_terminal::ours ();
1231 target_mourn_inferior (inferior_ptid
);
1233 signo
= gdb_signal_from_host (WTERMSIG (status
));
1234 error (_("Unable to attach: program terminated with signal "
1236 gdb_signal_to_name (signo
),
1237 gdb_signal_to_string (signo
));
1240 internal_error (__FILE__
, __LINE__
,
1241 _("unexpected status %d for PID %ld"),
1242 status
, (long) ptid
.lwp ());
1247 /* Save the wait status to report later. */
1249 if (debug_linux_nat
)
1250 fprintf_unfiltered (gdb_stdlog
,
1251 "LNA: waitpid %ld, saving status %s\n",
1252 (long) lp
->ptid
.pid (), status_to_str (status
));
1254 lp
->status
= status
;
1256 /* We must attach to every LWP. If /proc is mounted, use that to
1257 find them now. The inferior may be using raw clone instead of
1258 using pthreads. But even if it is using pthreads, thread_db
1259 walks structures in the inferior's address space to find the list
1260 of threads/LWPs, and those structures may well be corrupted.
1261 Note that once thread_db is loaded, we'll still use it to list
1262 threads and associate pthread info with each LWP. */
1263 linux_proc_attach_tgid_threads (lp
->ptid
.pid (),
1264 attach_proc_task_lwp_callback
);
1266 if (target_can_async_p ())
1270 /* Get pending signal of THREAD as a host signal number, for detaching
1271 purposes. This is the signal the thread last stopped for, which we
1272 need to deliver to the thread when detaching, otherwise, it'd be
1276 get_detach_signal (struct lwp_info
*lp
)
1278 enum gdb_signal signo
= GDB_SIGNAL_0
;
1280 /* If we paused threads momentarily, we may have stored pending
1281 events in lp->status or lp->waitstatus (see stop_wait_callback),
1282 and GDB core hasn't seen any signal for those threads.
1283 Otherwise, the last signal reported to the core is found in the
1284 thread object's stop_signal.
1286 There's a corner case that isn't handled here at present. Only
1287 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1288 stop_signal make sense as a real signal to pass to the inferior.
1289 Some catchpoint related events, like
1290 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1291 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1292 those traps are debug API (ptrace in our case) related and
1293 induced; the inferior wouldn't see them if it wasn't being
1294 traced. Hence, we should never pass them to the inferior, even
1295 when set to pass state. Since this corner case isn't handled by
1296 infrun.c when proceeding with a signal, for consistency, neither
1297 do we handle it here (or elsewhere in the file we check for
1298 signal pass state). Normally SIGTRAP isn't set to pass state, so
1299 this is really a corner case. */
1301 if (lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
1302 signo
= GDB_SIGNAL_0
; /* a pending ptrace event, not a real signal. */
1303 else if (lp
->status
)
1304 signo
= gdb_signal_from_host (WSTOPSIG (lp
->status
));
1307 struct thread_info
*tp
= find_thread_ptid (lp
->ptid
);
1309 if (target_is_non_stop_p () && !tp
->executing
)
1311 if (tp
->suspend
.waitstatus_pending_p
)
1312 signo
= tp
->suspend
.waitstatus
.value
.sig
;
1314 signo
= tp
->suspend
.stop_signal
;
1316 else if (!target_is_non_stop_p ())
1318 struct target_waitstatus last
;
1321 get_last_target_status (&last_ptid
, &last
);
1323 if (lp
->ptid
.lwp () == last_ptid
.lwp ())
1324 signo
= tp
->suspend
.stop_signal
;
1328 if (signo
== GDB_SIGNAL_0
)
1330 if (debug_linux_nat
)
1331 fprintf_unfiltered (gdb_stdlog
,
1332 "GPT: lwp %s has no pending signal\n",
1333 target_pid_to_str (lp
->ptid
).c_str ());
1335 else if (!signal_pass_state (signo
))
1337 if (debug_linux_nat
)
1338 fprintf_unfiltered (gdb_stdlog
,
1339 "GPT: lwp %s had signal %s, "
1340 "but it is in no pass state\n",
1341 target_pid_to_str (lp
->ptid
).c_str (),
1342 gdb_signal_to_string (signo
));
1346 if (debug_linux_nat
)
1347 fprintf_unfiltered (gdb_stdlog
,
1348 "GPT: lwp %s has pending signal %s\n",
1349 target_pid_to_str (lp
->ptid
).c_str (),
1350 gdb_signal_to_string (signo
));
1352 return gdb_signal_to_host (signo
);
1358 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1359 signal number that should be passed to the LWP when detaching.
1360 Otherwise pass any pending signal the LWP may have, if any. */
1363 detach_one_lwp (struct lwp_info
*lp
, int *signo_p
)
1365 int lwpid
= lp
->ptid
.lwp ();
1368 gdb_assert (lp
->status
== 0 || WIFSTOPPED (lp
->status
));
1370 if (debug_linux_nat
&& lp
->status
)
1371 fprintf_unfiltered (gdb_stdlog
, "DC: Pending %s for %s on detach.\n",
1372 strsignal (WSTOPSIG (lp
->status
)),
1373 target_pid_to_str (lp
->ptid
).c_str ());
1375 /* If there is a pending SIGSTOP, get rid of it. */
1378 if (debug_linux_nat
)
1379 fprintf_unfiltered (gdb_stdlog
,
1380 "DC: Sending SIGCONT to %s\n",
1381 target_pid_to_str (lp
->ptid
).c_str ());
1383 kill_lwp (lwpid
, SIGCONT
);
1387 if (signo_p
== NULL
)
1389 /* Pass on any pending signal for this LWP. */
1390 signo
= get_detach_signal (lp
);
1395 /* Preparing to resume may try to write registers, and fail if the
1396 lwp is zombie. If that happens, ignore the error. We'll handle
1397 it below, when detach fails with ESRCH. */
1400 linux_target
->low_prepare_to_resume (lp
);
1402 catch (const gdb_exception_error
&ex
)
1404 if (!check_ptrace_stopped_lwp_gone (lp
))
1408 if (ptrace (PTRACE_DETACH
, lwpid
, 0, signo
) < 0)
1410 int save_errno
= errno
;
1412 /* We know the thread exists, so ESRCH must mean the lwp is
1413 zombie. This can happen if one of the already-detached
1414 threads exits the whole thread group. In that case we're
1415 still attached, and must reap the lwp. */
1416 if (save_errno
== ESRCH
)
1420 ret
= my_waitpid (lwpid
, &status
, __WALL
);
1423 warning (_("Couldn't reap LWP %d while detaching: %s"),
1424 lwpid
, safe_strerror (errno
));
1426 else if (!WIFEXITED (status
) && !WIFSIGNALED (status
))
1428 warning (_("Reaping LWP %d while detaching "
1429 "returned unexpected status 0x%x"),
1435 error (_("Can't detach %s: %s"),
1436 target_pid_to_str (lp
->ptid
).c_str (),
1437 safe_strerror (save_errno
));
1440 else if (debug_linux_nat
)
1442 fprintf_unfiltered (gdb_stdlog
,
1443 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1444 target_pid_to_str (lp
->ptid
).c_str (),
1448 delete_lwp (lp
->ptid
);
1452 detach_callback (struct lwp_info
*lp
)
1454 /* We don't actually detach from the thread group leader just yet.
1455 If the thread group exits, we must reap the zombie clone lwps
1456 before we're able to reap the leader. */
1457 if (lp
->ptid
.lwp () != lp
->ptid
.pid ())
1458 detach_one_lwp (lp
, NULL
);
1463 linux_nat_target::detach (inferior
*inf
, int from_tty
)
1465 struct lwp_info
*main_lwp
;
1468 /* Don't unregister from the event loop, as there may be other
1469 inferiors running. */
1471 /* Stop all threads before detaching. ptrace requires that the
1472 thread is stopped to successfully detach. */
1473 iterate_over_lwps (ptid_t (pid
), stop_callback
);
1474 /* ... and wait until all of them have reported back that
1475 they're no longer running. */
1476 iterate_over_lwps (ptid_t (pid
), stop_wait_callback
);
1478 iterate_over_lwps (ptid_t (pid
), detach_callback
);
1480 /* Only the initial process should be left right now. */
1481 gdb_assert (num_lwps (pid
) == 1);
1483 main_lwp
= find_lwp_pid (ptid_t (pid
));
1485 if (forks_exist_p ())
1487 /* Multi-fork case. The current inferior_ptid is being detached
1488 from, but there are other viable forks to debug. Detach from
1489 the current fork, and context-switch to the first
1491 linux_fork_detach (from_tty
);
1495 target_announce_detach (from_tty
);
1497 /* Pass on any pending signal for the last LWP. */
1498 int signo
= get_detach_signal (main_lwp
);
1500 detach_one_lwp (main_lwp
, &signo
);
1502 detach_success (inf
);
1506 /* Resume execution of the inferior process. If STEP is nonzero,
1507 single-step it. If SIGNAL is nonzero, give it that signal. */
1510 linux_resume_one_lwp_throw (struct lwp_info
*lp
, int step
,
1511 enum gdb_signal signo
)
1515 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1516 We only presently need that if the LWP is stepped though (to
1517 handle the case of stepping a breakpoint instruction). */
1520 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
1522 lp
->stop_pc
= regcache_read_pc (regcache
);
1527 linux_target
->low_prepare_to_resume (lp
);
1528 linux_target
->low_resume (lp
->ptid
, step
, signo
);
1530 /* Successfully resumed. Clear state that no longer makes sense,
1531 and mark the LWP as running. Must not do this before resuming
1532 otherwise if that fails other code will be confused. E.g., we'd
1533 later try to stop the LWP and hang forever waiting for a stop
1534 status. Note that we must not throw after this is cleared,
1535 otherwise handle_zombie_lwp_error would get confused. */
1538 lp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
1539 registers_changed_ptid (lp
->ptid
);
1542 /* Called when we try to resume a stopped LWP and that errors out. If
1543 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1544 or about to become), discard the error, clear any pending status
1545 the LWP may have, and return true (we'll collect the exit status
1546 soon enough). Otherwise, return false. */
1549 check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
)
1551 /* If we get an error after resuming the LWP successfully, we'd
1552 confuse !T state for the LWP being gone. */
1553 gdb_assert (lp
->stopped
);
1555 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1556 because even if ptrace failed with ESRCH, the tracee may be "not
1557 yet fully dead", but already refusing ptrace requests. In that
1558 case the tracee has 'R (Running)' state for a little bit
1559 (observed in Linux 3.18). See also the note on ESRCH in the
1560 ptrace(2) man page. Instead, check whether the LWP has any state
1561 other than ptrace-stopped. */
1563 /* Don't assume anything if /proc/PID/status can't be read. */
1564 if (linux_proc_pid_is_trace_stopped_nowarn (lp
->ptid
.lwp ()) == 0)
1566 lp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
1568 lp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
1574 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1575 disappears while we try to resume it. */
1578 linux_resume_one_lwp (struct lwp_info
*lp
, int step
, enum gdb_signal signo
)
1582 linux_resume_one_lwp_throw (lp
, step
, signo
);
1584 catch (const gdb_exception_error
&ex
)
1586 if (!check_ptrace_stopped_lwp_gone (lp
))
1594 resume_lwp (struct lwp_info
*lp
, int step
, enum gdb_signal signo
)
1598 struct inferior
*inf
= find_inferior_ptid (lp
->ptid
);
1600 if (inf
->vfork_child
!= NULL
)
1602 if (debug_linux_nat
)
1603 fprintf_unfiltered (gdb_stdlog
,
1604 "RC: Not resuming %s (vfork parent)\n",
1605 target_pid_to_str (lp
->ptid
).c_str ());
1607 else if (!lwp_status_pending_p (lp
))
1609 if (debug_linux_nat
)
1610 fprintf_unfiltered (gdb_stdlog
,
1611 "RC: Resuming sibling %s, %s, %s\n",
1612 target_pid_to_str (lp
->ptid
).c_str (),
1613 (signo
!= GDB_SIGNAL_0
1614 ? strsignal (gdb_signal_to_host (signo
))
1616 step
? "step" : "resume");
1618 linux_resume_one_lwp (lp
, step
, signo
);
1622 if (debug_linux_nat
)
1623 fprintf_unfiltered (gdb_stdlog
,
1624 "RC: Not resuming sibling %s (has pending)\n",
1625 target_pid_to_str (lp
->ptid
).c_str ());
1630 if (debug_linux_nat
)
1631 fprintf_unfiltered (gdb_stdlog
,
1632 "RC: Not resuming sibling %s (not stopped)\n",
1633 target_pid_to_str (lp
->ptid
).c_str ());
1637 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1638 Resume LWP with the last stop signal, if it is in pass state. */
1641 linux_nat_resume_callback (struct lwp_info
*lp
, struct lwp_info
*except
)
1643 enum gdb_signal signo
= GDB_SIGNAL_0
;
1650 struct thread_info
*thread
;
1652 thread
= find_thread_ptid (lp
->ptid
);
1655 signo
= thread
->suspend
.stop_signal
;
1656 thread
->suspend
.stop_signal
= GDB_SIGNAL_0
;
1660 resume_lwp (lp
, 0, signo
);
1665 resume_clear_callback (struct lwp_info
*lp
)
1668 lp
->last_resume_kind
= resume_stop
;
1673 resume_set_callback (struct lwp_info
*lp
)
1676 lp
->last_resume_kind
= resume_continue
;
1681 linux_nat_target::resume (ptid_t ptid
, int step
, enum gdb_signal signo
)
1683 struct lwp_info
*lp
;
1686 if (debug_linux_nat
)
1687 fprintf_unfiltered (gdb_stdlog
,
1688 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1689 step
? "step" : "resume",
1690 target_pid_to_str (ptid
).c_str (),
1691 (signo
!= GDB_SIGNAL_0
1692 ? strsignal (gdb_signal_to_host (signo
)) : "0"),
1693 target_pid_to_str (inferior_ptid
).c_str ());
1695 /* A specific PTID means `step only this process id'. */
1696 resume_many
= (minus_one_ptid
== ptid
1699 /* Mark the lwps we're resuming as resumed. */
1700 iterate_over_lwps (ptid
, resume_set_callback
);
1702 /* See if it's the current inferior that should be handled
1705 lp
= find_lwp_pid (inferior_ptid
);
1707 lp
= find_lwp_pid (ptid
);
1708 gdb_assert (lp
!= NULL
);
1710 /* Remember if we're stepping. */
1711 lp
->last_resume_kind
= step
? resume_step
: resume_continue
;
1713 /* If we have a pending wait status for this thread, there is no
1714 point in resuming the process. But first make sure that
1715 linux_nat_wait won't preemptively handle the event - we
1716 should never take this short-circuit if we are going to
1717 leave LP running, since we have skipped resuming all the
1718 other threads. This bit of code needs to be synchronized
1719 with linux_nat_wait. */
1721 if (lp
->status
&& WIFSTOPPED (lp
->status
))
1724 && WSTOPSIG (lp
->status
)
1725 && sigismember (&pass_mask
, WSTOPSIG (lp
->status
)))
1727 if (debug_linux_nat
)
1728 fprintf_unfiltered (gdb_stdlog
,
1729 "LLR: Not short circuiting for ignored "
1730 "status 0x%x\n", lp
->status
);
1732 /* FIXME: What should we do if we are supposed to continue
1733 this thread with a signal? */
1734 gdb_assert (signo
== GDB_SIGNAL_0
);
1735 signo
= gdb_signal_from_host (WSTOPSIG (lp
->status
));
1740 if (lwp_status_pending_p (lp
))
1742 /* FIXME: What should we do if we are supposed to continue
1743 this thread with a signal? */
1744 gdb_assert (signo
== GDB_SIGNAL_0
);
1746 if (debug_linux_nat
)
1747 fprintf_unfiltered (gdb_stdlog
,
1748 "LLR: Short circuiting for status 0x%x\n",
1751 if (target_can_async_p ())
1754 /* Tell the event loop we have something to process. */
1761 iterate_over_lwps (ptid
, [=] (struct lwp_info
*info
)
1763 return linux_nat_resume_callback (info
, lp
);
1766 if (debug_linux_nat
)
1767 fprintf_unfiltered (gdb_stdlog
,
1768 "LLR: %s %s, %s (resume event thread)\n",
1769 step
? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1770 target_pid_to_str (lp
->ptid
).c_str (),
1771 (signo
!= GDB_SIGNAL_0
1772 ? strsignal (gdb_signal_to_host (signo
)) : "0"));
1774 linux_resume_one_lwp (lp
, step
, signo
);
1776 if (target_can_async_p ())
1780 /* Send a signal to an LWP. */
1783 kill_lwp (int lwpid
, int signo
)
1788 ret
= syscall (__NR_tkill
, lwpid
, signo
);
1789 if (errno
== ENOSYS
)
1791 /* If tkill fails, then we are not using nptl threads, a
1792 configuration we no longer support. */
1793 perror_with_name (("tkill"));
1798 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1799 event, check if the core is interested in it: if not, ignore the
1800 event, and keep waiting; otherwise, we need to toggle the LWP's
1801 syscall entry/exit status, since the ptrace event itself doesn't
1802 indicate it, and report the trap to higher layers. */
1805 linux_handle_syscall_trap (struct lwp_info
*lp
, int stopping
)
1807 struct target_waitstatus
*ourstatus
= &lp
->waitstatus
;
1808 struct gdbarch
*gdbarch
= target_thread_architecture (lp
->ptid
);
1809 thread_info
*thread
= find_thread_ptid (lp
->ptid
);
1810 int syscall_number
= (int) gdbarch_get_syscall_number (gdbarch
, thread
);
1814 /* If we're stopping threads, there's a SIGSTOP pending, which
1815 makes it so that the LWP reports an immediate syscall return,
1816 followed by the SIGSTOP. Skip seeing that "return" using
1817 PTRACE_CONT directly, and let stop_wait_callback collect the
1818 SIGSTOP. Later when the thread is resumed, a new syscall
1819 entry event. If we didn't do this (and returned 0), we'd
1820 leave a syscall entry pending, and our caller, by using
1821 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1822 itself. Later, when the user re-resumes this LWP, we'd see
1823 another syscall entry event and we'd mistake it for a return.
1825 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1826 (leaving immediately with LWP->signalled set, without issuing
1827 a PTRACE_CONT), it would still be problematic to leave this
1828 syscall enter pending, as later when the thread is resumed,
1829 it would then see the same syscall exit mentioned above,
1830 followed by the delayed SIGSTOP, while the syscall didn't
1831 actually get to execute. It seems it would be even more
1832 confusing to the user. */
1834 if (debug_linux_nat
)
1835 fprintf_unfiltered (gdb_stdlog
,
1836 "LHST: ignoring syscall %d "
1837 "for LWP %ld (stopping threads), "
1838 "resuming with PTRACE_CONT for SIGSTOP\n",
1842 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
1843 ptrace (PTRACE_CONT
, lp
->ptid
.lwp (), 0, 0);
1848 /* Always update the entry/return state, even if this particular
1849 syscall isn't interesting to the core now. In async mode,
1850 the user could install a new catchpoint for this syscall
1851 between syscall enter/return, and we'll need to know to
1852 report a syscall return if that happens. */
1853 lp
->syscall_state
= (lp
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
1854 ? TARGET_WAITKIND_SYSCALL_RETURN
1855 : TARGET_WAITKIND_SYSCALL_ENTRY
);
1857 if (catch_syscall_enabled ())
1859 if (catching_syscall_number (syscall_number
))
1861 /* Alright, an event to report. */
1862 ourstatus
->kind
= lp
->syscall_state
;
1863 ourstatus
->value
.syscall_number
= syscall_number
;
1865 if (debug_linux_nat
)
1866 fprintf_unfiltered (gdb_stdlog
,
1867 "LHST: stopping for %s of syscall %d"
1870 == TARGET_WAITKIND_SYSCALL_ENTRY
1871 ? "entry" : "return",
1877 if (debug_linux_nat
)
1878 fprintf_unfiltered (gdb_stdlog
,
1879 "LHST: ignoring %s of syscall %d "
1881 lp
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
1882 ? "entry" : "return",
1888 /* If we had been syscall tracing, and hence used PT_SYSCALL
1889 before on this LWP, it could happen that the user removes all
1890 syscall catchpoints before we get to process this event.
1891 There are two noteworthy issues here:
1893 - When stopped at a syscall entry event, resuming with
1894 PT_STEP still resumes executing the syscall and reports a
1897 - Only PT_SYSCALL catches syscall enters. If we last
1898 single-stepped this thread, then this event can't be a
1899 syscall enter. If we last single-stepped this thread, this
1900 has to be a syscall exit.
1902 The points above mean that the next resume, be it PT_STEP or
1903 PT_CONTINUE, can not trigger a syscall trace event. */
1904 if (debug_linux_nat
)
1905 fprintf_unfiltered (gdb_stdlog
,
1906 "LHST: caught syscall event "
1907 "with no syscall catchpoints."
1908 " %d for LWP %ld, ignoring\n",
1911 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
1914 /* The core isn't interested in this event. For efficiency, avoid
1915 stopping all threads only to have the core resume them all again.
1916 Since we're not stopping threads, if we're still syscall tracing
1917 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1918 subsequent syscall. Simply resume using the inf-ptrace layer,
1919 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1921 linux_resume_one_lwp (lp
, lp
->step
, GDB_SIGNAL_0
);
1925 /* Handle a GNU/Linux extended wait response. If we see a clone
1926 event, we need to add the new LWP to our list (and not report the
1927 trap to higher layers). This function returns non-zero if the
1928 event should be ignored and we should wait again. If STOPPING is
1929 true, the new LWP remains stopped, otherwise it is continued. */
1932 linux_handle_extended_wait (struct lwp_info
*lp
, int status
)
1934 int pid
= lp
->ptid
.lwp ();
1935 struct target_waitstatus
*ourstatus
= &lp
->waitstatus
;
1936 int event
= linux_ptrace_get_extended_event (status
);
1938 /* All extended events we currently use are mid-syscall. Only
1939 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1940 you have to be using PTRACE_SEIZE to get that. */
1941 lp
->syscall_state
= TARGET_WAITKIND_SYSCALL_ENTRY
;
1943 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
1944 || event
== PTRACE_EVENT_CLONE
)
1946 unsigned long new_pid
;
1949 ptrace (PTRACE_GETEVENTMSG
, pid
, 0, &new_pid
);
1951 /* If we haven't already seen the new PID stop, wait for it now. */
1952 if (! pull_pid_from_list (&stopped_pids
, new_pid
, &status
))
1954 /* The new child has a pending SIGSTOP. We can't affect it until it
1955 hits the SIGSTOP, but we're already attached. */
1956 ret
= my_waitpid (new_pid
, &status
, __WALL
);
1958 perror_with_name (_("waiting for new child"));
1959 else if (ret
!= new_pid
)
1960 internal_error (__FILE__
, __LINE__
,
1961 _("wait returned unexpected PID %d"), ret
);
1962 else if (!WIFSTOPPED (status
))
1963 internal_error (__FILE__
, __LINE__
,
1964 _("wait returned unexpected status 0x%x"), status
);
1967 ourstatus
->value
.related_pid
= ptid_t (new_pid
, new_pid
, 0);
1969 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
)
1971 /* The arch-specific native code may need to know about new
1972 forks even if those end up never mapped to an
1974 linux_target
->low_new_fork (lp
, new_pid
);
1977 if (event
== PTRACE_EVENT_FORK
1978 && linux_fork_checkpointing_p (lp
->ptid
.pid ()))
1980 /* Handle checkpointing by linux-fork.c here as a special
1981 case. We don't want the follow-fork-mode or 'catch fork'
1982 to interfere with this. */
1984 /* This won't actually modify the breakpoint list, but will
1985 physically remove the breakpoints from the child. */
1986 detach_breakpoints (ptid_t (new_pid
, new_pid
, 0));
1988 /* Retain child fork in ptrace (stopped) state. */
1989 if (!find_fork_pid (new_pid
))
1992 /* Report as spurious, so that infrun doesn't want to follow
1993 this fork. We're actually doing an infcall in
1995 ourstatus
->kind
= TARGET_WAITKIND_SPURIOUS
;
1997 /* Report the stop to the core. */
2001 if (event
== PTRACE_EVENT_FORK
)
2002 ourstatus
->kind
= TARGET_WAITKIND_FORKED
;
2003 else if (event
== PTRACE_EVENT_VFORK
)
2004 ourstatus
->kind
= TARGET_WAITKIND_VFORKED
;
2005 else if (event
== PTRACE_EVENT_CLONE
)
2007 struct lwp_info
*new_lp
;
2009 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
2011 if (debug_linux_nat
)
2012 fprintf_unfiltered (gdb_stdlog
,
2013 "LHEW: Got clone event "
2014 "from LWP %d, new child is LWP %ld\n",
2017 new_lp
= add_lwp (ptid_t (lp
->ptid
.pid (), new_pid
, 0));
2018 new_lp
->stopped
= 1;
2019 new_lp
->resumed
= 1;
2021 /* If the thread_db layer is active, let it record the user
2022 level thread id and status, and add the thread to GDB's
2024 if (!thread_db_notice_clone (lp
->ptid
, new_lp
->ptid
))
2026 /* The process is not using thread_db. Add the LWP to
2028 target_post_attach (new_lp
->ptid
.lwp ());
2029 add_thread (new_lp
->ptid
);
2032 /* Even if we're stopping the thread for some reason
2033 internal to this module, from the perspective of infrun
2034 and the user/frontend, this new thread is running until
2035 it next reports a stop. */
2036 set_running (new_lp
->ptid
, 1);
2037 set_executing (new_lp
->ptid
, 1);
2039 if (WSTOPSIG (status
) != SIGSTOP
)
2041 /* This can happen if someone starts sending signals to
2042 the new thread before it gets a chance to run, which
2043 have a lower number than SIGSTOP (e.g. SIGUSR1).
2044 This is an unlikely case, and harder to handle for
2045 fork / vfork than for clone, so we do not try - but
2046 we handle it for clone events here. */
2048 new_lp
->signalled
= 1;
2050 /* We created NEW_LP so it cannot yet contain STATUS. */
2051 gdb_assert (new_lp
->status
== 0);
2053 /* Save the wait status to report later. */
2054 if (debug_linux_nat
)
2055 fprintf_unfiltered (gdb_stdlog
,
2056 "LHEW: waitpid of new LWP %ld, "
2057 "saving status %s\n",
2058 (long) new_lp
->ptid
.lwp (),
2059 status_to_str (status
));
2060 new_lp
->status
= status
;
2062 else if (report_thread_events
)
2064 new_lp
->waitstatus
.kind
= TARGET_WAITKIND_THREAD_CREATED
;
2065 new_lp
->status
= status
;
2074 if (event
== PTRACE_EVENT_EXEC
)
2076 if (debug_linux_nat
)
2077 fprintf_unfiltered (gdb_stdlog
,
2078 "LHEW: Got exec event from LWP %ld\n",
2081 ourstatus
->kind
= TARGET_WAITKIND_EXECD
;
2082 ourstatus
->value
.execd_pathname
2083 = xstrdup (linux_proc_pid_to_exec_file (pid
));
2085 /* The thread that execed must have been resumed, but, when a
2086 thread execs, it changes its tid to the tgid, and the old
2087 tgid thread might have not been resumed. */
2092 if (event
== PTRACE_EVENT_VFORK_DONE
)
2094 if (current_inferior ()->waiting_for_vfork_done
)
2096 if (debug_linux_nat
)
2097 fprintf_unfiltered (gdb_stdlog
,
2098 "LHEW: Got expected PTRACE_EVENT_"
2099 "VFORK_DONE from LWP %ld: stopping\n",
2102 ourstatus
->kind
= TARGET_WAITKIND_VFORK_DONE
;
2106 if (debug_linux_nat
)
2107 fprintf_unfiltered (gdb_stdlog
,
2108 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2109 "from LWP %ld: ignoring\n",
2114 internal_error (__FILE__
, __LINE__
,
2115 _("unknown ptrace event %d"), event
);
2118 /* Suspend waiting for a signal. We're mostly interested in
2124 if (debug_linux_nat
)
2125 fprintf_unfiltered (gdb_stdlog
, "linux-nat: about to sigsuspend\n");
2126 sigsuspend (&suspend_mask
);
2128 /* If the quit flag is set, it means that the user pressed Ctrl-C
2129 and we're debugging a process that is running on a separate
2130 terminal, so we must forward the Ctrl-C to the inferior. (If the
2131 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2132 inferior directly.) We must do this here because functions that
2133 need to block waiting for a signal loop forever until there's an
2134 event to report before returning back to the event loop. */
2135 if (!target_terminal::is_ours ())
2137 if (check_quit_flag ())
2138 target_pass_ctrlc ();
2142 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2146 wait_lwp (struct lwp_info
*lp
)
2150 int thread_dead
= 0;
2153 gdb_assert (!lp
->stopped
);
2154 gdb_assert (lp
->status
== 0);
2156 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2157 block_child_signals (&prev_mask
);
2161 pid
= my_waitpid (lp
->ptid
.lwp (), &status
, __WALL
| WNOHANG
);
2162 if (pid
== -1 && errno
== ECHILD
)
2164 /* The thread has previously exited. We need to delete it
2165 now because if this was a non-leader thread execing, we
2166 won't get an exit event. See comments on exec events at
2167 the top of the file. */
2169 if (debug_linux_nat
)
2170 fprintf_unfiltered (gdb_stdlog
, "WL: %s vanished.\n",
2171 target_pid_to_str (lp
->ptid
).c_str ());
2176 /* Bugs 10970, 12702.
2177 Thread group leader may have exited in which case we'll lock up in
2178 waitpid if there are other threads, even if they are all zombies too.
2179 Basically, we're not supposed to use waitpid this way.
2180 tkill(pid,0) cannot be used here as it gets ESRCH for both
2181 for zombie and running processes.
2183 As a workaround, check if we're waiting for the thread group leader and
2184 if it's a zombie, and avoid calling waitpid if it is.
2186 This is racy, what if the tgl becomes a zombie right after we check?
2187 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2188 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2190 if (lp
->ptid
.pid () == lp
->ptid
.lwp ()
2191 && linux_proc_pid_is_zombie (lp
->ptid
.lwp ()))
2194 if (debug_linux_nat
)
2195 fprintf_unfiltered (gdb_stdlog
,
2196 "WL: Thread group leader %s vanished.\n",
2197 target_pid_to_str (lp
->ptid
).c_str ());
2201 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2202 get invoked despite our caller had them intentionally blocked by
2203 block_child_signals. This is sensitive only to the loop of
2204 linux_nat_wait_1 and there if we get called my_waitpid gets called
2205 again before it gets to sigsuspend so we can safely let the handlers
2206 get executed here. */
2210 restore_child_signals_mask (&prev_mask
);
2214 gdb_assert (pid
== lp
->ptid
.lwp ());
2216 if (debug_linux_nat
)
2218 fprintf_unfiltered (gdb_stdlog
,
2219 "WL: waitpid %s received %s\n",
2220 target_pid_to_str (lp
->ptid
).c_str (),
2221 status_to_str (status
));
2224 /* Check if the thread has exited. */
2225 if (WIFEXITED (status
) || WIFSIGNALED (status
))
2227 if (report_thread_events
2228 || lp
->ptid
.pid () == lp
->ptid
.lwp ())
2230 if (debug_linux_nat
)
2231 fprintf_unfiltered (gdb_stdlog
, "WL: LWP %d exited.\n",
2234 /* If this is the leader exiting, it means the whole
2235 process is gone. Store the status to report to the
2236 core. Store it in lp->waitstatus, because lp->status
2237 would be ambiguous (W_EXITCODE(0,0) == 0). */
2238 store_waitstatus (&lp
->waitstatus
, status
);
2243 if (debug_linux_nat
)
2244 fprintf_unfiltered (gdb_stdlog
, "WL: %s exited.\n",
2245 target_pid_to_str (lp
->ptid
).c_str ());
2255 gdb_assert (WIFSTOPPED (status
));
2258 if (lp
->must_set_ptrace_flags
)
2260 struct inferior
*inf
= find_inferior_pid (lp
->ptid
.pid ());
2261 int options
= linux_nat_ptrace_options (inf
->attach_flag
);
2263 linux_enable_event_reporting (lp
->ptid
.lwp (), options
);
2264 lp
->must_set_ptrace_flags
= 0;
2267 /* Handle GNU/Linux's syscall SIGTRAPs. */
2268 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SYSCALL_SIGTRAP
)
2270 /* No longer need the sysgood bit. The ptrace event ends up
2271 recorded in lp->waitstatus if we care for it. We can carry
2272 on handling the event like a regular SIGTRAP from here
2274 status
= W_STOPCODE (SIGTRAP
);
2275 if (linux_handle_syscall_trap (lp
, 1))
2276 return wait_lwp (lp
);
2280 /* Almost all other ptrace-stops are known to be outside of system
2281 calls, with further exceptions in linux_handle_extended_wait. */
2282 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
2285 /* Handle GNU/Linux's extended waitstatus for trace events. */
2286 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
2287 && linux_is_extended_waitstatus (status
))
2289 if (debug_linux_nat
)
2290 fprintf_unfiltered (gdb_stdlog
,
2291 "WL: Handling extended status 0x%06x\n",
2293 linux_handle_extended_wait (lp
, status
);
2300 /* Send a SIGSTOP to LP. */
2303 stop_callback (struct lwp_info
*lp
)
2305 if (!lp
->stopped
&& !lp
->signalled
)
2309 if (debug_linux_nat
)
2311 fprintf_unfiltered (gdb_stdlog
,
2312 "SC: kill %s **<SIGSTOP>**\n",
2313 target_pid_to_str (lp
->ptid
).c_str ());
2316 ret
= kill_lwp (lp
->ptid
.lwp (), SIGSTOP
);
2317 if (debug_linux_nat
)
2319 fprintf_unfiltered (gdb_stdlog
,
2320 "SC: lwp kill %d %s\n",
2322 errno
? safe_strerror (errno
) : "ERRNO-OK");
2326 gdb_assert (lp
->status
== 0);
2332 /* Request a stop on LWP. */
2335 linux_stop_lwp (struct lwp_info
*lwp
)
2337 stop_callback (lwp
);
2340 /* See linux-nat.h */
2343 linux_stop_and_wait_all_lwps (void)
2345 /* Stop all LWP's ... */
2346 iterate_over_lwps (minus_one_ptid
, stop_callback
);
2348 /* ... and wait until all of them have reported back that
2349 they're no longer running. */
2350 iterate_over_lwps (minus_one_ptid
, stop_wait_callback
);
2353 /* See linux-nat.h */
2356 linux_unstop_all_lwps (void)
2358 iterate_over_lwps (minus_one_ptid
,
2359 [] (struct lwp_info
*info
)
2361 return resume_stopped_resumed_lwps (info
, minus_one_ptid
);
2365 /* Return non-zero if LWP PID has a pending SIGINT. */
2368 linux_nat_has_pending_sigint (int pid
)
2370 sigset_t pending
, blocked
, ignored
;
2372 linux_proc_pending_signals (pid
, &pending
, &blocked
, &ignored
);
2374 if (sigismember (&pending
, SIGINT
)
2375 && !sigismember (&ignored
, SIGINT
))
2381 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2384 set_ignore_sigint (struct lwp_info
*lp
)
2386 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2387 flag to consume the next one. */
2388 if (lp
->stopped
&& lp
->status
!= 0 && WIFSTOPPED (lp
->status
)
2389 && WSTOPSIG (lp
->status
) == SIGINT
)
2392 lp
->ignore_sigint
= 1;
2397 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2398 This function is called after we know the LWP has stopped; if the LWP
2399 stopped before the expected SIGINT was delivered, then it will never have
2400 arrived. Also, if the signal was delivered to a shared queue and consumed
2401 by a different thread, it will never be delivered to this LWP. */
2404 maybe_clear_ignore_sigint (struct lwp_info
*lp
)
2406 if (!lp
->ignore_sigint
)
2409 if (!linux_nat_has_pending_sigint (lp
->ptid
.lwp ()))
2411 if (debug_linux_nat
)
2412 fprintf_unfiltered (gdb_stdlog
,
2413 "MCIS: Clearing bogus flag for %s\n",
2414 target_pid_to_str (lp
->ptid
).c_str ());
2415 lp
->ignore_sigint
= 0;
2419 /* Fetch the possible triggered data watchpoint info and store it in
2422 On some archs, like x86, that use debug registers to set
2423 watchpoints, it's possible that the way to know which watched
2424 address trapped, is to check the register that is used to select
2425 which address to watch. Problem is, between setting the watchpoint
2426 and reading back which data address trapped, the user may change
2427 the set of watchpoints, and, as a consequence, GDB changes the
2428 debug registers in the inferior. To avoid reading back a stale
2429 stopped-data-address when that happens, we cache in LP the fact
2430 that a watchpoint trapped, and the corresponding data address, as
2431 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2432 registers meanwhile, we have the cached data we can rely on. */
2435 check_stopped_by_watchpoint (struct lwp_info
*lp
)
2437 scoped_restore save_inferior_ptid
= make_scoped_restore (&inferior_ptid
);
2438 inferior_ptid
= lp
->ptid
;
2440 if (linux_target
->low_stopped_by_watchpoint ())
2442 lp
->stop_reason
= TARGET_STOPPED_BY_WATCHPOINT
;
2443 lp
->stopped_data_address_p
2444 = linux_target
->low_stopped_data_address (&lp
->stopped_data_address
);
2447 return lp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
2450 /* Returns true if the LWP had stopped for a watchpoint. */
2453 linux_nat_target::stopped_by_watchpoint ()
2455 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2457 gdb_assert (lp
!= NULL
);
2459 return lp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
2463 linux_nat_target::stopped_data_address (CORE_ADDR
*addr_p
)
2465 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2467 gdb_assert (lp
!= NULL
);
2469 *addr_p
= lp
->stopped_data_address
;
2471 return lp
->stopped_data_address_p
;
2474 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2477 linux_nat_target::low_status_is_event (int status
)
2479 return WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
;
2482 /* Wait until LP is stopped. */
2485 stop_wait_callback (struct lwp_info
*lp
)
2487 struct inferior
*inf
= find_inferior_ptid (lp
->ptid
);
2489 /* If this is a vfork parent, bail out, it is not going to report
2490 any SIGSTOP until the vfork is done with. */
2491 if (inf
->vfork_child
!= NULL
)
2498 status
= wait_lwp (lp
);
2502 if (lp
->ignore_sigint
&& WIFSTOPPED (status
)
2503 && WSTOPSIG (status
) == SIGINT
)
2505 lp
->ignore_sigint
= 0;
2508 ptrace (PTRACE_CONT
, lp
->ptid
.lwp (), 0, 0);
2510 if (debug_linux_nat
)
2511 fprintf_unfiltered (gdb_stdlog
,
2512 "PTRACE_CONT %s, 0, 0 (%s) "
2513 "(discarding SIGINT)\n",
2514 target_pid_to_str (lp
->ptid
).c_str (),
2515 errno
? safe_strerror (errno
) : "OK");
2517 return stop_wait_callback (lp
);
2520 maybe_clear_ignore_sigint (lp
);
2522 if (WSTOPSIG (status
) != SIGSTOP
)
2524 /* The thread was stopped with a signal other than SIGSTOP. */
2526 if (debug_linux_nat
)
2527 fprintf_unfiltered (gdb_stdlog
,
2528 "SWC: Pending event %s in %s\n",
2529 status_to_str ((int) status
),
2530 target_pid_to_str (lp
->ptid
).c_str ());
2532 /* Save the sigtrap event. */
2533 lp
->status
= status
;
2534 gdb_assert (lp
->signalled
);
2535 save_stop_reason (lp
);
2539 /* We caught the SIGSTOP that we intended to catch. */
2541 if (debug_linux_nat
)
2542 fprintf_unfiltered (gdb_stdlog
,
2543 "SWC: Expected SIGSTOP caught for %s.\n",
2544 target_pid_to_str (lp
->ptid
).c_str ());
2548 /* If we are waiting for this stop so we can report the thread
2549 stopped then we need to record this status. Otherwise, we can
2550 now discard this stop event. */
2551 if (lp
->last_resume_kind
== resume_stop
)
2553 lp
->status
= status
;
2554 save_stop_reason (lp
);
2562 /* Return non-zero if LP has a wait status pending. Discard the
2563 pending event and resume the LWP if the event that originally
2564 caused the stop became uninteresting. */
2567 status_callback (struct lwp_info
*lp
)
2569 /* Only report a pending wait status if we pretend that this has
2570 indeed been resumed. */
2574 if (!lwp_status_pending_p (lp
))
2577 if (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
2578 || lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
)
2580 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
2584 pc
= regcache_read_pc (regcache
);
2586 if (pc
!= lp
->stop_pc
)
2588 if (debug_linux_nat
)
2589 fprintf_unfiltered (gdb_stdlog
,
2590 "SC: PC of %s changed. was=%s, now=%s\n",
2591 target_pid_to_str (lp
->ptid
).c_str (),
2592 paddress (target_gdbarch (), lp
->stop_pc
),
2593 paddress (target_gdbarch (), pc
));
2597 #if !USE_SIGTRAP_SIGINFO
2598 else if (!breakpoint_inserted_here_p (regcache
->aspace (), pc
))
2600 if (debug_linux_nat
)
2601 fprintf_unfiltered (gdb_stdlog
,
2602 "SC: previous breakpoint of %s, at %s gone\n",
2603 target_pid_to_str (lp
->ptid
).c_str (),
2604 paddress (target_gdbarch (), lp
->stop_pc
));
2612 if (debug_linux_nat
)
2613 fprintf_unfiltered (gdb_stdlog
,
2614 "SC: pending event of %s cancelled.\n",
2615 target_pid_to_str (lp
->ptid
).c_str ());
2618 linux_resume_one_lwp (lp
, lp
->step
, GDB_SIGNAL_0
);
2626 /* Count the LWP's that have had events. */
2629 count_events_callback (struct lwp_info
*lp
, int *count
)
2631 gdb_assert (count
!= NULL
);
2633 /* Select only resumed LWPs that have an event pending. */
2634 if (lp
->resumed
&& lwp_status_pending_p (lp
))
2640 /* Select the LWP (if any) that is currently being single-stepped. */
2643 select_singlestep_lwp_callback (struct lwp_info
*lp
)
2645 if (lp
->last_resume_kind
== resume_step
2652 /* Returns true if LP has a status pending. */
2655 lwp_status_pending_p (struct lwp_info
*lp
)
2657 /* We check for lp->waitstatus in addition to lp->status, because we
2658 can have pending process exits recorded in lp->status and
2659 W_EXITCODE(0,0) happens to be 0. */
2660 return lp
->status
!= 0 || lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
;
2663 /* Select the Nth LWP that has had an event. */
2666 select_event_lwp_callback (struct lwp_info
*lp
, int *selector
)
2668 gdb_assert (selector
!= NULL
);
2670 /* Select only resumed LWPs that have an event pending. */
2671 if (lp
->resumed
&& lwp_status_pending_p (lp
))
2672 if ((*selector
)-- == 0)
2678 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2679 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2680 and save the result in the LWP's stop_reason field. If it stopped
2681 for a breakpoint, decrement the PC if necessary on the lwp's
2685 save_stop_reason (struct lwp_info
*lp
)
2687 struct regcache
*regcache
;
2688 struct gdbarch
*gdbarch
;
2691 #if USE_SIGTRAP_SIGINFO
2695 gdb_assert (lp
->stop_reason
== TARGET_STOPPED_BY_NO_REASON
);
2696 gdb_assert (lp
->status
!= 0);
2698 if (!linux_target
->low_status_is_event (lp
->status
))
2701 regcache
= get_thread_regcache (lp
->ptid
);
2702 gdbarch
= regcache
->arch ();
2704 pc
= regcache_read_pc (regcache
);
2705 sw_bp_pc
= pc
- gdbarch_decr_pc_after_break (gdbarch
);
2707 #if USE_SIGTRAP_SIGINFO
2708 if (linux_nat_get_siginfo (lp
->ptid
, &siginfo
))
2710 if (siginfo
.si_signo
== SIGTRAP
)
2712 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
)
2713 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
2715 /* The si_code is ambiguous on this arch -- check debug
2717 if (!check_stopped_by_watchpoint (lp
))
2718 lp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
2720 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
))
2722 /* If we determine the LWP stopped for a SW breakpoint,
2723 trust it. Particularly don't check watchpoint
2724 registers, because at least on s390, we'd find
2725 stopped-by-watchpoint as long as there's a watchpoint
2727 lp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
2729 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
2731 /* This can indicate either a hardware breakpoint or
2732 hardware watchpoint. Check debug registers. */
2733 if (!check_stopped_by_watchpoint (lp
))
2734 lp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
2736 else if (siginfo
.si_code
== TRAP_TRACE
)
2738 if (debug_linux_nat
)
2739 fprintf_unfiltered (gdb_stdlog
,
2740 "CSBB: %s stopped by trace\n",
2741 target_pid_to_str (lp
->ptid
).c_str ());
2743 /* We may have single stepped an instruction that
2744 triggered a watchpoint. In that case, on some
2745 architectures (such as x86), instead of TRAP_HWBKPT,
2746 si_code indicates TRAP_TRACE, and we need to check
2747 the debug registers separately. */
2748 check_stopped_by_watchpoint (lp
);
2753 if ((!lp
->step
|| lp
->stop_pc
== sw_bp_pc
)
2754 && software_breakpoint_inserted_here_p (regcache
->aspace (),
2757 /* The LWP was either continued, or stepped a software
2758 breakpoint instruction. */
2759 lp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
2762 if (hardware_breakpoint_inserted_here_p (regcache
->aspace (), pc
))
2763 lp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
2765 if (lp
->stop_reason
== TARGET_STOPPED_BY_NO_REASON
)
2766 check_stopped_by_watchpoint (lp
);
2769 if (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
)
2771 if (debug_linux_nat
)
2772 fprintf_unfiltered (gdb_stdlog
,
2773 "CSBB: %s stopped by software breakpoint\n",
2774 target_pid_to_str (lp
->ptid
).c_str ());
2776 /* Back up the PC if necessary. */
2778 regcache_write_pc (regcache
, sw_bp_pc
);
2780 /* Update this so we record the correct stop PC below. */
2783 else if (lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
)
2785 if (debug_linux_nat
)
2786 fprintf_unfiltered (gdb_stdlog
,
2787 "CSBB: %s stopped by hardware breakpoint\n",
2788 target_pid_to_str (lp
->ptid
).c_str ());
2790 else if (lp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
)
2792 if (debug_linux_nat
)
2793 fprintf_unfiltered (gdb_stdlog
,
2794 "CSBB: %s stopped by hardware watchpoint\n",
2795 target_pid_to_str (lp
->ptid
).c_str ());
2802 /* Returns true if the LWP had stopped for a software breakpoint. */
2805 linux_nat_target::stopped_by_sw_breakpoint ()
2807 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2809 gdb_assert (lp
!= NULL
);
2811 return lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
;
2814 /* Implement the supports_stopped_by_sw_breakpoint method. */
2817 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2819 return USE_SIGTRAP_SIGINFO
;
2822 /* Returns true if the LWP had stopped for a hardware
2823 breakpoint/watchpoint. */
2826 linux_nat_target::stopped_by_hw_breakpoint ()
2828 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2830 gdb_assert (lp
!= NULL
);
2832 return lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
;
2835 /* Implement the supports_stopped_by_hw_breakpoint method. */
2838 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2840 return USE_SIGTRAP_SIGINFO
;
2843 /* Select one LWP out of those that have events pending. */
2846 select_event_lwp (ptid_t filter
, struct lwp_info
**orig_lp
, int *status
)
2849 int random_selector
;
2850 struct lwp_info
*event_lp
= NULL
;
2852 /* Record the wait status for the original LWP. */
2853 (*orig_lp
)->status
= *status
;
2855 /* In all-stop, give preference to the LWP that is being
2856 single-stepped. There will be at most one, and it will be the
2857 LWP that the core is most interested in. If we didn't do this,
2858 then we'd have to handle pending step SIGTRAPs somehow in case
2859 the core later continues the previously-stepped thread, as
2860 otherwise we'd report the pending SIGTRAP then, and the core, not
2861 having stepped the thread, wouldn't understand what the trap was
2862 for, and therefore would report it to the user as a random
2864 if (!target_is_non_stop_p ())
2866 event_lp
= iterate_over_lwps (filter
, select_singlestep_lwp_callback
);
2867 if (event_lp
!= NULL
)
2869 if (debug_linux_nat
)
2870 fprintf_unfiltered (gdb_stdlog
,
2871 "SEL: Select single-step %s\n",
2872 target_pid_to_str (event_lp
->ptid
).c_str ());
2876 if (event_lp
== NULL
)
2878 /* Pick one at random, out of those which have had events. */
2880 /* First see how many events we have. */
2881 iterate_over_lwps (filter
,
2882 [&] (struct lwp_info
*info
)
2884 return count_events_callback (info
, &num_events
);
2886 gdb_assert (num_events
> 0);
2888 /* Now randomly pick a LWP out of those that have had
2890 random_selector
= (int)
2891 ((num_events
* (double) rand ()) / (RAND_MAX
+ 1.0));
2893 if (debug_linux_nat
&& num_events
> 1)
2894 fprintf_unfiltered (gdb_stdlog
,
2895 "SEL: Found %d events, selecting #%d\n",
2896 num_events
, random_selector
);
2899 = (iterate_over_lwps
2901 [&] (struct lwp_info
*info
)
2903 return select_event_lwp_callback (info
,
2908 if (event_lp
!= NULL
)
2910 /* Switch the event LWP. */
2911 *orig_lp
= event_lp
;
2912 *status
= event_lp
->status
;
2915 /* Flush the wait status for the event LWP. */
2916 (*orig_lp
)->status
= 0;
2919 /* Return non-zero if LP has been resumed. */
2922 resumed_callback (struct lwp_info
*lp
)
2927 /* Check if we should go on and pass this event to common code.
2928 Return the affected lwp if we are, or NULL otherwise. */
2930 static struct lwp_info
*
2931 linux_nat_filter_event (int lwpid
, int status
)
2933 struct lwp_info
*lp
;
2934 int event
= linux_ptrace_get_extended_event (status
);
2936 lp
= find_lwp_pid (ptid_t (lwpid
));
2938 /* Check for stop events reported by a process we didn't already
2939 know about - anything not already in our LWP list.
2941 If we're expecting to receive stopped processes after
2942 fork, vfork, and clone events, then we'll just add the
2943 new one to our list and go back to waiting for the event
2944 to be reported - the stopped process might be returned
2945 from waitpid before or after the event is.
2947 But note the case of a non-leader thread exec'ing after the
2948 leader having exited, and gone from our lists. The non-leader
2949 thread changes its tid to the tgid. */
2951 if (WIFSTOPPED (status
) && lp
== NULL
2952 && (WSTOPSIG (status
) == SIGTRAP
&& event
== PTRACE_EVENT_EXEC
))
2954 /* A multi-thread exec after we had seen the leader exiting. */
2955 if (debug_linux_nat
)
2956 fprintf_unfiltered (gdb_stdlog
,
2957 "LLW: Re-adding thread group leader LWP %d.\n",
2960 lp
= add_lwp (ptid_t (lwpid
, lwpid
, 0));
2963 add_thread (lp
->ptid
);
2966 if (WIFSTOPPED (status
) && !lp
)
2968 if (debug_linux_nat
)
2969 fprintf_unfiltered (gdb_stdlog
,
2970 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2971 (long) lwpid
, status_to_str (status
));
2972 add_to_pid_list (&stopped_pids
, lwpid
, status
);
2976 /* Make sure we don't report an event for the exit of an LWP not in
2977 our list, i.e. not part of the current process. This can happen
2978 if we detach from a program we originally forked and then it
2980 if (!WIFSTOPPED (status
) && !lp
)
2983 /* This LWP is stopped now. (And if dead, this prevents it from
2984 ever being continued.) */
2987 if (WIFSTOPPED (status
) && lp
->must_set_ptrace_flags
)
2989 struct inferior
*inf
= find_inferior_pid (lp
->ptid
.pid ());
2990 int options
= linux_nat_ptrace_options (inf
->attach_flag
);
2992 linux_enable_event_reporting (lp
->ptid
.lwp (), options
);
2993 lp
->must_set_ptrace_flags
= 0;
2996 /* Handle GNU/Linux's syscall SIGTRAPs. */
2997 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SYSCALL_SIGTRAP
)
2999 /* No longer need the sysgood bit. The ptrace event ends up
3000 recorded in lp->waitstatus if we care for it. We can carry
3001 on handling the event like a regular SIGTRAP from here
3003 status
= W_STOPCODE (SIGTRAP
);
3004 if (linux_handle_syscall_trap (lp
, 0))
3009 /* Almost all other ptrace-stops are known to be outside of system
3010 calls, with further exceptions in linux_handle_extended_wait. */
3011 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
3014 /* Handle GNU/Linux's extended waitstatus for trace events. */
3015 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
3016 && linux_is_extended_waitstatus (status
))
3018 if (debug_linux_nat
)
3019 fprintf_unfiltered (gdb_stdlog
,
3020 "LLW: Handling extended status 0x%06x\n",
3022 if (linux_handle_extended_wait (lp
, status
))
3026 /* Check if the thread has exited. */
3027 if (WIFEXITED (status
) || WIFSIGNALED (status
))
3029 if (!report_thread_events
3030 && num_lwps (lp
->ptid
.pid ()) > 1)
3032 if (debug_linux_nat
)
3033 fprintf_unfiltered (gdb_stdlog
,
3034 "LLW: %s exited.\n",
3035 target_pid_to_str (lp
->ptid
).c_str ());
3037 /* If there is at least one more LWP, then the exit signal
3038 was not the end of the debugged application and should be
3044 /* Note that even if the leader was ptrace-stopped, it can still
3045 exit, if e.g., some other thread brings down the whole
3046 process (calls `exit'). So don't assert that the lwp is
3048 if (debug_linux_nat
)
3049 fprintf_unfiltered (gdb_stdlog
,
3050 "LWP %ld exited (resumed=%d)\n",
3051 lp
->ptid
.lwp (), lp
->resumed
);
3053 /* Dead LWP's aren't expected to reported a pending sigstop. */
3056 /* Store the pending event in the waitstatus, because
3057 W_EXITCODE(0,0) == 0. */
3058 store_waitstatus (&lp
->waitstatus
, status
);
3062 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3063 an attempt to stop an LWP. */
3065 && WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGSTOP
)
3069 if (lp
->last_resume_kind
== resume_stop
)
3071 if (debug_linux_nat
)
3072 fprintf_unfiltered (gdb_stdlog
,
3073 "LLW: resume_stop SIGSTOP caught for %s.\n",
3074 target_pid_to_str (lp
->ptid
).c_str ());
3078 /* This is a delayed SIGSTOP. Filter out the event. */
3080 if (debug_linux_nat
)
3081 fprintf_unfiltered (gdb_stdlog
,
3082 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3084 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3085 target_pid_to_str (lp
->ptid
).c_str ());
3087 linux_resume_one_lwp (lp
, lp
->step
, GDB_SIGNAL_0
);
3088 gdb_assert (lp
->resumed
);
3093 /* Make sure we don't report a SIGINT that we have already displayed
3094 for another thread. */
3095 if (lp
->ignore_sigint
3096 && WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGINT
)
3098 if (debug_linux_nat
)
3099 fprintf_unfiltered (gdb_stdlog
,
3100 "LLW: Delayed SIGINT caught for %s.\n",
3101 target_pid_to_str (lp
->ptid
).c_str ());
3103 /* This is a delayed SIGINT. */
3104 lp
->ignore_sigint
= 0;
3106 linux_resume_one_lwp (lp
, lp
->step
, GDB_SIGNAL_0
);
3107 if (debug_linux_nat
)
3108 fprintf_unfiltered (gdb_stdlog
,
3109 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3111 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3112 target_pid_to_str (lp
->ptid
).c_str ());
3113 gdb_assert (lp
->resumed
);
3115 /* Discard the event. */
3119 /* Don't report signals that GDB isn't interested in, such as
3120 signals that are neither printed nor stopped upon. Stopping all
3121 threads can be a bit time-consuming so if we want decent
3122 performance with heavily multi-threaded programs, especially when
3123 they're using a high frequency timer, we'd better avoid it if we
3125 if (WIFSTOPPED (status
))
3127 enum gdb_signal signo
= gdb_signal_from_host (WSTOPSIG (status
));
3129 if (!target_is_non_stop_p ())
3131 /* Only do the below in all-stop, as we currently use SIGSTOP
3132 to implement target_stop (see linux_nat_stop) in
3134 if (signo
== GDB_SIGNAL_INT
&& signal_pass_state (signo
) == 0)
3136 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3137 forwarded to the entire process group, that is, all LWPs
3138 will receive it - unless they're using CLONE_THREAD to
3139 share signals. Since we only want to report it once, we
3140 mark it as ignored for all LWPs except this one. */
3141 iterate_over_lwps (ptid_t (lp
->ptid
.pid ()), set_ignore_sigint
);
3142 lp
->ignore_sigint
= 0;
3145 maybe_clear_ignore_sigint (lp
);
3148 /* When using hardware single-step, we need to report every signal.
3149 Otherwise, signals in pass_mask may be short-circuited
3150 except signals that might be caused by a breakpoint, or SIGSTOP
3151 if we sent the SIGSTOP and are waiting for it to arrive. */
3153 && WSTOPSIG (status
) && sigismember (&pass_mask
, WSTOPSIG (status
))
3154 && (WSTOPSIG (status
) != SIGSTOP
3155 || !find_thread_ptid (lp
->ptid
)->stop_requested
)
3156 && !linux_wstatus_maybe_breakpoint (status
))
3158 linux_resume_one_lwp (lp
, lp
->step
, signo
);
3159 if (debug_linux_nat
)
3160 fprintf_unfiltered (gdb_stdlog
,
3161 "LLW: %s %s, %s (preempt 'handle')\n",
3163 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3164 target_pid_to_str (lp
->ptid
).c_str (),
3165 (signo
!= GDB_SIGNAL_0
3166 ? strsignal (gdb_signal_to_host (signo
))
3172 /* An interesting event. */
3174 lp
->status
= status
;
3175 save_stop_reason (lp
);
3179 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3180 their exits until all other threads in the group have exited. */
3183 check_zombie_leaders (void)
3185 for (inferior
*inf
: all_inferiors ())
3187 struct lwp_info
*leader_lp
;
3192 leader_lp
= find_lwp_pid (ptid_t (inf
->pid
));
3193 if (leader_lp
!= NULL
3194 /* Check if there are other threads in the group, as we may
3195 have raced with the inferior simply exiting. */
3196 && num_lwps (inf
->pid
) > 1
3197 && linux_proc_pid_is_zombie (inf
->pid
))
3199 if (debug_linux_nat
)
3200 fprintf_unfiltered (gdb_stdlog
,
3201 "CZL: Thread group leader %d zombie "
3202 "(it exited, or another thread execd).\n",
3205 /* A leader zombie can mean one of two things:
3207 - It exited, and there's an exit status pending
3208 available, or only the leader exited (not the whole
3209 program). In the latter case, we can't waitpid the
3210 leader's exit status until all other threads are gone.
3212 - There are 3 or more threads in the group, and a thread
3213 other than the leader exec'd. See comments on exec
3214 events at the top of the file. We could try
3215 distinguishing the exit and exec cases, by waiting once
3216 more, and seeing if something comes out, but it doesn't
3217 sound useful. The previous leader _does_ go away, and
3218 we'll re-add the new one once we see the exec event
3219 (which is just the same as what would happen if the
3220 previous leader did exit voluntarily before some other
3223 if (debug_linux_nat
)
3224 fprintf_unfiltered (gdb_stdlog
,
3225 "CZL: Thread group leader %d vanished.\n",
3227 exit_lwp (leader_lp
);
3232 /* Convenience function that is called when the kernel reports an exit
3233 event. This decides whether to report the event to GDB as a
3234 process exit event, a thread exit event, or to suppress the
3238 filter_exit_event (struct lwp_info
*event_child
,
3239 struct target_waitstatus
*ourstatus
)
3241 ptid_t ptid
= event_child
->ptid
;
3243 if (num_lwps (ptid
.pid ()) > 1)
3245 if (report_thread_events
)
3246 ourstatus
->kind
= TARGET_WAITKIND_THREAD_EXITED
;
3248 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3250 exit_lwp (event_child
);
3257 linux_nat_wait_1 (ptid_t ptid
, struct target_waitstatus
*ourstatus
,
3261 enum resume_kind last_resume_kind
;
3262 struct lwp_info
*lp
;
3265 if (debug_linux_nat
)
3266 fprintf_unfiltered (gdb_stdlog
, "LLW: enter\n");
3268 /* The first time we get here after starting a new inferior, we may
3269 not have added it to the LWP list yet - this is the earliest
3270 moment at which we know its PID. */
3271 if (inferior_ptid
.is_pid ())
3273 /* Upgrade the main thread's ptid. */
3274 thread_change_ptid (inferior_ptid
,
3275 ptid_t (inferior_ptid
.pid (),
3276 inferior_ptid
.pid (), 0));
3278 lp
= add_initial_lwp (inferior_ptid
);
3282 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3283 block_child_signals (&prev_mask
);
3285 /* First check if there is a LWP with a wait status pending. */
3286 lp
= iterate_over_lwps (ptid
, status_callback
);
3289 if (debug_linux_nat
)
3290 fprintf_unfiltered (gdb_stdlog
,
3291 "LLW: Using pending wait status %s for %s.\n",
3292 status_to_str (lp
->status
),
3293 target_pid_to_str (lp
->ptid
).c_str ());
3296 /* But if we don't find a pending event, we'll have to wait. Always
3297 pull all events out of the kernel. We'll randomly select an
3298 event LWP out of all that have events, to prevent starvation. */
3304 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3307 - If the thread group leader exits while other threads in the
3308 thread group still exist, waitpid(TGID, ...) hangs. That
3309 waitpid won't return an exit status until the other threads
3310 in the group are reaped.
3312 - When a non-leader thread execs, that thread just vanishes
3313 without reporting an exit (so we'd hang if we waited for it
3314 explicitly in that case). The exec event is reported to
3318 lwpid
= my_waitpid (-1, &status
, __WALL
| WNOHANG
);
3320 if (debug_linux_nat
)
3321 fprintf_unfiltered (gdb_stdlog
,
3322 "LNW: waitpid(-1, ...) returned %d, %s\n",
3323 lwpid
, errno
? safe_strerror (errno
) : "ERRNO-OK");
3327 if (debug_linux_nat
)
3329 fprintf_unfiltered (gdb_stdlog
,
3330 "LLW: waitpid %ld received %s\n",
3331 (long) lwpid
, status_to_str (status
));
3334 linux_nat_filter_event (lwpid
, status
);
3335 /* Retry until nothing comes out of waitpid. A single
3336 SIGCHLD can indicate more than one child stopped. */
3340 /* Now that we've pulled all events out of the kernel, resume
3341 LWPs that don't have an interesting event to report. */
3342 iterate_over_lwps (minus_one_ptid
,
3343 [] (struct lwp_info
*info
)
3345 return resume_stopped_resumed_lwps (info
, minus_one_ptid
);
3348 /* ... and find an LWP with a status to report to the core, if
3350 lp
= iterate_over_lwps (ptid
, status_callback
);
3354 /* Check for zombie thread group leaders. Those can't be reaped
3355 until all other threads in the thread group are. */
3356 check_zombie_leaders ();
3358 /* If there are no resumed children left, bail. We'd be stuck
3359 forever in the sigsuspend call below otherwise. */
3360 if (iterate_over_lwps (ptid
, resumed_callback
) == NULL
)
3362 if (debug_linux_nat
)
3363 fprintf_unfiltered (gdb_stdlog
, "LLW: exit (no resumed LWP)\n");
3365 ourstatus
->kind
= TARGET_WAITKIND_NO_RESUMED
;
3367 restore_child_signals_mask (&prev_mask
);
3368 return minus_one_ptid
;
3371 /* No interesting event to report to the core. */
3373 if (target_options
& TARGET_WNOHANG
)
3375 if (debug_linux_nat
)
3376 fprintf_unfiltered (gdb_stdlog
, "LLW: exit (ignore)\n");
3378 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3379 restore_child_signals_mask (&prev_mask
);
3380 return minus_one_ptid
;
3383 /* We shouldn't end up here unless we want to try again. */
3384 gdb_assert (lp
== NULL
);
3386 /* Block until we get an event reported with SIGCHLD. */
3392 status
= lp
->status
;
3395 if (!target_is_non_stop_p ())
3397 /* Now stop all other LWP's ... */
3398 iterate_over_lwps (minus_one_ptid
, stop_callback
);
3400 /* ... and wait until all of them have reported back that
3401 they're no longer running. */
3402 iterate_over_lwps (minus_one_ptid
, stop_wait_callback
);
3405 /* If we're not waiting for a specific LWP, choose an event LWP from
3406 among those that have had events. Giving equal priority to all
3407 LWPs that have had events helps prevent starvation. */
3408 if (ptid
== minus_one_ptid
|| ptid
.is_pid ())
3409 select_event_lwp (ptid
, &lp
, &status
);
3411 gdb_assert (lp
!= NULL
);
3413 /* Now that we've selected our final event LWP, un-adjust its PC if
3414 it was a software breakpoint, and we can't reliably support the
3415 "stopped by software breakpoint" stop reason. */
3416 if (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
3417 && !USE_SIGTRAP_SIGINFO
)
3419 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
3420 struct gdbarch
*gdbarch
= regcache
->arch ();
3421 int decr_pc
= gdbarch_decr_pc_after_break (gdbarch
);
3427 pc
= regcache_read_pc (regcache
);
3428 regcache_write_pc (regcache
, pc
+ decr_pc
);
3432 /* We'll need this to determine whether to report a SIGSTOP as
3433 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3435 last_resume_kind
= lp
->last_resume_kind
;
3437 if (!target_is_non_stop_p ())
3439 /* In all-stop, from the core's perspective, all LWPs are now
3440 stopped until a new resume action is sent over. */
3441 iterate_over_lwps (minus_one_ptid
, resume_clear_callback
);
3445 resume_clear_callback (lp
);
3448 if (linux_target
->low_status_is_event (status
))
3450 if (debug_linux_nat
)
3451 fprintf_unfiltered (gdb_stdlog
,
3452 "LLW: trap ptid is %s.\n",
3453 target_pid_to_str (lp
->ptid
).c_str ());
3456 if (lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3458 *ourstatus
= lp
->waitstatus
;
3459 lp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
3462 store_waitstatus (ourstatus
, status
);
3464 if (debug_linux_nat
)
3465 fprintf_unfiltered (gdb_stdlog
, "LLW: exit\n");
3467 restore_child_signals_mask (&prev_mask
);
3469 if (last_resume_kind
== resume_stop
3470 && ourstatus
->kind
== TARGET_WAITKIND_STOPPED
3471 && WSTOPSIG (status
) == SIGSTOP
)
3473 /* A thread that has been requested to stop by GDB with
3474 target_stop, and it stopped cleanly, so report as SIG0. The
3475 use of SIGSTOP is an implementation detail. */
3476 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3479 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
3480 || ourstatus
->kind
== TARGET_WAITKIND_SIGNALLED
)
3483 lp
->core
= linux_common_core_of_thread (lp
->ptid
);
3485 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
)
3486 return filter_exit_event (lp
, ourstatus
);
3491 /* Resume LWPs that are currently stopped without any pending status
3492 to report, but are resumed from the core's perspective. */
3495 resume_stopped_resumed_lwps (struct lwp_info
*lp
, const ptid_t wait_ptid
)
3499 if (debug_linux_nat
)
3500 fprintf_unfiltered (gdb_stdlog
,
3501 "RSRL: NOT resuming LWP %s, not stopped\n",
3502 target_pid_to_str (lp
->ptid
).c_str ());
3504 else if (!lp
->resumed
)
3506 if (debug_linux_nat
)
3507 fprintf_unfiltered (gdb_stdlog
,
3508 "RSRL: NOT resuming LWP %s, not resumed\n",
3509 target_pid_to_str (lp
->ptid
).c_str ());
3511 else if (lwp_status_pending_p (lp
))
3513 if (debug_linux_nat
)
3514 fprintf_unfiltered (gdb_stdlog
,
3515 "RSRL: NOT resuming LWP %s, has pending status\n",
3516 target_pid_to_str (lp
->ptid
).c_str ());
3520 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
3521 struct gdbarch
*gdbarch
= regcache
->arch ();
3525 CORE_ADDR pc
= regcache_read_pc (regcache
);
3526 int leave_stopped
= 0;
3528 /* Don't bother if there's a breakpoint at PC that we'd hit
3529 immediately, and we're not waiting for this LWP. */
3530 if (!lp
->ptid
.matches (wait_ptid
))
3532 if (breakpoint_inserted_here_p (regcache
->aspace (), pc
))
3538 if (debug_linux_nat
)
3539 fprintf_unfiltered (gdb_stdlog
,
3540 "RSRL: resuming stopped-resumed LWP %s at "
3542 target_pid_to_str (lp
->ptid
).c_str (),
3543 paddress (gdbarch
, pc
),
3546 linux_resume_one_lwp_throw (lp
, lp
->step
, GDB_SIGNAL_0
);
3549 catch (const gdb_exception_error
&ex
)
3551 if (!check_ptrace_stopped_lwp_gone (lp
))
3560 linux_nat_target::wait (ptid_t ptid
, struct target_waitstatus
*ourstatus
,
3565 if (debug_linux_nat
)
3567 std::string options_string
= target_options_to_string (target_options
);
3568 fprintf_unfiltered (gdb_stdlog
,
3569 "linux_nat_wait: [%s], [%s]\n",
3570 target_pid_to_str (ptid
).c_str (),
3571 options_string
.c_str ());
3574 /* Flush the async file first. */
3575 if (target_is_async_p ())
3576 async_file_flush ();
3578 /* Resume LWPs that are currently stopped without any pending status
3579 to report, but are resumed from the core's perspective. LWPs get
3580 in this state if we find them stopping at a time we're not
3581 interested in reporting the event (target_wait on a
3582 specific_process, for example, see linux_nat_wait_1), and
3583 meanwhile the event became uninteresting. Don't bother resuming
3584 LWPs we're not going to wait for if they'd stop immediately. */
3585 if (target_is_non_stop_p ())
3586 iterate_over_lwps (minus_one_ptid
,
3587 [=] (struct lwp_info
*info
)
3589 return resume_stopped_resumed_lwps (info
, ptid
);
3592 event_ptid
= linux_nat_wait_1 (ptid
, ourstatus
, target_options
);
3594 /* If we requested any event, and something came out, assume there
3595 may be more. If we requested a specific lwp or process, also
3596 assume there may be more. */
3597 if (target_is_async_p ()
3598 && ((ourstatus
->kind
!= TARGET_WAITKIND_IGNORE
3599 && ourstatus
->kind
!= TARGET_WAITKIND_NO_RESUMED
)
3600 || ptid
!= minus_one_ptid
))
3609 kill_one_lwp (pid_t pid
)
3611 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3614 kill_lwp (pid
, SIGKILL
);
3615 if (debug_linux_nat
)
3617 int save_errno
= errno
;
3619 fprintf_unfiltered (gdb_stdlog
,
3620 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid
,
3621 save_errno
? safe_strerror (save_errno
) : "OK");
3624 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3627 ptrace (PTRACE_KILL
, pid
, 0, 0);
3628 if (debug_linux_nat
)
3630 int save_errno
= errno
;
3632 fprintf_unfiltered (gdb_stdlog
,
3633 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid
,
3634 save_errno
? safe_strerror (save_errno
) : "OK");
3638 /* Wait for an LWP to die. */
3641 kill_wait_one_lwp (pid_t pid
)
3645 /* We must make sure that there are no pending events (delayed
3646 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3647 program doesn't interfere with any following debugging session. */
3651 res
= my_waitpid (pid
, NULL
, __WALL
);
3652 if (res
!= (pid_t
) -1)
3654 if (debug_linux_nat
)
3655 fprintf_unfiltered (gdb_stdlog
,
3656 "KWC: wait %ld received unknown.\n",
3658 /* The Linux kernel sometimes fails to kill a thread
3659 completely after PTRACE_KILL; that goes from the stop
3660 point in do_fork out to the one in get_signal_to_deliver
3661 and waits again. So kill it again. */
3667 gdb_assert (res
== -1 && errno
== ECHILD
);
3670 /* Callback for iterate_over_lwps. */
3673 kill_callback (struct lwp_info
*lp
)
3675 kill_one_lwp (lp
->ptid
.lwp ());
3679 /* Callback for iterate_over_lwps. */
3682 kill_wait_callback (struct lwp_info
*lp
)
3684 kill_wait_one_lwp (lp
->ptid
.lwp ());
3688 /* Kill the fork children of any threads of inferior INF that are
3689 stopped at a fork event. */
3692 kill_unfollowed_fork_children (struct inferior
*inf
)
3694 for (thread_info
*thread
: inf
->non_exited_threads ())
3696 struct target_waitstatus
*ws
= &thread
->pending_follow
;
3698 if (ws
->kind
== TARGET_WAITKIND_FORKED
3699 || ws
->kind
== TARGET_WAITKIND_VFORKED
)
3701 ptid_t child_ptid
= ws
->value
.related_pid
;
3702 int child_pid
= child_ptid
.pid ();
3703 int child_lwp
= child_ptid
.lwp ();
3705 kill_one_lwp (child_lwp
);
3706 kill_wait_one_lwp (child_lwp
);
3708 /* Let the arch-specific native code know this process is
3710 linux_target
->low_forget_process (child_pid
);
3716 linux_nat_target::kill ()
3718 /* If we're stopped while forking and we haven't followed yet,
3719 kill the other task. We need to do this first because the
3720 parent will be sleeping if this is a vfork. */
3721 kill_unfollowed_fork_children (current_inferior ());
3723 if (forks_exist_p ())
3724 linux_fork_killall ();
3727 ptid_t ptid
= ptid_t (inferior_ptid
.pid ());
3729 /* Stop all threads before killing them, since ptrace requires
3730 that the thread is stopped to successfully PTRACE_KILL. */
3731 iterate_over_lwps (ptid
, stop_callback
);
3732 /* ... and wait until all of them have reported back that
3733 they're no longer running. */
3734 iterate_over_lwps (ptid
, stop_wait_callback
);
3736 /* Kill all LWP's ... */
3737 iterate_over_lwps (ptid
, kill_callback
);
3739 /* ... and wait until we've flushed all events. */
3740 iterate_over_lwps (ptid
, kill_wait_callback
);
3743 target_mourn_inferior (inferior_ptid
);
3747 linux_nat_target::mourn_inferior ()
3749 int pid
= inferior_ptid
.pid ();
3751 purge_lwp_list (pid
);
3753 if (! forks_exist_p ())
3754 /* Normal case, no other forks available. */
3755 inf_ptrace_target::mourn_inferior ();
3757 /* Multi-fork case. The current inferior_ptid has exited, but
3758 there are other viable forks to debug. Delete the exiting
3759 one and context-switch to the first available. */
3760 linux_fork_mourn_inferior ();
3762 /* Let the arch-specific native code know this process is gone. */
3763 linux_target
->low_forget_process (pid
);
3766 /* Convert a native/host siginfo object, into/from the siginfo in the
3767 layout of the inferiors' architecture. */
3770 siginfo_fixup (siginfo_t
*siginfo
, gdb_byte
*inf_siginfo
, int direction
)
3772 /* If the low target didn't do anything, then just do a straight
3774 if (!linux_target
->low_siginfo_fixup (siginfo
, inf_siginfo
, direction
))
3777 memcpy (siginfo
, inf_siginfo
, sizeof (siginfo_t
));
3779 memcpy (inf_siginfo
, siginfo
, sizeof (siginfo_t
));
3783 static enum target_xfer_status
3784 linux_xfer_siginfo (enum target_object object
,
3785 const char *annex
, gdb_byte
*readbuf
,
3786 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
,
3787 ULONGEST
*xfered_len
)
3791 gdb_byte inf_siginfo
[sizeof (siginfo_t
)];
3793 gdb_assert (object
== TARGET_OBJECT_SIGNAL_INFO
);
3794 gdb_assert (readbuf
|| writebuf
);
3796 pid
= inferior_ptid
.lwp ();
3798 pid
= inferior_ptid
.pid ();
3800 if (offset
> sizeof (siginfo
))
3801 return TARGET_XFER_E_IO
;
3804 ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
);
3806 return TARGET_XFER_E_IO
;
3808 /* When GDB is built as a 64-bit application, ptrace writes into
3809 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3810 inferior with a 64-bit GDB should look the same as debugging it
3811 with a 32-bit GDB, we need to convert it. GDB core always sees
3812 the converted layout, so any read/write will have to be done
3814 siginfo_fixup (&siginfo
, inf_siginfo
, 0);
3816 if (offset
+ len
> sizeof (siginfo
))
3817 len
= sizeof (siginfo
) - offset
;
3819 if (readbuf
!= NULL
)
3820 memcpy (readbuf
, inf_siginfo
+ offset
, len
);
3823 memcpy (inf_siginfo
+ offset
, writebuf
, len
);
3825 /* Convert back to ptrace layout before flushing it out. */
3826 siginfo_fixup (&siginfo
, inf_siginfo
, 1);
3829 ptrace (PTRACE_SETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
);
3831 return TARGET_XFER_E_IO
;
3835 return TARGET_XFER_OK
;
3838 static enum target_xfer_status
3839 linux_nat_xfer_osdata (enum target_object object
,
3840 const char *annex
, gdb_byte
*readbuf
,
3841 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
,
3842 ULONGEST
*xfered_len
);
3844 static enum target_xfer_status
3845 linux_proc_xfer_partial (enum target_object object
,
3846 const char *annex
, gdb_byte
*readbuf
,
3847 const gdb_byte
*writebuf
,
3848 ULONGEST offset
, LONGEST len
, ULONGEST
*xfered_len
);
3850 enum target_xfer_status
3851 linux_nat_target::xfer_partial (enum target_object object
,
3852 const char *annex
, gdb_byte
*readbuf
,
3853 const gdb_byte
*writebuf
,
3854 ULONGEST offset
, ULONGEST len
, ULONGEST
*xfered_len
)
3856 enum target_xfer_status xfer
;
3858 if (object
== TARGET_OBJECT_SIGNAL_INFO
)
3859 return linux_xfer_siginfo (object
, annex
, readbuf
, writebuf
,
3860 offset
, len
, xfered_len
);
3862 /* The target is connected but no live inferior is selected. Pass
3863 this request down to a lower stratum (e.g., the executable
3865 if (object
== TARGET_OBJECT_MEMORY
&& inferior_ptid
== null_ptid
)
3866 return TARGET_XFER_EOF
;
3868 if (object
== TARGET_OBJECT_AUXV
)
3869 return memory_xfer_auxv (this, object
, annex
, readbuf
, writebuf
,
3870 offset
, len
, xfered_len
);
3872 if (object
== TARGET_OBJECT_OSDATA
)
3873 return linux_nat_xfer_osdata (object
, annex
, readbuf
, writebuf
,
3874 offset
, len
, xfered_len
);
3876 /* GDB calculates all addresses in the largest possible address
3878 The address width must be masked before its final use - either by
3879 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3881 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3883 if (object
== TARGET_OBJECT_MEMORY
)
3885 int addr_bit
= gdbarch_addr_bit (target_gdbarch ());
3887 if (addr_bit
< (sizeof (ULONGEST
) * HOST_CHAR_BIT
))
3888 offset
&= ((ULONGEST
) 1 << addr_bit
) - 1;
3891 xfer
= linux_proc_xfer_partial (object
, annex
, readbuf
, writebuf
,
3892 offset
, len
, xfered_len
);
3893 if (xfer
!= TARGET_XFER_EOF
)
3896 return inf_ptrace_target::xfer_partial (object
, annex
, readbuf
, writebuf
,
3897 offset
, len
, xfered_len
);
3901 linux_nat_target::thread_alive (ptid_t ptid
)
3903 /* As long as a PTID is in lwp list, consider it alive. */
3904 return find_lwp_pid (ptid
) != NULL
;
3907 /* Implement the to_update_thread_list target method for this
3911 linux_nat_target::update_thread_list ()
3913 struct lwp_info
*lwp
;
3915 /* We add/delete threads from the list as clone/exit events are
3916 processed, so just try deleting exited threads still in the
3918 delete_exited_threads ();
3920 /* Update the processor core that each lwp/thread was last seen
3924 /* Avoid accessing /proc if the thread hasn't run since we last
3925 time we fetched the thread's core. Accessing /proc becomes
3926 noticeably expensive when we have thousands of LWPs. */
3927 if (lwp
->core
== -1)
3928 lwp
->core
= linux_common_core_of_thread (lwp
->ptid
);
3933 linux_nat_target::pid_to_str (ptid_t ptid
)
3936 && (ptid
.pid () != ptid
.lwp ()
3937 || num_lwps (ptid
.pid ()) > 1))
3938 return string_printf ("LWP %ld", ptid
.lwp ());
3940 return normal_pid_to_str (ptid
);
3944 linux_nat_target::thread_name (struct thread_info
*thr
)
3946 return linux_proc_tid_get_name (thr
->ptid
);
3949 /* Accepts an integer PID; Returns a string representing a file that
3950 can be opened to get the symbols for the child process. */
3953 linux_nat_target::pid_to_exec_file (int pid
)
3955 return linux_proc_pid_to_exec_file (pid
);
3958 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3959 Because we can use a single read/write call, this can be much more
3960 efficient than banging away at PTRACE_PEEKTEXT. */
3962 static enum target_xfer_status
3963 linux_proc_xfer_partial (enum target_object object
,
3964 const char *annex
, gdb_byte
*readbuf
,
3965 const gdb_byte
*writebuf
,
3966 ULONGEST offset
, LONGEST len
, ULONGEST
*xfered_len
)
3972 if (object
!= TARGET_OBJECT_MEMORY
)
3973 return TARGET_XFER_EOF
;
3975 /* Don't bother for one word. */
3976 if (len
< 3 * sizeof (long))
3977 return TARGET_XFER_EOF
;
3979 /* We could keep this file open and cache it - possibly one per
3980 thread. That requires some juggling, but is even faster. */
3981 xsnprintf (filename
, sizeof filename
, "/proc/%ld/mem",
3982 inferior_ptid
.lwp ());
3983 fd
= gdb_open_cloexec (filename
, ((readbuf
? O_RDONLY
: O_WRONLY
)
3986 return TARGET_XFER_EOF
;
3988 /* Use pread64/pwrite64 if available, since they save a syscall and can
3989 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3990 debugging a SPARC64 application). */
3992 ret
= (readbuf
? pread64 (fd
, readbuf
, len
, offset
)
3993 : pwrite64 (fd
, writebuf
, len
, offset
));
3995 ret
= lseek (fd
, offset
, SEEK_SET
);
3997 ret
= (readbuf
? read (fd
, readbuf
, len
)
3998 : write (fd
, writebuf
, len
));
4003 if (ret
== -1 || ret
== 0)
4004 return TARGET_XFER_EOF
;
4008 return TARGET_XFER_OK
;
4013 /* Parse LINE as a signal set and add its set bits to SIGS. */
4016 add_line_to_sigset (const char *line
, sigset_t
*sigs
)
4018 int len
= strlen (line
) - 1;
4022 if (line
[len
] != '\n')
4023 error (_("Could not parse signal set: %s"), line
);
4031 if (*p
>= '0' && *p
<= '9')
4033 else if (*p
>= 'a' && *p
<= 'f')
4034 digit
= *p
- 'a' + 10;
4036 error (_("Could not parse signal set: %s"), line
);
4041 sigaddset (sigs
, signum
+ 1);
4043 sigaddset (sigs
, signum
+ 2);
4045 sigaddset (sigs
, signum
+ 3);
4047 sigaddset (sigs
, signum
+ 4);
4053 /* Find process PID's pending signals from /proc/pid/status and set
4057 linux_proc_pending_signals (int pid
, sigset_t
*pending
,
4058 sigset_t
*blocked
, sigset_t
*ignored
)
4060 char buffer
[PATH_MAX
], fname
[PATH_MAX
];
4062 sigemptyset (pending
);
4063 sigemptyset (blocked
);
4064 sigemptyset (ignored
);
4065 xsnprintf (fname
, sizeof fname
, "/proc/%d/status", pid
);
4066 gdb_file_up procfile
= gdb_fopen_cloexec (fname
, "r");
4067 if (procfile
== NULL
)
4068 error (_("Could not open %s"), fname
);
4070 while (fgets (buffer
, PATH_MAX
, procfile
.get ()) != NULL
)
4072 /* Normal queued signals are on the SigPnd line in the status
4073 file. However, 2.6 kernels also have a "shared" pending
4074 queue for delivering signals to a thread group, so check for
4077 Unfortunately some Red Hat kernels include the shared pending
4078 queue but not the ShdPnd status field. */
4080 if (startswith (buffer
, "SigPnd:\t"))
4081 add_line_to_sigset (buffer
+ 8, pending
);
4082 else if (startswith (buffer
, "ShdPnd:\t"))
4083 add_line_to_sigset (buffer
+ 8, pending
);
4084 else if (startswith (buffer
, "SigBlk:\t"))
4085 add_line_to_sigset (buffer
+ 8, blocked
);
4086 else if (startswith (buffer
, "SigIgn:\t"))
4087 add_line_to_sigset (buffer
+ 8, ignored
);
4091 static enum target_xfer_status
4092 linux_nat_xfer_osdata (enum target_object object
,
4093 const char *annex
, gdb_byte
*readbuf
,
4094 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
,
4095 ULONGEST
*xfered_len
)
4097 gdb_assert (object
== TARGET_OBJECT_OSDATA
);
4099 *xfered_len
= linux_common_xfer_osdata (annex
, readbuf
, offset
, len
);
4100 if (*xfered_len
== 0)
4101 return TARGET_XFER_EOF
;
4103 return TARGET_XFER_OK
;
4106 std::vector
<static_tracepoint_marker
>
4107 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid
)
4109 char s
[IPA_CMD_BUF_SIZE
];
4110 int pid
= inferior_ptid
.pid ();
4111 std::vector
<static_tracepoint_marker
> markers
;
4113 ptid_t ptid
= ptid_t (pid
, 0, 0);
4114 static_tracepoint_marker marker
;
4119 memcpy (s
, "qTfSTM", sizeof ("qTfSTM"));
4120 s
[sizeof ("qTfSTM")] = 0;
4122 agent_run_command (pid
, s
, strlen (s
) + 1);
4125 SCOPE_EXIT
{ target_continue_no_signal (ptid
); };
4131 parse_static_tracepoint_marker_definition (p
, &p
, &marker
);
4133 if (strid
== NULL
|| marker
.str_id
== strid
)
4134 markers
.push_back (std::move (marker
));
4136 while (*p
++ == ','); /* comma-separated list */
4138 memcpy (s
, "qTsSTM", sizeof ("qTsSTM"));
4139 s
[sizeof ("qTsSTM")] = 0;
4140 agent_run_command (pid
, s
, strlen (s
) + 1);
4147 /* target_is_async_p implementation. */
4150 linux_nat_target::is_async_p ()
4152 return linux_is_async_p ();
4155 /* target_can_async_p implementation. */
4158 linux_nat_target::can_async_p ()
4160 /* We're always async, unless the user explicitly prevented it with the
4161 "maint set target-async" command. */
4162 return target_async_permitted
;
4166 linux_nat_target::supports_non_stop ()
4171 /* to_always_non_stop_p implementation. */
4174 linux_nat_target::always_non_stop_p ()
4179 /* True if we want to support multi-process. To be removed when GDB
4180 supports multi-exec. */
4182 int linux_multi_process
= 1;
4185 linux_nat_target::supports_multi_process ()
4187 return linux_multi_process
;
4191 linux_nat_target::supports_disable_randomization ()
4193 #ifdef HAVE_PERSONALITY
4200 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4201 so we notice when any child changes state, and notify the
4202 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4203 above to wait for the arrival of a SIGCHLD. */
4206 sigchld_handler (int signo
)
4208 int old_errno
= errno
;
4210 if (debug_linux_nat
)
4211 ui_file_write_async_safe (gdb_stdlog
,
4212 "sigchld\n", sizeof ("sigchld\n") - 1);
4214 if (signo
== SIGCHLD
4215 && linux_nat_event_pipe
[0] != -1)
4216 async_file_mark (); /* Let the event loop know that there are
4217 events to handle. */
4222 /* Callback registered with the target events file descriptor. */
4225 handle_target_event (int error
, gdb_client_data client_data
)
4227 inferior_event_handler (INF_REG_EVENT
, NULL
);
4230 /* Create/destroy the target events pipe. Returns previous state. */
4233 linux_async_pipe (int enable
)
4235 int previous
= linux_is_async_p ();
4237 if (previous
!= enable
)
4241 /* Block child signals while we create/destroy the pipe, as
4242 their handler writes to it. */
4243 block_child_signals (&prev_mask
);
4247 if (gdb_pipe_cloexec (linux_nat_event_pipe
) == -1)
4248 internal_error (__FILE__
, __LINE__
,
4249 "creating event pipe failed.");
4251 fcntl (linux_nat_event_pipe
[0], F_SETFL
, O_NONBLOCK
);
4252 fcntl (linux_nat_event_pipe
[1], F_SETFL
, O_NONBLOCK
);
4256 close (linux_nat_event_pipe
[0]);
4257 close (linux_nat_event_pipe
[1]);
4258 linux_nat_event_pipe
[0] = -1;
4259 linux_nat_event_pipe
[1] = -1;
4262 restore_child_signals_mask (&prev_mask
);
4268 /* target_async implementation. */
4271 linux_nat_target::async (int enable
)
4275 if (!linux_async_pipe (1))
4277 add_file_handler (linux_nat_event_pipe
[0],
4278 handle_target_event
, NULL
);
4279 /* There may be pending events to handle. Tell the event loop
4286 delete_file_handler (linux_nat_event_pipe
[0]);
4287 linux_async_pipe (0);
4292 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4296 linux_nat_stop_lwp (struct lwp_info
*lwp
)
4300 if (debug_linux_nat
)
4301 fprintf_unfiltered (gdb_stdlog
,
4302 "LNSL: running -> suspending %s\n",
4303 target_pid_to_str (lwp
->ptid
).c_str ());
4306 if (lwp
->last_resume_kind
== resume_stop
)
4308 if (debug_linux_nat
)
4309 fprintf_unfiltered (gdb_stdlog
,
4310 "linux-nat: already stopping LWP %ld at "
4316 stop_callback (lwp
);
4317 lwp
->last_resume_kind
= resume_stop
;
4321 /* Already known to be stopped; do nothing. */
4323 if (debug_linux_nat
)
4325 if (find_thread_ptid (lwp
->ptid
)->stop_requested
)
4326 fprintf_unfiltered (gdb_stdlog
,
4327 "LNSL: already stopped/stop_requested %s\n",
4328 target_pid_to_str (lwp
->ptid
).c_str ());
4330 fprintf_unfiltered (gdb_stdlog
,
4331 "LNSL: already stopped/no "
4332 "stop_requested yet %s\n",
4333 target_pid_to_str (lwp
->ptid
).c_str ());
4340 linux_nat_target::stop (ptid_t ptid
)
4342 iterate_over_lwps (ptid
, linux_nat_stop_lwp
);
4346 linux_nat_target::close ()
4348 /* Unregister from the event loop. */
4352 inf_ptrace_target::close ();
4355 /* When requests are passed down from the linux-nat layer to the
4356 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4357 used. The address space pointer is stored in the inferior object,
4358 but the common code that is passed such ptid can't tell whether
4359 lwpid is a "main" process id or not (it assumes so). We reverse
4360 look up the "main" process id from the lwp here. */
4362 struct address_space
*
4363 linux_nat_target::thread_address_space (ptid_t ptid
)
4365 struct lwp_info
*lwp
;
4366 struct inferior
*inf
;
4369 if (ptid
.lwp () == 0)
4371 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4373 lwp
= find_lwp_pid (ptid
);
4374 pid
= lwp
->ptid
.pid ();
4378 /* A (pid,lwpid,0) ptid. */
4382 inf
= find_inferior_pid (pid
);
4383 gdb_assert (inf
!= NULL
);
4387 /* Return the cached value of the processor core for thread PTID. */
4390 linux_nat_target::core_of_thread (ptid_t ptid
)
4392 struct lwp_info
*info
= find_lwp_pid (ptid
);
4399 /* Implementation of to_filesystem_is_local. */
4402 linux_nat_target::filesystem_is_local ()
4404 struct inferior
*inf
= current_inferior ();
4406 if (inf
->fake_pid_p
|| inf
->pid
== 0)
4409 return linux_ns_same (inf
->pid
, LINUX_NS_MNT
);
4412 /* Convert the INF argument passed to a to_fileio_* method
4413 to a process ID suitable for passing to its corresponding
4414 linux_mntns_* function. If INF is non-NULL then the
4415 caller is requesting the filesystem seen by INF. If INF
4416 is NULL then the caller is requesting the filesystem seen
4417 by the GDB. We fall back to GDB's filesystem in the case
4418 that INF is non-NULL but its PID is unknown. */
4421 linux_nat_fileio_pid_of (struct inferior
*inf
)
4423 if (inf
== NULL
|| inf
->fake_pid_p
|| inf
->pid
== 0)
4429 /* Implementation of to_fileio_open. */
4432 linux_nat_target::fileio_open (struct inferior
*inf
, const char *filename
,
4433 int flags
, int mode
, int warn_if_slow
,
4440 if (fileio_to_host_openflags (flags
, &nat_flags
) == -1
4441 || fileio_to_host_mode (mode
, &nat_mode
) == -1)
4443 *target_errno
= FILEIO_EINVAL
;
4447 fd
= linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf
),
4448 filename
, nat_flags
, nat_mode
);
4450 *target_errno
= host_to_fileio_error (errno
);
4455 /* Implementation of to_fileio_readlink. */
4457 gdb::optional
<std::string
>
4458 linux_nat_target::fileio_readlink (struct inferior
*inf
, const char *filename
,
4464 len
= linux_mntns_readlink (linux_nat_fileio_pid_of (inf
),
4465 filename
, buf
, sizeof (buf
));
4468 *target_errno
= host_to_fileio_error (errno
);
4472 return std::string (buf
, len
);
4475 /* Implementation of to_fileio_unlink. */
4478 linux_nat_target::fileio_unlink (struct inferior
*inf
, const char *filename
,
4483 ret
= linux_mntns_unlink (linux_nat_fileio_pid_of (inf
),
4486 *target_errno
= host_to_fileio_error (errno
);
4491 /* Implementation of the to_thread_events method. */
4494 linux_nat_target::thread_events (int enable
)
4496 report_thread_events
= enable
;
4499 linux_nat_target::linux_nat_target ()
4501 /* We don't change the stratum; this target will sit at
4502 process_stratum and thread_db will set at thread_stratum. This
4503 is a little strange, since this is a multi-threaded-capable
4504 target, but we want to be on the stack below thread_db, and we
4505 also want to be used for single-threaded processes. */
4508 /* See linux-nat.h. */
4511 linux_nat_get_siginfo (ptid_t ptid
, siginfo_t
*siginfo
)
4520 ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, siginfo
);
4523 memset (siginfo
, 0, sizeof (*siginfo
));
4529 /* See nat/linux-nat.h. */
4532 current_lwp_ptid (void)
4534 gdb_assert (inferior_ptid
.lwp_p ());
4535 return inferior_ptid
;
4539 _initialize_linux_nat (void)
4541 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance
,
4542 &debug_linux_nat
, _("\
4543 Set debugging of GNU/Linux lwp module."), _("\
4544 Show debugging of GNU/Linux lwp module."), _("\
4545 Enables printf debugging output."),
4547 show_debug_linux_nat
,
4548 &setdebuglist
, &showdebuglist
);
4550 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance
,
4551 &debug_linux_namespaces
, _("\
4552 Set debugging of GNU/Linux namespaces module."), _("\
4553 Show debugging of GNU/Linux namespaces module."), _("\
4554 Enables printf debugging output."),
4557 &setdebuglist
, &showdebuglist
);
4559 /* Install a SIGCHLD handler. */
4560 sigchld_action
.sa_handler
= sigchld_handler
;
4561 sigemptyset (&sigchld_action
.sa_mask
);
4562 sigchld_action
.sa_flags
= SA_RESTART
;
4564 /* Make it the default. */
4565 sigaction (SIGCHLD
, &sigchld_action
, NULL
);
4567 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4568 gdb_sigmask (SIG_SETMASK
, NULL
, &suspend_mask
);
4569 sigdelset (&suspend_mask
, SIGCHLD
);
4571 sigemptyset (&blocked_mask
);
4573 lwp_lwpid_htab_create ();
4577 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4578 the GNU/Linux Threads library and therefore doesn't really belong
4581 /* Return the set of signals used by the threads library in *SET. */
4584 lin_thread_get_thread_signals (sigset_t
*set
)
4588 /* NPTL reserves the first two RT signals, but does not provide any
4589 way for the debugger to query the signal numbers - fortunately
4590 they don't change. */
4591 sigaddset (set
, __SIGRTMIN
);
4592 sigaddset (set
, __SIGRTMIN
+ 1);