[GDB, Hurd] Fix build; 'target_waitstatus_to_string' call
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "common/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "common/agent.h"
62 #include "tracepoint.h"
63 #include "common/buffer.h"
64 #include "target-descriptions.h"
65 #include "common/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "common/fileio.h"
69 #include "common/scope-exit.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 /* This comment documents high-level logic of this file.
76
77 Waiting for events in sync mode
78 ===============================
79
80 When waiting for an event in a specific thread, we just use waitpid,
81 passing the specific pid, and not passing WNOHANG.
82
83 When waiting for an event in all threads, waitpid is not quite good:
84
85 - If the thread group leader exits while other threads in the thread
86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
87 return an exit status until the other threads in the group are
88 reaped.
89
90 - When a non-leader thread execs, that thread just vanishes without
91 reporting an exit (so we'd hang if we waited for it explicitly in
92 that case). The exec event is instead reported to the TGID pid.
93
94 The solution is to always use -1 and WNOHANG, together with
95 sigsuspend.
96
97 First, we use non-blocking waitpid to check for events. If nothing is
98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
99 it means something happened to a child process. As soon as we know
100 there's an event, we get back to calling nonblocking waitpid.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend
103 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
104 when it's blocked, the signal becomes pending and sigsuspend
105 immediately notices it and returns.
106
107 Waiting for events in async mode (TARGET_WNOHANG)
108 =================================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked.
168
169 Exec events
170 ===========
171
172 The case of a thread group (process) with 3 or more threads, and a
173 thread other than the leader execs is worth detailing:
174
175 On an exec, the Linux kernel destroys all threads except the execing
176 one in the thread group, and resets the execing thread's tid to the
177 tgid. No exit notification is sent for the execing thread -- from the
178 ptracer's perspective, it appears as though the execing thread just
179 vanishes. Until we reap all other threads except the leader and the
180 execing thread, the leader will be zombie, and the execing thread will
181 be in `D (disc sleep)' state. As soon as all other threads are
182 reaped, the execing thread changes its tid to the tgid, and the
183 previous (zombie) leader vanishes, giving place to the "new"
184 leader. */
185
186 #ifndef O_LARGEFILE
187 #define O_LARGEFILE 0
188 #endif
189
190 struct linux_nat_target *linux_target;
191
192 /* Does the current host support PTRACE_GETREGSET? */
193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194
195 static unsigned int debug_linux_nat;
196 static void
197 show_debug_linux_nat (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
201 value);
202 }
203
204 struct simple_pid_list
205 {
206 int pid;
207 int status;
208 struct simple_pid_list *next;
209 };
210 struct simple_pid_list *stopped_pids;
211
212 /* Whether target_thread_events is in effect. */
213 static int report_thread_events;
214
215 /* Async mode support. */
216
217 /* The read/write ends of the pipe registered as waitable file in the
218 event loop. */
219 static int linux_nat_event_pipe[2] = { -1, -1 };
220
221 /* True if we're currently in async mode. */
222 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
223
224 /* Flush the event pipe. */
225
226 static void
227 async_file_flush (void)
228 {
229 int ret;
230 char buf;
231
232 do
233 {
234 ret = read (linux_nat_event_pipe[0], &buf, 1);
235 }
236 while (ret >= 0 || (ret == -1 && errno == EINTR));
237 }
238
239 /* Put something (anything, doesn't matter what, or how much) in event
240 pipe, so that the select/poll in the event-loop realizes we have
241 something to process. */
242
243 static void
244 async_file_mark (void)
245 {
246 int ret;
247
248 /* It doesn't really matter what the pipe contains, as long we end
249 up with something in it. Might as well flush the previous
250 left-overs. */
251 async_file_flush ();
252
253 do
254 {
255 ret = write (linux_nat_event_pipe[1], "+", 1);
256 }
257 while (ret == -1 && errno == EINTR);
258
259 /* Ignore EAGAIN. If the pipe is full, the event loop will already
260 be awakened anyway. */
261 }
262
263 static int kill_lwp (int lwpid, int signo);
264
265 static int stop_callback (struct lwp_info *lp);
266
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
269
270 struct lwp_info;
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
275
276 static int lwp_status_pending_p (struct lwp_info *lp);
277
278 static void save_stop_reason (struct lwp_info *lp);
279
280 \f
281 /* LWP accessors. */
282
283 /* See nat/linux-nat.h. */
284
285 ptid_t
286 ptid_of_lwp (struct lwp_info *lwp)
287 {
288 return lwp->ptid;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 void
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
296 {
297 lwp->arch_private = info;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
304 {
305 return lwp->arch_private;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 int
311 lwp_is_stopped (struct lwp_info *lwp)
312 {
313 return lwp->stopped;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
320 {
321 return lwp->stop_reason;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 int
327 lwp_is_stepping (struct lwp_info *lwp)
328 {
329 return lwp->step;
330 }
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 /* Return the ptrace options that we want to try to enable. */
365
366 static int
367 linux_nat_ptrace_options (int attached)
368 {
369 int options = 0;
370
371 if (!attached)
372 options |= PTRACE_O_EXITKILL;
373
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
377 | PTRACE_O_TRACEFORK
378 | PTRACE_O_TRACEEXEC);
379
380 return options;
381 }
382
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
385
386 ATTACHED should be nonzero iff we attached to the inferior. */
387
388 static void
389 linux_init_ptrace_procfs (pid_t pid, int attached)
390 {
391 int options = linux_nat_ptrace_options (attached);
392
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
396 }
397
398 linux_nat_target::~linux_nat_target ()
399 {}
400
401 void
402 linux_nat_target::post_attach (int pid)
403 {
404 linux_init_ptrace_procfs (pid, 1);
405 }
406
407 void
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
409 {
410 linux_init_ptrace_procfs (ptid.pid (), 0);
411 }
412
413 /* Return the number of known LWPs in the tgid given by PID. */
414
415 static int
416 num_lwps (int pid)
417 {
418 int count = 0;
419 struct lwp_info *lp;
420
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
423 count++;
424
425 return count;
426 }
427
428 /* Deleter for lwp_info unique_ptr specialisation. */
429
430 struct lwp_deleter
431 {
432 void operator() (struct lwp_info *lwp) const
433 {
434 delete_lwp (lwp->ptid);
435 }
436 };
437
438 /* A unique_ptr specialisation for lwp_info. */
439
440 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
441
442 /* Target hook for follow_fork. On entry inferior_ptid must be the
443 ptid of the followed inferior. At return, inferior_ptid will be
444 unchanged. */
445
446 int
447 linux_nat_target::follow_fork (int follow_child, int detach_fork)
448 {
449 if (!follow_child)
450 {
451 struct lwp_info *child_lp = NULL;
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = parent_ptid.lwp ();
461 child_pid = child_ptid.lwp ();
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 int child_stop_signal = 0;
472 bool detach_child = true;
473
474 /* Move CHILD_LP into a unique_ptr and clear the source pointer
475 to prevent us doing anything stupid with it. */
476 lwp_info_up child_lp_ptr (child_lp);
477 child_lp = nullptr;
478
479 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
480
481 /* When debugging an inferior in an architecture that supports
482 hardware single stepping on a kernel without commit
483 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
484 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
485 set if the parent process had them set.
486 To work around this, single step the child process
487 once before detaching to clear the flags. */
488
489 /* Note that we consult the parent's architecture instead of
490 the child's because there's no inferior for the child at
491 this point. */
492 if (!gdbarch_software_single_step_p (target_thread_architecture
493 (parent_ptid)))
494 {
495 int status;
496
497 linux_disable_event_reporting (child_pid);
498 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
499 perror_with_name (_("Couldn't do single step"));
500 if (my_waitpid (child_pid, &status, 0) < 0)
501 perror_with_name (_("Couldn't wait vfork process"));
502 else
503 {
504 detach_child = WIFSTOPPED (status);
505 child_stop_signal = WSTOPSIG (status);
506 }
507 }
508
509 if (detach_child)
510 {
511 int signo = child_stop_signal;
512
513 if (signo != 0
514 && !signal_pass_state (gdb_signal_from_host (signo)))
515 signo = 0;
516 ptrace (PTRACE_DETACH, child_pid, 0, signo);
517 }
518 }
519 else
520 {
521 scoped_restore save_inferior_ptid
522 = make_scoped_restore (&inferior_ptid);
523 inferior_ptid = child_ptid;
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return 0;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Original signal mask. */
752 static sigset_t normal_mask;
753
754 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
755 _initialize_linux_nat. */
756 static sigset_t suspend_mask;
757
758 /* Signals to block to make that sigsuspend work. */
759 static sigset_t blocked_mask;
760
761 /* SIGCHLD action. */
762 struct sigaction sigchld_action;
763
764 /* Block child signals (SIGCHLD and linux threads signals), and store
765 the previous mask in PREV_MASK. */
766
767 static void
768 block_child_signals (sigset_t *prev_mask)
769 {
770 /* Make sure SIGCHLD is blocked. */
771 if (!sigismember (&blocked_mask, SIGCHLD))
772 sigaddset (&blocked_mask, SIGCHLD);
773
774 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
775 }
776
777 /* Restore child signals mask, previously returned by
778 block_child_signals. */
779
780 static void
781 restore_child_signals_mask (sigset_t *prev_mask)
782 {
783 sigprocmask (SIG_SETMASK, prev_mask, NULL);
784 }
785
786 /* Mask of signals to pass directly to the inferior. */
787 static sigset_t pass_mask;
788
789 /* Update signals to pass to the inferior. */
790 void
791 linux_nat_target::pass_signals
792 (gdb::array_view<const unsigned char> pass_signals)
793 {
794 int signo;
795
796 sigemptyset (&pass_mask);
797
798 for (signo = 1; signo < NSIG; signo++)
799 {
800 int target_signo = gdb_signal_from_host (signo);
801 if (target_signo < pass_signals.size () && pass_signals[target_signo])
802 sigaddset (&pass_mask, signo);
803 }
804 }
805
806 \f
807
808 /* Prototypes for local functions. */
809 static int stop_wait_callback (struct lwp_info *lp);
810 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
811 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
812
813 \f
814
815 /* Destroy and free LP. */
816
817 static void
818 lwp_free (struct lwp_info *lp)
819 {
820 /* Let the arch specific bits release arch_lwp_info. */
821 linux_target->low_delete_thread (lp->arch_private);
822
823 xfree (lp);
824 }
825
826 /* Traversal function for purge_lwp_list. */
827
828 static int
829 lwp_lwpid_htab_remove_pid (void **slot, void *info)
830 {
831 struct lwp_info *lp = (struct lwp_info *) *slot;
832 int pid = *(int *) info;
833
834 if (lp->ptid.pid () == pid)
835 {
836 htab_clear_slot (lwp_lwpid_htab, slot);
837 lwp_list_remove (lp);
838 lwp_free (lp);
839 }
840
841 return 1;
842 }
843
844 /* Remove all LWPs belong to PID from the lwp list. */
845
846 static void
847 purge_lwp_list (int pid)
848 {
849 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
850 }
851
852 /* Add the LWP specified by PTID to the list. PTID is the first LWP
853 in the process. Return a pointer to the structure describing the
854 new LWP.
855
856 This differs from add_lwp in that we don't let the arch specific
857 bits know about this new thread. Current clients of this callback
858 take the opportunity to install watchpoints in the new thread, and
859 we shouldn't do that for the first thread. If we're spawning a
860 child ("run"), the thread executes the shell wrapper first, and we
861 shouldn't touch it until it execs the program we want to debug.
862 For "attach", it'd be okay to call the callback, but it's not
863 necessary, because watchpoints can't yet have been inserted into
864 the inferior. */
865
866 static struct lwp_info *
867 add_initial_lwp (ptid_t ptid)
868 {
869 struct lwp_info *lp;
870
871 gdb_assert (ptid.lwp_p ());
872
873 lp = XNEW (struct lwp_info);
874
875 memset (lp, 0, sizeof (struct lwp_info));
876
877 lp->last_resume_kind = resume_continue;
878 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
879
880 lp->ptid = ptid;
881 lp->core = -1;
882
883 /* Add to sorted-by-reverse-creation-order list. */
884 lwp_list_add (lp);
885
886 /* Add to keyed-by-pid htab. */
887 lwp_lwpid_htab_add_lwp (lp);
888
889 return lp;
890 }
891
892 /* Add the LWP specified by PID to the list. Return a pointer to the
893 structure describing the new LWP. The LWP should already be
894 stopped. */
895
896 static struct lwp_info *
897 add_lwp (ptid_t ptid)
898 {
899 struct lwp_info *lp;
900
901 lp = add_initial_lwp (ptid);
902
903 /* Let the arch specific bits know about this new thread. Current
904 clients of this callback take the opportunity to install
905 watchpoints in the new thread. We don't do this for the first
906 thread though. See add_initial_lwp. */
907 linux_target->low_new_thread (lp);
908
909 return lp;
910 }
911
912 /* Remove the LWP specified by PID from the list. */
913
914 static void
915 delete_lwp (ptid_t ptid)
916 {
917 struct lwp_info *lp;
918 void **slot;
919 struct lwp_info dummy;
920
921 dummy.ptid = ptid;
922 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
923 if (slot == NULL)
924 return;
925
926 lp = *(struct lwp_info **) slot;
927 gdb_assert (lp != NULL);
928
929 htab_clear_slot (lwp_lwpid_htab, slot);
930
931 /* Remove from sorted-by-creation-order list. */
932 lwp_list_remove (lp);
933
934 /* Release. */
935 lwp_free (lp);
936 }
937
938 /* Return a pointer to the structure describing the LWP corresponding
939 to PID. If no corresponding LWP could be found, return NULL. */
940
941 static struct lwp_info *
942 find_lwp_pid (ptid_t ptid)
943 {
944 struct lwp_info *lp;
945 int lwp;
946 struct lwp_info dummy;
947
948 if (ptid.lwp_p ())
949 lwp = ptid.lwp ();
950 else
951 lwp = ptid.pid ();
952
953 dummy.ptid = ptid_t (0, lwp, 0);
954 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
955 return lp;
956 }
957
958 /* See nat/linux-nat.h. */
959
960 struct lwp_info *
961 iterate_over_lwps (ptid_t filter,
962 gdb::function_view<iterate_over_lwps_ftype> callback)
963 {
964 struct lwp_info *lp, *lpnext;
965
966 for (lp = lwp_list; lp; lp = lpnext)
967 {
968 lpnext = lp->next;
969
970 if (lp->ptid.matches (filter))
971 {
972 if (callback (lp) != 0)
973 return lp;
974 }
975 }
976
977 return NULL;
978 }
979
980 /* Update our internal state when changing from one checkpoint to
981 another indicated by NEW_PTID. We can only switch single-threaded
982 applications, so we only create one new LWP, and the previous list
983 is discarded. */
984
985 void
986 linux_nat_switch_fork (ptid_t new_ptid)
987 {
988 struct lwp_info *lp;
989
990 purge_lwp_list (inferior_ptid.pid ());
991
992 lp = add_lwp (new_ptid);
993 lp->stopped = 1;
994
995 /* This changes the thread's ptid while preserving the gdb thread
996 num. Also changes the inferior pid, while preserving the
997 inferior num. */
998 thread_change_ptid (inferior_ptid, new_ptid);
999
1000 /* We've just told GDB core that the thread changed target id, but,
1001 in fact, it really is a different thread, with different register
1002 contents. */
1003 registers_changed ();
1004 }
1005
1006 /* Handle the exit of a single thread LP. */
1007
1008 static void
1009 exit_lwp (struct lwp_info *lp)
1010 {
1011 struct thread_info *th = find_thread_ptid (lp->ptid);
1012
1013 if (th)
1014 {
1015 if (print_thread_events)
1016 printf_unfiltered (_("[%s exited]\n"),
1017 target_pid_to_str (lp->ptid).c_str ());
1018
1019 delete_thread (th);
1020 }
1021
1022 delete_lwp (lp->ptid);
1023 }
1024
1025 /* Wait for the LWP specified by LP, which we have just attached to.
1026 Returns a wait status for that LWP, to cache. */
1027
1028 static int
1029 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1030 {
1031 pid_t new_pid, pid = ptid.lwp ();
1032 int status;
1033
1034 if (linux_proc_pid_is_stopped (pid))
1035 {
1036 if (debug_linux_nat)
1037 fprintf_unfiltered (gdb_stdlog,
1038 "LNPAW: Attaching to a stopped process\n");
1039
1040 /* The process is definitely stopped. It is in a job control
1041 stop, unless the kernel predates the TASK_STOPPED /
1042 TASK_TRACED distinction, in which case it might be in a
1043 ptrace stop. Make sure it is in a ptrace stop; from there we
1044 can kill it, signal it, et cetera.
1045
1046 First make sure there is a pending SIGSTOP. Since we are
1047 already attached, the process can not transition from stopped
1048 to running without a PTRACE_CONT; so we know this signal will
1049 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1050 probably already in the queue (unless this kernel is old
1051 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1052 is not an RT signal, it can only be queued once. */
1053 kill_lwp (pid, SIGSTOP);
1054
1055 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1056 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1057 ptrace (PTRACE_CONT, pid, 0, 0);
1058 }
1059
1060 /* Make sure the initial process is stopped. The user-level threads
1061 layer might want to poke around in the inferior, and that won't
1062 work if things haven't stabilized yet. */
1063 new_pid = my_waitpid (pid, &status, __WALL);
1064 gdb_assert (pid == new_pid);
1065
1066 if (!WIFSTOPPED (status))
1067 {
1068 /* The pid we tried to attach has apparently just exited. */
1069 if (debug_linux_nat)
1070 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1071 pid, status_to_str (status));
1072 return status;
1073 }
1074
1075 if (WSTOPSIG (status) != SIGSTOP)
1076 {
1077 *signalled = 1;
1078 if (debug_linux_nat)
1079 fprintf_unfiltered (gdb_stdlog,
1080 "LNPAW: Received %s after attaching\n",
1081 status_to_str (status));
1082 }
1083
1084 return status;
1085 }
1086
1087 void
1088 linux_nat_target::create_inferior (const char *exec_file,
1089 const std::string &allargs,
1090 char **env, int from_tty)
1091 {
1092 maybe_disable_address_space_randomization restore_personality
1093 (disable_randomization);
1094
1095 /* The fork_child mechanism is synchronous and calls target_wait, so
1096 we have to mask the async mode. */
1097
1098 /* Make sure we report all signals during startup. */
1099 pass_signals ({});
1100
1101 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1102 }
1103
1104 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1105 already attached. Returns true if a new LWP is found, false
1106 otherwise. */
1107
1108 static int
1109 attach_proc_task_lwp_callback (ptid_t ptid)
1110 {
1111 struct lwp_info *lp;
1112
1113 /* Ignore LWPs we're already attached to. */
1114 lp = find_lwp_pid (ptid);
1115 if (lp == NULL)
1116 {
1117 int lwpid = ptid.lwp ();
1118
1119 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1120 {
1121 int err = errno;
1122
1123 /* Be quiet if we simply raced with the thread exiting.
1124 EPERM is returned if the thread's task still exists, and
1125 is marked as exited or zombie, as well as other
1126 conditions, so in that case, confirm the status in
1127 /proc/PID/status. */
1128 if (err == ESRCH
1129 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1130 {
1131 if (debug_linux_nat)
1132 {
1133 fprintf_unfiltered (gdb_stdlog,
1134 "Cannot attach to lwp %d: "
1135 "thread is gone (%d: %s)\n",
1136 lwpid, err, safe_strerror (err));
1137 }
1138 }
1139 else
1140 {
1141 std::string reason
1142 = linux_ptrace_attach_fail_reason_string (ptid, err);
1143
1144 warning (_("Cannot attach to lwp %d: %s"),
1145 lwpid, reason.c_str ());
1146 }
1147 }
1148 else
1149 {
1150 if (debug_linux_nat)
1151 fprintf_unfiltered (gdb_stdlog,
1152 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1153 target_pid_to_str (ptid).c_str ());
1154
1155 lp = add_lwp (ptid);
1156
1157 /* The next time we wait for this LWP we'll see a SIGSTOP as
1158 PTRACE_ATTACH brings it to a halt. */
1159 lp->signalled = 1;
1160
1161 /* We need to wait for a stop before being able to make the
1162 next ptrace call on this LWP. */
1163 lp->must_set_ptrace_flags = 1;
1164
1165 /* So that wait collects the SIGSTOP. */
1166 lp->resumed = 1;
1167
1168 /* Also add the LWP to gdb's thread list, in case a
1169 matching libthread_db is not found (or the process uses
1170 raw clone). */
1171 add_thread (lp->ptid);
1172 set_running (lp->ptid, 1);
1173 set_executing (lp->ptid, 1);
1174 }
1175
1176 return 1;
1177 }
1178 return 0;
1179 }
1180
1181 void
1182 linux_nat_target::attach (const char *args, int from_tty)
1183 {
1184 struct lwp_info *lp;
1185 int status;
1186 ptid_t ptid;
1187
1188 /* Make sure we report all signals during attach. */
1189 pass_signals ({});
1190
1191 TRY
1192 {
1193 inf_ptrace_target::attach (args, from_tty);
1194 }
1195 CATCH (ex, RETURN_MASK_ERROR)
1196 {
1197 pid_t pid = parse_pid_to_attach (args);
1198 std::string reason = linux_ptrace_attach_fail_reason (pid);
1199
1200 if (!reason.empty ())
1201 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1202 else
1203 throw_error (ex.error, "%s", ex.message);
1204 }
1205 END_CATCH
1206
1207 /* The ptrace base target adds the main thread with (pid,0,0)
1208 format. Decorate it with lwp info. */
1209 ptid = ptid_t (inferior_ptid.pid (),
1210 inferior_ptid.pid (),
1211 0);
1212 thread_change_ptid (inferior_ptid, ptid);
1213
1214 /* Add the initial process as the first LWP to the list. */
1215 lp = add_initial_lwp (ptid);
1216
1217 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1218 if (!WIFSTOPPED (status))
1219 {
1220 if (WIFEXITED (status))
1221 {
1222 int exit_code = WEXITSTATUS (status);
1223
1224 target_terminal::ours ();
1225 target_mourn_inferior (inferior_ptid);
1226 if (exit_code == 0)
1227 error (_("Unable to attach: program exited normally."));
1228 else
1229 error (_("Unable to attach: program exited with code %d."),
1230 exit_code);
1231 }
1232 else if (WIFSIGNALED (status))
1233 {
1234 enum gdb_signal signo;
1235
1236 target_terminal::ours ();
1237 target_mourn_inferior (inferior_ptid);
1238
1239 signo = gdb_signal_from_host (WTERMSIG (status));
1240 error (_("Unable to attach: program terminated with signal "
1241 "%s, %s."),
1242 gdb_signal_to_name (signo),
1243 gdb_signal_to_string (signo));
1244 }
1245
1246 internal_error (__FILE__, __LINE__,
1247 _("unexpected status %d for PID %ld"),
1248 status, (long) ptid.lwp ());
1249 }
1250
1251 lp->stopped = 1;
1252
1253 /* Save the wait status to report later. */
1254 lp->resumed = 1;
1255 if (debug_linux_nat)
1256 fprintf_unfiltered (gdb_stdlog,
1257 "LNA: waitpid %ld, saving status %s\n",
1258 (long) lp->ptid.pid (), status_to_str (status));
1259
1260 lp->status = status;
1261
1262 /* We must attach to every LWP. If /proc is mounted, use that to
1263 find them now. The inferior may be using raw clone instead of
1264 using pthreads. But even if it is using pthreads, thread_db
1265 walks structures in the inferior's address space to find the list
1266 of threads/LWPs, and those structures may well be corrupted.
1267 Note that once thread_db is loaded, we'll still use it to list
1268 threads and associate pthread info with each LWP. */
1269 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1270 attach_proc_task_lwp_callback);
1271
1272 if (target_can_async_p ())
1273 target_async (1);
1274 }
1275
1276 /* Get pending signal of THREAD as a host signal number, for detaching
1277 purposes. This is the signal the thread last stopped for, which we
1278 need to deliver to the thread when detaching, otherwise, it'd be
1279 suppressed/lost. */
1280
1281 static int
1282 get_detach_signal (struct lwp_info *lp)
1283 {
1284 enum gdb_signal signo = GDB_SIGNAL_0;
1285
1286 /* If we paused threads momentarily, we may have stored pending
1287 events in lp->status or lp->waitstatus (see stop_wait_callback),
1288 and GDB core hasn't seen any signal for those threads.
1289 Otherwise, the last signal reported to the core is found in the
1290 thread object's stop_signal.
1291
1292 There's a corner case that isn't handled here at present. Only
1293 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1294 stop_signal make sense as a real signal to pass to the inferior.
1295 Some catchpoint related events, like
1296 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1297 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1298 those traps are debug API (ptrace in our case) related and
1299 induced; the inferior wouldn't see them if it wasn't being
1300 traced. Hence, we should never pass them to the inferior, even
1301 when set to pass state. Since this corner case isn't handled by
1302 infrun.c when proceeding with a signal, for consistency, neither
1303 do we handle it here (or elsewhere in the file we check for
1304 signal pass state). Normally SIGTRAP isn't set to pass state, so
1305 this is really a corner case. */
1306
1307 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1308 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1309 else if (lp->status)
1310 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1311 else
1312 {
1313 struct thread_info *tp = find_thread_ptid (lp->ptid);
1314
1315 if (target_is_non_stop_p () && !tp->executing)
1316 {
1317 if (tp->suspend.waitstatus_pending_p)
1318 signo = tp->suspend.waitstatus.value.sig;
1319 else
1320 signo = tp->suspend.stop_signal;
1321 }
1322 else if (!target_is_non_stop_p ())
1323 {
1324 struct target_waitstatus last;
1325 ptid_t last_ptid;
1326
1327 get_last_target_status (&last_ptid, &last);
1328
1329 if (lp->ptid.lwp () == last_ptid.lwp ())
1330 signo = tp->suspend.stop_signal;
1331 }
1332 }
1333
1334 if (signo == GDB_SIGNAL_0)
1335 {
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "GPT: lwp %s has no pending signal\n",
1339 target_pid_to_str (lp->ptid).c_str ());
1340 }
1341 else if (!signal_pass_state (signo))
1342 {
1343 if (debug_linux_nat)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "GPT: lwp %s had signal %s, "
1346 "but it is in no pass state\n",
1347 target_pid_to_str (lp->ptid).c_str (),
1348 gdb_signal_to_string (signo));
1349 }
1350 else
1351 {
1352 if (debug_linux_nat)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "GPT: lwp %s has pending signal %s\n",
1355 target_pid_to_str (lp->ptid).c_str (),
1356 gdb_signal_to_string (signo));
1357
1358 return gdb_signal_to_host (signo);
1359 }
1360
1361 return 0;
1362 }
1363
1364 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1365 signal number that should be passed to the LWP when detaching.
1366 Otherwise pass any pending signal the LWP may have, if any. */
1367
1368 static void
1369 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1370 {
1371 int lwpid = lp->ptid.lwp ();
1372 int signo;
1373
1374 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1375
1376 if (debug_linux_nat && lp->status)
1377 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1378 strsignal (WSTOPSIG (lp->status)),
1379 target_pid_to_str (lp->ptid).c_str ());
1380
1381 /* If there is a pending SIGSTOP, get rid of it. */
1382 if (lp->signalled)
1383 {
1384 if (debug_linux_nat)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "DC: Sending SIGCONT to %s\n",
1387 target_pid_to_str (lp->ptid).c_str ());
1388
1389 kill_lwp (lwpid, SIGCONT);
1390 lp->signalled = 0;
1391 }
1392
1393 if (signo_p == NULL)
1394 {
1395 /* Pass on any pending signal for this LWP. */
1396 signo = get_detach_signal (lp);
1397 }
1398 else
1399 signo = *signo_p;
1400
1401 /* Preparing to resume may try to write registers, and fail if the
1402 lwp is zombie. If that happens, ignore the error. We'll handle
1403 it below, when detach fails with ESRCH. */
1404 TRY
1405 {
1406 linux_target->low_prepare_to_resume (lp);
1407 }
1408 CATCH (ex, RETURN_MASK_ERROR)
1409 {
1410 if (!check_ptrace_stopped_lwp_gone (lp))
1411 throw_exception (ex);
1412 }
1413 END_CATCH
1414
1415 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1416 {
1417 int save_errno = errno;
1418
1419 /* We know the thread exists, so ESRCH must mean the lwp is
1420 zombie. This can happen if one of the already-detached
1421 threads exits the whole thread group. In that case we're
1422 still attached, and must reap the lwp. */
1423 if (save_errno == ESRCH)
1424 {
1425 int ret, status;
1426
1427 ret = my_waitpid (lwpid, &status, __WALL);
1428 if (ret == -1)
1429 {
1430 warning (_("Couldn't reap LWP %d while detaching: %s"),
1431 lwpid, strerror (errno));
1432 }
1433 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1434 {
1435 warning (_("Reaping LWP %d while detaching "
1436 "returned unexpected status 0x%x"),
1437 lwpid, status);
1438 }
1439 }
1440 else
1441 {
1442 error (_("Can't detach %s: %s"),
1443 target_pid_to_str (lp->ptid).c_str (),
1444 safe_strerror (save_errno));
1445 }
1446 }
1447 else if (debug_linux_nat)
1448 {
1449 fprintf_unfiltered (gdb_stdlog,
1450 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1451 target_pid_to_str (lp->ptid).c_str (),
1452 strsignal (signo));
1453 }
1454
1455 delete_lwp (lp->ptid);
1456 }
1457
1458 static int
1459 detach_callback (struct lwp_info *lp)
1460 {
1461 /* We don't actually detach from the thread group leader just yet.
1462 If the thread group exits, we must reap the zombie clone lwps
1463 before we're able to reap the leader. */
1464 if (lp->ptid.lwp () != lp->ptid.pid ())
1465 detach_one_lwp (lp, NULL);
1466 return 0;
1467 }
1468
1469 void
1470 linux_nat_target::detach (inferior *inf, int from_tty)
1471 {
1472 struct lwp_info *main_lwp;
1473 int pid = inf->pid;
1474
1475 /* Don't unregister from the event loop, as there may be other
1476 inferiors running. */
1477
1478 /* Stop all threads before detaching. ptrace requires that the
1479 thread is stopped to sucessfully detach. */
1480 iterate_over_lwps (ptid_t (pid), stop_callback);
1481 /* ... and wait until all of them have reported back that
1482 they're no longer running. */
1483 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1484
1485 iterate_over_lwps (ptid_t (pid), detach_callback);
1486
1487 /* Only the initial process should be left right now. */
1488 gdb_assert (num_lwps (pid) == 1);
1489
1490 main_lwp = find_lwp_pid (ptid_t (pid));
1491
1492 if (forks_exist_p ())
1493 {
1494 /* Multi-fork case. The current inferior_ptid is being detached
1495 from, but there are other viable forks to debug. Detach from
1496 the current fork, and context-switch to the first
1497 available. */
1498 linux_fork_detach (from_tty);
1499 }
1500 else
1501 {
1502 target_announce_detach (from_tty);
1503
1504 /* Pass on any pending signal for the last LWP. */
1505 int signo = get_detach_signal (main_lwp);
1506
1507 detach_one_lwp (main_lwp, &signo);
1508
1509 detach_success (inf);
1510 }
1511 }
1512
1513 /* Resume execution of the inferior process. If STEP is nonzero,
1514 single-step it. If SIGNAL is nonzero, give it that signal. */
1515
1516 static void
1517 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1518 enum gdb_signal signo)
1519 {
1520 lp->step = step;
1521
1522 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1523 We only presently need that if the LWP is stepped though (to
1524 handle the case of stepping a breakpoint instruction). */
1525 if (step)
1526 {
1527 struct regcache *regcache = get_thread_regcache (lp->ptid);
1528
1529 lp->stop_pc = regcache_read_pc (regcache);
1530 }
1531 else
1532 lp->stop_pc = 0;
1533
1534 linux_target->low_prepare_to_resume (lp);
1535 linux_target->low_resume (lp->ptid, step, signo);
1536
1537 /* Successfully resumed. Clear state that no longer makes sense,
1538 and mark the LWP as running. Must not do this before resuming
1539 otherwise if that fails other code will be confused. E.g., we'd
1540 later try to stop the LWP and hang forever waiting for a stop
1541 status. Note that we must not throw after this is cleared,
1542 otherwise handle_zombie_lwp_error would get confused. */
1543 lp->stopped = 0;
1544 lp->core = -1;
1545 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1546 registers_changed_ptid (lp->ptid);
1547 }
1548
1549 /* Called when we try to resume a stopped LWP and that errors out. If
1550 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1551 or about to become), discard the error, clear any pending status
1552 the LWP may have, and return true (we'll collect the exit status
1553 soon enough). Otherwise, return false. */
1554
1555 static int
1556 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1557 {
1558 /* If we get an error after resuming the LWP successfully, we'd
1559 confuse !T state for the LWP being gone. */
1560 gdb_assert (lp->stopped);
1561
1562 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1563 because even if ptrace failed with ESRCH, the tracee may be "not
1564 yet fully dead", but already refusing ptrace requests. In that
1565 case the tracee has 'R (Running)' state for a little bit
1566 (observed in Linux 3.18). See also the note on ESRCH in the
1567 ptrace(2) man page. Instead, check whether the LWP has any state
1568 other than ptrace-stopped. */
1569
1570 /* Don't assume anything if /proc/PID/status can't be read. */
1571 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1572 {
1573 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1574 lp->status = 0;
1575 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1576 return 1;
1577 }
1578 return 0;
1579 }
1580
1581 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1582 disappears while we try to resume it. */
1583
1584 static void
1585 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1586 {
1587 TRY
1588 {
1589 linux_resume_one_lwp_throw (lp, step, signo);
1590 }
1591 CATCH (ex, RETURN_MASK_ERROR)
1592 {
1593 if (!check_ptrace_stopped_lwp_gone (lp))
1594 throw_exception (ex);
1595 }
1596 END_CATCH
1597 }
1598
1599 /* Resume LP. */
1600
1601 static void
1602 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1603 {
1604 if (lp->stopped)
1605 {
1606 struct inferior *inf = find_inferior_ptid (lp->ptid);
1607
1608 if (inf->vfork_child != NULL)
1609 {
1610 if (debug_linux_nat)
1611 fprintf_unfiltered (gdb_stdlog,
1612 "RC: Not resuming %s (vfork parent)\n",
1613 target_pid_to_str (lp->ptid).c_str ());
1614 }
1615 else if (!lwp_status_pending_p (lp))
1616 {
1617 if (debug_linux_nat)
1618 fprintf_unfiltered (gdb_stdlog,
1619 "RC: Resuming sibling %s, %s, %s\n",
1620 target_pid_to_str (lp->ptid).c_str (),
1621 (signo != GDB_SIGNAL_0
1622 ? strsignal (gdb_signal_to_host (signo))
1623 : "0"),
1624 step ? "step" : "resume");
1625
1626 linux_resume_one_lwp (lp, step, signo);
1627 }
1628 else
1629 {
1630 if (debug_linux_nat)
1631 fprintf_unfiltered (gdb_stdlog,
1632 "RC: Not resuming sibling %s (has pending)\n",
1633 target_pid_to_str (lp->ptid).c_str ());
1634 }
1635 }
1636 else
1637 {
1638 if (debug_linux_nat)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "RC: Not resuming sibling %s (not stopped)\n",
1641 target_pid_to_str (lp->ptid).c_str ());
1642 }
1643 }
1644
1645 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1646 Resume LWP with the last stop signal, if it is in pass state. */
1647
1648 static int
1649 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1650 {
1651 enum gdb_signal signo = GDB_SIGNAL_0;
1652
1653 if (lp == except)
1654 return 0;
1655
1656 if (lp->stopped)
1657 {
1658 struct thread_info *thread;
1659
1660 thread = find_thread_ptid (lp->ptid);
1661 if (thread != NULL)
1662 {
1663 signo = thread->suspend.stop_signal;
1664 thread->suspend.stop_signal = GDB_SIGNAL_0;
1665 }
1666 }
1667
1668 resume_lwp (lp, 0, signo);
1669 return 0;
1670 }
1671
1672 static int
1673 resume_clear_callback (struct lwp_info *lp)
1674 {
1675 lp->resumed = 0;
1676 lp->last_resume_kind = resume_stop;
1677 return 0;
1678 }
1679
1680 static int
1681 resume_set_callback (struct lwp_info *lp)
1682 {
1683 lp->resumed = 1;
1684 lp->last_resume_kind = resume_continue;
1685 return 0;
1686 }
1687
1688 void
1689 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1690 {
1691 struct lwp_info *lp;
1692 int resume_many;
1693
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1697 step ? "step" : "resume",
1698 target_pid_to_str (ptid).c_str (),
1699 (signo != GDB_SIGNAL_0
1700 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1701 target_pid_to_str (inferior_ptid).c_str ());
1702
1703 /* A specific PTID means `step only this process id'. */
1704 resume_many = (minus_one_ptid == ptid
1705 || ptid.is_pid ());
1706
1707 /* Mark the lwps we're resuming as resumed. */
1708 iterate_over_lwps (ptid, resume_set_callback);
1709
1710 /* See if it's the current inferior that should be handled
1711 specially. */
1712 if (resume_many)
1713 lp = find_lwp_pid (inferior_ptid);
1714 else
1715 lp = find_lwp_pid (ptid);
1716 gdb_assert (lp != NULL);
1717
1718 /* Remember if we're stepping. */
1719 lp->last_resume_kind = step ? resume_step : resume_continue;
1720
1721 /* If we have a pending wait status for this thread, there is no
1722 point in resuming the process. But first make sure that
1723 linux_nat_wait won't preemptively handle the event - we
1724 should never take this short-circuit if we are going to
1725 leave LP running, since we have skipped resuming all the
1726 other threads. This bit of code needs to be synchronized
1727 with linux_nat_wait. */
1728
1729 if (lp->status && WIFSTOPPED (lp->status))
1730 {
1731 if (!lp->step
1732 && WSTOPSIG (lp->status)
1733 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1734 {
1735 if (debug_linux_nat)
1736 fprintf_unfiltered (gdb_stdlog,
1737 "LLR: Not short circuiting for ignored "
1738 "status 0x%x\n", lp->status);
1739
1740 /* FIXME: What should we do if we are supposed to continue
1741 this thread with a signal? */
1742 gdb_assert (signo == GDB_SIGNAL_0);
1743 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1744 lp->status = 0;
1745 }
1746 }
1747
1748 if (lwp_status_pending_p (lp))
1749 {
1750 /* FIXME: What should we do if we are supposed to continue
1751 this thread with a signal? */
1752 gdb_assert (signo == GDB_SIGNAL_0);
1753
1754 if (debug_linux_nat)
1755 fprintf_unfiltered (gdb_stdlog,
1756 "LLR: Short circuiting for status 0x%x\n",
1757 lp->status);
1758
1759 if (target_can_async_p ())
1760 {
1761 target_async (1);
1762 /* Tell the event loop we have something to process. */
1763 async_file_mark ();
1764 }
1765 return;
1766 }
1767
1768 if (resume_many)
1769 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1770 {
1771 return linux_nat_resume_callback (info, lp);
1772 });
1773
1774 if (debug_linux_nat)
1775 fprintf_unfiltered (gdb_stdlog,
1776 "LLR: %s %s, %s (resume event thread)\n",
1777 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1778 target_pid_to_str (lp->ptid).c_str (),
1779 (signo != GDB_SIGNAL_0
1780 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1781
1782 linux_resume_one_lwp (lp, step, signo);
1783
1784 if (target_can_async_p ())
1785 target_async (1);
1786 }
1787
1788 /* Send a signal to an LWP. */
1789
1790 static int
1791 kill_lwp (int lwpid, int signo)
1792 {
1793 int ret;
1794
1795 errno = 0;
1796 ret = syscall (__NR_tkill, lwpid, signo);
1797 if (errno == ENOSYS)
1798 {
1799 /* If tkill fails, then we are not using nptl threads, a
1800 configuration we no longer support. */
1801 perror_with_name (("tkill"));
1802 }
1803 return ret;
1804 }
1805
1806 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1807 event, check if the core is interested in it: if not, ignore the
1808 event, and keep waiting; otherwise, we need to toggle the LWP's
1809 syscall entry/exit status, since the ptrace event itself doesn't
1810 indicate it, and report the trap to higher layers. */
1811
1812 static int
1813 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1814 {
1815 struct target_waitstatus *ourstatus = &lp->waitstatus;
1816 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1817 thread_info *thread = find_thread_ptid (lp->ptid);
1818 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1819
1820 if (stopping)
1821 {
1822 /* If we're stopping threads, there's a SIGSTOP pending, which
1823 makes it so that the LWP reports an immediate syscall return,
1824 followed by the SIGSTOP. Skip seeing that "return" using
1825 PTRACE_CONT directly, and let stop_wait_callback collect the
1826 SIGSTOP. Later when the thread is resumed, a new syscall
1827 entry event. If we didn't do this (and returned 0), we'd
1828 leave a syscall entry pending, and our caller, by using
1829 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1830 itself. Later, when the user re-resumes this LWP, we'd see
1831 another syscall entry event and we'd mistake it for a return.
1832
1833 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1834 (leaving immediately with LWP->signalled set, without issuing
1835 a PTRACE_CONT), it would still be problematic to leave this
1836 syscall enter pending, as later when the thread is resumed,
1837 it would then see the same syscall exit mentioned above,
1838 followed by the delayed SIGSTOP, while the syscall didn't
1839 actually get to execute. It seems it would be even more
1840 confusing to the user. */
1841
1842 if (debug_linux_nat)
1843 fprintf_unfiltered (gdb_stdlog,
1844 "LHST: ignoring syscall %d "
1845 "for LWP %ld (stopping threads), "
1846 "resuming with PTRACE_CONT for SIGSTOP\n",
1847 syscall_number,
1848 lp->ptid.lwp ());
1849
1850 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1851 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1852 lp->stopped = 0;
1853 return 1;
1854 }
1855
1856 /* Always update the entry/return state, even if this particular
1857 syscall isn't interesting to the core now. In async mode,
1858 the user could install a new catchpoint for this syscall
1859 between syscall enter/return, and we'll need to know to
1860 report a syscall return if that happens. */
1861 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1862 ? TARGET_WAITKIND_SYSCALL_RETURN
1863 : TARGET_WAITKIND_SYSCALL_ENTRY);
1864
1865 if (catch_syscall_enabled ())
1866 {
1867 if (catching_syscall_number (syscall_number))
1868 {
1869 /* Alright, an event to report. */
1870 ourstatus->kind = lp->syscall_state;
1871 ourstatus->value.syscall_number = syscall_number;
1872
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LHST: stopping for %s of syscall %d"
1876 " for LWP %ld\n",
1877 lp->syscall_state
1878 == TARGET_WAITKIND_SYSCALL_ENTRY
1879 ? "entry" : "return",
1880 syscall_number,
1881 lp->ptid.lwp ());
1882 return 0;
1883 }
1884
1885 if (debug_linux_nat)
1886 fprintf_unfiltered (gdb_stdlog,
1887 "LHST: ignoring %s of syscall %d "
1888 "for LWP %ld\n",
1889 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1890 ? "entry" : "return",
1891 syscall_number,
1892 lp->ptid.lwp ());
1893 }
1894 else
1895 {
1896 /* If we had been syscall tracing, and hence used PT_SYSCALL
1897 before on this LWP, it could happen that the user removes all
1898 syscall catchpoints before we get to process this event.
1899 There are two noteworthy issues here:
1900
1901 - When stopped at a syscall entry event, resuming with
1902 PT_STEP still resumes executing the syscall and reports a
1903 syscall return.
1904
1905 - Only PT_SYSCALL catches syscall enters. If we last
1906 single-stepped this thread, then this event can't be a
1907 syscall enter. If we last single-stepped this thread, this
1908 has to be a syscall exit.
1909
1910 The points above mean that the next resume, be it PT_STEP or
1911 PT_CONTINUE, can not trigger a syscall trace event. */
1912 if (debug_linux_nat)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "LHST: caught syscall event "
1915 "with no syscall catchpoints."
1916 " %d for LWP %ld, ignoring\n",
1917 syscall_number,
1918 lp->ptid.lwp ());
1919 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1920 }
1921
1922 /* The core isn't interested in this event. For efficiency, avoid
1923 stopping all threads only to have the core resume them all again.
1924 Since we're not stopping threads, if we're still syscall tracing
1925 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1926 subsequent syscall. Simply resume using the inf-ptrace layer,
1927 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1928
1929 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1930 return 1;
1931 }
1932
1933 /* Handle a GNU/Linux extended wait response. If we see a clone
1934 event, we need to add the new LWP to our list (and not report the
1935 trap to higher layers). This function returns non-zero if the
1936 event should be ignored and we should wait again. If STOPPING is
1937 true, the new LWP remains stopped, otherwise it is continued. */
1938
1939 static int
1940 linux_handle_extended_wait (struct lwp_info *lp, int status)
1941 {
1942 int pid = lp->ptid.lwp ();
1943 struct target_waitstatus *ourstatus = &lp->waitstatus;
1944 int event = linux_ptrace_get_extended_event (status);
1945
1946 /* All extended events we currently use are mid-syscall. Only
1947 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1948 you have to be using PTRACE_SEIZE to get that. */
1949 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1950
1951 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1952 || event == PTRACE_EVENT_CLONE)
1953 {
1954 unsigned long new_pid;
1955 int ret;
1956
1957 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1958
1959 /* If we haven't already seen the new PID stop, wait for it now. */
1960 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1961 {
1962 /* The new child has a pending SIGSTOP. We can't affect it until it
1963 hits the SIGSTOP, but we're already attached. */
1964 ret = my_waitpid (new_pid, &status, __WALL);
1965 if (ret == -1)
1966 perror_with_name (_("waiting for new child"));
1967 else if (ret != new_pid)
1968 internal_error (__FILE__, __LINE__,
1969 _("wait returned unexpected PID %d"), ret);
1970 else if (!WIFSTOPPED (status))
1971 internal_error (__FILE__, __LINE__,
1972 _("wait returned unexpected status 0x%x"), status);
1973 }
1974
1975 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1976
1977 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1978 {
1979 /* The arch-specific native code may need to know about new
1980 forks even if those end up never mapped to an
1981 inferior. */
1982 linux_target->low_new_fork (lp, new_pid);
1983 }
1984
1985 if (event == PTRACE_EVENT_FORK
1986 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1987 {
1988 /* Handle checkpointing by linux-fork.c here as a special
1989 case. We don't want the follow-fork-mode or 'catch fork'
1990 to interfere with this. */
1991
1992 /* This won't actually modify the breakpoint list, but will
1993 physically remove the breakpoints from the child. */
1994 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1995
1996 /* Retain child fork in ptrace (stopped) state. */
1997 if (!find_fork_pid (new_pid))
1998 add_fork (new_pid);
1999
2000 /* Report as spurious, so that infrun doesn't want to follow
2001 this fork. We're actually doing an infcall in
2002 linux-fork.c. */
2003 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2004
2005 /* Report the stop to the core. */
2006 return 0;
2007 }
2008
2009 if (event == PTRACE_EVENT_FORK)
2010 ourstatus->kind = TARGET_WAITKIND_FORKED;
2011 else if (event == PTRACE_EVENT_VFORK)
2012 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2013 else if (event == PTRACE_EVENT_CLONE)
2014 {
2015 struct lwp_info *new_lp;
2016
2017 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2018
2019 if (debug_linux_nat)
2020 fprintf_unfiltered (gdb_stdlog,
2021 "LHEW: Got clone event "
2022 "from LWP %d, new child is LWP %ld\n",
2023 pid, new_pid);
2024
2025 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2026 new_lp->stopped = 1;
2027 new_lp->resumed = 1;
2028
2029 /* If the thread_db layer is active, let it record the user
2030 level thread id and status, and add the thread to GDB's
2031 list. */
2032 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2033 {
2034 /* The process is not using thread_db. Add the LWP to
2035 GDB's list. */
2036 target_post_attach (new_lp->ptid.lwp ());
2037 add_thread (new_lp->ptid);
2038 }
2039
2040 /* Even if we're stopping the thread for some reason
2041 internal to this module, from the perspective of infrun
2042 and the user/frontend, this new thread is running until
2043 it next reports a stop. */
2044 set_running (new_lp->ptid, 1);
2045 set_executing (new_lp->ptid, 1);
2046
2047 if (WSTOPSIG (status) != SIGSTOP)
2048 {
2049 /* This can happen if someone starts sending signals to
2050 the new thread before it gets a chance to run, which
2051 have a lower number than SIGSTOP (e.g. SIGUSR1).
2052 This is an unlikely case, and harder to handle for
2053 fork / vfork than for clone, so we do not try - but
2054 we handle it for clone events here. */
2055
2056 new_lp->signalled = 1;
2057
2058 /* We created NEW_LP so it cannot yet contain STATUS. */
2059 gdb_assert (new_lp->status == 0);
2060
2061 /* Save the wait status to report later. */
2062 if (debug_linux_nat)
2063 fprintf_unfiltered (gdb_stdlog,
2064 "LHEW: waitpid of new LWP %ld, "
2065 "saving status %s\n",
2066 (long) new_lp->ptid.lwp (),
2067 status_to_str (status));
2068 new_lp->status = status;
2069 }
2070 else if (report_thread_events)
2071 {
2072 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2073 new_lp->status = status;
2074 }
2075
2076 return 1;
2077 }
2078
2079 return 0;
2080 }
2081
2082 if (event == PTRACE_EVENT_EXEC)
2083 {
2084 if (debug_linux_nat)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "LHEW: Got exec event from LWP %ld\n",
2087 lp->ptid.lwp ());
2088
2089 ourstatus->kind = TARGET_WAITKIND_EXECD;
2090 ourstatus->value.execd_pathname
2091 = xstrdup (linux_proc_pid_to_exec_file (pid));
2092
2093 /* The thread that execed must have been resumed, but, when a
2094 thread execs, it changes its tid to the tgid, and the old
2095 tgid thread might have not been resumed. */
2096 lp->resumed = 1;
2097 return 0;
2098 }
2099
2100 if (event == PTRACE_EVENT_VFORK_DONE)
2101 {
2102 if (current_inferior ()->waiting_for_vfork_done)
2103 {
2104 if (debug_linux_nat)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "LHEW: Got expected PTRACE_EVENT_"
2107 "VFORK_DONE from LWP %ld: stopping\n",
2108 lp->ptid.lwp ());
2109
2110 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2111 return 0;
2112 }
2113
2114 if (debug_linux_nat)
2115 fprintf_unfiltered (gdb_stdlog,
2116 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2117 "from LWP %ld: ignoring\n",
2118 lp->ptid.lwp ());
2119 return 1;
2120 }
2121
2122 internal_error (__FILE__, __LINE__,
2123 _("unknown ptrace event %d"), event);
2124 }
2125
2126 /* Suspend waiting for a signal. We're mostly interested in
2127 SIGCHLD/SIGINT. */
2128
2129 static void
2130 wait_for_signal ()
2131 {
2132 if (debug_linux_nat)
2133 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2134 sigsuspend (&suspend_mask);
2135
2136 /* If the quit flag is set, it means that the user pressed Ctrl-C
2137 and we're debugging a process that is running on a separate
2138 terminal, so we must forward the Ctrl-C to the inferior. (If the
2139 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2140 inferior directly.) We must do this here because functions that
2141 need to block waiting for a signal loop forever until there's an
2142 event to report before returning back to the event loop. */
2143 if (!target_terminal::is_ours ())
2144 {
2145 if (check_quit_flag ())
2146 target_pass_ctrlc ();
2147 }
2148 }
2149
2150 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2151 exited. */
2152
2153 static int
2154 wait_lwp (struct lwp_info *lp)
2155 {
2156 pid_t pid;
2157 int status = 0;
2158 int thread_dead = 0;
2159 sigset_t prev_mask;
2160
2161 gdb_assert (!lp->stopped);
2162 gdb_assert (lp->status == 0);
2163
2164 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2165 block_child_signals (&prev_mask);
2166
2167 for (;;)
2168 {
2169 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2170 if (pid == -1 && errno == ECHILD)
2171 {
2172 /* The thread has previously exited. We need to delete it
2173 now because if this was a non-leader thread execing, we
2174 won't get an exit event. See comments on exec events at
2175 the top of the file. */
2176 thread_dead = 1;
2177 if (debug_linux_nat)
2178 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2179 target_pid_to_str (lp->ptid).c_str ());
2180 }
2181 if (pid != 0)
2182 break;
2183
2184 /* Bugs 10970, 12702.
2185 Thread group leader may have exited in which case we'll lock up in
2186 waitpid if there are other threads, even if they are all zombies too.
2187 Basically, we're not supposed to use waitpid this way.
2188 tkill(pid,0) cannot be used here as it gets ESRCH for both
2189 for zombie and running processes.
2190
2191 As a workaround, check if we're waiting for the thread group leader and
2192 if it's a zombie, and avoid calling waitpid if it is.
2193
2194 This is racy, what if the tgl becomes a zombie right after we check?
2195 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2196 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2197
2198 if (lp->ptid.pid () == lp->ptid.lwp ()
2199 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2200 {
2201 thread_dead = 1;
2202 if (debug_linux_nat)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "WL: Thread group leader %s vanished.\n",
2205 target_pid_to_str (lp->ptid).c_str ());
2206 break;
2207 }
2208
2209 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2210 get invoked despite our caller had them intentionally blocked by
2211 block_child_signals. This is sensitive only to the loop of
2212 linux_nat_wait_1 and there if we get called my_waitpid gets called
2213 again before it gets to sigsuspend so we can safely let the handlers
2214 get executed here. */
2215 wait_for_signal ();
2216 }
2217
2218 restore_child_signals_mask (&prev_mask);
2219
2220 if (!thread_dead)
2221 {
2222 gdb_assert (pid == lp->ptid.lwp ());
2223
2224 if (debug_linux_nat)
2225 {
2226 fprintf_unfiltered (gdb_stdlog,
2227 "WL: waitpid %s received %s\n",
2228 target_pid_to_str (lp->ptid).c_str (),
2229 status_to_str (status));
2230 }
2231
2232 /* Check if the thread has exited. */
2233 if (WIFEXITED (status) || WIFSIGNALED (status))
2234 {
2235 if (report_thread_events
2236 || lp->ptid.pid () == lp->ptid.lwp ())
2237 {
2238 if (debug_linux_nat)
2239 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2240 lp->ptid.pid ());
2241
2242 /* If this is the leader exiting, it means the whole
2243 process is gone. Store the status to report to the
2244 core. Store it in lp->waitstatus, because lp->status
2245 would be ambiguous (W_EXITCODE(0,0) == 0). */
2246 store_waitstatus (&lp->waitstatus, status);
2247 return 0;
2248 }
2249
2250 thread_dead = 1;
2251 if (debug_linux_nat)
2252 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2253 target_pid_to_str (lp->ptid).c_str ());
2254 }
2255 }
2256
2257 if (thread_dead)
2258 {
2259 exit_lwp (lp);
2260 return 0;
2261 }
2262
2263 gdb_assert (WIFSTOPPED (status));
2264 lp->stopped = 1;
2265
2266 if (lp->must_set_ptrace_flags)
2267 {
2268 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2269 int options = linux_nat_ptrace_options (inf->attach_flag);
2270
2271 linux_enable_event_reporting (lp->ptid.lwp (), options);
2272 lp->must_set_ptrace_flags = 0;
2273 }
2274
2275 /* Handle GNU/Linux's syscall SIGTRAPs. */
2276 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2277 {
2278 /* No longer need the sysgood bit. The ptrace event ends up
2279 recorded in lp->waitstatus if we care for it. We can carry
2280 on handling the event like a regular SIGTRAP from here
2281 on. */
2282 status = W_STOPCODE (SIGTRAP);
2283 if (linux_handle_syscall_trap (lp, 1))
2284 return wait_lwp (lp);
2285 }
2286 else
2287 {
2288 /* Almost all other ptrace-stops are known to be outside of system
2289 calls, with further exceptions in linux_handle_extended_wait. */
2290 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2291 }
2292
2293 /* Handle GNU/Linux's extended waitstatus for trace events. */
2294 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2295 && linux_is_extended_waitstatus (status))
2296 {
2297 if (debug_linux_nat)
2298 fprintf_unfiltered (gdb_stdlog,
2299 "WL: Handling extended status 0x%06x\n",
2300 status);
2301 linux_handle_extended_wait (lp, status);
2302 return 0;
2303 }
2304
2305 return status;
2306 }
2307
2308 /* Send a SIGSTOP to LP. */
2309
2310 static int
2311 stop_callback (struct lwp_info *lp)
2312 {
2313 if (!lp->stopped && !lp->signalled)
2314 {
2315 int ret;
2316
2317 if (debug_linux_nat)
2318 {
2319 fprintf_unfiltered (gdb_stdlog,
2320 "SC: kill %s **<SIGSTOP>**\n",
2321 target_pid_to_str (lp->ptid).c_str ());
2322 }
2323 errno = 0;
2324 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2325 if (debug_linux_nat)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "SC: lwp kill %d %s\n",
2329 ret,
2330 errno ? safe_strerror (errno) : "ERRNO-OK");
2331 }
2332
2333 lp->signalled = 1;
2334 gdb_assert (lp->status == 0);
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* Request a stop on LWP. */
2341
2342 void
2343 linux_stop_lwp (struct lwp_info *lwp)
2344 {
2345 stop_callback (lwp);
2346 }
2347
2348 /* See linux-nat.h */
2349
2350 void
2351 linux_stop_and_wait_all_lwps (void)
2352 {
2353 /* Stop all LWP's ... */
2354 iterate_over_lwps (minus_one_ptid, stop_callback);
2355
2356 /* ... and wait until all of them have reported back that
2357 they're no longer running. */
2358 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2359 }
2360
2361 /* See linux-nat.h */
2362
2363 void
2364 linux_unstop_all_lwps (void)
2365 {
2366 iterate_over_lwps (minus_one_ptid,
2367 [] (struct lwp_info *info)
2368 {
2369 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2370 });
2371 }
2372
2373 /* Return non-zero if LWP PID has a pending SIGINT. */
2374
2375 static int
2376 linux_nat_has_pending_sigint (int pid)
2377 {
2378 sigset_t pending, blocked, ignored;
2379
2380 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2381
2382 if (sigismember (&pending, SIGINT)
2383 && !sigismember (&ignored, SIGINT))
2384 return 1;
2385
2386 return 0;
2387 }
2388
2389 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2390
2391 static int
2392 set_ignore_sigint (struct lwp_info *lp)
2393 {
2394 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2395 flag to consume the next one. */
2396 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2397 && WSTOPSIG (lp->status) == SIGINT)
2398 lp->status = 0;
2399 else
2400 lp->ignore_sigint = 1;
2401
2402 return 0;
2403 }
2404
2405 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2406 This function is called after we know the LWP has stopped; if the LWP
2407 stopped before the expected SIGINT was delivered, then it will never have
2408 arrived. Also, if the signal was delivered to a shared queue and consumed
2409 by a different thread, it will never be delivered to this LWP. */
2410
2411 static void
2412 maybe_clear_ignore_sigint (struct lwp_info *lp)
2413 {
2414 if (!lp->ignore_sigint)
2415 return;
2416
2417 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2418 {
2419 if (debug_linux_nat)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "MCIS: Clearing bogus flag for %s\n",
2422 target_pid_to_str (lp->ptid).c_str ());
2423 lp->ignore_sigint = 0;
2424 }
2425 }
2426
2427 /* Fetch the possible triggered data watchpoint info and store it in
2428 LP.
2429
2430 On some archs, like x86, that use debug registers to set
2431 watchpoints, it's possible that the way to know which watched
2432 address trapped, is to check the register that is used to select
2433 which address to watch. Problem is, between setting the watchpoint
2434 and reading back which data address trapped, the user may change
2435 the set of watchpoints, and, as a consequence, GDB changes the
2436 debug registers in the inferior. To avoid reading back a stale
2437 stopped-data-address when that happens, we cache in LP the fact
2438 that a watchpoint trapped, and the corresponding data address, as
2439 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2440 registers meanwhile, we have the cached data we can rely on. */
2441
2442 static int
2443 check_stopped_by_watchpoint (struct lwp_info *lp)
2444 {
2445 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2446 inferior_ptid = lp->ptid;
2447
2448 if (linux_target->low_stopped_by_watchpoint ())
2449 {
2450 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2451 lp->stopped_data_address_p
2452 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2453 }
2454
2455 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2456 }
2457
2458 /* Returns true if the LWP had stopped for a watchpoint. */
2459
2460 bool
2461 linux_nat_target::stopped_by_watchpoint ()
2462 {
2463 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2464
2465 gdb_assert (lp != NULL);
2466
2467 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2468 }
2469
2470 bool
2471 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2472 {
2473 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2474
2475 gdb_assert (lp != NULL);
2476
2477 *addr_p = lp->stopped_data_address;
2478
2479 return lp->stopped_data_address_p;
2480 }
2481
2482 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2483
2484 bool
2485 linux_nat_target::low_status_is_event (int status)
2486 {
2487 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2488 }
2489
2490 /* Wait until LP is stopped. */
2491
2492 static int
2493 stop_wait_callback (struct lwp_info *lp)
2494 {
2495 struct inferior *inf = find_inferior_ptid (lp->ptid);
2496
2497 /* If this is a vfork parent, bail out, it is not going to report
2498 any SIGSTOP until the vfork is done with. */
2499 if (inf->vfork_child != NULL)
2500 return 0;
2501
2502 if (!lp->stopped)
2503 {
2504 int status;
2505
2506 status = wait_lwp (lp);
2507 if (status == 0)
2508 return 0;
2509
2510 if (lp->ignore_sigint && WIFSTOPPED (status)
2511 && WSTOPSIG (status) == SIGINT)
2512 {
2513 lp->ignore_sigint = 0;
2514
2515 errno = 0;
2516 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2517 lp->stopped = 0;
2518 if (debug_linux_nat)
2519 fprintf_unfiltered (gdb_stdlog,
2520 "PTRACE_CONT %s, 0, 0 (%s) "
2521 "(discarding SIGINT)\n",
2522 target_pid_to_str (lp->ptid).c_str (),
2523 errno ? safe_strerror (errno) : "OK");
2524
2525 return stop_wait_callback (lp);
2526 }
2527
2528 maybe_clear_ignore_sigint (lp);
2529
2530 if (WSTOPSIG (status) != SIGSTOP)
2531 {
2532 /* The thread was stopped with a signal other than SIGSTOP. */
2533
2534 if (debug_linux_nat)
2535 fprintf_unfiltered (gdb_stdlog,
2536 "SWC: Pending event %s in %s\n",
2537 status_to_str ((int) status),
2538 target_pid_to_str (lp->ptid).c_str ());
2539
2540 /* Save the sigtrap event. */
2541 lp->status = status;
2542 gdb_assert (lp->signalled);
2543 save_stop_reason (lp);
2544 }
2545 else
2546 {
2547 /* We caught the SIGSTOP that we intended to catch. */
2548
2549 if (debug_linux_nat)
2550 fprintf_unfiltered (gdb_stdlog,
2551 "SWC: Expected SIGSTOP caught for %s.\n",
2552 target_pid_to_str (lp->ptid).c_str ());
2553
2554 lp->signalled = 0;
2555
2556 /* If we are waiting for this stop so we can report the thread
2557 stopped then we need to record this status. Otherwise, we can
2558 now discard this stop event. */
2559 if (lp->last_resume_kind == resume_stop)
2560 {
2561 lp->status = status;
2562 save_stop_reason (lp);
2563 }
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
2570 /* Return non-zero if LP has a wait status pending. Discard the
2571 pending event and resume the LWP if the event that originally
2572 caused the stop became uninteresting. */
2573
2574 static int
2575 status_callback (struct lwp_info *lp)
2576 {
2577 /* Only report a pending wait status if we pretend that this has
2578 indeed been resumed. */
2579 if (!lp->resumed)
2580 return 0;
2581
2582 if (!lwp_status_pending_p (lp))
2583 return 0;
2584
2585 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2586 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2587 {
2588 struct regcache *regcache = get_thread_regcache (lp->ptid);
2589 CORE_ADDR pc;
2590 int discard = 0;
2591
2592 pc = regcache_read_pc (regcache);
2593
2594 if (pc != lp->stop_pc)
2595 {
2596 if (debug_linux_nat)
2597 fprintf_unfiltered (gdb_stdlog,
2598 "SC: PC of %s changed. was=%s, now=%s\n",
2599 target_pid_to_str (lp->ptid).c_str (),
2600 paddress (target_gdbarch (), lp->stop_pc),
2601 paddress (target_gdbarch (), pc));
2602 discard = 1;
2603 }
2604
2605 #if !USE_SIGTRAP_SIGINFO
2606 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2607 {
2608 if (debug_linux_nat)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "SC: previous breakpoint of %s, at %s gone\n",
2611 target_pid_to_str (lp->ptid).c_str (),
2612 paddress (target_gdbarch (), lp->stop_pc));
2613
2614 discard = 1;
2615 }
2616 #endif
2617
2618 if (discard)
2619 {
2620 if (debug_linux_nat)
2621 fprintf_unfiltered (gdb_stdlog,
2622 "SC: pending event of %s cancelled.\n",
2623 target_pid_to_str (lp->ptid).c_str ());
2624
2625 lp->status = 0;
2626 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2627 return 0;
2628 }
2629 }
2630
2631 return 1;
2632 }
2633
2634 /* Count the LWP's that have had events. */
2635
2636 static int
2637 count_events_callback (struct lwp_info *lp, int *count)
2638 {
2639 gdb_assert (count != NULL);
2640
2641 /* Select only resumed LWPs that have an event pending. */
2642 if (lp->resumed && lwp_status_pending_p (lp))
2643 (*count)++;
2644
2645 return 0;
2646 }
2647
2648 /* Select the LWP (if any) that is currently being single-stepped. */
2649
2650 static int
2651 select_singlestep_lwp_callback (struct lwp_info *lp)
2652 {
2653 if (lp->last_resume_kind == resume_step
2654 && lp->status != 0)
2655 return 1;
2656 else
2657 return 0;
2658 }
2659
2660 /* Returns true if LP has a status pending. */
2661
2662 static int
2663 lwp_status_pending_p (struct lwp_info *lp)
2664 {
2665 /* We check for lp->waitstatus in addition to lp->status, because we
2666 can have pending process exits recorded in lp->status and
2667 W_EXITCODE(0,0) happens to be 0. */
2668 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2669 }
2670
2671 /* Select the Nth LWP that has had an event. */
2672
2673 static int
2674 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2675 {
2676 gdb_assert (selector != NULL);
2677
2678 /* Select only resumed LWPs that have an event pending. */
2679 if (lp->resumed && lwp_status_pending_p (lp))
2680 if ((*selector)-- == 0)
2681 return 1;
2682
2683 return 0;
2684 }
2685
2686 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2687 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2688 and save the result in the LWP's stop_reason field. If it stopped
2689 for a breakpoint, decrement the PC if necessary on the lwp's
2690 architecture. */
2691
2692 static void
2693 save_stop_reason (struct lwp_info *lp)
2694 {
2695 struct regcache *regcache;
2696 struct gdbarch *gdbarch;
2697 CORE_ADDR pc;
2698 CORE_ADDR sw_bp_pc;
2699 #if USE_SIGTRAP_SIGINFO
2700 siginfo_t siginfo;
2701 #endif
2702
2703 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2704 gdb_assert (lp->status != 0);
2705
2706 if (!linux_target->low_status_is_event (lp->status))
2707 return;
2708
2709 regcache = get_thread_regcache (lp->ptid);
2710 gdbarch = regcache->arch ();
2711
2712 pc = regcache_read_pc (regcache);
2713 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2714
2715 #if USE_SIGTRAP_SIGINFO
2716 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2717 {
2718 if (siginfo.si_signo == SIGTRAP)
2719 {
2720 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2721 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2722 {
2723 /* The si_code is ambiguous on this arch -- check debug
2724 registers. */
2725 if (!check_stopped_by_watchpoint (lp))
2726 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2727 }
2728 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2729 {
2730 /* If we determine the LWP stopped for a SW breakpoint,
2731 trust it. Particularly don't check watchpoint
2732 registers, because at least on s390, we'd find
2733 stopped-by-watchpoint as long as there's a watchpoint
2734 set. */
2735 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2736 }
2737 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2738 {
2739 /* This can indicate either a hardware breakpoint or
2740 hardware watchpoint. Check debug registers. */
2741 if (!check_stopped_by_watchpoint (lp))
2742 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2743 }
2744 else if (siginfo.si_code == TRAP_TRACE)
2745 {
2746 if (debug_linux_nat)
2747 fprintf_unfiltered (gdb_stdlog,
2748 "CSBB: %s stopped by trace\n",
2749 target_pid_to_str (lp->ptid).c_str ());
2750
2751 /* We may have single stepped an instruction that
2752 triggered a watchpoint. In that case, on some
2753 architectures (such as x86), instead of TRAP_HWBKPT,
2754 si_code indicates TRAP_TRACE, and we need to check
2755 the debug registers separately. */
2756 check_stopped_by_watchpoint (lp);
2757 }
2758 }
2759 }
2760 #else
2761 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2762 && software_breakpoint_inserted_here_p (regcache->aspace (),
2763 sw_bp_pc))
2764 {
2765 /* The LWP was either continued, or stepped a software
2766 breakpoint instruction. */
2767 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2768 }
2769
2770 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2771 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2772
2773 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2774 check_stopped_by_watchpoint (lp);
2775 #endif
2776
2777 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2778 {
2779 if (debug_linux_nat)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "CSBB: %s stopped by software breakpoint\n",
2782 target_pid_to_str (lp->ptid).c_str ());
2783
2784 /* Back up the PC if necessary. */
2785 if (pc != sw_bp_pc)
2786 regcache_write_pc (regcache, sw_bp_pc);
2787
2788 /* Update this so we record the correct stop PC below. */
2789 pc = sw_bp_pc;
2790 }
2791 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2792 {
2793 if (debug_linux_nat)
2794 fprintf_unfiltered (gdb_stdlog,
2795 "CSBB: %s stopped by hardware breakpoint\n",
2796 target_pid_to_str (lp->ptid).c_str ());
2797 }
2798 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2799 {
2800 if (debug_linux_nat)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "CSBB: %s stopped by hardware watchpoint\n",
2803 target_pid_to_str (lp->ptid).c_str ());
2804 }
2805
2806 lp->stop_pc = pc;
2807 }
2808
2809
2810 /* Returns true if the LWP had stopped for a software breakpoint. */
2811
2812 bool
2813 linux_nat_target::stopped_by_sw_breakpoint ()
2814 {
2815 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2816
2817 gdb_assert (lp != NULL);
2818
2819 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2820 }
2821
2822 /* Implement the supports_stopped_by_sw_breakpoint method. */
2823
2824 bool
2825 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2826 {
2827 return USE_SIGTRAP_SIGINFO;
2828 }
2829
2830 /* Returns true if the LWP had stopped for a hardware
2831 breakpoint/watchpoint. */
2832
2833 bool
2834 linux_nat_target::stopped_by_hw_breakpoint ()
2835 {
2836 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2837
2838 gdb_assert (lp != NULL);
2839
2840 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2841 }
2842
2843 /* Implement the supports_stopped_by_hw_breakpoint method. */
2844
2845 bool
2846 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2847 {
2848 return USE_SIGTRAP_SIGINFO;
2849 }
2850
2851 /* Select one LWP out of those that have events pending. */
2852
2853 static void
2854 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2855 {
2856 int num_events = 0;
2857 int random_selector;
2858 struct lwp_info *event_lp = NULL;
2859
2860 /* Record the wait status for the original LWP. */
2861 (*orig_lp)->status = *status;
2862
2863 /* In all-stop, give preference to the LWP that is being
2864 single-stepped. There will be at most one, and it will be the
2865 LWP that the core is most interested in. If we didn't do this,
2866 then we'd have to handle pending step SIGTRAPs somehow in case
2867 the core later continues the previously-stepped thread, as
2868 otherwise we'd report the pending SIGTRAP then, and the core, not
2869 having stepped the thread, wouldn't understand what the trap was
2870 for, and therefore would report it to the user as a random
2871 signal. */
2872 if (!target_is_non_stop_p ())
2873 {
2874 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2875 if (event_lp != NULL)
2876 {
2877 if (debug_linux_nat)
2878 fprintf_unfiltered (gdb_stdlog,
2879 "SEL: Select single-step %s\n",
2880 target_pid_to_str (event_lp->ptid).c_str ());
2881 }
2882 }
2883
2884 if (event_lp == NULL)
2885 {
2886 /* Pick one at random, out of those which have had events. */
2887
2888 /* First see how many events we have. */
2889 iterate_over_lwps (filter,
2890 [&] (struct lwp_info *info)
2891 {
2892 return count_events_callback (info, &num_events);
2893 });
2894 gdb_assert (num_events > 0);
2895
2896 /* Now randomly pick a LWP out of those that have had
2897 events. */
2898 random_selector = (int)
2899 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2900
2901 if (debug_linux_nat && num_events > 1)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "SEL: Found %d events, selecting #%d\n",
2904 num_events, random_selector);
2905
2906 event_lp
2907 = (iterate_over_lwps
2908 (filter,
2909 [&] (struct lwp_info *info)
2910 {
2911 return select_event_lwp_callback (info,
2912 &random_selector);
2913 }));
2914 }
2915
2916 if (event_lp != NULL)
2917 {
2918 /* Switch the event LWP. */
2919 *orig_lp = event_lp;
2920 *status = event_lp->status;
2921 }
2922
2923 /* Flush the wait status for the event LWP. */
2924 (*orig_lp)->status = 0;
2925 }
2926
2927 /* Return non-zero if LP has been resumed. */
2928
2929 static int
2930 resumed_callback (struct lwp_info *lp)
2931 {
2932 return lp->resumed;
2933 }
2934
2935 /* Check if we should go on and pass this event to common code.
2936 Return the affected lwp if we are, or NULL otherwise. */
2937
2938 static struct lwp_info *
2939 linux_nat_filter_event (int lwpid, int status)
2940 {
2941 struct lwp_info *lp;
2942 int event = linux_ptrace_get_extended_event (status);
2943
2944 lp = find_lwp_pid (ptid_t (lwpid));
2945
2946 /* Check for stop events reported by a process we didn't already
2947 know about - anything not already in our LWP list.
2948
2949 If we're expecting to receive stopped processes after
2950 fork, vfork, and clone events, then we'll just add the
2951 new one to our list and go back to waiting for the event
2952 to be reported - the stopped process might be returned
2953 from waitpid before or after the event is.
2954
2955 But note the case of a non-leader thread exec'ing after the
2956 leader having exited, and gone from our lists. The non-leader
2957 thread changes its tid to the tgid. */
2958
2959 if (WIFSTOPPED (status) && lp == NULL
2960 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2961 {
2962 /* A multi-thread exec after we had seen the leader exiting. */
2963 if (debug_linux_nat)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "LLW: Re-adding thread group leader LWP %d.\n",
2966 lwpid);
2967
2968 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2969 lp->stopped = 1;
2970 lp->resumed = 1;
2971 add_thread (lp->ptid);
2972 }
2973
2974 if (WIFSTOPPED (status) && !lp)
2975 {
2976 if (debug_linux_nat)
2977 fprintf_unfiltered (gdb_stdlog,
2978 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2979 (long) lwpid, status_to_str (status));
2980 add_to_pid_list (&stopped_pids, lwpid, status);
2981 return NULL;
2982 }
2983
2984 /* Make sure we don't report an event for the exit of an LWP not in
2985 our list, i.e. not part of the current process. This can happen
2986 if we detach from a program we originally forked and then it
2987 exits. */
2988 if (!WIFSTOPPED (status) && !lp)
2989 return NULL;
2990
2991 /* This LWP is stopped now. (And if dead, this prevents it from
2992 ever being continued.) */
2993 lp->stopped = 1;
2994
2995 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2996 {
2997 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2998 int options = linux_nat_ptrace_options (inf->attach_flag);
2999
3000 linux_enable_event_reporting (lp->ptid.lwp (), options);
3001 lp->must_set_ptrace_flags = 0;
3002 }
3003
3004 /* Handle GNU/Linux's syscall SIGTRAPs. */
3005 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3006 {
3007 /* No longer need the sysgood bit. The ptrace event ends up
3008 recorded in lp->waitstatus if we care for it. We can carry
3009 on handling the event like a regular SIGTRAP from here
3010 on. */
3011 status = W_STOPCODE (SIGTRAP);
3012 if (linux_handle_syscall_trap (lp, 0))
3013 return NULL;
3014 }
3015 else
3016 {
3017 /* Almost all other ptrace-stops are known to be outside of system
3018 calls, with further exceptions in linux_handle_extended_wait. */
3019 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3020 }
3021
3022 /* Handle GNU/Linux's extended waitstatus for trace events. */
3023 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3024 && linux_is_extended_waitstatus (status))
3025 {
3026 if (debug_linux_nat)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "LLW: Handling extended status 0x%06x\n",
3029 status);
3030 if (linux_handle_extended_wait (lp, status))
3031 return NULL;
3032 }
3033
3034 /* Check if the thread has exited. */
3035 if (WIFEXITED (status) || WIFSIGNALED (status))
3036 {
3037 if (!report_thread_events
3038 && num_lwps (lp->ptid.pid ()) > 1)
3039 {
3040 if (debug_linux_nat)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "LLW: %s exited.\n",
3043 target_pid_to_str (lp->ptid).c_str ());
3044
3045 /* If there is at least one more LWP, then the exit signal
3046 was not the end of the debugged application and should be
3047 ignored. */
3048 exit_lwp (lp);
3049 return NULL;
3050 }
3051
3052 /* Note that even if the leader was ptrace-stopped, it can still
3053 exit, if e.g., some other thread brings down the whole
3054 process (calls `exit'). So don't assert that the lwp is
3055 resumed. */
3056 if (debug_linux_nat)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "LWP %ld exited (resumed=%d)\n",
3059 lp->ptid.lwp (), lp->resumed);
3060
3061 /* Dead LWP's aren't expected to reported a pending sigstop. */
3062 lp->signalled = 0;
3063
3064 /* Store the pending event in the waitstatus, because
3065 W_EXITCODE(0,0) == 0. */
3066 store_waitstatus (&lp->waitstatus, status);
3067 return lp;
3068 }
3069
3070 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3071 an attempt to stop an LWP. */
3072 if (lp->signalled
3073 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3074 {
3075 lp->signalled = 0;
3076
3077 if (lp->last_resume_kind == resume_stop)
3078 {
3079 if (debug_linux_nat)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "LLW: resume_stop SIGSTOP caught for %s.\n",
3082 target_pid_to_str (lp->ptid).c_str ());
3083 }
3084 else
3085 {
3086 /* This is a delayed SIGSTOP. Filter out the event. */
3087
3088 if (debug_linux_nat)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3091 lp->step ?
3092 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3093 target_pid_to_str (lp->ptid).c_str ());
3094
3095 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3096 gdb_assert (lp->resumed);
3097 return NULL;
3098 }
3099 }
3100
3101 /* Make sure we don't report a SIGINT that we have already displayed
3102 for another thread. */
3103 if (lp->ignore_sigint
3104 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3105 {
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "LLW: Delayed SIGINT caught for %s.\n",
3109 target_pid_to_str (lp->ptid).c_str ());
3110
3111 /* This is a delayed SIGINT. */
3112 lp->ignore_sigint = 0;
3113
3114 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3115 if (debug_linux_nat)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3118 lp->step ?
3119 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3120 target_pid_to_str (lp->ptid).c_str ());
3121 gdb_assert (lp->resumed);
3122
3123 /* Discard the event. */
3124 return NULL;
3125 }
3126
3127 /* Don't report signals that GDB isn't interested in, such as
3128 signals that are neither printed nor stopped upon. Stopping all
3129 threads can be a bit time-consuming so if we want decent
3130 performance with heavily multi-threaded programs, especially when
3131 they're using a high frequency timer, we'd better avoid it if we
3132 can. */
3133 if (WIFSTOPPED (status))
3134 {
3135 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3136
3137 if (!target_is_non_stop_p ())
3138 {
3139 /* Only do the below in all-stop, as we currently use SIGSTOP
3140 to implement target_stop (see linux_nat_stop) in
3141 non-stop. */
3142 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3143 {
3144 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3145 forwarded to the entire process group, that is, all LWPs
3146 will receive it - unless they're using CLONE_THREAD to
3147 share signals. Since we only want to report it once, we
3148 mark it as ignored for all LWPs except this one. */
3149 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3150 lp->ignore_sigint = 0;
3151 }
3152 else
3153 maybe_clear_ignore_sigint (lp);
3154 }
3155
3156 /* When using hardware single-step, we need to report every signal.
3157 Otherwise, signals in pass_mask may be short-circuited
3158 except signals that might be caused by a breakpoint. */
3159 if (!lp->step
3160 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3161 && !linux_wstatus_maybe_breakpoint (status))
3162 {
3163 linux_resume_one_lwp (lp, lp->step, signo);
3164 if (debug_linux_nat)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "LLW: %s %s, %s (preempt 'handle')\n",
3167 lp->step ?
3168 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3169 target_pid_to_str (lp->ptid).c_str (),
3170 (signo != GDB_SIGNAL_0
3171 ? strsignal (gdb_signal_to_host (signo))
3172 : "0"));
3173 return NULL;
3174 }
3175 }
3176
3177 /* An interesting event. */
3178 gdb_assert (lp);
3179 lp->status = status;
3180 save_stop_reason (lp);
3181 return lp;
3182 }
3183
3184 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3185 their exits until all other threads in the group have exited. */
3186
3187 static void
3188 check_zombie_leaders (void)
3189 {
3190 for (inferior *inf : all_inferiors ())
3191 {
3192 struct lwp_info *leader_lp;
3193
3194 if (inf->pid == 0)
3195 continue;
3196
3197 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3198 if (leader_lp != NULL
3199 /* Check if there are other threads in the group, as we may
3200 have raced with the inferior simply exiting. */
3201 && num_lwps (inf->pid) > 1
3202 && linux_proc_pid_is_zombie (inf->pid))
3203 {
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "CZL: Thread group leader %d zombie "
3207 "(it exited, or another thread execd).\n",
3208 inf->pid);
3209
3210 /* A leader zombie can mean one of two things:
3211
3212 - It exited, and there's an exit status pending
3213 available, or only the leader exited (not the whole
3214 program). In the latter case, we can't waitpid the
3215 leader's exit status until all other threads are gone.
3216
3217 - There are 3 or more threads in the group, and a thread
3218 other than the leader exec'd. See comments on exec
3219 events at the top of the file. We could try
3220 distinguishing the exit and exec cases, by waiting once
3221 more, and seeing if something comes out, but it doesn't
3222 sound useful. The previous leader _does_ go away, and
3223 we'll re-add the new one once we see the exec event
3224 (which is just the same as what would happen if the
3225 previous leader did exit voluntarily before some other
3226 thread execs). */
3227
3228 if (debug_linux_nat)
3229 fprintf_unfiltered (gdb_stdlog,
3230 "CZL: Thread group leader %d vanished.\n",
3231 inf->pid);
3232 exit_lwp (leader_lp);
3233 }
3234 }
3235 }
3236
3237 /* Convenience function that is called when the kernel reports an exit
3238 event. This decides whether to report the event to GDB as a
3239 process exit event, a thread exit event, or to suppress the
3240 event. */
3241
3242 static ptid_t
3243 filter_exit_event (struct lwp_info *event_child,
3244 struct target_waitstatus *ourstatus)
3245 {
3246 ptid_t ptid = event_child->ptid;
3247
3248 if (num_lwps (ptid.pid ()) > 1)
3249 {
3250 if (report_thread_events)
3251 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3252 else
3253 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3254
3255 exit_lwp (event_child);
3256 }
3257
3258 return ptid;
3259 }
3260
3261 static ptid_t
3262 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3263 int target_options)
3264 {
3265 sigset_t prev_mask;
3266 enum resume_kind last_resume_kind;
3267 struct lwp_info *lp;
3268 int status;
3269
3270 if (debug_linux_nat)
3271 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3272
3273 /* The first time we get here after starting a new inferior, we may
3274 not have added it to the LWP list yet - this is the earliest
3275 moment at which we know its PID. */
3276 if (inferior_ptid.is_pid ())
3277 {
3278 /* Upgrade the main thread's ptid. */
3279 thread_change_ptid (inferior_ptid,
3280 ptid_t (inferior_ptid.pid (),
3281 inferior_ptid.pid (), 0));
3282
3283 lp = add_initial_lwp (inferior_ptid);
3284 lp->resumed = 1;
3285 }
3286
3287 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3288 block_child_signals (&prev_mask);
3289
3290 /* First check if there is a LWP with a wait status pending. */
3291 lp = iterate_over_lwps (ptid, status_callback);
3292 if (lp != NULL)
3293 {
3294 if (debug_linux_nat)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "LLW: Using pending wait status %s for %s.\n",
3297 status_to_str (lp->status),
3298 target_pid_to_str (lp->ptid).c_str ());
3299 }
3300
3301 /* But if we don't find a pending event, we'll have to wait. Always
3302 pull all events out of the kernel. We'll randomly select an
3303 event LWP out of all that have events, to prevent starvation. */
3304
3305 while (lp == NULL)
3306 {
3307 pid_t lwpid;
3308
3309 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3310 quirks:
3311
3312 - If the thread group leader exits while other threads in the
3313 thread group still exist, waitpid(TGID, ...) hangs. That
3314 waitpid won't return an exit status until the other threads
3315 in the group are reapped.
3316
3317 - When a non-leader thread execs, that thread just vanishes
3318 without reporting an exit (so we'd hang if we waited for it
3319 explicitly in that case). The exec event is reported to
3320 the TGID pid. */
3321
3322 errno = 0;
3323 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3324
3325 if (debug_linux_nat)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "LNW: waitpid(-1, ...) returned %d, %s\n",
3328 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3329
3330 if (lwpid > 0)
3331 {
3332 if (debug_linux_nat)
3333 {
3334 fprintf_unfiltered (gdb_stdlog,
3335 "LLW: waitpid %ld received %s\n",
3336 (long) lwpid, status_to_str (status));
3337 }
3338
3339 linux_nat_filter_event (lwpid, status);
3340 /* Retry until nothing comes out of waitpid. A single
3341 SIGCHLD can indicate more than one child stopped. */
3342 continue;
3343 }
3344
3345 /* Now that we've pulled all events out of the kernel, resume
3346 LWPs that don't have an interesting event to report. */
3347 iterate_over_lwps (minus_one_ptid,
3348 [] (struct lwp_info *info)
3349 {
3350 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3351 });
3352
3353 /* ... and find an LWP with a status to report to the core, if
3354 any. */
3355 lp = iterate_over_lwps (ptid, status_callback);
3356 if (lp != NULL)
3357 break;
3358
3359 /* Check for zombie thread group leaders. Those can't be reaped
3360 until all other threads in the thread group are. */
3361 check_zombie_leaders ();
3362
3363 /* If there are no resumed children left, bail. We'd be stuck
3364 forever in the sigsuspend call below otherwise. */
3365 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3366 {
3367 if (debug_linux_nat)
3368 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3369
3370 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3371
3372 restore_child_signals_mask (&prev_mask);
3373 return minus_one_ptid;
3374 }
3375
3376 /* No interesting event to report to the core. */
3377
3378 if (target_options & TARGET_WNOHANG)
3379 {
3380 if (debug_linux_nat)
3381 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3382
3383 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3384 restore_child_signals_mask (&prev_mask);
3385 return minus_one_ptid;
3386 }
3387
3388 /* We shouldn't end up here unless we want to try again. */
3389 gdb_assert (lp == NULL);
3390
3391 /* Block until we get an event reported with SIGCHLD. */
3392 wait_for_signal ();
3393 }
3394
3395 gdb_assert (lp);
3396
3397 status = lp->status;
3398 lp->status = 0;
3399
3400 if (!target_is_non_stop_p ())
3401 {
3402 /* Now stop all other LWP's ... */
3403 iterate_over_lwps (minus_one_ptid, stop_callback);
3404
3405 /* ... and wait until all of them have reported back that
3406 they're no longer running. */
3407 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3408 }
3409
3410 /* If we're not waiting for a specific LWP, choose an event LWP from
3411 among those that have had events. Giving equal priority to all
3412 LWPs that have had events helps prevent starvation. */
3413 if (ptid == minus_one_ptid || ptid.is_pid ())
3414 select_event_lwp (ptid, &lp, &status);
3415
3416 gdb_assert (lp != NULL);
3417
3418 /* Now that we've selected our final event LWP, un-adjust its PC if
3419 it was a software breakpoint, and we can't reliably support the
3420 "stopped by software breakpoint" stop reason. */
3421 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3422 && !USE_SIGTRAP_SIGINFO)
3423 {
3424 struct regcache *regcache = get_thread_regcache (lp->ptid);
3425 struct gdbarch *gdbarch = regcache->arch ();
3426 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3427
3428 if (decr_pc != 0)
3429 {
3430 CORE_ADDR pc;
3431
3432 pc = regcache_read_pc (regcache);
3433 regcache_write_pc (regcache, pc + decr_pc);
3434 }
3435 }
3436
3437 /* We'll need this to determine whether to report a SIGSTOP as
3438 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3439 clears it. */
3440 last_resume_kind = lp->last_resume_kind;
3441
3442 if (!target_is_non_stop_p ())
3443 {
3444 /* In all-stop, from the core's perspective, all LWPs are now
3445 stopped until a new resume action is sent over. */
3446 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3447 }
3448 else
3449 {
3450 resume_clear_callback (lp);
3451 }
3452
3453 if (linux_target->low_status_is_event (status))
3454 {
3455 if (debug_linux_nat)
3456 fprintf_unfiltered (gdb_stdlog,
3457 "LLW: trap ptid is %s.\n",
3458 target_pid_to_str (lp->ptid).c_str ());
3459 }
3460
3461 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3462 {
3463 *ourstatus = lp->waitstatus;
3464 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3465 }
3466 else
3467 store_waitstatus (ourstatus, status);
3468
3469 if (debug_linux_nat)
3470 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3471
3472 restore_child_signals_mask (&prev_mask);
3473
3474 if (last_resume_kind == resume_stop
3475 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3476 && WSTOPSIG (status) == SIGSTOP)
3477 {
3478 /* A thread that has been requested to stop by GDB with
3479 target_stop, and it stopped cleanly, so report as SIG0. The
3480 use of SIGSTOP is an implementation detail. */
3481 ourstatus->value.sig = GDB_SIGNAL_0;
3482 }
3483
3484 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3485 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3486 lp->core = -1;
3487 else
3488 lp->core = linux_common_core_of_thread (lp->ptid);
3489
3490 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3491 return filter_exit_event (lp, ourstatus);
3492
3493 return lp->ptid;
3494 }
3495
3496 /* Resume LWPs that are currently stopped without any pending status
3497 to report, but are resumed from the core's perspective. */
3498
3499 static int
3500 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3501 {
3502 if (!lp->stopped)
3503 {
3504 if (debug_linux_nat)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "RSRL: NOT resuming LWP %s, not stopped\n",
3507 target_pid_to_str (lp->ptid).c_str ());
3508 }
3509 else if (!lp->resumed)
3510 {
3511 if (debug_linux_nat)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "RSRL: NOT resuming LWP %s, not resumed\n",
3514 target_pid_to_str (lp->ptid).c_str ());
3515 }
3516 else if (lwp_status_pending_p (lp))
3517 {
3518 if (debug_linux_nat)
3519 fprintf_unfiltered (gdb_stdlog,
3520 "RSRL: NOT resuming LWP %s, has pending status\n",
3521 target_pid_to_str (lp->ptid).c_str ());
3522 }
3523 else
3524 {
3525 struct regcache *regcache = get_thread_regcache (lp->ptid);
3526 struct gdbarch *gdbarch = regcache->arch ();
3527
3528 TRY
3529 {
3530 CORE_ADDR pc = regcache_read_pc (regcache);
3531 int leave_stopped = 0;
3532
3533 /* Don't bother if there's a breakpoint at PC that we'd hit
3534 immediately, and we're not waiting for this LWP. */
3535 if (!lp->ptid.matches (wait_ptid))
3536 {
3537 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3538 leave_stopped = 1;
3539 }
3540
3541 if (!leave_stopped)
3542 {
3543 if (debug_linux_nat)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "RSRL: resuming stopped-resumed LWP %s at "
3546 "%s: step=%d\n",
3547 target_pid_to_str (lp->ptid).c_str (),
3548 paddress (gdbarch, pc),
3549 lp->step);
3550
3551 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3552 }
3553 }
3554 CATCH (ex, RETURN_MASK_ERROR)
3555 {
3556 if (!check_ptrace_stopped_lwp_gone (lp))
3557 throw_exception (ex);
3558 }
3559 END_CATCH
3560 }
3561
3562 return 0;
3563 }
3564
3565 ptid_t
3566 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3567 int target_options)
3568 {
3569 ptid_t event_ptid;
3570
3571 if (debug_linux_nat)
3572 {
3573 std::string options_string = target_options_to_string (target_options);
3574 fprintf_unfiltered (gdb_stdlog,
3575 "linux_nat_wait: [%s], [%s]\n",
3576 target_pid_to_str (ptid).c_str (),
3577 options_string.c_str ());
3578 }
3579
3580 /* Flush the async file first. */
3581 if (target_is_async_p ())
3582 async_file_flush ();
3583
3584 /* Resume LWPs that are currently stopped without any pending status
3585 to report, but are resumed from the core's perspective. LWPs get
3586 in this state if we find them stopping at a time we're not
3587 interested in reporting the event (target_wait on a
3588 specific_process, for example, see linux_nat_wait_1), and
3589 meanwhile the event became uninteresting. Don't bother resuming
3590 LWPs we're not going to wait for if they'd stop immediately. */
3591 if (target_is_non_stop_p ())
3592 iterate_over_lwps (minus_one_ptid,
3593 [=] (struct lwp_info *info)
3594 {
3595 return resume_stopped_resumed_lwps (info, ptid);
3596 });
3597
3598 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3599
3600 /* If we requested any event, and something came out, assume there
3601 may be more. If we requested a specific lwp or process, also
3602 assume there may be more. */
3603 if (target_is_async_p ()
3604 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3605 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3606 || ptid != minus_one_ptid))
3607 async_file_mark ();
3608
3609 return event_ptid;
3610 }
3611
3612 /* Kill one LWP. */
3613
3614 static void
3615 kill_one_lwp (pid_t pid)
3616 {
3617 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3618
3619 errno = 0;
3620 kill_lwp (pid, SIGKILL);
3621 if (debug_linux_nat)
3622 {
3623 int save_errno = errno;
3624
3625 fprintf_unfiltered (gdb_stdlog,
3626 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3627 save_errno ? safe_strerror (save_errno) : "OK");
3628 }
3629
3630 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3631
3632 errno = 0;
3633 ptrace (PTRACE_KILL, pid, 0, 0);
3634 if (debug_linux_nat)
3635 {
3636 int save_errno = errno;
3637
3638 fprintf_unfiltered (gdb_stdlog,
3639 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3640 save_errno ? safe_strerror (save_errno) : "OK");
3641 }
3642 }
3643
3644 /* Wait for an LWP to die. */
3645
3646 static void
3647 kill_wait_one_lwp (pid_t pid)
3648 {
3649 pid_t res;
3650
3651 /* We must make sure that there are no pending events (delayed
3652 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3653 program doesn't interfere with any following debugging session. */
3654
3655 do
3656 {
3657 res = my_waitpid (pid, NULL, __WALL);
3658 if (res != (pid_t) -1)
3659 {
3660 if (debug_linux_nat)
3661 fprintf_unfiltered (gdb_stdlog,
3662 "KWC: wait %ld received unknown.\n",
3663 (long) pid);
3664 /* The Linux kernel sometimes fails to kill a thread
3665 completely after PTRACE_KILL; that goes from the stop
3666 point in do_fork out to the one in get_signal_to_deliver
3667 and waits again. So kill it again. */
3668 kill_one_lwp (pid);
3669 }
3670 }
3671 while (res == pid);
3672
3673 gdb_assert (res == -1 && errno == ECHILD);
3674 }
3675
3676 /* Callback for iterate_over_lwps. */
3677
3678 static int
3679 kill_callback (struct lwp_info *lp)
3680 {
3681 kill_one_lwp (lp->ptid.lwp ());
3682 return 0;
3683 }
3684
3685 /* Callback for iterate_over_lwps. */
3686
3687 static int
3688 kill_wait_callback (struct lwp_info *lp)
3689 {
3690 kill_wait_one_lwp (lp->ptid.lwp ());
3691 return 0;
3692 }
3693
3694 /* Kill the fork children of any threads of inferior INF that are
3695 stopped at a fork event. */
3696
3697 static void
3698 kill_unfollowed_fork_children (struct inferior *inf)
3699 {
3700 for (thread_info *thread : inf->non_exited_threads ())
3701 {
3702 struct target_waitstatus *ws = &thread->pending_follow;
3703
3704 if (ws->kind == TARGET_WAITKIND_FORKED
3705 || ws->kind == TARGET_WAITKIND_VFORKED)
3706 {
3707 ptid_t child_ptid = ws->value.related_pid;
3708 int child_pid = child_ptid.pid ();
3709 int child_lwp = child_ptid.lwp ();
3710
3711 kill_one_lwp (child_lwp);
3712 kill_wait_one_lwp (child_lwp);
3713
3714 /* Let the arch-specific native code know this process is
3715 gone. */
3716 linux_target->low_forget_process (child_pid);
3717 }
3718 }
3719 }
3720
3721 void
3722 linux_nat_target::kill ()
3723 {
3724 /* If we're stopped while forking and we haven't followed yet,
3725 kill the other task. We need to do this first because the
3726 parent will be sleeping if this is a vfork. */
3727 kill_unfollowed_fork_children (current_inferior ());
3728
3729 if (forks_exist_p ())
3730 linux_fork_killall ();
3731 else
3732 {
3733 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3734
3735 /* Stop all threads before killing them, since ptrace requires
3736 that the thread is stopped to sucessfully PTRACE_KILL. */
3737 iterate_over_lwps (ptid, stop_callback);
3738 /* ... and wait until all of them have reported back that
3739 they're no longer running. */
3740 iterate_over_lwps (ptid, stop_wait_callback);
3741
3742 /* Kill all LWP's ... */
3743 iterate_over_lwps (ptid, kill_callback);
3744
3745 /* ... and wait until we've flushed all events. */
3746 iterate_over_lwps (ptid, kill_wait_callback);
3747 }
3748
3749 target_mourn_inferior (inferior_ptid);
3750 }
3751
3752 void
3753 linux_nat_target::mourn_inferior ()
3754 {
3755 int pid = inferior_ptid.pid ();
3756
3757 purge_lwp_list (pid);
3758
3759 if (! forks_exist_p ())
3760 /* Normal case, no other forks available. */
3761 inf_ptrace_target::mourn_inferior ();
3762 else
3763 /* Multi-fork case. The current inferior_ptid has exited, but
3764 there are other viable forks to debug. Delete the exiting
3765 one and context-switch to the first available. */
3766 linux_fork_mourn_inferior ();
3767
3768 /* Let the arch-specific native code know this process is gone. */
3769 linux_target->low_forget_process (pid);
3770 }
3771
3772 /* Convert a native/host siginfo object, into/from the siginfo in the
3773 layout of the inferiors' architecture. */
3774
3775 static void
3776 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3777 {
3778 /* If the low target didn't do anything, then just do a straight
3779 memcpy. */
3780 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3781 {
3782 if (direction == 1)
3783 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3784 else
3785 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3786 }
3787 }
3788
3789 static enum target_xfer_status
3790 linux_xfer_siginfo (enum target_object object,
3791 const char *annex, gdb_byte *readbuf,
3792 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3793 ULONGEST *xfered_len)
3794 {
3795 int pid;
3796 siginfo_t siginfo;
3797 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3798
3799 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3800 gdb_assert (readbuf || writebuf);
3801
3802 pid = inferior_ptid.lwp ();
3803 if (pid == 0)
3804 pid = inferior_ptid.pid ();
3805
3806 if (offset > sizeof (siginfo))
3807 return TARGET_XFER_E_IO;
3808
3809 errno = 0;
3810 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3811 if (errno != 0)
3812 return TARGET_XFER_E_IO;
3813
3814 /* When GDB is built as a 64-bit application, ptrace writes into
3815 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3816 inferior with a 64-bit GDB should look the same as debugging it
3817 with a 32-bit GDB, we need to convert it. GDB core always sees
3818 the converted layout, so any read/write will have to be done
3819 post-conversion. */
3820 siginfo_fixup (&siginfo, inf_siginfo, 0);
3821
3822 if (offset + len > sizeof (siginfo))
3823 len = sizeof (siginfo) - offset;
3824
3825 if (readbuf != NULL)
3826 memcpy (readbuf, inf_siginfo + offset, len);
3827 else
3828 {
3829 memcpy (inf_siginfo + offset, writebuf, len);
3830
3831 /* Convert back to ptrace layout before flushing it out. */
3832 siginfo_fixup (&siginfo, inf_siginfo, 1);
3833
3834 errno = 0;
3835 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3836 if (errno != 0)
3837 return TARGET_XFER_E_IO;
3838 }
3839
3840 *xfered_len = len;
3841 return TARGET_XFER_OK;
3842 }
3843
3844 static enum target_xfer_status
3845 linux_nat_xfer_osdata (enum target_object object,
3846 const char *annex, gdb_byte *readbuf,
3847 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3848 ULONGEST *xfered_len);
3849
3850 static enum target_xfer_status
3851 linux_proc_xfer_spu (enum target_object object,
3852 const char *annex, gdb_byte *readbuf,
3853 const gdb_byte *writebuf,
3854 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3855
3856 static enum target_xfer_status
3857 linux_proc_xfer_partial (enum target_object object,
3858 const char *annex, gdb_byte *readbuf,
3859 const gdb_byte *writebuf,
3860 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3861
3862 enum target_xfer_status
3863 linux_nat_target::xfer_partial (enum target_object object,
3864 const char *annex, gdb_byte *readbuf,
3865 const gdb_byte *writebuf,
3866 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3867 {
3868 enum target_xfer_status xfer;
3869
3870 if (object == TARGET_OBJECT_SIGNAL_INFO)
3871 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3872 offset, len, xfered_len);
3873
3874 /* The target is connected but no live inferior is selected. Pass
3875 this request down to a lower stratum (e.g., the executable
3876 file). */
3877 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3878 return TARGET_XFER_EOF;
3879
3880 if (object == TARGET_OBJECT_AUXV)
3881 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3882 offset, len, xfered_len);
3883
3884 if (object == TARGET_OBJECT_OSDATA)
3885 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3886 offset, len, xfered_len);
3887
3888 if (object == TARGET_OBJECT_SPU)
3889 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3890 offset, len, xfered_len);
3891
3892 /* GDB calculates all addresses in the largest possible address
3893 width.
3894 The address width must be masked before its final use - either by
3895 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3896
3897 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3898
3899 if (object == TARGET_OBJECT_MEMORY)
3900 {
3901 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3902
3903 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3904 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3905 }
3906
3907 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3908 offset, len, xfered_len);
3909 if (xfer != TARGET_XFER_EOF)
3910 return xfer;
3911
3912 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3913 offset, len, xfered_len);
3914 }
3915
3916 bool
3917 linux_nat_target::thread_alive (ptid_t ptid)
3918 {
3919 /* As long as a PTID is in lwp list, consider it alive. */
3920 return find_lwp_pid (ptid) != NULL;
3921 }
3922
3923 /* Implement the to_update_thread_list target method for this
3924 target. */
3925
3926 void
3927 linux_nat_target::update_thread_list ()
3928 {
3929 struct lwp_info *lwp;
3930
3931 /* We add/delete threads from the list as clone/exit events are
3932 processed, so just try deleting exited threads still in the
3933 thread list. */
3934 delete_exited_threads ();
3935
3936 /* Update the processor core that each lwp/thread was last seen
3937 running on. */
3938 ALL_LWPS (lwp)
3939 {
3940 /* Avoid accessing /proc if the thread hasn't run since we last
3941 time we fetched the thread's core. Accessing /proc becomes
3942 noticeably expensive when we have thousands of LWPs. */
3943 if (lwp->core == -1)
3944 lwp->core = linux_common_core_of_thread (lwp->ptid);
3945 }
3946 }
3947
3948 std::string
3949 linux_nat_target::pid_to_str (ptid_t ptid)
3950 {
3951 if (ptid.lwp_p ()
3952 && (ptid.pid () != ptid.lwp ()
3953 || num_lwps (ptid.pid ()) > 1))
3954 return string_printf ("LWP %ld", ptid.lwp ());
3955
3956 return normal_pid_to_str (ptid);
3957 }
3958
3959 const char *
3960 linux_nat_target::thread_name (struct thread_info *thr)
3961 {
3962 return linux_proc_tid_get_name (thr->ptid);
3963 }
3964
3965 /* Accepts an integer PID; Returns a string representing a file that
3966 can be opened to get the symbols for the child process. */
3967
3968 char *
3969 linux_nat_target::pid_to_exec_file (int pid)
3970 {
3971 return linux_proc_pid_to_exec_file (pid);
3972 }
3973
3974 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3975 Because we can use a single read/write call, this can be much more
3976 efficient than banging away at PTRACE_PEEKTEXT. */
3977
3978 static enum target_xfer_status
3979 linux_proc_xfer_partial (enum target_object object,
3980 const char *annex, gdb_byte *readbuf,
3981 const gdb_byte *writebuf,
3982 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3983 {
3984 LONGEST ret;
3985 int fd;
3986 char filename[64];
3987
3988 if (object != TARGET_OBJECT_MEMORY)
3989 return TARGET_XFER_EOF;
3990
3991 /* Don't bother for one word. */
3992 if (len < 3 * sizeof (long))
3993 return TARGET_XFER_EOF;
3994
3995 /* We could keep this file open and cache it - possibly one per
3996 thread. That requires some juggling, but is even faster. */
3997 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3998 inferior_ptid.lwp ());
3999 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
4000 | O_LARGEFILE), 0);
4001 if (fd == -1)
4002 return TARGET_XFER_EOF;
4003
4004 /* Use pread64/pwrite64 if available, since they save a syscall and can
4005 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4006 debugging a SPARC64 application). */
4007 #ifdef HAVE_PREAD64
4008 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4009 : pwrite64 (fd, writebuf, len, offset));
4010 #else
4011 ret = lseek (fd, offset, SEEK_SET);
4012 if (ret != -1)
4013 ret = (readbuf ? read (fd, readbuf, len)
4014 : write (fd, writebuf, len));
4015 #endif
4016
4017 close (fd);
4018
4019 if (ret == -1 || ret == 0)
4020 return TARGET_XFER_EOF;
4021 else
4022 {
4023 *xfered_len = ret;
4024 return TARGET_XFER_OK;
4025 }
4026 }
4027
4028
4029 /* Enumerate spufs IDs for process PID. */
4030 static LONGEST
4031 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4032 {
4033 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4034 LONGEST pos = 0;
4035 LONGEST written = 0;
4036 char path[128];
4037 DIR *dir;
4038 struct dirent *entry;
4039
4040 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4041 dir = opendir (path);
4042 if (!dir)
4043 return -1;
4044
4045 rewinddir (dir);
4046 while ((entry = readdir (dir)) != NULL)
4047 {
4048 struct stat st;
4049 struct statfs stfs;
4050 int fd;
4051
4052 fd = atoi (entry->d_name);
4053 if (!fd)
4054 continue;
4055
4056 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4057 if (stat (path, &st) != 0)
4058 continue;
4059 if (!S_ISDIR (st.st_mode))
4060 continue;
4061
4062 if (statfs (path, &stfs) != 0)
4063 continue;
4064 if (stfs.f_type != SPUFS_MAGIC)
4065 continue;
4066
4067 if (pos >= offset && pos + 4 <= offset + len)
4068 {
4069 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4070 written += 4;
4071 }
4072 pos += 4;
4073 }
4074
4075 closedir (dir);
4076 return written;
4077 }
4078
4079 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4080 object type, using the /proc file system. */
4081
4082 static enum target_xfer_status
4083 linux_proc_xfer_spu (enum target_object object,
4084 const char *annex, gdb_byte *readbuf,
4085 const gdb_byte *writebuf,
4086 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4087 {
4088 char buf[128];
4089 int fd = 0;
4090 int ret = -1;
4091 int pid = inferior_ptid.lwp ();
4092
4093 if (!annex)
4094 {
4095 if (!readbuf)
4096 return TARGET_XFER_E_IO;
4097 else
4098 {
4099 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4100
4101 if (l < 0)
4102 return TARGET_XFER_E_IO;
4103 else if (l == 0)
4104 return TARGET_XFER_EOF;
4105 else
4106 {
4107 *xfered_len = (ULONGEST) l;
4108 return TARGET_XFER_OK;
4109 }
4110 }
4111 }
4112
4113 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4114 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4115 if (fd <= 0)
4116 return TARGET_XFER_E_IO;
4117
4118 if (offset != 0
4119 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4120 {
4121 close (fd);
4122 return TARGET_XFER_EOF;
4123 }
4124
4125 if (writebuf)
4126 ret = write (fd, writebuf, (size_t) len);
4127 else if (readbuf)
4128 ret = read (fd, readbuf, (size_t) len);
4129
4130 close (fd);
4131
4132 if (ret < 0)
4133 return TARGET_XFER_E_IO;
4134 else if (ret == 0)
4135 return TARGET_XFER_EOF;
4136 else
4137 {
4138 *xfered_len = (ULONGEST) ret;
4139 return TARGET_XFER_OK;
4140 }
4141 }
4142
4143
4144 /* Parse LINE as a signal set and add its set bits to SIGS. */
4145
4146 static void
4147 add_line_to_sigset (const char *line, sigset_t *sigs)
4148 {
4149 int len = strlen (line) - 1;
4150 const char *p;
4151 int signum;
4152
4153 if (line[len] != '\n')
4154 error (_("Could not parse signal set: %s"), line);
4155
4156 p = line;
4157 signum = len * 4;
4158 while (len-- > 0)
4159 {
4160 int digit;
4161
4162 if (*p >= '0' && *p <= '9')
4163 digit = *p - '0';
4164 else if (*p >= 'a' && *p <= 'f')
4165 digit = *p - 'a' + 10;
4166 else
4167 error (_("Could not parse signal set: %s"), line);
4168
4169 signum -= 4;
4170
4171 if (digit & 1)
4172 sigaddset (sigs, signum + 1);
4173 if (digit & 2)
4174 sigaddset (sigs, signum + 2);
4175 if (digit & 4)
4176 sigaddset (sigs, signum + 3);
4177 if (digit & 8)
4178 sigaddset (sigs, signum + 4);
4179
4180 p++;
4181 }
4182 }
4183
4184 /* Find process PID's pending signals from /proc/pid/status and set
4185 SIGS to match. */
4186
4187 void
4188 linux_proc_pending_signals (int pid, sigset_t *pending,
4189 sigset_t *blocked, sigset_t *ignored)
4190 {
4191 char buffer[PATH_MAX], fname[PATH_MAX];
4192
4193 sigemptyset (pending);
4194 sigemptyset (blocked);
4195 sigemptyset (ignored);
4196 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4197 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4198 if (procfile == NULL)
4199 error (_("Could not open %s"), fname);
4200
4201 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4202 {
4203 /* Normal queued signals are on the SigPnd line in the status
4204 file. However, 2.6 kernels also have a "shared" pending
4205 queue for delivering signals to a thread group, so check for
4206 a ShdPnd line also.
4207
4208 Unfortunately some Red Hat kernels include the shared pending
4209 queue but not the ShdPnd status field. */
4210
4211 if (startswith (buffer, "SigPnd:\t"))
4212 add_line_to_sigset (buffer + 8, pending);
4213 else if (startswith (buffer, "ShdPnd:\t"))
4214 add_line_to_sigset (buffer + 8, pending);
4215 else if (startswith (buffer, "SigBlk:\t"))
4216 add_line_to_sigset (buffer + 8, blocked);
4217 else if (startswith (buffer, "SigIgn:\t"))
4218 add_line_to_sigset (buffer + 8, ignored);
4219 }
4220 }
4221
4222 static enum target_xfer_status
4223 linux_nat_xfer_osdata (enum target_object object,
4224 const char *annex, gdb_byte *readbuf,
4225 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4226 ULONGEST *xfered_len)
4227 {
4228 gdb_assert (object == TARGET_OBJECT_OSDATA);
4229
4230 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4231 if (*xfered_len == 0)
4232 return TARGET_XFER_EOF;
4233 else
4234 return TARGET_XFER_OK;
4235 }
4236
4237 std::vector<static_tracepoint_marker>
4238 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4239 {
4240 char s[IPA_CMD_BUF_SIZE];
4241 int pid = inferior_ptid.pid ();
4242 std::vector<static_tracepoint_marker> markers;
4243 const char *p = s;
4244 ptid_t ptid = ptid_t (pid, 0, 0);
4245 static_tracepoint_marker marker;
4246
4247 /* Pause all */
4248 target_stop (ptid);
4249
4250 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4251 s[sizeof ("qTfSTM")] = 0;
4252
4253 agent_run_command (pid, s, strlen (s) + 1);
4254
4255 /* Unpause all. */
4256 SCOPE_EXIT { target_continue_no_signal (ptid); };
4257
4258 while (*p++ == 'm')
4259 {
4260 do
4261 {
4262 parse_static_tracepoint_marker_definition (p, &p, &marker);
4263
4264 if (strid == NULL || marker.str_id == strid)
4265 markers.push_back (std::move (marker));
4266 }
4267 while (*p++ == ','); /* comma-separated list */
4268
4269 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4270 s[sizeof ("qTsSTM")] = 0;
4271 agent_run_command (pid, s, strlen (s) + 1);
4272 p = s;
4273 }
4274
4275 return markers;
4276 }
4277
4278 /* target_is_async_p implementation. */
4279
4280 bool
4281 linux_nat_target::is_async_p ()
4282 {
4283 return linux_is_async_p ();
4284 }
4285
4286 /* target_can_async_p implementation. */
4287
4288 bool
4289 linux_nat_target::can_async_p ()
4290 {
4291 /* We're always async, unless the user explicitly prevented it with the
4292 "maint set target-async" command. */
4293 return target_async_permitted;
4294 }
4295
4296 bool
4297 linux_nat_target::supports_non_stop ()
4298 {
4299 return 1;
4300 }
4301
4302 /* to_always_non_stop_p implementation. */
4303
4304 bool
4305 linux_nat_target::always_non_stop_p ()
4306 {
4307 return 1;
4308 }
4309
4310 /* True if we want to support multi-process. To be removed when GDB
4311 supports multi-exec. */
4312
4313 int linux_multi_process = 1;
4314
4315 bool
4316 linux_nat_target::supports_multi_process ()
4317 {
4318 return linux_multi_process;
4319 }
4320
4321 bool
4322 linux_nat_target::supports_disable_randomization ()
4323 {
4324 #ifdef HAVE_PERSONALITY
4325 return 1;
4326 #else
4327 return 0;
4328 #endif
4329 }
4330
4331 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4332 so we notice when any child changes state, and notify the
4333 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4334 above to wait for the arrival of a SIGCHLD. */
4335
4336 static void
4337 sigchld_handler (int signo)
4338 {
4339 int old_errno = errno;
4340
4341 if (debug_linux_nat)
4342 ui_file_write_async_safe (gdb_stdlog,
4343 "sigchld\n", sizeof ("sigchld\n") - 1);
4344
4345 if (signo == SIGCHLD
4346 && linux_nat_event_pipe[0] != -1)
4347 async_file_mark (); /* Let the event loop know that there are
4348 events to handle. */
4349
4350 errno = old_errno;
4351 }
4352
4353 /* Callback registered with the target events file descriptor. */
4354
4355 static void
4356 handle_target_event (int error, gdb_client_data client_data)
4357 {
4358 inferior_event_handler (INF_REG_EVENT, NULL);
4359 }
4360
4361 /* Create/destroy the target events pipe. Returns previous state. */
4362
4363 static int
4364 linux_async_pipe (int enable)
4365 {
4366 int previous = linux_is_async_p ();
4367
4368 if (previous != enable)
4369 {
4370 sigset_t prev_mask;
4371
4372 /* Block child signals while we create/destroy the pipe, as
4373 their handler writes to it. */
4374 block_child_signals (&prev_mask);
4375
4376 if (enable)
4377 {
4378 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4379 internal_error (__FILE__, __LINE__,
4380 "creating event pipe failed.");
4381
4382 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4383 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4384 }
4385 else
4386 {
4387 close (linux_nat_event_pipe[0]);
4388 close (linux_nat_event_pipe[1]);
4389 linux_nat_event_pipe[0] = -1;
4390 linux_nat_event_pipe[1] = -1;
4391 }
4392
4393 restore_child_signals_mask (&prev_mask);
4394 }
4395
4396 return previous;
4397 }
4398
4399 /* target_async implementation. */
4400
4401 void
4402 linux_nat_target::async (int enable)
4403 {
4404 if (enable)
4405 {
4406 if (!linux_async_pipe (1))
4407 {
4408 add_file_handler (linux_nat_event_pipe[0],
4409 handle_target_event, NULL);
4410 /* There may be pending events to handle. Tell the event loop
4411 to poll them. */
4412 async_file_mark ();
4413 }
4414 }
4415 else
4416 {
4417 delete_file_handler (linux_nat_event_pipe[0]);
4418 linux_async_pipe (0);
4419 }
4420 return;
4421 }
4422
4423 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4424 event came out. */
4425
4426 static int
4427 linux_nat_stop_lwp (struct lwp_info *lwp)
4428 {
4429 if (!lwp->stopped)
4430 {
4431 if (debug_linux_nat)
4432 fprintf_unfiltered (gdb_stdlog,
4433 "LNSL: running -> suspending %s\n",
4434 target_pid_to_str (lwp->ptid).c_str ());
4435
4436
4437 if (lwp->last_resume_kind == resume_stop)
4438 {
4439 if (debug_linux_nat)
4440 fprintf_unfiltered (gdb_stdlog,
4441 "linux-nat: already stopping LWP %ld at "
4442 "GDB's request\n",
4443 lwp->ptid.lwp ());
4444 return 0;
4445 }
4446
4447 stop_callback (lwp);
4448 lwp->last_resume_kind = resume_stop;
4449 }
4450 else
4451 {
4452 /* Already known to be stopped; do nothing. */
4453
4454 if (debug_linux_nat)
4455 {
4456 if (find_thread_ptid (lwp->ptid)->stop_requested)
4457 fprintf_unfiltered (gdb_stdlog,
4458 "LNSL: already stopped/stop_requested %s\n",
4459 target_pid_to_str (lwp->ptid).c_str ());
4460 else
4461 fprintf_unfiltered (gdb_stdlog,
4462 "LNSL: already stopped/no "
4463 "stop_requested yet %s\n",
4464 target_pid_to_str (lwp->ptid).c_str ());
4465 }
4466 }
4467 return 0;
4468 }
4469
4470 void
4471 linux_nat_target::stop (ptid_t ptid)
4472 {
4473 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4474 }
4475
4476 void
4477 linux_nat_target::close ()
4478 {
4479 /* Unregister from the event loop. */
4480 if (is_async_p ())
4481 async (0);
4482
4483 inf_ptrace_target::close ();
4484 }
4485
4486 /* When requests are passed down from the linux-nat layer to the
4487 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4488 used. The address space pointer is stored in the inferior object,
4489 but the common code that is passed such ptid can't tell whether
4490 lwpid is a "main" process id or not (it assumes so). We reverse
4491 look up the "main" process id from the lwp here. */
4492
4493 struct address_space *
4494 linux_nat_target::thread_address_space (ptid_t ptid)
4495 {
4496 struct lwp_info *lwp;
4497 struct inferior *inf;
4498 int pid;
4499
4500 if (ptid.lwp () == 0)
4501 {
4502 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4503 tgid. */
4504 lwp = find_lwp_pid (ptid);
4505 pid = lwp->ptid.pid ();
4506 }
4507 else
4508 {
4509 /* A (pid,lwpid,0) ptid. */
4510 pid = ptid.pid ();
4511 }
4512
4513 inf = find_inferior_pid (pid);
4514 gdb_assert (inf != NULL);
4515 return inf->aspace;
4516 }
4517
4518 /* Return the cached value of the processor core for thread PTID. */
4519
4520 int
4521 linux_nat_target::core_of_thread (ptid_t ptid)
4522 {
4523 struct lwp_info *info = find_lwp_pid (ptid);
4524
4525 if (info)
4526 return info->core;
4527 return -1;
4528 }
4529
4530 /* Implementation of to_filesystem_is_local. */
4531
4532 bool
4533 linux_nat_target::filesystem_is_local ()
4534 {
4535 struct inferior *inf = current_inferior ();
4536
4537 if (inf->fake_pid_p || inf->pid == 0)
4538 return true;
4539
4540 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4541 }
4542
4543 /* Convert the INF argument passed to a to_fileio_* method
4544 to a process ID suitable for passing to its corresponding
4545 linux_mntns_* function. If INF is non-NULL then the
4546 caller is requesting the filesystem seen by INF. If INF
4547 is NULL then the caller is requesting the filesystem seen
4548 by the GDB. We fall back to GDB's filesystem in the case
4549 that INF is non-NULL but its PID is unknown. */
4550
4551 static pid_t
4552 linux_nat_fileio_pid_of (struct inferior *inf)
4553 {
4554 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4555 return getpid ();
4556 else
4557 return inf->pid;
4558 }
4559
4560 /* Implementation of to_fileio_open. */
4561
4562 int
4563 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4564 int flags, int mode, int warn_if_slow,
4565 int *target_errno)
4566 {
4567 int nat_flags;
4568 mode_t nat_mode;
4569 int fd;
4570
4571 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4572 || fileio_to_host_mode (mode, &nat_mode) == -1)
4573 {
4574 *target_errno = FILEIO_EINVAL;
4575 return -1;
4576 }
4577
4578 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4579 filename, nat_flags, nat_mode);
4580 if (fd == -1)
4581 *target_errno = host_to_fileio_error (errno);
4582
4583 return fd;
4584 }
4585
4586 /* Implementation of to_fileio_readlink. */
4587
4588 gdb::optional<std::string>
4589 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4590 int *target_errno)
4591 {
4592 char buf[PATH_MAX];
4593 int len;
4594
4595 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4596 filename, buf, sizeof (buf));
4597 if (len < 0)
4598 {
4599 *target_errno = host_to_fileio_error (errno);
4600 return {};
4601 }
4602
4603 return std::string (buf, len);
4604 }
4605
4606 /* Implementation of to_fileio_unlink. */
4607
4608 int
4609 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4610 int *target_errno)
4611 {
4612 int ret;
4613
4614 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4615 filename);
4616 if (ret == -1)
4617 *target_errno = host_to_fileio_error (errno);
4618
4619 return ret;
4620 }
4621
4622 /* Implementation of the to_thread_events method. */
4623
4624 void
4625 linux_nat_target::thread_events (int enable)
4626 {
4627 report_thread_events = enable;
4628 }
4629
4630 linux_nat_target::linux_nat_target ()
4631 {
4632 /* We don't change the stratum; this target will sit at
4633 process_stratum and thread_db will set at thread_stratum. This
4634 is a little strange, since this is a multi-threaded-capable
4635 target, but we want to be on the stack below thread_db, and we
4636 also want to be used for single-threaded processes. */
4637 }
4638
4639 /* See linux-nat.h. */
4640
4641 int
4642 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4643 {
4644 int pid;
4645
4646 pid = ptid.lwp ();
4647 if (pid == 0)
4648 pid = ptid.pid ();
4649
4650 errno = 0;
4651 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4652 if (errno != 0)
4653 {
4654 memset (siginfo, 0, sizeof (*siginfo));
4655 return 0;
4656 }
4657 return 1;
4658 }
4659
4660 /* See nat/linux-nat.h. */
4661
4662 ptid_t
4663 current_lwp_ptid (void)
4664 {
4665 gdb_assert (inferior_ptid.lwp_p ());
4666 return inferior_ptid;
4667 }
4668
4669 void
4670 _initialize_linux_nat (void)
4671 {
4672 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4673 &debug_linux_nat, _("\
4674 Set debugging of GNU/Linux lwp module."), _("\
4675 Show debugging of GNU/Linux lwp module."), _("\
4676 Enables printf debugging output."),
4677 NULL,
4678 show_debug_linux_nat,
4679 &setdebuglist, &showdebuglist);
4680
4681 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4682 &debug_linux_namespaces, _("\
4683 Set debugging of GNU/Linux namespaces module."), _("\
4684 Show debugging of GNU/Linux namespaces module."), _("\
4685 Enables printf debugging output."),
4686 NULL,
4687 NULL,
4688 &setdebuglist, &showdebuglist);
4689
4690 /* Save this mask as the default. */
4691 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4692
4693 /* Install a SIGCHLD handler. */
4694 sigchld_action.sa_handler = sigchld_handler;
4695 sigemptyset (&sigchld_action.sa_mask);
4696 sigchld_action.sa_flags = SA_RESTART;
4697
4698 /* Make it the default. */
4699 sigaction (SIGCHLD, &sigchld_action, NULL);
4700
4701 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4702 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4703 sigdelset (&suspend_mask, SIGCHLD);
4704
4705 sigemptyset (&blocked_mask);
4706
4707 lwp_lwpid_htab_create ();
4708 }
4709 \f
4710
4711 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4712 the GNU/Linux Threads library and therefore doesn't really belong
4713 here. */
4714
4715 /* Return the set of signals used by the threads library in *SET. */
4716
4717 void
4718 lin_thread_get_thread_signals (sigset_t *set)
4719 {
4720 sigemptyset (set);
4721
4722 /* NPTL reserves the first two RT signals, but does not provide any
4723 way for the debugger to query the signal numbers - fortunately
4724 they don't change. */
4725 sigaddset (set, __SIGRTMIN);
4726 sigaddset (set, __SIGRTMIN + 1);
4727 }
This page took 0.133219 seconds and 4 git commands to generate.