5c801141aba646f2900c56be42688e7b31731f5e
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 linux_enable_tracesysgood (pid_to_ptid (pid));
575 }
576
577 static void
578 linux_child_post_startup_inferior (ptid_t ptid)
579 {
580 linux_enable_event_reporting (ptid);
581 linux_enable_tracesysgood (ptid);
582 }
583
584 static int
585 linux_child_follow_fork (struct target_ops *ops, int follow_child)
586 {
587 sigset_t prev_mask;
588 int has_vforked;
589 int parent_pid, child_pid;
590
591 block_child_signals (&prev_mask);
592
593 has_vforked = (inferior_thread ()->pending_follow.kind
594 == TARGET_WAITKIND_VFORKED);
595 parent_pid = ptid_get_lwp (inferior_ptid);
596 if (parent_pid == 0)
597 parent_pid = ptid_get_pid (inferior_ptid);
598 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
599
600 if (!detach_fork)
601 linux_enable_event_reporting (pid_to_ptid (child_pid));
602
603 if (has_vforked
604 && !non_stop /* Non-stop always resumes both branches. */
605 && (!target_is_async_p () || sync_execution)
606 && !(follow_child || detach_fork || sched_multi))
607 {
608 /* The parent stays blocked inside the vfork syscall until the
609 child execs or exits. If we don't let the child run, then
610 the parent stays blocked. If we're telling the parent to run
611 in the foreground, the user will not be able to ctrl-c to get
612 back the terminal, effectively hanging the debug session. */
613 fprintf_filtered (gdb_stderr, _("\
614 Can not resume the parent process over vfork in the foreground while\n\
615 holding the child stopped. Try \"set detach-on-fork\" or \
616 \"set schedule-multiple\".\n"));
617 /* FIXME output string > 80 columns. */
618 return 1;
619 }
620
621 if (! follow_child)
622 {
623 struct lwp_info *child_lp = NULL;
624
625 /* We're already attached to the parent, by default. */
626
627 /* Detach new forked process? */
628 if (detach_fork)
629 {
630 /* Before detaching from the child, remove all breakpoints
631 from it. If we forked, then this has already been taken
632 care of by infrun.c. If we vforked however, any
633 breakpoint inserted in the parent is visible in the
634 child, even those added while stopped in a vfork
635 catchpoint. This will remove the breakpoints from the
636 parent also, but they'll be reinserted below. */
637 if (has_vforked)
638 {
639 /* keep breakpoints list in sync. */
640 remove_breakpoints_pid (GET_PID (inferior_ptid));
641 }
642
643 if (info_verbose || debug_linux_nat)
644 {
645 target_terminal_ours ();
646 fprintf_filtered (gdb_stdlog,
647 "Detaching after fork from "
648 "child process %d.\n",
649 child_pid);
650 }
651
652 ptrace (PTRACE_DETACH, child_pid, 0, 0);
653 }
654 else
655 {
656 struct inferior *parent_inf, *child_inf;
657 struct cleanup *old_chain;
658
659 /* Add process to GDB's tables. */
660 child_inf = add_inferior (child_pid);
661
662 parent_inf = current_inferior ();
663 child_inf->attach_flag = parent_inf->attach_flag;
664 copy_terminal_info (child_inf, parent_inf);
665
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is
676 shared with the parent. */
677 if (has_vforked)
678 {
679 child_inf->pspace = parent_inf->pspace;
680 child_inf->aspace = parent_inf->aspace;
681
682 /* The parent will be frozen until the child is done
683 with the shared region. Keep track of the
684 parent. */
685 child_inf->vfork_parent = parent_inf;
686 child_inf->pending_detach = 0;
687 parent_inf->vfork_child = child_inf;
688 parent_inf->pending_detach = 0;
689 }
690 else
691 {
692 child_inf->aspace = new_address_space ();
693 child_inf->pspace = add_program_space (child_inf->aspace);
694 child_inf->removable = 1;
695 set_current_program_space (child_inf->pspace);
696 clone_program_space (child_inf->pspace, parent_inf->pspace);
697
698 /* Let the shared library layer (solib-svr4) learn about
699 this new process, relocate the cloned exec, pull in
700 shared libraries, and install the solib event
701 breakpoint. If a "cloned-VM" event was propagated
702 better throughout the core, this wouldn't be
703 required. */
704 solib_create_inferior_hook (0);
705 }
706
707 /* Let the thread_db layer learn about this new process. */
708 check_for_thread_db ();
709
710 do_cleanups (old_chain);
711 }
712
713 if (has_vforked)
714 {
715 struct lwp_info *parent_lp;
716 struct inferior *parent_inf;
717
718 parent_inf = current_inferior ();
719
720 /* If we detached from the child, then we have to be careful
721 to not insert breakpoints in the parent until the child
722 is done with the shared memory region. However, if we're
723 staying attached to the child, then we can and should
724 insert breakpoints, so that we can debug it. A
725 subsequent child exec or exit is enough to know when does
726 the child stops using the parent's address space. */
727 parent_inf->waiting_for_vfork_done = detach_fork;
728 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
729
730 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
731 gdb_assert (linux_supports_tracefork_flag >= 0);
732
733 if (linux_supports_tracevforkdone (0))
734 {
735 if (debug_linux_nat)
736 fprintf_unfiltered (gdb_stdlog,
737 "LCFF: waiting for VFORK_DONE on %d\n",
738 parent_pid);
739 parent_lp->stopped = 1;
740
741 /* We'll handle the VFORK_DONE event like any other
742 event, in target_wait. */
743 }
744 else
745 {
746 /* We can't insert breakpoints until the child has
747 finished with the shared memory region. We need to
748 wait until that happens. Ideal would be to just
749 call:
750 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
751 - waitpid (parent_pid, &status, __WALL);
752 However, most architectures can't handle a syscall
753 being traced on the way out if it wasn't traced on
754 the way in.
755
756 We might also think to loop, continuing the child
757 until it exits or gets a SIGTRAP. One problem is
758 that the child might call ptrace with PTRACE_TRACEME.
759
760 There's no simple and reliable way to figure out when
761 the vforked child will be done with its copy of the
762 shared memory. We could step it out of the syscall,
763 two instructions, let it go, and then single-step the
764 parent once. When we have hardware single-step, this
765 would work; with software single-step it could still
766 be made to work but we'd have to be able to insert
767 single-step breakpoints in the child, and we'd have
768 to insert -just- the single-step breakpoint in the
769 parent. Very awkward.
770
771 In the end, the best we can do is to make sure it
772 runs for a little while. Hopefully it will be out of
773 range of any breakpoints we reinsert. Usually this
774 is only the single-step breakpoint at vfork's return
775 point. */
776
777 if (debug_linux_nat)
778 fprintf_unfiltered (gdb_stdlog,
779 "LCFF: no VFORK_DONE "
780 "support, sleeping a bit\n");
781
782 usleep (10000);
783
784 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
785 and leave it pending. The next linux_nat_resume call
786 will notice a pending event, and bypasses actually
787 resuming the inferior. */
788 parent_lp->status = 0;
789 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
790 parent_lp->stopped = 1;
791
792 /* If we're in async mode, need to tell the event loop
793 there's something here to process. */
794 if (target_can_async_p ())
795 async_file_mark ();
796 }
797 }
798 }
799 else
800 {
801 struct inferior *parent_inf, *child_inf;
802 struct lwp_info *child_lp;
803 struct program_space *parent_pspace;
804
805 if (info_verbose || debug_linux_nat)
806 {
807 target_terminal_ours ();
808 if (has_vforked)
809 fprintf_filtered (gdb_stdlog,
810 _("Attaching after process %d "
811 "vfork to child process %d.\n"),
812 parent_pid, child_pid);
813 else
814 fprintf_filtered (gdb_stdlog,
815 _("Attaching after process %d "
816 "fork to child process %d.\n"),
817 parent_pid, child_pid);
818 }
819
820 /* Add the new inferior first, so that the target_detach below
821 doesn't unpush the target. */
822
823 child_inf = add_inferior (child_pid);
824
825 parent_inf = current_inferior ();
826 child_inf->attach_flag = parent_inf->attach_flag;
827 copy_terminal_info (child_inf, parent_inf);
828
829 parent_pspace = parent_inf->pspace;
830
831 /* If we're vforking, we want to hold on to the parent until the
832 child exits or execs. At child exec or exit time we can
833 remove the old breakpoints from the parent and detach or
834 resume debugging it. Otherwise, detach the parent now; we'll
835 want to reuse it's program/address spaces, but we can't set
836 them to the child before removing breakpoints from the
837 parent, otherwise, the breakpoints module could decide to
838 remove breakpoints from the wrong process (since they'd be
839 assigned to the same address space). */
840
841 if (has_vforked)
842 {
843 gdb_assert (child_inf->vfork_parent == NULL);
844 gdb_assert (parent_inf->vfork_child == NULL);
845 child_inf->vfork_parent = parent_inf;
846 child_inf->pending_detach = 0;
847 parent_inf->vfork_child = child_inf;
848 parent_inf->pending_detach = detach_fork;
849 parent_inf->waiting_for_vfork_done = 0;
850 }
851 else if (detach_fork)
852 target_detach (NULL, 0);
853
854 /* Note that the detach above makes PARENT_INF dangling. */
855
856 /* Add the child thread to the appropriate lists, and switch to
857 this new thread, before cloning the program space, and
858 informing the solib layer about this new process. */
859
860 inferior_ptid = ptid_build (child_pid, child_pid, 0);
861 add_thread (inferior_ptid);
862 child_lp = add_lwp (inferior_ptid);
863 child_lp->stopped = 1;
864 child_lp->last_resume_kind = resume_stop;
865
866 /* If this is a vfork child, then the address-space is shared
867 with the parent. If we detached from the parent, then we can
868 reuse the parent's program/address spaces. */
869 if (has_vforked || detach_fork)
870 {
871 child_inf->pspace = parent_pspace;
872 child_inf->aspace = child_inf->pspace->aspace;
873 }
874 else
875 {
876 child_inf->aspace = new_address_space ();
877 child_inf->pspace = add_program_space (child_inf->aspace);
878 child_inf->removable = 1;
879 set_current_program_space (child_inf->pspace);
880 clone_program_space (child_inf->pspace, parent_pspace);
881
882 /* Let the shared library layer (solib-svr4) learn about
883 this new process, relocate the cloned exec, pull in
884 shared libraries, and install the solib event breakpoint.
885 If a "cloned-VM" event was propagated better throughout
886 the core, this wouldn't be required. */
887 solib_create_inferior_hook (0);
888 }
889
890 /* Let the thread_db layer learn about this new process. */
891 check_for_thread_db ();
892 }
893
894 restore_child_signals_mask (&prev_mask);
895 return 0;
896 }
897
898 \f
899 static int
900 linux_child_insert_fork_catchpoint (int pid)
901 {
902 return !linux_supports_tracefork (pid);
903 }
904
905 static int
906 linux_child_remove_fork_catchpoint (int pid)
907 {
908 return 0;
909 }
910
911 static int
912 linux_child_insert_vfork_catchpoint (int pid)
913 {
914 return !linux_supports_tracefork (pid);
915 }
916
917 static int
918 linux_child_remove_vfork_catchpoint (int pid)
919 {
920 return 0;
921 }
922
923 static int
924 linux_child_insert_exec_catchpoint (int pid)
925 {
926 return !linux_supports_tracefork (pid);
927 }
928
929 static int
930 linux_child_remove_exec_catchpoint (int pid)
931 {
932 return 0;
933 }
934
935 static int
936 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
937 int table_size, int *table)
938 {
939 if (!linux_supports_tracesysgood (pid))
940 return 1;
941
942 /* On GNU/Linux, we ignore the arguments. It means that we only
943 enable the syscall catchpoints, but do not disable them.
944
945 Also, we do not use the `table' information because we do not
946 filter system calls here. We let GDB do the logic for us. */
947 return 0;
948 }
949
950 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
951 are processes sharing the same VM space. A multi-threaded process
952 is basically a group of such processes. However, such a grouping
953 is almost entirely a user-space issue; the kernel doesn't enforce
954 such a grouping at all (this might change in the future). In
955 general, we'll rely on the threads library (i.e. the GNU/Linux
956 Threads library) to provide such a grouping.
957
958 It is perfectly well possible to write a multi-threaded application
959 without the assistance of a threads library, by using the clone
960 system call directly. This module should be able to give some
961 rudimentary support for debugging such applications if developers
962 specify the CLONE_PTRACE flag in the clone system call, and are
963 using the Linux kernel 2.4 or above.
964
965 Note that there are some peculiarities in GNU/Linux that affect
966 this code:
967
968 - In general one should specify the __WCLONE flag to waitpid in
969 order to make it report events for any of the cloned processes
970 (and leave it out for the initial process). However, if a cloned
971 process has exited the exit status is only reported if the
972 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
973 we cannot use it since GDB must work on older systems too.
974
975 - When a traced, cloned process exits and is waited for by the
976 debugger, the kernel reassigns it to the original parent and
977 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
978 library doesn't notice this, which leads to the "zombie problem":
979 When debugged a multi-threaded process that spawns a lot of
980 threads will run out of processes, even if the threads exit,
981 because the "zombies" stay around. */
982
983 /* List of known LWPs. */
984 struct lwp_info *lwp_list;
985 \f
986
987 /* Original signal mask. */
988 static sigset_t normal_mask;
989
990 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
991 _initialize_linux_nat. */
992 static sigset_t suspend_mask;
993
994 /* Signals to block to make that sigsuspend work. */
995 static sigset_t blocked_mask;
996
997 /* SIGCHLD action. */
998 struct sigaction sigchld_action;
999
1000 /* Block child signals (SIGCHLD and linux threads signals), and store
1001 the previous mask in PREV_MASK. */
1002
1003 static void
1004 block_child_signals (sigset_t *prev_mask)
1005 {
1006 /* Make sure SIGCHLD is blocked. */
1007 if (!sigismember (&blocked_mask, SIGCHLD))
1008 sigaddset (&blocked_mask, SIGCHLD);
1009
1010 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1011 }
1012
1013 /* Restore child signals mask, previously returned by
1014 block_child_signals. */
1015
1016 static void
1017 restore_child_signals_mask (sigset_t *prev_mask)
1018 {
1019 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1020 }
1021
1022 /* Mask of signals to pass directly to the inferior. */
1023 static sigset_t pass_mask;
1024
1025 /* Update signals to pass to the inferior. */
1026 static void
1027 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1028 {
1029 int signo;
1030
1031 sigemptyset (&pass_mask);
1032
1033 for (signo = 1; signo < NSIG; signo++)
1034 {
1035 int target_signo = target_signal_from_host (signo);
1036 if (target_signo < numsigs && pass_signals[target_signo])
1037 sigaddset (&pass_mask, signo);
1038 }
1039 }
1040
1041 \f
1042
1043 /* Prototypes for local functions. */
1044 static int stop_wait_callback (struct lwp_info *lp, void *data);
1045 static int linux_thread_alive (ptid_t ptid);
1046 static char *linux_child_pid_to_exec_file (int pid);
1047
1048 \f
1049 /* Convert wait status STATUS to a string. Used for printing debug
1050 messages only. */
1051
1052 static char *
1053 status_to_str (int status)
1054 {
1055 static char buf[64];
1056
1057 if (WIFSTOPPED (status))
1058 {
1059 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1060 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1061 strsignal (SIGTRAP));
1062 else
1063 snprintf (buf, sizeof (buf), "%s (stopped)",
1064 strsignal (WSTOPSIG (status)));
1065 }
1066 else if (WIFSIGNALED (status))
1067 snprintf (buf, sizeof (buf), "%s (terminated)",
1068 strsignal (WTERMSIG (status)));
1069 else
1070 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1071
1072 return buf;
1073 }
1074
1075 /* Remove all LWPs belong to PID from the lwp list. */
1076
1077 static void
1078 purge_lwp_list (int pid)
1079 {
1080 struct lwp_info *lp, *lpprev, *lpnext;
1081
1082 lpprev = NULL;
1083
1084 for (lp = lwp_list; lp; lp = lpnext)
1085 {
1086 lpnext = lp->next;
1087
1088 if (ptid_get_pid (lp->ptid) == pid)
1089 {
1090 if (lp == lwp_list)
1091 lwp_list = lp->next;
1092 else
1093 lpprev->next = lp->next;
1094
1095 xfree (lp);
1096 }
1097 else
1098 lpprev = lp;
1099 }
1100 }
1101
1102 /* Return the number of known LWPs in the tgid given by PID. */
1103
1104 static int
1105 num_lwps (int pid)
1106 {
1107 int count = 0;
1108 struct lwp_info *lp;
1109
1110 for (lp = lwp_list; lp; lp = lp->next)
1111 if (ptid_get_pid (lp->ptid) == pid)
1112 count++;
1113
1114 return count;
1115 }
1116
1117 /* Add the LWP specified by PID to the list. Return a pointer to the
1118 structure describing the new LWP. The LWP should already be stopped
1119 (with an exception for the very first LWP). */
1120
1121 static struct lwp_info *
1122 add_lwp (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 gdb_assert (is_lwp (ptid));
1127
1128 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1129
1130 memset (lp, 0, sizeof (struct lwp_info));
1131
1132 lp->last_resume_kind = resume_continue;
1133 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1134
1135 lp->ptid = ptid;
1136 lp->core = -1;
1137
1138 lp->next = lwp_list;
1139 lwp_list = lp;
1140
1141 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1142 linux_nat_new_thread (ptid);
1143
1144 return lp;
1145 }
1146
1147 /* Remove the LWP specified by PID from the list. */
1148
1149 static void
1150 delete_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp, *lpprev;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1157 if (ptid_equal (lp->ptid, ptid))
1158 break;
1159
1160 if (!lp)
1161 return;
1162
1163 if (lpprev)
1164 lpprev->next = lp->next;
1165 else
1166 lwp_list = lp->next;
1167
1168 xfree (lp);
1169 }
1170
1171 /* Return a pointer to the structure describing the LWP corresponding
1172 to PID. If no corresponding LWP could be found, return NULL. */
1173
1174 static struct lwp_info *
1175 find_lwp_pid (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwp;
1179
1180 if (is_lwp (ptid))
1181 lwp = GET_LWP (ptid);
1182 else
1183 lwp = GET_PID (ptid);
1184
1185 for (lp = lwp_list; lp; lp = lp->next)
1186 if (lwp == GET_LWP (lp->ptid))
1187 return lp;
1188
1189 return NULL;
1190 }
1191
1192 /* Call CALLBACK with its second argument set to DATA for every LWP in
1193 the list. If CALLBACK returns 1 for a particular LWP, return a
1194 pointer to the structure describing that LWP immediately.
1195 Otherwise return NULL. */
1196
1197 struct lwp_info *
1198 iterate_over_lwps (ptid_t filter,
1199 int (*callback) (struct lwp_info *, void *),
1200 void *data)
1201 {
1202 struct lwp_info *lp, *lpnext;
1203
1204 for (lp = lwp_list; lp; lp = lpnext)
1205 {
1206 lpnext = lp->next;
1207
1208 if (ptid_match (lp->ptid, filter))
1209 {
1210 if ((*callback) (lp, data))
1211 return lp;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Update our internal state when changing from one checkpoint to
1219 another indicated by NEW_PTID. We can only switch single-threaded
1220 applications, so we only create one new LWP, and the previous list
1221 is discarded. */
1222
1223 void
1224 linux_nat_switch_fork (ptid_t new_ptid)
1225 {
1226 struct lwp_info *lp;
1227
1228 purge_lwp_list (GET_PID (inferior_ptid));
1229
1230 lp = add_lwp (new_ptid);
1231 lp->stopped = 1;
1232
1233 /* This changes the thread's ptid while preserving the gdb thread
1234 num. Also changes the inferior pid, while preserving the
1235 inferior num. */
1236 thread_change_ptid (inferior_ptid, new_ptid);
1237
1238 /* We've just told GDB core that the thread changed target id, but,
1239 in fact, it really is a different thread, with different register
1240 contents. */
1241 registers_changed ();
1242 }
1243
1244 /* Handle the exit of a single thread LP. */
1245
1246 static void
1247 exit_lwp (struct lwp_info *lp)
1248 {
1249 struct thread_info *th = find_thread_ptid (lp->ptid);
1250
1251 if (th)
1252 {
1253 if (print_thread_events)
1254 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1255
1256 delete_thread (lp->ptid);
1257 }
1258
1259 delete_lwp (lp->ptid);
1260 }
1261
1262 /* Detect `T (stopped)' in `/proc/PID/status'.
1263 Other states including `T (tracing stop)' are reported as false. */
1264
1265 static int
1266 pid_is_stopped (pid_t pid)
1267 {
1268 FILE *status_file;
1269 char buf[100];
1270 int retval = 0;
1271
1272 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1273 status_file = fopen (buf, "r");
1274 if (status_file != NULL)
1275 {
1276 int have_state = 0;
1277
1278 while (fgets (buf, sizeof (buf), status_file))
1279 {
1280 if (strncmp (buf, "State:", 6) == 0)
1281 {
1282 have_state = 1;
1283 break;
1284 }
1285 }
1286 if (have_state && strstr (buf, "T (stopped)") != NULL)
1287 retval = 1;
1288 fclose (status_file);
1289 }
1290 return retval;
1291 }
1292
1293 /* Wait for the LWP specified by LP, which we have just attached to.
1294 Returns a wait status for that LWP, to cache. */
1295
1296 static int
1297 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1298 int *signalled)
1299 {
1300 pid_t new_pid, pid = GET_LWP (ptid);
1301 int status;
1302
1303 if (pid_is_stopped (pid))
1304 {
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LNPAW: Attaching to a stopped process\n");
1308
1309 /* The process is definitely stopped. It is in a job control
1310 stop, unless the kernel predates the TASK_STOPPED /
1311 TASK_TRACED distinction, in which case it might be in a
1312 ptrace stop. Make sure it is in a ptrace stop; from there we
1313 can kill it, signal it, et cetera.
1314
1315 First make sure there is a pending SIGSTOP. Since we are
1316 already attached, the process can not transition from stopped
1317 to running without a PTRACE_CONT; so we know this signal will
1318 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1319 probably already in the queue (unless this kernel is old
1320 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1321 is not an RT signal, it can only be queued once. */
1322 kill_lwp (pid, SIGSTOP);
1323
1324 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1325 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1326 ptrace (PTRACE_CONT, pid, 0, 0);
1327 }
1328
1329 /* Make sure the initial process is stopped. The user-level threads
1330 layer might want to poke around in the inferior, and that won't
1331 work if things haven't stabilized yet. */
1332 new_pid = my_waitpid (pid, &status, 0);
1333 if (new_pid == -1 && errno == ECHILD)
1334 {
1335 if (first)
1336 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1337
1338 /* Try again with __WCLONE to check cloned processes. */
1339 new_pid = my_waitpid (pid, &status, __WCLONE);
1340 *cloned = 1;
1341 }
1342
1343 gdb_assert (pid == new_pid);
1344
1345 if (!WIFSTOPPED (status))
1346 {
1347 /* The pid we tried to attach has apparently just exited. */
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1350 pid, status_to_str (status));
1351 return status;
1352 }
1353
1354 if (WSTOPSIG (status) != SIGSTOP)
1355 {
1356 *signalled = 1;
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "LNPAW: Received %s after attaching\n",
1360 status_to_str (status));
1361 }
1362
1363 return status;
1364 }
1365
1366 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1367 the new LWP could not be attached, or 1 if we're already auto
1368 attached to this thread, but haven't processed the
1369 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1370 its existance, without considering it an error. */
1371
1372 int
1373 lin_lwp_attach_lwp (ptid_t ptid)
1374 {
1375 struct lwp_info *lp;
1376 sigset_t prev_mask;
1377 int lwpid;
1378
1379 gdb_assert (is_lwp (ptid));
1380
1381 block_child_signals (&prev_mask);
1382
1383 lp = find_lwp_pid (ptid);
1384 lwpid = GET_LWP (ptid);
1385
1386 /* We assume that we're already attached to any LWP that has an id
1387 equal to the overall process id, and to any LWP that is already
1388 in our list of LWPs. If we're not seeing exit events from threads
1389 and we've had PID wraparound since we last tried to stop all threads,
1390 this assumption might be wrong; fortunately, this is very unlikely
1391 to happen. */
1392 if (lwpid != GET_PID (ptid) && lp == NULL)
1393 {
1394 int status, cloned = 0, signalled = 0;
1395
1396 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1397 {
1398 if (linux_supports_tracefork_flag)
1399 {
1400 /* If we haven't stopped all threads when we get here,
1401 we may have seen a thread listed in thread_db's list,
1402 but not processed the PTRACE_EVENT_CLONE yet. If
1403 that's the case, ignore this new thread, and let
1404 normal event handling discover it later. */
1405 if (in_pid_list_p (stopped_pids, lwpid))
1406 {
1407 /* We've already seen this thread stop, but we
1408 haven't seen the PTRACE_EVENT_CLONE extended
1409 event yet. */
1410 restore_child_signals_mask (&prev_mask);
1411 return 0;
1412 }
1413 else
1414 {
1415 int new_pid;
1416 int status;
1417
1418 /* See if we've got a stop for this new child
1419 pending. If so, we're already attached. */
1420 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1421 if (new_pid == -1 && errno == ECHILD)
1422 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1423 if (new_pid != -1)
1424 {
1425 if (WIFSTOPPED (status))
1426 add_to_pid_list (&stopped_pids, lwpid, status);
1427
1428 restore_child_signals_mask (&prev_mask);
1429 return 1;
1430 }
1431 }
1432 }
1433
1434 /* If we fail to attach to the thread, issue a warning,
1435 but continue. One way this can happen is if thread
1436 creation is interrupted; as of Linux kernel 2.6.19, a
1437 bug may place threads in the thread list and then fail
1438 to create them. */
1439 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1440 safe_strerror (errno));
1441 restore_child_signals_mask (&prev_mask);
1442 return -1;
1443 }
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1448 target_pid_to_str (ptid));
1449
1450 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1451 if (!WIFSTOPPED (status))
1452 {
1453 restore_child_signals_mask (&prev_mask);
1454 return 1;
1455 }
1456
1457 lp = add_lwp (ptid);
1458 lp->stopped = 1;
1459 lp->cloned = cloned;
1460 lp->signalled = signalled;
1461 if (WSTOPSIG (status) != SIGSTOP)
1462 {
1463 lp->resumed = 1;
1464 lp->status = status;
1465 }
1466
1467 target_post_attach (GET_LWP (lp->ptid));
1468
1469 if (debug_linux_nat)
1470 {
1471 fprintf_unfiltered (gdb_stdlog,
1472 "LLAL: waitpid %s received %s\n",
1473 target_pid_to_str (ptid),
1474 status_to_str (status));
1475 }
1476 }
1477 else
1478 {
1479 /* We assume that the LWP representing the original process is
1480 already stopped. Mark it as stopped in the data structure
1481 that the GNU/linux ptrace layer uses to keep track of
1482 threads. Note that this won't have already been done since
1483 the main thread will have, we assume, been stopped by an
1484 attach from a different layer. */
1485 if (lp == NULL)
1486 lp = add_lwp (ptid);
1487 lp->stopped = 1;
1488 }
1489
1490 lp->last_resume_kind = resume_stop;
1491 restore_child_signals_mask (&prev_mask);
1492 return 0;
1493 }
1494
1495 static void
1496 linux_nat_create_inferior (struct target_ops *ops,
1497 char *exec_file, char *allargs, char **env,
1498 int from_tty)
1499 {
1500 #ifdef HAVE_PERSONALITY
1501 int personality_orig = 0, personality_set = 0;
1502 #endif /* HAVE_PERSONALITY */
1503
1504 /* The fork_child mechanism is synchronous and calls target_wait, so
1505 we have to mask the async mode. */
1506
1507 #ifdef HAVE_PERSONALITY
1508 if (disable_randomization)
1509 {
1510 errno = 0;
1511 personality_orig = personality (0xffffffff);
1512 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1513 {
1514 personality_set = 1;
1515 personality (personality_orig | ADDR_NO_RANDOMIZE);
1516 }
1517 if (errno != 0 || (personality_set
1518 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1519 warning (_("Error disabling address space randomization: %s"),
1520 safe_strerror (errno));
1521 }
1522 #endif /* HAVE_PERSONALITY */
1523
1524 /* Make sure we report all signals during startup. */
1525 linux_nat_pass_signals (0, NULL);
1526
1527 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (personality_set)
1531 {
1532 errno = 0;
1533 personality (personality_orig);
1534 if (errno != 0)
1535 warning (_("Error restoring address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539 }
1540
1541 static void
1542 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1543 {
1544 struct lwp_info *lp;
1545 int status;
1546 ptid_t ptid;
1547
1548 /* Make sure we report all signals during attach. */
1549 linux_nat_pass_signals (0, NULL);
1550
1551 linux_ops->to_attach (ops, args, from_tty);
1552
1553 /* The ptrace base target adds the main thread with (pid,0,0)
1554 format. Decorate it with lwp info. */
1555 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1556 thread_change_ptid (inferior_ptid, ptid);
1557
1558 /* Add the initial process as the first LWP to the list. */
1559 lp = add_lwp (ptid);
1560
1561 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1562 &lp->signalled);
1563 if (!WIFSTOPPED (status))
1564 {
1565 if (WIFEXITED (status))
1566 {
1567 int exit_code = WEXITSTATUS (status);
1568
1569 target_terminal_ours ();
1570 target_mourn_inferior ();
1571 if (exit_code == 0)
1572 error (_("Unable to attach: program exited normally."));
1573 else
1574 error (_("Unable to attach: program exited with code %d."),
1575 exit_code);
1576 }
1577 else if (WIFSIGNALED (status))
1578 {
1579 enum target_signal signo;
1580
1581 target_terminal_ours ();
1582 target_mourn_inferior ();
1583
1584 signo = target_signal_from_host (WTERMSIG (status));
1585 error (_("Unable to attach: program terminated with signal "
1586 "%s, %s."),
1587 target_signal_to_name (signo),
1588 target_signal_to_string (signo));
1589 }
1590
1591 internal_error (__FILE__, __LINE__,
1592 _("unexpected status %d for PID %ld"),
1593 status, (long) GET_LWP (ptid));
1594 }
1595
1596 lp->stopped = 1;
1597
1598 /* Save the wait status to report later. */
1599 lp->resumed = 1;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LNA: waitpid %ld, saving status %s\n",
1603 (long) GET_PID (lp->ptid), status_to_str (status));
1604
1605 lp->status = status;
1606
1607 if (target_can_async_p ())
1608 target_async (inferior_event_handler, 0);
1609 }
1610
1611 /* Get pending status of LP. */
1612 static int
1613 get_pending_status (struct lwp_info *lp, int *status)
1614 {
1615 enum target_signal signo = TARGET_SIGNAL_0;
1616
1617 /* If we paused threads momentarily, we may have stored pending
1618 events in lp->status or lp->waitstatus (see stop_wait_callback),
1619 and GDB core hasn't seen any signal for those threads.
1620 Otherwise, the last signal reported to the core is found in the
1621 thread object's stop_signal.
1622
1623 There's a corner case that isn't handled here at present. Only
1624 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1625 stop_signal make sense as a real signal to pass to the inferior.
1626 Some catchpoint related events, like
1627 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1628 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1629 those traps are debug API (ptrace in our case) related and
1630 induced; the inferior wouldn't see them if it wasn't being
1631 traced. Hence, we should never pass them to the inferior, even
1632 when set to pass state. Since this corner case isn't handled by
1633 infrun.c when proceeding with a signal, for consistency, neither
1634 do we handle it here (or elsewhere in the file we check for
1635 signal pass state). Normally SIGTRAP isn't set to pass state, so
1636 this is really a corner case. */
1637
1638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1639 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1640 else if (lp->status)
1641 signo = target_signal_from_host (WSTOPSIG (lp->status));
1642 else if (non_stop && !is_executing (lp->ptid))
1643 {
1644 struct thread_info *tp = find_thread_ptid (lp->ptid);
1645
1646 signo = tp->suspend.stop_signal;
1647 }
1648 else if (!non_stop)
1649 {
1650 struct target_waitstatus last;
1651 ptid_t last_ptid;
1652
1653 get_last_target_status (&last_ptid, &last);
1654
1655 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1656 {
1657 struct thread_info *tp = find_thread_ptid (lp->ptid);
1658
1659 signo = tp->suspend.stop_signal;
1660 }
1661 }
1662
1663 *status = 0;
1664
1665 if (signo == TARGET_SIGNAL_0)
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "GPT: lwp %s has no pending signal\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672 else if (!signal_pass_state (signo))
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s had signal %s, "
1677 "but it is in no pass state\n",
1678 target_pid_to_str (lp->ptid),
1679 target_signal_to_string (signo));
1680 }
1681 else
1682 {
1683 *status = W_STOPCODE (target_signal_to_host (signo));
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "GPT: lwp %s has pending signal %s\n",
1688 target_pid_to_str (lp->ptid),
1689 target_signal_to_string (signo));
1690 }
1691
1692 return 0;
1693 }
1694
1695 static int
1696 detach_callback (struct lwp_info *lp, void *data)
1697 {
1698 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1699
1700 if (debug_linux_nat && lp->status)
1701 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1702 strsignal (WSTOPSIG (lp->status)),
1703 target_pid_to_str (lp->ptid));
1704
1705 /* If there is a pending SIGSTOP, get rid of it. */
1706 if (lp->signalled)
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "DC: Sending SIGCONT to %s\n",
1711 target_pid_to_str (lp->ptid));
1712
1713 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1714 lp->signalled = 0;
1715 }
1716
1717 /* We don't actually detach from the LWP that has an id equal to the
1718 overall process id just yet. */
1719 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1720 {
1721 int status = 0;
1722
1723 /* Pass on any pending signal for this LWP. */
1724 get_pending_status (lp, &status);
1725
1726 errno = 0;
1727 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1728 WSTOPSIG (status)) < 0)
1729 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1730 safe_strerror (errno));
1731
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1735 target_pid_to_str (lp->ptid),
1736 strsignal (WSTOPSIG (status)));
1737
1738 delete_lwp (lp->ptid);
1739 }
1740
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1746 {
1747 int pid;
1748 int status;
1749 struct lwp_info *main_lwp;
1750
1751 pid = GET_PID (inferior_ptid);
1752
1753 if (target_can_async_p ())
1754 linux_nat_async (NULL, 0);
1755
1756 /* Stop all threads before detaching. ptrace requires that the
1757 thread is stopped to sucessfully detach. */
1758 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1759 /* ... and wait until all of them have reported back that
1760 they're no longer running. */
1761 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1762
1763 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1764
1765 /* Only the initial process should be left right now. */
1766 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1767
1768 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1769
1770 /* Pass on any pending signal for the last LWP. */
1771 if ((args == NULL || *args == '\0')
1772 && get_pending_status (main_lwp, &status) != -1
1773 && WIFSTOPPED (status))
1774 {
1775 /* Put the signal number in ARGS so that inf_ptrace_detach will
1776 pass it along with PTRACE_DETACH. */
1777 args = alloca (8);
1778 sprintf (args, "%d", (int) WSTOPSIG (status));
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LND: Sending signal %s to %s\n",
1782 args,
1783 target_pid_to_str (main_lwp->ptid));
1784 }
1785
1786 delete_lwp (main_lwp->ptid);
1787
1788 if (forks_exist_p ())
1789 {
1790 /* Multi-fork case. The current inferior_ptid is being detached
1791 from, but there are other viable forks to debug. Detach from
1792 the current fork, and context-switch to the first
1793 available. */
1794 linux_fork_detach (args, from_tty);
1795
1796 if (non_stop && target_can_async_p ())
1797 target_async (inferior_event_handler, 0);
1798 }
1799 else
1800 linux_ops->to_detach (ops, args, from_tty);
1801 }
1802
1803 /* Resume LP. */
1804
1805 static void
1806 resume_lwp (struct lwp_info *lp, int step)
1807 {
1808 if (lp->stopped)
1809 {
1810 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1811
1812 if (inf->vfork_child != NULL)
1813 {
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "RC: Not resuming %s (vfork parent)\n",
1817 target_pid_to_str (lp->ptid));
1818 }
1819 else if (lp->status == 0
1820 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1821 {
1822 if (debug_linux_nat)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1825 target_pid_to_str (lp->ptid));
1826
1827 linux_ops->to_resume (linux_ops,
1828 pid_to_ptid (GET_LWP (lp->ptid)),
1829 step, TARGET_SIGNAL_0);
1830 lp->stopped = 0;
1831 lp->step = step;
1832 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1833 lp->stopped_by_watchpoint = 0;
1834 }
1835 else
1836 {
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "RC: Not resuming sibling %s (has pending)\n",
1840 target_pid_to_str (lp->ptid));
1841 }
1842 }
1843 else
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 }
1851
1852 static int
1853 resume_callback (struct lwp_info *lp, void *data)
1854 {
1855 resume_lwp (lp, 0);
1856 return 0;
1857 }
1858
1859 static int
1860 resume_clear_callback (struct lwp_info *lp, void *data)
1861 {
1862 lp->resumed = 0;
1863 lp->last_resume_kind = resume_stop;
1864 return 0;
1865 }
1866
1867 static int
1868 resume_set_callback (struct lwp_info *lp, void *data)
1869 {
1870 lp->resumed = 1;
1871 lp->last_resume_kind = resume_continue;
1872 return 0;
1873 }
1874
1875 static void
1876 linux_nat_resume (struct target_ops *ops,
1877 ptid_t ptid, int step, enum target_signal signo)
1878 {
1879 sigset_t prev_mask;
1880 struct lwp_info *lp;
1881 int resume_many;
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1886 step ? "step" : "resume",
1887 target_pid_to_str (ptid),
1888 (signo != TARGET_SIGNAL_0
1889 ? strsignal (target_signal_to_host (signo)) : "0"),
1890 target_pid_to_str (inferior_ptid));
1891
1892 block_child_signals (&prev_mask);
1893
1894 /* A specific PTID means `step only this process id'. */
1895 resume_many = (ptid_equal (minus_one_ptid, ptid)
1896 || ptid_is_pid (ptid));
1897
1898 /* Mark the lwps we're resuming as resumed. */
1899 iterate_over_lwps (ptid, resume_set_callback, NULL);
1900
1901 /* See if it's the current inferior that should be handled
1902 specially. */
1903 if (resume_many)
1904 lp = find_lwp_pid (inferior_ptid);
1905 else
1906 lp = find_lwp_pid (ptid);
1907 gdb_assert (lp != NULL);
1908
1909 /* Remember if we're stepping. */
1910 lp->step = step;
1911 lp->last_resume_kind = step ? resume_step : resume_continue;
1912
1913 /* If we have a pending wait status for this thread, there is no
1914 point in resuming the process. But first make sure that
1915 linux_nat_wait won't preemptively handle the event - we
1916 should never take this short-circuit if we are going to
1917 leave LP running, since we have skipped resuming all the
1918 other threads. This bit of code needs to be synchronized
1919 with linux_nat_wait. */
1920
1921 if (lp->status && WIFSTOPPED (lp->status))
1922 {
1923 if (!lp->step
1924 && WSTOPSIG (lp->status)
1925 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = target_signal_from_host (WSTOPSIG (lp->status));
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 (signo != TARGET_SIGNAL_0
1981 ? strsignal (target_signal_to_host (signo)) : "0"));
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 target_async (inferior_event_handler, 0);
1986 }
1987
1988 /* Send a signal to an LWP. */
1989
1990 static int
1991 kill_lwp (int lwpid, int signo)
1992 {
1993 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1994 fails, then we are not using nptl threads and we should be using kill. */
1995
1996 #ifdef HAVE_TKILL_SYSCALL
1997 {
1998 static int tkill_failed;
1999
2000 if (!tkill_failed)
2001 {
2002 int ret;
2003
2004 errno = 0;
2005 ret = syscall (__NR_tkill, lwpid, signo);
2006 if (errno != ENOSYS)
2007 return ret;
2008 tkill_failed = 1;
2009 }
2010 }
2011 #endif
2012
2013 return kill (lwpid, signo);
2014 }
2015
2016 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2017 event, check if the core is interested in it: if not, ignore the
2018 event, and keep waiting; otherwise, we need to toggle the LWP's
2019 syscall entry/exit status, since the ptrace event itself doesn't
2020 indicate it, and report the trap to higher layers. */
2021
2022 static int
2023 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2024 {
2025 struct target_waitstatus *ourstatus = &lp->waitstatus;
2026 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2027 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028
2029 if (stopping)
2030 {
2031 /* If we're stopping threads, there's a SIGSTOP pending, which
2032 makes it so that the LWP reports an immediate syscall return,
2033 followed by the SIGSTOP. Skip seeing that "return" using
2034 PTRACE_CONT directly, and let stop_wait_callback collect the
2035 SIGSTOP. Later when the thread is resumed, a new syscall
2036 entry event. If we didn't do this (and returned 0), we'd
2037 leave a syscall entry pending, and our caller, by using
2038 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2039 itself. Later, when the user re-resumes this LWP, we'd see
2040 another syscall entry event and we'd mistake it for a return.
2041
2042 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2043 (leaving immediately with LWP->signalled set, without issuing
2044 a PTRACE_CONT), it would still be problematic to leave this
2045 syscall enter pending, as later when the thread is resumed,
2046 it would then see the same syscall exit mentioned above,
2047 followed by the delayed SIGSTOP, while the syscall didn't
2048 actually get to execute. It seems it would be even more
2049 confusing to the user. */
2050
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "LHST: ignoring syscall %d "
2054 "for LWP %ld (stopping threads), "
2055 "resuming with PTRACE_CONT for SIGSTOP\n",
2056 syscall_number,
2057 GET_LWP (lp->ptid));
2058
2059 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2060 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 return 1;
2062 }
2063
2064 if (catch_syscall_enabled ())
2065 {
2066 /* Always update the entry/return state, even if this particular
2067 syscall isn't interesting to the core now. In async mode,
2068 the user could install a new catchpoint for this syscall
2069 between syscall enter/return, and we'll need to know to
2070 report a syscall return if that happens. */
2071 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2072 ? TARGET_WAITKIND_SYSCALL_RETURN
2073 : TARGET_WAITKIND_SYSCALL_ENTRY);
2074
2075 if (catching_syscall_number (syscall_number))
2076 {
2077 /* Alright, an event to report. */
2078 ourstatus->kind = lp->syscall_state;
2079 ourstatus->value.syscall_number = syscall_number;
2080
2081 if (debug_linux_nat)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "LHST: stopping for %s of syscall %d"
2084 " for LWP %ld\n",
2085 lp->syscall_state
2086 == TARGET_WAITKIND_SYSCALL_ENTRY
2087 ? "entry" : "return",
2088 syscall_number,
2089 GET_LWP (lp->ptid));
2090 return 0;
2091 }
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: ignoring %s of syscall %d "
2096 "for LWP %ld\n",
2097 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2098 ? "entry" : "return",
2099 syscall_number,
2100 GET_LWP (lp->ptid));
2101 }
2102 else
2103 {
2104 /* If we had been syscall tracing, and hence used PT_SYSCALL
2105 before on this LWP, it could happen that the user removes all
2106 syscall catchpoints before we get to process this event.
2107 There are two noteworthy issues here:
2108
2109 - When stopped at a syscall entry event, resuming with
2110 PT_STEP still resumes executing the syscall and reports a
2111 syscall return.
2112
2113 - Only PT_SYSCALL catches syscall enters. If we last
2114 single-stepped this thread, then this event can't be a
2115 syscall enter. If we last single-stepped this thread, this
2116 has to be a syscall exit.
2117
2118 The points above mean that the next resume, be it PT_STEP or
2119 PT_CONTINUE, can not trigger a syscall trace event. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHST: caught syscall event "
2123 "with no syscall catchpoints."
2124 " %d for LWP %ld, ignoring\n",
2125 syscall_number,
2126 GET_LWP (lp->ptid));
2127 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2128 }
2129
2130 /* The core isn't interested in this event. For efficiency, avoid
2131 stopping all threads only to have the core resume them all again.
2132 Since we're not stopping threads, if we're still syscall tracing
2133 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2134 subsequent syscall. Simply resume using the inf-ptrace layer,
2135 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2136
2137 /* Note that gdbarch_get_syscall_number may access registers, hence
2138 fill a regcache. */
2139 registers_changed ();
2140 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2141 lp->step, TARGET_SIGNAL_0);
2142 return 1;
2143 }
2144
2145 /* Handle a GNU/Linux extended wait response. If we see a clone
2146 event, we need to add the new LWP to our list (and not report the
2147 trap to higher layers). This function returns non-zero if the
2148 event should be ignored and we should wait again. If STOPPING is
2149 true, the new LWP remains stopped, otherwise it is continued. */
2150
2151 static int
2152 linux_handle_extended_wait (struct lwp_info *lp, int status,
2153 int stopping)
2154 {
2155 int pid = GET_LWP (lp->ptid);
2156 struct target_waitstatus *ourstatus = &lp->waitstatus;
2157 int event = status >> 16;
2158
2159 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2160 || event == PTRACE_EVENT_CLONE)
2161 {
2162 unsigned long new_pid;
2163 int ret;
2164
2165 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2166
2167 /* If we haven't already seen the new PID stop, wait for it now. */
2168 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2169 {
2170 /* The new child has a pending SIGSTOP. We can't affect it until it
2171 hits the SIGSTOP, but we're already attached. */
2172 ret = my_waitpid (new_pid, &status,
2173 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2174 if (ret == -1)
2175 perror_with_name (_("waiting for new child"));
2176 else if (ret != new_pid)
2177 internal_error (__FILE__, __LINE__,
2178 _("wait returned unexpected PID %d"), ret);
2179 else if (!WIFSTOPPED (status))
2180 internal_error (__FILE__, __LINE__,
2181 _("wait returned unexpected status 0x%x"), status);
2182 }
2183
2184 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2185
2186 if (event == PTRACE_EVENT_FORK
2187 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2188 {
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 if (!find_fork_pid (new_pid))
2199 add_fork (new_pid);
2200
2201 /* Report as spurious, so that infrun doesn't want to follow
2202 this fork. We're actually doing an infcall in
2203 linux-fork.c. */
2204 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2205 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206
2207 /* Report the stop to the core. */
2208 return 0;
2209 }
2210
2211 if (event == PTRACE_EVENT_FORK)
2212 ourstatus->kind = TARGET_WAITKIND_FORKED;
2213 else if (event == PTRACE_EVENT_VFORK)
2214 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 else
2216 {
2217 struct lwp_info *new_lp;
2218
2219 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2220
2221 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2222 new_lp->cloned = 1;
2223 new_lp->stopped = 1;
2224
2225 if (WSTOPSIG (status) != SIGSTOP)
2226 {
2227 /* This can happen if someone starts sending signals to
2228 the new thread before it gets a chance to run, which
2229 have a lower number than SIGSTOP (e.g. SIGUSR1).
2230 This is an unlikely case, and harder to handle for
2231 fork / vfork than for clone, so we do not try - but
2232 we handle it for clone events here. We'll send
2233 the other signal on to the thread below. */
2234
2235 new_lp->signalled = 1;
2236 }
2237 else
2238 {
2239 struct thread_info *tp;
2240
2241 /* When we stop for an event in some other thread, and
2242 pull the thread list just as this thread has cloned,
2243 we'll have seen the new thread in the thread_db list
2244 before handling the CLONE event (glibc's
2245 pthread_create adds the new thread to the thread list
2246 before clone'ing, and has the kernel fill in the
2247 thread's tid on the clone call with
2248 CLONE_PARENT_SETTID). If that happened, and the core
2249 had requested the new thread to stop, we'll have
2250 killed it with SIGSTOP. But since SIGSTOP is not an
2251 RT signal, it can only be queued once. We need to be
2252 careful to not resume the LWP if we wanted it to
2253 stop. In that case, we'll leave the SIGSTOP pending.
2254 It will later be reported as TARGET_SIGNAL_0. */
2255 tp = find_thread_ptid (new_lp->ptid);
2256 if (tp != NULL && tp->stop_requested)
2257 new_lp->last_resume_kind = resume_stop;
2258 else
2259 status = 0;
2260 }
2261
2262 if (non_stop)
2263 {
2264 /* Add the new thread to GDB's lists as soon as possible
2265 so that:
2266
2267 1) the frontend doesn't have to wait for a stop to
2268 display them, and,
2269
2270 2) we tag it with the correct running state. */
2271
2272 /* If the thread_db layer is active, let it know about
2273 this new thread, and add it to GDB's list. */
2274 if (!thread_db_attach_lwp (new_lp->ptid))
2275 {
2276 /* We're not using thread_db. Add it to GDB's
2277 list. */
2278 target_post_attach (GET_LWP (new_lp->ptid));
2279 add_thread (new_lp->ptid);
2280 }
2281
2282 if (!stopping)
2283 {
2284 set_running (new_lp->ptid, 1);
2285 set_executing (new_lp->ptid, 1);
2286 }
2287 }
2288
2289 if (status != 0)
2290 {
2291 /* We created NEW_LP so it cannot yet contain STATUS. */
2292 gdb_assert (new_lp->status == 0);
2293
2294 /* Save the wait status to report later. */
2295 if (debug_linux_nat)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "LHEW: waitpid of new LWP %ld, "
2298 "saving status %s\n",
2299 (long) GET_LWP (new_lp->ptid),
2300 status_to_str (status));
2301 new_lp->status = status;
2302 }
2303
2304 /* Note the need to use the low target ops to resume, to
2305 handle resuming with PT_SYSCALL if we have syscall
2306 catchpoints. */
2307 if (!stopping)
2308 {
2309 new_lp->resumed = 1;
2310
2311 if (status == 0)
2312 {
2313 if (debug_linux_nat)
2314 fprintf_unfiltered (gdb_stdlog,
2315 "LHEW: resuming new LWP %ld\n",
2316 GET_LWP (new_lp->ptid));
2317 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2318 0, TARGET_SIGNAL_0);
2319 new_lp->stopped = 0;
2320 }
2321 }
2322
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog,
2325 "LHEW: Got clone event "
2326 "from LWP %ld, resuming\n",
2327 GET_LWP (lp->ptid));
2328 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2329 0, TARGET_SIGNAL_0);
2330
2331 return 1;
2332 }
2333
2334 return 0;
2335 }
2336
2337 if (event == PTRACE_EVENT_EXEC)
2338 {
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "LHEW: Got exec event from LWP %ld\n",
2342 GET_LWP (lp->ptid));
2343
2344 ourstatus->kind = TARGET_WAITKIND_EXECD;
2345 ourstatus->value.execd_pathname
2346 = xstrdup (linux_child_pid_to_exec_file (pid));
2347
2348 return 0;
2349 }
2350
2351 if (event == PTRACE_EVENT_VFORK_DONE)
2352 {
2353 if (current_inferior ()->waiting_for_vfork_done)
2354 {
2355 if (debug_linux_nat)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "LHEW: Got expected PTRACE_EVENT_"
2358 "VFORK_DONE from LWP %ld: stopping\n",
2359 GET_LWP (lp->ptid));
2360
2361 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2362 return 0;
2363 }
2364
2365 if (debug_linux_nat)
2366 fprintf_unfiltered (gdb_stdlog,
2367 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2368 "from LWP %ld: resuming\n",
2369 GET_LWP (lp->ptid));
2370 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2371 return 1;
2372 }
2373
2374 internal_error (__FILE__, __LINE__,
2375 _("unknown ptrace event %d"), event);
2376 }
2377
2378 /* Return non-zero if LWP is a zombie. */
2379
2380 static int
2381 linux_lwp_is_zombie (long lwp)
2382 {
2383 char buffer[MAXPATHLEN];
2384 FILE *procfile;
2385 int retval;
2386 int have_state;
2387
2388 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2389 procfile = fopen (buffer, "r");
2390 if (procfile == NULL)
2391 {
2392 warning (_("unable to open /proc file '%s'"), buffer);
2393 return 0;
2394 }
2395
2396 have_state = 0;
2397 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2398 if (strncmp (buffer, "State:", 6) == 0)
2399 {
2400 have_state = 1;
2401 break;
2402 }
2403 retval = (have_state
2404 && strcmp (buffer, "State:\tZ (zombie)\n") == 0);
2405 fclose (procfile);
2406 return retval;
2407 }
2408
2409 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2410 exited. */
2411
2412 static int
2413 wait_lwp (struct lwp_info *lp)
2414 {
2415 pid_t pid;
2416 int status = 0;
2417 int thread_dead = 0;
2418 sigset_t prev_mask;
2419
2420 gdb_assert (!lp->stopped);
2421 gdb_assert (lp->status == 0);
2422
2423 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2424 block_child_signals (&prev_mask);
2425
2426 for (;;)
2427 {
2428 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2429 was right and we should just call sigsuspend. */
2430
2431 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2432 if (pid == -1 && errno == ECHILD)
2433 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2434 if (pid == -1 && errno == ECHILD)
2435 {
2436 /* The thread has previously exited. We need to delete it
2437 now because, for some vendor 2.4 kernels with NPTL
2438 support backported, there won't be an exit event unless
2439 it is the main thread. 2.6 kernels will report an exit
2440 event for each thread that exits, as expected. */
2441 thread_dead = 1;
2442 if (debug_linux_nat)
2443 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2444 target_pid_to_str (lp->ptid));
2445 }
2446 if (pid != 0)
2447 break;
2448
2449 /* Bugs 10970, 12702.
2450 Thread group leader may have exited in which case we'll lock up in
2451 waitpid if there are other threads, even if they are all zombies too.
2452 Basically, we're not supposed to use waitpid this way.
2453 __WCLONE is not applicable for the leader so we can't use that.
2454 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2455 process; it gets ESRCH both for the zombie and for running processes.
2456
2457 As a workaround, check if we're waiting for the thread group leader and
2458 if it's a zombie, and avoid calling waitpid if it is.
2459
2460 This is racy, what if the tgl becomes a zombie right after we check?
2461 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2462 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2463
2464 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2465 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2466 {
2467 thread_dead = 1;
2468 if (debug_linux_nat)
2469 fprintf_unfiltered (gdb_stdlog,
2470 "WL: Thread group leader %s vanished.\n",
2471 target_pid_to_str (lp->ptid));
2472 break;
2473 }
2474
2475 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2476 get invoked despite our caller had them intentionally blocked by
2477 block_child_signals. This is sensitive only to the loop of
2478 linux_nat_wait_1 and there if we get called my_waitpid gets called
2479 again before it gets to sigsuspend so we can safely let the handlers
2480 get executed here. */
2481
2482 sigsuspend (&suspend_mask);
2483 }
2484
2485 restore_child_signals_mask (&prev_mask);
2486
2487 if (!thread_dead)
2488 {
2489 gdb_assert (pid == GET_LWP (lp->ptid));
2490
2491 if (debug_linux_nat)
2492 {
2493 fprintf_unfiltered (gdb_stdlog,
2494 "WL: waitpid %s received %s\n",
2495 target_pid_to_str (lp->ptid),
2496 status_to_str (status));
2497 }
2498
2499 /* Check if the thread has exited. */
2500 if (WIFEXITED (status) || WIFSIGNALED (status))
2501 {
2502 thread_dead = 1;
2503 if (debug_linux_nat)
2504 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2505 target_pid_to_str (lp->ptid));
2506 }
2507 }
2508
2509 if (thread_dead)
2510 {
2511 exit_lwp (lp);
2512 return 0;
2513 }
2514
2515 gdb_assert (WIFSTOPPED (status));
2516
2517 /* Handle GNU/Linux's syscall SIGTRAPs. */
2518 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2519 {
2520 /* No longer need the sysgood bit. The ptrace event ends up
2521 recorded in lp->waitstatus if we care for it. We can carry
2522 on handling the event like a regular SIGTRAP from here
2523 on. */
2524 status = W_STOPCODE (SIGTRAP);
2525 if (linux_handle_syscall_trap (lp, 1))
2526 return wait_lwp (lp);
2527 }
2528
2529 /* Handle GNU/Linux's extended waitstatus for trace events. */
2530 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2531 {
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "WL: Handling extended status 0x%06x\n",
2535 status);
2536 if (linux_handle_extended_wait (lp, status, 1))
2537 return wait_lwp (lp);
2538 }
2539
2540 return status;
2541 }
2542
2543 /* Save the most recent siginfo for LP. This is currently only called
2544 for SIGTRAP; some ports use the si_addr field for
2545 target_stopped_data_address. In the future, it may also be used to
2546 restore the siginfo of requeued signals. */
2547
2548 static void
2549 save_siginfo (struct lwp_info *lp)
2550 {
2551 errno = 0;
2552 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2553 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2554
2555 if (errno != 0)
2556 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2557 }
2558
2559 /* Send a SIGSTOP to LP. */
2560
2561 static int
2562 stop_callback (struct lwp_info *lp, void *data)
2563 {
2564 if (!lp->stopped && !lp->signalled)
2565 {
2566 int ret;
2567
2568 if (debug_linux_nat)
2569 {
2570 fprintf_unfiltered (gdb_stdlog,
2571 "SC: kill %s **<SIGSTOP>**\n",
2572 target_pid_to_str (lp->ptid));
2573 }
2574 errno = 0;
2575 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2576 if (debug_linux_nat)
2577 {
2578 fprintf_unfiltered (gdb_stdlog,
2579 "SC: lwp kill %d %s\n",
2580 ret,
2581 errno ? safe_strerror (errno) : "ERRNO-OK");
2582 }
2583
2584 lp->signalled = 1;
2585 gdb_assert (lp->status == 0);
2586 }
2587
2588 return 0;
2589 }
2590
2591 /* Return non-zero if LWP PID has a pending SIGINT. */
2592
2593 static int
2594 linux_nat_has_pending_sigint (int pid)
2595 {
2596 sigset_t pending, blocked, ignored;
2597
2598 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2599
2600 if (sigismember (&pending, SIGINT)
2601 && !sigismember (&ignored, SIGINT))
2602 return 1;
2603
2604 return 0;
2605 }
2606
2607 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2608
2609 static int
2610 set_ignore_sigint (struct lwp_info *lp, void *data)
2611 {
2612 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2613 flag to consume the next one. */
2614 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2615 && WSTOPSIG (lp->status) == SIGINT)
2616 lp->status = 0;
2617 else
2618 lp->ignore_sigint = 1;
2619
2620 return 0;
2621 }
2622
2623 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2624 This function is called after we know the LWP has stopped; if the LWP
2625 stopped before the expected SIGINT was delivered, then it will never have
2626 arrived. Also, if the signal was delivered to a shared queue and consumed
2627 by a different thread, it will never be delivered to this LWP. */
2628
2629 static void
2630 maybe_clear_ignore_sigint (struct lwp_info *lp)
2631 {
2632 if (!lp->ignore_sigint)
2633 return;
2634
2635 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2636 {
2637 if (debug_linux_nat)
2638 fprintf_unfiltered (gdb_stdlog,
2639 "MCIS: Clearing bogus flag for %s\n",
2640 target_pid_to_str (lp->ptid));
2641 lp->ignore_sigint = 0;
2642 }
2643 }
2644
2645 /* Fetch the possible triggered data watchpoint info and store it in
2646 LP.
2647
2648 On some archs, like x86, that use debug registers to set
2649 watchpoints, it's possible that the way to know which watched
2650 address trapped, is to check the register that is used to select
2651 which address to watch. Problem is, between setting the watchpoint
2652 and reading back which data address trapped, the user may change
2653 the set of watchpoints, and, as a consequence, GDB changes the
2654 debug registers in the inferior. To avoid reading back a stale
2655 stopped-data-address when that happens, we cache in LP the fact
2656 that a watchpoint trapped, and the corresponding data address, as
2657 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2658 registers meanwhile, we have the cached data we can rely on. */
2659
2660 static void
2661 save_sigtrap (struct lwp_info *lp)
2662 {
2663 struct cleanup *old_chain;
2664
2665 if (linux_ops->to_stopped_by_watchpoint == NULL)
2666 {
2667 lp->stopped_by_watchpoint = 0;
2668 return;
2669 }
2670
2671 old_chain = save_inferior_ptid ();
2672 inferior_ptid = lp->ptid;
2673
2674 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2675
2676 if (lp->stopped_by_watchpoint)
2677 {
2678 if (linux_ops->to_stopped_data_address != NULL)
2679 lp->stopped_data_address_p =
2680 linux_ops->to_stopped_data_address (&current_target,
2681 &lp->stopped_data_address);
2682 else
2683 lp->stopped_data_address_p = 0;
2684 }
2685
2686 do_cleanups (old_chain);
2687 }
2688
2689 /* See save_sigtrap. */
2690
2691 static int
2692 linux_nat_stopped_by_watchpoint (void)
2693 {
2694 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2695
2696 gdb_assert (lp != NULL);
2697
2698 return lp->stopped_by_watchpoint;
2699 }
2700
2701 static int
2702 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2703 {
2704 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2705
2706 gdb_assert (lp != NULL);
2707
2708 *addr_p = lp->stopped_data_address;
2709
2710 return lp->stopped_data_address_p;
2711 }
2712
2713 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2714
2715 static int
2716 sigtrap_is_event (int status)
2717 {
2718 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2719 }
2720
2721 /* SIGTRAP-like events recognizer. */
2722
2723 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2724
2725 /* Check for SIGTRAP-like events in LP. */
2726
2727 static int
2728 linux_nat_lp_status_is_event (struct lwp_info *lp)
2729 {
2730 /* We check for lp->waitstatus in addition to lp->status, because we can
2731 have pending process exits recorded in lp->status
2732 and W_EXITCODE(0,0) == 0. We should probably have an additional
2733 lp->status_p flag. */
2734
2735 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2736 && linux_nat_status_is_event (lp->status));
2737 }
2738
2739 /* Set alternative SIGTRAP-like events recognizer. If
2740 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2741 applied. */
2742
2743 void
2744 linux_nat_set_status_is_event (struct target_ops *t,
2745 int (*status_is_event) (int status))
2746 {
2747 linux_nat_status_is_event = status_is_event;
2748 }
2749
2750 /* Wait until LP is stopped. */
2751
2752 static int
2753 stop_wait_callback (struct lwp_info *lp, void *data)
2754 {
2755 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2756
2757 /* If this is a vfork parent, bail out, it is not going to report
2758 any SIGSTOP until the vfork is done with. */
2759 if (inf->vfork_child != NULL)
2760 return 0;
2761
2762 if (!lp->stopped)
2763 {
2764 int status;
2765
2766 status = wait_lwp (lp);
2767 if (status == 0)
2768 return 0;
2769
2770 if (lp->ignore_sigint && WIFSTOPPED (status)
2771 && WSTOPSIG (status) == SIGINT)
2772 {
2773 lp->ignore_sigint = 0;
2774
2775 errno = 0;
2776 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2777 if (debug_linux_nat)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "PTRACE_CONT %s, 0, 0 (%s) "
2780 "(discarding SIGINT)\n",
2781 target_pid_to_str (lp->ptid),
2782 errno ? safe_strerror (errno) : "OK");
2783
2784 return stop_wait_callback (lp, NULL);
2785 }
2786
2787 maybe_clear_ignore_sigint (lp);
2788
2789 if (WSTOPSIG (status) != SIGSTOP)
2790 {
2791 if (linux_nat_status_is_event (status))
2792 {
2793 /* If a LWP other than the LWP that we're reporting an
2794 event for has hit a GDB breakpoint (as opposed to
2795 some random trap signal), then just arrange for it to
2796 hit it again later. We don't keep the SIGTRAP status
2797 and don't forward the SIGTRAP signal to the LWP. We
2798 will handle the current event, eventually we will
2799 resume all LWPs, and this one will get its breakpoint
2800 trap again.
2801
2802 If we do not do this, then we run the risk that the
2803 user will delete or disable the breakpoint, but the
2804 thread will have already tripped on it. */
2805
2806 /* Save the trap's siginfo in case we need it later. */
2807 save_siginfo (lp);
2808
2809 save_sigtrap (lp);
2810
2811 /* Now resume this LWP and get the SIGSTOP event. */
2812 errno = 0;
2813 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2814 if (debug_linux_nat)
2815 {
2816 fprintf_unfiltered (gdb_stdlog,
2817 "PTRACE_CONT %s, 0, 0 (%s)\n",
2818 target_pid_to_str (lp->ptid),
2819 errno ? safe_strerror (errno) : "OK");
2820
2821 fprintf_unfiltered (gdb_stdlog,
2822 "SWC: Candidate SIGTRAP event in %s\n",
2823 target_pid_to_str (lp->ptid));
2824 }
2825 /* Hold this event/waitstatus while we check to see if
2826 there are any more (we still want to get that SIGSTOP). */
2827 stop_wait_callback (lp, NULL);
2828
2829 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2830 there's another event, throw it back into the
2831 queue. */
2832 if (lp->status)
2833 {
2834 if (debug_linux_nat)
2835 fprintf_unfiltered (gdb_stdlog,
2836 "SWC: kill %s, %s\n",
2837 target_pid_to_str (lp->ptid),
2838 status_to_str ((int) status));
2839 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2840 }
2841
2842 /* Save the sigtrap event. */
2843 lp->status = status;
2844 return 0;
2845 }
2846 else
2847 {
2848 /* The thread was stopped with a signal other than
2849 SIGSTOP, and didn't accidentally trip a breakpoint. */
2850
2851 if (debug_linux_nat)
2852 {
2853 fprintf_unfiltered (gdb_stdlog,
2854 "SWC: Pending event %s in %s\n",
2855 status_to_str ((int) status),
2856 target_pid_to_str (lp->ptid));
2857 }
2858 /* Now resume this LWP and get the SIGSTOP event. */
2859 errno = 0;
2860 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2861 if (debug_linux_nat)
2862 fprintf_unfiltered (gdb_stdlog,
2863 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2864 target_pid_to_str (lp->ptid),
2865 errno ? safe_strerror (errno) : "OK");
2866
2867 /* Hold this event/waitstatus while we check to see if
2868 there are any more (we still want to get that SIGSTOP). */
2869 stop_wait_callback (lp, NULL);
2870
2871 /* If the lp->status field is still empty, use it to
2872 hold this event. If not, then this event must be
2873 returned to the event queue of the LWP. */
2874 if (lp->status)
2875 {
2876 if (debug_linux_nat)
2877 {
2878 fprintf_unfiltered (gdb_stdlog,
2879 "SWC: kill %s, %s\n",
2880 target_pid_to_str (lp->ptid),
2881 status_to_str ((int) status));
2882 }
2883 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2884 }
2885 else
2886 lp->status = status;
2887 return 0;
2888 }
2889 }
2890 else
2891 {
2892 /* We caught the SIGSTOP that we intended to catch, so
2893 there's no SIGSTOP pending. */
2894 lp->stopped = 1;
2895 lp->signalled = 0;
2896 }
2897 }
2898
2899 return 0;
2900 }
2901
2902 /* Return non-zero if LP has a wait status pending. */
2903
2904 static int
2905 status_callback (struct lwp_info *lp, void *data)
2906 {
2907 /* Only report a pending wait status if we pretend that this has
2908 indeed been resumed. */
2909 if (!lp->resumed)
2910 return 0;
2911
2912 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2913 {
2914 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2915 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2916 0', so a clean process exit can not be stored pending in
2917 lp->status, it is indistinguishable from
2918 no-pending-status. */
2919 return 1;
2920 }
2921
2922 if (lp->status != 0)
2923 return 1;
2924
2925 return 0;
2926 }
2927
2928 /* Return non-zero if LP isn't stopped. */
2929
2930 static int
2931 running_callback (struct lwp_info *lp, void *data)
2932 {
2933 return (!lp->stopped
2934 || ((lp->status != 0
2935 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2936 && lp->resumed));
2937 }
2938
2939 /* Count the LWP's that have had events. */
2940
2941 static int
2942 count_events_callback (struct lwp_info *lp, void *data)
2943 {
2944 int *count = data;
2945
2946 gdb_assert (count != NULL);
2947
2948 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2949 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2950 (*count)++;
2951
2952 return 0;
2953 }
2954
2955 /* Select the LWP (if any) that is currently being single-stepped. */
2956
2957 static int
2958 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2959 {
2960 if (lp->last_resume_kind == resume_step
2961 && lp->status != 0)
2962 return 1;
2963 else
2964 return 0;
2965 }
2966
2967 /* Select the Nth LWP that has had a SIGTRAP event. */
2968
2969 static int
2970 select_event_lwp_callback (struct lwp_info *lp, void *data)
2971 {
2972 int *selector = data;
2973
2974 gdb_assert (selector != NULL);
2975
2976 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2977 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2978 if ((*selector)-- == 0)
2979 return 1;
2980
2981 return 0;
2982 }
2983
2984 static int
2985 cancel_breakpoint (struct lwp_info *lp)
2986 {
2987 /* Arrange for a breakpoint to be hit again later. We don't keep
2988 the SIGTRAP status and don't forward the SIGTRAP signal to the
2989 LWP. We will handle the current event, eventually we will resume
2990 this LWP, and this breakpoint will trap again.
2991
2992 If we do not do this, then we run the risk that the user will
2993 delete or disable the breakpoint, but the LWP will have already
2994 tripped on it. */
2995
2996 struct regcache *regcache = get_thread_regcache (lp->ptid);
2997 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2998 CORE_ADDR pc;
2999
3000 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3001 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3002 {
3003 if (debug_linux_nat)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "CB: Push back breakpoint for %s\n",
3006 target_pid_to_str (lp->ptid));
3007
3008 /* Back up the PC if necessary. */
3009 if (gdbarch_decr_pc_after_break (gdbarch))
3010 regcache_write_pc (regcache, pc);
3011
3012 return 1;
3013 }
3014 return 0;
3015 }
3016
3017 static int
3018 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3019 {
3020 struct lwp_info *event_lp = data;
3021
3022 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3023 if (lp == event_lp)
3024 return 0;
3025
3026 /* If a LWP other than the LWP that we're reporting an event for has
3027 hit a GDB breakpoint (as opposed to some random trap signal),
3028 then just arrange for it to hit it again later. We don't keep
3029 the SIGTRAP status and don't forward the SIGTRAP signal to the
3030 LWP. We will handle the current event, eventually we will resume
3031 all LWPs, and this one will get its breakpoint trap again.
3032
3033 If we do not do this, then we run the risk that the user will
3034 delete or disable the breakpoint, but the LWP will have already
3035 tripped on it. */
3036
3037 if (linux_nat_lp_status_is_event (lp)
3038 && cancel_breakpoint (lp))
3039 /* Throw away the SIGTRAP. */
3040 lp->status = 0;
3041
3042 return 0;
3043 }
3044
3045 /* Select one LWP out of those that have events pending. */
3046
3047 static void
3048 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3049 {
3050 int num_events = 0;
3051 int random_selector;
3052 struct lwp_info *event_lp;
3053
3054 /* Record the wait status for the original LWP. */
3055 (*orig_lp)->status = *status;
3056
3057 /* Give preference to any LWP that is being single-stepped. */
3058 event_lp = iterate_over_lwps (filter,
3059 select_singlestep_lwp_callback, NULL);
3060 if (event_lp != NULL)
3061 {
3062 if (debug_linux_nat)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "SEL: Select single-step %s\n",
3065 target_pid_to_str (event_lp->ptid));
3066 }
3067 else
3068 {
3069 /* No single-stepping LWP. Select one at random, out of those
3070 which have had SIGTRAP events. */
3071
3072 /* First see how many SIGTRAP events we have. */
3073 iterate_over_lwps (filter, count_events_callback, &num_events);
3074
3075 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3076 random_selector = (int)
3077 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3078
3079 if (debug_linux_nat && num_events > 1)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3082 num_events, random_selector);
3083
3084 event_lp = iterate_over_lwps (filter,
3085 select_event_lwp_callback,
3086 &random_selector);
3087 }
3088
3089 if (event_lp != NULL)
3090 {
3091 /* Switch the event LWP. */
3092 *orig_lp = event_lp;
3093 *status = event_lp->status;
3094 }
3095
3096 /* Flush the wait status for the event LWP. */
3097 (*orig_lp)->status = 0;
3098 }
3099
3100 /* Return non-zero if LP has been resumed. */
3101
3102 static int
3103 resumed_callback (struct lwp_info *lp, void *data)
3104 {
3105 return lp->resumed;
3106 }
3107
3108 /* Stop an active thread, verify it still exists, then resume it. */
3109
3110 static int
3111 stop_and_resume_callback (struct lwp_info *lp, void *data)
3112 {
3113 if (!lp->stopped)
3114 {
3115 enum resume_kind last_resume_kind = lp->last_resume_kind;
3116 ptid_t ptid = lp->ptid;
3117
3118 stop_callback (lp, NULL);
3119 stop_wait_callback (lp, NULL);
3120
3121 /* Resume if the lwp still exists, and the core wanted it
3122 running. */
3123 if (last_resume_kind != resume_stop)
3124 {
3125 lp = find_lwp_pid (ptid);
3126 if (lp)
3127 resume_lwp (lp, lp->step);
3128 }
3129 }
3130 return 0;
3131 }
3132
3133 /* Check if we should go on and pass this event to common code.
3134 Return the affected lwp if we are, or NULL otherwise. */
3135 static struct lwp_info *
3136 linux_nat_filter_event (int lwpid, int status, int options)
3137 {
3138 struct lwp_info *lp;
3139
3140 lp = find_lwp_pid (pid_to_ptid (lwpid));
3141
3142 /* Check for stop events reported by a process we didn't already
3143 know about - anything not already in our LWP list.
3144
3145 If we're expecting to receive stopped processes after
3146 fork, vfork, and clone events, then we'll just add the
3147 new one to our list and go back to waiting for the event
3148 to be reported - the stopped process might be returned
3149 from waitpid before or after the event is. */
3150 if (WIFSTOPPED (status) && !lp)
3151 {
3152 add_to_pid_list (&stopped_pids, lwpid, status);
3153 return NULL;
3154 }
3155
3156 /* Make sure we don't report an event for the exit of an LWP not in
3157 our list, i.e. not part of the current process. This can happen
3158 if we detach from a program we originally forked and then it
3159 exits. */
3160 if (!WIFSTOPPED (status) && !lp)
3161 return NULL;
3162
3163 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3164 CLONE_PTRACE processes which do not use the thread library -
3165 otherwise we wouldn't find the new LWP this way. That doesn't
3166 currently work, and the following code is currently unreachable
3167 due to the two blocks above. If it's fixed some day, this code
3168 should be broken out into a function so that we can also pick up
3169 LWPs from the new interface. */
3170 if (!lp)
3171 {
3172 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3173 if (options & __WCLONE)
3174 lp->cloned = 1;
3175
3176 gdb_assert (WIFSTOPPED (status)
3177 && WSTOPSIG (status) == SIGSTOP);
3178 lp->signalled = 1;
3179
3180 if (!in_thread_list (inferior_ptid))
3181 {
3182 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3183 GET_PID (inferior_ptid));
3184 add_thread (inferior_ptid);
3185 }
3186
3187 add_thread (lp->ptid);
3188 }
3189
3190 /* Handle GNU/Linux's syscall SIGTRAPs. */
3191 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3192 {
3193 /* No longer need the sysgood bit. The ptrace event ends up
3194 recorded in lp->waitstatus if we care for it. We can carry
3195 on handling the event like a regular SIGTRAP from here
3196 on. */
3197 status = W_STOPCODE (SIGTRAP);
3198 if (linux_handle_syscall_trap (lp, 0))
3199 return NULL;
3200 }
3201
3202 /* Handle GNU/Linux's extended waitstatus for trace events. */
3203 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3204 {
3205 if (debug_linux_nat)
3206 fprintf_unfiltered (gdb_stdlog,
3207 "LLW: Handling extended status 0x%06x\n",
3208 status);
3209 if (linux_handle_extended_wait (lp, status, 0))
3210 return NULL;
3211 }
3212
3213 if (linux_nat_status_is_event (status))
3214 {
3215 /* Save the trap's siginfo in case we need it later. */
3216 save_siginfo (lp);
3217
3218 save_sigtrap (lp);
3219 }
3220
3221 /* Check if the thread has exited. */
3222 if ((WIFEXITED (status) || WIFSIGNALED (status))
3223 && num_lwps (GET_PID (lp->ptid)) > 1)
3224 {
3225 /* If this is the main thread, we must stop all threads and verify
3226 if they are still alive. This is because in the nptl thread model
3227 on Linux 2.4, there is no signal issued for exiting LWPs
3228 other than the main thread. We only get the main thread exit
3229 signal once all child threads have already exited. If we
3230 stop all the threads and use the stop_wait_callback to check
3231 if they have exited we can determine whether this signal
3232 should be ignored or whether it means the end of the debugged
3233 application, regardless of which threading model is being
3234 used. */
3235 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3236 {
3237 lp->stopped = 1;
3238 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3239 stop_and_resume_callback, NULL);
3240 }
3241
3242 if (debug_linux_nat)
3243 fprintf_unfiltered (gdb_stdlog,
3244 "LLW: %s exited.\n",
3245 target_pid_to_str (lp->ptid));
3246
3247 if (num_lwps (GET_PID (lp->ptid)) > 1)
3248 {
3249 /* If there is at least one more LWP, then the exit signal
3250 was not the end of the debugged application and should be
3251 ignored. */
3252 exit_lwp (lp);
3253 return NULL;
3254 }
3255 }
3256
3257 /* Check if the current LWP has previously exited. In the nptl
3258 thread model, LWPs other than the main thread do not issue
3259 signals when they exit so we must check whenever the thread has
3260 stopped. A similar check is made in stop_wait_callback(). */
3261 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3262 {
3263 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3264
3265 if (debug_linux_nat)
3266 fprintf_unfiltered (gdb_stdlog,
3267 "LLW: %s exited.\n",
3268 target_pid_to_str (lp->ptid));
3269
3270 exit_lwp (lp);
3271
3272 /* Make sure there is at least one thread running. */
3273 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3274
3275 /* Discard the event. */
3276 return NULL;
3277 }
3278
3279 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3280 an attempt to stop an LWP. */
3281 if (lp->signalled
3282 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3283 {
3284 if (debug_linux_nat)
3285 fprintf_unfiltered (gdb_stdlog,
3286 "LLW: Delayed SIGSTOP caught for %s.\n",
3287 target_pid_to_str (lp->ptid));
3288
3289 lp->signalled = 0;
3290
3291 if (lp->last_resume_kind != resume_stop)
3292 {
3293 /* This is a delayed SIGSTOP. */
3294
3295 registers_changed ();
3296
3297 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3298 lp->step, TARGET_SIGNAL_0);
3299 if (debug_linux_nat)
3300 fprintf_unfiltered (gdb_stdlog,
3301 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3302 lp->step ?
3303 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3304 target_pid_to_str (lp->ptid));
3305
3306 lp->stopped = 0;
3307 gdb_assert (lp->resumed);
3308
3309 /* Discard the event. */
3310 return NULL;
3311 }
3312 }
3313
3314 /* Make sure we don't report a SIGINT that we have already displayed
3315 for another thread. */
3316 if (lp->ignore_sigint
3317 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3318 {
3319 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "LLW: Delayed SIGINT caught for %s.\n",
3322 target_pid_to_str (lp->ptid));
3323
3324 /* This is a delayed SIGINT. */
3325 lp->ignore_sigint = 0;
3326
3327 registers_changed ();
3328 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3329 lp->step, TARGET_SIGNAL_0);
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3333 lp->step ?
3334 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3335 target_pid_to_str (lp->ptid));
3336
3337 lp->stopped = 0;
3338 gdb_assert (lp->resumed);
3339
3340 /* Discard the event. */
3341 return NULL;
3342 }
3343
3344 /* An interesting event. */
3345 gdb_assert (lp);
3346 lp->status = status;
3347 return lp;
3348 }
3349
3350 static ptid_t
3351 linux_nat_wait_1 (struct target_ops *ops,
3352 ptid_t ptid, struct target_waitstatus *ourstatus,
3353 int target_options)
3354 {
3355 static sigset_t prev_mask;
3356 enum resume_kind last_resume_kind;
3357 struct lwp_info *lp = NULL;
3358 int options = 0;
3359 int status = 0;
3360 pid_t pid;
3361
3362 if (debug_linux_nat)
3363 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3364
3365 /* The first time we get here after starting a new inferior, we may
3366 not have added it to the LWP list yet - this is the earliest
3367 moment at which we know its PID. */
3368 if (ptid_is_pid (inferior_ptid))
3369 {
3370 /* Upgrade the main thread's ptid. */
3371 thread_change_ptid (inferior_ptid,
3372 BUILD_LWP (GET_PID (inferior_ptid),
3373 GET_PID (inferior_ptid)));
3374
3375 lp = add_lwp (inferior_ptid);
3376 lp->resumed = 1;
3377 }
3378
3379 /* Make sure SIGCHLD is blocked. */
3380 block_child_signals (&prev_mask);
3381
3382 if (ptid_equal (ptid, minus_one_ptid))
3383 pid = -1;
3384 else if (ptid_is_pid (ptid))
3385 /* A request to wait for a specific tgid. This is not possible
3386 with waitpid, so instead, we wait for any child, and leave
3387 children we're not interested in right now with a pending
3388 status to report later. */
3389 pid = -1;
3390 else
3391 pid = GET_LWP (ptid);
3392
3393 retry:
3394 lp = NULL;
3395 status = 0;
3396
3397 /* Make sure that of those LWPs we want to get an event from, there
3398 is at least one LWP that has been resumed. If there's none, just
3399 bail out. The core may just be flushing asynchronously all
3400 events. */
3401 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3402 {
3403 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3404
3405 if (debug_linux_nat)
3406 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3407
3408 restore_child_signals_mask (&prev_mask);
3409 return minus_one_ptid;
3410 }
3411
3412 /* First check if there is a LWP with a wait status pending. */
3413 if (pid == -1)
3414 {
3415 /* Any LWP that's been resumed will do. */
3416 lp = iterate_over_lwps (ptid, status_callback, NULL);
3417 if (lp)
3418 {
3419 if (debug_linux_nat && lp->status)
3420 fprintf_unfiltered (gdb_stdlog,
3421 "LLW: Using pending wait status %s for %s.\n",
3422 status_to_str (lp->status),
3423 target_pid_to_str (lp->ptid));
3424 }
3425
3426 /* But if we don't find one, we'll have to wait, and check both
3427 cloned and uncloned processes. We start with the cloned
3428 processes. */
3429 options = __WCLONE | WNOHANG;
3430 }
3431 else if (is_lwp (ptid))
3432 {
3433 if (debug_linux_nat)
3434 fprintf_unfiltered (gdb_stdlog,
3435 "LLW: Waiting for specific LWP %s.\n",
3436 target_pid_to_str (ptid));
3437
3438 /* We have a specific LWP to check. */
3439 lp = find_lwp_pid (ptid);
3440 gdb_assert (lp);
3441
3442 if (debug_linux_nat && lp->status)
3443 fprintf_unfiltered (gdb_stdlog,
3444 "LLW: Using pending wait status %s for %s.\n",
3445 status_to_str (lp->status),
3446 target_pid_to_str (lp->ptid));
3447
3448 /* If we have to wait, take into account whether PID is a cloned
3449 process or not. And we have to convert it to something that
3450 the layer beneath us can understand. */
3451 options = lp->cloned ? __WCLONE : 0;
3452 pid = GET_LWP (ptid);
3453
3454 /* We check for lp->waitstatus in addition to lp->status,
3455 because we can have pending process exits recorded in
3456 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3457 an additional lp->status_p flag. */
3458 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3459 lp = NULL;
3460 }
3461
3462 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3463 {
3464 /* A pending SIGSTOP may interfere with the normal stream of
3465 events. In a typical case where interference is a problem,
3466 we have a SIGSTOP signal pending for LWP A while
3467 single-stepping it, encounter an event in LWP B, and take the
3468 pending SIGSTOP while trying to stop LWP A. After processing
3469 the event in LWP B, LWP A is continued, and we'll never see
3470 the SIGTRAP associated with the last time we were
3471 single-stepping LWP A. */
3472
3473 /* Resume the thread. It should halt immediately returning the
3474 pending SIGSTOP. */
3475 registers_changed ();
3476 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3477 lp->step, TARGET_SIGNAL_0);
3478 if (debug_linux_nat)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3481 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3482 target_pid_to_str (lp->ptid));
3483 lp->stopped = 0;
3484 gdb_assert (lp->resumed);
3485
3486 /* Catch the pending SIGSTOP. */
3487 status = lp->status;
3488 lp->status = 0;
3489
3490 stop_wait_callback (lp, NULL);
3491
3492 /* If the lp->status field isn't empty, we caught another signal
3493 while flushing the SIGSTOP. Return it back to the event
3494 queue of the LWP, as we already have an event to handle. */
3495 if (lp->status)
3496 {
3497 if (debug_linux_nat)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "LLW: kill %s, %s\n",
3500 target_pid_to_str (lp->ptid),
3501 status_to_str (lp->status));
3502 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3503 }
3504
3505 lp->status = status;
3506 }
3507
3508 if (!target_can_async_p ())
3509 {
3510 /* Causes SIGINT to be passed on to the attached process. */
3511 set_sigint_trap ();
3512 }
3513
3514 /* Translate generic target_wait options into waitpid options. */
3515 if (target_options & TARGET_WNOHANG)
3516 options |= WNOHANG;
3517
3518 while (lp == NULL)
3519 {
3520 pid_t lwpid;
3521
3522 lwpid = my_waitpid (pid, &status, options);
3523
3524 if (lwpid > 0)
3525 {
3526 gdb_assert (pid == -1 || lwpid == pid);
3527
3528 if (debug_linux_nat)
3529 {
3530 fprintf_unfiltered (gdb_stdlog,
3531 "LLW: waitpid %ld received %s\n",
3532 (long) lwpid, status_to_str (status));
3533 }
3534
3535 lp = linux_nat_filter_event (lwpid, status, options);
3536
3537 /* STATUS is now no longer valid, use LP->STATUS instead. */
3538 status = 0;
3539
3540 if (lp
3541 && ptid_is_pid (ptid)
3542 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3543 {
3544 gdb_assert (lp->resumed);
3545
3546 if (debug_linux_nat)
3547 fprintf (stderr,
3548 "LWP %ld got an event %06x, leaving pending.\n",
3549 ptid_get_lwp (lp->ptid), lp->status);
3550
3551 if (WIFSTOPPED (lp->status))
3552 {
3553 if (WSTOPSIG (lp->status) != SIGSTOP)
3554 {
3555 /* Cancel breakpoint hits. The breakpoint may
3556 be removed before we fetch events from this
3557 process to report to the core. It is best
3558 not to assume the moribund breakpoints
3559 heuristic always handles these cases --- it
3560 could be too many events go through to the
3561 core before this one is handled. All-stop
3562 always cancels breakpoint hits in all
3563 threads. */
3564 if (non_stop
3565 && linux_nat_lp_status_is_event (lp)
3566 && cancel_breakpoint (lp))
3567 {
3568 /* Throw away the SIGTRAP. */
3569 lp->status = 0;
3570
3571 if (debug_linux_nat)
3572 fprintf (stderr,
3573 "LLW: LWP %ld hit a breakpoint while"
3574 " waiting for another process;"
3575 " cancelled it\n",
3576 ptid_get_lwp (lp->ptid));
3577 }
3578 lp->stopped = 1;
3579 }
3580 else
3581 {
3582 lp->stopped = 1;
3583 lp->signalled = 0;
3584 }
3585 }
3586 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3587 {
3588 if (debug_linux_nat)
3589 fprintf (stderr,
3590 "Process %ld exited while stopping LWPs\n",
3591 ptid_get_lwp (lp->ptid));
3592
3593 /* This was the last lwp in the process. Since
3594 events are serialized to GDB core, and we can't
3595 report this one right now, but GDB core and the
3596 other target layers will want to be notified
3597 about the exit code/signal, leave the status
3598 pending for the next time we're able to report
3599 it. */
3600
3601 /* Prevent trying to stop this thread again. We'll
3602 never try to resume it because it has a pending
3603 status. */
3604 lp->stopped = 1;
3605
3606 /* Dead LWP's aren't expected to reported a pending
3607 sigstop. */
3608 lp->signalled = 0;
3609
3610 /* Store the pending event in the waitstatus as
3611 well, because W_EXITCODE(0,0) == 0. */
3612 store_waitstatus (&lp->waitstatus, lp->status);
3613 }
3614
3615 /* Keep looking. */
3616 lp = NULL;
3617 continue;
3618 }
3619
3620 if (lp)
3621 break;
3622 else
3623 {
3624 if (pid == -1)
3625 {
3626 /* waitpid did return something. Restart over. */
3627 options |= __WCLONE;
3628 }
3629 continue;
3630 }
3631 }
3632
3633 if (pid == -1)
3634 {
3635 /* Alternate between checking cloned and uncloned processes. */
3636 options ^= __WCLONE;
3637
3638 /* And every time we have checked both:
3639 In async mode, return to event loop;
3640 In sync mode, suspend waiting for a SIGCHLD signal. */
3641 if (options & __WCLONE)
3642 {
3643 if (target_options & TARGET_WNOHANG)
3644 {
3645 /* No interesting event. */
3646 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3647
3648 if (debug_linux_nat)
3649 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3650
3651 restore_child_signals_mask (&prev_mask);
3652 return minus_one_ptid;
3653 }
3654
3655 sigsuspend (&suspend_mask);
3656 }
3657 }
3658 else if (target_options & TARGET_WNOHANG)
3659 {
3660 /* No interesting event for PID yet. */
3661 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3662
3663 if (debug_linux_nat)
3664 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3665
3666 restore_child_signals_mask (&prev_mask);
3667 return minus_one_ptid;
3668 }
3669
3670 /* We shouldn't end up here unless we want to try again. */
3671 gdb_assert (lp == NULL);
3672 }
3673
3674 if (!target_can_async_p ())
3675 clear_sigint_trap ();
3676
3677 gdb_assert (lp);
3678
3679 status = lp->status;
3680 lp->status = 0;
3681
3682 /* Don't report signals that GDB isn't interested in, such as
3683 signals that are neither printed nor stopped upon. Stopping all
3684 threads can be a bit time-consuming so if we want decent
3685 performance with heavily multi-threaded programs, especially when
3686 they're using a high frequency timer, we'd better avoid it if we
3687 can. */
3688
3689 if (WIFSTOPPED (status))
3690 {
3691 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3692
3693 /* When using hardware single-step, we need to report every signal.
3694 Otherwise, signals in pass_mask may be short-circuited. */
3695 if (!lp->step
3696 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3697 {
3698 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3699 here? It is not clear we should. GDB may not expect
3700 other threads to run. On the other hand, not resuming
3701 newly attached threads may cause an unwanted delay in
3702 getting them running. */
3703 registers_changed ();
3704 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3705 lp->step, signo);
3706 if (debug_linux_nat)
3707 fprintf_unfiltered (gdb_stdlog,
3708 "LLW: %s %s, %s (preempt 'handle')\n",
3709 lp->step ?
3710 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3711 target_pid_to_str (lp->ptid),
3712 (signo != TARGET_SIGNAL_0
3713 ? strsignal (target_signal_to_host (signo))
3714 : "0"));
3715 lp->stopped = 0;
3716 goto retry;
3717 }
3718
3719 if (!non_stop)
3720 {
3721 /* Only do the below in all-stop, as we currently use SIGINT
3722 to implement target_stop (see linux_nat_stop) in
3723 non-stop. */
3724 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3725 {
3726 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3727 forwarded to the entire process group, that is, all LWPs
3728 will receive it - unless they're using CLONE_THREAD to
3729 share signals. Since we only want to report it once, we
3730 mark it as ignored for all LWPs except this one. */
3731 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3732 set_ignore_sigint, NULL);
3733 lp->ignore_sigint = 0;
3734 }
3735 else
3736 maybe_clear_ignore_sigint (lp);
3737 }
3738 }
3739
3740 /* This LWP is stopped now. */
3741 lp->stopped = 1;
3742
3743 if (debug_linux_nat)
3744 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3745 status_to_str (status), target_pid_to_str (lp->ptid));
3746
3747 if (!non_stop)
3748 {
3749 /* Now stop all other LWP's ... */
3750 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3751
3752 /* ... and wait until all of them have reported back that
3753 they're no longer running. */
3754 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3755
3756 /* If we're not waiting for a specific LWP, choose an event LWP
3757 from among those that have had events. Giving equal priority
3758 to all LWPs that have had events helps prevent
3759 starvation. */
3760 if (pid == -1)
3761 select_event_lwp (ptid, &lp, &status);
3762
3763 /* Now that we've selected our final event LWP, cancel any
3764 breakpoints in other LWPs that have hit a GDB breakpoint.
3765 See the comment in cancel_breakpoints_callback to find out
3766 why. */
3767 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3768
3769 /* We'll need this to determine whether to report a SIGSTOP as
3770 TARGET_WAITKIND_0. Need to take a copy because
3771 resume_clear_callback clears it. */
3772 last_resume_kind = lp->last_resume_kind;
3773
3774 /* In all-stop, from the core's perspective, all LWPs are now
3775 stopped until a new resume action is sent over. */
3776 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3777 }
3778 else
3779 {
3780 /* See above. */
3781 last_resume_kind = lp->last_resume_kind;
3782 resume_clear_callback (lp, NULL);
3783 }
3784
3785 if (linux_nat_status_is_event (status))
3786 {
3787 if (debug_linux_nat)
3788 fprintf_unfiltered (gdb_stdlog,
3789 "LLW: trap ptid is %s.\n",
3790 target_pid_to_str (lp->ptid));
3791 }
3792
3793 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3794 {
3795 *ourstatus = lp->waitstatus;
3796 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3797 }
3798 else
3799 store_waitstatus (ourstatus, status);
3800
3801 if (debug_linux_nat)
3802 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3803
3804 restore_child_signals_mask (&prev_mask);
3805
3806 if (last_resume_kind == resume_stop
3807 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3808 && WSTOPSIG (status) == SIGSTOP)
3809 {
3810 /* A thread that has been requested to stop by GDB with
3811 target_stop, and it stopped cleanly, so report as SIG0. The
3812 use of SIGSTOP is an implementation detail. */
3813 ourstatus->value.sig = TARGET_SIGNAL_0;
3814 }
3815
3816 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3817 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3818 lp->core = -1;
3819 else
3820 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3821
3822 return lp->ptid;
3823 }
3824
3825 /* Resume LWPs that are currently stopped without any pending status
3826 to report, but are resumed from the core's perspective. */
3827
3828 static int
3829 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3830 {
3831 ptid_t *wait_ptid_p = data;
3832
3833 if (lp->stopped
3834 && lp->resumed
3835 && lp->status == 0
3836 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3837 {
3838 gdb_assert (is_executing (lp->ptid));
3839
3840 /* Don't bother if there's a breakpoint at PC that we'd hit
3841 immediately, and we're not waiting for this LWP. */
3842 if (!ptid_match (lp->ptid, *wait_ptid_p))
3843 {
3844 struct regcache *regcache = get_thread_regcache (lp->ptid);
3845 CORE_ADDR pc = regcache_read_pc (regcache);
3846
3847 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3848 return 0;
3849 }
3850
3851 if (debug_linux_nat)
3852 fprintf_unfiltered (gdb_stdlog,
3853 "RSRL: resuming stopped-resumed LWP %s\n",
3854 target_pid_to_str (lp->ptid));
3855
3856 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3857 lp->step, TARGET_SIGNAL_0);
3858 lp->stopped = 0;
3859 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3860 lp->stopped_by_watchpoint = 0;
3861 }
3862
3863 return 0;
3864 }
3865
3866 static ptid_t
3867 linux_nat_wait (struct target_ops *ops,
3868 ptid_t ptid, struct target_waitstatus *ourstatus,
3869 int target_options)
3870 {
3871 ptid_t event_ptid;
3872
3873 if (debug_linux_nat)
3874 fprintf_unfiltered (gdb_stdlog,
3875 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3876
3877 /* Flush the async file first. */
3878 if (target_can_async_p ())
3879 async_file_flush ();
3880
3881 /* Resume LWPs that are currently stopped without any pending status
3882 to report, but are resumed from the core's perspective. LWPs get
3883 in this state if we find them stopping at a time we're not
3884 interested in reporting the event (target_wait on a
3885 specific_process, for example, see linux_nat_wait_1), and
3886 meanwhile the event became uninteresting. Don't bother resuming
3887 LWPs we're not going to wait for if they'd stop immediately. */
3888 if (non_stop)
3889 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3890
3891 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3892
3893 /* If we requested any event, and something came out, assume there
3894 may be more. If we requested a specific lwp or process, also
3895 assume there may be more. */
3896 if (target_can_async_p ()
3897 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3898 || !ptid_equal (ptid, minus_one_ptid)))
3899 async_file_mark ();
3900
3901 /* Get ready for the next event. */
3902 if (target_can_async_p ())
3903 target_async (inferior_event_handler, 0);
3904
3905 return event_ptid;
3906 }
3907
3908 static int
3909 kill_callback (struct lwp_info *lp, void *data)
3910 {
3911 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3912
3913 errno = 0;
3914 kill (GET_LWP (lp->ptid), SIGKILL);
3915 if (debug_linux_nat)
3916 fprintf_unfiltered (gdb_stdlog,
3917 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3918 target_pid_to_str (lp->ptid),
3919 errno ? safe_strerror (errno) : "OK");
3920
3921 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3922
3923 errno = 0;
3924 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3925 if (debug_linux_nat)
3926 fprintf_unfiltered (gdb_stdlog,
3927 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3928 target_pid_to_str (lp->ptid),
3929 errno ? safe_strerror (errno) : "OK");
3930
3931 return 0;
3932 }
3933
3934 static int
3935 kill_wait_callback (struct lwp_info *lp, void *data)
3936 {
3937 pid_t pid;
3938
3939 /* We must make sure that there are no pending events (delayed
3940 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3941 program doesn't interfere with any following debugging session. */
3942
3943 /* For cloned processes we must check both with __WCLONE and
3944 without, since the exit status of a cloned process isn't reported
3945 with __WCLONE. */
3946 if (lp->cloned)
3947 {
3948 do
3949 {
3950 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3951 if (pid != (pid_t) -1)
3952 {
3953 if (debug_linux_nat)
3954 fprintf_unfiltered (gdb_stdlog,
3955 "KWC: wait %s received unknown.\n",
3956 target_pid_to_str (lp->ptid));
3957 /* The Linux kernel sometimes fails to kill a thread
3958 completely after PTRACE_KILL; that goes from the stop
3959 point in do_fork out to the one in
3960 get_signal_to_deliever and waits again. So kill it
3961 again. */
3962 kill_callback (lp, NULL);
3963 }
3964 }
3965 while (pid == GET_LWP (lp->ptid));
3966
3967 gdb_assert (pid == -1 && errno == ECHILD);
3968 }
3969
3970 do
3971 {
3972 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3973 if (pid != (pid_t) -1)
3974 {
3975 if (debug_linux_nat)
3976 fprintf_unfiltered (gdb_stdlog,
3977 "KWC: wait %s received unk.\n",
3978 target_pid_to_str (lp->ptid));
3979 /* See the call to kill_callback above. */
3980 kill_callback (lp, NULL);
3981 }
3982 }
3983 while (pid == GET_LWP (lp->ptid));
3984
3985 gdb_assert (pid == -1 && errno == ECHILD);
3986 return 0;
3987 }
3988
3989 static void
3990 linux_nat_kill (struct target_ops *ops)
3991 {
3992 struct target_waitstatus last;
3993 ptid_t last_ptid;
3994 int status;
3995
3996 /* If we're stopped while forking and we haven't followed yet,
3997 kill the other task. We need to do this first because the
3998 parent will be sleeping if this is a vfork. */
3999
4000 get_last_target_status (&last_ptid, &last);
4001
4002 if (last.kind == TARGET_WAITKIND_FORKED
4003 || last.kind == TARGET_WAITKIND_VFORKED)
4004 {
4005 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4006 wait (&status);
4007 }
4008
4009 if (forks_exist_p ())
4010 linux_fork_killall ();
4011 else
4012 {
4013 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4014
4015 /* Stop all threads before killing them, since ptrace requires
4016 that the thread is stopped to sucessfully PTRACE_KILL. */
4017 iterate_over_lwps (ptid, stop_callback, NULL);
4018 /* ... and wait until all of them have reported back that
4019 they're no longer running. */
4020 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4021
4022 /* Kill all LWP's ... */
4023 iterate_over_lwps (ptid, kill_callback, NULL);
4024
4025 /* ... and wait until we've flushed all events. */
4026 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4027 }
4028
4029 target_mourn_inferior ();
4030 }
4031
4032 static void
4033 linux_nat_mourn_inferior (struct target_ops *ops)
4034 {
4035 purge_lwp_list (ptid_get_pid (inferior_ptid));
4036
4037 if (! forks_exist_p ())
4038 /* Normal case, no other forks available. */
4039 linux_ops->to_mourn_inferior (ops);
4040 else
4041 /* Multi-fork case. The current inferior_ptid has exited, but
4042 there are other viable forks to debug. Delete the exiting
4043 one and context-switch to the first available. */
4044 linux_fork_mourn_inferior ();
4045 }
4046
4047 /* Convert a native/host siginfo object, into/from the siginfo in the
4048 layout of the inferiors' architecture. */
4049
4050 static void
4051 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4052 {
4053 int done = 0;
4054
4055 if (linux_nat_siginfo_fixup != NULL)
4056 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4057
4058 /* If there was no callback, or the callback didn't do anything,
4059 then just do a straight memcpy. */
4060 if (!done)
4061 {
4062 if (direction == 1)
4063 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4064 else
4065 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4066 }
4067 }
4068
4069 static LONGEST
4070 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4071 const char *annex, gdb_byte *readbuf,
4072 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4073 {
4074 int pid;
4075 struct siginfo siginfo;
4076 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4077
4078 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4079 gdb_assert (readbuf || writebuf);
4080
4081 pid = GET_LWP (inferior_ptid);
4082 if (pid == 0)
4083 pid = GET_PID (inferior_ptid);
4084
4085 if (offset > sizeof (siginfo))
4086 return -1;
4087
4088 errno = 0;
4089 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4090 if (errno != 0)
4091 return -1;
4092
4093 /* When GDB is built as a 64-bit application, ptrace writes into
4094 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4095 inferior with a 64-bit GDB should look the same as debugging it
4096 with a 32-bit GDB, we need to convert it. GDB core always sees
4097 the converted layout, so any read/write will have to be done
4098 post-conversion. */
4099 siginfo_fixup (&siginfo, inf_siginfo, 0);
4100
4101 if (offset + len > sizeof (siginfo))
4102 len = sizeof (siginfo) - offset;
4103
4104 if (readbuf != NULL)
4105 memcpy (readbuf, inf_siginfo + offset, len);
4106 else
4107 {
4108 memcpy (inf_siginfo + offset, writebuf, len);
4109
4110 /* Convert back to ptrace layout before flushing it out. */
4111 siginfo_fixup (&siginfo, inf_siginfo, 1);
4112
4113 errno = 0;
4114 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4115 if (errno != 0)
4116 return -1;
4117 }
4118
4119 return len;
4120 }
4121
4122 static LONGEST
4123 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4124 const char *annex, gdb_byte *readbuf,
4125 const gdb_byte *writebuf,
4126 ULONGEST offset, LONGEST len)
4127 {
4128 struct cleanup *old_chain;
4129 LONGEST xfer;
4130
4131 if (object == TARGET_OBJECT_SIGNAL_INFO)
4132 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4133 offset, len);
4134
4135 /* The target is connected but no live inferior is selected. Pass
4136 this request down to a lower stratum (e.g., the executable
4137 file). */
4138 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4139 return 0;
4140
4141 old_chain = save_inferior_ptid ();
4142
4143 if (is_lwp (inferior_ptid))
4144 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4145
4146 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4147 offset, len);
4148
4149 do_cleanups (old_chain);
4150 return xfer;
4151 }
4152
4153 static int
4154 linux_thread_alive (ptid_t ptid)
4155 {
4156 int err, tmp_errno;
4157
4158 gdb_assert (is_lwp (ptid));
4159
4160 /* Send signal 0 instead of anything ptrace, because ptracing a
4161 running thread errors out claiming that the thread doesn't
4162 exist. */
4163 err = kill_lwp (GET_LWP (ptid), 0);
4164 tmp_errno = errno;
4165 if (debug_linux_nat)
4166 fprintf_unfiltered (gdb_stdlog,
4167 "LLTA: KILL(SIG0) %s (%s)\n",
4168 target_pid_to_str (ptid),
4169 err ? safe_strerror (tmp_errno) : "OK");
4170
4171 if (err != 0)
4172 return 0;
4173
4174 return 1;
4175 }
4176
4177 static int
4178 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4179 {
4180 return linux_thread_alive (ptid);
4181 }
4182
4183 static char *
4184 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4185 {
4186 static char buf[64];
4187
4188 if (is_lwp (ptid)
4189 && (GET_PID (ptid) != GET_LWP (ptid)
4190 || num_lwps (GET_PID (ptid)) > 1))
4191 {
4192 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4193 return buf;
4194 }
4195
4196 return normal_pid_to_str (ptid);
4197 }
4198
4199 static char *
4200 linux_nat_thread_name (struct thread_info *thr)
4201 {
4202 int pid = ptid_get_pid (thr->ptid);
4203 long lwp = ptid_get_lwp (thr->ptid);
4204 #define FORMAT "/proc/%d/task/%ld/comm"
4205 char buf[sizeof (FORMAT) + 30];
4206 FILE *comm_file;
4207 char *result = NULL;
4208
4209 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4210 comm_file = fopen (buf, "r");
4211 if (comm_file)
4212 {
4213 /* Not exported by the kernel, so we define it here. */
4214 #define COMM_LEN 16
4215 static char line[COMM_LEN + 1];
4216
4217 if (fgets (line, sizeof (line), comm_file))
4218 {
4219 char *nl = strchr (line, '\n');
4220
4221 if (nl)
4222 *nl = '\0';
4223 if (*line != '\0')
4224 result = line;
4225 }
4226
4227 fclose (comm_file);
4228 }
4229
4230 #undef COMM_LEN
4231 #undef FORMAT
4232
4233 return result;
4234 }
4235
4236 /* Accepts an integer PID; Returns a string representing a file that
4237 can be opened to get the symbols for the child process. */
4238
4239 static char *
4240 linux_child_pid_to_exec_file (int pid)
4241 {
4242 char *name1, *name2;
4243
4244 name1 = xmalloc (MAXPATHLEN);
4245 name2 = xmalloc (MAXPATHLEN);
4246 make_cleanup (xfree, name1);
4247 make_cleanup (xfree, name2);
4248 memset (name2, 0, MAXPATHLEN);
4249
4250 sprintf (name1, "/proc/%d/exe", pid);
4251 if (readlink (name1, name2, MAXPATHLEN) > 0)
4252 return name2;
4253 else
4254 return name1;
4255 }
4256
4257 /* Service function for corefiles and info proc. */
4258
4259 static int
4260 read_mapping (FILE *mapfile,
4261 long long *addr,
4262 long long *endaddr,
4263 char *permissions,
4264 long long *offset,
4265 char *device, long long *inode, char *filename)
4266 {
4267 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4268 addr, endaddr, permissions, offset, device, inode);
4269
4270 filename[0] = '\0';
4271 if (ret > 0 && ret != EOF)
4272 {
4273 /* Eat everything up to EOL for the filename. This will prevent
4274 weird filenames (such as one with embedded whitespace) from
4275 confusing this code. It also makes this code more robust in
4276 respect to annotations the kernel may add after the filename.
4277
4278 Note the filename is used for informational purposes
4279 only. */
4280 ret += fscanf (mapfile, "%[^\n]\n", filename);
4281 }
4282
4283 return (ret != 0 && ret != EOF);
4284 }
4285
4286 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4287 regions in the inferior for a corefile. */
4288
4289 static int
4290 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4291 {
4292 int pid = PIDGET (inferior_ptid);
4293 char mapsfilename[MAXPATHLEN];
4294 FILE *mapsfile;
4295 long long addr, endaddr, size, offset, inode;
4296 char permissions[8], device[8], filename[MAXPATHLEN];
4297 int read, write, exec;
4298 struct cleanup *cleanup;
4299
4300 /* Compose the filename for the /proc memory map, and open it. */
4301 sprintf (mapsfilename, "/proc/%d/maps", pid);
4302 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4303 error (_("Could not open %s."), mapsfilename);
4304 cleanup = make_cleanup_fclose (mapsfile);
4305
4306 if (info_verbose)
4307 fprintf_filtered (gdb_stdout,
4308 "Reading memory regions from %s\n", mapsfilename);
4309
4310 /* Now iterate until end-of-file. */
4311 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4312 &offset, &device[0], &inode, &filename[0]))
4313 {
4314 size = endaddr - addr;
4315
4316 /* Get the segment's permissions. */
4317 read = (strchr (permissions, 'r') != 0);
4318 write = (strchr (permissions, 'w') != 0);
4319 exec = (strchr (permissions, 'x') != 0);
4320
4321 if (info_verbose)
4322 {
4323 fprintf_filtered (gdb_stdout,
4324 "Save segment, %s bytes at %s (%c%c%c)",
4325 plongest (size), paddress (target_gdbarch, addr),
4326 read ? 'r' : ' ',
4327 write ? 'w' : ' ', exec ? 'x' : ' ');
4328 if (filename[0])
4329 fprintf_filtered (gdb_stdout, " for %s", filename);
4330 fprintf_filtered (gdb_stdout, "\n");
4331 }
4332
4333 /* Invoke the callback function to create the corefile
4334 segment. */
4335 func (addr, size, read, write, exec, obfd);
4336 }
4337 do_cleanups (cleanup);
4338 return 0;
4339 }
4340
4341 static int
4342 find_signalled_thread (struct thread_info *info, void *data)
4343 {
4344 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4345 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4346 return 1;
4347
4348 return 0;
4349 }
4350
4351 static enum target_signal
4352 find_stop_signal (void)
4353 {
4354 struct thread_info *info =
4355 iterate_over_threads (find_signalled_thread, NULL);
4356
4357 if (info)
4358 return info->suspend.stop_signal;
4359 else
4360 return TARGET_SIGNAL_0;
4361 }
4362
4363 /* Records the thread's register state for the corefile note
4364 section. */
4365
4366 static char *
4367 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4368 char *note_data, int *note_size,
4369 enum target_signal stop_signal)
4370 {
4371 unsigned long lwp = ptid_get_lwp (ptid);
4372 struct gdbarch *gdbarch = target_gdbarch;
4373 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4374 const struct regset *regset;
4375 int core_regset_p;
4376 struct cleanup *old_chain;
4377 struct core_regset_section *sect_list;
4378 char *gdb_regset;
4379
4380 old_chain = save_inferior_ptid ();
4381 inferior_ptid = ptid;
4382 target_fetch_registers (regcache, -1);
4383 do_cleanups (old_chain);
4384
4385 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4386 sect_list = gdbarch_core_regset_sections (gdbarch);
4387
4388 /* The loop below uses the new struct core_regset_section, which stores
4389 the supported section names and sizes for the core file. Note that
4390 note PRSTATUS needs to be treated specially. But the other notes are
4391 structurally the same, so they can benefit from the new struct. */
4392 if (core_regset_p && sect_list != NULL)
4393 while (sect_list->sect_name != NULL)
4394 {
4395 regset = gdbarch_regset_from_core_section (gdbarch,
4396 sect_list->sect_name,
4397 sect_list->size);
4398 gdb_assert (regset && regset->collect_regset);
4399 gdb_regset = xmalloc (sect_list->size);
4400 regset->collect_regset (regset, regcache, -1,
4401 gdb_regset, sect_list->size);
4402
4403 if (strcmp (sect_list->sect_name, ".reg") == 0)
4404 note_data = (char *) elfcore_write_prstatus
4405 (obfd, note_data, note_size,
4406 lwp, target_signal_to_host (stop_signal),
4407 gdb_regset);
4408 else
4409 note_data = (char *) elfcore_write_register_note
4410 (obfd, note_data, note_size,
4411 sect_list->sect_name, gdb_regset,
4412 sect_list->size);
4413 xfree (gdb_regset);
4414 sect_list++;
4415 }
4416
4417 /* For architectures that does not have the struct core_regset_section
4418 implemented, we use the old method. When all the architectures have
4419 the new support, the code below should be deleted. */
4420 else
4421 {
4422 gdb_gregset_t gregs;
4423 gdb_fpregset_t fpregs;
4424
4425 if (core_regset_p
4426 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4427 sizeof (gregs)))
4428 != NULL && regset->collect_regset != NULL)
4429 regset->collect_regset (regset, regcache, -1,
4430 &gregs, sizeof (gregs));
4431 else
4432 fill_gregset (regcache, &gregs, -1);
4433
4434 note_data = (char *) elfcore_write_prstatus
4435 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4436 &gregs);
4437
4438 if (core_regset_p
4439 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4440 sizeof (fpregs)))
4441 != NULL && regset->collect_regset != NULL)
4442 regset->collect_regset (regset, regcache, -1,
4443 &fpregs, sizeof (fpregs));
4444 else
4445 fill_fpregset (regcache, &fpregs, -1);
4446
4447 note_data = (char *) elfcore_write_prfpreg (obfd,
4448 note_data,
4449 note_size,
4450 &fpregs, sizeof (fpregs));
4451 }
4452
4453 return note_data;
4454 }
4455
4456 struct linux_nat_corefile_thread_data
4457 {
4458 bfd *obfd;
4459 char *note_data;
4460 int *note_size;
4461 int num_notes;
4462 enum target_signal stop_signal;
4463 };
4464
4465 /* Called by gdbthread.c once per thread. Records the thread's
4466 register state for the corefile note section. */
4467
4468 static int
4469 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4470 {
4471 struct linux_nat_corefile_thread_data *args = data;
4472
4473 args->note_data = linux_nat_do_thread_registers (args->obfd,
4474 ti->ptid,
4475 args->note_data,
4476 args->note_size,
4477 args->stop_signal);
4478 args->num_notes++;
4479
4480 return 0;
4481 }
4482
4483 /* Enumerate spufs IDs for process PID. */
4484
4485 static void
4486 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4487 {
4488 char path[128];
4489 DIR *dir;
4490 struct dirent *entry;
4491
4492 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4493 dir = opendir (path);
4494 if (!dir)
4495 return;
4496
4497 rewinddir (dir);
4498 while ((entry = readdir (dir)) != NULL)
4499 {
4500 struct stat st;
4501 struct statfs stfs;
4502 int fd;
4503
4504 fd = atoi (entry->d_name);
4505 if (!fd)
4506 continue;
4507
4508 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4509 if (stat (path, &st) != 0)
4510 continue;
4511 if (!S_ISDIR (st.st_mode))
4512 continue;
4513
4514 if (statfs (path, &stfs) != 0)
4515 continue;
4516 if (stfs.f_type != SPUFS_MAGIC)
4517 continue;
4518
4519 callback (data, fd);
4520 }
4521
4522 closedir (dir);
4523 }
4524
4525 /* Generate corefile notes for SPU contexts. */
4526
4527 struct linux_spu_corefile_data
4528 {
4529 bfd *obfd;
4530 char *note_data;
4531 int *note_size;
4532 };
4533
4534 static void
4535 linux_spu_corefile_callback (void *data, int fd)
4536 {
4537 struct linux_spu_corefile_data *args = data;
4538 int i;
4539
4540 static const char *spu_files[] =
4541 {
4542 "object-id",
4543 "mem",
4544 "regs",
4545 "fpcr",
4546 "lslr",
4547 "decr",
4548 "decr_status",
4549 "signal1",
4550 "signal1_type",
4551 "signal2",
4552 "signal2_type",
4553 "event_mask",
4554 "event_status",
4555 "mbox_info",
4556 "ibox_info",
4557 "wbox_info",
4558 "dma_info",
4559 "proxydma_info",
4560 };
4561
4562 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4563 {
4564 char annex[32], note_name[32];
4565 gdb_byte *spu_data;
4566 LONGEST spu_len;
4567
4568 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4569 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4570 annex, &spu_data);
4571 if (spu_len > 0)
4572 {
4573 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4574 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4575 args->note_size, note_name,
4576 NT_SPU, spu_data, spu_len);
4577 xfree (spu_data);
4578 }
4579 }
4580 }
4581
4582 static char *
4583 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4584 {
4585 struct linux_spu_corefile_data args;
4586
4587 args.obfd = obfd;
4588 args.note_data = note_data;
4589 args.note_size = note_size;
4590
4591 iterate_over_spus (PIDGET (inferior_ptid),
4592 linux_spu_corefile_callback, &args);
4593
4594 return args.note_data;
4595 }
4596
4597 /* Fills the "to_make_corefile_note" target vector. Builds the note
4598 section for a corefile, and returns it in a malloc buffer. */
4599
4600 static char *
4601 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4602 {
4603 struct linux_nat_corefile_thread_data thread_args;
4604 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4605 char fname[16] = { '\0' };
4606 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4607 char psargs[80] = { '\0' };
4608 char *note_data = NULL;
4609 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4610 gdb_byte *auxv;
4611 int auxv_len;
4612
4613 if (get_exec_file (0))
4614 {
4615 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4616 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4617 if (get_inferior_args ())
4618 {
4619 char *string_end;
4620 char *psargs_end = psargs + sizeof (psargs);
4621
4622 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4623 strings fine. */
4624 string_end = memchr (psargs, 0, sizeof (psargs));
4625 if (string_end != NULL)
4626 {
4627 *string_end++ = ' ';
4628 strncpy (string_end, get_inferior_args (),
4629 psargs_end - string_end);
4630 }
4631 }
4632 note_data = (char *) elfcore_write_prpsinfo (obfd,
4633 note_data,
4634 note_size, fname, psargs);
4635 }
4636
4637 /* Dump information for threads. */
4638 thread_args.obfd = obfd;
4639 thread_args.note_data = note_data;
4640 thread_args.note_size = note_size;
4641 thread_args.num_notes = 0;
4642 thread_args.stop_signal = find_stop_signal ();
4643 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4644 gdb_assert (thread_args.num_notes != 0);
4645 note_data = thread_args.note_data;
4646
4647 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4648 NULL, &auxv);
4649 if (auxv_len > 0)
4650 {
4651 note_data = elfcore_write_note (obfd, note_data, note_size,
4652 "CORE", NT_AUXV, auxv, auxv_len);
4653 xfree (auxv);
4654 }
4655
4656 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4657
4658 make_cleanup (xfree, note_data);
4659 return note_data;
4660 }
4661
4662 /* Implement the "info proc" command. */
4663
4664 static void
4665 linux_nat_info_proc_cmd (char *args, int from_tty)
4666 {
4667 /* A long is used for pid instead of an int to avoid a loss of precision
4668 compiler warning from the output of strtoul. */
4669 long pid = PIDGET (inferior_ptid);
4670 FILE *procfile;
4671 char **argv = NULL;
4672 char buffer[MAXPATHLEN];
4673 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4674 int cmdline_f = 1;
4675 int cwd_f = 1;
4676 int exe_f = 1;
4677 int mappings_f = 0;
4678 int status_f = 0;
4679 int stat_f = 0;
4680 int all = 0;
4681 struct stat dummy;
4682
4683 if (args)
4684 {
4685 /* Break up 'args' into an argv array. */
4686 argv = gdb_buildargv (args);
4687 make_cleanup_freeargv (argv);
4688 }
4689 while (argv != NULL && *argv != NULL)
4690 {
4691 if (isdigit (argv[0][0]))
4692 {
4693 pid = strtoul (argv[0], NULL, 10);
4694 }
4695 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4696 {
4697 mappings_f = 1;
4698 }
4699 else if (strcmp (argv[0], "status") == 0)
4700 {
4701 status_f = 1;
4702 }
4703 else if (strcmp (argv[0], "stat") == 0)
4704 {
4705 stat_f = 1;
4706 }
4707 else if (strcmp (argv[0], "cmd") == 0)
4708 {
4709 cmdline_f = 1;
4710 }
4711 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4712 {
4713 exe_f = 1;
4714 }
4715 else if (strcmp (argv[0], "cwd") == 0)
4716 {
4717 cwd_f = 1;
4718 }
4719 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4720 {
4721 all = 1;
4722 }
4723 else
4724 {
4725 /* [...] (future options here). */
4726 }
4727 argv++;
4728 }
4729 if (pid == 0)
4730 error (_("No current process: you must name one."));
4731
4732 sprintf (fname1, "/proc/%ld", pid);
4733 if (stat (fname1, &dummy) != 0)
4734 error (_("No /proc directory: '%s'"), fname1);
4735
4736 printf_filtered (_("process %ld\n"), pid);
4737 if (cmdline_f || all)
4738 {
4739 sprintf (fname1, "/proc/%ld/cmdline", pid);
4740 if ((procfile = fopen (fname1, "r")) != NULL)
4741 {
4742 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4743
4744 if (fgets (buffer, sizeof (buffer), procfile))
4745 printf_filtered ("cmdline = '%s'\n", buffer);
4746 else
4747 warning (_("unable to read '%s'"), fname1);
4748 do_cleanups (cleanup);
4749 }
4750 else
4751 warning (_("unable to open /proc file '%s'"), fname1);
4752 }
4753 if (cwd_f || all)
4754 {
4755 sprintf (fname1, "/proc/%ld/cwd", pid);
4756 memset (fname2, 0, sizeof (fname2));
4757 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4758 printf_filtered ("cwd = '%s'\n", fname2);
4759 else
4760 warning (_("unable to read link '%s'"), fname1);
4761 }
4762 if (exe_f || all)
4763 {
4764 sprintf (fname1, "/proc/%ld/exe", pid);
4765 memset (fname2, 0, sizeof (fname2));
4766 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4767 printf_filtered ("exe = '%s'\n", fname2);
4768 else
4769 warning (_("unable to read link '%s'"), fname1);
4770 }
4771 if (mappings_f || all)
4772 {
4773 sprintf (fname1, "/proc/%ld/maps", pid);
4774 if ((procfile = fopen (fname1, "r")) != NULL)
4775 {
4776 long long addr, endaddr, size, offset, inode;
4777 char permissions[8], device[8], filename[MAXPATHLEN];
4778 struct cleanup *cleanup;
4779
4780 cleanup = make_cleanup_fclose (procfile);
4781 printf_filtered (_("Mapped address spaces:\n\n"));
4782 if (gdbarch_addr_bit (target_gdbarch) == 32)
4783 {
4784 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4785 "Start Addr",
4786 " End Addr",
4787 " Size", " Offset", "objfile");
4788 }
4789 else
4790 {
4791 printf_filtered (" %18s %18s %10s %10s %7s\n",
4792 "Start Addr",
4793 " End Addr",
4794 " Size", " Offset", "objfile");
4795 }
4796
4797 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4798 &offset, &device[0], &inode, &filename[0]))
4799 {
4800 size = endaddr - addr;
4801
4802 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4803 calls here (and possibly above) should be abstracted
4804 out into their own functions? Andrew suggests using
4805 a generic local_address_string instead to print out
4806 the addresses; that makes sense to me, too. */
4807
4808 if (gdbarch_addr_bit (target_gdbarch) == 32)
4809 {
4810 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4811 (unsigned long) addr, /* FIXME: pr_addr */
4812 (unsigned long) endaddr,
4813 (int) size,
4814 (unsigned int) offset,
4815 filename[0] ? filename : "");
4816 }
4817 else
4818 {
4819 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4820 (unsigned long) addr, /* FIXME: pr_addr */
4821 (unsigned long) endaddr,
4822 (int) size,
4823 (unsigned int) offset,
4824 filename[0] ? filename : "");
4825 }
4826 }
4827
4828 do_cleanups (cleanup);
4829 }
4830 else
4831 warning (_("unable to open /proc file '%s'"), fname1);
4832 }
4833 if (status_f || all)
4834 {
4835 sprintf (fname1, "/proc/%ld/status", pid);
4836 if ((procfile = fopen (fname1, "r")) != NULL)
4837 {
4838 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4839
4840 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4841 puts_filtered (buffer);
4842 do_cleanups (cleanup);
4843 }
4844 else
4845 warning (_("unable to open /proc file '%s'"), fname1);
4846 }
4847 if (stat_f || all)
4848 {
4849 sprintf (fname1, "/proc/%ld/stat", pid);
4850 if ((procfile = fopen (fname1, "r")) != NULL)
4851 {
4852 int itmp;
4853 char ctmp;
4854 long ltmp;
4855 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4856
4857 if (fscanf (procfile, "%d ", &itmp) > 0)
4858 printf_filtered (_("Process: %d\n"), itmp);
4859 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4860 printf_filtered (_("Exec file: %s\n"), buffer);
4861 if (fscanf (procfile, "%c ", &ctmp) > 0)
4862 printf_filtered (_("State: %c\n"), ctmp);
4863 if (fscanf (procfile, "%d ", &itmp) > 0)
4864 printf_filtered (_("Parent process: %d\n"), itmp);
4865 if (fscanf (procfile, "%d ", &itmp) > 0)
4866 printf_filtered (_("Process group: %d\n"), itmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("Session id: %d\n"), itmp);
4869 if (fscanf (procfile, "%d ", &itmp) > 0)
4870 printf_filtered (_("TTY: %d\n"), itmp);
4871 if (fscanf (procfile, "%d ", &itmp) > 0)
4872 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4873 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4874 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4875 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4876 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4877 (unsigned long) ltmp);
4878 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4879 printf_filtered (_("Minor faults, children: %lu\n"),
4880 (unsigned long) ltmp);
4881 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4882 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4883 (unsigned long) ltmp);
4884 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4885 printf_filtered (_("Major faults, children: %lu\n"),
4886 (unsigned long) ltmp);
4887 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4888 printf_filtered (_("utime: %ld\n"), ltmp);
4889 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4890 printf_filtered (_("stime: %ld\n"), ltmp);
4891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4892 printf_filtered (_("utime, children: %ld\n"), ltmp);
4893 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4894 printf_filtered (_("stime, children: %ld\n"), ltmp);
4895 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4896 printf_filtered (_("jiffies remaining in current "
4897 "time slice: %ld\n"), ltmp);
4898 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4899 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4900 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4901 printf_filtered (_("jiffies until next timeout: %lu\n"),
4902 (unsigned long) ltmp);
4903 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4904 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4905 (unsigned long) ltmp);
4906 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4907 printf_filtered (_("start time (jiffies since "
4908 "system boot): %ld\n"), ltmp);
4909 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4910 printf_filtered (_("Virtual memory size: %lu\n"),
4911 (unsigned long) ltmp);
4912 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4913 printf_filtered (_("Resident set size: %lu\n"),
4914 (unsigned long) ltmp);
4915 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4916 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4917 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4918 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4919 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4920 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4921 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4922 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4923 #if 0 /* Don't know how architecture-dependent the rest is...
4924 Anyway the signal bitmap info is available from "status". */
4925 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4926 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4927 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4928 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4929 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4930 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4932 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4934 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4935 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4936 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4937 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4938 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4939 #endif
4940 do_cleanups (cleanup);
4941 }
4942 else
4943 warning (_("unable to open /proc file '%s'"), fname1);
4944 }
4945 }
4946
4947 /* Implement the to_xfer_partial interface for memory reads using the /proc
4948 filesystem. Because we can use a single read() call for /proc, this
4949 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4950 but it doesn't support writes. */
4951
4952 static LONGEST
4953 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4954 const char *annex, gdb_byte *readbuf,
4955 const gdb_byte *writebuf,
4956 ULONGEST offset, LONGEST len)
4957 {
4958 LONGEST ret;
4959 int fd;
4960 char filename[64];
4961
4962 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4963 return 0;
4964
4965 /* Don't bother for one word. */
4966 if (len < 3 * sizeof (long))
4967 return 0;
4968
4969 /* We could keep this file open and cache it - possibly one per
4970 thread. That requires some juggling, but is even faster. */
4971 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4972 fd = open (filename, O_RDONLY | O_LARGEFILE);
4973 if (fd == -1)
4974 return 0;
4975
4976 /* If pread64 is available, use it. It's faster if the kernel
4977 supports it (only one syscall), and it's 64-bit safe even on
4978 32-bit platforms (for instance, SPARC debugging a SPARC64
4979 application). */
4980 #ifdef HAVE_PREAD64
4981 if (pread64 (fd, readbuf, len, offset) != len)
4982 #else
4983 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4984 #endif
4985 ret = 0;
4986 else
4987 ret = len;
4988
4989 close (fd);
4990 return ret;
4991 }
4992
4993
4994 /* Enumerate spufs IDs for process PID. */
4995 static LONGEST
4996 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4997 {
4998 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4999 LONGEST pos = 0;
5000 LONGEST written = 0;
5001 char path[128];
5002 DIR *dir;
5003 struct dirent *entry;
5004
5005 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5006 dir = opendir (path);
5007 if (!dir)
5008 return -1;
5009
5010 rewinddir (dir);
5011 while ((entry = readdir (dir)) != NULL)
5012 {
5013 struct stat st;
5014 struct statfs stfs;
5015 int fd;
5016
5017 fd = atoi (entry->d_name);
5018 if (!fd)
5019 continue;
5020
5021 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5022 if (stat (path, &st) != 0)
5023 continue;
5024 if (!S_ISDIR (st.st_mode))
5025 continue;
5026
5027 if (statfs (path, &stfs) != 0)
5028 continue;
5029 if (stfs.f_type != SPUFS_MAGIC)
5030 continue;
5031
5032 if (pos >= offset && pos + 4 <= offset + len)
5033 {
5034 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5035 written += 4;
5036 }
5037 pos += 4;
5038 }
5039
5040 closedir (dir);
5041 return written;
5042 }
5043
5044 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5045 object type, using the /proc file system. */
5046 static LONGEST
5047 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5048 const char *annex, gdb_byte *readbuf,
5049 const gdb_byte *writebuf,
5050 ULONGEST offset, LONGEST len)
5051 {
5052 char buf[128];
5053 int fd = 0;
5054 int ret = -1;
5055 int pid = PIDGET (inferior_ptid);
5056
5057 if (!annex)
5058 {
5059 if (!readbuf)
5060 return -1;
5061 else
5062 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5063 }
5064
5065 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5066 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5067 if (fd <= 0)
5068 return -1;
5069
5070 if (offset != 0
5071 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5072 {
5073 close (fd);
5074 return 0;
5075 }
5076
5077 if (writebuf)
5078 ret = write (fd, writebuf, (size_t) len);
5079 else if (readbuf)
5080 ret = read (fd, readbuf, (size_t) len);
5081
5082 close (fd);
5083 return ret;
5084 }
5085
5086
5087 /* Parse LINE as a signal set and add its set bits to SIGS. */
5088
5089 static void
5090 add_line_to_sigset (const char *line, sigset_t *sigs)
5091 {
5092 int len = strlen (line) - 1;
5093 const char *p;
5094 int signum;
5095
5096 if (line[len] != '\n')
5097 error (_("Could not parse signal set: %s"), line);
5098
5099 p = line;
5100 signum = len * 4;
5101 while (len-- > 0)
5102 {
5103 int digit;
5104
5105 if (*p >= '0' && *p <= '9')
5106 digit = *p - '0';
5107 else if (*p >= 'a' && *p <= 'f')
5108 digit = *p - 'a' + 10;
5109 else
5110 error (_("Could not parse signal set: %s"), line);
5111
5112 signum -= 4;
5113
5114 if (digit & 1)
5115 sigaddset (sigs, signum + 1);
5116 if (digit & 2)
5117 sigaddset (sigs, signum + 2);
5118 if (digit & 4)
5119 sigaddset (sigs, signum + 3);
5120 if (digit & 8)
5121 sigaddset (sigs, signum + 4);
5122
5123 p++;
5124 }
5125 }
5126
5127 /* Find process PID's pending signals from /proc/pid/status and set
5128 SIGS to match. */
5129
5130 void
5131 linux_proc_pending_signals (int pid, sigset_t *pending,
5132 sigset_t *blocked, sigset_t *ignored)
5133 {
5134 FILE *procfile;
5135 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5136 struct cleanup *cleanup;
5137
5138 sigemptyset (pending);
5139 sigemptyset (blocked);
5140 sigemptyset (ignored);
5141 sprintf (fname, "/proc/%d/status", pid);
5142 procfile = fopen (fname, "r");
5143 if (procfile == NULL)
5144 error (_("Could not open %s"), fname);
5145 cleanup = make_cleanup_fclose (procfile);
5146
5147 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5148 {
5149 /* Normal queued signals are on the SigPnd line in the status
5150 file. However, 2.6 kernels also have a "shared" pending
5151 queue for delivering signals to a thread group, so check for
5152 a ShdPnd line also.
5153
5154 Unfortunately some Red Hat kernels include the shared pending
5155 queue but not the ShdPnd status field. */
5156
5157 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5158 add_line_to_sigset (buffer + 8, pending);
5159 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5160 add_line_to_sigset (buffer + 8, pending);
5161 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5162 add_line_to_sigset (buffer + 8, blocked);
5163 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5164 add_line_to_sigset (buffer + 8, ignored);
5165 }
5166
5167 do_cleanups (cleanup);
5168 }
5169
5170 static LONGEST
5171 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5172 const char *annex, gdb_byte *readbuf,
5173 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5174 {
5175 gdb_assert (object == TARGET_OBJECT_OSDATA);
5176
5177 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5178 }
5179
5180 static LONGEST
5181 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5182 const char *annex, gdb_byte *readbuf,
5183 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5184 {
5185 LONGEST xfer;
5186
5187 if (object == TARGET_OBJECT_AUXV)
5188 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5189 offset, len);
5190
5191 if (object == TARGET_OBJECT_OSDATA)
5192 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5193 offset, len);
5194
5195 if (object == TARGET_OBJECT_SPU)
5196 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5197 offset, len);
5198
5199 /* GDB calculates all the addresses in possibly larget width of the address.
5200 Address width needs to be masked before its final use - either by
5201 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5202
5203 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5204
5205 if (object == TARGET_OBJECT_MEMORY)
5206 {
5207 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5208
5209 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5210 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5211 }
5212
5213 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5214 offset, len);
5215 if (xfer != 0)
5216 return xfer;
5217
5218 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5219 offset, len);
5220 }
5221
5222 /* Create a prototype generic GNU/Linux target. The client can override
5223 it with local methods. */
5224
5225 static void
5226 linux_target_install_ops (struct target_ops *t)
5227 {
5228 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5229 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5230 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5231 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5232 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5233 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5234 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5235 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5236 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5237 t->to_post_attach = linux_child_post_attach;
5238 t->to_follow_fork = linux_child_follow_fork;
5239 t->to_find_memory_regions = linux_nat_find_memory_regions;
5240 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5241
5242 super_xfer_partial = t->to_xfer_partial;
5243 t->to_xfer_partial = linux_xfer_partial;
5244 }
5245
5246 struct target_ops *
5247 linux_target (void)
5248 {
5249 struct target_ops *t;
5250
5251 t = inf_ptrace_target ();
5252 linux_target_install_ops (t);
5253
5254 return t;
5255 }
5256
5257 struct target_ops *
5258 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5259 {
5260 struct target_ops *t;
5261
5262 t = inf_ptrace_trad_target (register_u_offset);
5263 linux_target_install_ops (t);
5264
5265 return t;
5266 }
5267
5268 /* target_is_async_p implementation. */
5269
5270 static int
5271 linux_nat_is_async_p (void)
5272 {
5273 /* NOTE: palves 2008-03-21: We're only async when the user requests
5274 it explicitly with the "set target-async" command.
5275 Someday, linux will always be async. */
5276 return target_async_permitted;
5277 }
5278
5279 /* target_can_async_p implementation. */
5280
5281 static int
5282 linux_nat_can_async_p (void)
5283 {
5284 /* NOTE: palves 2008-03-21: We're only async when the user requests
5285 it explicitly with the "set target-async" command.
5286 Someday, linux will always be async. */
5287 return target_async_permitted;
5288 }
5289
5290 static int
5291 linux_nat_supports_non_stop (void)
5292 {
5293 return 1;
5294 }
5295
5296 /* True if we want to support multi-process. To be removed when GDB
5297 supports multi-exec. */
5298
5299 int linux_multi_process = 1;
5300
5301 static int
5302 linux_nat_supports_multi_process (void)
5303 {
5304 return linux_multi_process;
5305 }
5306
5307 static int
5308 linux_nat_supports_disable_randomization (void)
5309 {
5310 #ifdef HAVE_PERSONALITY
5311 return 1;
5312 #else
5313 return 0;
5314 #endif
5315 }
5316
5317 static int async_terminal_is_ours = 1;
5318
5319 /* target_terminal_inferior implementation. */
5320
5321 static void
5322 linux_nat_terminal_inferior (void)
5323 {
5324 if (!target_is_async_p ())
5325 {
5326 /* Async mode is disabled. */
5327 terminal_inferior ();
5328 return;
5329 }
5330
5331 terminal_inferior ();
5332
5333 /* Calls to target_terminal_*() are meant to be idempotent. */
5334 if (!async_terminal_is_ours)
5335 return;
5336
5337 delete_file_handler (input_fd);
5338 async_terminal_is_ours = 0;
5339 set_sigint_trap ();
5340 }
5341
5342 /* target_terminal_ours implementation. */
5343
5344 static void
5345 linux_nat_terminal_ours (void)
5346 {
5347 if (!target_is_async_p ())
5348 {
5349 /* Async mode is disabled. */
5350 terminal_ours ();
5351 return;
5352 }
5353
5354 /* GDB should never give the terminal to the inferior if the
5355 inferior is running in the background (run&, continue&, etc.),
5356 but claiming it sure should. */
5357 terminal_ours ();
5358
5359 if (async_terminal_is_ours)
5360 return;
5361
5362 clear_sigint_trap ();
5363 add_file_handler (input_fd, stdin_event_handler, 0);
5364 async_terminal_is_ours = 1;
5365 }
5366
5367 static void (*async_client_callback) (enum inferior_event_type event_type,
5368 void *context);
5369 static void *async_client_context;
5370
5371 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5372 so we notice when any child changes state, and notify the
5373 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5374 above to wait for the arrival of a SIGCHLD. */
5375
5376 static void
5377 sigchld_handler (int signo)
5378 {
5379 int old_errno = errno;
5380
5381 if (debug_linux_nat)
5382 ui_file_write_async_safe (gdb_stdlog,
5383 "sigchld\n", sizeof ("sigchld\n") - 1);
5384
5385 if (signo == SIGCHLD
5386 && linux_nat_event_pipe[0] != -1)
5387 async_file_mark (); /* Let the event loop know that there are
5388 events to handle. */
5389
5390 errno = old_errno;
5391 }
5392
5393 /* Callback registered with the target events file descriptor. */
5394
5395 static void
5396 handle_target_event (int error, gdb_client_data client_data)
5397 {
5398 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5399 }
5400
5401 /* Create/destroy the target events pipe. Returns previous state. */
5402
5403 static int
5404 linux_async_pipe (int enable)
5405 {
5406 int previous = (linux_nat_event_pipe[0] != -1);
5407
5408 if (previous != enable)
5409 {
5410 sigset_t prev_mask;
5411
5412 block_child_signals (&prev_mask);
5413
5414 if (enable)
5415 {
5416 if (pipe (linux_nat_event_pipe) == -1)
5417 internal_error (__FILE__, __LINE__,
5418 "creating event pipe failed.");
5419
5420 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5421 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5422 }
5423 else
5424 {
5425 close (linux_nat_event_pipe[0]);
5426 close (linux_nat_event_pipe[1]);
5427 linux_nat_event_pipe[0] = -1;
5428 linux_nat_event_pipe[1] = -1;
5429 }
5430
5431 restore_child_signals_mask (&prev_mask);
5432 }
5433
5434 return previous;
5435 }
5436
5437 /* target_async implementation. */
5438
5439 static void
5440 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5441 void *context), void *context)
5442 {
5443 if (callback != NULL)
5444 {
5445 async_client_callback = callback;
5446 async_client_context = context;
5447 if (!linux_async_pipe (1))
5448 {
5449 add_file_handler (linux_nat_event_pipe[0],
5450 handle_target_event, NULL);
5451 /* There may be pending events to handle. Tell the event loop
5452 to poll them. */
5453 async_file_mark ();
5454 }
5455 }
5456 else
5457 {
5458 async_client_callback = callback;
5459 async_client_context = context;
5460 delete_file_handler (linux_nat_event_pipe[0]);
5461 linux_async_pipe (0);
5462 }
5463 return;
5464 }
5465
5466 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5467 event came out. */
5468
5469 static int
5470 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5471 {
5472 if (!lwp->stopped)
5473 {
5474 ptid_t ptid = lwp->ptid;
5475
5476 if (debug_linux_nat)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "LNSL: running -> suspending %s\n",
5479 target_pid_to_str (lwp->ptid));
5480
5481
5482 if (lwp->last_resume_kind == resume_stop)
5483 {
5484 if (debug_linux_nat)
5485 fprintf_unfiltered (gdb_stdlog,
5486 "linux-nat: already stopping LWP %ld at "
5487 "GDB's request\n",
5488 ptid_get_lwp (lwp->ptid));
5489 return 0;
5490 }
5491
5492 stop_callback (lwp, NULL);
5493 lwp->last_resume_kind = resume_stop;
5494 }
5495 else
5496 {
5497 /* Already known to be stopped; do nothing. */
5498
5499 if (debug_linux_nat)
5500 {
5501 if (find_thread_ptid (lwp->ptid)->stop_requested)
5502 fprintf_unfiltered (gdb_stdlog,
5503 "LNSL: already stopped/stop_requested %s\n",
5504 target_pid_to_str (lwp->ptid));
5505 else
5506 fprintf_unfiltered (gdb_stdlog,
5507 "LNSL: already stopped/no "
5508 "stop_requested yet %s\n",
5509 target_pid_to_str (lwp->ptid));
5510 }
5511 }
5512 return 0;
5513 }
5514
5515 static void
5516 linux_nat_stop (ptid_t ptid)
5517 {
5518 if (non_stop)
5519 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5520 else
5521 linux_ops->to_stop (ptid);
5522 }
5523
5524 static void
5525 linux_nat_close (int quitting)
5526 {
5527 /* Unregister from the event loop. */
5528 if (target_is_async_p ())
5529 target_async (NULL, 0);
5530
5531 if (linux_ops->to_close)
5532 linux_ops->to_close (quitting);
5533 }
5534
5535 /* When requests are passed down from the linux-nat layer to the
5536 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5537 used. The address space pointer is stored in the inferior object,
5538 but the common code that is passed such ptid can't tell whether
5539 lwpid is a "main" process id or not (it assumes so). We reverse
5540 look up the "main" process id from the lwp here. */
5541
5542 struct address_space *
5543 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5544 {
5545 struct lwp_info *lwp;
5546 struct inferior *inf;
5547 int pid;
5548
5549 pid = GET_LWP (ptid);
5550 if (GET_LWP (ptid) == 0)
5551 {
5552 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5553 tgid. */
5554 lwp = find_lwp_pid (ptid);
5555 pid = GET_PID (lwp->ptid);
5556 }
5557 else
5558 {
5559 /* A (pid,lwpid,0) ptid. */
5560 pid = GET_PID (ptid);
5561 }
5562
5563 inf = find_inferior_pid (pid);
5564 gdb_assert (inf != NULL);
5565 return inf->aspace;
5566 }
5567
5568 int
5569 linux_nat_core_of_thread_1 (ptid_t ptid)
5570 {
5571 struct cleanup *back_to;
5572 char *filename;
5573 FILE *f;
5574 char *content = NULL;
5575 char *p;
5576 char *ts = 0;
5577 int content_read = 0;
5578 int i;
5579 int core;
5580
5581 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5582 GET_PID (ptid), GET_LWP (ptid));
5583 back_to = make_cleanup (xfree, filename);
5584
5585 f = fopen (filename, "r");
5586 if (!f)
5587 {
5588 do_cleanups (back_to);
5589 return -1;
5590 }
5591
5592 make_cleanup_fclose (f);
5593
5594 for (;;)
5595 {
5596 int n;
5597
5598 content = xrealloc (content, content_read + 1024);
5599 n = fread (content + content_read, 1, 1024, f);
5600 content_read += n;
5601 if (n < 1024)
5602 {
5603 content[content_read] = '\0';
5604 break;
5605 }
5606 }
5607
5608 make_cleanup (xfree, content);
5609
5610 p = strchr (content, '(');
5611
5612 /* Skip ")". */
5613 if (p != NULL)
5614 p = strchr (p, ')');
5615 if (p != NULL)
5616 p++;
5617
5618 /* If the first field after program name has index 0, then core number is
5619 the field with index 36. There's no constant for that anywhere. */
5620 if (p != NULL)
5621 p = strtok_r (p, " ", &ts);
5622 for (i = 0; p != NULL && i != 36; ++i)
5623 p = strtok_r (NULL, " ", &ts);
5624
5625 if (p == NULL || sscanf (p, "%d", &core) == 0)
5626 core = -1;
5627
5628 do_cleanups (back_to);
5629
5630 return core;
5631 }
5632
5633 /* Return the cached value of the processor core for thread PTID. */
5634
5635 int
5636 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5637 {
5638 struct lwp_info *info = find_lwp_pid (ptid);
5639
5640 if (info)
5641 return info->core;
5642 return -1;
5643 }
5644
5645 void
5646 linux_nat_add_target (struct target_ops *t)
5647 {
5648 /* Save the provided single-threaded target. We save this in a separate
5649 variable because another target we've inherited from (e.g. inf-ptrace)
5650 may have saved a pointer to T; we want to use it for the final
5651 process stratum target. */
5652 linux_ops_saved = *t;
5653 linux_ops = &linux_ops_saved;
5654
5655 /* Override some methods for multithreading. */
5656 t->to_create_inferior = linux_nat_create_inferior;
5657 t->to_attach = linux_nat_attach;
5658 t->to_detach = linux_nat_detach;
5659 t->to_resume = linux_nat_resume;
5660 t->to_wait = linux_nat_wait;
5661 t->to_pass_signals = linux_nat_pass_signals;
5662 t->to_xfer_partial = linux_nat_xfer_partial;
5663 t->to_kill = linux_nat_kill;
5664 t->to_mourn_inferior = linux_nat_mourn_inferior;
5665 t->to_thread_alive = linux_nat_thread_alive;
5666 t->to_pid_to_str = linux_nat_pid_to_str;
5667 t->to_thread_name = linux_nat_thread_name;
5668 t->to_has_thread_control = tc_schedlock;
5669 t->to_thread_address_space = linux_nat_thread_address_space;
5670 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5671 t->to_stopped_data_address = linux_nat_stopped_data_address;
5672
5673 t->to_can_async_p = linux_nat_can_async_p;
5674 t->to_is_async_p = linux_nat_is_async_p;
5675 t->to_supports_non_stop = linux_nat_supports_non_stop;
5676 t->to_async = linux_nat_async;
5677 t->to_terminal_inferior = linux_nat_terminal_inferior;
5678 t->to_terminal_ours = linux_nat_terminal_ours;
5679 t->to_close = linux_nat_close;
5680
5681 /* Methods for non-stop support. */
5682 t->to_stop = linux_nat_stop;
5683
5684 t->to_supports_multi_process = linux_nat_supports_multi_process;
5685
5686 t->to_supports_disable_randomization
5687 = linux_nat_supports_disable_randomization;
5688
5689 t->to_core_of_thread = linux_nat_core_of_thread;
5690
5691 /* We don't change the stratum; this target will sit at
5692 process_stratum and thread_db will set at thread_stratum. This
5693 is a little strange, since this is a multi-threaded-capable
5694 target, but we want to be on the stack below thread_db, and we
5695 also want to be used for single-threaded processes. */
5696
5697 add_target (t);
5698 }
5699
5700 /* Register a method to call whenever a new thread is attached. */
5701 void
5702 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5703 {
5704 /* Save the pointer. We only support a single registered instance
5705 of the GNU/Linux native target, so we do not need to map this to
5706 T. */
5707 linux_nat_new_thread = new_thread;
5708 }
5709
5710 /* Register a method that converts a siginfo object between the layout
5711 that ptrace returns, and the layout in the architecture of the
5712 inferior. */
5713 void
5714 linux_nat_set_siginfo_fixup (struct target_ops *t,
5715 int (*siginfo_fixup) (struct siginfo *,
5716 gdb_byte *,
5717 int))
5718 {
5719 /* Save the pointer. */
5720 linux_nat_siginfo_fixup = siginfo_fixup;
5721 }
5722
5723 /* Return the saved siginfo associated with PTID. */
5724 struct siginfo *
5725 linux_nat_get_siginfo (ptid_t ptid)
5726 {
5727 struct lwp_info *lp = find_lwp_pid (ptid);
5728
5729 gdb_assert (lp != NULL);
5730
5731 return &lp->siginfo;
5732 }
5733
5734 /* Provide a prototype to silence -Wmissing-prototypes. */
5735 extern initialize_file_ftype _initialize_linux_nat;
5736
5737 void
5738 _initialize_linux_nat (void)
5739 {
5740 add_info ("proc", linux_nat_info_proc_cmd, _("\
5741 Show /proc process information about any running process.\n\
5742 Specify any process id, or use the program being debugged by default.\n\
5743 Specify any of the following keywords for detailed info:\n\
5744 mappings -- list of mapped memory regions.\n\
5745 stat -- list a bunch of random process info.\n\
5746 status -- list a different bunch of random process info.\n\
5747 all -- list all available /proc info."));
5748
5749 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5750 &debug_linux_nat, _("\
5751 Set debugging of GNU/Linux lwp module."), _("\
5752 Show debugging of GNU/Linux lwp module."), _("\
5753 Enables printf debugging output."),
5754 NULL,
5755 show_debug_linux_nat,
5756 &setdebuglist, &showdebuglist);
5757
5758 /* Save this mask as the default. */
5759 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5760
5761 /* Install a SIGCHLD handler. */
5762 sigchld_action.sa_handler = sigchld_handler;
5763 sigemptyset (&sigchld_action.sa_mask);
5764 sigchld_action.sa_flags = SA_RESTART;
5765
5766 /* Make it the default. */
5767 sigaction (SIGCHLD, &sigchld_action, NULL);
5768
5769 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5770 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5771 sigdelset (&suspend_mask, SIGCHLD);
5772
5773 sigemptyset (&blocked_mask);
5774 }
5775 \f
5776
5777 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5778 the GNU/Linux Threads library and therefore doesn't really belong
5779 here. */
5780
5781 /* Read variable NAME in the target and return its value if found.
5782 Otherwise return zero. It is assumed that the type of the variable
5783 is `int'. */
5784
5785 static int
5786 get_signo (const char *name)
5787 {
5788 struct minimal_symbol *ms;
5789 int signo;
5790
5791 ms = lookup_minimal_symbol (name, NULL, NULL);
5792 if (ms == NULL)
5793 return 0;
5794
5795 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5796 sizeof (signo)) != 0)
5797 return 0;
5798
5799 return signo;
5800 }
5801
5802 /* Return the set of signals used by the threads library in *SET. */
5803
5804 void
5805 lin_thread_get_thread_signals (sigset_t *set)
5806 {
5807 struct sigaction action;
5808 int restart, cancel;
5809
5810 sigemptyset (&blocked_mask);
5811 sigemptyset (set);
5812
5813 restart = get_signo ("__pthread_sig_restart");
5814 cancel = get_signo ("__pthread_sig_cancel");
5815
5816 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5817 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5818 not provide any way for the debugger to query the signal numbers -
5819 fortunately they don't change! */
5820
5821 if (restart == 0)
5822 restart = __SIGRTMIN;
5823
5824 if (cancel == 0)
5825 cancel = __SIGRTMIN + 1;
5826
5827 sigaddset (set, restart);
5828 sigaddset (set, cancel);
5829
5830 /* The GNU/Linux Threads library makes terminating threads send a
5831 special "cancel" signal instead of SIGCHLD. Make sure we catch
5832 those (to prevent them from terminating GDB itself, which is
5833 likely to be their default action) and treat them the same way as
5834 SIGCHLD. */
5835
5836 action.sa_handler = sigchld_handler;
5837 sigemptyset (&action.sa_mask);
5838 action.sa_flags = SA_RESTART;
5839 sigaction (cancel, &action, NULL);
5840
5841 /* We block the "cancel" signal throughout this code ... */
5842 sigaddset (&blocked_mask, cancel);
5843 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5844
5845 /* ... except during a sigsuspend. */
5846 sigdelset (&suspend_mask, cancel);
5847 }
This page took 0.157358 seconds and 4 git commands to generate.