* python/py-breakpoint.c (gdbpy_breakpoint_created): Fix
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-ptrace.h"
40 #include "auxv.h"
41 #include <sys/param.h> /* for MAXPATHLEN */
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include "gdbthread.h" /* for struct thread_info etc. */
48 #include "gdb_stat.h" /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include "gdb_dirent.h"
56 #include "xml-support.h"
57 #include "terminal.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60
61 #ifndef SPUFS_MAGIC
62 #define SPUFS_MAGIC 0x23c9b64e
63 #endif
64
65 #ifdef HAVE_PERSONALITY
66 # include <sys/personality.h>
67 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
68 # define ADDR_NO_RANDOMIZE 0x0040000
69 # endif
70 #endif /* HAVE_PERSONALITY */
71
72 /* This comment documents high-level logic of this file.
73
74 Waiting for events in sync mode
75 ===============================
76
77 When waiting for an event in a specific thread, we just use waitpid, passing
78 the specific pid, and not passing WNOHANG.
79
80 When waiting for an event in all threads, waitpid is not quite good. Prior to
81 version 2.4, Linux can either wait for event in main thread, or in secondary
82 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
83 miss an event. The solution is to use non-blocking waitpid, together with
84 sigsuspend. First, we use non-blocking waitpid to get an event in the main
85 process, if any. Second, we use non-blocking waitpid with the __WCLONED
86 flag to check for events in cloned processes. If nothing is found, we use
87 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
88 happened to a child process -- and SIGCHLD will be delivered both for events
89 in main debugged process and in cloned processes. As soon as we know there's
90 an event, we get back to calling nonblocking waitpid with and without
91 __WCLONED.
92
93 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
94 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
95 blocked, the signal becomes pending and sigsuspend immediately
96 notices it and returns.
97
98 Waiting for events in async mode
99 ================================
100
101 In async mode, GDB should always be ready to handle both user input
102 and target events, so neither blocking waitpid nor sigsuspend are
103 viable options. Instead, we should asynchronously notify the GDB main
104 event loop whenever there's an unprocessed event from the target. We
105 detect asynchronous target events by handling SIGCHLD signals. To
106 notify the event loop about target events, the self-pipe trick is used
107 --- a pipe is registered as waitable event source in the event loop,
108 the event loop select/poll's on the read end of this pipe (as well on
109 other event sources, e.g., stdin), and the SIGCHLD handler writes a
110 byte to this pipe. This is more portable than relying on
111 pselect/ppoll, since on kernels that lack those syscalls, libc
112 emulates them with select/poll+sigprocmask, and that is racy
113 (a.k.a. plain broken).
114
115 Obviously, if we fail to notify the event loop if there's a target
116 event, it's bad. OTOH, if we notify the event loop when there's no
117 event from the target, linux_nat_wait will detect that there's no real
118 event to report, and return event of type TARGET_WAITKIND_IGNORE.
119 This is mostly harmless, but it will waste time and is better avoided.
120
121 The main design point is that every time GDB is outside linux-nat.c,
122 we have a SIGCHLD handler installed that is called when something
123 happens to the target and notifies the GDB event loop. Whenever GDB
124 core decides to handle the event, and calls into linux-nat.c, we
125 process things as in sync mode, except that the we never block in
126 sigsuspend.
127
128 While processing an event, we may end up momentarily blocked in
129 waitpid calls. Those waitpid calls, while blocking, are guarantied to
130 return quickly. E.g., in all-stop mode, before reporting to the core
131 that an LWP hit a breakpoint, all LWPs are stopped by sending them
132 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
133 Note that this is different from blocking indefinitely waiting for the
134 next event --- here, we're already handling an event.
135
136 Use of signals
137 ==============
138
139 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
140 signal is not entirely significant; we just need for a signal to be delivered,
141 so that we can intercept it. SIGSTOP's advantage is that it can not be
142 blocked. A disadvantage is that it is not a real-time signal, so it can only
143 be queued once; we do not keep track of other sources of SIGSTOP.
144
145 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
146 use them, because they have special behavior when the signal is generated -
147 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
148 kills the entire thread group.
149
150 A delivered SIGSTOP would stop the entire thread group, not just the thread we
151 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
152 cancel it (by PTRACE_CONT without passing SIGSTOP).
153
154 We could use a real-time signal instead. This would solve those problems; we
155 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
156 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
157 generates it, and there are races with trying to find a signal that is not
158 blocked. */
159
160 #ifndef O_LARGEFILE
161 #define O_LARGEFILE 0
162 #endif
163
164 /* Unlike other extended result codes, WSTOPSIG (status) on
165 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
166 instead SIGTRAP with bit 7 set. */
167 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
168
169 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
170 the use of the multi-threaded target. */
171 static struct target_ops *linux_ops;
172 static struct target_ops linux_ops_saved;
173
174 /* The method to call, if any, when a new thread is attached. */
175 static void (*linux_nat_new_thread) (ptid_t);
176
177 /* The method to call, if any, when the siginfo object needs to be
178 converted between the layout returned by ptrace, and the layout in
179 the architecture of the inferior. */
180 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
181 gdb_byte *,
182 int);
183
184 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
185 Called by our to_xfer_partial. */
186 static LONGEST (*super_xfer_partial) (struct target_ops *,
187 enum target_object,
188 const char *, gdb_byte *,
189 const gdb_byte *,
190 ULONGEST, LONGEST);
191
192 static int debug_linux_nat;
193 static void
194 show_debug_linux_nat (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
198 value);
199 }
200
201 static int debug_linux_nat_async = 0;
202 static void
203 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file,
207 _("Debugging of GNU/Linux async lwp module is %s.\n"),
208 value);
209 }
210
211 static int disable_randomization = 1;
212
213 static void
214 show_disable_randomization (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 #ifdef HAVE_PERSONALITY
218 fprintf_filtered (file,
219 _("Disabling randomization of debuggee's "
220 "virtual address space is %s.\n"),
221 value);
222 #else /* !HAVE_PERSONALITY */
223 fputs_filtered (_("Disabling randomization of debuggee's "
224 "virtual address space is unsupported on\n"
225 "this platform.\n"), file);
226 #endif /* !HAVE_PERSONALITY */
227 }
228
229 static void
230 set_disable_randomization (char *args, int from_tty,
231 struct cmd_list_element *c)
232 {
233 #ifndef HAVE_PERSONALITY
234 error (_("Disabling randomization of debuggee's "
235 "virtual address space is unsupported on\n"
236 "this platform."));
237 #endif /* !HAVE_PERSONALITY */
238 }
239
240 struct simple_pid_list
241 {
242 int pid;
243 int status;
244 struct simple_pid_list *next;
245 };
246 struct simple_pid_list *stopped_pids;
247
248 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
249 can not be used, 1 if it can. */
250
251 static int linux_supports_tracefork_flag = -1;
252
253 /* This variable is a tri-state flag: -1 for unknown, 0 if
254 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
255
256 static int linux_supports_tracesysgood_flag = -1;
257
258 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
259 PTRACE_O_TRACEVFORKDONE. */
260
261 static int linux_supports_tracevforkdone_flag = -1;
262
263 /* Async mode support. */
264
265 /* Zero if the async mode, although enabled, is masked, which means
266 linux_nat_wait should behave as if async mode was off. */
267 static int linux_nat_async_mask_value = 1;
268
269 /* Stores the current used ptrace() options. */
270 static int current_ptrace_options = 0;
271
272 /* The read/write ends of the pipe registered as waitable file in the
273 event loop. */
274 static int linux_nat_event_pipe[2] = { -1, -1 };
275
276 /* Flush the event pipe. */
277
278 static void
279 async_file_flush (void)
280 {
281 int ret;
282 char buf;
283
284 do
285 {
286 ret = read (linux_nat_event_pipe[0], &buf, 1);
287 }
288 while (ret >= 0 || (ret == -1 && errno == EINTR));
289 }
290
291 /* Put something (anything, doesn't matter what, or how much) in event
292 pipe, so that the select/poll in the event-loop realizes we have
293 something to process. */
294
295 static void
296 async_file_mark (void)
297 {
298 int ret;
299
300 /* It doesn't really matter what the pipe contains, as long we end
301 up with something in it. Might as well flush the previous
302 left-overs. */
303 async_file_flush ();
304
305 do
306 {
307 ret = write (linux_nat_event_pipe[1], "+", 1);
308 }
309 while (ret == -1 && errno == EINTR);
310
311 /* Ignore EAGAIN. If the pipe is full, the event loop will already
312 be awakened anyway. */
313 }
314
315 static void linux_nat_async (void (*callback)
316 (enum inferior_event_type event_type,
317 void *context),
318 void *context);
319 static int linux_nat_async_mask (int mask);
320 static int kill_lwp (int lwpid, int signo);
321
322 static int stop_callback (struct lwp_info *lp, void *data);
323
324 static void block_child_signals (sigset_t *prev_mask);
325 static void restore_child_signals_mask (sigset_t *prev_mask);
326
327 struct lwp_info;
328 static struct lwp_info *add_lwp (ptid_t ptid);
329 static void purge_lwp_list (int pid);
330 static struct lwp_info *find_lwp_pid (ptid_t ptid);
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 static void
365 linux_record_stopped_pid (int pid, int status)
366 {
367 add_to_pid_list (&stopped_pids, pid, status);
368 }
369
370 \f
371 /* A helper function for linux_test_for_tracefork, called after fork (). */
372
373 static void
374 linux_tracefork_child (void)
375 {
376 ptrace (PTRACE_TRACEME, 0, 0, 0);
377 kill (getpid (), SIGSTOP);
378 fork ();
379 _exit (0);
380 }
381
382 /* Wrapper function for waitpid which handles EINTR. */
383
384 static int
385 my_waitpid (int pid, int *statusp, int flags)
386 {
387 int ret;
388
389 do
390 {
391 ret = waitpid (pid, statusp, flags);
392 }
393 while (ret == -1 && errno == EINTR);
394
395 return ret;
396 }
397
398 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
399
400 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
401 we know that the feature is not available. This may change the tracing
402 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
403
404 However, if it succeeds, we don't know for sure that the feature is
405 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
406 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
407 fork tracing, and let it fork. If the process exits, we assume that we
408 can't use TRACEFORK; if we get the fork notification, and we can extract
409 the new child's PID, then we assume that we can. */
410
411 static void
412 linux_test_for_tracefork (int original_pid)
413 {
414 int child_pid, ret, status;
415 long second_pid;
416 sigset_t prev_mask;
417
418 /* We don't want those ptrace calls to be interrupted. */
419 block_child_signals (&prev_mask);
420
421 linux_supports_tracefork_flag = 0;
422 linux_supports_tracevforkdone_flag = 0;
423
424 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
425 if (ret != 0)
426 {
427 restore_child_signals_mask (&prev_mask);
428 return;
429 }
430
431 child_pid = fork ();
432 if (child_pid == -1)
433 perror_with_name (("fork"));
434
435 if (child_pid == 0)
436 linux_tracefork_child ();
437
438 ret = my_waitpid (child_pid, &status, 0);
439 if (ret == -1)
440 perror_with_name (("waitpid"));
441 else if (ret != child_pid)
442 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
443 if (! WIFSTOPPED (status))
444 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
445 status);
446
447 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
448 if (ret != 0)
449 {
450 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
451 if (ret != 0)
452 {
453 warning (_("linux_test_for_tracefork: failed to kill child"));
454 restore_child_signals_mask (&prev_mask);
455 return;
456 }
457
458 ret = my_waitpid (child_pid, &status, 0);
459 if (ret != child_pid)
460 warning (_("linux_test_for_tracefork: failed "
461 "to wait for killed child"));
462 else if (!WIFSIGNALED (status))
463 warning (_("linux_test_for_tracefork: unexpected "
464 "wait status 0x%x from killed child"), status);
465
466 restore_child_signals_mask (&prev_mask);
467 return;
468 }
469
470 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
471 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
472 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
473 linux_supports_tracevforkdone_flag = (ret == 0);
474
475 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
476 if (ret != 0)
477 warning (_("linux_test_for_tracefork: failed to resume child"));
478
479 ret = my_waitpid (child_pid, &status, 0);
480
481 if (ret == child_pid && WIFSTOPPED (status)
482 && status >> 16 == PTRACE_EVENT_FORK)
483 {
484 second_pid = 0;
485 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
486 if (ret == 0 && second_pid != 0)
487 {
488 int second_status;
489
490 linux_supports_tracefork_flag = 1;
491 my_waitpid (second_pid, &second_status, 0);
492 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
493 if (ret != 0)
494 warning (_("linux_test_for_tracefork: "
495 "failed to kill second child"));
496 my_waitpid (second_pid, &status, 0);
497 }
498 }
499 else
500 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
501 "(%d, status 0x%x)"), ret, status);
502
503 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
504 if (ret != 0)
505 warning (_("linux_test_for_tracefork: failed to kill child"));
506 my_waitpid (child_pid, &status, 0);
507
508 restore_child_signals_mask (&prev_mask);
509 }
510
511 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
512
513 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
514 we know that the feature is not available. This may change the tracing
515 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
516
517 static void
518 linux_test_for_tracesysgood (int original_pid)
519 {
520 int ret;
521 sigset_t prev_mask;
522
523 /* We don't want those ptrace calls to be interrupted. */
524 block_child_signals (&prev_mask);
525
526 linux_supports_tracesysgood_flag = 0;
527
528 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
529 if (ret != 0)
530 goto out;
531
532 linux_supports_tracesysgood_flag = 1;
533 out:
534 restore_child_signals_mask (&prev_mask);
535 }
536
537 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
538 This function also sets linux_supports_tracesysgood_flag. */
539
540 static int
541 linux_supports_tracesysgood (int pid)
542 {
543 if (linux_supports_tracesysgood_flag == -1)
544 linux_test_for_tracesysgood (pid);
545 return linux_supports_tracesysgood_flag;
546 }
547
548 /* Return non-zero iff we have tracefork functionality available.
549 This function also sets linux_supports_tracefork_flag. */
550
551 static int
552 linux_supports_tracefork (int pid)
553 {
554 if (linux_supports_tracefork_flag == -1)
555 linux_test_for_tracefork (pid);
556 return linux_supports_tracefork_flag;
557 }
558
559 static int
560 linux_supports_tracevforkdone (int pid)
561 {
562 if (linux_supports_tracefork_flag == -1)
563 linux_test_for_tracefork (pid);
564 return linux_supports_tracevforkdone_flag;
565 }
566
567 static void
568 linux_enable_tracesysgood (ptid_t ptid)
569 {
570 int pid = ptid_get_lwp (ptid);
571
572 if (pid == 0)
573 pid = ptid_get_pid (ptid);
574
575 if (linux_supports_tracesysgood (pid) == 0)
576 return;
577
578 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
579
580 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
581 }
582
583 \f
584 void
585 linux_enable_event_reporting (ptid_t ptid)
586 {
587 int pid = ptid_get_lwp (ptid);
588
589 if (pid == 0)
590 pid = ptid_get_pid (ptid);
591
592 if (! linux_supports_tracefork (pid))
593 return;
594
595 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
596 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
597
598 if (linux_supports_tracevforkdone (pid))
599 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
600
601 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
602 read-only process state. */
603
604 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
605 }
606
607 static void
608 linux_child_post_attach (int pid)
609 {
610 linux_enable_event_reporting (pid_to_ptid (pid));
611 check_for_thread_db ();
612 linux_enable_tracesysgood (pid_to_ptid (pid));
613 }
614
615 static void
616 linux_child_post_startup_inferior (ptid_t ptid)
617 {
618 linux_enable_event_reporting (ptid);
619 check_for_thread_db ();
620 linux_enable_tracesysgood (ptid);
621 }
622
623 static int
624 linux_child_follow_fork (struct target_ops *ops, int follow_child)
625 {
626 sigset_t prev_mask;
627 int has_vforked;
628 int parent_pid, child_pid;
629
630 block_child_signals (&prev_mask);
631
632 has_vforked = (inferior_thread ()->pending_follow.kind
633 == TARGET_WAITKIND_VFORKED);
634 parent_pid = ptid_get_lwp (inferior_ptid);
635 if (parent_pid == 0)
636 parent_pid = ptid_get_pid (inferior_ptid);
637 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
638
639 if (!detach_fork)
640 linux_enable_event_reporting (pid_to_ptid (child_pid));
641
642 if (has_vforked
643 && !non_stop /* Non-stop always resumes both branches. */
644 && (!target_is_async_p () || sync_execution)
645 && !(follow_child || detach_fork || sched_multi))
646 {
647 /* The parent stays blocked inside the vfork syscall until the
648 child execs or exits. If we don't let the child run, then
649 the parent stays blocked. If we're telling the parent to run
650 in the foreground, the user will not be able to ctrl-c to get
651 back the terminal, effectively hanging the debug session. */
652 fprintf_filtered (gdb_stderr, _("\
653 Can not resume the parent process over vfork in the foreground while\n\
654 holding the child stopped. Try \"set detach-on-fork\" or \
655 \"set schedule-multiple\".\n"));
656 /* FIXME output string > 80 columns. */
657 return 1;
658 }
659
660 if (! follow_child)
661 {
662 struct lwp_info *child_lp = NULL;
663
664 /* We're already attached to the parent, by default. */
665
666 /* Detach new forked process? */
667 if (detach_fork)
668 {
669 /* Before detaching from the child, remove all breakpoints
670 from it. If we forked, then this has already been taken
671 care of by infrun.c. If we vforked however, any
672 breakpoint inserted in the parent is visible in the
673 child, even those added while stopped in a vfork
674 catchpoint. This will remove the breakpoints from the
675 parent also, but they'll be reinserted below. */
676 if (has_vforked)
677 {
678 /* keep breakpoints list in sync. */
679 remove_breakpoints_pid (GET_PID (inferior_ptid));
680 }
681
682 if (info_verbose || debug_linux_nat)
683 {
684 target_terminal_ours ();
685 fprintf_filtered (gdb_stdlog,
686 "Detaching after fork from "
687 "child process %d.\n",
688 child_pid);
689 }
690
691 ptrace (PTRACE_DETACH, child_pid, 0, 0);
692 }
693 else
694 {
695 struct inferior *parent_inf, *child_inf;
696 struct cleanup *old_chain;
697
698 /* Add process to GDB's tables. */
699 child_inf = add_inferior (child_pid);
700
701 parent_inf = current_inferior ();
702 child_inf->attach_flag = parent_inf->attach_flag;
703 copy_terminal_info (child_inf, parent_inf);
704
705 old_chain = save_inferior_ptid ();
706 save_current_program_space ();
707
708 inferior_ptid = ptid_build (child_pid, child_pid, 0);
709 add_thread (inferior_ptid);
710 child_lp = add_lwp (inferior_ptid);
711 child_lp->stopped = 1;
712 child_lp->resumed = 1;
713
714 /* If this is a vfork child, then the address-space is
715 shared with the parent. */
716 if (has_vforked)
717 {
718 child_inf->pspace = parent_inf->pspace;
719 child_inf->aspace = parent_inf->aspace;
720
721 /* The parent will be frozen until the child is done
722 with the shared region. Keep track of the
723 parent. */
724 child_inf->vfork_parent = parent_inf;
725 child_inf->pending_detach = 0;
726 parent_inf->vfork_child = child_inf;
727 parent_inf->pending_detach = 0;
728 }
729 else
730 {
731 child_inf->aspace = new_address_space ();
732 child_inf->pspace = add_program_space (child_inf->aspace);
733 child_inf->removable = 1;
734 set_current_program_space (child_inf->pspace);
735 clone_program_space (child_inf->pspace, parent_inf->pspace);
736
737 /* Let the shared library layer (solib-svr4) learn about
738 this new process, relocate the cloned exec, pull in
739 shared libraries, and install the solib event
740 breakpoint. If a "cloned-VM" event was propagated
741 better throughout the core, this wouldn't be
742 required. */
743 solib_create_inferior_hook (0);
744 }
745
746 /* Let the thread_db layer learn about this new process. */
747 check_for_thread_db ();
748
749 do_cleanups (old_chain);
750 }
751
752 if (has_vforked)
753 {
754 struct lwp_info *lp;
755 struct inferior *parent_inf;
756
757 parent_inf = current_inferior ();
758
759 /* If we detached from the child, then we have to be careful
760 to not insert breakpoints in the parent until the child
761 is done with the shared memory region. However, if we're
762 staying attached to the child, then we can and should
763 insert breakpoints, so that we can debug it. A
764 subsequent child exec or exit is enough to know when does
765 the child stops using the parent's address space. */
766 parent_inf->waiting_for_vfork_done = detach_fork;
767 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
768
769 lp = find_lwp_pid (pid_to_ptid (parent_pid));
770 gdb_assert (linux_supports_tracefork_flag >= 0);
771 if (linux_supports_tracevforkdone (0))
772 {
773 if (debug_linux_nat)
774 fprintf_unfiltered (gdb_stdlog,
775 "LCFF: waiting for VFORK_DONE on %d\n",
776 parent_pid);
777
778 lp->stopped = 1;
779 lp->resumed = 1;
780
781 /* We'll handle the VFORK_DONE event like any other
782 event, in target_wait. */
783 }
784 else
785 {
786 /* We can't insert breakpoints until the child has
787 finished with the shared memory region. We need to
788 wait until that happens. Ideal would be to just
789 call:
790 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
791 - waitpid (parent_pid, &status, __WALL);
792 However, most architectures can't handle a syscall
793 being traced on the way out if it wasn't traced on
794 the way in.
795
796 We might also think to loop, continuing the child
797 until it exits or gets a SIGTRAP. One problem is
798 that the child might call ptrace with PTRACE_TRACEME.
799
800 There's no simple and reliable way to figure out when
801 the vforked child will be done with its copy of the
802 shared memory. We could step it out of the syscall,
803 two instructions, let it go, and then single-step the
804 parent once. When we have hardware single-step, this
805 would work; with software single-step it could still
806 be made to work but we'd have to be able to insert
807 single-step breakpoints in the child, and we'd have
808 to insert -just- the single-step breakpoint in the
809 parent. Very awkward.
810
811 In the end, the best we can do is to make sure it
812 runs for a little while. Hopefully it will be out of
813 range of any breakpoints we reinsert. Usually this
814 is only the single-step breakpoint at vfork's return
815 point. */
816
817 if (debug_linux_nat)
818 fprintf_unfiltered (gdb_stdlog,
819 "LCFF: no VFORK_DONE "
820 "support, sleeping a bit\n");
821
822 usleep (10000);
823
824 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
825 and leave it pending. The next linux_nat_resume call
826 will notice a pending event, and bypasses actually
827 resuming the inferior. */
828 lp->status = 0;
829 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
830 lp->stopped = 0;
831 lp->resumed = 1;
832
833 /* If we're in async mode, need to tell the event loop
834 there's something here to process. */
835 if (target_can_async_p ())
836 async_file_mark ();
837 }
838 }
839 }
840 else
841 {
842 struct inferior *parent_inf, *child_inf;
843 struct lwp_info *lp;
844 struct program_space *parent_pspace;
845
846 if (info_verbose || debug_linux_nat)
847 {
848 target_terminal_ours ();
849 if (has_vforked)
850 fprintf_filtered (gdb_stdlog,
851 _("Attaching after process %d "
852 "vfork to child process %d.\n"),
853 parent_pid, child_pid);
854 else
855 fprintf_filtered (gdb_stdlog,
856 _("Attaching after process %d "
857 "fork to child process %d.\n"),
858 parent_pid, child_pid);
859 }
860
861 /* Add the new inferior first, so that the target_detach below
862 doesn't unpush the target. */
863
864 child_inf = add_inferior (child_pid);
865
866 parent_inf = current_inferior ();
867 child_inf->attach_flag = parent_inf->attach_flag;
868 copy_terminal_info (child_inf, parent_inf);
869
870 parent_pspace = parent_inf->pspace;
871
872 /* If we're vforking, we want to hold on to the parent until the
873 child exits or execs. At child exec or exit time we can
874 remove the old breakpoints from the parent and detach or
875 resume debugging it. Otherwise, detach the parent now; we'll
876 want to reuse it's program/address spaces, but we can't set
877 them to the child before removing breakpoints from the
878 parent, otherwise, the breakpoints module could decide to
879 remove breakpoints from the wrong process (since they'd be
880 assigned to the same address space). */
881
882 if (has_vforked)
883 {
884 gdb_assert (child_inf->vfork_parent == NULL);
885 gdb_assert (parent_inf->vfork_child == NULL);
886 child_inf->vfork_parent = parent_inf;
887 child_inf->pending_detach = 0;
888 parent_inf->vfork_child = child_inf;
889 parent_inf->pending_detach = detach_fork;
890 parent_inf->waiting_for_vfork_done = 0;
891 }
892 else if (detach_fork)
893 target_detach (NULL, 0);
894
895 /* Note that the detach above makes PARENT_INF dangling. */
896
897 /* Add the child thread to the appropriate lists, and switch to
898 this new thread, before cloning the program space, and
899 informing the solib layer about this new process. */
900
901 inferior_ptid = ptid_build (child_pid, child_pid, 0);
902 add_thread (inferior_ptid);
903 lp = add_lwp (inferior_ptid);
904 lp->stopped = 1;
905 lp->resumed = 1;
906
907 /* If this is a vfork child, then the address-space is shared
908 with the parent. If we detached from the parent, then we can
909 reuse the parent's program/address spaces. */
910 if (has_vforked || detach_fork)
911 {
912 child_inf->pspace = parent_pspace;
913 child_inf->aspace = child_inf->pspace->aspace;
914 }
915 else
916 {
917 child_inf->aspace = new_address_space ();
918 child_inf->pspace = add_program_space (child_inf->aspace);
919 child_inf->removable = 1;
920 set_current_program_space (child_inf->pspace);
921 clone_program_space (child_inf->pspace, parent_pspace);
922
923 /* Let the shared library layer (solib-svr4) learn about
924 this new process, relocate the cloned exec, pull in
925 shared libraries, and install the solib event breakpoint.
926 If a "cloned-VM" event was propagated better throughout
927 the core, this wouldn't be required. */
928 solib_create_inferior_hook (0);
929 }
930
931 /* Let the thread_db layer learn about this new process. */
932 check_for_thread_db ();
933 }
934
935 restore_child_signals_mask (&prev_mask);
936 return 0;
937 }
938
939 \f
940 static int
941 linux_child_insert_fork_catchpoint (int pid)
942 {
943 return !linux_supports_tracefork (pid);
944 }
945
946 static int
947 linux_child_insert_vfork_catchpoint (int pid)
948 {
949 return !linux_supports_tracefork (pid);
950 }
951
952 static int
953 linux_child_insert_exec_catchpoint (int pid)
954 {
955 return !linux_supports_tracefork (pid);
956 }
957
958 static int
959 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
960 int table_size, int *table)
961 {
962 if (!linux_supports_tracesysgood (pid))
963 return 1;
964
965 /* On GNU/Linux, we ignore the arguments. It means that we only
966 enable the syscall catchpoints, but do not disable them.
967
968 Also, we do not use the `table' information because we do not
969 filter system calls here. We let GDB do the logic for us. */
970 return 0;
971 }
972
973 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
974 are processes sharing the same VM space. A multi-threaded process
975 is basically a group of such processes. However, such a grouping
976 is almost entirely a user-space issue; the kernel doesn't enforce
977 such a grouping at all (this might change in the future). In
978 general, we'll rely on the threads library (i.e. the GNU/Linux
979 Threads library) to provide such a grouping.
980
981 It is perfectly well possible to write a multi-threaded application
982 without the assistance of a threads library, by using the clone
983 system call directly. This module should be able to give some
984 rudimentary support for debugging such applications if developers
985 specify the CLONE_PTRACE flag in the clone system call, and are
986 using the Linux kernel 2.4 or above.
987
988 Note that there are some peculiarities in GNU/Linux that affect
989 this code:
990
991 - In general one should specify the __WCLONE flag to waitpid in
992 order to make it report events for any of the cloned processes
993 (and leave it out for the initial process). However, if a cloned
994 process has exited the exit status is only reported if the
995 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
996 we cannot use it since GDB must work on older systems too.
997
998 - When a traced, cloned process exits and is waited for by the
999 debugger, the kernel reassigns it to the original parent and
1000 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1001 library doesn't notice this, which leads to the "zombie problem":
1002 When debugged a multi-threaded process that spawns a lot of
1003 threads will run out of processes, even if the threads exit,
1004 because the "zombies" stay around. */
1005
1006 /* List of known LWPs. */
1007 struct lwp_info *lwp_list;
1008 \f
1009
1010 /* Original signal mask. */
1011 static sigset_t normal_mask;
1012
1013 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1014 _initialize_linux_nat. */
1015 static sigset_t suspend_mask;
1016
1017 /* Signals to block to make that sigsuspend work. */
1018 static sigset_t blocked_mask;
1019
1020 /* SIGCHLD action. */
1021 struct sigaction sigchld_action;
1022
1023 /* Block child signals (SIGCHLD and linux threads signals), and store
1024 the previous mask in PREV_MASK. */
1025
1026 static void
1027 block_child_signals (sigset_t *prev_mask)
1028 {
1029 /* Make sure SIGCHLD is blocked. */
1030 if (!sigismember (&blocked_mask, SIGCHLD))
1031 sigaddset (&blocked_mask, SIGCHLD);
1032
1033 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1034 }
1035
1036 /* Restore child signals mask, previously returned by
1037 block_child_signals. */
1038
1039 static void
1040 restore_child_signals_mask (sigset_t *prev_mask)
1041 {
1042 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1043 }
1044 \f
1045
1046 /* Prototypes for local functions. */
1047 static int stop_wait_callback (struct lwp_info *lp, void *data);
1048 static int linux_thread_alive (ptid_t ptid);
1049 static char *linux_child_pid_to_exec_file (int pid);
1050
1051 \f
1052 /* Convert wait status STATUS to a string. Used for printing debug
1053 messages only. */
1054
1055 static char *
1056 status_to_str (int status)
1057 {
1058 static char buf[64];
1059
1060 if (WIFSTOPPED (status))
1061 {
1062 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1063 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1064 strsignal (SIGTRAP));
1065 else
1066 snprintf (buf, sizeof (buf), "%s (stopped)",
1067 strsignal (WSTOPSIG (status)));
1068 }
1069 else if (WIFSIGNALED (status))
1070 snprintf (buf, sizeof (buf), "%s (terminated)",
1071 strsignal (WTERMSIG (status)));
1072 else
1073 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1074
1075 return buf;
1076 }
1077
1078 /* Remove all LWPs belong to PID from the lwp list. */
1079
1080 static void
1081 purge_lwp_list (int pid)
1082 {
1083 struct lwp_info *lp, *lpprev, *lpnext;
1084
1085 lpprev = NULL;
1086
1087 for (lp = lwp_list; lp; lp = lpnext)
1088 {
1089 lpnext = lp->next;
1090
1091 if (ptid_get_pid (lp->ptid) == pid)
1092 {
1093 if (lp == lwp_list)
1094 lwp_list = lp->next;
1095 else
1096 lpprev->next = lp->next;
1097
1098 xfree (lp);
1099 }
1100 else
1101 lpprev = lp;
1102 }
1103 }
1104
1105 /* Return the number of known LWPs in the tgid given by PID. */
1106
1107 static int
1108 num_lwps (int pid)
1109 {
1110 int count = 0;
1111 struct lwp_info *lp;
1112
1113 for (lp = lwp_list; lp; lp = lp->next)
1114 if (ptid_get_pid (lp->ptid) == pid)
1115 count++;
1116
1117 return count;
1118 }
1119
1120 /* Add the LWP specified by PID to the list. Return a pointer to the
1121 structure describing the new LWP. The LWP should already be stopped
1122 (with an exception for the very first LWP). */
1123
1124 static struct lwp_info *
1125 add_lwp (ptid_t ptid)
1126 {
1127 struct lwp_info *lp;
1128
1129 gdb_assert (is_lwp (ptid));
1130
1131 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1132
1133 memset (lp, 0, sizeof (struct lwp_info));
1134
1135 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1136
1137 lp->ptid = ptid;
1138 lp->core = -1;
1139
1140 lp->next = lwp_list;
1141 lwp_list = lp;
1142
1143 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1144 linux_nat_new_thread (ptid);
1145
1146 return lp;
1147 }
1148
1149 /* Remove the LWP specified by PID from the list. */
1150
1151 static void
1152 delete_lwp (ptid_t ptid)
1153 {
1154 struct lwp_info *lp, *lpprev;
1155
1156 lpprev = NULL;
1157
1158 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1159 if (ptid_equal (lp->ptid, ptid))
1160 break;
1161
1162 if (!lp)
1163 return;
1164
1165 if (lpprev)
1166 lpprev->next = lp->next;
1167 else
1168 lwp_list = lp->next;
1169
1170 xfree (lp);
1171 }
1172
1173 /* Return a pointer to the structure describing the LWP corresponding
1174 to PID. If no corresponding LWP could be found, return NULL. */
1175
1176 static struct lwp_info *
1177 find_lwp_pid (ptid_t ptid)
1178 {
1179 struct lwp_info *lp;
1180 int lwp;
1181
1182 if (is_lwp (ptid))
1183 lwp = GET_LWP (ptid);
1184 else
1185 lwp = GET_PID (ptid);
1186
1187 for (lp = lwp_list; lp; lp = lp->next)
1188 if (lwp == GET_LWP (lp->ptid))
1189 return lp;
1190
1191 return NULL;
1192 }
1193
1194 /* Call CALLBACK with its second argument set to DATA for every LWP in
1195 the list. If CALLBACK returns 1 for a particular LWP, return a
1196 pointer to the structure describing that LWP immediately.
1197 Otherwise return NULL. */
1198
1199 struct lwp_info *
1200 iterate_over_lwps (ptid_t filter,
1201 int (*callback) (struct lwp_info *, void *),
1202 void *data)
1203 {
1204 struct lwp_info *lp, *lpnext;
1205
1206 for (lp = lwp_list; lp; lp = lpnext)
1207 {
1208 lpnext = lp->next;
1209
1210 if (ptid_match (lp->ptid, filter))
1211 {
1212 if ((*callback) (lp, data))
1213 return lp;
1214 }
1215 }
1216
1217 return NULL;
1218 }
1219
1220 /* Update our internal state when changing from one checkpoint to
1221 another indicated by NEW_PTID. We can only switch single-threaded
1222 applications, so we only create one new LWP, and the previous list
1223 is discarded. */
1224
1225 void
1226 linux_nat_switch_fork (ptid_t new_ptid)
1227 {
1228 struct lwp_info *lp;
1229
1230 purge_lwp_list (GET_PID (inferior_ptid));
1231
1232 lp = add_lwp (new_ptid);
1233 lp->stopped = 1;
1234
1235 /* This changes the thread's ptid while preserving the gdb thread
1236 num. Also changes the inferior pid, while preserving the
1237 inferior num. */
1238 thread_change_ptid (inferior_ptid, new_ptid);
1239
1240 /* We've just told GDB core that the thread changed target id, but,
1241 in fact, it really is a different thread, with different register
1242 contents. */
1243 registers_changed ();
1244 }
1245
1246 /* Handle the exit of a single thread LP. */
1247
1248 static void
1249 exit_lwp (struct lwp_info *lp)
1250 {
1251 struct thread_info *th = find_thread_ptid (lp->ptid);
1252
1253 if (th)
1254 {
1255 if (print_thread_events)
1256 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1257
1258 delete_thread (lp->ptid);
1259 }
1260
1261 delete_lwp (lp->ptid);
1262 }
1263
1264 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1265
1266 int
1267 linux_proc_get_tgid (int lwpid)
1268 {
1269 FILE *status_file;
1270 char buf[100];
1271 int tgid = -1;
1272
1273 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1274 status_file = fopen (buf, "r");
1275 if (status_file != NULL)
1276 {
1277 while (fgets (buf, sizeof (buf), status_file))
1278 {
1279 if (strncmp (buf, "Tgid:", 5) == 0)
1280 {
1281 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1282 break;
1283 }
1284 }
1285
1286 fclose (status_file);
1287 }
1288
1289 return tgid;
1290 }
1291
1292 /* Detect `T (stopped)' in `/proc/PID/status'.
1293 Other states including `T (tracing stop)' are reported as false. */
1294
1295 static int
1296 pid_is_stopped (pid_t pid)
1297 {
1298 FILE *status_file;
1299 char buf[100];
1300 int retval = 0;
1301
1302 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1303 status_file = fopen (buf, "r");
1304 if (status_file != NULL)
1305 {
1306 int have_state = 0;
1307
1308 while (fgets (buf, sizeof (buf), status_file))
1309 {
1310 if (strncmp (buf, "State:", 6) == 0)
1311 {
1312 have_state = 1;
1313 break;
1314 }
1315 }
1316 if (have_state && strstr (buf, "T (stopped)") != NULL)
1317 retval = 1;
1318 fclose (status_file);
1319 }
1320 return retval;
1321 }
1322
1323 /* Wait for the LWP specified by LP, which we have just attached to.
1324 Returns a wait status for that LWP, to cache. */
1325
1326 static int
1327 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1328 int *signalled)
1329 {
1330 pid_t new_pid, pid = GET_LWP (ptid);
1331 int status;
1332
1333 if (pid_is_stopped (pid))
1334 {
1335 if (debug_linux_nat)
1336 fprintf_unfiltered (gdb_stdlog,
1337 "LNPAW: Attaching to a stopped process\n");
1338
1339 /* The process is definitely stopped. It is in a job control
1340 stop, unless the kernel predates the TASK_STOPPED /
1341 TASK_TRACED distinction, in which case it might be in a
1342 ptrace stop. Make sure it is in a ptrace stop; from there we
1343 can kill it, signal it, et cetera.
1344
1345 First make sure there is a pending SIGSTOP. Since we are
1346 already attached, the process can not transition from stopped
1347 to running without a PTRACE_CONT; so we know this signal will
1348 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1349 probably already in the queue (unless this kernel is old
1350 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1351 is not an RT signal, it can only be queued once. */
1352 kill_lwp (pid, SIGSTOP);
1353
1354 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1355 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1356 ptrace (PTRACE_CONT, pid, 0, 0);
1357 }
1358
1359 /* Make sure the initial process is stopped. The user-level threads
1360 layer might want to poke around in the inferior, and that won't
1361 work if things haven't stabilized yet. */
1362 new_pid = my_waitpid (pid, &status, 0);
1363 if (new_pid == -1 && errno == ECHILD)
1364 {
1365 if (first)
1366 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1367
1368 /* Try again with __WCLONE to check cloned processes. */
1369 new_pid = my_waitpid (pid, &status, __WCLONE);
1370 *cloned = 1;
1371 }
1372
1373 gdb_assert (pid == new_pid);
1374
1375 if (!WIFSTOPPED (status))
1376 {
1377 /* The pid we tried to attach has apparently just exited. */
1378 if (debug_linux_nat)
1379 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1380 pid, status_to_str (status));
1381 return status;
1382 }
1383
1384 if (WSTOPSIG (status) != SIGSTOP)
1385 {
1386 *signalled = 1;
1387 if (debug_linux_nat)
1388 fprintf_unfiltered (gdb_stdlog,
1389 "LNPAW: Received %s after attaching\n",
1390 status_to_str (status));
1391 }
1392
1393 return status;
1394 }
1395
1396 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1397 if the new LWP could not be attached. */
1398
1399 int
1400 lin_lwp_attach_lwp (ptid_t ptid)
1401 {
1402 struct lwp_info *lp;
1403 sigset_t prev_mask;
1404
1405 gdb_assert (is_lwp (ptid));
1406
1407 block_child_signals (&prev_mask);
1408
1409 lp = find_lwp_pid (ptid);
1410
1411 /* We assume that we're already attached to any LWP that has an id
1412 equal to the overall process id, and to any LWP that is already
1413 in our list of LWPs. If we're not seeing exit events from threads
1414 and we've had PID wraparound since we last tried to stop all threads,
1415 this assumption might be wrong; fortunately, this is very unlikely
1416 to happen. */
1417 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1418 {
1419 int status, cloned = 0, signalled = 0;
1420
1421 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1422 {
1423 /* If we fail to attach to the thread, issue a warning,
1424 but continue. One way this can happen is if thread
1425 creation is interrupted; as of Linux kernel 2.6.19, a
1426 bug may place threads in the thread list and then fail
1427 to create them. */
1428 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1429 safe_strerror (errno));
1430 restore_child_signals_mask (&prev_mask);
1431 return -1;
1432 }
1433
1434 if (debug_linux_nat)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1437 target_pid_to_str (ptid));
1438
1439 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1440 if (!WIFSTOPPED (status))
1441 return -1;
1442
1443 lp = add_lwp (ptid);
1444 lp->stopped = 1;
1445 lp->cloned = cloned;
1446 lp->signalled = signalled;
1447 if (WSTOPSIG (status) != SIGSTOP)
1448 {
1449 lp->resumed = 1;
1450 lp->status = status;
1451 }
1452
1453 target_post_attach (GET_LWP (lp->ptid));
1454
1455 if (debug_linux_nat)
1456 {
1457 fprintf_unfiltered (gdb_stdlog,
1458 "LLAL: waitpid %s received %s\n",
1459 target_pid_to_str (ptid),
1460 status_to_str (status));
1461 }
1462 }
1463 else
1464 {
1465 /* We assume that the LWP representing the original process is
1466 already stopped. Mark it as stopped in the data structure
1467 that the GNU/linux ptrace layer uses to keep track of
1468 threads. Note that this won't have already been done since
1469 the main thread will have, we assume, been stopped by an
1470 attach from a different layer. */
1471 if (lp == NULL)
1472 lp = add_lwp (ptid);
1473 lp->stopped = 1;
1474 }
1475
1476 restore_child_signals_mask (&prev_mask);
1477 return 0;
1478 }
1479
1480 static void
1481 linux_nat_create_inferior (struct target_ops *ops,
1482 char *exec_file, char *allargs, char **env,
1483 int from_tty)
1484 {
1485 #ifdef HAVE_PERSONALITY
1486 int personality_orig = 0, personality_set = 0;
1487 #endif /* HAVE_PERSONALITY */
1488
1489 /* The fork_child mechanism is synchronous and calls target_wait, so
1490 we have to mask the async mode. */
1491
1492 #ifdef HAVE_PERSONALITY
1493 if (disable_randomization)
1494 {
1495 errno = 0;
1496 personality_orig = personality (0xffffffff);
1497 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1498 {
1499 personality_set = 1;
1500 personality (personality_orig | ADDR_NO_RANDOMIZE);
1501 }
1502 if (errno != 0 || (personality_set
1503 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1504 warning (_("Error disabling address space randomization: %s"),
1505 safe_strerror (errno));
1506 }
1507 #endif /* HAVE_PERSONALITY */
1508
1509 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1510
1511 #ifdef HAVE_PERSONALITY
1512 if (personality_set)
1513 {
1514 errno = 0;
1515 personality (personality_orig);
1516 if (errno != 0)
1517 warning (_("Error restoring address space randomization: %s"),
1518 safe_strerror (errno));
1519 }
1520 #endif /* HAVE_PERSONALITY */
1521 }
1522
1523 static void
1524 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1525 {
1526 struct lwp_info *lp;
1527 int status;
1528 ptid_t ptid;
1529
1530 linux_ops->to_attach (ops, args, from_tty);
1531
1532 /* The ptrace base target adds the main thread with (pid,0,0)
1533 format. Decorate it with lwp info. */
1534 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1535 thread_change_ptid (inferior_ptid, ptid);
1536
1537 /* Add the initial process as the first LWP to the list. */
1538 lp = add_lwp (ptid);
1539
1540 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1541 &lp->signalled);
1542 if (!WIFSTOPPED (status))
1543 {
1544 if (WIFEXITED (status))
1545 {
1546 int exit_code = WEXITSTATUS (status);
1547
1548 target_terminal_ours ();
1549 target_mourn_inferior ();
1550 if (exit_code == 0)
1551 error (_("Unable to attach: program exited normally."));
1552 else
1553 error (_("Unable to attach: program exited with code %d."),
1554 exit_code);
1555 }
1556 else if (WIFSIGNALED (status))
1557 {
1558 enum target_signal signo;
1559
1560 target_terminal_ours ();
1561 target_mourn_inferior ();
1562
1563 signo = target_signal_from_host (WTERMSIG (status));
1564 error (_("Unable to attach: program terminated with signal "
1565 "%s, %s."),
1566 target_signal_to_name (signo),
1567 target_signal_to_string (signo));
1568 }
1569
1570 internal_error (__FILE__, __LINE__,
1571 _("unexpected status %d for PID %ld"),
1572 status, (long) GET_LWP (ptid));
1573 }
1574
1575 lp->stopped = 1;
1576
1577 /* Save the wait status to report later. */
1578 lp->resumed = 1;
1579 if (debug_linux_nat)
1580 fprintf_unfiltered (gdb_stdlog,
1581 "LNA: waitpid %ld, saving status %s\n",
1582 (long) GET_PID (lp->ptid), status_to_str (status));
1583
1584 lp->status = status;
1585
1586 if (target_can_async_p ())
1587 target_async (inferior_event_handler, 0);
1588 }
1589
1590 /* Get pending status of LP. */
1591 static int
1592 get_pending_status (struct lwp_info *lp, int *status)
1593 {
1594 enum target_signal signo = TARGET_SIGNAL_0;
1595
1596 /* If we paused threads momentarily, we may have stored pending
1597 events in lp->status or lp->waitstatus (see stop_wait_callback),
1598 and GDB core hasn't seen any signal for those threads.
1599 Otherwise, the last signal reported to the core is found in the
1600 thread object's stop_signal.
1601
1602 There's a corner case that isn't handled here at present. Only
1603 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1604 stop_signal make sense as a real signal to pass to the inferior.
1605 Some catchpoint related events, like
1606 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1607 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1608 those traps are debug API (ptrace in our case) related and
1609 induced; the inferior wouldn't see them if it wasn't being
1610 traced. Hence, we should never pass them to the inferior, even
1611 when set to pass state. Since this corner case isn't handled by
1612 infrun.c when proceeding with a signal, for consistency, neither
1613 do we handle it here (or elsewhere in the file we check for
1614 signal pass state). Normally SIGTRAP isn't set to pass state, so
1615 this is really a corner case. */
1616
1617 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1618 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1619 else if (lp->status)
1620 signo = target_signal_from_host (WSTOPSIG (lp->status));
1621 else if (non_stop && !is_executing (lp->ptid))
1622 {
1623 struct thread_info *tp = find_thread_ptid (lp->ptid);
1624
1625 signo = tp->suspend.stop_signal;
1626 }
1627 else if (!non_stop)
1628 {
1629 struct target_waitstatus last;
1630 ptid_t last_ptid;
1631
1632 get_last_target_status (&last_ptid, &last);
1633
1634 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1635 {
1636 struct thread_info *tp = find_thread_ptid (lp->ptid);
1637
1638 signo = tp->suspend.stop_signal;
1639 }
1640 }
1641
1642 *status = 0;
1643
1644 if (signo == TARGET_SIGNAL_0)
1645 {
1646 if (debug_linux_nat)
1647 fprintf_unfiltered (gdb_stdlog,
1648 "GPT: lwp %s has no pending signal\n",
1649 target_pid_to_str (lp->ptid));
1650 }
1651 else if (!signal_pass_state (signo))
1652 {
1653 if (debug_linux_nat)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "GPT: lwp %s had signal %s, "
1656 "but it is in no pass state\n",
1657 target_pid_to_str (lp->ptid),
1658 target_signal_to_string (signo));
1659 }
1660 else
1661 {
1662 *status = W_STOPCODE (target_signal_to_host (signo));
1663
1664 if (debug_linux_nat)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "GPT: lwp %s has pending signal %s\n",
1667 target_pid_to_str (lp->ptid),
1668 target_signal_to_string (signo));
1669 }
1670
1671 return 0;
1672 }
1673
1674 static int
1675 detach_callback (struct lwp_info *lp, void *data)
1676 {
1677 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1678
1679 if (debug_linux_nat && lp->status)
1680 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1681 strsignal (WSTOPSIG (lp->status)),
1682 target_pid_to_str (lp->ptid));
1683
1684 /* If there is a pending SIGSTOP, get rid of it. */
1685 if (lp->signalled)
1686 {
1687 if (debug_linux_nat)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "DC: Sending SIGCONT to %s\n",
1690 target_pid_to_str (lp->ptid));
1691
1692 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1693 lp->signalled = 0;
1694 }
1695
1696 /* We don't actually detach from the LWP that has an id equal to the
1697 overall process id just yet. */
1698 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1699 {
1700 int status = 0;
1701
1702 /* Pass on any pending signal for this LWP. */
1703 get_pending_status (lp, &status);
1704
1705 errno = 0;
1706 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1707 WSTOPSIG (status)) < 0)
1708 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1709 safe_strerror (errno));
1710
1711 if (debug_linux_nat)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1714 target_pid_to_str (lp->ptid),
1715 strsignal (WSTOPSIG (status)));
1716
1717 delete_lwp (lp->ptid);
1718 }
1719
1720 return 0;
1721 }
1722
1723 static void
1724 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1725 {
1726 int pid;
1727 int status;
1728 struct lwp_info *main_lwp;
1729
1730 pid = GET_PID (inferior_ptid);
1731
1732 if (target_can_async_p ())
1733 linux_nat_async (NULL, 0);
1734
1735 /* Stop all threads before detaching. ptrace requires that the
1736 thread is stopped to sucessfully detach. */
1737 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1738 /* ... and wait until all of them have reported back that
1739 they're no longer running. */
1740 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1741
1742 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1743
1744 /* Only the initial process should be left right now. */
1745 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1746
1747 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1748
1749 /* Pass on any pending signal for the last LWP. */
1750 if ((args == NULL || *args == '\0')
1751 && get_pending_status (main_lwp, &status) != -1
1752 && WIFSTOPPED (status))
1753 {
1754 /* Put the signal number in ARGS so that inf_ptrace_detach will
1755 pass it along with PTRACE_DETACH. */
1756 args = alloca (8);
1757 sprintf (args, "%d", (int) WSTOPSIG (status));
1758 if (debug_linux_nat)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "LND: Sending signal %s to %s\n",
1761 args,
1762 target_pid_to_str (main_lwp->ptid));
1763 }
1764
1765 delete_lwp (main_lwp->ptid);
1766
1767 if (forks_exist_p ())
1768 {
1769 /* Multi-fork case. The current inferior_ptid is being detached
1770 from, but there are other viable forks to debug. Detach from
1771 the current fork, and context-switch to the first
1772 available. */
1773 linux_fork_detach (args, from_tty);
1774
1775 if (non_stop && target_can_async_p ())
1776 target_async (inferior_event_handler, 0);
1777 }
1778 else
1779 linux_ops->to_detach (ops, args, from_tty);
1780 }
1781
1782 /* Resume LP. */
1783
1784 static int
1785 resume_callback (struct lwp_info *lp, void *data)
1786 {
1787 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1788
1789 if (lp->stopped && inf->vfork_child != NULL)
1790 {
1791 if (debug_linux_nat)
1792 fprintf_unfiltered (gdb_stdlog,
1793 "RC: Not resuming %s (vfork parent)\n",
1794 target_pid_to_str (lp->ptid));
1795 }
1796 else if (lp->stopped && lp->status == 0)
1797 {
1798 if (debug_linux_nat)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1801 target_pid_to_str (lp->ptid));
1802
1803 linux_ops->to_resume (linux_ops,
1804 pid_to_ptid (GET_LWP (lp->ptid)),
1805 0, TARGET_SIGNAL_0);
1806 if (debug_linux_nat)
1807 fprintf_unfiltered (gdb_stdlog,
1808 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1809 target_pid_to_str (lp->ptid));
1810 lp->stopped = 0;
1811 lp->step = 0;
1812 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1813 lp->stopped_by_watchpoint = 0;
1814 }
1815 else if (lp->stopped && debug_linux_nat)
1816 fprintf_unfiltered (gdb_stdlog,
1817 "RC: Not resuming sibling %s (has pending)\n",
1818 target_pid_to_str (lp->ptid));
1819 else if (debug_linux_nat)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "RC: Not resuming sibling %s (not stopped)\n",
1822 target_pid_to_str (lp->ptid));
1823
1824 return 0;
1825 }
1826
1827 static int
1828 resume_clear_callback (struct lwp_info *lp, void *data)
1829 {
1830 lp->resumed = 0;
1831 return 0;
1832 }
1833
1834 static int
1835 resume_set_callback (struct lwp_info *lp, void *data)
1836 {
1837 lp->resumed = 1;
1838 return 0;
1839 }
1840
1841 static void
1842 linux_nat_resume (struct target_ops *ops,
1843 ptid_t ptid, int step, enum target_signal signo)
1844 {
1845 sigset_t prev_mask;
1846 struct lwp_info *lp;
1847 int resume_many;
1848
1849 if (debug_linux_nat)
1850 fprintf_unfiltered (gdb_stdlog,
1851 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1852 step ? "step" : "resume",
1853 target_pid_to_str (ptid),
1854 (signo != TARGET_SIGNAL_0
1855 ? strsignal (target_signal_to_host (signo)) : "0"),
1856 target_pid_to_str (inferior_ptid));
1857
1858 block_child_signals (&prev_mask);
1859
1860 /* A specific PTID means `step only this process id'. */
1861 resume_many = (ptid_equal (minus_one_ptid, ptid)
1862 || ptid_is_pid (ptid));
1863
1864 /* Mark the lwps we're resuming as resumed. */
1865 iterate_over_lwps (ptid, resume_set_callback, NULL);
1866
1867 /* See if it's the current inferior that should be handled
1868 specially. */
1869 if (resume_many)
1870 lp = find_lwp_pid (inferior_ptid);
1871 else
1872 lp = find_lwp_pid (ptid);
1873 gdb_assert (lp != NULL);
1874
1875 /* Remember if we're stepping. */
1876 lp->step = step;
1877
1878 /* If we have a pending wait status for this thread, there is no
1879 point in resuming the process. But first make sure that
1880 linux_nat_wait won't preemptively handle the event - we
1881 should never take this short-circuit if we are going to
1882 leave LP running, since we have skipped resuming all the
1883 other threads. This bit of code needs to be synchronized
1884 with linux_nat_wait. */
1885
1886 if (lp->status && WIFSTOPPED (lp->status))
1887 {
1888 enum target_signal saved_signo;
1889 struct inferior *inf;
1890
1891 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1892 gdb_assert (inf);
1893 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1894
1895 /* Defer to common code if we're gaining control of the
1896 inferior. */
1897 if (inf->control.stop_soon == NO_STOP_QUIETLY
1898 && signal_stop_state (saved_signo) == 0
1899 && signal_print_state (saved_signo) == 0
1900 && signal_pass_state (saved_signo) == 1)
1901 {
1902 if (debug_linux_nat)
1903 fprintf_unfiltered (gdb_stdlog,
1904 "LLR: Not short circuiting for ignored "
1905 "status 0x%x\n", lp->status);
1906
1907 /* FIXME: What should we do if we are supposed to continue
1908 this thread with a signal? */
1909 gdb_assert (signo == TARGET_SIGNAL_0);
1910 signo = saved_signo;
1911 lp->status = 0;
1912 }
1913 }
1914
1915 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1916 {
1917 /* FIXME: What should we do if we are supposed to continue
1918 this thread with a signal? */
1919 gdb_assert (signo == TARGET_SIGNAL_0);
1920
1921 if (debug_linux_nat)
1922 fprintf_unfiltered (gdb_stdlog,
1923 "LLR: Short circuiting for status 0x%x\n",
1924 lp->status);
1925
1926 restore_child_signals_mask (&prev_mask);
1927 if (target_can_async_p ())
1928 {
1929 target_async (inferior_event_handler, 0);
1930 /* Tell the event loop we have something to process. */
1931 async_file_mark ();
1932 }
1933 return;
1934 }
1935
1936 /* Mark LWP as not stopped to prevent it from being continued by
1937 resume_callback. */
1938 lp->stopped = 0;
1939
1940 if (resume_many)
1941 iterate_over_lwps (ptid, resume_callback, NULL);
1942
1943 /* Convert to something the lower layer understands. */
1944 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1945
1946 linux_ops->to_resume (linux_ops, ptid, step, signo);
1947 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1948 lp->stopped_by_watchpoint = 0;
1949
1950 if (debug_linux_nat)
1951 fprintf_unfiltered (gdb_stdlog,
1952 "LLR: %s %s, %s (resume event thread)\n",
1953 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1954 target_pid_to_str (ptid),
1955 (signo != TARGET_SIGNAL_0
1956 ? strsignal (target_signal_to_host (signo)) : "0"));
1957
1958 restore_child_signals_mask (&prev_mask);
1959 if (target_can_async_p ())
1960 target_async (inferior_event_handler, 0);
1961 }
1962
1963 /* Send a signal to an LWP. */
1964
1965 static int
1966 kill_lwp (int lwpid, int signo)
1967 {
1968 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1969 fails, then we are not using nptl threads and we should be using kill. */
1970
1971 #ifdef HAVE_TKILL_SYSCALL
1972 {
1973 static int tkill_failed;
1974
1975 if (!tkill_failed)
1976 {
1977 int ret;
1978
1979 errno = 0;
1980 ret = syscall (__NR_tkill, lwpid, signo);
1981 if (errno != ENOSYS)
1982 return ret;
1983 tkill_failed = 1;
1984 }
1985 }
1986 #endif
1987
1988 return kill (lwpid, signo);
1989 }
1990
1991 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1992 event, check if the core is interested in it: if not, ignore the
1993 event, and keep waiting; otherwise, we need to toggle the LWP's
1994 syscall entry/exit status, since the ptrace event itself doesn't
1995 indicate it, and report the trap to higher layers. */
1996
1997 static int
1998 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1999 {
2000 struct target_waitstatus *ourstatus = &lp->waitstatus;
2001 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2002 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2003
2004 if (stopping)
2005 {
2006 /* If we're stopping threads, there's a SIGSTOP pending, which
2007 makes it so that the LWP reports an immediate syscall return,
2008 followed by the SIGSTOP. Skip seeing that "return" using
2009 PTRACE_CONT directly, and let stop_wait_callback collect the
2010 SIGSTOP. Later when the thread is resumed, a new syscall
2011 entry event. If we didn't do this (and returned 0), we'd
2012 leave a syscall entry pending, and our caller, by using
2013 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2014 itself. Later, when the user re-resumes this LWP, we'd see
2015 another syscall entry event and we'd mistake it for a return.
2016
2017 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2018 (leaving immediately with LWP->signalled set, without issuing
2019 a PTRACE_CONT), it would still be problematic to leave this
2020 syscall enter pending, as later when the thread is resumed,
2021 it would then see the same syscall exit mentioned above,
2022 followed by the delayed SIGSTOP, while the syscall didn't
2023 actually get to execute. It seems it would be even more
2024 confusing to the user. */
2025
2026 if (debug_linux_nat)
2027 fprintf_unfiltered (gdb_stdlog,
2028 "LHST: ignoring syscall %d "
2029 "for LWP %ld (stopping threads), "
2030 "resuming with PTRACE_CONT for SIGSTOP\n",
2031 syscall_number,
2032 GET_LWP (lp->ptid));
2033
2034 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2035 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2036 return 1;
2037 }
2038
2039 if (catch_syscall_enabled ())
2040 {
2041 /* Always update the entry/return state, even if this particular
2042 syscall isn't interesting to the core now. In async mode,
2043 the user could install a new catchpoint for this syscall
2044 between syscall enter/return, and we'll need to know to
2045 report a syscall return if that happens. */
2046 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2047 ? TARGET_WAITKIND_SYSCALL_RETURN
2048 : TARGET_WAITKIND_SYSCALL_ENTRY);
2049
2050 if (catching_syscall_number (syscall_number))
2051 {
2052 /* Alright, an event to report. */
2053 ourstatus->kind = lp->syscall_state;
2054 ourstatus->value.syscall_number = syscall_number;
2055
2056 if (debug_linux_nat)
2057 fprintf_unfiltered (gdb_stdlog,
2058 "LHST: stopping for %s of syscall %d"
2059 " for LWP %ld\n",
2060 lp->syscall_state
2061 == TARGET_WAITKIND_SYSCALL_ENTRY
2062 ? "entry" : "return",
2063 syscall_number,
2064 GET_LWP (lp->ptid));
2065 return 0;
2066 }
2067
2068 if (debug_linux_nat)
2069 fprintf_unfiltered (gdb_stdlog,
2070 "LHST: ignoring %s of syscall %d "
2071 "for LWP %ld\n",
2072 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2073 ? "entry" : "return",
2074 syscall_number,
2075 GET_LWP (lp->ptid));
2076 }
2077 else
2078 {
2079 /* If we had been syscall tracing, and hence used PT_SYSCALL
2080 before on this LWP, it could happen that the user removes all
2081 syscall catchpoints before we get to process this event.
2082 There are two noteworthy issues here:
2083
2084 - When stopped at a syscall entry event, resuming with
2085 PT_STEP still resumes executing the syscall and reports a
2086 syscall return.
2087
2088 - Only PT_SYSCALL catches syscall enters. If we last
2089 single-stepped this thread, then this event can't be a
2090 syscall enter. If we last single-stepped this thread, this
2091 has to be a syscall exit.
2092
2093 The points above mean that the next resume, be it PT_STEP or
2094 PT_CONTINUE, can not trigger a syscall trace event. */
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LHST: caught syscall event "
2098 "with no syscall catchpoints."
2099 " %d for LWP %ld, ignoring\n",
2100 syscall_number,
2101 GET_LWP (lp->ptid));
2102 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2103 }
2104
2105 /* The core isn't interested in this event. For efficiency, avoid
2106 stopping all threads only to have the core resume them all again.
2107 Since we're not stopping threads, if we're still syscall tracing
2108 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2109 subsequent syscall. Simply resume using the inf-ptrace layer,
2110 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2111
2112 /* Note that gdbarch_get_syscall_number may access registers, hence
2113 fill a regcache. */
2114 registers_changed ();
2115 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2116 lp->step, TARGET_SIGNAL_0);
2117 return 1;
2118 }
2119
2120 /* Handle a GNU/Linux extended wait response. If we see a clone
2121 event, we need to add the new LWP to our list (and not report the
2122 trap to higher layers). This function returns non-zero if the
2123 event should be ignored and we should wait again. If STOPPING is
2124 true, the new LWP remains stopped, otherwise it is continued. */
2125
2126 static int
2127 linux_handle_extended_wait (struct lwp_info *lp, int status,
2128 int stopping)
2129 {
2130 int pid = GET_LWP (lp->ptid);
2131 struct target_waitstatus *ourstatus = &lp->waitstatus;
2132 int event = status >> 16;
2133
2134 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2135 || event == PTRACE_EVENT_CLONE)
2136 {
2137 unsigned long new_pid;
2138 int ret;
2139
2140 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2141
2142 /* If we haven't already seen the new PID stop, wait for it now. */
2143 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2144 {
2145 /* The new child has a pending SIGSTOP. We can't affect it until it
2146 hits the SIGSTOP, but we're already attached. */
2147 ret = my_waitpid (new_pid, &status,
2148 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2149 if (ret == -1)
2150 perror_with_name (_("waiting for new child"));
2151 else if (ret != new_pid)
2152 internal_error (__FILE__, __LINE__,
2153 _("wait returned unexpected PID %d"), ret);
2154 else if (!WIFSTOPPED (status))
2155 internal_error (__FILE__, __LINE__,
2156 _("wait returned unexpected status 0x%x"), status);
2157 }
2158
2159 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2160
2161 if (event == PTRACE_EVENT_FORK
2162 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2163 {
2164 /* Handle checkpointing by linux-fork.c here as a special
2165 case. We don't want the follow-fork-mode or 'catch fork'
2166 to interfere with this. */
2167
2168 /* This won't actually modify the breakpoint list, but will
2169 physically remove the breakpoints from the child. */
2170 detach_breakpoints (new_pid);
2171
2172 /* Retain child fork in ptrace (stopped) state. */
2173 if (!find_fork_pid (new_pid))
2174 add_fork (new_pid);
2175
2176 /* Report as spurious, so that infrun doesn't want to follow
2177 this fork. We're actually doing an infcall in
2178 linux-fork.c. */
2179 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2180 linux_enable_event_reporting (pid_to_ptid (new_pid));
2181
2182 /* Report the stop to the core. */
2183 return 0;
2184 }
2185
2186 if (event == PTRACE_EVENT_FORK)
2187 ourstatus->kind = TARGET_WAITKIND_FORKED;
2188 else if (event == PTRACE_EVENT_VFORK)
2189 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2190 else
2191 {
2192 struct lwp_info *new_lp;
2193
2194 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2195
2196 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2197 new_lp->cloned = 1;
2198 new_lp->stopped = 1;
2199
2200 if (WSTOPSIG (status) != SIGSTOP)
2201 {
2202 /* This can happen if someone starts sending signals to
2203 the new thread before it gets a chance to run, which
2204 have a lower number than SIGSTOP (e.g. SIGUSR1).
2205 This is an unlikely case, and harder to handle for
2206 fork / vfork than for clone, so we do not try - but
2207 we handle it for clone events here. We'll send
2208 the other signal on to the thread below. */
2209
2210 new_lp->signalled = 1;
2211 }
2212 else
2213 status = 0;
2214
2215 if (non_stop)
2216 {
2217 /* Add the new thread to GDB's lists as soon as possible
2218 so that:
2219
2220 1) the frontend doesn't have to wait for a stop to
2221 display them, and,
2222
2223 2) we tag it with the correct running state. */
2224
2225 /* If the thread_db layer is active, let it know about
2226 this new thread, and add it to GDB's list. */
2227 if (!thread_db_attach_lwp (new_lp->ptid))
2228 {
2229 /* We're not using thread_db. Add it to GDB's
2230 list. */
2231 target_post_attach (GET_LWP (new_lp->ptid));
2232 add_thread (new_lp->ptid);
2233 }
2234
2235 if (!stopping)
2236 {
2237 set_running (new_lp->ptid, 1);
2238 set_executing (new_lp->ptid, 1);
2239 }
2240 }
2241
2242 /* Note the need to use the low target ops to resume, to
2243 handle resuming with PT_SYSCALL if we have syscall
2244 catchpoints. */
2245 if (!stopping)
2246 {
2247 enum target_signal signo;
2248
2249 new_lp->stopped = 0;
2250 new_lp->resumed = 1;
2251
2252 signo = (status
2253 ? target_signal_from_host (WSTOPSIG (status))
2254 : TARGET_SIGNAL_0);
2255
2256 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2257 0, signo);
2258 }
2259 else
2260 {
2261 if (status != 0)
2262 {
2263 /* We created NEW_LP so it cannot yet contain STATUS. */
2264 gdb_assert (new_lp->status == 0);
2265
2266 /* Save the wait status to report later. */
2267 if (debug_linux_nat)
2268 fprintf_unfiltered (gdb_stdlog,
2269 "LHEW: waitpid of new LWP %ld, "
2270 "saving status %s\n",
2271 (long) GET_LWP (new_lp->ptid),
2272 status_to_str (status));
2273 new_lp->status = status;
2274 }
2275 }
2276
2277 if (debug_linux_nat)
2278 fprintf_unfiltered (gdb_stdlog,
2279 "LHEW: Got clone event "
2280 "from LWP %ld, resuming\n",
2281 GET_LWP (lp->ptid));
2282 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2283 0, TARGET_SIGNAL_0);
2284
2285 return 1;
2286 }
2287
2288 return 0;
2289 }
2290
2291 if (event == PTRACE_EVENT_EXEC)
2292 {
2293 if (debug_linux_nat)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "LHEW: Got exec event from LWP %ld\n",
2296 GET_LWP (lp->ptid));
2297
2298 ourstatus->kind = TARGET_WAITKIND_EXECD;
2299 ourstatus->value.execd_pathname
2300 = xstrdup (linux_child_pid_to_exec_file (pid));
2301
2302 return 0;
2303 }
2304
2305 if (event == PTRACE_EVENT_VFORK_DONE)
2306 {
2307 if (current_inferior ()->waiting_for_vfork_done)
2308 {
2309 if (debug_linux_nat)
2310 fprintf_unfiltered (gdb_stdlog,
2311 "LHEW: Got expected PTRACE_EVENT_"
2312 "VFORK_DONE from LWP %ld: stopping\n",
2313 GET_LWP (lp->ptid));
2314
2315 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2316 return 0;
2317 }
2318
2319 if (debug_linux_nat)
2320 fprintf_unfiltered (gdb_stdlog,
2321 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2322 "from LWP %ld: resuming\n",
2323 GET_LWP (lp->ptid));
2324 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2325 return 1;
2326 }
2327
2328 internal_error (__FILE__, __LINE__,
2329 _("unknown ptrace event %d"), event);
2330 }
2331
2332 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2333 exited. */
2334
2335 static int
2336 wait_lwp (struct lwp_info *lp)
2337 {
2338 pid_t pid;
2339 int status;
2340 int thread_dead = 0;
2341
2342 gdb_assert (!lp->stopped);
2343 gdb_assert (lp->status == 0);
2344
2345 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2346 if (pid == -1 && errno == ECHILD)
2347 {
2348 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2349 if (pid == -1 && errno == ECHILD)
2350 {
2351 /* The thread has previously exited. We need to delete it
2352 now because, for some vendor 2.4 kernels with NPTL
2353 support backported, there won't be an exit event unless
2354 it is the main thread. 2.6 kernels will report an exit
2355 event for each thread that exits, as expected. */
2356 thread_dead = 1;
2357 if (debug_linux_nat)
2358 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2359 target_pid_to_str (lp->ptid));
2360 }
2361 }
2362
2363 if (!thread_dead)
2364 {
2365 gdb_assert (pid == GET_LWP (lp->ptid));
2366
2367 if (debug_linux_nat)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
2370 "WL: waitpid %s received %s\n",
2371 target_pid_to_str (lp->ptid),
2372 status_to_str (status));
2373 }
2374 }
2375
2376 /* Check if the thread has exited. */
2377 if (WIFEXITED (status) || WIFSIGNALED (status))
2378 {
2379 thread_dead = 1;
2380 if (debug_linux_nat)
2381 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2382 target_pid_to_str (lp->ptid));
2383 }
2384
2385 if (thread_dead)
2386 {
2387 exit_lwp (lp);
2388 return 0;
2389 }
2390
2391 gdb_assert (WIFSTOPPED (status));
2392
2393 /* Handle GNU/Linux's syscall SIGTRAPs. */
2394 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2395 {
2396 /* No longer need the sysgood bit. The ptrace event ends up
2397 recorded in lp->waitstatus if we care for it. We can carry
2398 on handling the event like a regular SIGTRAP from here
2399 on. */
2400 status = W_STOPCODE (SIGTRAP);
2401 if (linux_handle_syscall_trap (lp, 1))
2402 return wait_lwp (lp);
2403 }
2404
2405 /* Handle GNU/Linux's extended waitstatus for trace events. */
2406 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2407 {
2408 if (debug_linux_nat)
2409 fprintf_unfiltered (gdb_stdlog,
2410 "WL: Handling extended status 0x%06x\n",
2411 status);
2412 if (linux_handle_extended_wait (lp, status, 1))
2413 return wait_lwp (lp);
2414 }
2415
2416 return status;
2417 }
2418
2419 /* Save the most recent siginfo for LP. This is currently only called
2420 for SIGTRAP; some ports use the si_addr field for
2421 target_stopped_data_address. In the future, it may also be used to
2422 restore the siginfo of requeued signals. */
2423
2424 static void
2425 save_siginfo (struct lwp_info *lp)
2426 {
2427 errno = 0;
2428 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2429 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2430
2431 if (errno != 0)
2432 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2433 }
2434
2435 /* Send a SIGSTOP to LP. */
2436
2437 static int
2438 stop_callback (struct lwp_info *lp, void *data)
2439 {
2440 if (!lp->stopped && !lp->signalled)
2441 {
2442 int ret;
2443
2444 if (debug_linux_nat)
2445 {
2446 fprintf_unfiltered (gdb_stdlog,
2447 "SC: kill %s **<SIGSTOP>**\n",
2448 target_pid_to_str (lp->ptid));
2449 }
2450 errno = 0;
2451 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2452 if (debug_linux_nat)
2453 {
2454 fprintf_unfiltered (gdb_stdlog,
2455 "SC: lwp kill %d %s\n",
2456 ret,
2457 errno ? safe_strerror (errno) : "ERRNO-OK");
2458 }
2459
2460 lp->signalled = 1;
2461 gdb_assert (lp->status == 0);
2462 }
2463
2464 return 0;
2465 }
2466
2467 /* Return non-zero if LWP PID has a pending SIGINT. */
2468
2469 static int
2470 linux_nat_has_pending_sigint (int pid)
2471 {
2472 sigset_t pending, blocked, ignored;
2473
2474 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2475
2476 if (sigismember (&pending, SIGINT)
2477 && !sigismember (&ignored, SIGINT))
2478 return 1;
2479
2480 return 0;
2481 }
2482
2483 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2484
2485 static int
2486 set_ignore_sigint (struct lwp_info *lp, void *data)
2487 {
2488 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2489 flag to consume the next one. */
2490 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2491 && WSTOPSIG (lp->status) == SIGINT)
2492 lp->status = 0;
2493 else
2494 lp->ignore_sigint = 1;
2495
2496 return 0;
2497 }
2498
2499 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2500 This function is called after we know the LWP has stopped; if the LWP
2501 stopped before the expected SIGINT was delivered, then it will never have
2502 arrived. Also, if the signal was delivered to a shared queue and consumed
2503 by a different thread, it will never be delivered to this LWP. */
2504
2505 static void
2506 maybe_clear_ignore_sigint (struct lwp_info *lp)
2507 {
2508 if (!lp->ignore_sigint)
2509 return;
2510
2511 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2512 {
2513 if (debug_linux_nat)
2514 fprintf_unfiltered (gdb_stdlog,
2515 "MCIS: Clearing bogus flag for %s\n",
2516 target_pid_to_str (lp->ptid));
2517 lp->ignore_sigint = 0;
2518 }
2519 }
2520
2521 /* Fetch the possible triggered data watchpoint info and store it in
2522 LP.
2523
2524 On some archs, like x86, that use debug registers to set
2525 watchpoints, it's possible that the way to know which watched
2526 address trapped, is to check the register that is used to select
2527 which address to watch. Problem is, between setting the watchpoint
2528 and reading back which data address trapped, the user may change
2529 the set of watchpoints, and, as a consequence, GDB changes the
2530 debug registers in the inferior. To avoid reading back a stale
2531 stopped-data-address when that happens, we cache in LP the fact
2532 that a watchpoint trapped, and the corresponding data address, as
2533 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2534 registers meanwhile, we have the cached data we can rely on. */
2535
2536 static void
2537 save_sigtrap (struct lwp_info *lp)
2538 {
2539 struct cleanup *old_chain;
2540
2541 if (linux_ops->to_stopped_by_watchpoint == NULL)
2542 {
2543 lp->stopped_by_watchpoint = 0;
2544 return;
2545 }
2546
2547 old_chain = save_inferior_ptid ();
2548 inferior_ptid = lp->ptid;
2549
2550 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2551
2552 if (lp->stopped_by_watchpoint)
2553 {
2554 if (linux_ops->to_stopped_data_address != NULL)
2555 lp->stopped_data_address_p =
2556 linux_ops->to_stopped_data_address (&current_target,
2557 &lp->stopped_data_address);
2558 else
2559 lp->stopped_data_address_p = 0;
2560 }
2561
2562 do_cleanups (old_chain);
2563 }
2564
2565 /* See save_sigtrap. */
2566
2567 static int
2568 linux_nat_stopped_by_watchpoint (void)
2569 {
2570 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2571
2572 gdb_assert (lp != NULL);
2573
2574 return lp->stopped_by_watchpoint;
2575 }
2576
2577 static int
2578 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2579 {
2580 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2581
2582 gdb_assert (lp != NULL);
2583
2584 *addr_p = lp->stopped_data_address;
2585
2586 return lp->stopped_data_address_p;
2587 }
2588
2589 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2590
2591 static int
2592 sigtrap_is_event (int status)
2593 {
2594 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2595 }
2596
2597 /* SIGTRAP-like events recognizer. */
2598
2599 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2600
2601 /* Check for SIGTRAP-like events in LP. */
2602
2603 static int
2604 linux_nat_lp_status_is_event (struct lwp_info *lp)
2605 {
2606 /* We check for lp->waitstatus in addition to lp->status, because we can
2607 have pending process exits recorded in lp->status
2608 and W_EXITCODE(0,0) == 0. We should probably have an additional
2609 lp->status_p flag. */
2610
2611 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2612 && linux_nat_status_is_event (lp->status));
2613 }
2614
2615 /* Set alternative SIGTRAP-like events recognizer. If
2616 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2617 applied. */
2618
2619 void
2620 linux_nat_set_status_is_event (struct target_ops *t,
2621 int (*status_is_event) (int status))
2622 {
2623 linux_nat_status_is_event = status_is_event;
2624 }
2625
2626 /* Wait until LP is stopped. */
2627
2628 static int
2629 stop_wait_callback (struct lwp_info *lp, void *data)
2630 {
2631 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2632
2633 /* If this is a vfork parent, bail out, it is not going to report
2634 any SIGSTOP until the vfork is done with. */
2635 if (inf->vfork_child != NULL)
2636 return 0;
2637
2638 if (!lp->stopped)
2639 {
2640 int status;
2641
2642 status = wait_lwp (lp);
2643 if (status == 0)
2644 return 0;
2645
2646 if (lp->ignore_sigint && WIFSTOPPED (status)
2647 && WSTOPSIG (status) == SIGINT)
2648 {
2649 lp->ignore_sigint = 0;
2650
2651 errno = 0;
2652 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2653 if (debug_linux_nat)
2654 fprintf_unfiltered (gdb_stdlog,
2655 "PTRACE_CONT %s, 0, 0 (%s) "
2656 "(discarding SIGINT)\n",
2657 target_pid_to_str (lp->ptid),
2658 errno ? safe_strerror (errno) : "OK");
2659
2660 return stop_wait_callback (lp, NULL);
2661 }
2662
2663 maybe_clear_ignore_sigint (lp);
2664
2665 if (WSTOPSIG (status) != SIGSTOP)
2666 {
2667 if (linux_nat_status_is_event (status))
2668 {
2669 /* If a LWP other than the LWP that we're reporting an
2670 event for has hit a GDB breakpoint (as opposed to
2671 some random trap signal), then just arrange for it to
2672 hit it again later. We don't keep the SIGTRAP status
2673 and don't forward the SIGTRAP signal to the LWP. We
2674 will handle the current event, eventually we will
2675 resume all LWPs, and this one will get its breakpoint
2676 trap again.
2677
2678 If we do not do this, then we run the risk that the
2679 user will delete or disable the breakpoint, but the
2680 thread will have already tripped on it. */
2681
2682 /* Save the trap's siginfo in case we need it later. */
2683 save_siginfo (lp);
2684
2685 save_sigtrap (lp);
2686
2687 /* Now resume this LWP and get the SIGSTOP event. */
2688 errno = 0;
2689 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2690 if (debug_linux_nat)
2691 {
2692 fprintf_unfiltered (gdb_stdlog,
2693 "PTRACE_CONT %s, 0, 0 (%s)\n",
2694 target_pid_to_str (lp->ptid),
2695 errno ? safe_strerror (errno) : "OK");
2696
2697 fprintf_unfiltered (gdb_stdlog,
2698 "SWC: Candidate SIGTRAP event in %s\n",
2699 target_pid_to_str (lp->ptid));
2700 }
2701 /* Hold this event/waitstatus while we check to see if
2702 there are any more (we still want to get that SIGSTOP). */
2703 stop_wait_callback (lp, NULL);
2704
2705 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2706 there's another event, throw it back into the
2707 queue. */
2708 if (lp->status)
2709 {
2710 if (debug_linux_nat)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "SWC: kill %s, %s\n",
2713 target_pid_to_str (lp->ptid),
2714 status_to_str ((int) status));
2715 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2716 }
2717
2718 /* Save the sigtrap event. */
2719 lp->status = status;
2720 return 0;
2721 }
2722 else
2723 {
2724 /* The thread was stopped with a signal other than
2725 SIGSTOP, and didn't accidentally trip a breakpoint. */
2726
2727 if (debug_linux_nat)
2728 {
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SWC: Pending event %s in %s\n",
2731 status_to_str ((int) status),
2732 target_pid_to_str (lp->ptid));
2733 }
2734 /* Now resume this LWP and get the SIGSTOP event. */
2735 errno = 0;
2736 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2740 target_pid_to_str (lp->ptid),
2741 errno ? safe_strerror (errno) : "OK");
2742
2743 /* Hold this event/waitstatus while we check to see if
2744 there are any more (we still want to get that SIGSTOP). */
2745 stop_wait_callback (lp, NULL);
2746
2747 /* If the lp->status field is still empty, use it to
2748 hold this event. If not, then this event must be
2749 returned to the event queue of the LWP. */
2750 if (lp->status)
2751 {
2752 if (debug_linux_nat)
2753 {
2754 fprintf_unfiltered (gdb_stdlog,
2755 "SWC: kill %s, %s\n",
2756 target_pid_to_str (lp->ptid),
2757 status_to_str ((int) status));
2758 }
2759 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2760 }
2761 else
2762 lp->status = status;
2763 return 0;
2764 }
2765 }
2766 else
2767 {
2768 /* We caught the SIGSTOP that we intended to catch, so
2769 there's no SIGSTOP pending. */
2770 lp->stopped = 1;
2771 lp->signalled = 0;
2772 }
2773 }
2774
2775 return 0;
2776 }
2777
2778 /* Return non-zero if LP has a wait status pending. */
2779
2780 static int
2781 status_callback (struct lwp_info *lp, void *data)
2782 {
2783 /* Only report a pending wait status if we pretend that this has
2784 indeed been resumed. */
2785 if (!lp->resumed)
2786 return 0;
2787
2788 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2789 {
2790 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2791 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2792 0', so a clean process exit can not be stored pending in
2793 lp->status, it is indistinguishable from
2794 no-pending-status. */
2795 return 1;
2796 }
2797
2798 if (lp->status != 0)
2799 return 1;
2800
2801 return 0;
2802 }
2803
2804 /* Return non-zero if LP isn't stopped. */
2805
2806 static int
2807 running_callback (struct lwp_info *lp, void *data)
2808 {
2809 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2810 }
2811
2812 /* Count the LWP's that have had events. */
2813
2814 static int
2815 count_events_callback (struct lwp_info *lp, void *data)
2816 {
2817 int *count = data;
2818
2819 gdb_assert (count != NULL);
2820
2821 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2822 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2823 (*count)++;
2824
2825 return 0;
2826 }
2827
2828 /* Select the LWP (if any) that is currently being single-stepped. */
2829
2830 static int
2831 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2832 {
2833 if (lp->step && lp->status != 0)
2834 return 1;
2835 else
2836 return 0;
2837 }
2838
2839 /* Select the Nth LWP that has had a SIGTRAP event. */
2840
2841 static int
2842 select_event_lwp_callback (struct lwp_info *lp, void *data)
2843 {
2844 int *selector = data;
2845
2846 gdb_assert (selector != NULL);
2847
2848 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2849 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2850 if ((*selector)-- == 0)
2851 return 1;
2852
2853 return 0;
2854 }
2855
2856 static int
2857 cancel_breakpoint (struct lwp_info *lp)
2858 {
2859 /* Arrange for a breakpoint to be hit again later. We don't keep
2860 the SIGTRAP status and don't forward the SIGTRAP signal to the
2861 LWP. We will handle the current event, eventually we will resume
2862 this LWP, and this breakpoint will trap again.
2863
2864 If we do not do this, then we run the risk that the user will
2865 delete or disable the breakpoint, but the LWP will have already
2866 tripped on it. */
2867
2868 struct regcache *regcache = get_thread_regcache (lp->ptid);
2869 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2870 CORE_ADDR pc;
2871
2872 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2873 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2874 {
2875 if (debug_linux_nat)
2876 fprintf_unfiltered (gdb_stdlog,
2877 "CB: Push back breakpoint for %s\n",
2878 target_pid_to_str (lp->ptid));
2879
2880 /* Back up the PC if necessary. */
2881 if (gdbarch_decr_pc_after_break (gdbarch))
2882 regcache_write_pc (regcache, pc);
2883
2884 return 1;
2885 }
2886 return 0;
2887 }
2888
2889 static int
2890 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2891 {
2892 struct lwp_info *event_lp = data;
2893
2894 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2895 if (lp == event_lp)
2896 return 0;
2897
2898 /* If a LWP other than the LWP that we're reporting an event for has
2899 hit a GDB breakpoint (as opposed to some random trap signal),
2900 then just arrange for it to hit it again later. We don't keep
2901 the SIGTRAP status and don't forward the SIGTRAP signal to the
2902 LWP. We will handle the current event, eventually we will resume
2903 all LWPs, and this one will get its breakpoint trap again.
2904
2905 If we do not do this, then we run the risk that the user will
2906 delete or disable the breakpoint, but the LWP will have already
2907 tripped on it. */
2908
2909 if (linux_nat_lp_status_is_event (lp)
2910 && cancel_breakpoint (lp))
2911 /* Throw away the SIGTRAP. */
2912 lp->status = 0;
2913
2914 return 0;
2915 }
2916
2917 /* Select one LWP out of those that have events pending. */
2918
2919 static void
2920 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2921 {
2922 int num_events = 0;
2923 int random_selector;
2924 struct lwp_info *event_lp;
2925
2926 /* Record the wait status for the original LWP. */
2927 (*orig_lp)->status = *status;
2928
2929 /* Give preference to any LWP that is being single-stepped. */
2930 event_lp = iterate_over_lwps (filter,
2931 select_singlestep_lwp_callback, NULL);
2932 if (event_lp != NULL)
2933 {
2934 if (debug_linux_nat)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "SEL: Select single-step %s\n",
2937 target_pid_to_str (event_lp->ptid));
2938 }
2939 else
2940 {
2941 /* No single-stepping LWP. Select one at random, out of those
2942 which have had SIGTRAP events. */
2943
2944 /* First see how many SIGTRAP events we have. */
2945 iterate_over_lwps (filter, count_events_callback, &num_events);
2946
2947 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2948 random_selector = (int)
2949 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2950
2951 if (debug_linux_nat && num_events > 1)
2952 fprintf_unfiltered (gdb_stdlog,
2953 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2954 num_events, random_selector);
2955
2956 event_lp = iterate_over_lwps (filter,
2957 select_event_lwp_callback,
2958 &random_selector);
2959 }
2960
2961 if (event_lp != NULL)
2962 {
2963 /* Switch the event LWP. */
2964 *orig_lp = event_lp;
2965 *status = event_lp->status;
2966 }
2967
2968 /* Flush the wait status for the event LWP. */
2969 (*orig_lp)->status = 0;
2970 }
2971
2972 /* Return non-zero if LP has been resumed. */
2973
2974 static int
2975 resumed_callback (struct lwp_info *lp, void *data)
2976 {
2977 return lp->resumed;
2978 }
2979
2980 /* Stop an active thread, verify it still exists, then resume it. */
2981
2982 static int
2983 stop_and_resume_callback (struct lwp_info *lp, void *data)
2984 {
2985 struct lwp_info *ptr;
2986
2987 if (!lp->stopped && !lp->signalled)
2988 {
2989 stop_callback (lp, NULL);
2990 stop_wait_callback (lp, NULL);
2991 /* Resume if the lwp still exists. */
2992 for (ptr = lwp_list; ptr; ptr = ptr->next)
2993 if (lp == ptr)
2994 {
2995 resume_callback (lp, NULL);
2996 resume_set_callback (lp, NULL);
2997 }
2998 }
2999 return 0;
3000 }
3001
3002 /* Check if we should go on and pass this event to common code.
3003 Return the affected lwp if we are, or NULL otherwise. */
3004 static struct lwp_info *
3005 linux_nat_filter_event (int lwpid, int status, int options)
3006 {
3007 struct lwp_info *lp;
3008
3009 lp = find_lwp_pid (pid_to_ptid (lwpid));
3010
3011 /* Check for stop events reported by a process we didn't already
3012 know about - anything not already in our LWP list.
3013
3014 If we're expecting to receive stopped processes after
3015 fork, vfork, and clone events, then we'll just add the
3016 new one to our list and go back to waiting for the event
3017 to be reported - the stopped process might be returned
3018 from waitpid before or after the event is. */
3019 if (WIFSTOPPED (status) && !lp)
3020 {
3021 linux_record_stopped_pid (lwpid, status);
3022 return NULL;
3023 }
3024
3025 /* Make sure we don't report an event for the exit of an LWP not in
3026 our list, i.e. not part of the current process. This can happen
3027 if we detach from a program we originally forked and then it
3028 exits. */
3029 if (!WIFSTOPPED (status) && !lp)
3030 return NULL;
3031
3032 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3033 CLONE_PTRACE processes which do not use the thread library -
3034 otherwise we wouldn't find the new LWP this way. That doesn't
3035 currently work, and the following code is currently unreachable
3036 due to the two blocks above. If it's fixed some day, this code
3037 should be broken out into a function so that we can also pick up
3038 LWPs from the new interface. */
3039 if (!lp)
3040 {
3041 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3042 if (options & __WCLONE)
3043 lp->cloned = 1;
3044
3045 gdb_assert (WIFSTOPPED (status)
3046 && WSTOPSIG (status) == SIGSTOP);
3047 lp->signalled = 1;
3048
3049 if (!in_thread_list (inferior_ptid))
3050 {
3051 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3052 GET_PID (inferior_ptid));
3053 add_thread (inferior_ptid);
3054 }
3055
3056 add_thread (lp->ptid);
3057 }
3058
3059 /* Handle GNU/Linux's syscall SIGTRAPs. */
3060 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3061 {
3062 /* No longer need the sysgood bit. The ptrace event ends up
3063 recorded in lp->waitstatus if we care for it. We can carry
3064 on handling the event like a regular SIGTRAP from here
3065 on. */
3066 status = W_STOPCODE (SIGTRAP);
3067 if (linux_handle_syscall_trap (lp, 0))
3068 return NULL;
3069 }
3070
3071 /* Handle GNU/Linux's extended waitstatus for trace events. */
3072 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3073 {
3074 if (debug_linux_nat)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "LLW: Handling extended status 0x%06x\n",
3077 status);
3078 if (linux_handle_extended_wait (lp, status, 0))
3079 return NULL;
3080 }
3081
3082 if (linux_nat_status_is_event (status))
3083 {
3084 /* Save the trap's siginfo in case we need it later. */
3085 save_siginfo (lp);
3086
3087 save_sigtrap (lp);
3088 }
3089
3090 /* Check if the thread has exited. */
3091 if ((WIFEXITED (status) || WIFSIGNALED (status))
3092 && num_lwps (GET_PID (lp->ptid)) > 1)
3093 {
3094 /* If this is the main thread, we must stop all threads and verify
3095 if they are still alive. This is because in the nptl thread model
3096 on Linux 2.4, there is no signal issued for exiting LWPs
3097 other than the main thread. We only get the main thread exit
3098 signal once all child threads have already exited. If we
3099 stop all the threads and use the stop_wait_callback to check
3100 if they have exited we can determine whether this signal
3101 should be ignored or whether it means the end of the debugged
3102 application, regardless of which threading model is being
3103 used. */
3104 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3105 {
3106 lp->stopped = 1;
3107 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3108 stop_and_resume_callback, NULL);
3109 }
3110
3111 if (debug_linux_nat)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "LLW: %s exited.\n",
3114 target_pid_to_str (lp->ptid));
3115
3116 if (num_lwps (GET_PID (lp->ptid)) > 1)
3117 {
3118 /* If there is at least one more LWP, then the exit signal
3119 was not the end of the debugged application and should be
3120 ignored. */
3121 exit_lwp (lp);
3122 return NULL;
3123 }
3124 }
3125
3126 /* Check if the current LWP has previously exited. In the nptl
3127 thread model, LWPs other than the main thread do not issue
3128 signals when they exit so we must check whenever the thread has
3129 stopped. A similar check is made in stop_wait_callback(). */
3130 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3131 {
3132 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3133
3134 if (debug_linux_nat)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "LLW: %s exited.\n",
3137 target_pid_to_str (lp->ptid));
3138
3139 exit_lwp (lp);
3140
3141 /* Make sure there is at least one thread running. */
3142 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3143
3144 /* Discard the event. */
3145 return NULL;
3146 }
3147
3148 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3149 an attempt to stop an LWP. */
3150 if (lp->signalled
3151 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3152 {
3153 if (debug_linux_nat)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "LLW: Delayed SIGSTOP caught for %s.\n",
3156 target_pid_to_str (lp->ptid));
3157
3158 /* This is a delayed SIGSTOP. */
3159 lp->signalled = 0;
3160
3161 registers_changed ();
3162
3163 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3164 lp->step, TARGET_SIGNAL_0);
3165 if (debug_linux_nat)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3168 lp->step ?
3169 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3170 target_pid_to_str (lp->ptid));
3171
3172 lp->stopped = 0;
3173 gdb_assert (lp->resumed);
3174
3175 /* Discard the event. */
3176 return NULL;
3177 }
3178
3179 /* Make sure we don't report a SIGINT that we have already displayed
3180 for another thread. */
3181 if (lp->ignore_sigint
3182 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3183 {
3184 if (debug_linux_nat)
3185 fprintf_unfiltered (gdb_stdlog,
3186 "LLW: Delayed SIGINT caught for %s.\n",
3187 target_pid_to_str (lp->ptid));
3188
3189 /* This is a delayed SIGINT. */
3190 lp->ignore_sigint = 0;
3191
3192 registers_changed ();
3193 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3194 lp->step, TARGET_SIGNAL_0);
3195 if (debug_linux_nat)
3196 fprintf_unfiltered (gdb_stdlog,
3197 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3198 lp->step ?
3199 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3200 target_pid_to_str (lp->ptid));
3201
3202 lp->stopped = 0;
3203 gdb_assert (lp->resumed);
3204
3205 /* Discard the event. */
3206 return NULL;
3207 }
3208
3209 /* An interesting event. */
3210 gdb_assert (lp);
3211 lp->status = status;
3212 return lp;
3213 }
3214
3215 static ptid_t
3216 linux_nat_wait_1 (struct target_ops *ops,
3217 ptid_t ptid, struct target_waitstatus *ourstatus,
3218 int target_options)
3219 {
3220 static sigset_t prev_mask;
3221 struct lwp_info *lp = NULL;
3222 int options = 0;
3223 int status = 0;
3224 pid_t pid;
3225
3226 if (debug_linux_nat_async)
3227 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3228
3229 /* The first time we get here after starting a new inferior, we may
3230 not have added it to the LWP list yet - this is the earliest
3231 moment at which we know its PID. */
3232 if (ptid_is_pid (inferior_ptid))
3233 {
3234 /* Upgrade the main thread's ptid. */
3235 thread_change_ptid (inferior_ptid,
3236 BUILD_LWP (GET_PID (inferior_ptid),
3237 GET_PID (inferior_ptid)));
3238
3239 lp = add_lwp (inferior_ptid);
3240 lp->resumed = 1;
3241 }
3242
3243 /* Make sure SIGCHLD is blocked. */
3244 block_child_signals (&prev_mask);
3245
3246 if (ptid_equal (ptid, minus_one_ptid))
3247 pid = -1;
3248 else if (ptid_is_pid (ptid))
3249 /* A request to wait for a specific tgid. This is not possible
3250 with waitpid, so instead, we wait for any child, and leave
3251 children we're not interested in right now with a pending
3252 status to report later. */
3253 pid = -1;
3254 else
3255 pid = GET_LWP (ptid);
3256
3257 retry:
3258 lp = NULL;
3259 status = 0;
3260
3261 /* Make sure that of those LWPs we want to get an event from, there
3262 is at least one LWP that has been resumed. If there's none, just
3263 bail out. The core may just be flushing asynchronously all
3264 events. */
3265 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3266 {
3267 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3268
3269 if (debug_linux_nat_async)
3270 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3271
3272 restore_child_signals_mask (&prev_mask);
3273 return minus_one_ptid;
3274 }
3275
3276 /* First check if there is a LWP with a wait status pending. */
3277 if (pid == -1)
3278 {
3279 /* Any LWP that's been resumed will do. */
3280 lp = iterate_over_lwps (ptid, status_callback, NULL);
3281 if (lp)
3282 {
3283 if (debug_linux_nat && lp->status)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "LLW: Using pending wait status %s for %s.\n",
3286 status_to_str (lp->status),
3287 target_pid_to_str (lp->ptid));
3288 }
3289
3290 /* But if we don't find one, we'll have to wait, and check both
3291 cloned and uncloned processes. We start with the cloned
3292 processes. */
3293 options = __WCLONE | WNOHANG;
3294 }
3295 else if (is_lwp (ptid))
3296 {
3297 if (debug_linux_nat)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "LLW: Waiting for specific LWP %s.\n",
3300 target_pid_to_str (ptid));
3301
3302 /* We have a specific LWP to check. */
3303 lp = find_lwp_pid (ptid);
3304 gdb_assert (lp);
3305
3306 if (debug_linux_nat && lp->status)
3307 fprintf_unfiltered (gdb_stdlog,
3308 "LLW: Using pending wait status %s for %s.\n",
3309 status_to_str (lp->status),
3310 target_pid_to_str (lp->ptid));
3311
3312 /* If we have to wait, take into account whether PID is a cloned
3313 process or not. And we have to convert it to something that
3314 the layer beneath us can understand. */
3315 options = lp->cloned ? __WCLONE : 0;
3316 pid = GET_LWP (ptid);
3317
3318 /* We check for lp->waitstatus in addition to lp->status,
3319 because we can have pending process exits recorded in
3320 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3321 an additional lp->status_p flag. */
3322 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3323 lp = NULL;
3324 }
3325
3326 if (lp && lp->signalled)
3327 {
3328 /* A pending SIGSTOP may interfere with the normal stream of
3329 events. In a typical case where interference is a problem,
3330 we have a SIGSTOP signal pending for LWP A while
3331 single-stepping it, encounter an event in LWP B, and take the
3332 pending SIGSTOP while trying to stop LWP A. After processing
3333 the event in LWP B, LWP A is continued, and we'll never see
3334 the SIGTRAP associated with the last time we were
3335 single-stepping LWP A. */
3336
3337 /* Resume the thread. It should halt immediately returning the
3338 pending SIGSTOP. */
3339 registers_changed ();
3340 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3341 lp->step, TARGET_SIGNAL_0);
3342 if (debug_linux_nat)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3345 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3346 target_pid_to_str (lp->ptid));
3347 lp->stopped = 0;
3348 gdb_assert (lp->resumed);
3349
3350 /* Catch the pending SIGSTOP. */
3351 status = lp->status;
3352 lp->status = 0;
3353
3354 stop_wait_callback (lp, NULL);
3355
3356 /* If the lp->status field isn't empty, we caught another signal
3357 while flushing the SIGSTOP. Return it back to the event
3358 queue of the LWP, as we already have an event to handle. */
3359 if (lp->status)
3360 {
3361 if (debug_linux_nat)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "LLW: kill %s, %s\n",
3364 target_pid_to_str (lp->ptid),
3365 status_to_str (lp->status));
3366 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3367 }
3368
3369 lp->status = status;
3370 }
3371
3372 if (!target_can_async_p ())
3373 {
3374 /* Causes SIGINT to be passed on to the attached process. */
3375 set_sigint_trap ();
3376 }
3377
3378 /* Translate generic target_wait options into waitpid options. */
3379 if (target_options & TARGET_WNOHANG)
3380 options |= WNOHANG;
3381
3382 while (lp == NULL)
3383 {
3384 pid_t lwpid;
3385
3386 lwpid = my_waitpid (pid, &status, options);
3387
3388 if (lwpid > 0)
3389 {
3390 gdb_assert (pid == -1 || lwpid == pid);
3391
3392 if (debug_linux_nat)
3393 {
3394 fprintf_unfiltered (gdb_stdlog,
3395 "LLW: waitpid %ld received %s\n",
3396 (long) lwpid, status_to_str (status));
3397 }
3398
3399 lp = linux_nat_filter_event (lwpid, status, options);
3400
3401 /* STATUS is now no longer valid, use LP->STATUS instead. */
3402 status = 0;
3403
3404 if (lp
3405 && ptid_is_pid (ptid)
3406 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3407 {
3408 gdb_assert (lp->resumed);
3409
3410 if (debug_linux_nat)
3411 fprintf (stderr,
3412 "LWP %ld got an event %06x, leaving pending.\n",
3413 ptid_get_lwp (lp->ptid), lp->status);
3414
3415 if (WIFSTOPPED (lp->status))
3416 {
3417 if (WSTOPSIG (lp->status) != SIGSTOP)
3418 {
3419 /* Cancel breakpoint hits. The breakpoint may
3420 be removed before we fetch events from this
3421 process to report to the core. It is best
3422 not to assume the moribund breakpoints
3423 heuristic always handles these cases --- it
3424 could be too many events go through to the
3425 core before this one is handled. All-stop
3426 always cancels breakpoint hits in all
3427 threads. */
3428 if (non_stop
3429 && linux_nat_lp_status_is_event (lp)
3430 && cancel_breakpoint (lp))
3431 {
3432 /* Throw away the SIGTRAP. */
3433 lp->status = 0;
3434
3435 if (debug_linux_nat)
3436 fprintf (stderr,
3437 "LLW: LWP %ld hit a breakpoint while"
3438 " waiting for another process;"
3439 " cancelled it\n",
3440 ptid_get_lwp (lp->ptid));
3441 }
3442 lp->stopped = 1;
3443 }
3444 else
3445 {
3446 lp->stopped = 1;
3447 lp->signalled = 0;
3448 }
3449 }
3450 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3451 {
3452 if (debug_linux_nat)
3453 fprintf (stderr,
3454 "Process %ld exited while stopping LWPs\n",
3455 ptid_get_lwp (lp->ptid));
3456
3457 /* This was the last lwp in the process. Since
3458 events are serialized to GDB core, and we can't
3459 report this one right now, but GDB core and the
3460 other target layers will want to be notified
3461 about the exit code/signal, leave the status
3462 pending for the next time we're able to report
3463 it. */
3464
3465 /* Prevent trying to stop this thread again. We'll
3466 never try to resume it because it has a pending
3467 status. */
3468 lp->stopped = 1;
3469
3470 /* Dead LWP's aren't expected to reported a pending
3471 sigstop. */
3472 lp->signalled = 0;
3473
3474 /* Store the pending event in the waitstatus as
3475 well, because W_EXITCODE(0,0) == 0. */
3476 store_waitstatus (&lp->waitstatus, lp->status);
3477 }
3478
3479 /* Keep looking. */
3480 lp = NULL;
3481 continue;
3482 }
3483
3484 if (lp)
3485 break;
3486 else
3487 {
3488 if (pid == -1)
3489 {
3490 /* waitpid did return something. Restart over. */
3491 options |= __WCLONE;
3492 }
3493 continue;
3494 }
3495 }
3496
3497 if (pid == -1)
3498 {
3499 /* Alternate between checking cloned and uncloned processes. */
3500 options ^= __WCLONE;
3501
3502 /* And every time we have checked both:
3503 In async mode, return to event loop;
3504 In sync mode, suspend waiting for a SIGCHLD signal. */
3505 if (options & __WCLONE)
3506 {
3507 if (target_options & TARGET_WNOHANG)
3508 {
3509 /* No interesting event. */
3510 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3511
3512 if (debug_linux_nat_async)
3513 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3514
3515 restore_child_signals_mask (&prev_mask);
3516 return minus_one_ptid;
3517 }
3518
3519 sigsuspend (&suspend_mask);
3520 }
3521 }
3522 else if (target_options & TARGET_WNOHANG)
3523 {
3524 /* No interesting event for PID yet. */
3525 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3526
3527 if (debug_linux_nat_async)
3528 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3529
3530 restore_child_signals_mask (&prev_mask);
3531 return minus_one_ptid;
3532 }
3533
3534 /* We shouldn't end up here unless we want to try again. */
3535 gdb_assert (lp == NULL);
3536 }
3537
3538 if (!target_can_async_p ())
3539 clear_sigint_trap ();
3540
3541 gdb_assert (lp);
3542
3543 status = lp->status;
3544 lp->status = 0;
3545
3546 /* Don't report signals that GDB isn't interested in, such as
3547 signals that are neither printed nor stopped upon. Stopping all
3548 threads can be a bit time-consuming so if we want decent
3549 performance with heavily multi-threaded programs, especially when
3550 they're using a high frequency timer, we'd better avoid it if we
3551 can. */
3552
3553 if (WIFSTOPPED (status))
3554 {
3555 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3556 struct inferior *inf;
3557
3558 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3559 gdb_assert (inf);
3560
3561 /* Defer to common code if we get a signal while
3562 single-stepping, since that may need special care, e.g. to
3563 skip the signal handler, or, if we're gaining control of the
3564 inferior. */
3565 if (!lp->step
3566 && inf->control.stop_soon == NO_STOP_QUIETLY
3567 && signal_stop_state (signo) == 0
3568 && signal_print_state (signo) == 0
3569 && signal_pass_state (signo) == 1)
3570 {
3571 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3572 here? It is not clear we should. GDB may not expect
3573 other threads to run. On the other hand, not resuming
3574 newly attached threads may cause an unwanted delay in
3575 getting them running. */
3576 registers_changed ();
3577 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3578 lp->step, signo);
3579 if (debug_linux_nat)
3580 fprintf_unfiltered (gdb_stdlog,
3581 "LLW: %s %s, %s (preempt 'handle')\n",
3582 lp->step ?
3583 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3584 target_pid_to_str (lp->ptid),
3585 (signo != TARGET_SIGNAL_0
3586 ? strsignal (target_signal_to_host (signo))
3587 : "0"));
3588 lp->stopped = 0;
3589 goto retry;
3590 }
3591
3592 if (!non_stop)
3593 {
3594 /* Only do the below in all-stop, as we currently use SIGINT
3595 to implement target_stop (see linux_nat_stop) in
3596 non-stop. */
3597 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3598 {
3599 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3600 forwarded to the entire process group, that is, all LWPs
3601 will receive it - unless they're using CLONE_THREAD to
3602 share signals. Since we only want to report it once, we
3603 mark it as ignored for all LWPs except this one. */
3604 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3605 set_ignore_sigint, NULL);
3606 lp->ignore_sigint = 0;
3607 }
3608 else
3609 maybe_clear_ignore_sigint (lp);
3610 }
3611 }
3612
3613 /* This LWP is stopped now. */
3614 lp->stopped = 1;
3615
3616 if (debug_linux_nat)
3617 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3618 status_to_str (status), target_pid_to_str (lp->ptid));
3619
3620 if (!non_stop)
3621 {
3622 /* Now stop all other LWP's ... */
3623 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3624
3625 /* ... and wait until all of them have reported back that
3626 they're no longer running. */
3627 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3628
3629 /* If we're not waiting for a specific LWP, choose an event LWP
3630 from among those that have had events. Giving equal priority
3631 to all LWPs that have had events helps prevent
3632 starvation. */
3633 if (pid == -1)
3634 select_event_lwp (ptid, &lp, &status);
3635
3636 /* Now that we've selected our final event LWP, cancel any
3637 breakpoints in other LWPs that have hit a GDB breakpoint.
3638 See the comment in cancel_breakpoints_callback to find out
3639 why. */
3640 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3641
3642 /* In all-stop, from the core's perspective, all LWPs are now
3643 stopped until a new resume action is sent over. */
3644 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3645 }
3646 else
3647 lp->resumed = 0;
3648
3649 if (linux_nat_status_is_event (status))
3650 {
3651 if (debug_linux_nat)
3652 fprintf_unfiltered (gdb_stdlog,
3653 "LLW: trap ptid is %s.\n",
3654 target_pid_to_str (lp->ptid));
3655 }
3656
3657 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3658 {
3659 *ourstatus = lp->waitstatus;
3660 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3661 }
3662 else
3663 store_waitstatus (ourstatus, status);
3664
3665 if (debug_linux_nat_async)
3666 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3667
3668 restore_child_signals_mask (&prev_mask);
3669
3670 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3671 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3672 lp->core = -1;
3673 else
3674 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3675
3676 return lp->ptid;
3677 }
3678
3679 /* Resume LWPs that are currently stopped without any pending status
3680 to report, but are resumed from the core's perspective. */
3681
3682 static int
3683 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3684 {
3685 ptid_t *wait_ptid_p = data;
3686
3687 if (lp->stopped
3688 && lp->resumed
3689 && lp->status == 0
3690 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3691 {
3692 gdb_assert (is_executing (lp->ptid));
3693
3694 /* Don't bother if there's a breakpoint at PC that we'd hit
3695 immediately, and we're not waiting for this LWP. */
3696 if (!ptid_match (lp->ptid, *wait_ptid_p))
3697 {
3698 struct regcache *regcache = get_thread_regcache (lp->ptid);
3699 CORE_ADDR pc = regcache_read_pc (regcache);
3700
3701 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3702 return 0;
3703 }
3704
3705 if (debug_linux_nat)
3706 fprintf_unfiltered (gdb_stdlog,
3707 "RSRL: resuming stopped-resumed LWP %s\n",
3708 target_pid_to_str (lp->ptid));
3709
3710 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3711 lp->step, TARGET_SIGNAL_0);
3712 lp->stopped = 0;
3713 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3714 lp->stopped_by_watchpoint = 0;
3715 }
3716
3717 return 0;
3718 }
3719
3720 static ptid_t
3721 linux_nat_wait (struct target_ops *ops,
3722 ptid_t ptid, struct target_waitstatus *ourstatus,
3723 int target_options)
3724 {
3725 ptid_t event_ptid;
3726
3727 if (debug_linux_nat)
3728 fprintf_unfiltered (gdb_stdlog,
3729 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3730
3731 /* Flush the async file first. */
3732 if (target_can_async_p ())
3733 async_file_flush ();
3734
3735 /* Resume LWPs that are currently stopped without any pending status
3736 to report, but are resumed from the core's perspective. LWPs get
3737 in this state if we find them stopping at a time we're not
3738 interested in reporting the event (target_wait on a
3739 specific_process, for example, see linux_nat_wait_1), and
3740 meanwhile the event became uninteresting. Don't bother resuming
3741 LWPs we're not going to wait for if they'd stop immediately. */
3742 if (non_stop)
3743 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3744
3745 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3746
3747 /* If we requested any event, and something came out, assume there
3748 may be more. If we requested a specific lwp or process, also
3749 assume there may be more. */
3750 if (target_can_async_p ()
3751 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3752 || !ptid_equal (ptid, minus_one_ptid)))
3753 async_file_mark ();
3754
3755 /* Get ready for the next event. */
3756 if (target_can_async_p ())
3757 target_async (inferior_event_handler, 0);
3758
3759 return event_ptid;
3760 }
3761
3762 static int
3763 kill_callback (struct lwp_info *lp, void *data)
3764 {
3765 errno = 0;
3766 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3767 if (debug_linux_nat)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3770 target_pid_to_str (lp->ptid),
3771 errno ? safe_strerror (errno) : "OK");
3772
3773 return 0;
3774 }
3775
3776 static int
3777 kill_wait_callback (struct lwp_info *lp, void *data)
3778 {
3779 pid_t pid;
3780
3781 /* We must make sure that there are no pending events (delayed
3782 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3783 program doesn't interfere with any following debugging session. */
3784
3785 /* For cloned processes we must check both with __WCLONE and
3786 without, since the exit status of a cloned process isn't reported
3787 with __WCLONE. */
3788 if (lp->cloned)
3789 {
3790 do
3791 {
3792 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3793 if (pid != (pid_t) -1)
3794 {
3795 if (debug_linux_nat)
3796 fprintf_unfiltered (gdb_stdlog,
3797 "KWC: wait %s received unknown.\n",
3798 target_pid_to_str (lp->ptid));
3799 /* The Linux kernel sometimes fails to kill a thread
3800 completely after PTRACE_KILL; that goes from the stop
3801 point in do_fork out to the one in
3802 get_signal_to_deliever and waits again. So kill it
3803 again. */
3804 kill_callback (lp, NULL);
3805 }
3806 }
3807 while (pid == GET_LWP (lp->ptid));
3808
3809 gdb_assert (pid == -1 && errno == ECHILD);
3810 }
3811
3812 do
3813 {
3814 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3815 if (pid != (pid_t) -1)
3816 {
3817 if (debug_linux_nat)
3818 fprintf_unfiltered (gdb_stdlog,
3819 "KWC: wait %s received unk.\n",
3820 target_pid_to_str (lp->ptid));
3821 /* See the call to kill_callback above. */
3822 kill_callback (lp, NULL);
3823 }
3824 }
3825 while (pid == GET_LWP (lp->ptid));
3826
3827 gdb_assert (pid == -1 && errno == ECHILD);
3828 return 0;
3829 }
3830
3831 static void
3832 linux_nat_kill (struct target_ops *ops)
3833 {
3834 struct target_waitstatus last;
3835 ptid_t last_ptid;
3836 int status;
3837
3838 /* If we're stopped while forking and we haven't followed yet,
3839 kill the other task. We need to do this first because the
3840 parent will be sleeping if this is a vfork. */
3841
3842 get_last_target_status (&last_ptid, &last);
3843
3844 if (last.kind == TARGET_WAITKIND_FORKED
3845 || last.kind == TARGET_WAITKIND_VFORKED)
3846 {
3847 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3848 wait (&status);
3849 }
3850
3851 if (forks_exist_p ())
3852 linux_fork_killall ();
3853 else
3854 {
3855 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3856
3857 /* Stop all threads before killing them, since ptrace requires
3858 that the thread is stopped to sucessfully PTRACE_KILL. */
3859 iterate_over_lwps (ptid, stop_callback, NULL);
3860 /* ... and wait until all of them have reported back that
3861 they're no longer running. */
3862 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3863
3864 /* Kill all LWP's ... */
3865 iterate_over_lwps (ptid, kill_callback, NULL);
3866
3867 /* ... and wait until we've flushed all events. */
3868 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3869 }
3870
3871 target_mourn_inferior ();
3872 }
3873
3874 static void
3875 linux_nat_mourn_inferior (struct target_ops *ops)
3876 {
3877 purge_lwp_list (ptid_get_pid (inferior_ptid));
3878
3879 if (! forks_exist_p ())
3880 /* Normal case, no other forks available. */
3881 linux_ops->to_mourn_inferior (ops);
3882 else
3883 /* Multi-fork case. The current inferior_ptid has exited, but
3884 there are other viable forks to debug. Delete the exiting
3885 one and context-switch to the first available. */
3886 linux_fork_mourn_inferior ();
3887 }
3888
3889 /* Convert a native/host siginfo object, into/from the siginfo in the
3890 layout of the inferiors' architecture. */
3891
3892 static void
3893 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3894 {
3895 int done = 0;
3896
3897 if (linux_nat_siginfo_fixup != NULL)
3898 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3899
3900 /* If there was no callback, or the callback didn't do anything,
3901 then just do a straight memcpy. */
3902 if (!done)
3903 {
3904 if (direction == 1)
3905 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3906 else
3907 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3908 }
3909 }
3910
3911 static LONGEST
3912 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3913 const char *annex, gdb_byte *readbuf,
3914 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3915 {
3916 int pid;
3917 struct siginfo siginfo;
3918 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3919
3920 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3921 gdb_assert (readbuf || writebuf);
3922
3923 pid = GET_LWP (inferior_ptid);
3924 if (pid == 0)
3925 pid = GET_PID (inferior_ptid);
3926
3927 if (offset > sizeof (siginfo))
3928 return -1;
3929
3930 errno = 0;
3931 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3932 if (errno != 0)
3933 return -1;
3934
3935 /* When GDB is built as a 64-bit application, ptrace writes into
3936 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3937 inferior with a 64-bit GDB should look the same as debugging it
3938 with a 32-bit GDB, we need to convert it. GDB core always sees
3939 the converted layout, so any read/write will have to be done
3940 post-conversion. */
3941 siginfo_fixup (&siginfo, inf_siginfo, 0);
3942
3943 if (offset + len > sizeof (siginfo))
3944 len = sizeof (siginfo) - offset;
3945
3946 if (readbuf != NULL)
3947 memcpy (readbuf, inf_siginfo + offset, len);
3948 else
3949 {
3950 memcpy (inf_siginfo + offset, writebuf, len);
3951
3952 /* Convert back to ptrace layout before flushing it out. */
3953 siginfo_fixup (&siginfo, inf_siginfo, 1);
3954
3955 errno = 0;
3956 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3957 if (errno != 0)
3958 return -1;
3959 }
3960
3961 return len;
3962 }
3963
3964 static LONGEST
3965 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3966 const char *annex, gdb_byte *readbuf,
3967 const gdb_byte *writebuf,
3968 ULONGEST offset, LONGEST len)
3969 {
3970 struct cleanup *old_chain;
3971 LONGEST xfer;
3972
3973 if (object == TARGET_OBJECT_SIGNAL_INFO)
3974 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3975 offset, len);
3976
3977 /* The target is connected but no live inferior is selected. Pass
3978 this request down to a lower stratum (e.g., the executable
3979 file). */
3980 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3981 return 0;
3982
3983 old_chain = save_inferior_ptid ();
3984
3985 if (is_lwp (inferior_ptid))
3986 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3987
3988 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3989 offset, len);
3990
3991 do_cleanups (old_chain);
3992 return xfer;
3993 }
3994
3995 static int
3996 linux_thread_alive (ptid_t ptid)
3997 {
3998 int err, tmp_errno;
3999
4000 gdb_assert (is_lwp (ptid));
4001
4002 /* Send signal 0 instead of anything ptrace, because ptracing a
4003 running thread errors out claiming that the thread doesn't
4004 exist. */
4005 err = kill_lwp (GET_LWP (ptid), 0);
4006 tmp_errno = errno;
4007 if (debug_linux_nat)
4008 fprintf_unfiltered (gdb_stdlog,
4009 "LLTA: KILL(SIG0) %s (%s)\n",
4010 target_pid_to_str (ptid),
4011 err ? safe_strerror (tmp_errno) : "OK");
4012
4013 if (err != 0)
4014 return 0;
4015
4016 return 1;
4017 }
4018
4019 static int
4020 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4021 {
4022 return linux_thread_alive (ptid);
4023 }
4024
4025 static char *
4026 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4027 {
4028 static char buf[64];
4029
4030 if (is_lwp (ptid)
4031 && (GET_PID (ptid) != GET_LWP (ptid)
4032 || num_lwps (GET_PID (ptid)) > 1))
4033 {
4034 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4035 return buf;
4036 }
4037
4038 return normal_pid_to_str (ptid);
4039 }
4040
4041 static char *
4042 linux_nat_thread_name (struct thread_info *thr)
4043 {
4044 int pid = ptid_get_pid (thr->ptid);
4045 long lwp = ptid_get_lwp (thr->ptid);
4046 #define FORMAT "/proc/%d/task/%ld/comm"
4047 char buf[sizeof (FORMAT) + 30];
4048 FILE *comm_file;
4049 char *result = NULL;
4050
4051 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4052 comm_file = fopen (buf, "r");
4053 if (comm_file)
4054 {
4055 /* Not exported by the kernel, so we define it here. */
4056 #define COMM_LEN 16
4057 static char line[COMM_LEN + 1];
4058
4059 if (fgets (line, sizeof (line), comm_file))
4060 {
4061 char *nl = strchr (line, '\n');
4062
4063 if (nl)
4064 *nl = '\0';
4065 if (*line != '\0')
4066 result = line;
4067 }
4068
4069 fclose (comm_file);
4070 }
4071
4072 #undef COMM_LEN
4073 #undef FORMAT
4074
4075 return result;
4076 }
4077
4078 /* Accepts an integer PID; Returns a string representing a file that
4079 can be opened to get the symbols for the child process. */
4080
4081 static char *
4082 linux_child_pid_to_exec_file (int pid)
4083 {
4084 char *name1, *name2;
4085
4086 name1 = xmalloc (MAXPATHLEN);
4087 name2 = xmalloc (MAXPATHLEN);
4088 make_cleanup (xfree, name1);
4089 make_cleanup (xfree, name2);
4090 memset (name2, 0, MAXPATHLEN);
4091
4092 sprintf (name1, "/proc/%d/exe", pid);
4093 if (readlink (name1, name2, MAXPATHLEN) > 0)
4094 return name2;
4095 else
4096 return name1;
4097 }
4098
4099 /* Service function for corefiles and info proc. */
4100
4101 static int
4102 read_mapping (FILE *mapfile,
4103 long long *addr,
4104 long long *endaddr,
4105 char *permissions,
4106 long long *offset,
4107 char *device, long long *inode, char *filename)
4108 {
4109 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4110 addr, endaddr, permissions, offset, device, inode);
4111
4112 filename[0] = '\0';
4113 if (ret > 0 && ret != EOF)
4114 {
4115 /* Eat everything up to EOL for the filename. This will prevent
4116 weird filenames (such as one with embedded whitespace) from
4117 confusing this code. It also makes this code more robust in
4118 respect to annotations the kernel may add after the filename.
4119
4120 Note the filename is used for informational purposes
4121 only. */
4122 ret += fscanf (mapfile, "%[^\n]\n", filename);
4123 }
4124
4125 return (ret != 0 && ret != EOF);
4126 }
4127
4128 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4129 regions in the inferior for a corefile. */
4130
4131 static int
4132 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4133 {
4134 int pid = PIDGET (inferior_ptid);
4135 char mapsfilename[MAXPATHLEN];
4136 FILE *mapsfile;
4137 long long addr, endaddr, size, offset, inode;
4138 char permissions[8], device[8], filename[MAXPATHLEN];
4139 int read, write, exec;
4140 struct cleanup *cleanup;
4141
4142 /* Compose the filename for the /proc memory map, and open it. */
4143 sprintf (mapsfilename, "/proc/%d/maps", pid);
4144 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4145 error (_("Could not open %s."), mapsfilename);
4146 cleanup = make_cleanup_fclose (mapsfile);
4147
4148 if (info_verbose)
4149 fprintf_filtered (gdb_stdout,
4150 "Reading memory regions from %s\n", mapsfilename);
4151
4152 /* Now iterate until end-of-file. */
4153 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4154 &offset, &device[0], &inode, &filename[0]))
4155 {
4156 size = endaddr - addr;
4157
4158 /* Get the segment's permissions. */
4159 read = (strchr (permissions, 'r') != 0);
4160 write = (strchr (permissions, 'w') != 0);
4161 exec = (strchr (permissions, 'x') != 0);
4162
4163 if (info_verbose)
4164 {
4165 fprintf_filtered (gdb_stdout,
4166 "Save segment, %s bytes at %s (%c%c%c)",
4167 plongest (size), paddress (target_gdbarch, addr),
4168 read ? 'r' : ' ',
4169 write ? 'w' : ' ', exec ? 'x' : ' ');
4170 if (filename[0])
4171 fprintf_filtered (gdb_stdout, " for %s", filename);
4172 fprintf_filtered (gdb_stdout, "\n");
4173 }
4174
4175 /* Invoke the callback function to create the corefile
4176 segment. */
4177 func (addr, size, read, write, exec, obfd);
4178 }
4179 do_cleanups (cleanup);
4180 return 0;
4181 }
4182
4183 static int
4184 find_signalled_thread (struct thread_info *info, void *data)
4185 {
4186 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4187 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4188 return 1;
4189
4190 return 0;
4191 }
4192
4193 static enum target_signal
4194 find_stop_signal (void)
4195 {
4196 struct thread_info *info =
4197 iterate_over_threads (find_signalled_thread, NULL);
4198
4199 if (info)
4200 return info->suspend.stop_signal;
4201 else
4202 return TARGET_SIGNAL_0;
4203 }
4204
4205 /* Records the thread's register state for the corefile note
4206 section. */
4207
4208 static char *
4209 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4210 char *note_data, int *note_size,
4211 enum target_signal stop_signal)
4212 {
4213 unsigned long lwp = ptid_get_lwp (ptid);
4214 struct gdbarch *gdbarch = target_gdbarch;
4215 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4216 const struct regset *regset;
4217 int core_regset_p;
4218 struct cleanup *old_chain;
4219 struct core_regset_section *sect_list;
4220 char *gdb_regset;
4221
4222 old_chain = save_inferior_ptid ();
4223 inferior_ptid = ptid;
4224 target_fetch_registers (regcache, -1);
4225 do_cleanups (old_chain);
4226
4227 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4228 sect_list = gdbarch_core_regset_sections (gdbarch);
4229
4230 /* The loop below uses the new struct core_regset_section, which stores
4231 the supported section names and sizes for the core file. Note that
4232 note PRSTATUS needs to be treated specially. But the other notes are
4233 structurally the same, so they can benefit from the new struct. */
4234 if (core_regset_p && sect_list != NULL)
4235 while (sect_list->sect_name != NULL)
4236 {
4237 regset = gdbarch_regset_from_core_section (gdbarch,
4238 sect_list->sect_name,
4239 sect_list->size);
4240 gdb_assert (regset && regset->collect_regset);
4241 gdb_regset = xmalloc (sect_list->size);
4242 regset->collect_regset (regset, regcache, -1,
4243 gdb_regset, sect_list->size);
4244
4245 if (strcmp (sect_list->sect_name, ".reg") == 0)
4246 note_data = (char *) elfcore_write_prstatus
4247 (obfd, note_data, note_size,
4248 lwp, target_signal_to_host (stop_signal),
4249 gdb_regset);
4250 else
4251 note_data = (char *) elfcore_write_register_note
4252 (obfd, note_data, note_size,
4253 sect_list->sect_name, gdb_regset,
4254 sect_list->size);
4255 xfree (gdb_regset);
4256 sect_list++;
4257 }
4258
4259 /* For architectures that does not have the struct core_regset_section
4260 implemented, we use the old method. When all the architectures have
4261 the new support, the code below should be deleted. */
4262 else
4263 {
4264 gdb_gregset_t gregs;
4265 gdb_fpregset_t fpregs;
4266
4267 if (core_regset_p
4268 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4269 sizeof (gregs)))
4270 != NULL && regset->collect_regset != NULL)
4271 regset->collect_regset (regset, regcache, -1,
4272 &gregs, sizeof (gregs));
4273 else
4274 fill_gregset (regcache, &gregs, -1);
4275
4276 note_data = (char *) elfcore_write_prstatus
4277 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4278 &gregs);
4279
4280 if (core_regset_p
4281 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4282 sizeof (fpregs)))
4283 != NULL && regset->collect_regset != NULL)
4284 regset->collect_regset (regset, regcache, -1,
4285 &fpregs, sizeof (fpregs));
4286 else
4287 fill_fpregset (regcache, &fpregs, -1);
4288
4289 note_data = (char *) elfcore_write_prfpreg (obfd,
4290 note_data,
4291 note_size,
4292 &fpregs, sizeof (fpregs));
4293 }
4294
4295 return note_data;
4296 }
4297
4298 struct linux_nat_corefile_thread_data
4299 {
4300 bfd *obfd;
4301 char *note_data;
4302 int *note_size;
4303 int num_notes;
4304 enum target_signal stop_signal;
4305 };
4306
4307 /* Called by gdbthread.c once per thread. Records the thread's
4308 register state for the corefile note section. */
4309
4310 static int
4311 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4312 {
4313 struct linux_nat_corefile_thread_data *args = data;
4314
4315 args->note_data = linux_nat_do_thread_registers (args->obfd,
4316 ti->ptid,
4317 args->note_data,
4318 args->note_size,
4319 args->stop_signal);
4320 args->num_notes++;
4321
4322 return 0;
4323 }
4324
4325 /* Enumerate spufs IDs for process PID. */
4326
4327 static void
4328 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4329 {
4330 char path[128];
4331 DIR *dir;
4332 struct dirent *entry;
4333
4334 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4335 dir = opendir (path);
4336 if (!dir)
4337 return;
4338
4339 rewinddir (dir);
4340 while ((entry = readdir (dir)) != NULL)
4341 {
4342 struct stat st;
4343 struct statfs stfs;
4344 int fd;
4345
4346 fd = atoi (entry->d_name);
4347 if (!fd)
4348 continue;
4349
4350 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4351 if (stat (path, &st) != 0)
4352 continue;
4353 if (!S_ISDIR (st.st_mode))
4354 continue;
4355
4356 if (statfs (path, &stfs) != 0)
4357 continue;
4358 if (stfs.f_type != SPUFS_MAGIC)
4359 continue;
4360
4361 callback (data, fd);
4362 }
4363
4364 closedir (dir);
4365 }
4366
4367 /* Generate corefile notes for SPU contexts. */
4368
4369 struct linux_spu_corefile_data
4370 {
4371 bfd *obfd;
4372 char *note_data;
4373 int *note_size;
4374 };
4375
4376 static void
4377 linux_spu_corefile_callback (void *data, int fd)
4378 {
4379 struct linux_spu_corefile_data *args = data;
4380 int i;
4381
4382 static const char *spu_files[] =
4383 {
4384 "object-id",
4385 "mem",
4386 "regs",
4387 "fpcr",
4388 "lslr",
4389 "decr",
4390 "decr_status",
4391 "signal1",
4392 "signal1_type",
4393 "signal2",
4394 "signal2_type",
4395 "event_mask",
4396 "event_status",
4397 "mbox_info",
4398 "ibox_info",
4399 "wbox_info",
4400 "dma_info",
4401 "proxydma_info",
4402 };
4403
4404 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4405 {
4406 char annex[32], note_name[32];
4407 gdb_byte *spu_data;
4408 LONGEST spu_len;
4409
4410 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4411 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4412 annex, &spu_data);
4413 if (spu_len > 0)
4414 {
4415 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4416 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4417 args->note_size, note_name,
4418 NT_SPU, spu_data, spu_len);
4419 xfree (spu_data);
4420 }
4421 }
4422 }
4423
4424 static char *
4425 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4426 {
4427 struct linux_spu_corefile_data args;
4428
4429 args.obfd = obfd;
4430 args.note_data = note_data;
4431 args.note_size = note_size;
4432
4433 iterate_over_spus (PIDGET (inferior_ptid),
4434 linux_spu_corefile_callback, &args);
4435
4436 return args.note_data;
4437 }
4438
4439 /* Fills the "to_make_corefile_note" target vector. Builds the note
4440 section for a corefile, and returns it in a malloc buffer. */
4441
4442 static char *
4443 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4444 {
4445 struct linux_nat_corefile_thread_data thread_args;
4446 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4447 char fname[16] = { '\0' };
4448 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4449 char psargs[80] = { '\0' };
4450 char *note_data = NULL;
4451 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4452 gdb_byte *auxv;
4453 int auxv_len;
4454
4455 if (get_exec_file (0))
4456 {
4457 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4458 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4459 if (get_inferior_args ())
4460 {
4461 char *string_end;
4462 char *psargs_end = psargs + sizeof (psargs);
4463
4464 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4465 strings fine. */
4466 string_end = memchr (psargs, 0, sizeof (psargs));
4467 if (string_end != NULL)
4468 {
4469 *string_end++ = ' ';
4470 strncpy (string_end, get_inferior_args (),
4471 psargs_end - string_end);
4472 }
4473 }
4474 note_data = (char *) elfcore_write_prpsinfo (obfd,
4475 note_data,
4476 note_size, fname, psargs);
4477 }
4478
4479 /* Dump information for threads. */
4480 thread_args.obfd = obfd;
4481 thread_args.note_data = note_data;
4482 thread_args.note_size = note_size;
4483 thread_args.num_notes = 0;
4484 thread_args.stop_signal = find_stop_signal ();
4485 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4486 gdb_assert (thread_args.num_notes != 0);
4487 note_data = thread_args.note_data;
4488
4489 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4490 NULL, &auxv);
4491 if (auxv_len > 0)
4492 {
4493 note_data = elfcore_write_note (obfd, note_data, note_size,
4494 "CORE", NT_AUXV, auxv, auxv_len);
4495 xfree (auxv);
4496 }
4497
4498 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4499
4500 make_cleanup (xfree, note_data);
4501 return note_data;
4502 }
4503
4504 /* Implement the "info proc" command. */
4505
4506 static void
4507 linux_nat_info_proc_cmd (char *args, int from_tty)
4508 {
4509 /* A long is used for pid instead of an int to avoid a loss of precision
4510 compiler warning from the output of strtoul. */
4511 long pid = PIDGET (inferior_ptid);
4512 FILE *procfile;
4513 char **argv = NULL;
4514 char buffer[MAXPATHLEN];
4515 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4516 int cmdline_f = 1;
4517 int cwd_f = 1;
4518 int exe_f = 1;
4519 int mappings_f = 0;
4520 int status_f = 0;
4521 int stat_f = 0;
4522 int all = 0;
4523 struct stat dummy;
4524
4525 if (args)
4526 {
4527 /* Break up 'args' into an argv array. */
4528 argv = gdb_buildargv (args);
4529 make_cleanup_freeargv (argv);
4530 }
4531 while (argv != NULL && *argv != NULL)
4532 {
4533 if (isdigit (argv[0][0]))
4534 {
4535 pid = strtoul (argv[0], NULL, 10);
4536 }
4537 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4538 {
4539 mappings_f = 1;
4540 }
4541 else if (strcmp (argv[0], "status") == 0)
4542 {
4543 status_f = 1;
4544 }
4545 else if (strcmp (argv[0], "stat") == 0)
4546 {
4547 stat_f = 1;
4548 }
4549 else if (strcmp (argv[0], "cmd") == 0)
4550 {
4551 cmdline_f = 1;
4552 }
4553 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4554 {
4555 exe_f = 1;
4556 }
4557 else if (strcmp (argv[0], "cwd") == 0)
4558 {
4559 cwd_f = 1;
4560 }
4561 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4562 {
4563 all = 1;
4564 }
4565 else
4566 {
4567 /* [...] (future options here). */
4568 }
4569 argv++;
4570 }
4571 if (pid == 0)
4572 error (_("No current process: you must name one."));
4573
4574 sprintf (fname1, "/proc/%ld", pid);
4575 if (stat (fname1, &dummy) != 0)
4576 error (_("No /proc directory: '%s'"), fname1);
4577
4578 printf_filtered (_("process %ld\n"), pid);
4579 if (cmdline_f || all)
4580 {
4581 sprintf (fname1, "/proc/%ld/cmdline", pid);
4582 if ((procfile = fopen (fname1, "r")) != NULL)
4583 {
4584 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4585
4586 if (fgets (buffer, sizeof (buffer), procfile))
4587 printf_filtered ("cmdline = '%s'\n", buffer);
4588 else
4589 warning (_("unable to read '%s'"), fname1);
4590 do_cleanups (cleanup);
4591 }
4592 else
4593 warning (_("unable to open /proc file '%s'"), fname1);
4594 }
4595 if (cwd_f || all)
4596 {
4597 sprintf (fname1, "/proc/%ld/cwd", pid);
4598 memset (fname2, 0, sizeof (fname2));
4599 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4600 printf_filtered ("cwd = '%s'\n", fname2);
4601 else
4602 warning (_("unable to read link '%s'"), fname1);
4603 }
4604 if (exe_f || all)
4605 {
4606 sprintf (fname1, "/proc/%ld/exe", pid);
4607 memset (fname2, 0, sizeof (fname2));
4608 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4609 printf_filtered ("exe = '%s'\n", fname2);
4610 else
4611 warning (_("unable to read link '%s'"), fname1);
4612 }
4613 if (mappings_f || all)
4614 {
4615 sprintf (fname1, "/proc/%ld/maps", pid);
4616 if ((procfile = fopen (fname1, "r")) != NULL)
4617 {
4618 long long addr, endaddr, size, offset, inode;
4619 char permissions[8], device[8], filename[MAXPATHLEN];
4620 struct cleanup *cleanup;
4621
4622 cleanup = make_cleanup_fclose (procfile);
4623 printf_filtered (_("Mapped address spaces:\n\n"));
4624 if (gdbarch_addr_bit (target_gdbarch) == 32)
4625 {
4626 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4627 "Start Addr",
4628 " End Addr",
4629 " Size", " Offset", "objfile");
4630 }
4631 else
4632 {
4633 printf_filtered (" %18s %18s %10s %10s %7s\n",
4634 "Start Addr",
4635 " End Addr",
4636 " Size", " Offset", "objfile");
4637 }
4638
4639 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4640 &offset, &device[0], &inode, &filename[0]))
4641 {
4642 size = endaddr - addr;
4643
4644 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4645 calls here (and possibly above) should be abstracted
4646 out into their own functions? Andrew suggests using
4647 a generic local_address_string instead to print out
4648 the addresses; that makes sense to me, too. */
4649
4650 if (gdbarch_addr_bit (target_gdbarch) == 32)
4651 {
4652 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4653 (unsigned long) addr, /* FIXME: pr_addr */
4654 (unsigned long) endaddr,
4655 (int) size,
4656 (unsigned int) offset,
4657 filename[0] ? filename : "");
4658 }
4659 else
4660 {
4661 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4662 (unsigned long) addr, /* FIXME: pr_addr */
4663 (unsigned long) endaddr,
4664 (int) size,
4665 (unsigned int) offset,
4666 filename[0] ? filename : "");
4667 }
4668 }
4669
4670 do_cleanups (cleanup);
4671 }
4672 else
4673 warning (_("unable to open /proc file '%s'"), fname1);
4674 }
4675 if (status_f || all)
4676 {
4677 sprintf (fname1, "/proc/%ld/status", pid);
4678 if ((procfile = fopen (fname1, "r")) != NULL)
4679 {
4680 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4681
4682 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4683 puts_filtered (buffer);
4684 do_cleanups (cleanup);
4685 }
4686 else
4687 warning (_("unable to open /proc file '%s'"), fname1);
4688 }
4689 if (stat_f || all)
4690 {
4691 sprintf (fname1, "/proc/%ld/stat", pid);
4692 if ((procfile = fopen (fname1, "r")) != NULL)
4693 {
4694 int itmp;
4695 char ctmp;
4696 long ltmp;
4697 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4698
4699 if (fscanf (procfile, "%d ", &itmp) > 0)
4700 printf_filtered (_("Process: %d\n"), itmp);
4701 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4702 printf_filtered (_("Exec file: %s\n"), buffer);
4703 if (fscanf (procfile, "%c ", &ctmp) > 0)
4704 printf_filtered (_("State: %c\n"), ctmp);
4705 if (fscanf (procfile, "%d ", &itmp) > 0)
4706 printf_filtered (_("Parent process: %d\n"), itmp);
4707 if (fscanf (procfile, "%d ", &itmp) > 0)
4708 printf_filtered (_("Process group: %d\n"), itmp);
4709 if (fscanf (procfile, "%d ", &itmp) > 0)
4710 printf_filtered (_("Session id: %d\n"), itmp);
4711 if (fscanf (procfile, "%d ", &itmp) > 0)
4712 printf_filtered (_("TTY: %d\n"), itmp);
4713 if (fscanf (procfile, "%d ", &itmp) > 0)
4714 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4715 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4716 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4717 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4718 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4719 (unsigned long) ltmp);
4720 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4721 printf_filtered (_("Minor faults, children: %lu\n"),
4722 (unsigned long) ltmp);
4723 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4724 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4725 (unsigned long) ltmp);
4726 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4727 printf_filtered (_("Major faults, children: %lu\n"),
4728 (unsigned long) ltmp);
4729 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4730 printf_filtered (_("utime: %ld\n"), ltmp);
4731 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4732 printf_filtered (_("stime: %ld\n"), ltmp);
4733 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4734 printf_filtered (_("utime, children: %ld\n"), ltmp);
4735 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4736 printf_filtered (_("stime, children: %ld\n"), ltmp);
4737 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4738 printf_filtered (_("jiffies remaining in current "
4739 "time slice: %ld\n"), ltmp);
4740 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4741 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4742 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4743 printf_filtered (_("jiffies until next timeout: %lu\n"),
4744 (unsigned long) ltmp);
4745 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4746 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4747 (unsigned long) ltmp);
4748 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4749 printf_filtered (_("start time (jiffies since "
4750 "system boot): %ld\n"), ltmp);
4751 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4752 printf_filtered (_("Virtual memory size: %lu\n"),
4753 (unsigned long) ltmp);
4754 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4755 printf_filtered (_("Resident set size: %lu\n"),
4756 (unsigned long) ltmp);
4757 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4758 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4759 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4760 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4761 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4762 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4763 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4764 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4765 #if 0 /* Don't know how architecture-dependent the rest is...
4766 Anyway the signal bitmap info is available from "status". */
4767 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4768 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4769 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4770 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4771 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4772 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4773 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4774 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4775 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4776 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4777 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4778 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4779 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4780 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4781 #endif
4782 do_cleanups (cleanup);
4783 }
4784 else
4785 warning (_("unable to open /proc file '%s'"), fname1);
4786 }
4787 }
4788
4789 /* Implement the to_xfer_partial interface for memory reads using the /proc
4790 filesystem. Because we can use a single read() call for /proc, this
4791 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4792 but it doesn't support writes. */
4793
4794 static LONGEST
4795 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4796 const char *annex, gdb_byte *readbuf,
4797 const gdb_byte *writebuf,
4798 ULONGEST offset, LONGEST len)
4799 {
4800 LONGEST ret;
4801 int fd;
4802 char filename[64];
4803
4804 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4805 return 0;
4806
4807 /* Don't bother for one word. */
4808 if (len < 3 * sizeof (long))
4809 return 0;
4810
4811 /* We could keep this file open and cache it - possibly one per
4812 thread. That requires some juggling, but is even faster. */
4813 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4814 fd = open (filename, O_RDONLY | O_LARGEFILE);
4815 if (fd == -1)
4816 return 0;
4817
4818 /* If pread64 is available, use it. It's faster if the kernel
4819 supports it (only one syscall), and it's 64-bit safe even on
4820 32-bit platforms (for instance, SPARC debugging a SPARC64
4821 application). */
4822 #ifdef HAVE_PREAD64
4823 if (pread64 (fd, readbuf, len, offset) != len)
4824 #else
4825 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4826 #endif
4827 ret = 0;
4828 else
4829 ret = len;
4830
4831 close (fd);
4832 return ret;
4833 }
4834
4835
4836 /* Enumerate spufs IDs for process PID. */
4837 static LONGEST
4838 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4839 {
4840 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4841 LONGEST pos = 0;
4842 LONGEST written = 0;
4843 char path[128];
4844 DIR *dir;
4845 struct dirent *entry;
4846
4847 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4848 dir = opendir (path);
4849 if (!dir)
4850 return -1;
4851
4852 rewinddir (dir);
4853 while ((entry = readdir (dir)) != NULL)
4854 {
4855 struct stat st;
4856 struct statfs stfs;
4857 int fd;
4858
4859 fd = atoi (entry->d_name);
4860 if (!fd)
4861 continue;
4862
4863 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4864 if (stat (path, &st) != 0)
4865 continue;
4866 if (!S_ISDIR (st.st_mode))
4867 continue;
4868
4869 if (statfs (path, &stfs) != 0)
4870 continue;
4871 if (stfs.f_type != SPUFS_MAGIC)
4872 continue;
4873
4874 if (pos >= offset && pos + 4 <= offset + len)
4875 {
4876 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4877 written += 4;
4878 }
4879 pos += 4;
4880 }
4881
4882 closedir (dir);
4883 return written;
4884 }
4885
4886 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4887 object type, using the /proc file system. */
4888 static LONGEST
4889 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4890 const char *annex, gdb_byte *readbuf,
4891 const gdb_byte *writebuf,
4892 ULONGEST offset, LONGEST len)
4893 {
4894 char buf[128];
4895 int fd = 0;
4896 int ret = -1;
4897 int pid = PIDGET (inferior_ptid);
4898
4899 if (!annex)
4900 {
4901 if (!readbuf)
4902 return -1;
4903 else
4904 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4905 }
4906
4907 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4908 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4909 if (fd <= 0)
4910 return -1;
4911
4912 if (offset != 0
4913 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4914 {
4915 close (fd);
4916 return 0;
4917 }
4918
4919 if (writebuf)
4920 ret = write (fd, writebuf, (size_t) len);
4921 else if (readbuf)
4922 ret = read (fd, readbuf, (size_t) len);
4923
4924 close (fd);
4925 return ret;
4926 }
4927
4928
4929 /* Parse LINE as a signal set and add its set bits to SIGS. */
4930
4931 static void
4932 add_line_to_sigset (const char *line, sigset_t *sigs)
4933 {
4934 int len = strlen (line) - 1;
4935 const char *p;
4936 int signum;
4937
4938 if (line[len] != '\n')
4939 error (_("Could not parse signal set: %s"), line);
4940
4941 p = line;
4942 signum = len * 4;
4943 while (len-- > 0)
4944 {
4945 int digit;
4946
4947 if (*p >= '0' && *p <= '9')
4948 digit = *p - '0';
4949 else if (*p >= 'a' && *p <= 'f')
4950 digit = *p - 'a' + 10;
4951 else
4952 error (_("Could not parse signal set: %s"), line);
4953
4954 signum -= 4;
4955
4956 if (digit & 1)
4957 sigaddset (sigs, signum + 1);
4958 if (digit & 2)
4959 sigaddset (sigs, signum + 2);
4960 if (digit & 4)
4961 sigaddset (sigs, signum + 3);
4962 if (digit & 8)
4963 sigaddset (sigs, signum + 4);
4964
4965 p++;
4966 }
4967 }
4968
4969 /* Find process PID's pending signals from /proc/pid/status and set
4970 SIGS to match. */
4971
4972 void
4973 linux_proc_pending_signals (int pid, sigset_t *pending,
4974 sigset_t *blocked, sigset_t *ignored)
4975 {
4976 FILE *procfile;
4977 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4978 struct cleanup *cleanup;
4979
4980 sigemptyset (pending);
4981 sigemptyset (blocked);
4982 sigemptyset (ignored);
4983 sprintf (fname, "/proc/%d/status", pid);
4984 procfile = fopen (fname, "r");
4985 if (procfile == NULL)
4986 error (_("Could not open %s"), fname);
4987 cleanup = make_cleanup_fclose (procfile);
4988
4989 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4990 {
4991 /* Normal queued signals are on the SigPnd line in the status
4992 file. However, 2.6 kernels also have a "shared" pending
4993 queue for delivering signals to a thread group, so check for
4994 a ShdPnd line also.
4995
4996 Unfortunately some Red Hat kernels include the shared pending
4997 queue but not the ShdPnd status field. */
4998
4999 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5000 add_line_to_sigset (buffer + 8, pending);
5001 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5002 add_line_to_sigset (buffer + 8, pending);
5003 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5004 add_line_to_sigset (buffer + 8, blocked);
5005 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5006 add_line_to_sigset (buffer + 8, ignored);
5007 }
5008
5009 do_cleanups (cleanup);
5010 }
5011
5012 static LONGEST
5013 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5014 const char *annex, gdb_byte *readbuf,
5015 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5016 {
5017 /* We make the process list snapshot when the object starts to be
5018 read. */
5019 static const char *buf;
5020 static LONGEST len_avail = -1;
5021 static struct obstack obstack;
5022
5023 DIR *dirp;
5024
5025 gdb_assert (object == TARGET_OBJECT_OSDATA);
5026
5027 if (!annex)
5028 {
5029 if (offset == 0)
5030 {
5031 if (len_avail != -1 && len_avail != 0)
5032 obstack_free (&obstack, NULL);
5033 len_avail = 0;
5034 buf = NULL;
5035 obstack_init (&obstack);
5036 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5037
5038 obstack_xml_printf (&obstack,
5039 "<item>"
5040 "<column name=\"Type\">processes</column>"
5041 "<column name=\"Description\">"
5042 "Listing of all processes</column>"
5043 "</item>");
5044
5045 obstack_grow_str0 (&obstack, "</osdata>\n");
5046 buf = obstack_finish (&obstack);
5047 len_avail = strlen (buf);
5048 }
5049
5050 if (offset >= len_avail)
5051 {
5052 /* Done. Get rid of the obstack. */
5053 obstack_free (&obstack, NULL);
5054 buf = NULL;
5055 len_avail = 0;
5056 return 0;
5057 }
5058
5059 if (len > len_avail - offset)
5060 len = len_avail - offset;
5061 memcpy (readbuf, buf + offset, len);
5062
5063 return len;
5064 }
5065
5066 if (strcmp (annex, "processes") != 0)
5067 return 0;
5068
5069 gdb_assert (readbuf && !writebuf);
5070
5071 if (offset == 0)
5072 {
5073 if (len_avail != -1 && len_avail != 0)
5074 obstack_free (&obstack, NULL);
5075 len_avail = 0;
5076 buf = NULL;
5077 obstack_init (&obstack);
5078 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5079
5080 dirp = opendir ("/proc");
5081 if (dirp)
5082 {
5083 struct dirent *dp;
5084
5085 while ((dp = readdir (dirp)) != NULL)
5086 {
5087 struct stat statbuf;
5088 char procentry[sizeof ("/proc/4294967295")];
5089
5090 if (!isdigit (dp->d_name[0])
5091 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5092 continue;
5093
5094 sprintf (procentry, "/proc/%s", dp->d_name);
5095 if (stat (procentry, &statbuf) == 0
5096 && S_ISDIR (statbuf.st_mode))
5097 {
5098 char *pathname;
5099 FILE *f;
5100 char cmd[MAXPATHLEN + 1];
5101 struct passwd *entry;
5102
5103 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5104 entry = getpwuid (statbuf.st_uid);
5105
5106 if ((f = fopen (pathname, "r")) != NULL)
5107 {
5108 size_t length = fread (cmd, 1, sizeof (cmd) - 1, f);
5109
5110 if (length > 0)
5111 {
5112 int i;
5113
5114 for (i = 0; i < length; i++)
5115 if (cmd[i] == '\0')
5116 cmd[i] = ' ';
5117 cmd[length] = '\0';
5118
5119 obstack_xml_printf (
5120 &obstack,
5121 "<item>"
5122 "<column name=\"pid\">%s</column>"
5123 "<column name=\"user\">%s</column>"
5124 "<column name=\"command\">%s</column>"
5125 "</item>",
5126 dp->d_name,
5127 entry ? entry->pw_name : "?",
5128 cmd);
5129 }
5130 fclose (f);
5131 }
5132
5133 xfree (pathname);
5134 }
5135 }
5136
5137 closedir (dirp);
5138 }
5139
5140 obstack_grow_str0 (&obstack, "</osdata>\n");
5141 buf = obstack_finish (&obstack);
5142 len_avail = strlen (buf);
5143 }
5144
5145 if (offset >= len_avail)
5146 {
5147 /* Done. Get rid of the obstack. */
5148 obstack_free (&obstack, NULL);
5149 buf = NULL;
5150 len_avail = 0;
5151 return 0;
5152 }
5153
5154 if (len > len_avail - offset)
5155 len = len_avail - offset;
5156 memcpy (readbuf, buf + offset, len);
5157
5158 return len;
5159 }
5160
5161 static LONGEST
5162 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5163 const char *annex, gdb_byte *readbuf,
5164 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5165 {
5166 LONGEST xfer;
5167
5168 if (object == TARGET_OBJECT_AUXV)
5169 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5170 offset, len);
5171
5172 if (object == TARGET_OBJECT_OSDATA)
5173 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5174 offset, len);
5175
5176 if (object == TARGET_OBJECT_SPU)
5177 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5178 offset, len);
5179
5180 /* GDB calculates all the addresses in possibly larget width of the address.
5181 Address width needs to be masked before its final use - either by
5182 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5183
5184 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5185
5186 if (object == TARGET_OBJECT_MEMORY)
5187 {
5188 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5189
5190 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5191 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5192 }
5193
5194 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5195 offset, len);
5196 if (xfer != 0)
5197 return xfer;
5198
5199 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5200 offset, len);
5201 }
5202
5203 /* Create a prototype generic GNU/Linux target. The client can override
5204 it with local methods. */
5205
5206 static void
5207 linux_target_install_ops (struct target_ops *t)
5208 {
5209 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5210 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5211 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5212 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5213 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5214 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5215 t->to_post_attach = linux_child_post_attach;
5216 t->to_follow_fork = linux_child_follow_fork;
5217 t->to_find_memory_regions = linux_nat_find_memory_regions;
5218 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5219
5220 super_xfer_partial = t->to_xfer_partial;
5221 t->to_xfer_partial = linux_xfer_partial;
5222 }
5223
5224 struct target_ops *
5225 linux_target (void)
5226 {
5227 struct target_ops *t;
5228
5229 t = inf_ptrace_target ();
5230 linux_target_install_ops (t);
5231
5232 return t;
5233 }
5234
5235 struct target_ops *
5236 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5237 {
5238 struct target_ops *t;
5239
5240 t = inf_ptrace_trad_target (register_u_offset);
5241 linux_target_install_ops (t);
5242
5243 return t;
5244 }
5245
5246 /* target_is_async_p implementation. */
5247
5248 static int
5249 linux_nat_is_async_p (void)
5250 {
5251 /* NOTE: palves 2008-03-21: We're only async when the user requests
5252 it explicitly with the "set target-async" command.
5253 Someday, linux will always be async. */
5254 if (!target_async_permitted)
5255 return 0;
5256
5257 /* See target.h/target_async_mask. */
5258 return linux_nat_async_mask_value;
5259 }
5260
5261 /* target_can_async_p implementation. */
5262
5263 static int
5264 linux_nat_can_async_p (void)
5265 {
5266 /* NOTE: palves 2008-03-21: We're only async when the user requests
5267 it explicitly with the "set target-async" command.
5268 Someday, linux will always be async. */
5269 if (!target_async_permitted)
5270 return 0;
5271
5272 /* See target.h/target_async_mask. */
5273 return linux_nat_async_mask_value;
5274 }
5275
5276 static int
5277 linux_nat_supports_non_stop (void)
5278 {
5279 return 1;
5280 }
5281
5282 /* True if we want to support multi-process. To be removed when GDB
5283 supports multi-exec. */
5284
5285 int linux_multi_process = 1;
5286
5287 static int
5288 linux_nat_supports_multi_process (void)
5289 {
5290 return linux_multi_process;
5291 }
5292
5293 /* target_async_mask implementation. */
5294
5295 static int
5296 linux_nat_async_mask (int new_mask)
5297 {
5298 int curr_mask = linux_nat_async_mask_value;
5299
5300 if (curr_mask != new_mask)
5301 {
5302 if (new_mask == 0)
5303 {
5304 linux_nat_async (NULL, 0);
5305 linux_nat_async_mask_value = new_mask;
5306 }
5307 else
5308 {
5309 linux_nat_async_mask_value = new_mask;
5310
5311 /* If we're going out of async-mask in all-stop, then the
5312 inferior is stopped. The next resume will call
5313 target_async. In non-stop, the target event source
5314 should be always registered in the event loop. Do so
5315 now. */
5316 if (non_stop)
5317 linux_nat_async (inferior_event_handler, 0);
5318 }
5319 }
5320
5321 return curr_mask;
5322 }
5323
5324 static int async_terminal_is_ours = 1;
5325
5326 /* target_terminal_inferior implementation. */
5327
5328 static void
5329 linux_nat_terminal_inferior (void)
5330 {
5331 if (!target_is_async_p ())
5332 {
5333 /* Async mode is disabled. */
5334 terminal_inferior ();
5335 return;
5336 }
5337
5338 terminal_inferior ();
5339
5340 /* Calls to target_terminal_*() are meant to be idempotent. */
5341 if (!async_terminal_is_ours)
5342 return;
5343
5344 delete_file_handler (input_fd);
5345 async_terminal_is_ours = 0;
5346 set_sigint_trap ();
5347 }
5348
5349 /* target_terminal_ours implementation. */
5350
5351 static void
5352 linux_nat_terminal_ours (void)
5353 {
5354 if (!target_is_async_p ())
5355 {
5356 /* Async mode is disabled. */
5357 terminal_ours ();
5358 return;
5359 }
5360
5361 /* GDB should never give the terminal to the inferior if the
5362 inferior is running in the background (run&, continue&, etc.),
5363 but claiming it sure should. */
5364 terminal_ours ();
5365
5366 if (async_terminal_is_ours)
5367 return;
5368
5369 clear_sigint_trap ();
5370 add_file_handler (input_fd, stdin_event_handler, 0);
5371 async_terminal_is_ours = 1;
5372 }
5373
5374 static void (*async_client_callback) (enum inferior_event_type event_type,
5375 void *context);
5376 static void *async_client_context;
5377
5378 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5379 so we notice when any child changes state, and notify the
5380 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5381 above to wait for the arrival of a SIGCHLD. */
5382
5383 static void
5384 sigchld_handler (int signo)
5385 {
5386 int old_errno = errno;
5387
5388 if (debug_linux_nat_async)
5389 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5390
5391 if (signo == SIGCHLD
5392 && linux_nat_event_pipe[0] != -1)
5393 async_file_mark (); /* Let the event loop know that there are
5394 events to handle. */
5395
5396 errno = old_errno;
5397 }
5398
5399 /* Callback registered with the target events file descriptor. */
5400
5401 static void
5402 handle_target_event (int error, gdb_client_data client_data)
5403 {
5404 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5405 }
5406
5407 /* Create/destroy the target events pipe. Returns previous state. */
5408
5409 static int
5410 linux_async_pipe (int enable)
5411 {
5412 int previous = (linux_nat_event_pipe[0] != -1);
5413
5414 if (previous != enable)
5415 {
5416 sigset_t prev_mask;
5417
5418 block_child_signals (&prev_mask);
5419
5420 if (enable)
5421 {
5422 if (pipe (linux_nat_event_pipe) == -1)
5423 internal_error (__FILE__, __LINE__,
5424 "creating event pipe failed.");
5425
5426 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5427 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5428 }
5429 else
5430 {
5431 close (linux_nat_event_pipe[0]);
5432 close (linux_nat_event_pipe[1]);
5433 linux_nat_event_pipe[0] = -1;
5434 linux_nat_event_pipe[1] = -1;
5435 }
5436
5437 restore_child_signals_mask (&prev_mask);
5438 }
5439
5440 return previous;
5441 }
5442
5443 /* target_async implementation. */
5444
5445 static void
5446 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5447 void *context), void *context)
5448 {
5449 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5450 internal_error (__FILE__, __LINE__,
5451 "Calling target_async when async is masked");
5452
5453 if (callback != NULL)
5454 {
5455 async_client_callback = callback;
5456 async_client_context = context;
5457 if (!linux_async_pipe (1))
5458 {
5459 add_file_handler (linux_nat_event_pipe[0],
5460 handle_target_event, NULL);
5461 /* There may be pending events to handle. Tell the event loop
5462 to poll them. */
5463 async_file_mark ();
5464 }
5465 }
5466 else
5467 {
5468 async_client_callback = callback;
5469 async_client_context = context;
5470 delete_file_handler (linux_nat_event_pipe[0]);
5471 linux_async_pipe (0);
5472 }
5473 return;
5474 }
5475
5476 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5477 event came out. */
5478
5479 static int
5480 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5481 {
5482 if (!lwp->stopped)
5483 {
5484 ptid_t ptid = lwp->ptid;
5485
5486 if (debug_linux_nat)
5487 fprintf_unfiltered (gdb_stdlog,
5488 "LNSL: running -> suspending %s\n",
5489 target_pid_to_str (lwp->ptid));
5490
5491
5492 stop_callback (lwp, NULL);
5493 stop_wait_callback (lwp, NULL);
5494
5495 /* If the lwp exits while we try to stop it, there's nothing
5496 else to do. */
5497 lwp = find_lwp_pid (ptid);
5498 if (lwp == NULL)
5499 return 0;
5500
5501 /* If we didn't collect any signal other than SIGSTOP while
5502 stopping the LWP, push a SIGNAL_0 event. In either case, the
5503 event-loop will end up calling target_wait which will collect
5504 these. */
5505 if (lwp->status == 0)
5506 lwp->status = W_STOPCODE (0);
5507 async_file_mark ();
5508 }
5509 else
5510 {
5511 /* Already known to be stopped; do nothing. */
5512
5513 if (debug_linux_nat)
5514 {
5515 if (find_thread_ptid (lwp->ptid)->stop_requested)
5516 fprintf_unfiltered (gdb_stdlog,
5517 "LNSL: already stopped/stop_requested %s\n",
5518 target_pid_to_str (lwp->ptid));
5519 else
5520 fprintf_unfiltered (gdb_stdlog,
5521 "LNSL: already stopped/no "
5522 "stop_requested yet %s\n",
5523 target_pid_to_str (lwp->ptid));
5524 }
5525 }
5526 return 0;
5527 }
5528
5529 static void
5530 linux_nat_stop (ptid_t ptid)
5531 {
5532 if (non_stop)
5533 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5534 else
5535 linux_ops->to_stop (ptid);
5536 }
5537
5538 static void
5539 linux_nat_close (int quitting)
5540 {
5541 /* Unregister from the event loop. */
5542 if (target_is_async_p ())
5543 target_async (NULL, 0);
5544
5545 /* Reset the async_masking. */
5546 linux_nat_async_mask_value = 1;
5547
5548 if (linux_ops->to_close)
5549 linux_ops->to_close (quitting);
5550 }
5551
5552 /* When requests are passed down from the linux-nat layer to the
5553 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5554 used. The address space pointer is stored in the inferior object,
5555 but the common code that is passed such ptid can't tell whether
5556 lwpid is a "main" process id or not (it assumes so). We reverse
5557 look up the "main" process id from the lwp here. */
5558
5559 struct address_space *
5560 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5561 {
5562 struct lwp_info *lwp;
5563 struct inferior *inf;
5564 int pid;
5565
5566 pid = GET_LWP (ptid);
5567 if (GET_LWP (ptid) == 0)
5568 {
5569 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5570 tgid. */
5571 lwp = find_lwp_pid (ptid);
5572 pid = GET_PID (lwp->ptid);
5573 }
5574 else
5575 {
5576 /* A (pid,lwpid,0) ptid. */
5577 pid = GET_PID (ptid);
5578 }
5579
5580 inf = find_inferior_pid (pid);
5581 gdb_assert (inf != NULL);
5582 return inf->aspace;
5583 }
5584
5585 int
5586 linux_nat_core_of_thread_1 (ptid_t ptid)
5587 {
5588 struct cleanup *back_to;
5589 char *filename;
5590 FILE *f;
5591 char *content = NULL;
5592 char *p;
5593 char *ts = 0;
5594 int content_read = 0;
5595 int i;
5596 int core;
5597
5598 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5599 GET_PID (ptid), GET_LWP (ptid));
5600 back_to = make_cleanup (xfree, filename);
5601
5602 f = fopen (filename, "r");
5603 if (!f)
5604 {
5605 do_cleanups (back_to);
5606 return -1;
5607 }
5608
5609 make_cleanup_fclose (f);
5610
5611 for (;;)
5612 {
5613 int n;
5614
5615 content = xrealloc (content, content_read + 1024);
5616 n = fread (content + content_read, 1, 1024, f);
5617 content_read += n;
5618 if (n < 1024)
5619 {
5620 content[content_read] = '\0';
5621 break;
5622 }
5623 }
5624
5625 make_cleanup (xfree, content);
5626
5627 p = strchr (content, '(');
5628
5629 /* Skip ")". */
5630 if (p != NULL)
5631 p = strchr (p, ')');
5632 if (p != NULL)
5633 p++;
5634
5635 /* If the first field after program name has index 0, then core number is
5636 the field with index 36. There's no constant for that anywhere. */
5637 if (p != NULL)
5638 p = strtok_r (p, " ", &ts);
5639 for (i = 0; p != NULL && i != 36; ++i)
5640 p = strtok_r (NULL, " ", &ts);
5641
5642 if (p == NULL || sscanf (p, "%d", &core) == 0)
5643 core = -1;
5644
5645 do_cleanups (back_to);
5646
5647 return core;
5648 }
5649
5650 /* Return the cached value of the processor core for thread PTID. */
5651
5652 int
5653 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5654 {
5655 struct lwp_info *info = find_lwp_pid (ptid);
5656
5657 if (info)
5658 return info->core;
5659 return -1;
5660 }
5661
5662 void
5663 linux_nat_add_target (struct target_ops *t)
5664 {
5665 /* Save the provided single-threaded target. We save this in a separate
5666 variable because another target we've inherited from (e.g. inf-ptrace)
5667 may have saved a pointer to T; we want to use it for the final
5668 process stratum target. */
5669 linux_ops_saved = *t;
5670 linux_ops = &linux_ops_saved;
5671
5672 /* Override some methods for multithreading. */
5673 t->to_create_inferior = linux_nat_create_inferior;
5674 t->to_attach = linux_nat_attach;
5675 t->to_detach = linux_nat_detach;
5676 t->to_resume = linux_nat_resume;
5677 t->to_wait = linux_nat_wait;
5678 t->to_xfer_partial = linux_nat_xfer_partial;
5679 t->to_kill = linux_nat_kill;
5680 t->to_mourn_inferior = linux_nat_mourn_inferior;
5681 t->to_thread_alive = linux_nat_thread_alive;
5682 t->to_pid_to_str = linux_nat_pid_to_str;
5683 t->to_thread_name = linux_nat_thread_name;
5684 t->to_has_thread_control = tc_schedlock;
5685 t->to_thread_address_space = linux_nat_thread_address_space;
5686 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5687 t->to_stopped_data_address = linux_nat_stopped_data_address;
5688
5689 t->to_can_async_p = linux_nat_can_async_p;
5690 t->to_is_async_p = linux_nat_is_async_p;
5691 t->to_supports_non_stop = linux_nat_supports_non_stop;
5692 t->to_async = linux_nat_async;
5693 t->to_async_mask = linux_nat_async_mask;
5694 t->to_terminal_inferior = linux_nat_terminal_inferior;
5695 t->to_terminal_ours = linux_nat_terminal_ours;
5696 t->to_close = linux_nat_close;
5697
5698 /* Methods for non-stop support. */
5699 t->to_stop = linux_nat_stop;
5700
5701 t->to_supports_multi_process = linux_nat_supports_multi_process;
5702
5703 t->to_core_of_thread = linux_nat_core_of_thread;
5704
5705 /* We don't change the stratum; this target will sit at
5706 process_stratum and thread_db will set at thread_stratum. This
5707 is a little strange, since this is a multi-threaded-capable
5708 target, but we want to be on the stack below thread_db, and we
5709 also want to be used for single-threaded processes. */
5710
5711 add_target (t);
5712 }
5713
5714 /* Register a method to call whenever a new thread is attached. */
5715 void
5716 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5717 {
5718 /* Save the pointer. We only support a single registered instance
5719 of the GNU/Linux native target, so we do not need to map this to
5720 T. */
5721 linux_nat_new_thread = new_thread;
5722 }
5723
5724 /* Register a method that converts a siginfo object between the layout
5725 that ptrace returns, and the layout in the architecture of the
5726 inferior. */
5727 void
5728 linux_nat_set_siginfo_fixup (struct target_ops *t,
5729 int (*siginfo_fixup) (struct siginfo *,
5730 gdb_byte *,
5731 int))
5732 {
5733 /* Save the pointer. */
5734 linux_nat_siginfo_fixup = siginfo_fixup;
5735 }
5736
5737 /* Return the saved siginfo associated with PTID. */
5738 struct siginfo *
5739 linux_nat_get_siginfo (ptid_t ptid)
5740 {
5741 struct lwp_info *lp = find_lwp_pid (ptid);
5742
5743 gdb_assert (lp != NULL);
5744
5745 return &lp->siginfo;
5746 }
5747
5748 /* Provide a prototype to silence -Wmissing-prototypes. */
5749 extern initialize_file_ftype _initialize_linux_nat;
5750
5751 void
5752 _initialize_linux_nat (void)
5753 {
5754 add_info ("proc", linux_nat_info_proc_cmd, _("\
5755 Show /proc process information about any running process.\n\
5756 Specify any process id, or use the program being debugged by default.\n\
5757 Specify any of the following keywords for detailed info:\n\
5758 mappings -- list of mapped memory regions.\n\
5759 stat -- list a bunch of random process info.\n\
5760 status -- list a different bunch of random process info.\n\
5761 all -- list all available /proc info."));
5762
5763 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5764 &debug_linux_nat, _("\
5765 Set debugging of GNU/Linux lwp module."), _("\
5766 Show debugging of GNU/Linux lwp module."), _("\
5767 Enables printf debugging output."),
5768 NULL,
5769 show_debug_linux_nat,
5770 &setdebuglist, &showdebuglist);
5771
5772 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5773 &debug_linux_nat_async, _("\
5774 Set debugging of GNU/Linux async lwp module."), _("\
5775 Show debugging of GNU/Linux async lwp module."), _("\
5776 Enables printf debugging output."),
5777 NULL,
5778 show_debug_linux_nat_async,
5779 &setdebuglist, &showdebuglist);
5780
5781 /* Save this mask as the default. */
5782 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5783
5784 /* Install a SIGCHLD handler. */
5785 sigchld_action.sa_handler = sigchld_handler;
5786 sigemptyset (&sigchld_action.sa_mask);
5787 sigchld_action.sa_flags = SA_RESTART;
5788
5789 /* Make it the default. */
5790 sigaction (SIGCHLD, &sigchld_action, NULL);
5791
5792 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5793 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5794 sigdelset (&suspend_mask, SIGCHLD);
5795
5796 sigemptyset (&blocked_mask);
5797
5798 add_setshow_boolean_cmd ("disable-randomization", class_support,
5799 &disable_randomization, _("\
5800 Set disabling of debuggee's virtual address space randomization."), _("\
5801 Show disabling of debuggee's virtual address space randomization."), _("\
5802 When this mode is on (which is the default), randomization of the virtual\n\
5803 address space is disabled. Standalone programs run with the randomization\n\
5804 enabled by default on some platforms."),
5805 &set_disable_randomization,
5806 &show_disable_randomization,
5807 &setlist, &showlist);
5808 }
5809 \f
5810
5811 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5812 the GNU/Linux Threads library and therefore doesn't really belong
5813 here. */
5814
5815 /* Read variable NAME in the target and return its value if found.
5816 Otherwise return zero. It is assumed that the type of the variable
5817 is `int'. */
5818
5819 static int
5820 get_signo (const char *name)
5821 {
5822 struct minimal_symbol *ms;
5823 int signo;
5824
5825 ms = lookup_minimal_symbol (name, NULL, NULL);
5826 if (ms == NULL)
5827 return 0;
5828
5829 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5830 sizeof (signo)) != 0)
5831 return 0;
5832
5833 return signo;
5834 }
5835
5836 /* Return the set of signals used by the threads library in *SET. */
5837
5838 void
5839 lin_thread_get_thread_signals (sigset_t *set)
5840 {
5841 struct sigaction action;
5842 int restart, cancel;
5843
5844 sigemptyset (&blocked_mask);
5845 sigemptyset (set);
5846
5847 restart = get_signo ("__pthread_sig_restart");
5848 cancel = get_signo ("__pthread_sig_cancel");
5849
5850 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5851 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5852 not provide any way for the debugger to query the signal numbers -
5853 fortunately they don't change! */
5854
5855 if (restart == 0)
5856 restart = __SIGRTMIN;
5857
5858 if (cancel == 0)
5859 cancel = __SIGRTMIN + 1;
5860
5861 sigaddset (set, restart);
5862 sigaddset (set, cancel);
5863
5864 /* The GNU/Linux Threads library makes terminating threads send a
5865 special "cancel" signal instead of SIGCHLD. Make sure we catch
5866 those (to prevent them from terminating GDB itself, which is
5867 likely to be their default action) and treat them the same way as
5868 SIGCHLD. */
5869
5870 action.sa_handler = sigchld_handler;
5871 sigemptyset (&action.sa_mask);
5872 action.sa_flags = SA_RESTART;
5873 sigaction (cancel, &action, NULL);
5874
5875 /* We block the "cancel" signal throughout this code ... */
5876 sigaddset (&blocked_mask, cancel);
5877 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5878
5879 /* ... except during a sigsuspend. */
5880 sigdelset (&suspend_mask, cancel);
5881 }
This page took 0.151733 seconds and 4 git commands to generate.