Add configure support for building with guile 2.2.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include <string.h>
27 #include "gdb_wait.h"
28 #include "gdb_assert.h"
29 #ifdef HAVE_TKILL_SYSCALL
30 #include <unistd.h>
31 #include <sys/syscall.h>
32 #endif
33 #include <sys/ptrace.h>
34 #include "linux-nat.h"
35 #include "linux-ptrace.h"
36 #include "linux-procfs.h"
37 #include "linux-fork.h"
38 #include "gdbthread.h"
39 #include "gdbcmd.h"
40 #include "regcache.h"
41 #include "regset.h"
42 #include "inf-child.h"
43 #include "inf-ptrace.h"
44 #include "auxv.h"
45 #include <sys/procfs.h> /* for elf_gregset etc. */
46 #include "elf-bfd.h" /* for elfcore_write_* */
47 #include "gregset.h" /* for gregset */
48 #include "gdbcore.h" /* for get_exec_file */
49 #include <ctype.h> /* for isdigit */
50 #include <sys/stat.h> /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include <dirent.h>
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "buffer.h"
69 #include "target-descriptions.h"
70 #include "filestuff.h"
71 #include "objfiles.h"
72
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
76
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
83
84 /* This comment documents high-level logic of this file.
85
86 Waiting for events in sync mode
87 ===============================
88
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
91
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
104
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
109
110 Waiting for events in async mode
111 ================================
112
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
126
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
132
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
139
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
147
148 Use of signals
149 ==============
150
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
156
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
161
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
171
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
175
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
180
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
183
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static target_xfer_partial_ftype *super_xfer_partial;
204
205 /* The saved to_close method, inherited from inf-ptrace.c.
206 Called by our to_close. */
207 static void (*super_close) (struct target_ops *);
208
209 static unsigned int debug_linux_nat;
210 static void
211 show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
216 }
217
218 struct simple_pid_list
219 {
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223 };
224 struct simple_pid_list *stopped_pids;
225
226 /* Async mode support. */
227
228 /* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230 static int linux_nat_event_pipe[2] = { -1, -1 };
231
232 /* Flush the event pipe. */
233
234 static void
235 async_file_flush (void)
236 {
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245 }
246
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251 static void
252 async_file_mark (void)
253 {
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269 }
270
271 static int kill_lwp (int lwpid, int signo);
272
273 static int stop_callback (struct lwp_info *lp, void *data);
274
275 static void block_child_signals (sigset_t *prev_mask);
276 static void restore_child_signals_mask (sigset_t *prev_mask);
277
278 struct lwp_info;
279 static struct lwp_info *add_lwp (ptid_t ptid);
280 static void purge_lwp_list (int pid);
281 static void delete_lwp (ptid_t ptid);
282 static struct lwp_info *find_lwp_pid (ptid_t ptid);
283
284 \f
285 /* Trivial list manipulation functions to keep track of a list of
286 new stopped processes. */
287 static void
288 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
289 {
290 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
291
292 new_pid->pid = pid;
293 new_pid->status = status;
294 new_pid->next = *listp;
295 *listp = new_pid;
296 }
297
298 static int
299 in_pid_list_p (struct simple_pid_list *list, int pid)
300 {
301 struct simple_pid_list *p;
302
303 for (p = list; p != NULL; p = p->next)
304 if (p->pid == pid)
305 return 1;
306 return 0;
307 }
308
309 static int
310 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
311 {
312 struct simple_pid_list **p;
313
314 for (p = listp; *p != NULL; p = &(*p)->next)
315 if ((*p)->pid == pid)
316 {
317 struct simple_pid_list *next = (*p)->next;
318
319 *statusp = (*p)->status;
320 xfree (*p);
321 *p = next;
322 return 1;
323 }
324 return 0;
325 }
326
327 /* Initialize ptrace warnings and check for supported ptrace
328 features given PID. */
329
330 static void
331 linux_init_ptrace (pid_t pid)
332 {
333 linux_enable_event_reporting (pid);
334 linux_ptrace_init_warnings ();
335 }
336
337 static void
338 linux_child_post_attach (struct target_ops *self, int pid)
339 {
340 linux_init_ptrace (pid);
341 }
342
343 static void
344 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
345 {
346 linux_init_ptrace (ptid_get_pid (ptid));
347 }
348
349 /* Return the number of known LWPs in the tgid given by PID. */
350
351 static int
352 num_lwps (int pid)
353 {
354 int count = 0;
355 struct lwp_info *lp;
356
357 for (lp = lwp_list; lp; lp = lp->next)
358 if (ptid_get_pid (lp->ptid) == pid)
359 count++;
360
361 return count;
362 }
363
364 /* Call delete_lwp with prototype compatible for make_cleanup. */
365
366 static void
367 delete_lwp_cleanup (void *lp_voidp)
368 {
369 struct lwp_info *lp = lp_voidp;
370
371 delete_lwp (lp->ptid);
372 }
373
374 static int
375 linux_child_follow_fork (struct target_ops *ops, int follow_child,
376 int detach_fork)
377 {
378 int has_vforked;
379 int parent_pid, child_pid;
380
381 has_vforked = (inferior_thread ()->pending_follow.kind
382 == TARGET_WAITKIND_VFORKED);
383 parent_pid = ptid_get_lwp (inferior_ptid);
384 if (parent_pid == 0)
385 parent_pid = ptid_get_pid (inferior_ptid);
386 child_pid
387 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
388
389 if (has_vforked
390 && !non_stop /* Non-stop always resumes both branches. */
391 && (!target_is_async_p () || sync_execution)
392 && !(follow_child || detach_fork || sched_multi))
393 {
394 /* The parent stays blocked inside the vfork syscall until the
395 child execs or exits. If we don't let the child run, then
396 the parent stays blocked. If we're telling the parent to run
397 in the foreground, the user will not be able to ctrl-c to get
398 back the terminal, effectively hanging the debug session. */
399 fprintf_filtered (gdb_stderr, _("\
400 Can not resume the parent process over vfork in the foreground while\n\
401 holding the child stopped. Try \"set detach-on-fork\" or \
402 \"set schedule-multiple\".\n"));
403 /* FIXME output string > 80 columns. */
404 return 1;
405 }
406
407 if (! follow_child)
408 {
409 struct lwp_info *child_lp = NULL;
410
411 /* We're already attached to the parent, by default. */
412
413 /* Detach new forked process? */
414 if (detach_fork)
415 {
416 struct cleanup *old_chain;
417
418 /* Before detaching from the child, remove all breakpoints
419 from it. If we forked, then this has already been taken
420 care of by infrun.c. If we vforked however, any
421 breakpoint inserted in the parent is visible in the
422 child, even those added while stopped in a vfork
423 catchpoint. This will remove the breakpoints from the
424 parent also, but they'll be reinserted below. */
425 if (has_vforked)
426 {
427 /* keep breakpoints list in sync. */
428 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
429 }
430
431 if (info_verbose || debug_linux_nat)
432 {
433 target_terminal_ours ();
434 fprintf_filtered (gdb_stdlog,
435 "Detaching after fork from "
436 "child process %d.\n",
437 child_pid);
438 }
439
440 old_chain = save_inferior_ptid ();
441 inferior_ptid = ptid_build (child_pid, child_pid, 0);
442
443 child_lp = add_lwp (inferior_ptid);
444 child_lp->stopped = 1;
445 child_lp->last_resume_kind = resume_stop;
446 make_cleanup (delete_lwp_cleanup, child_lp);
447
448 if (linux_nat_prepare_to_resume != NULL)
449 linux_nat_prepare_to_resume (child_lp);
450 ptrace (PTRACE_DETACH, child_pid, 0, 0);
451
452 do_cleanups (old_chain);
453 }
454 else
455 {
456 struct inferior *parent_inf, *child_inf;
457 struct cleanup *old_chain;
458
459 /* Add process to GDB's tables. */
460 child_inf = add_inferior (child_pid);
461
462 parent_inf = current_inferior ();
463 child_inf->attach_flag = parent_inf->attach_flag;
464 copy_terminal_info (child_inf, parent_inf);
465 child_inf->gdbarch = parent_inf->gdbarch;
466 copy_inferior_target_desc_info (child_inf, parent_inf);
467
468 old_chain = save_inferior_ptid ();
469 save_current_program_space ();
470
471 inferior_ptid = ptid_build (child_pid, child_pid, 0);
472 add_thread (inferior_ptid);
473 child_lp = add_lwp (inferior_ptid);
474 child_lp->stopped = 1;
475 child_lp->last_resume_kind = resume_stop;
476 child_inf->symfile_flags = SYMFILE_NO_READ;
477
478 /* If this is a vfork child, then the address-space is
479 shared with the parent. */
480 if (has_vforked)
481 {
482 child_inf->pspace = parent_inf->pspace;
483 child_inf->aspace = parent_inf->aspace;
484
485 /* The parent will be frozen until the child is done
486 with the shared region. Keep track of the
487 parent. */
488 child_inf->vfork_parent = parent_inf;
489 child_inf->pending_detach = 0;
490 parent_inf->vfork_child = child_inf;
491 parent_inf->pending_detach = 0;
492 }
493 else
494 {
495 child_inf->aspace = new_address_space ();
496 child_inf->pspace = add_program_space (child_inf->aspace);
497 child_inf->removable = 1;
498 set_current_program_space (child_inf->pspace);
499 clone_program_space (child_inf->pspace, parent_inf->pspace);
500
501 /* Let the shared library layer (solib-svr4) learn about
502 this new process, relocate the cloned exec, pull in
503 shared libraries, and install the solib event
504 breakpoint. If a "cloned-VM" event was propagated
505 better throughout the core, this wouldn't be
506 required. */
507 solib_create_inferior_hook (0);
508 }
509
510 /* Let the thread_db layer learn about this new process. */
511 check_for_thread_db ();
512
513 do_cleanups (old_chain);
514 }
515
516 if (has_vforked)
517 {
518 struct lwp_info *parent_lp;
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532
533 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_can_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct inferior *parent_inf, *child_inf;
605 struct lwp_info *child_lp;
606 struct program_space *parent_pspace;
607
608 if (info_verbose || debug_linux_nat)
609 {
610 target_terminal_ours ();
611 if (has_vforked)
612 fprintf_filtered (gdb_stdlog,
613 _("Attaching after process %d "
614 "vfork to child process %d.\n"),
615 parent_pid, child_pid);
616 else
617 fprintf_filtered (gdb_stdlog,
618 _("Attaching after process %d "
619 "fork to child process %d.\n"),
620 parent_pid, child_pid);
621 }
622
623 /* Add the new inferior first, so that the target_detach below
624 doesn't unpush the target. */
625
626 child_inf = add_inferior (child_pid);
627
628 parent_inf = current_inferior ();
629 child_inf->attach_flag = parent_inf->attach_flag;
630 copy_terminal_info (child_inf, parent_inf);
631 child_inf->gdbarch = parent_inf->gdbarch;
632 copy_inferior_target_desc_info (child_inf, parent_inf);
633
634 parent_pspace = parent_inf->pspace;
635
636 /* If we're vforking, we want to hold on to the parent until the
637 child exits or execs. At child exec or exit time we can
638 remove the old breakpoints from the parent and detach or
639 resume debugging it. Otherwise, detach the parent now; we'll
640 want to reuse it's program/address spaces, but we can't set
641 them to the child before removing breakpoints from the
642 parent, otherwise, the breakpoints module could decide to
643 remove breakpoints from the wrong process (since they'd be
644 assigned to the same address space). */
645
646 if (has_vforked)
647 {
648 gdb_assert (child_inf->vfork_parent == NULL);
649 gdb_assert (parent_inf->vfork_child == NULL);
650 child_inf->vfork_parent = parent_inf;
651 child_inf->pending_detach = 0;
652 parent_inf->vfork_child = child_inf;
653 parent_inf->pending_detach = detach_fork;
654 parent_inf->waiting_for_vfork_done = 0;
655 }
656 else if (detach_fork)
657 target_detach (NULL, 0);
658
659 /* Note that the detach above makes PARENT_INF dangling. */
660
661 /* Add the child thread to the appropriate lists, and switch to
662 this new thread, before cloning the program space, and
663 informing the solib layer about this new process. */
664
665 inferior_ptid = ptid_build (child_pid, child_pid, 0);
666 add_thread (inferior_ptid);
667 child_lp = add_lwp (inferior_ptid);
668 child_lp->stopped = 1;
669 child_lp->last_resume_kind = resume_stop;
670
671 /* If this is a vfork child, then the address-space is shared
672 with the parent. If we detached from the parent, then we can
673 reuse the parent's program/address spaces. */
674 if (has_vforked || detach_fork)
675 {
676 child_inf->pspace = parent_pspace;
677 child_inf->aspace = child_inf->pspace->aspace;
678 }
679 else
680 {
681 child_inf->aspace = new_address_space ();
682 child_inf->pspace = add_program_space (child_inf->aspace);
683 child_inf->removable = 1;
684 child_inf->symfile_flags = SYMFILE_NO_READ;
685 set_current_program_space (child_inf->pspace);
686 clone_program_space (child_inf->pspace, parent_pspace);
687
688 /* Let the shared library layer (solib-svr4) learn about
689 this new process, relocate the cloned exec, pull in
690 shared libraries, and install the solib event breakpoint.
691 If a "cloned-VM" event was propagated better throughout
692 the core, this wouldn't be required. */
693 solib_create_inferior_hook (0);
694 }
695
696 /* Let the thread_db layer learn about this new process. */
697 check_for_thread_db ();
698 }
699
700 return 0;
701 }
702
703 \f
704 static int
705 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
706 {
707 return !linux_supports_tracefork ();
708 }
709
710 static int
711 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
712 {
713 return 0;
714 }
715
716 static int
717 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
718 {
719 return !linux_supports_tracefork ();
720 }
721
722 static int
723 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
724 {
725 return 0;
726 }
727
728 static int
729 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
730 {
731 return !linux_supports_tracefork ();
732 }
733
734 static int
735 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
736 {
737 return 0;
738 }
739
740 static int
741 linux_child_set_syscall_catchpoint (struct target_ops *self,
742 int pid, int needed, int any_count,
743 int table_size, int *table)
744 {
745 if (!linux_supports_tracesysgood ())
746 return 1;
747
748 /* On GNU/Linux, we ignore the arguments. It means that we only
749 enable the syscall catchpoints, but do not disable them.
750
751 Also, we do not use the `table' information because we do not
752 filter system calls here. We let GDB do the logic for us. */
753 return 0;
754 }
755
756 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
757 are processes sharing the same VM space. A multi-threaded process
758 is basically a group of such processes. However, such a grouping
759 is almost entirely a user-space issue; the kernel doesn't enforce
760 such a grouping at all (this might change in the future). In
761 general, we'll rely on the threads library (i.e. the GNU/Linux
762 Threads library) to provide such a grouping.
763
764 It is perfectly well possible to write a multi-threaded application
765 without the assistance of a threads library, by using the clone
766 system call directly. This module should be able to give some
767 rudimentary support for debugging such applications if developers
768 specify the CLONE_PTRACE flag in the clone system call, and are
769 using the Linux kernel 2.4 or above.
770
771 Note that there are some peculiarities in GNU/Linux that affect
772 this code:
773
774 - In general one should specify the __WCLONE flag to waitpid in
775 order to make it report events for any of the cloned processes
776 (and leave it out for the initial process). However, if a cloned
777 process has exited the exit status is only reported if the
778 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
779 we cannot use it since GDB must work on older systems too.
780
781 - When a traced, cloned process exits and is waited for by the
782 debugger, the kernel reassigns it to the original parent and
783 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
784 library doesn't notice this, which leads to the "zombie problem":
785 When debugged a multi-threaded process that spawns a lot of
786 threads will run out of processes, even if the threads exit,
787 because the "zombies" stay around. */
788
789 /* List of known LWPs. */
790 struct lwp_info *lwp_list;
791 \f
792
793 /* Original signal mask. */
794 static sigset_t normal_mask;
795
796 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
797 _initialize_linux_nat. */
798 static sigset_t suspend_mask;
799
800 /* Signals to block to make that sigsuspend work. */
801 static sigset_t blocked_mask;
802
803 /* SIGCHLD action. */
804 struct sigaction sigchld_action;
805
806 /* Block child signals (SIGCHLD and linux threads signals), and store
807 the previous mask in PREV_MASK. */
808
809 static void
810 block_child_signals (sigset_t *prev_mask)
811 {
812 /* Make sure SIGCHLD is blocked. */
813 if (!sigismember (&blocked_mask, SIGCHLD))
814 sigaddset (&blocked_mask, SIGCHLD);
815
816 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
817 }
818
819 /* Restore child signals mask, previously returned by
820 block_child_signals. */
821
822 static void
823 restore_child_signals_mask (sigset_t *prev_mask)
824 {
825 sigprocmask (SIG_SETMASK, prev_mask, NULL);
826 }
827
828 /* Mask of signals to pass directly to the inferior. */
829 static sigset_t pass_mask;
830
831 /* Update signals to pass to the inferior. */
832 static void
833 linux_nat_pass_signals (struct target_ops *self,
834 int numsigs, unsigned char *pass_signals)
835 {
836 int signo;
837
838 sigemptyset (&pass_mask);
839
840 for (signo = 1; signo < NSIG; signo++)
841 {
842 int target_signo = gdb_signal_from_host (signo);
843 if (target_signo < numsigs && pass_signals[target_signo])
844 sigaddset (&pass_mask, signo);
845 }
846 }
847
848 \f
849
850 /* Prototypes for local functions. */
851 static int stop_wait_callback (struct lwp_info *lp, void *data);
852 static int linux_thread_alive (ptid_t ptid);
853 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
854
855 \f
856
857 /* Destroy and free LP. */
858
859 static void
860 lwp_free (struct lwp_info *lp)
861 {
862 xfree (lp->arch_private);
863 xfree (lp);
864 }
865
866 /* Remove all LWPs belong to PID from the lwp list. */
867
868 static void
869 purge_lwp_list (int pid)
870 {
871 struct lwp_info *lp, *lpprev, *lpnext;
872
873 lpprev = NULL;
874
875 for (lp = lwp_list; lp; lp = lpnext)
876 {
877 lpnext = lp->next;
878
879 if (ptid_get_pid (lp->ptid) == pid)
880 {
881 if (lp == lwp_list)
882 lwp_list = lp->next;
883 else
884 lpprev->next = lp->next;
885
886 lwp_free (lp);
887 }
888 else
889 lpprev = lp;
890 }
891 }
892
893 /* Add the LWP specified by PTID to the list. PTID is the first LWP
894 in the process. Return a pointer to the structure describing the
895 new LWP.
896
897 This differs from add_lwp in that we don't let the arch specific
898 bits know about this new thread. Current clients of this callback
899 take the opportunity to install watchpoints in the new thread, and
900 we shouldn't do that for the first thread. If we're spawning a
901 child ("run"), the thread executes the shell wrapper first, and we
902 shouldn't touch it until it execs the program we want to debug.
903 For "attach", it'd be okay to call the callback, but it's not
904 necessary, because watchpoints can't yet have been inserted into
905 the inferior. */
906
907 static struct lwp_info *
908 add_initial_lwp (ptid_t ptid)
909 {
910 struct lwp_info *lp;
911
912 gdb_assert (ptid_lwp_p (ptid));
913
914 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
915
916 memset (lp, 0, sizeof (struct lwp_info));
917
918 lp->last_resume_kind = resume_continue;
919 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
920
921 lp->ptid = ptid;
922 lp->core = -1;
923
924 lp->next = lwp_list;
925 lwp_list = lp;
926
927 return lp;
928 }
929
930 /* Add the LWP specified by PID to the list. Return a pointer to the
931 structure describing the new LWP. The LWP should already be
932 stopped. */
933
934 static struct lwp_info *
935 add_lwp (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938
939 lp = add_initial_lwp (ptid);
940
941 /* Let the arch specific bits know about this new thread. Current
942 clients of this callback take the opportunity to install
943 watchpoints in the new thread. We don't do this for the first
944 thread though. See add_initial_lwp. */
945 if (linux_nat_new_thread != NULL)
946 linux_nat_new_thread (lp);
947
948 return lp;
949 }
950
951 /* Remove the LWP specified by PID from the list. */
952
953 static void
954 delete_lwp (ptid_t ptid)
955 {
956 struct lwp_info *lp, *lpprev;
957
958 lpprev = NULL;
959
960 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
961 if (ptid_equal (lp->ptid, ptid))
962 break;
963
964 if (!lp)
965 return;
966
967 if (lpprev)
968 lpprev->next = lp->next;
969 else
970 lwp_list = lp->next;
971
972 lwp_free (lp);
973 }
974
975 /* Return a pointer to the structure describing the LWP corresponding
976 to PID. If no corresponding LWP could be found, return NULL. */
977
978 static struct lwp_info *
979 find_lwp_pid (ptid_t ptid)
980 {
981 struct lwp_info *lp;
982 int lwp;
983
984 if (ptid_lwp_p (ptid))
985 lwp = ptid_get_lwp (ptid);
986 else
987 lwp = ptid_get_pid (ptid);
988
989 for (lp = lwp_list; lp; lp = lp->next)
990 if (lwp == ptid_get_lwp (lp->ptid))
991 return lp;
992
993 return NULL;
994 }
995
996 /* Call CALLBACK with its second argument set to DATA for every LWP in
997 the list. If CALLBACK returns 1 for a particular LWP, return a
998 pointer to the structure describing that LWP immediately.
999 Otherwise return NULL. */
1000
1001 struct lwp_info *
1002 iterate_over_lwps (ptid_t filter,
1003 int (*callback) (struct lwp_info *, void *),
1004 void *data)
1005 {
1006 struct lwp_info *lp, *lpnext;
1007
1008 for (lp = lwp_list; lp; lp = lpnext)
1009 {
1010 lpnext = lp->next;
1011
1012 if (ptid_match (lp->ptid, filter))
1013 {
1014 if ((*callback) (lp, data))
1015 return lp;
1016 }
1017 }
1018
1019 return NULL;
1020 }
1021
1022 /* Update our internal state when changing from one checkpoint to
1023 another indicated by NEW_PTID. We can only switch single-threaded
1024 applications, so we only create one new LWP, and the previous list
1025 is discarded. */
1026
1027 void
1028 linux_nat_switch_fork (ptid_t new_ptid)
1029 {
1030 struct lwp_info *lp;
1031
1032 purge_lwp_list (ptid_get_pid (inferior_ptid));
1033
1034 lp = add_lwp (new_ptid);
1035 lp->stopped = 1;
1036
1037 /* This changes the thread's ptid while preserving the gdb thread
1038 num. Also changes the inferior pid, while preserving the
1039 inferior num. */
1040 thread_change_ptid (inferior_ptid, new_ptid);
1041
1042 /* We've just told GDB core that the thread changed target id, but,
1043 in fact, it really is a different thread, with different register
1044 contents. */
1045 registers_changed ();
1046 }
1047
1048 /* Handle the exit of a single thread LP. */
1049
1050 static void
1051 exit_lwp (struct lwp_info *lp)
1052 {
1053 struct thread_info *th = find_thread_ptid (lp->ptid);
1054
1055 if (th)
1056 {
1057 if (print_thread_events)
1058 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1059
1060 delete_thread (lp->ptid);
1061 }
1062
1063 delete_lwp (lp->ptid);
1064 }
1065
1066 /* Wait for the LWP specified by LP, which we have just attached to.
1067 Returns a wait status for that LWP, to cache. */
1068
1069 static int
1070 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1071 int *signalled)
1072 {
1073 pid_t new_pid, pid = ptid_get_lwp (ptid);
1074 int status;
1075
1076 if (linux_proc_pid_is_stopped (pid))
1077 {
1078 if (debug_linux_nat)
1079 fprintf_unfiltered (gdb_stdlog,
1080 "LNPAW: Attaching to a stopped process\n");
1081
1082 /* The process is definitely stopped. It is in a job control
1083 stop, unless the kernel predates the TASK_STOPPED /
1084 TASK_TRACED distinction, in which case it might be in a
1085 ptrace stop. Make sure it is in a ptrace stop; from there we
1086 can kill it, signal it, et cetera.
1087
1088 First make sure there is a pending SIGSTOP. Since we are
1089 already attached, the process can not transition from stopped
1090 to running without a PTRACE_CONT; so we know this signal will
1091 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1092 probably already in the queue (unless this kernel is old
1093 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1094 is not an RT signal, it can only be queued once. */
1095 kill_lwp (pid, SIGSTOP);
1096
1097 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1098 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1099 ptrace (PTRACE_CONT, pid, 0, 0);
1100 }
1101
1102 /* Make sure the initial process is stopped. The user-level threads
1103 layer might want to poke around in the inferior, and that won't
1104 work if things haven't stabilized yet. */
1105 new_pid = my_waitpid (pid, &status, 0);
1106 if (new_pid == -1 && errno == ECHILD)
1107 {
1108 if (first)
1109 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1110
1111 /* Try again with __WCLONE to check cloned processes. */
1112 new_pid = my_waitpid (pid, &status, __WCLONE);
1113 *cloned = 1;
1114 }
1115
1116 gdb_assert (pid == new_pid);
1117
1118 if (!WIFSTOPPED (status))
1119 {
1120 /* The pid we tried to attach has apparently just exited. */
1121 if (debug_linux_nat)
1122 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1123 pid, status_to_str (status));
1124 return status;
1125 }
1126
1127 if (WSTOPSIG (status) != SIGSTOP)
1128 {
1129 *signalled = 1;
1130 if (debug_linux_nat)
1131 fprintf_unfiltered (gdb_stdlog,
1132 "LNPAW: Received %s after attaching\n",
1133 status_to_str (status));
1134 }
1135
1136 return status;
1137 }
1138
1139 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1140 the new LWP could not be attached, or 1 if we're already auto
1141 attached to this thread, but haven't processed the
1142 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1143 its existance, without considering it an error. */
1144
1145 int
1146 lin_lwp_attach_lwp (ptid_t ptid)
1147 {
1148 struct lwp_info *lp;
1149 int lwpid;
1150
1151 gdb_assert (ptid_lwp_p (ptid));
1152
1153 lp = find_lwp_pid (ptid);
1154 lwpid = ptid_get_lwp (ptid);
1155
1156 /* We assume that we're already attached to any LWP that has an id
1157 equal to the overall process id, and to any LWP that is already
1158 in our list of LWPs. If we're not seeing exit events from threads
1159 and we've had PID wraparound since we last tried to stop all threads,
1160 this assumption might be wrong; fortunately, this is very unlikely
1161 to happen. */
1162 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1163 {
1164 int status, cloned = 0, signalled = 0;
1165
1166 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1167 {
1168 if (linux_supports_tracefork ())
1169 {
1170 /* If we haven't stopped all threads when we get here,
1171 we may have seen a thread listed in thread_db's list,
1172 but not processed the PTRACE_EVENT_CLONE yet. If
1173 that's the case, ignore this new thread, and let
1174 normal event handling discover it later. */
1175 if (in_pid_list_p (stopped_pids, lwpid))
1176 {
1177 /* We've already seen this thread stop, but we
1178 haven't seen the PTRACE_EVENT_CLONE extended
1179 event yet. */
1180 return 0;
1181 }
1182 else
1183 {
1184 int new_pid;
1185 int status;
1186
1187 /* See if we've got a stop for this new child
1188 pending. If so, we're already attached. */
1189 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1190 if (new_pid == -1 && errno == ECHILD)
1191 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1192 if (new_pid != -1)
1193 {
1194 if (WIFSTOPPED (status))
1195 add_to_pid_list (&stopped_pids, lwpid, status);
1196 return 1;
1197 }
1198 }
1199 }
1200
1201 /* If we fail to attach to the thread, issue a warning,
1202 but continue. One way this can happen is if thread
1203 creation is interrupted; as of Linux kernel 2.6.19, a
1204 bug may place threads in the thread list and then fail
1205 to create them. */
1206 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1207 safe_strerror (errno));
1208 return -1;
1209 }
1210
1211 if (debug_linux_nat)
1212 fprintf_unfiltered (gdb_stdlog,
1213 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1214 target_pid_to_str (ptid));
1215
1216 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1217 if (!WIFSTOPPED (status))
1218 return 1;
1219
1220 lp = add_lwp (ptid);
1221 lp->stopped = 1;
1222 lp->cloned = cloned;
1223 lp->signalled = signalled;
1224 if (WSTOPSIG (status) != SIGSTOP)
1225 {
1226 lp->resumed = 1;
1227 lp->status = status;
1228 }
1229
1230 target_post_attach (ptid_get_lwp (lp->ptid));
1231
1232 if (debug_linux_nat)
1233 {
1234 fprintf_unfiltered (gdb_stdlog,
1235 "LLAL: waitpid %s received %s\n",
1236 target_pid_to_str (ptid),
1237 status_to_str (status));
1238 }
1239 }
1240 else
1241 {
1242 /* We assume that the LWP representing the original process is
1243 already stopped. Mark it as stopped in the data structure
1244 that the GNU/linux ptrace layer uses to keep track of
1245 threads. Note that this won't have already been done since
1246 the main thread will have, we assume, been stopped by an
1247 attach from a different layer. */
1248 if (lp == NULL)
1249 lp = add_lwp (ptid);
1250 lp->stopped = 1;
1251 }
1252
1253 lp->last_resume_kind = resume_stop;
1254 return 0;
1255 }
1256
1257 static void
1258 linux_nat_create_inferior (struct target_ops *ops,
1259 char *exec_file, char *allargs, char **env,
1260 int from_tty)
1261 {
1262 #ifdef HAVE_PERSONALITY
1263 int personality_orig = 0, personality_set = 0;
1264 #endif /* HAVE_PERSONALITY */
1265
1266 /* The fork_child mechanism is synchronous and calls target_wait, so
1267 we have to mask the async mode. */
1268
1269 #ifdef HAVE_PERSONALITY
1270 if (disable_randomization)
1271 {
1272 errno = 0;
1273 personality_orig = personality (0xffffffff);
1274 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1275 {
1276 personality_set = 1;
1277 personality (personality_orig | ADDR_NO_RANDOMIZE);
1278 }
1279 if (errno != 0 || (personality_set
1280 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1281 warning (_("Error disabling address space randomization: %s"),
1282 safe_strerror (errno));
1283 }
1284 #endif /* HAVE_PERSONALITY */
1285
1286 /* Make sure we report all signals during startup. */
1287 linux_nat_pass_signals (ops, 0, NULL);
1288
1289 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1290
1291 #ifdef HAVE_PERSONALITY
1292 if (personality_set)
1293 {
1294 errno = 0;
1295 personality (personality_orig);
1296 if (errno != 0)
1297 warning (_("Error restoring address space randomization: %s"),
1298 safe_strerror (errno));
1299 }
1300 #endif /* HAVE_PERSONALITY */
1301 }
1302
1303 static void
1304 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1305 {
1306 struct lwp_info *lp;
1307 int status;
1308 ptid_t ptid;
1309 volatile struct gdb_exception ex;
1310
1311 /* Make sure we report all signals during attach. */
1312 linux_nat_pass_signals (ops, 0, NULL);
1313
1314 TRY_CATCH (ex, RETURN_MASK_ERROR)
1315 {
1316 linux_ops->to_attach (ops, args, from_tty);
1317 }
1318 if (ex.reason < 0)
1319 {
1320 pid_t pid = parse_pid_to_attach (args);
1321 struct buffer buffer;
1322 char *message, *buffer_s;
1323
1324 message = xstrdup (ex.message);
1325 make_cleanup (xfree, message);
1326
1327 buffer_init (&buffer);
1328 linux_ptrace_attach_fail_reason (pid, &buffer);
1329
1330 buffer_grow_str0 (&buffer, "");
1331 buffer_s = buffer_finish (&buffer);
1332 make_cleanup (xfree, buffer_s);
1333
1334 if (*buffer_s != '\0')
1335 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1336 else
1337 throw_error (ex.error, "%s", message);
1338 }
1339
1340 /* The ptrace base target adds the main thread with (pid,0,0)
1341 format. Decorate it with lwp info. */
1342 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1343 ptid_get_pid (inferior_ptid),
1344 0);
1345 thread_change_ptid (inferior_ptid, ptid);
1346
1347 /* Add the initial process as the first LWP to the list. */
1348 lp = add_initial_lwp (ptid);
1349
1350 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1351 &lp->signalled);
1352 if (!WIFSTOPPED (status))
1353 {
1354 if (WIFEXITED (status))
1355 {
1356 int exit_code = WEXITSTATUS (status);
1357
1358 target_terminal_ours ();
1359 target_mourn_inferior ();
1360 if (exit_code == 0)
1361 error (_("Unable to attach: program exited normally."));
1362 else
1363 error (_("Unable to attach: program exited with code %d."),
1364 exit_code);
1365 }
1366 else if (WIFSIGNALED (status))
1367 {
1368 enum gdb_signal signo;
1369
1370 target_terminal_ours ();
1371 target_mourn_inferior ();
1372
1373 signo = gdb_signal_from_host (WTERMSIG (status));
1374 error (_("Unable to attach: program terminated with signal "
1375 "%s, %s."),
1376 gdb_signal_to_name (signo),
1377 gdb_signal_to_string (signo));
1378 }
1379
1380 internal_error (__FILE__, __LINE__,
1381 _("unexpected status %d for PID %ld"),
1382 status, (long) ptid_get_lwp (ptid));
1383 }
1384
1385 lp->stopped = 1;
1386
1387 /* Save the wait status to report later. */
1388 lp->resumed = 1;
1389 if (debug_linux_nat)
1390 fprintf_unfiltered (gdb_stdlog,
1391 "LNA: waitpid %ld, saving status %s\n",
1392 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1393
1394 lp->status = status;
1395
1396 if (target_can_async_p ())
1397 target_async (inferior_event_handler, 0);
1398 }
1399
1400 /* Get pending status of LP. */
1401 static int
1402 get_pending_status (struct lwp_info *lp, int *status)
1403 {
1404 enum gdb_signal signo = GDB_SIGNAL_0;
1405
1406 /* If we paused threads momentarily, we may have stored pending
1407 events in lp->status or lp->waitstatus (see stop_wait_callback),
1408 and GDB core hasn't seen any signal for those threads.
1409 Otherwise, the last signal reported to the core is found in the
1410 thread object's stop_signal.
1411
1412 There's a corner case that isn't handled here at present. Only
1413 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1414 stop_signal make sense as a real signal to pass to the inferior.
1415 Some catchpoint related events, like
1416 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1417 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1418 those traps are debug API (ptrace in our case) related and
1419 induced; the inferior wouldn't see them if it wasn't being
1420 traced. Hence, we should never pass them to the inferior, even
1421 when set to pass state. Since this corner case isn't handled by
1422 infrun.c when proceeding with a signal, for consistency, neither
1423 do we handle it here (or elsewhere in the file we check for
1424 signal pass state). Normally SIGTRAP isn't set to pass state, so
1425 this is really a corner case. */
1426
1427 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1428 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1429 else if (lp->status)
1430 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1431 else if (non_stop && !is_executing (lp->ptid))
1432 {
1433 struct thread_info *tp = find_thread_ptid (lp->ptid);
1434
1435 signo = tp->suspend.stop_signal;
1436 }
1437 else if (!non_stop)
1438 {
1439 struct target_waitstatus last;
1440 ptid_t last_ptid;
1441
1442 get_last_target_status (&last_ptid, &last);
1443
1444 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1445 {
1446 struct thread_info *tp = find_thread_ptid (lp->ptid);
1447
1448 signo = tp->suspend.stop_signal;
1449 }
1450 }
1451
1452 *status = 0;
1453
1454 if (signo == GDB_SIGNAL_0)
1455 {
1456 if (debug_linux_nat)
1457 fprintf_unfiltered (gdb_stdlog,
1458 "GPT: lwp %s has no pending signal\n",
1459 target_pid_to_str (lp->ptid));
1460 }
1461 else if (!signal_pass_state (signo))
1462 {
1463 if (debug_linux_nat)
1464 fprintf_unfiltered (gdb_stdlog,
1465 "GPT: lwp %s had signal %s, "
1466 "but it is in no pass state\n",
1467 target_pid_to_str (lp->ptid),
1468 gdb_signal_to_string (signo));
1469 }
1470 else
1471 {
1472 *status = W_STOPCODE (gdb_signal_to_host (signo));
1473
1474 if (debug_linux_nat)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "GPT: lwp %s has pending signal %s\n",
1477 target_pid_to_str (lp->ptid),
1478 gdb_signal_to_string (signo));
1479 }
1480
1481 return 0;
1482 }
1483
1484 static int
1485 detach_callback (struct lwp_info *lp, void *data)
1486 {
1487 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1488
1489 if (debug_linux_nat && lp->status)
1490 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1491 strsignal (WSTOPSIG (lp->status)),
1492 target_pid_to_str (lp->ptid));
1493
1494 /* If there is a pending SIGSTOP, get rid of it. */
1495 if (lp->signalled)
1496 {
1497 if (debug_linux_nat)
1498 fprintf_unfiltered (gdb_stdlog,
1499 "DC: Sending SIGCONT to %s\n",
1500 target_pid_to_str (lp->ptid));
1501
1502 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1503 lp->signalled = 0;
1504 }
1505
1506 /* We don't actually detach from the LWP that has an id equal to the
1507 overall process id just yet. */
1508 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1509 {
1510 int status = 0;
1511
1512 /* Pass on any pending signal for this LWP. */
1513 get_pending_status (lp, &status);
1514
1515 if (linux_nat_prepare_to_resume != NULL)
1516 linux_nat_prepare_to_resume (lp);
1517 errno = 0;
1518 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1519 WSTOPSIG (status)) < 0)
1520 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1521 safe_strerror (errno));
1522
1523 if (debug_linux_nat)
1524 fprintf_unfiltered (gdb_stdlog,
1525 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1526 target_pid_to_str (lp->ptid),
1527 strsignal (WSTOPSIG (status)));
1528
1529 delete_lwp (lp->ptid);
1530 }
1531
1532 return 0;
1533 }
1534
1535 static void
1536 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1537 {
1538 int pid;
1539 int status;
1540 struct lwp_info *main_lwp;
1541
1542 pid = ptid_get_pid (inferior_ptid);
1543
1544 /* Don't unregister from the event loop, as there may be other
1545 inferiors running. */
1546
1547 /* Stop all threads before detaching. ptrace requires that the
1548 thread is stopped to sucessfully detach. */
1549 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1550 /* ... and wait until all of them have reported back that
1551 they're no longer running. */
1552 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1553
1554 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1555
1556 /* Only the initial process should be left right now. */
1557 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1558
1559 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1560
1561 /* Pass on any pending signal for the last LWP. */
1562 if ((args == NULL || *args == '\0')
1563 && get_pending_status (main_lwp, &status) != -1
1564 && WIFSTOPPED (status))
1565 {
1566 char *tem;
1567
1568 /* Put the signal number in ARGS so that inf_ptrace_detach will
1569 pass it along with PTRACE_DETACH. */
1570 tem = alloca (8);
1571 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1572 args = tem;
1573 if (debug_linux_nat)
1574 fprintf_unfiltered (gdb_stdlog,
1575 "LND: Sending signal %s to %s\n",
1576 args,
1577 target_pid_to_str (main_lwp->ptid));
1578 }
1579
1580 if (linux_nat_prepare_to_resume != NULL)
1581 linux_nat_prepare_to_resume (main_lwp);
1582 delete_lwp (main_lwp->ptid);
1583
1584 if (forks_exist_p ())
1585 {
1586 /* Multi-fork case. The current inferior_ptid is being detached
1587 from, but there are other viable forks to debug. Detach from
1588 the current fork, and context-switch to the first
1589 available. */
1590 linux_fork_detach (args, from_tty);
1591 }
1592 else
1593 linux_ops->to_detach (ops, args, from_tty);
1594 }
1595
1596 /* Resume LP. */
1597
1598 static void
1599 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1600 {
1601 if (lp->stopped)
1602 {
1603 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1604
1605 if (inf->vfork_child != NULL)
1606 {
1607 if (debug_linux_nat)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "RC: Not resuming %s (vfork parent)\n",
1610 target_pid_to_str (lp->ptid));
1611 }
1612 else if (lp->status == 0
1613 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1614 {
1615 if (debug_linux_nat)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "RC: Resuming sibling %s, %s, %s\n",
1618 target_pid_to_str (lp->ptid),
1619 (signo != GDB_SIGNAL_0
1620 ? strsignal (gdb_signal_to_host (signo))
1621 : "0"),
1622 step ? "step" : "resume");
1623
1624 if (linux_nat_prepare_to_resume != NULL)
1625 linux_nat_prepare_to_resume (lp);
1626 linux_ops->to_resume (linux_ops,
1627 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1628 step, signo);
1629 lp->stopped = 0;
1630 lp->step = step;
1631 lp->stopped_by_watchpoint = 0;
1632 }
1633 else
1634 {
1635 if (debug_linux_nat)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "RC: Not resuming sibling %s (has pending)\n",
1638 target_pid_to_str (lp->ptid));
1639 }
1640 }
1641 else
1642 {
1643 if (debug_linux_nat)
1644 fprintf_unfiltered (gdb_stdlog,
1645 "RC: Not resuming sibling %s (not stopped)\n",
1646 target_pid_to_str (lp->ptid));
1647 }
1648 }
1649
1650 /* Resume LWP, with the last stop signal, if it is in pass state. */
1651
1652 static int
1653 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1654 {
1655 enum gdb_signal signo = GDB_SIGNAL_0;
1656
1657 if (lp->stopped)
1658 {
1659 struct thread_info *thread;
1660
1661 thread = find_thread_ptid (lp->ptid);
1662 if (thread != NULL)
1663 {
1664 if (signal_pass_state (thread->suspend.stop_signal))
1665 signo = thread->suspend.stop_signal;
1666 thread->suspend.stop_signal = GDB_SIGNAL_0;
1667 }
1668 }
1669
1670 resume_lwp (lp, 0, signo);
1671 return 0;
1672 }
1673
1674 static int
1675 resume_clear_callback (struct lwp_info *lp, void *data)
1676 {
1677 lp->resumed = 0;
1678 lp->last_resume_kind = resume_stop;
1679 return 0;
1680 }
1681
1682 static int
1683 resume_set_callback (struct lwp_info *lp, void *data)
1684 {
1685 lp->resumed = 1;
1686 lp->last_resume_kind = resume_continue;
1687 return 0;
1688 }
1689
1690 static void
1691 linux_nat_resume (struct target_ops *ops,
1692 ptid_t ptid, int step, enum gdb_signal signo)
1693 {
1694 struct lwp_info *lp;
1695 int resume_many;
1696
1697 if (debug_linux_nat)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1700 step ? "step" : "resume",
1701 target_pid_to_str (ptid),
1702 (signo != GDB_SIGNAL_0
1703 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1704 target_pid_to_str (inferior_ptid));
1705
1706 /* A specific PTID means `step only this process id'. */
1707 resume_many = (ptid_equal (minus_one_ptid, ptid)
1708 || ptid_is_pid (ptid));
1709
1710 /* Mark the lwps we're resuming as resumed. */
1711 iterate_over_lwps (ptid, resume_set_callback, NULL);
1712
1713 /* See if it's the current inferior that should be handled
1714 specially. */
1715 if (resume_many)
1716 lp = find_lwp_pid (inferior_ptid);
1717 else
1718 lp = find_lwp_pid (ptid);
1719 gdb_assert (lp != NULL);
1720
1721 /* Remember if we're stepping. */
1722 lp->step = step;
1723 lp->last_resume_kind = step ? resume_step : resume_continue;
1724
1725 /* If we have a pending wait status for this thread, there is no
1726 point in resuming the process. But first make sure that
1727 linux_nat_wait won't preemptively handle the event - we
1728 should never take this short-circuit if we are going to
1729 leave LP running, since we have skipped resuming all the
1730 other threads. This bit of code needs to be synchronized
1731 with linux_nat_wait. */
1732
1733 if (lp->status && WIFSTOPPED (lp->status))
1734 {
1735 if (!lp->step
1736 && WSTOPSIG (lp->status)
1737 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1738 {
1739 if (debug_linux_nat)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "LLR: Not short circuiting for ignored "
1742 "status 0x%x\n", lp->status);
1743
1744 /* FIXME: What should we do if we are supposed to continue
1745 this thread with a signal? */
1746 gdb_assert (signo == GDB_SIGNAL_0);
1747 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1748 lp->status = 0;
1749 }
1750 }
1751
1752 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1753 {
1754 /* FIXME: What should we do if we are supposed to continue
1755 this thread with a signal? */
1756 gdb_assert (signo == GDB_SIGNAL_0);
1757
1758 if (debug_linux_nat)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "LLR: Short circuiting for status 0x%x\n",
1761 lp->status);
1762
1763 if (target_can_async_p ())
1764 {
1765 target_async (inferior_event_handler, 0);
1766 /* Tell the event loop we have something to process. */
1767 async_file_mark ();
1768 }
1769 return;
1770 }
1771
1772 /* Mark LWP as not stopped to prevent it from being continued by
1773 linux_nat_resume_callback. */
1774 lp->stopped = 0;
1775
1776 if (resume_many)
1777 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1778
1779 /* Convert to something the lower layer understands. */
1780 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1781
1782 if (linux_nat_prepare_to_resume != NULL)
1783 linux_nat_prepare_to_resume (lp);
1784 linux_ops->to_resume (linux_ops, ptid, step, signo);
1785 lp->stopped_by_watchpoint = 0;
1786
1787 if (debug_linux_nat)
1788 fprintf_unfiltered (gdb_stdlog,
1789 "LLR: %s %s, %s (resume event thread)\n",
1790 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1791 target_pid_to_str (ptid),
1792 (signo != GDB_SIGNAL_0
1793 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1794
1795 if (target_can_async_p ())
1796 target_async (inferior_event_handler, 0);
1797 }
1798
1799 /* Send a signal to an LWP. */
1800
1801 static int
1802 kill_lwp (int lwpid, int signo)
1803 {
1804 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1805 fails, then we are not using nptl threads and we should be using kill. */
1806
1807 #ifdef HAVE_TKILL_SYSCALL
1808 {
1809 static int tkill_failed;
1810
1811 if (!tkill_failed)
1812 {
1813 int ret;
1814
1815 errno = 0;
1816 ret = syscall (__NR_tkill, lwpid, signo);
1817 if (errno != ENOSYS)
1818 return ret;
1819 tkill_failed = 1;
1820 }
1821 }
1822 #endif
1823
1824 return kill (lwpid, signo);
1825 }
1826
1827 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1828 event, check if the core is interested in it: if not, ignore the
1829 event, and keep waiting; otherwise, we need to toggle the LWP's
1830 syscall entry/exit status, since the ptrace event itself doesn't
1831 indicate it, and report the trap to higher layers. */
1832
1833 static int
1834 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1835 {
1836 struct target_waitstatus *ourstatus = &lp->waitstatus;
1837 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1838 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1839
1840 if (stopping)
1841 {
1842 /* If we're stopping threads, there's a SIGSTOP pending, which
1843 makes it so that the LWP reports an immediate syscall return,
1844 followed by the SIGSTOP. Skip seeing that "return" using
1845 PTRACE_CONT directly, and let stop_wait_callback collect the
1846 SIGSTOP. Later when the thread is resumed, a new syscall
1847 entry event. If we didn't do this (and returned 0), we'd
1848 leave a syscall entry pending, and our caller, by using
1849 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1850 itself. Later, when the user re-resumes this LWP, we'd see
1851 another syscall entry event and we'd mistake it for a return.
1852
1853 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1854 (leaving immediately with LWP->signalled set, without issuing
1855 a PTRACE_CONT), it would still be problematic to leave this
1856 syscall enter pending, as later when the thread is resumed,
1857 it would then see the same syscall exit mentioned above,
1858 followed by the delayed SIGSTOP, while the syscall didn't
1859 actually get to execute. It seems it would be even more
1860 confusing to the user. */
1861
1862 if (debug_linux_nat)
1863 fprintf_unfiltered (gdb_stdlog,
1864 "LHST: ignoring syscall %d "
1865 "for LWP %ld (stopping threads), "
1866 "resuming with PTRACE_CONT for SIGSTOP\n",
1867 syscall_number,
1868 ptid_get_lwp (lp->ptid));
1869
1870 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1871 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1872 return 1;
1873 }
1874
1875 if (catch_syscall_enabled ())
1876 {
1877 /* Always update the entry/return state, even if this particular
1878 syscall isn't interesting to the core now. In async mode,
1879 the user could install a new catchpoint for this syscall
1880 between syscall enter/return, and we'll need to know to
1881 report a syscall return if that happens. */
1882 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1883 ? TARGET_WAITKIND_SYSCALL_RETURN
1884 : TARGET_WAITKIND_SYSCALL_ENTRY);
1885
1886 if (catching_syscall_number (syscall_number))
1887 {
1888 /* Alright, an event to report. */
1889 ourstatus->kind = lp->syscall_state;
1890 ourstatus->value.syscall_number = syscall_number;
1891
1892 if (debug_linux_nat)
1893 fprintf_unfiltered (gdb_stdlog,
1894 "LHST: stopping for %s of syscall %d"
1895 " for LWP %ld\n",
1896 lp->syscall_state
1897 == TARGET_WAITKIND_SYSCALL_ENTRY
1898 ? "entry" : "return",
1899 syscall_number,
1900 ptid_get_lwp (lp->ptid));
1901 return 0;
1902 }
1903
1904 if (debug_linux_nat)
1905 fprintf_unfiltered (gdb_stdlog,
1906 "LHST: ignoring %s of syscall %d "
1907 "for LWP %ld\n",
1908 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1909 ? "entry" : "return",
1910 syscall_number,
1911 ptid_get_lwp (lp->ptid));
1912 }
1913 else
1914 {
1915 /* If we had been syscall tracing, and hence used PT_SYSCALL
1916 before on this LWP, it could happen that the user removes all
1917 syscall catchpoints before we get to process this event.
1918 There are two noteworthy issues here:
1919
1920 - When stopped at a syscall entry event, resuming with
1921 PT_STEP still resumes executing the syscall and reports a
1922 syscall return.
1923
1924 - Only PT_SYSCALL catches syscall enters. If we last
1925 single-stepped this thread, then this event can't be a
1926 syscall enter. If we last single-stepped this thread, this
1927 has to be a syscall exit.
1928
1929 The points above mean that the next resume, be it PT_STEP or
1930 PT_CONTINUE, can not trigger a syscall trace event. */
1931 if (debug_linux_nat)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "LHST: caught syscall event "
1934 "with no syscall catchpoints."
1935 " %d for LWP %ld, ignoring\n",
1936 syscall_number,
1937 ptid_get_lwp (lp->ptid));
1938 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1939 }
1940
1941 /* The core isn't interested in this event. For efficiency, avoid
1942 stopping all threads only to have the core resume them all again.
1943 Since we're not stopping threads, if we're still syscall tracing
1944 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1945 subsequent syscall. Simply resume using the inf-ptrace layer,
1946 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1947
1948 /* Note that gdbarch_get_syscall_number may access registers, hence
1949 fill a regcache. */
1950 registers_changed ();
1951 if (linux_nat_prepare_to_resume != NULL)
1952 linux_nat_prepare_to_resume (lp);
1953 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1954 lp->step, GDB_SIGNAL_0);
1955 return 1;
1956 }
1957
1958 /* Handle a GNU/Linux extended wait response. If we see a clone
1959 event, we need to add the new LWP to our list (and not report the
1960 trap to higher layers). This function returns non-zero if the
1961 event should be ignored and we should wait again. If STOPPING is
1962 true, the new LWP remains stopped, otherwise it is continued. */
1963
1964 static int
1965 linux_handle_extended_wait (struct lwp_info *lp, int status,
1966 int stopping)
1967 {
1968 int pid = ptid_get_lwp (lp->ptid);
1969 struct target_waitstatus *ourstatus = &lp->waitstatus;
1970 int event = status >> 16;
1971
1972 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1973 || event == PTRACE_EVENT_CLONE)
1974 {
1975 unsigned long new_pid;
1976 int ret;
1977
1978 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1979
1980 /* If we haven't already seen the new PID stop, wait for it now. */
1981 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1982 {
1983 /* The new child has a pending SIGSTOP. We can't affect it until it
1984 hits the SIGSTOP, but we're already attached. */
1985 ret = my_waitpid (new_pid, &status,
1986 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1987 if (ret == -1)
1988 perror_with_name (_("waiting for new child"));
1989 else if (ret != new_pid)
1990 internal_error (__FILE__, __LINE__,
1991 _("wait returned unexpected PID %d"), ret);
1992 else if (!WIFSTOPPED (status))
1993 internal_error (__FILE__, __LINE__,
1994 _("wait returned unexpected status 0x%x"), status);
1995 }
1996
1997 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1998
1999 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2000 {
2001 /* The arch-specific native code may need to know about new
2002 forks even if those end up never mapped to an
2003 inferior. */
2004 if (linux_nat_new_fork != NULL)
2005 linux_nat_new_fork (lp, new_pid);
2006 }
2007
2008 if (event == PTRACE_EVENT_FORK
2009 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2010 {
2011 /* Handle checkpointing by linux-fork.c here as a special
2012 case. We don't want the follow-fork-mode or 'catch fork'
2013 to interfere with this. */
2014
2015 /* This won't actually modify the breakpoint list, but will
2016 physically remove the breakpoints from the child. */
2017 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2018
2019 /* Retain child fork in ptrace (stopped) state. */
2020 if (!find_fork_pid (new_pid))
2021 add_fork (new_pid);
2022
2023 /* Report as spurious, so that infrun doesn't want to follow
2024 this fork. We're actually doing an infcall in
2025 linux-fork.c. */
2026 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2027
2028 /* Report the stop to the core. */
2029 return 0;
2030 }
2031
2032 if (event == PTRACE_EVENT_FORK)
2033 ourstatus->kind = TARGET_WAITKIND_FORKED;
2034 else if (event == PTRACE_EVENT_VFORK)
2035 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2036 else
2037 {
2038 struct lwp_info *new_lp;
2039
2040 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2041
2042 if (debug_linux_nat)
2043 fprintf_unfiltered (gdb_stdlog,
2044 "LHEW: Got clone event "
2045 "from LWP %d, new child is LWP %ld\n",
2046 pid, new_pid);
2047
2048 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2049 new_lp->cloned = 1;
2050 new_lp->stopped = 1;
2051
2052 if (WSTOPSIG (status) != SIGSTOP)
2053 {
2054 /* This can happen if someone starts sending signals to
2055 the new thread before it gets a chance to run, which
2056 have a lower number than SIGSTOP (e.g. SIGUSR1).
2057 This is an unlikely case, and harder to handle for
2058 fork / vfork than for clone, so we do not try - but
2059 we handle it for clone events here. We'll send
2060 the other signal on to the thread below. */
2061
2062 new_lp->signalled = 1;
2063 }
2064 else
2065 {
2066 struct thread_info *tp;
2067
2068 /* When we stop for an event in some other thread, and
2069 pull the thread list just as this thread has cloned,
2070 we'll have seen the new thread in the thread_db list
2071 before handling the CLONE event (glibc's
2072 pthread_create adds the new thread to the thread list
2073 before clone'ing, and has the kernel fill in the
2074 thread's tid on the clone call with
2075 CLONE_PARENT_SETTID). If that happened, and the core
2076 had requested the new thread to stop, we'll have
2077 killed it with SIGSTOP. But since SIGSTOP is not an
2078 RT signal, it can only be queued once. We need to be
2079 careful to not resume the LWP if we wanted it to
2080 stop. In that case, we'll leave the SIGSTOP pending.
2081 It will later be reported as GDB_SIGNAL_0. */
2082 tp = find_thread_ptid (new_lp->ptid);
2083 if (tp != NULL && tp->stop_requested)
2084 new_lp->last_resume_kind = resume_stop;
2085 else
2086 status = 0;
2087 }
2088
2089 if (non_stop)
2090 {
2091 /* Add the new thread to GDB's lists as soon as possible
2092 so that:
2093
2094 1) the frontend doesn't have to wait for a stop to
2095 display them, and,
2096
2097 2) we tag it with the correct running state. */
2098
2099 /* If the thread_db layer is active, let it know about
2100 this new thread, and add it to GDB's list. */
2101 if (!thread_db_attach_lwp (new_lp->ptid))
2102 {
2103 /* We're not using thread_db. Add it to GDB's
2104 list. */
2105 target_post_attach (ptid_get_lwp (new_lp->ptid));
2106 add_thread (new_lp->ptid);
2107 }
2108
2109 if (!stopping)
2110 {
2111 set_running (new_lp->ptid, 1);
2112 set_executing (new_lp->ptid, 1);
2113 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2114 resume_stop. */
2115 new_lp->last_resume_kind = resume_continue;
2116 }
2117 }
2118
2119 if (status != 0)
2120 {
2121 /* We created NEW_LP so it cannot yet contain STATUS. */
2122 gdb_assert (new_lp->status == 0);
2123
2124 /* Save the wait status to report later. */
2125 if (debug_linux_nat)
2126 fprintf_unfiltered (gdb_stdlog,
2127 "LHEW: waitpid of new LWP %ld, "
2128 "saving status %s\n",
2129 (long) ptid_get_lwp (new_lp->ptid),
2130 status_to_str (status));
2131 new_lp->status = status;
2132 }
2133
2134 /* Note the need to use the low target ops to resume, to
2135 handle resuming with PT_SYSCALL if we have syscall
2136 catchpoints. */
2137 if (!stopping)
2138 {
2139 new_lp->resumed = 1;
2140
2141 if (status == 0)
2142 {
2143 gdb_assert (new_lp->last_resume_kind == resume_continue);
2144 if (debug_linux_nat)
2145 fprintf_unfiltered (gdb_stdlog,
2146 "LHEW: resuming new LWP %ld\n",
2147 ptid_get_lwp (new_lp->ptid));
2148 if (linux_nat_prepare_to_resume != NULL)
2149 linux_nat_prepare_to_resume (new_lp);
2150 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2151 0, GDB_SIGNAL_0);
2152 new_lp->stopped = 0;
2153 }
2154 }
2155
2156 if (debug_linux_nat)
2157 fprintf_unfiltered (gdb_stdlog,
2158 "LHEW: resuming parent LWP %d\n", pid);
2159 if (linux_nat_prepare_to_resume != NULL)
2160 linux_nat_prepare_to_resume (lp);
2161 linux_ops->to_resume (linux_ops,
2162 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2163 0, GDB_SIGNAL_0);
2164
2165 return 1;
2166 }
2167
2168 return 0;
2169 }
2170
2171 if (event == PTRACE_EVENT_EXEC)
2172 {
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "LHEW: Got exec event from LWP %ld\n",
2176 ptid_get_lwp (lp->ptid));
2177
2178 ourstatus->kind = TARGET_WAITKIND_EXECD;
2179 ourstatus->value.execd_pathname
2180 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2181
2182 return 0;
2183 }
2184
2185 if (event == PTRACE_EVENT_VFORK_DONE)
2186 {
2187 if (current_inferior ()->waiting_for_vfork_done)
2188 {
2189 if (debug_linux_nat)
2190 fprintf_unfiltered (gdb_stdlog,
2191 "LHEW: Got expected PTRACE_EVENT_"
2192 "VFORK_DONE from LWP %ld: stopping\n",
2193 ptid_get_lwp (lp->ptid));
2194
2195 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2196 return 0;
2197 }
2198
2199 if (debug_linux_nat)
2200 fprintf_unfiltered (gdb_stdlog,
2201 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2202 "from LWP %ld: resuming\n",
2203 ptid_get_lwp (lp->ptid));
2204 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2205 return 1;
2206 }
2207
2208 internal_error (__FILE__, __LINE__,
2209 _("unknown ptrace event %d"), event);
2210 }
2211
2212 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2213 exited. */
2214
2215 static int
2216 wait_lwp (struct lwp_info *lp)
2217 {
2218 pid_t pid;
2219 int status = 0;
2220 int thread_dead = 0;
2221 sigset_t prev_mask;
2222
2223 gdb_assert (!lp->stopped);
2224 gdb_assert (lp->status == 0);
2225
2226 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2227 block_child_signals (&prev_mask);
2228
2229 for (;;)
2230 {
2231 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2232 was right and we should just call sigsuspend. */
2233
2234 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2235 if (pid == -1 && errno == ECHILD)
2236 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2237 if (pid == -1 && errno == ECHILD)
2238 {
2239 /* The thread has previously exited. We need to delete it
2240 now because, for some vendor 2.4 kernels with NPTL
2241 support backported, there won't be an exit event unless
2242 it is the main thread. 2.6 kernels will report an exit
2243 event for each thread that exits, as expected. */
2244 thread_dead = 1;
2245 if (debug_linux_nat)
2246 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2247 target_pid_to_str (lp->ptid));
2248 }
2249 if (pid != 0)
2250 break;
2251
2252 /* Bugs 10970, 12702.
2253 Thread group leader may have exited in which case we'll lock up in
2254 waitpid if there are other threads, even if they are all zombies too.
2255 Basically, we're not supposed to use waitpid this way.
2256 __WCLONE is not applicable for the leader so we can't use that.
2257 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2258 process; it gets ESRCH both for the zombie and for running processes.
2259
2260 As a workaround, check if we're waiting for the thread group leader and
2261 if it's a zombie, and avoid calling waitpid if it is.
2262
2263 This is racy, what if the tgl becomes a zombie right after we check?
2264 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2265 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2266
2267 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2268 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2269 {
2270 thread_dead = 1;
2271 if (debug_linux_nat)
2272 fprintf_unfiltered (gdb_stdlog,
2273 "WL: Thread group leader %s vanished.\n",
2274 target_pid_to_str (lp->ptid));
2275 break;
2276 }
2277
2278 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2279 get invoked despite our caller had them intentionally blocked by
2280 block_child_signals. This is sensitive only to the loop of
2281 linux_nat_wait_1 and there if we get called my_waitpid gets called
2282 again before it gets to sigsuspend so we can safely let the handlers
2283 get executed here. */
2284
2285 sigsuspend (&suspend_mask);
2286 }
2287
2288 restore_child_signals_mask (&prev_mask);
2289
2290 if (!thread_dead)
2291 {
2292 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2293
2294 if (debug_linux_nat)
2295 {
2296 fprintf_unfiltered (gdb_stdlog,
2297 "WL: waitpid %s received %s\n",
2298 target_pid_to_str (lp->ptid),
2299 status_to_str (status));
2300 }
2301
2302 /* Check if the thread has exited. */
2303 if (WIFEXITED (status) || WIFSIGNALED (status))
2304 {
2305 thread_dead = 1;
2306 if (debug_linux_nat)
2307 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2308 target_pid_to_str (lp->ptid));
2309 }
2310 }
2311
2312 if (thread_dead)
2313 {
2314 exit_lwp (lp);
2315 return 0;
2316 }
2317
2318 gdb_assert (WIFSTOPPED (status));
2319
2320 /* Handle GNU/Linux's syscall SIGTRAPs. */
2321 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2322 {
2323 /* No longer need the sysgood bit. The ptrace event ends up
2324 recorded in lp->waitstatus if we care for it. We can carry
2325 on handling the event like a regular SIGTRAP from here
2326 on. */
2327 status = W_STOPCODE (SIGTRAP);
2328 if (linux_handle_syscall_trap (lp, 1))
2329 return wait_lwp (lp);
2330 }
2331
2332 /* Handle GNU/Linux's extended waitstatus for trace events. */
2333 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2334 {
2335 if (debug_linux_nat)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "WL: Handling extended status 0x%06x\n",
2338 status);
2339 if (linux_handle_extended_wait (lp, status, 1))
2340 return wait_lwp (lp);
2341 }
2342
2343 return status;
2344 }
2345
2346 /* Send a SIGSTOP to LP. */
2347
2348 static int
2349 stop_callback (struct lwp_info *lp, void *data)
2350 {
2351 if (!lp->stopped && !lp->signalled)
2352 {
2353 int ret;
2354
2355 if (debug_linux_nat)
2356 {
2357 fprintf_unfiltered (gdb_stdlog,
2358 "SC: kill %s **<SIGSTOP>**\n",
2359 target_pid_to_str (lp->ptid));
2360 }
2361 errno = 0;
2362 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2363 if (debug_linux_nat)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "SC: lwp kill %d %s\n",
2367 ret,
2368 errno ? safe_strerror (errno) : "ERRNO-OK");
2369 }
2370
2371 lp->signalled = 1;
2372 gdb_assert (lp->status == 0);
2373 }
2374
2375 return 0;
2376 }
2377
2378 /* Request a stop on LWP. */
2379
2380 void
2381 linux_stop_lwp (struct lwp_info *lwp)
2382 {
2383 stop_callback (lwp, NULL);
2384 }
2385
2386 /* Return non-zero if LWP PID has a pending SIGINT. */
2387
2388 static int
2389 linux_nat_has_pending_sigint (int pid)
2390 {
2391 sigset_t pending, blocked, ignored;
2392
2393 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2394
2395 if (sigismember (&pending, SIGINT)
2396 && !sigismember (&ignored, SIGINT))
2397 return 1;
2398
2399 return 0;
2400 }
2401
2402 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2403
2404 static int
2405 set_ignore_sigint (struct lwp_info *lp, void *data)
2406 {
2407 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2408 flag to consume the next one. */
2409 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2410 && WSTOPSIG (lp->status) == SIGINT)
2411 lp->status = 0;
2412 else
2413 lp->ignore_sigint = 1;
2414
2415 return 0;
2416 }
2417
2418 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2419 This function is called after we know the LWP has stopped; if the LWP
2420 stopped before the expected SIGINT was delivered, then it will never have
2421 arrived. Also, if the signal was delivered to a shared queue and consumed
2422 by a different thread, it will never be delivered to this LWP. */
2423
2424 static void
2425 maybe_clear_ignore_sigint (struct lwp_info *lp)
2426 {
2427 if (!lp->ignore_sigint)
2428 return;
2429
2430 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2431 {
2432 if (debug_linux_nat)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "MCIS: Clearing bogus flag for %s\n",
2435 target_pid_to_str (lp->ptid));
2436 lp->ignore_sigint = 0;
2437 }
2438 }
2439
2440 /* Fetch the possible triggered data watchpoint info and store it in
2441 LP.
2442
2443 On some archs, like x86, that use debug registers to set
2444 watchpoints, it's possible that the way to know which watched
2445 address trapped, is to check the register that is used to select
2446 which address to watch. Problem is, between setting the watchpoint
2447 and reading back which data address trapped, the user may change
2448 the set of watchpoints, and, as a consequence, GDB changes the
2449 debug registers in the inferior. To avoid reading back a stale
2450 stopped-data-address when that happens, we cache in LP the fact
2451 that a watchpoint trapped, and the corresponding data address, as
2452 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2453 registers meanwhile, we have the cached data we can rely on. */
2454
2455 static void
2456 save_sigtrap (struct lwp_info *lp)
2457 {
2458 struct cleanup *old_chain;
2459
2460 if (linux_ops->to_stopped_by_watchpoint == NULL)
2461 {
2462 lp->stopped_by_watchpoint = 0;
2463 return;
2464 }
2465
2466 old_chain = save_inferior_ptid ();
2467 inferior_ptid = lp->ptid;
2468
2469 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2470
2471 if (lp->stopped_by_watchpoint)
2472 {
2473 if (linux_ops->to_stopped_data_address != NULL)
2474 lp->stopped_data_address_p =
2475 linux_ops->to_stopped_data_address (&current_target,
2476 &lp->stopped_data_address);
2477 else
2478 lp->stopped_data_address_p = 0;
2479 }
2480
2481 do_cleanups (old_chain);
2482 }
2483
2484 /* See save_sigtrap. */
2485
2486 static int
2487 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2488 {
2489 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2490
2491 gdb_assert (lp != NULL);
2492
2493 return lp->stopped_by_watchpoint;
2494 }
2495
2496 static int
2497 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2498 {
2499 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2500
2501 gdb_assert (lp != NULL);
2502
2503 *addr_p = lp->stopped_data_address;
2504
2505 return lp->stopped_data_address_p;
2506 }
2507
2508 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2509
2510 static int
2511 sigtrap_is_event (int status)
2512 {
2513 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2514 }
2515
2516 /* SIGTRAP-like events recognizer. */
2517
2518 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2519
2520 /* Check for SIGTRAP-like events in LP. */
2521
2522 static int
2523 linux_nat_lp_status_is_event (struct lwp_info *lp)
2524 {
2525 /* We check for lp->waitstatus in addition to lp->status, because we can
2526 have pending process exits recorded in lp->status
2527 and W_EXITCODE(0,0) == 0. We should probably have an additional
2528 lp->status_p flag. */
2529
2530 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2531 && linux_nat_status_is_event (lp->status));
2532 }
2533
2534 /* Set alternative SIGTRAP-like events recognizer. If
2535 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2536 applied. */
2537
2538 void
2539 linux_nat_set_status_is_event (struct target_ops *t,
2540 int (*status_is_event) (int status))
2541 {
2542 linux_nat_status_is_event = status_is_event;
2543 }
2544
2545 /* Wait until LP is stopped. */
2546
2547 static int
2548 stop_wait_callback (struct lwp_info *lp, void *data)
2549 {
2550 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2551
2552 /* If this is a vfork parent, bail out, it is not going to report
2553 any SIGSTOP until the vfork is done with. */
2554 if (inf->vfork_child != NULL)
2555 return 0;
2556
2557 if (!lp->stopped)
2558 {
2559 int status;
2560
2561 status = wait_lwp (lp);
2562 if (status == 0)
2563 return 0;
2564
2565 if (lp->ignore_sigint && WIFSTOPPED (status)
2566 && WSTOPSIG (status) == SIGINT)
2567 {
2568 lp->ignore_sigint = 0;
2569
2570 errno = 0;
2571 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2572 if (debug_linux_nat)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "PTRACE_CONT %s, 0, 0 (%s) "
2575 "(discarding SIGINT)\n",
2576 target_pid_to_str (lp->ptid),
2577 errno ? safe_strerror (errno) : "OK");
2578
2579 return stop_wait_callback (lp, NULL);
2580 }
2581
2582 maybe_clear_ignore_sigint (lp);
2583
2584 if (WSTOPSIG (status) != SIGSTOP)
2585 {
2586 /* The thread was stopped with a signal other than SIGSTOP. */
2587
2588 save_sigtrap (lp);
2589
2590 if (debug_linux_nat)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "SWC: Pending event %s in %s\n",
2593 status_to_str ((int) status),
2594 target_pid_to_str (lp->ptid));
2595
2596 /* Save the sigtrap event. */
2597 lp->status = status;
2598 gdb_assert (!lp->stopped);
2599 gdb_assert (lp->signalled);
2600 lp->stopped = 1;
2601 }
2602 else
2603 {
2604 /* We caught the SIGSTOP that we intended to catch, so
2605 there's no SIGSTOP pending. */
2606
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "SWC: Delayed SIGSTOP caught for %s.\n",
2610 target_pid_to_str (lp->ptid));
2611
2612 lp->stopped = 1;
2613
2614 /* Reset SIGNALLED only after the stop_wait_callback call
2615 above as it does gdb_assert on SIGNALLED. */
2616 lp->signalled = 0;
2617 }
2618 }
2619
2620 return 0;
2621 }
2622
2623 /* Return non-zero if LP has a wait status pending. */
2624
2625 static int
2626 status_callback (struct lwp_info *lp, void *data)
2627 {
2628 /* Only report a pending wait status if we pretend that this has
2629 indeed been resumed. */
2630 if (!lp->resumed)
2631 return 0;
2632
2633 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2634 {
2635 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2636 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2637 0', so a clean process exit can not be stored pending in
2638 lp->status, it is indistinguishable from
2639 no-pending-status. */
2640 return 1;
2641 }
2642
2643 if (lp->status != 0)
2644 return 1;
2645
2646 return 0;
2647 }
2648
2649 /* Return non-zero if LP isn't stopped. */
2650
2651 static int
2652 running_callback (struct lwp_info *lp, void *data)
2653 {
2654 return (!lp->stopped
2655 || ((lp->status != 0
2656 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2657 && lp->resumed));
2658 }
2659
2660 /* Count the LWP's that have had events. */
2661
2662 static int
2663 count_events_callback (struct lwp_info *lp, void *data)
2664 {
2665 int *count = data;
2666
2667 gdb_assert (count != NULL);
2668
2669 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2670 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2671 (*count)++;
2672
2673 return 0;
2674 }
2675
2676 /* Select the LWP (if any) that is currently being single-stepped. */
2677
2678 static int
2679 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2680 {
2681 if (lp->last_resume_kind == resume_step
2682 && lp->status != 0)
2683 return 1;
2684 else
2685 return 0;
2686 }
2687
2688 /* Select the Nth LWP that has had a SIGTRAP event. */
2689
2690 static int
2691 select_event_lwp_callback (struct lwp_info *lp, void *data)
2692 {
2693 int *selector = data;
2694
2695 gdb_assert (selector != NULL);
2696
2697 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2698 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2699 if ((*selector)-- == 0)
2700 return 1;
2701
2702 return 0;
2703 }
2704
2705 static int
2706 cancel_breakpoint (struct lwp_info *lp)
2707 {
2708 /* Arrange for a breakpoint to be hit again later. We don't keep
2709 the SIGTRAP status and don't forward the SIGTRAP signal to the
2710 LWP. We will handle the current event, eventually we will resume
2711 this LWP, and this breakpoint will trap again.
2712
2713 If we do not do this, then we run the risk that the user will
2714 delete or disable the breakpoint, but the LWP will have already
2715 tripped on it. */
2716
2717 struct regcache *regcache = get_thread_regcache (lp->ptid);
2718 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2719 CORE_ADDR pc;
2720
2721 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2722 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2723 {
2724 if (debug_linux_nat)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "CB: Push back breakpoint for %s\n",
2727 target_pid_to_str (lp->ptid));
2728
2729 /* Back up the PC if necessary. */
2730 if (target_decr_pc_after_break (gdbarch))
2731 regcache_write_pc (regcache, pc);
2732
2733 return 1;
2734 }
2735 return 0;
2736 }
2737
2738 static int
2739 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2740 {
2741 struct lwp_info *event_lp = data;
2742
2743 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2744 if (lp == event_lp)
2745 return 0;
2746
2747 /* If a LWP other than the LWP that we're reporting an event for has
2748 hit a GDB breakpoint (as opposed to some random trap signal),
2749 then just arrange for it to hit it again later. We don't keep
2750 the SIGTRAP status and don't forward the SIGTRAP signal to the
2751 LWP. We will handle the current event, eventually we will resume
2752 all LWPs, and this one will get its breakpoint trap again.
2753
2754 If we do not do this, then we run the risk that the user will
2755 delete or disable the breakpoint, but the LWP will have already
2756 tripped on it. */
2757
2758 if (linux_nat_lp_status_is_event (lp)
2759 && cancel_breakpoint (lp))
2760 /* Throw away the SIGTRAP. */
2761 lp->status = 0;
2762
2763 return 0;
2764 }
2765
2766 /* Select one LWP out of those that have events pending. */
2767
2768 static void
2769 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2770 {
2771 int num_events = 0;
2772 int random_selector;
2773 struct lwp_info *event_lp;
2774
2775 /* Record the wait status for the original LWP. */
2776 (*orig_lp)->status = *status;
2777
2778 /* Give preference to any LWP that is being single-stepped. */
2779 event_lp = iterate_over_lwps (filter,
2780 select_singlestep_lwp_callback, NULL);
2781 if (event_lp != NULL)
2782 {
2783 if (debug_linux_nat)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "SEL: Select single-step %s\n",
2786 target_pid_to_str (event_lp->ptid));
2787 }
2788 else
2789 {
2790 /* No single-stepping LWP. Select one at random, out of those
2791 which have had SIGTRAP events. */
2792
2793 /* First see how many SIGTRAP events we have. */
2794 iterate_over_lwps (filter, count_events_callback, &num_events);
2795
2796 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2797 random_selector = (int)
2798 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2799
2800 if (debug_linux_nat && num_events > 1)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2803 num_events, random_selector);
2804
2805 event_lp = iterate_over_lwps (filter,
2806 select_event_lwp_callback,
2807 &random_selector);
2808 }
2809
2810 if (event_lp != NULL)
2811 {
2812 /* Switch the event LWP. */
2813 *orig_lp = event_lp;
2814 *status = event_lp->status;
2815 }
2816
2817 /* Flush the wait status for the event LWP. */
2818 (*orig_lp)->status = 0;
2819 }
2820
2821 /* Return non-zero if LP has been resumed. */
2822
2823 static int
2824 resumed_callback (struct lwp_info *lp, void *data)
2825 {
2826 return lp->resumed;
2827 }
2828
2829 /* Stop an active thread, verify it still exists, then resume it. If
2830 the thread ends up with a pending status, then it is not resumed,
2831 and *DATA (really a pointer to int), is set. */
2832
2833 static int
2834 stop_and_resume_callback (struct lwp_info *lp, void *data)
2835 {
2836 int *new_pending_p = data;
2837
2838 if (!lp->stopped)
2839 {
2840 ptid_t ptid = lp->ptid;
2841
2842 stop_callback (lp, NULL);
2843 stop_wait_callback (lp, NULL);
2844
2845 /* Resume if the lwp still exists, and the core wanted it
2846 running. */
2847 lp = find_lwp_pid (ptid);
2848 if (lp != NULL)
2849 {
2850 if (lp->last_resume_kind == resume_stop
2851 && lp->status == 0)
2852 {
2853 /* The core wanted the LWP to stop. Even if it stopped
2854 cleanly (with SIGSTOP), leave the event pending. */
2855 if (debug_linux_nat)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "SARC: core wanted LWP %ld stopped "
2858 "(leaving SIGSTOP pending)\n",
2859 ptid_get_lwp (lp->ptid));
2860 lp->status = W_STOPCODE (SIGSTOP);
2861 }
2862
2863 if (lp->status == 0)
2864 {
2865 if (debug_linux_nat)
2866 fprintf_unfiltered (gdb_stdlog,
2867 "SARC: re-resuming LWP %ld\n",
2868 ptid_get_lwp (lp->ptid));
2869 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2870 }
2871 else
2872 {
2873 if (debug_linux_nat)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "SARC: not re-resuming LWP %ld "
2876 "(has pending)\n",
2877 ptid_get_lwp (lp->ptid));
2878 if (new_pending_p)
2879 *new_pending_p = 1;
2880 }
2881 }
2882 }
2883 return 0;
2884 }
2885
2886 /* Check if we should go on and pass this event to common code.
2887 Return the affected lwp if we are, or NULL otherwise. If we stop
2888 all lwps temporarily, we may end up with new pending events in some
2889 other lwp. In that case set *NEW_PENDING_P to true. */
2890
2891 static struct lwp_info *
2892 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2893 {
2894 struct lwp_info *lp;
2895
2896 *new_pending_p = 0;
2897
2898 lp = find_lwp_pid (pid_to_ptid (lwpid));
2899
2900 /* Check for stop events reported by a process we didn't already
2901 know about - anything not already in our LWP list.
2902
2903 If we're expecting to receive stopped processes after
2904 fork, vfork, and clone events, then we'll just add the
2905 new one to our list and go back to waiting for the event
2906 to be reported - the stopped process might be returned
2907 from waitpid before or after the event is.
2908
2909 But note the case of a non-leader thread exec'ing after the
2910 leader having exited, and gone from our lists. The non-leader
2911 thread changes its tid to the tgid. */
2912
2913 if (WIFSTOPPED (status) && lp == NULL
2914 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2915 {
2916 /* A multi-thread exec after we had seen the leader exiting. */
2917 if (debug_linux_nat)
2918 fprintf_unfiltered (gdb_stdlog,
2919 "LLW: Re-adding thread group leader LWP %d.\n",
2920 lwpid);
2921
2922 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2923 lp->stopped = 1;
2924 lp->resumed = 1;
2925 add_thread (lp->ptid);
2926 }
2927
2928 if (WIFSTOPPED (status) && !lp)
2929 {
2930 add_to_pid_list (&stopped_pids, lwpid, status);
2931 return NULL;
2932 }
2933
2934 /* Make sure we don't report an event for the exit of an LWP not in
2935 our list, i.e. not part of the current process. This can happen
2936 if we detach from a program we originally forked and then it
2937 exits. */
2938 if (!WIFSTOPPED (status) && !lp)
2939 return NULL;
2940
2941 /* Handle GNU/Linux's syscall SIGTRAPs. */
2942 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2943 {
2944 /* No longer need the sysgood bit. The ptrace event ends up
2945 recorded in lp->waitstatus if we care for it. We can carry
2946 on handling the event like a regular SIGTRAP from here
2947 on. */
2948 status = W_STOPCODE (SIGTRAP);
2949 if (linux_handle_syscall_trap (lp, 0))
2950 return NULL;
2951 }
2952
2953 /* Handle GNU/Linux's extended waitstatus for trace events. */
2954 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2955 {
2956 if (debug_linux_nat)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "LLW: Handling extended status 0x%06x\n",
2959 status);
2960 if (linux_handle_extended_wait (lp, status, 0))
2961 return NULL;
2962 }
2963
2964 if (linux_nat_status_is_event (status))
2965 save_sigtrap (lp);
2966
2967 /* Check if the thread has exited. */
2968 if ((WIFEXITED (status) || WIFSIGNALED (status))
2969 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2970 {
2971 /* If this is the main thread, we must stop all threads and verify
2972 if they are still alive. This is because in the nptl thread model
2973 on Linux 2.4, there is no signal issued for exiting LWPs
2974 other than the main thread. We only get the main thread exit
2975 signal once all child threads have already exited. If we
2976 stop all the threads and use the stop_wait_callback to check
2977 if they have exited we can determine whether this signal
2978 should be ignored or whether it means the end of the debugged
2979 application, regardless of which threading model is being
2980 used. */
2981 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2982 {
2983 lp->stopped = 1;
2984 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2985 stop_and_resume_callback, new_pending_p);
2986 }
2987
2988 if (debug_linux_nat)
2989 fprintf_unfiltered (gdb_stdlog,
2990 "LLW: %s exited.\n",
2991 target_pid_to_str (lp->ptid));
2992
2993 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2994 {
2995 /* If there is at least one more LWP, then the exit signal
2996 was not the end of the debugged application and should be
2997 ignored. */
2998 exit_lwp (lp);
2999 return NULL;
3000 }
3001 }
3002
3003 /* Check if the current LWP has previously exited. In the nptl
3004 thread model, LWPs other than the main thread do not issue
3005 signals when they exit so we must check whenever the thread has
3006 stopped. A similar check is made in stop_wait_callback(). */
3007 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3008 {
3009 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3010
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "LLW: %s exited.\n",
3014 target_pid_to_str (lp->ptid));
3015
3016 exit_lwp (lp);
3017
3018 /* Make sure there is at least one thread running. */
3019 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3020
3021 /* Discard the event. */
3022 return NULL;
3023 }
3024
3025 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3026 an attempt to stop an LWP. */
3027 if (lp->signalled
3028 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3029 {
3030 if (debug_linux_nat)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "LLW: Delayed SIGSTOP caught for %s.\n",
3033 target_pid_to_str (lp->ptid));
3034
3035 lp->signalled = 0;
3036
3037 if (lp->last_resume_kind != resume_stop)
3038 {
3039 /* This is a delayed SIGSTOP. */
3040
3041 registers_changed ();
3042
3043 if (linux_nat_prepare_to_resume != NULL)
3044 linux_nat_prepare_to_resume (lp);
3045 linux_ops->to_resume (linux_ops,
3046 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3047 lp->step, GDB_SIGNAL_0);
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog,
3050 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3051 lp->step ?
3052 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3053 target_pid_to_str (lp->ptid));
3054
3055 lp->stopped = 0;
3056 gdb_assert (lp->resumed);
3057
3058 /* Discard the event. */
3059 return NULL;
3060 }
3061 }
3062
3063 /* Make sure we don't report a SIGINT that we have already displayed
3064 for another thread. */
3065 if (lp->ignore_sigint
3066 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3067 {
3068 if (debug_linux_nat)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "LLW: Delayed SIGINT caught for %s.\n",
3071 target_pid_to_str (lp->ptid));
3072
3073 /* This is a delayed SIGINT. */
3074 lp->ignore_sigint = 0;
3075
3076 registers_changed ();
3077 if (linux_nat_prepare_to_resume != NULL)
3078 linux_nat_prepare_to_resume (lp);
3079 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3080 lp->step, GDB_SIGNAL_0);
3081 if (debug_linux_nat)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3084 lp->step ?
3085 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3086 target_pid_to_str (lp->ptid));
3087
3088 lp->stopped = 0;
3089 gdb_assert (lp->resumed);
3090
3091 /* Discard the event. */
3092 return NULL;
3093 }
3094
3095 /* An interesting event. */
3096 gdb_assert (lp);
3097 lp->status = status;
3098 return lp;
3099 }
3100
3101 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3102 their exits until all other threads in the group have exited. */
3103
3104 static void
3105 check_zombie_leaders (void)
3106 {
3107 struct inferior *inf;
3108
3109 ALL_INFERIORS (inf)
3110 {
3111 struct lwp_info *leader_lp;
3112
3113 if (inf->pid == 0)
3114 continue;
3115
3116 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3117 if (leader_lp != NULL
3118 /* Check if there are other threads in the group, as we may
3119 have raced with the inferior simply exiting. */
3120 && num_lwps (inf->pid) > 1
3121 && linux_proc_pid_is_zombie (inf->pid))
3122 {
3123 if (debug_linux_nat)
3124 fprintf_unfiltered (gdb_stdlog,
3125 "CZL: Thread group leader %d zombie "
3126 "(it exited, or another thread execd).\n",
3127 inf->pid);
3128
3129 /* A leader zombie can mean one of two things:
3130
3131 - It exited, and there's an exit status pending
3132 available, or only the leader exited (not the whole
3133 program). In the latter case, we can't waitpid the
3134 leader's exit status until all other threads are gone.
3135
3136 - There are 3 or more threads in the group, and a thread
3137 other than the leader exec'd. On an exec, the Linux
3138 kernel destroys all other threads (except the execing
3139 one) in the thread group, and resets the execing thread's
3140 tid to the tgid. No exit notification is sent for the
3141 execing thread -- from the ptracer's perspective, it
3142 appears as though the execing thread just vanishes.
3143 Until we reap all other threads except the leader and the
3144 execing thread, the leader will be zombie, and the
3145 execing thread will be in `D (disc sleep)'. As soon as
3146 all other threads are reaped, the execing thread changes
3147 it's tid to the tgid, and the previous (zombie) leader
3148 vanishes, giving place to the "new" leader. We could try
3149 distinguishing the exit and exec cases, by waiting once
3150 more, and seeing if something comes out, but it doesn't
3151 sound useful. The previous leader _does_ go away, and
3152 we'll re-add the new one once we see the exec event
3153 (which is just the same as what would happen if the
3154 previous leader did exit voluntarily before some other
3155 thread execs). */
3156
3157 if (debug_linux_nat)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "CZL: Thread group leader %d vanished.\n",
3160 inf->pid);
3161 exit_lwp (leader_lp);
3162 }
3163 }
3164 }
3165
3166 static ptid_t
3167 linux_nat_wait_1 (struct target_ops *ops,
3168 ptid_t ptid, struct target_waitstatus *ourstatus,
3169 int target_options)
3170 {
3171 static sigset_t prev_mask;
3172 enum resume_kind last_resume_kind;
3173 struct lwp_info *lp;
3174 int status;
3175
3176 if (debug_linux_nat)
3177 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3178
3179 /* The first time we get here after starting a new inferior, we may
3180 not have added it to the LWP list yet - this is the earliest
3181 moment at which we know its PID. */
3182 if (ptid_is_pid (inferior_ptid))
3183 {
3184 /* Upgrade the main thread's ptid. */
3185 thread_change_ptid (inferior_ptid,
3186 ptid_build (ptid_get_pid (inferior_ptid),
3187 ptid_get_pid (inferior_ptid), 0));
3188
3189 lp = add_initial_lwp (inferior_ptid);
3190 lp->resumed = 1;
3191 }
3192
3193 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3194 block_child_signals (&prev_mask);
3195
3196 retry:
3197 lp = NULL;
3198 status = 0;
3199
3200 /* First check if there is a LWP with a wait status pending. */
3201 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3202 {
3203 /* Any LWP in the PTID group that's been resumed will do. */
3204 lp = iterate_over_lwps (ptid, status_callback, NULL);
3205 if (lp)
3206 {
3207 if (debug_linux_nat && lp->status)
3208 fprintf_unfiltered (gdb_stdlog,
3209 "LLW: Using pending wait status %s for %s.\n",
3210 status_to_str (lp->status),
3211 target_pid_to_str (lp->ptid));
3212 }
3213 }
3214 else if (ptid_lwp_p (ptid))
3215 {
3216 if (debug_linux_nat)
3217 fprintf_unfiltered (gdb_stdlog,
3218 "LLW: Waiting for specific LWP %s.\n",
3219 target_pid_to_str (ptid));
3220
3221 /* We have a specific LWP to check. */
3222 lp = find_lwp_pid (ptid);
3223 gdb_assert (lp);
3224
3225 if (debug_linux_nat && lp->status)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "LLW: Using pending wait status %s for %s.\n",
3228 status_to_str (lp->status),
3229 target_pid_to_str (lp->ptid));
3230
3231 /* We check for lp->waitstatus in addition to lp->status,
3232 because we can have pending process exits recorded in
3233 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3234 an additional lp->status_p flag. */
3235 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3236 lp = NULL;
3237 }
3238
3239 if (!target_can_async_p ())
3240 {
3241 /* Causes SIGINT to be passed on to the attached process. */
3242 set_sigint_trap ();
3243 }
3244
3245 /* But if we don't find a pending event, we'll have to wait. */
3246
3247 while (lp == NULL)
3248 {
3249 pid_t lwpid;
3250
3251 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3252 quirks:
3253
3254 - If the thread group leader exits while other threads in the
3255 thread group still exist, waitpid(TGID, ...) hangs. That
3256 waitpid won't return an exit status until the other threads
3257 in the group are reapped.
3258
3259 - When a non-leader thread execs, that thread just vanishes
3260 without reporting an exit (so we'd hang if we waited for it
3261 explicitly in that case). The exec event is reported to
3262 the TGID pid. */
3263
3264 errno = 0;
3265 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3266 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3267 lwpid = my_waitpid (-1, &status, WNOHANG);
3268
3269 if (debug_linux_nat)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LNW: waitpid(-1, ...) returned %d, %s\n",
3272 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3273
3274 if (lwpid > 0)
3275 {
3276 /* If this is true, then we paused LWPs momentarily, and may
3277 now have pending events to handle. */
3278 int new_pending;
3279
3280 if (debug_linux_nat)
3281 {
3282 fprintf_unfiltered (gdb_stdlog,
3283 "LLW: waitpid %ld received %s\n",
3284 (long) lwpid, status_to_str (status));
3285 }
3286
3287 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3288
3289 /* STATUS is now no longer valid, use LP->STATUS instead. */
3290 status = 0;
3291
3292 if (lp && !ptid_match (lp->ptid, ptid))
3293 {
3294 gdb_assert (lp->resumed);
3295
3296 if (debug_linux_nat)
3297 fprintf (stderr,
3298 "LWP %ld got an event %06x, leaving pending.\n",
3299 ptid_get_lwp (lp->ptid), lp->status);
3300
3301 if (WIFSTOPPED (lp->status))
3302 {
3303 if (WSTOPSIG (lp->status) != SIGSTOP)
3304 {
3305 /* Cancel breakpoint hits. The breakpoint may
3306 be removed before we fetch events from this
3307 process to report to the core. It is best
3308 not to assume the moribund breakpoints
3309 heuristic always handles these cases --- it
3310 could be too many events go through to the
3311 core before this one is handled. All-stop
3312 always cancels breakpoint hits in all
3313 threads. */
3314 if (non_stop
3315 && linux_nat_lp_status_is_event (lp)
3316 && cancel_breakpoint (lp))
3317 {
3318 /* Throw away the SIGTRAP. */
3319 lp->status = 0;
3320
3321 if (debug_linux_nat)
3322 fprintf (stderr,
3323 "LLW: LWP %ld hit a breakpoint while"
3324 " waiting for another process;"
3325 " cancelled it\n",
3326 ptid_get_lwp (lp->ptid));
3327 }
3328 lp->stopped = 1;
3329 }
3330 else
3331 {
3332 lp->stopped = 1;
3333 lp->signalled = 0;
3334 }
3335 }
3336 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3337 {
3338 if (debug_linux_nat)
3339 fprintf (stderr,
3340 "Process %ld exited while stopping LWPs\n",
3341 ptid_get_lwp (lp->ptid));
3342
3343 /* This was the last lwp in the process. Since
3344 events are serialized to GDB core, and we can't
3345 report this one right now, but GDB core and the
3346 other target layers will want to be notified
3347 about the exit code/signal, leave the status
3348 pending for the next time we're able to report
3349 it. */
3350
3351 /* Prevent trying to stop this thread again. We'll
3352 never try to resume it because it has a pending
3353 status. */
3354 lp->stopped = 1;
3355
3356 /* Dead LWP's aren't expected to reported a pending
3357 sigstop. */
3358 lp->signalled = 0;
3359
3360 /* Store the pending event in the waitstatus as
3361 well, because W_EXITCODE(0,0) == 0. */
3362 store_waitstatus (&lp->waitstatus, lp->status);
3363 }
3364
3365 /* Keep looking. */
3366 lp = NULL;
3367 }
3368
3369 if (new_pending)
3370 {
3371 /* Some LWP now has a pending event. Go all the way
3372 back to check it. */
3373 goto retry;
3374 }
3375
3376 if (lp)
3377 {
3378 /* We got an event to report to the core. */
3379 break;
3380 }
3381
3382 /* Retry until nothing comes out of waitpid. A single
3383 SIGCHLD can indicate more than one child stopped. */
3384 continue;
3385 }
3386
3387 /* Check for zombie thread group leaders. Those can't be reaped
3388 until all other threads in the thread group are. */
3389 check_zombie_leaders ();
3390
3391 /* If there are no resumed children left, bail. We'd be stuck
3392 forever in the sigsuspend call below otherwise. */
3393 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3394 {
3395 if (debug_linux_nat)
3396 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3397
3398 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3399
3400 if (!target_can_async_p ())
3401 clear_sigint_trap ();
3402
3403 restore_child_signals_mask (&prev_mask);
3404 return minus_one_ptid;
3405 }
3406
3407 /* No interesting event to report to the core. */
3408
3409 if (target_options & TARGET_WNOHANG)
3410 {
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3413
3414 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3415 restore_child_signals_mask (&prev_mask);
3416 return minus_one_ptid;
3417 }
3418
3419 /* We shouldn't end up here unless we want to try again. */
3420 gdb_assert (lp == NULL);
3421
3422 /* Block until we get an event reported with SIGCHLD. */
3423 sigsuspend (&suspend_mask);
3424 }
3425
3426 if (!target_can_async_p ())
3427 clear_sigint_trap ();
3428
3429 gdb_assert (lp);
3430
3431 status = lp->status;
3432 lp->status = 0;
3433
3434 /* Don't report signals that GDB isn't interested in, such as
3435 signals that are neither printed nor stopped upon. Stopping all
3436 threads can be a bit time-consuming so if we want decent
3437 performance with heavily multi-threaded programs, especially when
3438 they're using a high frequency timer, we'd better avoid it if we
3439 can. */
3440
3441 if (WIFSTOPPED (status))
3442 {
3443 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3444
3445 /* When using hardware single-step, we need to report every signal.
3446 Otherwise, signals in pass_mask may be short-circuited. */
3447 if (!lp->step
3448 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3449 {
3450 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3451 here? It is not clear we should. GDB may not expect
3452 other threads to run. On the other hand, not resuming
3453 newly attached threads may cause an unwanted delay in
3454 getting them running. */
3455 registers_changed ();
3456 if (linux_nat_prepare_to_resume != NULL)
3457 linux_nat_prepare_to_resume (lp);
3458 linux_ops->to_resume (linux_ops,
3459 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3460 lp->step, signo);
3461 if (debug_linux_nat)
3462 fprintf_unfiltered (gdb_stdlog,
3463 "LLW: %s %s, %s (preempt 'handle')\n",
3464 lp->step ?
3465 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3466 target_pid_to_str (lp->ptid),
3467 (signo != GDB_SIGNAL_0
3468 ? strsignal (gdb_signal_to_host (signo))
3469 : "0"));
3470 lp->stopped = 0;
3471 goto retry;
3472 }
3473
3474 if (!non_stop)
3475 {
3476 /* Only do the below in all-stop, as we currently use SIGINT
3477 to implement target_stop (see linux_nat_stop) in
3478 non-stop. */
3479 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3480 {
3481 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3482 forwarded to the entire process group, that is, all LWPs
3483 will receive it - unless they're using CLONE_THREAD to
3484 share signals. Since we only want to report it once, we
3485 mark it as ignored for all LWPs except this one. */
3486 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3487 set_ignore_sigint, NULL);
3488 lp->ignore_sigint = 0;
3489 }
3490 else
3491 maybe_clear_ignore_sigint (lp);
3492 }
3493 }
3494
3495 /* This LWP is stopped now. */
3496 lp->stopped = 1;
3497
3498 if (debug_linux_nat)
3499 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3500 status_to_str (status), target_pid_to_str (lp->ptid));
3501
3502 if (!non_stop)
3503 {
3504 /* Now stop all other LWP's ... */
3505 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3506
3507 /* ... and wait until all of them have reported back that
3508 they're no longer running. */
3509 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3510
3511 /* If we're not waiting for a specific LWP, choose an event LWP
3512 from among those that have had events. Giving equal priority
3513 to all LWPs that have had events helps prevent
3514 starvation. */
3515 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3516 select_event_lwp (ptid, &lp, &status);
3517
3518 /* Now that we've selected our final event LWP, cancel any
3519 breakpoints in other LWPs that have hit a GDB breakpoint.
3520 See the comment in cancel_breakpoints_callback to find out
3521 why. */
3522 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3523
3524 /* We'll need this to determine whether to report a SIGSTOP as
3525 TARGET_WAITKIND_0. Need to take a copy because
3526 resume_clear_callback clears it. */
3527 last_resume_kind = lp->last_resume_kind;
3528
3529 /* In all-stop, from the core's perspective, all LWPs are now
3530 stopped until a new resume action is sent over. */
3531 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3532 }
3533 else
3534 {
3535 /* See above. */
3536 last_resume_kind = lp->last_resume_kind;
3537 resume_clear_callback (lp, NULL);
3538 }
3539
3540 if (linux_nat_status_is_event (status))
3541 {
3542 if (debug_linux_nat)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "LLW: trap ptid is %s.\n",
3545 target_pid_to_str (lp->ptid));
3546 }
3547
3548 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3549 {
3550 *ourstatus = lp->waitstatus;
3551 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3552 }
3553 else
3554 store_waitstatus (ourstatus, status);
3555
3556 if (debug_linux_nat)
3557 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3558
3559 restore_child_signals_mask (&prev_mask);
3560
3561 if (last_resume_kind == resume_stop
3562 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3563 && WSTOPSIG (status) == SIGSTOP)
3564 {
3565 /* A thread that has been requested to stop by GDB with
3566 target_stop, and it stopped cleanly, so report as SIG0. The
3567 use of SIGSTOP is an implementation detail. */
3568 ourstatus->value.sig = GDB_SIGNAL_0;
3569 }
3570
3571 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3572 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3573 lp->core = -1;
3574 else
3575 lp->core = linux_common_core_of_thread (lp->ptid);
3576
3577 return lp->ptid;
3578 }
3579
3580 /* Resume LWPs that are currently stopped without any pending status
3581 to report, but are resumed from the core's perspective. */
3582
3583 static int
3584 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3585 {
3586 ptid_t *wait_ptid_p = data;
3587
3588 if (lp->stopped
3589 && lp->resumed
3590 && lp->status == 0
3591 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3592 {
3593 struct regcache *regcache = get_thread_regcache (lp->ptid);
3594 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3595 CORE_ADDR pc = regcache_read_pc (regcache);
3596
3597 gdb_assert (is_executing (lp->ptid));
3598
3599 /* Don't bother if there's a breakpoint at PC that we'd hit
3600 immediately, and we're not waiting for this LWP. */
3601 if (!ptid_match (lp->ptid, *wait_ptid_p))
3602 {
3603 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3604 return 0;
3605 }
3606
3607 if (debug_linux_nat)
3608 fprintf_unfiltered (gdb_stdlog,
3609 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3610 target_pid_to_str (lp->ptid),
3611 paddress (gdbarch, pc),
3612 lp->step);
3613
3614 registers_changed ();
3615 if (linux_nat_prepare_to_resume != NULL)
3616 linux_nat_prepare_to_resume (lp);
3617 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3618 lp->step, GDB_SIGNAL_0);
3619 lp->stopped = 0;
3620 lp->stopped_by_watchpoint = 0;
3621 }
3622
3623 return 0;
3624 }
3625
3626 static ptid_t
3627 linux_nat_wait (struct target_ops *ops,
3628 ptid_t ptid, struct target_waitstatus *ourstatus,
3629 int target_options)
3630 {
3631 ptid_t event_ptid;
3632
3633 if (debug_linux_nat)
3634 {
3635 char *options_string;
3636
3637 options_string = target_options_to_string (target_options);
3638 fprintf_unfiltered (gdb_stdlog,
3639 "linux_nat_wait: [%s], [%s]\n",
3640 target_pid_to_str (ptid),
3641 options_string);
3642 xfree (options_string);
3643 }
3644
3645 /* Flush the async file first. */
3646 if (target_can_async_p ())
3647 async_file_flush ();
3648
3649 /* Resume LWPs that are currently stopped without any pending status
3650 to report, but are resumed from the core's perspective. LWPs get
3651 in this state if we find them stopping at a time we're not
3652 interested in reporting the event (target_wait on a
3653 specific_process, for example, see linux_nat_wait_1), and
3654 meanwhile the event became uninteresting. Don't bother resuming
3655 LWPs we're not going to wait for if they'd stop immediately. */
3656 if (non_stop)
3657 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3658
3659 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3660
3661 /* If we requested any event, and something came out, assume there
3662 may be more. If we requested a specific lwp or process, also
3663 assume there may be more. */
3664 if (target_can_async_p ()
3665 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3666 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3667 || !ptid_equal (ptid, minus_one_ptid)))
3668 async_file_mark ();
3669
3670 /* Get ready for the next event. */
3671 if (target_can_async_p ())
3672 target_async (inferior_event_handler, 0);
3673
3674 return event_ptid;
3675 }
3676
3677 static int
3678 kill_callback (struct lwp_info *lp, void *data)
3679 {
3680 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3681
3682 errno = 0;
3683 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3684 if (debug_linux_nat)
3685 fprintf_unfiltered (gdb_stdlog,
3686 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3687 target_pid_to_str (lp->ptid),
3688 errno ? safe_strerror (errno) : "OK");
3689
3690 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3691
3692 errno = 0;
3693 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3694 if (debug_linux_nat)
3695 fprintf_unfiltered (gdb_stdlog,
3696 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3697 target_pid_to_str (lp->ptid),
3698 errno ? safe_strerror (errno) : "OK");
3699
3700 return 0;
3701 }
3702
3703 static int
3704 kill_wait_callback (struct lwp_info *lp, void *data)
3705 {
3706 pid_t pid;
3707
3708 /* We must make sure that there are no pending events (delayed
3709 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3710 program doesn't interfere with any following debugging session. */
3711
3712 /* For cloned processes we must check both with __WCLONE and
3713 without, since the exit status of a cloned process isn't reported
3714 with __WCLONE. */
3715 if (lp->cloned)
3716 {
3717 do
3718 {
3719 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3720 if (pid != (pid_t) -1)
3721 {
3722 if (debug_linux_nat)
3723 fprintf_unfiltered (gdb_stdlog,
3724 "KWC: wait %s received unknown.\n",
3725 target_pid_to_str (lp->ptid));
3726 /* The Linux kernel sometimes fails to kill a thread
3727 completely after PTRACE_KILL; that goes from the stop
3728 point in do_fork out to the one in
3729 get_signal_to_deliever and waits again. So kill it
3730 again. */
3731 kill_callback (lp, NULL);
3732 }
3733 }
3734 while (pid == ptid_get_lwp (lp->ptid));
3735
3736 gdb_assert (pid == -1 && errno == ECHILD);
3737 }
3738
3739 do
3740 {
3741 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3742 if (pid != (pid_t) -1)
3743 {
3744 if (debug_linux_nat)
3745 fprintf_unfiltered (gdb_stdlog,
3746 "KWC: wait %s received unk.\n",
3747 target_pid_to_str (lp->ptid));
3748 /* See the call to kill_callback above. */
3749 kill_callback (lp, NULL);
3750 }
3751 }
3752 while (pid == ptid_get_lwp (lp->ptid));
3753
3754 gdb_assert (pid == -1 && errno == ECHILD);
3755 return 0;
3756 }
3757
3758 static void
3759 linux_nat_kill (struct target_ops *ops)
3760 {
3761 struct target_waitstatus last;
3762 ptid_t last_ptid;
3763 int status;
3764
3765 /* If we're stopped while forking and we haven't followed yet,
3766 kill the other task. We need to do this first because the
3767 parent will be sleeping if this is a vfork. */
3768
3769 get_last_target_status (&last_ptid, &last);
3770
3771 if (last.kind == TARGET_WAITKIND_FORKED
3772 || last.kind == TARGET_WAITKIND_VFORKED)
3773 {
3774 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3775 wait (&status);
3776
3777 /* Let the arch-specific native code know this process is
3778 gone. */
3779 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3780 }
3781
3782 if (forks_exist_p ())
3783 linux_fork_killall ();
3784 else
3785 {
3786 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3787
3788 /* Stop all threads before killing them, since ptrace requires
3789 that the thread is stopped to sucessfully PTRACE_KILL. */
3790 iterate_over_lwps (ptid, stop_callback, NULL);
3791 /* ... and wait until all of them have reported back that
3792 they're no longer running. */
3793 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3794
3795 /* Kill all LWP's ... */
3796 iterate_over_lwps (ptid, kill_callback, NULL);
3797
3798 /* ... and wait until we've flushed all events. */
3799 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3800 }
3801
3802 target_mourn_inferior ();
3803 }
3804
3805 static void
3806 linux_nat_mourn_inferior (struct target_ops *ops)
3807 {
3808 int pid = ptid_get_pid (inferior_ptid);
3809
3810 purge_lwp_list (pid);
3811
3812 if (! forks_exist_p ())
3813 /* Normal case, no other forks available. */
3814 linux_ops->to_mourn_inferior (ops);
3815 else
3816 /* Multi-fork case. The current inferior_ptid has exited, but
3817 there are other viable forks to debug. Delete the exiting
3818 one and context-switch to the first available. */
3819 linux_fork_mourn_inferior ();
3820
3821 /* Let the arch-specific native code know this process is gone. */
3822 linux_nat_forget_process (pid);
3823 }
3824
3825 /* Convert a native/host siginfo object, into/from the siginfo in the
3826 layout of the inferiors' architecture. */
3827
3828 static void
3829 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3830 {
3831 int done = 0;
3832
3833 if (linux_nat_siginfo_fixup != NULL)
3834 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3835
3836 /* If there was no callback, or the callback didn't do anything,
3837 then just do a straight memcpy. */
3838 if (!done)
3839 {
3840 if (direction == 1)
3841 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3842 else
3843 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3844 }
3845 }
3846
3847 static enum target_xfer_status
3848 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3851 ULONGEST *xfered_len)
3852 {
3853 int pid;
3854 siginfo_t siginfo;
3855 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3856
3857 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3858 gdb_assert (readbuf || writebuf);
3859
3860 pid = ptid_get_lwp (inferior_ptid);
3861 if (pid == 0)
3862 pid = ptid_get_pid (inferior_ptid);
3863
3864 if (offset > sizeof (siginfo))
3865 return TARGET_XFER_E_IO;
3866
3867 errno = 0;
3868 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3869 if (errno != 0)
3870 return TARGET_XFER_E_IO;
3871
3872 /* When GDB is built as a 64-bit application, ptrace writes into
3873 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3874 inferior with a 64-bit GDB should look the same as debugging it
3875 with a 32-bit GDB, we need to convert it. GDB core always sees
3876 the converted layout, so any read/write will have to be done
3877 post-conversion. */
3878 siginfo_fixup (&siginfo, inf_siginfo, 0);
3879
3880 if (offset + len > sizeof (siginfo))
3881 len = sizeof (siginfo) - offset;
3882
3883 if (readbuf != NULL)
3884 memcpy (readbuf, inf_siginfo + offset, len);
3885 else
3886 {
3887 memcpy (inf_siginfo + offset, writebuf, len);
3888
3889 /* Convert back to ptrace layout before flushing it out. */
3890 siginfo_fixup (&siginfo, inf_siginfo, 1);
3891
3892 errno = 0;
3893 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3894 if (errno != 0)
3895 return TARGET_XFER_E_IO;
3896 }
3897
3898 *xfered_len = len;
3899 return TARGET_XFER_OK;
3900 }
3901
3902 static enum target_xfer_status
3903 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3904 const char *annex, gdb_byte *readbuf,
3905 const gdb_byte *writebuf,
3906 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3907 {
3908 struct cleanup *old_chain;
3909 enum target_xfer_status xfer;
3910
3911 if (object == TARGET_OBJECT_SIGNAL_INFO)
3912 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3913 offset, len, xfered_len);
3914
3915 /* The target is connected but no live inferior is selected. Pass
3916 this request down to a lower stratum (e.g., the executable
3917 file). */
3918 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3919 return TARGET_XFER_EOF;
3920
3921 old_chain = save_inferior_ptid ();
3922
3923 if (ptid_lwp_p (inferior_ptid))
3924 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3925
3926 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3927 offset, len, xfered_len);
3928
3929 do_cleanups (old_chain);
3930 return xfer;
3931 }
3932
3933 static int
3934 linux_thread_alive (ptid_t ptid)
3935 {
3936 int err, tmp_errno;
3937
3938 gdb_assert (ptid_lwp_p (ptid));
3939
3940 /* Send signal 0 instead of anything ptrace, because ptracing a
3941 running thread errors out claiming that the thread doesn't
3942 exist. */
3943 err = kill_lwp (ptid_get_lwp (ptid), 0);
3944 tmp_errno = errno;
3945 if (debug_linux_nat)
3946 fprintf_unfiltered (gdb_stdlog,
3947 "LLTA: KILL(SIG0) %s (%s)\n",
3948 target_pid_to_str (ptid),
3949 err ? safe_strerror (tmp_errno) : "OK");
3950
3951 if (err != 0)
3952 return 0;
3953
3954 return 1;
3955 }
3956
3957 static int
3958 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3959 {
3960 return linux_thread_alive (ptid);
3961 }
3962
3963 static char *
3964 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3965 {
3966 static char buf[64];
3967
3968 if (ptid_lwp_p (ptid)
3969 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3970 || num_lwps (ptid_get_pid (ptid)) > 1))
3971 {
3972 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3973 return buf;
3974 }
3975
3976 return normal_pid_to_str (ptid);
3977 }
3978
3979 static char *
3980 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3981 {
3982 int pid = ptid_get_pid (thr->ptid);
3983 long lwp = ptid_get_lwp (thr->ptid);
3984 #define FORMAT "/proc/%d/task/%ld/comm"
3985 char buf[sizeof (FORMAT) + 30];
3986 FILE *comm_file;
3987 char *result = NULL;
3988
3989 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3990 comm_file = gdb_fopen_cloexec (buf, "r");
3991 if (comm_file)
3992 {
3993 /* Not exported by the kernel, so we define it here. */
3994 #define COMM_LEN 16
3995 static char line[COMM_LEN + 1];
3996
3997 if (fgets (line, sizeof (line), comm_file))
3998 {
3999 char *nl = strchr (line, '\n');
4000
4001 if (nl)
4002 *nl = '\0';
4003 if (*line != '\0')
4004 result = line;
4005 }
4006
4007 fclose (comm_file);
4008 }
4009
4010 #undef COMM_LEN
4011 #undef FORMAT
4012
4013 return result;
4014 }
4015
4016 /* Accepts an integer PID; Returns a string representing a file that
4017 can be opened to get the symbols for the child process. */
4018
4019 static char *
4020 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4021 {
4022 static char buf[PATH_MAX];
4023 char name[PATH_MAX];
4024
4025 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4026 memset (buf, 0, PATH_MAX);
4027 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4028 strcpy (buf, name);
4029
4030 return buf;
4031 }
4032
4033 /* Records the thread's register state for the corefile note
4034 section. */
4035
4036 static char *
4037 linux_nat_collect_thread_registers (const struct regcache *regcache,
4038 ptid_t ptid, bfd *obfd,
4039 char *note_data, int *note_size,
4040 enum gdb_signal stop_signal)
4041 {
4042 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4043 const struct regset *regset;
4044 int core_regset_p;
4045 gdb_gregset_t gregs;
4046 gdb_fpregset_t fpregs;
4047
4048 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4049
4050 if (core_regset_p
4051 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4052 sizeof (gregs)))
4053 != NULL && regset->collect_regset != NULL)
4054 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4055 else
4056 fill_gregset (regcache, &gregs, -1);
4057
4058 note_data = (char *) elfcore_write_prstatus
4059 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4060 gdb_signal_to_host (stop_signal), &gregs);
4061
4062 if (core_regset_p
4063 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4064 sizeof (fpregs)))
4065 != NULL && regset->collect_regset != NULL)
4066 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4067 else
4068 fill_fpregset (regcache, &fpregs, -1);
4069
4070 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4071 &fpregs, sizeof (fpregs));
4072
4073 return note_data;
4074 }
4075
4076 /* Fills the "to_make_corefile_note" target vector. Builds the note
4077 section for a corefile, and returns it in a malloc buffer. */
4078
4079 static char *
4080 linux_nat_make_corefile_notes (struct target_ops *self,
4081 bfd *obfd, int *note_size)
4082 {
4083 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4084 converted to gdbarch_core_regset_sections, this function can go away. */
4085 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4086 linux_nat_collect_thread_registers);
4087 }
4088
4089 /* Implement the to_xfer_partial interface for memory reads using the /proc
4090 filesystem. Because we can use a single read() call for /proc, this
4091 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4092 but it doesn't support writes. */
4093
4094 static enum target_xfer_status
4095 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4096 const char *annex, gdb_byte *readbuf,
4097 const gdb_byte *writebuf,
4098 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4099 {
4100 LONGEST ret;
4101 int fd;
4102 char filename[64];
4103
4104 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4105 return 0;
4106
4107 /* Don't bother for one word. */
4108 if (len < 3 * sizeof (long))
4109 return TARGET_XFER_EOF;
4110
4111 /* We could keep this file open and cache it - possibly one per
4112 thread. That requires some juggling, but is even faster. */
4113 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4114 ptid_get_pid (inferior_ptid));
4115 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4116 if (fd == -1)
4117 return TARGET_XFER_EOF;
4118
4119 /* If pread64 is available, use it. It's faster if the kernel
4120 supports it (only one syscall), and it's 64-bit safe even on
4121 32-bit platforms (for instance, SPARC debugging a SPARC64
4122 application). */
4123 #ifdef HAVE_PREAD64
4124 if (pread64 (fd, readbuf, len, offset) != len)
4125 #else
4126 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4127 #endif
4128 ret = 0;
4129 else
4130 ret = len;
4131
4132 close (fd);
4133
4134 if (ret == 0)
4135 return TARGET_XFER_EOF;
4136 else
4137 {
4138 *xfered_len = ret;
4139 return TARGET_XFER_OK;
4140 }
4141 }
4142
4143
4144 /* Enumerate spufs IDs for process PID. */
4145 static LONGEST
4146 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4147 {
4148 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4149 LONGEST pos = 0;
4150 LONGEST written = 0;
4151 char path[128];
4152 DIR *dir;
4153 struct dirent *entry;
4154
4155 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4156 dir = opendir (path);
4157 if (!dir)
4158 return -1;
4159
4160 rewinddir (dir);
4161 while ((entry = readdir (dir)) != NULL)
4162 {
4163 struct stat st;
4164 struct statfs stfs;
4165 int fd;
4166
4167 fd = atoi (entry->d_name);
4168 if (!fd)
4169 continue;
4170
4171 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4172 if (stat (path, &st) != 0)
4173 continue;
4174 if (!S_ISDIR (st.st_mode))
4175 continue;
4176
4177 if (statfs (path, &stfs) != 0)
4178 continue;
4179 if (stfs.f_type != SPUFS_MAGIC)
4180 continue;
4181
4182 if (pos >= offset && pos + 4 <= offset + len)
4183 {
4184 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4185 written += 4;
4186 }
4187 pos += 4;
4188 }
4189
4190 closedir (dir);
4191 return written;
4192 }
4193
4194 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4195 object type, using the /proc file system. */
4196
4197 static enum target_xfer_status
4198 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4199 const char *annex, gdb_byte *readbuf,
4200 const gdb_byte *writebuf,
4201 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4202 {
4203 char buf[128];
4204 int fd = 0;
4205 int ret = -1;
4206 int pid = ptid_get_pid (inferior_ptid);
4207
4208 if (!annex)
4209 {
4210 if (!readbuf)
4211 return TARGET_XFER_E_IO;
4212 else
4213 {
4214 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4215
4216 if (l < 0)
4217 return TARGET_XFER_E_IO;
4218 else if (l == 0)
4219 return TARGET_XFER_EOF;
4220 else
4221 {
4222 *xfered_len = (ULONGEST) l;
4223 return TARGET_XFER_OK;
4224 }
4225 }
4226 }
4227
4228 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4229 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4230 if (fd <= 0)
4231 return TARGET_XFER_E_IO;
4232
4233 if (offset != 0
4234 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4235 {
4236 close (fd);
4237 return TARGET_XFER_EOF;
4238 }
4239
4240 if (writebuf)
4241 ret = write (fd, writebuf, (size_t) len);
4242 else if (readbuf)
4243 ret = read (fd, readbuf, (size_t) len);
4244
4245 close (fd);
4246
4247 if (ret < 0)
4248 return TARGET_XFER_E_IO;
4249 else if (ret == 0)
4250 return TARGET_XFER_EOF;
4251 else
4252 {
4253 *xfered_len = (ULONGEST) ret;
4254 return TARGET_XFER_OK;
4255 }
4256 }
4257
4258
4259 /* Parse LINE as a signal set and add its set bits to SIGS. */
4260
4261 static void
4262 add_line_to_sigset (const char *line, sigset_t *sigs)
4263 {
4264 int len = strlen (line) - 1;
4265 const char *p;
4266 int signum;
4267
4268 if (line[len] != '\n')
4269 error (_("Could not parse signal set: %s"), line);
4270
4271 p = line;
4272 signum = len * 4;
4273 while (len-- > 0)
4274 {
4275 int digit;
4276
4277 if (*p >= '0' && *p <= '9')
4278 digit = *p - '0';
4279 else if (*p >= 'a' && *p <= 'f')
4280 digit = *p - 'a' + 10;
4281 else
4282 error (_("Could not parse signal set: %s"), line);
4283
4284 signum -= 4;
4285
4286 if (digit & 1)
4287 sigaddset (sigs, signum + 1);
4288 if (digit & 2)
4289 sigaddset (sigs, signum + 2);
4290 if (digit & 4)
4291 sigaddset (sigs, signum + 3);
4292 if (digit & 8)
4293 sigaddset (sigs, signum + 4);
4294
4295 p++;
4296 }
4297 }
4298
4299 /* Find process PID's pending signals from /proc/pid/status and set
4300 SIGS to match. */
4301
4302 void
4303 linux_proc_pending_signals (int pid, sigset_t *pending,
4304 sigset_t *blocked, sigset_t *ignored)
4305 {
4306 FILE *procfile;
4307 char buffer[PATH_MAX], fname[PATH_MAX];
4308 struct cleanup *cleanup;
4309
4310 sigemptyset (pending);
4311 sigemptyset (blocked);
4312 sigemptyset (ignored);
4313 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4314 procfile = gdb_fopen_cloexec (fname, "r");
4315 if (procfile == NULL)
4316 error (_("Could not open %s"), fname);
4317 cleanup = make_cleanup_fclose (procfile);
4318
4319 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4320 {
4321 /* Normal queued signals are on the SigPnd line in the status
4322 file. However, 2.6 kernels also have a "shared" pending
4323 queue for delivering signals to a thread group, so check for
4324 a ShdPnd line also.
4325
4326 Unfortunately some Red Hat kernels include the shared pending
4327 queue but not the ShdPnd status field. */
4328
4329 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4330 add_line_to_sigset (buffer + 8, pending);
4331 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4332 add_line_to_sigset (buffer + 8, pending);
4333 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4334 add_line_to_sigset (buffer + 8, blocked);
4335 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4336 add_line_to_sigset (buffer + 8, ignored);
4337 }
4338
4339 do_cleanups (cleanup);
4340 }
4341
4342 static enum target_xfer_status
4343 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4344 const char *annex, gdb_byte *readbuf,
4345 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4346 ULONGEST *xfered_len)
4347 {
4348 gdb_assert (object == TARGET_OBJECT_OSDATA);
4349
4350 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4351 if (*xfered_len == 0)
4352 return TARGET_XFER_EOF;
4353 else
4354 return TARGET_XFER_OK;
4355 }
4356
4357 static enum target_xfer_status
4358 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4359 const char *annex, gdb_byte *readbuf,
4360 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4361 ULONGEST *xfered_len)
4362 {
4363 enum target_xfer_status xfer;
4364
4365 if (object == TARGET_OBJECT_AUXV)
4366 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4367 offset, len, xfered_len);
4368
4369 if (object == TARGET_OBJECT_OSDATA)
4370 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4371 offset, len, xfered_len);
4372
4373 if (object == TARGET_OBJECT_SPU)
4374 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4375 offset, len, xfered_len);
4376
4377 /* GDB calculates all the addresses in possibly larget width of the address.
4378 Address width needs to be masked before its final use - either by
4379 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4380
4381 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4382
4383 if (object == TARGET_OBJECT_MEMORY)
4384 {
4385 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4386
4387 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4388 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4389 }
4390
4391 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4392 offset, len, xfered_len);
4393 if (xfer != TARGET_XFER_EOF)
4394 return xfer;
4395
4396 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4397 offset, len, xfered_len);
4398 }
4399
4400 static void
4401 cleanup_target_stop (void *arg)
4402 {
4403 ptid_t *ptid = (ptid_t *) arg;
4404
4405 gdb_assert (arg != NULL);
4406
4407 /* Unpause all */
4408 target_resume (*ptid, 0, GDB_SIGNAL_0);
4409 }
4410
4411 static VEC(static_tracepoint_marker_p) *
4412 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4413 const char *strid)
4414 {
4415 char s[IPA_CMD_BUF_SIZE];
4416 struct cleanup *old_chain;
4417 int pid = ptid_get_pid (inferior_ptid);
4418 VEC(static_tracepoint_marker_p) *markers = NULL;
4419 struct static_tracepoint_marker *marker = NULL;
4420 char *p = s;
4421 ptid_t ptid = ptid_build (pid, 0, 0);
4422
4423 /* Pause all */
4424 target_stop (ptid);
4425
4426 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4427 s[sizeof ("qTfSTM")] = 0;
4428
4429 agent_run_command (pid, s, strlen (s) + 1);
4430
4431 old_chain = make_cleanup (free_current_marker, &marker);
4432 make_cleanup (cleanup_target_stop, &ptid);
4433
4434 while (*p++ == 'm')
4435 {
4436 if (marker == NULL)
4437 marker = XCNEW (struct static_tracepoint_marker);
4438
4439 do
4440 {
4441 parse_static_tracepoint_marker_definition (p, &p, marker);
4442
4443 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4444 {
4445 VEC_safe_push (static_tracepoint_marker_p,
4446 markers, marker);
4447 marker = NULL;
4448 }
4449 else
4450 {
4451 release_static_tracepoint_marker (marker);
4452 memset (marker, 0, sizeof (*marker));
4453 }
4454 }
4455 while (*p++ == ','); /* comma-separated list */
4456
4457 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4458 s[sizeof ("qTsSTM")] = 0;
4459 agent_run_command (pid, s, strlen (s) + 1);
4460 p = s;
4461 }
4462
4463 do_cleanups (old_chain);
4464
4465 return markers;
4466 }
4467
4468 /* Create a prototype generic GNU/Linux target. The client can override
4469 it with local methods. */
4470
4471 static void
4472 linux_target_install_ops (struct target_ops *t)
4473 {
4474 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4475 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4476 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4477 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4478 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4479 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4480 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4481 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4482 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4483 t->to_post_attach = linux_child_post_attach;
4484 t->to_follow_fork = linux_child_follow_fork;
4485 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4486
4487 super_xfer_partial = t->to_xfer_partial;
4488 t->to_xfer_partial = linux_xfer_partial;
4489
4490 t->to_static_tracepoint_markers_by_strid
4491 = linux_child_static_tracepoint_markers_by_strid;
4492 }
4493
4494 struct target_ops *
4495 linux_target (void)
4496 {
4497 struct target_ops *t;
4498
4499 t = inf_ptrace_target ();
4500 linux_target_install_ops (t);
4501
4502 return t;
4503 }
4504
4505 struct target_ops *
4506 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4507 {
4508 struct target_ops *t;
4509
4510 t = inf_ptrace_trad_target (register_u_offset);
4511 linux_target_install_ops (t);
4512
4513 return t;
4514 }
4515
4516 /* target_is_async_p implementation. */
4517
4518 static int
4519 linux_nat_is_async_p (struct target_ops *ops)
4520 {
4521 /* NOTE: palves 2008-03-21: We're only async when the user requests
4522 it explicitly with the "set target-async" command.
4523 Someday, linux will always be async. */
4524 return target_async_permitted;
4525 }
4526
4527 /* target_can_async_p implementation. */
4528
4529 static int
4530 linux_nat_can_async_p (struct target_ops *ops)
4531 {
4532 /* NOTE: palves 2008-03-21: We're only async when the user requests
4533 it explicitly with the "set target-async" command.
4534 Someday, linux will always be async. */
4535 return target_async_permitted;
4536 }
4537
4538 static int
4539 linux_nat_supports_non_stop (struct target_ops *self)
4540 {
4541 return 1;
4542 }
4543
4544 /* True if we want to support multi-process. To be removed when GDB
4545 supports multi-exec. */
4546
4547 int linux_multi_process = 1;
4548
4549 static int
4550 linux_nat_supports_multi_process (struct target_ops *self)
4551 {
4552 return linux_multi_process;
4553 }
4554
4555 static int
4556 linux_nat_supports_disable_randomization (struct target_ops *self)
4557 {
4558 #ifdef HAVE_PERSONALITY
4559 return 1;
4560 #else
4561 return 0;
4562 #endif
4563 }
4564
4565 static int async_terminal_is_ours = 1;
4566
4567 /* target_terminal_inferior implementation. */
4568
4569 static void
4570 linux_nat_terminal_inferior (struct target_ops *self)
4571 {
4572 if (!target_is_async_p ())
4573 {
4574 /* Async mode is disabled. */
4575 child_terminal_inferior (self);
4576 return;
4577 }
4578
4579 child_terminal_inferior (self);
4580
4581 /* Calls to target_terminal_*() are meant to be idempotent. */
4582 if (!async_terminal_is_ours)
4583 return;
4584
4585 delete_file_handler (input_fd);
4586 async_terminal_is_ours = 0;
4587 set_sigint_trap ();
4588 }
4589
4590 /* target_terminal_ours implementation. */
4591
4592 static void
4593 linux_nat_terminal_ours (struct target_ops *self)
4594 {
4595 if (!target_is_async_p ())
4596 {
4597 /* Async mode is disabled. */
4598 child_terminal_ours (self);
4599 return;
4600 }
4601
4602 /* GDB should never give the terminal to the inferior if the
4603 inferior is running in the background (run&, continue&, etc.),
4604 but claiming it sure should. */
4605 child_terminal_ours (self);
4606
4607 if (async_terminal_is_ours)
4608 return;
4609
4610 clear_sigint_trap ();
4611 add_file_handler (input_fd, stdin_event_handler, 0);
4612 async_terminal_is_ours = 1;
4613 }
4614
4615 static void (*async_client_callback) (enum inferior_event_type event_type,
4616 void *context);
4617 static void *async_client_context;
4618
4619 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4620 so we notice when any child changes state, and notify the
4621 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4622 above to wait for the arrival of a SIGCHLD. */
4623
4624 static void
4625 sigchld_handler (int signo)
4626 {
4627 int old_errno = errno;
4628
4629 if (debug_linux_nat)
4630 ui_file_write_async_safe (gdb_stdlog,
4631 "sigchld\n", sizeof ("sigchld\n") - 1);
4632
4633 if (signo == SIGCHLD
4634 && linux_nat_event_pipe[0] != -1)
4635 async_file_mark (); /* Let the event loop know that there are
4636 events to handle. */
4637
4638 errno = old_errno;
4639 }
4640
4641 /* Callback registered with the target events file descriptor. */
4642
4643 static void
4644 handle_target_event (int error, gdb_client_data client_data)
4645 {
4646 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4647 }
4648
4649 /* Create/destroy the target events pipe. Returns previous state. */
4650
4651 static int
4652 linux_async_pipe (int enable)
4653 {
4654 int previous = (linux_nat_event_pipe[0] != -1);
4655
4656 if (previous != enable)
4657 {
4658 sigset_t prev_mask;
4659
4660 /* Block child signals while we create/destroy the pipe, as
4661 their handler writes to it. */
4662 block_child_signals (&prev_mask);
4663
4664 if (enable)
4665 {
4666 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4667 internal_error (__FILE__, __LINE__,
4668 "creating event pipe failed.");
4669
4670 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4671 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4672 }
4673 else
4674 {
4675 close (linux_nat_event_pipe[0]);
4676 close (linux_nat_event_pipe[1]);
4677 linux_nat_event_pipe[0] = -1;
4678 linux_nat_event_pipe[1] = -1;
4679 }
4680
4681 restore_child_signals_mask (&prev_mask);
4682 }
4683
4684 return previous;
4685 }
4686
4687 /* target_async implementation. */
4688
4689 static void
4690 linux_nat_async (struct target_ops *ops,
4691 void (*callback) (enum inferior_event_type event_type,
4692 void *context),
4693 void *context)
4694 {
4695 if (callback != NULL)
4696 {
4697 async_client_callback = callback;
4698 async_client_context = context;
4699 if (!linux_async_pipe (1))
4700 {
4701 add_file_handler (linux_nat_event_pipe[0],
4702 handle_target_event, NULL);
4703 /* There may be pending events to handle. Tell the event loop
4704 to poll them. */
4705 async_file_mark ();
4706 }
4707 }
4708 else
4709 {
4710 async_client_callback = callback;
4711 async_client_context = context;
4712 delete_file_handler (linux_nat_event_pipe[0]);
4713 linux_async_pipe (0);
4714 }
4715 return;
4716 }
4717
4718 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4719 event came out. */
4720
4721 static int
4722 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4723 {
4724 if (!lwp->stopped)
4725 {
4726 if (debug_linux_nat)
4727 fprintf_unfiltered (gdb_stdlog,
4728 "LNSL: running -> suspending %s\n",
4729 target_pid_to_str (lwp->ptid));
4730
4731
4732 if (lwp->last_resume_kind == resume_stop)
4733 {
4734 if (debug_linux_nat)
4735 fprintf_unfiltered (gdb_stdlog,
4736 "linux-nat: already stopping LWP %ld at "
4737 "GDB's request\n",
4738 ptid_get_lwp (lwp->ptid));
4739 return 0;
4740 }
4741
4742 stop_callback (lwp, NULL);
4743 lwp->last_resume_kind = resume_stop;
4744 }
4745 else
4746 {
4747 /* Already known to be stopped; do nothing. */
4748
4749 if (debug_linux_nat)
4750 {
4751 if (find_thread_ptid (lwp->ptid)->stop_requested)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "LNSL: already stopped/stop_requested %s\n",
4754 target_pid_to_str (lwp->ptid));
4755 else
4756 fprintf_unfiltered (gdb_stdlog,
4757 "LNSL: already stopped/no "
4758 "stop_requested yet %s\n",
4759 target_pid_to_str (lwp->ptid));
4760 }
4761 }
4762 return 0;
4763 }
4764
4765 static void
4766 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4767 {
4768 if (non_stop)
4769 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4770 else
4771 linux_ops->to_stop (linux_ops, ptid);
4772 }
4773
4774 static void
4775 linux_nat_close (struct target_ops *self)
4776 {
4777 /* Unregister from the event loop. */
4778 if (linux_nat_is_async_p (NULL))
4779 linux_nat_async (NULL, NULL, 0);
4780
4781 if (linux_ops->to_close)
4782 linux_ops->to_close (linux_ops);
4783
4784 super_close (self);
4785 }
4786
4787 /* When requests are passed down from the linux-nat layer to the
4788 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4789 used. The address space pointer is stored in the inferior object,
4790 but the common code that is passed such ptid can't tell whether
4791 lwpid is a "main" process id or not (it assumes so). We reverse
4792 look up the "main" process id from the lwp here. */
4793
4794 static struct address_space *
4795 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4796 {
4797 struct lwp_info *lwp;
4798 struct inferior *inf;
4799 int pid;
4800
4801 pid = ptid_get_lwp (ptid);
4802 if (ptid_get_lwp (ptid) == 0)
4803 {
4804 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4805 tgid. */
4806 lwp = find_lwp_pid (ptid);
4807 pid = ptid_get_pid (lwp->ptid);
4808 }
4809 else
4810 {
4811 /* A (pid,lwpid,0) ptid. */
4812 pid = ptid_get_pid (ptid);
4813 }
4814
4815 inf = find_inferior_pid (pid);
4816 gdb_assert (inf != NULL);
4817 return inf->aspace;
4818 }
4819
4820 /* Return the cached value of the processor core for thread PTID. */
4821
4822 static int
4823 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4824 {
4825 struct lwp_info *info = find_lwp_pid (ptid);
4826
4827 if (info)
4828 return info->core;
4829 return -1;
4830 }
4831
4832 void
4833 linux_nat_add_target (struct target_ops *t)
4834 {
4835 /* Save the provided single-threaded target. We save this in a separate
4836 variable because another target we've inherited from (e.g. inf-ptrace)
4837 may have saved a pointer to T; we want to use it for the final
4838 process stratum target. */
4839 linux_ops_saved = *t;
4840 linux_ops = &linux_ops_saved;
4841
4842 /* Override some methods for multithreading. */
4843 t->to_create_inferior = linux_nat_create_inferior;
4844 t->to_attach = linux_nat_attach;
4845 t->to_detach = linux_nat_detach;
4846 t->to_resume = linux_nat_resume;
4847 t->to_wait = linux_nat_wait;
4848 t->to_pass_signals = linux_nat_pass_signals;
4849 t->to_xfer_partial = linux_nat_xfer_partial;
4850 t->to_kill = linux_nat_kill;
4851 t->to_mourn_inferior = linux_nat_mourn_inferior;
4852 t->to_thread_alive = linux_nat_thread_alive;
4853 t->to_pid_to_str = linux_nat_pid_to_str;
4854 t->to_thread_name = linux_nat_thread_name;
4855 t->to_has_thread_control = tc_schedlock;
4856 t->to_thread_address_space = linux_nat_thread_address_space;
4857 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4858 t->to_stopped_data_address = linux_nat_stopped_data_address;
4859
4860 t->to_can_async_p = linux_nat_can_async_p;
4861 t->to_is_async_p = linux_nat_is_async_p;
4862 t->to_supports_non_stop = linux_nat_supports_non_stop;
4863 t->to_async = linux_nat_async;
4864 t->to_terminal_inferior = linux_nat_terminal_inferior;
4865 t->to_terminal_ours = linux_nat_terminal_ours;
4866
4867 super_close = t->to_close;
4868 t->to_close = linux_nat_close;
4869
4870 /* Methods for non-stop support. */
4871 t->to_stop = linux_nat_stop;
4872
4873 t->to_supports_multi_process = linux_nat_supports_multi_process;
4874
4875 t->to_supports_disable_randomization
4876 = linux_nat_supports_disable_randomization;
4877
4878 t->to_core_of_thread = linux_nat_core_of_thread;
4879
4880 /* We don't change the stratum; this target will sit at
4881 process_stratum and thread_db will set at thread_stratum. This
4882 is a little strange, since this is a multi-threaded-capable
4883 target, but we want to be on the stack below thread_db, and we
4884 also want to be used for single-threaded processes. */
4885
4886 add_target (t);
4887 }
4888
4889 /* Register a method to call whenever a new thread is attached. */
4890 void
4891 linux_nat_set_new_thread (struct target_ops *t,
4892 void (*new_thread) (struct lwp_info *))
4893 {
4894 /* Save the pointer. We only support a single registered instance
4895 of the GNU/Linux native target, so we do not need to map this to
4896 T. */
4897 linux_nat_new_thread = new_thread;
4898 }
4899
4900 /* See declaration in linux-nat.h. */
4901
4902 void
4903 linux_nat_set_new_fork (struct target_ops *t,
4904 linux_nat_new_fork_ftype *new_fork)
4905 {
4906 /* Save the pointer. */
4907 linux_nat_new_fork = new_fork;
4908 }
4909
4910 /* See declaration in linux-nat.h. */
4911
4912 void
4913 linux_nat_set_forget_process (struct target_ops *t,
4914 linux_nat_forget_process_ftype *fn)
4915 {
4916 /* Save the pointer. */
4917 linux_nat_forget_process_hook = fn;
4918 }
4919
4920 /* See declaration in linux-nat.h. */
4921
4922 void
4923 linux_nat_forget_process (pid_t pid)
4924 {
4925 if (linux_nat_forget_process_hook != NULL)
4926 linux_nat_forget_process_hook (pid);
4927 }
4928
4929 /* Register a method that converts a siginfo object between the layout
4930 that ptrace returns, and the layout in the architecture of the
4931 inferior. */
4932 void
4933 linux_nat_set_siginfo_fixup (struct target_ops *t,
4934 int (*siginfo_fixup) (siginfo_t *,
4935 gdb_byte *,
4936 int))
4937 {
4938 /* Save the pointer. */
4939 linux_nat_siginfo_fixup = siginfo_fixup;
4940 }
4941
4942 /* Register a method to call prior to resuming a thread. */
4943
4944 void
4945 linux_nat_set_prepare_to_resume (struct target_ops *t,
4946 void (*prepare_to_resume) (struct lwp_info *))
4947 {
4948 /* Save the pointer. */
4949 linux_nat_prepare_to_resume = prepare_to_resume;
4950 }
4951
4952 /* See linux-nat.h. */
4953
4954 int
4955 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4956 {
4957 int pid;
4958
4959 pid = ptid_get_lwp (ptid);
4960 if (pid == 0)
4961 pid = ptid_get_pid (ptid);
4962
4963 errno = 0;
4964 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4965 if (errno != 0)
4966 {
4967 memset (siginfo, 0, sizeof (*siginfo));
4968 return 0;
4969 }
4970 return 1;
4971 }
4972
4973 /* Provide a prototype to silence -Wmissing-prototypes. */
4974 extern initialize_file_ftype _initialize_linux_nat;
4975
4976 void
4977 _initialize_linux_nat (void)
4978 {
4979 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4980 &debug_linux_nat, _("\
4981 Set debugging of GNU/Linux lwp module."), _("\
4982 Show debugging of GNU/Linux lwp module."), _("\
4983 Enables printf debugging output."),
4984 NULL,
4985 show_debug_linux_nat,
4986 &setdebuglist, &showdebuglist);
4987
4988 /* Save this mask as the default. */
4989 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4990
4991 /* Install a SIGCHLD handler. */
4992 sigchld_action.sa_handler = sigchld_handler;
4993 sigemptyset (&sigchld_action.sa_mask);
4994 sigchld_action.sa_flags = SA_RESTART;
4995
4996 /* Make it the default. */
4997 sigaction (SIGCHLD, &sigchld_action, NULL);
4998
4999 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5000 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5001 sigdelset (&suspend_mask, SIGCHLD);
5002
5003 sigemptyset (&blocked_mask);
5004 }
5005 \f
5006
5007 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5008 the GNU/Linux Threads library and therefore doesn't really belong
5009 here. */
5010
5011 /* Read variable NAME in the target and return its value if found.
5012 Otherwise return zero. It is assumed that the type of the variable
5013 is `int'. */
5014
5015 static int
5016 get_signo (const char *name)
5017 {
5018 struct bound_minimal_symbol ms;
5019 int signo;
5020
5021 ms = lookup_minimal_symbol (name, NULL, NULL);
5022 if (ms.minsym == NULL)
5023 return 0;
5024
5025 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5026 sizeof (signo)) != 0)
5027 return 0;
5028
5029 return signo;
5030 }
5031
5032 /* Return the set of signals used by the threads library in *SET. */
5033
5034 void
5035 lin_thread_get_thread_signals (sigset_t *set)
5036 {
5037 struct sigaction action;
5038 int restart, cancel;
5039
5040 sigemptyset (&blocked_mask);
5041 sigemptyset (set);
5042
5043 restart = get_signo ("__pthread_sig_restart");
5044 cancel = get_signo ("__pthread_sig_cancel");
5045
5046 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5047 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5048 not provide any way for the debugger to query the signal numbers -
5049 fortunately they don't change! */
5050
5051 if (restart == 0)
5052 restart = __SIGRTMIN;
5053
5054 if (cancel == 0)
5055 cancel = __SIGRTMIN + 1;
5056
5057 sigaddset (set, restart);
5058 sigaddset (set, cancel);
5059
5060 /* The GNU/Linux Threads library makes terminating threads send a
5061 special "cancel" signal instead of SIGCHLD. Make sure we catch
5062 those (to prevent them from terminating GDB itself, which is
5063 likely to be their default action) and treat them the same way as
5064 SIGCHLD. */
5065
5066 action.sa_handler = sigchld_handler;
5067 sigemptyset (&action.sa_mask);
5068 action.sa_flags = SA_RESTART;
5069 sigaction (cancel, &action, NULL);
5070
5071 /* We block the "cancel" signal throughout this code ... */
5072 sigaddset (&blocked_mask, cancel);
5073 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5074
5075 /* ... except during a sigsuspend. */
5076 sigdelset (&suspend_mask, cancel);
5077 }
This page took 0.163476 seconds and 4 git commands to generate.